INAUGURAL DISSERTATION
zur
Erlangung der Doktoriirde
der
Naturwissenschaftlich-Mathematischen Gesamtfakult
der
Ruprecht-Karls-Universt

Heidelberg

vorgelegt von

Diplom-Mathematiker Edgar Busse
(geb. Damir Serikovich Muldagaliev)

aus Almaty

Tag der niindlichen Piafung: 27. April 2006

Thema

Finite-State Genericity

On the Diagonalization Strength of Finite
Automata

Gutachter: Prof. Dr. Klaus Ambos-Spies

Prof. Dr. Frank Stephan

Zusammenfassung

Algorithmische Generizittskonzepte spielen eine wichtige Rolle in der Berechenbarkeits-
und Komplexititstheorie. Diese Begriffe stehen in engem Zusammenhang mit grundle-
genden Diagonalisierungstechniken, und sie wurden zur Erzielung starker Trennungen von
Komplexitatsklassen verwendet. Dérfiedes Generizttskonzept die zugéhigen gener-
ischen Mengen eine co-magere Klasse bilden, ist die Analyse generischer Mengen ein
wichtiges Hifsmittel fir eine quantitative Analyse struktureller @tomene. Typischer-
weise werden Generigitskonzepte mit Hilfe von Erweiterungsfunktionen definiert, wobei

die Stirke eines Konzepts von der Kompléatider zugelassenen Erwiterungsfunktionen
ablangt. Hierbei erweisen sich die sog. schwachen Geriskibnzepte, bei denen nur
totale Erweiterungsfunktionen hgaksichtigt werden, meist als wesentlich séuoler als

die vergleichbaren allgemeinen Konzepte, bei denen auch partielle Funktionen zugelassen
sind. Weiter sind die sog. besémkten Generizittskonzepte — basierend auf Erweiterun-
gen konstanter &nge — besonders interessant, da hier die Klassen der&rigghgener-
ischen Mengen nicht nur co-mager sind sonderratlish MaR 1 haben. Generische
Mengen diesen Typs sind daher typisch sowohl im topologischen wie im mafitheoretis-
chen Sinn.

In dieser Dissertation initiieren wir die Untersuchung von Genétizih Bereich der
Theorie der Formalen Sprachen: Wihfen finite-state-Generigitskonzepte ein und ver-
wenden diese, um die Diagonalisierungss¢ endlicher Automaten zu erforschen.

Wir konzentrieren uns hierbei auf die besihikte finite-state-Generiait und Spezial-
falle hiervon, die wir durch die Bescimkung auf totale Erweiterungsfunktionen bzw. auf
Erweiterungen konstanterahge erhalten. Wir geben eine rein kombinatorische Charak-
terisierung der bescankt finite-state-generischen Mengen: Diese sind gerade die Men-
gen, deren charakteristische Folge saturiert ist, d.h. jedeémBamt als Teilwort entélt.

Mit Hilfe dieser Charakterisierung bestimmen wir die Komplékidler besclémkt finite-
state-generischen Mengen und zeigen, dass solch eine generische Menge nigdhseggul
kann es aber kontext-freie Sprachen mit dieser Gen&tseiigenschaft gibt. Weiter un-
tersuchen wir den Einfluss defhge der Erweiterungen und der Beggtkung auf totale
Erweiterungsfunktionen auf die 8ke der korrespondierenden Geneéitakonzepte. Die
Untersuchung von eingesémkten Erweiterungsfunktionen, deren Wert jeweils nur von
der Eingaberiinge oder einem Endstk der Eingabe konstanteahge abhngt, verdeut-
licht weiter die geringe Diagonalisierungddte endlicher Automaten. Wir beenden un-
sere Untersuchung der besg@hkten finite-state-Generiait damit, dass wir zeigen, dass
die Stirke dieser Konzepte dramatisch@nhwird, wenn wir Erweiterungsfunktionen zu-
grundelegen, deren Eingaben Anfarigge in redundanter Darstellung sind. Auf diese
Art erhalten wir besclénkt finite-state-generische Mengen, die REG-bi-immun sind, d.h.
deren Erkennung die Kapaiziteines endlichen Automaten nicht nur unendlich oft sondern
fastuberalluberschreitet.

Die von uns betrachteten unbesahkten finite-state-Generiatiskonzepte basieren
auf Moore-Funktionen und auf Verallgemeinerungen dieser Funktionen. Auch hier verglei-
chen wir die Sarke der verschiedenen korrespondierenden Geréskanzepte und ér-
tern die Frage, inwieweit diese Konzeptéchtiger als die bescankte finite-state-Generi-
zitat sind.

Unsere Untersuchungen der finite-state-Gendtibiéruhen zum Teil auf neuen Ergeb-
nissenuber Bi-Immuni#t in der Chomsky-Hierarchie, einer neuen Chomsky-Hierarchie
fur unendliche Folgen und einerigrdlichen Untersuchung der saturierten Folgen. Diese
Ergebnisse — die von unafhgigem Interesse sind —werden im ersten Teil der Dissertation
vorgestellt. Sie &nnen unabéingig von dem Hauptteil der Arbeit gelesen werden.

Abstract

Algorithmic genericity notions play a major role in computability theory and computa-
tional complexity theory. These notions are closely related to important diagonalization
techniques and they can be used for obtaining strong separations of complexity classes.
Moreover, since for any genericity concept, the class of the correspondent generic sets is
comeager, the analysis of generic sets leads to a quantitative analysis of structural phenom-
ena. Typically, genericity concepts are based on partial or total extension functions, where
the strength of a concept is determined by the complexity of the admissible extension func-
tions, where in general weak genericity notions based only on total extension functions are
much weaker than the corresponding genericity notions allowing partial extension func-
tions too. Moreover, so called bounded genericity concepts based on extensions of con-
stant length are of particular interest since the classes of the corresponding generic sets are
not only comeager but also have measure 1. So generic sets of these types are abundant in
the topological and the measure theoretic sense.

In this thesis we initiate the investigation of genericity in the setting of formal lan-
guage theory: We introduce finite-state genericity notions, i.e., genericity notions related
to the lowest class in the Chomsky hierarchy and we apply these concepts to explore the
diagonalization strength of finite automata.

We focus on bounded finite-state genericity and some special cases hereof allowing
only total extensions and extensions of fixed length. We give a purely combinatorial char-
acterization of bounded finite-state genericity by showing thatAsdtounded finite-state
generic if and only if its characteristic sequence is saturated, i.e., contains any binary string
as a subword. We use this characterization for determining the complexity of bounded
finite-state generic sets. In particular we show that no bounded finite-state generic lan-
guage is regular but that there are such languages which are context-free. Moreover, we
explore the impact of the length of the admissible extensions and of the question whether
we allow partial or only total extension functions. We further illustrate the limitations
of the diagonalization strength of finite automata by considering some restricted types of
extension strategies, namely length invariant and oblivious extensions. We complete our
investigation of bounded finite-state genericity by showing that the strength of these con-
cepts can be dramatically increased if we work with more redundant representations of
initial segments: This way we obtain bounded finite-state generic sets which are REG-bi-
immune, i.e., sets which exceed the capacity of finite automata not only infinitely often but
almost everywhere.

The unbounded finite-state genericity concepts which we consider are based on Moore
functions and various generalizations of these functions. Again we compare the strength
of different concepts and discuss the question in which respect these concepts are more
powerful than bounded finite-state genericity.

Our analysis of finite-state genericity is based in part on new results on bi-immunity
in the Chomsky hierarchy, on a Chomsky hierarchy of sequences, and a thorrough analysis
of saturated sequences. These results — which are of independent interest — are presented
in the first part of the thesis and can be read independently.

Contents

1 Introduction 1
2 Formal Languages and Infinite Sequences 11
2.1 NotationandBasicConcepts 13
2.2 Grammarsand Automatao 15
2.2.1 Chomsky Grammars and the Chomsky Hierarchy 15
2.2.2 Regular Languages and Finite Automata 18
2.2.3 Context Free Languages and Push Down Automata 21
2.2.4 Turing Machines and Complexity 23
2.3 RegularFunctions., 29
2.4 Strong Separations in the Chomsky Hierarchy 37
2.4.1 Bi-Immunity and Almost Everywhere Complexity 38
2.4.2 DefinitionsandBasicFacts 39
2.4.3 Immunity to the Class of Regular Languages 42
2.4.4 Immunity to the Classes of Linear and Context-Free Lan-
guUAdES e 43
2.45 Immunity to the Higher Classes of the Chomsky Hierarchy 44
246 Summary e 45
2.5 A Chomsky Hierarchy For Sequences a7
2.5.1 DefinitionsandBasicFacts. 47
2.5.2 Regular and Context-Free Sequences 48
2.5.3 Context-Sensitive and Recursive Sequences 51
2.5.4 The Chomsky Hierarchy Theorem For Sequences 55
25,5 Prediction Machines 56
2.6 Saturated Sequences 64
2.6.1 DefinitionsandBasicFacts. 64
2.6.2 Closure Properties and Some Technical Properties 66
2.6.3 Saturated Sequences and Languages and the Chomsky Hi-
erarchy 70
2.6.4 Saturation and Predictability 73
2.6.5 Computational Complexity of Saturated Sequences and Lan-
gUAdES e e e e e 76
2.6.6 Saturated and Disjunctive Languages 78

2.6.7 Partial Saturation 80

CONTENTS

Baire Category, Forcing, Genericity 83
3.1 Baire Category andthe CantorSpace 85
3.2 ExtensionFunctions. 87
3.3 Baire Category and Lebesgue Measure 92
3.4 Finite Extension Arguments 96
35 GenericSets 104
Bounded Finite-State Genericity 109
4.1 Boundedreg-Genericity 0L 112
411 DefinitionsandBasicFacts. 112
4.1.2 Finite-State Genericity vs. Saturation 114
4.1.3 Closure Properties 117
4.1.4 On the Diagonalization Strength of Bounded reg-Genericity 118
4.2 Extensions Based on Patrtial Information 122
4.2.1 Length Invariant Extension Functions 122
4.2.2 Oblivious Extension Functions 133
4.3 Cantor-Style Finite-State Diagonalization 139
4.4 Enriched Encodings of Initial Segments 152
Unbounded Finite-State Genericity 159
5.1 MooreGenericity 161
5.1.1 Some Basic Properties 162
5.1.2 Moore Genericity and Saturation 166
5.1.3 Moore Genericity, Gaps and Measure 167
5.1.4 Moore Genericity and Immunity 172
5.2 Nondeterministic Moore Genericity 173
5.3 Generalized Moore Genericity 176

Conclusion 181

CHAPTER 1

Introduction

1. INTRODUCTION

Algorithmic genericity notions play a major role in computability theory and
computational complexity theory. These notions are closely related to the finite
extension method introduced by Kleene and Post (1954), the basic diagonalization
technique in computability theory. In general a genericity notion is linked to a cer-
tain complexity class and the corresponding generic sets have all properties which
can be forced by a finite extension argument where the complexity of the individ-
ual diagonalization strategies does not exceed the given level. Important examples
of genericity notions in computability theory are arithmetic genericity (Feferman
(1965)) and 1-genericity (Hinman (1969)). The former is based on diagonalization
strategies definable in first order arithmetic while the latter is based on recursively
enumerable strategies. In computational complexity theory various polynomial
time bounded genericity notions have been introduced and successfully applied to
the structural analysis of the exponential time classes (see Ambos-Spies (1996)).
The goal of this thesis is to study genericity in the setting of formal language the-
ory. To be more specific, we will introduce and study finite-state genericity, i.e.,
genericity notions related to the level of regular languages or finite automata.

The applications of generic sets are manyfold. First, by the dependence of
genericity on the finite extension method, by analyzing the properties of generic
sets we can illustrate the power and limitations of this important diagonalization
method. Moreover, as Myhill (1961) has observed, the finite extension method is
closely related to the topological concept of Baire category: The class of sets which
share a certain property is comeager if and only if this property can be enforced
by a finite extension argument. This easily implies that, for any genericity notion,
the generic sets are abundant namely form a comeager class. So, by showing that
a property is shared by all generic sets, we obtain strong existence results, namely
we may deduce that not only sets with the desired property exist but that they are
abundant. Yet often it is easier to show that all generic sets have a certain property
than to show that there is a single set with this property. This is due to the fact that
in the former case we can take a modular approach: If a property can be split into
(finitely or countably many) simpler subproperties, it suffices to show that these
individual subproperties are guaranteed by genericity.

Since the countable intersection of comeager classes is comeager again, the
classical Baire category concept allows a similar modular approach. In contrast
to the genericity approach, however, the Baire category approach does not give
any information on complexity. Since all complexity classes (considered in com-
putability theory, computational complexity theory, and formal language theory)
are countable, hence meager, showing that the class of sets sharing a property
is comeager, does not tell us on what complexity levels we may find sets with this
property. If we know, however, that all sets which are generic (relative to some
complexity class) have proper#ythen by analyzing the complexity of the generic

sets we can obtain some positive results on the complexity of sets with property
P. We explain this difference by an example from computability theory. We can
use the Baire category approach to show that there are incomparable degrees of
unsolvability. To do so, obviously, it suffices to show that the class ofsstsch

that the even pakeyen= {2n: n> 0} and the odd par,qq= {2n+1:n> 0} are

Turing incomparable is comeager. The proof of the latter can easily be modified to
show that any 1-generic seAshas this property. On the other hand, any 1-generic
set is nonrecursive but there are 1-generic sets Whiclzi\%lrée., sets which are
recursively approximable or — equivalently — recursive in the halting problem. So
we may deduce that there are not only incomparable Turing degrees but that there
are such degrees in the degrees begwhe degree of the halting problem. (Since

the class of\) sets is countable hence meager, the latter does not follow by purely
topological means.)

In general the above observation has been used to obtain so called strong sep-
arations of complexity classes via genericity: Given complexity classes C‘and C
such that G= C/ (like the classes of the recursive and the recursively approximable
sets in the preceding example) one might try to design a genericity concept, say
C-genericity, strong enough to capture diagonalizations over C but on the other
hand not too strong so that there will be C-generic sets' ifL@enericity in the
above example). Then C and @ill be separated by any proper®/such thatP is
not compatible with membership in C but such that any C-generic set has property
P. An example of such a property which is of great interest in computational
complexity is C-bi-immunity. (A sef is C-bi-immune if bothA and the comple-
mentA of A do not contain any infinite set from C as a subset. The interest in this
notion stems from the fact that, for a time (and, similarly, for a space) complexity
class C= DTIME(t(n)), the time complexity of a C-bi-immune set does not only
exceed the time bourtdn) infinitely often but for all but finitely many inputs.) In
complexity theory various genericity concepts implying bi-immunity (and thereby
giving some strong separations) have been introduced but in this setting it also be-
came apparent that in general we can design different genericity notions related to
a complexity class which are of quite different strength (see Ambos-Spies (1996)).
In order to explain this we have to look at the finite extension method and some
refinements hereof more closely.

In a finite extension argument a language (or, equivalently, a set of natural num-
bers)A with a certain property is inductively defined by specifying longer and
longer initial segments of the characteristic sequenofA. The construction of
exploits the fact that the global propeftPycan be obtained by satisfying countably
many finitary condition$:e, € > 0, calledrequirements To be more precise, each
of the requirement&. has the property that, for any given finite initial segment
(i.e., finite binary stringx there is a finite extensionof x forcing R, namely any

1. INTRODUCTION

setX such that the characteristic sequencX @xtendsy will meetR.. So a strat-
egy for meetindgRe can be described by axtension functionef 2* — Z* where,
for any stringx the extensiomn fe(x) of x forcesRe. In other words, if we say tha
meetsan extension functiori at a numbeniif (a [n)f(a [n) C a —wherea [n
denotes the initial segment of lengttof the characteristic sequenaef A — then
Awill meet requiremeniR; if A meetsfe (at some numbet). So, in order to define
a setA with property®, it suffices to inductively define longer and longer initial
segmentst_; =€ Opg C 01 C dy... of a by letting de = 0e_1fe(de-1). Then

A meetsfe at |0e_1| thereby ensuring that, in stepof the constructionA meets
requiremenR. (e > 0).

By identifying strategies with extension functions we can define the complex-
ity of a diagonalization strategy by the complexity of the corresponding extension
function. Moreover, we get a very general approach for defining genericity no-
tions: Given any countable clagsof extension functions, we say that a gets
F-genericif A meets all extension functions $h Many of the genericity concepts
in the literature can be described this way by lettihdpe some of the common
(functional) complexity classes. For instan€egenericity coincides with Fefer-
man’s arithmetical genericity if we Iék be the class of arithmetical functions and
F-genericity coincides with DTIME (n))-genericity in the sense of Lutz (1990) if
we letF be the class of functions computable in tibge).

The above introduced concepts®genericity, however, only capture such di-
agonalizations which can be phrased as finite extension arguments. Many proofs
in computability and complexity theory, however, require more sophisticated diag-
onalization techniques like wait-and-see arguments (also called slow diagonaliza-
tions) or finite (or even infinite) injury priority arguments (see e.g. Soare (1987)).
So for obtaining stronger genericity concepts we have to define genericity notions
capturing these types of diagonalizations too. The additional power of these more
sophisticated techniques stems from their higher efficiency. In general, when we
apply such a technique our goal is not to obtain a set with a property which we
cannot obtain by a standard finite extension argument but we want to decrease
the complexity of the constructed set. So the priority method is the fundamental
method for constructing recursively enumerable sets. Typically, a finite extension
construction of @9 set with a certain propert) can be turned into the construction
of a recursively enumerable set with this property by using a finite injury priority
argument. Genericity notions capturing the essence of the finite injury method have
been introduced by Maass (1982) and Jockusch (1985).

In a constructive environment, however, injuries can be avoided and the pri-
ority method can be replaced by wait-and-see arguments. So, for our purposes,
it suffices to consider this refinement of the finite extension method. While in a
standard finite extension argument, in order to meet a requireRémt any finite

initial segment of the characteristic sequence of the set under construction we can
find a finite extension forcin®, in a wait-and-see argument such extensions may
exist only for some initial segments. Moreov& will be met (for some trivial
reason) if there are only finitely many initial segments of the set under construc-
tion which have extensions forcirig (l.e., intuitively, diagonalization action for
the sake of requiremeR®has to be taken only if there are infinitely many chances
in the course of the construction to do so.) Correspondingly, here the strategy for
meeting a requiremem is described by gartial extension functiorf. Moreover,
in order to meeR it suffices to ensure thdtis not dense along or thatA meets
f (at somen) where we say thaf is densealongA if f is defined on infinitely
many initial segments of the characteristic sequencg. dAs in the case of total
extension functions, for any countable cl&sf partial extension functions, the
class of seté\ which meet every partial extension functiére F which is dense
alongA is comeager. Sets with this property are just the sets generic relative to
and we call thenf#F-generic. (Note that iff consists only of total functions then
this definition coincides with the previous definition $fgenericity.) In order to
distinguish between genericity based on total and partial extension functions we
call the former weak genericity. In particular, we call a AaveaklyF-genericif
Ais EF—generlc wheréF consists of all total extension functionsdn

To illustrate the higher efficiency of wait-and-see arguments we compare the
construction of a PTIME-bi-immune s8tby a standard finite extension argument
and by a wait-and-see argument. A typical requirement to be met is of the form

R: If Bisinfinite thenBN A # 0.

whereB is a polynomial time computable set. In a finite extension argument we
can meeR by meeting the total extension function

1™ if Bis infinite
f(x) = .
€ otherwise

whereny is the least numbet such that thén -+ |x|)th word is a member dB. In
a wait-and-see argument we can work with the partial extension function

f(x) =

- 1 ifthe|x|th word is an element d
T otherwise

(Note thatf is dense (along any set) if and onlyBfis infinite and by meetingf

atn we insure that theth word is an element of botB andA.) The above strate-

gies show that we can construct a PTIME-bi-immunefsesing both techniques,

a plain finite extension argument and a wait-and-see argument. The approaches,

1. INTRODUCTION

however, greatly differ in the complexity of the strategies needed to meet a single
requirement: While the (partial) functiohis polynomial (in fact linear) time com-
putable, the complexity of depends on the length of the gaps in theBséthough,

for a single PTIME seB, the length of these gaps is recursively bounded, there is
no uniform recursive bounds for all PTIME sets. In particular, the finite extension
construction yields a nonrecursive ggtand for any recursive time bourin)

there is a weakly DTIME (n))-generic set (i.e. a DTIME(n))-generic set in the
sense of Lutz (1990)) which is not PTIME-bi-immune (Mayordomo (1994)). On
the other hand, a wait-and-see construction based on the above partial extension
functions f yields a recursive (in fact exponential time computable) PTIME-bi-
immune set (Balazar and Sabning (1985)), and any DTIMED(n))-generic set is
PTIME-bi-immune (now DTIMEO(n))-genericity in the strong sense, i.e., gener-
icity based on partial extension functions computable in linear time).

In fact the above wait-and-see construction improves the plain finite extension
construction not only with respect to complexity. In addition, in the case of partial
extensions it suffices to consider extensions of length 1 while in the total case the
length of the extensions depends on the inputs. This observation is of interest,
since for any countable clagsof (partial) bounded extension functions the class
of F-generic sets is not only comeager but it also has Lebesgue measure 1 (see
e.g. Ambos-Spies (1996); here we call a functfokrboundedf | f(x)| < k for all
stringsx, andboundedf f is k-bounded for some numbe&}. In contrast, for any
sufficiently closed famil\J containing unbounded functions, the class of (weakly)
F-generic sets has measure 0.

The above discussion of genericity in computability and computational com-
plexity theory shows that the strength of a genericity concept does not only depend
on the complexity of the extension functions it is based on but also on the question
whether we admit partial or only total extension functions. Moreover, genericity
notions based on bounded extension functions are of particular interest since they
yield abundance results not only in the sense of category but also in the sense of
measure.

Our analysis of finite-state genericity is guided by the above observations.
Moreover, we focus on bounded genericity notions, i.e., our main goal is the inves-
tigation of the diagonalization power of finite-state transducers producing output
of constant length. The outline of our thesis is as follows.

In Chapter 2 we present results on formal languages and infinite sequences
which serve as the background of our investigations. After fixing some notation
in Section 2.1 and shortly reviewing some basic notions and results from formal
language theory and computational complexity in Section 2.2, in Section 2.3 we re-
view various notions of regular functions which will serve as extension functions in
our finite-state genericity notions. In particular we discuss some variants of Moore

functions and introduce the notion of ak)pounded regular function and show

how this concept is related to the Moore approach. In Section 2.4 we investigate
(bi-)immunity for the Chomsky language classes. In particular, we observe that
there is no strong separation of the classes of regular and context-free languages in
terms of bi-immunity: no context-free language is REG-bi-immune. Since gener-
icity actually is a property of the characteristic sequence of a set, in Section 2.5
we have a closer look at the Chomsky complexity of sequences. There we intro-
duce a Chomsky hierarchy of sequences and show how the location of a language
in the Chomsky hierarchy is related to the location of its characteristic sequence
in this new hierarchy. In particular, we see that any set with regular characteris-
tic sequence is regular too but that there are regular sets which have a nonregular
characteristic sequence. The Chomsky complexity of a sequence is defined in terms
of the complexity of the prefix set of the sequence. As a possible alternative we
introduce such a hierarchy based on predictability by machines corresponding to
the Chomsky language classes, and show that regularity of a sequence coincides
with predictability by finite automata. We also show, however, that push down
automata can predict sequences which are not context-free. The final section of
Chapter 2 is devoted to saturated sequences, i.e., infinite sequences which contain
any string as a substring. Since, as we will show later, saturation coincides with
some of our finite-state genericity concepts we study this concept in great detail.
Following some useful observations on invariance and closure properties of the
saturated sequences we look at the complexity of these sequences. In particular
we show that no regular languages is saturated (i.e., has a saturated characteristic
sequence) while there are context-free — in fact — linear languages which are sat-
urated. Moreover, we give a characterization of non-saturation in terms of partial
finite-state predictability which will later lead to the relation between saturation
and finite-state genericity and we will look at partial saturation properties.

Though the results in this chapter will be employed in our investigation of
finite-state genericity some of our new results here are of independent interest.
Hence we looked at bi-immunity (Section 2.4) and at the Chomsky complexity
of sequences (Section 2.5) for all levels of the Chomsky hierarchy though in the
sequel we will only need the results related to the regular and — in part — to the
context-free languages. These more general results might be useful, however, for a
forthcoming analysis of genericity on the other levels of the Chomsky hierarchy.

In Chapter 3 we shortly review the basic concepts and results on genericity,
Baire category and diagonalization. In particular we introduce the framework in
which our genericity notions are defined and make some general observations on
the different genericity types like weak and bounded genericity.

In Chapter 4 — which is the core of this thesis — we introduce and analyze
bounded finite-state genericity (bounded reg-genericity, for short). In Section 4.1

1. INTRODUCTION

we show that for bounded finite-state genericity (based on partial regular bounded
extension functions) the length of the admissible extensions does not matter whereas
in the weak case (i.e. in case of total extension functions) the diagonalization power
increases with the length of the extensions. Moreover, surprisingly and in contrast
to corresponding results in computational complexity, bounded finite-state generic-
ity and bounded weak genericity coincide. In other words, partial bounded regular
extension functions can be simulated by total bounded regular extension functions,
though the simulation in general will require an increase in the length of the ex-
tensions. Some of these results are obtained by the observation that bounded reg-
genericity coincides with saturation. By our previous results on saturation the lat-
ter also illustrates the diagonalization strength of bounded-reg-genericity, namely
no regular set is bounded reg-generic whereas there are linear hence context-free
languages which are bounded reg-generic. Moreover, bounded reg-genericity in
general does not imply REG-immunity.

The coincidence of bounded reg-genericity and saturations reveals the weak-
ness of this concept. In Section 4.2 we further illustrate the low diagonalization
power of bounded finite-state transducers by comparing bounded reg-genericity
with apparently weaker concepts based on regular extension strategies which are
given only partial information on the previously defined initial segment, namely
strategies which depend only on the length of the initial segment and strategies
which only use the lagh bits of the initial segment (for some constant

We then discuss how the power of bounded finite-state genericity may be in-
creased. For this sake in Section 4.3 we first discuss some direct Cantor-style
diagonalization arguments in which the diagonalization only depends on the place
where the action has to take place and not on the previously specified part of the
set under construction. By formalizing this concept we introduce the concept of
Cantor-style reg-genericity and show that this concept coincides with REG-bi-
immunity, hence is not subsumed by bounded reg-genericity. The latter can be
traced to the fact that a finite automaton which is given an initial segment of length
n cannot extract thath string from this information. This observation leads us to
define finite-state extension functions which obtain as inputs finite initial segments
in a more redundant representation— which allows to overcome the just described
shortcoming — and to study the strength of the corresponding genericity notions
(Section 4.4).

In Chapter 5 we start the investigation of unbounded finite-state genericity.
Based on stronger and stronger notions of regular functions we introduce a hi-
erarchy of corresponding genericity notions. We first consider Moore genericity
based on partial Moore functions. We show that this concept strengthens bounded
reg-genericity but that it does not suffice for forcing REG-bi-immunity. The latter
can be achieved by using extension functions of generalized Moore type (where a

generalized Moore function adds an arbitrary word to the output for every letter
read — not a single letter as in case of a Moore function). We further discuss the
strength of these genericity concepts if we replace deterministic Moore automata
by nondeterministic ones and if we support the strategies by giving them the initial
segments in the redundant form introduced in Section 4.4

Finally, in Chapter 6 we give some directions for further research in this area.

Acknowledgments

| am deeply grateful to my advisor, Klaus Ambos-Spies, for his intense and
committed supervision. A large part of the results in this thesis emerged from
numerous discussions with him, and his suggestions were crucial for developing
the fundamental concepts treated in this thesis. Moreover, he patiently helped to
improve the presentation of the material.

| am also grateful to the other members of the Heidelberg Logic Group: Paolo
Di Muccio, Klaus Gloede, Piotr Grabowski, Felicitas Hirsch, Wolfgang Merkle,
Nenad Mihailovic, Gert H. Niller and Jan Reimann, to the former members Frank
Stephan, Hans-Christian Nies, and to the recent visitors Serikzhan Badaev and
Bakhadyr Khoussainov.

| gratefully recognize all my friends, in particular, Paolo Di Muccio, Amaranta
Melchor del Rio and Augusto Minatta for kind support during the study in Heidel-
berg.

Finally I am indebted to my parents and my fi@ecTanja Nikonova.

CHAPTER 2

Formal Languages and Infinite Sequences

12

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

In this chapter we will provide the concepts and results from formal language
theory which we will need for introducing and analyzing our finite-state genericity
notions. After fixing some notation in Section 2.1, in Section 2.2 we review some
fundamental results on the Chomsky language classes and their relations to com-
putability and computational complexity theory. In Section 2.3 we discuss various
notions of regular functions. In particular we introduce a new notion of a regu-
lar function of typef : =* — =K (k > 1) and analyze the relation of this notion to
some previously introduced concepts. In Section 2.4 we investigate immunity and
bi-immunity for the Chomsky language classes and explore the question to what
extend these notions yield strong separations among the Chomsky classes. In Sec-
tion 2.5 we introduce a Chomsky hierarchy of sequences. This classification is
based on the complexity of the prefix sets of sequences. We use this framework
for comparing the Chomsky complexity of languages and their characteristic se-
quences. Moreover, we relate this hierarchy of sequences to a similar hierarchy
based on predictability of sequences by machines corresponding to the levels of
the Chomsky hierarchy. Finally, in Section 2.6 we study saturated 0-1-sequences,
i.e., infinite binary sequences in which all binary words occur as subwords.

The results in Section 2.2 are standard and can be found in most textbooks (see
e.g. Salomaa (1973), Hopcroft and Ullman (1979), Bakr et al. (1990)) or in
the handbook of formal languages by Rozenberg and Salomaa (1997). So in this
section we omit references and proofs. The other sections obtain, besides results
from the literature, a variety of new results. Here references to the previously
known results and proofs of the new results are given.

Though the results of this chapter will be used in our analysis of finite-state
genericity, many of the results will be of interest for themselves. So we will limit
our investigation of (bi-)immunity and of the Chomsky complexity of sequences
not only to the regular (or context-free) case - which will be used in the following -
but we will carry out a more systematic analysis covering all levels of the Chomsky
hierarchy.

2.1. Notation and Basic Concepts 13

2.1 Notation and Basic Concepts

Though we will mainly consider languages over the binary alphabet we will intro-
duce the basic notions of formal language theory for arbitrary alphabets.

An alphabetis a finite nonempty ordered set. In the following we Igt=
{ao,...,an_1} denote then-ary alphabet where the elements are listed in order
(i.e.,ap <@g < --- < ap_1). In particular, we let,; = {0,1} andZ; = {0} be the
binary alphabet and the unary alphabet, respectively. For simplicity, we usually
denote the binary alphabet By The elements of an alphabEtare calledetters
the elements of the binary alphabet are also cdiled Letters are usually denoted
by lower case Latin letters from the beginning of the alphahd,(c, ...).

A word over an alphabeft is a finite sequence of letters frolm The empty
sequence is called tlenpty wordand is denoted byg. The set of all words oveF
is denoted byl *, the set of the nonempty words is denotedlby. Words are usu-
ally denoted by lower case Latin letters from the end of the alphabet x,y, 2).
Thelengthof a wordw is denoted byw| and we let

TK={xeT*:|x =k} and T=K={xeT*:|x <k}

be the sets of words of lengthand of length at mosk, respectively, over the
alphabefl (k > 0). For a wordx of lengthk we letx = x(0)...x(k— 1) wherex(i)
denotes théi + 1)th letter inx.

The ordering on an alphabé&tis extended to thkength-lexicographical order-
ingonT* by lettingv be less tham if the length ofv is less than the length ef or
if vandw have the same length and, for the ldastich thatv(k) andw(k) differ,
the letterv(k) precedes the lettev(k) in the ordering ofT. In general, we denote
the ordering on an alphab&tand the induced length-lexicographical ordering on
T* both by<.

For the binary alphabet, we letz, denote thgn+ 1)th word with respect to
the length-lexicographical ordering and wegbe the(n+ 1)th word of lengthk.
Since there arekinary words of lengttk, hence 81 — 1 binary words of length
at mostk,

Zk = {zléa .. .7Z;k71} = {22k717 ces ,sz+172} and ng — {Zn ‘n< 2k+1 N l}

A language Aover the alphabel is a set of words overF, i.e.,AC T*. In the
following languages will be denoted by upper case Latin letters. A language over
the binary alphab€l is also called @inary languageor simply aset while a set
of binary languages is calledadass By identifying the(n+ 1)th binary wordz,
with the numben, sometimes we interpret a binary languagas a set of natural

14

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

numbers (i.e., we may write€ A in place ofz, € A). Moreover, we often identify
a setA with its characteristic function £ l.e., we writeA(x) = 1 if x € A and
A(X) =01if x¢ A

Thecharacteristic sequenc# setAis denoted b (A). l.e.,X(A) is the infinite
binary sequence defined by

X(A) = A20)A(2)A22) ... = AOALA?2). ..

Conversely, for an infinite binary sequercce- a(0)a(1)a(2)... theset $a) C =*
corresponding tax is defined by

S(a) = {za: a(n) = 1}

Note thatS(x(A)) = A andx(S(a)) = a, whence we may identify a set with its
characteristic sequence and a sequence with the set corresponding to it. Usually we
denote the characteristic sequence of asB{C,... by the corresponding Greek
lettera, B, Y,

The set of all infinite binary sequences is denotedBy This set (which is
often denoted by 9 is also called theCantor space Elements ofz® will be
shortly calledsequenceand will be denoted by lower case Greek letters.

Forse Z*UZ® andv € Z* we letvsdenote theoncatenatiorf vandsand we
call v aprefixor initial segmenbf vs, s a suffixor final segmendf vs If s#£¢€, vis
aproperprefix or initial segment, and if £ €, sis apropersuffix or final segment.

We writev C sif vis a prefix ofsandv C sif the prefixv is proper. The prefix of a
(finite or infinite) sequenceof lengthn is denoted by [n=s(0)...s(n—1). We
also writeA | z, or A | nin place ofx(A) | n.

The prefix set Prefika) C Z* of an infinite sequence is the set of all finite
prefixes ofa, i.e.,Prefix(A) = {a | n: n> 0}. In the following we will consider
both representations of a sequencky sets, namely the corresponding Sét)
and the prefix sePre fix(a). Note that any set corresponds to a sequence whereas
the prefix set of a sequence is of some particular syntactic form. In particular, such
a set contains just one word of any given length.

By x" we denote theith iteration of the wordx, i.e., X’ = € andx™?1 = x"x.
Similarly, thewriteration X¥° of a wordx is the infinite sequence obtained by con-
catenating infinitely many copies of the word A sequencen = x* is called
periodic a sequenca = xy” is calledalmost periodic

Finally, for s,s' € Z* UZ® andv,w € * we call w a subwordor infix of s if
s=vws. If vis a subword ofx we also say that occursin a. We say thav occurs
(at least) k timeén a if there are wordsv; = W, ... C Wi such thatvyv C a for
m=1,...,k. Asequenc& in which all words occur is callegaturated

2.2. Grammars and Automata

15

2.2 Grammars and Automata

In this section we review some fundamental results on the Chomsky language
classes and their relations to computability and computational complexity theory.
The notions and results which we will present here can be found in the standard
textbooks (see e.g. Salomaa (1973), Hopcroft and Uliman (1979)aBalet al.
(1990)) or in the handbook of formal languages by Rozenberg and Salomaa (1997).
So, in general, we will omit references and proofs. We will start by reviewing the
different types of Chomsky grammars and the corresponding Chomsky hierarchy
of languages.

221

Chomsky
Grammars and
the Chomsky
Hierarchy

Definition 2.1 A (Chomsky) grammais a quadrupelG = (N, T,SP), whereN
andT are disjoint alphabet§< N, andP is a finite subset ofNUT)* —T* x (NU
T)*. The elements of are callechonterminal symboler (syntactical) variables
those ofT are callederminal symbolgor terminalsfor short),Sis thestart symbol
or axiom andP the set of(production) rules

For a rule(u,v) € P we usually writeu — v and we calu the premiseandv the
conclusionof the rule. A wordw € T* is called aterminalword.
Next we define derivations in a gramm@armnd the language generated®y

Definition 2.2 (a) LetG = (N, T,S P) be a grammar. For wordsy € (NUT)*
we say thaty can bederivedfrom x in one step and writex =gy - if there
is a ruleu — v € P and wordswy,wp € (NUT)* such thatx = wyuw, andy =
wivw,. A derivation (of length r) of a wordy from a wordx is a sequence of
wordsXg, ..., X, € (NUT)* such thatx = Xo, Xj =¢ Xi4+1 fori =0,....n—1, and
Xn =Y. We say thay can bederivedfrom x (in n step$if there is a derivation of
from x (of lengthn) and we writex =5 y (x=-¢ y). Thelanguage I(G) generated
by G consists of all terminal words which can be derived from the ax®me.,
L(G) ={weT":S=gw}.

(b) Two grammarssy and G; are equivalentif they generate the same lan-
guage, i.e.L.(Gp) = L(Gy).

If the grammaiG is known from the context we write> (=", =-*) in place of
=6 (=8 =6)-
Alanguage is called @homsky languagéit is generated by a Chomsky gram-
mar. Chomsky has shown that the Chomsky languages are just the recursively enu-

16

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

merable languages. So, in general, we cannot decide whether a word is generated
by a given grammar. In order to get grammars with effectively or even efficiently
decidable word problems, Chomsky has introduced special types of grammars ob-
tained by restricting the admissible forms of rules. For describing these concepts
we have to deal with rules with empty conclusions first.

Definition 2.3 Let G = (N, T,S P) be a grammar. A rule — € with empty con-
clusion is called arg-rule. The grammalG is e-free, if P does not contain any
e-rule. G is callede-honesif G is eithere-free orS— ¢ is the onlye-rule in P and
Sdoes not occur in the conclusion of any ruldAn

Note that fore-free G, € L(G).
Definition 2.4 Aruleu— vis

1. length-increasindf |u| < |v|;

2. context-sensitivé there are a variabl¥ € N, wordsus,u; € (NUT)* and a
wordy € (NUT)™ such that = u1Xw, andv = upyly;

3. context-fredf u € N;

4, linearif ue Nandve T*UT*NT*;

o

. right-linearif ue Nandve T*UT*N;
Definition 2.5 (a) A grammaiG = (N, T,SP) is

1. length-increasingf G is e-honest and all rules iR (with the possible excep-
tion of S— €) are length-increasing;

2. context-sensitivéor of type-) if G is e-honest and all rules iR (with the
possible exception d8 — €) are context-sensitive;

3. context-fredor of type-2 if all rules in P are context-free;
4. linearif all rules inP are linear;

5. right-linear (or of type-3 if all rules in P are right-linear,;

Moreover, any grammda is of type-Q

(b) A languageA is length-increasingcontext-sensitivecontext-freelinear,
right-linear, or of type-i(i=0,1,2,3)) if there is a grammar of the corresponding
type which generates.

2.2. Grammars and Automata 17

A grammar or language of type-i is calledChomsky-i-grammaor Chomsky-
i-language respectively, and right-linear languages are also ca#gdlar. The
classes of the length-increasing, context-sensitive, context-free, linear, right-linear,
type-i (i=0,1,2,3), and regular languages over alphdbéte., T is the terminal
alphabet) are denoted by, ICS;, CFr, LINT, RLINT, CHit, and REG, respec-
tively. If T is the binary alphabet = {0,1} then we omit the subscrift.

Note that, by definition, CHP is the class of all Chomsky languages (over
the alphabeT) while CH1; = CSy, CH2r = CFy, and CH3 = RLINT = REG.
Moreover, any right-linear grammar is linear, any linear grammar is context-free,
and any context-sensitive grammar is length-increasing. Finallg;ionest gram-
mars obviously context-freenes implies context-sensitivity. Since, for any context-
free grammar we can find an equivalent context-free grammar whicthdsest
the above relations among the different types of Chomsky grammars yield the fol-
lowing inclusions for the Chomsky language classes (over any fixed alphgbet

REGr =RLINT =CH3y CLINT CCH =CH2 CCSr =CH1y C LI+ C CHOr

Chomsky has shown that the classes @8d LI coincide (for any alphabét)
but that the other inclusions are proper with the following exception: For the unary
alphabetz; = {0}, the classes of the regular, linear and context-free languages
coincide.

Theorem 2.6 (Chomsky Hierarchy Theorem) For any alphabet T wWith> 2

REGr =RLINT =CH3y CLINT C CF =CH2y C CSr =CH1r = LIt C CHOr
(2.2)
while for the unary alphabef; = {0},

REG;s, =RLIN;, = CH3;, = LIN5, = CFs, = CH2;, C CS;, = CH15, = LI5, C CHO;,
2.2)

The classes of the Chomsky hierarchy have the following closure properties.

Union | Intersection] Complement| Concatenatior
CHO | vyes yes no yes
CS yes yes yes yes 2.3)
CF yes no no yes
LIN yes no no no
REG| yes yes yes yes

18

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

222

Regular
Languages and
Finite Automata

Moreover, all of the Chomsky classes are closed under finite variants, a fact we
will (tacitly) use in the following quite frequently. Though the class of context-free
languages is not closed under intersection, the following weaker closure property
holds.

Lemma 2.7 For any context-free language A and any regular language BBAs
context-free.

In the next subsections, we look at the classes of the regular sets and the
context-free sets, REG and CF, in more detail. In particular, we review the machine
characterizations of the Chomsky classes and we summarize some facts about com-
plexity.

Definition 2.8 A deterministic finite automaton (DFA) N a quintuple M =
(T,S0,%,F) whereT is an alphabetS is a finite set,d : Sx T — Sis a total
function,sp € S, andF C S. T is called theénput alphabetSthe set oktateso the
transition function sy theinitial state, andF the set offinal or acce ptingstates.

On an inputw € T* of lengthn, aDFA M = (T, S §, 5, F) behaves as follows.
Readingw letter by letter from left to rightM runs through a sequence of states
%, 81, -+, Sn—1 beginning with the initial statsy and going from state to state
d(s,a) whena is the next letter readM accepts the inpuw if the computation
ends in a final state, i.e., #,_1 € F. In order to define this behaviour 8 more
formally, we extend the transition functi@n Sx T — Sto d* : Sx T* — Swhere
0*(s,w) is the state reached Iy after readingv when starting in state

Definition 2.9 Let M = (T,S,9,%,F) be a deterministic finite automaton. The
generalized transition functiod® : Sx T* — Sof M is inductively defined by
0'(s,e)=s
o*(s,wa) = o(d*(s,w), a),
wherese Sac T,we T*. Awordw € T* is accepted by Mf &*(so,w) € F. The
language I(M) C T* acceptedy M is the set of all words oveF accepted by ,
e, L(M) ={weT":8"(so,w) € F}.

If M on inputw, |w| = n, runs through the states, ...,s,-1 (i.e. 5§ = & (So,wW |
i+1)fori=0,...,n—1) then we calky, ..., s, therun or computatiorof M on input
w. More generally, we cal, ...,s, arun of M if s, ..., s, is the run ofM on some
inputw of lengthn. For aDFA M = (T, S 8,5, F), every wordw € T* determines
a unique run oM.

2.2. Grammars and Automata 19

The following notion of a nondeterministic automaton in general allows more
than one run on a given input. Now, if the automaton is in a stageand reads
a lettera, it may choose the next state from a finite transition/s@sta). It may
happen thal\(s,a) is empty, i.e., that no transition is possible.Mfcannot read
the input completely, thew will be rejected. Moreover, the machiig will have
a choice for the initial state in which the run states.

Definition 2.10 A nondeterministic finite automaton (NFA) isla quintupleM =

(T,S A, S, F) whereT is an alphabetSis a finite setA C (SxT) x Sand S,

F C SwhereS is nonempty.T is called thenput alphabetSthe set ofstates A

thetransition relation S the set ofnitial states andF the set offinal oraccepting
states.

For defining the languade(M) accepted by, it is useful to look at the tran-
sition relation as a functioh : Sx T — POWERS), by letting A(s,a) = {s €
S:((s,a),s) € A}. Moreover, for a se§ of states we lep\(Sa) = {s € S: Ise
S((s,a),) € A]}. Intuitively, A(s a) is the set of all states into whichM may
move from states when readings, andA(S, a) is the set of all states into which
M may move from a state i when reading.

Definition 2.11 Let M = (T,S A, S, F) be a nondeterministic finite automaton.
Thegeneralized transition relatioA* : Sx T* — POWERS) of M is inductively
defined by

A*(s,€) = {s}

and
A(swa)= [] A(S,a),

Seh*(sw)

wherese Sae T,we T*. Moreover, forSC Sandw e T*, let A*(éw) =
Uscg (Sw).

Then a wordw € T* is accepted by Mf there is a statesy € & such that
A*(so,w)NF # 0 . Thelanguage M) C T* acceptedby M is the set of all
words overT accepted bW , i.e.,L(M) ={we T*: M acceptaw} ={we T*:
A (S, W) NF #£ 0}.

We call s, ...,5,-1 a possible runor a possible computationf M on input
W=ap...an—1 (|[W| =n) if € S ands i € A(s,q) fori =0,...,n— 1. Note that
M acceptsw if and only if there is a possible run & on inputw which ends in a
final state.

20

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

We let DFAT (NFAT) denote the class of languages over the alph@behich
are accepted by a deterministic (nondeterministic) finite automaton (and we omit
the subscripT if T is the binary alphabeX).

Theorem 2.12 For any alphabet TDFAT = NFAT = REG.

We get an alternative inductive characterization of RE@ looking at regular
expressions.

Definition 2.13 Theregular expressioneverT are inductively defined by:

(i) 0is aregular expression.

(i) Any ac T is aregular expression.
(ii) If o,p are regular expressions thémpB) is a regular expression.
(iv) If a,p are regular expressions thémU) is a regular expression.

(v) If ais aregular expression theri is a regular expression.

Definition 2.14 The language (o) C T* denoted by a regular expressionover
T is inductively defined by:

(i) L(0) = 0.

(i) L(a)={a} (aeT).

(i) L((aB)) =L(a)L(B), whereLL' = {ww :we L & w € L'} is the concate-
nation of the languagdsL'.

(iv) L((auB))=L(@)UL(P).

(v) L(o*) =L(a)*, whereL* = {w1..Wn : N >1& wy,...,Wn € L} U{€} is the

iteration ofL.

Theorem 2.15L C T* is regular iff there is a regular expressiam over T such
that L= L(a).

The following lemma is useful for showing a language to be not regular.

Theorem 2.16 (Pumping Lemma for Regular Languages) Let L be a regular lan-
guage over the alphabet T. There are numbege N such that for every word
ze L with |z > n there is a partition z= uvw of z into three words,u,w € T* such
that

2.2. Grammars and Automata 21

1. juv <q,
2. v#¢g, and

3. wwelLforalli>D0.

We next turn to the context-free languages. The languages of this type are just the 2.2.3
languages which are accepted by a nondeterministic pushdown automaton. We ﬁ@Bntext Free
introduce the deterministic variant of these machines before we give the genﬁfﬂguages and
definition.

Push Down

Definition 2.17 A deterministic pushdown automaton (DPDA) iMa 7-tupel Automata

M= (T,I",S d,%,bo,F), whereT andl" are alphabetsis a finite setsy € S bp €
NFCSand
0:Sx (Tu{e}) xIN —SxTI”

is a partial function with the following property

For eacts € Sandb € I', whenevei(s, g, b) is defined,

24
thend(s,a,b) is not defined for ala e T. (2.4)

T is called theinput alphabetl” the stack alphabetSthe set ofstates thetran-
sition function sy theinitial state by the start symbalF the set offinal states

Intuitively, aDPDA M s the extension of BFA by a stack as a storage device.
A single move oM is as follows. Depending on the current statéhe next input
letter a, and the top stack symbbl M moves to a new state and replaces the
top symbolb in the stack by a worav over the stack alphab&t This move is
expressed by the transitidis, a,b) = (s, w). In additionM may make some-
move or spontaneous transition without reading the next input letter. Such a move
is described by a transitiod(s,€,b) = (s,w). Condition (2.4) guarantees that in
any situation in which as-move is possible no regular move can be done thereby
ensuring that the machine works deterministically. The content of the stadk of
is represented by a word overl” where the rightmost symbol @f is the topmost
symbol in the stack.

Just as in the case of finite automata we can easily generalize the concept of a
DPDAto the nondeterministic case. We will do this next and then formally describe
the behaviour of pushdown automata.

Definition 2.18 A nondeterministic pushdown automata (NPDA)isvia 7-tupel
M = (T,I',SA, s,bo,F), whereT andl" are alphabetsS is a finite setA is a
relation of type

AC[Sx (TU{e}) xT]x(SxT™)

22

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

where, for any(s,a,b) € Sx (T U{e}) x ' there are at most finitely mar{g,w) €
Sx I such that(s,a,b,s,w) € A, s Sbpel,F CS T is called theinput
alphabet I the stack alphabetSthe set ofstates A thetransition relation sy the
initial state, by the start symbaqlF the set ofinal states

Sometimes we will interpret the transition relatiéras a function of type
A:Sx (Tu{e})xI — POWERSxT™).

In particular, we lefA(s,a,b) = {(s,w) : (s,a,b,s,w) € A}.
We next formally describe the behaviour of MPDA

Definition 2.19 LetM = (T,I,S A, s, bo,F) be anNPDA

An instantaneous description (I@¥ M is a triple(s,w,v), wheresis a statew
a string of input symbols, anda string of stack symbols.

We write (s,aw bv) Fy (S, w,uv) (and say that the I@s, aw, bv) can be trans-
formed into the ID(s',w, uv) in one move) if(s,u) € A(s,a,b), wherea may beg
or an input symbol.

u is the reflexive and transitive closuretlef, i.e.,1 +* | for eachlD I, and
| Fw J andJ 5, K imply | 5, K. We sayl H K if ID | can be transformed inté
in exactlyi moves.

Thelanguage I(M) C T* accepted by final statey theNPDA Mis L(M) =
{w|(s0, W, bp) -* (s,€,V) for somes e F andv € *}.

The language NM) C T* accepted by empty stack (or null stadk) M is
N(M) = {w|(so, W, bo) F* (s,€,€) for somes e S}.

In contrast to finite automata, for pushdown automata, the deterministic and
nondeterministic models are not equivalent with respect to the languages accepted.
Moreover, folNPDAsacceptance by state and acceptance by empty stack coincide,
and the languages acceptedMyDAsare just the context-free languages.

Theorem 2.20 For any language L the following are equivalent.
1. L is a context-free.
2. There existan NPDA M such thatLL(M).
3. There exist an NPDA M such thatLN(M).

A languagel is calleddeterministically context-free (dcifit is accepted by
states by @©PDA M, i.e.,L = L(M). The class of the dcf languages ovelis
denoted by DCF.

Theorem 2.21 DCF c CF.

2.2. Grammars and Automata 23

The following theorem is a useful tool for proving a variety of languages not
to be context free (compare with the pumping lemma for regular languages).

Theorem 2.22 (Pumping Lemma for Context-Free Languages) Let L be a context-
free language over the alphabet T. There are numbegsenN such that for every
word ze L with|z| > n there is a partition 2= uvwxy of z into five wordsuw, x,y €

T* such that

1. [vwx <q,
2. |vX #¢€, and

3. uwwxye L foralli >0.

The stack of a pushdown automaton is not a general storage device. So, in order to 224
define a general computing device, we have to replace the stack by a more fl%ml]% Machines
storage. In case of a Turing machiie the storage is a two-sided unboundegnd Complexity
tape, partitioned into individual cells which can store one letter (of a given tape

alphabet). The machine has a head which in one step can move one cell to the left

(L) or one cell to the right (R) and which can read and rewrite the cell it is located

on. A move ofM is determined by the current stagef M and the lettea of the

tape alphabet in the cell scanned by the hedd ahd it consists of a change of the

state §), the rewriting of the cell currently scanned by a letiérand a move of

the head to the lefi() or right (R). In the following formal definition of the Turing

machineM this move is describe by the transitid(s,a) = (s,&,B) whereB =L

orB=R

Definition 2.23 A deterministic Turing machine (TM) I a 7-tupel
M= (T,l'.b,S9,%,F)

as follows: T andl” are alphabets whetec I' andT C I' — {b}, Sis a finite set
whereSandrl™ are disjoint,d is a partial function of type

0:SxI — SxTI x{L,R},

s € S F CSTis called the set ahput symbolsl” the set otape symbols the
blank Sthe set ofstates d thetransition function s theinitial state, andF the set
of final states

In the above definition we use the blank symboadlo indicate that a cell is
empty. IfM processes an input womd € T* then at the beginning of the compu-
tationw is written in the cells immediately to the right of the cell scanned by the

24

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

head ofM, all other cells are empty, arid is in the initial states;. The machine
accepts the inpuw if it reaches a final state after finitely many moves.

An instantaneous description bf consists of the smallest finite sequence of
cells (represented by a wowdover the tape alphabé&f containing all nonempty
cells and the cell scanned by the head, the position of the head on this sequence,
and the current stateof M. We will code this information by the wordipsw,
wherew = wowz andsis put to the right of the letter af in the cell scanned by the
head. (For convenience we will assume tlvgandw; are nonempty. If necessary
we achieve this by replacing the empty wearby b.)

Using this coding we can define the behavioulMbformally as follows.

Definition 2.24 LetM = (T,I",b, S §,5,F) be aT M.

An instantaneous description (ID)f M is a wordw;sw,, wheres € S and
Wy, Wo €T,

We writewiasiw, -y W, SW, (and say that the IBv;asdw, can be transformed
into the IDW;SW, in one move) if eithed(s,a) = (s,d,R) andw; = wia'd and
W, =W, or d(s,a) = (§,d,L) andw; = w; andw, = @aws. (If W} (w,) is empty,
replace it byb.)

An ID vswis calledterminalif there is nolD v'Sw such thatvswhy VSwW
andvswis calledfinal if s€ F. (For technical convenience, in the following we
will assume that any findD will be terminal.)

w1 is the reflexive and transitive closurelef, i.e.,1 +* 1 for eachlD I, and
| Fm JandJd iy K imply | = K. We sayl - K if ID | can be transformed inté
in exactlyi moves.

Thelanguage I(M) C T* acceptedy the Turing machin®/ is

L(M) ={we T*|Isc F Ivy,v, € I (bW H* visw)}.

We say thatM convergeon inputw if there is a terminalD usv such that
bsw -, usv andM is calledtotal if M converges on any input € T*.

Definition 2.25 A languagel is recursively enumerable (r.ei) there is a Turing
machine which accepts, andL is recursiveif there is a total Turing machine
which accepts..

Above we have introduced Turing machines as accepting devices for describing
languages. Alternatively, we can use a Turing macMrees a device for computing
a (partial) functionf : T* — T*, wheref (w) is defined if and only iM on inputw
terminates in a final state, and in this cd$®) is the maximal word/ € T* written
on the tape just to the right of the tape head.

2.2. Grammars and Automata

25

Definition 2.26 A (partial) functionf : T* — T* is (partially) recursive(or (par-
tially) Turing computablif there is a Turing machine which computés

By Church’s Thesis, Turing machines are a universal computing device, i.e.,
a language is recursive (r.e.) if and only if it is decidable (effectively enumer-
able), and a (partial) function is (partially) recursive if and only if it is (partially)
computable. So the standard extensions of Turing machines in the literature will
not give stronger computing devices but possibly more efficient ones. For com-
plexity matters we will consider the following two extensions of the above Turing
machine model: nondeterministic machines and multi-tape machines. We do not
define these models formally. The definition of a nondeterministic Turing machine
is straightforward: The transition functidrhas to be replaced by a transition rela-
tion A of type:

AC (SxT)x(SxT x{L,R}).

A k-tape TMM (k > 1) hask tapes, each provided with a tape head, where the
operations on the individual tapes are independent. Now a mdvaesfletermined
by the current state d¥l and thek letters scanned by the tape heads orkttapes.

For the definition of the computational complexity classes based on the above
Turing machine models we first introduce the running time and the space required
by a TM M on inputw, where we restrict ourselves to the case of a deterministic
1-tape TM.

Definition 2.27 Let M be a deterministic 1-tape TM.

1. If M oninputw converges then the computationvdfon inputw s the unique
finite sequence of IDs

Compu(w) =lo,...,Im
wherelg = bgw, lj by li41 fori < m, andly, is a terminal ID.
2. Therunning timeof M is the partial functioimey : T* — N where

timew (W) = {Iengtr(Comm(W)) if M terminates on inpu/

1 otherwise.

3. Lett: N — N be a total recursive function. Théis t(n)-time boundedf
Yw e T*(timev (w) <t(jw|)).
4. Thespace requiredby M is the partial functiorspacey : T* — N where

m I|:1 e Compy(w if M terminates on inputv
Spacw):{ ax(I| pa (W)} p

T otherwise.

26

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

5. Lets: N — N be a total recursive function. Théu is s(n)-space bounded
if
Yw e T*(spacen(w) < s(|w)).

The following complexity classes are defined for multi-tape Turing machines.
Lett: N — N be a total recursive function. Then tbeterministic time complexity
class with bound(in) (over the binary alphab&l) is defined by

DTIME(t(n)) = {L C 2" : 3 det.t(n)-time-bounded TMM(L(M) =L)}.
The correspondingondeterministic time clags defined by
NTIME(t(n)) = {L € Z* : 3 nondet.t(n)-time-bounded TMM(L(M) =L)}.

Similarly, for a total recursive functios: N — N, the deterministic space com-
plexity class with bound(s) is defined by

DSPACESs(n)) = {L C X* : 3 det.s(n)-space-bounded TMI(L(M) =L)}
and the correspondimgpndeterministic space classdefined by
NSPACESs(n)) = {L C ¥* : 3 nondet.s(n)-space-bounded TNI(L(M) =L)}.

If we admit only Turing machines with a fixed number of tapes then we add the
numberk of tapes as an index to the name of the class. For instance,

DTIME1(t(n)) = {L C Z* : 3 det.t(n)-time-bounded 1-tape-TWI(L(M) =L)}.

We will use the following results on the above Turing machine complexity
classes: By thénear-speed-up theorernthe above classes are invariant under lin-
ear changes of the bound, i.e.,

(for C=DTIME,DTIME, DSPACE etc.). By thetape-reduction theorem
D(N)SPACE(f(n)) = D(N)SPACKEf(n))
and
D(N)TIME(f(n)) C D(N)SPACE (O(f(n))?).

For the comparison of the different complexity measures we have the following
results:
DTIME(f(n)) € NTIME(f(n)),

DTIME(f(n)) C DSPACH f(n)) C NSPACH f(n)),

2.2. Grammars and Automata 27

NTIME(f(n)) C NSPACEf(n)),

and
NSPACH f(n)) C DTIME (2°(f(W)),

Finally, by Savitch’s Theorem
NSPACH f(n)) C DSPACH f(n)?)

for space constructible boundswhere a functiorf is space (time) constructible
if there is a Turing machin® which on any inputv of lengthn uses exactly space
of size f(n) (has running timef (n)). Finally we will use the fairly recent result
that the nondeterministic space classes are closed under complement.

Theorem 2.28 (Immerman-Szelepcsenyi) For space constructible boufrjs>s

log(n),
NSPACESs(n)) = co— NSPACES(n))

Here the co-class co-C of a complexity class C is the class of the complements
of the languages in C, i.e., co-€{A: A € C}. The Theorem of Inmerman and
Szelepcsenyi has been used to prove to the following hierarchy theorem for nonde-
terministic space classes.

Corollary 2.29 (Nondeterministic Space Hierarchy Theorem) Let s and S be re-
cursive functions such thati® ¢ O(s(n)) and §n) is space constructible. Then
NSPACES(n)) £ NSPACHSs(n)).

The Theorem of Immerman and Szelepcsenyi also gave the solution to a open
problem of formal language theory namely the question whether the complement
of every context-sensitive language is context-sensitive. An affirmative answer to
this question follows from the coincidence of the class of the context-sensitive
languages with the nondeterministic linear space class.

Theorem 2.30 CS= NSPACE (n) = NSPACEO(n))

Sometimes this theorem is stated in a slightly different form using the notion

of a (nondeterministichinearly bounded automato({(N)LBA). An LBA may be
viewed as a 1-tape Turing machine which is not allowed to leave the cells bearing
the input. For this sake the input is limited by end marKeasd] and the head is
not allowed to pass beyond these markers. The class of languages recognized by
nondeterministic LBAs is denoted by NLBA. Obviously, NLBANSPACE (n).
Hence, by Theorem 2.30, a language is context-sensitive if and only if it is accepted
by an NLBA, i.e.,

CS=NLBA (2.5)

28

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

Note that any complexity class is countable and consists only of recursive lan-
guages. In fact the languages in such a class have a uniform recursive presentation.
We will conclude this subsection by reviewing the important notion of uniform
computability.

Definition 2.31 A countable class C of binary languagesimsformly recursiveor
recursively presentablg.p. for short) if there is a binary recursive §£C N x 2*
such that C= {U[" : n > 0} whereU" = {x: (n,x) e U}. U is called auniversal
setfor C.

Theorem 2.32 For any recursive function f, the complexity clasBd$ME (f (n)),
NTIME(f(n)), DSPACK f (n)), andNSPACK f (n)) are uniformly recursive. More-
over, the Chomsky classB&G, LIN, CFandCSare uniformly recursive.

2.3. Regular Functions

29

2.3 Regular Functions

In the preceding section we have reviewed the Chomsky language classes and the
types of grammars and automata which characterize these classes. In case of Tur-
ing machines - which describe the most general Chomsky class - we have also
indicated how this concept has been used to formalize the notion of a computable
function. The finite-state genericity notions we will introduce in this thesis will
be based on regular extension function. So, in order to introduce these notions,
we have to review the approaches which have been used to define the concept of a
regular function based on finite automata. We will restrict ourselves to the case of
word functions over the binary alphat¥atsince only functions of this type will be
needed later. For references see e.g. Yu (1997).

The probably most common definition of a regular word functfoof type
f: T — T is due to Moore. It is based on an extension of the concept of a
deterministic finite automaton where the states of the automaton are labeled by
letters from the output alphab@&t Then the value of the computed functidn
on inputx is the wordA(sy)...A(sn) wheres, ..., s, are the states visited by the
automaton while reading input (In case of a partial function, this output is only
given if the final states, is accepting.) We next formally introduce this concept
(where, as remarked before, we limit ourselves to the case of the binary alphabet
2).

Definition 2.33 A Moore automaton M= (X,S 8,5, F,A) is a deterministic finite
automatorM = (Z,S,d, s, F) together with dabelling functionA : S— X. The
(partial) Moore function § : Z* — Z* computed bw is defined by

fm(a1...an) = A(So)A (0" (S0,a1))A (8" (S0, @182))...A (0" (S0, @1..-@n))

if 8*(s0,a1...an) € F (wheren > 0), andfu(a;z...an) 1 otherwise. A (partial) func-
tion f is a(partial) Moore functionif f = fyy for some Moore automatdvi.

If we consider total Moore functions then w.l.0.g. we may assume that all states
are final or, in other words, we may omit the set of final states from the definition
of the automaton. Note that, for a (partial) Moore functihnthe length of the
output is the length of the input increased by 1 (if defined) &rimonotonous in
the sense that if extendsx and f (x) and f (y) are both defined thefi(y) extends

f(x).
Lemma 2.34 Let f be a (partial) Moore function. Then, forw e Z*,

f(w) | = |[f(w)|=|w|+1 (2.6)

30

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

and
(VEW& f(v) | & f(w)]) = f(v)C f(w). (2.7)

PROOFE Immediate by definition. O

We can obtain a more general concept of a regular function by admitting la-
belling functions of a more general type. Instead of attaching a single letter to each
state we now attach a word.

Definition 2.35 A generalized Moore automaton M (Z,S, 9,5, F,\) is a deter-
ministic finite automatorM = (Z,S 9,5, F) together with alabelling function
A S— Z*. The (partial) generalized Moore functionyf: Z* — * computed
by M is defined by

fm(a1...an) = A(So)A (0" (s0,a1))A (0" (S0,@2182))...A (0" (S0, 81..-@n))

if & (s0,a1...an) € F (wheren > 0), andfyu(a;...an) T otherwise. A (partial) func-
tion f is a(partial) generalized Moore functioif f = fy for some generalized
Moore automatoi.

Again, if we are only interested in total generalized Moore functions we omit
the set of final states from the definition. Obviously any (partial) Moore function
is a (partial) generalized Moore function (but not vice versa). As in case of Moore
functions, generalized Moore functions are monotonous but the length property
(2.6) in general fails. Now we may only argue that the lengttf @ (if defined)
is linearly bounded in the length af

Lemma 2.36 Let f be a (partial) generalized Moore function. Thgh7) holds
and there is a constant ¢ such that, for anyg\k*,

f(w) | = [f(w)| <cw (2.8)
PROOFE Immediate. O

Example 2.37 An example of a generalized Moore functidn ~* — >* which

is not a Moore function is the functioh: Z* — 3* defined byf (x) = 0?X+2, A
generalized Moore automaton which compufebas only one statg, labelled

by A(s0) = 02. f is not a Moore function since the length condition (2.6) is not
satisfied.

We can further generalize the notion of a (generalized) Moore function by con-
sidering nondeterministic (generalized) Moore automata. In general such a non-
deterministic automaton will not compute a function of type— 2* since the
different possible runs of a nondeterministic automaton on a given input may re-
sult in different function values.

2.3. Regular Functions

31

Definition 2.38 A nondeterministic (generalized) Moore automaton
M= (Z,SAS,FA)

is a nondeterministic finite automatbh= (Z, S A, S, F) together with dabelling
functionA : S— X (A : S— Z*). The automatoiM is completeif for any x € Z*
there is a run oM ending in a final state and is consisten{or single valuedl if
for any inputx € Z* and any two possible rurss, ..., s, ands, ..., s, of M on input
xwhich end in final stated,(sp)...A(sh) = A(sp)-.-A(S,). If M is consistent then the
(partial) nd. (generalized) Moore functiogy f Z* — * computed bw is defined
by

fm(X) = A(so)A(s1)A(S2)---A(sn)
wheres, ...,$, is any run ofM on inputx with s, € F (if such a run exists, and
fm(x) 1 otherwise). A (partial) functiorf is a(partial) nd. (generalized) Moore

functionif f = fyy for some consistent nondeterministic (generalized) Moore au-
tomatonM.

As one can easily check, this definition is consistent, i.e., the (partial) func-

tion computed by a consistent n.d. (generalized) Moore automaton is well defined.

Moreover, the functiorfyy computed by such an automaton is total if and only if
M is complete. Moreover, for a partial n.d. (generalized) Moore funcfiothe
corresponding length conditions from the deterministic case ((2.6) and (2.8), re-
spectively) still hold but monotonicity (see (2.7)) in general fails.

Lemma 2.39 For any (partial) n.d. Moore function f(2.6) holds and, for any
(partial) n.d. generalized Moore function 2.8) holds.

PROOF Immediate by definition. 0
Example 2.40 The functionf : 2* — >* defined by

_JoXFLif |x] is even
1M+1 i |x| is odd

is a n.d. Moore function. An n.d. Moore automatih= (Z,S A, S, F,A) which
computesf can be defined as follows.

S= {%0,%.1,510,S1.1}
(sj.ksj)edsi=i"&|j#j (i,i'j,j ke{0,1})
S = {00,510}

F={s00,S11}

32

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

)\(S-,J') = (|7J € {07 1})

Intuitively, M works as follows. On input, M nondeterminstically guesses whether
the length ok is even or odd. IM guesses thdx| is even then it starts the compu-
tation in statesp o, otherwise in state; o. If M starts in stateg o then in the run of
M the statesp andsp ; alternate where both states are assosciated with the label
0. Since the statg g is final butsy 1 is not, a run beginning in stasgo is accepting
iff |x| is even. Moreover, in this case, the outputlis'd. Similarly a run beginning
in states; o will be accepting iffx| is odd, and in this case the output will b&1?.

Note thatf is not a (generalized) Moore function sinteloes not satisfy the
extension property (2.7).

The above examples and lemmas show that the only relations among the dif-
ferent types of Moore functions are the trivial relations

f (partial) Moore function = f (partial) gen. Moore function

U \
f (partial) n.d. Moore function = f (partial) n.d. gen. Moore function
(2.9)
To see that no other relations hold it suffices to recall that the function of Example
2.37 is a generalized Moore function but, by failure of (2.6) and by Lemma 2.39,
not a n.d. Moore function and that the function of Example 2.40 is a n.d. Moore
function but not a generalized Moore function.

In the literature there are other approaches for defining regular functions of
type f : 2* — Z*: While in the Moore approach in any step of the computation the
output is expanded by a letter (or — in the generalized case — by a word) where the
chosen letter (word) depends on the current state, in the Mealy approach, the letter
(word) appended depends not only the current state but on the current transition.
Though aparently more flexible, it has been shown that the Mealy approach is not
more powerful than the Moore approach and leads (essentially) to the same class
of functions. (To be more precise, we can obtain any Mealy fundtibydropping
the first letter from the output of some Moore functibn) The same observation
applies to the corresponding nondeterministic functions. A further generalization
of the Mealy approach has been proposed which is based on so-called generalized
sequential machines: Here the machine is allowed to rakeves, i.e., to make
a transition without reading a new letter, and to read more than one letter in one
move. As one can easily show, the functionsbtained this way are essentially
Mealy functions by differing from the latter only on the empty string. (See e.g.
Yu (1997) for more details.) So for our applications it will suffice to deal with the
above introduced variants of Moore functions.

Some of our finite-state genericity concepts will be based on extension func-
tions of constant length, however, i.e. will be based on (partial) functions of type

2.3. Regular Functions

>* — X (for any givenk > 1) which can be computed by a finite automaton. So
in the remainder of this subsection we introduce a notion of regularity for (partial)
regular functions of this type. This notion will be based on generalized Moore
automata where each state is labeled with a word of lekgtifhe value of the
function will be defined iff the computation ends in a final statnd in this case
the value will be the label of this state. Next we formally introduce this concept.

Definition 2.41 A k-labelled automaton Nk a generalized Moore automativh=
(2,S0,%,F,A) where|A(s)| =k for anyse S (k> 1). The (partial) function
fm : Z* — =K computed byhek-labelled automatoM = (X, S, 8, s, F,A) is defined
by
A(O*(sp,X)) if 0*(s0,X) € F
wwz{(() it 8 (0.0

1 otherwise.

A (partial) functionf : =* — K isregularif f is computed by some deterministic
k-labelled automaton.

We can extend this definitions to nondeterministic automata.

Definition 2.42 An n.d. klabelled automaton Ms a n.d. generalized Moore au-
tomatonM = (Z,S A, S, F,A) where|A(x)| = k for anyse S(k> 1). M is consis-
tent(or single valuedlif, for any wordx and for any statesands/,

s,§ € A (S,X) NF = A(s) = A(9)

holds. The(partial) function f; : Z* — =K computed bythe consistent n.ck-
labelled automatoM = (2, S A, $, F,A) is defined byfy (X) = A(s) wheresis any
final state such thate A*(S,X) if such a states exists, andfy (x) T otherwise.

In contrast to the Moore function concept, however, here nondeterminism does
not lead to a more powerful concept.

Lemma 2.43 Let f: = — ZX be a partial function which is computed by a consis-
tent n.d. k-labelled automaton. Then f is regular.

PROOF Fix a consistent n.ck-labelled automatoM = (£, S A, S, F,A) such that

f = fm. We have to define a determiniskidabelled automatoM’ such thatfy =

fw. The definition ofM’ = (X£,3,8,s/,F’,\’) is based on the standard power
set construction for giving a deterministic automaton (without output) simulating a
given n.d. automaton. To be more precise, we let

S={0:0CS}

34

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

& (o,a) =A(o,a)
0 =%
F'={0:0NF #0}

Then, for anyx € Z*, x is accepted by iff M is accepted byM’ whence the
domains offy and fy agree. To ensure thd (X) = fyr(X) whenever defined, it
remains to sex’(a) = A(s) for anys€ oNF if o € F’ and by letting\’'(a) have
any value, say ') otherwise. Note that, by consistencyMf A’ is well defined,
and for anyx such thatfy (x) is defined,fy (x) = fm(X). O

Note that, by (2.6), no (partial) function of ty@& — =X is a (partial) — deter-
ministic or n.d. — Moore function. There are generalized Moore functions of this
type, however, whence it is natural to ask what are the relations between regular
functions and (deterministic or nondeterministic) generalized Moore functions of
typeZ* — K. As we will show next the regular functions are just the n.d. general-
ized Moore functions.

Lemma 2.44 Letk> 1and let f: * — >X be any (partial) function. The following
are equivalent.

(i) fis regular.

(i) fis an n.d. generalized Moore function.

PROOF For a proof of(i) = (ii) let M = (Z,5,9,5,F,A) be a deterministic
k-labelled automaton which computés We have to define a consistent n.d. gen-
eralized Moore automatdd’ = (£,S,A’, S, F’,\') which is equivalent tav, i.e.,
such thatfy; = fy. Note that the function valugy (x) computed by thé&-labelled
automatonM is the labelA(s) of the states reached byM after having read the
inputx. In contrast,fy(x) is the concatenation of the labels of all states in the run
of M’ on inputx. So, in order to simulat&, M’ has to delete the labels of the
intermediate states. This is achieved by having two cop#esls of any states of
M, where one copysj has the same label attached adlimnd one §) has attached
the empty word. TheM’ copies the run o by using the copies of the states with
empty label. Only whem’ guesses that the input is completely read, it switches
to the copy with the original label.

Formally,M’ is defined by

S =Su{s:seS}

A'(s,a) ={d(s,a),d(s,a)} & A'(5,a) =0 (seSacz)

2.3. Regular Functions 35

S = {0, %}
F'={s:seF}
N(s)=e&N(S)=A(s) (s€9.

For a proof of(ii) = (i) letM = (£,S,9,,F,\) be a consistent n.d. general-
ized Moore automaton which computésBy Lemma 2.43, it suffices to define a
consistent n.dk-labelled automatoM’ = (£, S,A', &', F’,\") which is equivalent
to M, i.e., such thafy, = fyy. Intuitively, such an automatdd’ simulatesM step
by step wherd!’ remembers in his state the concatenation of the labels attached to
the visitedM-states up to this point. (This is possible since the generalized Moore
function computed by is k-bounded, i.e., it suffices to store a word of length at
mostk. If the length of the word exceedsthen the input will not be accepted
and the computation can be aborted.) WMErguesses that the input is read com-
pletely, it outputs the sequence of these labels (by attaching it to the state reached
in the end).

Formally,M’ is defined by

S ={[sx:seS&xe =K}
(8. € X([s.X,a) & § €A(s.a) & y=xXA(S) & |y < k
S’ = {[s0.A(s0)] : 0 € S}
F'={[sx:seF&|x =k}
N ([s,x]) = x0k— M.
O
The observation that not any n.d. generalized Moore function is a generalized

Moore function can be extended to functions of t§je— >¥. So, by the preceding
lemma, not every regular functioh: * — >X is a generalized Moore function.

Lemma 2.45 For any k> 1 there is a regular function fX* — X such that f is
not a generalized Moore function.

PROOF Definef : =* — X by letting

0% if |x| is even
f(x) = L
1% if |x| is odd.

Thenf is regular. (Ak-labelled automatoM which computed has two statesy
ands;, wheres is the initial state, both states are final, anis labelled withi.
In any stepM moves from the current stageto the other state; j.) By Lemma

36

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

2.36, howeverf is not a generalized Moore function since the extension property
(2.7) is not satisfied. U]

For later use we observe that the class of regular functions is closed under finite
variants.

Lemma 2.46 The class of the (partial) regular functions of type — ¥ (k > 1)
is closed under finite variants.

PrROOF We consider the case of total functions. (The case of partial functions

is similar.) It suffices to consider a pair of functions which differs on a single

argument. The general case follows by induction on the number of differences.
So assume that : I* — 3K is regular andf’ : =* — ¥ differs from f on

input x. We have to show thaf’ is regular too. Fix a-labelled automaton

M = (Z,S9,%,F,A) which computesf. Then ak-labelled automatoM’ which

computesf’ can be obtained as followM’ = (%, S,d', s, F’,A’) simulatesM step

by step. In addition, as long as the ppuf the input word read so far is an initial

segment ok, this information is stored in the stateMf and ify = x then the label

of the current state is replaced b¥(x). Formally, forse S a€ Z, andy C x,

S =SU{[s)y] :s€ S& yC x}

& (s,a) = d(s,a)

, ~ J[8(s,a),yal if yaCx
OlsiL.a) = {6(3, a) otherwise
SO/: [5078]
F'=FuU{[sy]:seF&yLCx}

N (s) =A(s)

, M) ify#x
Mlsy= {f’(x) if y=x

2.4. Strong Separations in the Chomsky Hierarchy 37

2.4 Strong Separations in the Chomsky Hierarchy

Immunity and bi-immunity are among the fundamental concepts in computability
theory and computational complexity theory. An infinite languAdgeimmuneto

a class C (mmunefor short) if it does not contain any infinite member of this
class as a subset. If both, a languégend its complemen are immune to C then

Ais called Cbhi-immune Post (1944) introduced immunity and proved the exis-
tence of nonrecursive (many-one) incomplete recursively enumerable problems by
constructing aimpleset, i.e., an r.e. set whose complement is immune to the class
of r.e. sets. Flajolet and Steyaert (1974) were probably the first who studied im-
munity in the context of formal language theory. For instance they have observed
that the canonical exampld®"1": n > 1} and{0"1"0" : n > 1} of non-regular

and non-context-free languages are in fact REG-immune and CF-immune respec-
tively. Bi-immunity was introduced by Bakzar and Sabning (1985) who have

also observed the close connection between bi-immunity and almost-everywhere
complexity. In the sequel some hierarchy theorems for almost-everywhere com-
plexity have been proven using this concept (see e.g. Geske et al. (1987)). More-
over, for any countable class C, the class of C-bi-immune sets has measure 0 and is
comeager whence these concepts are of interest for the investigation of randomness
and genericity notions.

In this subsection, by extending the work in computability and complexity the-
ory and the work of Flajolet and Steyaert on immunity in formal language theory,
we will present some fundamental properties and relations of the immunity and
bi-immunity notions for the classes of the Chomsky hierarchy. We will proceed as
follows. First we will show that the coincidence of almost-everywhere complex-
ity and bi-immunity in complexity theory has its counterpart in formal language
theory. Then we will present some general definitions and results before we will
look at the individual levels of the Chomsky hierarchy where our focus will be on
bi-immunity to the lower classes of the hierarchy, namely the classes of regular,
linear, and context-free languages which haven’t been considered in detail before.

38 2. FORMAL LANGUAGES AND INFINITE SEQUENCES
24.1 In computational complexity theory bi-immunity has been extensively studied since
Bi-Immunity it is closely related to almost-everywhere complexity (see &adc et al. (1990),
and Almost Chapter 6 for details). For instance, if C is a determinstic time class DTIVMB
Everywhere andA is DTIME(t(n))-bi-immune then, for any Turing machif¥ which accepts
Complexity A, timey(x) > t(|x|) for all but finitely many stringx. Alternatively, we can ex-

press this observation as follows: CMI an extendedluring machine ifM has
three types of states, accepting statess{ates), rejecting states {states) and un-
determined states (?-states). Moreover, sayMhalkecides(accepts reject9 x if
the computation oM on inputx ends in at-state or—-state (--state;—-state) and
say thatM is consistentith A if M only accepts strings € A andM only rejects
stringsx € A. ThenA is DTIME(t(n))-bi-immune if and only if any deterministic
t(n)-time bounded extended Turing machMewhich is consistent witlh decides
only finitely many stringx.

For the classes C in the Chomsky hierarchy we can obtain similar character-
izations of C-bi-immunity by considering the machine characterizations of these
classes. We demonstrate this for the class REG of the regular languages here. We
first formally define the notion of an extended deterministic finite automaton.

Definition 2.47 An extended deterministic finite automai{®&DFA) M is a 7-tuple
M=(Z,S9,%,S;,S ,S) where(%,S d,5) is a deterministic finite automaton
without a distinguished set of final states &i®1,S_,S;) is a partition of the set
S of states ofM, called the sets of--states(or accepting statgs —-states(or
rejecting statesand ?states(or undetermined statgsrespectively. The EDFM
acceptqrejectg w € 2* if the computation oM on inputw ends in at-state -
state), i.e., ifd*(so,w) € Sy (0*(so,w) € S_). If M accepts or rejectw then we
also say thaM decides wThe EDFAM is consistentith a languagé\ if M only
accepts strings € A andM only rejects stringg € A.

Theorem 2.48 For any language A the following are equivalent.
(i) Ais REG-bi-immune.

(i) For any extended deterministic finite automaton M which is consistent with
A, M decides only a finite number of strings.

PrRoOOF The proofs of both implications are by contraposition. For a proof of
(i) = (ii) assume thaM is an extended deterministic finite automaton which is
consistent withA and which decides an infinite number of strings. Then, by sym-
metry, w.l.0.g. there are infinitely many strings which are accepted b$o, if we
convertM into a standard finite automatdi’ by letting the+-states oM be the
final states oM’, thenM’ accepts an infinite s@& and, by consistency d¥l with

2.4. Strong Separations in the Chomsky Hierarchy 39

A, Bis contained imA. So there is an infinite regular sub&of A whenceA is not
REG-bi-immune.

For a proof of(ii) = (i) assume thaA is not REG-bi-immune. Then, by sym-
metry, w.l.0.g. we may assume thratontains an infinite regular sBtas a subset.
Given a deterministic finite automatd which acceptd, convertM into an ex-
tended automatokl’ by letting the final states d¥l be the+-states oM’ and by
letting the non-final states be ?-states. (There arestates.) Then, b C A, M’
is consistent withA and, by infinity ofB, M’ decides an infinite number of strings.

O

By the above, REG-bi-immune sets are non-regular in a very strong sense.
So, for investigating the power of diagonalizations over the class REG, REG-hi-
immunity is a very interesting property.

We next look at some basic definitions and results on immunity and bi-immunity 2.4.2
in a general setting. We first review the definitions of immunity, co-immunity arlgefinitions and
bi-immunity.

Basic Facts

Definition 2.49 Let C be any class of sets. A satis immune toC, Cimmune
for short, if A is infinite but no infinite subset ok is a member of CA is Cco-
immuneif the complemenA of A is C-immune; andh is C-bi-immuneif A andA
are C-immune.

The following observations are obvious.

Proposition 2.50 (a) If A is C-immune then A C.
(b) If A'is C-co-immune anc is closed under complement thergAC.
(c) If Cy C C1 and A isCy-(co/bi-)immune then A i€y-(co/bi-)immune.
(d) A isC-bi-immune iff A iSC-immune andC-co-immune.

Proposition 2.51 Let C be a class which contains all co-finite languages. Then
the following are equivalent.

() Ais C-bi-immune.
(i) Neither A norA contains an infinite set B C as a subset.

PROOF By definition, (i) is a strengthening dfii), namely(i) is obtained from
(i) by additionally requiring tha& andA are infinite. So, given a sétsatisfying
(i), it suffices to show that andA are infinite. We do this foA. The proof forA

is symmetric. For a contradiction assume tAas finite. ThenA is co-finite. By

40

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

choice of C this implies that tha ¢ C. So, forB = A, B is infinite, B € C and
B C A. But this contradicts the assumption tiesatisfiesii). O

In the following we will tacitly use Propositions 2.50 and 2.51. We next turn
to some general existence results for (bi-)immune sets. It has been shown, by
diagonalization, that, for any countable class C, C-bi-immune sets exists. In fact, it
is well known that for such classes C, typical sets are C-bi-immune. (See Chapter 3
below for more details. There also a proof of the following theorem can be found.)

Theorem 2.52 For any countable clas€ there areC-bi-immune sets. In fact the
class ofC-bi-immune sets has Lebesgue measure 1 and is co-meager.

For countable classes C which have an infinite and co-infinite member, there
are C-immune sets which are not C-bi-immune. In order to show this we first prove
the following fact.

Theorem 2.53 Let C be a countable class and let B be an infinite set. There is a
subset A of B which i€-immune.

PROOF Let C= {C,:n> 0} be a (possibly noneffective) enumeration of C. We
define a seA with the required properties by a finite extension argument. l.e., we
defineA in stagess > 0 by simultaneously defining a strictly increasing function
I, I(s) beeing defined at stage such that the pars of A defined by the end of
stages will consist of all strings inA of length less thai(s), i.e.,As= ANZ<©,

At an even stages2ve ensure thdts is not contained i\ unlesCs is finite; at an

odd stage &+ 1 we ensure thak contains a string of length at least-2 1 thereby
ensuring thaf is infinite.

Formally, A is defined as follows. GiveAs 1 andl(s—1) (whereA 1 =0
andl(—1) = 0), As andl(s) are defined as follows. B is even, says = 2e, then
distinguish the following two cases. @ is infinite then letxs be the least string
in Ce such thatx| > I(s—1), letl(s) = |xs| + 1 and sef\s = As_;1. If Csis finite then
letl(s) =1(s— 1)+ 1 and se\s = As_1. Finally, if sis odd then leks be the least
stringxin B such thatx| > I(s— 1), letl(s) = |xs| + 1 and sef\s = As_1 U {Xs}.

The correctness of the construction easily follows from the remarks preceding
the construction. O

Corollary 2.54 Let C be a countable class which has an infinite and co-infinite
member. There is @-immune set A which is n@-bi-immune. In fact, iCo and

C; are countable classes such thag C C; and Cy has an infinite and co-infinite
member then there is@;-immune set A which is n@-bi-immune.

2.4. Strong Separations in the Chomsky Hierarchy 41

ProoF It suffices to prove the second part of the corollary. The first part follows
by setting G = C; = C. Fix D € Cp such thatD andD are infinite. By Theorem
2.53 there is a Gimmune setA contained inD. A is not G-immune since the
infinite setD € Cq is contained imM. SoA is not G-co-immune, hence notgbi-
immune. O

As pointed out above, in computational complexity theory many separations
of complexity classes £C C; can be extended to strong separations by showing
that there is a g(bi-)immune set in the class;(see e.g. Geske et al. (1987) and
Allender et al. (1993)). In the following we will look at the question what strong
separations we can get for the Chomsky classes. We will use the following notation
for strong separations.

Co <0 C]_ = Co C C]_

Cp<1C1:=CopC Cp & JA€E Ci(ACo-immune
Co<2Ci:ieCCC & JAE Cl(A Co-bi-immun@

Proposition 2.55 Let Cy and C; be any classes such th@y has an infinite mem-
ber. Then
Co<2Ci=Cp<1C1=Cp<pCy.

PROOF Immediate by definition. 0

By the preceding proposition, the following proposition establishes transitivity
of the relations<g, <1 and<3 in a strong sense.

Proposition 2.56 Let Cy, C1, and C, be classes which have infinite languages
among their members and letjie {0,1,2}. Then the following holds.

Co <iC1 & C1<j Cz=> Co <maxi,j) Ca-

PrROOF By Propositions 2.50 and 2.55. O

42

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

24.3

Immunity to the
Class of Regular
Languages

Now we will look at immunity and bi-immunity to the individual classes in the
Chomsky hierarchy. We begin from the bottom of the hierarchy and start with the
class REG of the regular sets.

As pointed out above, Flajolet and Steyaert (1974) have shown that the lan-

guageA = {0"1": n > 1} is immune to the class of regular languages. This easily
follows from the pumping lemma for regular languages (see Theorem 2.16). For
a contradiction assume thAtis not REG-immune. Then there is an infinite reg-
ular subseB of A. By the pumping lemma there is a paramgber 0 such that
any wordw € B with |w| > p can be decomposed into= xyzsuch thatxy| < p,
y # €, andw, = xy"'z € B for all n > 0. Now, by infinity of B and byB C A, there
is a numbeq > p such thatv = 0919 € B. Then, for the corresponding partition
W = Xyz xyis a substring of ®whence, byly| > 0, wg = xz= 0919 ¢ A. So, by
B C A wp € B, a contradiction.

Since the languagk = {0"1" : n > 1} is linear we obtain the following.

Theorem 2.57 (Flajolet and Steyaert (1974)) There is a linear language A which
is REGimmune.

Corollary 2.58 REG<; LIN.

As we shall show next, however, the above theorem on REG-immune lan-
guages cannot be extended to REG-bi-immune languages.

Theorem 2.59 No context-free language REG-bi-immune.

PROOF LetA be context-free. We have to show t#eor A is not REG-immune.
Since, by Lemma 2.7, the intersection of any context-free language with a regular
language is context-free again {0}* is context-free. In factAn {0}* is regular
since any unary context-free language is regular (see (2.2)). 2a)if0}* is
infinite, A is not REG-immune. Otherwise, the subget {0}* of A is a finite
variant of the infinite regular sef0}*. Since the class of regular languages is
closed under finite variants this implies theis not REG-immune in this casé]

Corollary 2.60 REG £, CF.

Though REG-bi-immune sets are not context-free, hence not linear, in general
REG-bi-immunity does not imply LIN-bi-immunity, in fact not even LIN(-co)-
immunity.

Theorem 2.61 There is aREG-bi-immune set A which is neithefN -immune nor
LIN -co-immune.

2.4. Strong Separations in the Chomsky Hierarchy 43

PrROOF By Theorem 2.52, led’ be any CS-bi-immune set. Defikeby letting
A=(Au{0"1":n>1})-{1"0":n>1}

ThenA andA contain the infinite linear languag€@™1" : n > 1} and{1"0" : n> 1},
respectively, whence neithéror A is LIN-immune. So it suffices to show that
is REG-bi-immune.

For a contradiction assume that this is not the case. Then, by symmetry, w.l.0.g.
we may assume tha& contains an infinite regular sBtas a subset. SplB into
the two partsBp = B— {0"1": n > 1} andB; = BN {0"1": n > 1}. Note thatBy
andB; are context-sensitive. (This follows from the facts that regular and linear
languages are context-sensitive and that the class of context-sensitive languages
is closed under the Boolean operations.) MoreoBgris a subset oA’ whence,
by CS-bi-immunity ofA’, By is finite. It follows thatB; is a finite variant of the
regular seB hence regular too. SB; is a regular subset ¢0"1": n > 1}. Since,
as shown abovg,0"1" : n > 1} is REG-immune, it follows thaB; is finite too. So
B = By UB; is finite contrary to assumption. This completes the proof. O

Next we look at immunity and bi-immunity to the classes of the linear and context- 24.4
free languages. We first observe that the immunity (hence bi-immunity) no“f?ﬂﬁmnity to the
for these two language classes coincide.

Classes of

L . S Linear and

Theorem 2.62 Any infinite context-free language contains an infinite linear lan- Context-Free
guage as a sublanguage. Hence a set £ks(bi/co-)immune if and only if A is Languages

LIN-(bi/co-)immune.

PROOF Let A be context-free and infinite. By the pumping lemma for context-
free languages (see Theorem 2.22), there is a wardl and a partitiorz = uvwxy

of zsuch thawxis nonempty and, for any > 0, the stringu/'wxy is a member of

A. So, forB= {uv'wX'y: n > 0}, Bis an infinite subset oA and, as one can easily
check,Bis linear. O

Corollary 2.63 LIN £1 CF.

Flajolet and Steyaert (1974) have shown that the context-sensitive language
A={0"1"0":n> 1} is CF-immune. (This easily follows from the pumping lemma
for context-free languages.) So in contrast to Corollary 2.63 we obtain a strong
separation by immune sets on the next level of the Chomsky hierarchy, i.e;; CF
CS. In fact, as we will show next, this can be extended to a strong separation by
bi-immune languages.

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

Theorem 2.64 There is a context-sensitive language whidBksbi-immune. Hence
CF<,CS

PROOF LetA={x:3n(22" < |x| < 22""")}. As one can easily check is in
DSPACEO(n)), hence context-sensitive. We will show thats CF-bi-immune.
By symmetry of the definition oA, it suffices to show thaf is CF-immune. So,
for a contradiction, assume thais an infinite subset oA. Then, by the pumping
lemma for context-free languages, there are wargswy, x,y such thatvx| > 0 and

z, = uW'wxy € B for all n > 0. So, sinceB is contained iMA, there are numbers
m> 0 andk > 1 such that, for alh > O there is a word,, € A such thatz,| = m+kn.
SoA can have at most linear gaps, namely, for any numbem, ANz £ g,

On the other hand, by definition & A has quadratic gaps, i.e., there are infinitely
many numbers such thatAn =I"™) = 0. Namely, for anyn > 0,

2n+1 2n+1 2n+1 2n+2
@2 (@) (2 2P

CA
This gives the desired contradiction. O

Theorem 2.64 implies that, in general, CF-bi-immunity does not imply CS-
immunity.

Corollary 2.65 There is a language A which iBF-bi-immune but neitheCS
immune notCS-co-immune.

PROOFE Since the class of context-sensitive languages is closed under comple-
ment, this is immediate by Theorem 2.64. O

2.4.5 We now turn to the upper part of the Chomsky hierarchy. The basic results on
immunity and bi-immunity to the classes of the context-sensitive languages, the
recursive languages and the Comsky-0-languages, i.e., the recursively enumerable
(r.e.) languages can be already found in the literature or can be easily derived from
some general (bi-)immunity results there. So we only shortly review these results
here.

We first observe that there is a strong separation of CS and REC by CS-bi-
immune sets.

Immunity to the
Higher Classes
of the Chomsky
Hierarchy

Theorem 2.66 There is a recursive language whichG&-bi-immune.

Theorem 2.66 is a special case of a quite general existence result for bi-immune
sets: For any uniformly recursive class C there are recursive C-bi-immune lan-
guages (see Section 3.4 for details).

2.4. Strong Separations in the Chomsky Hierarchy 45

The following two corollaries are immediate by Theorem 2.66 (and the closure
of REC under complement).

Corollary 2.67 CS<», REC.

Corollary 2.68 There is aCS-bi-immune language which is neithREGimmune
nor REG-co-immune.

By the following well known observation in computability theory, there is no
strong separation of REC and RE.

Theorem 2.69 Every infinite recursively enumerable set contains an infinite re-
cursive set as a subset. HenR&G-(bi/co-)immunity andRE-(bi/co-)immunity
coincide.

Corollary 2.70 REC#£1 RE.

By the above results on the immunity and bi-immunity notions for the individual 2.4.6
classes of the Chomsky hierarchy, we can summarize the relations among these Summary
notions in the following table.

Theorem 2.71 The following relations hold among the immunity and bi-immunity
notions for the classes of the Chomsky hierarchy.

RE-bi-immune = RE-immune

(3 (»
REGDbi-immune = REGimmune
N8 I
CSbi-immune = CSimmune
[} [} (2.10)
CFbi-immune = CFimmune
|} (»
LIN-bi-immune = LIN-immune
i3 |}

REG-bi-immune = REGimmune

Moreover, these are the only implications (modulo transitive closure) which are
valid in general.

PrOOF The implications from left to right are immediate by definition. Sim-
ilarly, the downward implications are immediate by definition and the Chomsky

46

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

hierarchy theorem. The two upper upwards implications hold by Theorem 2.69,
the two lower upwards implications hold by Theorem 2.62. Corollary 2.54 implies
that there is an RE-immune set which is not REG-bi-immune, whence none of the
concepts in the right column implies any of the concepts in the left column, i.e., no
implication from right to left holds. It remains to show that the concepts on levels
3, 4 and 6 do not imply any of the concepts on the next higher levels 2, 3 and 5,
respectively. But this follows from Corollary 2.68, Corollary 2.65, and Corollary
2.61, respectively. d

The next theorem summarizes our answer to the question which strong separa-
tions can be achieved among the Chomsky classes.

Theorem 2.72 The following strong separations hold among the Chomsky classes.
REG<; LIN < CF<2 CS<32 REC<gRE.

Moreover, these separations are optimal, since
REG<«,CF & LIN #1 CF & REC#1 RE.

PROOF The first part of the theorem follows from the Chomsky hierarchy theorem
and Theorems 2.57, 2.64 and 2.67. The second part follows from Corollaries 2.60,
2.63 and 2.70. O

2.5. A Chomsky Hierarchy For Sequences 47

2.5 A Chomsky Hierarchy For Sequences

Formal language theory and computational complexity theory provide frame works
for classifying languages according to their complexity. Since our genericity con-
cepts will be based on characteristic sequences of languages not on the languages
themselves it will be of interest to compare the complexity of a language with
the complexity of its characteristic sequence. For this sake we will introduce an
analogue of the Chomsky hierarchy for sequences in this section. There are two
possible approaches for defining such a hierarchy. First, by identifying a sequence
with its prefix set, we can transfer the Chomsky hierarchy for languages to a hi-
erarchy for sequences. Alternatively, we can use the machine characterizations of
the Chomsky language classes and consider the classes of sequences which can be
predicted by the corresponding machines. Here we say that a madhpnedicts

(or computes) a sequenaeif, given the firstn bits of the sequencé) computes

the (n+ 1)th bit.

Here we will use the first approach based on prefix sets but we will also show
that the machine based approach is closely related to this though these two ap-
proaches do not always coincide. In particular, as we will show, the prediction
model yields a larger class of context-free sequences.

251

Definitions and
Definition 2.73 A sequencen is regular (linear, context-free, context-sensitive, Basic Facts

recursive, recursively enumerablé)the prefix setPrefix(a) of the sequence is
regular (linear, context-free, context-sensitive, recursive, recursively enumerable,
respectively).

The classes of regular, linear, context-free, context-sensitive, recursive, and re-
cursively enumerable sequences are denoted bydREBIs, CFs, CSs, REG;s,
and RE, respectively. We call these classes @teomsky Hierarchy of Sequences
Note that, by the coincidence of the Chomsky languages with the recursively enu-
merable languages, REhay be viewed as the class of @homsky sequenceEhe
relations among the Chomsky language classes immediately imply the following.

Proposition 2.74 REGs C LINs C CFs C CSs C REGs C REs.

In the following we will analyze which of the above inclusions are proper.
Moreover, we will compare the corresponding levels of the hierarchies of lan-

48

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

2.5.2

Regular and
Context-Free
Sequences

guages and sequences, i.e., the (language) classes C and
Cs={A:x(A) € Cs}. (2.12)

Note that, for any class C in the Chomsky hierarchyj<closed under com-
plement.

Lemma 2.75 For C € {REG,LIN,CF,CS REC RE}, Cyis closed under comple-
ment.

PROOF Note that for any languagg, the characteristic sequengéA) of the
complement ofA is the dual sequence of the characteristic sequgag of A,

i.e., X(A) is obtained fromy(A) by flipping all bits. This easily implies that

Prefix(x(A)) is regular (context-free, ...) if and only Rrefix(x(A)) is regular
(context-free, ...). O

This simple lemma shows, that for Chomsky classes C which are not closed
under complement, i.e., for € LIN, CF, RE, the classes C and,@o not coincide.

We now look at the Chomsky classes of sequences more closely starting from the
bottom of the hierarchy. Our first observation is that, in contrast to the Chomsky
hierarchy of languages, the lower levels of the Chomsky hierarchy of sequences
collapse. This is an immediate consequence of the following observation of Calude
and Yu on prefix sets.

Theorem 2.76 (Calude and Yu (1997)) For an infinite sequence Z® the fol-
lowing are equivalent.

() ais almost periodic, i.e., there are wordswe Z* such thator = vw®.
(i) The prefix set Prefifa) of a is regular.
(iii) The prefix set Prefito) of a is context-free.

(iv) The prefix set Prefixr) of a contains an infinite context-free subset, i.e.,
Prefix(a) is notCFimmune.

PrRoOF The implications(ii) = (iii) = (iv) are immediate by definition. The
proof of the implication(i) = (ii) is straightforward: Given an almost periodic
sequence fix v,w € Z* such thatt = vw®. ThenPrefix(a) is the finite union of
the finite se{x: x C v} and the regular se#s, = {vw'y : n > 0} (described by the
regular expressionsv'y) wherey C w whencePre fix(a) is regular.

2.5. A Chomsky Hierarchy For Sequences

It remains to prove the implicatiofiv) = (i). Assume that is an infinite
context-free subset d?refix(a). Then, by the pumping lemma for context-free
languages, there are words/, w, x, y such thavx # € andz, = u/'wxy € A for all
n> 0. It follows that

Wy uvtwxly C .o uwxXly C o iwxdly L.
So, ifv # € thena = uw’, and ifv = € thena = uwxX®. O
Corollary 2.77 REGs=LINg= CFs.
PrROOF Immediate by Proposition 2.74 and Theorem 2.76. O

Regularity of a set and regularity of its characteristic sequence are related as
follows.

Theorem 2.78 If the characteristic sequenggA) of a set A is regular then the set

A is regular too.

For the proof of this theorem we will need two observations: First, for any
numbemthere is a finite automaton which, given a striggomputes the position
of xin the length-lexicographical ordering moduto Second, any almost periodic
sequence is a finite variant of a periodic sequence. We prove these two observations
first.

Lemma 2.79 For any number n> 1 there is a deterministic finite automaton
Mm = (Z,S,9,%) (without distinguished final states) such thatYsy,...,Sm-1}
and, for n> 0,

8" (S0,2n) = Shmodm- (2.12)

PrROOF By definition of the length-lexicographical ordering, for 0 andi < 1,
Znl = Zoni2+i- (2.13)

So, since
(2n+2+i) modm= (2(n modm) +2+i) modm, (2.14)

we obtain the desired automatbh, = (Z,{o,...,Sn-1},90, %) by letting
O(Sk, 1) = S(2kr2+i) modm (0<k<mO0<i<1). (2.15)

The correctness of (2.12) is shown by inductionzn First assume thag,| = 0.
Thenn= 0 and, byzy =,

0" (S0,20) = 0" (S0,€) = S0 = S0 modm-

49

50 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

For the inductive step, assume tha{ > 0 and that the claim is correct for ail
with |zy| < |z,|. By |zi| > 0 we may choose’' > 0 andi < 1 such that, = zyi.

Then
5 (s0,z0) = &* (S0, Zi)
= 3(&(s0,zw),i)
= O(Sv modms 1) (by inductive hypothesis)
= Si2(modm)+2+i] modm (by (2.15))
= S(2n+2-+i) modm (by (2.14))
Shmodm (by z, = zyi and by (2.13))

This completes the proof.
]

Lemma 2.80 Leta be almost periodic. There is a periodic sequefcaich that
a(n) = B(n) for almost all numbers e O.

PROOF Fix v,w € Z* such thato = vw® and letk = |v| andm = |w|. W.l.0.g.
we may assume th&t < m. (Note that, form < k, in the above presentation of
a we may replacav by wX to achieve this.) Defin@ by B(n) = a(m+n) for
n < kandB(n) = a(n) for n > k. Thenf is a finite variant ofx andf = Ww* for
W =w(m—Kk)..w(m—1)w(0)..w(m—k—1). O

PROOF OFTHEOREM2.78. FixA and assume that = x(A) is regular. We have
to show thatA is regular.

By Theorem 2.760 is almost periodic. In fact, since the class of regular
languages is closed under finite variants, by Lemma 2.80, w.l.0.g. we may assume
thata is periodic. So fixw € Z* such thato = w® and letm be the length ofv.

Then, for anyn > 0, z, € Aif and only if z,,.m € A, whence membership of a word
Z, in A does not depend amitself but only onn mod m:

vn = 0(A(zn) = A(Za modm))- (2.16)
So if we extend the finite automatd, of Lemma 2.79 by letting
F={s:0<k<m& z €A}

be the set of final states, then this automaton acceder anyn > 0,

Z € AS Znmodm €A (by (2.16))
< Shmodm € F (by definition of F)
< 0'(s0,zn) €F (by (2.12))

< M accept,.

2.5. A Chomsky Hierarchy For Sequences 51

SoA s regular. O
The converse of Theorem 2.78, however, fails.

Theorem 2.81 There is a regular set A such that the characteristic sequg(ag
of A is not regular.

PrROOF An example of a regular sét with nonregular characteristic sequence
is the set of all unary strings, i.eA = {0": n > 0}. Obviously,A is regular but
X(A) is not almost periodic (note that tmth and(n+ 1)th 1 inx(A) is separated
by 2"-1 — 1 many 0s), hence not regular by Theorem 2.76. O

Corollary 2.82 (a) {A: X(A) regular} C {A: Aregular}
(b) {A: X(A) context-fre¢ C {A: A context-fre¢

PROOF The first part is immediate by Theorems 2.78 and 2.81. The second part
follows from the first part sincéA : x(A) regulat = {A: X(A) context-freg by
Corollary 2.77 and since any regular set is context-free. O

We now turn to the upper part of the Chomsky hierarchy of sequences. At the 253
top we have a further collapse, namely a sequence is recursive if and only if it Context-
is recursively enumerable. This follows from the observation that any recursivel;sensitive and
enumerable prefix set is recursive. On the intermediate levels, however, the hierar- Recursive
chy of sequences is strict, i.e., €E CSs C REGs. To show this we will use the
complexity theoretic characterization of the context-sensitive languages.

Sequences

Theorem 2.83 For any set A, the following are equivalent.
(i) A€ NSPACE2").
(if) Prefix(A) € NSPACEN).

The key to the proof is the observation that the length ofnhebinary word
is logarithmic inn, i.e., that the number of the predecessors of a wogrows
exponentially in the lengtjw| of w. Further ingredients of the proof are the Linear-
Compression Theorem for nondeterminstic space complexity which asserts that,
for any space-constructible bousgh), NSPACEs(n)) = NSPACEO(s(n))) and
the Theorem of Immerman and Szelepcsenyi (Theorem 2.28) which asserts that,
for constructible space bounds, the nondeterministic space classes are closed under
complement.

52

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

PROOF (i) = (ii) Let A be given such tha# € NSPACE2"). By linear com-
pression it suffices to show th&refix(A) € NSPACEO(n)). By closure un-

der complement of the nondeterministic space classes with constructible bounds,
A € NSPACH?2") too whence we may fix2space bounded nondeterministic Tur-

ing machinedN; andN, which accepf andA, respectively.

Based onN; andN, we can define a nondeterministic machMeaccepting
Prefix(A) as follows. On inpuk = x(0)...x(|x| — 1), N inductively (and nondeter-
ministicly) computesA(z,) for m=0,...,|x| — 1 and comparef\(z,) with x(m).

If a string zy, with A(zyw) # x(m) is found, N stops and rejects. W(zn) = x(m)

for all m < |x| thenN acceptx. For computingA(z,) for givenm, N first (non-
deterministicly) simulatesl; on inputzy. If (the simulated computation path of)
N; accepts then (the corresponding computation patNa@tsA(z,) = 1. If (the
simulated computation path oR; rejects, then (the corresponding computation
path of)N starts to simulate (a nondeterministicly chosen computation patky of
on inputzy. If (the chosen computation path dfy accepts then (the correspond-
ing computation path ofi\ setsA(zy) = 0. If (the simulated computation path of)
N, also rejects, then (the corresponding computation path afiops and rejects
(in particular, it does not output a value fatzy)).

Note that any computation path Nfwhich assigns a value #(z,) assigns the
correct value. Moreover, there is at least one computation which assigns a value to
A(zm). So the machin®l acceptPrefix(A).

It remains to show thal works within the space boun@(n). Letn = |x|.
Since the space, used in an individual cycle of the inductive procedure on which
N is based, can be reused in the next cycle, it suffices to show tham €on, the
length ofz;,, is bounded byO(n) and that the computation @f(zy,) can be done
within the same space bound. Now, for< n, |zy| < log(n) + O(1) whence the
former is immediate. The latter follows from the space bounds on the madkines
andN,: The space required for computidgzy,) is bounded by

max 212l 2/znl)
2|Zm|
2log(n)+0(1)
o(zlog(n))
O(n)

maxspace, (zm), SPace, (zm))

A I IA

For a proof of the implication(ii) = (i) assume thaf is given such that
Prefix(A) € NSPACEN) and fix a nondeterministin-space bounded machife
which accept®re fix(A).

Then a nondeterministi©(2")-space bounded machimM¢ which acceptA
works as follows. On inputv of lengthn, first N deterministicly computes the
unique numbem+1 (in unary representation) such thvat= z,. (Note thatm <

2.5. A Chomsky Hierarchy For Sequences 53

2"l and that the unary representatiofit® of m+ 1 can be (deterministically)
computed fromw without using any additional space besides the space needed to
hold 0™,) Given 0", N’ inductively (and nondeterministicly) simulatBison
all wordsx of lengthm+-1 (in lexicographical order starting witH"0%) until N
accepts the first such Now if the accepted ends with a 1 theiN’ accepts the
input w, otherwiseN’ rejects. Note that the accepted byN is a prefix ofx(A)
of lengthm+ 1 whence, for the last bik(m) of x, x(m) = A(zy,) = A(w). SoN’
accepts the languade

It remains to show thadl’ is O(2")-space bounded. Now, on inputas above,
the space needed By is bounded by the space needed for producifigt@nd by
the space needed for simulatiNgon a wordx of lengthm+ 1. SinceN is n-space
bounded and since the space required for producitig & m+ 1, we have

spacgy(w) <m+1<2" 4+ 1<0o2.
This completes the proof. O

By CS= NSPACEn), Theorem 2.83 implies that the characteristic sequence
of any context-sensitive language is context-sensitive too but that the converse in
general fails.

Corollary 2.84 {A: A context-sensitijeC {A: X(A) context-sensitive
PROOF By CS= NSPACHn) it suffices to show

{A: A NSPACEN)} C {A: Prefix(A) € NSPACEnN)}. (2.17)
Since, by Theorem 2.83,

{A: Prefix(A) e NSPACEN)} = {A: Ae NSPACH2")},

this follows from the nondeterministic space hierarchy theorem (see Corollary
2.29). O

As another consequence of Theorem 2.83 we get the following strict inclu-
sions among the classes of the contex-free, the context-sensitive, and the recursive
sequences.

Corollary 2.85 CFs € CSs C REGs.

PrROOF By Proposition 2.74 it suffices to show that £8 not contained in
CFs and that REG is not contained in C§ For a proof of the former leA
be any context-sensitive set which is not context-free. Then, by Corollary 2.84,

54

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

X(A) € CSs but, by Corollary 2.82x(A) ¢ CFs. For a proof of the latter leB
be any recursive set such tHatZz NSPACE2"). (Note that such a set exists by
the nondetermistic space hierarchy theorem.) Then, obvidRsy,ix(A) is recur-
sive whencex(A) € REGs but, by Theorem 2.8Frefix(A) ¢ NSPACEN) = CS
whencex (A) € CSs. O

For the proof of the second part of the preceding corollary we have used the
observation that a sét is recursive if and only if its prefix set is recursive. This
simple fact together with the observation that, for a prefix set, recursiveness and
recursive enumerability coincide will give the still missing facts on the Chomsky
hierarchy of sequences and its relation to the classical Chomsky hierarchy of lan-
guages.

Theorem 2.86 (a) For any set A, A is recursive if and only if PrefAy is recur-
sive.

(b) For any set A, Prefi¢d) is recursive if and only if Pre fi¥d) is recursively
enumerable.

PROOF Part(a) is straightforward. For a proof of the nontrivial implication(im)
assume tha®re fix(A) is recursively enumerable, s&ye fix(A) is the range of the
recursive functionf : N — ¥*. Then, giverx, membership ok in Prefix(A) can
be decided as follows: Fix minimal such thatf(n)| > |x|. Thenx € Prefix(A) if
and only ifxC f(n). O

Corollary 2.87 REGs = REs.
PrRoOOF This is immediate by Theorem 2.86 (b). O

Corollary 2.88 (a) {A: X(A) recursivg = {A: A recursivé.
(b) {A: Xx(A) recursively enumerablec {A: A recursively enumarable

PrRoOOF The first part is immediate by Theorem 2.86 (a). Moreover, the first part
together with Corollary 2.87 implies that

{A:X(A) recursively enumerablje= {A: Arecursive.

Since there are recursively enumerable sets which are not recursive this implies the
second part of the corollary. O

2.5. A Chomsky Hierarchy For Sequences

The above results on the Chomsky classes of sequences lead to the following hier- 254
archy theorem. The Chomsky
Hierarchy

Theorem 2.89 REGs = LINg= CFs € CSsC REGs = REs. Theorem For

PROOF. By Proposition 2.74 and Corollaries 2.77, 2.85 and 2.87. O Sequences

The relation between the location of a langu#g@ the Chomsky hierarachy
(of languages) and the location of its characteristic sequef®ein the Chomsky
hierarchy of sequences is given in the next theorem.

Theorem 2.90 For any set A the following holds.

A regular = X(A) regular

Y)
A linear (<) X(A) linear
Y)
A context-free (<) X(A) context-free
[} I (2.18)
A context-sensitive = = X(A) context-sensitive

4 4

A recursive & X(A) recursive
Y 0

A recursively enumerable(<) X(A) recursively enumerable

Moreover, in general these are the only valid implications (modulo transitive clo-
sure).

Note that the implications marked by arrows in parantheses follow by transi-
tive closure. We have only added these arrows to give the level-by-level relations
between the hierarchy of languages and the hierarchy of sequences. By using the
notation of (2.11), i.e., the classes

s={A:X(A) € Cs} = {Sa):a € Cgs}

for any Chomsky class C, Theorem 2.90 is captured by the following relations
among the Chomsky classes C and the corresponding clagses C

REG;=LINg=CF;C REGCLIN CcCFCCS

2.19
C CS, c REC=REC; = RE;C RE (2.19)

PROOF (OF THEOREM 2.90). It suffices to show that (2.19) holds. The proper
inclusions REGC LIN € CFC CS and RECZ RE hold by the Chomsky hierarchy

55

56

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

255

Prediction
Machines

theorem for languages while the equalities REELINg = CF; and REG = RE;

hold by the Chomsky hierarchy theorem for sequences (Theorem 2.89). The re-
maining proper inclusions REG- REG and CS- CS; C REC; hold by Corollary

2.82 and Corollary 2.85, respectively. O

In the remainder of this section we look at the Chomsky complexity of sequences
in terms of prediction machines. This will yield alternative characterizations of the
classes of regular, context-sensitive, and recursive sequences but it will also lead to
a more general notion of a context-free sequence.

Intuitively, a machineM predicts a sequenceif, given the firstn bits of the
sequence, i.eq | n, the machine outputs the+ 1)th bit a(n) of the sequence.
An acceptorM can be used for modelling prediction in two somewhat different
ways. First we can say th& on inputa | n predicts the next biti(n) to be 1 if
M accepts inputt [n andM predictsa(n) to be 0 otherwise. In this case we say
thatM weakly predictsx. Since for nondeterministic (or non-total) machimnés
acceptance and rejection are not symmetric, this approach might lead to asymme-
tries in predicting a 0 or a 1, i.e., the fact that a sequencan be predicted by a
machine of a certain type in general will not imply that there is another machine
of the same type predicting the dual sequemaé a (which is obtained fronm by
interchanging zeroes and ones). We obtain a symmetric prediction model by con-
sidering extended machiné4 (see Definition 2.47). Such a machikkestrongly
predictsa, if on inputa | n the machineV predicts the next biti(n) to be 1 if
there is a computation ending intastate and O if there is a computation ending in
a —-state. Here prediction in particular requires thhis consistent along (i.e.,
on any inputx | nthere can'’t be two computations one ending in-atate and the
other ending in a—-state) anccomplete w.r.t.a (i.e., on any inputt [n there is
some computation ending inHa-state or—-state).

Note that any strong predicté can be easily converted into a weak predictor
M’ of the same type by letting the accepting statelslobe the+-states oM. The
converse is true for total determinstic machines: A total deterministic weak predic-
tor M can be interpreted as a strong predidirby letting the+-states oM’ be
the accepting states M, by letting the—-states oM’ be the rejecting states bf,
and by letting the set of the ?-statedvbfbe empty. So, for the standard classes of
total deterministic machines, weak prediction and strong prediction will coincide.
Consequently, in case of total deterministic machines we will denote weak pre-
diction simply byprediction For a non-total or non-deterministic weak predictor
M, however, in general there is no trivial conversion into a strong predictor of the
same type. So, for some of the standard classes of non-total or non-determinsitic
machines, weak predictability might be more general than strong predictability.

2.5. A Chomsky Hierarchy For Sequences

We first observe that, for finite automata, the different types of predictability
are equivalent and that a sequencean be predicted by a finite automaton if and
only if a is regular.

Theorem 2.91 The following are equivalent.
() ais regular.
(i) a is predictable by a deterministic finite automaton.
(i) a is strongly predictable by a nondeterministic finite automaton.
(iv) a is weakly predictable by a nondeterministic finite automaton.

PrRoOOF Note that, by definition(ii) = (iii) = (iv) holds. So it suffices to prove
the implications(i) = (ii), (iv) = (ii), and(ii) = (i).

For a proof of(i) = (ii), assume that is regular and leM = (X, S 9,5, F) be
a determinisitic finite automaton which accepte fix(a). Then a DFAM’ which
predictsa is obtained as follows. On any inpxt|x| = n, M’ simulatesM on input
x1 andM’ acceptsx if and only if M acceptsxl. Formally,M’ = (Z,S 0, ,F’)
whereF’ = {se S: §(s,1) € F}.

For a proof of the implicatiorgiv) = (ii), assume thall is a nondeterministic
finite automaton which weakly prediots ThenL(N) is regular whence there is a
deterministic finite automatol with L(M) = L(N). It follows thatM predictsa
since, for anyn > 1,

N predictsa(n) =1 < alnelL(N) (by definition)
& afnelL(M) (by L(N) =L(M))
< M predictsa(n) =1 (by definition).

Finally, for a proof of the implicationii) = (i), assume tha¥l = (X, S 8, %, F)
is a deterministic finite automaton which prediatswWe will convertM into a DFA
M which acceptrefix(a). Note that the sequencee (and its initial segments
a [nof a given lengtin are uniquely determined by the predictdr The prefix
a | nof a of lengthn is the unique string = x(0)...x(n— 1) of lengthn satisfying

x(m) =1« M acceptx [m (2.20)

for all m< n. The acceptoM of Prefix(a) is based on this observation. On input
x = X(0)...x(n— 1) the automaton simulatég step by step as long as the input is
consistent with (2.20) . If an inconsistency is foud,ends the simulation and
goes into an absorbing rejecting state. Formafly= (Z,SU {s_},S,so,S) where

s_ ¢ Sanddis defined as foIIowsS(s,i) =9(s,i)if scFandi=1orse S—F
andi =0; 8(s,i) =s_ ifse Fandi=0orse S—F andi = 1; andg(s,ji) =s_
fori=0,1. O

58

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

The last part of the proof of Theorem 2.91 can be easily adapted to determinis-
tic push down automatsl andM in place of the corresponding deterministic finite
automata. This yields the following lemma.

Lemma 2.92 Assume thati can be predicted by a deterministic push down au-
tomaton. Then Pref{x1) is context-free.

By coincidence of the almost periodic sequences, the regular sequences, and
the context-free sequences, the above theorem and lemma imply

Corollary 2.93 The following are equivalent.
() a is almost periodic.
(i) a is regular.
(i) o is context-free.
(iv) a is predictable by a deterministic finite automaton.
(v) a is strongly predictable by a nondeterministic finite automaton.
(vi) o is weakly predictable by a nondeterministic finite automaton.
(vii) a is predictable by a deterministic push down automaton.

PrROOF By Theorems 2.76 and 2.91 and Lemma 2.92. O

As we will show next, however, prediction by nondeterministic push down
automata is more powerful than prediction by finite automata or deterministic push
down automata.

Theorem 2.94 There is a sequenae which is not context-free and which can be
strongly (hence weakly) predicted by a nondeterministic push down automaton.

PrROOFE Consider the sequence
a=101CG1C..

This sequence is not almost periodic hence, by Theorem 2.76, not context-free.
It remains to show that there is an extended NPDAvhich strongly predictst.
Such an automaton uses the following inductive characterizatiorfrofin terms
ofan

a(0)=1 (2.21)

an=wll"= [a(n) =1< #(wl) =m] (2.22)

Now, intuitively, M works as follows. On inpu¢, M predicts the next bit to
be a one. Given a nonempty inpytsay|x| = n > 1, M reads the input and stores
the 1s read in the stack. Moreover, wheneéMenas read a 1 it may guess that this

2.5. A Chomsky Hierarchy For Sequences 59

was the last 1 in the input worland may change its working mode as follows.
For any 0 read in the sequil pops a 1 from the stack. Moreover, as long as the
stack still contains a I/ predicts the next bit to be a 0 and if the stack is empty
(i.e., only contains the start symb®l) predicts the next bit to be a 1 and stops. If

M reads a 1 though the stack is not yet empty it aborts the computation and goes
into an absorbing rejecting state thereby not making any more predictions (along
this computation path). Formallyyl is defined as follows. The states lif are

S5, 51,59, S5, wheres] is the initial states} ands} are+-states (predicting the next

bit to be a 1)s) is the only—-state (predicting the next bit to be a 0), asds a
?-state. The transition relatidnis given in the following table.

S x 2 x I x S x I*

S 1 b st bl
S 1 b S b
Sy 0 1 S 1
Sy 1 1 S 11
S1 1 1 § 1
S 0 1 S €
sg 0 b % b

(In a situation where no transition is specified and the input is not yet completely
read, the automaton gets stuck, i.e., it ends in an implicitly given absorbing ?-
state.) Note thakl works as informally described above. In the initial stg}év
nondeterministically decides whether, for an inpytn = 1x, the suffixx is empty

(ﬁ) or not (5). (If the first letter of the input is a 0 thévl gets stuck.) In the latter
case, i.e., in stats, M stores the 1s read in the stack until it may guess that the 1
just read is the last 1 in the input. If this happ&hsiondeterministically switches

to the —-state@, in which M compares the number of 1s in the stack with the
number of Os in the not yet read part of the inptaccepts <€) if these numbers
agree andl rejects @) if the number of Os is exceeded by the number of 1s. If the
number of Os exceeds the number of 1s or if the remainder of the input contains
another 1 then this computation dfis aborted, i.e., ends in a ?-state. O

As one can esily show, any sequercehich can be (strongly or weakly) pre-
dicted by an NPDA is context-sensitive and there are context-sensitive sequences
which cannot be predicted by an NPDA. So if we let NEPANPDASP) denote
the class of sequences which can be strongly (weakly) predicted by an NPDA then

CFs C NPDAY® C NPDASP € CSs (2.23)

It might be of interest to further investigate these intermediate prediction classes.
In particular, it is natural to ask whether the class NI%E)E strictly contained

60

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

in the class NPDgp. Moreover, what can we say about the complexity of the
corresponding languages. Are there regular or context-free langdagiesh that
X(A) € NPDAZ or x(A) € NPDASP? We leave these questions open and turn to
context-sensitive prediction.

For context-sensitive sequences, prediction complexity and prefix complexity
coincide. We show this by giving the following characterization of the context-
sensitive sequences in terms of predictability by linear-space bounded nondeter-
ministic Turing machines.

Theorem 2.95 For any sequence < > the following are equivalent.
() a is context-sensitive.
(i) ais stronglyNSPACEn)-predictable.
(iii) a is weaklyNSPACEnN)-predictable.

PROOF For a proof of the implicatiofi) = (i) assume that is context-sensitive.
Then, by CS= NSPACEN), there is a nondeterministiespace bounded Turing
machineM which accept$re fix(a) and, by closure of NSPAQE) under com-
plement, there is a nondeterministiespace bounded Turing machii which
acceptsPrefix(a) . Then an extended nondeterministispace bounded Turing
machineM” which strongly predictsr works as follows. On input = Xg...Xn_1,
x| =n, M” first (nondeterministically) simulatéd on inputxl1. If M accepts then
M” stops in at+-state. Otherwiséyl” next (nondeterministically) simulat&s’ on
inputxl. If M" accepts theM” stops in a—-state. Otherwiseéyl” stops in a ?-state.

The implication(ii) = (iii) is immediate.

Finally, for a proof of the implicatior(iii) = (i), assume thatr is weakly
NSPACEnN)-predicted byM and letL (M) be the language acceptedMy By CS=
NSPACEN) = NSPACEO(n)), it suffices to show thare fix(a) € NSPACEO(n)).

SinceL (M) € NSPACEnN) and NSPACEnN) is closed under complememt,M) €
NSPACEN) whence we may fix a nondeterministiespace bounded Turing ma-
chineM’ which acceptd.(M). Moreover, for any numbar, o [n e L(M) if and
only if a(n) = 1. We can use these observations for defining a nondeterministic
O(n)-space bounded Turing machid’ which, on input 0 nondeterministicly
computesx [n (i.e., any accepting path yields| n as output and there is at least
one accepting path). Obviously this suffices to prove the claim dWitean be
easily converted into a nondeterminist¢n)-space bounded Turing machine ac-
ceptingPrefix(a) which works as follows: On input, |x| = n, simulateM” on
input 0" in order to compute | n; accept if and only ik =a [n.

It remains to describ®”. M” formalizes the following inductive procedure for
computinga | n: First,a [0=¢. Second, giver [m, a [(m+1) = (a [m)1 if
and only ifa [me L(M) anda [(m+1) = (a [m)0if and only ifa | me L(M').

2.5. A Chomsky Hierarchy For Sequences 61

So, givena | m, a | (m+ 1) can be (nondeterministicly) computed by simulating
M andM’ as follows. First simulat® on inputa | m. If (the nondeterministicly
chosen computation ofyl accepts then set | (m+ 1) = (a [m)1. Otherwise,
simulateM’ on inputa | m. If (the nondeterministicly chosen computation of)
M’ accepts then set [(m+1) = (a [m)0. Otherwise abort the computation by
stopping in a rejecting state. O

We conclude our investigation of predictability by shortly commenting on pre-
dictability by Turing machines. It is easy to show that, for total machines, pre-
dictability coincides with recursiveness. (Here we call a nondeterministic machine
totalif, on any input,all possible computations are finite.) If we consider machines
with divergent computations, then the strongly predictable sequences are recursive
too. The weakly predictable sequences, however, in general are not recursive.

Theorem 2.96 For any sequence, the following are equivalent.
() ais recursive.
(ii) a is predictable by a total deterministic Turing machine.
(i) a is strongly predictable by a total nondeterministic Turing machine.
(iv) a is weakly predictable by a total nondeterministic Turing machine.
(v) a is strongly predictable by a deterministic Turing machine.
(vi) a is strongly predictable by a nondeterministic Turing machine.

PROOF (IDEA). Since the implicationsii) = (iii) = (iv) and(ii) = (v) = (Vi)
are immediate by definition, it suffices to show the implicatigns=- (ii), (iv) =
(i) and(vi) = (i).

For a proof of(i) = (ii) assume that is recursive and fix a total, deterministic
Turing machineM which accept$refix(a). Then the total, deterministic Turing
machineM working as follows predictsi: On inputx of lengthn, M simulatesV
on inputxl. If M accepts theM predicts the next bit to be 1; M rejects therM
predicts the next bit to be 0.

For a proof of(iv) = (i) assume thaM is a total, nondeterministic Turing
machine which weakly predicts ThenPre fix(a) can be decided by the following
inductive procedure. Letbe given|x| =n. If n=0, i.e.x= g thenx € Prefix(a).
So assume that> 0 and fixy € Z"~! andi € = such thak = yi. Thenx € Prefix(a)
if and only if y € Prefix(a) and eitheri = 1 andM acceptsy (i.e., on inputy, M
predicts the next bit to be a 1) o= 0 andM rejectsy (i.e., on inputy, M predicts
the next bit to be a 0). Note that this allows us to decidePre fix(a) since, by
inductive hypothesis, we can decige Prefix(a) and since, by totality oM, we
can decide whether or nbt acceptsy.

The proof of(vi) = (i) is similar. Fix a nondeterministic (not necessarily total)
Turing machineM which strongly predict&x. Then, on inputx | n, there will

62

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

be either a finiteM-computation predictingi(n) = 1 or a finite M-computation
predictinga(n) = 0. So, giverx [n, by a breadth-first search in the computation
tree ofM, we can computa(n). Hence we can decidere fix(a) as follows. Given

a stringx of lengthn, inductively compute | mfor m < nand accepx if and only

if x=a [n. O

The following lemma shows that there are nonrecursive sequences which can
be weakly predicted by a (nontotal) Turingmachine.

Lemma 2.97 Let A be recursively enumerable and ¢ebe the characteristic se-
quence of A. Thea is weakly predictable by a deterministic Turing machine.

PROOF (IDEA). Fix a deterministic Turing machind which accepts\. A weak
deterministic Turing machine predictbt of o works as follows. Given a string
of lengthn, M simulatesM on inputz, and accepts if and only ¥ accepts. So, in
particular,M accepts the input | n (i.e. predictaa(n) = 1) if and only ifz, € A.

O

The converse of Lemma 2.97 in general fails. In fact, the class of sequences
which are weakly predictable by Turing machines coincides with the class of se-
quencesx which - if interpreted as the binary expansiom@®)a(1)a(2)... of a
real - can be effectively approximated from below by rationals. Such sequences
are calledeft computable realsr computably enumerable reglsee e.g. Ambos-
Spies et al. (2000)).

Definition 2.98 A sequencex is aleft computable reaif there is a recursive se-
quence of wordsts (s > 0) such thatas| = s, as < a1 and, forn > 0,

afn=Ilimag|n
S—0

Note that any recursive sequence is a left computable real. In fact, the charac-
teristic sequence of any recursively enumerable set is left computable. As Jockusch
has observed, there are left computable raatoowever, such that the correspond-
ing setS(a) is not recursively enumerable (see e.g. Ambos-Spies et al. (2000)).

Theorem 2.99 For any sequence, the following are equivalent.
(i) a is a left computable real.
(il) o is weakly predictable by a deterministic Turing machine.
(iii) o is weakly predictable by a nondeterministic Turing machine.

PROOF (IDEA). Since the implicatiortii) = (iii) is obvious, it suffices to show

(i) = (ii) and(iii) = (i).

2.5. A Chomsky Hierarchy For Sequences 63

For a proof of(i) = (ii) assume thatos)s-o is a recursive approximation of
as in Definition 2.98. Then a Turing machikkewhich weakly predicts works as
follows. On inputx, M enumerates the words; for s> 0. If for some sx1 C ag
thenM acceptx (otherwise the computation & will diverge thereby rejecting
X).

For a proof of(iii) = (i) assume tha¥l is a nondeterministic Turing machine
which weakly predictsr. Define a recursive sequen(s)s-o as follows. Given
s> 0, the wordas = a5(0)...as(s— 1) is inductively defined byis(k) = 1 if and
only if there is a computation & of length at moss which acceptsis | k. Then,
as one can easily check, the sequefgs=o is witnessing left computability of
a. O

64

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

2.6.1

2.6 Saturated Sequences

Definitions and
Basic Facts

In the final section of this chapter we will look at infinite binary sequences which
contain all (finite) binary words as subsequences. Such sequences are called sat-
urated. As we will show later, the class of languages corresponding to such se-
quences will coincide with some of our genericity notions based on finite automata.
Since these sequences are of independent interest, however, we will deal with them
already in this part of our thesis.

Definition 2.100 A sequencex is saturated(or disjunctive if every binary word
occurs ina as a subsequence, i.e., if for every ward Z* there is a numbar > 0
such thati(n)...a(n+ |w| — 1) = w. A languageA is saturatedif its characteristic
sequencg(A) is saturated.

Saturated sequences have been studied in the literature under various names
(rich, disjunctive, etc.).ilrgensen and Thierrin (1988) were probably the first who
explicitly investigated these sequences. They introduced thedisjomctive se-
quencesince they related these sequences to the so-called disjunctive languages.
Disjunctivity of a language and disjunctivity of its characteristic sequence, how-
ever, are not equivalent (see Theorem 2.130 below). So, since we will often iden-
tify a language and its characteristic sequence, we prefer the terrsaitieted
sequence and language here though it might be less popular. For a recent survey
on saturated sequences see Calude et al. (1997).

Saturated sequences are abundant as Staiger (see Staiger (1976), Staiger (1998),
Staiger (2002)) has observed.

Theorem 2.101 (Staiger) The class of saturated sequences is comeager and has
measure 1.

Simple examples of saturated sequences are the sequence obtained by concate-
nating all nonempty binary words in length-lexicographical order

Oo=Z21202324252577...— 01000110 11 00Q.
and the sequence obtained by concatenating the binary numbers in order
a1 = bin(0) bin(1) bin(2) bin(3) bin(4) bin(5) ... =011011 100 101.

The latter sequence is known as tbleampernowne sequenffer base 2).

2.6. Saturated Sequences

65

It is well known that in a saturated sequence any word does not only occur just
once but infinitely often.

Proposition 2.102 Leta be saturated and let w >*. Then w occurs i infinitely
often, i.e., there are infinitely many numbers n suchéhab...a(n+ |w| — 1) = w.

ProOF This immediately follows from the fact that, by saturatiorofv" occurs
ina foralln> 0. O

In general, however, we can’t say anything about the relative frequency with
which a wordw occurs in a saturated sequence. A sequenicewhich words of
the same length occur with the same frequency is caltechal

Definition 2.103 (Hardy and Wright (1979)) A sequenceis normal if, for any
wordsv,w € X* where|v| = |w| > 1,
- [{m<nia(m)..a(m+|v|—-1)=v}|

o, {m<n:a(m)..am+w —1)=w}

1. (2.24)

Note that a sequenaeis normal if only if, for any wordw € **,

im H{m<n:a(m)..a(m+|w|—1) =w}|

n—oo n

=2 ™

Obviously, any normal sequence is saturated but not vice versa. The saturated
sequencesy anday given above are in fact normal. An example of a saturated
sequence which is not normal is the sequence

0, =20'20%20%20%... =00 100 00 000 01 0000.

In this sequence the frequency of zeroes is higher than the frequency of ones. To
be more precise, bj,| = O(log(n)),

im H{m<n:a(m) =1}

n—o [{m<n:a(m) =0} =0

whence (2.24) fails for the words= 1 andw = 0. By introducing longer blocks of
zeroes we can modify this argument in order to get saturated sequences with very
sparse corresponding sets.

Lemma 2.104 Let f: N — N be nondecreasing and unbounded. There is a sat-
urated sequence such that/S(a) [n| < f(n) for all n > 0. (Here we interprete
S(a) [nasaset,namely(8) [n={zn:m<n& zy€ Ya)}.)

66

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

2.6.2

Closure
Properties and
Some Technical
Properties

PROOF By a finite extension argument we define a sequenadth the required
properties. l.e., simultaneously with we define a strictly increasing function
| : N — N wherel(n) anda [I(n) are defined at stageof the construction. For
n=0 we letl(0) = 0, hencea [I(0) = €. Givenl(n) anda [I(n), I(n+1) and
a [I(n+1) are defined as follows. Fip > I(n) minimal such thatf(l(n)) +
|znt1| < f(p), letl(n+1) = p+ |zn+1] and define the extensiam [I(n+ 1) of

a [1(n) by lettinga(m) =0 forlI(n) < m< panda(p)...a(l(n+1) — 1) = Zyy1.
Then, by a straightforward induction @nz, occurs ina [I(n) and, form <1(n),
|S(a) | m| < f(m). Obviously this implies thatt has the required properties.]

We can also distinguish between saturated and normal sequences by looking at
the size of the corresponding classes. As we have noted above, saturated sequences
are abundant in the sense of both, measure and category. Though, as Hardy and
Wright (1979) have shown, normal sequence are also abundant in the sense of
measure this is not true for category.

Theorem 2.105 1. (Hardy and Wright (1979)) The class of normal sequences
has measure 1.

2. The class of normal sequences is meager.

The second part of the theorem will be a direct consequence of one of or results
on finite-state genericity given in Chapter 5 below (see Theorem 5.26).

For our investigation of the complexity of saturated sequences and languages and
their relation to genericity it will be useful to have some closure properties and
some further technical properties of saturated sequences. We start with some obvi-
ous closure properties.

Proposition 2.106 (i) The class of saturated sequences is closed under finite vari-
ants. l.e., ifa is saturated ang(n) = a(n) for almost all n therf is saturated too.

(i) The class of saturated sequences is closed under finite shifts. ttes gatu-
rated, we * and n> 1 then the sequenc@s=wa andy=a(n)a(n+1)a(n+2)...

are saturated too. (iii) The class of saturated sequence is closed under duality. I.e.,
if a is saturated then the dual sequerice- (1—a(0)) (1—a(1)) (1—a(2)) ... is
saturated too.

ProOFE Parts (i) and (ii) are immediate by Proposition 2.102. Part (iii) is obvious.
O

Proposition 2.106 (i) can be extended as follows. If a sequpniiféers from a
saturated sequenaeat infinitely many places but the places at which the sequences

2.6. Saturated Sequences

differ are separated by longer and longer intervals then the seqgflessaturated
too. In order to state this more formally we use the following notion of closeness.

Definition 2.107 A sequence is closeto a sequence if there is a strictly in-
creasing functiorf : N — N such that
Iinminf f(n+1)—f(n)=o0 (2.25)

and
vn>0(a(n) #pB(n) = neranggf)). (2.26)

A setB is closeto a setA if the characteristic sequenceBis close to the charac-
teristic sequence @k

Lemma 2.108 Leta and B be infinite sequences such thats saturated andg is
close toa. Thenf is saturated.

PrROOF Given a wordx, we have to show that occurs inf. By closeness o8
to a we may fix a strictly increasing functiofi such that (2.25) and (2.26) hold.
Then, by (2.25), we may choose a numbgsuch that

vn>no (f(n+1)—f(n) > 2|x|).

It follows, by (2.26), that, for anyn > f(ng), the wordsa(m)...a(m+ 2|x| — 1)
and B(m)...3(m+ 2|x| — 1) differ at most one place. Henagm)...a(m+ |x| —
1) = B(m)...a(m+ |x| — 1) or a(m+ |x])...a(m+2|x| — 1) = B(m—+ |x])...B(m+
2|x| —1). On the other hand, sinae is saturated, it follows from Proposition
2.102 that the wordx occurs ina infinitely often. So there is a numben >
f(ng) such thatr(m)...a(m+2|x| — 1) = xx, i.e., a(m)...a(m+|x| — 1) = x and
a(m+ |x|)...a(m+2|x| — 1) = x. So, by the above3(m)...3(m+ [x| — 1) = x or
B(m+|x])...8(m+2|x| — 1) = x. Hencex occurs in. O

We next look at saturated sets, i.e., sets corresponding to saturated sequences.
Proposition 2.106 immediately implies the following closure properties.

Proposition 2.109 The class of saturated languages is closed under finite variants
and under complement.

Note that by viewing a sequenaeas the characteristic sequence of a language
A we implicitly impose some additional structure enFor instance, membership
in A of the words of a given lengtkis determined by some interval af namely,
for the 2 wordsz, ...,z _, of lengthk in lexicographical order\()... A(Z_,) =
a(2X)...a(2t1 — 1). This gives a partition of the infinite sequereen the finite

68

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

subsequences = a(2X)...a(21 — 1), ay determining membership of the words
of lengthk in A (k > 0). These subsequenceag can be further partitioned by
considering membership i of the extensions of fixed length of a given word
To be more precise, given a numider 0 and a wordv of lengthn, membership
in A of the wordswx with |x| = k is determined by a subinterval of,., i.e.,
AWZ)...A(WZ_,) is a subword oftn.x. As we will show next, in a saturated
sequence, for any wordx, we can find occurences afwhich are compatible
with the just described partitions af

Lemma 2.110 Leta be a saturated sequence and let A be the set corresponding

to a. Then the following holds.
(a) For any word xc X* there are infinitely many numbers>n0 such that

3(0<i <2 (] — 1) and AZ).. AZ 1) =X) (2.27)

(b) For any word xc X* such that)x| = 2™ for some number n» O there are
infinitely many words w such that

AWZ)...A(WZm_4) = X. (2.28)

PrROOF For a proof of part (a) fix a word and a numbeng. We have to show
that (2.27) holds for some > ng. W.l.0.g. we may assume thjat < 2. Now, by
Proposition 2.102, the wondk occurs ina infinitely often. So we may fixn > 2%
such that

A(Zm).- - AlZmio)x—1) = a(m)...a(m+2[x] — 1) = xx

Then, bym> 2%, |zy| > ng and, by|x| < 2, |zyox—1] < |Zm[+1. SO|Zm| = ... =
|Zmy x—1/ OF |Zmy (x| = --- = [Zmy2)x-1/- Since

A(Zm).-AZmiix-1) = AlZmi|x)---AlZmi2x-1) = X

this implies that (2.27) holds for= |zy,| > np orn= |zy| +1 > no.

For a proof of part (b) fix a wora of exponential length, say| = 2™, and let
no be given. It suffices to show that there is a wardf length at leasiy such that
(2.28) holds.

LetX= x(Ox)zm. Note thatxconsists of 2+ 1 copies of the wora each copy
separated by a O from the next copy. Hence for kry 2™ there is a number
jk <2M-(2™41) such that

jk=k mod2" & X(jk)...X(jx+2™—1) =x (2.29)
Now, by the first part of the lemma, we may fix> nop+ msuch that

AZ)...A(ZY5-1) =X

2.6. Saturated Sequences 69

for somei <2"— (|X] —1). It follows with (2.29) that there is a numbprsuch that
p<2"—(2"—1)and

p == 0 mOd 2“ & A(Zlg)...A(Zlg+2m_l) =X. (230)

Fix such a numbep and fix q correspondingly such thai = q-2™. Then, by
definition of the length-lexicographical ordering,

ZB Z?)+2m71 == 47m£] ngm om_1q-

So (2.30) implies that(wzy)...A(WZm_;) = x for the wordw = z5~™. This com-
pletes the proof. O

We conclude our investigation of the closure properties of the saturated sets by
the observation that, for a saturated languAged for any wordw, the language
WA= {wv: Ve A} is saturated too.

Lemma 2.111 Let A be saturated.

1. For any word we Z*, wA is saturated too. In fact, any set B such that
BnwX* = wA is saturated.

2. For any set B, the effective disjoint union of A and By B=0AU 1B =
{Ov:ve Alu{lw:w e B}, is saturated.

PROOF For a proof of the first part, fix a wond € >* and a languagB such that
BNnwX* = wA. Then, giverx € Z*, we have to show thatoccurs in the character-
istic sequence dB. By the first part of Proposition 2.110 there are numiveasd
i such thatA(z{‘)...A(zi"HX‘71) = X. So, by choice 08B, B(WZ{‘)...B(WZPHX‘&) =X
SincewZ!, ...,Wz,.”+|x|71 are consecutive words with respect to the length-lexicogra-
phical ordering this implies thatoccurs inx(B).

For a proof of the second part it suffices to note that B and (A agree on
0x*. So the claim follows from the first part. O

70

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

2.6.3

Saturated
Sequences and
Languages and
the Chomsky
Hierarchy

We now will measure the complexity of saturated sequences and languages in terms
of the Chomsky hierarchy. Calude and Yu (1997) have investigated the Chomsky
complexity of the prefix sets of saturated sequences thereby classifying the Chom-
sky classes of sequences (in the sense of Section 2.5) which contain saturated se-
guences. Their negative results are based on the following observation.

Lemma 2.112 (Calude and Yu (1997)) Let be almost periodic. Thea is not
saturated.

PROOF(IDEA). Fixv,w e X* such thatt = vw® and letn = |v|+ |w|. Then @' or
1" does not occur imi. Namely, if the letter 1 occurs iw then @' does not occur
in o, and I' does not occur it otherwise. O

Theorem 2.113(Calude and Yu (1997)) There is a saturated sequersigch that
Prefix(a) is context-sensitive but there is no saturated sequence with context-free
prefix set.

PROOF (IDEA). For the first part of the theorem it suffices to observe that, for the
canonical saturated sequertce- zp 21 2, 73 ..., Prefix(a) can be recognized by a
linear-space bounded Turing machine wheReoefix(a) is context-sensitive. The
second part of the theorem follows from Lemma 2.112 since, by Theorem 2.76, a
sequence is almost periodic if and only if its prefix set is context-free. O

Corollary 2.114 There is a context-sensitive sequence which is saturated but no
context-free sequence is saturated.

PrROOFE This is immediate by Theorem 2.113 and Definition 2.73. O

By the coincidence of the regular sequences with the context-free sequences
(Theorem 2.76) the classification of the saturated sequences in the Chomsky hier-
archy of sequences is rather coarse. We get a better lower and upper bounds on
the complexity of saturated sequences if we look at the Chomsky language classes
which contain saturated languages, i.e., languages corresponding to saturated se-
quences. As we will show next, no regular language is saturated but there are
context-free, in fact linear, languages which are saturated.

Theorem 2.115Leta be a saturated sequence and let A be the set corresponding
toa. Then Ais not regular.

PrOOF For a contradiction assume thatis regular. Fix a deterministic finite
automatoriM which accept#\ and letp be the number of states M. Finally, fix
msuch thatp < 2™,

2.6. Saturated Sequences 71

Then for any se8 of 2™ words there are at least two wordsindu’ in Ssuch
thatM is in the same state after readimgndu’, hence for any word the extension
of uby vis in Aif and only if the corresponding extension wfis in A. I.e., for
any setS,

|I9=2"=3Juu e Su£U & W(uve A= UveA)). (2.31)

Now, in order to get the desired contradiction, in the following we will produce a
counterexample to (2.31). For this sake we first consider'thedds of length 2
which contain a unique 1 and take their concatenation:

% =010 +D(0<i < 2™ & X=Xg..Xom_1. (2.32)

Note that|x| = 2M2™M = 22M, So, by saturation ai and by Lemma 2.110, there is a
word w such that

AWZ").. AWBm) (2.33)
Since

WD =W . Wy ... WD 12 .. W2 — 1%,
it follows, by choice ofx, that
AWZ"Z)... AWZ"Zm_1) = X
fori < 2™M. By choice of the strings; this implies
AWZ'Z) =1<i=j(0<ij<2m). (2.34)

So, forS={wZ":i < 2™}, |§ = 2™. Moreover, by (2.34), for any words# U € S,
sayu=wz" andu = wZ wherei # ', there is a word/, namelyv = z", such that
uve Abutu'v¢ A. But this contradicts (2.31). O

Theorem 2.116 There is a saturated sequenaesuch that the language A corre-
sponding tax is linear.

PROOF For a nonempty wordk = a;...a, € 3" let xX° = aja;...ana, be the
duplicationof x and letx? = a,...a; be thereversalof x (e° = eR = €). Then the
required languagA is defined by

A= {01501, . XR10R:1<m<n& x,...,% =}

Intuitively, A is the set of all wordsv = (Xy,...,Xn)Xn+1 Where the first part of
w codes a nonempty finite sequence of woxgs..,x, (namely (xi,...,X,) =

72

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

(x®)P0L..(xR})P10) and the second patt; 1 of w coincides with one of the mem-
bers of this sequence (note thk&R = x).

The coding is chosen in such a way that the languagdinear. For instance,
as one can easily check, the linear gram@awith the following rules generates
A

l

oov |11V | T
00V | 11V | 01S

00TO|11T1|00U0 | 11U1

01W | 10
0OW | 11W | 00U | 11U

l

l

=SC 4 <w
!

!

HereSis the axiom of the grammas andT,U,V,W are the other variables of
G. Note that theS- andV-rules can produce deductioBs> wT wherew = € or
w = x201...x201 for somen > 1, theT-rules give deduction¥ = xPUxR, and
theU- andW-rules allow deductions of the forlg = 10 orU = 01x? ... 01xR for
n>1.

It remains to show thah is saturated, i.e., that any given strirgoccurs in
the characteristic sequenaeof A. So fix x where w.l.o.g. we may assume that
|x| = 2" for somen > 1 and that at least one 1 occursxifotherwise consider an
extension ofk with these properties). Then=ag...ax_jandP={j:0<j <
2'&a;j =1} #0. Fix0< j1 < jo <--- < jj < 2" such thatP = {j1,..., i} and
letw = ((zj“l)R)DOl((z?z)R)DOl...((z?l)R)D andw;j = w10z (0 < j < 27). Then
Wo, ..., Won_1 are consecutive words, whence the sequéx{e®) ... A(wan_1) OcC-
curs ina. On the other hand, by definitiow; < Aiff j € Pwhence

X= A(Wo) .. .A(Wzn_l).
Sox occurs ina which completes the proof. O

We conclude this subsection by some observations on the relation between
immunity and saturation. In Section 2.4 we have studied immunity notions as a
means for obtaining strong separations between complexity classes. There we have
shown that any language which is bi-immune to the class of regular languages
cannot be context-free but that there are linear languages which are immune to
REG. The former observation together with Theorem 2.116 shows that there is a
saturated sequence such that the corresponding set is not bi-immune to REG. Next
we will extend this result by showing that there is a saturated langlageh that
neitherA nor the complement ok is immune to REG.

2.6. Saturated Sequences 73

Theorem 2.117 There is a saturated sequenagesuch that neither &) nor S(a)
is REGimmune.

PROOF LetB be any saturated set and deffby letting
A= Bu{0":n>1})\{1":n>1}.

Then neitherA nor A is REG-immune since the infinite regular & : n > 1}

is contained inA and the infinite regular setl" : n > 1} is contained inA. It
remains to show thah is saturated, i.e., given any wordwe have to show that
X = A(zn)...A(Zr4|x—1) for some numben. Now, by saturation oB and by
Lemma 2.110, there are numbersandk such thatB(Z)). .. B(zfnﬂxm) = 0xO0.

By choice ofA this implies thatA(z,,,)...A(Z,) = x. This completes the
proof. (Alternatively, saturation oA can be deduced from Lemma 2.108 since
BU{0":n> 1} is close toB andAis close toBU {0" : n > 1}.) O

The above shows that saturation does not imply REG-immunity. The converse
is also true as the following lemma shows, i.e., saturation and immunity are inde-
pendent concepts.

Lemma 2.118 There is aREG-bi-immune language A which is not saturated.

PROOF By Theorem 2.52 lef’ be any REG-bi-immune language. Defidoy
letting A= {wi:we A' & i =0,1}. Then, as one can easily cheékis REG-bi-
immune too. On the other hand, by choicefothe characteristic sequencefis
the duplication of the charateristic sequencé\ofvhence the word 010 does not
occur inX(A). SoAis not saturated. O

In Section 2.5.5 we have shown that the Chomsky complexity of the prefix set of a 2.6.4
sequence is closely related to predictability. For instance we have seen that ﬂ@éﬁlration and
sequence is regular if and only if the sequence can be predicted by a (determinis‘gpedictabi”ty
or nondeterministic) finite automata or by a deterministic push-down automaton.

So, by Theorem 2.113, a saturated sequence cannot be predicted by such an au-
tomaton. In Section 2.5.5 we have also shown, however, that there are nonregular
sequences which can be predicted by a nondeterministic push-down automaton.

Our above results on the Chomsky complexity of saturated sequences do not settle

the question whether there are saturated sequences which can be predicted by a
nondeterministic push-down automaton and we leave this as an open problem. In

the following we will show, however, that the saturated sequences can be character-

ized in terms of partial predictability by finite automata. This characterization will

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

be used for establishing the relations between saturation and finite-state genericity
in Section 4.1.

Definition 2.119 Let M be an extended deterministic finite automaton andiet
>* — X be the partial function computed By. ThenM partially predicts (or
infinitely often predictsthe sequenca if M is consistent withu, i.e.,

VYn>0(fu(a|n)| = fu(a[n)=a(n)) (2.35)
andM makes infinitely predictions about i.e.,
I*n>0(fw(a | n)l). (2.36)

Theorem 2.120 For any sequenca the following are equivalent.
1. o is saturated.

2. There is no deterministic finite automaton which partially predicts

PROOF For a proof of the implication & 2 assume that is saturated and lédl
be an EDFA such that the functidy computed byM satisfies (2.36). We have to
show that (2.35) fails, i.e., that there is a numbesuch thatfy (a [n) is defined
andfyu(a [n) #a(n).

Let M be the automatoM = (X,S,9,5,A) where the partial state labeling
functionA : S— Z describes the different types of stateshbfas follows. For a
states, f(s) = 1 if sis an acccepting statd(s) = 0 if sis a rejecting state, and
f(s) is undefined ifsis an undetermined state. Then the functigncomputed by
M is defined by

fn(x) = A(&"(s0,%))- (2.37)

Letss,...sn be the set of statesvisited byM infinitely often when readingi,
i.e., the set of statessuch thatd*(sp,a [n) = s for infinitely many numbers.
Then, by (2.36) and by (2.37), there is a statd1l < k < m) such that\(s) is
defined. By symmetry, w.l.0.g. we may assume that1 andA(s;) = 1. Soin
order to show that (2.35) fails it suffices to show that there is a numbech that

0" (0,0 [N)=s51 & a(n)=0. (2.38)
To show this we consider the strige 2* defined as follows. Let

X = Yy10y20...ym0

where the substringg are defined by induction ok by lettingy; = A and by
letting yk for 2 < k < mbe the least string such that

0" (s, y10...Yk-10y) = 51

2.6. Saturated Sequences 75

if such a stringy exists and by lettingx = A otherwise.
Now, by saturation ofx and by Proposition 2.102, the stringoccurs ina
infinitely often. So we may fixip > 0 and 1< k < msuch that

" (0, [Np) = s« (2.39)

and
(a [no)xCa. (2.40)

hold. Now, ifk = 1 then, by definition ok, y1 = A hencex(0) = 0. By (2.39) and
(2.40) this implies that (2.38) holds far= ny. So in the following we may assume
that 2< k < m. Then, by definition ok, xx_1 = y10y20...yx_10 is an initial segment
of x. So, by (2.40), fon; = [Xc_1|, o | (np+n1) = (a [np) X«—1. Moreover, since
M runs through the statg infinitely often when readingt, there is a number
Ny > no + Ny such thad*(so,a | n2) = 1. By (2.39) this implies that, for the string
y=ad(ng+ny)...a(nz —1),

O (Sk; Xk—1Y) = 8" (S0, (O [No)Xk—1y) = 8" (Sp, 00 [M2) =51

So, by definition ofx, &*(s,y10...yk—10yk) = s1. Sincey;0...yk—10y,0 is an ini-
tial segment of it follows, by (2.39) and (2.40), that (2.38) holds for= ng +
|y10...yk—10yk/.

The proof of the implication 2> 1 is by contraposition. Assume that the se-
quencea is not saturated. We will show that there is an extended deterministic
finite automatorM which partially predictsi. By assumption we may fix a string
x of minimal length such that occurs in the sequenceat most finitely often, say
(a I n)xZ a for all n > ng. Then, obviously|x| > 0 whence we may fike X and
y € 2* such tha = yi. Define the partial functior : ~* — 2 by

f(2) = 1—i if z=vyfor some strings € ="
T otherwise.

Note that, by minimality ofx, the stringy occurs ina infinitely often whence
f(a | n) | forinfinitely manyn. Moreover, for anymsuch thatf (a | m) is defined,
f(a [m)=a(m). (Namely, if f (a [m) is defined then there is a numbep ng
such thato | m= (a | n)y whence, by choice aofig, o | (m+1) # (a [n)x. By

X =i, however, this implies that(m) # i, i.e.,a(m) = 1—i.) Hence (2.35) and
(2.36) hold if we replacdy by f. This completes the proof since, as one can easily
show, f can be computed by an EDRA. O

In Section 2.5.5 we have shown that total predictability by deterministic push-
down automata coincides with total predictability by deterministic finite automata.
For partial predictability, however, these devices are not equivalent. By Theorem
2.120 this follows from the following result of Merkle and Reimann.

76

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

2.6.5

Computational
Complexity of
Saturated
Sequences and
Languages

Theorem 2.121 (Merkle and Reimann (2003)) There is a saturated (in fact nor-
mal) sequencer which can be partially predicted by a deterministic pushdown
automaton.

PROOF(IDEA). The following example of a sequenaavith the required proper-

ties is somewhat simpler than the examples given in Merkle and Reimann (2003).
Let a be the saturated (in fact normal) sequence obtained by concatenating all bi-
nary words in order, i.eq = zp212.... Then, for any numban, the initial segment

o [ncontains at least as many occurrences of the bit 0 as of the bit 1. Moreover,
the number of occurences is equal if and onlg if n consists of all words up to

a given length, i.eq | n= 28...2’2“,]1_1 for some numbem. So, for such am, a(n)

will be the first bit of the wordZ)*™* which is a 0. A deterministic pushdown au-
tomatonM which correctly predicts these occurences of zeroes pushes a 0 on

its stack when it reads a 0, pops a 0 from the stack when it reads a 1, and predicts
the next bit to be a 0 if the stack is empty. (Note thvatworks with the unary
alphabet{0} as its stack alphabet. DPDAs with this additional property are also
called deterministic 1-counter automata.) O

Following our investigations of the complexity of saturated sequences in the sense

of formal language and automata theory, in this subsection we shortly discuss the

computational complexity of saturated sequences. We show that for azyresae

is a saturated sequenaesuch that the se§(a) corresponding tax is equivalent

to A under linear-time many-one reducibility. Roughly speaking, this says that

there are saturated languages of any given time complexity. As we will also note,

however, the corresponding fact for the prefix sets of saturated sequences fails.
We start with the observation that there is a saturated sequence such that the

corresponding set is linear time computable.

Lemma 2.122 Let D= {Z': z,(i) = 1}. Then the characteristic sequeng) of
D is saturated and = DTIME (O(n)).

PROOF (IDEA). Note that for thenth wordz, occurrence ok, in (D) is guaran-
teed by the firsiz,| words of lengtm, namerD(zg)...D(z?Zn‘_l) = z,. We omit the
straightforward but somewhat tedious proof Bbe DTIME (O(n)). O

Recall thatA <!I" B (A is many-one reducible to B in linear tijni there is a
linear-time computable functioh: Z* — Z* such thak € Aif and only if f (x) € B
(for all x € =*); and thatA =" B (A is many-one equivalent to B in linear tijrié
A<InBandB <" A,

2.6. Saturated Sequences 7

Theorem 2.123 For any set A% 0,>* there is a saturated set B such thatA" B.

PROOFE Fix A# 0,%*, chooseD as in Lemma 2.122, and |I&=D® A= {0x:
x e D}U{1x:x e A} be the effective disjoint union @ andA. ThenB is saturated
by Lemma 2.111 and by saturationdf A =/" B follows fromD € DTIME (O(n))
as follows. ObviouslyA <" B via f(x) = 1x. For a proof of8 </ A fix wordsxg
andx; such thatxg € A andx; € A. ThenB g',i? Aviagwhere

Xp ifxeD
g(0x) = { .
X1 otherwise.

andg(1x) = x. Note thatg(Ox) can be computed in linear time sinBeis linear-
time computable. O

For space complexity we easily obtain the corresponding results for logarithmic
space in place of linear time. In fact in Theorem 2.123 we may repilaam re-
ducibility by simultaneously linear-time and logarithmic-space bounded many-one
reducibility. Calude and Yu (1997) have shown that there is a saturated sequence
with prefix set in DSPACEO(logn)). In fact, as one can easily check, fras in
Lemma 2.122Prefix(x(D)) € DTIME(O(n)) "DSPACEO(logn)).

Lemma 2.124 There is a saturated sequengesuch that
Prefix(a) € DTIME(O(n)) " DSPACEO(logn)).

In contrast to Theorem 2.123, however, therelaren equivalence classes - in
fact polynomial-time Turing equivalence classes - which do not contain the prefix
set of any saturated sequence (in fact no prefix set at all). This follows from some
general results on sets of low nonuniform complexity. Note that any prefix set
A contains just one word of each length wherces sparse Any sparse sef
possesses polynomial-time circuits, i.e., is a member of the classlyand it
has been shown that there are polynomial-time Turing equivalence classes which
do not intersect Ppoly (see e.g. Bakzar et al. (1995), Chapter 5). So, in order
to obtain an analog of Theorem 2.123 for prefix sets we have to work with some
weaker reducibilities. E.g., we can show that, for anyAsehere is the prefix set
Prefix(a) of a saturated sequenaewhich is exponential-time Turing equivalent
to A. In the following let<¢ denote exponential-time (i.e0(2°") bounded
Turing reducibility. Similarly, let<§ denote exponential-time bounded truth-table
reducibility and<{} denote polynomial-time bounded truth-table reducibility

Theorem 2.125For any set A there is a saturated sequencsuch that A=%
Prefix(a).

78

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

2.6.6

Saturated and
Disjunctive
Languages

This easily follows from the following lemma and Theorem 2.123.

Lemma 2.126 For any sequence, S(a) =§ Prefix(a). Infact, Sa) <§ Prefix(a)
and Prefixa) < Sa).

PROOF In order to showS(a) <§ Prefix(a) consider the following reduction
from S(a) to Prefix(a): Givenx, |x| = n, compute the uniquen such thatx =

Zn. Then, bym adaptive queries t@refix(a), inductively computex | (m+ 1)

and accepk iff (o [(m+1))(m) =1. Sincem < 2™, this reduction can be
done in timeO(2°"). For a proof ofPre fix(a) <{I' S(a), consider the following
reduction fromPrefix(a) to S(a): Givenx, x| = n, computea(0),...,a(n— 1)

by letting the oracleéS(a) answer then queriesz, ...,z,—1. Accept the inpuk iff
x=0(0)...a(n—1). This reduction is polynomial-time bounded and requests only
a linear number of nonadaptive queries. O

As pointed out before, saturated sequences are also called disjunctive sequences
since they are closely related to disjunctive languages. Though we will not need
the latter concept later, we will shortly describe the relations between saturated
languages and disjunctive languages here.

Definition 2.127 (Shyr (1977)) A languagA is disjunctiveif any two wordsx and
y can be distinguished by the context of their occurences in words in the language
A e, if

VX, y € ZF (x£y=3u,ve Z*(uxve A& uyvée A)) (2.41)

holds.

For a disjunctive languagéd, any wordz occurs in some element éf as a
subword (namely, otherwise, (2.41) will fail for the worls- 20 andy = z1 since
uxv uyv¢ Afor all wordsu, V). The converse, however, is not true. For example any
word occurs as a subword of a word3n, but all words occur in the same context
(namely, for anyx, uxve ~* for all wordsu,v) whenceX* is not disjunctive. As
Calude et al. (1997) have shown, however, for a prefixAset is disjunctive if
every word occurs as a subword of a word\nwhence a sequenceis disjunctive
(i.e. saturated) if and only if its prefix s@refix(a) is disjunctive. This easily
follows from the observation byildlgensen and Thierrin (1988) that in the definition
of a disjunctive language in (2.41) it suffices to consider wardsdy of the same
length.

2.6. Saturated Sequences 79

Lemma 2.128 (Jurgensen and Thierrin (1988)) A language A is disjunctive if and
only if
vnyx,y € Z"(x#y=3Ju,ve I*(uxve A= uyvg A)) (2.42)

holds.

Theorem 2.129 (Calude et al. (1997)) For any infinite sequenzehe following
are equivalent.

1. ais saturated.
2. Every word x X* occurs as a subword in an element of Prd fix

3. Prefixa) is disjunctive.

PROOF The implications k= 2 and 3= 2 are straightforward. So it suffices
to show the implication & 3. Assume thatr is saturated. By Lemma 2.128 it
suffices to show that, givexnandy such thafx| = |y| andx # y, there are words
u andv such thatuxvis a prefix ofa butuyvis not a prefix ofa. Now, sincea is
saturated, we may fin such thaux is a prefix ofa and letv be the empty string.
Thenuxvis a prefix ofa. On the other hand, howevetyvis not a prefix ofa since
luxv = |uyy butuxv# uyvand since the prefix af of a given length is uniquely
determined. O

The relation between saturation (disjunctivity) of a sequence and disjunctivity
of its corresponding set is as follows.

Theorem 2.130(a) Leta be a saturated sequence. Then the $at Sorrespond-
ing toa is disjunctive.

(b) There is a disjunctive language A such that the characteristic sequence
X(A) of Ais not saturated.

PROOF (a) To show thatS(a) is disjunctive it suffices to establish (2.42). So let
n > 0 and wordx andy with X # y and|x| = |y| = n be given. Fixj andk such that
x= 2! andy =7 and define € 52" by z(j) =1 andz(i) = 0 for alli < 2" with i .
Then, by Lemma 2.110, there is a wasdsuch thatA(wz)...A(Wz_;) = z. So,
in particular,A(wx) = A(wZ}) = z(j) = 1 andA(wy) = A(wZ;) = X(k) = 0, whence
wx e Aandwy ¢ A. So (2.42) holds fou =w andv = A.

(b) Let A be the languagl = {wwR : w € =*} (wherewR is the reversal ofv).
Then, for any words andy such thatx| = |y| andx # y, Xfx € Awhereas®Ry ¢ A,
So, by Lemma 2.128\ is disjunctive. As one can easily check, however, the word
11 does not occur ig(A). Sox(A) is not saturated. O

80

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

2.6.7

Partial
Saturation

Corollary 2.131 Every saturated language is disjunctive but there are disjunctive
languages which are not saturated.

PROOF Since, by definition, a language is saturated if and only if its characteristic
sequence is saturated, this is immediate by Theorem 2.130. O

By Corollary 2.131, negative results on disjunctive languages carry over to sat-
urated languages and positive results on saturated languages carry over to disjunc-
tive languages. For instance, Shyr (1977) have shown that no disjunctive language
is regular. So, by Corollary 2.131, no saturated language is regular. This gives
an alternative proof of Theorem 2.115. Conversely, Theorem 2.116 and Corollary
2.131 imply that there are linear languages which are disjunctive. Here, however,
we get simpler examples by a direct argument as the langhageww? : w ¢ =}
in the proof of Theorem 2.130 shows. In fact, as one can easily show, the lan-
guageA = {WP0IwR : w € 3*} (wherewP is the duplication ofw) is disjunctive
too. On the other hand is deterministic context-free and linear. So there is a
disjunctive language which is both, deterministic context-free and linear. We do
not know, however, whether there are saturated languages which are deterministic
context-free (or even both, deterministic-context free and linear).

We conclude this chapter on saturated sequences by some observations on partially
saturated sequences. These results will be used later for separating some of our
finite-state genericity notions. We begin with some definitions.

Definition 2.132 A sequencex is k-n-saturatedf every word of lengthk occurs
in a atleashtimes k, n> 1); a is w-n-saturatedif every word occurs it at least
ntimes, i.e., ifa is k-n-saturated, for alk € N ; a is k-w-saturatedif every word
of lengthk occurs ina infinitely often, i.e., ifa is k-n-saturated foralh e N ; a is
w-w-saturatedif every word occurs infinitely often i, i.e., if a is k-n-saturated
forallk,ne N,.

A setAis k-n-saturatedk, n € N, U{w}) if its characteristic sequenggA) is
k-n-saturated.

The following relations among these notions are immediate by definition.

Proposition 2.1331f k <k and n< n’ (k,kK',n,n’ € N U{w}) then every kn'-
saturated sequence is also k-n-saturated.

Moreover, by definition, a sequenceis saturated if and only it is w-1-
saturated and, by Proposition 2.102, saturation@notsaturation coincide. This
immediately yields the following.

2.6. Saturated Sequences 81

Proposition 2.134 For any sequence the following are equivalent.
1. o is saturated.
2. ais w-1-saturated.
3. ais w-n-saturated (for any fixed h 1) .
4. a is w-w-saturated.

For 1< k,n < w there are finitk-n-saturated sets, namely the sequemce
(zg...z;kfl)now is k-n-saturated and the corresponding set is finite. Since we will
be only interested in infinite sets, in the following we will focuslen-saturated
sequences where= w or n = w. Obviously, the set corresponding to such a
sequence cannot be finite.

Proposition 2.135 Leta be k-n-saturated where= w or n = w. Then the corre-
sponding set &) is infinite and co-infinite.

The following simple separation lemma will become useful later.

Lemma 2.136 For any ke N, there is a ke>-saturated sequenae which is not
(k+ 1)-1-saturated, hence ngk+ 1)-w-saturated.

PROOF Leta = (Z50Z0... Z_, 0)°. Then every word of lengtk occurs ina
infinitely often whence is k-c>-saturated. The word1® of lengthk+ 1, however,
does not occur it whencea is not(k+ 1)-1-saturated. O

The above observations on partial saturation give the following relations among
the infinitary saturation notions where Lemma 2.136 implies that no other relations
hold (fork > 2,n> 1).

a w-w-saturated & o w-n-saturated < o saturated

4

a (k+ 1)-w-saturated

4

o k-w-saturated

4

o 1-w-saturated

Above we have shown that saturated sequences and languages are not regular.
This is contrasted by the following.

Lemma 2.137 For any k> 1 there is an kev-saturated sequenae which is regu-
lar.

82

2. FORMAL LANGUAGES AND INFINITE SEQUENCES

PrROOF Thek-w-saturated sequencedefined in the proof of Lemma 2.136 is
periodic hence regular. O

For some recent results on representability and decidability questions for satu-
rated sequences see Ambos-Spies and Busse (2004).

CHAPTER 3

Baire Category, Forcing, Genericity

84

3. BAIRE CATEGORY, FORCING, GENERICITY

In this chapter we discuss some of the fundamental relations among gener-
icity, Baire category and some of the fundamental diagonalization techniques in
computability and computational complexity theory. Our presentation is based on
papers and lectures by Ambos-Spies on this topic, in particular on Ambos-Spies
(1996). A more detailed treatment of classical Baire category theory can be found
in Oxtoby (1980). More information on the role played by Baire category in com-
putability theory is given in Odifreddi (1989).

In Section 3.1 we shortly review classical Baire category for the Cantor space.
Then, in Section 3.2, we give alternative characterizations of this concept based
on total respectively partial extension functions. In Section 3.3 we discuss the
relations between category and (Lebesgue) measure. It is well known that in gen-
eral the category and measure approaches for defining large classes are incom-
patible. As we will show here, however, any comeager class defined in terms of
boundedextension functions has measure 1 too, i.e., is large in both senses. In
Section 3.4 we review the finite extension method and an important refinement of
this technique, namely the wait-and-see technique or slow-diagonalization tech-
nique. Moreover, we show how these techniques can be related to Baire category
by exploiting the characterization of the latter in terms of total extension functions
and partial extension functions, respectively. Finally, in Section 3.5 we introduce a
general framework for genericity notions by attaching a genericity concept to any
countable clas§ of (total or partial) extension functions. Most of the common
genericity concepts in computability and complexity theory in the literature — as
well as the finite-state genericity concepts introduced in this thesis — can be de-
scribed this way by appropriately choosing the cl@isaVe will distinguish some
special types of genericity notions — namely weak genericity based on total exten-
sion functions and bounded genericity based on bounded extension functions — and
we will point out some limitations of these restricted concepts.

3.1. Baire Category and the Cantor Space 85

3.1 Baire Category and the Cantor Space

Using the concept of classical Baire category we can classify the subclasses of the
Cantor spac&® according to their size. In order to introduce this concept, we first
have to define an appropriate topology on the Cantor space.

Definition 3.1 (i) For any stringx, the class B= {A:x x(A)} is basic open
(i) A class C isopenif it is the union of basic open classes or empty.

It is easy to see that this defines a topology on POWER(. e.,0 andZ® are
open, the union of open classes is open again, and the finite intersection of open
classes is open again. The latter follows from the fact that, for any stxiagdy,
Bx M By is either empty (namely i andy are incomparable) or a basic open class
again (namely BnBy = By if yC xand B.{NBy =By if XCy).

Definition 3.2 (Baire Category) (i) A class C isdensef it intersects all open
classes.

(i) A class C isnowhere densé C is contained in the complement of an open
and dense class.

(iii) A class Cismeagerif C is the countable union of nowhere dense classes.
(iv) A class Ciscomeagelif C is the complement of a meager class.

Intuitively, we can interpret meager classes as small and comeager classes as
large. For more details see Odifreddi (1989).
The following observations are easy consequences of Definition 3.2.

Proposition 3.3 A classC is comeager if and only if there are countably many
open and dense class€g, n > 0, such that

(JCnCC.

n>0

Proposition 3.4 (i) For any set A, the singletofA} is nowhere dense.
(ii) The countable union of meager classes is meager.

(iif) Any subclass of a meager class is meager.

(iv) Any countable class is meager.

Proposition 3.5 (i) The countable intersection of comeager classes is comeager.

86

3. BAIRE CATEGORY, FORCING, GENERICITY

(i) Any superclass of a comeager class is comeager.
(iii) Any classC with countable complement is comeager.

In particular,Z® is comeager. The non-triviality of the Baire category concept,
i.e., the fact that there is no class which is both meager and comeager follows from
Baire's Theorem.

Theorem 3.6 (Baire) Z® is not meager.
Corollary 3.7 If Cis comeager thef is not meager.

PrROOF For a contradiction assume that C is comeager and meager. Then, by the
former, C is meager, hencE® is the union of the meager classes C &dSo, by
Proposition 3.4(ii) X* is meager contrary to Baire’s Theorem. O

3.2. Extension Functions

87

3.2 Extension Functions

The Baire category concept has been alternatively described in terms of (total)
extension functions. This characterization shows the close relation between this
topological concept and one of the most fundamental diagonalization techniques in
computability theory, namely the finite-extension method. Similarly, a somewhat
more sophisticated diagonalization method, namely the so-called wait-and-see or
slow-diagonalization technique, can be linked to Baire category by using partial
extension functions. In this section we review the characterizations of the comeager
classes in terms of total and partial extension functions. Then, after some remarks
on relations between category and measure in the next section, we discuss the
relations to the above mentioned diagonalization techniques.

We first consider the case of total extension functions and define the required
concepts.

Definition 3.8 (i) A total extension function ik a total functionf : 2* — Z*,

(i) A set A meets fatnif (a [n)f(a [n) C a, wherea is the characteristic
sequence oA. A meets fif A meetsf at somen.

Intuitively, an extension functiof may be viewed as an instruction for finitely
extending a given finite initial segment of an infinite sequence under construction.
ThenA meetsf atn if the initial segmeng (A) | n of lengthn of the characteristic
sequence oA is extended according to this instruction. The following theorem
gives the characterization of open and dense classes in terms of extension functions.

Theorem 3.9 For a classC C X® the following are equivalent.
(i) Ccontains an open and dense class.
(i) vxdyZIx(ByCC)

(i) There is a total extension function f such tHa# : A meets § is contained in
C.

ProoF We will prove the implicationsi) = (ii) = (i) = (i).

For a proof of the implicatiorfi) = (ii) assume that the open and dense class
C' is contained in C. Then, given any strirgit suffices to show that there is an
extensiory of x such that B is contained in C By density of C, the intersection
of C' and B, is not empty. Hence we may fix an infinite sequenc& C' which
extendsx. Since Cis open, it follows that there is a neighbourhoodoo#hich
is completely contained in’Ci.e., Byjn € C' for some numben > 0. Since, for

88

3. BAIRE CATEGORY, FORCING, GENERICITY

n' >n, Bqjy € Bqn, W..0.g. we may assume that> |x|, i.e., thatxC o [n. So,
y=da [nhas the required properties.

For a proof of{ii) = (iii) assume that C satisfi¢$). We have to define a total
extension functionf such that (the characteristic sequence of) anyAsethich
meetsf is a member of C, i.e., such that

Va @n((afn)f(anCa)=aecC) (3.2)

holds. Definef as follows. Givenx, by assumptior(ii), fix the least stringy

extendingx such that B C C and letf(x) = z for the unique string such that

y = xz Then, for any string, By¢(xy € C. Obviously this implies that (3.1) holds.
The remaining implicatioriii) = (i) is an immediate consequence of the fol-

lowing somewhat more general lemma by considering the mase0. O

Lemma 3.10 For any total extension function f and any numbegr the class
{A: Ameets f at some numbepPnng} is open and dense.

PROOF Fix a total extension functioi and a numbeng, and let D= {A: A
meetsf at some numben > ng}. Note that, by our identification of a set with its
characteristic function, the class D can be restated as

D={a:3In>ng((a [n)f(a[n)Ca)}.

Now to show that D is open, fia € D. It suffices to show that, for some numieyr
Bam is contained in D. Byt € D we may fixn > ng such tha{a [n)f(a [n) C a
holds. Therm=n+|f(a | n)| has the required properties. Namely, for ghy
Bam, the set corresponding fomeetsf atn. It remains to show that D is dense,
i.e., that for any string there is a sequenaec D extendingx, where w.l.0.g. we
may assume thak| > ny. Obviously, the sequen@e= x f(x)0® will do.

]

Theorem 3.9 and Lemma 3.10 yield the following characterization of comeager
classes.

Corollary 3.11 The following are equivalent.
(i) Ciscomeager.

(i) There is a countable clas$ = { f, : n € N} of total extension functions such
that the class
Mg = {A:Vne N (A meets f)}

is contained irC.

3.2. Extension Functions 89

(iii) There is a countable clas3 = { f, : n € N} of total extension functions such
that the class

M3 = {A:Vne N (A meets {infinitely often}
is contained irC.

PROOF We prove the implication§) = (ii) = (iii) = (i)

(i) = (ii). Let C be comeager. By definition, there is a countable family of open
dense classes,Gn > 0) such that the intersection of these classes is contained in
C. So, givem > 0, it suffices to show that there is an extension functigsuch
that the class Iy = {A: Ameetsf,} is contained in @. But this is immediate by
Theorem 3.9.

(i) = (iii) is immediate, since for any, M3 C M.

(iii) = (i). Note that M is the intersection of the countably many classes
Dnm = {A: Ameetsf, at some number m}. By Lemma 3.10, the classes,R
are open and dense. Sd;Mnd any superclass C of‘Ms comeagar.

This completes the proof.
O

We now turn to partial extension functions and give an alternative characteri-
zation of comeagerness in these terms. We start with the fundamental definitions.

Definition 3.12 (i) A partial extension function is a partial functionf : &* —
>

(i) A partial extension functiorf is dense along setAif f(x(A) | n) is defined
for infinitely manyn € N.

(i) Ameets fatnif f(a [n) | and(a [n)f(a [n) C o wherea is the character-
istic sequence oA. A meets fif Ameetsf at somen.

We use the above notions for infinite sequences in place of sets too. dés, if
the characteristic sequencefandf is dense along or A meetsf then we also
say thatf is dense along anda meetsf, respectively.

Again, intuitively, a partial extension functiohnmay be viewed as an instruc-
tion for finitely extending a given finite initial segment of an infinite sequence under
construction. As beforéd meetsf atn if the initial segmeni(A) [n of lengthn
of the characteristic sequenceffs extended according to this instruction. Now,
however, the instruction can be followed only for certain initial segments. Den-
sity of A alongf expresses that there are infinitely many chances for following the
instruction.

90

3. BAIRE CATEGORY, FORCING, GENERICITY

Note that a total extension functidnis dense along all sets. As we will show
next, for any partial extension functioh the class of seté such thatf is not
dense alongh or A meetsf contains an open dense class. This follows from the
next lemma by lettingng = 0.

Lemma 3.13 Let f be any partial extension function, leflne any number, and let
D be the clas§A: f is not dense along A or A meets f at some numbemg}.
ThenD contains an open and dense subclass.

PROOE Given a string it suffices to show that there is an extensjoof x such

that the basic open classg B contained in D. To show this we first observe that,
by our identification of a set with its characteristic function, the class D can be
restated as

D={a:3"n(f(an)|)=3In>ng(f(an)| & (an)f(alnCca)}

Now, in order to get the desired extensiprof x distinguish the following two
cases. First assume that there is an extensmixsuch thatX| > ng and f (X) is
defined. Then, for the extensignr= X f(X) of x, By is contained D, since any € By
meetsf at |X|. Now assume that there is no extensioof X as above. Then, for
any extensiory of x of length> ng, f(2) is undefined for all extensionofy. So,
for anya € By, f is not dense along. Hence is contained in D. O

The preceding lemma implies the following analog of Theorem 3.9 for partial
extension functions.

Theorem 3.14 For a classC C 2 the following are equivalent:
(i) Ccontains an open and dense class.
(i) ¥x3y Ix(By C C)
(iii) There is a partial extension function f such that
{A: f is not dense along A or A meet$ f

is contained irC.

PROOF Note that the implicatioifi) = (ii) is immediate by Theorem 3.9 and the
implication(ii) = (iii) follows from the corresponding implication in Theorem 3.9
since a total extension functidnis dense along any set, i.e., for tofalhe classes
{A:Ameetsf} and{A: f is not dense along or A meetsf } coincide. So it only
remains to prove the implicatidfiii) = (i). But this is an immediate consequence
of Lemma 3.13. O

3.2. Extension Functions

Now, by applying Theorem 3.14 and Lemma 3.13 in place of Theorem 3.9 and
Lemma 3.10, respectively, in analogy to Corollary 3.11 we obtain the following
characterization of comeagerness in terms of partial extension functions.

Corollary 3.15 The following are equivalent:
() Ciscomeager.

(i) There is a countable clas§ = {f, : n € N} of partial extension functions
such that the class

Mg = {A:Vne N (fyis not dense along A or A meetg f

is contained inC.

(i) There is a countable clas§ = {f, : n € N} of partial extension functions
such that the class

M3 = {A:Vne N (f, is not dense along A or A meetsirfifinitely often}
is contained irC.

ProoOFE This follows from Theorem 3.14 and Lemma 3.13 just as Corollary 3.11
follows from Theorem 3.9 and Lemma 3.10, respectively. 0

3. BAIRE CATEGORY, FORCING, GENERICITY

3.3 Baire Category and Lebesgue Measure

An alternative to the Baire category concept for classifying the subclasses of the
Cantor spac&® according to their size is Lebesgue measure. Here the measure-0
classes are the small classes and the measure-1 classes are large. l.e. meagerness
(comeagerness) in the setting of category corresponds to measure 0 (measure 1)
in the setting of measure. These two classifications, however, are incompatible in
general. There are classes which are large in one setting but small in the other.
To be more precise, there are classes C such that C is comeager and has measure
0 (henceé is meager and has measure 1). We can use the description of Baire
category in terms of (partial) extension functions, however, to give a sufficient
condition for a class C to be both comeager and of measure 1.

In the following we will shortly develop the basic concepts of Lebesgue mea-
sure which we will need later.

The Lebesgue measupeon the Cantor space is the product measure induced
by the equiprobable measure on the finite spfd:&} which assigns to both 0 and
1 the probability 21. So, in particular, for a basic open clasg B

W(Bx) =27 .

In order to obtain the notion of a measure-0 class we have to consider coverings by
basic open sets.

Definition 3.16 (i) Let C be a class, Igb > 0 be a real number, and & =
{By, : n> 0} be a countable sequence of basic open clagsesanp -cover

of Cif
cclUBx & 2)2*%‘ <p.
n>0 n>

(i) A class Chas (Lebesgue) measude u(C) = 0, if for all n > 0 there is a
2 "-cover of C.

(i) A class Chas (Lebesgue) measutep(C) = 1, if the complement of C has
measure 0, i.e., i(C) = 0.

For measure-0 and measure-1 classes we get the following properties corre-
sponding to the properties of meager and comeager classes given in Propositions
3.4 and 3.5.

Proposition 3.17 (i) Any countable class has measure O.

(i) The countable union of measure-0 classes has measure 0.

3.3. Baire Category and Lebesgue Measure 93

(iii) Any subclass of a measure-0 class has measure 0.

(iv) Any co-countable class has measure 1.

(v) The countable intersection of measure-1 classes has measure 1.
(vi) Any superclass of a measure-1 class has measure 1.

In particular,u(X®) = 1. Moreover, the measure concept is nontrivial, i.e. a
measure-1 class does not have measure 0.

Proposition 3.18 2?is not a measure-0 class. More generally, no measure-1 class
has measure 0.

As mentioned before, in general Baire category and Lebesgue measure are not
compatible. We demonstrate this by giving an example of a comeager class C with
H(C) =0.

Lemma 3.19 Let C be the class
C={A:F"n(ANZ"=0)}.
ThenC is comeager and () = 0.

ProoF To show that C is comeager, by Corollary 3.11, it suffices to observe
that any setA which infinitely often meets the extension functiéndefined by
f(x) = 03X is a member of C. To show thatC) = 0, we first observe that, for
anyn > 1, the class = {A: ANZ" = 0} is covered by the finite 2'-cover

Bn = {Bygn : [X| = 2" —1}. It follows that there is a 2"-cover ofCy = U C-
Since C is contained i, for all n > 0 it follows thatp(C) = 0. O

We obtain a sufficient condition for a class to be both comeager and of measure
1 by considering bounded extension functions.

Definition 3.20 A (partial) extension functiori is k-boundedf | f(w)| = k when-
ever f (w) is defined, i.e., iff is a (partial) functionf : =* — ZX. f is boundedf f
is k-bounded for somk.

(Sometimes we will also call a functioh: ¥* — ==K k-bounded. Then, for-
mally, f should be considered to be the functibre* — X which is obtained from
f by extending any valué(x) to a string of lengthk by adding zeroes at the end.
l.e. f andf have the same domain andfifx) is defined therf (x) = f(x)0k~1f¥l)

3. BAIRE CATEGORY, FORCING, GENERICITY

Theorem 3.21 (a) LetF = {f,: n> 0} be a countable class of bounded total
extension functions. Then

Mg = {A:Vne N (A meets)}
and
M% = {A:Vn e N (A meets finfinitely often}
are comeager and have measure 1.

(b) LetF ={f,:n> 0} be a countable class of bounded partial extension func-
tions. Then

Mg = {A:Vne N (fyis not dense along A or A meetg f
and
MZ = {A:Vne N (f, is not dense along A or A meetsirfifinitely often}
are comeager and have measure 1.

PROOF Since any total extension function is dense along any set,(@ait a
special case of pafb). So it suffices to provéb). Moreover, the claim about
comeagerness has been shown in Corollary 3.15 already. So it suffices to show
that yMg) = 1 andu(M?%) = 1. In fact, since N} is contained in M, it suf-

fices to prove the latter. Since the countable intersection of measure-1 classes is a
measure-1 class again this task can be reduced to showing that, for a given bounded
extension functiorf, the class

M? = {A: fis not dense along or A meetsf infinitely often}

has measure 1 or, equivalently, the complen\éfitof M ; has measure 0.
Note that, for

D={A:3"n(f(X(A) In))}

and
Nm={A:vn>m(f(X(A) I'm) |= (X(A) Tm)fXA) Tm) ZXA)},

M7 =Dn({J Nm).
m>0
So in order to show that(M?) = 0 it suffices to show that, for any given> 0,
U(DNNm) = 0. In other words, givemp > 1, we have to show that there is a2
cover of DN Np. So fixmand p and fixk such thatf is k-bounded. Moreover,
for g > 1 let Gy q be the class consisting of all setssuch that there are at leagt

3.3. Baire Category and Lebesgue Measure 95

numbersn > m such thatf (A | n) is defined andA does not meef at the firstq
such numbers. Then DN Ny, is contained in &g for all g > 1. Hence it suffices
to find a 2"P-coverB of Cp o for someq > 1. Note that given any stringsuch that
f(x) is defined, there is one extensigf x of length|x| + k, namelyy = xf(x),
such that all seté in By meetf at|x|. Since there are*Zxtensions ok of length
x| + k this implies that there is €2 — 1)2-*-cover of G,1. So, by induction, we
can argue that there is @acover of Gnq wherep = [(2K—1)27X/9. Since

limg_o[(2—1)27K9=0

it follows that, for sufficiently largej we obtain the desired2-coverB of Cpq.
O

96

3. BAIRE CATEGORY, FORCING, GENERICITY

3.4 Finite Extension Arguments

We now will use the finite-extension-function characterization of Baire category
in order to demonstrate the relations between this concept and the finite-extension
method. Most of the diagonalization techniques in computability theory and com-
putational complexity have been obtained by refining the finite-extension method.
The finite-extension method itself is an extension of Cantor’s diagonalization tech-
nique, i.e., of a direct diagonalization. Roughly speaking, in a direct diagonaliza-
tion argument we define a sAtwhich is not a member of a countable class C as
follows: we fix an enumeratiofC, : n > 0} of C and ensure thak differs from
thenth setC, in this list by makingA andC, differ on thenth string, i.e., by letting
A(z,) = 1—Cn(z,). More generally we can say that a gewvill not be a member

of C if it meets therequirements

R+ IX (A(X) # Cq(X))

for all numbersn > 0. l.e., the global, infinitary task of ensuring thats not a
member of C is split into an infinite sequence of finitary requirements. Here the
requirements are of a particularly simple form, namely in order to meet a single
requirement it suffices to appropriately defifaen any given string.

In a finite-extension argument we also decompose a global task into infinitely
many finitary requirements but the requirements are of a more general nature. Here,
in order to meet a single requireméhtgiven any finite initial segmert | n of the
characteristic sequenceof the setA under construction, there will be a possible
finite extensioro | m, m> n, of a [n such that this extension will ensure that the
requirement is met no matter how we will defiAeon the remaining inputs. The
desired sef\ is inductively defined in stagess> 0 by specifying longer and longer
initial segmentsx [1(s), wherel (s) < I(s+ 1) and where at stage given the part
a | I(s—1) of A defined at the previous stages, the stiifg) > |(s— 1) and the
extension | I(s) of a [I(s—1) is chosen so that theh requirement will be met
by this extension. So, in contrast to a direct diagonalization, for meeting a single
requirement in general we have to appropriatelyXirot only on a single string
but on a finite number of strings, and the way we can meet the requirement may
depend on the finite part & previously specified.

We explain this method by giving an example from computability theory. A set
which is many-one reducible to its complement is calietf-dual So, given a list
{fn: n> 0} of the total recursive functions, a non-self-dual Adtas to meet the
requirements

Rn 1 X (AX) = A(fn(X)))

3.4. Finite Extension Arguments 97

for all numbersn > 0. In order to meeRR,, given a stringxk on whichA is not
yet defined we have to make sure tigk) and A(fn(x)) agree. There are two
cases: IfA has been defined ofy(x) before then it suffices to Ie&(x) have the
valueA(fy(x)). If A has not yet been defined dr(x) then we have to fiXA on x
and f,(x). (So the action for meeting the requirement may depend on the previous
action or may require to determir® on more than one string.) Now, a finite-
extension construction of (the characteristic sequeno® a non-self-dual set is
as follows. Given the finite initial segmeat| | (s— 1) of a specified prior to stage
s (wherel(—1) =0, i.e.,a [I(—1) = €) we definel(s) anda | I(s) as follows.
Letx=1(s—1). If fs(x) < xthen letl(s) =1(s—1)+1 and leta [I(s) = (a |
[(s—1))a(fs(x)). Otherwise, let(s) = maxXx, fs(x)) +1 and setr [I(s) = (a |
|(s—1))0' ¥~ thereby ensuring that(x) = a(fs(x)) = 0. Then, in either case,
the extensiom | |(s) of a [I(s— 1) guarantees th&ks is met.

Now, in order to relate the finite extension method to Baire category, based
on the above intuitive remarks and observations we first formally define what we
mean by saying that a property can be ensured by the finite-extension method.

Definition 3.22 A property P can beensured by a finite-extension argumet
there is a sequend&, : n > 0} of finitary requirements such that any getvhich
meets all requirement8, has propertyP. Here a requirememR is finitary, if for
any stringx there is a striny extendingx such that any sek with y C x(A) meets
R. For a stringy such that all setd with y C x(A) meetR we say thay forcesR.

Note that the formal definition of a finitary requireménteflects the fact, that
having specified a finite initial segment of a sainder construction we can finitely
extend this initial segment in such a way that this extension will ensureé\tivat
meetR no matter how we will definé on all larger inputs not specified by this
extension. Next we will observe that, for any finitary requirenfgnive can attach
an extension functiori to R such that a seA meetsR if A meetsf. In this case
we say that the extension functidrncorresponds to the requiremekior thatf is
a strategy for meeting}.

Definition 3.23 Let R be a finitary requirement and I&étbe a total extension func-
tion. Thenf corresponddo R or f is astrategyfor R if, for any setA which meets
f, A meetsR.

Lemma 3.24 Let R be a finitary requirement. There is an extension function f
corresponding taR.

PROOF We obtain the required extension functibrby letting f (x) be the least
stringz such thaixzforcesk. a

98

3. BAIRE CATEGORY, FORCING, GENERICITY

Note that for a finitary requiremetR there may be many strategies fBmot
justone. In afinite-extension construction of aSete meet the individual require-
ments by using some given strategies. Formally we can express this as follows.

Definition 3.25 A finite-extension constructiofi of a setA with property? is
given by a sequence of finitary requireme{is, : n > 0} ensuring?P together with
a sequence of corresponding extension funct{dasn > 0}. The sefA defined by
C is inductively defined by (A) [1(—1) = X(A) [0=gandx(A) [1(n) = (X(A) |
I(n—1)) fa(X(A) TI(n—1)) forn> 0.

Lemma 3.24 gives the desired relation between the finite-extension method
and Baire category by using the characterization of the latter in terms of extension
functions.

Theorem 3.26 Let P be a property and lIe€5 be the class of sets with propetty
Then the following are equivalent.

(i) P can be ensured by a finite-extension argument.
(i) Copis comeager.

PrRoOOF First assume thdP can be ensured by a finite-extension argument and
let {Rn : n > 0} be a sequence of finitary requirements ensufingBy Lemma
3.24 fix a sequence of extension functiofis= { f, : n > 0}, corresponding to
{Rn :n >0} and let My be the class of languag@swhich meet all extension
functions f, (n > 0). Then, by choice of the functionfs, any setA in Mg has
property? and, by Corollary 3.11, M is comeager.

For a proof of the other direction assume tirais a property such that£is
comeager. By Corollary 3.11 fix a sequence of extension functibes{ f,: n>
0}, such that M is contained in @. Define requirement®,, (n > 0) by

Ry A meetsf,.

Obviously, Ry, is finitary andf, corresponds t&®,,. Moreover, the requirements
{Rn:n> 0} imply P. SoP can be ensured by a finite-extension argument.
O

The above close relation between the finite-extension method and the Baire cat-
egory concept sheds some more light on the finite-extension method. For instance,
since the countable intersection of comeager classes is comeager again, any two -
in fact any countably many - finite extension constructions can be combined. I.e.
if P, (n > 0) are properties which can be ensured by finite-extension constructions
then, by such a construction, we can construct a singla gétich has all of these

3.4. Finite Extension Arguments 99

properties. On the other hand, the finite-extension approach can give us some in-
sight on the complexity of the members of a comeager class. Since any countable
class is meager and any complexity class is countable, the fact that the class of sets
with a certain property? is comeager does not tell us whether there is a set of a
given complexity with this property. Since in a finite extension-construction the
complexity of the constructed sAtis explicitly determined by the complexity of
the strategies used for meeting the individual finitary requirements (see Definition
3.25), an analysis of the complexity of the required strategies will yield complexity
results along these lines.

We now turn to an important refinement of the finite-extension-method, the
so-calledwait-and-searguments oslow diagonalizationsvhich can be linked to
Baire category too, now by using the description of comeager classes in terms of
partial extension functions.

We first describe this technique by giving a simple example. Recall that a set
A is bi-immune to a countable class C if neith&emnor its complement contains
an infinite member of C as a subset. Given an enumergt@ann > 0} of C we
can define a sequence of requiremef®; : n > 0}, ensuring C-bi-immunity as
follows.

(Note that the requirements with even index ensure that no infinite member of C is
a subset oA and the requirements with odd index ensure the corresponding fact
for A_\.) Now, these requirements are finitary. For instance, we get an extension
function fo, corresponding t&R,, as follows. IfC, is finite then requiremerik,,

is vacuously met and we can I&}, be any extension function, e.dpn(x) = 0 for

all x. If G is infinite, thenf,, can be defined as follows. Givanlet p= |x| and, by
infinity of C, chooseq > p minimal such tharg € Cy. Then g (x) = Q1P will

do since this ensures that if a geineetsfz, at p thenA(z;) =0, i.e.,zg € Gy \ A.

The above shows that, for any countable class C, C-bi-immunity can be en-
sured by a finite-extension argument. Even, for uniformly computable classes C,
however, the above argument may not yield a recursive set. This follows from the
fact, that in general the infinity problem for such classes can be undecidable. More-
over the above finite-extension argument is not bounded since in general a class C
will have an infinite membe€, with unbounded gaps (i.e. there will be blocks
0™ for anym > 0 in the characteristic sequence@y). (This may be considered
unsatisfying since for meeting a requiremé&t, just as in a simple Cantor diag-
onalization, it suffices to appropriately f&(x) on a single string and the value
to be given toA(x) does not depend on the other valuesfofThe difference to

100

3. BAIRE CATEGORY, FORCING, GENERICITY

a Cantor diagonalization is that we cannot choose any strfogdiagonalization
but we are limited to the infinitely many stringsn C,,.)

These shortcomings of a finite-extension construction of a C-bi-immune set
are overcome in a slow diagonalization of such a set. Here the requirements are as
before but the strategy for meeting the requirements is a different one. While in a
finite-extension argument the requirements are met in order, in fact atssttee
construction thesth requirement is met, here the order in which the requirements
are met dynamically depends on the construction. Now, at stafjthe construc-
tion of A, we determined on thesth stringzs = s. l.e., we extend the previously
given initial segmentx | s of the characteristic sequenaeof A by one bit. This
extension is chosen in such a way that we will meet the requirefgnt with the
least index B+1i < swhich has not been met before and which can be met now.
(Note that the latter will be the case if and onlyGi(s) = 1.)

This idea is made more precise by introducing the following notions. We say
that a requiremerRon . is satisfied at (the end of) stagefshere is a stringk < s
such thak € C, andA(x) =i and we say thaRpn; requires attention at stagei
2n+i <'s, Ronyi is not satisfied at stage- 1, ands € C,,.

Then, at stags of the construction, givea | swe fix 2n+i minimal such that
the requiremenRy,, i requires attention (if there is any), lats) = i, and say that
Ronyi receives attentioor is activeat stages.

Now to show that the constructed gemeets all requirements, hence is C-bi-
immune, we start with two easy observations. First, note that a requirékagnt
which is active at stageis satisfied at stage Second, ifR,; is satisfied at some
stages, thenRon. is satisfied at all later stages, hence will not require or receive
attention at any stage s, andRon, is actually met. In particular it follows that
any requirement becomes active at most once. Now, for a contradiction, assume
that the requiremeriRo,.i is not met. Then, by the above observations, there is
no stages such thatRyn; is satisfied at stageor such thatRy,j becomes active
at stages. On the other hand, there are infinitely many stagesth s € C, since
otherwiseRon i trivially holds. Since any requirement becomes active at most
once, by the latter we may choose- 2n+i such that € C, and no requirement
Rn with m < 2n+i becomes active at stage It follows thatR,,.; requires and
receives attention at stage So, by the aboveRa,. is satisfied at stagehence
met contrary to assumption.

Note that the above construction Afis recursive in{C, : n > 0}. So, for any
given uniformly recursive class C the construction yields a recursive C-bi-immune
set. In particular, this implies Theorem 2.66.

In the above construction of a C-bi-immune set the strategy for meeting a single
requirement can be described by a partial extension function. To be more precise,
the partial extension functiofy, i defined byfan i (X) =i if zy € Cyandfani(X) T

3.4. Finite Extension Arguments

101

otherwise corresponds to the requirem®at.; as follows. If fon.i is not dense
along the constructed satthenC, is finite whence the requiremefby i is triv-
ially met. On the other hand, A meetsf,,; at some numbem thenz, € C,
andA(zy) =i whenceRon.i is met. So in order thak meets requiremerRyn . it
suffices that eithef,,.; is not dense along or A meetsfon ;.

The construction of a C-bi-immune differs from a general wait-and-see argu-
ment in one respect, namely, as pointed out above already, the diagonalization
depends only a single input. This is reflected by the fact that the partial extension
functions attached to the individual requirements are 1-bounded. In a general argu-
ment, such a constant bound on the required extension will not exist. In analogy to
the formalization of finite- extension arguments in Definitions 3.22 and 3.23 above,
we can formalize the wait-an-see method as follows.

Definition 3.27 A property can beensured by a wait-and-see argumérihere
is a sequencéR,, : n > 0} of quasi-finitary requirements such that anyAethich
meets all requirement®, has propertyp.

Here a requiremerk is quasi-finitary if there is a seD« of strings such that
(1) for any stringx € D4, there is a stringy extendingx such that any seA with
y C X(A) meetsR (we say thay forcesR) and (2) any sef suchD4 contains at
most finitely many initial segments éf meetsR too.

Definition 3.28 Let R be a quasi-finitary requirement and febe a partial exten-
sion function. Thenf corresponddo R or f is astrategyfor R if, for any setA
such thatf is not dense along or A which meetsf, A meetsR.

Again one can easily show that there is a strategy for any quasi-finitary require-
ment.

Lemma 3.29 Let R be a quasi-finitary requirement. There is a partial extension
function f corresponding te.

PROOF Fix D4 as in Definition 3.27. We obtain the required extension function
by letting f (x) be defined if and only ik Dy and by lettingf (x) be the least string
zsuch thatzforces®R if f(x) is defined. O

The above together with the characterization of the comeager classes in terms
of partial extension functions shows that a propéttgan be ensured by a wait-
and-see argument if and only if the corresponding clag®fCsets with property
P is comeager. Together with the similar result for the finite-extension method we
obtain the following equivalence theorem.

102

3. BAIRE CATEGORY, FORCING, GENERICITY

Theorem 3.30 LetP be a property and le€» be the class of sets with propefty
Then the following are equivalent.

(i) P can be ensured by a wait-and-see argument.
(i) P can be ensured by a finite-extension argument.
(iii) Copis comeager.

PROOFE This easily follows from Lemma 3.29 and Corollary 3.15 together with
Theorem 3.26 O

The above theorem shows that in principle the wait-and-see method is not more
powerful than the finite-extension method, i.e., there is no progemghich can
be ensured by a wait-and-see argument but not by a finite-extension argument. In
fact one can easily show that the notion of a finitary requirement and the notion of
a quasi-finite requirement used in the formal characterizations of the finite-extend
method and the wait-and-see method, respectively, coincide.

The advantage of the wait-and-see arguments stems from the fact that this
method admits simpler strategies, hence yields witnesses for a prépeirtgpwer
complexity. We have exemplified this abov by looking at the construction of a
C-bi-immune set using both, a finite extension argument and a wait-and-see argu-
ment. While the former construction was noneffective hence (in general) gave a
nonrecursive set, for uniformly recursive C the latter proof was effective thereby
yielding a recursive C-bi-immune set. This phenomenon has been closer ana-
lyzed in the literature. For instance, if we let C be the important class P of the
polynomial-time computable sets, then Mayordomo (1994) has shown that there
is no uniformly recursive set of total extension functions ensuring P-bi-immunity
(whence any finite-extension construction yields only a nonrecursive P-bi-immune
set) while Ambos-Spies (1996) has shown that there is a uniformly recursive class
of partial extension functions of time complexi®n?) ensuring P-bi-immunity
whence a P-bi-immune set in DTIME®") can be constructed by a wait-and-see ar-
gument. Moreover, as pointed out above already, the finite-extension construction
of a C-bi-immune set requires unbounded extensions whereas for the wait-and-
see construction 1-bounded partial extension functions suffice. So, by Theorem
3.21, the wait-and-see approach shows that (for any countable class C the class
of C-bi-immune sets has measure 1, an observation we cannot make based on the
finite-extension approach.

In order to analyze these complexity-issues more closely, in the next section
we introduce generic sets. Intuitively speaking, this will allow us to define for
any complexity level a notion of genericity and weak genericity such that the cor-
responding generic sets will have all properties which can be ensured by wait-

3.4. Finite Extension Arguments 103

and-see arguments based on strategies of the corresponding complexity level while
the weakly generic sets will have all properties which can be ensured by finite-
extension arguments based on strategies of the corresponding complexity level.

104

3. BAIRE CATEGORY, FORCING, GENERICITY

3.5 Generic Sets

The finite-extension method and, similarly, the wait-and-see method have been in-
troduced as diagonalization techniques for constructing sets with a certain property
P. Starting from this propert, first an infinite list of (quasi-)finitary requirements

Rn, N> 0, is given such that these requirements together effsurben strategies

fy (i.e., partial or total extension functions) corresponding to the requirerfignts

are designed and, finally, these strategies are used in a canonical way for defining
a setA with property®. So the complexity ofA will depend on the complexity

of the strategie$,, hence, by analyzing the complexity of these strategies, we can
analyze some complexity issues of sets with prop@rty

Now we proceed in the opposite direction. We start with an arbitrary countable
family F of strategies and look at the property ensured by these strategies. We call
this propertyF-genericity and sets with this propei#rgeneric. Typically,F will
consist of all the strategies of a certain complexity level, for example the recursive
or the polynomial-time computable strategies. (Note that all complexity classes are
countable, hence the corresponding fandilpf strategies will be countable too.)

By the relations between the finite extension-method and Baire category, generic
sets will always exist, in fact the class &fgeneric sets will be comeager.

Note thatF-genericity is the strongest property which can be ensured by fam-
ilies of strategies which are members®f So if F consists of all strategies of a
certain complexity levelF-genericity will be the strongest property we can obtain
by strategies whose complexities do not exceed this level.

So, in order to show that strategies of a certain complexity level do not suffice
for ensuring a certain properf, it suffices to show that there is a set which is
generic for this family of strategies but which does not have prog@rtyThis
shows that generic sets are of great interest for the formal analysis of the strength
of resource-bounded diagonalization techniques (see Ambos-Spies (1996) for more
details).

Generic sets play another important role in structural investigations in com-
putability theory and computational complexity theory for obtaining strong sepa-
rations. If there are complexity classes € C, such that there is a s& in C,
which is generic for € then we may deduce that all diagonalization arguments
based on strategies fromy €an be carried out inside of,C So, roughly speak-
ing, the genericity concepts will combine the advantages of Baire category, namely
combinability and modularity, with a way to control the complexity of the witness
sets.

After these intuitive remarks pointing out some of the important aspects and

3.5. Generic Sets 105

applications of genericity concepts, we will now formally introduce genericity. We
will distinguish between (general) genericity based on partial extension functions
andweak genericitypased on total extension functions. Moreover, we will call a
genericity concept bounded genericitgoncept if it is based on bounded (total or
partial) extension functions.

Definition 3.31 Let F be a countable class of partial extension functions and let
Ftot] be the class of total extension functionsfinA setG is F-genericif G meets

all partial extension functions ifi which are dense along, i.e., if G is a member

of the class

Mg = {A:Vf € F (f is not dense along or A meetsf)}.

A setG is weaklyF-genericif G meets all total extension functionsn i.e., if G
is a member of the class

Mgy = {A: Vf € Ftot] (A meetsf)}.
The relations betweefi-genericity and wealf-genericity are as follows.

Proposition 3.32 LetJ be any countable class of partial extension functions. Then
anyJ-generic set is weakly-generic. Moreover, iff contains only total functions
thenF-genericity and weal-genericity coincide.

PrROOFE This is immediate by definition and by the fact that any total extension
function is dense along all sets. d

Some examples of genericity notions which have been studied in the literature
are as follows: By lettingF be the class of all arithmetically definable partial ex-
tension functions we obtain arithmetical genericity introduced by Feferman (1965)
and by considering the class of partial recursive extension functions we obtain the
notion of 1-genericity introduced by Hinman (1969) which plays a major role in
the degrees of unsolvability (see e.g. Jockusch (1980)). By considering the class
of total recursive functions we obtain the genericity concept related to the effec-
tive Baire category concept of Mehlhorn (1973). Moreover various of the resource
bounded genericity concepts introduced in complexity theory can be obtained by
letting F be the class of (partial or total, bounded or unbounded) extension func-
tions computable within some give time or space bounds where in some cases the
representation of the input or the output has to be modified (see e.g. Ambos-Spies
(1996), Ambos-Spies et al. (1987), Ambos-Spies et al. (1988), Fenner (1991), Fen-
ner (1995), Fleischhack (1985), Fleischhack (1986), and Lutz (1990)). The finite-
state genericity concepts introduced and discussed in this thesis will be obtained

106

3. BAIRE CATEGORY, FORCING, GENERICITY

by considering classes of different types of extension functions all of which are
computable by finite automata.
We next turn to the existence Btgeneric sets.

Theorem 3.33 Let F be any countable class of partial extension functions. Then
the classes of thg-generic sets and the weaklygeneric sets are comeager.

PrRoOOFE This is immediate by Corollary 3.15 and Proposition 3.32. O

If the classF consists only of bounded extension functions (see Definition 3.20)
then we can strengthen the previous theorem.

Definition 3.34 Let J be a countable class of bounded partial extension functions.
Then (weakF-genericity is called ®oundedgenericity concept.

Theorem 3.35 For any bounded genericity concept, the class of generic sets is
comeager and has measure 1. l.e.Fifs a countable class of bounded partial
extension functions then the classes of #3hgeneric sets and of the weakly
generic sets are comeager and have Lebesgue measure 1.

PROOF By Theorem 3.21. O

In our definition of anF-generic setG we require thatc meets all partial ex-
tension functions ir¥ which are dense alon@. For sufficiently closed function
classesF, howeverG will meet such a partial functioh not just once but infinitely
often. Since this observation will be very useful in the following, we will address
this matter more formally and will introduce some related notation.

Definition 3.36 Let ¥ be a countable class of partial extension functions and let
Ftot] be the class of total extension functionsinA setG is i.o.-F-genericif G
infinitely often meets all partial extension functiongfirwhich are dense along,

i.e., if G is a member of the class

M3 = {A:Vf € F (f is not dense along or A infinitely often meets)}.

A setG is weakly i.o-F-genericif G infinitely often meets all total extension func-
tionsind, i.e., if Gis a member of the class

Mo = {A:VF € Fltot] (Ainfinitely often meetsf)}.

Lemma 3.37 LetF be a class of (partial) extension functions which is closed un-
der finite variants. Then any-generic set is i.0F-generic.

3.5. Generic Sets

107

If we say that a clas§ of (partial) extension functions is closed under finite
variants (c.f.v.) then this means that all extension functions of the same type which
are a finite variant of a function iff are a member off again. So, for example,
if ¥ is a class of total functions then we only consider finite variants which are
total too and ifF is a class ok-bounded functions then we only consider finite
variants which aré&-bounded again. Though this use of the term of closure under
finite variants might be somewhat ambiguous since in general the type we have in
mind will not be mentioned explicitly, the intended type should be obvious from
the context so that no confusion should arise.

PROOF OFLEMMA 3.37. Assume thab is F-generic and fixf € F such thatf is
dense along. We have to show th& infinitely often meetd . For a contradiction
assume that this is not the case. Then we maynfix O such that, for alh > m
suchthatf (y[n) |, (y [n)f(y[n) Zy, whereyis the characteristic sequence®f
Consider the following finite variamfof f: Givenx such thatx| > m, g(x) = f(x).
Otherwise, leg(x) = 1—G(zy). (Note that, for total ok-boundedf, g is total or
k-bounded again. l.egis of the same type as) Now, by closure off under finite
variants,g € F. Moreover, since is dense alongs, g is dense alongs too. So,
by F-genericity ofG, G meetsy at some numben. By definition ofg, howeverG
does not megg at any number less than. Son > m. Sincef andg agree on all
inputs of length at leashit follows thatG meetsf atn. By n > mthis contradicts
the choice oim. O

We close our discussion of genericity by giving some examples showing how
closure properties of a function clagscarry over to the corresponding class of
F-generic sets.

Definition 3.38 A classJ of (partial) extension functions is closed undmrite
replacementf for any wordsx andx’ with |x| = |X/| the following holds. For any
function f € F there is a functiorf’ € F such thatf’(X'y) = f(xy) forally € Z*.

Lemma 3.39 LetF be a class of (partial) extension functions which is closed un-
der finite replacement. Then the class of the ¥egeneric sets is closed under
finite variants.

PROOF Assume thaG is i.0.-F-generic and tha®' is a finite variant ofG. We
have to show tha®' is i.0.-F-generic too. So fixf € F. It suffices to show that
G’ meetsf infinitely often. SinceG' is a finite variant ofG we may fix a number
n such thatG(zyn) = G'(zy) for all m>n. Now letx=G [nandX =G | n.
Then, by closure of under finite replacement, there is a functidre F such that
f’'(X'y) = f(xy) for all y € *. By choice ofn, x andx, G’ meetsf atm > n iff

108

3. BAIRE CATEGORY, FORCING, GENERICITY

G meetsf’ atm. Since, by i.0.F-genericity,G meetsf’ infinitely often, it follows
thatG’ meetsf infinitely often. O

Note that, by Lemmas 3.37 and 3.39, for any countable cfas$ (partial)
extension functions which is closed under finite variants and finite replacement the
class ofF-generic sets is closed under finite variants.

Recall that for a partial functiofi ;: Z* — Z* thedual function f is defined by
f(x) = f(x) if f(x)is defined and (X) 1 otherwise, whera is the dual string ok,
ie,€=¢cand(a;...an) =a...an=(1—a1)...(1—an).

Lemma 3.40 Let F be a class of (partial) extension functions such that, for any
(partial) function fe &, f € . Then the class of (i.0.g-generic sets is closed
under complement.

PrROOFE This easily follows from the observation that, for anyAeind any partial
extension functiorf, f is dense aloné iff f is dense alond\, andA meetsf atn
iff Ameetsf atn. 0

CHAPTER 4

Bounded Finite-State Genericity

110

4. BOUNDED FINITE-STATE GENERICITY

In this chapter — which is the core of this thesis - we introduce and analyze
bounded finite-state genericity, i.e., genericity notions based on bounded extension
functions computable by finite automata. By analyzing the properties which all of
the corresponding generic sets have in common we can decide which properties
can be forced by finite extension or wait-and-see arguments where the strategy for
meeting a single requirement is bounded and computable by a finite automaton.

In Section 4.1.1 we introduce the basic conceftseg-genericity capturing
regular partial extensions of lengkh w-reg-genericity or bounded reg-genericity
capturing regular partially defined extensions of arbitrary constant length, and the
corresponding weak genericity notions based on extensions which are defined ev-
erywhere. We also show th&treg-genericity ando-reg-genericity coincide (for
anyKk), i.e., that the power of partially defined bounded extension strategies com-
putable by finite automata does not depend on the lekgththe extension. In
order to show that, in contrast to this observation, the power of totally defined
bounded finite-state extension strategies depends on the length of the admissible
extension, in Section 4.1.2 we explore the saturation properties of the different
types of reg-generic sets. Our main result here is that both, the bounded reg-generic
sets and the weakly-reg-generic sets coincide with the saturated sets. This result
can be viewed as Baire category counter part to the result of Schnorr and Stimm
(2971/72) in the setting of measure which asserts that the finite-state random sets
are just the sets with normal characteristic sequence. Our result also shows that
if we consider extension strategies of constant but arbitrary length then partially
defined finite-state strategies are not more powerful than totally defined finite-state
strategies. This surprising result contrasts results on genericity and weak generic-
ity in the setting of complexity theory (see the results on P-immunity in Section
3.4). After discussing some closure properties of the bounded finite-state generic-
ity notions in Section 4.1.3, we then analyze the diagonalization strength of these
genericity notions (Section 4.1.4). In particular we show that no bounded reg-
generic set is regular but that there are context-free — in fact linear — languages
which are bounded reg-generic. So this genericity notion provides a strong separa-
tion of the classes of regular and context-free (or linear) languages at the bottom of
the Chomsky hierarchy. We may also conclude that these genericity notions do not
imply REG-bi-immunity since, as we have shown in Section 2.4, no context-free
language is REG-bi-immune. Finally, we illustrate the difference in power of the
weak and general bounded finite-state genericity concepts if we fix the length of
the extension by showing that, in contrast to the above, there are regular weakly
1-reg-generic sets.

In Section 4.2 we discuss some variants of the bounded finite-state genericity
concepts which are based on extension strategies working with partial information
on the initial segment specified previously. We consider the following two limi-

111

tations: First (in Section 4.2.1 we consider length invariant extension strategies,
i.e., extension strategies which are not given the initial segment itself but only its
length. Second (in Section 4.2.2) we look at oblivious extension strategies, i.e.,
strategies which remember the l&sbits of the given initial segment (for some
constank). By comparing the strength of the corresponding (apparently weaker)
finite-state genericity concepts with the previously introduced concepts we can see
what information on a given initial segment can be extracted and used by a finite
automaton. While for the common bounded genericity concepts in computational
complexity theory the corresponding length invariant or oblivious genericity con-
cepts are strictly weaker, here we show that some of the length invariant and obliv-
ious bounded finite-state genericity notions coincide with bounded reg-genericity
thereby demonstrating the low computational power of finite automata.

In the remainder of this chapter we discuss the question whether we can in-
troduce some stronger bounded finite-state genericity concepts which force REG-
bi-immunity. First, in Section 4.3 we formalize finite-state Cantor style diago-
nalization arguments. In such a diagonalization argument, the diagonalization at
a stringx does not depend on the values of the constructed\set the previ-
ous strings (as in a finite extension argument) but is independent of the previously
specified part ofA. By formalizing these arguments in terms of diagonalization
functions and by introducing corresponding genericity notions we show that to-
tal finite-state Cantor diagonalization functions can force nonregularity (but not
more) and partial finite-state Cantor diagonalization functions can force REG-bi-
immunity (but not more), namely the finite-state Cantor style generic sets are just
the REG-bi-immune sets and the weakly finite-state Cantor style generic sets are
just the nonregular languages. Based on these observations, in Section 4.4 we in-
troduce the desired stronger bounded finite-state genericity concepts subsuming
both, bounded reg-genericity and Cantor style reg-genericity, by considering regu-
lar extension functions which obtain as their input the given finite initial segment
in a redundant form allowing a finite automaton to extract both, the standard rep-
resentation of this initial segment and the string at which the diagonalization takes
place.

112

4. BOUNDED FINITE-STATE GENERICITY

41.1

Definitions and
Basic Facts

4.1 Bounded reg-Genericity

In this section we introduce and investigate bounded genericity concepts based on
regular extension functions. By considering total extension functions and partial
extension functions and by considering extensions of arbitrary constant length and
extensions of given constant length we get a variety of concepts. Recall that we
have introduced (partial) regular functioh®f type f : * — =X in Section 2.3 and

the notion of bounded andbounded extension function in Section 3.3. There we
have also explained what it means that a partial function is dense along a set and
that a set meets an extension function.

Definition 4.1 A set G is k-reg-genericif it meets all regular partiak-bounded
extension functions which are dense al@ds is weakly k-reg-generii G meets
all regular totalk-bounded extension function§ is w-reg-genericor bounded
reg-genericif G is k-reg-generic for alk > 1, i.e., if G meets all regular partial
bounded extension functions which are dense aen@ is weaklyw-reg-generic

if Gis weaklyk-reg-generic for alk > 1, i.e., if G meets all regular total bounded
extension functions.

We apply the above notions to infinite sequences as well as to sets. E.g. we
call a sequence k-reg-generic if the sef(a) corresponding ta is k-reg-generic.

The following relations among the bounded finite-state genericity concepts are
immediate by definition (wherie> 2).

w-reg-generic — weakly w-reg-generic

4 Y
(k+1)-reg-generic — weakly (k+ 1)-reg-generic
4 U (4.1)
k-reg-generic — weaklyk-reg-generic
U U
l-reg-generic — weakly 1-reg-generic

Note that the finite-state genericity concepts above are genericity notions in
the sense of Definition 3.31. For instance, (wealeg-genericity coincides with
(weak) F-genericity if we let¥ be the class of partial regular extension functions
of type f : * — =K for k > 1. Moreover, all of the above genericity concepts are
bounded in the sense of Definition 3.34 whence, by Theorem 3.35, the correspond-

4.1. Bounded reg-Genericity 113

ing generic sets are abundant in the sense of both, category and measure. By (4.1)
it suffices to state this observation for bounded reg-genericity.

Theorem 4.2 The class of bounded reg-generic sets (i@reg-generic sets) is
comeager and has measure 1.

PrROOF By Theorem 3.35. O

Before we address the question which of the implications in (4.1) are strict, it
will be useful to note that, for the above genericity notions, a generic set meets a
corresponding extension function not just once but infinitely often. This technical
fact will be applied in the proofs of many of our results.

Lemma 4.3 Let A be k-reg-generic. Then A infinitely often meets every regular
partial k-bounded extension function f which is dense along A,(kel,n) f(A |

n) C A for infinitely many n. Similarly, any weakly k-reg-generic set A meets every
regular total k-bounded extension function infinitely often.

PROOF Since, by Lemma 2.46, the class of regular (parkedpunded extension
functions is closed under finite variants, this is immediate by Lemma 3.37]

Next we use Lemma 4.3 to show that from the above genericity concepts the
concepts based on partial extension functions coincide.

Theorem 4.4 For any set A the following are equivalent.
1. Ais bounded reg-generic, i.exreg-generic.

2. Aisl-reg-generic.

PrOOF By (4.1) it suffices to show that any 1-reg-generic sabigeg-generic.
So letA be 1-reg-generic. In order to show thats w-reg-generic, by definition,
it suffices to show thaA is k-reg-generic for all numbers> 1. We proceed by
induction. The cas& = 1 holds by assumption. For the inductive stepkix 1
and, by inductive hypothesis, assume tha k-reg-generic. We have to show that
A'is (k+ 1)-reg-generic. Leff be any regular partiglk + 1)-bounded extension
functions which is dense alonfyy It suffices to show thaf meetsf. Forx such
that f (x) is defined, letf (x)~ be the firstk bits of f(x), and, fori < 1, define the
partialk-bounded extension functiofy by letting fi(x) = f(x)~ if f(x) is defined
and f(x) = f(x)~i and by lettingfi(x) be undefined otherwise. Then, as one can
easily check, the partial functiorfg and f1 are regular an#-bounded. Moreover,
for any x such thatf (x) is defined, eitherfo(x) or f1(x) is defined. Hence, by

114

4. BOUNDED FINITE-STATE GENERICITY

4.1.2

Finite-State
Genericity vs.
Saturation

density off alongA, fg or f1 is dense aloné\ too. For the remainder of the proof
fix i <1 such that the regular partidbounded extension functidiis dense along
A
Then, by inductive hypothesis and by Lemma A3neetsf; infinitely often,
i.e.,
I*n>1((a [n)fi(an)Ca) (4.2)

wherea is the characteristic sequencefofDefine the partial 1-bounded extension

functiong: Z* — Z by letting

(W) = i if IXCw(fi(x) | & w=xfi(x))
W= 1T otherwise.

Then, as one can easily chegks regular and, by (4.2)y is dense alond.. So, by
1-reg-genericity oA, A meetsy at some numbaen, i.e.,g(a | n) is defined and

(a njg(a [n)Ca. (4.3)

By definition of f; andg, the former implies thaf (a | (n—Kk)) andfi(a [(n—k))
are defined and

(ot mg(a n) = (o [)i = (a | (n—K))fia [(1—K))i = (| (n—K)) f(a | (1—K)).

By (4.3) this implies thata | (n—k))f(a | (n—k)) C a, i.e, thatA meetsf at
n—k. O

In order to determine which of the other implications in (4.1) are strict, next
we explore the saturation properties of the bounded finite-state generic sets.

We will now show that some of the genericity concepts in (4.1) coincide with
saturation. To establish this we will need the following two relations between the
bounded finite-state genericity notions in (4.1) and (partial) saturation.

Lemma 4.5 Let A be weakly k-reg-generic tk1). Then A is ke-saturated.

PrROOF Given any stringk of lengthk we have to show that occurs infinitely
often in the characteristic sequenzef A, i.e., there are infinitely mang such
that (A | n)x C a. Define thek-bounded regular extension functidrby f(y) = x
for all y € £*. Then, by wealk-reg-genericity ofA and by Lemma 4.3A [n)x =
(ATn)f(ATn)C a for infinitely manyn. O

Lemma 4.6 Let A be saturated. Then Alsreg-generic.

4.1. Bounded reg-Genericity 115

The proof of this lemma uses the characterization of saturated sequences in
terms of regular partial prediction functions together with the observation that par-
tial 1-bounded extension functions may alternatively be interpreted as partial pre-
diction functions.

PrOOF Letf:X* — X be aregular partial 1-bounded extension function which
is dense alond\. We have to show thak meetsf at somen. For a contradiction
assume that this is not the case, andilbe the characteristic sequence®ofThen,

by density off alongA,

In(f(an)]) (4.4)
and, by failure ofA to meetf,
vn(f(an)|=(a[n@-f(aln)Ca) (4.5)

Now let f be the negation of, i.e., to be more precise,

. {l—f(x) if f(x) |

7 otherwise.
Then, obviouslyf is regular and, by (4.4) and (4.5),
Fn(farn)l)

and
vn(f(an) = (a|nf(anCa).

So, if we view f as a partial prediction function, then, by the forménnakes
infinitely many predictions about and, by the latter, all predictions abautmade
by f are correct. It follows by Theorem 2.120 thais not saturated which gives
the desired contradiction. O

We are now ready to state the following equivalence theorem.

Theorem 4.7 The following are equivalent.
(i) Ais saturated.
(i) Ais 1-reg-generic.
(iii) Ais bounded reg-generic, i.ew-reg-generic.

(iv) A is weaklyw-reg-generic.

116 4. BOUNDED FINITE-STATE GENERICITY

The equivalence of saturation and bounded reg-genericity can be viewed as
an effectivization of Staiger’'s observation that the class of saturated sequences is
comeager and has measure 1 (see Theorem 2.101): Since bounded reg-genericity
is a bounded genericity concept, the class of bounded reg-generic sets is comeager
and has measure 1 (see Theorem 4.2).

PROOF OF THEOREM 4.7. It suffices to show the implications) = (i) =
(iii) = (iv) = (i). The implication(i) = (ii) holds by Lemma 4.6, the implication
(i) = (iii) holds by Theorem 4.4, and the implicati@in) = (iv) is immediate by
definition (see (4.1)). Finally, for a proof of the implicatidiv) = (i) note that,
by Lemma 4.5, any weakli¢-reg-generic set ik-w-saturatedi > 1). Since, by
definition, a weaklyw-reg-generic sef\ is weaklyk-reg-generic for alk > 1, it
follows thatA is k-w-saturated for alk > 1, hence saturated. O

In contrast to Theorem 4.7, the welskeg-genericity notions lead to a proper
hierarchy for growingk. This also follows from the partial saturation properties
of the weaklyk-reg-generic sets. It suffices to complement the positive saturation
property of these sets in Lemma 4.5 by the following negative result.

Lemma 4.8 For any k> 1 there is a weakly k-reg-generic set A which is flot-
1)-1-saturated.

PrROOFE It suffices to construct a weakly-reg-generic seA such that(A |
n)1<*1 Z a for all n > 0, wherea is the characteristic sequencefofWe do this
by a finite extension argument. Fix an enumerafiés: e > 0} of the total regular
k-bounded extension functions. Defing< n; < n,... andA | ne by induction on
e > 0 by lettingng = 0 andA | ner1 = (A [ne) fe(A | ne)0. Obviously this ensures
thatA has the required properties. O

Theorem 4.9 For any k> 1 there is a weakly k-reg-generic set which is not weakly
(k+ 1)-reg-generic.

PROOF This is immediate by Lemmas 4.5 and 4.8. O

Theorems 4.7 and 4.9 together with (4.1) give the desired complete characteri-
zation of the relations among the bounded finite-state genericity notions.

Theorem 4.10 For k > 2 the following and only the following implications hold

4.1. Bounded reg-Genericity 117

(up to transitive closure).

w-reg-generic <— weaklyw-reg-generic

) Y
(k+1)-reg-generic weaklyk + 1)-reg-generic
(3 [} (4.6)
k-reg-generic weakly k-reg-generic
) Y
1-reg-generic weaklyt-reg-generic

By our detailed analysis of the saturated sets and sequences in Section 2.6,
we can exploit the relations between saturation and bounded finite-state genericity
in order to obtain a series of interesting results on the latter notion. In the next
two subsections we will use this approach in order to give some closure properties
and to analyze the diagonalization strength of the bounded finite-state genericity
notions.

By Theorem 4.7 the closure properties of the saturated sets and sequences obtained 4.1.3
in Section 2.6 directly carry over to the bounded reg-generic sets and sequences.
In particular we obtain the following.

Closure
Properties

Lemma 4.11 The class of the bounded reg-generic sets is closed under finite vari-
ants and under complement. Moreover, the class of the bounded reg-generic se-
guences is closed under closeness.

PrROOF By Theorem 4.7 this immediately follows from Proposition 2.109 and
Lemma 2.108. g

Lemma 4.12 Let A be bounded reg-generic.

1. For any word we 2*, wA is bounded reg-generic too. In fact, any set B such
that BhwZ* = wA is bounded reg-generic.

2. For any set B, the effective disjoint union of A and Bp B=0AU 1B =
{Ov:ve Alu{lw:w e B}, is bounded reg-generic.

PROOF By Theorem 4.7 this immediately follows from Lemma 2.111. O

In order to explore the closure properties of the weadkheg-generic sets we
have to use some more direct arguments. Next we will discuss the results corre-
sponding to Lemma 4.11 in this setting.

118

4. BOUNDED FINITE-STATE GENERICITY

41.4

On the
Diagonalization
Strength of
Bounded
reg-Genericity

Lemma 4.13 For k > 1, the class of the weakly k-reg-generic sets is closed under
finite variants and under complement.

PROOF As one can easily show, the class of total regilounded extension
functions is closed under finite replacement and under dual functions. So the clo-
sure of the class of the weakkyreg-generic sets under finite variants and under
complement follows from Lemmas 3.39, 3.40 and 4.3. O

In contrast to Lemma 4.11, however, the classes of the wdakdg-generic
sequencek(> 1) are not closed under closeness.

Lemma 4.14 For any k> 1 there are sequences and 3 such thata is weakly
k-reg-genericf is close toa andf is not weakly k-reg-generic.

PROOF Letk > 1 be given. By a finite extension argument we construct a weakly
k-reg-generic seA such thaA\ {0}* is not weaklyk-reg-generic. Then the charac-
teristic sequenceas andp of the setsA andA\ {0}*, respectively, have the required
properties.

Let F={fn:n> 0} be an enumeration of the regular tdtahounded extension
functions and fixng such thatk < 2. ThenA | 0"*¢ is defined by induction
on e as follows. LetA | 0% be the empty set, i.e., the sequené®d. Then,
givenA | 00F€ |etA | Ohterl — A [Qlotef (A | Qo +€)020 "~k S0 the extension
A | 0tetl of A | 0 t€ ensures thah meets thex-th regulark-bounded extension
function fe. The block of zeroes following | 0" *€fe(A | 0"*€) in the definition of
A 0% +e+l ensures that any block™of ones ina has length at mos$t Moreover,
such a blockA(zp)...A(zpk-1) = 1¥ of maximum lengthk begins with position
zp = 0"*® for somee > 0. So the word 4 does not occur in the characteristic
sequence of A\ {0}*. By Lemma 4.5 this implies thak\ {0}* is not weakly
k-reg-generic. 0

We will now look at the diagonalization strength of the bounded finite-state gener-
icity concepts where, by (4.6), it suffices to consider bounded reg-genericity and
weakk-reg-genericity fok > 1. The first question to ask here is of course whether
these concepts are strong enough to diagonalize over all regular sequences and
all regular sets, i.e., whether the characteristic sequence of any generic set (of a
given type) is nonregular and whether any generic set is nonregular. Recall that in
Section 2.5.2 we have shown that any language which has a regular characteristic
sequence is regular but that there are regular languages with nonregular character-
istic sequences.

4.1. Bounded reg-Genericity 119

Our first observation is that any of the bounded finite-state genericity concepts
forces nonregularity of the characteristic sequence. In fact, for our weakest reg-
genericity concept, the generic sets are just the sets with nonregular characteristic
sequence.

Theorem 4.15 A set A is weakly 1-reg-generic if and only if the characteristic
sequence of A is not regular.

PrROOF The proof is by contraposition. First assume tbat regular. Then,
by Theorem 2.91¢a can be predicted by a finite automaton, i.e., the funcfion
>* — ¥ defined byf (x) = a(|x|) is regular. It follows that the functiofi defined
by f(x) = 1— f(x) is a regular 1-bounded extension function and thebes not
meetf. SoAis not weakly 1-reg-generic.

For a proof of the other direction assume thais not weakly 1-reg-generic.
Then there is a total regular 1-bounded extension fundtisaoch thatf (a [n) #
a(n) for all n. Hence, forf defined byf(x) = 1— f(x), f is regular again and

f(a | n)=a(n) for all n > 0 whencen is regular by Theorem 2.91. O

This characterization of weak 1-reg-genericity has some interesting conse-
quences. First we deduce that, in contrast to bounded reg-genericity kwegk
genericity cannot be characterized solely in terms of (partial) saturation. Since
weak k-reg-genericity does not coincide with saturation it suffices to show that
none of the partial saturation properties implies wkakg-genericity.

Corollary 4.16 For any kk' > 1there is a keo-saturated set A which is not weakly
k'-reg-generic.

PROOF By Lemma 2.137 there is a regulliw-saturated sequenee So, for
A= Sa), Ais k-w-saturated buf is not weakly 1-reg-generic by Theorem 4.15,
hence not weakli'-reg-generic by (4.1). O

Next we observe that forcing with regular total 1-bounded extensions func-
tions is not strong enough to force nonregularity in the sense of languages. Since,
by Theorem 2.81, there are regular languages with nonregular characteristic se-
guences, this is immediate by the preceding theorem.

Corollary 4.17 There is a weaklt-reg-generic set which is regular.

As observed in the proof of Theorem 2.81, the unary langy8geis regular
but has a non-regular characteristic sequence{(§b is a natural example of a
regular language which is weakly 1-reg-generic. This observation can be extended
as follows. In general, no infinite unary language and no infinite length-language

120

4. BOUNDED FINITE-STATE GENERICITY

has a regular characteristic sequence. (Here weAcallength-languagef A is
length invariant, i.e., if, for any words andy with |x| = |y|, x € A if and only if

y € A)) Hence all these languages are weakly 1-reg-generic. In contrast, however,
none of these languages is weakly 2-generic.

Lemma 4.18 Let A be an infinite unary language or length language. Then A is
weaklyl-reg generic but not weaklg-reg-generic.

PROOF First assume thah C {0}* is infinite and leta be the characteristic
sequence of. Then, as one can easily checkis not almost periodic, hence not
regular by Theorem 2.76. So, by Theorem 4.A5s weakly 1-reg-generic. To
show thatA is not weakly 2-reg-generic it suffices to note that the word 11 occurs
in the characteristic sequence of any unary language at most once. (Namely, the
only possible occurrence of 11 may be at the first two bits of the sequerfte i
and @ = z are both members @&.) SoA is not 2-2-saturated, hence not weakly
2-reg-generic by Lemma 4.5.

Now assume tha s an infinite length language, i.e., that there is an infinite set
D of numbers such tha = {x: |x| € D}. Then, as in the case of unary languages,
o is not almost periodic, henokis weakly 1-reg-generic. To show thatis not
weakly 2-reg-generic, however, we cannot apply Lemma 4.5 since, for infinite and
co-infinite D, the setA is 2-w-saturated. We observe, however, that the words 010
and 101 do not occur in the characteristic sequence of any length language. So the
languageA will meet the total regular extension functidn =* — 32 defined by
f(g) =00, f(x0) = 10 andf (x1) = 01 (x € Z*) at most once (hamely at= 0). By
Lemma 4.3 this implies thak is not weakly 2-reg-generic. 0

As we will show next, bounded reg-genericity does not only force nonregular-
ity of the characteristic sequence but nonregularity of the language itself too. We
obtain this result by the coincidence of this genericity notion with saturation and
our analysis of the complexity of saturated sets in Section 2.6.

Theorem 4.19 Let A be bounded reg-generic. Then A is not regular.

PROOE By Theorem 4.7A is saturated and, by Theorem 2.115, no saturated
language is regular. O

We do not know, whether this theorem can be extended to \kegdnericity
for any k > 2 or whether there are regular wealdyreg-generic sets. Again by
using the coincidence of saturation and bounded reg-genericity, however, we can
show that there are context-free languages - in fact linear languages - which are
bounded reg-generic.

4.1. Bounded reg-Genericity

121

Theorem 4.20 There is a linear language A which is bounded reg-generic.
PROOF By Theorems 4.7 and 2.116. g

The preceding two theorems show that we may say that bounded reg-genericity
iS a genericity concept pertaining to the class REG of regular languages since the
concept is strong enough to allow us to diagonalize over this class but, on the other
hand, it is not too strong, so that we can obtain these diagonalizations inside the
next bigger classes in the Chomsky hierarchy, namely the classes LIN and CF of
the linear and context-free languages.

Of course we may ask what stronger properties related to REG can be forced
by bounded reg-genericity. The probably most important properties here are REG-
immunity and REG-bi-immunity. In Section 2.4.3 we have shown that no context-
free language is REG-bi-immune though there are context-free REG-immune sets.
By the former, Theorem 4.20 implies that there are bounded reg-generic sets which
are not REG-bi-immune. We next extend this observation to REG-immunity.

Theorem 4.21 There is a bounded reg-generic set A such that neither Alnisr
REG-immune.

PrROOFE By the coincidence of bounded reg-genericity and saturation this is im-
mediate by Theorem 2.117. O

Below we will introduce some stronger genericity concepts for REG which
force REG-bi-immunity. As observed above, such a concept must entail certain di-
agonalizations over the class CF of context-free languages since REG-bi-immune
sets cannot be context free. So, in contrast to bounded reg-genericity, such a gener-
icity concepts will not pertain to REG in the sense discussed above.

In the following sections we will consider some variants of finite-state gener-
icity concepts based on bounded extension functions. First, we consider extension
functions which may use the information on the given initial segment only in part
thereby leading to some apparently weaker bounded reg-genericity notions. Sec-
ond, we will give the extension functions the initial segment in some enriched form
as an input which will yield stronger bounded reg-generic notions. For preparing
the latter concept we will also discuss the power of finite-state Cantor style diago-
nalizations were the diagonalization at a stxdpes not depend on the previously
defined initial segment of the set under construction but only on the stitag|f.

122

4. BOUNDED FINITE-STATE GENERICITY

4.2.1

Length
Invariant
Extension
Functions

4.2 Extensions Based on Partial Information

In the following we discuss some bounded regular genericity concepts which are
based on extension functions which obtain as their input not a finite initial segment
of a sequence but only some partial information on the initial segment. We consider
two cases: In the first case the extension function is given the length of the initial
segment (in unary notation). In the second case, only therldsts of the initial
segment (for some constamt> 1) are given. By comparing the bounded finite-
state genericity notions based on these limitations with the standard bounded finite-
state genericity notions introduced in the preceding section we can analyse the type
of information which a finite automaton can extract from a given initial segment.

An extension function which is given only the length of the current initial segment
not the initial segment itself may be described as a length invariant extension func-
tion. In case of regular bounded extension functions this leads to the following
definition.

Definition 4.22 Let f : * — ZX be a (partialk-bounded extension functionf

is length invariantif f(w) = f(w') for all wordsw andw’ with |w| = |w/|. A set

G is li-k-reg-genericif it meets all regular partigk-bounded extension functions
which are length invariant and dense aldagandG is weakly li-k-reg-generidf

G meets all regular totdd-bounded extension functions which are length invariant.
G is (weakly) liwo-reg-generidf G is (weakly) lik-reg-generic for alk > 1.

Note that a partial length invariant extension functibmvhich is defined in-
finitely often is dense along all sets. So we call such a functiatenseif the
domain of f is infinite or, equivalently, iff (O") | for infinitely many numbers.
Alternatively we can describe a length invarizdtounded extension functiohby
a functionf : {0}* — ZX. We say that such a functichis densef the domain of
f is infinite, and we say that a sAtmeetsf at some number ii f(0") is defined
and(A | n)f(0") = x(A) and thatA meetsf if A meetsf at somen.

Proposition 4.23 A set G is weakly li-k-reg-generic if G meets all total regular
functionsf : {0}* — 3. G is li-k-reg-generic if and only if G meets all partial
regular functionsf : {0}* — =X which are dense.

PrROOFE Consider the following correspondence between length invddbatinded
extension functions : £* — X and functionsf : {0}* — ZX: Given f let f be de-
fined by f(0") = f(0"). Conversely, giverf let f be defined byf (x) = f(0).

4.2. Extensions Based on Partial Information 123

Then f is regular if and only iff is regular,f is total if and only if f is total, f is
dense along a given satif and only if f is dense, anéd meetsf atn if and only if
A meetsf atn. By definition, these observations easily imply the claims. [

Just as in case of the standard bounded finite-state generic sets, a length in-
variant finite-state generic set meets a corresponding extension function not just
once but infinitely often, and the length invariant finite-state genericity notions are
closed under complement.

Lemma 4.24 Let A be li-k-reg-generic. Then A infinitely often meets every regular
partial length invariant k-bounded extension function f which is dense,(A€.,
n)f(A | n) C A for infinitely many n. Similarly, any weakly li-k-reg-generic set A
meets every regular total length invariant k-bounded extension function infinitely
often.

Lemma 4.25 Let A be (weakly) li-k-reg-generic. Theh is (weakly) li-k-reg-
generic to (k> 1 or k= w).

We omit the straightforward proofs of the preceding two lemmas and turn to
the comparison of the length invariant bounded finite-state genericity concepts.
The following relations are immediate by definition (fop 1).

(weakly) li-w-reg-generic = (weakly) li-(k+ 1)-reg-generic
4.7
= (weakly) li-k-reg-generic

If we compare the strength of the genericity concepts based on regular length-
invariant extension functions with that of the standard bounded reg-genericity con-
cepts, the following relations are immediate by definition.

k-reg-generic = li-k-reg-generic
4 ¥ (4.8)

weaklyk-reg-generic = weakly li-k-reg-generic

We can combine the above relations in the following table where, by the equiv-
alences in (4.6), we may omit referencekteeg-genericity (fok € NU {w}).

124 4. BOUNDED FINITE-STATE GENERICITY

li-w-reg-generic = weakly li-w-reg-generic < weakly w-reg-generic

I ¢ ¥

li-(k+1)-reg-generic = weakly li-(k+ 1)-reg-generic < weakly (k+ 1)-reg-generic

¥ ¢ ¥

li-k-reg-generic = weakly lik-reg-generic < weaklyk-reg-generic

¥ ¢ ¥

li-1-reg-generic = weakly li-1-reg-generic <« weakly 1-reg-generic
(4.9)

In the following we will determine which of these implications are strict. This
will require to prove a series of facts which will also illustrate some of the differ-
ences between these concepts.

We first look at the saturation properties of the various length invariant finite-
state genericity notions.

Lemma 4.26 Let A be weakly li-k-reg-generic ¢k 1). Then A is ke>-saturated.

PROOF Givenx e 3K it suffices to show thatoccurs in the characteristic sequence
a of A infinitely often. l.e., givem > 1 we have to show that there is a number
m > n such thati(m)...a(m+k—1) = x. Consider the totaf-bounded extension
function f defined byf (y) = xfor all y € * with |y| > nandf(y) = (1—A(ZM))"

for stringsy with |y| < n. Thenf is regular and length invariant. So, by assumption,
A meetsf at somem. By choice off this implies tham > nand

O

The preceding lemma shows that any (weaklyMieg-generic set is saturated.
By Theorem 4.7 this implies the following equivalence theorem.

Theorem 4.27 The following are equivalent.
() Ais saturated.
(i) Ais 1-reg-generic.

(iii) Ais bounded reg-generic, i.ew-reg-generic.

4.2. Extensions Based on Partial Information

(iv) Ais weaklyw-reg-generic.
(v) Ais li-w-reg-generic.
(vi) Ais weakly lieo-reg-generic.

Theorem 4.27 shows that the diagonalization strength of bounded regular ex-
tension functions is not decreased if we limit ourselves to total functions or length
invariant functions (or functions which are both, total and length invariant). This

observation, however, is based on the assumption that the length of the extensions

is not fixed. l.e., replacing an extension function by (a set of) equivalent total or
length invariant extension functions may lead to functions of higher norm. For
moving from partial to total functions we already have observed this in the pre-
ceding section. Next we will make similar observations for the length invariant
case. In particular we will show that, in contrastitkoeg-genericity, the strength

of li-k-reg-genericity depends on the noknThis will be established by the fol-
lowing negative saturation result for kiveg-genericity which, for later use, we
will state not only for length invariant finite-state genericity but for length invariant
genericity related to any countable class.

Lemma 4.28 Let k> 1 and letF be any countable set of partial length invariant
k-bounded extension functions. Then there i§aeneric set A such that the word
1%t does not occur in the characteristic sequeg¢a) of A. Hence, in particular,
there is an li-k-reg-generic set A such that the wakd! does not occur in the
characteristic sequencgA) of A.

PROOF We construct a seh with the required properties by a finite extension
argument. Fix an enumeratidrf, : n > 0} of the class7, i.e., any functionf, is

a partial length invariant function of type: * — ZX. Then in order to maké
F-generic it suffices to meet the requirements

Ry: fn dense alond\= Im(fa(a [m) | & (a | m)f,(a [m)Ca)

for n> 0 wherea denotes the characteristic sequencA.dh fact since, by length
invariance off,, fa(a | m) = f(0™) we may restate requiremeRy as follows.

Ry 3°m(fa(0™)) =3I m(fo(0M | & (a | m)fo(0™ C a)

Simultaneously wittA we define an increasing function N — N wherel(s)
andAs = A | I(s) are defined at stageof the constructionl(—1) =1 andA_; =
0). At stages of the construction we will ensure that requirem@gtis met. In
addition we will guarantee that1! does not occur im. For the latter, we will
ensure that, for ang> 0, the finite characteristic strirgs_1 of As 1 (i.e.,05 1 =

125

126

4. BOUNDED FINITE-STATE GENERICITY

A(0)...A(I(s— 1) — 1)) ends with a 0 and that the extensimgof as_; contains at
mostk additional occurences of the letter 1.

Now stages of the construction is as follows. Givd(s— 1) andAs 1 =A |
| (s— 1) distinguish the following two cases. If there is a numiver | (s— 1) such
that f5(0™) is defined then, for the least suetlet | (s) = m+k+ 1 and definéds_;
by lettingas = as_10™ (5 f5(0™)0. Otherwise, let(s) =1(s— 1) + 1 and define
As_1 by lettingas = ag_10.

As one can easily check, the definitionAfensures thaf meetsfs if fs(0™)
is defined for infinitely many numbers. So all requirements are met, henke
is F-generic. Moreover, sinces(0M)| = k (if fs(0™) is defined) the construction
obviously ensures thatt! does not occur in. O

The preceding lemma in particular shows that there akerdig-generic sets
which are no{k+ 1)-1-saturated. By Lemma 4.26 this implies the strictness of the
(weak) lik-reg-genericity hierarchy.

Theorem 4.29 For any k> 1 there is an li-k-reg-generic set A which is not weakly
li- (k+ 1)-reg-generic.

Next we will turn to the relations between length invariant and standard bounded
reg-genericity of fixed norm. We first observe a coincidence on level 1.

Lemma 4.30 The following are equivalent.
(i) Ais weakly li1-reg-generic.
(i) Ais weaklyl-reg-generic.
(iii) X(A) is notregular, i.e., not almost periodic.

PrOOFE By Theorem 4.15 and by (4.9) it suffices to show that for any given weakly
li-1-reg-generic sef the characteristic sequenaef A is not almost periodic. For

a contradiction assume thats almost periodic, sagt = vw®. Let p = |v| andq=

|w| and define the total 1-bounded extension funcfidoy letting f (x) = 1 —v(|x|)

if |x| < pandf(x)=1—v(m)if |x| > pand|x|—p=m modq. Thenf is regular
and length invariant. Moreovef(a | n) =1 —a(n) for all n > 0 whenceA does

not meetf. But this contradicts the assumption tiais weakly li-1-reg-generic.

O

Fork > 2 we do not encounter any equivalences as in Lemma 4.30 but get the
following two independence results.

Lemma 4.31 Let k> 1. There is a weakly k-reg-generic set A which is ndt-li-
reg-generic.

4.2. Extensions Based on Partial Information

PROOF We first observe that for any li-1-reg-generic gethere is a numben
such thaty(A)((k+ 1)n) = 1. This follows from 1) the fact that any sathas this
property ifA meets the partial 1-bounded extension functiatefined byf (x) = 1
if [x =0 mod(k+1) and f(x) T otherwise and 2) the fact that this functiéns
regular, length invariant and dense along any set.

So it suffices to construct a weaktyreg-generic sed such that

vn>0(X(A)((k+1)n)=0). (4.10)

Fix an enumeratiok f, : n > 1} of the total regular 1-bounded extension functions
and letA be defined by
X(A) = 0xp0x70%20x%30.... (4.11)

wherex, is inductively defined byy = 0 and
Xn = fn(0%p0%10...%n—10)

for n> 1. Then, by constructiorh is weaklyk-reg-generic. On the other hand,
since|xy| =k forn> 0, (4.10) follows from (4.11) whenckis not li-1-reg-generic.
O

For later use we will state the next lemma not only for length invariant finite-
state genericity but for length invariant genericity related to any countable class.

Lemma 4.32 Let k> 1 and letd be any countable set of partial length invariant
k-bounded extension functions. Then there i§ageneric set A such that A is not
weakly 2-reg-generic. In particular, there is an li-k-reg-generic set A such that A is
not weakly 2-reg-generic.

ProOOF We will construct a se with the required properties by a finite extension
argument. We letx be the characteristic sequencefpidenote the initial segment
of A determined by the end of stageof the construction by, let I(s) be the
length of this initial segment, i.eAs = A [|(s), and denote the initial segmentaf
corresponding té\s by as, i.e. as = A(0)...A(I(s) — 1). Moreover, by convention,
A1=0I(-1)=0ando_; =c¢.

In order to makeA F-generic we will basically use the standard approach.
Given an enumeratiofif, : n > 0} of the partial functions of typd : {0}* — ZX
corresponding to an enumerati¢fi, : n > 0} of F (see the paragraph following
Definition 4.22) we will ensure that the requirements

R, : f, dense= A meetsf,

are met H > 0). This will be sufficient by an obvious generalization of Proposition
4.23.

127

128

4. BOUNDED FINITE-STATE GENERICITY

As usual, at stageof the construction we take action to ensure that requirement
Rsis met. Givenl(s—1), As=A[l(s—1) andas_1 = A(0)...A(I(s—1) — 1) this
is achieved as follows. If there is a numimer> | (s— 1) such thatfs(0™) is defined
then we definé(s) andAs by lettingl (s) = m+k andas = as_1Bsfs(0™) for such
anmwheres can be any string of lengtim— | (s— 1). If there is no such number
m then we letl(s) = I(s— 1) andAs = As_;. Note that in the latter cask is not
dense whencBs is trivially met, while in the former case the construction ensures
thatA meetsfs atm. So in either casBs is met.

Our first goal of makingA F-generic is complemented by the second goal of
making sure thaf is not weakly 2-reg-generic. Here we have to show that there
is a total regular 2-bounded extension functionz* — >2 which is not met byA,

i.e., for which
vn(f(a [n)#a(na(n+1)) (4.12)

holds. Intuitively, we have to show that there is a finite automatowhich on
inputa [n can rule out one of the four possible values@N10,11 of the next
pair of bitsa(n)a(n+1) in a. For this sake we will make sure that in the extension
Os= as_lﬁsfs(om) of as_1 the stringBs is chosen so that it encodes information on
the final partfs(0™) of as. Note that fs(0™)| = k. So, given the ®binary strings,

.. Z5_, of lengthk in lexicographical orderfs(0™) = Z for some numbep < 2%,
whence it suffices to codeinto Bs. Also note that the length @@ depends om.

So in order to make sure th@g provides enough space for codipgin general
we will not take the leasin > I (s— 1) such thatfs(0™) is defined but will impose
some higher lower bound an. Since action for meeting requiremerthas only

to be taken ifr;(om) is defined for infinitely manyn this will not interfere with our
strategy for making\ F-generic.

We now formally describe stageof the construction ofA. Givenl(s—1),
As=ATl(s—1) andas 1 = A(0)...A(l(s— 1) — 1), distinguish the following two
cases. If there is a number> | (s— 1) 4+ 2k+ 2¢t1 +- 6 such thatfs(0™) is defined
fix the least numbem with these properties, léts) = m+ k and defineAs andas
by letting

Os = Os_1BsYs

where, for the unique < 2% with Z = f(0™) and forg=m— (I(s— 1) + 2k+
2(p+1)+86),

Bs = 1911(01)" P11 & ys = f5(0™) = 2.

If there is no such numben then letl(s) =1(s—1), As= As_1 and0os = Os_1.
This completes the construction.

In order to show that the constructed Adtas the requested properties, first, by
a straightforward induction, we observe that all requirements are met, whasce

4.2. Extensions Based on Partial Information 129

F-generic. (Note that in the first case of the construction amg/e,as_lﬁsfs(om)
for somem such thatfs(0™) is defined andas_1Bs| = mwhenceA meetsfs atm.)

It remains to show thak is not weakly 2-reg-generic, i.e., to show that there is
a regular total functiorf : =* — >2 such that (4.12) holds.

For defining such a functioh we start with some observations. First note that
there are stages < s; < ... and number, < 2¢ andg, > 0 (n > 0) such that

a = BsoYeo Bs, Ys1 B, Yy -

= 1%12(01)kTPorl1aZ 19111(01) P17 1%11(01) P 11aZS ..
(4.13)
Note that the only occurrences of two consecutive zeroes @Qcemn occur in the
subwordsys = Z and that any such subwodj is followed by the word 11 and

preceded by the word ml)zk+p+111. We call a stringv a p-string of rankr
(p < 2%, r < K) if there are strings andy such thaty| =r and

w = x11(01)*P+i11y.

Then, by (4.13), for any initial segmeat| n of a, a [nis a p-string of rank O if
and only if there is somssuch thatt [n = as_13s whereys = z‘g It follows that

a [n pstring of rankr = a(n)a(n+1) = Z5(r)Z5(r +1)
and
vV p<2¢Vr <k(a | nis not ap-string of rankr) = a(n)a(n+ 1) # 00.
SoA does not meet the 2-bounded function extension fundtidafined by

f () = (1—-2(r))(1—2(r+1)) if wis ap-string of rankr
~ oo otherwise.

Moreover, a finite automaton can recognize whether a stvirsga p-string of rank
r (and, if so, can store, r, andz‘g, in its state). Sd is regular.
This completes the proof. O

By combining the above results, we can now completely determine the rela-
tions among the various standard and length invariant bounded finite-state gener-
icity concepts. Note that, by (4.6), in case of the standard notions it suffices to
consider weak genericity.

Theorem 4.33 For k > 2 the following and - up to transitive closure - only the
following implications hold among the (weak) length invariant bounded regular
genericity concepts and the weak general bounded regular genericity concepts.

130 4. BOUNDED FINITE-STATE GENERICITY

li-w-reg-generic & weakly liw-reg-generic & weaklyw-reg-generic

¢ ¢ ¢

li-(k+1)-reg-generic = weakly li{k+ 1)-reg-generic < weakly(k+ 1)-reg-generic

\ I 4
li-k-reg-generic = weakly li-k-reg-generic < weakly k-reg-generic
4 ! 4
li- 1-reg-generic = weakly li-1-reg-generic & weaklyl-reg-generic

(4.14)

PrRoOOF Correctness of the stated implications follows from (4.9) together with
Theorem 4.27 and Lemma 4.30. The fact that only the indicated implications are
valid in general is established as follows where it suffices to consider the concepts
inlines 2 - 4.

First we observe that no concept on a lower level implies any concept on a
higher level. This follows from the saturation properties of the considered generic-
ity concepts. By Lemma 4.26, any weakl\klireg-generic seA (hence any weakly
k-reg-generic set and any KiHeg-generic set) i&-w-saturated, but by Lemma
4.28 and Theorem 4.9 there ardiireg-generic sets and weaktyreg-generic sets
(hence weakly lk-reg-generic sets) which are ndt-+ 1)-1-saturated.

It remains to show that none of the concepts in column 1 implies any of the
concepts in column 3 with the exception of weak 1-reg-genericity, and that, con-
versely, none of the concepts in column 3 implies any of the concepts in column 1.
But this is immediate by Lemma 4.32 and Lemma 4.31, respectively. O

By the coincidence of weako-reg-genericity with saturation, Theorem 4.33
shows that (weakly) lin-reg-generic sets are saturated, hence not regular. An in-
teresting question on the power of length invariant finite-state genericity left open
by the above theorem is the question, whether, for fikedl, (weakly) lik-reg-
generic sets are non-regular. We will conclude this subsection by giving a negative
answer to this question. Before considering the general case, we will present the
case ok =1.

Lemma 4.34 The seDX* = {Ow:w e X*} is li-1-reg-generic.

PrROOFE LetA=0z* and letf : 2* — X be a regular partial length invariant 1-
bounded extension function which is dense alénglt suffices to show tha#

4.2. Extensions Based on Partial Information

meetsf. By length invariance of , density off alongA implies that
F°n(f(0") |) (4.15)
and in order to show tha meetsf it suffices to show that
In(f(0") | & A(z)) = F(O")). (4.16)

LetM = (Z,S,9,%,F,A) be a 1-labelled finite automaton which computeSince
f(0") = A(0*(s0,0M)) if 8*(s0,0") € F andf(0") 1 otherwise, by (4.15) we may fix
a states € F such that

3°n (8" (s0,0") =). (4.17)

So, for the leashy and leasth; > ng such that (4.17) holds fay, andn; in place
of nand forp = ng andqg = n; — ng,

vn (8% (s, 0P M) = s).
It follows that, fori = A(s),
vn (f(OPTN9) =i).
So, in order to satisfy (4.16), it suffices to show
N (A(Zpng) =1)- (4.18)

For a proof of (4.18), by symmetry, w.l.o.g. we may assume ithatd. Fix k
such that 2> p+ g and consider the sequenc1.., 12 , of the words of

lengthk+ 1 in 1=K. Note that these words are consecutive words with respect to

the length-lexicographical ordering, i.e.

125, ceey lzlékil = Zr, ...,Zr+2k71

for some number. By choice ofk this implies that 2 = 7, nq for somej < 2¢—1
andn > 0. Since, by definition oA, 12 ¢ A, it follows thatA(zp:nq) = A(1Z() =
0=1i. So (4.18) holds. This completes the proof. O

Lemma 4.34 in particular shows that there is a regular li-1-reg-generic set. By

refining the proof of this lemma, we can extend this observationkadig-generic
sets for anyk > 1.

Theorem 4.35 For any k> 1 there is a regular li-k-reg-generic set.

For the proof of this theorem we will need the following observation.

131

132

4. BOUNDED FINITE-STATE GENERICITY

Proposition 4.36 Let p> 0and K > 1 be given and let k= 2¢. There is a number
r < k such that

vm> maxp,k') VnVs < 2™ (' = zp . nk = r = s mod K. (4.19)

PROOF Letmy = maxp,k’). Since there are"™ strings of lengthmy and since
p,k < 2™ there are numbeng andsy < 2™ such thatz;zO = Zpinok- FiX the least
such numbers and letbe the unique numbet k such thatr = so modk. Then

it suffices to show that for all numbers> ng, m, ands < 2™ the matrix of (4.19)
holds. We proceed by induction or> ng, where fom = ng the claim is immediate
by choice ofsy and definition ofr. For the inductive step we have to establish
the claim forn+ 1 > ng assuming the claim fon. So fixm, s< 2™, n, and
s < 2™ such thatzynk = 2 andzp, (nr1k = 2 hold. By inductive hypothesis,
r = smodk. To show thatr = s modk we distinguish the following two cases.
If m=m thens = s+k. It follows thats modk = smodk = r. Otherwise,
m = m+ 1. Moreover, since there ar& #vords of lengttm, s+k = 2"+¢<. Since
k= 2¥ is a factor of 2, it follows that

s modk = (2™ +¢) modk = (s+k) modk = smodk =r.
This completes the proof. O

PROOF OFTHEOREM 4.35. Fixk > 1 where, by (4.7), w.l.0.g. we may assume
thatk = 2K for some numbek’ > 1. DefineA by specifying the sliced="=ANz™
of A as follows. Fom < 2% let A=™ = 0 while, for m > 2%,

m=imod % (0<i<2) = AZ)...AZh) = (22" " (4.20)

Note that, for a wordz of lengthm > 2%, membership of in A depends only
mmod X and the lask bits of z. This easily implies thak is regular.

It remains to show thaA is li-k-reg-generic. So lef : * — X be a regular
partial length invariant k-bounded extension function which is dense alont
suffices to show thah meetsf. To show this, as in the proof of Lemma 4.34 we
can argue that there are numbers 0 andg > 1 and a wordzik of lengthk such
that

vn (f(OPHN9) = Z) (4.21)
whence, by length invariance &f it suffices to show that
N (AZping)--AZpingik-1) = Z). (4.22)

For a proof of (4.22) fix < k as in Proposition 4.36 and lety be the least
numberm such thaimy > maxp,k’) and 2"° > kq+ k. Then, for anym > my, we
may fix numbers,, andn, such that

4.2. Extensions Based on Partial Information 133

Note that, by Proposition 4.36,
I = sy modKk. (4.24)
Finally, fix j < 2% such that
Z(r)Z(r+1) ... Z(k) Z(k+1) ... Z(k+r—1) =2 (4.25)

and choosen > mg minimal such thatn > 2K andm= j mod Z. Then, by (4.20)
and (4.25),

AZ) . A1) = ()7 =2(0) .. A 1) (27" LA .. Ak).
Obviously, this implies (for any numbey
s<2M—k & r=smodk= AZ"..AZ, ;) =2z
Hence, by (4.23) and (4.24),
AZpinka) - AZpsngkark-1) = AZ) . AR) =2

So (4.22) holds fon = ny, - k. This completes the proof. O

Next we consider bounded finite-state genericity concepts based on extension func- 4.2.2
tions which, for a constanh > 1, remember only the lash bits of the initial Oblivious
segments given to them as inputs. We first formalize this concept by introducing £y+ansion
oblivious extension functions.

Functions

Definition 4.37 Let f : * — XX be a (partialk-bounded extension functionf

is m-obliviousif f(wx) = f(wx) for all wordsw, w/, andx with x| = m. A set
G is [m,K]-reg-generidf it meets all regular partigk-bounded extension functions
which arem-oblivious and dense alorg; andG is weakly[m, k]-reg-generidf G
meets all regular totdd-bounded extension functions which ameoblivious. G is
(weakly)[m, w]-reg-genericif G is (weakly) [m, k]-reg-generic for alk > 1; G is
(weakly)[w, k]-reg-generidf G is (weakly)[m,k]-reg-generic for alm > 1; andG

is (weakly)|w, w]-reg-generidf G is (weakly)[m, k]-reg-generic for alm k > 1.

Note that any (partialjn-oblivious k-bounded extension function is regular.
Alternatively we can describe an-obliviousk-bounded extension functiohby a
functionf : =™ — 5X. We say that such a functidnis dense along a setif f (x) is
defined for some word of lengthm such that A | n)x C x(A) for infinitely many
numbersn, and we say thak meetd at some numberifin > mand, for the unique
stringsx € =™ andy € =* such thatA | n=yx f(x) | and (A | n)f(x) C x(A).
Finally, we say tha meetsf if A meetsf at somen.

134

4. BOUNDED FINITE-STATE GENERICITY

Proposition 4.38 A set G is weaklym,k]-reg-generic if and only if G meets all
total functionsf : =™ — 5X. G is [m,k]-reg-generic if and only if G meets all
partial functionsf : $™ — X which are dense along G.

PrROOFE We prove the second part of the proposition. The proof of the first part is
similar.

First assume thds is [m, k|-reg-generic and that the partial functiohs=™ —
s¥is dense alon. We have to show th& meetsf at somen. Consider the partial
k-bounded extension functiohdefined byf (yx) = f(x) for all stringsy € * and
x € ZMandf(z) 7 for all stringsze€ <™. Thenf is m-oblivious. Moreover, density
of f alongG implies thatf is dense along. So, by|m, k]-reg-genericity ofG, G
meetsf at some numben. By definition of f it follows thatn > m andG meetsf
atn.

Now assume tha® meets all partial function$: ¥™ — ¥ which are dense
alongG and assume thdtis anm-oblivious k-bounded extension function which
is dense alongs. We have to show thaB meetsf at some numben. Define
f: =M sk by letting f (x) = f(x) for all xe ™. Thenf is dense alon@ whence,
by assumption, there is a numbesuch tha meetsf atn. By definition of f this
implies thatG meetsf atn. O

As Proposition 4.38 shows, for fixed numbersk > 1, (weak)[m,k]-reg-
genericity is rather a Boolean genericity concept than a regular genericity concept.
This is also demonstrated by the following observations: In contrast to the previ-
ously introduced regular genericity concepts there are finite generic sets of these
types and a generic set may meet an extension function it has to meet just once not
infinitely often.

Lemma 4.39 Let mk > 1. There is a finitdm, k|-reg-generic set A. Moreover, A
can be chosen such that A meets the total m-oblivious k-bounded extension function
f defined by §x) = 1 (for x € =*) just once.

PROOF. Consider the sequence= By 0“ where
Bimk = 0MZ0™Z...0mZ (4.26)

and letA be the set corresponding to Obviously,A is finite and the string .
occurs ina only once. It remains to show thatis [m,k]-reg-generic. Given a
partial functionf : =™ — X which is dense along, by Proposition 4.38, it suffices
to show thatA meetsf, i.e., that there is a string of lengthm such thatf(x) is
defined and<f(x) occurs ina. Since 0'is the only string of lengtimwhich occurs
in o infinitely often, density off alongA implies thatf(Om) is defined (and has

4.2. Extensions Based on Partial Information 135

lengthk), say f(0™) = Z wherep < 2. So, forx = 0™, xf (x) = 0™z occurs in
Bimk hence ino. O

We next present some saturation properties of the (wedkly)|-reg-generic
sets and some relations among these concepts. The preceding lemma already
implicitly gives the basic saturation properties of (weakKly)k]-reg-generic sets
which we explicitly state in the following lemma.

Lemma 4.40 Let mk > 1. Any weaklyim, k]-reg-generic set is K-saturated but
there is anjm, k]-reg-generic set A which is notXsaturated, hence ngk+ 1)-1-
saturated.

PrRoOOF The[m, k]-reg-generic sef of Lemma 4.39 is nok-2-saturated. On the
other hand, ifA’ is weakly [m, k]-reg-generic then, by Proposition 4.38, meets
any total functionf : $™ — 5X. In particular, givery € 5K, A’ meets the constant
function f(x) =y (for all x e Z™) whencey occurs in the characteristic sequence
of A'. SoA' is k-1-saturated. O

For weak genericity we can improve Lemma 4.40 by the following combinato-
rial characterization of the weak|yn, k]-reg-generic sets.

Lemma 4.41 Let A be a language, let be the characteristic sequence of A and
let m and k be any numbers 1. The following are equivalent.

(i) Ais weakly[m, k]-reg-generic.
(i) There is a string xc ™ such that xy occurs it for all strings ye 2.

ProoOF The proof of the implicationi) =- (ii) is by contraposition. Assume that
(ii) fails. For anyx € ™ fix yx € X minimal such thaky, does not occur im.
Definef : £™ — 3¥ by f(x) = y,. ThenA does not meeA. Hence, by Proposition
4.38,Ais not weakly[m, k]-reg-generic whencg) fails.

For a proof of the implicationii) = (i) fix x € Z™ such thaiy occurs ina for
ally € ¥¥and letf be a total functiorf : ¥™ — $X. By Proposition 4.38 it suffices
to show thatA meetsf. Since|f(x)| = k, xf(x) occurs ina (by choice ofx). So
there is a numben such that(a | n)xf(x) = a. HenceA meetsf atn+m. O

As the next lemma shows a sufficient level of saturation suffices for guarantee-
ing [m, k]-reg-genericity.

Lemma 4.42 Letk m, p > 1 be given such that mk < p. Then any gt-saturated
set A is|m,k]-reg-generic.

136 4. BOUNDED FINITE-STATE GENERICITY

PrROOF Assume that the characteristic sequeaa# A is p-1-saturated and as-
sume that the partial functiofi: ¥™ — =¥ is dense along\. By Proposition 4.38
it suffices to show thaA meetsf, i.e., that there is a string of lengthm such
that f(x) is defined andf(x) occurs ina. By density off alongA we may fix
x € ™ such thatf(x) is defined. Therf(x) € =™k whence, bym+k < p and
p-1-saturation ofx, xf (x) occurs ina. O

The above relations among the oblivious genericity notions and levels of satu-
ration show that these concepts are intertwined as follows.

(m+k)-1-saturated = [m, k]-reg-generic
= weakly[m,k|-reg-generic
= k-1-saturated.

We now leave the Boolean type oblivious finite-state genericity notions, i.e.,
(weak)[m, k]-reg-genericity wheren k € N and turn to the more powerful concepts
where one of these parameters is unbounded ffe: w or k = w) and show how
these concepts are related to the standard bounded finite-state genericity concepts.
For this sake we analyse the saturation properties of these concepts.

Lemma 4.43 (a) Any (weakly]m, w|-reg-generic set A is saturated (m1).

(b) Any|w, k]-reg-generic set A is saturated £k 1).

(c) For any number k> 1 there is a weaklyw, k]-reg-generic set A which is not
(k+ 1)-1-saturated.

PROOF Part(a) isimmediate by the first part of Lemma 4.40.

For a proof of partb) assume thaA is [w, k]-reg-generic and let be the char-
acteristic sequence @ It suffices to show that any wordoccurs ina infinitely
often. We proceed by induction on the lengthxofFor |x| = O the claim is triv-
ial. So assume thak| > 0, say|x| = m+ 1 andx = X'awherex € 2™ anda € Z.
By inductive hypothesisx' occurs ina infinitely often. So the partial function
f:sm_ sk defined byf(x) = ak and f(y) 1 for y # X is dense alond.. Hence,
by [m, k]-reg-genericity ofA and by Proposition 4.38\ meetsf at somen. By
definition of f this implies tha/'ak - hencex - occurs ina.

Finally, for a proof of par{c) consider the sequence

o = Bk B2,k Bz ki Bak -

wherefm is defined as in (4.26) and létbe the set corresponding to Then
0™x occurs ina for all m> 1 and allx € =K whence, by Lemma 4.418 is weakly
[w, k]-reg-generic. On the other hand, howevét,1does not occur i whenceA
is not(k+ 1)-1-saturated. O

4.2. Extensions Based on Partial Information 137

Since the saturated sets and the bounded reg-generic sets coincide, Lemma 4.43
implies the following equivalence theorem.

Theorem 4.44 For any numbers km > 1 the following are equivalent.
(i) Ais weakly[m, w]-reg-generic.

(i) Ais [m, w]-reg-generic.

(i) Ais [w,k]-reg-generic.

(iv) Ais bounded reg-generic.

(v) Ais saturated.

PrROOF By coincidence of bounded reg-genericity and saturation (see Theorem
4.7), it suffices to show the implicationi&/) = (x) = (v) for (x) = (i), (ii), (iii).

But the first implication is immediate by definition while the second implication
follows from Lemma 4.43. O

In contrast to the preceding theorem, wéakk|-reg-genericity is weaker than
bounded reg-genericity and the strength of waalk]-reg-genericity depends on
the parametek. In the following theorem we summarize some basic observations
on complexity and strength of weddo, k]-reg-genericity.

Lemma 4.45 (a) Any weaklyw, k+ 1]-reg-generic set is weak|w, k|-reg-generic
but there is a weaklyw, k]-reg-generic set which is not weak]go, k + 1]-reg-
generic.

(b) A set A is weakljw, 1]-reg-generic if and only ik (A) is not regular.

(c) For k> 2, any weaklyjw, k]-reg-generic A has a non-regular characteristic
sequence but there are sets with non-regular characteristic sequence which are not
weakly[w, k]-reg-generic.

(d) For k> 1there is a weaklyw, k]-reg-generic set which is regular.

PROOF The first part of(a) is immediate by definition. So it suffices to show
that there is a weakljw, k|-reg-generic set which is not weakly, k + 1]-reg-
generic. Now, by Lemma 4.43, there is a weakiyk]-reg-generic sef which is
not (k+ 1)-1-saturated. So, by Lemma 4.40is not weakly{w, k+ 1]-reg-generic.
For a proof of(b), first assume thaA is weakly [w, 1]-reg-generic and let
be the characteristic sequencefofSince a sequence is regular if and only if it is
almost periodic (see Theorem 2.76), it suffices to showdhsiho almost periodic.
For a contradiction assume theats almost periodic, sag = vw® where|v| = p
and|w| =q> 1, and letm= p+q. Note that, for anyn > p, a(n) = a(n+q).

138

4. BOUNDED FINITE-STATE GENERICITY

Now to get the desired contradiction, define the funcfio@™ — =1 by letting
f(x) = 1—x(p). By |w, 1]-reg-genericity ofA and by Proposition 4.38 meetsf,
i.e., there is a string of lengthm = p+ g such thaxf(x) = x(1—x(p)) occurs in
a. It follows that there is a number> p such that

a(n—p)..a(n—2)a(n)...a(n+g—1)a(n+q)

X(0)..X(p—1)X(p)..x(p+9—1)(1—x(p)).

In particular,a(n) = x(p) whereast(n+q) = 1—x(p), whencea(n) # a(n+q).
But this is impossible as shown above.

In order to complete the proof db) we have to show that any sétwith
non-regular characteristic sequence is wedklyl]-reg-generic. Since, by defini-
tion, any weakly 1-reg-generic set is wealdy, 1]-reg-generic, this follows from
Theorem 4.15.

Part(c) is immediate by part&a) and(b).

For a proof of(d) fix k > 1 and let

A={z:30<2(p>k& p=mod ¥ & q<ké& Z(q) =1)}.

Note that for each numbgr > k at most the firsk strings of lengthp can be
elements ofA. Moreover, which of these strings are elementé&\a$ determined
by the value’ of pmodulo X. Namely, thegth string of lengthp is element ofA if
thegth bit of the/th word of lengthk is a one, i.e.A(Z)...A(z ;) = Z£.

As one can easily checlis regular. In order to show thétis weakly[w, k]-
reg-generic, by Proposition 4.38, it suffices to show that for any given number
m > 1 and for any given total functiofi : s™ — 5K there is a string of lengthm
such thaxf (x) occurs in the characteristic sequencef A. So fix suchmandf, let
¢ be the unique numbeér< 2% such thatf (0™) = 2, and choos@ > k+msuch that
p=¢ mod X. Then, by definition of\, for the lasm stringszzp‘j,ll_m_l, ...,zgp_,ll_l
of lengthp—1,

Ayt gy o) AZys) =0

(since any elementsof A of lengthp — 1 are among the firdt strings of length
p— 1 and, by choice op there are at least2™ > k+ m strings of lengthp — 1)
while for the firstk stringsz},...,z;_, of lengthp

A(Zg)'--A(ZE—ﬁ = lef

So 0"f(0™) = 0™Z occurs ina. O

4.3. Cantor-Style Finite-State Diagonalization

4.3 Cantor-Style Finite-State Diagonalization

In the next section we will introduce some stronger bounded finite-state genericity
concepts which are based on extension functions which obtain initial segments in
a more redundant presentation as their inputs. This will allow a finite automaton to
extract more information from the initial segment than in the case of the standard
presentation. In particular these stronger concepts will subsume finite-state Cantor
style diagonalizations whence we will look at this type of diagonalizations here
first.

If a setAis constructed by a Cantor style diagonalization then the diagonal-
ization step at some stringdoes not depend on the earlier construction, i.e., on
A | x, but only on the diagonalization location So the individual diagonalization
requirements are not described by extension functions but by diagonalization func-
tions f : 2* — Z wheref is given the place for the diagonalization as its input
andA(x) = f(x) will ensure that the requirement is met Byat the stringx. We
generalize this concept by also considering diagonalizations requiring Aonfit
only on a single string but onk consecutive strings, . ..,x+ k— 1 which we will
formalize byk-diagonalization function$ of type f : * — K. HereA will meet f
atxif A(x)...A(x+k—1) = f(x). Finally, we will also formalizeslow Cantor style
diagonalizationsi.e., those diagonalizations were the diagonalization cannot take
place at any string but only at selected places. These more powerful diagonaliza-
tions relate to the classical Cantor style diagonalizations just as the wait-and-see
arguments relate to the standard finite-extension arguments. A typical example of a
slow Cantor style diagonalization is the construction of a bi-immune set described
in Section 3.4. Of course this type of diagonalizations is formalizegdnyial
diagonalization functions.

Definition 4.46 A (partial) k-bounded diagonalization function f or a (partial)
k-diagonalization functioror short — is a (partial) functiom : =* — ZX. A (partial)

1-diagonalization function is also simply called a (part@igonalization func-
tion. A partial k-diagonalization functiorf is densef the domain off is infinite.

A set A meetsa k-diagonalization functiorf at a stringx if f(x) is defined and
f(x) = A(X)...A(x+k—1), andA meets fif Ameetsf at some stringA is (weakly)

k-C-reg-genericif A meets every dense (total) regulkadiagonalization function.
Ais (weakly)w-C-reg-generidf Ais (weakly)k-C-reg-generic for alk > 1.

Note that the following relations among the Cantor style finite-state genericity
notions are immediate by definition (whéee> 2; compare with (4.1)).

139

140 4. BOUNDED FINITE-STATE GENERICITY

w-C-reg-generic = weakly w-C-reg-generic

4 U
(k+1)-C-reg-generic = weakly (k+ 1)-C-reg-generic
[} [} (4.27)
k-C-reg-generic = weaklyk-C-reg-generic
4 U
1-C-reg-generic = weakly 1-C-reg-generic

Moreover, by the closure of the class of regular languages under complement,
we easily obtain the corresponding closure property for the finite-state Cantor
style genericity notions. Furthermore, as in case of the standard bounded finite-
genericity concepts, infinitely-often genericity and genericity coincides for the
finite-state Cantor style genericity notions too, i.e., a generic set will meet any
diagonalization function it has to meet not just once but infinitely often.

Proposition 4.47 For any (weakly) k-C-reg-generic set A, the complem@nf A
is (weakly) k-C-reg-generic too (k 1 or k = w).

Proposition 4.48 Let A be k-C-reg-generic. Then A infinitely often meets every
regular partial k-diagonalization function f which is dense, i.e.,

f(z0) =Az) ... AlZnik-1)

for infinitely many n. Similarly, any weakly k-C-reg-generic set A meets every
regular total k-diagonalization function infinitely often.

We omit the straightforward proofs of the two preceding propositions and turn
to a closer analysis of the Cantor style genericity concepts. For this sake it is
important to observe the relations between Cantor style diagonalizations and finite
extension arguments based on length invariant extension functions.

Note that, formallyk-bounded diagonalization functions akébounded ex-
tension functions are functiorfsof the same type, namelfy: ¥* — ¥X. For ak-
bounded diagonalization function, however, the inpig interpreted as the string
at which the diagonalization takes place i) gives us the values the character-
istic functionca of a setA has to assume atand thek — 1 following strings, i.e.
ca(X)...ca(x+ (k—1)) = f(x), in order to perform the diagonalization. In particu-
lar, the diagonalization action to be taken does not depend on any previous values
of A. In contrast, iff is ank-extension function then the inputis interpreted as
an initial segment of the se&t for which the diagonalization is to be performed.
Here, the diagonalization step is carried ouzat(not atx), i.e., at the first string

4.3. Cantor-Style Finite-State Diagonalization 141

whose membership iA is not yet determined by the initial segmerdf x(A) and
the action required may depend on the previous valueA.for

Diagonalization functions, however, can be interpreted as length invariant ex-
tensions functions and vice versa: Namely, in order to simulitdiagonalization
function f consider the length invariaktbounded extension functiofi which on
any input of lengtm produces the valué(z,). Conversely, a length invariakt
bounded extension functioff can be simulated by thediagonalization function
f defined byf (z,) = f(0").

Definition 4.49 Let f be a partiak-bounded diagonalization function and gt
be a partial length invariark-bounded extension function. We say tHaand f’
areequivalentor thatf’ is thelength invariant k-extension function corresponding
to f andf is thek-diagonalization function corresponding toif, for all numbers
n>0, f(z) | ifand only if f'(0") | and, if definedf(z,) = f'(0").

Note that, for any partidd-bounded diagonalization functidrthere is a unique
length invariank-extension functiorf’ corresponding td and vice versa.

Lemma 4.50 Let f be a partial k-diagonalization function and let e the cor-
responding length invariant extension function Then f is dense (total) iff’ iis
dense along all sets (total) and, for any set A, A meets {, dit & meets fatn.

PrROOF Straightforward. O

This correspondence between diagonalization functions and length invariant
extension functions shows that any Cantor-style genericity concept coincides with
a bounded genericity concept based on length invariant extension functions. In
particular, we get the following.

Lemma4.51 Let k> 1. There is a countable class = {f, : n > 1} of length
invariant partial k-bounded extension functions such that, for any set A, A is weakly
k-C-reg-generic if and only if A is weakl}+generic and A is k-C-reg-generic if and
only if A isF-generic.

ProoOF This follows from Lemma 4.50 by lettin§f be the class of the length
invariant extension function§' corresponding to the regular partiabounded di-
agonalization function§. O

In particular this shows that any bounded finite-state Cantor-style genericity
concept is a bounded genericity concept in the sense of Definition 3.34 whence, by
Theorem 3.35, the classes of these generic sets have measure 1 and are comeagetr.

142

4. BOUNDED FINITE-STATE GENERICITY

The equivalence of diagonalization functions and length invariant extension
functions, however, does not preserve the complexity. In the following we will
show that, for a (partiali-diagonalization functiorf and the corresponding (par-
tial) length invariank-extension functiorf’, regularity of f” implies regularity of
f but, in general, not vice versa. We may conclude from this that the finite-state
Cantor-style genericity concepts are stronger than the corresponding length invari-
ant genericity concepts.

Lemma 4.52 Let f be any regular partial length invariant k-extension function
and let f be the corresponding partial k-bounded diagonalization function. Then
f is regular too.

PROOF. Recall thaff is defined byf (z,) = f(0") if f(0") | andf(z,) 1 otherwise.
Since, by Lemma 2.46, the class of regular partial functions of Bpe> ¥ is
closed under finite variants, it suffices to show that there is a finite variafit of
which is regular.

Fix ak-labelled finite automatoM = (Z,S, 9, %, F,A) which computed, i.e.,
such thatf = fy, and letS= {so,...sp-1}. Then, fors, = & (s0,0"), f(0") =
A(s(m) if sy € F and f(0") T otherwise. Moreover, the sequersg)si1)S2) - - -
is almost periodic. So we may chooge> 0 andr > 1 — where w.l.o.gq<r —
such that

VN >4 (Sintr) = Sin))s
hence
VN > q (S(n) = Si(jnmodr]+r))- (4.28)

On the other hand, by Lemma 2.79, there is a deterministic finite automa-
ton M’ = (Z,S,8,s,) (without a distinguished set of final states) such Bat
{s,---»S5_1} and, forn > 0,

6/*(510azn) = S,‘nmodr' (4.29)

We can extendil’ to ak-labelled finite automatoM” = (%, S,d',5,,F’,A’) which
computesf on all inputsz, with n > q by lettingF’ = {sj:S(j+r) €F}andN(s)) =
A(Si(j+n))-)

It remains to show that the functidiy» computed byM” coincides withf on
all inputsz, with n > q, i.e., thatfy»(z,) | if and only if f(0") | and, if defined,
fmr(z) = f(O"). So fixn > q.

To show thatfy#(z,) | if and only if f(0") | it suffices to show

0" (sy,21) € F' & 8°(5,0") € F. (4.30)

4.3. Cantor-Style Finite-State Diagonalization

This follows from the following observations: By (4.29),

8" (S0:Z0) = Shmodr
and, by definition o, and by (4.28),
8" (%0,0") = Sin) = Si(n modr]+1)-
Since, by definition of’,
Shmodr € F' < S(nmodr)+r) € F,

(4.30) follows.
Finally, it remains to show that — assumiffig-(z,) | — fu#(z,) = f(0"). By
(4.30) it suffices to show that

N(8"(s0,20)) = A(8"(50,0")). (4.31)

Since, as observed above,

5/*(5/0,2,1) = g‘nmodr & 6*(507()”) = Si(nmodr]+r)s

this follows by definition of\’.
[l

Theorem 4.53 Any (weakly) k-C-reg-generic set A is (weakly) li-k-reg-generic.
PrRoOF This is immediate by Lemma 4.52. O

In order to show that the converse of Lemma 4.52 fails, we next analyze the
strength of total and partial regular 1-diagonalization functions. As one might ex-
pect, the corresponding genericity concepts coincide with nonregularity and REG-
bi-immunity.

Theorem 4.54 (a) A set A is weakl§-C-reg-generic if and only if & REG.

(b) A set Aisl-C-reg-generic if and only if A IREG-bi-immune.

PrROOF (a) The proof is by contraposition. First assume thAas regular. In
order to show thaf\ is not weakly 1-C-reg-generic it suffices to give a regular total
diagonalization functiorf such thatA does not meef, i.e., such thaf\(x) = 1—

f (x) for all stringsx. By regularity ofA and closure of REG under complement, the
function f defined byf (x) = 1— A(X) is regular and has this property. Now assume
that A is not weakly 1-C-reg-generic, i.e., that there is a regular diagonalization
function f such thatA(x) = 1 — f(x) holds for all stringx. We have to show that

143

144

4. BOUNDED FINITE-STATE GENERICITY

A is regular. But this is obvious since the regular functiois the characteristic
function of the complement & and the class of regular languages is closed under
complement.

(b) First assume tha is 1-C-reg-generic. We have to show thats REG
bi-immune. In fact, by Proposition 4.47, it suffices to show thas REG-co-
immune, i.e., that, for any infinite regular 98t AN B is not empty. Define the
partial diagonalization functiom by letting

f(x):{1 if xe B

1T otherwise.

Then, by infinity ofB, f is dense and, by regularity & f is regular. So, by 1-C-
reg-genericityA meetsf at some string. Obviously, this implies that € ANB.

For a proof of the other direction assume thas REG-bi-immune. We have to
show thatA is 1-C-reg-generic, i.e., that for a given dense regular diagonalization
function f there is a string in the domain off such thatA(x) = f(x). Note that,
by density off, the domainD(f) of f is infinite and, by regularity off, D(f)
is regular. It follows that, for some< 1, {x: f(x) =i} is infinite and regular.

By symmetry, w.l.o.g. we may assume that this is trueiferl. So, by REG-
co-immunity of A, An{x: f(x) = 1} # 0, i.e., there is a string € A such that
f(x) = 1. HenceA meetsf atx. O

By combining this theorem with some previous results we can establish a num-
ber of relations between finite-state Cantor style genericity and some of the previ-
ously introduced genericity notions. We first observe that the converse of Theorem
4.53 fails.

Corollary 4.55 For any k> 1there is an li-k-generic set which is not wealkhC-
reg-generic.

PROOF This follows from the first part of Theorem 4.54 since, by Theorem 4.35,
there are regular lk-generic sets. O

Corollary 4.55 immediately implies:

Corollary 4.56 For any k> 1there is a regular k-diagonalization function f such
that the corresponding length invariant k-extension functibis hot regular.

Another consequence of the first part of Theorem 4.54 is the following distinc-
tion between weak 1-C-reg-genericity and weak 1-reg-genericity.

Corollary 4.57 Any weaklyl-C-reg-generic set is weaklyreg-generic but there
is a weaklyl-reg-generic set which is not weaklyC-reg-generic.

4.3. Cantor-Style Finite-State Diagonalization 145

PrROOF By Theorem 4.15, a sét is weakly 1-reg-generic iff the characteristic
sequence oA is regular, and in Section 2.5 we have shown that regularity of the
characteristic sequence of a set implies regularity of the set but in general not vice
versa. g

Similarly, it follows from the second part of Theorem 4.54 that there is a 1-
reg-generic seA which is not 1-C-reg-generic: In Section 4.1 we have shown that
there are context-free 1-reg-generic sets (Theorem 4.20) whereas in Section 2.4 we
have shown that no context-free set is REG-bi-immune (Theorem 2.59). So, by
Theorem 4.54, no 1-C-reg-generic is context-free.

Corollary 4.58 There is al-reg-generic set which is ndtC-reg-generic.

Despite this observation the full analog of Corollary 4.57 for 1-reg-genericity
fails since 1-C-reg-genericity in general does not imply 1-reg-genericity. In order
to show this we will look at the saturation properties of the C-reg-genericity no-
tions. These saturation properties will also help us to decide the relations among
the different Cantor style finite-state genericity concepts. We will show first that
k-diagonalization functions can foré&esaturation but notk + 1)-saturation.

Lemma 4.59 Any weakly k-C-reg-generic set isksaturated (k> 1).
PrROOF By Theorem 4.53, any weakl-C-reg-generic set is weakly |.ik-reg-
generic and, by Lemma 4.26, any weakly kireg-generic set ik-w-saturated.

0

Lemma 4.60 There is a k-C-reg-generic set A which is riét+ 1)-1-saturated
(k>1).

PROOF This is immediate by Lemmas 4.51 and 4.28. 0

Lemma 4.59 implies that weakly-C-reg-generic sets are saturated. As we
will show next, the converse is true too.

Theorem 4.61 A set A is weaklyw-C-reg-generic if and only if A is saturated.

PrOOF By Lemma 4.59 it suffices to show that any saturated setG-reg-

generic. So assume thAtis saturated and fix a total regullitbounded diago-
nalization functionf : =* — =k where w.l.0.gk = 2 for somek’ > 1. We have to
show thatA meetsf, i.e., that there is a strirgy, such that

f(z0) = Alzn) ... AlZnik-1) (4.32)

146 4. BOUNDED FINITE-STATE GENERICITY

Fix ak-labelled finite automatol = (Z, S &, 5, F,A) which computed, i.e., such
that f = fy, and letS= {s,...sp—1} where w.l.o.g.p = 2P for somep’ > 1.
Define a wordk of lengthp- k = 2P+ by letting

X=X Xp_1
where the words; € ¢ (0 <i < p) are defined by
= A& (5,27 %)). (4.33)
Then, by saturation oA and by Lemma 2.110 (b), there is a stripgsuch that
Azmzd). AzmZh) = X

Since
K K
Aznzg). Az) =

AzmZ)) .. Az 2 1)) Azl 1) ... AlzmZ]_ 2 1)

it follows, by definition ofx, that, for 0<i < p,
AZnZ’ Z) .. ANznZ” & 1) =x. (4.34)
Now fix i such thad*(sp,zn) = s and letz, = zmzip/zg. Then, by (4.34),
Aza) ... AZniic1) = AzmZ’ %) ... Azmd % 1) =X (4.35)

while, by choice oM, z, andi and by (4.33),

f(z)) = A0 (s0,2n))
— A& (S0, zmZ %))
— A5 (5 (50.2m), 2 %))
= A& (s.4%))
Xi.
By (4.35) this implies (4.32). OJ

By combining the above observations we can now show which of the impli-
cations in (4.27) are strict and we can further illustrate the power of the various
finite-sate Cantor-style genericity concepts by specifying their relations to some
fundamental concepts such as nonregularity, saturation and REG-bi-immunity.

4.3. Cantor-Style Finite-State Diagonalization

Theorem 4.62 The following and — up to transitive closure — only the following
implications hold in general (k 2).

saturated
)

w-C-reg-generic = weaklyw-C-reg-generic

) I

(k+1)-C-reg-generic = weakly(k+ 1)-C-reg-generic

[} [} (4.36)
k-C-reg-generic = weakly k-C-reg-generic

U U
1-C-reg-generic = weaklyl-C-reg-generic

))
REG-bi-immune ¢ REG

PrROOF We first observe that the one-sided implications in (4.36) hold by (4.27)
while the three equivalences hold by Theorem 4.54 (a) and (b) and by Theorem
4.61. So it suffice to show that only the given implications hold. This follows from
the following two observations.

First, no genericity concept on a lower level implies any of the genericity on a
higher level. This follows from the fact that any (weak{¥H 1)-C-reg-generic set
is (k+ 1)-w-saturated (Lemma 4.59) but that there are (weaki@}reg-generic
sets which are ndk+ 1)-1-saturated (Lemma 4.60).

Second, no genericity concept on the right hand side implies any of the generic-
ity concepts on the left hand side. To show this we first observe that, by the positive
relations in (4.36) established above, any saturatefllsas all the genericity prop-
erties on the right hand side whereas any set with any of the genericity properties of
the left hand side is REG-bi-immune. So it suffices to show that there is a saturated
set which is not REG-bi-immune. But this has been shown in Theorem 2.117.

By the coincidence of wealo-C-reg-genericity with saturation and of 1-C-
reg-genericity with REG-bi-immunity-C-reg-genericity implies saturation and
REG-bi-immunity. This might lead one to conjecture thatdh€-reg-generic sets
are just the sets with these two properties. But this is not the case as the following
lemma shows.

Lemma 4.63 There is a set A which is both saturated and REG-bi-immune but not
2-C-reg-generic.

PrOOF We only sketch the proof. It suffices to show that there is a saturated and
REG-bi-immune seA such that, for aln > 2, |{0",0"+ 1} N A| < 1. The latter

147

148

4. BOUNDED FINITE-STATE GENERICITY

implies thatA does not meet the partial 2-diagonalization functiomheref (0") =

11 forn > 2 and f(x) T otherwise. Obviously is regular and dense whence we
may conclude thad is not 2-C-reg-generic. A s& with the desired properties is
constructed by a slow diagonalization: The standard bi-immunity construction as
described in Section 3.4 can be easily modified to mAalkEG-bi-immune and at

the same time make sure that for any numiat most one string of lengthis put

into A and at most one string of lengthis restrained fromA. So, by the former,

we may ensure thdAN0X"| < 1 for all n > 1 while, by the latter, we can use
the partAN 1%* for making A saturated without interfering with the bi-immunity
requirements. U

Since the saturated sets coincide with many of the bounded reg-genericity con-
cepts investigated in the preceding sections — namely, in particular, with bounded
reg-genericity (i.e.e-reg-genericity) k-reg-genericity for ank > 1, weakw-reg-
genericity, liw-reg-genericity, and weak tis-reg-genericity — Theorem 4.62 also
clarifies the relations between the Cantor-style finite-state genericity concepts with
many of the previously discussed genericity notions. In the remainder of this sec-
tion we will discuss the relations between Cantor-style genericity and those previ-
ously considered genericity notions of standard type and of length invariant type
which are weaker than saturation.

We first address the question which of the previously introduced genericity
notions are implied by (wealk-C-genericity (for fixedk > 1).

If we consider the standard bounded reg-genericity notions then the only posi-
tive positive results are the ones following from

weakly 1-C-reg-generie> weakly 1-reg-generic (4.37)

by Theorem 4.62. Note that (4.37) holds since the weakly 1-C-reg-generic sets

are just the non-regular sets while the weakly 1-reg-generic sets are just the sets
with non-regular characteristic sequence. The fact that we do not get any other

implications follows from the next lemma.

Lemma 4.64 Let k> 1. There is a k-C-reg-generic set A such that A is not weakly
2-reg-generic.

PrROOFE This is immediate by Lemmas 4.32 and 4.51. O

If we consider length invariant genericity in place of standard genericity then,
by Theorem 4.53,

(weakly)k-C-reg-generie=> weakly lik-reg-generic (4.38)

4.3. Cantor-Style Finite-State Diagonalization

and
k-C-reg-generie= (weakly) li-k-reg-generic (4.39)

hold fork > 1.

To show that these are the only valid implications we first observe that, by
the saturation properties established for the various genericity note@seg-
genericity does not imply weak k-reg-genericity for anyk’ > k since there are
k-C-reg-generic sets which are rdtl-saturated whereas every weakl'lireg-
generic set has this property. So the optimality of (4.38) and (4.39) follows from
the next lemma.

Lemma 4.65 Let k> 1. There is a weakly k-C-reg-generic set A such that A is not
li- 1-reg-generic.

PROOF This is shown by a straightforward modification of the proof of Lemma
4.31. O

Now we address the question which of the (wdak)-genericity concepts are
implied by the previously introduced genericity notions weaker than saturation.

For the length invariant genericity notions we obtain a complete negative an-
swer: By Corollary 4.55, there is no numbesuch that (weak) lk-reg-genericity
implies any of the Cantor style regular genericity concepts.

For the standard genericity notions the situation is somewhat more complex.
Here it suffices to consider welikeg-genericity fok > 1 (since the other concepts
coincide with saturation). Since any saturated set is wdakdg-generic and since
there are saturated sets which are not REG-bi-immune, it follows from (4.36) that
weak k-reg-genericity in general does not imply 1-C-reg-genericity. So it only
remains to consider the question for which numbeasdk’

weaklyk-reg-generic= weaklyk’-C-reg-generic (4.40)

holds. Again, by the established partial saturation properties of the considered
genericity notions, (4.40) fails for all numbeksk’ > 1 with k < k'. Moreover,
(4.40) fails fork = k' = 1 by Corollary 4.57.

By the following lemma, (4.40) also fails fdr= k' > 2.

Lemma 4.66 For k > 2 there is a weakly k-reg-generic set A which is not weakly
k-C-reg-generic.

PrROOF Givenk > 2, by a finite extension argument we construct ads&tch that
Ais weaklyk-reg-generic but not weakk+-C-reg-generic.

149

150 4. BOUNDED FINITE-STATE GENERICITY

Fix a recursive enumeratioffe : € > 0} of the total regulak-bounded exten-
sion functions. Then, in order to makeweakly k-reg-generic, it suffices to meet
the requirements

Re: In((a [n)fe(a [n)Ca)

whereaq is the characteristic sequencefof
In order to ensure tha is not weaklyk-C-reg-generic we will ensure that

vx € 0 (A(X)...A(x+k—1) # 1¥) (4.41)

and
vxe 12" (A(X) = 1). (4.42)

This will ensure thatA does not meet thk-bounded diagonalization functioh
defined by

1K if x e 0z*
f(x) = _
0k otherwise

at any stringx # A. Since, obviouslyf is regular, by Proposition 4.48, this will
guarantee thah is not weaklyk-C-reg-generic.

We now describe the construction Af At stages, given an initial segment
as_1 of a of the formag g = a [0"V (wherel(—1) = 0 anda_; = €), we
definel(s) > I(s— 1) and the extensions = a 1 0 of as_1 in such a way that
requirementRs will be met and such that the definition af is consistent with
(4.41) and (4.42).

For the definition of (s) andas we proceed as follows. L& be an automaton
which computeds and letp be the number of states M. Then fixm>1(s—1)
minimal such thap+k < 2™ and set(s) = m+ 1. For stringsxwith | (s— 1) <
IX| < mdefineA(x) by lettingA(x) = 0 if x € 0=* and by lettingA(x) = 1 otherwise.
Note that this defines | min a way consistent with (4.41) and (4.42). For the
definition of A(x) for the stringsx of lengthm we distinguish two cases.

First assume that

39 < p (fs((a [m)0%) # 14) (4.43)

holds. Then, for the least suctet
AZ)...ABh 1) = 0% fg((a [m)0%) 02" "=k 12

(note thaig+k < p+k < 2™1). Note that this is consistent with (4.41) and (4.42)
and ensures th&g is met.
If (4.43) fails then

va < p (fs((a | m)0%) = 1%).

4.3. Cantor-Style Finite-State Diagonalization 151

Since the automatod computingfs hasp states this implies that
vq >0 (fs((a | m)09) = 1%).

So, by letting
m—1 m—1
AZ).. A) =0""" 17",

we ensure tha meetsfs (since(a [10™1) fs(a [10™1) C a) and this definition
is consistent with (4.41) and (4.42).
This completes the proof. O

It remains the question whether (4.40) may hold for some numbars k'
with k' < k. We leave this as an open question. We only remark that, by the
coincidence of weak 1-C-genericity and nonregularity, the question whether (4.40)
holds fork > 2 andk’ = 1 is equivalent to the question whether there are regular
weaklyk-reg-generic sets fde> 2.

152

4. BOUNDED FINITE-STATE GENERICITY

4.4 Enriched Encodings of Initial Segments

We now introduce stronger bounded finite-state genericity concepts which are based
on extension functions which obtain initial segments in a more redundant presenta-
tion as their inputs. These notions will combine the power of the standard bounded
finite-state genericity concepts with that of the Cantor style genericity notions in-
troduced in the preceding section.

Here we consider the following redundant presentafioh z, of the initial
segment of a s&k of lengthn defined by

Alr zn = 2#A (020)# . .. Zn-1#A(Zn-1). (4.44)

We will use the following notation. We cah\ [, z, theredundant initial segment
of A of lengthn and we let

Prefix (A)={A[rz,:n>0}

be the prefix set of with respect to redundant presentation. The set of all redun-
dant initial segments is denoted by

I, = {Zo#io#...#zn_l#in_l :n>0&ig,...,in_.1 € {0,1}}.

Then we can define extension functions operating on redundant initial segments
and corresponding (bounded) genericity notions in the canonical way.

Definition 4.67 A (partial) red-extension function i a (partial) functionf : I, —
. If f:1, — X thenf is ak-bounded red-extension functi¢k > 1), andf is
boundedf f is k-bounded for somk > 1.

Definition 4.68 The partial red-extension functioh is dense alonghe setA if
f(A[r zy) | for infinitely many numbers. A meets f at if f(A |, z,) is defined
and(A [z,)f(Alr zn) C X(A), andA meets fif Ameetsf at somen.

Note that the sel; is not regular. So in order to define regular red-extension
functionsf we have to consider extensionsfof

Definition 4.69 A (partial) k-bounded red-extension functidnis regular if there
is a (partial) regular functiori’ : (XU {#})* — =X such thatf is the restriction of
f'tol,.

Note that a regular functiof’ : (ZU {#})* — =X inducing a total regulak-
bounded red-extension functidnmay be partial. We only request that the ket

4.4, Enriched Encodings of Initial Segments 153

is contained in the domain df. Sometimes it will be convenient to define the
extensionf’ on the regular superset

># = {xottioh. . . #Xn_1#in-1:N>0& X0,..., %1 € Z* & ig,...,in_1 € X}

of I,.
Based on these definitions we obtain the following bounded finite-state gener-
icity notions.

Definition 4.70 A setGisred-k-reg-generidf G meets all regular parti&bounded
red-extension functions which are dense al@GngndG is weakly red-k-reg-generic
if G meets all regular totdd-bounded red-extension functionS.is (weakly) red-
w-reg-generiaf Gis (weakly) redk-reg-generic for alk > 1.

Next we will show that these genericity notions subsume the corresponding
standard genericity notions (introduced in Section 4.1) and the corresponding Can-
tor style genericity notions (introduced in the preceding section). For this sake
we have to show that regular (partipounded extension functions and regular
(partial) k-bounded diagonalization functions can be simulated by regular (partial)
k-bounded red-extension functions.

Lemma 4.71 Let f be a regular partial k-extension function ¥k1). There is a
regular partial k-red-extension functiorf $uch that, for any set A and any number
n, f'(A [z,) is defined if and only if fA | z,) is defined; and fA [, z,) = f (A] z,)

if defined.

PrROOFR Given an automatol! which computed, an automato’ which com-
putes the desired functidr works as follows. On inputo#tiotbxi#fi1#. . . #xn_1#in_1
M’ skips (i.e. reads without changing its state) the patsx.#, ...,X,_1# and sim-
ulatesM on the remaining paip...in_1. O

Theorem 4.72 Let A be (weakly) red-k-generic. Then A is (weakly) k-reg-generic
(ke NU{w}).

PROOF By Lemma 4.71 and definition. g

For the simulation of diagonalization functions by red-extension functions we
will need the following lemma.

Lemma 4.73 Let f: * — X be a regular partial function (k> 1). There is a
regular partial function f_: ¥* — =K such that, for any & 1, f_(zy-1) is defined
if and only if f(z,) is defined, and — if defined = {z,_1) = f(z,).

154

4. BOUNDED FINITE-STATE GENERICITY

PROOF Fix a deterministic finite automatad = (%, S §,,F,A) which com-
putesf. By Lemma 2.43, it suffices to give a nondeterministic (consistent) finite
automatorM’ = (Z,S,A', §,,F’,\") which computed. .

The automato’ on inputz, will simulate the automatokl on inputz, ;. To
be more precise, ¥ accepts,, 1 and the computation dfl ends in the accepting
states, i.e., if f(z,1) is defined andf (z,,1) = A(S), then there will be a unique
accepting computation &’ on inputz, and this computation will end in a stete
with N'(S') = A(s) whencef_(z,) = f(z11). If M rejectszy 1, i.e., if f(z11) is
undefined, then there will be no accepting computatiohbobn inputz, whence
f_(z,) will be undefined too.

We will describe the automatok’ only informally. Note that, for a string
x € {1}*, x4+ 1 = 0X+1 while for a stringx ¢ {1}*, x is of the formx = u01™ and
X+ 1=ul0". So on inputx the automatom’ first makes a guess whether or not
xe {1}*.

The computation guessing that this is the case simubtes input 1. l.e.,
the initial state is (a copy of) the stalté enters after reading a single 0 and then,
for any 1 readM’ performs the transition performed bW when reading a 0. k1’
reads a 0, thereby realizing that its guess was wrong, it stops the simulatibn of
and goes into a rejecting state which it will never leave.

The computation guessing thatcontains at least one 0 is nondeterministic
depending on an additional guess: when a 0 is Makas to guess whether or not
this will be the last 0 irx. M’ starts to simulat& on inputx until a 0 is a read.
ThenM may decide either to continue the simulationMfon x (guessing that
there will be another 0 in the not yet read partpbr (guessing that this will be
the last O inx) it simulates the transition & when reading a 1 in this step, and in
all consecutive steps, when reading ML will simulate the transition oM when
reading a 0. In the latter case, whit will later see a 0 (thereby realizing that
its guess was wrong) it will stop the simulationMfand it will go into a rejecting
state which it will never leave. Moreover, befdw guessed that a 0 it has seen
is the last 0 inx it will always be rejecting though it may be in (the copy of) an
accepting state dfl. (So if the guess that there is a Odmvas wrong or the chosen
computation oM’ fails to make a guess about the last 0 then this computation will
be rejecting.) O

Lemma 4.74 Let f be a regular partial k-diagonalization function (k1). There
is a regular partial k-red-extension functiorl $uch that, for any set A and any
number n, f(A [, z,) is defined if and only if (z,) is defined, and — if defined —
t(Alr z0) = F(zn).

PrROOFE By Lemma 4.73 we may fix a finite automatbhwhich computed. .

4.4, Enriched Encodings of Initial Segments 155

Then a finite automatol’ which computes the desired functiéhworks as fol-
lows. On an inputw = xo#ig#x #i #. . . #xn_1#in_1, M’ skips (i.e. reads without
changing its state) the partso##, ..., #,_1 while on eachx,, M’ simulatesM
(beginning each of the simulations in the initial statdMf So, after readingy,
M’ is in the same state &4 after readingt,_1. Hence ifw is a stringA |, z, then

fm (Al zn) = fm(zn-1) = o (z0-1) = f(z). O

Theorem 4.75 Let A be (weakly) red-k-generic. Then A is (weakly) k-C-reg-generic
(ke NU{w}).

PROOF By Lemma 4.74 and definition. g

The preceding two theorems allow us to apply results about the standard bounded
finite-state geniricity concepts and the results about the Cantor style bounded finite-
state geniricity concepts. For instance we obtain the following results on the
strength of the new genericity notions.

Theorem 4.76 (a) For any weakly red--reg-generic set A, & REG.
(b) For any weakly redo-reg-generic set A, A is saturated.

(c) For any redi-reg-generic set A, A is saturated aREEG-bi-immune.

PrOOF Parts (a), (b) and the second claim in (c) follow from Theorems 4.75 and
4.62. The first claim in (c) follows from Theorems 4.72 and 4.7. g

Moreover we can adapt some of the previous ideas to prove the following hier-
archy theorem.

Theorem 4.77 For k > 2 the following and only the following implications hold
(up to transitive closure).

red-w-reg-generic = weakly redes-reg-generic

) y
red-(k+ 1)-reg-generic weakly redk + 1)-reg-generic
) Y (4.45)
red-k-reg-generic weakly red-k-reg-generic
) y
red-1-reg-generic weakly red-reg-generic

PrROOF We only sketch the proof. Note that the unique implication from left to
right and the downward implications are immediate by definition. In order to justify
the upward implications in the first column we adapt the proof of Theorem 4.4 to

156

4. BOUNDED FINITE-STATE GENERICITY

show that red-1-reg-genericity and regreg-genericity coincide. To show that, in
general, weak red-reg-genericity does not imply weak r¢k+ 1)-reg-genericity,

it suffices to observe that any weakly rkdeg-generic set i&-w-saturated (by
Theorem 4.75 and Lemma 4.59) but, in general,(ket 1)-1-saturated. (To show

the latter, the proof of Lemma 4.8 can be easily adapted to build a weakly red-
k-reg-generic set which is ngk+ 1)-1-saturated.) This only leaves to show that
weakly redeo-reg-genericity in general does not imply red-1-reg-genericity. Since,
by Theorem 4.76 the latter implies REG-bi-immunity it suffices to show that there
is a weakly redw-reg-generic set which is not REG-bi-immune. But this can be
easily done, e.g., by a straightforward finite extension argument, we can construct
a weakly rede>-reg-generic seA such that{0}* is contained irA. O

Theorem 4.76 gives us some lower bounds on the strength of the finite-state
genericity notions based on the redundant representation of initial segments. More-
over, Theorems 4.72 and 4.75 show that these new genericity notions imply the
corresponding genericity notions based on the standard representation of initial
segments and the corresponding Cantor style genericity concepts. Of course it is
interesting to also obtain some upper bounds on the strength of the new concepts
and to analyze for what instances the implications among the different types of
genericity notions are strict. The previously obtained results give some but not all
answers.

For instance, fok > 2 the implications

weakly redk-reg-generic=- weaklyk-reg-generic

and
weakly redk-reg-generic=- weakly k-C-reg-generic

are strict. This follows directly from our previous result that (ko 2) neither
weakk-reg-genericity implies weakC-reg-genericity nor wealkC-reg-genericity
implies weakk-reg-genericity (see Lemmas 4.66 and 4.64).

Questions left open by our previous results are the strictness of the following
relations

weakly red-1-reg-generie- weakly 1-C-reg-generic (4.46)
weakly redes-reg-generic= weakly w-C-reg-generic (4.47)
red-w-reg-generic=- w-C-reg-generic (4.48)

Note that by Theorem 4.62, a negative answer to the first two questions is
equivalent to affirmatively answering the following interesting questions about the
power of weak red-1-reg-genericity and of weak rtedeg-genericity:

A weakly red-1-reg-generie> A ¢ REG (4.49)

4.4, Enriched Encodings of Initial Segments 157

A weakly redex-reg-generic= A saturated (4.50)

Though we conjecture that these equivalences can be established by extending
some of our previous related arguments, we leave these questions open. In the
following we will show, however, that the implication in (4.48) is strict.

Theorem 4.78 There is anw-C-reg-generic set A which is not reldreg-generic.

Note that this implies that red-1-reg-genericity is strictly stronger than all of
the finite-state genericity concepts introduced in the previous sections. For a proof
of Theorem 4.78 it suffices to establish the following two lemmas.

Lemma 4.79 For any k> 1 there is anw-C-reg-generic set A such that
vy EA(X <y = Iy <IX+1 V |y > [+k) (4.51)

PROOF Fix k> 1 and let{f,: n> 0} be an enumeration of all partial regular
bounded diagonalization functions where w.l.0.g. we may assume that the function
fn is k-bounded for som& < n. By a finite extension argument we construct an
w-C-reg-generic seéi satisfying (4.51): Given the finite initial segmehf 1 = A |
[(s—1) of Adefined in the firss— 1 stages of the construction, at stayee define

an extensios = A | I (s) of As_1 in such a way tha# meetsfs — provided thatf

is dense — and at the same time (4.51) is satisfiefl.iff not dense, obviously this
is achieved by letting(s) = 1(s— 1) + 1 and by not adding any strings of length
[(s—1)toA i.e., by lettingAs = As_1 (viewing As_; andAs as sets). Iffs is dense
then we choose the least numinesuch thaim > | (s— 1) + k ands < 2™ and the
least corresponding numbesuch thatz,| > mandfs(z,) |. (Note that, by density
of fs, such a string, must exist.) Then we ld{s) = |z,| + 2 and set

s-1)

Al I (S) = (A i | (S— 1)) on—z'(fs<zn) OZ‘Z"HZ—(rH—s)'

(Less formally, we pick the least strirg= z, of length> I(s— 1) + k such that
fs(z) is defined and such that meetirfigat z will only require to put strings of
length|z| and|z] + 1 into A. Then we use this string to me& and choosé(s)
big enough.) Obviously this implies thdg is met. Moreover, for any strings
X,y € As such thatix| < |y|, (4.51) holds: Ifx,y € As_1 this is true by inductive
hypothesis; ifx € As_1 andy € As\ As_1 thenz, <y whence, by choice ahand

n [x <l(s—1) <I(s—1)+k<m<|z| <|y|, hence|x| +k < |y|; finally, if
X,y € As\ As_1, thenx andy enterA for meetingfs atz, whence there are numbers
i < j < ssuchthak =z, andy = z,.j, hence, bys < 2M < 21/, |y| < |x| + 1. O

Lemma 4.80 Let k> 1 and let A be redt-reg-generic. There are infinitely many
numbers n such thgio", 0™, ... 0"k-11 c A

158 4. BOUNDED FINITE-STATE GENERICITY

PrROOF The proof is by induction ok. Fork = 1 it suffices to show that for given
no > 0 there is a numbar > ng such that 0 € A. Consider the 1-bounded partial
red-extension functiory induced by the partial functiofy : ># 5 where

1 3Im>ng (Xp-1=1")

fi(Xo#io#. . .#Xn,]_#in,]_) = .
T otherwise

Then f] — hencef; — is regular and1(A [; ") is defined for all numbers > ng.
So, by red-1-reg-genericith meetsf;. But, by definition offy, this implies that
there is a numben > ng such that(A [0")1 = (AT 0")f1(A [0") T X(A), i.e.,
0"e A
For the inductive step, fik > 1 and assume that there are infinitely many num-

bersn such that{0",0"**, ... 0"*~1} c A holds. Then, givemy > 0, we have to
show that there is a numbar> ng such that{0",0™1,... 0"} ¢ A. Consider
the 1-bounded partial red-extension functifan; induced by the partial function
frir: PAI 3 wherefy , (xo#fio#. .. #xn_1#in_1) = 1if X1 = 1™ for some number
m > ng + k, there are at leakt numbersj, 0 < j < n—1 such thatx; € {0}",
and, for the lask such stringsxj, < --- <X, ij, = --- =ij, = 1; and where
fr1(Xofio#. . . #xn_1#in_1) is undefined otherwise. Theff,, — hencefy 1 —is
regular. Moreoverfy1(A [; X) is defined if and only ik = 0"k for some number
n> ng andA(Q") = ... A(0"k-1) = 1. So, by inductive hypothesisy, 1 is dense
alongA whence, by red-1-reg-generici#y,meetsfy, 1. But, by definition offy 1,
this implies that there is a number> ny such that{0",0™?1, ... 0"k11 c A,

]

CHAPTER 5

Unbounded Finite-State Genericity

160

5. INBOUNDED FINITE-STATE GENERICITY

After our detailed analysis of bounded finite-state genericity we now turn to
more general finite-state genericity notions based on extensions of nonconstant
length. We will obtain stronger and stronger concepts by considering more and
more general notions of regular functions of type— >* for modelling the finite-
state extension strategies. In Section 5.1 we start with (weak) Moore genericity
based on (total) Moore functions. By showing that weakly Moore generic sets are
saturated we show that (weak) Moore genericity refines bounded reg-genericity.
Moreover, by analyzing the gaps in (weakly) Moore generic sets we show that — in
contrast to all of the bounded finite-state genericity concepts considered in Chapter
4 —the class of the (weakly) Moore generic sets has measure 0. As we also observe,
however, Moore genericity does not forces REG-(bi-)immunity. In fact, this is true
if we strengthen this concept by considering nondeterministic Moore functions (see
Section 5.2). By considering generalized Moore functions, however, we obtain a
corresponding finite-state genericity concept which does not only force REG-bi-
immunity but also CF-bi-immunity (Section 5.3).

5.1. Moore Genericity 161

5.1 Moore Genericity

We start our investigation of unbounded finite-state genericity by introducing gener-
icity based on Moore functions, the most restrictive concept of an unbounded finite-
state function (see Definition 2.33). We call the corresponding genericity concept
Moore genericity.

Definition 5.1 A setA is Moore generidf A meets all partial extension functions
f : 2* — Z* which are Moore functions and which are dense aldn@ndA is
weakly Moore generidf A meets all total extension functiorfs: * — >* which
are Moore functions.

A sequence is (weakly) Moore generid the setS(a) corresponding ta is
(weakly) Moore generic.

Recall that an automatdvi computing a Moore functiof produces on input
of lengthn the valuef (x) =y of lengthn+ 1 bit by bit. To be more precise, before
reading the first bit ok, M determines the first bit of and then for every bit read a
bit is appended to the part gproduced before. For parti&| after having read the
entire inputx, M decides whether should be taken as the value fafk) or whether
f(x) is undefined. This computation procedure immediately implies the following
length and extension properties of (partial) Moore functibmeherev,w € >* (see
Lemma 2.34).

f(w) | = [f(w)|=w+1 (5.1)

and
(VEW& f(v) | & f(w)]) = f(v)C f(w). (5.2)

By being able to specify extensions of growing length one might expect that
Moore extension functions are more powerful than regular bounded extension func-
tions. On the other hand, however, an extension strategy based on a regular exten-
sion functionf has to make a decision on the value aAdtas to have at, in
order to meeff atn only after the extension strategy has seen al ¢in whereas
a strategy based on a Moore function has to determine this value already before
it has seen any part & [n. So it is not obvious that (weak) Moore genericity
implies bounded reg-genericity. Before we will turn to this question we first list
some basic facts on Moore genericity including some technical lemmas which will
be very useful for the following investigations.

162

5. INBOUNDED FINITE-STATE GENERICITY

5.1.1

Some Basic
Properties

We first consider some closure and invariance properties of Moore genericity and
weak Moore genericity. We first observe that both concepts are closed under com-
plement. We then show that Moore genericity and the corresponding infinitely-
often genericity concept coincide whereas this is not the case for weak Moore
genericity. In particular, this shows that weak Moore genericity and Moore gener-
icity do not coincide.

Lemma 5.2 The class of the (weakly) Moore generic sets is closed under comple-
ment.

PROOF As one can easily show, for any (partial) Moore functibonthe dual
function f defined byf(@ = f(x) is a (partial) Moore function again. By Lemma
3.40 this implies the claim. O

Next we show that a Moore generic #etneets any partial Moore extension
function which is dense alorgnot just once but infinitely often.

Lemma 5.3 Let A be Moore generic. Then A infinitely often meets any patrtial
extension function fZ* — 2* which is a Moore function and which is dense along
A.

ProOF It suffices to show that, for any partial Moore functibmnd any number
n, the finite variantf’ of f defined by

0 — {f(x) if X >n

1 otherwise

is a partial Moore function again. Then we can argue as in the proof of Lemma
3.37.

Now, given a Moore automatod = (%, S, 9, s, F,A) which computesf, we
can converiM into an automatoM’ = (%,S,¥, s,,F’,\") computingf’ by letting
S=Su{sf:seS&k<n}, g=,F =F, N(s) =N (s) = A(s) for s€ Sand
k < n, and by setting'(sX,a) = 3(s,a)k*1, §(s",a) = &(s,a) andd'(s,a) = 5(s,a)
forse S k< n, anda € Z. Intuitively, M’ works asM but in the firstn steps of a
computation the current stateg si, ...s, are replaced by corresponding non-final

statess), st,..., 9, respectively. O

As one can easily show, the class of (partial) Moore functions is closed under
finite replacement (in the sense of Definition 3.38). By Lemmas 3.39 and 5.3 this
implies that the class of Moore generic sets is closed under finite variants.

Lemma 5.4 The class of the Moore generic sets is closed under finite variants.

5.1. Moore Genericity 163

In contrast to the two preceding lemmas, however, there is a weakly Moore
generic set which meets some total Moore extension function just once, and the
class of weakly Moore generic sets is not closed under finite variants.

Lemma 5.5 There is a weakly Moore generic set A which meets the total Moore
extension function f2* — 3* defined by fx) = 1X+ only at n=0.

PrROOF The required seA is constructed by a finite extension argument, i.e., at
stages > 0 of the construction oA we specify a finite initial segment | |(s) of
the characteristic sequenaef A.

Let {f,: n > 1} be an enumeration of the total Moore extension functigns
such thag(e) =0, let fo = f, and letl(—1) = 0. Then, fors= 0, letl(0) = 1 and

all(0)=1=f(a0).
For the inductive step, givem [I(s), letl(s+ 1) = 2I(s) + 1 and

a[l(s+1) = (a [1(s))fsra(a [1(s)).

(Note that, byfs,1 being a Moore function fs.1(a [1(s))| = |a [I(s)|+ 1 whence

a [I(s+1) is well defined.) Now, by a straightforward induction s> 0, A
meetsfs atl(s— 1) anda(l(s)) = 0. (The latter follows from the fact, that for a
Moore functionf, (f(x))(0) = f(g) by the extension property (5.2) whence, by
construction and by choice df. 1, a(I(s)) = (fsr1(a [1(9))(0) = fsr1(€) =0.)
Now the former implies tha# is weakly Moore generic. Namely, given a total
Moore functionh, eitherh(e) = 1 = a(0) whenceA meetsh at O or there is a
numbers > 1 such thah = fs whenceA meetsh atl(s— 1). It remains to show
that A does not meef at any numben > 1, i.e., thato(n)...a(2n) # 1"+ for all
n> 1. But this easily follows from the fact th&t0) = 1, 1(s+1) = 2I(s) + 1 and
a(l(s)) =0fors> 0. O

Lemma 5.6 The class of the weakly Moore generic sets is not closed under finite
variants.

PROOF ChooseA andf asin Lemma5.5 and I&f = A\ {z}. ThenAis weakly
Moore generic but the finite variaAt of A is not weakly Moore generic since, as
one can easily checly does not meet the total (length invariant) Moore function
f. O

Theorem 5.7 The class of the Moore generic sets is strictly contained in the class
of the weakly Moore generic sets.

164 5. INBOUNDED FINITE-STATE GENERICITY

PROOF Obviously any Moore generic set is weakly Moore generic. So it suffices
to show that the class of the Moore generic sets and the class of the weakly Moore
generic sets do not coincide. But this is immediate by Lemmas 5.4 and 5.6 (or by
Lemmas 5.3 and 5.5). O

In the remainder of this subsection we prove some more technical facts on
(weakly) Moore generic sets. We first show of a class of simple length invariant
functions that they are of Moore type.

Definition 5.8 Let f : N — S be a total function. The functioh: =* — >* induced
by f is defined byf (x) = f(0)...f(|x|).

Lemma 5.9 Let f : N — ¥ be a total function such that, for some i&, f(n) =i
for almost all numbers n. Then the function I* — Z* induced byf is a total
Moore function.

PROOF Straightforward. 0
For the next technical lemma we need the following definition.

Definition 5.10 A total Moore functionf is compatible witha stringy if, for any
stringx, f(x) is compatible witty, i.e., f(x) Cyif |x| <|y| andy C f(x) if [x| > |y].

f is compatible with y alon@ setA if, for any numbem, f(A [n) is compatible
with y.

Lemma5.11 Let A be any set, let&) =i (i =0,1), and let n p > 1 be numbers
such that
{m:0<m<n & A(zn) =i} =p. (5.3)

Then there is a string y such thigt = 1+ n— p and such that, for any total Moore
function f which is compatible with y along A, A does not meet f at any number
m<n.

PrROOF Definey by lettingy = yo...yn Whereyg = 1— A(z) = 1—i and, for
0 < m<n,ynis defined as follows. I1A(zy,) =i thenyy, = €. Otherwiseym € X is
given byym = 1— A(Zny|y..ym1|)- Then, by definition op, there argp numberam
with 0 < m< n such thay, = €. Soly| = 1+ n— p. It remains to show that, given
a total Moore functionf which is compatible witty alongA and given a number
m < n, A does not meetf atm. Distinguish the following two cases.

If A(zm) =i then, byyo = 1—i and by compatibility off with y alongA,
f(ATm)(0) =1—i. So(A| m)iC x(A) while (ATm)(1—i)C (AT m)f(Alm)
whenceA does not meet atm.

5.1. Moore Genericity 165

If A(zm) # i thenym = 1—A(Zny|yy..ym 1) SO, fork = |yo...ym 1/, the strings
A(Zm)...A(Zmik) andyo...ym are incompatible: Namely, both strings have length
k+ 1 and, for their last bit#\(zn.x) andym, respectively,A(znik) # Ym- OnN
the other hand, by compatibility of with y alongA, yo...ym C f(A [m). So
A(zm)...A(Zmik) and f (A | m) are incompatible, henc®does not meet atm. [

Note that Lemma 5.11 in particular implies that for anyAsuch thatA(z) =
A(z9) for infinitely many stringsz, for any numberp there is a numben and a
stringy of lengthn — p such thatA does not meet any Moore extension function
compatible withy at any numbem < n. In order to show that this applies to any
weakly Moore generi@ set, we next observe that the characteristic sequence of
any weakly Moore generic set contains infinitely many zeroes and ones.

Lemma5.12 Let A be weakly Moore generic and ketbe the characteristic se-
quence of A. Thefin: a(n) =0} and{n: a(n) = 1} are infinite.

PROOF By symmetry it suffices to show thdh : a(n) = 0} is infinite. For a
contradiction assume that there are only finitely many occurrences obiGaird
fix ny such thain = (a | np)1%. Define the functiorf : N — X by letting f(n) =

1—a(2n). Note thatf(n) = 0 for n > ny. Hence, by Lemma 5.9, the functidn
induced byf via f(x) = f(0)...f(|x|) is a total Moore function. Moreove does
not meetf at any numben. Namely, foranyn>0,a [2n+1# (a [n)f(a [n)

since, by definition off andf, a | 2n+1 and(a | n)f(a | n) differ in the last bit:

[(a [)f (o [m))(2n) = f(a [n)(n) = f(n) = 1—a(2n).
It follows thatA is not weakly Moore generic contrary to assumption. O

Our final technical lemma bounds the gaps in the domains of partial finite-state
functions. It does not only apply to partial Moore functions but to bounded partial
regular functions as well.

Lemma 5.13 Let f be a partial bounded regular extension function or a partial
Moore extension function computed by a finite automaton with k states. Then

Yxe T (Bye = (f(xy) D] = By e Z¢(f(xy))] (5.4)
holds.

PROOF Assume thaf is computed by the automatdh= (%, S 8,5, F,A) where
|S| = k and that, for giverx, there is a stringy such thatf (xy) is defined. Since
f(z) is defined if and only iM is a final state after readirg it follows that there

166

5. INBOUNDED FINITE-STATE GENERICITY

5.1.2

Moore
Genericity and
Saturation

are states ands such thad*(sp,X) = s, 8*(s,y) =S ands € F. So the statg is
reachable frons. But then, for the shortest striygwith 8 (s,y) =<, |y | < |9 =Kk,
since the corresponding res=s1,%, . .. Sy 41 = s of M does not contain any loops
(i.e. repetitions). S¢’ is the requested string of lengthk with f(xy) |. O

In order to show that weak Moore genericity (hence Moore genericity) is a refine-
ment of bounded reg-genericity we will show that weakly Moore generic sets are
saturated. For a Moore generic getve can show thad is saturated by applying
Lemma 5.3. Namely, in order to show that a given stxiegcurs in the characteris-

tic sequence of Awe define a total Moore functiohby letting f (y) =x | (|y] +1)

if |y| < |x| and by lettingf (y) = x0¥I=X+1 otherwise. Since, by Lemma 5.3,
meetsf infinitely often, there is a number > |x| such thatA meetsf atn. So

f(a | n) = x0" X+ occurs ina, hence, in particular occurs ina. To show that
weakly Moore generic sets are saturated too we need a somewhat more sophisti-
cated argument.

Theorem 5.14 Let A be weakly Moore generic. Then A is saturated.

PROOFE For a contradiction assume thatis not saturated and fix a nonempty
string x such thatx does not occur in the characteristic sequemasf A, and let

i = A(g). Since, by Lemma 5.12, the Hitoccurs ina infinitely often, we may
choose a numben > 1 such that, forp = |x| + 1, (5.3) holds. So, by Lemma
5.11, there is a string of length 1+ n— p such that, for any total Moore function
f which is compatible witty alongA, A does not meef at any numbem < n.
Fix such a stringy and definef : N — = by letting f(0) ... f(n— 1) = yx (note that
lyX = |y|+ X = (1+n—p)+ (p—1) = n) and by lettingf (m) = 0 form > n. Then,
by Lemma 5.9, the extension functidrinduced byf via f(x) = f(0)...f(|x|) is a
Moore function. By definitionf is compatible withyx, hence compatible witl.

By choice ofy, the latter implies tha# does not meet at any numbem < n. On
the other hand, fom > n, by compatibility of f with yx (and by|xy| =n<m+1=
|f(ATm)]),yxC f(A[m). So if Ameetsf atm > n thenx will occur ina. Since,
by assumptionx does not occur im we may conclude thak does not meef. It
follows thatA is not weakly Moore generic which gives the desired contradiction.
]

By coincidence of the bounded reg-generic sets with the saturated sets, the pre-
ceding theorem shows that the class of weakly Moore generic sets is contained in
the class of bounded reg-generic sets. Moreover, since saturated sets are nonregu-
lar, we may conclude that no regular set is weakly Moore generic.

5.1. Moore Genericity

167

Corollary 5.15 Any weakly Moore generic set is bounded reg-generic.

Corollary 5.16 No regular set is weakly Moore generic.

Note that the implication in Corollary 5.15 is strict since, in contrast to weak
Moore genericity, bounded reg-genericity is closed under finite variants. In the
next subsection we will show this in a different way: In contrast to any bounded
genericity concept, the class of weakly Moore generic sets has measure 0. We will
show the latter by analyzing the gaps occurring in (weakly) Moore generic sets.

We will next compare the length of gaps occurring in the characteristic sequences 5.1.3
of bounded-reg generic sets, weakly Moore generic sets, and Moore generic sets.

Moore
Genericity, Gaps

Definition 5.17 Let f : N — N be total. We say that a sequercéas anf-gap at and Measure

nif (a | n)0f(™ = a; a hasf-gapsif a hasf-gaps at infinitely many numbers
i.e., if there are infinitely many numbenssuch tha{a [n)0'(" a. a hask-gaps
(k> 0) if a hasf-gaps for the constant functidi(n) = k.

We extend Definition 5.17 to sets by saying that afsbasf-gaps if its char-
acteristic sequence has such gaps.

A characterization of the gaps occurring in all bounded reg-generic sets follows
from the next two lemmas.

Lemma 5.18 Any bounded reg-generic set A has k-gaps for all numberdk

PROOF By the coincidence of bounded reg-genericity withw-saturation, for
any numberk, the word @ occurs in the characteristic sequence of any bounded
reg-generic set infinitely often. O

Lemma 5.19 Let f: N — N be a nondecreasing total function which is unbounded
(i.e., for any number B 1, f(n) > k for some n). Then there is a bounded reg-
generic set A which does not have f-gaps.

PrRoOOF Given an unbounded, nondecreasing functfonN — N, by a finite
extension argument we define a bounded reg-generié sdthout f-gaps. Let

{fe: e> 0} be an enumeration of the total regular bounded extension functions
where w.l.0.g. fe is ebounded. Then, given a finite initial segment ;1 = a |
I(s—1) of the characteristic sequenaef the setA under construction, we define

an extensiors = a | I(s) of as_1 which guarantees th# meetsf.. Moreover,

this extension is chosen so thatloes not havd-gaps.

168

5. INBOUNDED FINITE-STATE GENERICITY

For the definition of (s) andas, choosen > | (s— 1) minimal such thaf (n) > s.
(Note that, byf being unbounded and nondecreasing, for any nurgbigmn) > s
for almost all numbers, hence such an exists.) Then let(s) = n+s+1 and
setls = as 11"V andas = Gsfs(Gs)1. Obviously this ensures thatmeets
fs atn. SoA is weakly w-reg-generic, hence bounded reg-generic by Theorem
4.7. Moreover, the construction ensures thfatoes not havd -gaps. Namely,
whenever the wordQk > 0 occurs in, say(a | m)Ok C o then there are numbers
n ands such that(a | n—1)1fs(a [n)1 C a, s< f(n) and & is a subword of
fs(a [n). It follows thatk < s< f(n) < f(m) (where the latter follows from <m
sincef is nondecreasing). So this occurrencefafin does not establish angap.

]

Theorem 5.20 Let f: N — N be nondecreasing and total. The following are equiv-
alent.

1. f is bounded, i.e., there is a number k such that) & k for all numbers
n>0.

2. Every bounded reg-generic set has f-gaps.
PrROOF This is immediate by Lemmas 5.18 and 5.19 O

The following two lemmas determine the size of gaps occurring in all Moore
generic sets.

Lemma 5.21 Any Moore generic set A hga+ k)-gaps for all numbers k 1.

PrROOF Leta be the characteristic sequence of a Moore generidsetd fix

k > 1. Define the partial functiori : * — Z* by letting f(w) be defined if and

only if w= vOX for somev € Z* and by lettingf (w) = 0™+ if f(w) is defined.

Then, as one can easily chedkis a partial Moore function andl is dense along

any saturated set. Since, by Theorem 5.14, Moore generic sets are saturated it
follows, by Lemma 5.3, thah meetsf infinitely often. But, for any number such

thatA meetsf atn,

(a In)f(a In)=(a[n—ko0" ! Ca
hencea has an(n+ k)-gap atn — k. This completes the proof. O

Lemma 5.22 Let f: N — N be a total, nondecreasing function such that, for any
number k> 1, f(n) > n-+k for some n. Then there is a Moore generic set A which
does not have f-gaps.

5.1. Moore Genericity 169

PROOF The proof is similar to that of Lemma 5.19. But since, in contrast to
w-reg-genericity and weako-reg-genericity, Moore genericity and weak Moore
genericity do not coincide, here we have to work with partial extension functions.
We will use Lemma 5.13 in order to adapt the argument for total functions to partial
functions.

Let f be as in the premise of the lemma. Then, for any nunkbdr(n) >
n+ k for almost all numbers. By a finite extension argument we define a Moore
generic sefA without f-gaps. Let{f.: e > 0} be an enumeration of the partial
Moore extension functions where w.l.o.g. we may assumefthiatcomputed by
an automaton with at moststates. Then, given a finite initial segment; = a |
I(s—1) of the characteristic sequenaef the setA under construction, we define
an extensiorus = a | I(s) of as_1 which guarantees th# meetsf.. Moreover,
this extension is chosen so thatloes not havd-gaps.

For the definition of (s) andas, choosen > | (s— 1) minimal such thaf (n) >
n+s+1, setds = as_11"'¢-1 and distinguish the following two cases. If there
is a stringy of length< s such thatfs(Gsy) is defined than fix the least sugtand
let os = Ggyfs(Gsy)1. Otherwise, letis = Gs. Note that in the former case the
choice ofag ensures thaf meetsfs. In the latter case, by Lemma 5.13, there is
no extension ofis = G5 on which fs is defined, whencés is not dense along. It
follows thatA is Moore generic.

Finally, by construction, a substring 6f a has to be contained in thig(dsy)
part of an initial segmerds = Ggy fs(Gsy)1. By construction, howevely| < sand,
forn=|ag|, f(n) > n+2s. So

k<|fs(Gsy)| < (n+s)+1< f(n).

Sincef is nondecreasing this implies that the occurrence o @ does not induce
an f-gap ina. O

Theorem 5.23 Let f: N — N be nondecreasing and total. The following are equiv-
alent.

1. There is a number k such thatn) < n+k for all numbers > 0.

2. Every Moore generic set has f-gaps.
PrROOF This is immediate by Lemmas 5.21 and 5.22 O
Theorem 5.23 does not carry over to weak Moore genericity. For instance, by

considering the complement of the weakly Moore generic set of Lemma 5.5 we
obtain a weakly Moore generic set which does not have 1)-gaps.

170 5. INBOUNDED FINITE-STATE GENERICITY

Lemma 5.24 There is a weakly Moore generic set A which does not liavel)-
gaps.

On the other hand, in contrast to bounded-reg genericity, there is an unbounded
nondecreasing functioh such that there aré-gaps in all weakly Moore generic
sets.

Lemma 5.25 Every weakly Moore generic set A hggjaps.

PROOF LetAbe weakly Moore generic and fiiy > 0. We have to show that there
is a numben > ng such thata | n)O?nt C a wherea is the characteristic sequence
of A.

Fix i <1 such that
n
2"
and fixn; > ng such tha{{zn: m<n; & A(zn) =i}| > % holds. Distinguish the
following cases depending on the relation betweandA(z).

First assume tha(z) = i. Then, by Lemma 5.11, there is a stringf length
< 2 +1 such that, for any Moore functioh compatible withx, A does not meet
f at any numbe n;. So, in particular, this is true for the Moore functidn
induced by the functiorf : N — N defined byf (0)... f(|x| —1) = xandf(n) =0
for n > |x|. On the other hand, by weak Moore genericity/ofA meetsf. SoA
meetsf at some numbam, > n;. It follows that

I*n({zm:m<n & Alzn) =i} >

(an)f(alny)Co.

Since f(a [np) = x0™1-X and |x| < % +1 < % +1 it follows that, forn =
N2+ X,

(o [n)04 C (a [)0t X = (a [np) f(a [np) C a.
This completes the proof for the first case.

Now if A(z) # i then we can apply Lemma 5.11 to the complemenAof
Hence we can argue as in the first case waitin place ofA. So, by replacing the
function f defined there by (0)... f(|x| —1) = xandf(n) = 1 forn > |x| we can
argue that we can find > n; such that

@[nlica

whered denotes the characteristic sequence&ofObvioust this implies(a |
n)0: C a.
This completes the proof. O

As announced above, we can use the gaps occurring in all weakly Moore
generic sets to show that the class of these sets has measure 0.

5.1. Moore Genericity 171

Theorem 5.26 Let A be a set such that the characteristic sequano€A satisfies
the law of large numbers, i.e.,
{m:m<n& a(m =0} 1

lim —.
n—oo n 2

Then A is not weakly Moore generic.

PrRoOOF For a contradiction assume thatis weakly Moore generic and satisfies
the law of large numbers. By the latter, we may choase O such that

V

1 1 m:m<né& a(m =0 1 1

2 50 n 2 %)' (5.5)

On the other hand, by weak Moore genericityfond by Lemma 5.25, we may
choosen > ng such thata | n)Oth C a. It follows, forn’ = n+ 2,

{mm<n’ & a(m)=0}| _ H{mm<n & a(m)=0}+7
n - n+3
_ 4l/{mm<n & a(m)=0}| , 1
_° 4,1 " 1 1 " 5
> g(zl— 57)1)‘*'5 (by (5.5))
But this contradicts (5.5). O

Corollary 5.27 The class of the weakly Moore generic sets has measure 0.

PrROOF This is immediate by Theorem 5.26 since the class of the sets satisfying
the law of large numbers has measure 1. d

Corollary 5.28 The class of weakly Moore generic sets is strictly contained in the
class of bounded reg-generic sets.

PrROOF This is immediate by Corollary 5.27 since the class of the bounded reg-
generic sets has measure 1. O

Note that, for any bounded genericity concept, the class of the corresponding
generic sets has measure 1 (Theorem 3.35). So none of the bounded finite-state
genericity concepts introduced in Chapter 4 implies weak Moore genericity. An-
other interesting consequence of Theorem 5.26 is that the characteristic sequences
of (weakly) Moore generic sets are saturated (by Theorem 5.14) but not normal.
The latter follows from Theorem 5.26 since, by definition, normal sequences sat-
isfy the law of large numbers.

172 5. INBOUNDED FINITE-STATE GENERICITY

5.1.4 By Corollary 5.16, (weakly) Moore generic sets are not regular. In order to get a
Moore better impression on the diagonalization power of the Moore genericity concept it
Genericity and is natural to ask whether (weakly) Moore generic sets are REG-bi-immune. Here
Immunity we give a negative answer.

Theorem 5.29 There is a Moore generic set A which is IREG-immune.
ProOF It suffices to construct a Moore generic setuch that
{0™:n>0}CA (5.6)

By the latter,A will not be REG-immune. The construction Afclosely follows
the proof of Lemma 5.22. As there we fix an enumerafifyt e > 0} of the partial
Moore-functions such that theth function fe is computed by an automaton with
at moste states. So, by Lemma 5.13, fee> 0,

Vxe X' (Fyex” (fo(xy))] = [3Y € Z°° (fe(xy) |)] (5.7)

holds.

Now, in stages of the construction, we will determing for all stringsx with
2s < |x| < 25+ 2, i.e., the valuesi(2%5 — 1)...a (2?72 — 2) of the characteristic
sequence of A. In order to satisfy (5.6) we 168(0%) = a(2%°— 1) = 1. Then we
ask whether there is a strirygof length < s such thatfs((a | 2%)y) is defined. If
S0, then, for the least such strigigve let

o [22512 1= (a] 25— 1)y f((ar | 22M)y)07" (2D,

Obviously, this extension ensures tiameetsfs. If there is not stringy as above
then, by (5.7), there is no extensionf 225 on which fs is defined. So, in this
case,fsis not dense along and we can define

o [2572 1= (a | 25— 1)107°"" (-2,
0

In the next two sections we will discuss two strengthenings of Moore generic-
ity which are based on nondeterministic Moore functions and generalized Moore
functions, respectively.

5.2. Nondeterministic Moore Genericity 173

5.2 Nondeterministic Moore Genericity

Some of the limitations of Moore functions, namely the extension property (5.2)
(but not the length property (5.1)), can be eliminated by considering nondetermin-
istic Moore functions (see Example 2.40). We call the corresponding genericity no-
tion (weak) nondeterministic Moore genericity or (weak) NM-genericity for short.

Definition 5.30 A set A is nondeterministic Moore generi@r NM- genericfor
short) if A meets all partial extension functioris. Z* — * which are nondeter-
ministic Moore functions and which are dense al#igandA is weakly nonde-
terministic Moore generi¢or weaklyNM- genericfor short) if A meets all total
extension functiong : ¥* — >* which are nondeterministic Moore functions.

As in the deterministic case we can show that the class of the (weakly) non-
deterministic Moore generic sets is closed under complement. In contrast to the
deterministic case, however, not only nondeterministic Moore genericity but also
weak nondeterministic Moore genericity is an infinitely-often genericity concept.

Lemma 5.31 If A is NM-generic then A infinitely often meets any partial exten-
sion function f: ¥* — Z* which is a nondeterministic Moore function and which

is dense along A. Similarly, if A is weakly NM-generic then A infinitely often meets
any total extension function :fZ* — Z* which is a nondeterministic Moore func-
tion.

PrROOFE We give a proof of the second part of the lemma (which can be easily
modified to prove the first part). Given a weakly NM-genericAeh total exten-
sion functionf which is nondeterministically Moore computable and a nunmger
it suffices to show thah meetsf at some numben > ng.

Consider the finite variant’ of f defined by

() — {<f1A<z|x|>>X+1 f x| <o
(x) otherwise.

Thenf’is a nondeterministic Moore function again: A nondeterministic automaton
M’ computingf’(x) first guesses whether or not the inpuhtas length> ng. If M’
guesses thdk| > ng thenM’ simulates a nondeterministic automaton computing
f on inputx. In addition,M’ counts the firshy steps of the computation and does
not accept if the computation is completed before step 1. If M’ guesses that

x| < ng thenM’ makes an additional guess about the lengthxpflf M’ guesses
that|x] = mthenM’ runs throughm+ 1 statesy, ..., s, all labelled with 1— A(zy,).

174

5. INBOUNDED FINITE-STATE GENERICITY

Only the last of these statesy, is accepting; moreover, if the computation is not
completed when enterirg]), m’ will enter a rejecting state which it will never leave
later.

It follows, by weak NM-genericity oA thatA meetsf’ at some numbar. The
function f” has been defined in such a way, however, &dbes not meet’ at any
number< ng. SOA meetsf’ at some numben > ng. Sincef and f’ coincide on
inputs of length greater tham, this implies thatA meetsf aboveny. O

Lemmas 5.5 and 5.31 immediately imply that weak NM-genericity is strictly
stronger than weak Moore genericity. This difference is also reflected by the gaps
occurring in the weakly Moore generic sets and the weakly NM-generic sets as we
will show next. The following results on gaps in weakly NM-generic sets will also
show that in general weak NM-genericity does not imply Moore genericity, i.e.,
that nondeterministic total Moore extension functions in general cannot simulate
deterministic partial Moore functions.

Theorem 5.32 Any weakly NM-generic set h@s+ 1)-gaps but there is a weakly
NM-generic set A which does not hairet 2)-gaps.

PROOF For a proof of the first part, assume ttfats weakly NM-generic. By
Lemma 5.31A infinitely often meets the (deterministic length invariant) Moore
extension functiorf defined byf (x) = 0X+1, Obviously, this implies thai has
(n+1)-gaps. For a proof of the second part, by a standard finite extension argument
we construct a weakly NM-generic set withdot+ 2)-gaps. Given an enumeration
{fe: e> 0} of the nondeterministic total Moore extension functions, in stage

the construction we define a finite extensoonof the previously specified initial
segmentis_; of the characteristic sequenaef A by lettingas = as 1 fs(as-1)1.
Obviously this ensures thdt meetsfs whenceA is weakly NM-generic. More-
over, since the nondeterministic Moore functidnBave the length property (5.1),
|fs(as—1)| = |0s—1] + 1. Hence inserting a 1 at the end of each extension step en-
sures that there is no numbewith (o | n)0"2 C o. SoA does not havén + 2)-
gaps. O

Corollary 5.33 There is a weakly NM-generic set which is not Moore generic.
Hence, in particular, NM-genericity is strictly stronger than weak NM-genericity.

PROOF This is immediate by the second part of Theorem 5.32 and by Lemma
5.21.]

The results on gaps in Moore generic sets easily carry over to NM-generic sets.
Similarly, the proof of Theorem 5.29 easily extends to NM-genericity.

5.2. Nondeterministic Moore Genericity 175

Theorem 5.34 There is a nondeterministic Moore generic set A which iRi6G
immune.

So replacing Moore extension functions by nondeterministic Moore extension
functions does not lead to extension strategies forcing REG-bi-immunity. As we
will show in the next section, however, generalized Moore extension strategies have
this power.

176

5. INBOUNDED FINITE-STATE GENERICITY

5.3 Generalized Moore Genericity

Our second refinement of Moore genericity is based on (partial) generalized Moore
functions.

Definition 5.35 A setA is generalized Moore generior GM- genericfor short)

if A meets all partial extension functiofis Z* — Z* which are generalized Moore
functions and which are dense aloygandA is weakly generalized Moore generic
(or weaklyGM- genericfor short) if A meets all total extension functioris ~* —

>* which are generalized Moore functions.

We can further refine this genericity concept by considering Moore extension
functions which are both, generalized and nondeterministic.

Definition 5.36 A setAis generalized nondeterministic Moore gengjac GNM-
genericfor short) if A meets all partial extension functioris Z* — Z* which are
generalized nondeterministic Moore functions and which are dense Aj@arglA
is weakly generalized nondeterministic Moore genéacweakly GNM- generic
for short) if A meets all total extension functiotis 2* — * which are generalized
nondeterministic Moore functions.

As we have observed in Section 2.3, generalized (deterministic or nondeter-
ministic) partial Moore function$ in general do not have the length property (5.1)
but satisfy the more relaxed length condition

Je>1vwe I (f(w) | = [f(w)| <c(|w|+1)). (5.8)

In addition, the generalized deterministic Moore functions — but in general not the
generalized nondeterministic Moore functions — have the extension property (5.2).

The relaxation of the length property leads to larger gaps in the characteristic
sequences of (weakly) generalized Moore generic sets.

Lemma 5.37 Any weakly GM-generic set has cn-gaps (for any t).

PrROOFE Let A be weakly GM-generic, lett be the characteristic sequencefof
letc > 1, and letng > 0. It suffices to show that there is a numiner ng such that
(a [n)0"C a.

First define a striny of lengthng by lettingy = yo...Yn,—1 Wherey, =1 —
A(zn) for 0 < n < ng. By definition, ofy,

Yn<ng((a[nyyZa).

5.3. Generalized Moore Genericity 177

So, for any total extension functiohsuch thaty C f(g) and f has the extension
property (5.2) A does not meet at any numben < ng.

Now consider the length invariant extension functfottefined byf (¢) = y0©™
and f (x) = f(g)0°X = yo¢(o+X) for nonemptyx. Obviously, f is a generalized
Moore function. So, by weak GM-genericity & A meetsf at somen. More-
over, since generalized Moore functions have the extension property, by the above
observationA meetsf at some numben > ng. Fix such a numben. Then, by
definition of f and byA meetingf atn,

(o T n)y0* ™t — (a [n)f(a [n) Ca.
Sincely| = ng this implies
(a | (N+ng))0c (et = g
Hencea has arcn-gap atn+ no. O

As the following lemma shows, the preceding result is optimal and the length
of gaps produced by generalized Moore extension functions cannot be increased if
we allow the functions to be partial and nondeterministic.

Lemmab5.38 Let f: N — N be a nondecreasing and total function such that
f(n) € O(n). Then there is a GNM-generic set A which does not have f-gaps.

PROOFE Since the proof resembles the proofs of previous results of the same
type (as for example Lemma 5.22), we only sketch the proof. The desirédset
constructed by a finite extension argument. We fix an enumeréfiorne > 1} of

the partial nondeterministic generalized Moore functions. W.l.0.g. we may assume
that, for any numbee and any nonempty strirng

(fe() 1= [fe()[< elx]) & (Fye X" (f(xy) |)] = [BY € Z=° (f(xy) |)] (5.9)

holds. (Note that the former can be achieved by (5.8) while the latter can be
achieved by extending Lemma 5.13 to nd. generalized partial Moore functions.)
Then, given the previously defined initial segmet; = a | [(s— 1) of the
characteristic sequenaee of the setA under construction, at stage> 1 of the
construction the extensiax of a1 is chosen so tha& will meet fg if f5is dense
alongA and such that the extension does not lead tofaggp. To achieve this, we
first pick ng > 1(s— 1), s such that, for all numbens > ng, f(n) > 2(s+ 1)n, and
we letds be the extension afis_1 of lengthng obtained by appending'@!(s-1),
Moreover, if there is a string with |y| < ssuch thatfs(asy) is defined then we let

as=0asy fs(asy) 1

178

5. INBOUNDED FINITE-STATE GENERICITY

for the least such stringthereby meetinds atng+ |y|. To show that this extension
does not introduce anf-gap intoa observe that

as=a [1(s—1) 1%y fy(Ggy) 1

i.e., the only zeroes occurring in the new partigbccur iny fs(Gsy). So it suffices
to observe thaly fs(asy)| < f(np):

ly fs(Gsy)| < ly|+s-|Gsy| (by (5.9))
< s+s-(np+9s) (byly| <sand|ds| = ng)
< 2(s+1)ng (byng>s>1)
< f(no) (by choice ofnp).

Finally, if no stringy as above exists, then we let = Gs. Note that in this case,
by (5.9), fs is not dense along. Moreover, since the extension does not add any
zeroes tay, this choice oo will not introduce anyf-gaps. O

By combining Lemmas 5.37 and 5.38 we obtain the following characterization
of the gaps occurring in all generalized Moore-generic sets.

Theorem 5.39 Let f: N — N be nondecreasing and total. The following are equiv-
alent.

1. feO(n).

2. Every weakly GM-generic set has f-gaps.
3. Every GM-generic set has f-gaps.

4. Every weakly GNM-generic set has f-gaps.
5. Every GNM-generic set has f-gaps.

The above established gaps imply that any weakly Moore generic set is REG-
bi-immune. In fact we obtain CF-bi-immunity.

Corollary 5.40 Let A be weakly GM-generic. Then A is bi-immune to the class of
context free languages.

PROOF Since, as one can easily show, weak GM-genericity is closed under com-
plement, it suffices to show thatis CF-immune. For a contradiction assume that

B is an infinite context free subset Af By the pumping lemma for context-free
languages we can find a numbeand words, € B C A such thatX,+1| = [Xn| + P

(n > 0). Hence there is a numbeg such that, for any1 > ng, Z™P N A £ 0,
wherez""P = {x € 5* : n < |x| < n+ p}. SinceZ™™*Pl has cardinality less than

5.3. Generalized Moore Genericity 179

(p+1)2™P = (p+1)-2P-2" (and sincgZ="| = 2" — 1), it follows that the char-
acteristic sequence of A does not have 2! gaps. But this contradicts Lemma
5.37. O

Recall that the red-1-reg-generic sets introduced in Section 4.4 which were
based on bounded red-extension functions were REG-bi-immune too (see Theo-
rem 4.76). We conjecture, however, that a red-1-reg generic set in general is not
CF-immune. This would show that the diagonalization power of (total) Moore ex-
tension functions is greater than that of the bounded partial regular red-extension
functions.

We can modify the (generalized) Moore genericity concepts introduced above
by considering red-extension functions of the corresponding type, i.e., (general-
ized) Moore functions for which the input is interpreted as a redundant representa-
tion of an initial segment in the sense of (4.44). Then, obviously, any generalized
(nondeterministic) Moore functioh can be simulated by a generalized (nondeter-
ministic) red-Moore functionf’. (Note that a finite automataé’ computing f’
skips the partg#,...,z4# on inputzp#io . . . z,#i, and simulate$! on the remaining
inputip...in. Also note, that in the non-generalized case such a simulation is not
possible sincéM’ has to produce an output bit for any letter it reads.) So (weak)
red-GM-genericity and (weak) red-GNM-genericity imply (weak) GM-genericity
and (weak) GNM-genericity, respectively. In fact, these variants of Moore gener-
icity based on red-extension functions are strictly stronger than the correspond-
ing genericity notions based on standard extension functions. This can be shown
by analyzing the gaps occurring in the weakly red-GM-generic sets: Since a red-
extension function gets in place of the initial segmerjtn of lengthn the string
o [y nas an input, whergx [, n| is of ordern-logn, one can easily show that —
in contrast to Theorem 5.39 — every weakly red-GM-generic set has gaps of order
n-logn.

CHAPTER 6

Conclusion

182

6. CONCLUSION

In our thesis we have started the investigation of finite-state genericity. Our
work focussed on the bounded case. Here we introduced a variety of genericity no-
tions by distinguishing between total and partial extension functions and between
extensions of fixed and of constant but arbitrary norm. By comparing the strength
of the various concepts, by analyzing lower bounds on the complexity of the cor-
responding generic sets, and by relating these concepts to saturation we have illus-
trated the diagonalization power of finite automata in the setting of bounded finite
extension arguments. By considering extension strategies which are either given
only partial information on the initial segment which has to be extended or which
are given this initial segment in a more redundant form we could further illustrate
the diagonalization strength of finite automata. In particular, we have shown that
the question whether we can force REG-bi-immunity by bounded finite-state ex-
tension strategies depends on the representation of initial segments.

Our treatment of unbounded finite-state genericity is less detailed. Here we
introduced genericity concepts based on the common types of regular functions
treated in the literature and established some of their basic properties. In part
we also demonstrated that the more general function classes also lead to stronger
genericity concepts but in this setting we left some of the basic questions open.

Possible future work on finite-state genericity might address the following
questions. For a further understanding of the notions introduced in this thesis one
might analyse further structural properties of the corresponding generic sets. In
particular we have not addressed the question, which of the common structural
properties based on regular reducibilities — like incompressibility, autoreducibility,
hardness — are forced or avoided by the different finite-state genericity notions. For
the genericity notions in computability and complexity theory the investigation of
the corresponding questions proved to be very useful. In case of the regular lan-
guages, however, it seems that the corresponding reducibilities and their structural
properties have not yet been more closely analyzed so that it seems that there is
wide range of questions to be addressed here.

The strong dependence of the strength of finite-state extension strategies on
the representation of the input initial segments leads to another type of questions,
namely the question of the impact of changes of the representation of input and
output. In case of the input we have addressed this problem in detail (see Section
4.4). For the case of output consider the following example. As discussed before, a
Moore extension strategy has to produce the first bit of the extension already after
reading the first bit of the given initial segment which imposes severe limitations
on the possible strategies. We may avoid this by taking the mirror image of the
value of the Moore function for defining the extension. Another approach which
might lead to stronger or more robust finite-state genericity notions is to replace
extension functions by extension relations (i.e., condition sets). In computability

183

and complexity theory in general this approach is equivalent to the functional ap-
proach but in the low complexity setting of finite automata it might lead to stronger
notions. In particular, in case of nondeterministic automata this approach might be
useful.

A further area of research is the introduction of genericity notions for other
low Chomsky classes. By the coincidence of the Chomsky-0 languages with the
recursively enumerable sets, Chomsky-0 genericity coincides with the well under-
stood and extensively studied 1-genericity concept of computability theory. Sim-
ilarly, by the coincidence of the class of the context-sensitive languages with the
nondeterministic space class NSPAGE genericity notions for this class may
be obtained along the lines of the work on resource-bounded genericity in com-
putational complexity (see Ambos-Spies (1996)) though most of the work there
only deals with complexity classes extending DTI[2E). It seems, however, that
nothing is known about adequate genericity notions for the class of the context-free
languages (and the standard subclasses of CF like the deterministic context-free or
linear languages). Here the development of genericity notions based on push down
automata seems to be an interesting research direction which in part may build on
our analysis of finite-state genericity. Also the results in the first part of our thesis
on bi-immunity and on the Chomsky hierarchy of sequences might become useful
here.

Bibliography

E. Allender, R. Beigel, U. Hertrampf, and S. Homer. Almost-everywhere com-
plexity hierarchies for nondeterministic timelheoret. Comput. S¢ill15(2):
225-241, 1993.

K. Ambos-Spies. Resource-bounded genericityCamputability, Enumerability,
Unsolvability volume 224 ol.ondon Math. Soc. Lecture Note S@ages 1-59.
Cambridge Univ. Press, 1996.

K. Ambos-Spies and E. Busse. Computational aspects of disjunctive sequences. In
Mathematical Foundations of Computer Science (Prague, 20@0me 3153
of Lecture Notes in Comput. Sghages 711-723. Springer, 2004.

K. Ambos-Spies, H. Fleischhack, and H. Huwig. Diagonalizations over polynomial
time computable set§heoret. Comput. S¢ib1(1-2):177-204, 1987.

K. Ambos-Spies, H. Fleischhack, and H. Huwig. Diagonalizations over determin-
istic polynomial time. InComputer Science Logic (Karlsruhe, 198¥dlume
329 ofLecture Notes in Comput. Sghages 1-16. Springer, 1988.

K. Ambos-Spies, K. Weihrauch, and X. Zheng. Weakly computable real numbers.
J. Complexity16(4):676—690, 2000.

J. L. Bal@zar, J. Daz, and J. Gabar Structural complexity. || EATCS Mono-
graphs on Theoretical Computer Science. Springer, 1990.

J. L. Bal@zar, J. Daz, and J. Gabawr Structural complexity..| EATCS Mono-
graphs on Theoretical Computer Science. Springer, 1995.

J. L. Baldazar and U. Sdbning. Bi-immune sets for complexity classeslath.
Systems Theory8(1):1-10, 1985.

C. Calude, L. Priese, and L. Staiger. Disjunctive sequences: an overview.
CDMTCS Research Report 63, 1997.

C. Calude and S. Yu. Language-theoretic complexity of disjunctive sequences.
Discrete Appl. Math.80(2-3):203—-209, 1997.

S. Feferman. Some applications of the notions of forcing and generic sets: Sum-
mary. InProc. International Symposium on Theory of Models (Berkeley, 1963)
pages 89-95. North-Holland, 1965.

186 BIBLIOGRAPHY

S. A. Fenner. Notions of resource-bounded category and genericiBromn 6th
Structure in Complexity Theory Conferenpages 196-212. IEEE Comput. Soc.
Press, 1991.

S. A. Fenner. Resource-bounded baire category: a stronger appro&cbc.dOth
Structure in Complexity Theory Conferenpages 182-192. IEEE Comput. Soc.
Press, 1995.

P. Flajolet and J. M. Steyaert. On sets having only hard subsetéwutbmata,
Languages and Programming (Saaiflcken, 1974)volume 14 ofLecture Notes
in Comput. Scj.pages 446—457. Springer, 1974.

H. FleischhackOn Diagonalizations over Complexity Class&3ssertation, Uni-
versitat Dortmund, Dep. Comput. Sci. Tech. Rep. 210, 1985.

H. Fleischhackp-genericity and strong-genericity. InMathematical foundations
of computer science (Bratislava, 198@plume 233 otecture Notes in Comput.
Sci, pages 341-349. Springer, 1986.

J. G. Geske, D. T. Hnh, and A. L. Selman. A hierarchy theorem for almost
everywhere complex sets with application to polynomial complexity degrees. In
Symposium on Theoretical Aspects of Computer Science (Passau,\i98ie
247 ofLecture Notes in Comput. Sghages 125-135. Springer, 1987.

G. H. Hardy and E. M. Wright.An introduction to the theory of number§he
Clarendon Press Oxford University Press, 1979.

P. G. Hinman. Some applications of forcing to hierarchy problems in arithmetic.
Z. Math. Logik Grundlagen Math15:341-352, 1969.

J. E. Hopcroft and J. D. Ulimarntroduction to automata theory, languages, and
computation Addison-Wesley Publishing Co., 1979.

C. G. Jockusch, Jr. Degrees of generic sett.ogic Collog. of Recursion Theory:
its Generalisation and Applications (Leeds, 19A#)Iume 45 ofLondon Math.
Soc. Lecture Note Sepages 110-139. Cambridge Univ. Press, 1980.

C. G. Jockusch, Jr. Genericity for recursively enumerable seRetursion theory
week (Oberwolfach, 1984yolume 1141 of_ecture Notes in Mathpages 203—
232. Springer, 1985.

H. Jirgensen and G. Thierrin. Some structural properties-tzinguages: Appli-
cations of Mathematics in Technologyjages 56—63, 1988.

BIBLIOGRAPHY 187

S. C. Kleene and E. L. Post. The upper semi-lattice of degrees of recursive unsolv-
ability. Ann. of Math. (2)59:379-407, 1954.

J. H. Lutz. Category and measure in complexity clasS&8M J. Comput.19(6):
1100-1131, 1990.

W. Maass. Recursively enumerable generic sktSymbolic Logic47(4):809-823
(1983), 1982.

E. Mayordomo. Almost every set in exponential time is P-bi-immumbeoret.
Comput. Scj.136(2):487-506, 1994.

K. Mehlhorn. On the size of sets of computable functions14th Annual IEEE
Symposium on Switching and Automata Theory (lowa City, 19&)es 190—
196. IEEE Comput. Soc. Press, 1973.

W. Merkle and J. Reimann. On selection functions that do not preserve normality.
In Mathematical Foundations of Computer Science (Bratislava, 20@3)me
2747 ofLecture Notes in Comput. Sgbages 602—-611. Springer, 2003.

J. Myhill. Category methods in recursion theoBacific J. Math, 11:1479-1486,
1961.

P. Odifreddi. Classical recursion theorwolume 125 ofStudies in Logic and the
Foundations of MathematicNorth-Holland Publishing Co., 1989.

J. C. Oxtoby.Measure and categoryolume 2 ofGraduate Texts in Mathematics
Springer, 1980.

E. L. Post. Recursively enumerable sets of positive integers and their decision
problems.Bull. Amer. Math. So¢50:284-316, 1944.

G. Rozenberg and A. Salomadandbook of Formal LanguageSpringer, 1997.
A. SalomaaFormal languagesAcademic Press, 1973.

C.-P. Schnorr and H. Stimm. Endliche Automaten und Zufallsfolgista Infor-
mat, 1(4):345-359, 1971/72.

H. J. Shyr. Disjunctive languages on a free mondidormation and Contrql34
(2):123-129, 1977.

R. I. Soare.Recursively enumerable sets and degré&rspectives in Mathemati-
cal Logic. Springer, 1987.

188 BIBLIOGRAPHY

L. Staiger. Regwre NullmengenElektron. Informationsverarbeit. Kybernetik2
(6):307-311, 1976.

L. Staiger. Richw-words and monadic second-order arithmetic. Computer
Science Logic (Aarhus, 199Aolume 1414 ofLecture Notes in Comput. Sci.
pages 478-490. Springer, 1998.

L. Staiger. How large is the set of disjunctive sequencdd3CS 8(2):348-362
(electronic), 2002.

S. Yu. Regular languages. Handbook of Formal Languagesolume 1. Word,
Language, Grammar, pages 41-110. Springer, 1997.

