
INAUGURAL DISSERTATION

zur

Erlangung der Doktorẅurde

der

Naturwissenschaftlich-Mathematischen Gesamtfakultät

der

Ruprecht-Karls-Universität

Heidelberg

vorgelegt von

Diplom-Mathematiker Edgar Busse
(geb. Damir Serikovich Muldagaliev)

aus Almaty

Tag der m̈undlichen Pr̈ufung: 27. April 2006

Thema

Finite-State Genericity

On the Diagonalization Strength of Finite
Automata

Gutachter: Prof. Dr. Klaus Ambos-Spies

Prof. Dr. Frank Stephan

Zusammenfassung

Algorithmische Generiziẗatskonzepte spielen eine wichtige Rolle in der Berechenbarkeits-
und Komplexiẗatstheorie. Diese Begriffe stehen in engem Zusammenhang mit grundle-
genden Diagonalisierungstechniken, und sie wurden zur Erzielung starker Trennungen von
Komplexiẗatsklassen verwendet. Da für jedes Generizitätskonzept die zugehörigen gener-
ischen Mengen eine co-magere Klasse bilden, ist die Analyse generischer Mengen ein
wichtiges Hifsmittel f̈ur eine quantitative Analyse struktureller Phänomene. Typischer-
weise werden Generizitätskonzepte mit Hilfe von Erweiterungsfunktionen definiert, wobei
die Sẗarke eines Konzepts von der Komplexität der zugelassenen Erwiterungsfunktionen
abḧangt. Hierbei erweisen sich die sog. schwachen Generizitätskonzepte, bei denen nur
totale Erweiterungsfunktionen berücksichtigt werden, meist als wesentlich schwächer als
die vergleichbaren allgemeinen Konzepte, bei denen auch partielle Funktionen zugelassen
sind. Weiter sind die sog. beschränkten Generiziẗatskonzepte – basierend auf Erweiterun-
gen konstanter L̈ange – besonders interessant, da hier die Klassen der zugehörigen gener-
ischen Mengen nicht nur co-mager sind sondern zusätzlich Maß 1 haben. Generische
Mengen diesen Typs sind daher typisch sowohl im topologischen wie im maßtheoretis-
chen Sinn.

In dieser Dissertation initiieren wir die Untersuchung von Generizität im Bereich der
Theorie der Formalen Sprachen: Wir führen finite-state-Generizitätskonzepte ein und ver-
wenden diese, um die Diagonalisierungsstärke endlicher Automaten zu erforschen.

Wir konzentrieren uns hierbei auf die beschränkte finite-state-Generizität und Spezial-
fälle hiervon, die wir durch die Beschränkung auf totale Erweiterungsfunktionen bzw. auf
Erweiterungen konstanter Länge erhalten. Wir geben eine rein kombinatorische Charak-
terisierung der beschränkt finite-state-generischen Mengen: Diese sind gerade die Men-
gen, deren charakteristische Folge saturiert ist, d.h. jedes Binärwort als Teilwort entḧalt.
Mit Hilfe dieser Charakterisierung bestimmen wir die Komplexität der beschränkt finite-
state-generischen Mengen und zeigen, dass solch eine generische Menge nicht regulär sein
kann es aber kontext-freie Sprachen mit dieser Generizitätseigenschaft gibt. Weiter un-
tersuchen wir den Einfluss der Länge der Erweiterungen und der Beschränkung auf totale
Erweiterungsfunktionen auf die Stärke der korrespondierenden Generizitätskonzepte. Die
Untersuchung von eingeschränkten Erweiterungsfunktionen, deren Wert jeweils nur von
der Eingabenl̈ange oder einem Endstück der Eingabe konstanter Länge abḧangt, verdeut-
licht weiter die geringe Diagonalisierungsstärke endlicher Automaten. Wir beenden un-
sere Untersuchung der beschränkten finite-state-Generizität damit, dass wir zeigen, dass
die Sẗarke dieser Konzepte dramatisch erhöht wird, wenn wir Erweiterungsfunktionen zu-
grundelegen, deren Eingaben Anfangstücke in redundanter Darstellung sind. Auf diese
Art erhalten wir beschränkt finite-state-generische Mengen, die REG-bi-immun sind, d.h.
deren Erkennung die Kapazität eines endlichen Automaten nicht nur unendlich oft sondern
fastüberallüberschreitet.

Die von uns betrachteten unbeschränkten finite-state-Generizitätskonzepte basieren
auf Moore-Funktionen und auf Verallgemeinerungen dieser Funktionen. Auch hier verglei-
chen wir die Sẗarke der verschiedenen korrespondierenden Generizitätskonzepte und erör-
tern die Frage, inwieweit diese Konzepte mächtiger als die beschränkte finite-state-Generi-
zität sind.

Unsere Untersuchungen der finite-state-Generizität beruhen zum Teil auf neuen Ergeb-
nissenüber Bi-Immuniẗat in der Chomsky-Hierarchie, einer neuen Chomsky-Hierarchie
für unendliche Folgen und einer gründlichen Untersuchung der saturierten Folgen. Diese
Ergebnisse – die von unabhängigem Interesse sind – werden im ersten Teil der Dissertation
vorgestellt. Sie k̈onnen unabḧangig von dem Hauptteil der Arbeit gelesen werden.

Abstract

Algorithmic genericity notions play a major role in computability theory and computa-
tional complexity theory. These notions are closely related to important diagonalization
techniques and they can be used for obtaining strong separations of complexity classes.
Moreover, since for any genericity concept, the class of the correspondent generic sets is
comeager, the analysis of generic sets leads to a quantitative analysis of structural phenom-
ena. Typically, genericity concepts are based on partial or total extension functions, where
the strength of a concept is determined by the complexity of the admissible extension func-
tions, where in general weak genericity notions based only on total extension functions are
much weaker than the corresponding genericity notions allowing partial extension func-
tions too. Moreover, so called bounded genericity concepts based on extensions of con-
stant length are of particular interest since the classes of the corresponding generic sets are
not only comeager but also have measure 1. So generic sets of these types are abundant in
the topological and the measure theoretic sense.

In this thesis we initiate the investigation of genericity in the setting of formal lan-
guage theory: We introduce finite-state genericity notions, i.e., genericity notions related
to the lowest class in the Chomsky hierarchy and we apply these concepts to explore the
diagonalization strength of finite automata.

We focus on bounded finite-state genericity and some special cases hereof allowing
only total extensions and extensions of fixed length. We give a purely combinatorial char-
acterization of bounded finite-state genericity by showing that a setA is bounded finite-state
generic if and only if its characteristic sequence is saturated, i.e., contains any binary string
as a subword. We use this characterization for determining the complexity of bounded
finite-state generic sets. In particular we show that no bounded finite-state generic lan-
guage is regular but that there are such languages which are context-free. Moreover, we
explore the impact of the length of the admissible extensions and of the question whether
we allow partial or only total extension functions. We further illustrate the limitations
of the diagonalization strength of finite automata by considering some restricted types of
extension strategies, namely length invariant and oblivious extensions. We complete our
investigation of bounded finite-state genericity by showing that the strength of these con-
cepts can be dramatically increased if we work with more redundant representations of
initial segments: This way we obtain bounded finite-state generic sets which are REG-bi-
immune, i.e., sets which exceed the capacity of finite automata not only infinitely often but
almost everywhere.

The unbounded finite-state genericity concepts which we consider are based on Moore
functions and various generalizations of these functions. Again we compare the strength
of different concepts and discuss the question in which respect these concepts are more
powerful than bounded finite-state genericity.

Our analysis of finite-state genericity is based in part on new results on bi-immunity
in the Chomsky hierarchy, on a Chomsky hierarchy of sequences, and a thorrough analysis
of saturated sequences. These results – which are of independent interest – are presented
in the first part of the thesis and can be read independently.

Contents

1 Introduction 1

2 Formal Languages and Infinite Sequences 11
2.1 Notation and Basic Concepts . 13

2.2 Grammars and Automata . 15

2.2.1 Chomsky Grammars and the Chomsky Hierarchy 15

2.2.2 Regular Languages and Finite Automata 18

2.2.3 Context Free Languages and Push Down Automata 21

2.2.4 Turing Machines and Complexity 23

2.3 Regular Functions . 29

2.4 Strong Separations in the Chomsky Hierarchy 37

2.4.1 Bi-Immunity and Almost Everywhere Complexity 38

2.4.2 Definitions and Basic Facts 39

2.4.3 Immunity to the Class of Regular Languages 42

2.4.4 Immunity to the Classes of Linear and Context-Free Lan-
guages . 43

2.4.5 Immunity to the Higher Classes of the Chomsky Hierarchy 44

2.4.6 Summary . 45

2.5 A Chomsky Hierarchy For Sequences 47

2.5.1 Definitions and Basic Facts 47

2.5.2 Regular and Context-Free Sequences 48

2.5.3 Context-Sensitive and Recursive Sequences 51

2.5.4 The Chomsky Hierarchy Theorem For Sequences 55

2.5.5 Prediction Machines . 56

2.6 Saturated Sequences . 64

2.6.1 Definitions and Basic Facts 64

2.6.2 Closure Properties and Some Technical Properties 66

2.6.3 Saturated Sequences and Languages and the Chomsky Hi-
erarchy . 70

2.6.4 Saturation and Predictability 73

2.6.5 Computational Complexity of Saturated Sequences and Lan-
guages . 76

2.6.6 Saturated and Disjunctive Languages 78

2.6.7 Partial Saturation . 80

II CONTENTS

3 Baire Category, Forcing, Genericity 83
3.1 Baire Category and the Cantor Space 85
3.2 Extension Functions . 87
3.3 Baire Category and Lebesgue Measure 92
3.4 Finite Extension Arguments . 96
3.5 Generic Sets . 104

4 Bounded Finite-State Genericity 109
4.1 Bounded reg-Genericity . 112

4.1.1 Definitions and Basic Facts 112
4.1.2 Finite-State Genericity vs. Saturation 114
4.1.3 Closure Properties . 117
4.1.4 On the Diagonalization Strength of Bounded reg-Genericity 118

4.2 Extensions Based on Partial Information 122
4.2.1 Length Invariant Extension Functions 122
4.2.2 Oblivious Extension Functions 133

4.3 Cantor-Style Finite-State Diagonalization 139
4.4 Enriched Encodings of Initial Segments 152

5 Unbounded Finite-State Genericity 159
5.1 Moore Genericity . 161

5.1.1 Some Basic Properties 162
5.1.2 Moore Genericity and Saturation 166
5.1.3 Moore Genericity, Gaps and Measure 167
5.1.4 Moore Genericity and Immunity 172

5.2 Nondeterministic Moore Genericity 173
5.3 Generalized Moore Genericity 176

6 Conclusion 181

CHAPTER 1

Introduction

2 1. INTRODUCTION

Algorithmic genericity notions play a major role in computability theory and
computational complexity theory. These notions are closely related to the finite
extension method introduced by Kleene and Post (1954), the basic diagonalization
technique in computability theory. In general a genericity notion is linked to a cer-
tain complexity class and the corresponding generic sets have all properties which
can be forced by a finite extension argument where the complexity of the individ-
ual diagonalization strategies does not exceed the given level. Important examples
of genericity notions in computability theory are arithmetic genericity (Feferman
(1965)) and 1-genericity (Hinman (1969)). The former is based on diagonalization
strategies definable in first order arithmetic while the latter is based on recursively
enumerable strategies. In computational complexity theory various polynomial
time bounded genericity notions have been introduced and successfully applied to
the structural analysis of the exponential time classes (see Ambos-Spies (1996)).
The goal of this thesis is to study genericity in the setting of formal language the-
ory. To be more specific, we will introduce and study finite-state genericity, i.e.,
genericity notions related to the level of regular languages or finite automata.

The applications of generic sets are manyfold. First, by the dependence of
genericity on the finite extension method, by analyzing the properties of generic
sets we can illustrate the power and limitations of this important diagonalization
method. Moreover, as Myhill (1961) has observed, the finite extension method is
closely related to the topological concept of Baire category: The class of sets which
share a certain property is comeager if and only if this property can be enforced
by a finite extension argument. This easily implies that, for any genericity notion,
the generic sets are abundant namely form a comeager class. So, by showing that
a property is shared by all generic sets, we obtain strong existence results, namely
we may deduce that not only sets with the desired property exist but that they are
abundant. Yet often it is easier to show that all generic sets have a certain property
than to show that there is a single set with this property. This is due to the fact that
in the former case we can take a modular approach: If a property can be split into
(finitely or countably many) simpler subproperties, it suffices to show that these
individual subproperties are guaranteed by genericity.

Since the countable intersection of comeager classes is comeager again, the
classical Baire category concept allows a similar modular approach. In contrast
to the genericity approach, however, the Baire category approach does not give
any information on complexity. Since all complexity classes (considered in com-
putability theory, computational complexity theory, and formal language theory)
are countable, hence meager, showing that the class of sets sharing a propertyP

is comeager, does not tell us on what complexity levels we may find sets with this
property. If we know, however, that all sets which are generic (relative to some
complexity class) have propertyP then by analyzing the complexity of the generic

. 3

sets we can obtain some positive results on the complexity of sets with property
P. We explain this difference by an example from computability theory. We can
use the Baire category approach to show that there are incomparable degrees of
unsolvability. To do so, obviously, it suffices to show that the class of setsA such
that the even partAeven= {2n : n≥ 0} and the odd partAodd = {2n+1 : n≥ 0} are
Turing incomparable is comeager. The proof of the latter can easily be modified to
show that any 1-generic setsA has this property. On the other hand, any 1-generic
set is nonrecursive but there are 1-generic sets which are∆0

2, i.e., sets which are
recursively approximable or – equivalently – recursive in the halting problem. So
we may deduce that there are not only incomparable Turing degrees but that there
are such degrees in the degrees below0′, the degree of the halting problem. (Since
the class of∆0

2 sets is countable hence meager, the latter does not follow by purely
topological means.)

In general the above observation has been used to obtain so called strong sep-
arations of complexity classes via genericity: Given complexity classes C and C′

such that C⊂C′ (like the classes of the recursive and the recursively approximable
sets in the preceding example) one might try to design a genericity concept, say
C-genericity, strong enough to capture diagonalizations over C but on the other
hand not too strong so that there will be C-generic sets in C′ (1-genericity in the
above example). Then C and C′ will be separated by any propertyP such thatP is
not compatible with membership in C but such that any C-generic set has property
P. An example of such a propertyP which is of great interest in computational
complexity is C-bi-immunity. (A setA is C-bi-immune if both,A and the comple-
mentA of A do not contain any infinite set from C as a subset. The interest in this
notion stems from the fact that, for a time (and, similarly, for a space) complexity
class C= DTIME(t(n)), the time complexity of a C-bi-immune set does not only
exceed the time boundt(n) infinitely often but for all but finitely many inputs.) In
complexity theory various genericity concepts implying bi-immunity (and thereby
giving some strong separations) have been introduced but in this setting it also be-
came apparent that in general we can design different genericity notions related to
a complexity class which are of quite different strength (see Ambos-Spies (1996)).
In order to explain this we have to look at the finite extension method and some
refinements hereof more closely.

In a finite extension argument a language (or, equivalently, a set of natural num-
bers)A with a certain propertyP is inductively defined by specifying longer and
longer initial segments of the characteristic sequenceα of A. The construction ofA
exploits the fact that the global propertyP can be obtained by satisfying countably
many finitary conditionsRe, e≥ 0, calledrequirements. To be more precise, each
of the requirementsRe has the property that, for any given finite initial segment
(i.e., finite binary string)x there is a finite extensiony of x forcing Re, namely any

4 1. INTRODUCTION

setX such that the characteristic sequence ofX extendsy will meet Re. So a strat-
egy for meetingRe can be described by anextension function fe : Σ∗→ Σ∗ where,
for any stringx the extensionx fe(x) of x forcesRe. In other words, if we say thatA
meetsan extension functionf at a numbern if (α � n) f (α � n) @ α – whereα � n
denotes the initial segment of lengthn of the characteristic sequenceα of A – then
A will meet requirementRe if A meetsfe (at some numbern). So, in order to define
a setA with propertyP, it suffices to inductively define longer and longer initial
segmentsα−1 = ε @ α0 @ α1 @ α2 . . . of α by letting αe = αe−1 fe(αe−1). Then
A meetsfe at |αe−1| thereby ensuring that, in stepe of the construction,A meets
requirementRe (e≥ 0).

By identifying strategies with extension functions we can define the complex-
ity of a diagonalization strategy by the complexity of the corresponding extension
function. Moreover, we get a very general approach for defining genericity no-
tions: Given any countable classF of extension functions, we say that a setA is
F-genericif A meets all extension functions inF. Many of the genericity concepts
in the literature can be described this way by lettingF be some of the common
(functional) complexity classes. For instanceF-genericity coincides with Fefer-
man’s arithmetical genericity if we letF be the class of arithmetical functions and
F-genericity coincides with DTIME(t(n))-genericity in the sense of Lutz (1990) if
we letF be the class of functions computable in timet(n).

The above introduced concepts ofF-genericity, however, only capture such di-
agonalizations which can be phrased as finite extension arguments. Many proofs
in computability and complexity theory, however, require more sophisticated diag-
onalization techniques like wait-and-see arguments (also called slow diagonaliza-
tions) or finite (or even infinite) injury priority arguments (see e.g. Soare (1987)).
So for obtaining stronger genericity concepts we have to define genericity notions
capturing these types of diagonalizations too. The additional power of these more
sophisticated techniques stems from their higher efficiency. In general, when we
apply such a technique our goal is not to obtain a set with a property which we
cannot obtain by a standard finite extension argument but we want to decrease
the complexity of the constructed set. So the priority method is the fundamental
method for constructing recursively enumerable sets. Typically, a finite extension
construction of a∆0

2 set with a certain propertyP can be turned into the construction
of a recursively enumerable set with this property by using a finite injury priority
argument. Genericity notions capturing the essence of the finite injury method have
been introduced by Maass (1982) and Jockusch (1985).

In a constructive environment, however, injuries can be avoided and the pri-
ority method can be replaced by wait-and-see arguments. So, for our purposes,
it suffices to consider this refinement of the finite extension method. While in a
standard finite extension argument, in order to meet a requirementR, for any finite

. 5

initial segment of the characteristic sequence of the set under construction we can
find a finite extension forcingR, in a wait-and-see argument such extensions may
exist only for some initial segments. Moreover,R will be met (for some trivial
reason) if there are only finitely many initial segments of the set under construc-
tion which have extensions forcingR. (I.e., intuitively, diagonalization action for
the sake of requirementR has to be taken only if there are infinitely many chances
in the course of the construction to do so.) Correspondingly, here the strategy for
meeting a requirementR is described by apartial extension functionf . Moreover,
in order to meetR it suffices to ensure thatf is not dense alongA or thatA meets
f (at somen) where we say thatf is densealongA if f is defined on infinitely
many initial segments of the characteristic sequence ofA. As in the case of total
extension functions, for any countable classF of partial extension functions, the
class of setsA which meet every partial extension functionf ∈ F which is dense
alongA is comeager. Sets with this property are just the sets generic relative toF

and we call themF-generic. (Note that ifF consists only of total functions then
this definition coincides with the previous definition ofF-genericity.) In order to
distinguish between genericity based on total and partial extension functions we
call the former weak genericity. In particular, we call a setA weaklyF-genericif
A is F̂-generic wherêF consists of all total extension functions inF.

To illustrate the higher efficiency of wait-and-see arguments we compare the
construction of a PTIME-bi-immune setA by a standard finite extension argument
and by a wait-and-see argument. A typical requirement to be met is of the form

R : If B is infinite thenB∩A 6= /0.

whereB is a polynomial time computable set. In a finite extension argument we
can meetRby meeting the total extension function

f (x) =

{
1nx if B is infinite

ε otherwise.

wherenx is the least numbern such that the(n+ |x|)th word is a member ofB. In
a wait-and-see argument we can work with the partial extension function

f̂ (x) =

{
1 if the |x|th word is an element ofB

↑ otherwise.

(Note that f̂ is dense (along any set) if and only ifB is infinite and by meetinĝf
at n we insure that thenth word is an element of both,B andA.) The above strate-
gies show that we can construct a PTIME-bi-immune setA using both techniques,
a plain finite extension argument and a wait-and-see argument. The approaches,

6 1. INTRODUCTION

however, greatly differ in the complexity of the strategies needed to meet a single
requirement: While the (partial) function̂f is polynomial (in fact linear) time com-
putable, the complexity off depends on the length of the gaps in the setB. Though,
for a single PTIME setB, the length of these gaps is recursively bounded, there is
no uniform recursive bounds for all PTIME sets. In particular, the finite extension
construction yields a nonrecursive setA, and for any recursive time boundt(n)
there is a weakly DTIME(t(n))-generic set (i.e. a DTIME(t(n))-generic set in the
sense of Lutz (1990)) which is not PTIME-bi-immune (Mayordomo (1994)). On
the other hand, a wait-and-see construction based on the above partial extension
functions f̂ yields a recursive (in fact exponential time computable) PTIME-bi-
immune set (Balćazar and Scḧoning (1985)), and any DTIME(O(n))-generic set is
PTIME-bi-immune (now DTIME(O(n))-genericity in the strong sense, i.e., gener-
icity based on partial extension functions computable in linear time).

In fact the above wait-and-see construction improves the plain finite extension
construction not only with respect to complexity. In addition, in the case of partial
extensions it suffices to consider extensions of length 1 while in the total case the
length of the extensions depends on the inputs. This observation is of interest,
since for any countable classF of (partial) bounded extension functions the class
of F-generic sets is not only comeager but it also has Lebesgue measure 1 (see
e.g. Ambos-Spies (1996); here we call a functionf k-boundedif | f (x)| ≤ k for all
stringsx, andboundedif f is k-bounded for some numberk). In contrast, for any
sufficiently closed familyF containing unbounded functions, the class of (weakly)
F-generic sets has measure 0.

The above discussion of genericity in computability and computational com-
plexity theory shows that the strength of a genericity concept does not only depend
on the complexity of the extension functions it is based on but also on the question
whether we admit partial or only total extension functions. Moreover, genericity
notions based on bounded extension functions are of particular interest since they
yield abundance results not only in the sense of category but also in the sense of
measure.

Our analysis of finite-state genericity is guided by the above observations.
Moreover, we focus on bounded genericity notions, i.e., our main goal is the inves-
tigation of the diagonalization power of finite-state transducers producing output
of constant length. The outline of our thesis is as follows.

In Chapter 2 we present results on formal languages and infinite sequences
which serve as the background of our investigations. After fixing some notation
in Section 2.1 and shortly reviewing some basic notions and results from formal
language theory and computational complexity in Section 2.2, in Section 2.3 we re-
view various notions of regular functions which will serve as extension functions in
our finite-state genericity notions. In particular we discuss some variants of Moore

. 7

functions and introduce the notion of an (k-)bounded regular function and show
how this concept is related to the Moore approach. In Section 2.4 we investigate
(bi-)immunity for the Chomsky language classes. In particular, we observe that
there is no strong separation of the classes of regular and context-free languages in
terms of bi-immunity: no context-free language is REG-bi-immune. Since gener-
icity actually is a property of the characteristic sequence of a set, in Section 2.5
we have a closer look at the Chomsky complexity of sequences. There we intro-
duce a Chomsky hierarchy of sequences and show how the location of a language
in the Chomsky hierarchy is related to the location of its characteristic sequence
in this new hierarchy. In particular, we see that any set with regular characteris-
tic sequence is regular too but that there are regular sets which have a nonregular
characteristic sequence. The Chomsky complexity of a sequence is defined in terms
of the complexity of the prefix set of the sequence. As a possible alternative we
introduce such a hierarchy based on predictability by machines corresponding to
the Chomsky language classes, and show that regularity of a sequence coincides
with predictability by finite automata. We also show, however, that push down
automata can predict sequences which are not context-free. The final section of
Chapter 2 is devoted to saturated sequences, i.e., infinite sequences which contain
any string as a substring. Since, as we will show later, saturation coincides with
some of our finite-state genericity concepts we study this concept in great detail.
Following some useful observations on invariance and closure properties of the
saturated sequences we look at the complexity of these sequences. In particular
we show that no regular languages is saturated (i.e., has a saturated characteristic
sequence) while there are context-free – in fact – linear languages which are sat-
urated. Moreover, we give a characterization of non-saturation in terms of partial
finite-state predictability which will later lead to the relation between saturation
and finite-state genericity and we will look at partial saturation properties.

Though the results in this chapter will be employed in our investigation of
finite-state genericity some of our new results here are of independent interest.
Hence we looked at bi-immunity (Section 2.4) and at the Chomsky complexity
of sequences (Section 2.5) for all levels of the Chomsky hierarchy though in the
sequel we will only need the results related to the regular and – in part – to the
context-free languages. These more general results might be useful, however, for a
forthcoming analysis of genericity on the other levels of the Chomsky hierarchy.

In Chapter 3 we shortly review the basic concepts and results on genericity,
Baire category and diagonalization. In particular we introduce the framework in
which our genericity notions are defined and make some general observations on
the different genericity types like weak and bounded genericity.

In Chapter 4 – which is the core of this thesis – we introduce and analyze
bounded finite-state genericity (bounded reg-genericity, for short). In Section 4.1

8 1. INTRODUCTION

we show that for bounded finite-state genericity (based on partial regular bounded
extension functions) the length of the admissible extensions does not matter whereas
in the weak case (i.e. in case of total extension functions) the diagonalization power
increases with the length of the extensions. Moreover, surprisingly and in contrast
to corresponding results in computational complexity, bounded finite-state generic-
ity and bounded weak genericity coincide. In other words, partial bounded regular
extension functions can be simulated by total bounded regular extension functions,
though the simulation in general will require an increase in the length of the ex-
tensions. Some of these results are obtained by the observation that bounded reg-
genericity coincides with saturation. By our previous results on saturation the lat-
ter also illustrates the diagonalization strength of bounded-reg-genericity, namely
no regular set is bounded reg-generic whereas there are linear hence context-free
languages which are bounded reg-generic. Moreover, bounded reg-genericity in
general does not imply REG-immunity.

The coincidence of bounded reg-genericity and saturations reveals the weak-
ness of this concept. In Section 4.2 we further illustrate the low diagonalization
power of bounded finite-state transducers by comparing bounded reg-genericity
with apparently weaker concepts based on regular extension strategies which are
given only partial information on the previously defined initial segment, namely
strategies which depend only on the length of the initial segment and strategies
which only use the lastm bits of the initial segment (for some constantm).

We then discuss how the power of bounded finite-state genericity may be in-
creased. For this sake in Section 4.3 we first discuss some direct Cantor-style
diagonalization arguments in which the diagonalization only depends on the place
where the action has to take place and not on the previously specified part of the
set under construction. By formalizing this concept we introduce the concept of
Cantor-style reg-genericity and show that this concept coincides with REG-bi-
immunity, hence is not subsumed by bounded reg-genericity. The latter can be
traced to the fact that a finite automaton which is given an initial segment of length
n cannot extract thenth string from this information. This observation leads us to
define finite-state extension functions which obtain as inputs finite initial segments
in a more redundant representation– which allows to overcome the just described
shortcoming – and to study the strength of the corresponding genericity notions
(Section 4.4).

In Chapter 5 we start the investigation of unbounded finite-state genericity.
Based on stronger and stronger notions of regular functions we introduce a hi-
erarchy of corresponding genericity notions. We first consider Moore genericity
based on partial Moore functions. We show that this concept strengthens bounded
reg-genericity but that it does not suffice for forcing REG-bi-immunity. The latter
can be achieved by using extension functions of generalized Moore type (where a

. 9

generalized Moore function adds an arbitrary word to the output for every letter
read – not a single letter as in case of a Moore function). We further discuss the
strength of these genericity concepts if we replace deterministic Moore automata
by nondeterministic ones and if we support the strategies by giving them the initial
segments in the redundant form introduced in Section 4.4

Finally, in Chapter 6 we give some directions for further research in this area.

Acknowledgments

I am deeply grateful to my advisor, Klaus Ambos-Spies, for his intense and
committed supervision. A large part of the results in this thesis emerged from
numerous discussions with him, and his suggestions were crucial for developing
the fundamental concepts treated in this thesis. Moreover, he patiently helped to
improve the presentation of the material.

I am also grateful to the other members of the Heidelberg Logic Group: Paolo
Di Muccio, Klaus Gloede, Piotr Grabowski, Felicitas Hirsch, Wolfgang Merkle,
Nenad Mihailovic, Gert H. M̈uller and Jan Reimann, to the former members Frank
Stephan, Hans-Christian Nies, and to the recent visitors Serikzhan Badaev and
Bakhadyr Khoussainov.

I gratefully recognize all my friends, in particular, Paolo Di Muccio, Amaranta
Melchor del Rio and Augusto Minatta for kind support during the study in Heidel-
berg.

Finally I am indebted to my parents and my fiancée Tanja Nikonova.

CHAPTER 2

Formal Languages and Infinite Sequences

12 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

In this chapter we will provide the concepts and results from formal language
theory which we will need for introducing and analyzing our finite-state genericity
notions. After fixing some notation in Section 2.1, in Section 2.2 we review some
fundamental results on the Chomsky language classes and their relations to com-
putability and computational complexity theory. In Section 2.3 we discuss various
notions of regular functions. In particular we introduce a new notion of a regu-
lar function of typef : Σ∗→ Σk (k≥ 1) and analyze the relation of this notion to
some previously introduced concepts. In Section 2.4 we investigate immunity and
bi-immunity for the Chomsky language classes and explore the question to what
extend these notions yield strong separations among the Chomsky classes. In Sec-
tion 2.5 we introduce a Chomsky hierarchy of sequences. This classification is
based on the complexity of the prefix sets of sequences. We use this framework
for comparing the Chomsky complexity of languages and their characteristic se-
quences. Moreover, we relate this hierarchy of sequences to a similar hierarchy
based on predictability of sequences by machines corresponding to the levels of
the Chomsky hierarchy. Finally, in Section 2.6 we study saturated 0-1-sequences,
i.e., infinite binary sequences in which all binary words occur as subwords.

The results in Section 2.2 are standard and can be found in most textbooks (see
e.g. Salomaa (1973), Hopcroft and Ullman (1979), Balcázar et al. (1990)) or in
the handbook of formal languages by Rozenberg and Salomaa (1997). So in this
section we omit references and proofs. The other sections obtain, besides results
from the literature, a variety of new results. Here references to the previously
known results and proofs of the new results are given.

Though the results of this chapter will be used in our analysis of finite-state
genericity, many of the results will be of interest for themselves. So we will limit
our investigation of (bi-)immunity and of the Chomsky complexity of sequences
not only to the regular (or context-free) case - which will be used in the following -
but we will carry out a more systematic analysis covering all levels of the Chomsky
hierarchy.

2.1. Notation and Basic Concepts 13

2.1 Notation and Basic Concepts

Though we will mainly consider languages over the binary alphabet we will intro-
duce the basic notions of formal language theory for arbitrary alphabets.

An alphabetis a finite nonempty ordered set. In the following we letΣn =
{a0, . . . ,an−1} denote then-ary alphabet where the elements are listed in order
(i.e., a0 < a1 < · · · < an−1). In particular, we letΣ2 = {0,1} andΣ1 = {0} be the
binary alphabet and the unary alphabet, respectively. For simplicity, we usually
denote the binary alphabet byΣ. The elements of an alphabetT are calledletters,
the elements of the binary alphabet are also calledbits. Letters are usually denoted
by lower case Latin letters from the beginning of the alphabet (a, b, c, ...).

A word over an alphabetT is a finite sequence of letters fromT. The empty
sequence is called theempty wordand is denoted byε. The set of all words overT
is denoted byT∗, the set of the nonempty words is denoted byT+. Words are usu-
ally denoted by lower case Latin letters from the end of the alphabet (u,v,w,x,y,z).
The lengthof a wordw is denoted by|w| and we let

Tk = {x∈ T∗ : |x|= k} and T≤k = {x∈ T∗ : |x| ≤ k}

be the sets of words of lengthk and of length at mostk, respectively, over the
alphabetT (k≥ 0). For a wordx of lengthk we letx = x(0) . . .x(k−1) wherex(i)
denotes the(i +1)th letter inx.

The ordering on an alphabetT is extended to thelength-lexicographical order-
ing onT∗ by lettingv be less thanw if the length ofv is less than the length ofw or
if v andw have the same length and, for the leastk such thatv(k) andw(k) differ,
the letterv(k) precedes the letterw(k) in the ordering ofT. In general, we denote
the ordering on an alphabetT and the induced length-lexicographical ordering on
T∗ both by<.

For the binary alphabetΣ, we letzn denote the(n+1)th word with respect to
the length-lexicographical ordering and we letzk

n be the(n+1)th word of lengthk.
Since there are 2k binary words of lengthk, hence 2k+1−1 binary words of length
at mostk,

Σk = {zk
0, . . . ,z

k
2k−1}= {z2k−1, . . . ,z2k+1−2} and Σ≤k = {zn : n < 2k+1−1}.

A language Aover the alphabetT is a set of words overT, i.e.,A⊆ T∗. In the
following languages will be denoted by upper case Latin letters. A language over
the binary alphabetΣ is also called abinary languageor simply aset, while a set
of binary languages is called aclass. By identifying the(n+ 1)th binary wordzn

with the numbern, sometimes we interpret a binary languageA as a set of natural

14 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

numbers (i.e., we may writen∈ A in place ofzn ∈ A). Moreover, we often identify
a setA with its characteristic function cA. I.e., we writeA(x) = 1 if x ∈ A and
A(x) = 0 if x 6∈ A.

Thecharacteristic sequenceof setA is denoted byχ(A). I.e.,χ(A) is the infinite
binary sequence defined by

χ(A) = A(z0)A(z1)A(z2) . . . = A(0)A(1)A(2) . . .

Conversely, for an infinite binary sequenceα = α(0)α(1)α(2) . . . theset S(α)⊆ Σ∗

corresponding toα is defined by

S(α) = {zn : α(n) = 1}

Note thatS(χ(A)) = A andχ(S(α)) = α, whence we may identify a set with its
characteristic sequence and a sequence with the set corresponding to it. Usually we
denote the characteristic sequence of a setA,B,C, . . . by the corresponding Greek
letterα,β,γ,

The set of all infinite binary sequences is denoted byΣω. This set (which is
often denoted by 2ω) is also called theCantor space. Elements ofΣω will be
shortly calledsequencesand will be denoted by lower case Greek letters.

Fors∈ Σ∗∪Σω andv∈ Σ∗ we letvsdenote theconcatenationof v andsand we
call v a prefixor initial segmentof vs, s a suffixor final segmentof vs. If s 6= ε, v is
aproperprefix or initial segment, and ifv 6= ε, s is apropersuffix or final segment.
We writevv s if v is a prefix ofsandv @ s if the prefixv is proper. The prefix of a
(finite or infinite) sequences of lengthn is denoted bys� n = s(0) . . .s(n−1). We
also writeA � zn or A � n in place ofχ(A) � n.

Theprefix set Pre f ix(α) ⊆ Σ∗ of an infinite sequenceα is the set of all finite
prefixes ofα, i.e.,Pre f ix(A) = {α � n : n≥ 0}. In the following we will consider
both representations of a sequenceα by sets, namely the corresponding setS(α)
and the prefix setPre f ix(α). Note that any set corresponds to a sequence whereas
the prefix set of a sequence is of some particular syntactic form. In particular, such
a set contains just one word of any given length.

By xn we denote thenth iteration of the wordx, i.e., x0 = ε andxn+1 = xnx.
Similarly, theω-iteration xω of a wordx is the infinite sequence obtained by con-
catenating infinitely many copies of the wordx. A sequenceα = xω is called
periodic, a sequenceα = xyω is calledalmost periodic.

Finally, for s,s′ ∈ Σ∗ ∪Σω andv,w ∈ Σ∗ we call w a subwordor infix of s if
s= vws′. If v is a subword ofα we also say thatv occursin α. We say thatv occurs
(at least) k timesin α if there are wordsw1 @ w2 @ . . . @ wk such thatwmv @ α for
m= 1, . . . ,k. A sequenceα in which all words occur is calledsaturated.

2.2. Grammars and Automata 15

2.2 Grammars and Automata

In this section we review some fundamental results on the Chomsky language
classes and their relations to computability and computational complexity theory.
The notions and results which we will present here can be found in the standard
textbooks (see e.g. Salomaa (1973), Hopcroft and Ullman (1979), Balcázar et al.
(1990)) or in the handbook of formal languages by Rozenberg and Salomaa (1997).
So, in general, we will omit references and proofs. We will start by reviewing the
different types of Chomsky grammars and the corresponding Chomsky hierarchy
of languages.

2.2.1

Chomsky
Grammars and

the Chomsky
Hierarchy

Definition 2.1 A (Chomsky) grammaris a quadrupelG = (N,T,S,P), whereN
andT are disjoint alphabets,S∈N, andP is a finite subset of(N∪T)∗−T∗×(N∪
T)∗. The elements ofN are callednonterminal symbolsor (syntactical) variables,
those ofT are calledterminal symbols(or terminalsfor short),Sis thestart symbol
or axiom, andP the set of(production) rules.

For a rule(u,v) ∈ P we usually writeu→ v and we callu thepremiseandv the
conclusionof the rule. A wordw∈ T∗ is called aterminalword.

Next we define derivations in a grammarG and the language generated byG.

Definition 2.2 (a) Let G = (N,T,S,P) be a grammar. For wordsx,y ∈ (N∪T)∗

we say thaty can bederived from x in one step- and writex⇒G y - if there
is a ruleu→ v ∈ P and wordsw1,w2 ∈ (N∪T)∗ such thatx = w1uw2 andy =
w1vw2. A derivation (of length n) of a word y from a wordx is a sequence of
wordsx0, ...,xn ∈ (N∪T)∗ such thatx = x0, xi ⇒G xi+1 for i = 0, ...,n− 1, and
xn = y. We say thaty can bederivedfrom x (in n steps) if there is a derivation ofy
from x (of lengthn) and we writex⇒∗G y (x⇒n

G y). Thelanguage L(G) generated
by G consists of all terminal words which can be derived from the axiomS, i.e.,
L(G) = {w∈ T∗ : S⇒∗G w}.

(b) Two grammarsG0 and G1 are equivalentif they generate the same lan-
guage, i.e.,L(G0) = L(G1).

If the grammarG is known from the context we write⇒ (⇒n,⇒∗) in place of
⇒G (⇒n

G,⇒∗G).
A language is called aChomsky languageif it is generated by a Chomsky gram-

mar. Chomsky has shown that the Chomsky languages are just the recursively enu-

16 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

merable languages. So, in general, we cannot decide whether a word is generated
by a given grammar. In order to get grammars with effectively or even efficiently
decidable word problems, Chomsky has introduced special types of grammars ob-
tained by restricting the admissible forms of rules. For describing these concepts
we have to deal with rules with empty conclusions first.

Definition 2.3 Let G = (N,T,S,P) be a grammar. A ruleu→ ε with empty con-
clusion is called anε-rule. The grammarG is ε-free, if P does not contain any
ε-rule. G is calledε-honestif G is eitherε-free orS→ ε is the onlyε-rule inP and
Sdoes not occur in the conclusion of any rule inP.

Note that forε-freeG, ε 6∈ L(G).

Definition 2.4 A rule u→ v is

1. length-increasingif |u| ≤ |v|;

2. context-sensitiveif there are a variableX ∈N, wordsu1,u2 ∈ (N∪T)∗ and a
wordy∈ (N∪T)+ such thatu = u1Xu2 andv = u1yu2;

3. context-freeif u∈ N;

4. linear if u∈ N andv∈ T∗∪T∗NT∗;

5. right-linear if u∈ N andv∈ T∗∪T∗N;

Definition 2.5 (a) A grammarG = (N,T,S,P) is

1. length-increasingif G is ε-honest and all rules inP (with the possible excep-
tion of S→ ε) are length-increasing;

2. context-sensitive(or of type-1) if G is ε-honest and all rules inP (with the
possible exception ofS→ ε) are context-sensitive;

3. context-free(or of type-2) if all rules inP are context-free;

4. linear if all rules inP are linear;

5. right-linear (or of type-3) if all rules inP are right-linear;

Moreover, any grammarG is of type-0.
(b) A languageA is length-increasing(context-sensitive, context-free, linear,

right-linear, or of type-i (i=0,1,2,3)) if there is a grammar of the corresponding
type which generatesA.

2.2. Grammars and Automata 17

A grammar or language of type-i is called aChomsky-i-grammaror Chomsky-
i-language, respectively, and right-linear languages are also calledregular. The
classes of the length-increasing, context-sensitive, context-free, linear, right-linear,
type-i (i=0,1,2,3), and regular languages over alphabetT (i.e., T is the terminal
alphabet) are denoted by LIT , CST , CFT , LINT , RLINT , CHiT , and REGT , respec-
tively. If T is the binary alphabetΣ = {0,1} then we omit the subscriptT.

Note that, by definition, CH0T is the class of all Chomsky languages (over
the alphabetT) while CH1T = CST , CH2T = CFT , and CH3T = RLINT = REGT .
Moreover, any right-linear grammar is linear, any linear grammar is context-free,
and any context-sensitive grammar is length-increasing. Finally, forε-honest gram-
mars obviously context-freenes implies context-sensitivity. Since, for any context-
free grammar we can find an equivalent context-free grammar which isε-honest
the above relations among the different types of Chomsky grammars yield the fol-
lowing inclusions for the Chomsky language classes (over any fixed alphabetT):

REGT = RLINT = CH3T ⊆ LINT ⊆CFT = CH2T ⊆CST = CH1T ⊆ LIT ⊆CH0T

Chomsky has shown that the classes CST and LIT coincide (for any alphabetT)
but that the other inclusions are proper with the following exception: For the unary
alphabetΣ1 = {0}, the classes of the regular, linear and context-free languages
coincide.

Theorem 2.6 (Chomsky Hierarchy Theorem) For any alphabet T with|T| ≥ 2

REGT = RLINT = CH3T ⊂ LINT ⊂CFT = CH2T ⊂CST = CH1T = LIT ⊂CH0T

(2.1)
while for the unary alphabetΣ1 = {0},

REGΣ1 = RLINΣ1 = CH3Σ1 = LINΣ1 = CFΣ1 = CH2Σ1⊂CSΣ1 = CH1Σ1 = LIΣ1⊂CH0Σ1

(2.2)

The classes of the Chomsky hierarchy have the following closure properties.

Union Intersection Complement Concatenation

CH0 yes yes no yes

CS yes yes yes yes

CF yes no no yes

LIN yes no no no

REG yes yes yes yes

(2.3)

18 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

Moreover, all of the Chomsky classes are closed under finite variants, a fact we
will (tacitly) use in the following quite frequently. Though the class of context-free
languages is not closed under intersection, the following weaker closure property
holds.

Lemma 2.7 For any context-free language A and any regular language B, A∩B is
context-free.

In the next subsections, we look at the classes of the regular sets and the
context-free sets, REG and CF, in more detail. In particular, we review the machine
characterizations of the Chomsky classes and we summarize some facts about com-
plexity.

2.2.2

Regular
Languages and
Finite Automata

Definition 2.8 A deterministic finite automaton (DFA) Mis a quintuple M =
(T,S,δ,s0,F) whereT is an alphabet,S is a finite set,δ : S× T → S is a total
function,s0 ∈ S, andF ⊆ S. T is called theinput alphabet, Sthe set ofstates, δ the
transition function, s0 the initial state, andF the set off inal or acceptingstates.

On an inputw∈ T∗ of lengthn, aDFA M = (T,S,δ,s0,F) behaves as follows.
Readingw letter by letter from left to right,M runs through a sequence of states
s0,s1, ...,sn−1 beginning with the initial states0 and going from states to state
δ(s,a) whena is the next letter read.M accepts the inputw if the computation
ends in a final state, i.e., ifsn−1 ∈ F . In order to define this behaviour ofM more
formally, we extend the transition functionδ : S×T→ S to δ∗ : S×T∗→ Swhere
δ∗(s,w) is the state reached byM after readingw when starting in states.

Definition 2.9 Let M = (T,S,δ,s0,F) be a deterministic finite automaton. The
generalized transition functionδ∗ : S×T∗→ Sof M is inductively defined by

δ∗(s,ε) = s
δ∗(s,wa) = δ(δ∗(s,w),a),

wheres∈ S,a∈ T,w∈ T∗. A word w∈ T∗ is accepted by Mif δ∗(s0,w) ∈ F . The
language L(M)⊆ T∗ acceptedby M is the set of all words overT accepted byM ,
i.e.,L(M) = {w∈ T∗ : δ∗(s0,w) ∈ F}.

If M on inputw, |w|= n, runs through the statess0, ...,sn−1 (i.e. si = δ∗(s0,w �
i +1) for i = 0, ...,n−1) then we calls0, ...,sn therun or computationof M on input
w. More generally, we calls0, ...,sn a run of M if s0, ...,sn is the run ofM on some
inputw of lengthn. For aDFA M = (T,S,δ,s0,F), every wordw∈ T∗ determines
a unique run ofM.

2.2. Grammars and Automata 19

The following notion of a nondeterministic automaton in general allows more
than one run on a given inputw. Now, if the automaton is in a states and reads
a lettera, it may choose the next state from a finite transition set∆(s,a). It may
happen that∆(s,a) is empty, i.e., that no transition is possible. IfM cannot read
the input completely, thenw will be rejected. Moreover, the machineM will have
a choice for the initial state in which the run states.

Definition 2.10 A nondeterministic finite automaton (NFA) Mis a quintupleM =
(T,S,∆,S0,F) whereT is an alphabet,S is a finite set,∆ ⊆ (S×T)×S andS0,
F ⊆ SwhereS0 is nonempty.T is called theinput alphabet, S the set ofstates, ∆
thetransition relation, S0 the set ofinitial states, andF the set off inal oraccepting
states.

For defining the languageL(M) accepted byM, it is useful to look at the tran-
sition relation as a function∆ : S×T → POWER(S), by letting ∆(s,a) = {s′ ∈
S : ((s,a),s′) ∈ ∆}. Moreover, for a set̂Sof states we let∆(Ŝ,a) = {s′ ∈ S : ∃s∈
Ŝ[((s,a),s′) ∈ ∆]}. Intuitively, ∆(s,a) is the set of all statess′ into whichM may
move from states when readinga, and∆(Ŝ,a) is the set of all statess′ into which
M may move from a state in̂Swhen readinga.

Definition 2.11 Let M = (T,S,∆,S0,F) be a nondeterministic finite automaton.
Thegeneralized transition relation∆∗ : S×T∗→ POWER(S) of M is inductively
defined by

∆∗(s,ε) = {s}

and

∆∗(s,wa) =
⋃

s′∈∆∗(s,w)

∆(s′,a),

wheres ∈ S,a ∈ T,w ∈ T∗. Moreover, forŜ⊆ S and w ∈ T∗, let ∆∗(Ŝ,w) =⋃
s∈Ŝ∆∗(s,w).

Then a wordw ∈ T∗ is accepted by Mif there is a states0 ∈ S0 such that
∆∗(s0,w)∩ F 6= /0 . The language L(M) ⊆ T∗ acceptedby M is the set of all
words overT accepted byM , i.e., L(M) = {w∈ T∗ : M acceptsw} = {w∈ T∗ :
∆∗(S0,w)∩F 6= /0}.

We call s0, ...,sn−1 a possible runor a possible computationof M on input
w = a0...an−1 (|w|= n) if s0 ∈ S0 andsi+1 ∈ ∆(si ,ai) for i = 0, ...,n−1. Note that
M acceptsw if and only if there is a possible run ofM on inputw which ends in a
final state.

20 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

We let DFAT (NFAT) denote the class of languages over the alphabetT which
are accepted by a deterministic (nondeterministic) finite automaton (and we omit
the subscriptT if T is the binary alphabetΣ).

Theorem 2.12 For any alphabet T ,DFAT = NFAT = REGT.

We get an alternative inductive characterization of REGT by looking at regular
expressions.

Definition 2.13 Theregular expressionsoverT are inductively defined by:

(i) /0 is a regular expression.

(ii) Any a∈ T is a regular expression.

(iii) If α,β are regular expressions then(αβ) is a regular expression.

(iv) If α,β are regular expressions then(α∪β) is a regular expression.

(v) If α is a regular expression thenα∗ is a regular expression.

Definition 2.14 The language L(α) ⊆ T∗ denoted by a regular expressionα over
T is inductively defined by:

(i) L(/0) = /0.

(ii) L(a) = {a} (a∈ T).

(iii) L((αβ)) = L(α)L(β), whereLL′ = {ww′ : w∈ L & w′ ∈ L′} is the concate-
nation of the languagesL,L′.

(iv) L((α∪β)) = L(α)∪L(β).

(v) L(α∗) = L(α)∗, whereL∗ = {w1...wn : n≥ 1 & w1, ...,wn ∈ L}∪{ε} is the
iteration ofL.

Theorem 2.15 L ⊆ T∗ is regular iff there is a regular expressionα over T such
that L= L(α).

The following lemma is useful for showing a language to be not regular.

Theorem 2.16 (Pumping Lemma for Regular Languages) Let L be a regular lan-
guage over the alphabet T . There are numbers n,q∈ N such that for every word
z∈ L with |z| ≥ n there is a partition z= uvw of z into three words u,v,w∈ T∗ such
that

2.2. Grammars and Automata 21

1. |uv| ≤ q,

2. v 6= ε, and

3. uviw∈ L for all i ≥ 0.

2.2.3

Context Free
Languages and

Push Down
Automata

We next turn to the context-free languages. The languages of this type are just the
languages which are accepted by a nondeterministic pushdown automaton. We first
introduce the deterministic variant of these machines before we give the general
definition.

Definition 2.17 A deterministic pushdown automaton (DPDA) Mis a 7-tupel
M = (T,Γ,S,δ,s0,b0,F), whereT andΓ are alphabets,S is a finite set,s0 ∈S, b0 ∈
Γ, F ⊆ S, and

δ : S× (T ∪{ε})×Γ→ S×Γ∗

is a partial function with the following property

For eachs∈ Sandb∈ Γ, wheneverδ(s,ε,b) is defined,
thenδ(s,a,b) is not defined for alla∈ T.

(2.4)

T is called theinput alphabet, Γ thestack alphabet, S the set ofstates, δ the tran-
sition function, s0 the initial state, b0 thestart symbol, F the set offinal states.

Intuitively, aDPDA M is the extension of aDFA by a stack as a storage device.
A single move ofM is as follows. Depending on the current states, the next input
letter a, and the top stack symbolb, M moves to a new states′ and replaces the
top symbolb in the stack by a wordw over the stack alphabetΓ. This move is
expressed by the transitionδ(s,a,b) = (s′,w). In additionM may make someε-
move or spontaneous transition without reading the next input letter. Such a move
is described by a transitionδ(s,ε,b) = (s′,w). Condition (2.4) guarantees that in
any situation in which anε-move is possible no regular move can be done thereby
ensuring that the machine works deterministically. The content of the stack ofM
is represented by a wordw overΓ where the rightmost symbol ofw is the topmost
symbol in the stack.

Just as in the case of finite automata we can easily generalize the concept of a
DPDAto the nondeterministic case. We will do this next and then formally describe
the behaviour of pushdown automata.

Definition 2.18 A nondeterministic pushdown automata (NPDA) Mis a 7-tupel
M = (T,Γ,S,∆,s0,b0,F), whereT and Γ are alphabets,S is a finite set,∆ is a
relation of type

∆⊆ [S× (T ∪{ε})×Γ]× (S×Γ∗)

22 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

where, for any(s,a,b) ∈ S× (T∪{ε})×Γ there are at most finitely many(s′,w) ∈
S× Γ∗ such that(s,a,b,s′,w) ∈ ∆, s0 ∈ S, b0 ∈ Γ, F ⊆ S. T is called theinput
alphabet, Γ thestack alphabet, S the set ofstates, ∆ the transition relation, s0 the
initial state, b0 thestart symbol, F the set offinal states.

Sometimes we will interpret the transition relation∆ as a function of type

∆ : S× (T ∪{ε})×Γ→ POWER(S×Γ∗).

In particular, we let∆(s,a,b) = {(s′,w) : (s,a,b,s′,w) ∈ ∆}.
We next formally describe the behaviour of anNPDA.

Definition 2.19 Let M = (T,Γ,S,∆,s0,b0,F) be anNPDA.
An instantaneous description (ID)of M is a triple(s,w,v), wheres is a state,w

a string of input symbols, andv a string of stack symbols.
We write(s,aw,bv) `M (s′,w,uv) (and say that the ID(s,aw,bv) can be trans-

formed into the ID(s′,w,uv) in one move) if(s′,u) ∈ ∆(s,a,b), wherea may beε
or an input symbol.
`∗M is the reflexive and transitive closure of`M, i.e., I `∗ I for eachID I , and

I `M J andJ `∗M K imply I `∗M K. We sayI `i K if ID I can be transformed intoK
in exactlyi moves.

The language L(M) ⊆ T∗ accepted by final stateby theNPDA M is L(M) =
{w|(s0,w,b0) `∗ (s,ε,v) for somes∈ F andv∈ Γ∗}.

The language N(M) ⊆ T∗ accepted by empty stack (or null stack)by M is
N(M) = {w|(s0,w,b0) `∗ (s,ε,ε) for somes∈ S}.

In contrast to finite automata, for pushdown automata, the deterministic and
nondeterministic models are not equivalent with respect to the languages accepted.
Moreover, forNPDAsacceptance by state and acceptance by empty stack coincide,
and the languages accepted byNPDAsare just the context-free languages.

Theorem 2.20 For any language L the following are equivalent.

1. L is a context-free.

2. There exist an NPDA M such that L= L(M).

3. There exist an NPDA M such that L= N(M).

A languageL is calleddeterministically context-free (dcf)if it is accepted by
states by aDPDA M, i.e., L = L(M). The class of the dcf languages overT is
denoted by DCF.

Theorem 2.21 DCF⊂ CF.

2.2. Grammars and Automata 23

The following theorem is a useful tool for proving a variety of languages not
to be context free (compare with the pumping lemma for regular languages).

Theorem 2.22 (Pumping Lemma for Context-Free Languages) Let L be a context-
free language over the alphabet T . There are numbers n,q∈ N such that for every
word z∈ L with |z| ≥ n there is a partition z= uvwxy of z into five words u,v,w,x,y∈
T∗ such that

1. |vwx| ≤ q,

2. |vx| 6= ε, and

3. uviwxiy∈ L for all i ≥ 0.

2.2.4

Turing Machines
and Complexity

The stack of a pushdown automaton is not a general storage device. So, in order to
define a general computing device, we have to replace the stack by a more flexible
storage. In case of a Turing machineM the storage is a two-sided unbounded
tape, partitioned into individual cells which can store one letter (of a given tape
alphabet). The machine has a head which in one step can move one cell to the left
(L) or one cell to the right (R) and which can read and rewrite the cell it is located
on. A move ofM is determined by the current states of M and the lettera of the
tape alphabet in the cell scanned by the head ofM and it consists of a change of the
state (s′), the rewriting of the cell currently scanned by a lettera′, and a move of
the head to the left (L) or right (R). In the following formal definition of the Turing
machineM this move is describe by the transitionδ(s,a) = (s′,a′,B) whereB = L
or B = R.

Definition 2.23 A deterministic Turing machine (TM) Mis a 7-tupel

M = (T,Γ,b,S,δ,s0,F)

as follows: T andΓ are alphabets whereb∈ Γ andT ⊆ Γ−{b}, S is a finite set
whereSandΓ are disjoint,δ is a partial function of type

δ : S×Γ→ S×Γ×{L,R},

s0 ∈ S, F ⊆ S. T is called the set ofinput symbols, Γ the set oftape symbols, b the
blank, Sthe set ofstates, δ thetransition function, s0 the initial state, andF the set
of final states.

In the above definition we use the blank symbolb to indicate that a cell is
empty. If M processes an input wordw∈ T∗ then at the beginning of the compu-
tationw is written in the cells immediately to the right of the cell scanned by the

24 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

head ofM, all other cells are empty, andM is in the initial states0. The machine
accepts the inputw if it reaches a final state after finitely many moves.

An instantaneous description ofM consists of the smallest finite sequence of
cells (represented by a wordw over the tape alphabetΓ) containing all nonempty
cells and the cell scanned by the head, the position of the head on this sequence,
and the current states of M. We will code this information by the wordw0sw1

wherew= w0w1 ands is put to the right of the letter ofw in the cell scanned by the
head. (For convenience we will assume thatw0 andw1 are nonempty. If necessary
we achieve this by replacing the empty wordε by b.)

Using this coding we can define the behaviour ofM formally as follows.

Definition 2.24 Let M = (T,Γ,b,S,δ,s0,F) be aTM.

An instantaneous description (ID)of M is a wordw1sw2, wheres∈ S and
w1,w2 ∈ Γ+.

We writew1asâw2 `M w′1s′w′2 (and say that the IDw1asâw2 can be transformed
into the IDw′1s′w′2 in one move) if eitherδ(s,a) = (s′,a′,R) andw′1 = w1a′â and
w′2 = w2 or δ(s,a) = (s′,a′,L) andw′1 = w1 andw′2 = a′âw2. (If w′1 (w′2) is empty,
replace it byb.)

An ID vsw is calledterminal if there is noID v′s′w′ such thatvsw`M v′s′w′

andvsw is calledfinal if s∈ F . (For technical convenience, in the following we
will assume that any finalID will be terminal.)

`∗M is the reflexive and transitive closure of`M, i.e., I `∗ I for eachID I , and
I `M J andJ `∗M K imply I `∗M K. We sayI `i K if ID I can be transformed intoK
in exactlyi moves.

The language L(M)⊆ T∗ acceptedby the Turing machineM is

L(M) = {w∈ T∗|∃s∈ F ∃v1,v2 ∈ Γ+(bs0w`∗ v1sv2)}.

We say thatM convergeson inputw if there is a terminalID usv such that
bs0w`∗M usv; andM is calledtotal if M converges on any inputw∈ T∗.

Definition 2.25 A languageL is recursively enumerable (r.e.)if there is a Turing
machine which acceptsL, andL is recursiveif there is a total Turing machine
which acceptsL.

Above we have introduced Turing machines as accepting devices for describing
languages. Alternatively, we can use a Turing machineM as a device for computing
a (partial) functionf : T∗→ T∗, wheref (w) is defined if and only ifM on inputw
terminates in a final state, and in this casef (w) is the maximal wordv∈ T∗ written
on the tape just to the right of the tape head.

2.2. Grammars and Automata 25

Definition 2.26 A (partial) function f : T∗→ T∗ is (partially) recursive(or (par-
tially) Turing computable) if there is a Turing machine which computesf .

By Church’s Thesis, Turing machines are a universal computing device, i.e.,
a language is recursive (r.e.) if and only if it is decidable (effectively enumer-
able), and a (partial) function is (partially) recursive if and only if it is (partially)
computable. So the standard extensions of Turing machines in the literature will
not give stronger computing devices but possibly more efficient ones. For com-
plexity matters we will consider the following two extensions of the above Turing
machine model: nondeterministic machines and multi-tape machines. We do not
define these models formally. The definition of a nondeterministic Turing machine
is straightforward: The transition functionδ has to be replaced by a transition rela-
tion ∆ of type:

∆⊆ (S×Γ)× (S×Γ×{L,R}).

A k-tape TMM (k ≥ 1) hask tapes, each provided with a tape head, where the
operations on the individual tapes are independent. Now a move ofM is determined
by the current state ofM and thek letters scanned by the tape heads on thek tapes.

For the definition of the computational complexity classes based on the above
Turing machine models we first introduce the running time and the space required
by a TM M on inputw, where we restrict ourselves to the case of a deterministic
1-tape TM.

Definition 2.27 Let M be a deterministic 1-tape TM.

1. If M on inputw converges then the computation ofM on inputw is the unique
finite sequence of IDs

CompM(w) = I0, ..., Im

whereI0 = bs0w, Ii `M Ii+1 for i < m, andIm is a terminal ID.

2. Therunning timeof M is the partial functiontimeM : T∗→ N where

timeM(w) =

{
length(CompM(w)) if M terminates on inputw

↑ otherwise.

3. Let t : N→ N be a total recursive function. ThenM is t(n)-time boundedif

∀w∈ T∗(timeM(w)≤ t(|w|)).

4. Thespace requiredby M is the partial functionspaceM : T∗→ N where

spaceM(w) =

{
max{|I | : I ∈CompM(w)} if M terminates on inputw

↑ otherwise.

26 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

5. Lets : N→ N be a total recursive function. ThenM is s(n)-space bounded,
if

∀w∈ T∗(spaceM(w)≤ s(|w|)).

The following complexity classes are defined for multi-tape Turing machines.
Let t : N→N be a total recursive function. Then thedeterministic time complexity
class with bound t(n) (over the binary alphabetΣ) is defined by

DTIME(t(n)) = {L⊆ Σ∗ : ∃ det. t(n)-time-bounded TMM(L(M) = L)}.

The correspondingnondeterministic time classis defined by

NTIME(t(n)) = {L⊆ Σ∗ : ∃ nondet.t(n)-time-bounded TMM(L(M) = L)}.

Similarly, for a total recursive functions : N→ N, the deterministic space com-
plexity class with bound s(n) is defined by

DSPACE(s(n)) = {L⊆ Σ∗ : ∃ det.s(n)-space-bounded TMM(L(M) = L)}

and the correspondingnondeterministic space classis defined by

NSPACE(s(n)) = {L⊆ Σ∗ : ∃ nondet.s(n)-space-bounded TMM(L(M) = L)}.

If we admit only Turing machines with a fixed number of tapes then we add the
numberk of tapes as an index to the name of the class. For instance,

DTIME1(t(n)) = {L⊆ Σ∗ : ∃ det. t(n)-time-bounded 1-tape-TMM(L(M) = L)}.

We will use the following results on the above Turing machine complexity
classes: By thelinear-speed-up theorem, the above classes are invariant under lin-
ear changes of the bound, i.e.,

C(f (n)) = C(O(f (n))

(for C = DTIME,DTIMEk,DSPACE, etc.). By thetape-reduction theorem,

D(N)SPACE1(f (n)) = D(N)SPACE(f (n))

and
D(N)TIME(f (n))⊆ D(N)SPACE1(O(f (n))2).

For the comparison of the different complexity measures we have the following
results:

DTIME(f (n))⊆ NTIME(f (n)),

DTIME(f (n))⊆ DSPACE(f (n))⊆ NSPACE(f (n)),

2.2. Grammars and Automata 27

NTIME(f (n))⊆ NSPACE(f (n)),

and
NSPACE(f (n))⊆ DTIME(2O(f (n))).

Finally, bySavitch’s Theorem,

NSPACE(f (n))⊆ DSPACE(f (n)2)

for space constructible boundsf , where a functionf is space (time) constructible
if there is a Turing machineM which on any inputw of lengthn uses exactly space
of size f (n) (has running timef (n)). Finally we will use the fairly recent result
that the nondeterministic space classes are closed under complement.

Theorem 2.28 (Immerman-Szelepcsenyi) For space constructible bounds s(n) ≥
log(n),

NSPACE(s(n)) = co−NSPACE(s(n))

Here the co-class co-C of a complexity class C is the class of the complements
of the languages in C, i.e., co-C= {Ā : A∈ C}. The Theorem of Immerman and
Szelepcsenyi has been used to prove to the following hierarchy theorem for nonde-
terministic space classes.

Corollary 2.29 (Nondeterministic Space Hierarchy Theorem) Let s and S be re-
cursive functions such that S(n) 6∈ O(s(n)) and S(n) is space constructible. Then
NSPACE(S(n)) 6⊆ NSPACE(s(n)).

The Theorem of Immerman and Szelepcsenyi also gave the solution to a open
problem of formal language theory namely the question whether the complement
of every context-sensitive language is context-sensitive. An affirmative answer to
this question follows from the coincidence of the class of the context-sensitive
languages with the nondeterministic linear space class.

Theorem 2.30 CS= NSPACE1(n) = NSPACE(O(n))

Sometimes this theorem is stated in a slightly different form using the notion
of a (nondeterministic)linearly bounded automaton((N)LBA). An LBA may be
viewed as a 1-tape Turing machine which is not allowed to leave the cells bearing
the input. For this sake the input is limited by end markers[and] and the head is
not allowed to pass beyond these markers. The class of languages recognized by
nondeterministic LBAs is denoted by NLBA. Obviously, NLBA= NSPACE1(n).
Hence, by Theorem 2.30, a language is context-sensitive if and only if it is accepted
by an NLBA, i.e.,

CS= NLBA (2.5)

28 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

Note that any complexity class is countable and consists only of recursive lan-
guages. In fact the languages in such a class have a uniform recursive presentation.
We will conclude this subsection by reviewing the important notion of uniform
computability.

Definition 2.31 A countable class C of binary languages isuniformly recursiveor
recursively presentable(r.p. for short) if there is a binary recursive setU ⊆ N×Σ∗

such that C= {U [n] : n≥ 0} whereU [n] = {x : (n,x) ∈U}. U is called auniversal
setfor C.

Theorem 2.32 For any recursive function f , the complexity classesDTIME(f (n)),
NTIME(f (n)), DSPACE(f (n)), andNSPACE(f (n)) are uniformly recursive. More-
over, the Chomsky classesREG, LIN , CF andCSare uniformly recursive.

2.3. Regular Functions 29

2.3 Regular Functions

In the preceding section we have reviewed the Chomsky language classes and the
types of grammars and automata which characterize these classes. In case of Tur-
ing machines - which describe the most general Chomsky class - we have also
indicated how this concept has been used to formalize the notion of a computable
function. The finite-state genericity notions we will introduce in this thesis will
be based on regular extension function. So, in order to introduce these notions,
we have to review the approaches which have been used to define the concept of a
regular function based on finite automata. We will restrict ourselves to the case of
word functions over the binary alphabetΣ, since only functions of this type will be
needed later. For references see e.g. Yu (1997).

The probably most common definition of a regular word functionf of type
f : T∗1 → T∗2 is due to Moore. It is based on an extension of the concept of a
deterministic finite automaton where the states of the automaton are labeled by
letters from the output alphabetT. Then the value of the computed functionf
on input x is the wordλ(s0)...λ(sn) wheres0, ...,sn are the states visited by the
automaton while reading inputx. (In case of a partial function, this output is only
given if the final statesn is accepting.) We next formally introduce this concept
(where, as remarked before, we limit ourselves to the case of the binary alphabet
Σ).

Definition 2.33 A Moore automaton M= (Σ,S,δ,s0,F,λ) is a deterministic finite
automatonM = (Σ,S,δ,s0,F) together with alabelling functionλ : S→ Σ. The
(partial) Moore function fM : Σ∗→ Σ∗ computed byM is defined by

fM(a1...an) = λ(s0)λ(δ∗(s0,a1))λ(δ∗(s0,a1a2))...λ(δ∗(s0,a1...an))

if δ∗(s0,a1...an) ∈ F (wheren≥ 0), and fM(a1...an) ↑ otherwise. A (partial) func-
tion f is a(partial) Moore functionif f = fM for some Moore automatonM.

If we consider total Moore functions then w.l.o.g. we may assume that all states
are final or, in other words, we may omit the set of final states from the definition
of the automaton. Note that, for a (partial) Moore functionf , the length of the
output is the length of the input increased by 1 (if defined) andf is monotonous in
the sense that ify extendsx and f (x) and f (y) are both defined thenf (y) extends
f (x).

Lemma 2.34 Let f be a (partial) Moore function. Then, for v,w∈ Σ∗,

f (w) ↓⇒ | f (w)|= |w|+1 (2.6)

30 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

and
(vv w & f (v) ↓ & f (w) ↓) ⇒ f (v)v f (w). (2.7)

PROOF. Immediate by definition. �

We can obtain a more general concept of a regular function by admitting la-
belling functions of a more general type. Instead of attaching a single letter to each
state we now attach a word.

Definition 2.35 A generalized Moore automaton M= (Σ,S,δ,s0,F,λ) is a deter-
ministic finite automatonM = (Σ,S,δ,s0,F) together with alabelling function
λ : S→ Σ∗. The (partial) generalized Moore function fM : Σ∗ → Σ∗ computed
by M is defined by

fM(a1...an) = λ(s0)λ(δ∗(s0,a1))λ(δ∗(s0,a1a2))...λ(δ∗(s0,a1...an))

if δ∗(s0,a1...an) ∈ F (wheren≥ 0), and fM(a1...an) ↑ otherwise. A (partial) func-
tion f is a (partial) generalized Moore functionif f = fM for some generalized
Moore automatonM.

Again, if we are only interested in total generalized Moore functions we omit
the set of final states from the definition. Obviously any (partial) Moore function
is a (partial) generalized Moore function (but not vice versa). As in case of Moore
functions, generalized Moore functions are monotonous but the length property
(2.6) in general fails. Now we may only argue that the length off (x) (if defined)
is linearly bounded in the length ofx.

Lemma 2.36 Let f be a (partial) generalized Moore function. Then(2.7) holds
and there is a constant c such that, for any w∈ Σ∗,

f (w) ↓⇒ | f (w)| ≤ c|w| (2.8)

PROOF. Immediate. �

Example 2.37 An example of a generalized Moore functionf : Σ∗ → Σ∗ which
is not a Moore function is the functionf : Σ∗→ Σ∗ defined byf (x) = 02|x|+2. A
generalized Moore automaton which computesf has only one states0 labelled
by λ(s0) = 02. f is not a Moore function since the length condition (2.6) is not
satisfied.

We can further generalize the notion of a (generalized) Moore function by con-
sidering nondeterministic (generalized) Moore automata. In general such a non-
deterministic automaton will not compute a function of typeΣ∗ → Σ∗ since the
different possible runs of a nondeterministic automaton on a given input may re-
sult in different function values.

2.3. Regular Functions 31

Definition 2.38 A nondeterministic (generalized) Moore automaton

M = (Σ,S,∆,S0,F,λ)

is a nondeterministic finite automatonM = (Σ,S,∆,S0,F) together with alabelling
functionλ : S→ Σ (λ : S→ Σ∗). The automatonM is completeif for any x ∈ Σ∗

there is a run ofM ending in a final state andM is consistent(or single valued) if
for any inputx∈ Σ∗ and any two possible runss0, ...,sn ands′0, ...,s

′
n of M on input

x which end in final states,λ(s0)...λ(sn) = λ(s′0)...λ(s′n). If M is consistent then the
(partial) nd. (generalized) Moore function fM : Σ∗→ Σ∗ computed byM is defined
by

fM(x) = λ(s0)λ(s1)λ(s2)...λ(sn)

wheres0, ...,sn is any run ofM on inputx with sn ∈ F (if such a run exists, and
fM(x) ↑ otherwise). A (partial) functionf is a (partial) nd. (generalized) Moore
function if f = fM for some consistent nondeterministic (generalized) Moore au-
tomatonM.

As one can easily check, this definition is consistent, i.e., the (partial) func-
tion computed by a consistent n.d. (generalized) Moore automaton is well defined.
Moreover, the functionfM computed by such an automaton is total if and only if
M is complete. Moreover, for a partial n.d. (generalized) Moore functionf , the
corresponding length conditions from the deterministic case ((2.6) and (2.8), re-
spectively) still hold but monotonicity (see (2.7)) in general fails.

Lemma 2.39 For any (partial) n.d. Moore function f ,(2.6) holds and, for any
(partial) n.d. generalized Moore function f ,(2.8)holds.

PROOF. Immediate by definition. �

Example 2.40 The functionf : Σ∗→ Σ∗ defined by

f (x) =

{
0|x|+1 if |x| is even

1|x|+1 if |x| is odd

is a n.d. Moore function. An n.d. Moore automatonM = (Σ,S,∆,S0,F,λ) which
computesf can be defined as follows.

S= {s0,0,s0,1,s1,0,s1,1}

(si, j ,k,si′, j ′) ∈ ∆⇔ i = i′ & j 6= j ′ (i, i′, j, j ′,k∈ {0,1})

S0 = {s0,0,s1,0}

F = {s0,0,s1,1}

32 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

λ(si, j) = i (i, j ∈ {0,1})
Intuitively, M works as follows. On inputx, M nondeterminstically guesses whether
the length ofx is even or odd. IfM guesses that|x| is even then it starts the compu-
tation in states0,0, otherwise in states1,0. If M starts in states0,0 then in the run of
M the statess0,0 ands0,1 alternate where both states are assosciated with the label
0. Since the states0,0 is final buts0,1 is not, a run beginning in states0,0 is accepting
iff |x| is even. Moreover, in this case, the output is 0|x|+1. Similarly a run beginning
in states1,0 will be accepting iff|x| is odd, and in this case the output will be 1|x|+1.

Note that f is not a (generalized) Moore function sincef does not satisfy the
extension property (2.7).

The above examples and lemmas show that the only relations among the dif-
ferent types of Moore functions are the trivial relations

f (partial) Moore function ⇒ f (partial) gen. Moore function
⇓ ⇓

f (partial) n.d. Moore function⇒ f (partial) n.d. gen. Moore function
(2.9)

To see that no other relations hold it suffices to recall that the function of Example
2.37 is a generalized Moore function but, by failure of (2.6) and by Lemma 2.39,
not a n.d. Moore function and that the function of Example 2.40 is a n.d. Moore
function but not a generalized Moore function.

In the literature there are other approaches for defining regular functions of
type f : Σ∗→ Σ∗: While in the Moore approach in any step of the computation the
output is expanded by a letter (or – in the generalized case – by a word) where the
chosen letter (word) depends on the current state, in the Mealy approach, the letter
(word) appended depends not only the current state but on the current transition.
Though aparently more flexible, it has been shown that the Mealy approach is not
more powerful than the Moore approach and leads (essentially) to the same class
of functions. (To be more precise, we can obtain any Mealy functionf by dropping
the first letter from the output of some Moore functionf ′.) The same observation
applies to the corresponding nondeterministic functions. A further generalization
of the Mealy approach has been proposed which is based on so-called generalized
sequential machines: Here the machine is allowed to makeε-moves, i.e., to make
a transition without reading a new letter, and to read more than one letter in one
move. As one can easily show, the functionsf obtained this way are essentially
Mealy functions by differing from the latter only on the empty string. (See e.g.
Yu (1997) for more details.) So for our applications it will suffice to deal with the
above introduced variants of Moore functions.

Some of our finite-state genericity concepts will be based on extension func-
tions of constant length, however, i.e. will be based on (partial) functions of type

2.3. Regular Functions 33

Σ∗→ Σk (for any givenk≥ 1) which can be computed by a finite automaton. So
in the remainder of this subsection we introduce a notion of regularity for (partial)
regular functions of this type. This notion will be based on generalized Moore
automata where each state is labeled with a word of lengthk. The value of the
function will be defined iff the computation ends in a final states and in this case
the value will be the label of this state. Next we formally introduce this concept.

Definition 2.41 A k-labelled automaton Mis a generalized Moore automatonM =
(Σ,S,δ,s0,F,λ) where |λ(s)| = k for any s∈ S (k ≥ 1). The (partial) function
fM : Σ∗→ Σk computed bythek-labelled automatonM = (Σ,S,δ,s0,F,λ) is defined
by

fM(x) =

{
λ(δ∗(s0,x)) if δ∗(s0,x) ∈ F

↑ otherwise.

A (partial) function f : Σ∗→ Σk is regular if f is computed by some deterministic
k-labelled automaton.

We can extend this definitions to nondeterministic automata.

Definition 2.42 An n.d. k-labelled automaton Mis a n.d. generalized Moore au-
tomatonM = (Σ,S,∆,S0,F,λ) where|λ(x)|= k for anys∈ S(k≥ 1). M is consis-
tent (or single valued) if, for any wordx and for any statess ands′,

s,s′ ∈ ∆∗(S0,x)∩F ⇒ λ(s) = λ(s′)

holds. The(partial) function fM : Σ∗ → Σk computed bythe consistent n.d.k-
labelled automatonM = (Σ,S,∆,S0,F,λ) is defined byfM(x) = λ(s) wheres is any
final state such thats∈ ∆∗(S0,x) if such a states exists, andfM(x) ↑ otherwise.

In contrast to the Moore function concept, however, here nondeterminism does
not lead to a more powerful concept.

Lemma 2.43 Let f : Σ→ Σk be a partial function which is computed by a consis-
tent n.d. k-labelled automaton. Then f is regular.

PROOF. Fix a consistent n.d.k-labelled automatonM = (Σ,S,∆,S0,F,λ) such that
f = fM. We have to define a deterministick-labelled automatonM′ such thatfM =
fM′ . The definition ofM′ = (Σ,S′,δ′,s0

′,F ′,λ′) is based on the standard power
set construction for giving a deterministic automaton (without output) simulating a
given n.d. automaton. To be more precise, we let

S′ = {σ : σ⊆ S}

34 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

δ′(σ,a) = ∆(σ,a)

s0
′ = S0

F ′ = {σ : σ∩F 6= /0}

Then, for anyx ∈ Σ∗, x is accepted byM iff M is accepted byM′ whence the
domains offM and fM′ agree. To ensure thatfM(x) = fM′(x) whenever defined, it
remains to setλ′(σ) = λ(s) for anys∈ σ∩F if σ ∈ F ′ and by lettingλ′(σ) have
any value, say 0k, otherwise. Note that, by consistency ofM, λ′ is well defined,
and for anyx such thatfM(x) is defined,fM′(x) = fM(x). �

Note that, by (2.6), no (partial) function of typeΣ∗→ Σk is a (partial) – deter-
ministic or n.d. – Moore function. There are generalized Moore functions of this
type, however, whence it is natural to ask what are the relations between regular
functions and (deterministic or nondeterministic) generalized Moore functions of
typeΣ∗→ Σk. As we will show next the regular functions are just the n.d. general-
ized Moore functions.

Lemma 2.44 Let k≥ 1 and let f : Σ∗→Σk be any (partial) function. The following
are equivalent.

(i) f is regular.

(ii) f is an n.d. generalized Moore function.

PROOF. For a proof of(i) ⇒ (ii) let M = (Σ,S,δ,s0,F,λ) be a deterministic
k-labelled automaton which computesf . We have to define a consistent n.d. gen-
eralized Moore automatonM′ = (Σ,S′,∆′,S0

′,F ′,λ′) which is equivalent toM, i.e.,
such thatfM′ = fM. Note that the function valuefM(x) computed by thek-labelled
automatonM is the labelλ(s) of the states reached byM after having read the
input x. In contrast,fM′(x) is the concatenation of the labels of all states in the run
of M′ on inputx. So, in order to simulateM, M′ has to delete the labels of the
intermediate states. This is achieved by having two copiess ands of any states of
M, where one copy (s) has the same label attached as inM and one (s) has attached
the empty word. ThenM′ copies the run ofM by using the copies of the states with
empty label. Only whenM′ guesses that the input is completely read, it switches
to the copy with the original label.

Formally,M′ is defined by

S′ = S∪{s : s∈ S}

∆′(s,a) = {δ(s,a),δ(s,a)} & ∆′(s,a) = /0 (s∈ S,a∈ Σ)

2.3. Regular Functions 35

S0
′ = {s0,s0}

F ′ = {s : s∈ F}

λ′(s) = ε & λ′(s) = λ(s) (s∈ S).

For a proof of(ii)⇒ (i) let M = (Σ,S,δ,s0,F,λ) be a consistent n.d. general-
ized Moore automaton which computesf . By Lemma 2.43, it suffices to define a
consistent n.d.k-labelled automatonM′ = (Σ,S′,∆′,S0

′,F ′,λ′) which is equivalent
to M, i.e., such thatfM = fM′ . Intuitively, such an automatonM′ simulatesM step
by step whereM′ remembers in his state the concatenation of the labels attached to
the visitedM-states up to this point. (This is possible since the generalized Moore
function computed byM is k-bounded, i.e., it suffices to store a word of length at
mostk. If the length of the word exceedsk then the input will not be accepted
and the computation can be aborted.) WhenM′ guesses that the input is read com-
pletely, it outputs the sequence of these labels (by attaching it to the state reached
in the end).

Formally,M′ is defined by

S′ = {[s,x] : s∈ S& x∈ Σ≤k}

([s′,y] ∈ ∆′([s,x],a)⇔ s′ ∈ ∆(s,a) & y = xλ(s′) & |y| ≤ k

S0
′ = {[s0,λ(s0)] : s0 ∈ S0}

F ′ = {[s,x] : s∈ F & |x|= k}

λ′([s,x]) = x0k−|x|.

�

The observation that not any n.d. generalized Moore function is a generalized
Moore function can be extended to functions of typeΣ∗→ Σk. So, by the preceding
lemma, not every regular functionf : Σ∗→ Σk is a generalized Moore function.

Lemma 2.45 For any k≥ 1 there is a regular function f: Σ∗→ Σk such that f is
not a generalized Moore function.

PROOF. Define f : Σ∗→ Σk by letting

f (x) =

{
0k if |x| is even

1k if |x| is odd.

Then f is regular. (Ak-labelled automatonM which computesf has two statess0

ands1, wheres0 is the initial state, both states are final, andsi is labelled withik.
In any stepM moves from the current statesi to the other states1−i .) By Lemma

36 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

2.36, however,f is not a generalized Moore function since the extension property
(2.7) is not satisfied. �

For later use we observe that the class of regular functions is closed under finite
variants.

Lemma 2.46 The class of the (partial) regular functions of typeΣ∗→ Σk (k≥ 1)
is closed under finite variants.

PROOF. We consider the case of total functions. (The case of partial functions
is similar.) It suffices to consider a pair of functions which differs on a single
argument. The general case follows by induction on the number of differences.

So assume thatf : Σ∗ → Σk is regular andf ′ : Σ∗ → Σk differs from f on
input x. We have to show thatf ′ is regular too. Fix ak-labelled automaton
M = (Σ,S,δ,s0,F,λ) which computesf . Then ak-labelled automatonM′ which
computesf ′ can be obtained as follows.M′ = (Σ,S′,δ′,s′0,F ′,λ′) simulatesM step
by step. In addition, as long as the party of the input word read so far is an initial
segment ofx, this information is stored in the state ofM′ and ify= x then the label
of the current state is replaced byf ′(x). Formally, fors∈ S, a∈ Σ, andyv x,

S′ = S∪{[s,y] : s∈ S& yv x}

δ′(s,a) = δ(s,a)

δ′([s,y],a) =

{
[δ(s,a),ya] if yav x

δ(s,a) otherwise

s0
′ = [s0,ε]

F ′ = F ∪{[s,y] : s∈ F & yv x}

λ′(s) = λ(s)

λ′([s,y]) =

{
λ(s) if y 6= x

f ′(x) if y = x.

�

2.4. Strong Separations in the Chomsky Hierarchy 37

2.4 Strong Separations in the Chomsky Hierarchy

Immunity and bi-immunity are among the fundamental concepts in computability
theory and computational complexity theory. An infinite languageA is immuneto
a class C (C-immunefor short) if it does not contain any infinite member of this
class as a subset. If both, a languageA and its complementA are immune to C then
A is called C-bi-immune. Post (1944) introduced immunity and proved the exis-
tence of nonrecursive (many-one) incomplete recursively enumerable problems by
constructing asimpleset, i.e., an r.e. set whose complement is immune to the class
of r.e. sets. Flajolet and Steyaert (1974) were probably the first who studied im-
munity in the context of formal language theory. For instance they have observed
that the canonical examples{0n1n : n≥ 1} and{0n1n0n : n≥ 1} of non-regular
and non-context-free languages are in fact REG-immune and CF-immune respec-
tively. Bi-immunity was introduced by Balcázar and Scḧoning (1985) who have
also observed the close connection between bi-immunity and almost-everywhere
complexity. In the sequel some hierarchy theorems for almost-everywhere com-
plexity have been proven using this concept (see e.g. Geske et al. (1987)). More-
over, for any countable class C, the class of C-bi-immune sets has measure 0 and is
comeager whence these concepts are of interest for the investigation of randomness
and genericity notions.

In this subsection, by extending the work in computability and complexity the-
ory and the work of Flajolet and Steyaert on immunity in formal language theory,
we will present some fundamental properties and relations of the immunity and
bi-immunity notions for the classes of the Chomsky hierarchy. We will proceed as
follows. First we will show that the coincidence of almost-everywhere complex-
ity and bi-immunity in complexity theory has its counterpart in formal language
theory. Then we will present some general definitions and results before we will
look at the individual levels of the Chomsky hierarchy where our focus will be on
bi-immunity to the lower classes of the hierarchy, namely the classes of regular,
linear, and context-free languages which haven’t been considered in detail before.

38 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

2.4.1

Bi-Immunity
and Almost
Everywhere
Complexity

In computational complexity theory bi-immunity has been extensively studied since
it is closely related to almost-everywhere complexity (see Balcázar et al. (1990),
Chapter 6 for details). For instance, if C is a determinstic time class DTIME(t(n))
andA is DTIME(t(n))-bi-immune then, for any Turing machineM which accepts
A, timeM(x) > t(|x|) for all but finitely many stringsx. Alternatively, we can ex-
press this observation as follows: CallM an extendedTuring machine ifM has
three types of states, accepting states (+-states), rejecting states (−-states) and un-
determined states (?-states). Moreover, say thatM decides(accepts; rejects) x if
the computation ofM on inputx ends in a+-state or−-state (+-state;−-state) and
say thatM is consistentwith A if M only accepts stringsx∈ A andM only rejects
stringsx∈ A. ThenA is DTIME(t(n))-bi-immune if and only if any deterministic
t(n)-time bounded extended Turing machineM which is consistent withA decides
only finitely many stringsx.

For the classes C in the Chomsky hierarchy we can obtain similar character-
izations of C-bi-immunity by considering the machine characterizations of these
classes. We demonstrate this for the class REG of the regular languages here. We
first formally define the notion of an extended deterministic finite automaton.

Definition 2.47 An extended deterministic finite automaton(EDFA) M is a 7-tuple
M = (Σ,S,δ,s0,S+,S−,S?) where(Σ,S,δ,s0) is a deterministic finite automaton
without a distinguished set of final states and(S+,S−,S?) is a partition of the set
S of states ofM, called the sets of+-states(or accepting states), −-states(or
rejecting states) and ?-states(or undetermined states), respectively. The EDFAM
accepts(rejects) w∈ Σ∗ if the computation ofM on inputw ends in a+-state (−-
state), i.e., ifδ∗(s0,w) ∈ S+ (δ∗(s0,w) ∈ S−). If M accepts or rejectsw then we
also say thatM decides w. The EDFAM is consistentwith a languageA if M only
accepts stringsx∈ A andM only rejects stringsx∈ A.

Theorem 2.48 For any language A the following are equivalent.

(i) A is REG-bi-immune.

(ii) For any extended deterministic finite automaton M which is consistent with
A, M decides only a finite number of strings.

PROOF. The proofs of both implications are by contraposition. For a proof of
(i)⇒ (ii) assume thatM is an extended deterministic finite automaton which is
consistent withA and which decides an infinite number of strings. Then, by sym-
metry, w.l.o.g. there are infinitely many strings which are accepted byM. So, if we
convertM into a standard finite automatonM′ by letting the+-states ofM be the
final states ofM′, thenM′ accepts an infinite setB and, by consistency ofM with

2.4. Strong Separations in the Chomsky Hierarchy 39

A, B is contained inA. So there is an infinite regular subsetB of A whenceA is not
REG-bi-immune.

For a proof of(ii)⇒ (i) assume thatA is not REG-bi-immune. Then, by sym-
metry, w.l.o.g. we may assume thatA contains an infinite regular setB as a subset.
Given a deterministic finite automatonM which acceptsB, convertM into an ex-
tended automatonM′ by letting the final states ofM be the+-states ofM′ and by
letting the non-final states be ?-states. (There are no−-states.) Then, byB⊆ A, M′

is consistent withA and, by infinity ofB, M′ decides an infinite number of strings.
�

By the above, REG-bi-immune sets are non-regular in a very strong sense.
So, for investigating the power of diagonalizations over the class REG, REG-bi-
immunity is a very interesting property.

2.4.2

Definitions and
Basic Facts

We next look at some basic definitions and results on immunity and bi-immunity
in a general setting. We first review the definitions of immunity, co-immunity and
bi-immunity.

Definition 2.49 Let C be any class of sets. A setA is immune toC, C-immune
for short, if A is infinite but no infinite subset ofA is a member of C;A is C-co-
immuneif the complementA of A is C-immune; andA is C-bi-immuneif A andĀ
are C-immune.

The following observations are obvious.

Proposition 2.50 (a) If A isC-immune then A/∈ C.

(b) If A isC-co-immune andC is closed under complement then A/∈ C.

(c) If C0⊆ C1 and A isC1-(co/bi-)immune then A isC0-(co/bi-)immune.

(d) A isC-bi-immune iff A isC-immune andC-co-immune.

Proposition 2.51 Let C be a class which contains all co-finite languages. Then
the following are equivalent.

(i) A is C-bi-immune.

(ii) Neither A norA contains an infinite set B∈ C as a subset.

PROOF. By definition,(i) is a strengthening of(ii), namely(i) is obtained from
(ii) by additionally requiring thatA andA are infinite. So, given a setA satisfying
(ii), it suffices to show thatA andA are infinite. We do this forA. The proof forA
is symmetric. For a contradiction assume thatA is finite. ThenA is co-finite. By

40 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

choice of C this implies that thatA ∈ C. So, forB = A, B is infinite, B ∈ C and
B⊆ A. But this contradicts the assumption thatA satisfies(ii). �

In the following we will tacitly use Propositions 2.50 and 2.51. We next turn
to some general existence results for (bi-)immune sets. It has been shown, by
diagonalization, that, for any countable class C, C-bi-immune sets exists. In fact, it
is well known that for such classes C, typical sets are C-bi-immune. (See Chapter 3
below for more details. There also a proof of the following theorem can be found.)

Theorem 2.52 For any countable classC there areC-bi-immune sets. In fact the
class ofC-bi-immune sets has Lebesgue measure 1 and is co-meager.

For countable classes C which have an infinite and co-infinite member, there
are C-immune sets which are not C-bi-immune. In order to show this we first prove
the following fact.

Theorem 2.53 Let C be a countable class and let B be an infinite set. There is a
subset A of B which isC-immune.

PROOF. Let C= {Cn : n≥ 0} be a (possibly noneffective) enumeration of C. We
define a setA with the required properties by a finite extension argument. I.e., we
defineA in stagess≥ 0 by simultaneously defining a strictly increasing function
l , l(s) beeing defined at stages, such that the partAs of A defined by the end of
stages will consist of all strings inA of length less thanl(s), i.e.,As = A∩Σ<l(s).
At an even stage 2swe ensure thatCs is not contained inA unlessCs is finite; at an
odd stage 2s+1 we ensure thatA contains a string of length at least 2s+1 thereby
ensuring thatA is infinite.

Formally, A is defined as follows. GivenAs−1 and l(s− 1) (whereA−1 = /0
and l(−1) = 0), As and l(s) are defined as follows. Ifs is even, says= 2e, then
distinguish the following two cases. IfCe is infinite then letxs be the least stringx
in Ce such that|x| ≥ l(s−1), let l(s) = |xs|+1 and setAs = As−1. If Cs is finite then
let l(s) = l(s−1)+1 and setAs = As−1. Finally, if s is odd then letxs be the least
stringx in B such that|x| ≥ l(s−1), let l(s) = |xs|+1 and setAs = As−1∪{xs}.

The correctness of the construction easily follows from the remarks preceding
the construction. �

Corollary 2.54 Let C be a countable class which has an infinite and co-infinite
member. There is aC-immune set A which is notC-bi-immune. In fact, ifC0 and
C1 are countable classes such thatC0 ⊆ C1 andC0 has an infinite and co-infinite
member then there is aC1-immune set A which is notC0-bi-immune.

2.4. Strong Separations in the Chomsky Hierarchy 41

PROOF. It suffices to prove the second part of the corollary. The first part follows
by setting C0 = C1 = C. Fix D ∈ C0 such thatD andD are infinite. By Theorem
2.53 there is a C1-immune setA contained inD. A is not C0-immune since the
infinite setD ∈ C0 is contained inA. SoA is not C0-co-immune, hence not C0-bi-
immune. �

As pointed out above, in computational complexity theory many separations
of complexity classes C0 ⊂ C1 can be extended to strong separations by showing
that there is a C0-(bi-)immune set in the class C1 (see e.g. Geske et al. (1987) and
Allender et al. (1993)). In the following we will look at the question what strong
separations we can get for the Chomsky classes. We will use the following notation
for strong separations.

C0 <0 C1 :⇔ C0⊂ C1

C0 <1 C1 :⇔ C0⊆ C1 & ∃A∈ C1(A C0-immune)

C0 <2 C1 :⇔ C0⊆ C1 & ∃A∈ C1(A C0-bi-immune)

Proposition 2.55 Let C0 andC1 be any classes such thatC0 has an infinite mem-
ber. Then

C0 <2 C1⇒ C0 <1 C1⇒ C0 <0 C1.

PROOF. Immediate by definition. �

By the preceding proposition, the following proposition establishes transitivity
of the relations<0, <1 and<2 in a strong sense.

Proposition 2.56 Let C0, C1, and C2 be classes which have infinite languages
among their members and let i, j ∈ {0,1,2}. Then the following holds.

C0 <i C1 & C1 < j C2⇒ C0 <max(i, j) C2.

PROOF. By Propositions 2.50 and 2.55. �

42 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

2.4.3

Immunity to the
Class of Regular
Languages

Now we will look at immunity and bi-immunity to the individual classes in the
Chomsky hierarchy. We begin from the bottom of the hierarchy and start with the
class REG of the regular sets.

As pointed out above, Flajolet and Steyaert (1974) have shown that the lan-
guageA = {0n1n : n≥ 1} is immune to the class of regular languages. This easily
follows from the pumping lemma for regular languages (see Theorem 2.16). For
a contradiction assume thatA is not REG-immune. Then there is an infinite reg-
ular subsetB of A. By the pumping lemma there is a parameterp≥ 0 such that
any wordw∈ B with |w| ≥ p can be decomposed intow = xyzsuch that|xy| ≤ p,
y 6= ε, andwn = xynz∈ B for all n≥ 0. Now, by infinity ofB and byB⊆ A, there
is a numberq≥ p such thatw = 0q1q ∈ B. Then, for the corresponding partition
w = xyz, xy is a substring of 0q whence, by|y|> 0, w0 = xz= 0q−|x|1q 6∈ A. So, by
B⊆ A, w0 6∈ B, a contradiction.

Since the languageA = {0n1n : n≥ 1} is linear we obtain the following.

Theorem 2.57 (Flajolet and Steyaert (1974)) There is a linear language A which
is REG-immune.

Corollary 2.58 REG<1 LIN .

As we shall show next, however, the above theorem on REG-immune lan-
guages cannot be extended to REG-bi-immune languages.

Theorem 2.59 No context-free language isREG-bi-immune.

PROOF. Let A be context-free. We have to show thatA or Ā is not REG-immune.
Since, by Lemma 2.7, the intersection of any context-free language with a regular
language is context-free again,A∩{0}∗ is context-free. In fact,A∩{0}∗ is regular
since any unary context-free language is regular (see (2.2)). So, ifA∩ {0}∗ is
infinite, A is not REG-immune. Otherwise, the subsetĀ∩ {0}∗ of Ā is a finite
variant of the infinite regular set{0}∗. Since the class of regular languages is
closed under finite variants this implies thatĀ is not REG-immune in this case.�

Corollary 2.60 REG 6<2 CF.

Though REG-bi-immune sets are not context-free, hence not linear, in general
REG-bi-immunity does not imply LIN-bi-immunity, in fact not even LIN(-co)-
immunity.

Theorem 2.61 There is aREG-bi-immune set A which is neitherLIN -immune nor
LIN -co-immune.

2.4. Strong Separations in the Chomsky Hierarchy 43

PROOF. By Theorem 2.52, letA′ be any CS-bi-immune set. DefineA by letting

A = (A′∪{0n1n : n≥ 1})−{1n0n : n≥ 1}

ThenAandĀcontain the infinite linear languages{0n1n : n≥1} and{1n0n : n≥1},
respectively, whence neitherA nor Ā is LIN-immune. So it suffices to show thatA
is REG-bi-immune.

For a contradiction assume that this is not the case. Then, by symmetry, w.l.o.g.
we may assume thatA contains an infinite regular setB as a subset. SplitB into
the two partsB0 = B−{0n1n : n≥ 1} andB1 = B∩{0n1n : n≥ 1}. Note thatB0

andB1 are context-sensitive. (This follows from the facts that regular and linear
languages are context-sensitive and that the class of context-sensitive languages
is closed under the Boolean operations.) Moreover,B0 is a subset ofA′ whence,
by CS-bi-immunity ofA′, B0 is finite. It follows thatB1 is a finite variant of the
regular setB hence regular too. SoB1 is a regular subset of{0n1n : n≥ 1}. Since,
as shown above,{0n1n : n≥ 1} is REG-immune, it follows thatB1 is finite too. So
B = B0∪B1 is finite contrary to assumption. This completes the proof. �

2.4.4

Immunity to the
Classes of

Linear and
Context-Free

Languages

Next we look at immunity and bi-immunity to the classes of the linear and context-
free languages. We first observe that the immunity (hence bi-immunity) notions
for these two language classes coincide.

Theorem 2.62 Any infinite context-free language contains an infinite linear lan-
guage as a sublanguage. Hence a set A isCF-(bi/co-)immune if and only if A is
LIN -(bi/co-)immune.

PROOF. Let A be context-free and infinite. By the pumping lemma for context-
free languages (see Theorem 2.22), there is a wordz∈ A and a partitionz= uvwxy
of zsuch thatvx is nonempty and, for anyn≥ 0, the stringuvnwxny is a member of
A. So, forB= {uvnwxny : n≥ 0}, B is an infinite subset ofA and, as one can easily
check,B is linear. �

Corollary 2.63 LIN 6<1 CF.

Flajolet and Steyaert (1974) have shown that the context-sensitive language
A= {0n1n0n : n≥ 1} is CF-immune. (This easily follows from the pumping lemma
for context-free languages.) So in contrast to Corollary 2.63 we obtain a strong
separation by immune sets on the next level of the Chomsky hierarchy, i.e., CF<1

CS. In fact, as we will show next, this can be extended to a strong separation by
bi-immune languages.

44 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

Theorem 2.64 There is a context-sensitive language which isCF-bi-immune. Hence
CF<2 CS.

PROOF. Let A = {x : ∃n(222n ≤ |x| < 222n+1
)}. As one can easily check,A is in

DSPACE(O(n)), hence context-sensitive. We will show thatA is CF-bi-immune.
By symmetry of the definition ofA, it suffices to show thatA is CF-immune. So,
for a contradiction, assume thatB is an infinite subset ofA. Then, by the pumping
lemma for context-free languages, there are wordsu,v,w,x,y such that|vx|> 0 and
zn = uvnwxny∈ B for all n≥ 0. So, sinceB is contained inA, there are numbers
m≥ 0 andk≥ 1 such that, for alln≥ 0 there is a wordzn∈Asuch that|zn|= m+kn.
SoA can have at most linear gaps, namely, for any numbern≥m, A∩Σ[n,n+k) 6= /0.
On the other hand, by definition ofA, A has quadratic gaps, i.e., there are infinitely
many numbersn such thatA∩Σ[n,n2) = /0. Namely, for anyn≥ 0,

Σ[222n+1
,(222n+1

)2) = Σ[222n+1
,222n+2

) ⊆ A.

This gives the desired contradiction. �

Theorem 2.64 implies that, in general, CF-bi-immunity does not imply CS-
immunity.

Corollary 2.65 There is a language A which isCF-bi-immune but neitherCS-
immune norCS-co-immune.

PROOF. Since the class of context-sensitive languages is closed under comple-
ment, this is immediate by Theorem 2.64. �

2.4.5

Immunity to the
Higher Classes
of the Chomsky
Hierarchy

We now turn to the upper part of the Chomsky hierarchy. The basic results on
immunity and bi-immunity to the classes of the context-sensitive languages, the
recursive languages and the Comsky-0-languages, i.e., the recursively enumerable
(r.e.) languages can be already found in the literature or can be easily derived from
some general (bi-)immunity results there. So we only shortly review these results
here.

We first observe that there is a strong separation of CS and REC by CS-bi-
immune sets.

Theorem 2.66 There is a recursive language which isCS-bi-immune.

Theorem 2.66 is a special case of a quite general existence result for bi-immune
sets: For any uniformly recursive class C there are recursive C-bi-immune lan-
guages (see Section 3.4 for details).

2.4. Strong Separations in the Chomsky Hierarchy 45

The following two corollaries are immediate by Theorem 2.66 (and the closure
of REC under complement).

Corollary 2.67 CS<2 REC.

Corollary 2.68 There is aCS-bi-immune language which is neitherREC-immune
nor REC-co-immune.

By the following well known observation in computability theory, there is no
strong separation of REC and RE.

Theorem 2.69 Every infinite recursively enumerable set contains an infinite re-
cursive set as a subset. HenceREC-(bi/co-)immunity andRE-(bi/co-)immunity
coincide.

Corollary 2.70 REC 6<1 RE.

2.4.6

Summary

By the above results on the immunity and bi-immunity notions for the individual
classes of the Chomsky hierarchy, we can summarize the relations among these
notions in the following table.

Theorem 2.71 The following relations hold among the immunity and bi-immunity
notions for the classes of the Chomsky hierarchy.

RE-bi-immune ⇒ RE-immune
m m

REC-bi-immune ⇒ REC-immune
⇓ ⇓

CS-bi-immune ⇒ CS-immune
⇓ ⇓

CF-bi-immune ⇒ CF-immune
m m

LIN -bi-immune ⇒ LIN -immune
⇓ ⇓

REG-bi-immune ⇒ REG-immune

(2.10)

Moreover, these are the only implications (modulo transitive closure) which are
valid in general.

PROOF. The implications from left to right are immediate by definition. Sim-
ilarly, the downward implications are immediate by definition and the Chomsky

46 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

hierarchy theorem. The two upper upwards implications hold by Theorem 2.69,
the two lower upwards implications hold by Theorem 2.62. Corollary 2.54 implies
that there is an RE-immune set which is not REG-bi-immune, whence none of the
concepts in the right column implies any of the concepts in the left column, i.e., no
implication from right to left holds. It remains to show that the concepts on levels
3, 4 and 6 do not imply any of the concepts on the next higher levels 2, 3 and 5,
respectively. But this follows from Corollary 2.68, Corollary 2.65, and Corollary
2.61, respectively. �

The next theorem summarizes our answer to the question which strong separa-
tions can be achieved among the Chomsky classes.

Theorem 2.72 The following strong separations hold among the Chomsky classes.

REG<1 LIN <0 CF<2 CS<2 REC<0 RE.

Moreover, these separations are optimal, since

REG 6<2 CF & LIN 6<1 CF & REC 6<1 RE.

PROOF. The first part of the theorem follows from the Chomsky hierarchy theorem
and Theorems 2.57, 2.64 and 2.67. The second part follows from Corollaries 2.60,
2.63 and 2.70. �

2.5. A Chomsky Hierarchy For Sequences 47

2.5 A Chomsky Hierarchy For Sequences

Formal language theory and computational complexity theory provide frame works
for classifying languages according to their complexity. Since our genericity con-
cepts will be based on characteristic sequences of languages not on the languages
themselves it will be of interest to compare the complexity of a language with
the complexity of its characteristic sequence. For this sake we will introduce an
analogue of the Chomsky hierarchy for sequences in this section. There are two
possible approaches for defining such a hierarchy. First, by identifying a sequence
with its prefix set, we can transfer the Chomsky hierarchy for languages to a hi-
erarchy for sequences. Alternatively, we can use the machine characterizations of
the Chomsky language classes and consider the classes of sequences which can be
predicted by the corresponding machines. Here we say that a machineM predicts
(or computes) a sequenceα if, given the firstn bits of the sequence,M computes
the(n+1)th bit.

Here we will use the first approach based on prefix sets but we will also show
that the machine based approach is closely related to this though these two ap-
proaches do not always coincide. In particular, as we will show, the prediction
model yields a larger class of context-free sequences.

2.5.1

Definitions and
Basic FactsDefinition 2.73 A sequenceα is regular (linear, context-free, context-sensitive,

recursive, recursively enumerable)if the prefix setPre f ix(α) of the sequence is
regular (linear, context-free, context-sensitive, recursive, recursively enumerable,
respectively).

The classes of regular, linear, context-free, context-sensitive, recursive, and re-
cursively enumerable sequences are denoted by REGS, LINS, CFS, CSS, RECS,
and RES, respectively. We call these classes theChomsky Hierarchy of Sequences.
Note that, by the coincidence of the Chomsky languages with the recursively enu-
merable languages, RES may be viewed as the class of allChomsky sequences. The
relations among the Chomsky language classes immediately imply the following.

Proposition 2.74 REGS⊆ LINS⊆ CFS⊆ CSS⊆ RECS⊆ RES.

In the following we will analyze which of the above inclusions are proper.
Moreover, we will compare the corresponding levels of the hierarchies of lan-

48 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

guages and sequences, i.e., the (language) classes C and

C′S = {A : χ(A) ∈ CS}. (2.11)

Note that, for any class C in the Chomsky hierarchy, C′
S is closed under com-

plement.

Lemma 2.75 For C∈ {REG,LIN ,CF,CS,REC,RE}, C′S is closed under comple-
ment.

PROOF. Note that for any languageA, the characteristic sequenceχ(A) of the
complement ofA is the dual sequence of the characteristic sequenceχ(A) of A,
i.e., χ(A) is obtained fromχ(A) by flipping all bits. This easily implies that
Pre f ix(χ(A)) is regular (context-free, ...) if and only ifPre f ix(χ(A)) is regular
(context-free, ...). �

This simple lemma shows, that for Chomsky classes C which are not closed
under complement, i.e., for C= LIN ,CF,RE, the classes C and C′S do not coincide.

2.5.2

Regular and
Context-Free
Sequences

We now look at the Chomsky classes of sequences more closely starting from the
bottom of the hierarchy. Our first observation is that, in contrast to the Chomsky
hierarchy of languages, the lower levels of the Chomsky hierarchy of sequences
collapse. This is an immediate consequence of the following observation of Calude
and Yu on prefix sets.

Theorem 2.76 (Calude and Yu (1997)) For an infinite sequenceα ∈ Σω the fol-
lowing are equivalent.

(i) α is almost periodic, i.e., there are words v,w∈ Σ∗ such thatα = vwω.

(ii) The prefix set Pre f ix(α) of α is regular.

(iii) The prefix set Pre f ix(α) of α is context-free.

(iv) The prefix set Pre f ix(α) of α contains an infinite context-free subset, i.e.,
Pre f ix(α) is notCF-immune.

PROOF. The implications(ii)⇒ (iii)⇒ (iv) are immediate by definition. The
proof of the implication(i)⇒ (ii) is straightforward: Given an almost periodic
sequenceα fix v,w∈ Σ∗ such thatα = vwω. ThenPre f ix(α) is the finite union of
the finite set{x : xv v} and the regular setsAy = {vwny : n≥ 0} (described by the
regular expressionsvw∗y) whereyv w whencePre f ix(α) is regular.

2.5. A Chomsky Hierarchy For Sequences 49

It remains to prove the implication(iv)⇒ (i). Assume thatA is an infinite
context-free subset ofPre f ix(α). Then, by the pumping lemma for context-free
languages, there are wordsu,v,w,x,y such thatvx 6= ε andzn = uvnwxny∈ A for all
n≥ 0. It follows that

uv0wx0y @ uv1wx1y @ ... uvnwxny @ uvn+1wxn+1y ... @ α.

So, if v 6= ε thenα = uvω, and ifv = ε thenα = uwxω. �

Corollary 2.77 REGS = LINS = CFS.

PROOF. Immediate by Proposition 2.74 and Theorem 2.76. �

Regularity of a set and regularity of its characteristic sequence are related as
follows.

Theorem 2.78 If the characteristic sequenceχ(A) of a set A is regular then the set
A is regular too.

For the proof of this theorem we will need two observations: First, for any
numberm there is a finite automaton which, given a stringx, computes the position
of x in the length-lexicographical ordering modulom. Second, any almost periodic
sequence is a finite variant of a periodic sequence. We prove these two observations
first.

Lemma 2.79 For any number m≥ 1 there is a deterministic finite automaton
Mm = (Σ,S,δ,s0) (without distinguished final states) such that S= {s0, ...,sm−1}
and, for n≥ 0,

δ∗(s0,zn) = sn modm. (2.12)

PROOF. By definition of the length-lexicographical ordering, forn≥ 0 andi ≤ 1,

zni = z2n+2+i . (2.13)

So, since
(2n+2+ i) modm= (2(n modm)+2+ i) modm, (2.14)

we obtain the desired automatonMm = (Σ,{s0, ...,sm−1},δ,s0) by letting

δ(sk, i) = s(2k+2+i) modm (0≤ k < m,0≤ i ≤ 1). (2.15)

The correctness of (2.12) is shown by induction on|zn|. First assume that|zn|= 0.
Thenn = 0 and, byz0 = ε,

δ∗(s0,z0) = δ∗(s0,ε) = s0 = s0 modm.

50 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

For the inductive step, assume that|zn| > 0 and that the claim is correct for alln′

with |zn′ | < |zn|. By |zn| > 0 we may choosen′ ≥ 0 andi ≤ 1 such thatzn = zn′ i.
Then

δ∗(s0,zn) = δ∗(s0,zn′ i)
= δ(δ∗(s0,zn′), i)
= δ(sn′ modm, i) (by inductive hypothesis)
= s[2(n′ modm)+2+i] modm (by (2.15))
= s(2n′+2+i) modm (by (2.14))
= sn modm (by zn = zn′ i and by (2.13))

This completes the proof.
�

Lemma 2.80 Let α be almost periodic. There is a periodic sequenceβ such that
α(n) = β(n) for almost all numbers n≥ 0.

PROOF. Fix v,w ∈ Σ∗ such thatα = vwω and letk = |v| andm = |w|. W.l.o.g.
we may assume thatk ≤ m. (Note that, form < k, in the above presentation of
α we may replacew by wk to achieve this.) Defineβ by β(n) = α(m+ n) for
n < k andβ(n) = α(n) for n≥ k. Thenβ is a finite variant ofα andβ = ŵω for
ŵ = w(m−k)...w(m−1)w(0)...w(m−k−1). �

PROOF OFTHEOREM 2.78. FixA and assume thatα = χ(A) is regular. We have
to show thatA is regular.

By Theorem 2.76,α is almost periodic. In fact, since the class of regular
languages is closed under finite variants, by Lemma 2.80, w.l.o.g. we may assume
that α is periodic. So fixw ∈ Σ∗ such thatα = wω and letm be the length ofw.
Then, for anyn≥ 0, zn ∈ A if and only if zn+m∈ A, whence membership of a word
zn in A does not depend onn itself but only onn modm:

∀n≥ 0(A(zn) = A(zn modm)). (2.16)

So if we extend the finite automatonMm of Lemma 2.79 by letting

F = {sk : 0≤ k < m & zk ∈ A}

be the set of final states, then this automaton acceptsA: For anyn≥ 0,

zn ∈ A⇔ zn modm∈ A (by (2.16))

⇔ sn modm∈ F (by definition ofF)

⇔ δ∗(s0,zn) ∈ F (by (2.12))

⇔M acceptszn.

2.5. A Chomsky Hierarchy For Sequences 51

SoA is regular. �

The converse of Theorem 2.78, however, fails.

Theorem 2.81 There is a regular set A such that the characteristic sequenceχ(A)
of A is not regular.

PROOF. An example of a regular setA with nonregular characteristic sequence
is the set of all unary strings, i.e.,A = {0n : n≥ 0}. Obviously,A is regular but
χ(A) is not almost periodic (note that thenth and(n+1)th 1 in χ(A) is separated
by 2n−1−1 many 0s), hence not regular by Theorem 2.76. �

Corollary 2.82 (a) {A : χ(A) regular} ⊂ {A : A regular}
(b) {A : χ(A) context-free} ⊂ {A : A context-free}

PROOF. The first part is immediate by Theorems 2.78 and 2.81. The second part
follows from the first part since{A : χ(A) regular} = {A : χ(A) context-free} by
Corollary 2.77 and since any regular set is context-free. �

2.5.3

Context-
Sensitive and

Recursive
Sequences

We now turn to the upper part of the Chomsky hierarchy of sequences. At the
top we have a further collapse, namely a sequence is recursive if and only if it
is recursively enumerable. This follows from the observation that any recursively
enumerable prefix set is recursive. On the intermediate levels, however, the hierar-
chy of sequences is strict, i.e., CFS⊂ CSS⊂ RECS. To show this we will use the
complexity theoretic characterization of the context-sensitive languages.

Theorem 2.83 For any set A, the following are equivalent.

(i) A ∈ NSPACE(2n).

(ii) Pre f ix(A) ∈ NSPACE(n).

The key to the proof is the observation that the length of thenth binary word
is logarithmic inn, i.e., that the number of the predecessors of a wordw grows
exponentially in the length|w| of w. Further ingredients of the proof are the Linear-
Compression Theorem for nondeterminstic space complexity which asserts that,
for any space-constructible bounds(n), NSPACE(s(n)) = NSPACE(O(s(n))) and
the Theorem of Immerman and Szelepcsenyi (Theorem 2.28) which asserts that,
for constructible space bounds, the nondeterministic space classes are closed under
complement.

52 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

PROOF. (i)⇒ (ii) Let A be given such thatA ∈ NSPACE(2n). By linear com-
pression it suffices to show thatPre f ix(A) ∈ NSPACE(O(n)). By closure un-
der complement of the nondeterministic space classes with constructible bounds,
A∈NSPACE(2n) too whence we may fix 2n-space bounded nondeterministic Tur-
ing machinesN1 andN2 which acceptA andA, respectively.

Based onN1 andN2 we can define a nondeterministic machineN accepting
Pre f ix(A) as follows. On inputx = x(0)...x(|x|−1), N inductively (and nondeter-
ministicly) computesA(zm) for m= 0, ..., |x| −1 and comparesA(zm) with x(m).
If a string zm with A(zm) 6= x(m) is found,N stops and rejects. IfA(zm) = x(m)
for all m< |x| thenN acceptsx. For computingA(zm) for given m, N first (non-
deterministicly) simulatesN1 on inputzm. If (the simulated computation path of)
N1 accepts then (the corresponding computation path of)N setsA(zm) = 1. If (the
simulated computation path of)N1 rejects, then (the corresponding computation
path of)N starts to simulate (a nondeterministicly chosen computation path) ofN2

on inputzm. If (the chosen computation path of)N2 accepts then (the correspond-
ing computation path of)N setsA(zm) = 0. If (the simulated computation path of)
N2 also rejects, then (the corresponding computation path of)N stops and rejects
(in particular, it does not output a value forA(zm)).

Note that any computation path ofN which assigns a value toA(zm) assigns the
correct value. Moreover, there is at least one computation which assigns a value to
A(zm). So the machineN acceptsPre f ix(A).

It remains to show thatN works within the space boundO(n). Let n = |x|.
Since the space, used in an individual cycle of the inductive procedure on which
N is based, can be reused in the next cycle, it suffices to show that, form< n, the
length ofzm is bounded byO(n) and that the computation ofA(zm) can be done
within the same space bound. Now, form≤ n, |zm| ≤ log(n)+ O(1) whence the
former is immediate. The latter follows from the space bounds on the machinesN1

andN2: The space required for computingA(zm) is bounded by

max(spaceN1(zm),spaceN2(zm)) ≤ max(2|zm|,2|zm|)
= 2|zm|

≤ 2log(n)+O(1)

= O(2log(n))
= O(n)

For a proof of the implication(ii) ⇒ (i) assume thatA is given such that
Pre f ix(A) ∈ NSPACE(n) and fix a nondeterministicn-space bounded machineN
which acceptsPre f ix(A).

Then a nondeterministicO(2n)-space bounded machineN′ which acceptsA
works as follows. On inputw of lengthn, first N deterministicly computes the
unique numberm+ 1 (in unary representation) such thatw = zm. (Note thatm≤

2.5. A Chomsky Hierarchy For Sequences 53

2n+1 and that the unary representation 0m+1 of m+ 1 can be (deterministically)
computed fromw without using any additional space besides the space needed to
hold 0m+1.) Given 0m+1, N′ inductively (and nondeterministicly) simulatesN on
all wordsx of lengthm+ 1 (in lexicographical order starting with 0m+1) until N
accepts the first suchx. Now if the acceptedx ends with a 1 thenN′ accepts the
input w, otherwiseN′ rejects. Note that thex accepted byN is a prefix ofχ(A)
of lengthm+ 1 whence, for the last bitx(m) of x, x(m) = A(zm) = A(w). SoN′

accepts the languageA.
It remains to show thatN′ is O(2n)-space bounded. Now, on inputw as above,

the space needed byN′ is bounded by the space needed for producing 0m+1 and by
the space needed for simulatingN on a wordx of lengthm+1. SinceN is n-space
bounded and since the space required for producing 0m+1 is m+1, we have

spaceN′(w)≤m+1≤ 2n+1 +1≤O(2n).

This completes the proof. �

By CS= NSPACE(n), Theorem 2.83 implies that the characteristic sequence
of any context-sensitive language is context-sensitive too but that the converse in
general fails.

Corollary 2.84 {A : A context-sensitive} ⊂ {A : χ(A) context-sensitive}.

PROOF. By CS= NSPACE(n) it suffices to show

{A : A∈ NSPACE(n)} ⊂ {A : Pre f ix(A) ∈ NSPACE(n)}. (2.17)

Since, by Theorem 2.83,

{A : Pre f ix(A) ∈ NSPACE(n)}= {A : A∈ NSPACE(2n)},

this follows from the nondeterministic space hierarchy theorem (see Corollary
2.29). �

As another consequence of Theorem 2.83 we get the following strict inclu-
sions among the classes of the contex-free, the context-sensitive, and the recursive
sequences.

Corollary 2.85 CFS⊂ CSS⊂ RECS.

PROOF. By Proposition 2.74 it suffices to show that CSS is not contained in
CFS and that RECS is not contained in CSS. For a proof of the former letA
be any context-sensitive set which is not context-free. Then, by Corollary 2.84,

54 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

χ(A) ∈ CSS but, by Corollary 2.82,χ(A) 6∈ CFS. For a proof of the latter letB
be any recursive set such thatB 6∈ NSPACE(2n). (Note that such a set exists by
the nondetermistic space hierarchy theorem.) Then, obviously,Pre f ix(A) is recur-
sive whenceχ(A) ∈ RECS but, by Theorem 2.83,Pre f ix(A) 6∈ NSPACE(n) = CS
whenceχ(A) 6∈ CSS. �

For the proof of the second part of the preceding corollary we have used the
observation that a setA is recursive if and only if its prefix set is recursive. This
simple fact together with the observation that, for a prefix set, recursiveness and
recursive enumerability coincide will give the still missing facts on the Chomsky
hierarchy of sequences and its relation to the classical Chomsky hierarchy of lan-
guages.

Theorem 2.86 (a) For any set A, A is recursive if and only if Pre f ix(A) is recur-
sive.

(b) For any set A, Pre f ix(A) is recursive if and only if Pre f ix(A) is recursively
enumerable.

PROOF. Part(a) is straightforward. For a proof of the nontrivial implication in(b)
assume thatPre f ix(A) is recursively enumerable, sayPre f ix(A) is the range of the
recursive functionf : N→ Σ∗. Then, givenx, membership ofx in Pre f ix(A) can
be decided as follows: Fixn minimal such that| f (n)| ≥ |x|. Thenx∈ Pre f ix(A) if
and only ifxv f (n). �

Corollary 2.87 RECS = RES.

PROOF. This is immediate by Theorem 2.86 (b). �

Corollary 2.88 (a) {A : χ(A) recursive}= {A : A recursive}.
(b) {A : χ(A) recursively enumerable} ⊂ {A : A recursively enumarable}.

PROOF. The first part is immediate by Theorem 2.86 (a). Moreover, the first part
together with Corollary 2.87 implies that

{A : χ(A) recursively enumerable}= {A : A recursive}.

Since there are recursively enumerable sets which are not recursive this implies the
second part of the corollary. �

2.5. A Chomsky Hierarchy For Sequences 55

2.5.4

The Chomsky
Hierarchy

Theorem For
Sequences

The above results on the Chomsky classes of sequences lead to the following hier-
archy theorem.

Theorem 2.89 REGS = LINS = CFS⊂ CSS⊂ RECS = RES.

PROOF. By Proposition 2.74 and Corollaries 2.77, 2.85 and 2.87. �

The relation between the location of a languageA in the Chomsky hierarachy
(of languages) and the location of its characteristic sequenceχ(A) in the Chomsky
hierarchy of sequences is given in the next theorem.

Theorem 2.90 For any set A the following holds.

A regular ⇐ χ(A) regular
⇓ m

A linear (⇐) χ(A) linear
⇓ m

A context-free (⇐) χ(A) context-free
⇓ ⇓

A context-sensitive ⇒ χ(A) context-sensitive
⇓ ⇓

A recursive ⇔ χ(A) recursive
⇓ m

A recursively enumerable(⇐) χ(A) recursively enumerable

(2.18)

Moreover, in general these are the only valid implications (modulo transitive clo-
sure).

Note that the implications marked by arrows in parantheses follow by transi-
tive closure. We have only added these arrows to give the level-by-level relations
between the hierarchy of languages and the hierarchy of sequences. By using the
notation of (2.11), i.e., the classes

C′S = {A : χ(A) ∈ CS}= {S(α) : α ∈ CS}

for any Chomsky class C, Theorem 2.90 is captured by the following relations
among the Chomsky classes C and the corresponding classes C′

S:

REG′S = LIN ′S = CF′S⊂ REG⊂ LIN ⊂ CF⊂ CS
⊂ CS′S⊂ REC= REC′S = RE′S⊂ RE

(2.19)

PROOF (OF THEOREM 2.90). It suffices to show that (2.19) holds. The proper
inclusions REG⊂ LIN ⊂CF⊂CS and REC⊂RE hold by the Chomsky hierarchy

56 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

theorem for languages while the equalities REG′
S = LIN ′S = CF′S and REC′S = RE′S

hold by the Chomsky hierarchy theorem for sequences (Theorem 2.89). The re-
maining proper inclusions REG′S⊂REG and CS⊂CS′S⊂REC′S hold by Corollary
2.82 and Corollary 2.85, respectively. �

2.5.5

Prediction
Machines

In the remainder of this section we look at the Chomsky complexity of sequences
in terms of prediction machines. This will yield alternative characterizations of the
classes of regular, context-sensitive, and recursive sequences but it will also lead to
a more general notion of a context-free sequence.

Intuitively, a machineM predicts a sequenceα if, given the firstn bits of the
sequence, i.e.,α � n, the machine outputs the(n+ 1)th bit α(n) of the sequence.
An acceptorM can be used for modelling prediction in two somewhat different
ways. First we can say thatM on inputα � n predicts the next bitα(n) to be 1 if
M accepts inputα � n andM predictsα(n) to be 0 otherwise. In this case we say
thatM weakly predictsα. Since for nondeterministic (or non-total) machinesM,
acceptance and rejection are not symmetric, this approach might lead to asymme-
tries in predicting a 0 or a 1, i.e., the fact that a sequenceα can be predicted by a
machine of a certain type in general will not imply that there is another machine
of the same type predicting the dual sequenceα̂ of α (which is obtained fromα by
interchanging zeroes and ones). We obtain a symmetric prediction model by con-
sidering extended machinesM (see Definition 2.47). Such a machineM strongly
predictsα, if on input α � n the machineM predicts the next bitα(n) to be 1 if
there is a computation ending in a+-state and 0 if there is a computation ending in
a−-state. Here prediction in particular requires thatM is consistent alongα (i.e.,
on any inputα � n there can’t be two computations one ending in a+-state and the
other ending in a−-state) andcomplete w.r.t.α (i.e., on any inputα � n there is
some computation ending in a+-state or−-state).

Note that any strong predictorM can be easily converted into a weak predictor
M′ of the same type by letting the accepting states ofM′ be the+-states ofM. The
converse is true for total determinstic machines: A total deterministic weak predic-
tor M can be interpreted as a strong predictorM′ by letting the+-states ofM′ be
the accepting states ofM, by letting the−-states ofM′ be the rejecting states ofM,
and by letting the set of the ?-states ofM′ be empty. So, for the standard classes of
total deterministic machines, weak prediction and strong prediction will coincide.
Consequently, in case of total deterministic machines we will denote weak pre-
diction simply byprediction. For a non-total or non-deterministic weak predictor
M, however, in general there is no trivial conversion into a strong predictor of the
same type. So, for some of the standard classes of non-total or non-determinsitic
machines, weak predictability might be more general than strong predictability.

2.5. A Chomsky Hierarchy For Sequences 57

We first observe that, for finite automata, the different types of predictability
are equivalent and that a sequenceα can be predicted by a finite automaton if and
only if α is regular.

Theorem 2.91 The following are equivalent.

(i) α is regular.

(ii) α is predictable by a deterministic finite automaton.

(iii) α is strongly predictable by a nondeterministic finite automaton.

(iv) α is weakly predictable by a nondeterministic finite automaton.

PROOF. Note that, by definition,(ii)⇒ (iii)⇒ (iv) holds. So it suffices to prove
the implications(i)⇒ (ii), (iv)⇒ (ii), and(ii)⇒ (i).

For a proof of(i)⇒ (ii), assume thatα is regular and letM = (Σ,S,δ,s0,F) be
a determinisitic finite automaton which acceptsPre f ix(α). Then a DFAM′ which
predictsα is obtained as follows. On any inputx, |x|= n, M′ simulatesM on input
x1 andM′ acceptsx if and only if M acceptsx1. Formally,M′ = (Σ,S,δ,s0,F ′)
whereF ′ = {s∈ S: δ(s,1) ∈ F}.

For a proof of the implication(iv)⇒ (ii), assume thatN is a nondeterministic
finite automaton which weakly predictsα. ThenL(N) is regular whence there is a
deterministic finite automatonM with L(M) = L(N). It follows thatM predictsα
since, for anyn≥ 1,

N predictsα(n) = 1 ⇔ α � n∈ L(N) (by definition)
⇔ α � n∈ L(M) (by L(N) = L(M))
⇔ M predictsα(n) = 1 (by definition).

Finally, for a proof of the implication(ii)⇒ (i), assume thatM = (Σ,S,δ,s0,F)
is a deterministic finite automaton which predictsα. We will convertM into a DFA
M̂ which acceptsPre f ix(α). Note that the sequenceα (and its initial segments
α � n of a given lengthn are uniquely determined by the predictorM: The prefix
α � n of α of lengthn is the unique stringx = x(0)...x(n−1) of lengthn satisfying

x(m) = 1⇔M acceptsx � m (2.20)

for all m< n. The acceptorM̂ of Pre f ix(α) is based on this observation. On input
x = x(0)...x(n−1) the automaton simulatesM step by step as long as the input is
consistent with (2.20) . If an inconsistency is found,M̂ ends the simulation and
goes into an absorbing rejecting state. Formally,M̂ = (Σ,S∪{s−}, δ̂,s0,S) where
s− 6∈ Sandδ̂ is defined as follows:̂δ(s, i) = δ(s, i) if s∈ F andi = 1 or s∈ S−F
andi = 0; δ̂(s, i) = s− if s∈ F andi = 0 or s∈ S−F andi = 1; andδ̂(s−, i) = s−
for i = 0,1. �

58 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

The last part of the proof of Theorem 2.91 can be easily adapted to determinis-
tic push down automataM andM̂ in place of the corresponding deterministic finite
automata. This yields the following lemma.

Lemma 2.92 Assume thatα can be predicted by a deterministic push down au-
tomaton. Then Pre f ix(α) is context-free.

By coincidence of the almost periodic sequences, the regular sequences, and
the context-free sequences, the above theorem and lemma imply

Corollary 2.93 The following are equivalent.
(i) α is almost periodic.
(ii) α is regular.
(iii) α is context-free.
(iv) α is predictable by a deterministic finite automaton.
(v) α is strongly predictable by a nondeterministic finite automaton.
(vi) α is weakly predictable by a nondeterministic finite automaton.
(vii) α is predictable by a deterministic push down automaton.

PROOF. By Theorems 2.76 and 2.91 and Lemma 2.92. �

As we will show next, however, prediction by nondeterministic push down
automata is more powerful than prediction by finite automata or deterministic push
down automata.

Theorem 2.94 There is a sequenceα which is not context-free and which can be
strongly (hence weakly) predicted by a nondeterministic push down automaton.

PROOF. Consider the sequence

α = 1 0 1 02 1 03 ...

This sequence is not almost periodic hence, by Theorem 2.76, not context-free.
It remains to show that there is an extended NPDAM which strongly predictsα.
Such an automaton uses the following inductive characterization ofα(n) in terms
of α � n:

α(0) = 1 (2.21)

α � n = w10m⇒ [α(n) = 1⇔ #1(w1) = m] (2.22)

Now, intuitively, M works as follows. On inputε, M predicts the next bit to
be a one. Given a nonempty inputx, say|x|= n≥ 1, M reads the input and stores
the 1s read in the stack. Moreover, wheneverM has read a 1 it may guess that this

2.5. A Chomsky Hierarchy For Sequences 59

was the last 1 in the input wordx and may change its working mode as follows.
For any 0 read in the sequelM pops a 1 from the stack. Moreover, as long as the
stack still contains a 1,M predicts the next bit to be a 0 and if the stack is empty
(i.e., only contains the start symbol)M predicts the next bit to be a 1 and stops. If
M reads a 1 though the stack is not yet empty it aborts the computation and goes
into an absorbing rejecting state thereby not making any more predictions (along
this computation path). Formally,M is defined as follows. The states ofM are
s1
0,s1,s0

2,s
1
3, wheres1

0 is the initial state,s1
0 ands1

3 are+-states (predicting the next
bit to be a 1),s0

2 is the only−-state (predicting the next bit to be a 0), ands1 is a
?-state. The transition relation∆ is given in the following table.

S × Σ × Γ × S × Γ∗

s1
0 1 b s1 b1

s1
0 1 b s0

2 b
s1 0 1 s1 1
s1 1 1 s1 11
s1 1 1 s0

2 1
s0
2 0 1 s0

2 ε
s0
2 0 b s1

3 b

(In a situation where no transition is specified and the input is not yet completely
read, the automaton gets stuck, i.e., it ends in an implicitly given absorbing ?-
state.) Note thatM works as informally described above. In the initial states1

0 M
nondeterministically decides whether, for an inputα � n = 1x, the suffixx is empty
(s0

2) or not (s1). (If the first letter of the input is a 0 thenM gets stuck.) In the latter
case, i.e., in states1, M stores the 1s read in the stack until it may guess that the 1
just read is the last 1 in the input. If this happensM nondeterministically switches
to the−-states0

2, in which M compares the number of 1s in the stack with the
number of 0s in the not yet read part of the input.M accepts (s1

3) if these numbers
agree andM rejects (s0

2) if the number of 0s is exceeded by the number of 1s. If the
number of 0s exceeds the number of 1s or if the remainder of the input contains
another 1 then this computation ofM is aborted, i.e., ends in a ?-state. �

As one can esily show, any sequenceα which can be (strongly or weakly) pre-
dicted by an NPDA is context-sensitive and there are context-sensitive sequences
which cannot be predicted by an NPDA. So if we let NPDAsp

S (NPDAwp
S) denote

the class of sequences which can be strongly (weakly) predicted by an NPDA then

CFS⊂ NPDAsp
S ⊆ NPDAwp

S ⊂ CSS (2.23)

It might be of interest to further investigate these intermediate prediction classes.
In particular, it is natural to ask whether the class NPDAsp

S is strictly contained

60 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

in the class NPDAwp
S . Moreover, what can we say about the complexity of the

corresponding languages. Are there regular or context-free languagesA such that
χ(A) ∈ NPDAsp

S or χ(A) ∈ NPDAwp
S ? We leave these questions open and turn to

context-sensitive prediction.

For context-sensitive sequences, prediction complexity and prefix complexity
coincide. We show this by giving the following characterization of the context-
sensitive sequences in terms of predictability by linear-space bounded nondeter-
ministic Turing machines.

Theorem 2.95 For any sequenceα ∈ Σω the following are equivalent.

(i) α is context-sensitive.

(ii) α is stronglyNSPACE(n)-predictable.

(iii) α is weaklyNSPACE(n)-predictable.

PROOF. For a proof of the implication(i)⇒ (ii) assume thatα is context-sensitive.
Then, by CS= NSPACE(n), there is a nondeterministicn-space bounded Turing
machineM which acceptsPre f ix(α) and, by closure of NSPACE(n) under com-
plement, there is a nondeterministicn-space bounded Turing machineM′ which
acceptsPre f ix(α) . Then an extended nondeterministicn-space bounded Turing
machineM′′ which strongly predictsα works as follows. On inputx = x0...xn−1,
|x|= n, M′′ first (nondeterministically) simulatesM on inputx1. If M accepts then
M′′ stops in a+-state. Otherwise,M′′ next (nondeterministically) simulatesM′ on
inputx1. If M′ accepts thenM′′ stops in a−-state. Otherwise,M′′ stops in a ?-state.

The implication(ii)⇒ (iii) is immediate.

Finally, for a proof of the implication(iii) ⇒ (i), assume thatα is weakly
NSPACE(n)-predicted byM and letL(M) be the language accepted byM. By CS=
NSPACE(n)= NSPACE(O(n)), it suffices to show thatPre f ix(α)∈NSPACE(O(n)).

SinceL(M)∈NSPACE(n) and NSPACE(n) is closed under complement,L(M)∈
NSPACE(n) whence we may fix a nondeterministicn-space bounded Turing ma-
chineM′ which acceptsL(M). Moreover, for any numbern, α � n∈ L(M) if and
only if α(n) = 1. We can use these observations for defining a nondeterministic
O(n)-space bounded Turing machineM′′ which, on input 0n nondeterministicly
computesα � n (i.e., any accepting path yieldsα � n as output and there is at least
one accepting path). Obviously this suffices to prove the claim sinceM′′ can be
easily converted into a nondeterministicO(n)-space bounded Turing machine ac-
ceptingPre f ix(α) which works as follows: On inputx, |x| = n, simulateM′′ on
input 0n in order to computeα � n; accept if and only ifx = α � n.

It remains to describeM′′. M′′ formalizes the following inductive procedure for
computingα � n: First, α � 0 = ε. Second, givenα � m, α � (m+1) = (α � m)1 if
and only ifα � m∈ L(M) andα � (m+1) = (α � m)0 if and only ifα � m∈ L(M′).

2.5. A Chomsky Hierarchy For Sequences 61

So, givenα � m, α � (m+1) can be (nondeterministicly) computed by simulating
M andM′ as follows. First simulateM on inputα � m. If (the nondeterministicly
chosen computation of)M accepts then setα � (m+ 1) = (α � m)1. Otherwise,
simulateM′ on input α � m. If (the nondeterministicly chosen computation of)
M′ accepts then setα � (m+ 1) = (α � m)0. Otherwise abort the computation by
stopping in a rejecting state. �

We conclude our investigation of predictability by shortly commenting on pre-
dictability by Turing machines. It is easy to show that, for total machines, pre-
dictability coincides with recursiveness. (Here we call a nondeterministic machine
total if, on any input,all possible computations are finite.) If we consider machines
with divergent computations, then the strongly predictable sequences are recursive
too. The weakly predictable sequences, however, in general are not recursive.

Theorem 2.96 For any sequenceα, the following are equivalent.
(i) α is recursive.
(ii) α is predictable by a total deterministic Turing machine.
(iii) α is strongly predictable by a total nondeterministic Turing machine.
(iv) α is weakly predictable by a total nondeterministic Turing machine.
(v) α is strongly predictable by a deterministic Turing machine.
(vi) α is strongly predictable by a nondeterministic Turing machine.

PROOF (IDEA). Since the implications(ii)⇒ (iii)⇒ (iv) and(ii)⇒ (v)⇒ (vi)
are immediate by definition, it suffices to show the implications(i)⇒ (ii), (iv)⇒
(i) and(vi)⇒ (i).

For a proof of(i)⇒ (ii) assume thatα is recursive and fix a total, deterministic
Turing machineM which acceptsPre f ix(α). Then the total, deterministic Turing
machineM̂ working as follows predictsα: On inputx of lengthn, M̂ simulatesM
on inputx1. If M accepts then̂M predicts the next bit to be 1; ifM rejects thenM̂
predicts the next bit to be 0.

For a proof of(iv)⇒ (i) assume thatM is a total, nondeterministic Turing
machine which weakly predictsα. ThenPre f ix(α) can be decided by the following
inductive procedure. Letx be given,|x|= n. If n= 0, i.e.x= ε thenx∈Pre f ix(α).
So assume thatn> 0 and fixy∈Σn−1 andi ∈Σ such thatx= yi. Thenx∈Pre f ix(α)
if and only if y∈ Pre f ix(α) and eitheri = 1 andM acceptsy (i.e., on inputy, M
predicts the next bit to be a 1) ori = 0 andM rejectsy (i.e., on inputy, M predicts
the next bit to be a 0). Note that this allows us to decidex∈ Pre f ix(α) since, by
inductive hypothesis, we can decidey∈ Pre f ix(α) and since, by totality ofM, we
can decide whether or notM acceptsy.

The proof of(vi)⇒ (i) is similar. Fix a nondeterministic (not necessarily total)
Turing machineM which strongly predictsα. Then, on inputα � n, there will

62 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

be either a finiteM-computation predictingα(n) = 1 or a finiteM-computation
predictingα(n) = 0. So, givenα � n, by a breadth-first search in the computation
tree ofM, we can computeα(n). Hence we can decidePre f ix(α) as follows. Given
a stringx of lengthn, inductively computeα � m for m≤ n and acceptx if and only
if x = α � n. �

The following lemma shows that there are nonrecursive sequences which can
be weakly predicted by a (nontotal) Turingmachine.

Lemma 2.97 Let A be recursively enumerable and letα be the characteristic se-
quence of A. Thenα is weakly predictable by a deterministic Turing machine.

PROOF (IDEA). Fix a deterministic Turing machineM which acceptsA. A weak
deterministic Turing machine predictor̂M of α works as follows. Given a stringx
of lengthn, M̂ simulatesM on inputzn and accepts if and only ifM accepts. So, in
particular,M̂ accepts the inputα � n (i.e. predictsα(n) = 1) if and only if zn ∈ A.
�

The converse of Lemma 2.97 in general fails. In fact, the class of sequences
which are weakly predictable by Turing machines coincides with the class of se-
quencesα which - if interpreted as the binary expansion 0.α(0)α(1)α(2)... of a
real - can be effectively approximated from below by rationals. Such sequences
are calledleft computable realsor computably enumerable reals(see e.g. Ambos-
Spies et al. (2000)).

Definition 2.98 A sequenceα is a left computable realif there is a recursive se-
quence of wordsαs (s≥ 0) such that|αs|= s, αs≤ αs+1 and, forn≥ 0,

α � n = lim
s→∞

αs � n.

Note that any recursive sequence is a left computable real. In fact, the charac-
teristic sequence of any recursively enumerable set is left computable. As Jockusch
has observed, there are left computable realsα, however, such that the correspond-
ing setS(α) is not recursively enumerable (see e.g. Ambos-Spies et al. (2000)).

Theorem 2.99 For any sequenceα, the following are equivalent.
(i) α is a left computable real.
(ii) α is weakly predictable by a deterministic Turing machine.
(iii) α is weakly predictable by a nondeterministic Turing machine.

PROOF (IDEA). Since the implication(ii)⇒ (iii) is obvious, it suffices to show
(i)⇒ (ii) and(iii)⇒ (i).

2.5. A Chomsky Hierarchy For Sequences 63

For a proof of(i)⇒ (ii) assume that(αs)s≥0 is a recursive approximation ofα
as in Definition 2.98. Then a Turing machineM which weakly predictsα works as
follows. On inputx, M enumerates the wordsαs for s≥ 0. If for some s,x1v αs

thenM acceptsx (otherwise the computation ofM will diverge thereby rejecting
x).

For a proof of(iii)⇒ (i) assume thatM is a nondeterministic Turing machine
which weakly predictsα. Define a recursive sequence(αs)s≥0 as follows. Given
s≥ 0, the wordαs = αs(0)...αs(s−1) is inductively defined byαs(k) = 1 if and
only if there is a computation ofM of length at mosts which acceptsαs � k. Then,
as one can easily check, the sequence(αs)s≥0 is witnessing left computability of
α. �

64 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

2.6 Saturated Sequences

In the final section of this chapter we will look at infinite binary sequences which
contain all (finite) binary words as subsequences. Such sequences are called sat-
urated. As we will show later, the class of languages corresponding to such se-
quences will coincide with some of our genericity notions based on finite automata.
Since these sequences are of independent interest, however, we will deal with them
already in this part of our thesis.

2.6.1

Definitions and
Basic Facts

Definition 2.100 A sequenceα is saturated(or disjunctive) if every binary word
occurs inα as a subsequence, i.e., if for every wordw∈ Σ∗ there is a numbern≥ 0
such thatα(n)...α(n+ |w|−1) = w. A languageA is saturatedif its characteristic
sequenceχ(A) is saturated.

Saturated sequences have been studied in the literature under various names
(rich, disjunctive, etc.). J̈urgensen and Thierrin (1988) were probably the first who
explicitly investigated these sequences. They introduced the termdisjunctive se-
quencesince they related these sequences to the so-called disjunctive languages.
Disjunctivity of a language and disjunctivity of its characteristic sequence, how-
ever, are not equivalent (see Theorem 2.130 below). So, since we will often iden-
tify a language and its characteristic sequence, we prefer the term of asaturated
sequence and language here though it might be less popular. For a recent survey
on saturated sequences see Calude et al. (1997).

Saturated sequences are abundant as Staiger (see Staiger (1976), Staiger (1998),
Staiger (2002)) has observed.

Theorem 2.101 (Staiger) The class of saturated sequences is comeager and has
measure 1.

Simple examples of saturated sequences are the sequence obtained by concate-
nating all nonempty binary words in length-lexicographical order

α0 = z1 z2 z3 z4 z5 z6 z7 ... = 0 1 00 01 10 11 000...

and the sequence obtained by concatenating the binary numbers in order

α1 = bin(0) bin(1) bin(2) bin(3) bin(4) bin(5) ... = 0 1 10 11 100 101...

The latter sequence is known as theChampernowne sequence(for base 2).

2.6. Saturated Sequences 65

It is well known that in a saturated sequence any word does not only occur just
once but infinitely often.

Proposition 2.102 Letα be saturated and let w∈ Σ∗. Then w occurs inα infinitely
often, i.e., there are infinitely many numbers n such thatα(n)...α(n+ |w|−1) = w.

PROOF. This immediately follows from the fact that, by saturation ofα, wn occurs
in α for all n≥ 0. �

In general, however, we can’t say anything about the relative frequency with
which a wordw occurs in a saturated sequence. A sequenceα in which words of
the same length occur with the same frequency is callednormal.

Definition 2.103 (Hardy and Wright (1979)) A sequenceα is normal if, for any
wordsv,w∈ Σ∗ where|v|= |w| ≥ 1,

lim
n→∞

|{m< n : α(m)...α(m+ |v|−1) = v}|
|{m< n : α(m)...α(m+ |w|−1) = w}|

= 1. (2.24)

Note that a sequenceα is normal if only if, for any wordw∈ Σ∗,

lim
n→∞

|{m< n : α(m)...α(m+ |w|−1) = w}|
n

= 2−|w|.

Obviously, any normal sequence is saturated but not vice versa. The saturated
sequencesα0 andα1 given above are in fact normal. An example of a saturated
sequence which is not normal is the sequence

α2 = z1 01 z2 02 z3 03 z4 04 ... = 0 0 1 00 00 000 01 0000...

In this sequence the frequency of zeroes is higher than the frequency of ones. To
be more precise, by|zn|= O(log(n)),

lim
n→∞

|{m< n : α(m) = 1}|
|{m< n : α(m) = 0}|

= 0

whence (2.24) fails for the wordsv= 1 andw= 0. By introducing longer blocks of
zeroes we can modify this argument in order to get saturated sequences with very
sparse corresponding sets.

Lemma 2.104 Let f : N→ N be nondecreasing and unbounded. There is a sat-
urated sequenceα such that|S(α) � n| ≤ f (n) for all n ≥ 0. (Here we interprete
S(α) � n as a set, namely S(α) � n = {zm : m< n & zm∈ S(α)}.)

66 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

PROOF. By a finite extension argument we define a sequenceα with the required
properties. I.e., simultaneously withα we define a strictly increasing function
l : N→ N wherel(n) andα � l(n) are defined at stagen of the construction. For
n = 0 we let l(0) = 0, henceα � l(0) = ε. Given l(n) andα � l(n), l(n+ 1) and
α � l(n+ 1) are defined as follows. Fixp > l(n) minimal such thatf (l(n)) +
|zn+1| < f (p), let l(n+ 1) = p+ |zn+1| and define the extensionα � l(n+ 1) of
α � l(n) by lettingα(m) = 0 for l(n) ≤m< p andα(p)...α(l(n+1)−1) = zn+1.
Then, by a straightforward induction onn, zn occurs inα � l(n) and, form≤ l(n),
|S(α) � m| ≤ f (m). Obviously this implies thatα has the required properties.�

We can also distinguish between saturated and normal sequences by looking at
the size of the corresponding classes. As we have noted above, saturated sequences
are abundant in the sense of both, measure and category. Though, as Hardy and
Wright (1979) have shown, normal sequence are also abundant in the sense of
measure this is not true for category.

Theorem 2.105 1. (Hardy and Wright (1979)) The class of normal sequences
has measure 1.

2. The class of normal sequences is meager.

The second part of the theorem will be a direct consequence of one of or results
on finite-state genericity given in Chapter 5 below (see Theorem 5.26).

2.6.2

Closure
Properties and
Some Technical
Properties

For our investigation of the complexity of saturated sequences and languages and
their relation to genericity it will be useful to have some closure properties and
some further technical properties of saturated sequences. We start with some obvi-
ous closure properties.

Proposition 2.106 (i) The class of saturated sequences is closed under finite vari-
ants. I.e., ifα is saturated andβ(n) = α(n) for almost all n thenβ is saturated too.
(ii) The class of saturated sequences is closed under finite shifts. I.e. ifα is satu-
rated, w∈Σ∗ and n≥ 1 then the sequencesβ = wα andγ = α(n)α(n+1)α(n+2)...
are saturated too. (iii) The class of saturated sequence is closed under duality. I.e.,
if α is saturated then the dual sequenceα̂ = (1−α(0)) (1−α(1)) (1−α(2)) ... is
saturated too.

PROOF. Parts (i) and (ii) are immediate by Proposition 2.102. Part (iii) is obvious.
�

Proposition 2.106 (i) can be extended as follows. If a sequenceβ differs from a
saturated sequenceα at infinitely many places but the places at which the sequences

2.6. Saturated Sequences 67

differ are separated by longer and longer intervals then the sequenceβ is saturated
too. In order to state this more formally we use the following notion of closeness.

Definition 2.107 A sequenceβ is closeto a sequenceα if there is a strictly in-
creasing functionf : N→ N such that

liminf
n→∞

f (n+1)− f (n) = ∞ (2.25)

and
∀ n≥ 0 (α(n) 6= β(n)⇒ n∈ range(f)). (2.26)

A setB is closeto a setA if the characteristic sequence ofB is close to the charac-
teristic sequence ofA.

Lemma 2.108 Let α andβ be infinite sequences such thatα is saturated andβ is
close toα. Thenβ is saturated.

PROOF. Given a wordx, we have to show thatx occurs inβ. By closeness ofβ
to α we may fix a strictly increasing functionf such that (2.25) and (2.26) hold.
Then, by (2.25), we may choose a numbern0 such that

∀ n≥ n0 (f (n+1)− f (n) > 2|x|).

It follows, by (2.26), that, for anym≥ f (n0), the wordsα(m)...α(m+ 2|x| − 1)
and β(m)...β(m+ 2|x| − 1) differ at most one place. Henceα(m)...α(m+ |x| −
1) = β(m)...β(m+ |x| − 1) or α(m+ |x|)...α(m+ 2|x| − 1) = β(m+ |x|)...β(m+
2|x| − 1). On the other hand, sinceα is saturated, it follows from Proposition
2.102 that the wordxx occurs inα infinitely often. So there is a numberm≥
f (n0) such thatα(m)...α(m+ 2|x| − 1) = xx, i.e., α(m)...α(m+ |x| − 1) = x and
α(m+ |x|)...α(m+ 2|x| −1) = x. So, by the above,β(m)...β(m+ |x| −1) = x or
β(m+ |x|)...β(m+2|x|−1) = x. Hencex occurs inβ. �

We next look at saturated sets, i.e., sets corresponding to saturated sequences.
Proposition 2.106 immediately implies the following closure properties.

Proposition 2.109 The class of saturated languages is closed under finite variants
and under complement.

Note that by viewing a sequenceα as the characteristic sequence of a language
A we implicitly impose some additional structure onα. For instance, membership
in A of the words of a given lengthk is determined by some interval ofα, namely,
for the 2k wordszk

0, ...,z
k
2k−1 of lengthk in lexicographical order,A(zk

0)...A(zk
2k−1) =

α(2k)...α(2k+1−1). This gives a partition of the infinite sequenceα in the finite

68 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

subsequencesαk = α(2k)...α(2k+1−1), αk determining membership of the words
of length k in A (k ≥ 0). These subsequencesαk can be further partitioned by
considering membership inA of the extensions of fixed length of a given wordw.
To be more precise, given a numberk≥ 0 and a wordw of lengthn, membership
in A of the wordswx with |x| = k is determined by a subinterval ofαn+k, i.e.,
A(wzk

0)...A(wzk
2k−1) is a subword ofαn+k. As we will show next, in a saturated

sequenceα, for any wordx, we can find occurences ofx which are compatible
with the just described partitions ofα.

Lemma 2.110 Let α be a saturated sequence and let A be the set corresponding
to α. Then the following holds.

(a) For any word x∈ Σ∗ there are infinitely many numbers n≥ 0 such that

∃i(0≤ i ≤ 2n− (|x|−1) and A(zn
i)...A(zn

i+|x|−1) = x) (2.27)

(b) For any word x∈ Σ∗ such that|x| = 2m for some number m> 0 there are
infinitely many words w such that

A(wzm
0)...A(wzm

2m−1) = x. (2.28)

PROOF. For a proof of part (a) fix a wordx and a numbern0. We have to show
that (2.27) holds for somen≥ n0. W.l.o.g. we may assume that|x|< 2n0. Now, by
Proposition 2.102, the wordxxoccurs inα infinitely often. So we may fixm> 2n0

such that
A(zm)...A(zm+2|x|−1) = α(m)...α(m+2|x|−1) = xx.

Then, bym> 2n0, |zm| ≥ n0 and, by|x|< 2n0, |zm+2|x|−1| ≤ |zm|+1. So|zm|= ... =
|zm+|x|−1| or |zm+|x||= ... = |zm+2|x|−1|. Since

A(zm)...A(zm+|x|−1) = A(zm+|x|)...A(zm+2|x|−1) = x

this implies that (2.27) holds forn = |zm| ≥ n0 or n = |zm|+1≥ n0.
For a proof of part (b) fix a wordx of exponential length, say|x|= 2m, and let

n0 be given. It suffices to show that there is a wordw of length at leastn0 such that
(2.28) holds.

Let x̂ = x(0x)2m
. Note that ˆx consists of 2m+1 copies of the wordx each copy

separated by a 0 from the next copy. Hence for anyk < 2m there is a number
jk < 2m · (2m+1) such that

jk = k mod 2m & x̂(jk)...x̂(jk +2m−1) = x (2.29)

Now, by the first part of the lemma, we may fixn≥ n0 +m such that

A(zn
i)...A(zn

i+|x̂|−1) = x̂

2.6. Saturated Sequences 69

for somei ≤ 2n− (|x̂|−1). It follows with (2.29) that there is a numberp such that
p≤ 2n− (2m−1) and

p = 0 mod 2m & A(zn
p)...A(zn

p+2m−1) = x. (2.30)

Fix such a numberp and fix q correspondingly such thatp = q · 2m. Then, by
definition of the length-lexicographical ordering,

zn
p ... zn

p+2m−1 = zn−m
q zm

0 ... zn−m
q zm

2m−1.

So (2.30) implies thatA(wzm
0)...A(wzm

2m−1) = x for the wordw = zn−m
q . This com-

pletes the proof. �

We conclude our investigation of the closure properties of the saturated sets by
the observation that, for a saturated languageA and for any wordw, the language
wA= {wv : v∈ A} is saturated too.

Lemma 2.111 Let A be saturated.

1. For any word w∈ Σ∗, wA is saturated too. In fact, any set B such that
B∩wΣ∗ = wA is saturated.

2. For any set B, the effective disjoint union of A and B, A⊕B = 0A∪ 1B =
{0v : v∈ A}∪{1w : w∈ B}, is saturated.

PROOF. For a proof of the first part, fix a wordw∈ Σ∗ and a languageB such that
B∩wΣ∗ = wA. Then, givenx∈ Σ∗, we have to show thatx occurs in the character-
istic sequence ofB. By the first part of Proposition 2.110 there are numbersn and
i such thatA(zn

i)...A(zn
i+|x|−1) = x. So, by choice ofB, B(wzn

i)...B(wzn
i+|x|−1) = x.

Sincewzn
i , ...,wzn

i+|x|−1 are consecutive words with respect to the length-lexicogra-
phical ordering this implies thatx occurs inχ(B).

For a proof of the second part it suffices to note thatA⊕B and 0A agree on
0Σ∗. So the claim follows from the first part. �

70 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

2.6.3

Saturated
Sequences and
Languages and
the Chomsky
Hierarchy

We now will measure the complexity of saturated sequences and languages in terms
of the Chomsky hierarchy. Calude and Yu (1997) have investigated the Chomsky
complexity of the prefix sets of saturated sequences thereby classifying the Chom-
sky classes of sequences (in the sense of Section 2.5) which contain saturated se-
quences. Their negative results are based on the following observation.

Lemma 2.112 (Calude and Yu (1997)) Letα be almost periodic. Thenα is not
saturated.

PROOF (IDEA). Fix v,w∈ Σ∗ such thatα = vwω and letn = |v|+ |w|. Then 0n or
1n does not occur inα. Namely, if the letter 1 occurs inw then 0n does not occur
in α, and 1n does not occur inα otherwise. �

Theorem 2.113 (Calude and Yu (1997)) There is a saturated sequenceα such that
Pre f ix(α) is context-sensitive but there is no saturated sequence with context-free
prefix set.

PROOF (IDEA). For the first part of the theorem it suffices to observe that, for the
canonical saturated sequenceα = z0 z1 z2 z3 ..., Pre f ix(α) can be recognized by a
linear-space bounded Turing machine whencePre f ix(α) is context-sensitive. The
second part of the theorem follows from Lemma 2.112 since, by Theorem 2.76, a
sequence is almost periodic if and only if its prefix set is context-free. �

Corollary 2.114 There is a context-sensitive sequence which is saturated but no
context-free sequence is saturated.

PROOF. This is immediate by Theorem 2.113 and Definition 2.73. �

By the coincidence of the regular sequences with the context-free sequences
(Theorem 2.76) the classification of the saturated sequences in the Chomsky hier-
archy of sequences is rather coarse. We get a better lower and upper bounds on
the complexity of saturated sequences if we look at the Chomsky language classes
which contain saturated languages, i.e., languages corresponding to saturated se-
quences. As we will show next, no regular language is saturated but there are
context-free, in fact linear, languages which are saturated.

Theorem 2.115Let α be a saturated sequence and let A be the set corresponding
to α. Then A is not regular.

PROOF. For a contradiction assume thatA is regular. Fix a deterministic finite
automatonM which acceptsA and letp be the number of states ofM. Finally, fix
m such thatp < 2m.

2.6. Saturated Sequences 71

Then for any setSof 2m words there are at least two wordsu andu′ in Ssuch
thatM is in the same state after readingu andu′, hence for any wordv the extension
of u by v is in A if and only if the corresponding extension ofu′ is in A. I.e., for
any setS,

|S|= 2m⇒∃u,u′ ∈ S(u 6= u′ & ∀v(uv∈ A⇔ u′v∈ A)). (2.31)

Now, in order to get the desired contradiction, in the following we will produce a
counterexample to (2.31). For this sake we first consider the 2m words of length 2m

which contain a unique 1 and take their concatenation:

xi = 0i102m−(i+1)(0≤ i < 2m) & x = x0...x2m−1. (2.32)

Note that|x|= 2m2m = 22m. So, by saturation ofα and by Lemma 2.110, there is a
wordw such that

A(wz2m
0)...A(wz2m

22m−1) = x. (2.33)

Since

wz2m
0 ... wz2m

22m−1 = wzm
0 zm

0 ... wzm
0 zm

2m−1 ... wzm
2m−1zm

0 ... wzm
0 2m−1m

2m−1

it follows, by choice ofx, that

A(wzm
i zm

0)...A(wzm
i zm

2m−1) = xi

for i < 2m. By choice of the stringsxi this implies

A(wzm
i zm

j) = 1⇔ i = j (0≤ i, j < 2m). (2.34)

So, forS= {wzm
i : i < 2m}, |S|= 2m. Moreover, by (2.34), for any wordsu 6= u′ ∈S,

sayu = wzm
i andu′ = wzm

i′ wherei 6= i′, there is a wordv, namelyv = zm
i , such that

uv∈ A butu′v 6∈ A. But this contradicts (2.31). �

Theorem 2.116There is a saturated sequenceα such that the language A corre-
sponding toα is linear.

PROOF. For a nonempty wordx = a1 . . .an ∈ Σn let xD = a1a1 . . .anan be the
duplicationof x and letxR = an . . .a1 be thereversalof x (εD = εR = ε). Then the
required languageA is defined by

A = {xD
1 01xD

2 01. . .xD
n 10xR

m : 1≤m≤ n & x1, . . . ,xn ∈ Σ+}.

Intuitively, A is the set of all wordsw = 〈x1, . . . ,xn〉xn+1 where the first part of
w codes a nonempty finite sequence of wordsx1, ...,xn (namely 〈x1, . . . ,xn〉 =

72 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

(xR
1)D01...(xR

n)D10) and the second partxn+1 of w coincides with one of the mem-
bers of this sequence (note thatxRR= x).

The coding is chosen in such a way that the languageA is linear. For instance,
as one can easily check, the linear grammarG with the following rules generates
A.

S → 00V | 11V | T
V → 00V | 11V | 01S

T → 00T0 | 11T1 | 00U0 | 11U1

U → 01W | 10
W → 00W | 11W | 00U | 11U

HereS is the axiom of the grammarG andT,U,V,W are the other variables of
G. Note that theS- andV-rules can produce deductionsS

∗⇒ wT wherew = ε or
w = xD

1 01. . .xD
n 01 for somen≥ 1, theT-rules give deductionsT

∗⇒ xDUxR, and
theU- andW-rules allow deductions of the formU

∗⇒ 10 orU
∗⇒ 01xD

1 . . .01xD
n for

n≥ 1.

It remains to show thatA is saturated, i.e., that any given stringx occurs in
the characteristic sequenceα of A. So fix x where w.l.o.g. we may assume that
|x| = 2n for somen≥ 1 and that at least one 1 occurs inx (otherwise consider an
extension ofx with these properties). Thenx = a0 . . .a2n−1 andP = { j : 0≤ j <

2n & a j = 1} 6= /0. Fix 0≤ j1 < j2 < · · · < j l < 2n such thatP = { j1, . . . , j l} and
let w = ((zn

j1)
R)D01((zn

j2)
R)D01. . .((zn

j l)
R)D andw j = w10zn

j (0≤ j < 2n). Then
w0, . . . ,w2n−1 are consecutive words, whence the sequenceA(w0) . . .A(w2n−1) oc-
curs inα. On the other hand, by definition,w j ∈ A iff j ∈ P whence

x = A(w0) . . .A(w2n−1).

Sox occurs inα which completes the proof. �

We conclude this subsection by some observations on the relation between
immunity and saturation. In Section 2.4 we have studied immunity notions as a
means for obtaining strong separations between complexity classes. There we have
shown that any language which is bi-immune to the class of regular languages
cannot be context-free but that there are linear languages which are immune to
REG. The former observation together with Theorem 2.116 shows that there is a
saturated sequence such that the corresponding set is not bi-immune to REG. Next
we will extend this result by showing that there is a saturated languageA such that
neitherA nor the complement ofA is immune to REG.

2.6. Saturated Sequences 73

Theorem 2.117There is a saturated sequenceα such that neither S(α) nor S(α)
is REG-immune.

PROOF. Let B be any saturated set and defineA by letting

A = (B∪{0n : n≥ 1})\{1n : n≥ 1}.

Then neitherA nor A is REG-immune since the infinite regular set{0n : n≥ 1}
is contained inA and the infinite regular set{1n : n ≥ 1} is contained inA. It
remains to show thatA is saturated, i.e., given any wordx we have to show that
x = A(zn) . . .A(zn+|x|−1) for some numbern. Now, by saturation ofB and by
Lemma 2.110, there are numbersm andk such thatB(zk

m) . . .B(zk
m+|x|+1) = 0x0.

By choice ofA this implies thatA(zk
m+1) . . .A(zk

m+|x|) = x. This completes the
proof. (Alternatively, saturation ofA can be deduced from Lemma 2.108 since
B∪{0n : n≥ 1} is close toB andA is close toB∪{0n : n≥ 1}.) �

The above shows that saturation does not imply REG-immunity. The converse
is also true as the following lemma shows, i.e., saturation and immunity are inde-
pendent concepts.

Lemma 2.118 There is aREG-bi-immune language A which is not saturated.

PROOF. By Theorem 2.52 letA′ be any REG-bi-immune language. DefineA by
letting A = {wi : w∈ A′ & i = 0,1}. Then, as one can easily check,A is REG-bi-
immune too. On the other hand, by choice ofA, the characteristic sequence ofA is
the duplication of the charateristic sequence ofA′ whence the word 010 does not
occur inχ(A). SoA is not saturated. �

2.6.4

Saturation and
Predictability

In Section 2.5.5 we have shown that the Chomsky complexity of the prefix set of a
sequence is closely related to predictability. For instance we have seen that that a
sequence is regular if and only if the sequence can be predicted by a (deterministic
or nondeterministic) finite automata or by a deterministic push-down automaton.
So, by Theorem 2.113, a saturated sequence cannot be predicted by such an au-
tomaton. In Section 2.5.5 we have also shown, however, that there are nonregular
sequences which can be predicted by a nondeterministic push-down automaton.
Our above results on the Chomsky complexity of saturated sequences do not settle
the question whether there are saturated sequences which can be predicted by a
nondeterministic push-down automaton and we leave this as an open problem. In
the following we will show, however, that the saturated sequences can be character-
ized in terms of partial predictability by finite automata. This characterization will

74 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

be used for establishing the relations between saturation and finite-state genericity
in Section 4.1.

Definition 2.119 Let M be an extended deterministic finite automaton and letfM :
Σ∗ → Σ be the partial function computed byM. ThenM partially predicts(or
infinitely often predicts) the sequenceα if M is consistent withα, i.e.,

∀ n≥ 0 (fM(α � n) ↓ ⇒ fM(α � n) = α(n)) (2.35)

andM makes infinitely predictions aboutα, i.e.,

∃∞ n≥ 0 (fM(α � n) ↓). (2.36)

Theorem 2.120For any sequenceα the following are equivalent.

1. α is saturated.

2. There is no deterministic finite automaton which partially predictsα.

PROOF. For a proof of the implication 1⇒ 2 assume thatα is saturated and letM
be an EDFA such that the functionfM computed byM satisfies (2.36). We have to
show that (2.35) fails, i.e., that there is a numbern such thatfM(α � n) is defined
and fM(α � n) 6= α(n).

Let M be the automatonM = (Σ,S,δ,s0,λ) where the partial state labeling
function λ : S→ Σ describes the different types of states ofM as follows. For a
states, f (s) = 1 if s is an acccepting state,f (s) = 0 if s is a rejecting state, and
f (s) is undefined ifs is an undetermined state. Then the functionfM computed by
M is defined by

fM(x) = λ(δ∗(s0,x)). (2.37)

Let s1, ...sm be the set of statess visited byM infinitely often when readingα,
i.e., the set of statess such thatδ∗(s0,α � n) = s for infinitely many numbersn.
Then, by (2.36) and by (2.37), there is a statesk (1≤ k ≤ m) such thatλ(sk) is
defined. By symmetry, w.l.o.g. we may assume thatk = 1 andλ(s1) = 1. So in
order to show that (2.35) fails it suffices to show that there is a numbern such that

δ∗(s0,α � n) = s1 & α(n) = 0. (2.38)

To show this we consider the stringx∈ Σ∗ defined as follows. Let

x = y10y20...ym0

where the substringsyk are defined by induction onk by letting y1 = λ and by
lettingyk for 2≤ k≤m be the least stringy such that

δ∗(sk,y10...yk−10y) = s1

2.6. Saturated Sequences 75

if such a stringy exists and by lettingyk = λ otherwise.
Now, by saturation ofα and by Proposition 2.102, the stringx occurs inα

infinitely often. So we may fixn0≥ 0 and 1≤ k≤m such that

δ∗(s0,α � n0) = sk (2.39)

and
(α � n0) xv α. (2.40)

hold. Now, if k = 1 then, by definition ofx, y1 = λ hencex(0) = 0. By (2.39) and
(2.40) this implies that (2.38) holds forn= n0. So in the following we may assume
that 2≤ k≤m. Then, by definition ofx, xk−1 = y10y20...yk−10 is an initial segment
of x. So, by (2.40), forn1 = |xk−1|, α � (n0 +n1) = (α � n0) xk−1. Moreover, since
M runs through the states1 infinitely often when readingα, there is a number
n2≥ n0+n1 such thatδ∗(s0,α � n2) = s1. By (2.39) this implies that, for the string
y = α(n0 +n1)...α(n2−1),

δ∗(sk,xk−1y) = δ∗(s0,(α � n0)xk−1y) = δ∗(s0,α � n2) = s1

So, by definition ofx, δ∗(sk,y10...yk−10yk) = s1. Sincey10...yk−10yk0 is an ini-
tial segment ofx it follows, by (2.39) and (2.40), that (2.38) holds forn = n0 +
|y10...yk−10yk|.

The proof of the implication 2⇒ 1 is by contraposition. Assume that the se-
quenceα is not saturated. We will show that there is an extended deterministic
finite automatonM which partially predictsα. By assumption we may fix a string
x of minimal length such thatx occurs in the sequenceα at most finitely often, say
(α � n)x 6@ α for all n≥ n0. Then, obviously,|x|> 0 whence we may fixi ∈ Σ and
y∈ Σ∗ such thatx = yi. Define the partial functionf : Σ∗→ Σ by

f (z) =

{
1− i if z= vy for some stringv∈ Σ≥n0

↑ otherwise.

Note that, by minimality ofx, the stringy occurs inα infinitely often whence
f (α � n) ↓ for infinitely manyn. Moreover, for anymsuch thatf (α � m) is defined,
f (α � m) = α(m). (Namely, if f (α � m) is defined then there is a numbern≥ n0

such thatα � m= (α � n)y whence, by choice ofn0, α � (m+ 1) 6= (α � n)x. By
x = yi, however, this implies thatα(m) 6= i, i.e.,α(m) = 1− i.) Hence (2.35) and
(2.36) hold if we replacefM by f . This completes the proof since, as one can easily
show, f can be computed by an EDFAM. �

In Section 2.5.5 we have shown that total predictability by deterministic push-
down automata coincides with total predictability by deterministic finite automata.
For partial predictability, however, these devices are not equivalent. By Theorem
2.120 this follows from the following result of Merkle and Reimann.

76 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

Theorem 2.121 (Merkle and Reimann (2003)) There is a saturated (in fact nor-
mal) sequenceα which can be partially predicted by a deterministic pushdown
automaton.

PROOF (IDEA). The following example of a sequenceα with the required proper-
ties is somewhat simpler than the examples given in Merkle and Reimann (2003).
Let α be the saturated (in fact normal) sequence obtained by concatenating all bi-
nary words in order, i.e.,α = z0z1z2.... Then, for any numbern, the initial segment
α � n contains at least as many occurrences of the bit 0 as of the bit 1. Moreover,
the number of occurences is equal if and only ifα � n consists of all words up to
a given length, i.e.,α � n = z0

0...z
m
2m−1 for some numberm. So, for such ann, α(n)

will be the first bit of the wordzm+1
0 which is a 0. A deterministic pushdown au-

tomatonM which correctly predicts these occurences of zeroes inα, pushes a 0 on
its stack when it reads a 0, pops a 0 from the stack when it reads a 1, and predicts
the next bit to be a 0 if the stack is empty. (Note thatM works with the unary
alphabet{0} as its stack alphabet. DPDAs with this additional property are also
called deterministic 1-counter automata.) �

2.6.5

Computational
Complexity of
Saturated
Sequences and
Languages

Following our investigations of the complexity of saturated sequences in the sense
of formal language and automata theory, in this subsection we shortly discuss the
computational complexity of saturated sequences. We show that for any setA there
is a saturated sequenceα such that the setS(α) corresponding toα is equivalent
to A under linear-time many-one reducibility. Roughly speaking, this says that
there are saturated languages of any given time complexity. As we will also note,
however, the corresponding fact for the prefix sets of saturated sequences fails.

We start with the observation that there is a saturated sequence such that the
corresponding set is linear time computable.

Lemma 2.122 Let D= {zn
i : zn(i) = 1}. Then the characteristic sequenceχ(D) of

D is saturated and D∈ DTIME(O(n)).

PROOF (IDEA). Note that for thenth wordzn occurrence ofzn in χ(D) is guaran-
teed by the first|zn| words of lengthn, namelyD(zn

0)...D(zn
|zn|−1) = zn. We omit the

straightforward but somewhat tedious proof forD ∈ DTIME(O(n)). �

Recall thatA≤lin
m B (A is many-one reducible to B in linear time) if there is a

linear-time computable functionf : Σ∗→ Σ∗ such thatx∈A if and only if f (x)∈B
(for all x∈ Σ∗); and thatA =lin

m B (A is many-one equivalent to B in linear time) if
A≤lin

m B andB≤lin
m A.

2.6. Saturated Sequences 77

Theorem 2.123For any set A6= /0,Σ∗ there is a saturated set B such that A=lin
m B.

PROOF. Fix A 6= /0,Σ∗, chooseD as in Lemma 2.122, and letB = D⊕A = {0x :
x∈D}∪{1x : x∈A} be the effective disjoint union ofD andA. ThenB is saturated
by Lemma 2.111 and by saturation ofD. A=lin

m B follows fromD∈DTIME(O(n))
as follows. Obviously,A≤lin

m B via f (x) = 1x. For a proof ofB≤lin
m A fix wordsx0

andx1 such thatx0 ∈ A andx1 6∈ A. ThenB≤lin
m A via g where

g(0x) =

{
x0 if x∈ D

x1 otherwise.

andg(1x) = x. Note thatg(0x) can be computed in linear time sinceD is linear-
time computable. �

For space complexity we easily obtain the corresponding results for logarithmic
space in place of linear time. In fact in Theorem 2.123 we may replacelin-m re-
ducibility by simultaneously linear-time and logarithmic-space bounded many-one
reducibility. Calude and Yu (1997) have shown that there is a saturated sequence
with prefix set in DSPACE(O(logn)). In fact, as one can easily check, forD as in
Lemma 2.122,Pre f ix(χ(D)) ∈ DTIME(O(n))∩DSPACE(O(logn)).

Lemma 2.124 There is a saturated sequenceα such that

Pre f ix(α) ∈ DTIME(O(n))∩DSPACE(O(logn)).

In contrast to Theorem 2.123, however, there arelin-mequivalence classes - in
fact polynomial-time Turing equivalence classes - which do not contain the prefix
set of any saturated sequence (in fact no prefix set at all). This follows from some
general results on sets of low nonuniform complexity. Note that any prefix set
A contains just one word of each length whenceA is sparse. Any sparse setA
possesses polynomial-time circuits, i.e., is a member of the class P/poly and it
has been shown that there are polynomial-time Turing equivalence classes which
do not intersect P/poly (see e.g. Balćazar et al. (1995), Chapter 5). So, in order
to obtain an analog of Theorem 2.123 for prefix sets we have to work with some
weaker reducibilities. E.g., we can show that, for any setA, there is the prefix set
Pre f ix(α) of a saturated sequenceα which is exponential-time Turing equivalent
to A. In the following let≤e

T denote exponential-time (i.e.O(2O(n)) bounded
Turing reducibility. Similarly, let≤e

tt denote exponential-time bounded truth-table
reducibility and≤p

tt denote polynomial-time bounded truth-table reducibility

Theorem 2.125For any set A there is a saturated sequenceα such that A=e
T

Pre f ix(α).

78 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

This easily follows from the following lemma and Theorem 2.123.

Lemma 2.126 For any sequenceα, S(α)=e
T Pre f ix(α). In fact, S(α)≤e

T Pre f ix(α)
and Pre f ix(α)≤p

tt S(α).

PROOF. In order to showS(α) ≤e
T Pre f ix(α) consider the following reduction

from S(α) to Pre f ix(α): Given x, |x| = n, compute the uniquem such thatx =
zm. Then, bym adaptive queries toPre f ix(α), inductively computeα � (m+ 1)
and acceptx iff (α � (m+ 1))(m) = 1. Sincem≤ 2n+1, this reduction can be
done in timeO(2O(n)). For a proof ofPre f ix(α) ≤m

tt S(α), consider the following
reduction fromPre f ix(α) to S(α): Given x, |x| = n, computeα(0), ...,α(n− 1)
by letting the oracleS(α) answer then queriesz0, ...,zn−1. Accept the inputx iff
x = α(0)...α(n−1). This reduction is polynomial-time bounded and requests only
a linear number of nonadaptive queries. �

2.6.6

Saturated and
Disjunctive
Languages

As pointed out before, saturated sequences are also called disjunctive sequences
since they are closely related to disjunctive languages. Though we will not need
the latter concept later, we will shortly describe the relations between saturated
languages and disjunctive languages here.

Definition 2.127 (Shyr (1977)) A languageA is disjunctiveif any two wordsx and
y can be distinguished by the context of their occurences in words in the language
A, i.e., if

∀x,y∈ Σ∗ (x 6= y⇒∃u,v∈ Σ∗(uxv∈ A⇔ uyv /∈ A)) (2.41)

holds.

For a disjunctive languageA, any wordz occurs in some element ofA as a
subword (namely, otherwise, (2.41) will fail for the wordsx = z0 andy = z1 since
uxv,uyv 6∈A for all wordsu,v). The converse, however, is not true. For example any
word occurs as a subword of a word inΣ∗, but all words occur in the same context
(namely, for anyx, uxv∈ Σ∗ for all wordsu,v) whenceΣ∗ is not disjunctive. As
Calude et al. (1997) have shown, however, for a prefix setA, A is disjunctive if
every word occurs as a subword of a word inA, whence a sequenceα is disjunctive
(i.e. saturated) if and only if its prefix setPre f ix(α) is disjunctive. This easily
follows from the observation by Jürgensen and Thierrin (1988) that in the definition
of a disjunctive language in (2.41) it suffices to consider wordsx andy of the same
length.

2.6. Saturated Sequences 79

Lemma 2.128 (Jürgensen and Thierrin (1988)) A language A is disjunctive if and
only if

∀n∀x,y∈ Σn(x 6= y⇒∃u,v∈ Σ∗(uxv∈ A⇔ uyv /∈ A)) (2.42)

holds.

Theorem 2.129 (Calude et al. (1997)) For any infinite sequenceα the following
are equivalent.

1. α is saturated.

2. Every word x∈ Σ∗ occurs as a subword in an element of Pre f ix(α).

3. Pre f ix(α) is disjunctive.

PROOF. The implications 1⇔ 2 and 3⇒ 2 are straightforward. So it suffices
to show the implication 1⇒ 3. Assume thatα is saturated. By Lemma 2.128 it
suffices to show that, givenx andy such that|x| = |y| andx 6= y, there are words
u andv such thatuxv is a prefix ofα but uyv is not a prefix ofα. Now, sinceα is
saturated, we may fixu such thatux is a prefix ofα and letv be the empty string.
Thenuxvis a prefix ofα. On the other hand, however,uyvis not a prefix ofα since
|uxv| = |uyv| but uxv 6= uyvand since the prefix ofα of a given length is uniquely
determined. �

The relation between saturation (disjunctivity) of a sequence and disjunctivity
of its corresponding set is as follows.

Theorem 2.130 (a) Letα be a saturated sequence. Then the set S(α) correspond-
ing to α is disjunctive.

(b) There is a disjunctive language A such that the characteristic sequence
χ(A) of A is not saturated.

PROOF. (a) To show thatS(α) is disjunctive it suffices to establish (2.42). So let
n≥ 0 and wordsx andy with x 6= y and|x|= |y|= n be given. Fixj andk such that
x= zn

j andy= zn
k and definez∈ Σ2n

by z(j) = 1 andz(i) = 0 for all i < 2n with i 6= j.
Then, by Lemma 2.110, there is a wordw such thatA(wzn

0)...A(wzn
2n−1) = z. So,

in particular,A(wx) = A(wzn
j) = z(j) = 1 andA(wy) = A(wzn

k) = x(k) = 0, whence
wx∈ A andwy 6∈ A. So (2.42) holds foru = w andv = λ.

(b) Let A be the languageA = {wwR : w∈ Σ∗} (wherewR is the reversal ofw).
Then, for any wordsx andy such that|x|= |y| andx 6= y, xRx∈ A whereasxRy 6∈ A.
So, by Lemma 2.128,A is disjunctive. As one can easily check, however, the word
11 does not occur inχ(A). Soχ(A) is not saturated. �

80 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

Corollary 2.131 Every saturated language is disjunctive but there are disjunctive
languages which are not saturated.

PROOF. Since, by definition, a language is saturated if and only if its characteristic
sequence is saturated, this is immediate by Theorem 2.130. �

By Corollary 2.131, negative results on disjunctive languages carry over to sat-
urated languages and positive results on saturated languages carry over to disjunc-
tive languages. For instance, Shyr (1977) have shown that no disjunctive language
is regular. So, by Corollary 2.131, no saturated language is regular. This gives
an alternative proof of Theorem 2.115. Conversely, Theorem 2.116 and Corollary
2.131 imply that there are linear languages which are disjunctive. Here, however,
we get simpler examples by a direct argument as the languageA= {wwR : w∈ Σ∗}
in the proof of Theorem 2.130 shows. In fact, as one can easily show, the lan-
guageA = {wD01wR : w ∈ Σ∗} (wherewD is the duplication ofw) is disjunctive
too. On the other hand,A is deterministic context-free and linear. So there is a
disjunctive language which is both, deterministic context-free and linear. We do
not know, however, whether there are saturated languages which are deterministic
context-free (or even both, deterministic-context free and linear).

2.6.7

Partial
Saturation

We conclude this chapter on saturated sequences by some observations on partially
saturated sequences. These results will be used later for separating some of our
finite-state genericity notions. We begin with some definitions.

Definition 2.132 A sequenceα is k-n-saturatedif every word of lengthk occurs
in α at leastn times (k,n≥ 1); α is ω-n-saturated, if every word occurs inα at least
n times, i.e., ifα is k-n-saturated, for allk∈ N+; α is k-ω-saturatedif every word
of lengthk occurs inα infinitely often, i.e., ifα is k-n-saturated for alln∈N+; α is
ω-ω-saturatedif every word occurs infinitely often inα, i.e., if α is k-n-saturated
for all k,n∈ N+.

A setA is k-n-saturated(k,n∈N+∪{ω}) if its characteristic sequenceχ(A) is
k-n-saturated.

The following relations among these notions are immediate by definition.

Proposition 2.133 If k ≤ k′ and n≤ n′ (k,k′,n,n′ ∈ N+ ∪{ω}) then every k′-n′-
saturated sequence is also k-n-saturated.

Moreover, by definition, a sequenceα is saturated if and only ifα is ω-1-
saturated and, by Proposition 2.102, saturation andω-ω-saturation coincide. This
immediately yields the following.

2.6. Saturated Sequences 81

Proposition 2.134 For any sequenceα the following are equivalent.

1. α is saturated.

2. α is ω-1-saturated.

3. α is ω-n-saturated (for any fixed n≥ 1) .

4. α is ω-ω-saturated.

For 1≤ k,n < ω there are finitek-n-saturated sets, namely the sequenceα =
(zk

0...z
k
2k−1)

n0ω is k-n-saturated and the corresponding set is finite. Since we will
be only interested in infinite sets, in the following we will focus onk-n-saturated
sequences wherek = ω or n = ω. Obviously, the set corresponding to such a
sequence cannot be finite.

Proposition 2.135 Let α be k-n-saturated where k= ω or n = ω. Then the corre-
sponding set S(α) is infinite and co-infinite.

The following simple separation lemma will become useful later.

Lemma 2.136 For any k∈ N+ there is a k-ω-saturated sequenceα which is not
(k+1)-1-saturated, hence not(k+1)-ω-saturated.

PROOF. Let α = (zk
0 0 zk

1 0 ... zk
2k−1 0)ω. Then every word of lengthk occurs inα

infinitely often whenceα is k-ω-saturated. The word 1k+1 of lengthk+1, however,
does not occur inα whenceα is not(k+1)-1-saturated. �

The above observations on partial saturation give the following relations among
the infinitary saturation notions where Lemma 2.136 implies that no other relations
hold (fork≥ 2,n≥ 1).

α ω-ω-saturated ⇔ α ω-n-saturated ⇔ α saturated
⇓

α (k+1)-ω-saturated
⇓

α k-ω-saturated
⇓

α 1-ω-saturated

Above we have shown that saturated sequences and languages are not regular.
This is contrasted by the following.

Lemma 2.137 For any k≥ 1 there is an k-ω-saturated sequenceα which is regu-
lar.

82 2. FORMAL LANGUAGES AND INFINITE SEQUENCES

PROOF. Thek-ω-saturated sequenceα defined in the proof of Lemma 2.136 is
periodic hence regular. �

For some recent results on representability and decidability questions for satu-
rated sequences see Ambos-Spies and Busse (2004).

CHAPTER 3

Baire Category, Forcing, Genericity

84 3. BAIRE CATEGORY, FORCING, GENERICITY

In this chapter we discuss some of the fundamental relations among gener-
icity, Baire category and some of the fundamental diagonalization techniques in
computability and computational complexity theory. Our presentation is based on
papers and lectures by Ambos-Spies on this topic, in particular on Ambos-Spies
(1996). A more detailed treatment of classical Baire category theory can be found
in Oxtoby (1980). More information on the role played by Baire category in com-
putability theory is given in Odifreddi (1989).

In Section 3.1 we shortly review classical Baire category for the Cantor space.
Then, in Section 3.2, we give alternative characterizations of this concept based
on total respectively partial extension functions. In Section 3.3 we discuss the
relations between category and (Lebesgue) measure. It is well known that in gen-
eral the category and measure approaches for defining large classes are incom-
patible. As we will show here, however, any comeager class defined in terms of
boundedextension functions has measure 1 too, i.e., is large in both senses. In
Section 3.4 we review the finite extension method and an important refinement of
this technique, namely the wait-and-see technique or slow-diagonalization tech-
nique. Moreover, we show how these techniques can be related to Baire category
by exploiting the characterization of the latter in terms of total extension functions
and partial extension functions, respectively. Finally, in Section 3.5 we introduce a
general framework for genericity notions by attaching a genericity concept to any
countable classF of (total or partial) extension functions. Most of the common
genericity concepts in computability and complexity theory in the literature – as
well as the finite-state genericity concepts introduced in this thesis – can be de-
scribed this way by appropriately choosing the classF. We will distinguish some
special types of genericity notions – namely weak genericity based on total exten-
sion functions and bounded genericity based on bounded extension functions – and
we will point out some limitations of these restricted concepts.

3.1. Baire Category and the Cantor Space 85

3.1 Baire Category and the Cantor Space

Using the concept of classical Baire category we can classify the subclasses of the
Cantor spaceΣω according to their size. In order to introduce this concept, we first
have to define an appropriate topology on the Cantor space.

Definition 3.1 (i) For any stringx, the class Bx = {A : x @ χ(A)} is basic open.

(ii) A class C isopenif it is the union of basic open classes or empty.

It is easy to see that this defines a topology on POWER(Σω), i. e., /0 andΣω are
open, the union of open classes is open again, and the finite intersection of open
classes is open again. The latter follows from the fact that, for any stringsx andy,
Bx∩By is either empty (namely ifx andy are incomparable) or a basic open class
again (namely Bx∩By = Bx if yv x and Bx∩By = By if xv y).

Definition 3.2 (Baire Category) (i) A class C isdenseif it intersects all open
classes.

(ii) A class C isnowhere denseif C is contained in the complement of an open
and dense class.

(iii) A class C ismeagerif C is the countable union of nowhere dense classes.

(iv) A class C iscomeagerif C is the complement of a meager class.

Intuitively, we can interpret meager classes as small and comeager classes as
large. For more details see Odifreddi (1989).

The following observations are easy consequences of Definition 3.2.

Proposition 3.3 A classC is comeager if and only if there are countably many
open and dense classesCn, n≥ 0, such that⋂

n≥0

Cn⊆ C.

Proposition 3.4 (i) For any set A, the singleton{A} is nowhere dense.

(ii) The countable union of meager classes is meager.

(iii) Any subclass of a meager class is meager.

(iv) Any countable class is meager.

Proposition 3.5 (i) The countable intersection of comeager classes is comeager.

86 3. BAIRE CATEGORY, FORCING, GENERICITY

(ii) Any superclass of a comeager class is comeager.

(iii) Any classC with countable complement is comeager.

In particular,Σω is comeager. The non-triviality of the Baire category concept,
i.e., the fact that there is no class which is both meager and comeager follows from
Baire’s Theorem.

Theorem 3.6 (Baire) Σω is not meager.

Corollary 3.7 If C is comeager thenC is not meager.

PROOF. For a contradiction assume that C is comeager and meager. Then, by the
former,C is meager, henceΣω is the union of the meager classes C andC. So, by
Proposition 3.4(ii),Σω is meager contrary to Baire’s Theorem. �

3.2. Extension Functions 87

3.2 Extension Functions

The Baire category concept has been alternatively described in terms of (total)
extension functions. This characterization shows the close relation between this
topological concept and one of the most fundamental diagonalization techniques in
computability theory, namely the finite-extension method. Similarly, a somewhat
more sophisticated diagonalization method, namely the so-called wait-and-see or
slow-diagonalization technique, can be linked to Baire category by using partial
extension functions. In this section we review the characterizations of the comeager
classes in terms of total and partial extension functions. Then, after some remarks
on relations between category and measure in the next section, we discuss the
relations to the above mentioned diagonalization techniques.

We first consider the case of total extension functions and define the required
concepts.

Definition 3.8 (i) A total extension function fis a total functionf : Σ∗→ Σ∗.

(ii) A set A meets fat n if (α � n) f (α � n) @ α, whereα is the characteristic
sequence ofA. A meets fif A meetsf at somen.

Intuitively, an extension functionf may be viewed as an instruction for finitely
extending a given finite initial segment of an infinite sequence under construction.
ThenA meetsf at n if the initial segmentχ(A) � n of lengthn of the characteristic
sequence ofA is extended according to this instruction. The following theorem
gives the characterization of open and dense classes in terms of extension functions.

Theorem 3.9 For a classC⊆ Σω the following are equivalent.

(i) C contains an open and dense class.

(ii) ∀x ∃yw x (By⊆ C)

(iii) There is a total extension function f such that{A : A meets f} is contained in
C.

PROOF. We will prove the implications(i)⇒ (ii)⇒ (iii)⇒ (i).
For a proof of the implication(i)⇒ (ii) assume that the open and dense class

C′ is contained in C. Then, given any stringx, it suffices to show that there is an
extensiony of x such that By is contained in C′. By density of C′, the intersection
of C′ and Bx is not empty. Hence we may fix an infinite sequenceα in C′ which
extendsx. Since C′ is open, it follows that there is a neighbourhood ofα which
is completely contained in C′, i.e., Bα�n ⊆ C′ for some numbern≥ 0. Since, for

88 3. BAIRE CATEGORY, FORCING, GENERICITY

n′ ≥ n, Bα�n′ ⊆ Bα�n, w.l.o.g. we may assume thatn≥ |x|, i.e., thatxv α � n. So,
y = α � n has the required properties.

For a proof of(ii)⇒ (iii) assume that C satisfies(ii). We have to define a total
extension functionf such that (the characteristic sequence of) any setA which
meetsf is a member of C, i.e., such that

∀α (∃n((α � n) f (α � n) @ α)⇒ α ∈ C) (3.1)

holds. Definef as follows. Givenx, by assumption(ii), fix the least stringy
extendingx such that By ⊆ C and let f (x) = z for the unique stringz such that
y = xz. Then, for any stringx, Bx f(x) ⊆ C. Obviously this implies that (3.1) holds.

The remaining implication(iii)⇒ (i) is an immediate consequence of the fol-
lowing somewhat more general lemma by considering the casen0 = 0. �

Lemma 3.10 For any total extension function f and any number n0, the class
{A : A meets f at some number n≥ n0} is open and dense.

PROOF. Fix a total extension functionf and a numbern0, and let D= {A : A
meetsf at some numbern≥ n0}. Note that, by our identification of a set with its
characteristic function, the class D can be restated as

D = {α : ∃n≥ n0((α � n) f (α � n) @ α)}.

Now to show that D is open, fixα∈D. It suffices to show that, for some numberm,
Bα�m is contained in D. Byα ∈D we may fixn≥ n0 such that(α � n) f (α � n) @ α
holds. Thenm= n+ | f (α � n)| has the required properties. Namely, for anyβ ∈
Bα�m, the set corresponding toβ meetsf at n. It remains to show that D is dense,
i.e., that for any stringx there is a sequenceα ∈ D extendingx, where w.l.o.g. we
may assume that|x| ≥ n0. Obviously, the sequenceα = x f(x)0ω will do.

�

Theorem 3.9 and Lemma 3.10 yield the following characterization of comeager
classes.

Corollary 3.11 The following are equivalent.

(i) C is comeager.

(ii) There is a countable classF = { fn : n∈ N} of total extension functions such
that the class

MF = {A : ∀n∈ N (A meets fn)}

is contained inC.

3.2. Extension Functions 89

(iii) There is a countable classF = { fn : n∈ N} of total extension functions such
that the class

M∞
F = {A : ∀n∈ N (A meets fn infinitely often)}

is contained inC.

PROOF. We prove the implications(i)⇒ (ii)⇒ (iii)⇒ (i)
(i)⇒ (ii). Let C be comeager. By definition, there is a countable family of open

dense classes Cn (n≥ 0) such that the intersection of these classes is contained in
C. So, givenn≥ 0, it suffices to show that there is an extension functionfn such
that the class Mfn = {A : A meetsfn} is contained in Cn. But this is immediate by
Theorem 3.9.

(ii)⇒ (iii) is immediate, since for anyF, M∞
F ⊆MF.

(iii)⇒ (i). Note that M∞
F is the intersection of the countably many classes

Dn,m = {A : A meetsfn at some number≥m}. By Lemma 3.10, the classes Dn,m

are open and dense. So M∞
F and any superclass C of M∞F is comeagar.

This completes the proof.
�

We now turn to partial extension functions and give an alternative characteri-
zation of comeagerness in these terms. We start with the fundamental definitions.

Definition 3.12 (i) A partial extension function fis a partial functionf : Σ∗→
Σ∗.

(ii) A partial extension functionf is dense alonga setA if f (χ(A) � n) is defined
for infinitely manyn∈ N.

(iii) A meets fatn if f (α � n) ↓ and(α � n) f (α � n) @ α whereα is the character-
istic sequence ofA. A meets fif A meetsf at somen.

We use the above notions for infinite sequences in place of sets too. I.e., ifα is
the characteristic sequence ofA and f is dense alongA or A meetsf then we also
say thatf is dense alongα andα meetsf , respectively.

Again, intuitively, a partial extension functionf may be viewed as an instruc-
tion for finitely extending a given finite initial segment of an infinite sequence under
construction. As before,A meetsf at n if the initial segmentχ(A) � n of lengthn
of the characteristic sequence ofA is extended according to this instruction. Now,
however, the instruction can be followed only for certain initial segments. Den-
sity of A along f expresses that there are infinitely many chances for following the
instruction.

90 3. BAIRE CATEGORY, FORCING, GENERICITY

Note that a total extension functionf is dense along all sets. As we will show
next, for any partial extension functionf , the class of setsA such thatf is not
dense alongA or A meetsf contains an open dense class. This follows from the
next lemma by lettingn0 = 0.

Lemma 3.13 Let f be any partial extension function, let n0 be any number, and let
D be the class{A : f is not dense along A or A meets f at some number n≥ n0}.
ThenD contains an open and dense subclass.

PROOF. Given a stringx it suffices to show that there is an extensiony of x such
that the basic open class By is contained in D. To show this we first observe that,
by our identification of a set with its characteristic function, the class D can be
restated as

D = {α : ∃∞n(f (α � n) ↓)⇒∃n≥ n0(f (α � n) ↓ & (α � n) f (α � n) @ α)}.

Now, in order to get the desired extensiony of x distinguish the following two
cases. First assume that there is an extension ˆx of x such that|x̂| ≥ n0 and f (x̂) is
defined. Then, for the extensiony= x̂ f(x̂) of x, By is contained D, since anyα∈By

meetsf at |x̂|. Now assume that there is no extension ˆx of x as above. Then, for
any extensiony of x of length≥ n0, f (z) is undefined for all extensionz of y. So,
for anyα ∈ By, f is not dense alongα. Hence By is contained in D. �

The preceding lemma implies the following analog of Theorem 3.9 for partial
extension functions.

Theorem 3.14 For a classC⊆ Σω the following are equivalent:

(i) C contains an open and dense class.

(ii) ∀x ∃yw x (By⊆ C)

(iii) There is a partial extension function f such that

{A : f is not dense along A or A meets f}

is contained inC.

PROOF. Note that the implication(i)⇒ (ii) is immediate by Theorem 3.9 and the
implication(ii)⇒ (iii) follows from the corresponding implication in Theorem 3.9
since a total extension functionf is dense along any set, i.e., for totalf the classes
{A : A meetsf} and{A : f is not dense alongA or A meetsf} coincide. So it only
remains to prove the implication(iii)⇒ (i). But this is an immediate consequence
of Lemma 3.13. �

3.2. Extension Functions 91

Now, by applying Theorem 3.14 and Lemma 3.13 in place of Theorem 3.9 and
Lemma 3.10, respectively, in analogy to Corollary 3.11 we obtain the following
characterization of comeagerness in terms of partial extension functions.

Corollary 3.15 The following are equivalent:

(i) C is comeager.

(ii) There is a countable classF = { fn : n ∈ N} of partial extension functions
such that the class

MF = {A : ∀n∈ N (fn is not dense along A or A meets fn)}

is contained inC.

(iii) There is a countable classF = { fn : n ∈ N} of partial extension functions
such that the class

M∞
F = {A : ∀n∈ N (fn is not dense along A or A meets fn infinitely often)}

is contained inC.

PROOF. This follows from Theorem 3.14 and Lemma 3.13 just as Corollary 3.11
follows from Theorem 3.9 and Lemma 3.10, respectively. �

92 3. BAIRE CATEGORY, FORCING, GENERICITY

3.3 Baire Category and Lebesgue Measure

An alternative to the Baire category concept for classifying the subclasses of the
Cantor spaceΣω according to their size is Lebesgue measure. Here the measure-0
classes are the small classes and the measure-1 classes are large. I.e. meagerness
(comeagerness) in the setting of category corresponds to measure 0 (measure 1)
in the setting of measure. These two classifications, however, are incompatible in
general. There are classes which are large in one setting but small in the other.
To be more precise, there are classes C such that C is comeager and has measure
0 (henceC̄ is meager and has measure 1). We can use the description of Baire
category in terms of (partial) extension functions, however, to give a sufficient
condition for a class C to be both comeager and of measure 1.

In the following we will shortly develop the basic concepts of Lebesgue mea-
sure which we will need later.

The Lebesgue measureµ on the Cantor space is the product measure induced
by the equiprobable measure on the finite space{0,1} which assigns to both 0 and
1 the probability 2−1. So, in particular, for a basic open class Bx,

µ(Bx) = 2−|x|.

In order to obtain the notion of a measure-0 class we have to consider coverings by
basic open sets.

Definition 3.16 (i) Let C be a class, letρ > 0 be a real number, and letB =
{Bxn : n≥ 0} be a countable sequence of basic open classes.B is anρ -cover
of C if

C⊆
⋃
n≥0

Bxn & ∑
n≥0

2−|xn| < ρ.

(ii) A class Chas (Lebesgue) measure0, µ(C) = 0, if for all n≥ 0 there is a
2−n-cover of C.

(iii) A class Chas (Lebesgue) measure1, µ(C) = 1, if the complement of C has
measure 0, i.e., ifµ(C̄) = 0.

For measure-0 and measure-1 classes we get the following properties corre-
sponding to the properties of meager and comeager classes given in Propositions
3.4 and 3.5.

Proposition 3.17 (i) Any countable class has measure 0.

(ii) The countable union of measure-0 classes has measure 0.

3.3. Baire Category and Lebesgue Measure 93

(iii) Any subclass of a measure-0 class has measure 0.

(iv) Any co-countable class has measure 1.

(v) The countable intersection of measure-1 classes has measure 1.

(vi) Any superclass of a measure-1 class has measure 1.

In particular,µ(Σω) = 1. Moreover, the measure concept is nontrivial, i.e. a
measure-1 class does not have measure 0.

Proposition 3.18 Σω is not a measure-0 class. More generally, no measure-1 class
has measure 0.

As mentioned before, in general Baire category and Lebesgue measure are not
compatible. We demonstrate this by giving an example of a comeager class C with
µ(C) = 0.

Lemma 3.19 LetC be the class

C = {A : ∃∞n (A∩Σn = /0)}.

ThenC is comeager and µ(C) = 0.

PROOF. To show that C is comeager, by Corollary 3.11, it suffices to observe
that any setA which infinitely often meets the extension functionf defined by
f (x) = 03|x| is a member of C. To show thatµ(C) = 0, we first observe that, for
any n ≥ 1, the class Cn = {A : A∩ Σn = /0} is covered by the finite 2−n-cover
Bn = {Bx02n : |x|= 2n−1}. It follows that there is a 2−n-cover ofĈn =

⋃
m>nCm.

Since C is contained in̂Cn for all n≥ 0 it follows thatµ(C) = 0. �

We obtain a sufficient condition for a class to be both comeager and of measure
1 by considering bounded extension functions.

Definition 3.20 A (partial) extension functionf is k-boundedif | f (w)|= k when-
ever f (w) is defined, i.e., iff is a (partial) functionf : Σ∗→ Σk. f is boundedif f
is k-bounded for somek.

(Sometimes we will also call a functionf : Σ∗ → Σ≤k k-bounded. Then, for-
mally, f should be considered to be the functionf̂ : Σ∗→Σk which is obtained from
f by extending any valuef (x) to a string of lengthk by adding zeroes at the end.
I.e. f and f̂ have the same domain and iff (x) is defined then̂f (x) = f (x)0k−| f (x)|.)

94 3. BAIRE CATEGORY, FORCING, GENERICITY

Theorem 3.21 (a) LetF = { fn : n≥ 0} be a countable class of bounded total
extension functions. Then

MF = {A : ∀n∈ N (A meets fn)}

and
M∞

F = {A : ∀n∈ N (A meets fn infinitely often)}

are comeager and have measure 1.

(b) LetF = { fn : n≥ 0} be a countable class of bounded partial extension func-
tions. Then

MF = {A : ∀n∈ N (fn is not dense along A or A meets fn)}

and

M∞
F = {A : ∀n∈ N (fn is not dense along A or A meets fn infinitely often)}

are comeager and have measure 1.

PROOF. Since any total extension function is dense along any set, part(a) is a
special case of part(b). So it suffices to prove(b). Moreover, the claim about
comeagerness has been shown in Corollary 3.15 already. So it suffices to show
that µ(MF) = 1 andµ(M∞

F) = 1. In fact, since M∞
F is contained in MF, it suf-

fices to prove the latter. Since the countable intersection of measure-1 classes is a
measure-1 class again this task can be reduced to showing that, for a given bounded
extension functionf , the class

M∞
f = {A : f is not dense alongA or A meetsf infinitely often}

has measure 1 or, equivalently, the complementM∞
f of M f has measure 0.

Note that, for
D = {A : ∃∞n (f (χ(A) � n) ↓)}

and

Nm = {A : ∀n≥m(f (χ(A) � m) ↓⇒ (χ(A) � m) f (χ(A) � m) 6v χ(A))},

M∞
f = D∩ (

⋃
m≥0

Nm).

So in order to show thatµ(M∞
f) = 0 it suffices to show that, for any givenm≥ 0,

µ(D∩Nm) = 0. In other words, givenp≥ 1, we have to show that there is a 2−p-
cover of D∩Nm. So fix m and p and fix k such thatf is k-bounded. Moreover,
for q≥ 1 let Cm,q be the class consisting of all setsA such that there are at leastq

3.3. Baire Category and Lebesgue Measure 95

numbersn > m such thatf (A � n) is defined andA does not meetf at the firstq
such numbersn. Then D∩Nm is contained in Cm,q for all q≥ 1. Hence it suffices
to find a 2−p-coverB of Cm,q for someq≥ 1. Note that given any stringx such that
f (x) is defined, there is one extensiony of x of length|x|+ k, namelyy = x f(x),
such that all setsA in By meet f at |x|. Since there are 2k extensions ofx of length
|x|+k this implies that there is a(2k−1)2−k-cover of Cm,1. So, by induction, we
can argue that there is anρ-cover of Cm,q whereρ = [(2k−1)2−k]q. Since

limq→∞[(2k−1)2−k]q = 0

it follows that, for sufficiently largeq we obtain the desired 2−p-coverB of Cm,q.
�

96 3. BAIRE CATEGORY, FORCING, GENERICITY

3.4 Finite Extension Arguments

We now will use the finite-extension-function characterization of Baire category
in order to demonstrate the relations between this concept and the finite-extension
method. Most of the diagonalization techniques in computability theory and com-
putational complexity have been obtained by refining the finite-extension method.
The finite-extension method itself is an extension of Cantor’s diagonalization tech-
nique, i.e., of a direct diagonalization. Roughly speaking, in a direct diagonaliza-
tion argument we define a setA which is not a member of a countable class C as
follows: we fix an enumeration{Cn : n≥ 0} of C and ensure thatA differs from
thenth setCn in this list by makingA andCn differ on thenth string, i.e., by letting
A(zn) = 1−Cn(zn). More generally we can say that a setA will not be a member
of C if it meets therequirements

Rn : ∃x (A(x) 6= Cn(x))

for all numbersn≥ 0. I.e., the global, infinitary task of ensuring thatA is not a
member of C is split into an infinite sequence of finitary requirements. Here the
requirements are of a particularly simple form, namely in order to meet a single
requirement it suffices to appropriately defineA on any given string.

In a finite-extension argument we also decompose a global task into infinitely
many finitary requirements but the requirements are of a more general nature. Here,
in order to meet a single requirementR, given any finite initial segmentα � n of the
characteristic sequenceα of the setA under construction, there will be a possible
finite extensionα � m, m≥ n, of α � n such that this extension will ensure that the
requirement is met no matter how we will defineA on the remaining inputs. The
desired setA is inductively defined in stagess≥ 0 by specifying longer and longer
initial segmentsα � l(s), wherel(s) < l(s+1) and where at stages, given the part
α � l(s−1) of A defined at the previous stages, the stringl(s) > l(s−1) and the
extensionα � l(s) of α � l(s−1) is chosen so that thesth requirement will be met
by this extension. So, in contrast to a direct diagonalization, for meeting a single
requirement in general we have to appropriately fixA not only on a single string
but on a finite number of strings, and the way we can meet the requirement may
depend on the finite part ofA previously specified.

We explain this method by giving an example from computability theory. A set
which is many-one reducible to its complement is calledself-dual. So, given a list
{ fn : n≥ 0} of the total recursive functions, a non-self-dual setA has to meet the
requirements

Rn : ∃x (A(x) = A(fn(x)))

3.4. Finite Extension Arguments 97

for all numbersn≥ 0. In order to meetRn, given a stringx on whichA is not
yet defined we have to make sure thatA(x) and A(fn(x)) agree. There are two
cases: IfA has been defined onfn(x) before then it suffices to letA(x) have the
valueA(fn(x)). If A has not yet been defined onfn(x) then we have to fixA on x
and fn(x). (So the action for meeting the requirement may depend on the previous
action or may require to determineA on more than one string.) Now, a finite-
extension construction of (the characteristic sequenceα of) a non-self-dual set is
as follows. Given the finite initial segmentα � l(s−1) of α specified prior to stage
s (where l(−1) = 0, i.e., α � l(−1) = ε) we definel(s) andα � l(s) as follows.
Let x = l(s− 1). If fs(x) < x then letl(s) = l(s− 1) + 1 and letα � l(s) = (α �
l(s−1))α(fs(x)). Otherwise, letl(s) = max(x, fs(x))+ 1 and setα � l(s) = (α �
l(s−1))0l(s)−l(s−1) thereby ensuring thatα(x) = α(fs(x)) = 0. Then, in either case,
the extensionα � l(s) of α � l(s−1) guarantees thatRs is met.

Now, in order to relate the finite extension method to Baire category, based
on the above intuitive remarks and observations we first formally define what we
mean by saying that a property can be ensured by the finite-extension method.

Definition 3.22 A property P can beensured by a finite-extension argumentif
there is a sequence{Rn : n≥ 0} of finitary requirements such that any setA which
meets all requirementsRn has propertyP. Here a requirementR is finitary, if for
any stringx there is a stringy extendingx such that any setA with y @ χ(A) meets
R. For a stringy such that all setsA with y @ χ(A) meetR we say thaty forcesR.

Note that the formal definition of a finitary requirementR reflects the fact, that
having specified a finite initial segment of a setA under construction we can finitely
extend this initial segment in such a way that this extension will ensure thatA will
meetR no matter how we will defineA on all larger inputs not specified by this
extension. Next we will observe that, for any finitary requirementR, we can attach
an extension functionf to R such that a setA meetsR if A meetsf . In this case
we say that the extension functionf corresponds to the requirementR or that f is
a strategy for meetingR.

Definition 3.23 Let R be a finitary requirement and letf be a total extension func-
tion. Thenf correspondsto R or f is astrategyfor R if, for any setA which meets
f , A meetsR.

Lemma 3.24 Let R be a finitary requirement. There is an extension function f
corresponding toR.

PROOF. We obtain the required extension functionf by letting f (x) be the least
stringz such thatxzforcesR. �

98 3. BAIRE CATEGORY, FORCING, GENERICITY

Note that for a finitary requirementR there may be many strategies forR not
just one. In a finite-extension construction of a setAwe meet the individual require-
ments by using some given strategies. Formally we can express this as follows.

Definition 3.25 A finite-extension constructionC of a setA with propertyP is
given by a sequence of finitary requirements{Rn : n≥ 0} ensuringP together with
a sequence of corresponding extension functions{ fn : n≥ 0}. The setA defined by
C is inductively defined byχ(A) � l(−1) = χ(A) � 0 = ε andχ(A) � l(n) = (χ(A) �
l(n−1)) fn(χ(A) � l(n−1)) for n≥ 0.

Lemma 3.24 gives the desired relation between the finite-extension method
and Baire category by using the characterization of the latter in terms of extension
functions.

Theorem 3.26 LetP be a property and letCP be the class of sets with propertyP.
Then the following are equivalent.

(i) P can be ensured by a finite-extension argument.

(ii) CP is comeager.

PROOF. First assume thatP can be ensured by a finite-extension argument and
let {Rn : n≥ 0} be a sequence of finitary requirements ensuringP. By Lemma
3.24 fix a sequence of extension functions,F = { fn : n ≥ 0}, corresponding to
{Rn : n ≥ 0} and let MF be the class of languagesA which meet all extension
functions fn (n≥ 0). Then, by choice of the functionsfn, any setA in MF has
propertyP and, by Corollary 3.11, MF is comeager.

For a proof of the other direction assume thatP is a property such that CP is
comeager. By Corollary 3.11 fix a sequence of extension functions,F = { fn : n≥
0}, such that MF is contained in CP. Define requirementsRn (n≥ 0) by

Rn : A meetsfn.

Obviously,Rn is finitary and fn corresponds toRn. Moreover, the requirements
{Rn : n≥ 0} imply P. SoP can be ensured by a finite-extension argument.

�

The above close relation between the finite-extension method and the Baire cat-
egory concept sheds some more light on the finite-extension method. For instance,
since the countable intersection of comeager classes is comeager again, any two -
in fact any countably many - finite extension constructions can be combined. I.e.
if Pn (n≥ 0) are properties which can be ensured by finite-extension constructions
then, by such a construction, we can construct a single setA which has all of these

3.4. Finite Extension Arguments 99

properties. On the other hand, the finite-extension approach can give us some in-
sight on the complexity of the members of a comeager class. Since any countable
class is meager and any complexity class is countable, the fact that the class of sets
with a certain propertyP is comeager does not tell us whether there is a set of a
given complexity with this property. Since in a finite extension-construction the
complexity of the constructed setA is explicitly determined by the complexity of
the strategies used for meeting the individual finitary requirements (see Definition
3.25), an analysis of the complexity of the required strategies will yield complexity
results along these lines.

We now turn to an important refinement of the finite-extension-method, the
so-calledwait-and-seearguments orslow diagonalizationswhich can be linked to
Baire category too, now by using the description of comeager classes in terms of
partial extension functions.

We first describe this technique by giving a simple example. Recall that a set
A is bi-immune to a countable class C if neitherA nor its complement contains
an infinite member of C as a subset. Given an enumeration{Cn : n≥ 0} of C we
can define a sequence of requirements,{Rn : n≥ 0}, ensuring C-bi-immunity as
follows.

R2n : |Cn|= ∞⇒∃x∈Cn (x 6∈ A)

R2n+1 : |Cn|= ∞⇒∃x∈Cn (x∈ A)

(Note that the requirements with even index ensure that no infinite member of C is
a subset ofA and the requirements with odd index ensure the corresponding fact
for Ā.) Now, these requirements are finitary. For instance, we get an extension
function f2n corresponding toR2n as follows. IfCn is finite then requirementR2n

is vacuously met and we can letf2n be any extension function, e.g.,f2n(x) = 0 for
all x. If Cn is infinite, thenf2n can be defined as follows. Givenx, let p= |x| and, by
infinity of Cn chooseq > p minimal such thatzq ∈Cn. Then f2n(x) = 0q+1−p will
do since this ensures that if a setA meetsf2n at p thenA(zq) = 0, i.e.,zq ∈Cn\A.

The above shows that, for any countable class C, C-bi-immunity can be en-
sured by a finite-extension argument. Even, for uniformly computable classes C,
however, the above argument may not yield a recursive set. This follows from the
fact, that in general the infinity problem for such classes can be undecidable. More-
over the above finite-extension argument is not bounded since in general a class C
will have an infinite memberCn with unbounded gaps (i.e. there will be blocks
0m for anym≥ 0 in the characteristic sequence ofCn). (This may be considered
unsatisfying since for meeting a requirementR2n, just as in a simple Cantor diag-
onalization, it suffices to appropriately fixA(x) on a single stringx and the value
to be given toA(x) does not depend on the other values ofA. The difference to

100 3. BAIRE CATEGORY, FORCING, GENERICITY

a Cantor diagonalization is that we cannot choose any stringx for diagonalization
but we are limited to the infinitely many stringsx in Cn.)

These shortcomings of a finite-extension construction of a C-bi-immune set
are overcome in a slow diagonalization of such a set. Here the requirements are as
before but the strategy for meeting the requirements is a different one. While in a
finite-extension argument the requirements are met in order, in fact at stagesof the
construction thesth requirement is met, here the order in which the requirements
are met dynamically depends on the construction. Now, at stages of the construc-
tion of A, we determineA on thesth stringzs = s. I.e., we extend the previously
given initial segmentα � s of the characteristic sequenceα of A by one bit. This
extension is chosen in such a way that we will meet the requirementR2n+i with the
least index 2n+ i ≤ s which has not been met before and which can be met now.
(Note that the latter will be the case if and only ifCn(s) = 1.)

This idea is made more precise by introducing the following notions. We say
that a requirementR2n+i is satisfied at (the end of) stage sif there is a stringx≤ s
such thatx∈Cn andA(x) = i and we say thatR2n+i requires attention at stage sif
2n+ i ≤ s, R2n+i is not satisfied at stages−1, ands∈Cn.

Then, at stagesof the construction, givenα � swe fix 2n+ i minimal such that
the requirementR2n+i requires attention (if there is any), letA(s) = i, and say that
R2n+i receives attentionor isactiveat stages.

Now to show that the constructed setA meets all requirements, hence is C-bi-
immune, we start with two easy observations. First, note that a requirementR2n+i

which is active at stages is satisfied at stages. Second, ifR2n+i is satisfied at some
stages, thenR2n+i is satisfied at all later stages, hence will not require or receive
attention at any stage> s, andR2n+i is actually met. In particular it follows that
any requirement becomes active at most once. Now, for a contradiction, assume
that the requirementR2n+i is not met. Then, by the above observations, there is
no stages such thatR2n+i is satisfied at stages or such thatR2n+i becomes active
at stages. On the other hand, there are infinitely many stagess with s∈Cn since
otherwiseR2n+i trivially holds. Since any requirement becomes active at most
once, by the latter we may chooses> 2n+ i such thats∈Cn and no requirement
Rm with m< 2n+ i becomes active at stages. It follows thatR2n+i requires and
receives attention at stages. So, by the above,R2n+i is satisfied at stages hence
met contrary to assumption.

Note that the above construction ofA is recursive in{Cn : n≥ 0}. So, for any
given uniformly recursive class C the construction yields a recursive C-bi-immune
set. In particular, this implies Theorem 2.66.

In the above construction of a C-bi-immune set the strategy for meeting a single
requirement can be described by a partial extension function. To be more precise,
the partial extension functionf2n+i defined byf2n+i(x) = i if z|x| ∈Cn and f2n+i(x) ↑

3.4. Finite Extension Arguments 101

otherwise corresponds to the requirementR2n+i as follows. If f2n+i is not dense
along the constructed setA thenCn is finite whence the requirementR2n+i is triv-
ially met. On the other hand, ifA meets f2n+i at some numberm thenzm ∈ Cn

andA(zm) = i whenceR2n+i is met. So in order thatA meets requirementR2n+i it
suffices that eitherf2n+i is not dense alongA or A meetsf2n+i .

The construction of a C-bi-immune differs from a general wait-and-see argu-
ment in one respect, namely, as pointed out above already, the diagonalization
depends only a single input. This is reflected by the fact that the partial extension
functions attached to the individual requirements are 1-bounded. In a general argu-
ment, such a constant bound on the required extension will not exist. In analogy to
the formalization of finite- extension arguments in Definitions 3.22 and 3.23 above,
we can formalize the wait-an-see method as follows.

Definition 3.27 A propertyP can beensured by a wait-and-see argumentif there
is a sequence{Rn : n≥ 0} of quasi-finitary requirements such that any setA which
meets all requirementsRn has propertyP.

Here a requirementR is quasi-finitary, if there is a setDR of strings such that
(1) for any stringx ∈ DR there is a stringy extendingx such that any setA with
y @ χ(A) meetsR (we say thaty forcesR) and (2) any setA suchDR contains at
most finitely many initial segments ofA meetsR too.

Definition 3.28 Let R be a quasi-finitary requirement and letf be a partial exten-
sion function. Thenf correspondsto R or f is a strategyfor R if, for any setA
such thatf is not dense alongA or A which meetsf , A meetsR.

Again one can easily show that there is a strategy for any quasi-finitary require-
ment.

Lemma 3.29 Let R be a quasi-finitary requirement. There is a partial extension
function f corresponding toR.

PROOF. Fix DR as in Definition 3.27. We obtain the required extension functionf
by letting f (x) be defined if and only ifx DR and by lettingf (x) be the least string
z such thatxzforcesR if f (x) is defined. �

The above together with the characterization of the comeager classes in terms
of partial extension functions shows that a propertyP can be ensured by a wait-
and-see argument if and only if the corresponding class CP of sets with property
P is comeager. Together with the similar result for the finite-extension method we
obtain the following equivalence theorem.

102 3. BAIRE CATEGORY, FORCING, GENERICITY

Theorem 3.30 LetP be a property and letCP be the class of sets with propertyP.
Then the following are equivalent.

(i) P can be ensured by a wait-and-see argument.

(ii) P can be ensured by a finite-extension argument.

(iii) CP is comeager.

PROOF. This easily follows from Lemma 3.29 and Corollary 3.15 together with
Theorem 3.26 �

The above theorem shows that in principle the wait-and-see method is not more
powerful than the finite-extension method, i.e., there is no propertyP which can
be ensured by a wait-and-see argument but not by a finite-extension argument. In
fact one can easily show that the notion of a finitary requirement and the notion of
a quasi-finite requirement used in the formal characterizations of the finite-extend
method and the wait-and-see method, respectively, coincide.

The advantage of the wait-and-see arguments stems from the fact that this
method admits simpler strategies, hence yields witnesses for a propertyP of lower
complexity. We have exemplified this abov by looking at the construction of a
C-bi-immune set using both, a finite extension argument and a wait-and-see argu-
ment. While the former construction was noneffective hence (in general) gave a
nonrecursive set, for uniformly recursive C the latter proof was effective thereby
yielding a recursive C-bi-immune set. This phenomenon has been closer ana-
lyzed in the literature. For instance, if we let C be the important class P of the
polynomial-time computable sets, then Mayordomo (1994) has shown that there
is no uniformly recursive set of total extension functions ensuring P-bi-immunity
(whence any finite-extension construction yields only a nonrecursive P-bi-immune
set) while Ambos-Spies (1996) has shown that there is a uniformly recursive class
of partial extension functions of time complexityO(n2) ensuring P-bi-immunity
whence a P-bi-immune set in DTIME(23n) can be constructed by a wait-and-see ar-
gument. Moreover, as pointed out above already, the finite-extension construction
of a C-bi-immune set requires unbounded extensions whereas for the wait-and-
see construction 1-bounded partial extension functions suffice. So, by Theorem
3.21, the wait-and-see approach shows that (for any countable class C the class
of C-bi-immune sets has measure 1, an observation we cannot make based on the
finite-extension approach.

In order to analyze these complexity-issues more closely, in the next section
we introduce generic sets. Intuitively speaking, this will allow us to define for
any complexity level a notion of genericity and weak genericity such that the cor-
responding generic sets will have all properties which can be ensured by wait-

3.4. Finite Extension Arguments 103

and-see arguments based on strategies of the corresponding complexity level while
the weakly generic sets will have all properties which can be ensured by finite-
extension arguments based on strategies of the corresponding complexity level.

104 3. BAIRE CATEGORY, FORCING, GENERICITY

3.5 Generic Sets

The finite-extension method and, similarly, the wait-and-see method have been in-
troduced as diagonalization techniques for constructing sets with a certain property
P. Starting from this propertyP, first an infinite list of (quasi-)finitary requirements
Rn, n≥ 0, is given such that these requirements together ensureP. Then strategies
fn (i.e., partial or total extension functions) corresponding to the requirementsRn

are designed and, finally, these strategies are used in a canonical way for defining
a setA with propertyP. So the complexity ofA will depend on the complexity
of the strategiesfn, hence, by analyzing the complexity of these strategies, we can
analyze some complexity issues of sets with propertyP.

Now we proceed in the opposite direction. We start with an arbitrary countable
family F of strategies and look at the property ensured by these strategies. We call
this propertyF-genericity and sets with this propertyF-generic. Typically,F will
consist of all the strategies of a certain complexity level, for example the recursive
or the polynomial-time computable strategies. (Note that all complexity classes are
countable, hence the corresponding familyF of strategies will be countable too.)
By the relations between the finite extension-method and Baire category, generic
sets will always exist, in fact the class ofF-generic sets will be comeager.

Note thatF-genericity is the strongest property which can be ensured by fam-
ilies of strategies which are members ofF. So if F consists of all strategies of a
certain complexity level,F-genericity will be the strongest property we can obtain
by strategies whose complexities do not exceed this level.

So, in order to show that strategies of a certain complexity level do not suffice
for ensuring a certain propertyP, it suffices to show that there is a set which is
generic for this family of strategies but which does not have propertyP. This
shows that generic sets are of great interest for the formal analysis of the strength
of resource-bounded diagonalization techniques (see Ambos-Spies (1996) for more
details).

Generic sets play another important role in structural investigations in com-
putability theory and computational complexity theory for obtaining strong sepa-
rations. If there are complexity classes C1 ⊂ C2 such that there is a setG in C2

which is generic for C1 then we may deduce that all diagonalization arguments
based on strategies from C1 can be carried out inside of C2. So, roughly speak-
ing, the genericity concepts will combine the advantages of Baire category, namely
combinability and modularity, with a way to control the complexity of the witness
sets.

After these intuitive remarks pointing out some of the important aspects and

3.5. Generic Sets 105

applications of genericity concepts, we will now formally introduce genericity. We
will distinguish between (general) genericity based on partial extension functions
andweak genericitybased on total extension functions. Moreover, we will call a
genericity concept abounded genericityconcept if it is based on bounded (total or
partial) extension functions.

Definition 3.31 Let F be a countable class of partial extension functions and let
F[tot] be the class of total extension functions inF. A setG is F-genericif G meets
all partial extension functions inF which are dense alongG, i.e., if G is a member
of the class

MF = {A : ∀ f ∈ F (f is not dense alongA or A meetsf)}.

A setG is weaklyF-genericif G meets all total extension functions inF, i.e., if G
is a member of the class

MF[tot] = {A : ∀ f ∈ F[tot] (A meetsf)}.

The relations betweenF-genericity and weakF-genericity are as follows.

Proposition 3.32 LetF be any countable class of partial extension functions. Then
anyF-generic set is weaklyF-generic. Moreover, ifF contains only total functions
thenF-genericity and weak-F-genericity coincide.

PROOF. This is immediate by definition and by the fact that any total extension
function is dense along all sets. �

Some examples of genericity notions which have been studied in the literature
are as follows: By lettingF be the class of all arithmetically definable partial ex-
tension functions we obtain arithmetical genericity introduced by Feferman (1965)
and by considering the class of partial recursive extension functions we obtain the
notion of 1-genericity introduced by Hinman (1969) which plays a major role in
the degrees of unsolvability (see e.g. Jockusch (1980)). By considering the class
of total recursive functions we obtain the genericity concept related to the effec-
tive Baire category concept of Mehlhorn (1973). Moreover various of the resource
bounded genericity concepts introduced in complexity theory can be obtained by
letting F be the class of (partial or total, bounded or unbounded) extension func-
tions computable within some give time or space bounds where in some cases the
representation of the input or the output has to be modified (see e.g. Ambos-Spies
(1996), Ambos-Spies et al. (1987), Ambos-Spies et al. (1988), Fenner (1991), Fen-
ner (1995), Fleischhack (1985), Fleischhack (1986), and Lutz (1990)). The finite-
state genericity concepts introduced and discussed in this thesis will be obtained

106 3. BAIRE CATEGORY, FORCING, GENERICITY

by considering classesF of different types of extension functions all of which are
computable by finite automata.

We next turn to the existence ofF-generic sets.

Theorem 3.33 Let F be any countable class of partial extension functions. Then
the classes of theF-generic sets and the weaklyF-generic sets are comeager.

PROOF. This is immediate by Corollary 3.15 and Proposition 3.32. �

If the classF consists only of bounded extension functions (see Definition 3.20)
then we can strengthen the previous theorem.

Definition 3.34 Let F be a countable class of bounded partial extension functions.
Then (weak)F-genericity is called aboundedgenericity concept.

Theorem 3.35 For any bounded genericity concept, the class of generic sets is
comeager and has measure 1. I.e., ifF is a countable class of bounded partial
extension functions then the classes of theF-generic sets and of the weaklyF-
generic sets are comeager and have Lebesgue measure 1.

PROOF. By Theorem 3.21. �

In our definition of anF-generic setG we require thatG meets all partial ex-
tension functions inF which are dense alongG. For sufficiently closed function
classesF, however,G will meet such a partial functionf not just once but infinitely
often. Since this observation will be very useful in the following, we will address
this matter more formally and will introduce some related notation.

Definition 3.36 Let F be a countable class of partial extension functions and let
F[tot] be the class of total extension functions inF. A setG is i.o.-F-genericif G
infinitely often meets all partial extension functions inF which are dense alongG,
i.e., if G is a member of the class

M∞
F = {A : ∀ f ∈ F (f is not dense alongA or A infinitely often meetsf)}.

A setG is weakly i.o.-F-genericif G infinitely often meets all total extension func-
tions inF, i.e., if G is a member of the class

M∞
F[tot] = {A : ∀ f ∈ F[tot] (A infinitely often meetsf)}.

Lemma 3.37 Let F be a class of (partial) extension functions which is closed un-
der finite variants. Then anyF-generic set is i.o.-F-generic.

3.5. Generic Sets 107

If we say that a classF of (partial) extension functions is closed under finite
variants (c.f.v.) then this means that all extension functions of the same type which
are a finite variant of a function inF are a member ofF again. So, for example,
if F is a class of total functions then we only consider finite variants which are
total too and ifF is a class ofk-bounded functions then we only consider finite
variants which arek-bounded again. Though this use of the term of closure under
finite variants might be somewhat ambiguous since in general the type we have in
mind will not be mentioned explicitly, the intended type should be obvious from
the context so that no confusion should arise.

PROOF OFLEMMA 3.37. Assume thatG is F-generic and fixf ∈ F such thatf is
dense alongG. We have to show thatG infinitely often meetsf . For a contradiction
assume that this is not the case. Then we may fixm≥ 0 such that, for alln≥ m
such thatf (γ � n) ↓, (γ � n) f (γ � n) 6v γ, whereγ is the characteristic sequence ofG.
Consider the following finite variantg of f : Givenx such that|x| ≥m, g(x) = f (x).
Otherwise, letg(x) = 1−G(z|x|). (Note that, for total ork-boundedf , g is total or
k-bounded again. I.e.,g is of the same type asf .) Now, by closure ofF under finite
variants,g∈ F. Moreover, sincef is dense alongG, g is dense alongG too. So,
by F-genericity ofG, G meetsg at some numbern. By definition ofg, however,G
does not meetg at any number less thanm. Son≥m. Since f andg agree on all
inputs of length at leastm it follows thatG meetsf atn. By n≥m this contradicts
the choice ofm. �

We close our discussion of genericity by giving some examples showing how
closure properties of a function classF carry over to the corresponding class of
F-generic sets.

Definition 3.38 A classF of (partial) extension functions is closed underfinite
replacementif for any wordsx andx′ with |x| = |x′| the following holds. For any
function f ∈ F there is a functionf ′ ∈ F such thatf ′(x′y) = f (xy) for all y∈ Σ∗.

Lemma 3.39 Let F be a class of (partial) extension functions which is closed un-
der finite replacement. Then the class of the i.o.-F-generic sets is closed under
finite variants.

PROOF. Assume thatG is i.o.-F-generic and thatG′ is a finite variant ofG. We
have to show thatG′ is i.o.-F-generic too. So fixf ∈ F. It suffices to show that
G′ meetsf infinitely often. SinceG′ is a finite variant ofG we may fix a number
n such thatG(zm) = G′(zm) for all m≥ n. Now let x = G′ � n and x′ = G � n.
Then, by closure ofF under finite replacement, there is a functionf ′ ∈ F such that
f ′(x′y) = f (xy) for all y ∈ Σ∗. By choice ofn, x andx′, G′ meetsf at m≥ n iff

108 3. BAIRE CATEGORY, FORCING, GENERICITY

G meetsf ′ at m. Since, by i.o.-F-genericity,G meetsf ′ infinitely often, it follows
thatG′ meetsf infinitely often. �

Note that, by Lemmas 3.37 and 3.39, for any countable classF of (partial)
extension functions which is closed under finite variants and finite replacement the
class ofF-generic sets is closed under finite variants.

Recall that for a partial functionf : Σ∗→ Σ∗ thedual function f̂ is defined by
f̂ (x) = f (x) if f (x) is defined and̂f (x) ↑ otherwise, wherex is the dual string ofx,
i.e.,ε = ε and(a1 . . .an) = a1 . . .an = (1−a1) . . .(1−an).

Lemma 3.40 Let F be a class of (partial) extension functions such that, for any
(partial) function f∈ F, f̂ ∈ F. Then the class of (i.o.-)F-generic sets is closed
under complement.

PROOF. This easily follows from the observation that, for any setA and any partial
extension functionf , f is dense alongA iff f̂ is dense alongA, andA meetsf at n
iff A meetsf̂ atn. �

CHAPTER 4

Bounded Finite-State Genericity

110 4. BOUNDED FINITE-STATE GENERICITY

In this chapter – which is the core of this thesis - we introduce and analyze
bounded finite-state genericity, i.e., genericity notions based on bounded extension
functions computable by finite automata. By analyzing the properties which all of
the corresponding generic sets have in common we can decide which properties
can be forced by finite extension or wait-and-see arguments where the strategy for
meeting a single requirement is bounded and computable by a finite automaton.

In Section 4.1.1 we introduce the basic concepts:k-reg-genericity capturing
regular partial extensions of lengthk, ω-reg-genericity or bounded reg-genericity
capturing regular partially defined extensions of arbitrary constant length, and the
corresponding weak genericity notions based on extensions which are defined ev-
erywhere. We also show thatk-reg-genericity andω-reg-genericity coincide (for
anyk), i.e., that the power of partially defined bounded extension strategies com-
putable by finite automata does not depend on the lengthk of the extension. In
order to show that, in contrast to this observation, the power of totally defined
bounded finite-state extension strategies depends on the length of the admissible
extension, in Section 4.1.2 we explore the saturation properties of the different
types of reg-generic sets. Our main result here is that both, the bounded reg-generic
sets and the weaklyω-reg-generic sets coincide with the saturated sets. This result
can be viewed as Baire category counter part to the result of Schnorr and Stimm
(1971/72) in the setting of measure which asserts that the finite-state random sets
are just the sets with normal characteristic sequence. Our result also shows that
if we consider extension strategies of constant but arbitrary length then partially
defined finite-state strategies are not more powerful than totally defined finite-state
strategies. This surprising result contrasts results on genericity and weak generic-
ity in the setting of complexity theory (see the results on P-immunity in Section
3.4). After discussing some closure properties of the bounded finite-state generic-
ity notions in Section 4.1.3, we then analyze the diagonalization strength of these
genericity notions (Section 4.1.4). In particular we show that no bounded reg-
generic set is regular but that there are context-free – in fact linear – languages
which are bounded reg-generic. So this genericity notion provides a strong separa-
tion of the classes of regular and context-free (or linear) languages at the bottom of
the Chomsky hierarchy. We may also conclude that these genericity notions do not
imply REG-bi-immunity since, as we have shown in Section 2.4, no context-free
language is REG-bi-immune. Finally, we illustrate the difference in power of the
weak and general bounded finite-state genericity concepts if we fix the length of
the extension by showing that, in contrast to the above, there are regular weakly
1-reg-generic sets.

In Section 4.2 we discuss some variants of the bounded finite-state genericity
concepts which are based on extension strategies working with partial information
on the initial segment specified previously. We consider the following two limi-

. 111

tations: First (in Section 4.2.1 we consider length invariant extension strategies,
i.e., extension strategies which are not given the initial segment itself but only its
length. Second (in Section 4.2.2) we look at oblivious extension strategies, i.e.,
strategies which remember the lastk bits of the given initial segment (for some
constantk). By comparing the strength of the corresponding (apparently weaker)
finite-state genericity concepts with the previously introduced concepts we can see
what information on a given initial segment can be extracted and used by a finite
automaton. While for the common bounded genericity concepts in computational
complexity theory the corresponding length invariant or oblivious genericity con-
cepts are strictly weaker, here we show that some of the length invariant and obliv-
ious bounded finite-state genericity notions coincide with bounded reg-genericity
thereby demonstrating the low computational power of finite automata.

In the remainder of this chapter we discuss the question whether we can in-
troduce some stronger bounded finite-state genericity concepts which force REG-
bi-immunity. First, in Section 4.3 we formalize finite-state Cantor style diago-
nalization arguments. In such a diagonalization argument, the diagonalization at
a stringx does not depend on the values of the constructed setA on the previ-
ous strings (as in a finite extension argument) but is independent of the previously
specified part ofA. By formalizing these arguments in terms of diagonalization
functions and by introducing corresponding genericity notions we show that to-
tal finite-state Cantor diagonalization functions can force nonregularity (but not
more) and partial finite-state Cantor diagonalization functions can force REG-bi-
immunity (but not more), namely the finite-state Cantor style generic sets are just
the REG-bi-immune sets and the weakly finite-state Cantor style generic sets are
just the nonregular languages. Based on these observations, in Section 4.4 we in-
troduce the desired stronger bounded finite-state genericity concepts subsuming
both, bounded reg-genericity and Cantor style reg-genericity, by considering regu-
lar extension functions which obtain as their input the given finite initial segment
in a redundant form allowing a finite automaton to extract both, the standard rep-
resentation of this initial segment and the string at which the diagonalization takes
place.

112 4. BOUNDED FINITE-STATE GENERICITY

4.1 Bounded reg-Genericity

In this section we introduce and investigate bounded genericity concepts based on
regular extension functions. By considering total extension functions and partial
extension functions and by considering extensions of arbitrary constant length and
extensions of given constant length we get a variety of concepts. Recall that we
have introduced (partial) regular functionsf of type f : Σ∗→ Σk in Section 2.3 and
the notion of bounded andk-bounded extension function in Section 3.3. There we
have also explained what it means that a partial function is dense along a set and
that a set meets an extension function.

4.1.1

Definitions and
Basic Facts Definition 4.1 A set G is k-reg-genericif it meets all regular partialk-bounded

extension functions which are dense alongG; G is weakly k-reg-genericif G meets
all regular totalk-bounded extension functions;G is ω-reg-genericor bounded
reg-genericif G is k-reg-generic for allk≥ 1, i.e., if G meets all regular partial
bounded extension functions which are dense alongG; G is weaklyω-reg-generic
if G is weaklyk-reg-generic for allk≥ 1, i.e., if G meets all regular total bounded
extension functions.

We apply the above notions to infinite sequences as well as to sets. E.g. we
call a sequenceα k-reg-generic if the setS(α) corresponding toα is k-reg-generic.

The following relations among the bounded finite-state genericity concepts are
immediate by definition (wherek≥ 2).

ω-reg-generic =⇒ weaklyω-reg-generic
⇓ ⇓

(k+1)-reg-generic =⇒ weakly(k+1)-reg-generic
⇓ ⇓

k-reg-generic =⇒ weaklyk-reg-generic
⇓ ⇓

1-reg-generic =⇒ weakly 1-reg-generic

(4.1)

Note that the finite-state genericity concepts above are genericity notions in
the sense of Definition 3.31. For instance, (weak)ω-reg-genericity coincides with
(weak)F-genericity if we letF be the class of partial regular extension functions
of type f : Σ∗→ Σk for k≥ 1. Moreover, all of the above genericity concepts are
bounded in the sense of Definition 3.34 whence, by Theorem 3.35, the correspond-

4.1. Bounded reg-Genericity 113

ing generic sets are abundant in the sense of both, category and measure. By (4.1)
it suffices to state this observation for bounded reg-genericity.

Theorem 4.2 The class of bounded reg-generic sets (i.e.,ω-reg-generic sets) is
comeager and has measure 1.

PROOF. By Theorem 3.35. �

Before we address the question which of the implications in (4.1) are strict, it
will be useful to note that, for the above genericity notions, a generic set meets a
corresponding extension function not just once but infinitely often. This technical
fact will be applied in the proofs of many of our results.

Lemma 4.3 Let A be k-reg-generic. Then A infinitely often meets every regular
partial k-bounded extension function f which is dense along A, i.e.,(A � n) f (A �
n) @ A for infinitely many n. Similarly, any weakly k-reg-generic set A meets every
regular total k-bounded extension function infinitely often.

PROOF. Since, by Lemma 2.46, the class of regular (partial)k-bounded extension
functions is closed under finite variants, this is immediate by Lemma 3.37.�

Next we use Lemma 4.3 to show that from the above genericity concepts the
concepts based on partial extension functions coincide.

Theorem 4.4 For any set A the following are equivalent.

1. A is bounded reg-generic, i.e.,ω-reg-generic.

2. A is1-reg-generic.

PROOF. By (4.1) it suffices to show that any 1-reg-generic set isω-reg-generic.
So letA be 1-reg-generic. In order to show thatA is ω-reg-generic, by definition,
it suffices to show thatA is k-reg-generic for all numbersk≥ 1. We proceed by
induction. The casek = 1 holds by assumption. For the inductive step fixk≥ 1
and, by inductive hypothesis, assume thatA is k-reg-generic. We have to show that
A is (k+ 1)-reg-generic. Letf be any regular partial(k+ 1)-bounded extension
functions which is dense alongA. It suffices to show thatA meetsf . For x such
that f (x) is defined, letf (x)− be the firstk bits of f (x), and, fori ≤ 1, define the
partialk-bounded extension functionfi by letting fi(x) = f (x)− if f (x) is defined
and f (x) = f (x)−i and by lettingfi(x) be undefined otherwise. Then, as one can
easily check, the partial functionsf0 and f1 are regular andk-bounded. Moreover,
for any x such thatf (x) is defined, eitherf0(x) or f1(x) is defined. Hence, by

114 4. BOUNDED FINITE-STATE GENERICITY

density of f alongA, f0 or f1 is dense alongA too. For the remainder of the proof
fix i ≤ 1 such that the regular partialk-bounded extension functionfi is dense along
A.

Then, by inductive hypothesis and by Lemma 4.3,A meetsfi infinitely often,
i.e.,

∃∞n≥ 1 ((α � n) fi(α � n) @ α) (4.2)

whereα is the characteristic sequence ofA. Define the partial 1-bounded extension
functiong : Σ∗→ Σ by letting

g(w) =

{
i if ∃x @ w (fi(x) ↓ & w = x fi(x))

↑ otherwise.

Then, as one can easily check,g is regular and, by (4.2),g is dense alongA. So, by
1-reg-genericity ofA, A meetsg at some numbern, i.e.,g(α � n) is defined and

(α � n)g(α � n) @ α. (4.3)

By definition of fi andg, the former implies thatf (α � (n−k)) and fi(α � (n−k))
are defined and

(α � n)g(α � n)= (α � n)i =(α � (n−k)) fi(α � (n−k))i =(α � (n−k)) f (α � (n−k)).

By (4.3) this implies that(α � (n− k)) f (α � (n− k)) @ α, i.e, thatA meets f at
n−k. �

In order to determine which of the other implications in (4.1) are strict, next
we explore the saturation properties of the bounded finite-state generic sets.

4.1.2

Finite-State
Genericity vs.
Saturation

We will now show that some of the genericity concepts in (4.1) coincide with
saturation. To establish this we will need the following two relations between the
bounded finite-state genericity notions in (4.1) and (partial) saturation.

Lemma 4.5 Let A be weakly k-reg-generic (k≥ 1). Then A is k-ω-saturated.

PROOF. Given any stringx of lengthk we have to show thatx occurs infinitely
often in the characteristic sequenceα of A, i.e., there are infinitely manyn such
that(A � n)x @ α. Define thek-bounded regular extension functionf by f (y) = x
for all y∈ Σ∗. Then, by weakk-reg-genericity ofA and by Lemma 4.3,(A � n)x =
(A � n) f (A � n) @ α for infinitely manyn. �

Lemma 4.6 Let A be saturated. Then A is1-reg-generic.

4.1. Bounded reg-Genericity 115

The proof of this lemma uses the characterization of saturated sequences in
terms of regular partial prediction functions together with the observation that par-
tial 1-bounded extension functions may alternatively be interpreted as partial pre-
diction functions.

PROOF. Let f : Σ∗→ Σ be a regular partial 1-bounded extension function which
is dense alongA. We have to show thatA meetsf at somen. For a contradiction
assume that this is not the case, and letα be the characteristic sequence ofA. Then,
by density off alongA,

∃∞n (f (α � n) ↓) (4.4)

and, by failure ofA to meetf ,

∀n (f (α � n) ↓⇒ (α � n)(1− f (α � n)) @ α) (4.5)

Now let f be the negation off , i.e., to be more precise,

f (x) =

{
1− f (x) if f (x) ↓
↑ otherwise.

Then, obviously,f is regular and, by (4.4) and (4.5),

∃∞n (f (α � n) ↓)

and

∀n (f (α � n) ↓⇒ (α � n) f (α � n) @ α).

So, if we view f as a partial prediction function, then, by the former,f makes
infinitely many predictions aboutα and, by the latter, all predictions aboutα made
by f are correct. It follows by Theorem 2.120 thatα is not saturated which gives
the desired contradiction. �

We are now ready to state the following equivalence theorem.

Theorem 4.7 The following are equivalent.

(i) A is saturated.

(ii) A is 1-reg-generic.

(iii) A is bounded reg-generic, i.e.,ω-reg-generic.

(iv) A is weaklyω-reg-generic.

116 4. BOUNDED FINITE-STATE GENERICITY

The equivalence of saturation and bounded reg-genericity can be viewed as
an effectivization of Staiger’s observation that the class of saturated sequences is
comeager and has measure 1 (see Theorem 2.101): Since bounded reg-genericity
is a bounded genericity concept, the class of bounded reg-generic sets is comeager
and has measure 1 (see Theorem 4.2).

PROOF OF THEOREM 4.7. It suffices to show the implications(i) ⇒ (ii) ⇒
(iii)⇒ (iv)⇒ (i). The implication(i)⇒ (ii) holds by Lemma 4.6, the implication
(ii)⇒ (iii) holds by Theorem 4.4, and the implication(iii)⇒ (iv) is immediate by
definition (see (4.1)). Finally, for a proof of the implication(iv)⇒ (i) note that,
by Lemma 4.5, any weaklyk-reg-generic set isk-ω-saturated (k≥ 1). Since, by
definition, a weaklyω-reg-generic setA is weaklyk-reg-generic for allk≥ 1, it
follows thatA is k-ω-saturated for allk≥ 1, hence saturated. �

In contrast to Theorem 4.7, the weakk-reg-genericity notions lead to a proper
hierarchy for growingk. This also follows from the partial saturation properties
of the weaklyk-reg-generic sets. It suffices to complement the positive saturation
property of these sets in Lemma 4.5 by the following negative result.

Lemma 4.8 For any k≥ 1 there is a weakly k-reg-generic set A which is not(k+
1)-1-saturated.

PROOF. It suffices to construct a weaklyk-reg-generic setA such that(A �
n)1k+1 6v α for all n≥ 0, whereα is the characteristic sequence ofA. We do this
by a finite extension argument. Fix an enumeration{ fe : e≥ 0} of the total regular
k-bounded extension functions. Definen0 < n1 < n2 . . . andA � ne by induction on
e≥ 0 by lettingn0 = 0 andA � ne+1 = (A � ne) fe(A � ne)0. Obviously this ensures
thatA has the required properties. �

Theorem 4.9 For any k≥ 1 there is a weakly k-reg-generic set which is not weakly
(k+1)-reg-generic.

PROOF. This is immediate by Lemmas 4.5 and 4.8. �

Theorems 4.7 and 4.9 together with (4.1) give the desired complete characteri-
zation of the relations among the bounded finite-state genericity notions.

Theorem 4.10 For k≥ 2 the following and only the following implications hold

4.1. Bounded reg-Genericity 117

(up to transitive closure).

ω-reg-generic ⇐⇒ weaklyω-reg-generic
m ⇓

(k+1)-reg-generic weakly(k+1)-reg-generic
m ⇓

k-reg-generic weakly k-reg-generic
m ⇓

1-reg-generic weakly1-reg-generic

(4.6)

By our detailed analysis of the saturated sets and sequences in Section 2.6,
we can exploit the relations between saturation and bounded finite-state genericity
in order to obtain a series of interesting results on the latter notion. In the next
two subsections we will use this approach in order to give some closure properties
and to analyze the diagonalization strength of the bounded finite-state genericity
notions.

4.1.3

Closure
Properties

By Theorem 4.7 the closure properties of the saturated sets and sequences obtained
in Section 2.6 directly carry over to the bounded reg-generic sets and sequences.
In particular we obtain the following.

Lemma 4.11 The class of the bounded reg-generic sets is closed under finite vari-
ants and under complement. Moreover, the class of the bounded reg-generic se-
quences is closed under closeness.

PROOF. By Theorem 4.7 this immediately follows from Proposition 2.109 and
Lemma 2.108. �

Lemma 4.12 Let A be bounded reg-generic.

1. For any word w∈ Σ∗, wA is bounded reg-generic too. In fact, any set B such
that B∩wΣ∗ = wA is bounded reg-generic.

2. For any set B, the effective disjoint union of A and B, A⊕B = 0A∪ 1B =
{0v : v∈ A}∪{1w : w∈ B}, is bounded reg-generic.

PROOF. By Theorem 4.7 this immediately follows from Lemma 2.111. �

In order to explore the closure properties of the weaklyk-reg-generic sets we
have to use some more direct arguments. Next we will discuss the results corre-
sponding to Lemma 4.11 in this setting.

118 4. BOUNDED FINITE-STATE GENERICITY

Lemma 4.13 For k≥ 1, the class of the weakly k-reg-generic sets is closed under
finite variants and under complement.

PROOF. As one can easily show, the class of total regulark-bounded extension
functions is closed under finite replacement and under dual functions. So the clo-
sure of the class of the weaklyk-reg-generic sets under finite variants and under
complement follows from Lemmas 3.39, 3.40 and 4.3. �

In contrast to Lemma 4.11, however, the classes of the weaklyk-reg-generic
sequences (k≥ 1) are not closed under closeness.

Lemma 4.14 For any k≥ 1 there are sequencesα and β such thatα is weakly
k-reg-generic,β is close toα andβ is not weakly k-reg-generic.

PROOF. Let k≥ 1 be given. By a finite extension argument we construct a weakly
k-reg-generic setA such thatA\{0}∗ is not weaklyk-reg-generic. Then the charac-
teristic sequencesα andβ of the setsA andA\{0}∗, respectively, have the required
properties.

Let F= { fn : n≥ 0} be an enumeration of the regular totalk-bounded extension
functions and fixn0 such thatk < 2n0. ThenA � 0n0+e is defined by induction
on e as follows. LetA � 0n0 be the empty set, i.e., the sequence 02n0−1. Then,
givenA � 0n0+e, letA � 0n0+e+1 = A � 0n0+e fe(A � 0n0+e)02n0+e+1−k. So the extension
A � 0n0+e+1 of A � 0n0+e ensures thatA meets thee-th regulark-bounded extension
function fe. The block of zeroes followingA� 0n0+e fe(A� 0n0+e) in the definition of
A � 0n0+e+1 ensures that any block 1m of ones inα has length at mostk. Moreover,
such a blockA(zp)...A(zp+k−1) = 1k of maximum lengthk begins with position
zp = 0n0+e for somee≥ 0. So the word 1k does not occur in the characteristic
sequenceβ of A\ {0}∗. By Lemma 4.5 this implies thatA\ {0}∗ is not weakly
k-reg-generic. �

4.1.4

On the
Diagonalization
Strength of
Bounded
reg-Genericity

We will now look at the diagonalization strength of the bounded finite-state gener-
icity concepts where, by (4.6), it suffices to consider bounded reg-genericity and
weakk-reg-genericity fork≥ 1. The first question to ask here is of course whether
these concepts are strong enough to diagonalize over all regular sequences and
all regular sets, i.e., whether the characteristic sequence of any generic set (of a
given type) is nonregular and whether any generic set is nonregular. Recall that in
Section 2.5.2 we have shown that any language which has a regular characteristic
sequence is regular but that there are regular languages with nonregular character-
istic sequences.

4.1. Bounded reg-Genericity 119

Our first observation is that any of the bounded finite-state genericity concepts
forces nonregularity of the characteristic sequence. In fact, for our weakest reg-
genericity concept, the generic sets are just the sets with nonregular characteristic
sequence.

Theorem 4.15 A set A is weakly 1-reg-generic if and only if the characteristic
sequenceα of A is not regular.

PROOF. The proof is by contraposition. First assume thatα is regular. Then,
by Theorem 2.91,α can be predicted by a finite automaton, i.e., the functionf :
Σ∗→ Σ defined byf (x) = α(|x|) is regular. It follows that the function̄f defined
by f̄ (x) = 1− f (x) is a regular 1-bounded extension function and thatA does not
meet f̄ . SoA is not weakly 1-reg-generic.

For a proof of the other direction assume thatα is not weakly 1-reg-generic.
Then there is a total regular 1-bounded extension functionf such thatf (α � n) 6=
α(n) for all n. Hence, for f̄ defined by f̄ (x) = 1− f (x), f̄ is regular again and
f̄ (α � n) = α(n) for all n≥ 0 whenceα is regular by Theorem 2.91. �

This characterization of weak 1-reg-genericity has some interesting conse-
quences. First we deduce that, in contrast to bounded reg-genericity, weakk-reg-
genericity cannot be characterized solely in terms of (partial) saturation. Since
weak k-reg-genericity does not coincide with saturation it suffices to show that
none of the partial saturation properties implies weakk-reg-genericity.

Corollary 4.16 For any k,k′ ≥ 1 there is a k-ω-saturated set A which is not weakly
k′-reg-generic.

PROOF. By Lemma 2.137 there is a regulark-ω-saturated sequenceα. So, for
A = S(α), A is k-ω-saturated butA is not weakly 1-reg-generic by Theorem 4.15,
hence not weaklyk′-reg-generic by (4.1). �

Next we observe that forcing with regular total 1-bounded extensions func-
tions is not strong enough to force nonregularity in the sense of languages. Since,
by Theorem 2.81, there are regular languages with nonregular characteristic se-
quences, this is immediate by the preceding theorem.

Corollary 4.17 There is a weakly1-reg-generic set which is regular.

As observed in the proof of Theorem 2.81, the unary language{0}∗ is regular
but has a non-regular characteristic sequence. So{0}∗ is a natural example of a
regular language which is weakly 1-reg-generic. This observation can be extended
as follows. In general, no infinite unary language and no infinite length-language

120 4. BOUNDED FINITE-STATE GENERICITY

has a regular characteristic sequence. (Here we callA a length-languageif A is
length invariant, i.e., if, for any wordsx andy with |x| = |y|, x ∈ A if and only if
y∈ A.) Hence all these languages are weakly 1-reg-generic. In contrast, however,
none of these languages is weakly 2-generic.

Lemma 4.18 Let A be an infinite unary language or length language. Then A is
weakly1-reg generic but not weakly2-reg-generic.

PROOF. First assume thatA ⊆ {0}∗ is infinite and letα be the characteristic
sequence ofA. Then, as one can easily check,α is not almost periodic, hence not
regular by Theorem 2.76. So, by Theorem 4.15,A is weakly 1-reg-generic. To
show thatA is not weakly 2-reg-generic it suffices to note that the word 11 occurs
in the characteristic sequence of any unary language at most once. (Namely, the
only possible occurrence of 11 may be at the first two bits of the sequence if 00 = z0

and 01 = z1 are both members ofA.) SoA is not 2-2-saturated, hence not weakly
2-reg-generic by Lemma 4.5.

Now assume thatA is an infinite length language, i.e., that there is an infinite set
D of numbers such thatA = {x : |x| ∈ D}. Then, as in the case of unary languages,
α is not almost periodic, henceA is weakly 1-reg-generic. To show thatA is not
weakly 2-reg-generic, however, we cannot apply Lemma 4.5 since, for infinite and
co-infiniteD, the setA is 2-ω-saturated. We observe, however, that the words 010
and 101 do not occur in the characteristic sequence of any length language. So the
languageA will meet the total regular extension functionf : Σ∗→ Σ2 defined by
f (ε) = 00, f (x0) = 10 andf (x1) = 01 (x∈ Σ∗) at most once (namely atn= 0). By
Lemma 4.3 this implies thatA is not weakly 2-reg-generic. �

As we will show next, bounded reg-genericity does not only force nonregular-
ity of the characteristic sequence but nonregularity of the language itself too. We
obtain this result by the coincidence of this genericity notion with saturation and
our analysis of the complexity of saturated sets in Section 2.6.

Theorem 4.19 Let A be bounded reg-generic. Then A is not regular.

PROOF. By Theorem 4.7,A is saturated and, by Theorem 2.115, no saturated
language is regular. �

We do not know, whether this theorem can be extended to weakk-genericity
for any k ≥ 2 or whether there are regular weaklyk-reg-generic sets. Again by
using the coincidence of saturation and bounded reg-genericity, however, we can
show that there are context-free languages - in fact linear languages - which are
bounded reg-generic.

4.1. Bounded reg-Genericity 121

Theorem 4.20 There is a linear language A which is bounded reg-generic.

PROOF. By Theorems 4.7 and 2.116. �

The preceding two theorems show that we may say that bounded reg-genericity
is a genericity concept pertaining to the class REG of regular languages since the
concept is strong enough to allow us to diagonalize over this class but, on the other
hand, it is not too strong, so that we can obtain these diagonalizations inside the
next bigger classes in the Chomsky hierarchy, namely the classes LIN and CF of
the linear and context-free languages.

Of course we may ask what stronger properties related to REG can be forced
by bounded reg-genericity. The probably most important properties here are REG-
immunity and REG-bi-immunity. In Section 2.4.3 we have shown that no context-
free language is REG-bi-immune though there are context-free REG-immune sets.
By the former, Theorem 4.20 implies that there are bounded reg-generic sets which
are not REG-bi-immune. We next extend this observation to REG-immunity.

Theorem 4.21 There is a bounded reg-generic set A such that neither A norA is
REG-immune.

PROOF. By the coincidence of bounded reg-genericity and saturation this is im-
mediate by Theorem 2.117. �

Below we will introduce some stronger genericity concepts for REG which
force REG-bi-immunity. As observed above, such a concept must entail certain di-
agonalizations over the class CF of context-free languages since REG-bi-immune
sets cannot be context free. So, in contrast to bounded reg-genericity, such a gener-
icity concepts will not pertain to REG in the sense discussed above.

In the following sections we will consider some variants of finite-state gener-
icity concepts based on bounded extension functions. First, we consider extension
functions which may use the information on the given initial segment only in part
thereby leading to some apparently weaker bounded reg-genericity notions. Sec-
ond, we will give the extension functions the initial segment in some enriched form
as an input which will yield stronger bounded reg-generic notions. For preparing
the latter concept we will also discuss the power of finite-state Cantor style diago-
nalizations were the diagonalization at a stringx does not depend on the previously
defined initial segment of the set under construction but only on the stringx itself.

122 4. BOUNDED FINITE-STATE GENERICITY

4.2 Extensions Based on Partial Information

In the following we discuss some bounded regular genericity concepts which are
based on extension functions which obtain as their input not a finite initial segment
of a sequence but only some partial information on the initial segment. We consider
two cases: In the first case the extension function is given the length of the initial
segment (in unary notation). In the second case, only the lastm bits of the initial
segment (for some constantm≥ 1) are given. By comparing the bounded finite-
state genericity notions based on these limitations with the standard bounded finite-
state genericity notions introduced in the preceding section we can analyse the type
of information which a finite automaton can extract from a given initial segment.

4.2.1

Length
Invariant
Extension
Functions

An extension function which is given only the length of the current initial segment
not the initial segment itself may be described as a length invariant extension func-
tion. In case of regular bounded extension functions this leads to the following
definition.

Definition 4.22 Let f : Σ∗ → Σk be a (partial)k-bounded extension function.f
is length invariantif f (w) = f (w′) for all wordsw andw′ with |w| = |w′|. A set
G is li-k-reg-genericif it meets all regular partialk-bounded extension functions
which are length invariant and dense alongG; andG is weakly li-k-reg-genericif
G meets all regular totalk-bounded extension functions which are length invariant.
G is (weakly) li-ω-reg-genericif G is (weakly) li-k-reg-generic for allk≥ 1.

Note that a partial length invariant extension functionf which is defined in-
finitely often is dense along all sets. So we call such a functionf denseif the
domain of f is infinite or, equivalently, iff (0n) ↓ for infinitely many numbersn.
Alternatively we can describe a length invariantk-bounded extension functionf by
a function f̂ : {0}∗→ Σk. We say that such a function̂f is denseif the domain of
f̂ is infinite, and we say that a setA meetsf̂ at some number nif f̂ (0n) is defined
and(A � n) f̂ (0n) @ χ(A) and thatA meetsf̂ if A meetsf̂ at somen.

Proposition 4.23 A set G is weakly li-k-reg-generic if G meets all total regular
functions f̂ : {0}∗ → Σk. G is li-k-reg-generic if and only if G meets all partial
regular functionsf̂ : {0}∗→ Σk which are dense.

PROOF. Consider the following correspondence between length invariantk-bounded
extension functionsf : Σ∗→ Σk and functionsf̂ : {0}∗→ Σk: Given f let f̂ be de-
fined by f̂ (0n) = f (0n). Conversely, givenf̂ let f be defined byf (x) = f̂ (0|x|).

4.2. Extensions Based on Partial Information 123

Then f is regular if and only iff̂ is regular,f is total if and only if f̂ is total, f is
dense along a given setA if and only if f̂ is dense, andA meetsf atn if and only if
A meetsf̂ atn. By definition, these observations easily imply the claims. �

Just as in case of the standard bounded finite-state generic sets, a length in-
variant finite-state generic set meets a corresponding extension function not just
once but infinitely often, and the length invariant finite-state genericity notions are
closed under complement.

Lemma 4.24 Let A be li-k-reg-generic. Then A infinitely often meets every regular
partial length invariant k-bounded extension function f which is dense, i.e.,(A �
n) f (A � n) @ A for infinitely many n. Similarly, any weakly li-k-reg-generic set A
meets every regular total length invariant k-bounded extension function infinitely
often.

Lemma 4.25 Let A be (weakly) li-k-reg-generic. Then̄A is (weakly) li-k-reg-
generic to (k≥ 1 or k = ω).

We omit the straightforward proofs of the preceding two lemmas and turn to
the comparison of the length invariant bounded finite-state genericity concepts.
The following relations are immediate by definition (fork≥ 1).

(weakly) li-ω-reg-generic ⇒ (weakly) li-(k+1)-reg-generic

⇒ (weakly) li-k-reg-generic
(4.7)

If we compare the strength of the genericity concepts based on regular length-
invariant extension functions with that of the standard bounded reg-genericity con-
cepts, the following relations are immediate by definition.

k-reg-generic ⇒ li-k-reg-generic

⇓ ⇓

weaklyk-reg-generic ⇒ weakly li-k-reg-generic

(4.8)

We can combine the above relations in the following table where, by the equiv-
alences in (4.6), we may omit reference tok-reg-genericity (fork∈ N∪{ω}).

124 4. BOUNDED FINITE-STATE GENERICITY

li-ω-reg-generic ⇒ weakly li-ω-reg-generic ⇐ weaklyω-reg-generic

⇓ ⇓ ⇓

li-(k+1)-reg-generic ⇒ weakly li-(k+1)-reg-generic ⇐ weakly(k+1)-reg-generic

⇓ ⇓ ⇓

li-k-reg-generic ⇒ weakly li-k-reg-generic ⇐ weaklyk-reg-generic

⇓ ⇓ ⇓

li-1-reg-generic ⇒ weakly li-1-reg-generic ⇐ weakly 1-reg-generic
(4.9)

In the following we will determine which of these implications are strict. This
will require to prove a series of facts which will also illustrate some of the differ-
ences between these concepts.

We first look at the saturation properties of the various length invariant finite-
state genericity notions.

Lemma 4.26 Let A be weakly li-k-reg-generic (k≥ 1). Then A is k-ω-saturated.

PROOF. Givenx∈Σk it suffices to show thatx occurs in the characteristic sequence
α of A infinitely often. I.e., givenn≥ 1 we have to show that there is a number
m≥ n such thatα(m)...α(m+k−1) = x. Consider the totalk-bounded extension
function f defined byf (y) = x for all y∈ Σ∗ with |y| ≥ n and f (y) = (1−A(z|y|))k

for stringsy with |y|< n. Then f is regular and length invariant. So, by assumption,
A meetsf at somem. By choice of f this implies thatm≥ n and

(A � m)x = (A � m) f (A � m) @ α.

�

The preceding lemma shows that any (weakly) li-ω-reg-generic set is saturated.
By Theorem 4.7 this implies the following equivalence theorem.

Theorem 4.27 The following are equivalent.

(i) A is saturated.

(ii) A is 1-reg-generic.

(iii) A is bounded reg-generic, i.e.,ω-reg-generic.

4.2. Extensions Based on Partial Information 125

(iv) A is weaklyω-reg-generic.

(v) A is li-ω-reg-generic.

(vi) A is weakly li-ω-reg-generic.

Theorem 4.27 shows that the diagonalization strength of bounded regular ex-
tension functions is not decreased if we limit ourselves to total functions or length
invariant functions (or functions which are both, total and length invariant). This
observation, however, is based on the assumption that the length of the extensions
is not fixed. I.e., replacing an extension function by (a set of) equivalent total or
length invariant extension functions may lead to functions of higher norm. For
moving from partial to total functions we already have observed this in the pre-
ceding section. Next we will make similar observations for the length invariant
case. In particular we will show that, in contrast tok-reg-genericity, the strength
of li-k-reg-genericity depends on the normk. This will be established by the fol-
lowing negative saturation result for li-k-reg-genericity which, for later use, we
will state not only for length invariant finite-state genericity but for length invariant
genericity related to any countable class.

Lemma 4.28 Let k≥ 1 and letF be any countable set of partial length invariant
k-bounded extension functions. Then there is anF-generic set A such that the word
1k+1 does not occur in the characteristic sequenceχ(A) of A. Hence, in particular,
there is an li-k-reg-generic set A such that the word1k+1 does not occur in the
characteristic sequenceχ(A) of A.

PROOF. We construct a setA with the required properties by a finite extension
argument. Fix an enumeration{ fn : n≥ 0} of the classF, i.e., any functionfn is
a partial length invariant function of typef : Σ∗ → Σk. Then in order to makeA
F-generic it suffices to meet the requirements

Rn : fn dense alongA⇒∃m(fn(α � m) ↓ & (α � m) fn(α � m) @ α)

for n≥ 0 whereα denotes the characteristic sequence ofA. In fact since, by length
invariance offn, fn(α � m) = f (0m) we may restate requirementRn as follows.

Rn : ∃∞m(fn(0m) ↓)⇒∃m(fn(0m) ↓ & (α � m) fn(0m) @ α)

Simultaneously withA we define an increasing functionl : N→ N wherel(s)
andAs = A � l(s) are defined at stages of the construction (l(−1) = 1 andA−1 =
/0). At stages of the construction we will ensure that requirementRs is met. In
addition we will guarantee that 1k+1 does not occur inα. For the latter, we will
ensure that, for anys≥ 0, the finite characteristic stringαs−1 of As−1 (i.e.,αs−1 =

126 4. BOUNDED FINITE-STATE GENERICITY

A(0)...A(l(s−1)−1)) ends with a 0 and that the extensionαs of αs−1 contains at
mostk additional occurences of the letter 1.

Now stages of the construction is as follows. Givenl(s−1) andAs−1 = A �
l(s−1) distinguish the following two cases. If there is a numberm≥ l(s−1) such
that fs(0m) is defined then, for the least suchm let l(s) = m+k+1 and defineAs−1

by lettingαs = αs−10m−l(s−1) fs(0m)0. Otherwise, letl(s) = l(s−1)+1 and define
As−1 by lettingαs = αs−10.

As one can easily check, the definition ofAs ensures thatA meetsfs if fs(0m)
is defined for infinitely many numbersm. So all requirements are met, henceA
is F-generic. Moreover, since| fs(0m)| = k (if fs(0m) is defined) the construction
obviously ensures that 1k+1 does not occur inα. �

The preceding lemma in particular shows that there are li-k-reg-generic sets
which are not(k+1)-1-saturated. By Lemma 4.26 this implies the strictness of the
(weak) li-k-reg-genericity hierarchy.

Theorem 4.29 For any k≥ 1 there is an li-k-reg-generic set A which is not weakly
li-(k+1)-reg-generic.

Next we will turn to the relations between length invariant and standard bounded
reg-genericity of fixed norm. We first observe a coincidence on level 1.

Lemma 4.30 The following are equivalent.

(i) A is weakly li-1-reg-generic.

(ii) A is weakly1-reg-generic.

(iii) χ(A) is not regular, i.e., not almost periodic.

PROOF. By Theorem 4.15 and by (4.9) it suffices to show that for any given weakly
li-1-reg-generic setA the characteristic sequenceα of A is not almost periodic. For
a contradiction assume thatα is almost periodic, sayα = vwω. Let p= |v| andq=
|w| and define the total 1-bounded extension functionf by letting f (x) = 1−v(|x|)
if |x|< p and f (x) = 1−v(m) if |x| ≥ p and|x|− p = m modq. Then f is regular
and length invariant. Moreover,f (α � n) = 1−α(n) for all n≥ 0 whenceA does
not meetf . But this contradicts the assumption thatA is weakly li-1-reg-generic.
�

For k≥ 2 we do not encounter any equivalences as in Lemma 4.30 but get the
following two independence results.

Lemma 4.31 Let k≥ 1. There is a weakly k-reg-generic set A which is not li-1-
reg-generic.

4.2. Extensions Based on Partial Information 127

PROOF. We first observe that for any li-1-reg-generic setA there is a numbern
such thatχ(A)((k+1)n) = 1. This follows from 1) the fact that any setA has this
property ifA meets the partial 1-bounded extension functionf defined byf (x) = 1
if |x| = 0 mod(k+1) and f (x) ↑ otherwise and 2) the fact that this functionf is
regular, length invariant and dense along any set.

So it suffices to construct a weaklyk-reg-generic setA such that

∀ n≥ 0 (χ(A)((k+1)n) = 0). (4.10)

Fix an enumeration{ fn : n≥ 1} of the total regular 1-bounded extension functions
and letA be defined by

χ(A) = 0x00x10x20x30... (4.11)

wherexn is inductively defined byx0 = 0k and

xn = fn(0x00x10...xn−10)

for n≥ 1. Then, by construction,A is weaklyk-reg-generic. On the other hand,
since|xn|= k for n≥ 0, (4.10) follows from (4.11) whenceA is not li-1-reg-generic.

�

For later use we will state the next lemma not only for length invariant finite-
state genericity but for length invariant genericity related to any countable class.

Lemma 4.32 Let k≥ 1 and letF be any countable set of partial length invariant
k-bounded extension functions. Then there is anF-generic set A such that A is not
weakly 2-reg-generic. In particular, there is an li-k-reg-generic set A such that A is
not weakly 2-reg-generic.

PROOF. We will construct a setA with the required properties by a finite extension
argument. We letα be the characteristic sequence ofA, denote the initial segment
of A determined by the end of stages of the construction byAs, let l(s) be the
length of this initial segment, i.e.,As = A � l(s), and denote the initial segment ofα
corresponding toAs by αs, i.e. αs = A(0)...A(l(s)−1). Moreover, by convention,
A−1 = /0, l(−1) = 0 andα−1 = ε.

In order to makeA F-generic we will basically use the standard approach.
Given an enumeration{ f̂n : n≥ 0} of the partial functions of typêf : {0}∗→ Σk

corresponding to an enumeration{ fn : n≥ 0} of F (see the paragraph following
Definition 4.22) we will ensure that the requirements

Rn : f̂n dense⇒ A meetsf̂n

are met (n≥ 0). This will be sufficient by an obvious generalization of Proposition
4.23.

128 4. BOUNDED FINITE-STATE GENERICITY

As usual, at stagesof the construction we take action to ensure that requirement
Rs is met. Givenl(s−1), As = A � l(s−1) andαs−1 = A(0)...A(l(s−1)−1) this
is achieved as follows. If there is a numberm> l(s−1) such thatf̂s(0m) is defined
then we definel(s) andAs by letting l(s) = m+k andαs = αs−1βs f̂s(0m) for such
anm whereβs can be any string of lengthm− l(s−1). If there is no such number
m then we letl(s) = l(s−1) andAs = As−1. Note that in the latter casêfs is not
dense whenceRs is trivially met, while in the former case the construction ensures
thatA meetsf̂s atm. So in either caseRs is met.

Our first goal of makingA F-generic is complemented by the second goal of
making sure thatA is not weakly 2-reg-generic. Here we have to show that there
is a total regular 2-bounded extension functionf : Σ∗→ Σ2 which is not met byA,
i.e., for which

∀n(f (α � n) 6= α(n)α(n+1)) (4.12)

holds. Intuitively, we have to show that there is a finite automatonM which on
input α � n can rule out one of the four possible values 00,01,10,11 of the next
pair of bitsα(n)α(n+1) in α. For this sake we will make sure that in the extension
αs = αs−1βs f̂s(0m) of αs−1 the stringβs is chosen so that it encodes information on
the final partf̂s(0m) of αs. Note that| f̂s(0m)|= k. So, given the 2k binary stringszk

0,
...,zk

2k−1 of lengthk in lexicographical order,̂fs(0m) = zk
p for some numberp < 2k,

whence it suffices to codep into βs. Also note that the length ofβs depends onm.
So in order to make sure thatβs provides enough space for codingp, in general
we will not take the leastm> l(s−1) such thatf̂s(0m) is defined but will impose
some higher lower bound onm. Since action for meeting requirementRs has only
to be taken iff̂s(0m) is defined for infinitely manym this will not interfere with our
strategy for makingA F-generic.

We now formally describe stages of the construction ofA. Given l(s− 1),
As = A � l(s−1) andαs−1 = A(0)...A(l(s−1)−1), distinguish the following two
cases. If there is a numberm≥ l(s−1)+2k+2k+1 +6 such thatf̂s(0m) is defined
fix the least numberm with these properties, letl(s) = m+k and defineAs andαs

by letting
αs = αs−1βsγs

where, for the uniquep < 2k with zk
p = f̂s(0m) and forq = m− (l(s−1) + 2k+

2(p+1)+6),

βs = 1q11(01)k+p+111 & γs = f̂s(0m) = zk
p.

If there is no such numberm then letl(s) = l(s− 1), As = As−1 andαs = αs−1.
This completes the construction.

In order to show that the constructed setA has the requested properties, first, by
a straightforward induction, we observe that all requirements are met, whenceA is

4.2. Extensions Based on Partial Information 129

F-generic. (Note that in the first case of the construction above,αs = αs−1βs f̂s(0m)
for somem such thatf̂s(0m) is defined and|αs−1βs|= m whenceA meetsf̂s atm.)

It remains to show thatA is not weakly 2-reg-generic, i.e., to show that there is
a regular total functionf : Σ∗→ Σ2 such that (4.12) holds.

For defining such a functionf we start with some observations. First note that
there are stagess0 < s1 < s2... and numberspn < 2k andqn≥ 0 (n≥ 0) such that

α = βs0γs0βs1γs1βs2γs2...

= 1q011(01)k+p0+111zk
p0

1q111(01)k+p1+111zk
p1

1q211(01)k+p2+111zk
p2

...
(4.13)

Note that the only occurrences of two consecutive zeroes 00 inα can occur in the
subwordsγs = zk

p and that any such subwordzk
p is followed by the word 11 and

preceded by the word 11(01)2k+p+111. We call a stringw a p-string of rankr
(p < 2k, r < k) if there are stringsx andy such that|y|= r and

w = x11(01)k+p+111y.

Then, by (4.13), for any initial segmentα � n of α, α � n is a p-string of rank 0 if
and only if there is somes such thatα � n = αs−1βs whereγs = zk

p. It follows that

α � n p-string of rankr ⇒ α(n)α(n+1) = zk
p(r)z

k
p(r +1)

and

∀ p < 2k ∀ r < k (α � n is not ap-string of rankr)⇒ α(n)α(n+1) 6= 00.

SoA does not meet the 2-bounded function extension functionf defined by

f (w) =

{
(1−zk

p(r))(1−zk
p(r +1)) if w is a p-string of rankr

00 otherwise.

Moreover, a finite automaton can recognize whether a stringw is a p-string of rank
r (and, if so, can storep, r, andzk

p in its state). Sof is regular.
This completes the proof. �

By combining the above results, we can now completely determine the rela-
tions among the various standard and length invariant bounded finite-state gener-
icity concepts. Note that, by (4.6), in case of the standard notions it suffices to
consider weak genericity.

Theorem 4.33 For k ≥ 2 the following and - up to transitive closure - only the
following implications hold among the (weak) length invariant bounded regular
genericity concepts and the weak general bounded regular genericity concepts.

130 4. BOUNDED FINITE-STATE GENERICITY

li-ω-reg-generic ⇔ weakly li-ω-reg-generic ⇔ weaklyω-reg-generic

⇓ ⇓ ⇓

li-(k+1)-reg-generic ⇒ weakly li-(k+1)-reg-generic ⇐ weakly(k+1)-reg-generic

⇓ ⇓ ⇓

li-k-reg-generic ⇒ weakly li-k-reg-generic ⇐ weakly k-reg-generic

⇓ ⇓ ⇓

li-1-reg-generic ⇒ weakly li-1-reg-generic ⇔ weakly1-reg-generic
(4.14)

PROOF. Correctness of the stated implications follows from (4.9) together with
Theorem 4.27 and Lemma 4.30. The fact that only the indicated implications are
valid in general is established as follows where it suffices to consider the concepts
in lines 2 - 4.

First we observe that no concept on a lower level implies any concept on a
higher level. This follows from the saturation properties of the considered generic-
ity concepts. By Lemma 4.26, any weakly li-k-reg-generic setA (hence any weakly
k-reg-generic set and any li-k-reg-generic set) isk-ω-saturated, but by Lemma
4.28 and Theorem 4.9 there are li-k-reg-generic sets and weaklyk-reg-generic sets
(hence weakly li-k-reg-generic sets) which are not(k+1)-1-saturated.

It remains to show that none of the concepts in column 1 implies any of the
concepts in column 3 with the exception of weak 1-reg-genericity, and that, con-
versely, none of the concepts in column 3 implies any of the concepts in column 1.
But this is immediate by Lemma 4.32 and Lemma 4.31, respectively. �

By the coincidence of weakω-reg-genericity with saturation, Theorem 4.33
shows that (weakly) li-ω-reg-generic sets are saturated, hence not regular. An in-
teresting question on the power of length invariant finite-state genericity left open
by the above theorem is the question, whether, for fixedk≥ 1, (weakly) li-k-reg-
generic sets are non-regular. We will conclude this subsection by giving a negative
answer to this question. Before considering the general case, we will present the
case ofk = 1.

Lemma 4.34 The set0Σ∗ = {0w : w∈ Σ∗} is li-1-reg-generic.

PROOF. Let A = 0Σ∗ and let f : Σ∗ → Σ be a regular partial length invariant 1-
bounded extension function which is dense alongA. It suffices to show thatA

4.2. Extensions Based on Partial Information 131

meetsf . By length invariance off , density of f alongA implies that

∃∞n (f (0n) ↓) (4.15)

and in order to show thatA meetsf it suffices to show that

∃n (f (0n) ↓ & A(zn) = f (0n)). (4.16)

Let M = (Σ,S,δ,s0,F,λ) be a 1-labelled finite automaton which computesf . Since
f (0n) = λ(δ∗(s0,0n)) if δ∗(s0,0n)∈ F and f (0n) ↑ otherwise, by (4.15) we may fix
a states∈ F such that

∃∞n (δ∗(s0,0
n) = s). (4.17)

So, for the leastn0 and leastn1 > n0 such that (4.17) holds forn0 andn1 in place
of n and forp = n0 andq = n1−n0,

∀n (δ∗(s0,0
p+nq) = s).

It follows that, fori = λ(s),

∀n (f (0p+nq) = i).

So, in order to satisfy (4.16), it suffices to show

∃n (A(zp+nq) = i). (4.18)

For a proof of (4.18), by symmetry, w.l.o.g. we may assume thati = 0. Fix k
such that 2k > p+ q and consider the sequence 1zk

0, ...,1zk
2k−1 of the 2k words of

lengthk+ 1 in 1Σk. Note that these words are consecutive words with respect to
the length-lexicographical ordering, i.e.

1zk
0, ...,1zk

2k−1 = zr , ...,zr+2k−1

for some numberr. By choice ofk this implies that 1zk
j = zp+nq for somej < 2k−1

andn≥ 0. Since, by definition ofA, 1zk
j 6∈ A, it follows thatA(zp+nq) = A(1zk

j) =
0 = i. So (4.18) holds. This completes the proof. �

Lemma 4.34 in particular shows that there is a regular li-1-reg-generic set. By
refining the proof of this lemma, we can extend this observation to li-k-reg-generic
sets for anyk≥ 1.

Theorem 4.35 For any k≥ 1 there is a regular li-k-reg-generic set.

For the proof of this theorem we will need the following observation.

132 4. BOUNDED FINITE-STATE GENERICITY

Proposition 4.36 Let p≥ 0 and k′ ≥ 1 be given and let k= 2k′ . There is a number
r < k such that

∀m> max(p,k′) ∀n∀s< 2m (zm
s = zp+nk⇒ r = s mod k). (4.19)

PROOF. Let m0 = max(p,k′). Since there are 2m0 strings of lengthm0 and since
p,k≤ 2m0 there are numbersn0 ands0 < 2m0 such thatzm0

s0
= zp+n0k. Fix the least

such numbers and letr be the unique number< k such thatr = s0 modk. Then
it suffices to show that for all numbersn≥ n0, m, ands< 2m the matrix of (4.19)
holds. We proceed by induction onn≥ n0, where forn= n0 the claim is immediate
by choice ofs0 and definition ofr. For the inductive step we have to establish
the claim forn+ 1 > n0 assuming the claim forn. So fix m, s < 2m, m′, and
s′ < 2m′ such thatzp+nk = zm

s andzp+(n+1)k = zm′
s′ hold. By inductive hypothesis,

r = s modk. To show thatr = s′ modk we distinguish the following two cases.
If m = m′ then s′ = s+ k. It follows that s′ modk = s modk = r. Otherwise,
m′ = m+1. Moreover, since there are 2m words of lengthm, s+k = 2m+s′. Since
k = 2k′ is a factor of 2m, it follows that

s′ modk = (2m+s′) modk = (s+k) modk = s modk = r.

This completes the proof. �

PROOF OFTHEOREM 4.35. Fixk≥ 1 where, by (4.7), w.l.o.g. we may assume
thatk= 2k′ for some numberk′≥ 1. DefineAby specifying the slicesA=m = A∩Σm

of A as follows. Form< 2k let A=m = /0 while, for m≥ 2k,

m= i mod 2k (0≤ i < 2k) ⇒ A(zm
0) . . .A(zm

2m−1) = (zk
i)

2m−k′
(4.20)

Note that, for a wordz of length m≥ 2k, membership ofz in A depends only
m mod 2k and the lastk bits ofz. This easily implies thatA is regular.

It remains to show thatA is li-k-reg-generic. So letf : Σ∗ → Σk be a regular
partial length invariant k-bounded extension function which is dense alongA. It
suffices to show thatA meetsf . To show this, as in the proof of Lemma 4.34 we
can argue that there are numbersp≥ 0 andq≥ 1 and a wordzk

i of lengthk such
that

∀n (f (0p+nq) = zk
i) (4.21)

whence, by length invariance off , it suffices to show that

∃n (A(zp+nq)...A(zp+nq+k−1) = zk
i). (4.22)

For a proof of (4.22) fixr < k as in Proposition 4.36 and letm0 be the least
numberm such thatm0 > max(p,k′) and 2m0 > kq+k. Then, for anym≥m0, we
may fix numberssm andnm such that

sm < 2m−k & zm
s = zp+nm·k·q. (4.23)

4.2. Extensions Based on Partial Information 133

Note that, by Proposition 4.36,

r = sm modk. (4.24)

Finally, fix j < 2k such that

zk
j(r) zk

j(r +1) . . . zk
j(k) zk

j(k+1) . . . zk
j(k+ r−1) = zk

i (4.25)

and choosem≥m0 minimal such thatm> 2k andm= j mod 2k. Then, by (4.20)
and (4.25),

A(zm
0) . . .A(zm

2m−1) = (zk
j)

2m−k′
= zk

j(0) ... zk
j(r−1) (zk

i)
2m−k′−1 zk

j(r) ... zk
j(k−1).

Obviously, this implies (for any numbers)

s< 2m−k & r = s modk⇒ A(zm
s)...A(zm

s+k−1) = zk
i .

Hence, by (4.23) and (4.24),

A(zp+nm·k·q) . . .A(zp+nm·k·q+k−1) = A(zm
s) . . .A(zm

s+k−1) = zk
i .

So (4.22) holds forn = nm ·k. This completes the proof. �

4.2.2

Oblivious
Extension
Functions

Next we consider bounded finite-state genericity concepts based on extension func-
tions which, for a constantm≥ 1, remember only the lastm bits of the initial
segments given to them as inputs. We first formalize this concept by introducing
oblivious extension functions.

Definition 4.37 Let f : Σ∗ → Σk be a (partial)k-bounded extension function.f
is m-obliviousif f (wx) = f (w′x) for all wordsw, w′, andx with |x| = m. A set
G is [m,k]-reg-genericif it meets all regular partialk-bounded extension functions
which arem-oblivious and dense alongG; andG is weakly[m,k]-reg-genericif G
meets all regular totalk-bounded extension functions which arem-oblivious. G is
(weakly)[m,ω]-reg-genericif G is (weakly) [m,k]-reg-generic for allk≥ 1; G is
(weakly)[ω,k]-reg-genericif G is (weakly)[m,k]-reg-generic for allm≥ 1; andG
is (weakly)[ω,ω]-reg-genericif G is (weakly)[m,k]-reg-generic for allm,k≥ 1.

Note that any (partial)m-oblivious k-bounded extension function is regular.
Alternatively we can describe anm-obliviousk-bounded extension functionf by a
function f̂ : Σm→ Σk. We say that such a function̂f is dense along a set Aif f̂ (x) is
defined for some wordx of lengthm such that(A � n)x @ χ(A) for infinitely many
numbersn, and we say thatA meetsf̂ at some number nif n≥mand, for the unique
stringsx ∈ Σm andy ∈ Σ∗ such thatA � n = yx, f̂ (x) ↓ and (A � n) f̂ (x) @ χ(A).
Finally, we say thatA meetsf̂ if A meetsf̂ at somen.

134 4. BOUNDED FINITE-STATE GENERICITY

Proposition 4.38 A set G is weakly[m,k]-reg-generic if and only if G meets all
total functions f̂ : Σm→ Σk. G is [m,k]-reg-generic if and only if G meets all
partial functionsf̂ : Σm→ Σk which are dense along G.

PROOF. We prove the second part of the proposition. The proof of the first part is
similar.

First assume thatG is [m,k]-reg-generic and that the partial functionsf̂ : Σm→
Σk is dense alongG. We have to show thatGmeetsf̂ at somen. Consider the partial
k-bounded extension functionf defined byf (yx) = f̂ (x) for all stringsy∈ Σ∗ and
x∈ Σm and f (z) ↑ for all stringsz∈ Σ<m. Then f is m-oblivious. Moreover, density
of f̂ alongG implies that f is dense alongG. So, by[m,k]-reg-genericity ofG, G
meetsf at some numbern. By definition of f it follows thatn≥m andG meetsf̂
atn.

Now assume thatG meets all partial functionŝf : Σm→ Σk which are dense
alongG and assume thatf is anm-obliviousk-bounded extension function which
is dense alongG. We have to show thatG meets f at some numbern. Define
f̂ : Σm→ Σk by letting f̂ (x) = f (x) for all x∈ Σm. Then f̂ is dense alongG whence,
by assumption, there is a numbern such thatG meetsf̂ atn. By definition of f̂ this
implies thatG meetsf atn. �

As Proposition 4.38 shows, for fixed numbersm,k ≥ 1, (weak) [m,k]-reg-
genericity is rather a Boolean genericity concept than a regular genericity concept.
This is also demonstrated by the following observations: In contrast to the previ-
ously introduced regular genericity concepts there are finite generic sets of these
types and a generic set may meet an extension function it has to meet just once not
infinitely often.

Lemma 4.39 Let m,k≥ 1. There is a finite[m,k]-reg-generic set A. Moreover, A
can be chosen such that A meets the total m-oblivious k-bounded extension function
f defined by f(x) = 1k (for x∈ Σ∗) just once.

PROOF. Consider the sequenceα = β[m,k]0
ω where

β[m,k] = 0mzk
00mzk

1...0
mzk (4.26)

and letA be the set corresponding toα. Obviously,A is finite and the string 1k

occurs inα only once. It remains to show thatA is [m,k]-reg-generic. Given a
partial functionf̂ : Σm→ Σk which is dense alongA, by Proposition 4.38, it suffices
to show thatA meets f̂ , i.e., that there is a stringx of lengthm such thatf̂ (x) is
defined andx f̂ (x) occurs inα. Since 0m is the only string of lengthmwhich occurs
in α infinitely often, density off̂ alongA implies that f̂ (0m) is defined (and has

4.2. Extensions Based on Partial Information 135

lengthk), say f̂ (0m) = zk
p wherep < 2k. So, forx = 0m, x f̂ (x) = 0mzk

p occurs in
β[m,k] hence inα. �

We next present some saturation properties of the (weakly)[m,k]-reg-generic
sets and some relations among these concepts. The preceding lemma already
implicitly gives the basic saturation properties of (weakly)[m,k]-reg-generic sets
which we explicitly state in the following lemma.

Lemma 4.40 Let m,k≥ 1. Any weakly[m,k]-reg-generic set is k-1-saturated but
there is an[m,k]-reg-generic set A which is not k-2-saturated, hence not(k+1)-1-
saturated.

PROOF. The[m,k]-reg-generic setA of Lemma 4.39 is notk-2-saturated. On the
other hand, ifA′ is weakly [m,k]-reg-generic then, by Proposition 4.38,A′ meets
any total functionf̂ : Σm→ Σk. In particular, giveny∈ Σk, A′ meets the constant
function f̂ (x) = y (for all x∈ Σm) whencey occurs in the characteristic sequence
of A′. SoA′ is k-1-saturated. �

For weak genericity we can improve Lemma 4.40 by the following combinato-
rial characterization of the weakly[m,k]-reg-generic sets.

Lemma 4.41 Let A be a language, letα be the characteristic sequence of A and
let m and k be any numbers≥ 1. The following are equivalent.

(i) A is weakly[m,k]-reg-generic.

(ii) There is a string x∈ Σm such that xy occurs inα for all strings y∈ Σk.

PROOF. The proof of the implication(i)⇒ (ii) is by contraposition. Assume that
(ii) fails. For anyx ∈ Σm fix yx ∈ Σk minimal such thatxyx does not occur inα.
Define f̂ : Σm→ Σk by f̂ (x) = yx. ThenA does not meetA. Hence, by Proposition
4.38,A is not weakly[m,k]-reg-generic whence(i) fails.

For a proof of the implication(ii)⇒ (i) fix x∈ Σm such thatxyoccurs inα for
all y∈ Σkand let f̂ be a total functionf̂ : Σm→ Σk. By Proposition 4.38 it suffices
to show thatA meets f̂ . Since| f̂ (x)| = k, x f̂ (x) occurs inα (by choice ofx). So
there is a numbern such that(α � n)x f̂ (x) @ α. HenceA meetsf̂ atn+m. �

As the next lemma shows a sufficient level of saturation suffices for guarantee-
ing [m,k]-reg-genericity.

Lemma 4.42 Let k,m, p≥ 1 be given such that m+k≤ p. Then any p-1-saturated
set A is[m,k]-reg-generic.

136 4. BOUNDED FINITE-STATE GENERICITY

PROOF. Assume that the characteristic sequenceα of A is p-1-saturated and as-
sume that the partial function̂f : Σm→ Σk is dense alongA. By Proposition 4.38
it suffices to show thatA meets f̂ , i.e., that there is a stringx of lengthm such
that f̂ (x) is defined andx f̂ (x) occurs inα. By density of f̂ alongA we may fix
x ∈ Σm such thatf̂ (x) is defined. Thenx f̂ (x) ∈ Σm+k whence, bym+ k≤ p and
p-1-saturation ofα, x f̂ (x) occurs inα. �

The above relations among the oblivious genericity notions and levels of satu-
ration show that these concepts are intertwined as follows.

(m+k)-1-saturated ⇒ [m,k]-reg-generic
⇒ weakly[m,k]-reg-generic
⇒ k-1-saturated.

We now leave the Boolean type oblivious finite-state genericity notions, i.e.,
(weak)[m,k]-reg-genericity wherem,k∈N and turn to the more powerful concepts
where one of these parameters is unbounded (i.e.,m= ω or k = ω) and show how
these concepts are related to the standard bounded finite-state genericity concepts.
For this sake we analyse the saturation properties of these concepts.

Lemma 4.43 (a) Any (weakly)[m,ω]-reg-generic set A is saturated (m≥ 1).
(b) Any[ω,k]-reg-generic set A is saturated (k≥ 1).
(c) For any number k≥ 1 there is a weakly[ω,k]-reg-generic set A which is not

(k+1)-1-saturated.

PROOF. Part(a) is immediate by the first part of Lemma 4.40.
For a proof of part(b) assume thatA is [ω,k]-reg-generic and letα be the char-

acteristic sequence ofA. It suffices to show that any wordx occurs inα infinitely
often. We proceed by induction on the length ofx. For |x| = 0 the claim is triv-
ial. So assume that|x| > 0, say|x| = m+1 andx = x′a wherex′ ∈ Σm anda∈ Σ.
By inductive hypothesis,x′ occurs inα infinitely often. So the partial function
f̂ : Σm→ Σk defined byf̂ (x′) = ak and f̂ (y) ↑ for y 6= x′ is dense alongA. Hence,
by [m,k]-reg-genericity ofA and by Proposition 4.38,A meets f̂ at somen. By
definition of f̂ this implies thatx′ak - hencex - occurs inα.

Finally, for a proof of part(c) consider the sequence

α = β[1,k]β[2,k]β[3,k]β[4,k]...

whereβ[m,k] is defined as in (4.26) and letA be the set corresponding toα. Then
0mx occurs inα for all m≥ 1 and allx∈ Σk whence, by Lemma 4.41,A is weakly
[ω,k]-reg-generic. On the other hand, however, 1k+1 does not occur inα whenceA
is not(k+1)-1-saturated. �

4.2. Extensions Based on Partial Information 137

Since the saturated sets and the bounded reg-generic sets coincide, Lemma 4.43
implies the following equivalence theorem.

Theorem 4.44 For any numbers k,m≥ 1 the following are equivalent.

(i) A is weakly[m,ω]-reg-generic.

(ii) A is [m,ω]-reg-generic.

(iii) A is [ω,k]-reg-generic.

(iv) A is bounded reg-generic.

(v) A is saturated.

PROOF. By coincidence of bounded reg-genericity and saturation (see Theorem
4.7), it suffices to show the implications(iv)⇒ (x)⇒ (v) for (x) = (i),(ii),(iii).
But the first implication is immediate by definition while the second implication
follows from Lemma 4.43. �

In contrast to the preceding theorem, weak[ω,k]-reg-genericity is weaker than
bounded reg-genericity and the strength of weak[ω,k]-reg-genericity depends on
the parameterk. In the following theorem we summarize some basic observations
on complexity and strength of weak[ω,k]-reg-genericity.

Lemma 4.45 (a) Any weakly[ω,k+1]-reg-generic set is weakly[ω,k]-reg-generic
but there is a weakly[ω,k]-reg-generic set which is not weakly[ω,k + 1]-reg-
generic.

(b) A set A is weakly[ω,1]-reg-generic if and only ifχ(A) is not regular.
(c) For k≥ 2, any weakly[ω,k]-reg-generic A has a non-regular characteristic

sequence but there are sets with non-regular characteristic sequence which are not
weakly[ω,k]-reg-generic.

(d) For k≥ 1 there is a weakly[ω,k]-reg-generic set which is regular.

PROOF. The first part of(a) is immediate by definition. So it suffices to show
that there is a weakly[ω,k]-reg-generic set which is not weakly[ω,k + 1]-reg-
generic. Now, by Lemma 4.43, there is a weakly[ω,k]-reg-generic setA which is
not(k+1)-1-saturated. So, by Lemma 4.40,A is not weakly[ω,k+1]-reg-generic.

For a proof of(b), first assume thatA is weakly [ω,1]-reg-generic and letα
be the characteristic sequence ofA. Since a sequence is regular if and only if it is
almost periodic (see Theorem 2.76), it suffices to show thatα is no almost periodic.

For a contradiction assume thatα is almost periodic, sayα = vwω where|v|= p
and|w|= q≥ 1, and letm= p+q. Note that, for anyn≥ p, α(n) = α(n+q).

138 4. BOUNDED FINITE-STATE GENERICITY

Now to get the desired contradiction, define the functionf̂ : Σm→ Σ1 by letting
f̂ (x) = 1−x(p). By [ω,1]-reg-genericity ofA and by Proposition 4.38,A meetsf̂ ,
i.e., there is a stringx of lengthm= p+q such thatx f̂ (x) = x(1−x(p)) occurs in
α. It follows that there is a numbern≥ p such that

α(n− p)...α(n−1)α(n)...α(n+q−1)α(n+q)
=

x(0)...x(p−1)x(p)...x(p+q−1)(1−x(p)).

In particular,α(n) = x(p) whereasα(n+q) = 1−x(p), whenceα(n) 6= α(n+q).
But this is impossible as shown above.

In order to complete the proof of(b) we have to show that any setA with
non-regular characteristic sequence is weakly[ω,1]-reg-generic. Since, by defini-
tion, any weakly 1-reg-generic set is weakly[ω,1]-reg-generic, this follows from
Theorem 4.15.

Part(c) is immediate by parts(a) and(b).
For a proof of(d) fix k≥ 1 and let

A = {zp
q : ∃ ` < 2k (p≥ k & p = ` mod 2k & q < k & zk

`(q) = 1)}.

Note that for each numberp ≥ k at most the firstk strings of lengthp can be
elements ofA. Moreover, which of these strings are elements ofA is determined
by the valuè of p modulo 2k. Namely, theqth string of lengthp is element ofA if
theqth bit of the`th word of lengthk is a one, i.e.,A(zp

0)...A(zp
k−1) = zk

`.
As one can easily check,A is regular. In order to show thatA is weakly[ω,k]-

reg-generic, by Proposition 4.38, it suffices to show that for any given number
m≥ 1 and for any given total function̂f : Σm→ Σk there is a stringx of lengthm
such thatx f̂ (x) occurs in the characteristic sequenceα of A. So fix suchmand f̂ , let
` be the unique number` < 2k such thatf̂ (0m) = zk

`, and choosep> k+msuch that
p= ` mod 2k. Then, by definition ofA, for the lastmstringszp−1

2p−1−m−1, ...,z
p−1
2p−1−1

of lengthp−1,
A(zp−1

2p−1−m−1)...A(zp−1
2p−1−1) = 0m

(since any elementsx of A of length p−1 are among the firstk strings of length
p−1 and, by choice ofp there are at least 2k+m > k+ m strings of lengthp−1)
while for the firstk stringszp

0, ...,z
p
k−1 of lengthp

A(zp
0)...A(zp

k−1) = zk
`.

So 0m f̂ (0m) = 0mzk
` occurs inα. �

4.3. Cantor-Style Finite-State Diagonalization 139

4.3 Cantor-Style Finite-State Diagonalization

In the next section we will introduce some stronger bounded finite-state genericity
concepts which are based on extension functions which obtain initial segments in
a more redundant presentation as their inputs. This will allow a finite automaton to
extract more information from the initial segment than in the case of the standard
presentation. In particular these stronger concepts will subsume finite-state Cantor
style diagonalizations whence we will look at this type of diagonalizations here
first.

If a setA is constructed by a Cantor style diagonalization then the diagonal-
ization step at some stringx does not depend on the earlier construction, i.e., on
A � x, but only on the diagonalization locationx. So the individual diagonalization
requirements are not described by extension functions but by diagonalization func-
tions f : Σ∗ → Σ where f is given the placex for the diagonalization as its input
andA(x) = f (x) will ensure that the requirement is met byA at the stringx. We
generalize this concept by also considering diagonalizations requiring to fixA not
only on a single stringx but onk consecutive stringsx, . . . ,x+k−1 which we will
formalize byk-diagonalization functionsf of type f : Σ∗→ Σk. HereA will meet f
atx if A(x)...A(x+k−1) = f (x). Finally, we will also formalizeslow Cantor style
diagonalizations, i.e., those diagonalizations were the diagonalization cannot take
place at any string but only at selected places. These more powerful diagonaliza-
tions relate to the classical Cantor style diagonalizations just as the wait-and-see
arguments relate to the standard finite-extension arguments. A typical example of a
slow Cantor style diagonalization is the construction of a bi-immune set described
in Section 3.4. Of course this type of diagonalizations is formalized bypartial
diagonalization functions.

Definition 4.46 A (partial) k-bounded diagonalization function f, – or a (partial)
k-diagonalization functionfor short – is a (partial) functionf : Σ∗→ Σk. A (partial)
1-diagonalization function is also simply called a (partial)diagonalization func-
tion. A partialk-diagonalization functionf is denseif the domain of f is infinite.
A set A meetsa k-diagonalization functionf at a stringx if f (x) is defined and
f (x) = A(x)...A(x+k−1), andA meets fif A meetsf at some string.A is (weakly)
k-C-reg-genericif A meets every dense (total) regulark-diagonalization function.
A is (weakly)ω-C-reg-genericif A is (weakly)k-C-reg-generic for allk≥ 1.

Note that the following relations among the Cantor style finite-state genericity
notions are immediate by definition (wherek≥ 2; compare with (4.1)).

140 4. BOUNDED FINITE-STATE GENERICITY

ω-C-reg-generic ⇒ weaklyω-C-reg-generic
⇓ ⇓

(k+1)-C-reg-generic ⇒ weakly(k+1)-C-reg-generic
⇓ ⇓

k-C-reg-generic ⇒ weaklyk-C-reg-generic
⇓ ⇓

1-C-reg-generic ⇒ weakly 1-C-reg-generic

(4.27)

Moreover, by the closure of the class of regular languages under complement,
we easily obtain the corresponding closure property for the finite-state Cantor
style genericity notions. Furthermore, as in case of the standard bounded finite-
genericity concepts, infinitely-often genericity and genericity coincides for the
finite-state Cantor style genericity notions too, i.e., a generic set will meet any
diagonalization function it has to meet not just once but infinitely often.

Proposition 4.47 For any (weakly) k-C-reg-generic set A, the complementĀ of A
is (weakly) k-C-reg-generic too (k≥ 1 or k = ω).

Proposition 4.48 Let A be k-C-reg-generic. Then A infinitely often meets every
regular partial k-diagonalization function f which is dense, i.e.,

f (zn) = A(zn) . . .A(zn+k−1)

for infinitely many n. Similarly, any weakly k-C-reg-generic set A meets every
regular total k-diagonalization function infinitely often.

We omit the straightforward proofs of the two preceding propositions and turn
to a closer analysis of the Cantor style genericity concepts. For this sake it is
important to observe the relations between Cantor style diagonalizations and finite
extension arguments based on length invariant extension functions.

Note that, formally,k-bounded diagonalization functions andk-bounded ex-
tension functions are functionsf of the same type, namelyf : Σ∗→ Σk. For ak-
bounded diagonalization function, however, the inputx is interpreted as the string
at which the diagonalization takes place andf (x) gives us the values the character-
istic functioncA of a setA has to assume atx and thek−1 following strings, i.e.
cA(x)...cA(x+(k−1)) = f (x), in order to perform the diagonalization. In particu-
lar, the diagonalization action to be taken does not depend on any previous values
of A. In contrast, if f is ank-extension function then the inputx is interpreted as
an initial segment of the setA for which the diagonalization is to be performed.
Here, the diagonalization step is carried out atz|x| (not atx), i.e., at the first string

4.3. Cantor-Style Finite-State Diagonalization 141

whose membership inA is not yet determined by the initial segmentx of χ(A) and
the action required may depend on the previous values forA.

Diagonalization functions, however, can be interpreted as length invariant ex-
tensions functions and vice versa: Namely, in order to simulate ak-diagonalization
function f consider the length invariantk-bounded extension functionf ′ which on
any input of lengthn produces the valuef (zn). Conversely, a length invariantk-
bounded extension functionf ′ can be simulated by thek-diagonalization function
f defined byf (zn) = f (0n).

Definition 4.49 Let f be a partialk-bounded diagonalization function and letf ′

be a partial length invariantk-bounded extension function. We say thatf and f ′

areequivalentor that f ′ is thelength invariant k-extension function corresponding
to f and f is thek-diagonalization function corresponding to f′ if, for all numbers
n≥ 0, f (zn) ↓ if and only if f ′(0n) ↓ and, if defined,f (zn) = f ′(0n).

Note that, for any partialk-bounded diagonalization functionf there is a unique
length invariantk-extension functionf ′ corresponding tof and vice versa.

Lemma 4.50 Let f be a partial k-diagonalization function and let f′ be the cor-
responding length invariant extension function f′. Then f is dense (total) iff f′ is
dense along all sets (total) and, for any set A, A meets f at zn iff A meets f′ at n.

PROOF. Straightforward. �

This correspondence between diagonalization functions and length invariant
extension functions shows that any Cantor-style genericity concept coincides with
a bounded genericity concept based on length invariant extension functions. In
particular, we get the following.

Lemma 4.51 Let k≥ 1. There is a countable classF = { fn : n≥ 1} of length
invariant partial k-bounded extension functions such that, for any set A, A is weakly
k-C-reg-generic if and only if A is weaklyF-generic and A is k-C-reg-generic if and
only if A isF-generic.

PROOF. This follows from Lemma 4.50 by lettingF be the class of the length
invariant extension functionsf ′ corresponding to the regular partialk-bounded di-
agonalization functionsf . �

In particular this shows that any bounded finite-state Cantor-style genericity
concept is a bounded genericity concept in the sense of Definition 3.34 whence, by
Theorem 3.35, the classes of these generic sets have measure 1 and are comeager.

142 4. BOUNDED FINITE-STATE GENERICITY

The equivalence of diagonalization functions and length invariant extension
functions, however, does not preserve the complexity. In the following we will
show that, for a (partial)k-diagonalization functionf and the corresponding (par-
tial) length invariantk-extension functionf ′, regularity of f ′ implies regularity of
f but, in general, not vice versa. We may conclude from this that the finite-state
Cantor-style genericity concepts are stronger than the corresponding length invari-
ant genericity concepts.

Lemma 4.52 Let f be any regular partial length invariant k-extension function
and let f̃ be the corresponding partial k-bounded diagonalization function. Then
f̃ is regular too.

PROOF. Recall thatf̃ is defined byf̃ (zn) = f (0n) if f (0n) ↓ and f̃ (zn) ↑ otherwise.
Since, by Lemma 2.46, the class of regular partial functions of typeΣ∗ → Σk is
closed under finite variants, it suffices to show that there is a finite variant off̃
which is regular.

Fix a k-labelled finite automatonM = (Σ,S,δ,s0,F,λ) which computesf , i.e.,
such thatf = fM, and letS= {s0, ...sp−1}. Then, forsi(n) = δ∗(s0,0n), f (0n) =
λ(si(n)) if si(n) ∈ F and f (0n) ↑ otherwise. Moreover, the sequencesi(0)si(1)si(2) . . .

is almost periodic. So we may chooseq≥ 0 andr ≥ 1 – where w.l.o.g.q≤ r –
such that

∀n≥ q (si(n+r) = si(n)),

hence

∀n≥ q (si(n) = si([n modr]+r)). (4.28)

On the other hand, by Lemma 2.79, there is a deterministic finite automa-
ton M′ = (Σ,S′,δ′,s′0) (without a distinguished set of final states) such thatS′ =
{s′0, ...,s′r−1} and, forn≥ 0,

δ′∗(s′0,zn) = s′n modr . (4.29)

We can extendM′ to ak-labelled finite automatonM′′ = (Σ,S′,δ′,s′0,F ′,λ′) which
computesf̃ on all inputszn with n≥ q by lettingF ′= {s′j : si(j+r) ∈F} andλ′(s′j) =
λ(si(j+r)).

It remains to show that the functionfM′′ computed byM′′ coincides withf̃ on
all inputszn with n≥ q, i.e., that fM′′(zn) ↓ if and only if f (0n) ↓ and, if defined,
fM′′(zn) = f (0n). So fixn≥ q.

To show thatfM′′(zn) ↓ if and only if f (0n) ↓ it suffices to show

δ′∗(s′0,zn) ∈ F ′⇔ δ∗(s0,0
n) ∈ F. (4.30)

4.3. Cantor-Style Finite-State Diagonalization 143

This follows from the following observations: By (4.29),

δ′∗(s′0,zn) = s′n modr

and, by definition ofsi(n) and by (4.28),

δ∗(s0,0
n) = si(n) = si([n modr]+r).

Since, by definition ofF ′,

s′n modr ∈ F ′⇔ si([n modr]+r) ∈ F,

(4.30) follows.
Finally, it remains to show that – assumingfM′′(zn) ↓ – fM′′(zn) = f (0n). By

(4.30) it suffices to show that

λ′(δ′∗(s′0,zn)) = λ(δ∗(s0,0
n)). (4.31)

Since, as observed above,

δ′∗(s′0,zn) = s′n modr & δ∗(s0,0
n) = si([n modr]+r),

this follows by definition ofλ′.
�

Theorem 4.53 Any (weakly) k-C-reg-generic set A is (weakly) li-k-reg-generic.

PROOF. This is immediate by Lemma 4.52. �

In order to show that the converse of Lemma 4.52 fails, we next analyze the
strength of total and partial regular 1-diagonalization functions. As one might ex-
pect, the corresponding genericity concepts coincide with nonregularity and REG-
bi-immunity.

Theorem 4.54 (a) A set A is weakly1-C-reg-generic if and only if A6∈ REG.

(b) A set A is1-C-reg-generic if and only if A isREG-bi-immune.

PROOF. (a) The proof is by contraposition. First assume thatA is regular. In
order to show thatA is not weakly 1-C-reg-generic it suffices to give a regular total
diagonalization functionf such thatA does not meetf , i.e., such thatA(x) = 1−
f (x) for all stringsx. By regularity ofA and closure of REG under complement, the
function f defined byf (x) = 1−A(x) is regular and has this property. Now assume
that A is not weakly 1-C-reg-generic, i.e., that there is a regular diagonalization
function f such thatA(x) = 1− f (x) holds for all stringsx. We have to show that

144 4. BOUNDED FINITE-STATE GENERICITY

A is regular. But this is obvious since the regular functionf is the characteristic
function of the complement ofA and the class of regular languages is closed under
complement.

(b) First assume thatA is 1-C-reg-generic. We have to show thatA is REG-
bi-immune. In fact, by Proposition 4.47, it suffices to show thatA is REG-co-
immune, i.e., that, for any infinite regular setB, A∩B is not empty. Define the
partial diagonalization functionf by letting

f (x) =

{
1 if x∈ B

↑ otherwise.

Then, by infinity ofB, f is dense and, by regularity ofB, f is regular. So, by 1-C-
reg-genericity,A meetsf at some stringx. Obviously, this implies thatx∈ A∩B.

For a proof of the other direction assume thatA is REG-bi-immune. We have to
show thatA is 1-C-reg-generic, i.e., that for a given dense regular diagonalization
function f there is a stringx in the domain off such thatA(x) = f (x). Note that,
by density of f , the domainD(f) of f is infinite and, by regularity off , D(f)
is regular. It follows that, for somei ≤ 1, {x : f (x) = i} is infinite and regular.
By symmetry, w.l.o.g. we may assume that this is true fori = 1. So, by REG-
co-immunity ofA, A∩{x : f (x) = 1} 6= /0, i.e., there is a stringx ∈ A such that
f (x) = 1. HenceA meetsf atx. �

By combining this theorem with some previous results we can establish a num-
ber of relations between finite-state Cantor style genericity and some of the previ-
ously introduced genericity notions. We first observe that the converse of Theorem
4.53 fails.

Corollary 4.55 For any k≥ 1 there is an li-k-generic set which is not weakly1-C-
reg-generic.

PROOF. This follows from the first part of Theorem 4.54 since, by Theorem 4.35,
there are regular li-k-generic sets. �

Corollary 4.55 immediately implies:

Corollary 4.56 For any k≥ 1 there is a regular k-diagonalization function f such
that the corresponding length invariant k-extension function f′ is not regular.

Another consequence of the first part of Theorem 4.54 is the following distinc-
tion between weak 1-C-reg-genericity and weak 1-reg-genericity.

Corollary 4.57 Any weakly1-C-reg-generic set is weakly1-reg-generic but there
is a weakly1-reg-generic set which is not weakly1-C-reg-generic.

4.3. Cantor-Style Finite-State Diagonalization 145

PROOF. By Theorem 4.15, a setA is weakly 1-reg-generic iff the characteristic
sequence ofA is regular, and in Section 2.5 we have shown that regularity of the
characteristic sequence of a set implies regularity of the set but in general not vice
versa. �

Similarly, it follows from the second part of Theorem 4.54 that there is a 1-
reg-generic setA which is not 1-C-reg-generic: In Section 4.1 we have shown that
there are context-free 1-reg-generic sets (Theorem 4.20) whereas in Section 2.4 we
have shown that no context-free set is REG-bi-immune (Theorem 2.59). So, by
Theorem 4.54, no 1-C-reg-generic is context-free.

Corollary 4.58 There is a1-reg-generic set which is not1-C-reg-generic.

Despite this observation the full analog of Corollary 4.57 for 1-reg-genericity
fails since 1-C-reg-genericity in general does not imply 1-reg-genericity. In order
to show this we will look at the saturation properties of the C-reg-genericity no-
tions. These saturation properties will also help us to decide the relations among
the different Cantor style finite-state genericity concepts. We will show first that
k-diagonalization functions can forcek-saturation but not(k+1)-saturation.

Lemma 4.59 Any weakly k-C-reg-generic set is k-ω-saturated (k≥ 1).

PROOF. By Theorem 4.53, any weaklyk-C-reg-generic set is weakly l.i.k-reg-
generic and, by Lemma 4.26, any weakly l.i.k-reg-generic set isk-ω-saturated.
�

Lemma 4.60 There is a k-C-reg-generic set A which is not(k+ 1)-1-saturated
(k≥ 1).

PROOF. This is immediate by Lemmas 4.51 and 4.28. �

Lemma 4.59 implies that weaklyω-C-reg-generic sets are saturated. As we
will show next, the converse is true too.

Theorem 4.61 A set A is weaklyω-C-reg-generic if and only if A is saturated.

PROOF. By Lemma 4.59 it suffices to show that any saturated set isω-C-reg-
generic. So assume thatA is saturated and fix a total regulark-bounded diago-
nalization functionf : Σ∗→ Σk where w.l.o.g.k = 2k′ for somek′ ≥ 1. We have to
show thatA meetsf , i.e., that there is a stringzn such that

f (zn) = A(zn) . . .A(zn+k−1) (4.32)

146 4. BOUNDED FINITE-STATE GENERICITY

Fix ak-labelled finite automatonM = (Σ,S,δ,s0,F,λ) which computesf , i.e., such
that f = fM, and letS= {s0, ...sp−1} where w.l.o.g.p = 2p′ for somep′ ≥ 1.

Define a wordx of lengthp·k = 2p′+k′ by letting

x = x0 · · ·xp−1

where the wordsxi ∈ Σk (0≤ i < p) are defined by

xi = λ(δ∗(si ,z
p′

i zk′
0)). (4.33)

Then, by saturation ofA and by Lemma 2.110 (b), there is a stringzm such that

A(zmzp′+k′

0) . . .A(zmzp′+k′

pk−1) = x

Since

A(zmzp′+k′

0) . . .A(zmzp′+k′

pk−1) =

[A(zmzp′

0 zk′
0) . . .A(zmzp′

0 zk′
k−1)] · · · [A(zmzp′

p−1zk′
0) . . .A(zmzp′

p−1zk′
k−1)]

it follows, by definition ofx, that, for 0≤ i < p,

A(zmzp′

i zk′
0) . . .A(zmzp′

i zk′
k−1) = xi . (4.34)

Now fix i such thatδ∗(s0,zm) = si and letzn = zmzp′

i zk′
0 . Then, by (4.34),

A(zn) . . .A(zn+k−1) = A(zmzp′

i zk′
0) . . .A(zmzp′

i zk′
k−1) = xi (4.35)

while, by choice ofM, zn andi and by (4.33),

f (zn) = λ(δ∗(s0,zn))
= λ(δ∗(s0,zmzp′

i zk′
0))

= λ(δ∗(δ∗(s0,zm),zp′

i zk′
0))

= λ(δ∗(si ,z
p′

i zk′
0))

= xi .

By (4.35) this implies (4.32). �

By combining the above observations we can now show which of the impli-
cations in (4.27) are strict and we can further illustrate the power of the various
finite-sate Cantor-style genericity concepts by specifying their relations to some
fundamental concepts such as nonregularity, saturation and REG-bi-immunity.

4.3. Cantor-Style Finite-State Diagonalization 147

Theorem 4.62 The following and – up to transitive closure – only the following
implications hold in general (k≥ 2).

saturated
m

ω-C-reg-generic ⇒ weaklyω-C-reg-generic
⇓ ⇓

(k+1)-C-reg-generic ⇒ weakly(k+1)-C-reg-generic
⇓ ⇓

k-C-reg-generic ⇒ weakly k-C-reg-generic
⇓ ⇓

1-C-reg-generic ⇒ weakly1-C-reg-generic
m m

REG-bi-immune 6∈ REG

(4.36)

PROOF. We first observe that the one-sided implications in (4.36) hold by (4.27)
while the three equivalences hold by Theorem 4.54 (a) and (b) and by Theorem
4.61. So it suffice to show that only the given implications hold. This follows from
the following two observations.

First, no genericity concept on a lower level implies any of the genericity on a
higher level. This follows from the fact that any (weakly)(k+1)-C-reg-generic set
is (k+ 1)-ω-saturated (Lemma 4.59) but that there are (weakly)k-C-reg-generic
sets which are not(k+1)-1-saturated (Lemma 4.60).

Second, no genericity concept on the right hand side implies any of the generic-
ity concepts on the left hand side. To show this we first observe that, by the positive
relations in (4.36) established above, any saturated setA has all the genericity prop-
erties on the right hand side whereas any set with any of the genericity properties of
the left hand side is REG-bi-immune. So it suffices to show that there is a saturated
set which is not REG-bi-immune. But this has been shown in Theorem 2.117.�

By the coincidence of weakω-C-reg-genericity with saturation and of 1-C-
reg-genericity with REG-bi-immunity,ω-C-reg-genericity implies saturation and
REG-bi-immunity. This might lead one to conjecture that theω-C-reg-generic sets
are just the sets with these two properties. But this is not the case as the following
lemma shows.

Lemma 4.63 There is a set A which is both saturated and REG-bi-immune but not
2-C-reg-generic.

PROOF. We only sketch the proof. It suffices to show that there is a saturated and
REG-bi-immune setA such that, for alln≥ 2, |{0n,0n + 1}∩A| ≤ 1. The latter

148 4. BOUNDED FINITE-STATE GENERICITY

implies thatA does not meet the partial 2-diagonalization functionf wheref (0n) =
11 for n≥ 2 and f (x) ↑ otherwise. Obviouslyf is regular and dense whence we
may conclude thatA is not 2-C-reg-generic. A setA with the desired properties is
constructed by a slow diagonalization: The standard bi-immunity construction as
described in Section 3.4 can be easily modified to makeA REG-bi-immune and at
the same time make sure that for any numbern at most one string of lengthn is put
into A and at most one string of lengthn is restrained fromA. So, by the former,
we may ensure that|A∩ 0Σn| ≤ 1 for all n≥ 1 while, by the latter, we can use
the partA∩1Σ∗ for makingA saturated without interfering with the bi-immunity
requirements. �

Since the saturated sets coincide with many of the bounded reg-genericity con-
cepts investigated in the preceding sections – namely, in particular, with bounded
reg-genericity (i.e.,ω-reg-genericity),k-reg-genericity for anyk≥ 1, weakω-reg-
genericity, li-ω-reg-genericity, and weak li-ω-reg-genericity – Theorem 4.62 also
clarifies the relations between the Cantor-style finite-state genericity concepts with
many of the previously discussed genericity notions. In the remainder of this sec-
tion we will discuss the relations between Cantor-style genericity and those previ-
ously considered genericity notions of standard type and of length invariant type
which are weaker than saturation.

We first address the question which of the previously introduced genericity
notions are implied by (weak)k-C-genericity (for fixedk≥ 1).

If we consider the standard bounded reg-genericity notions then the only posi-
tive positive results are the ones following from

weakly 1-C-reg-generic⇒ weakly 1-reg-generic (4.37)

by Theorem 4.62. Note that (4.37) holds since the weakly 1-C-reg-generic sets
are just the non-regular sets while the weakly 1-reg-generic sets are just the sets
with non-regular characteristic sequence. The fact that we do not get any other
implications follows from the next lemma.

Lemma 4.64 Let k≥ 1. There is a k-C-reg-generic set A such that A is not weakly
2-reg-generic.

PROOF. This is immediate by Lemmas 4.32 and 4.51. �

If we consider length invariant genericity in place of standard genericity then,
by Theorem 4.53,

(weakly)k-C-reg-generic⇒ weakly li-k-reg-generic (4.38)

4.3. Cantor-Style Finite-State Diagonalization 149

and

k-C-reg-generic⇒ (weakly) li-k-reg-generic (4.39)

hold fork≥ 1.

To show that these are the only valid implications we first observe that, by
the saturation properties established for the various genericity notions,k-C-reg-
genericity does not imply weak li-k′-reg-genericity for anyk′ > k since there are
k-C-reg-generic sets which are notk′-1-saturated whereas every weakly li-k′-reg-
generic set has this property. So the optimality of (4.38) and (4.39) follows from
the next lemma.

Lemma 4.65 Let k≥ 1. There is a weakly k-C-reg-generic set A such that A is not
li-1-reg-generic.

PROOF. This is shown by a straightforward modification of the proof of Lemma
4.31. �

Now we address the question which of the (weak)k-C-genericity concepts are
implied by the previously introduced genericity notions weaker than saturation.

For the length invariant genericity notions we obtain a complete negative an-
swer: By Corollary 4.55, there is no numberk such that (weak) li-k-reg-genericity
implies any of the Cantor style regular genericity concepts.

For the standard genericity notions the situation is somewhat more complex.
Here it suffices to consider weakk-reg-genericity fork≥1 (since the other concepts
coincide with saturation). Since any saturated set is weaklyk-reg-generic and since
there are saturated sets which are not REG-bi-immune, it follows from (4.36) that
weak k-reg-genericity in general does not imply 1-C-reg-genericity. So it only
remains to consider the question for which numbersk andk′

weaklyk-reg-generic⇒ weaklyk′-C-reg-generic (4.40)

holds. Again, by the established partial saturation properties of the considered
genericity notions, (4.40) fails for all numbersk,k′ ≥ 1 with k < k′. Moreover,
(4.40) fails fork = k′ = 1 by Corollary 4.57.

By the following lemma, (4.40) also fails fork = k′ ≥ 2.

Lemma 4.66 For k≥ 2 there is a weakly k-reg-generic set A which is not weakly
k-C-reg-generic.

PROOF. Givenk≥ 2, by a finite extension argument we construct a setA such that
A is weaklyk-reg-generic but not weaklyk-C-reg-generic.

150 4. BOUNDED FINITE-STATE GENERICITY

Fix a recursive enumeration{ fe : e≥ 0} of the total regulark-bounded exten-
sion functions. Then, in order to makeA weaklyk-reg-generic, it suffices to meet
the requirements

Re : ∃n ((α � n) fe(α � n)v α)

whereα is the characteristic sequence ofA.
In order to ensure thatA is not weaklyk-C-reg-generic we will ensure that

∀x∈ 0Σ∗ (A(x) . . .A(x+k−1) 6= 1k) (4.41)

and

∀x∈ 1Σ∗ (A(x) = 1). (4.42)

This will ensure thatA does not meet thek-bounded diagonalization functionf
defined by

f (x) =

{
1k if x∈ 0Σ∗

0k otherwise.

at any stringx 6= λ. Since, obviously,f is regular, by Proposition 4.48, this will
guarantee thatA is not weaklyk-C-reg-generic.

We now describe the construction ofA. At stages, given an initial segment
αs−1 of α of the form αs−1 = α � 0l(s−1) (where l(−1) = 0 andα−1 = ε), we
definel(s) > l(s−1) and the extensionαs = α � 0l(s) of αs−1 in such a way that
requirementRs will be met and such that the definition ofαs is consistent with
(4.41) and (4.42).

For the definition ofl(s) andαs we proceed as follows. LetM be an automaton
which computesfs and letp be the number of states ofM. Then fixm≥ l(s−1)
minimal such thatp+k < 2m−1 and setl(s) = m+1. For stringsx with l(s−1)≤
|x|< mdefineA(x) by lettingA(x) = 0 if x∈ 0Σ∗ and by lettingA(x) = 1 otherwise.
Note that this definesα � m in a way consistent with (4.41) and (4.42). For the
definition ofA(x) for the stringsx of lengthm we distinguish two cases.

First assume that

∃q≤ p (fs((α � m)0q) 6= 1k) (4.43)

holds. Then, for the least suchq let

A(zm
0) . . .A(zm

2m−1) = 0q fs((α � m)0q) 02m−1−(q+k) 12m−1

(note thatq+k≤ p+k < 2m−1). Note that this is consistent with (4.41) and (4.42)
and ensures thatRs is met.

If (4.43) fails then

∀q≤ p (fs((α � m)0q) = 1k).

4.3. Cantor-Style Finite-State Diagonalization 151

Since the automatonM computingfs hasp states this implies that

∀q≥ 0 (fs((α � m)0q) = 1k).

So, by letting
A(zm

0) . . .A(zm
2m−1) = 02m−1

12m−1
,

we ensure thatA meetsfs (since(α � 10m−1) fs(α � 10m−1)v α) and this definition
is consistent with (4.41) and (4.42).

This completes the proof. �

It remains the question whether (4.40) may hold for some numbersk andk′

with k′ < k. We leave this as an open question. We only remark that, by the
coincidence of weak 1-C-genericity and nonregularity, the question whether (4.40)
holds fork≥ 2 andk′ = 1 is equivalent to the question whether there are regular
weaklyk-reg-generic sets fork≥ 2.

152 4. BOUNDED FINITE-STATE GENERICITY

4.4 Enriched Encodings of Initial Segments

We now introduce stronger bounded finite-state genericity concepts which are based
on extension functions which obtain initial segments in a more redundant presenta-
tion as their inputs. These notions will combine the power of the standard bounded
finite-state genericity concepts with that of the Cantor style genericity notions in-
troduced in the preceding section.

Here we consider the following redundant presentationA �r zn of the initial
segment of a setA of lengthn defined by

A �r zn = z0#A(z0)#z1#A(z1)#. . .zn−1#A(zn−1). (4.44)

We will use the following notation. We callA �r zn the redundant initial segment
of A of lengthn and we let

Pre f ixr(A) = {A �r zn : n≥ 0}

be the prefix set ofA with respect to redundant presentation. The set of all redun-
dant initial segments is denoted byIr :

Ir = {z0#i0#. . .#zn−1#in−1 : n≥ 0 & i0, . . . , in−1 ∈ {0,1}}.

Then we can define extension functions operating on redundant initial segments
and corresponding (bounded) genericity notions in the canonical way.

Definition 4.67 A (partial) red-extension function fis a (partial) functionf : Ir →
Σ∗. If f : Ir → Σk then f is a k-bounded red-extension function(k≥ 1), and f is
boundedif f is k-bounded for somek≥ 1.

Definition 4.68 The partial red-extension functionf is dense alongthe setA if
f (A �r zn) ↓ for infinitely many numbersn. A meets f at nif f (A �r zn) is defined
and(A � zn) f (A �r zn) @ χ(A), andA meets fif A meetsf at somen.

Note that the setIr is not regular. So in order to define regular red-extension
functions f we have to consider extensions off .

Definition 4.69 A (partial) k-bounded red-extension functionf is regular if there
is a (partial) regular functionf ′ : (Σ∪{#})∗→ Σk such thatf is the restriction of
f ′ to Ir .

Note that a regular functionf ′ : (Σ∪{#})∗ → Σk inducing a total regulark-
bounded red-extension functionf may be partial. We only request that the setIr

4.4. Enriched Encodings of Initial Segments 153

is contained in the domain off ′. Sometimes it will be convenient to define the
extensionf ′ on the regular superset

Σ# = {x0#i0#. . .#xn−1#in−1 : n≥ 0 & x0, . . . ,xn−1 ∈ Σ∗ & i0, . . . , in−1 ∈ Σ}

of Ir .
Based on these definitions we obtain the following bounded finite-state gener-

icity notions.

Definition 4.70 A setG is red-k-reg-genericif Gmeets all regular partialk-bounded
red-extension functions which are dense alongG; andG isweakly red-k-reg-generic
if G meets all regular totalk-bounded red-extension functions.G is (weakly) red-
ω-reg-genericif G is (weakly) red-k-reg-generic for allk≥ 1.

Next we will show that these genericity notions subsume the corresponding
standard genericity notions (introduced in Section 4.1) and the corresponding Can-
tor style genericity notions (introduced in the preceding section). For this sake
we have to show that regular (partial)k-bounded extension functions and regular
(partial)k-bounded diagonalization functions can be simulated by regular (partial)
k-bounded red-extension functions.

Lemma 4.71 Let f be a regular partial k-extension function (k≥ 1). There is a
regular partial k-red-extension function f′ such that, for any set A and any number
n, f ′(A�r zn) is defined if and only if f(A� zn) is defined; and f′(A�r zn) = f (A� zn)
if defined.

PROOF. Given an automatonM which computesf , an automatonM′ which com-
putes the desired functionf ′ works as follows. On inputx0#i0#x1#i1#. . .#xn−1#in−1

M′ skips (i.e. reads without changing its state) the partsx0#,x1#, ...,xn−1# and sim-
ulatesM on the remaining parti0 . . . in−1. �

Theorem 4.72 Let A be (weakly) red-k-generic. Then A is (weakly) k-reg-generic
(k∈ N∪{ω}).

PROOF. By Lemma 4.71 and definition. �

For the simulation of diagonalization functions by red-extension functions we
will need the following lemma.

Lemma 4.73 Let f : Σ∗ → Σk be a regular partial function (k≥ 1). There is a
regular partial function f← : Σ∗→ Σk such that, for any n≥ 1, f←(zn−1) is defined
if and only if f(zn) is defined, and – if defined – f←(zn−1) = f (zn).

154 4. BOUNDED FINITE-STATE GENERICITY

PROOF. Fix a deterministic finite automatonM = (Σ,S,δ,s0,F,λ) which com-
putes f . By Lemma 2.43, it suffices to give a nondeterministic (consistent) finite
automatonM′ = (Σ,S′,∆′,S′0,F ′,λ′) which computesf←.

The automatonM′ on inputzn will simulate the automatonM on inputzn+1. To
be more precise, ifM acceptszn+1 and the computation ofM ends in the accepting
states, i.e., if f (zn+1) is defined andf (zn+1) = λ(s), then there will be a unique
accepting computation ofM′ on inputzn and this computation will end in a states′

with λ′(s′) = λ(s) whencef←(zn) = f (zn+1). If M rejectszn+1, i.e., if f (zn+1) is
undefined, then there will be no accepting computation ofM′ on inputzn whence
f←(zn) will be undefined too.

We will describe the automatonM′ only informally. Note that, for a string
x∈ {1}∗, x+1 = 0|x|+1 while for a stringx 6∈ {1}∗, x is of the formx = u01m and
x+1 = u10m. So on inputx the automatonM′ first makes a guess whether or not
x∈ {1}∗.

The computation guessing that this is the case simulatesM on input 0|x|+1. I.e.,
the initial state is (a copy of) the stateM enters after reading a single 0 and then,
for any 1 read,M′ performs the transition performed byM when reading a 0. IfM′

reads a 0, thereby realizing that its guess was wrong, it stops the simulation ofM
and goes into a rejecting state which it will never leave.

The computation guessing thatx contains at least one 0 is nondeterministic
depending on an additional guess: when a 0 is readM′ has to guess whether or not
this will be the last 0 inx. M′ starts to simulateM on inputx until a 0 is a read.
Then M may decide either to continue the simulation ofM on x (guessing that
there will be another 0 in the not yet read part ofx) or (guessing that this will be
the last 0 inx) it simulates the transition ofM when reading a 1 in this step, and in
all consecutive steps, when reading a 1,M′ will simulate the transition ofM when
reading a 0. In the latter case, whenM′ will later see a 0 (thereby realizing that
its guess was wrong) it will stop the simulation ofM and it will go into a rejecting
state which it will never leave. Moreover, beforeM′ guessed that a 0 it has seen
is the last 0 inx it will always be rejecting though it may be in (the copy of) an
accepting state ofM. (So if the guess that there is a 0 inx was wrong or the chosen
computation ofM′ fails to make a guess about the last 0 then this computation will
be rejecting.) �

Lemma 4.74 Let f be a regular partial k-diagonalization function (k≥ 1). There
is a regular partial k-red-extension function f′ such that, for any set A and any
number n, f′(A �r zn) is defined if and only if f(zn) is defined, and – if defined –
f ′(A �r zn) = f (zn).

PROOF. By Lemma 4.73 we may fix a finite automatonM which computesf←.

4.4. Enriched Encodings of Initial Segments 155

Then a finite automatonM′ which computes the desired functionf ′ works as fol-
lows. On an inputw = x0#i0#x1#i1#. . .#xn−1#in−1, M′ skips (i.e. reads without
changing its state) the parts #i0, #i1, ..., #in−1 while on eachxm M′ simulatesM
(beginning each of the simulations in the initial state ofM). So, after readingw,
M′ is in the same state asM after readingxn−1. Hence ifw is a stringA �r zn then
fM′(A �r zn) = fM(zn−1) = f←(zn−1) = f (zn). �

Theorem 4.75 Let A be (weakly) red-k-generic. Then A is (weakly) k-C-reg-generic
(k∈ N∪{ω}).

PROOF. By Lemma 4.74 and definition. �

The preceding two theorems allow us to apply results about the standard bounded
finite-state geniricity concepts and the results about the Cantor style bounded finite-
state geniricity concepts. For instance we obtain the following results on the
strength of the new genericity notions.

Theorem 4.76 (a) For any weakly red-1-reg-generic set A, A6∈ REG.

(b) For any weakly red-ω-reg-generic set A, A is saturated.

(c) For any red-1-reg-generic set A, A is saturated andREG-bi-immune.

PROOF. Parts (a), (b) and the second claim in (c) follow from Theorems 4.75 and
4.62. The first claim in (c) follows from Theorems 4.72 and 4.7. �

Moreover we can adapt some of the previous ideas to prove the following hier-
archy theorem.

Theorem 4.77 For k≥ 2 the following and only the following implications hold
(up to transitive closure).

red-ω-reg-generic ⇒ weakly red-ω-reg-generic
m ⇓

red-(k+1)-reg-generic weakly red-(k+1)-reg-generic
m ⇓

red-k-reg-generic weakly red-k-reg-generic
m ⇓

red-1-reg-generic weakly red-1-reg-generic

(4.45)

PROOF. We only sketch the proof. Note that the unique implication from left to
right and the downward implications are immediate by definition. In order to justify
the upward implications in the first column we adapt the proof of Theorem 4.4 to

156 4. BOUNDED FINITE-STATE GENERICITY

show that red-1-reg-genericity and red-ω-reg-genericity coincide. To show that, in
general, weak red-k-reg-genericity does not imply weak red-(k+1)-reg-genericity,
it suffices to observe that any weakly red-k-reg-generic set isk-ω-saturated (by
Theorem 4.75 and Lemma 4.59) but, in general, not(k+1)-1-saturated. (To show
the latter, the proof of Lemma 4.8 can be easily adapted to build a weakly red-
k-reg-generic set which is not(k+ 1)-1-saturated.) This only leaves to show that
weakly red-ω-reg-genericity in general does not imply red-1-reg-genericity. Since,
by Theorem 4.76 the latter implies REG-bi-immunity it suffices to show that there
is a weakly red-ω-reg-generic set which is not REG-bi-immune. But this can be
easily done, e.g., by a straightforward finite extension argument, we can construct
a weakly red-ω-reg-generic setA such that{0}∗ is contained inA. �

Theorem 4.76 gives us some lower bounds on the strength of the finite-state
genericity notions based on the redundant representation of initial segments. More-
over, Theorems 4.72 and 4.75 show that these new genericity notions imply the
corresponding genericity notions based on the standard representation of initial
segments and the corresponding Cantor style genericity concepts. Of course it is
interesting to also obtain some upper bounds on the strength of the new concepts
and to analyze for what instances the implications among the different types of
genericity notions are strict. The previously obtained results give some but not all
answers.

For instance, fork≥ 2 the implications

weakly red-k-reg-generic⇒ weaklyk-reg-generic

and
weakly red-k-reg-generic⇒ weaklyk-C-reg-generic

are strict. This follows directly from our previous result that (fork≥ 2) neither
weakk-reg-genericity implies weakk-C-reg-genericity nor weakk-C-reg-genericity
implies weakk-reg-genericity (see Lemmas 4.66 and 4.64).

Questions left open by our previous results are the strictness of the following
relations

weakly red-1-reg-generic⇒ weakly 1-C-reg-generic (4.46)

weakly red-ω-reg-generic⇒ weaklyω-C-reg-generic (4.47)

red-ω-reg-generic⇒ ω-C-reg-generic (4.48)

Note that by Theorem 4.62, a negative answer to the first two questions is
equivalent to affirmatively answering the following interesting questions about the
power of weak red-1-reg-genericity and of weak red-ω-reg-genericity:

A weakly red-1-reg-generic⇔ A 6∈ REG (4.49)

4.4. Enriched Encodings of Initial Segments 157

A weakly red-ω-reg-generic⇔ A saturated (4.50)

Though we conjecture that these equivalences can be established by extending
some of our previous related arguments, we leave these questions open. In the
following we will show, however, that the implication in (4.48) is strict.

Theorem 4.78 There is anω-C-reg-generic set A which is not red-1-reg-generic.

Note that this implies that red-1-reg-genericity is strictly stronger than all of
the finite-state genericity concepts introduced in the previous sections. For a proof
of Theorem 4.78 it suffices to establish the following two lemmas.

Lemma 4.79 For any k≥ 1 there is anω-C-reg-generic set A such that

∀x,y∈ A (|x|< |y| ⇒ |y| ≤ |x|+1 ∨ |y| ≥ |x|+k) (4.51)

PROOF. Fix k ≥ 1 and let{ fn : n≥ 0} be an enumeration of all partial regular
bounded diagonalization functions where w.l.o.g. we may assume that the function
fn is k-bounded for somek≤ n. By a finite extension argument we construct an
ω-C-reg-generic setA satisfying (4.51): Given the finite initial segmentAs−1 = A �
l(s−1) of A defined in the firsts−1 stages of the construction, at stageswe define
an extensionAs = A � l(s) of As−1 in such a way thatA meetsfs – provided thatfs
is dense – and at the same time (4.51) is satisfied. Iffs is not dense, obviously this
is achieved by lettingl(s) = l(s−1)+ 1 and by not adding any strings of length
l(s−1) to A, i.e., by lettingAs = As−1 (viewingAs−1 andAs as sets). Iffs is dense
then we choose the least numberm such thatm> l(s−1)+k ands< 2m and the
least corresponding numbern such that|zn| ≥mand fs(zn) ↓. (Note that, by density
of fs, such a stringzn must exist.) Then we letl(s) = |zn|+2 and set

A � l(s) = (A � l(s−1)) 0n−2l(s−1)
fs(zn) 02|zn|+2−(n+s).

(Less formally, we pick the least stringz = zn of length≥ l(s− 1) + k such that
fs(z) is defined and such that meetingfs at z will only require to put strings of
length |z| and |z|+ 1 into A. Then we use this string to meetfs and choosel(s)
big enough.) Obviously this implies thatfs is met. Moreover, for any strings
x,y ∈ As such that|x| < |y|, (4.51) holds: Ifx,y ∈ As−1 this is true by inductive
hypothesis; ifx∈ As−1 andy∈ As\As−1 thenzn ≤ y whence, by choice ofm and
n, |x| < l(s− 1) ≤ l(s− 1) + k ≤ m≤ |zn| ≤ |y|, hence|x|+ k ≤ |y|; finally, if
x,y∈ As\As−1, thenx andy enterA for meetingfs atzn whence there are numbers
i < j < s such thatx = zn+i andy = zn+ j , hence, bys< 2m≤ 2|zn|, |y| ≤ |x|+1. �

Lemma 4.80 Let k≥ 1 and let A be red-1-reg-generic. There are infinitely many
numbers n such that{0n,0n+1, . . . ,0n+k−1} ⊂ A.

158 4. BOUNDED FINITE-STATE GENERICITY

PROOF. The proof is by induction onk. Fork = 1 it suffices to show that for given
n0 ≥ 0 there is a numbern≥ n0 such that 0n ∈ A. Consider the 1-bounded partial
red-extension functionf1 induced by the partial functionf ′1 : Σ#→ Σ where

f ′1(x0#i0#. . .#xn−1#in−1) =

{
1 ∃m≥ n0 (xn−1 = 1m)

↑ otherwise.

Then f ′1 – hencef1 – is regular andf1(A �r 0n) is defined for all numbersn > n0.
So, by red-1-reg-genericity,A meetsf1. But, by definition of f1, this implies that
there is a numbern > n0 such that(A � 0n)1 = (A � 0n) f1(A �r 0n) @ χ(A), i.e.,
0n ∈ A.

For the inductive step, fixk≥ 1 and assume that there are infinitely many num-
bersn such that{0n,0n+1, . . . ,0n+k−1} ⊂ A holds. Then, givenn0 ≥ 0, we have to
show that there is a numbern≥ n0 such that{0n,0n+1, . . . ,0n+k} ⊂ A. Consider
the 1-bounded partial red-extension functionfk+1 induced by the partial function
f ′k+1 : Σ#→ Σ where f ′k+1(x0#i0#. . .#xn−1#in−1) = 1 if xn−1 = 1m for some number
m≥ n0 + k, there are at leastk numbers j, 0≤ j < n− 1 such thatx j ∈ {0}∗,
and, for the lastk such stringsx j1 < · · · < x jk, i j1 = · · · = i jk = 1; and where
f ′k+1(x0#i0#. . .#xn−1#in−1) is undefined otherwise. Thenf ′k+1 – hencefk+1 – is
regular. Moreover,fk+1(A �r x) is defined if and only ifx = 0n+k for some number
n > n0 andA(0n) = . . .A(0n+k−1) = 1. So, by inductive hypothesis,fk+1 is dense
alongA whence, by red-1-reg-genericity,A meetsfk+1. But, by definition offk+1,
this implies that there is a numbern > n0 such that{0n,0n+1, . . . ,0n+k−1} ⊂ A.

�

CHAPTER 5

Unbounded Finite-State Genericity

160 5. UNBOUNDED FINITE-STATE GENERICITY

After our detailed analysis of bounded finite-state genericity we now turn to
more general finite-state genericity notions based on extensions of nonconstant
length. We will obtain stronger and stronger concepts by considering more and
more general notions of regular functions of typeΣ∗→ Σ∗ for modelling the finite-
state extension strategies. In Section 5.1 we start with (weak) Moore genericity
based on (total) Moore functions. By showing that weakly Moore generic sets are
saturated we show that (weak) Moore genericity refines bounded reg-genericity.
Moreover, by analyzing the gaps in (weakly) Moore generic sets we show that – in
contrast to all of the bounded finite-state genericity concepts considered in Chapter
4 – the class of the (weakly) Moore generic sets has measure 0. As we also observe,
however, Moore genericity does not forces REG-(bi-)immunity. In fact, this is true
if we strengthen this concept by considering nondeterministic Moore functions (see
Section 5.2). By considering generalized Moore functions, however, we obtain a
corresponding finite-state genericity concept which does not only force REG-bi-
immunity but also CF-bi-immunity (Section 5.3).

5.1. Moore Genericity 161

5.1 Moore Genericity

We start our investigation of unbounded finite-state genericity by introducing gener-
icity based on Moore functions, the most restrictive concept of an unbounded finite-
state function (see Definition 2.33). We call the corresponding genericity concept
Moore genericity.

Definition 5.1 A setA is Moore genericif A meets all partial extension functions
f : Σ∗ → Σ∗ which are Moore functions and which are dense alongA; andA is
weakly Moore genericif A meets all total extension functionsf : Σ∗→ Σ∗ which
are Moore functions.

A sequenceα is (weakly) Moore genericif the setS(α) corresponding toα is
(weakly) Moore generic.

Recall that an automatonM computing a Moore functionf produces on inputx
of lengthn the valuef (x) = y of lengthn+1 bit by bit. To be more precise, before
reading the first bit ofx, M determines the first bit ofy and then for every bit read a
bit is appended to the part ofy produced before. For partialf , after having read the
entire inputx, M decides whethery should be taken as the value off (x) or whether
f (x) is undefined. This computation procedure immediately implies the following
length and extension properties of (partial) Moore functionsf wherev,w∈ Σ∗ (see
Lemma 2.34).

f (w) ↓⇒ | f (w)|= |w|+1 (5.1)

and
(vv w & f (v) ↓ & f (w) ↓) ⇒ f (v)v f (w). (5.2)

By being able to specify extensions of growing length one might expect that
Moore extension functions are more powerful than regular bounded extension func-
tions. On the other hand, however, an extension strategy based on a regular exten-
sion function f has to make a decision on the value a setA has to have atzn in
order to meetf at n only after the extension strategy has seen all ofA � n whereas
a strategy based on a Moore function has to determine this value already before
it has seen any part ofA � n. So it is not obvious that (weak) Moore genericity
implies bounded reg-genericity. Before we will turn to this question we first list
some basic facts on Moore genericity including some technical lemmas which will
be very useful for the following investigations.

162 5. UNBOUNDED FINITE-STATE GENERICITY

5.1.1

Some Basic
Properties

We first consider some closure and invariance properties of Moore genericity and
weak Moore genericity. We first observe that both concepts are closed under com-
plement. We then show that Moore genericity and the corresponding infinitely-
often genericity concept coincide whereas this is not the case for weak Moore
genericity. In particular, this shows that weak Moore genericity and Moore gener-
icity do not coincide.

Lemma 5.2 The class of the (weakly) Moore generic sets is closed under comple-
ment.

PROOF. As one can easily show, for any (partial) Moore functionf , the dual
function f̂ defined byf̂ (x̄) = f (x) is a (partial) Moore function again. By Lemma
3.40 this implies the claim. �

Next we show that a Moore generic setA meets any partial Moore extension
function which is dense alongA not just once but infinitely often.

Lemma 5.3 Let A be Moore generic. Then A infinitely often meets any partial
extension function f: Σ∗→ Σ∗ which is a Moore function and which is dense along
A.

PROOF. It suffices to show that, for any partial Moore functionf and any number
n, the finite variantf ′ of f defined by

f ′(x) =

{
f (x) if |x|> n

↑ otherwise

is a partial Moore function again. Then we can argue as in the proof of Lemma
3.37.

Now, given a Moore automatonM = (Σ,S,δ,s0,F,λ) which computesf , we
can convertM into an automatonM′ = (Σ,S′,δ′,s′0,F ′,λ′) computingf ′ by letting
S′ = S∪{sk : s∈ S& k≤ n}, s′0 = s0

0, F ′ = F , λ′(sk) = λ′(s) = λ(s) for s∈ Sand
k≤ n, and by settingδ′(sk,a) = δ(s,a)k+1, δ′(sn,a) = δ(s,a) andδ′(s,a) = δ(s,a)
for s∈ S, k < n, anda∈ Σ. Intuitively, M′ works asM but in the firstn steps of a
computation the current statess0,s1, ...sn are replaced by corresponding non-final
statess0

0,s
1
1, ...,s

n
n, respectively. �

As one can easily show, the class of (partial) Moore functions is closed under
finite replacement (in the sense of Definition 3.38). By Lemmas 3.39 and 5.3 this
implies that the class of Moore generic sets is closed under finite variants.

Lemma 5.4 The class of the Moore generic sets is closed under finite variants.

5.1. Moore Genericity 163

In contrast to the two preceding lemmas, however, there is a weakly Moore
generic set which meets some total Moore extension function just once, and the
class of weakly Moore generic sets is not closed under finite variants.

Lemma 5.5 There is a weakly Moore generic set A which meets the total Moore
extension function f: Σ∗→ Σ∗ defined by f(x) = 1|x|+1 only at n= 0.

PROOF. The required setA is constructed by a finite extension argument, i.e., at
stages≥ 0 of the construction ofA we specify a finite initial segmentα � l(s) of
the characteristic sequenceα of A.

Let { fn : n≥ 1} be an enumeration of the total Moore extension functionsg
such thatg(ε) = 0, let f0 = f , and letl(−1) = 0. Then, fors= 0, let l(0) = 1 and

α � l(0) = 1 = f (α � 0).

For the inductive step, givenα � l(s), let l(s+1) = 2l(s)+1 and

α � l(s+1) = (α � l(s)) fs+1(α � l(s)).

(Note that, byfs+1 being a Moore function,| fs+1(α � l(s))|= |α � l(s)|+1 whence
α � l(s+ 1) is well defined.) Now, by a straightforward induction ons≥ 0, A
meetsfs at l(s−1) andα(l(s)) = 0. (The latter follows from the fact, that for a
Moore function f , (f (x))(0) = f (ε) by the extension property (5.2) whence, by
construction and by choice offs+1, α(l(s)) = (fs+1(α � l(s))(0) = fs+1(ε) = 0.)
Now the former implies thatA is weakly Moore generic. Namely, given a total
Moore functionh, eitherh(ε) = 1 = α(0) whenceA meetsh at 0 or there is a
numbers≥ 1 such thath = fs whenceA meetsh at l(s−1). It remains to show
thatA does not meetf at any numbern≥ 1, i.e., thatα(n)...α(2n) 6= 1n+1 for all
n≥ 1. But this easily follows from the fact thatl(0) = 1, l(s+1) = 2l(s)+1 and
α(l(s)) = 0 for s≥ 0. �

Lemma 5.6 The class of the weakly Moore generic sets is not closed under finite
variants.

PROOF. ChooseA and f as in Lemma 5.5 and letA′ = A\{z0}. ThenA is weakly
Moore generic but the finite variantA′ of A is not weakly Moore generic since, as
one can easily check,A′ does not meet the total (length invariant) Moore function
f . �

Theorem 5.7 The class of the Moore generic sets is strictly contained in the class
of the weakly Moore generic sets.

164 5. UNBOUNDED FINITE-STATE GENERICITY

PROOF. Obviously any Moore generic set is weakly Moore generic. So it suffices
to show that the class of the Moore generic sets and the class of the weakly Moore
generic sets do not coincide. But this is immediate by Lemmas 5.4 and 5.6 (or by
Lemmas 5.3 and 5.5). �

In the remainder of this subsection we prove some more technical facts on
(weakly) Moore generic sets. We first show of a class of simple length invariant
functions that they are of Moore type.

Definition 5.8 Let f̂ : N→ Σ be a total function. The functionf : Σ∗→ Σ∗ induced
by f̂ is defined byf (x) = f̂ (0)... f̂ (|x|).

Lemma 5.9 Let f̂ : N→ Σ be a total function such that, for some i∈ Σ, f̂ (n) = i
for almost all numbers n. Then the function f: Σ∗ → Σ∗ induced byf̂ is a total
Moore function.

PROOF. Straightforward. �

For the next technical lemma we need the following definition.

Definition 5.10 A total Moore functionf is compatible witha stringy if, for any
stringx, f (x) is compatible withy, i.e., f (x)v y if |x|< |y| andyv f (x) if |x| ≥ |y|.
f is compatible with y alonga setA if, for any numbern, f (A � n) is compatible
with y.

Lemma 5.11 Let A be any set, let A(z0) = i (i = 0,1), and let n, p≥ 1 be numbers
such that

|{m : 0 < m≤ n & A(zm) = i}|= p. (5.3)

Then there is a string y such that|y|= 1+n− p and such that, for any total Moore
function f which is compatible with y along A, A does not meet f at any number
m≤ n.

PROOF. Definey by letting y = y0 . . .yn wherey0 = 1−A(z0) = 1− i and, for
0 < m≤ n, ym is defined as follows. IfA(zm) = i thenym = ε. Otherwise,ym∈ Σ is
given byym = 1−A(zm+|y0...ym−1|). Then, by definition ofp, there arep numbersm
with 0≤m≤ n such thatym = ε. So|y|= 1+n− p. It remains to show that, given
a total Moore functionf which is compatible withy alongA and given a number
m≤ n, A does not meetf atm. Distinguish the following two cases.

If A(zm) = i then, byy0 = 1− i and by compatibility of f with y along A,
f (A � m)(0) = 1− i. So(A � m)i @ χ(A) while (A � m)(1− i) v (A � m) f (A � m)
whenceA does not meetf atm.

5.1. Moore Genericity 165

If A(zm) 6= i thenym = 1−A(zm+|y0...ym−1|). So, fork = |y0 . . .ym−1|, the strings
A(zm)...A(zm+k) andy0 . . .ym are incompatible: Namely, both strings have length
k + 1 and, for their last bitsA(zm+k) and ym, respectively,A(zm+k) 6= ym. On
the other hand, by compatibility off with y along A, y0 . . .ym v f (A � m). So
A(zm)...A(zm+k) and f (A � m) are incompatible, henceA does not meetf atm. �

Note that Lemma 5.11 in particular implies that for any setA such thatA(z) =
A(z0) for infinitely many stringsz, for any numberp there is a numbern and a
stringy of lengthn− p such thatA does not meet any Moore extension functionf
compatible withy at any numberm≤ n. In order to show that this applies to any
weakly Moore genericA set, we next observe that the characteristic sequence of
any weakly Moore generic set contains infinitely many zeroes and ones.

Lemma 5.12 Let A be weakly Moore generic and letα be the characteristic se-
quence of A. Then{n : α(n) = 0} and{n : α(n) = 1} are infinite.

PROOF. By symmetry it suffices to show that{n : α(n) = 0} is infinite. For a
contradiction assume that there are only finitely many occurrences of 0 inα and
fix n0 such thatα = (α � n0)1ω. Define the functionf̂ : N→ Σ by letting f̂ (n) =
1−α(2n). Note that f̂ (n) = 0 for n > n0. Hence, by Lemma 5.9, the functionf
induced byf̂ via f (x) = f̂ (0)... f̂ (|x|) is a total Moore function. Moreover,A does
not meetf at any numbern. Namely, for anyn≥ 0, α � 2n+1 6= (α � n) f (α � n)
since, by definition off and f̂ , α � 2n+1 and(α � n) f (α � n) differ in the last bit:

[(α � n) f (α � n)](2n) = f (α � n)(n) = f̂ (n) = 1−α(2n).

It follows thatA is not weakly Moore generic contrary to assumption. �

Our final technical lemma bounds the gaps in the domains of partial finite-state
functions. It does not only apply to partial Moore functions but to bounded partial
regular functions as well.

Lemma 5.13 Let f be a partial bounded regular extension function or a partial
Moore extension function computed by a finite automaton with k states. Then

∀x∈ Σ∗ ([∃y∈ Σ∗ (f (xy) ↓)]⇒ [∃y′ ∈ Σ<k (f (xy′) ↓)] (5.4)

holds.

PROOF. Assume thatf is computed by the automatonM = (Σ,S,δ,s0,F,λ) where
|S| = k and that, for givenx, there is a stringy such thatf (xy) is defined. Since
f (z) is defined if and only ifM is a final state after readingz, it follows that there

166 5. UNBOUNDED FINITE-STATE GENERICITY

are statess ands′ such thatδ∗(s0,x) = s, δ∗(s,y) = s′ ands′ ∈ F . So the states′ is
reachable froms. But then, for the shortest stringy′ with δ∗(s,y′)= s′, |y′|< |S|= k,
since the corresponding runs= s1,s2, . . .s|y′|+1 = s′ of M does not contain any loops
(i.e. repetitions). Soy′ is the requested string of length< k with f (xy′) ↓. �

5.1.2

Moore
Genericity and
Saturation

In order to show that weak Moore genericity (hence Moore genericity) is a refine-
ment of bounded reg-genericity we will show that weakly Moore generic sets are
saturated. For a Moore generic setA we can show thatA is saturated by applying
Lemma 5.3. Namely, in order to show that a given stringx occurs in the characteris-
tic sequenceα of A we define a total Moore functionf by letting f (y) = x� (|y|+1)
if |y| < |x| and by letting f (y) = x0|y|−|x|+1 otherwise. Since, by Lemma 5.3,A
meets f infinitely often, there is a numbern > |x| such thatA meets f at n. So
f (α � n) = x0n−|x|+1 occurs inα, hence, in particular,x occurs inα. To show that
weakly Moore generic sets are saturated too we need a somewhat more sophisti-
cated argument.

Theorem 5.14 Let A be weakly Moore generic. Then A is saturated.

PROOF. For a contradiction assume thatA is not saturated and fix a nonempty
string x such thatx does not occur in the characteristic sequenceα of A, and let
i = A(ε). Since, by Lemma 5.12, the biti occurs inα infinitely often, we may
choose a numbern ≥ 1 such that, forp = |x|+ 1, (5.3) holds. So, by Lemma
5.11, there is a stringy of length 1+n− p such that, for any total Moore function
f which is compatible withy alongA, A does not meetf at any numberm≤ n.
Fix such a stringy and definef̂ : N→ Σ by letting f̂ (0) . . . f̂ (n−1) = yx (note that
|yx|= |y|+ |x|= (1+n−p)+(p−1) = n) and by lettingf̂ (m) = 0 for m≥ n. Then,
by Lemma 5.9, the extension functionf induced byf̂ via f (x) = f̂ (0)... f̂ (|x|) is a
Moore function. By definition,f is compatible withyx, hence compatible withy.
By choice ofy, the latter implies thatA does not meetf at any numberm≤ n. On
the other hand, form> n, by compatibility of f with yx (and by|xy|= n< m+1=
| f (A � m)|), yxv f (A � m). So if A meetsf atm> n thenx will occur in α. Since,
by assumption,x does not occur inα we may conclude thatA does not meetf . It
follows thatA is not weakly Moore generic which gives the desired contradiction.
�

By coincidence of the bounded reg-generic sets with the saturated sets, the pre-
ceding theorem shows that the class of weakly Moore generic sets is contained in
the class of bounded reg-generic sets. Moreover, since saturated sets are nonregu-
lar, we may conclude that no regular set is weakly Moore generic.

5.1. Moore Genericity 167

Corollary 5.15 Any weakly Moore generic set is bounded reg-generic.

Corollary 5.16 No regular set is weakly Moore generic.

Note that the implication in Corollary 5.15 is strict since, in contrast to weak
Moore genericity, bounded reg-genericity is closed under finite variants. In the
next subsection we will show this in a different way: In contrast to any bounded
genericity concept, the class of weakly Moore generic sets has measure 0. We will
show the latter by analyzing the gaps occurring in (weakly) Moore generic sets.

5.1.3

Moore
Genericity, Gaps

and Measure

We will next compare the length of gaps occurring in the characteristic sequences
of bounded-reg generic sets, weakly Moore generic sets, and Moore generic sets.

Definition 5.17 Let f : N→ N be total. We say that a sequenceα has anf -gap at
n if (α � n)0f (n) @ α; α has f -gapsif α has f -gaps at infinitely many numbersn,
i.e., if there are infinitely many numbersn such that(α � n)0f (n) @ α. α hask-gaps
(k≥ 0) if α has f -gaps for the constant functionf (n) = k.

We extend Definition 5.17 to sets by saying that a setA has f -gaps if its char-
acteristic sequence has such gaps.

A characterization of the gaps occurring in all bounded reg-generic sets follows
from the next two lemmas.

Lemma 5.18 Any bounded reg-generic set A has k-gaps for all numbers k≥ 1.

PROOF. By the coincidence of bounded reg-genericity withω-ω-saturation, for
any numberk, the word 0k occurs in the characteristic sequence of any bounded
reg-generic set infinitely often. �

Lemma 5.19 Let f : N→N be a nondecreasing total function which is unbounded
(i.e., for any number k≥ 1, f (n) > k for some n). Then there is a bounded reg-
generic set A which does not have f -gaps.

PROOF. Given an unbounded, nondecreasing functionf : N→ N, by a finite
extension argument we define a bounded reg-generic setA without f -gaps. Let
{ fe : e≥ 0} be an enumeration of the total regular bounded extension functions
where w.l.o.g. fe is e-bounded. Then, given a finite initial segmentαs−1 = α �
l(s−1) of the characteristic sequenceα of the setA under construction, we define
an extensionαs = α � l(s) of αs−1 which guarantees thatA meetsfe. Moreover,
this extension is chosen so thatA does not havef -gaps.

168 5. UNBOUNDED FINITE-STATE GENERICITY

For the definition ofl(s) andαs, choosen> l(s−1) minimal such thatf (n) > s.
(Note that, byf being unbounded and nondecreasing, for any numbers, f (n) > s
for almost all numbersn, hence such ann exists.) Then letl(s) = n+ s+ 1 and
set α̂s = αs−11n−l(s−1) andαs = α̂s fs(α̂s)1. Obviously this ensures thatA meets
fs at n. So A is weakly ω-reg-generic, hence bounded reg-generic by Theorem
4.7. Moreover, the construction ensures that,A does not havef -gaps. Namely,
whenever the word 0k, k > 0 occurs inα, say(α � m)0k @ α then there are numbers
n and s such that(α � n− 1)1 fs(α � n)1 @ α, s < f (n) and 0k is a subword of
fs(α � n). It follows thatk≤ s< f (n)≤ f (m) (where the latter follows fromn≤m
sincef is nondecreasing). So this occurrence of 0k in α does not establish anf -gap.

�

Theorem 5.20 Let f : N→N be nondecreasing and total. The following are equiv-
alent.

1. f is bounded, i.e., there is a number k such that f(n) ≤ k for all numbers
n≥ 0.

2. Every bounded reg-generic set has f -gaps.

PROOF. This is immediate by Lemmas 5.18 and 5.19 �

The following two lemmas determine the size of gaps occurring in all Moore
generic sets.

Lemma 5.21 Any Moore generic set A has(n+k)-gaps for all numbers k≥ 1.

PROOF. Let α be the characteristic sequence of a Moore generic setA and fix
k≥ 1. Define the partial functionf : Σ∗ → Σ∗ by letting f (w) be defined if and
only if w = v0k for somev∈ Σ+ and by lettingf (w) = 0|w|+1 if f (w) is defined.
Then, as one can easily check,f is a partial Moore function andf is dense along
any saturated set. Since, by Theorem 5.14, Moore generic sets are saturated it
follows, by Lemma 5.3, thatA meetsf infinitely often. But, for any numbern such
thatA meetsf atn,

(α � n) f (α � n) = (α � n−k)0k0n+1 @ α

henceα has an(n+k)-gap atn−k. This completes the proof. �

Lemma 5.22 Let f : N→ N be a total, nondecreasing function such that, for any
number k≥ 1, f (n) > n+k for some n. Then there is a Moore generic set A which
does not have f -gaps.

5.1. Moore Genericity 169

PROOF. The proof is similar to that of Lemma 5.19. But since, in contrast to
ω-reg-genericity and weakω-reg-genericity, Moore genericity and weak Moore
genericity do not coincide, here we have to work with partial extension functions.
We will use Lemma 5.13 in order to adapt the argument for total functions to partial
functions.

Let f be as in the premise of the lemma. Then, for any numberk, f (n) >

n+k for almost all numbersn. By a finite extension argument we define a Moore
generic setA without f -gaps. Let{ fe : e≥ 0} be an enumeration of the partial
Moore extension functions where w.l.o.g. we may assume thatfe is computed by
an automaton with at mostestates. Then, given a finite initial segmentαs−1 = α �
l(s−1) of the characteristic sequenceα of the setA under construction, we define
an extensionαs = α � l(s) of αs−1 which guarantees thatA meetsfe. Moreover,
this extension is chosen so thatA does not havef -gaps.

For the definition ofl(s) andαs, choosen > l(s−1) minimal such thatf (n) >

n+s+1, setα̂s = αs−11n−l(s−1) and distinguish the following two cases. If there
is a stringy of length≤ s such thatfs(α̂sy) is defined than fix the least suchy and
let αs = α̂sy fs(α̂sy)1. Otherwise, letαs = α̂s. Note that in the former case the
choice ofαs ensures thatA meetsfs. In the latter case, by Lemma 5.13, there is
no extension ofαs = α̂s on which fs is defined, whencefs is not dense alongA. It
follows thatA is Moore generic.

Finally, by construction, a substring 0k of α has to be contained in thefs(α̂sy)
part of an initial segmentαs = α̂sy fs(α̂sy)1. By construction, however,|y|< sand,
for n = |α̂s|, f (n) > n+2s. So

k < | fs(α̂sy)| ≤ (n+s)+1 < f (n).

Since f is nondecreasing this implies that the occurrence of 0k in α does not induce
an f -gap inα. �

Theorem 5.23 Let f : N→N be nondecreasing and total. The following are equiv-
alent.

1. There is a number k such that f(n)≤ n+k for all numbers n≥ 0.

2. Every Moore generic set has f -gaps.

PROOF. This is immediate by Lemmas 5.21 and 5.22 �

Theorem 5.23 does not carry over to weak Moore genericity. For instance, by
considering the complement of the weakly Moore generic set of Lemma 5.5 we
obtain a weakly Moore generic set which does not have(n+1)-gaps.

170 5. UNBOUNDED FINITE-STATE GENERICITY

Lemma 5.24 There is a weakly Moore generic set A which does not have(n+1)-
gaps.

On the other hand, in contrast to bounded-reg genericity, there is an unbounded
nondecreasing functionf such that there aref -gaps in all weakly Moore generic
sets.

Lemma 5.25 Every weakly Moore generic set A hasn
4-gaps.

PROOF. LetA be weakly Moore generic and fixn0≥ 0. We have to show that there
is a numbern≥ n0 such that(α � n)0

n
4 @ α whereα is the characteristic sequence

of A.
Fix i ≤ 1 such that

∃∞n (|{zm : m< n & A(zm) = i}| ≥ n
2
).

and fixn1≥ n0 such that|{zm : m< n1 & A(zm) = i}| ≥ n1
2 holds. Distinguish the

following cases depending on the relation betweeni andA(z0).
First assume thatA(z0) = i. Then, by Lemma 5.11, there is a stringx of length

≤ n1
2 +1 such that, for any Moore functionf compatible withx, A does not meet

f at any number≤ n1. So, in particular, this is true for the Moore functionf
induced by the function̂f : N→ N defined byf̂ (0) . . . f̂ (|x|−1) = x and f̂ (n) = 0
for n≥ |x|. On the other hand, by weak Moore genericity ofA, A meetsf . SoA
meetsf at some numbern2 > n1. It follows that

(α � n2) f (α � n2) @ α.

Since f (α � n2) = x0n2+1−|x| and |x| ≤ n1
2 + 1 ≤ n2

2 + 1 it follows that, forn =
n2 + |x|,

(α � n)0
n
4 v (α � n)0n2+1−|x| = (α � n2) f (α � n2) @ α.

This completes the proof for the first case.
Now if A(z0) 6= i then we can apply Lemma 5.11 to the complement ofA.

Hence we can argue as in the first case withĀ in place ofA. So, by replacing the
function f̂ defined there bŷf (0) . . . f̂ (|x|−1) = x and f̂ (n) = 1 for n≥ |x| we can
argue that we can findn≥ n1 such that

(α � n)1
n
4 @ α

whereα denotes the characteristic sequence ofĀ. Obviously this implies(α �
n)0

n
4 @ α.
This completes the proof. �

As announced above, we can use the gaps occurring in all weakly Moore
generic sets to show that the class of these sets has measure 0.

5.1. Moore Genericity 171

Theorem 5.26 Let A be a set such that the characteristic sequenceα of A satisfies
the law of large numbers, i.e.,

lim
n→∞

|{m : m< n & α(m) = 0}|
n

=
1
2
.

Then A is not weakly Moore generic.

PROOF. For a contradiction assume thatA is weakly Moore generic and satisfies
the law of large numbers. By the latter, we may choosen0 > 0 such that

∀n≥ n0 (
1
2
− 1

50
<
|{m : m< n & α(m) = 0}|

n
<

1
2

+
1
50

). (5.5)

On the other hand, by weak Moore genericity ofA and by Lemma 5.25, we may
choosen > n0 such that(α � n)0

n
4 @ α. It follows, for n′ = n+ n

4,

|{m:m<n′ & α(m)=0}|
n′ = |{m:m<n & α(m)=0}|+ n

4
n+ n

4

= 4
5
|{m:m<n & α(m)=0}|

n + 1
5

> 4
5(1

2−
1
50)+ 1

5 (by (5.5))
> 1

2 + 1
50.

But this contradicts (5.5). �

Corollary 5.27 The class of the weakly Moore generic sets has measure 0.

PROOF. This is immediate by Theorem 5.26 since the class of the sets satisfying
the law of large numbers has measure 1. �

Corollary 5.28 The class of weakly Moore generic sets is strictly contained in the
class of bounded reg-generic sets.

PROOF. This is immediate by Corollary 5.27 since the class of the bounded reg-
generic sets has measure 1. �

Note that, for any bounded genericity concept, the class of the corresponding
generic sets has measure 1 (Theorem 3.35). So none of the bounded finite-state
genericity concepts introduced in Chapter 4 implies weak Moore genericity. An-
other interesting consequence of Theorem 5.26 is that the characteristic sequences
of (weakly) Moore generic sets are saturated (by Theorem 5.14) but not normal.
The latter follows from Theorem 5.26 since, by definition, normal sequences sat-
isfy the law of large numbers.

172 5. UNBOUNDED FINITE-STATE GENERICITY

5.1.4

Moore
Genericity and
Immunity

By Corollary 5.16, (weakly) Moore generic sets are not regular. In order to get a
better impression on the diagonalization power of the Moore genericity concept it
is natural to ask whether (weakly) Moore generic sets are REG-bi-immune. Here
we give a negative answer.

Theorem 5.29 There is a Moore generic set A which is notREG-immune.

PROOF. It suffices to construct a Moore generic setA such that

{02n : n≥ 0} ⊆ A. (5.6)

By the latter,A will not be REG-immune. The construction ofA closely follows
the proof of Lemma 5.22. As there we fix an enumeration{ fe : e≥ 0} of the partial
Moore-functions such that theeth function fe is computed by an automaton with
at mostestates. So, by Lemma 5.13, fore≥ 0,

∀x∈ Σ∗ ([∃y∈ Σ∗ (fe(xy) ↓)]⇒ [∃y′ ∈ Σ<e (fe(xy′) ↓)] (5.7)

holds.
Now, in stages of the construction, we will determineA for all stringsx with

2s≤ |x| < 2s+ 2, i.e., the valuesα(22s− 1) . . .α(22s+2− 2) of the characteristic
sequenceα of A. In order to satisfy (5.6) we letA(02s) = α(22s−1) = 1. Then we
ask whether there is a stringy of length< s such thatfs((α � 22s)y) is defined. If
so, then, for the least such stringy we let

α � 22s+2−1 = (α � 22s−1)1y fs((α � 22n)y)022s+2−(1+2(22s+|y|)+1).

Obviously, this extension ensures thatA meetsfs. If there is not stringy as above
then, by (5.7), there is no extension ofα � 22s on which fs is defined. So, in this
case,fs is not dense alongA and we can define

α � 22s+2−1 = (α � 22s−1)1022s+2−(22s−2).

�

In the next two sections we will discuss two strengthenings of Moore generic-
ity which are based on nondeterministic Moore functions and generalized Moore
functions, respectively.

5.2. Nondeterministic Moore Genericity 173

5.2 Nondeterministic Moore Genericity

Some of the limitations of Moore functions, namely the extension property (5.2)
(but not the length property (5.1)), can be eliminated by considering nondetermin-
istic Moore functions (see Example 2.40). We call the corresponding genericity no-
tion (weak) nondeterministic Moore genericity or (weak) NM-genericity for short.

Definition 5.30 A set A is nondeterministic Moore generic(or NM- genericfor
short) if A meets all partial extension functionsf : Σ∗ → Σ∗ which are nondeter-
ministic Moore functions and which are dense alongA; andA is weakly nonde-
terministic Moore generic(or weaklyNM- genericfor short) if A meets all total
extension functionsf : Σ∗→ Σ∗ which are nondeterministic Moore functions.

As in the deterministic case we can show that the class of the (weakly) non-
deterministic Moore generic sets is closed under complement. In contrast to the
deterministic case, however, not only nondeterministic Moore genericity but also
weak nondeterministic Moore genericity is an infinitely-often genericity concept.

Lemma 5.31 If A is NM-generic then A infinitely often meets any partial exten-
sion function f: Σ∗→ Σ∗ which is a nondeterministic Moore function and which
is dense along A. Similarly, if A is weakly NM-generic then A infinitely often meets
any total extension function f: Σ∗→ Σ∗ which is a nondeterministic Moore func-
tion.

PROOF. We give a proof of the second part of the lemma (which can be easily
modified to prove the first part). Given a weakly NM-generic setA, a total exten-
sion functionf which is nondeterministically Moore computable and a numbern0,
it suffices to show thatA meetsf at some numbern≥ n0.

Consider the finite variantf ′ of f defined by

f ′(x) =

{
(1−A(z|x|))|x|+1 if |x| ≤ n0

f (x) otherwise.

Then f ′ is a nondeterministic Moore function again: A nondeterministic automaton
M′ computingf ′(x) first guesses whether or not the inputx has length> n0. If M′

guesses that|x| > n0 thenM′ simulates a nondeterministic automaton computing
f on inputx. In addition,M′ counts the firstn0 steps of the computation and does
not accept if the computation is completed before stepn0 + 1. If M′ guesses that
|x| ≤ n0 thenM′ makes an additional guess about the length of|x|. If M′ guesses
that|x|= m thenM′ runs throughm+1 statessm

0 , ...,sm
m all labelled with 1−A(zm).

174 5. UNBOUNDED FINITE-STATE GENERICITY

Only the last of these states,sm
m, is accepting; moreover, if the computation is not

completed when enteringsm
m, m′ will enter a rejecting state which it will never leave

later.
It follows, by weak NM-genericity ofA thatA meetsf ′ at some numbern. The

function f ′ has been defined in such a way, however, thatA does not meetf ′ at any
number≤ n0. SoA meetsf ′ at some numbern > n0. Since f and f ′ coincide on
inputs of length greater thann0, this implies thatA meetsf aboven0. �

Lemmas 5.5 and 5.31 immediately imply that weak NM-genericity is strictly
stronger than weak Moore genericity. This difference is also reflected by the gaps
occurring in the weakly Moore generic sets and the weakly NM-generic sets as we
will show next. The following results on gaps in weakly NM-generic sets will also
show that in general weak NM-genericity does not imply Moore genericity, i.e.,
that nondeterministic total Moore extension functions in general cannot simulate
deterministic partial Moore functions.

Theorem 5.32 Any weakly NM-generic set has(n+1)-gaps but there is a weakly
NM-generic set A which does not have(n+2)-gaps.

PROOF. For a proof of the first part, assume thatA is weakly NM-generic. By
Lemma 5.31,A infinitely often meets the (deterministic length invariant) Moore
extension functionf defined byf (x) = 0|x|+1. Obviously, this implies thatA has
(n+1)-gaps. For a proof of the second part, by a standard finite extension argument
we construct a weakly NM-generic set without(n+2)-gaps. Given an enumeration
{ fe : e≥ 0} of the nondeterministic total Moore extension functions, in stages of
the construction we define a finite extensionαs of the previously specified initial
segmentαs−1 of the characteristic sequenceα of A by lettingαs = αs−1 fs(αs−1)1.
Obviously this ensures thatA meets fs whenceA is weakly NM-generic. More-
over, since the nondeterministic Moore functionsf have the length property (5.1),
| fs(αs−1)| = |αs−1|+1. Hence inserting a 1 at the end of each extension step en-
sures that there is no numbern with (α � n)0n+2 @ α. SoA does not have(n+2)-
gaps. �

Corollary 5.33 There is a weakly NM-generic set which is not Moore generic.
Hence, in particular, NM-genericity is strictly stronger than weak NM-genericity.

PROOF. This is immediate by the second part of Theorem 5.32 and by Lemma
5.21. �

The results on gaps in Moore generic sets easily carry over to NM-generic sets.
Similarly, the proof of Theorem 5.29 easily extends to NM-genericity.

5.2. Nondeterministic Moore Genericity 175

Theorem 5.34 There is a nondeterministic Moore generic set A which is notREG-
immune.

So replacing Moore extension functions by nondeterministic Moore extension
functions does not lead to extension strategies forcing REG-bi-immunity. As we
will show in the next section, however, generalized Moore extension strategies have
this power.

176 5. UNBOUNDED FINITE-STATE GENERICITY

5.3 Generalized Moore Genericity

Our second refinement of Moore genericity is based on (partial) generalized Moore
functions.

Definition 5.35 A setA is generalized Moore generic(or GM- genericfor short)
if A meets all partial extension functionsf : Σ∗→ Σ∗ which are generalized Moore
functions and which are dense alongA; andA is weakly generalized Moore generic
(or weaklyGM- genericfor short) ifA meets all total extension functionsf : Σ∗→
Σ∗ which are generalized Moore functions.

We can further refine this genericity concept by considering Moore extension
functions which are both, generalized and nondeterministic.

Definition 5.36 A setA is generalized nondeterministic Moore generic(or GNM-
genericfor short) if A meets all partial extension functionsf : Σ∗→ Σ∗ which are
generalized nondeterministic Moore functions and which are dense alongA; andA
is weakly generalized nondeterministic Moore generic(or weaklyGNM- generic
for short) ifA meets all total extension functionsf : Σ∗→ Σ∗ which are generalized
nondeterministic Moore functions.

As we have observed in Section 2.3, generalized (deterministic or nondeter-
ministic) partial Moore functionsf in general do not have the length property (5.1)
but satisfy the more relaxed length condition

∃c≥ 1∀w∈ Σ∗ (f (w) ↓⇒ | f (w)| ≤ c(|w|+1)). (5.8)

In addition, the generalized deterministic Moore functions – but in general not the
generalized nondeterministic Moore functions – have the extension property (5.2).

The relaxation of the length property leads to larger gaps in the characteristic
sequences of (weakly) generalized Moore generic sets.

Lemma 5.37 Any weakly GM-generic set has cn-gaps (for any c≥ 1).

PROOF. Let A be weakly GM-generic, letα be the characteristic sequence ofA,
let c≥ 1, and letn0≥ 0. It suffices to show that there is a numbern≥ n0 such that
(α � n)0cn @ α.

First define a stringy of lengthn0 by letting y = y0 . . .yn0−1 whereyn = 1−
A(z2n) for 0≤ n < n0. By definition, ofy,

∀n < n0 ((α � n)y 6@ α).

5.3. Generalized Moore Genericity 177

So, for any total extension functionf such thatyv f (ε) and f has the extension
property (5.2),A does not meetf at any numbern < n0.

Now consider the length invariant extension functionf defined byf (ε) = y0c·n0

and f (x) = f (ε)0c·|x| = y0c·(n0+|x|) for nonemptyx. Obviously, f is a generalized
Moore function. So, by weak GM-genericity ofA, A meetsf at somen. More-
over, since generalized Moore functions have the extension property, by the above
observation,A meetsf at some numbern≥ n0. Fix such a numbern. Then, by
definition of f and byA meetingf atn,

(α � n)y0c·(n0+n) = (α � n) f (α � n) @ α.

Since|y|= n0 this implies

(α � (n+n0))0c·(n0+n) @ α.

Henceα has ancn-gap atn+n0. �

As the following lemma shows, the preceding result is optimal and the length
of gaps produced by generalized Moore extension functions cannot be increased if
we allow the functions to be partial and nondeterministic.

Lemma 5.38 Let f : N → N be a nondecreasing and total function such that
f (n) 6∈O(n). Then there is a GNM-generic set A which does not have f -gaps.

PROOF. Since the proof resembles the proofs of previous results of the same
type (as for example Lemma 5.22), we only sketch the proof. The desired setA is
constructed by a finite extension argument. We fix an enumeration{ fe : e≥ 1} of
the partial nondeterministic generalized Moore functions. W.l.o.g. we may assume
that, for any numbereand any nonempty stringx,

(fe(x) ↓⇒ | fe(x)| ≤ e|x|) & ([∃y∈ Σ∗ (f (xy) ↓)]⇒ [∃y′ ∈ Σ<e (f (xy′) ↓)] (5.9)

holds. (Note that the former can be achieved by (5.8) while the latter can be
achieved by extending Lemma 5.13 to nd. generalized partial Moore functions.)

Then, given the previously defined initial segmentαs−1 = α � l(s−1) of the
characteristic sequenceα of the setA under construction, at stages≥ 1 of the
construction the extensionαs of αs−1 is chosen so thatA will meet fs if fs is dense
alongA and such that the extension does not lead to anyf -gap. To achieve this, we
first pick n0 > l(s−1),s such that, for all numbersn≥ n0, f (n) > 2(s+1)n, and
we let α̂s be the extension ofαs−1 of lengthn0 obtained by appending 1n0−l(s−1).
Moreover, if there is a stringy with |y|< s such thatfs(α̂sy) is defined then we let

αs = α̂s y fs(α̂sy) 1

178 5. UNBOUNDED FINITE-STATE GENERICITY

for the least such stringy thereby meetingfs atn0+ |y|. To show that this extension
does not introduce anyf -gap intoα observe that

αs = α � l(s−1) 1n0−l(s−1) y fs(α̂sy) 1

i.e., the only zeroes occurring in the new part ofαs occur iny fs(α̂sy). So it suffices
to observe that|y fs(α̂sy)|< f (n0):

|y fs(α̂sy)| ≤ |y|+s· |α̂sy| (by (5.9))
< s+s· (n0 +s) (by |y|< s and|α̂s|= n0)
< 2(s+1)n0 (by n0 > s≥ 1)
< f (n0) (by choice ofn0).

Finally, if no stringy as above exists, then we letαs = α̂s. Note that in this case,
by (5.9), fs is not dense alongA. Moreover, since the extension does not add any
zeroes toα, this choice ofαs will not introduce anyf -gaps. �

By combining Lemmas 5.37 and 5.38 we obtain the following characterization
of the gaps occurring in all generalized Moore-generic sets.

Theorem 5.39 Let f : N→N be nondecreasing and total. The following are equiv-
alent.

1. f ∈O(n).

2. Every weakly GM-generic set has f -gaps.

3. Every GM-generic set has f -gaps.

4. Every weakly GNM-generic set has f -gaps.

5. Every GNM-generic set has f -gaps.

The above established gaps imply that any weakly Moore generic set is REG-
bi-immune. In fact we obtain CF-bi-immunity.

Corollary 5.40 Let A be weakly GM-generic. Then A is bi-immune to the class of
context free languages.

PROOF. Since, as one can easily show, weak GM-genericity is closed under com-
plement, it suffices to show thatA is CF-immune. For a contradiction assume that
B is an infinite context free subset ofA. By the pumping lemma for context-free
languages we can find a numberp and wordsxn ∈B⊆A such that|xn+1|= |xn|+ p
(n≥ 0). Hence there is a numbern0 such that, for anyn≥ n0, Σ[n,n+p] ∩A 6= /0,
whereΣ[n,n+p] = {x∈ Σ∗ : n≤ |x| ≤ n+ p}. SinceΣ[n,n+p] has cardinality less than

5.3. Generalized Moore Genericity 179

(p+1)2n+p = (p+1) ·2p ·2n (and since|Σ<n| = 2n−1), it follows that the char-
acteristic sequenceα of A does not have 2p+1 gaps. But this contradicts Lemma
5.37. �

Recall that the red-1-reg-generic sets introduced in Section 4.4 which were
based on bounded red-extension functions were REG-bi-immune too (see Theo-
rem 4.76). We conjecture, however, that a red-1-reg generic set in general is not
CF-immune. This would show that the diagonalization power of (total) Moore ex-
tension functions is greater than that of the bounded partial regular red-extension
functions.

We can modify the (generalized) Moore genericity concepts introduced above
by considering red-extension functions of the corresponding type, i.e., (general-
ized) Moore functions for which the input is interpreted as a redundant representa-
tion of an initial segment in the sense of (4.44). Then, obviously, any generalized
(nondeterministic) Moore functionf can be simulated by a generalized (nondeter-
ministic) red-Moore functionf ′. (Note that a finite automatonM′ computing f ′

skips the partsz0#,...,zn# on inputz0#i0 . . .zn#in and simulatesM on the remaining
input i0 . . . in. Also note, that in the non-generalized case such a simulation is not
possible sinceM′ has to produce an output bit for any letter it reads.) So (weak)
red-GM-genericity and (weak) red-GNM-genericity imply (weak) GM-genericity
and (weak) GNM-genericity, respectively. In fact, these variants of Moore gener-
icity based on red-extension functions are strictly stronger than the correspond-
ing genericity notions based on standard extension functions. This can be shown
by analyzing the gaps occurring in the weakly red-GM-generic sets: Since a red-
extension function gets in place of the initial segmentα � n of lengthn the string
α �r n as an input, where|α �r n| is of ordern · logn, one can easily show that –
in contrast to Theorem 5.39 – every weakly red-GM-generic set has gaps of order
n· logn.

CHAPTER 6

Conclusion

182 6. CONCLUSION

In our thesis we have started the investigation of finite-state genericity. Our
work focussed on the bounded case. Here we introduced a variety of genericity no-
tions by distinguishing between total and partial extension functions and between
extensions of fixed and of constant but arbitrary norm. By comparing the strength
of the various concepts, by analyzing lower bounds on the complexity of the cor-
responding generic sets, and by relating these concepts to saturation we have illus-
trated the diagonalization power of finite automata in the setting of bounded finite
extension arguments. By considering extension strategies which are either given
only partial information on the initial segment which has to be extended or which
are given this initial segment in a more redundant form we could further illustrate
the diagonalization strength of finite automata. In particular, we have shown that
the question whether we can force REG-bi-immunity by bounded finite-state ex-
tension strategies depends on the representation of initial segments.

Our treatment of unbounded finite-state genericity is less detailed. Here we
introduced genericity concepts based on the common types of regular functions
treated in the literature and established some of their basic properties. In part
we also demonstrated that the more general function classes also lead to stronger
genericity concepts but in this setting we left some of the basic questions open.

Possible future work on finite-state genericity might address the following
questions. For a further understanding of the notions introduced in this thesis one
might analyse further structural properties of the corresponding generic sets. In
particular we have not addressed the question, which of the common structural
properties based on regular reducibilities – like incompressibility, autoreducibility,
hardness – are forced or avoided by the different finite-state genericity notions. For
the genericity notions in computability and complexity theory the investigation of
the corresponding questions proved to be very useful. In case of the regular lan-
guages, however, it seems that the corresponding reducibilities and their structural
properties have not yet been more closely analyzed so that it seems that there is
wide range of questions to be addressed here.

The strong dependence of the strength of finite-state extension strategies on
the representation of the input initial segments leads to another type of questions,
namely the question of the impact of changes of the representation of input and
output. In case of the input we have addressed this problem in detail (see Section
4.4). For the case of output consider the following example. As discussed before, a
Moore extension strategy has to produce the first bit of the extension already after
reading the first bit of the given initial segment which imposes severe limitations
on the possible strategies. We may avoid this by taking the mirror image of the
value of the Moore function for defining the extension. Another approach which
might lead to stronger or more robust finite-state genericity notions is to replace
extension functions by extension relations (i.e., condition sets). In computability

. 183

and complexity theory in general this approach is equivalent to the functional ap-
proach but in the low complexity setting of finite automata it might lead to stronger
notions. In particular, in case of nondeterministic automata this approach might be
useful.

A further area of research is the introduction of genericity notions for other
low Chomsky classes. By the coincidence of the Chomsky-0 languages with the
recursively enumerable sets, Chomsky-0 genericity coincides with the well under-
stood and extensively studied 1-genericity concept of computability theory. Sim-
ilarly, by the coincidence of the class of the context-sensitive languages with the
nondeterministic space class NSPACE(n), genericity notions for this class may
be obtained along the lines of the work on resource-bounded genericity in com-
putational complexity (see Ambos-Spies (1996)) though most of the work there
only deals with complexity classes extending DTIME(2n). It seems, however, that
nothing is known about adequate genericity notions for the class of the context-free
languages (and the standard subclasses of CF like the deterministic context-free or
linear languages). Here the development of genericity notions based on push down
automata seems to be an interesting research direction which in part may build on
our analysis of finite-state genericity. Also the results in the first part of our thesis
on bi-immunity and on the Chomsky hierarchy of sequences might become useful
here.

Bibliography

E. Allender, R. Beigel, U. Hertrampf, and S. Homer. Almost-everywhere com-
plexity hierarchies for nondeterministic time.Theoret. Comput. Sci., 115(2):
225–241, 1993.

K. Ambos-Spies. Resource-bounded genericity. InComputability, Enumerability,
Unsolvability, volume 224 ofLondon Math. Soc. Lecture Note Ser., pages 1–59.
Cambridge Univ. Press, 1996.

K. Ambos-Spies and E. Busse. Computational aspects of disjunctive sequences. In
Mathematical Foundations of Computer Science (Prague, 2004), volume 3153
of Lecture Notes in Comput. Sci., pages 711–723. Springer, 2004.

K. Ambos-Spies, H. Fleischhack, and H. Huwig. Diagonalizations over polynomial
time computable sets.Theoret. Comput. Sci., 51(1-2):177–204, 1987.

K. Ambos-Spies, H. Fleischhack, and H. Huwig. Diagonalizations over determin-
istic polynomial time. InComputer Science Logic (Karlsruhe, 1987), volume
329 ofLecture Notes in Comput. Sci., pages 1–16. Springer, 1988.

K. Ambos-Spies, K. Weihrauch, and X. Zheng. Weakly computable real numbers.
J. Complexity, 16(4):676–690, 2000.

J. L. Balćazar, J. D́ıaz, and J. Gabarró. Structural complexity. II. EATCS Mono-
graphs on Theoretical Computer Science. Springer, 1990.

J. L. Balćazar, J. D́ıaz, and J. Gabarró. Structural complexity. I. EATCS Mono-
graphs on Theoretical Computer Science. Springer, 1995.

J. L. Balćazar and U. Scḧoning. Bi-immune sets for complexity classes.Math.
Systems Theory, 18(1):1–10, 1985.

C. Calude, L. Priese, and L. Staiger. Disjunctive sequences: an overview.
CDMTCS Research Report 63, 1997.

C. Calude and S. Yu. Language-theoretic complexity of disjunctive sequences.
Discrete Appl. Math., 80(2-3):203–209, 1997.

S. Feferman. Some applications of the notions of forcing and generic sets: Sum-
mary. InProc. International Symposium on Theory of Models (Berkeley, 1963),
pages 89–95. North-Holland, 1965.

186 BIBLIOGRAPHY

S. A. Fenner. Notions of resource-bounded category and genericity. InProc. 6th
Structure in Complexity Theory Conference, pages 196–212. IEEE Comput. Soc.
Press, 1991.

S. A. Fenner. Resource-bounded baire category: a stronger approach. InProc. 10th
Structure in Complexity Theory Conference, pages 182–192. IEEE Comput. Soc.
Press, 1995.

P. Flajolet and J. M. Steyaert. On sets having only hard subsets. InAutomata,
Languages and Programming (Saarbrücken, 1974), volume 14 ofLecture Notes
in Comput. Sci., pages 446–457. Springer, 1974.

H. Fleischhack.On Diagonalizations over Complexity Classes. Dissertation, Uni-
versiẗat Dortmund, Dep. Comput. Sci. Tech. Rep. 210, 1985.

H. Fleischhack.p-genericity and strongp-genericity. InMathematical foundations
of computer science (Bratislava, 1986), volume 233 ofLecture Notes in Comput.
Sci., pages 341–349. Springer, 1986.

J. G. Geske, D. T. Hùynh, and A. L. Selman. A hierarchy theorem for almost
everywhere complex sets with application to polynomial complexity degrees. In
Symposium on Theoretical Aspects of Computer Science (Passau, 1987), volume
247 ofLecture Notes in Comput. Sci., pages 125–135. Springer, 1987.

G. H. Hardy and E. M. Wright.An introduction to the theory of numbers. The
Clarendon Press Oxford University Press, 1979.

P. G. Hinman. Some applications of forcing to hierarchy problems in arithmetic.
Z. Math. Logik Grundlagen Math., 15:341–352, 1969.

J. E. Hopcroft and J. D. Ullman.Introduction to automata theory, languages, and
computation. Addison-Wesley Publishing Co., 1979.

C. G. Jockusch, Jr. Degrees of generic sets. InLogic Colloq. of Recursion Theory:
its Generalisation and Applications (Leeds, 1979), volume 45 ofLondon Math.
Soc. Lecture Note Ser., pages 110–139. Cambridge Univ. Press, 1980.

C. G. Jockusch, Jr. Genericity for recursively enumerable sets. InRecursion theory
week (Oberwolfach, 1984), volume 1141 ofLecture Notes in Math., pages 203–
232. Springer, 1985.

H. Jürgensen and G. Thierrin. Some structural properties ofω-languages.“Appli-
cations of Mathematics in Technology”, pages 56–63, 1988.

BIBLIOGRAPHY 187

S. C. Kleene and E. L. Post. The upper semi-lattice of degrees of recursive unsolv-
ability. Ann. of Math. (2), 59:379–407, 1954.

J. H. Lutz. Category and measure in complexity classes.SIAM J. Comput., 19(6):
1100–1131, 1990.

W. Maass. Recursively enumerable generic sets.J. Symbolic Logic, 47(4):809–823
(1983), 1982.

E. Mayordomo. Almost every set in exponential time is P-bi-immune.Theoret.
Comput. Sci., 136(2):487–506, 1994.

K. Mehlhorn. On the size of sets of computable functions. In14th Annual IEEE
Symposium on Switching and Automata Theory (Iowa City, 1973), pages 190–
196. IEEE Comput. Soc. Press, 1973.

W. Merkle and J. Reimann. On selection functions that do not preserve normality.
In Mathematical Foundations of Computer Science (Bratislava, 2003), volume
2747 ofLecture Notes in Comput. Sci., pages 602–611. Springer, 2003.

J. Myhill. Category methods in recursion theory.Pacific J. Math., 11:1479–1486,
1961.

P. Odifreddi. Classical recursion theory, volume 125 ofStudies in Logic and the
Foundations of Mathematics. North-Holland Publishing Co., 1989.

J. C. Oxtoby.Measure and category, volume 2 ofGraduate Texts in Mathematics.
Springer, 1980.

E. L. Post. Recursively enumerable sets of positive integers and their decision
problems.Bull. Amer. Math. Soc., 50:284–316, 1944.

G. Rozenberg and A. Salomaa.Handbook of Formal Languages. Springer, 1997.

A. Salomaa.Formal languages. Academic Press, 1973.

C.-P. Schnorr and H. Stimm. Endliche Automaten und Zufallsfolgen.Acta Infor-
mat., 1(4):345–359, 1971/72.

H. J. Shyr. Disjunctive languages on a free monoid.Information and Control, 34
(2):123–129, 1977.

R. I. Soare.Recursively enumerable sets and degrees. Perspectives in Mathemati-
cal Logic. Springer, 1987.

188 BIBLIOGRAPHY

L. Staiger. Regul̈are Nullmengen.Elektron. Informationsverarbeit. Kybernetik, 12
(6):307–311, 1976.

L. Staiger. Richω-words and monadic second-order arithmetic. InComputer
Science Logic (Aarhus, 1997), volume 1414 ofLecture Notes in Comput. Sci.,
pages 478–490. Springer, 1998.

L. Staiger. How large is the set of disjunctive sequences?J.UCS, 8(2):348–362
(electronic), 2002.

S. Yu. Regular languages. InHandbook of Formal Languages, volume 1. Word,
Language, Grammar, pages 41–110. Springer, 1997.

