
Numerial simulation of growth of an atherosleroti lesionwith a moving boundaryJens P. Eberhard� Peter Frolkovi��May 22, 2006AbstratWe onsider a mathematial model of the formation of an atherosleroti lesion that isbased on a simpli�ation of Russell Ross paradigm of atheroslerosis as a hroni inammatoryresponse. Atheroslerosis is haraterized by the aumulation of lipid-laden ells in the arterialwall that an result in lesions within the artery. Suh lesions an ause an olusion of theartery resulting in heart attak.The presented mathematial model desribes, among others, a response of immune andsmooth musle ells to biohemial signals of hemoattratants and a build up of debris. Itresults in a oupled system of four nonlinear reation-onvetion-di�usion equations inludinga free inner boundary that is permitted to move due to an additional evolution equation.We perform a numerial study of the problem using fully impliit �nite volume disretizationmethods. The moving boundary is desribed impliitly using an evolution of a level set fun-tion. In suh a way, a grid used in numerial simulation an remain �xed during the wholeomputations.In this report, we present preliminary results that demonstrates that our numerial modelaptures ertain observed features suh as the loalization of immune ells, the build-up ofdebris, the isolation of a lesion by smooth musle ells, and an olusion of the artery.1 IntrodutionIn this report we deal with a mathematial model of atherosleroti lesion formation inludingan intrusion into the lumen that was introdued in [7℄. The problem is stated there in terms ofa oupled system of nonlinear paraboli partial di�erential equations on a domain with a mov-ing boundary. For numerial simulation of this model problem we propose here a �nite volumedisretization method ombined with a level set formulation.In the presented mathematial model of atheroslerosis, the fous lies on physial and hemialaspets of the disease. In partiular, the model aounts for the proess by whih immune responseells travel into the arterial wall from the lumen in response to hemial signals sereted by adeveloping atherosleroti lesion. In this proess, some immune ells beome orrupted as theytake on lipid moleules. While a healthy marophage an aid in the elimination of foreign bodiesfrom the tissue, a lipid laden marophage is inapable of performing this task and beomes partof the build up of debris forming a lesion. More immune ells are then summoned by hemialsignals and an inammatory proess results. The hemoattratants an also invoke the hemotaxisof smooth musle ells (SMCs), reruited primarily from the medial layer of the arterial wall, whihlayer over the lesion ore to form a ap.To desribe this proess, a mathematial model was introdued in [8, 7℄, where three generalizedellular speies and three generalized hemial speies elemental to the proess were identi�ed. Weuse here a simpli�ed version of this model, see [8, 7℄, using assumptions that the onentrations of�Simulation in Tehnology, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany(eberhard�uni-hd.de) 1



native and oxidized low-density lipoproteins are �xed and high enough to oinide with a diseasedstate.We follow the notation given in [8, 7℄. The following three generalized ellular speies and onegeneralized hemial speie are onsidered:� Immune ells n1 (number density). These are primarily marophages, T-lymphoytes, andother immune response ells.� Smooth musle ells n2 (number density). These ells also inlude any ells that are inherentin the prodution of the extra ellular matrix.� Debris n3 (number density). Debris is de�ned as dead ells, apopti ells and foam ells.� Chemoattratant 1 (onentration). We make no distintion between various types ofhemoattratants, i.e., 1 refers to any hemial whih indues positive hemotaxis.Following [7℄ the system of equations reads�n1�t = �1�n1 � �011r ��n11 r1�� d1n1n3 (1)�n2�t = �2�n2 � �021r ��n21 r1�+ Ær � �n2n3rn3�� d2n2n3 (2)�n3�t = �3�n3 + d1n1n3 + d2n2n3 (3)�1�t = �1�1 � �1n11 � �2n21 + n3 : (4)Considering this system of partial di�erential equations on an annular �xed domain in R2, one animpose the following initial and boundary onditions. For x 2 
n1(0; x) = 0 n2(0; x) = 0 (5)n3(0; x) = �3 exp(�Q3jx0 � xj2) 1(0; x) = 01 ; (6)for the inner boundary, x 2 �0,�n1�� = �12 �̂0(1 � �1) �n2�� = 0 (7)�n3�� = 0 �1�� = 0 ; (8)and for the outer boundary, x 2 �1,�n1�� = 0 �n2�� = ��̂1(1 � ��1 ) (9)�n3�� = 0 �1�� = 0 (10)where �̂j(x) = �jH(x)x2=(�j + x2) and H(x) denotes the Heaviside funtion. �j , �j are positiveonstants.We remark that the nonzero ux ondition for n1 at the inner boundary shows that immuneells enter into the intima at a rate �̂0(1 � �1) provided that the amount of hemoattratantis above a threshold value �1. Sine the smooth musle ells migrate from the media there is ananalogous ondition on these ells at the outer boundary. We assume a small uniform distribution ofhemoattratant initially. The domain is "seeded" with a small amount of debris at the arbitrarilyhosen point x0. All other speies are assumed to be absent initially. Furthermore, di, i = 1; 2,denote positive onstants, and the di�usion oeÆients �i, i = 1; 2; 3, and �1 are onstant. �0ijdenote the various hemotati sensitivity values.2
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Figure 1: Sketh of the annulus and the domain. Left: The �xed domain and the ative part atthe initialization. Right: The annulus showing the moving inner boundary of the ative part ofthe domain.2 Free boundary problemInstead of a �xed inner irle boundary �0 we onsider in the following a freely moving innerboundary whih is denoted by �(t). The domain is therefore time-dependent and is denoted by
(t). The outer boundary �1 of 
(t) is still a �xed irle of radius r1. The inner boundary isinitially a irle, �0 = �(0), with radius r0 < r1. The system must be supplemented with anequation presribing the evolution of the inner boundary �(t) as it responds to the growing lesion.To reet the moving boundary in the model problem, it has to be reformulated, as shown in [7℄,to inorporate the native tissue. To do so, one an introdue �0(t; x) as the mass per unit area ofthe native tissue at the point x 2 
(t) at a time t. Let ��0 denote the mass density of native tissuein the absene of any of the lesion omponent speies. Further, eah ellular omponent is taken asmehanially inompressible with a onstant referene mass density ��j , j = 1; 2; 3, that is, ��j is themass per unit area of the jth omponent if none of other omponents is present. Thus, �j(t; x)=��jare the fration oupied by the jth omponent at the point x, where �j(t; x) := mjnj(t; x) denotesthe mass density of the jth omponent speies, and mj denotes the orresponding mass per unitell.We also de�ne the relative total mass density of the ells af (t; x) by af (t; x) :=P3j=1 �j(t; x)=��j(note that 1� af orresponds to the "ell mobility"). As it is shown in [7℄, the following equalityholds true, 1� af (t; x) = 1��0 �0(t; x) : (11)The full system of equations reads now for x 2 
(t)��1�t = �1��1 � �011r ��(1� af )�11r1�� d1�1�3 (12)��2�t = �2��2 � �021r ��(1� af )�21r1�+ Ær ���2�3r�3�� d2�2�3 (13)��3�t = �3��3 + d1�1�3 + d2�2�3 (14)�1�t = �1�1 � �1�11 � �2�21 + �3 : (15)The modi�ed boundary onditions are for the inner boundary, x 2 �(t),��1�� = �12 �̂0(1 � �1)(1� af ) ��2�� = 0 (16)��3�� = 0 �1�� = 0 ; (17)3



and for the outer boundary, x 2 �1,��1�� = 0 ��2�� = ��̂1(1 � ��1 )(1� af ) (18)��3�� = 0 �1�� = 0 : (19)The previous initial onditions are applied unhanged to the governing equations.In order to determine the evolution of the inner boundary �(t), it is useful to represent itparametrially with a family of urves (t; �) = (x(t; �); y(t; �)) for 0 � � � 2�. Correspondingly, �1is represented parametrially with the urve 1(�) = r1(os(�); sin(�)) and the initial loation of theinner intimal boundary �0 = �(0) has the parametri representation 0(�) = r0(os(�); sin(�)) =(0; �).To desribe the evolution of the inner moving boundary �(t), we introdue the speed funtions(t; �) that desribes the urve movement in the diretion of outward unit normal vetor withrespet to �(t). Note that s(t; �) an be either positive or negative depending upon whether theintimal boundary is moving inward or outward.The veloity of the inner intimal boundary �(t) is then given bys(t; �) = �1 �̂0�1((t; �); t) � �1� + �2 1� af (1(t; �); t)1� af ((t; �); t) r1j��(t; �)j �̂1�1(1(�); t) � ��1 � ; (20)see [7℄. Note that (20) presribes a nonloal and nonlinear dependene of the speed s on all fourunknown funtions from the system (12) - (15).3 Numerial methodsTo desribe methods how to solve numerially the system of partial di�erential equations (12) -(15), we introdue a representative salar equation of the form���t = ����r � �~V ��+ F ; (21)where � = �(t; x) is an unknown funtion to be found. The equation (21) is a onvetion-di�usion-reation equation, where the di�usion is haraterized by a onstant parameter �, the veloity isgiven by ~V = ~V (t; x; �) and reations are represented by F = F (t; x; �).Eah equation of the system (12) - (15) an be formally viewed in the form (21), for instane,the equation (12) is obtained from (21) by onsidering� = �1 ; � = �1 ; ~V (t; x; �) = �011(1� af )r1(t; x)1(t; x) ; F (t; x; �) = �d1�1�3 : (22)A nonlinear oupling of all four equations in (12) - (15) is realized through orresponding veloities~V and reation terms F .The diÆulty of solving the problem on a time-dependent domain 
(t) will be resolved byonsidering a �xed domain D that ontains the evolving boundary �(t) � D for the whole timeinterval of the interest. In suh a way, the equation (21) will be disretized on a �xed domain withan \ative" and \inative" part.The position of �(t) will be desribed impliitly using a level set method, see a desriptionlater. Any nonzero boundary onditions of the form~N() � r�(t; ) = f(t; ; �) ;  2 
(t) (23)will be implemented as a soure or sink term that an be formally involved in the de�nition ofF . Here ~N is a unit outward normal vetor with respet to 
(t). Note that (23) an be usedfor the omputations of di�usive uxes at the boundary, the onvetive uxes have to be de�nedadditionally using some standard (inow, outow, or noow) boundary onditions.4



3.1 Finite volume disretizatonTo approximate the partial di�erential equations of type (21), we hoose the so alled vertex-entered �nite volume method. This method was used suessfully for onvetion-di�usion-reationsystems in [4℄ using the software toolbox UG [1℄. The most important advantages of this methodis its simpliity even for unstrutured grids and a lose relation of the numerial model to theanalytial (or \physial") model.Firstly, some standard triangulation of the domain D � R2 is required. The domain is �xedand no �tting of the boundary �(t) is neessary. In our implementation, the triangulation onsistsof triangles T e � D, e = 1; 2; : : : ; E with the verties xi, i = 1; 2; : : : ; I . The urved part of theboundary �D will be only approximated by eah partiular triangulation, i.e., Dh � D, whereDh = E[e=1 T eand h = hE is some representative parameter (a \disretization" step) of the triangulation. Ofourse, eah suessive re�nement of the triangulation must produe a more aurate approximationof D.Having the triangulation, we approximate the analytial funtion � for eah disrete time tn,n = 0; 1; : : : by a set of nodal values �ni � �(tn; xi). The values �0i = �(0; xi), i = 1; 2; : : : ; I aregiven by initial onditions.Having the triangulation and the nodal values, a pieewise linear interpolation �n(x), well-known from standard �nite element methods, an be used, and, onsequently, a onstant gradientr�n(x) for x 2 T e an be omputed.The basi idea of �nite volume methods is to integrate the di�erential equation (21) over a timeinterval (tn; tn+1) and a �nite volume 
i � Dh to obtainZ
i ��(tn+1; x) � �(tn; x)� dx = tn+1Ztn Z�
i ~N � ��r�� ~V �� ddt+ tn+1Ztn Z
i F dxdt ; (24)where ~N = ~N() is a normal unit vetor at  2 �
i pointing outward with respet to 
i.The vertex-entered �nite volumes 
i will be assoiated with the nodes xi by onstruting adual mesh with respet to the primal mesh of triangles. The basi idea is to reate polygonalboundaries �
i \ T e by onneting the midpoints of edges with the baryenters of triangles T e.For xi 2 �D, the boundary �
i ontains orresponding halves of edges lying on the boundary�Dh, see Figure 2 for an illustration or [3℄ for more details. Moreover, the following notations willbe used for i = 1; : : : ; I , j = 0; : : : ; I , and e = 1; : : : ; E,�ei0 := �
i \ �Dh \ T e ; �eij := �
i \ �
j \ T e ) �
i =[e [j �eij : (25)
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Figure 2: The dual �nite volume mesh onstruted with respet to primal triangular mesh.5



Applying some basi numerial integration rules to (24), one obtains the disrete shemej
ij ��n+1i � �ni ���tnXe Xj j�eij j ~N(eij) � ��r�� ~V �� (tn+1; eij) = �tnj
ijFn+1i ; (26)where (�) (tn+1; eij) means the evaluation of funtions in parentheses (�) for t = tn+1 and x =eij with eij 2 �eij being an integration point, e.g., the middle point of �eij . Finally, Fn+1i :=F (tn+1; xi; �n+1i ).The boundary onditions (23) for  2 �D an be naturally inluded in the disrete sheme(26) by using (23) evaluated at (tn+1; ei0) to replae the di�usive ux at boundary for (tn+1; ei0).Analogously, the disrete onvetive ux ~N � ~V � must be replaed using some standard boundaryonditions.Note that if disrete equations (26) are derived for the system (12) - (15), they form a fullyoupled nonlinear algebrai system that must be solved by some iterative method.The time disretization used in (26) an be viewed as the impliit Euler (bakward) method.The so alled Crank-Niholson time disretization, that is formally seond order aurate, an beobtained analogously.3.2 Upwind shemeConerning the approximation of onvetive-di�usive ux, the sheme (26) an be seen as a seondorder aurate approximation. Unfortunately, for the ase of onvetion-dominated transport itan produe numerial solutions with non-physial osillations. Moreover, iterative solvers usedto solve the resulting algebrai systems an fail in suh a ase. To avoid these diÆulties, the soalled partial upwind sheme an be applied.To introdue suh an upwind sheme, the omputation of gradients r�n(x) shall be desribedin more details. If three verties of T e are xi0 , xi1 and xi2 , the onstant gradient r�n(x) for x 2 T ean be obtained from r�n(x) = (�ni1 � �ni0)~Gei1i0 + (�ni2 � �ni0)~Gei2i0 ; (27)where the onstant vetors ~Gei1i0 and ~Gei2i0 are obtained using an inverse of the so alled Jaobian2� 2 matrix,~Gei1i0 = � xi1 � xi0 j xi2 � xi0 ��1 � � 10 � ; ~Gei2i0 = � xi1 � xi0 j xi2 � xi0 ��1 � � 01 � : (28)Following [2℄, the so alled loal Pelet numbers jP j an be de�ned byP = P (tn; eij) := 1� j�eij j ~N(eij) � ~V (tn; eij)(j�eij j ~N(eij) + j�eikj ~N(eik)) � ~Geij (29)where the index k denotes the third vertex xk of the triangle T e additionally to xi 2 T e andxj 2 T e. The value �(tn+1; eij) in the onvetive ux ~V � of (26) an now be approximated by thevalue �e;n+1ij , i.e., �e;n+1ij = 8><>: � 1P �n+1i + (1 + 1P )�n+1j P < �20:5(�n+1i + �n+1j ) �2 � P � 2(1� 1P )�n+1i + 1P �n+1j P > 2 : (30)Replaing the values �(tn+1; eij) in (26) by �e;n+1ij , a more stable disretization sheme isobtained. In fat, it is useful to ompute eah example on a hosen grid with and without usingthe upwind method (if possible) and to ompare obtained numerial results.6



3.3 Approximation of the moving boundaryTo desribe the features of our model related to the moving boundary �(t), a numerial level setfuntion with the following properties will be used.Firstly, for eah time level t = tn, a disrete set of nodal values �ni will be available. Theproperty �ni < 0 indiates that at t = tn the node xi does not belong to 
(tn), and, analogously,if �ni > 0 then xi 2 
(tn). The ase �ni = 0 indiates that xi 2 �(tn).Supposing a standard linear interpolation in spae of the nodal values �ni and searhing for azero ontour line of suh an interpolation, a polygonal approximation �h(tn) � �(tn) an be easilyobtained. This approximation has the property that �h(tn) \ T e is either an empty set, a ornerof T e, or a line in T e. Consequently, one an use the notation�ni;e := �h(tn) \ 
i \ T e ) �h(tn) =[i [e �ni;e : (31)The approximative time-dependent domain 
h(tn) is now de�ned by its boundaries �h(tn) and�Dh.Now we desribe the implementation of the disrete sheme (26) for the approximation ofequation (21) with boundary onditions (23) on an impliitly given boundary �h(tn).Firstly, if j�ni;ej 6= 0, one has to add the ontribution of boundary onditions (23) de�ned on�ni;e to the i-th disrete equation in (26). This an be realized formally by rede�ning Fn+1i in (26)taking Fn+1i = F (tn+1; xi; �n+1i ) + 1j
ijXe j�ni;ej�f(tn+1; ni;e; �n+1(ni;e)) ; (32)where ni;e 2 �ni;e is an integration point, e.g., the middle point of the line �ni;e. An analogoustreatment is neessary for disrete onvetive uxes.Next, we desribe how the disrete sheme (26) shall be treated if �ni < 0 or �nj < 0 for at leastone index i or j ourring in (26). The simplest variant is to require that � � 0 and ~V � ~0 foreah triangle T e suh that one has �nij < 0 for all three orners xij . This means that no di�usive-onvetive ux is allowed in T e that lies ompletely in the inative part of Dh. Consequently, ifthis is true for all triangles T e suh that xi 2 T e, the disrete equation (26) takes the trivial form�n+1i = �ni .On the other hand, if one has �nj > 0 for at least one orner xij , a standard approximationfor the di�usive-onvetive ux an be used as de�ned in (26). This means that the i-th disreteequation an adopt some \non-trivial" form even for nodes xi that lies outside of 
h(tn), but thereexists at least one neighbour xj suh that xj 2 
h(tn).Note that in our numerial sheme (26), the �nite volumes 
i are always �xed. Therefore, the(approximative) mass in 
h(tn), if neessary, shall be omputed by Pi j
i \ 
h(tn)j�ni .4 Level set methodFinally, we desribe briey how the numerial level set funtion an be obtained. The speed s(t; )of the evolution of �(t) from (20) an be used to de�ne the advetive level set equation��(t; x)�t + s(t; x)jr�(t; x)j = 0 ; (33)see standard referene books [11, 10℄ on this topi. Analogously, several level set methods to �nd anapproximative solution of (33) an be found there, or a �nite volume disretization losely relatedto vertex-entered �nite volume meshes an be found in [9℄. Note that the equation (33) shall besolved on D, and, onsequently, the veloity s must be formally de�ned on (or extended to) thewhole domain D. 7



We implement the so alled \ux-based" level set method, see [5℄, in whih the equation (33)is formally rede�ned to ���t +r � �~Q�� = �r � ~Q ; (34)where ~Q = sr�=jr�j. The disrete sheme then takes the form [5℄j
ij ��n+1i � �ni �+�tnXe Xj j�eij jminf0; ~N(eij) � ~Q(tn; eij)g(�ni � �nj ) = 0 : (35)The dependene of ~Q on r�(tn; eij) for eij 2 T e is resolved by omputing the gradient of � usingthe standard linear interpolation of nodal values �ni for verties xi of a triangle T e.The sheme (35) is formally a �rst order aurate approximation of the level set equation (33),a seond order aurate form an be found in [6℄.5 Numerial resultsThe urrent setion is intended to show some preliminary numerial results and to demonstratesome behavior of the numerial solutions that is expeted by the system governed by (12) - (15).For the numerial investigations we use the software toolbox UG [1℄. For all numerial simulationsthe initial onditions and boundary onditions are given by (16) - (19) and the parameter valuesare listed in Table 1 (also given in [8℄). The funtion af is omputed by af = P3j=1 �j , that is,��j � 1, j = 1; 2; 3, for all numerial omputations.�1 0.005 �011 3.0 d1 1.0 Æ 0.01�2 0.005 �021 3.0 d2 0.01 �1 0.1�3 0.005 �1 0.1  30 �2 0.05�1 0.1�1 �2 0.1�2 �1 0.1 ��1 0.101 0.1 �3 0.01 Q3 25Table 1: Parameter valuesWe remark that the initial onditions an be interpreted as follows: At the interfae betweenthe lumen and the intima, there is a small radially symmetri onentration of immune ells. Weseed the intima with a small onentration of debris at some arbitrarily �xed point x (x = (0:8; 0))within the intima. Furthermore, we assume a small uniform distribution of hemoattratants.The initial ondition on the smooth musle ells is similar to the initial ondition on the immuneells and orresponds to a small axisymmetri onentration of smooth musle ells (SMCs) on theouter boundary where the intima meets the media. The boundary ondition on this outer boundaryreets the migration{positive hemotaxis of SMCs from the media as disussed in Setion 2.3 and3.2 of Ibragimov et al. [8℄.Figure 3 shows an initial evolution of all speies for this example (after a seond time step).Further temporal behavior of the onentrations an be seen from Fig. 4 and Fig. 5.There, one an observe time evolution of the onentration of immune ells from an axisymmet-ri initial distribution to a highly loalized dense aumulation near the point whih was seededwith a small amount of debris at time zero. Similarly, the SMCs enter into the region of the lesionthrough the outer boundary orresponding to the media. The temporal evolution given by thenumerial results also shows that the artery wall dilates �rst, and, eventually, the lesion bulgesinto the lumen.One of the primary interests in the �nal numerial solutions is a situation when there is a regionof lower density of SMCs. Suh a situation an orrespond to points of the highest onentrationof immune ells, i.e., to the ap intended to isolate the lesion. An evidene of suh a ap formation,as desribed in [8℄, is of great interest. 8



Figure 3: Conentration plots after two time steps. From left to right: �1, �2, �3, and 1. Addi-tionally, the ontours of the level set funtion are shown in the �rst and third plot, and the veloityr1=1 is shown in the fourth plot.

Figure 4: Conentration plots after 100 time steps, for a desription see Figure 3.

Figure 5: Conentration plots after 200 time steps, for a desription see Figure 3.
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Finally, Figure 6 and Figure 7 show the maximal onentration for di�erent ell speies andhemoattratants as funtions of time. As it is shown in Figure 7, the onentration of debris�rstly dereases before it starts to grow later. This shows learly that the healing impat of theimmune ells and the SMCs is too weak.
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Figure 6: Maximal onentration of the immune ells �1, smooth musle ells �2, and the hemoat-tratants 1 as a funtion of time.
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Figure 7: Maximal onentration of the debris �3 as a funtion of time.Note that the presented example was hosen only to hek if desribed numerial methods areapable of solving the mathematial model and if an expeted qualitative behavior of numerialsolutions an be on�rmed. Both aspets of numerial methods were on�rmed for this example,nevertheless, further signi�ant improvements are planned for the future that will be reportedelsewhere.
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