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Abstract

Diffusion processes are widely used for mathematical modeling in finance e.g. in
modeling foreign exchange rates. This paper presents a non-linear stochastic con-
tinuous-time model that captures the main characteristics of price dynamics. The
generalized mean reversion process discloses various features of observed price move-
ments such as multi-modality of the distributions, multiple equilibria, and regime
switching. The attractors depend substantially on the economic environment. The
model reveals a significant connection between exchange rates and its fundamentals.
Furthermore, it is consistent with traditional flexible exchange rate models.

Stochastic differential equations describing diffusion processes are directly linked
to the forward Kolmogorov equation. In order to calibrate the models, efficient
algorithms identifying the system parameters are in demand. Taking into account
nonlinear effects in volatility and drift and dependence on observed economic data,
which are not directly modeled, one obtains problems which cannot be treated by
standard numerical methods. The coefficients are rapidly oscillatory and strong
instabilities may arise. To handle these problems we develop numerical methods,
which are used to simulate the nonlinear dynamics of exchange rates depending on
economic data.

Keywords: generalized mean reversion, multiple equilibria, numerical methods
for inverse problems, forward Kolmogorov equation, Gauss-Newton
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1 Introduction

Modeling

Mathematical modeling and simulation have become important tools for the
analysis of data and the prediction of economic and financial processes. For a
long time, mainly stationary systems and stationary fixpoints of model equa-
tions were considered, not taking properly into account the importance of
dynamical effects. Therefore, after thirty years of flexible price movements,
modeling the development of foreign exchange rates remains a challenge. Be-
ginning with the seminal empirical work of Meese et al. (1983) it still seems
questionable whether any structural exchange rate model would be of sys-
tematic value. Usually, a pure random walk process outperforms all classi-
cal exchange rate approaches based on monetary fundamentals. Hence one
is inclined to conclude that flexible exchange rates are ordinary stochastic
processes in which the different states of the economic environment are of
secondary importance.

Another defect is getting more and more obvious in the analysis of economic
data sets: There is a lack of combining stochastics and nonlinear dynamical
systems in methodology, pure statistics and modeling based on economic facts
in theory. Model based statistics has to be developed in order to integrate and
exploit economic knowledge better. Stochastic nonlinear dynamical systems,
describing the arising processes more adequate, have to be investigated with
the aim to get better qualitative and more precise quantitative answers.

Standard approaches in modeling price dynamics e.g. foreign exchange rates
and commodity prices are working with the hypothesis of a single long run
price equilibrium (see e.g. Creedy et al. (1996) and Geman (2005)). Deviations
from this reversion level are expected to be temporary, thus the dynamics is
mainly driven by one attracting equilibrium. However, the interplay of nonlin-
earities in the dynamics and the stochastic influences in the system are highly
important, but not enough taken into account. These interactions may lead to
effects which cannot be explained otherwise: e.g. multi-modal distributions can
be traced back to multiple states in the dynamical system, observed jumps and
strong oscillation in the historical data can be explained by stochastic changes
of attractors. Small random perturbations may push a balanced market from
one equilibrium into another, reflecting both regime switches and rare events.

Nonlinear phenomena in real data can be observed in different asset markets
and are getting more and more into focus of mathematical modeling of fi-
nancial price processes. Recent analysis of spot and futures prices (e.g. by
Borovkova (2003)) detect a similar behavior in case of agricultural and energy
commodities. The histograms in Figure 1 illustrates the clustering of different
exchange rates, gold, and rice prices.
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Fig. 1. Price histograms
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Parameter estimation

An important issue in finance is the parameter estimation (inverse problem) of
stochastic differential equations. Recent approaches for modeling the dynamics
of asset prices such as interest rates, commodity prices, or foreign exchange
rates are based on diffusion processes with nonlinear drift terms and nonlinear
volatility functions (see e.g. Ait-Sahalia (1999)). In order to apply the model to
predictions or control of real processes, the model has to be able to reproduce
the real process data quantitatively under changing conditions. Values for the
unknown parameters and the initial data of the initial value problem have
to be estimated, such that the observed behavior of the economic process
is reproduced in an optimal way. We estimate the parameters without the
assumption of stationary distributions. To make sure to identify the system
parameter considering the full time dependent situation. Thus, we generalize
results obtained for the quasi steady state situation.
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We provide a general framework to estimate unknown parameters of price
diffusion processes used in mathematical finance. The principle idea is based
on minimizing a weighted least squares functional constrained by the forward
Kolmogorov equation capturing the dynamics of the price probability density
distribution. Since there already exists an extensive research on solving inverse
problems for diffusion-transport equations, it seemed rather natural to use the
forward Kolmogorov equation to determine the missing parameters. However,
it soon became obvious, that the coefficients are rapidly oscillatory and strong
instabilities may arise such that the available algorithms did not work well
enough. Therefore, it was necessary to improve and to adjust the numerical
methods for the inverse problem.

2 Nonlinear price dynamics

It is common practice in financial modeling that the price dynamics X is
modeled by an Itô stochastic differential equation:

dX = µ(t, X(t), Z(t))dt + σ(t, X(t), Z(t))dW. (1)

Here Z(t) are external, such as economic or political effects and W is a stan-
dard Wiener process with the property that dW is distributed as N (0, dt), and
µ and σ satisfy Lipschitz and growth conditions sufficient for the existence of
a continuous solution to (1). In case that all necessary coefficient of the model
equation are known, solutions to the stochastic differential equations can be
computed using available algorithms (compare e.g. Kloeden et al. (1992)). One
obtains a realization of the trajectory of the system. However, in reality the
drift term µ(·) and the volatility σ(·) are unknown and need to be determined
by modeling and from data by solving the inverse problem. Since there exists
no theoretical approach determining the unknown parameters, it is necessary
to identify the model and its parameters using observable data of the real
process.

2.1 Generalized mean reversion process

We present a nonlinear mean reversion process capturing main characteristics
of price dynamics. The nonlinearity is chosen such that canceling the noise
term leads to a deterministic dynamics which is characterized by the evolu-
tion of so-called quasi-steady states. These vary in time and play the role of
steady states in an autonomous system. They are called ”stable” or ”unsta-
ble” states if they are locally in time attractive or repulsive. It is important
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Fig. 2. Generalized mean reversion process, two stable equilibria
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This figure illustrates the root decomposition of the price dy-
namics. In case of constant equilibria the quasi-steady state
X2 is repelling, whereas X1 and X3 are attracting. By cross-
ing X2 due to e.g. small random perturbations, the domain
of attraction is changed and a new attracting level might be
reached. However, we expect these quasi-steady states Xj to
be dependent on key variables such as interest rates at home
and abroad. As a consequence, the attractors may change both
their characteristics and location.

that time intervals may arise with several quasi-steady states. In these inter-
vals stochasticity can lead to transitions between these time-varying states, to
jumps and a behavior similar to instabilities. We take the simplest nonlinear-
ity allowing such a behavior: a polynomial of order three. Thus, the nonlinear
drift function can be written as a product of linear factors:

µ(t, X, Z) = C0(X1(Z) − X)(X2(Z) − X)(X3(Z) − X), (2)

where X1(Z), X2(Z) and X3(Z) are the roots of the polynomial, Z a set of
economic variables, and C0 the speed of adjustment coefficient, C0 > 0. With-
out loss of generality, X1 is real. If X2 is complex and not real, X3 = X2, e.g.
the drift term has only one real root. This root decomposition demonstrates
the underlying dynamics behind the price evolution. Similar to the mean re-
version process, which is just a special case of our model, the price is pulled
back to some long-run price level at a rate C0. In absence of randomness and
constant long-run equilibria the process reverts to its gravitational cores X1

or X3 (see Figure 2)

In the following the attractors evolve in time changing their location and
possibly their stability, thus creating natural zone of instabilities.
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2.2 Quasi steady states

In economics, there is rather often assumed that the trajectories of the system
are tending to an equilibrium for large times. However, in reality this assump-
tion is not valid, also the systems will not be autonomous. The roots Xj of
µ(t, X(t), Z(t)) will depend on time t and a fundamental economic variables
Z(t). If changes in time are slow, it is not unrealistic to assume that dXj = dt
is very small, that means that one Xj(t) play locally in time the role of equilib-
ria. We call them quasi-steady-states. Accordingly, the quasi stationary cases
are given by X = Xj(Z) for all j = 1, 2, 3.

2.3 Models of exchange rate determinants

In order to determine the dynamics of our steady-states, we refer to monetary
exchange rate models which go back to Frenkel (1976), Mussa (1976), and Bil-
son (1978). It is widely accepted, that these initial exchange rate models have
some validity when considered as a long-run equilibrium (see e.g. MacDonald
et al. (1995)). The principle idea is that the foreign exchange rate dynamics
is driven by the relative behavior of a set of underlying economic variables
(home versus foreign variables). The fundamental monetary price equation
can be summarized as

x = α1m + α2m
∗ + α3y + α4y

∗ + α5i + α6i
∗, (3)

where m is the logarithm of the money supply, y is the logarithm of real
income, i is the nominal interest rate, and x is the logarithm of the exchange
rate. Variables with an asterisk denotes determinants that correspond to the
foreign country. In the literature there is a controversial discussion about which
economic variables should be included and even the direction of influence is
ambiguous. In consequence, the traditional flexible exchange rate approach
only serve as a common reference point. A selective literature survey on the
economics of exchange rates over the last decades is offered e.g. by Taylor
(1995).

2.4 Modeling the dynamics of attractors

By modeling the dynamics of the quasi-steady states as a product of N eco-
nomic key variables (e.g. money supply M , real output Y , and the exponential
of nominal interest rates i)
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Xj(Z) = CjZ
αj1

1 · · ·Z αjN

N , j = 1, 2, 3, (4)

the standard linear monetary exchange rate model is embedded into the non-
linear model (compare equation (3)). Hence, the dynamics of the attractors
and with that of the exchange rates are driven by well known economic rela-
tionships.

As first step, we choose a constant volatility. Further investigation could be
done by taking into account the influence of economic fundamentals and lagged
effects on the volatility. However, the estimation results seem to justify the
concentration at the time being on modeling the drift term.

3 Parameter estimation

3.1 Problem formulation

In order to solve the inverse problem for stochastic differential equations mod-
eling the relevant processes, this paper is solving the inverse problem of the
corresponding forward Kolmogorov equation. This is a non stochastic partial
differential containing a diffusion and a drift term. The parameters of these
terms have to be recovered numerically from the available data. Since there
exists already an extensive research on solving inverse problems for diffusion-
transport equations, it seemed to be rather natural to use the forward Kol-
mogorov equation to determine the missing parameters. However, it very soon
became obvious, that the arising coefficients are such that the available al-
gorithms did not work well enough. Therefore, it was necessary to improve
and to adjust the numerical methods for the inverse problem. This paper is
presenting and testing an improved algorithm overcoming these difficulties.

Traditionally, given the probability density distribution of the price process,
the maximum likelihood method can be applied to estimate the unknown
parameters. Except for very simple linear drift and volatility functions, the
forward Kolmogorov equation cannot be solved explicitly and the likelihood
function cannot be given in an analytic formula. However, this is possible
e.g. for stationary situation in case of one space dimension. Creedy et al.
(1996) applied this idea to estimate nonlinear exchange rate dynamics. By
contrast, this paper is considering the full time dependent situation and, thus,
generalizes results obtained for the quasi steady state situation. Beginning
with the formulation of the estimation problem we describe a generalized
Gauss-Newton algorithm constrained by the forward Kolmogorov equation
and some initial and boundary conditions. Therefore, we do not assume the
restrictive hypothesis of an time-independent distribution and, thus, generalize
the equilibrium approach.
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3.2 Distributional dynamics

We consider a stochastic process Xt, t ∈ [t0, T ] with the probability space
(Ω,F , P ) and the distribution Ft(x) = P (Xt ≤ x), t ∈ [t0, T ] and x ∈ R. It is
assumed that the drift term and the volatility function of the stochastic pro-
cess (1) depend on the spatial variable x and the unknown parameter vector
p: µ = µ(t, x; p) and σ2 = σ2(t, x; p). To estimate the unknown parameters
we make use of the forward Kolmogorov equation for the density function
f(t, x) = dFt(x)

dx
of the stochastic process Xt. Stochastic differential equations

describing the diffusion processes can be directly linked to the forward Kol-
mogorov equation. A detailed derivation of the link between (1) and (5) is
offered by e.g. Stroock and Varadhan (1979). The transitional distribution at
each point of time satisfies the partial differential equation:

∂f

∂t
= − ∂

∂x
(µf) +

1

2

∂2

∂x2
(σ2f). (5)

In some special cases this equation, also known as Fokker-Planck equation
can be explicitly solved. However, this is no longer true for complex price
dynamics. For one state variable x, stationary solutions to (5) can be simply
computed by direct integration.

3.3 Stationary approach

The stationary density f ∗ of a nonlinear diffusion process is found by setting
∂f/∂t = 0. This converts the diffusion equation (5) for n = 1 into an ordinary
differential equation for the stationary density, which can be determined by
integration as

f ∗(x) = exp



−
x

∫

0

2µ(ξ)

σ2(ξ)
dξ − 2 ln σ(x)



 η?. (6)

The normalizing constant η? is chosen such that the integral of f ∗ over its
domain is 1. It is nothing but straightforward to use the stationary distribu-
tion (6) to estimate the unknown parameter via the well known maximum-
likelihood technique. Creedy et al. (1996), for instance, make use of this idea
to identify the drift term and volatility function of a nonlinear exchange rate
model.

In general, quasi stationarity is assuming that the trajectories of the under-
lying process are tending very fast to stationary points. Creedy et al. (1996):
“if prices are flexible, the speed of convergence to the stationary distribution is
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fast”. This assumption may not be justified in real situations. In fact, the ex-
istence of simple stationary points by itself cannot be assumed in reality, since
the model systems are in general not autonomous. There will exist states which
evolve slowly in time and locally play the role of stationary points. In the fol-
lowing we use the expression stationary states also for such states, despite the
fact they may evolve in time slowly. The restriction to stationary distributions
in strict sense has to be considered as an approximation, which can be too
rigorous. Taking into account real time dependent data, as also the authors
just mentioned are doing, one should consider the full time-dependence.

3.4 Non-stationary approach

In the following, we drop the assumption of a stationary distribution. Using
the fact that the price distribution of the stochastic price process satisfies
the forward Kolmogorov equation, we estimate the unknown parameters p, by
solving the following optimization problem

Minimize the weighted least squares functional

min
p

Nmeas
∑

j=1



ηj −
∞
∫

0

f(tj, x, p)xdx





2

/ω2
j , (7)

subject to the forward Kolmogorov equation

∂f(t, x, p)

∂t
= −∂(µ(t, x, p)f(t, x, p))

∂x
+

1

2

∂2(σ2(t, x, p)f(t, x, p))

∂x2
, (8)

0 ≤ t ≤ T,

a state condition

∞
∫

0

f(t, x, p)dx = 1, 0 ≤ t ≤ T, (9)

an initial condition

f(t, x, p) |t=0 = f0(x, p), (10)

and two boundary conditions

µ(t, x, p) − 1

2

∂(σ2(t, x, p)f(t, x, p))

∂x

∣

∣

∣

∣

∣

x=xmin

= 0, (11)
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µ(t, x, p) − 1

2

∂(σ2(t, x, p)f(t, x, p))

∂x

∣

∣

∣

∣

∣

x=xmax

= 0, 0 ≤ t ≤ T .

Here, the least squares functional (7) can be interpreted as a weighted norm
of the difference between the real values ηj of the random variable x at time
points tj, j = 1, ..., Nmeas, and their expected values. The parameters p will be
estimated by minimizing this functional subject to the forward Kolmogorov
equation for the density function f(t, x, p) (8), the state condition (9), initial
conditions (10) and boundary conditions (11). In the paper, we assume that
the initial density f0(x, p) is given by

f0(x, p) := exp
(

−(x − x0)
2
)

η?, η? is a normalizing constant,

with an additional parameter x0 to estimate.

4 Numerical methods

The optimization problem is a parameter estimation problem with partial
differential equations as constraints. To solve this problem we apply the so-
called boundary value problem (BVP) approach, see Bock (1987). The basic
idea consists in modeling the dynamic equations like a boundary value problem
and then performing simultaneously the minimization of the cost function
subject to the constraints given by the discretized boundary value problem.
We apply a generalized Gauss-Newton methods with trust-region globalization
techniques to solve the nonlinear least squares problem using a tailored linear
algebra to exploit the special structures arising from the multiple shooting
discretization. In the following subsections we illustrate the basic ideas of the
applied numerical methods.

4.1 Spatial discretization

In a first step, we reduce the forward Kolmogorov equation (8) into a system of
ordinary differential equations (ODE) employing the method of lines Schiesser
(1991). The initial conditions (10) and the the integrals appearing in the prob-
lem formulation (7)-(11) are transformed accordingly. The state condition (9)
and the boundary conditions (11) are taken into account in the transformation
of the forward Kolmogorov equation (8) and are implicitly included into the
resulting ODE system. As a consequence, the parameter estimation problem
(7)-(11) results in a nonlinear least squares ODE constrained problem which
can be formally written as
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min
p

||r1(y, p)||22 :=
m1
∑

j=1

(ηj − B(tj, y, p))2 /ω2
j (12)

s.t. ẏ = φ(t, y, p), 0 ≤ t ≤ T, and y(0) = y0.

For solving problem (12) we use the boundary value problem approach ac-
cording to which the ODEs are parameterized by multiple shooting and are
treated as implicit constraints in the minimization problem.

4.2 Parameterization in time - Multiple shooting

We parameterize the semidiscretized parameter estimation problem (12) in
time using multiple shooting approach. The scheme of the multiple shooting
consists in the following. First, one chooses a suitable grid of multiple shooting
nodes τj

0 = τ0 < τ1 < . . . < τm = T,

covering the interval where measurements are given.

At each grid point the values of the state variables yj are chosen as additional
unknowns and m initial value problems

ẏ =φ(t, y, p), y(τj) = yj, (13)

are solved on each subinterval Ij := [τj, τj+1] to yield a solution y(t; yj, p) for
t ∈ Ij. The principle of multiple shooting is depicted in the figure below.

Solutions of dynamic systems, generated by this procedure, are usually not
continuous at τj. This has to be enforced by additional matching conditions

hj(yj, yj+1, p) := y(τj+1; yj, p) − yj+1, j = 0, ..., m − 1.

Inserting the computed values y(ti, yj, p), τj ≤ ti ≤ τj+1, into problem (12)
one obtains a constrained problem in the variables (y, p) := (y0, . . . , ym, p):

min ||r1(y, p)||22 (14)

s.t. hj(yj, yj+1, p) = 0, j = 0, ..., m − 1.

Multiple shooting possesses several advantages which are discussed to large
extent e.g. in Bock (1987).
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Fig. 3. Multiple Shooting
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4.3 Generalized Gauss-Newton method with trust-region globalization

For the solution of nonlinear constrained least squares problems of the pre-
sented type, Bock (1983) proposed a generalization of the Gauss-Newton
Method which was only applicable to unconstrained least squares problems.
The numerical method has proven to be stable and efficient for a series of
real life parameter estimation problems constrained by ordinary differential
equations and differential-algebraic equations.

The parameterization of the dynamic system yields to a finite dimensional,
possibly large scale, nonlinear equality constrained approximation problem,
which can be formally written as

min ||r1(s)||22, (15)

s.t. r2(s) = 0.

Here, the variables are parameters and values of the state variables at each
multiple shooting node, s := (y, p), n := dim s, the equalities r2(s) = 0
represent the matching conditions induced by multiple shooting, r2(s) =
(hT

0 (s), ..., hm−1(s)
T )T . We assume that the functions ri : D ⊂ Rn → Rmi ,

i = 1, 2, are twice-continuously differentiable.

The basic steps of the generalized Gauss-Newton algorithm with trust-region
globalization applied to the nonlinear constrained least squares problem are:



13 S. Jäger and E. Kostina

1. Start with an initial guess s0.
2. Improve the solutions iteratively by

sk+1 = sk + ∆sk, (16)

where the increment ∆sk is the solution of the linearized problem

min
∆s∈Rn

||r1(s) + J1(s)∆s||22, (17)

subject to possible relaxed constraints

r2(s) + J2(s)∆s = (1 − α)r2(s), 0 < α ≤ 1, (18)

and a trust-region constraint

||∆s||22 ≤ ∆2. (19)

Here, Ji(s) =
∂ri(s)

∂s
, i = 1, 2 are the Jacobians, ∆ is the trust-region

radius at the k−th iteration and α a relaxation factor that ensures the
feasibility of linear constraints and the trust region constraint in the
problem (17)-(19).

Following theory of nonlinear programming, we may conclude that if the Ja-
cobians J1(s) and J2(s) satisfy two regularity assumptions on a domain D

rank J2(s) = m2, (20)

rank J = n, J = J(s) =







J1(s)

J2(s)





 (21)

then a linearized trust-region problem (17)-(19) has a unique solution ∆s, a
unique Lagrange vector λ ∈ Rm2 , and a unique Levenberg-Marquardt param-
eter λLM ≥ 0 ∈ R satisfying the following Kuhn-Tucker conditions

(JT
1 (s)J1(s) + λLMI)∆s +JT

2 (s)λ= −JT
1 (s)r1(s), (22)

J2(s)∆s = −αr2(s),

and the complementarity condition, namely λLM = 0 if ||∆s|| ≤ ∆.

Using (22) one can easily show that under the regularity conditions (20)
and (21) ∆s can be formally written with the help of a solution operator
L(s, λLM , α):

∆s =−L(s, λLM , α)r(s), r(s) =







r1(s)

r2(s)





 ,
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L(s, λLM , α)= (I 0)







JT
1 (s)J1(s) + µI JT

2 (s)

J2(s) 0







−1 





JT
1 (s) 0

0 αI





 .

Note that at the solution s = s∗ of the nonlinear problem (15) the following
relations hold λLM = 0 and α = 1 and the solution operator L(s, 0, 1) is a gen-
eralized inverse, that satisfies L(s, 0, 1)JL(s, 0, 1) = L(s, 0, 1). The operator
L(s, 0, 1) plays a special role in statistical assessment of parameter estimation.

4.4 Evaluation of functions and Jacobians

In the course of the Gauss-Newton method the entries in the objective func-
tion and constraints and their derivatives must be evaluated frequently. The
main computational effort in multiple shooting arises in the solution of the
initial value problems (13) and the computation of the solution derivatives
with respect to the unknowns. Efficient error controlled numerical integration
methods that also deliver derivatives of the solution are required.

We use the integrator DAESOL Bauer (2001), a Backward Differentiation
Formula (BDF) method with variable mesh formulas based on Newton inter-
polation. It uses true variable mesh error estimates for order and step size
control, and a nonlinear implicit system treatment which employs strategies
developed for continuation problems.

The calculation of derivatives employs “Internal Numerical Differentiation”
(IND) procedures which compute derivatives of the internally generated dis-
cretization schemes. This procedure is stable in the sense of backward analysis,
accurate and allows derivative error control. Moreover, it is less expensive -
computing time gains of up to 80% over usual forward differences are achieved.
One of the unique features responsible for the fast performance of the multi-
ple shooting method is the adaptive accuracy strategy which keeps integration
tolerances below two decimals for the most part. For a detailed discussion the
reader is referred to Bock (1987).

4.5 Computing a trust-region step

To compute the trust-region step ∆sk at the point sk we have to solve problem
(17)-(19). It may happen that the linearized constraints r2(s

k)+J2(s
k)∆sk = 0

and the trust-region constraint ||∆sk||22 ≤ (∆k)2 are inconsistent. To overcome
this difficulty we relax the linear constraints and choose the relaxation factor
αk, 0 < αk ≤ 1 such that the constraints
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αr2(s
k) + J2(s

k)∆sk = 0, ||∆sk||22 ≤ (∆k)2 (23)

are feasible. The rules of choosing αk will be described later.

Consider now the relaxed problem (17)-(19). Following a composite-step ap-
proach we compute the solution ∆sk of problem (17)-(19), which consists of a
tangential and a normal components. This can be efficiently done by employ-
ing a block-LQ decomposition.

4.5.1 Block-LQ decomposition

The Jacobian J in the problem (17)-(19) has a very specific structure induced
by the multiple shooting, which allows very effective recursive block decompo-
sitions. We describe here LQ-decomposition which is preferable for comput-
ing trust-region step because it allows to compute the trust-region step ∆sk

exactly. Here, L is a lower triangular and Q is an orthogonal matrix respec-
tively. Not only for the sake of simplicity, but rather for improving stability
properties of the decomposition we handle the parameters p as constant state
variables (with derivative zero) and include them in the differential variables
sj := (yj, p). The Jacobian under consideration has the form (for the sake of
simplicity we omit the point sk and the index k):

J =





























D0
1 D1

1 . . . Dm
1

G0 H0

. . .
. . . 0

0
. . .

. . .

Gm−1 Hm−1





























, r =





























r1

h0

...

...

hm−1





























where

Dj
1 := ∂r1/∂(sj), Gj := ∂y(τj+1)/∂(sj), Hj := (−I 0), j = 0, ..., m.

In the first step, we compute LQ-decomposition of the block [G0, H0] :

[G0, H0] = [L0, 0]Q0,

with Q0 orthogonal and L0 lower triangular and compute necessary changes
in the corresponding blocks:
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[0, G1] = [T 0, G̃1]Q0, [D0
1, D

1
1] = [D̃0

1, D̂
1
1]Q

0.

The next step of decomposition matrix is now given by

J1 =



































D̃0
1 D̂1

1 . . . Dm
1

L0 0 . . . 0

T 0 G̃1 H1 0 . . . 0

0 0 G2 . . .
. . .

...
...

. . .
. . .

. . . 0

0 . . . 0 Gm−1 Hm−1



































Now, we compute LQ-decomposition of the block [G̃1, H1] :

[G̃1, H1] = [L1, 0]Q1

and the necessary changes in the corresponding blocks:

[0, G2] = [T 1, G̃2]Q1, [D̂1
1, D

2
1] = [D̃1

1, D̂
2
1]Q

1.

We proceed with this procedure until the last multiple shooting block is pro-
cessed

[G̃m−1, Hm−1] = [Lm−1, 0]Qm−1; [D̂m−1
1 , Dm

1 ] = [D̃m−1
1 , D̃m

1 ]Qm−1.

As a result, we get the decomposition J = JmQ with

Jm =



































D̃0
1 D̃1

1 . . . . . . D̃m
1

L0 0 . . . . . . 0

T 0 L1 0 . . . . . . 0

0 T 1 . . .
. . .

...
...

. . .
. . .

. . .
. . .

...

0 . . . 0 T m−2 Lm−1 0



































.

With ∆s̃ = Q∆s, the first m parts of the transformed increments (forming
normal component of the trust-region step) can be computed recursively
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∆s̃0 =−(L0)−1h̃0;

∆s̃j = (Lj)−1(−h̃j − T j−1∆s̃j−1), j = 1, ..., m − 1.

In order to find the last (tangential) part ∆s̃m we solve the condensed problem

min
∆s̃m

||r1 + α
m−1
∑

i=0

D̃i
1∆s̃i + D̃m

1 ∆s̃m||22, (24)

s.t. ||∆s̃m||22 ≤ ∆̄2 := ∆2 − α2
m−1
∑

i=0

||∆s̃i||22. (25)

This problem is solved by a classical trust-region algorithm. To recover the
original increment, a recursive orthogonal transformation is performed ∆s =
∆s = QT ∆s̃.

4.5.2 Reduced approach

In order to reduce the number of evaluations of derivatives to minimum, we
may exploit point conditions, e.g. known initial and multipoint conditions,
see Schlöder (1988). This approach is especially preferable for parameter esti-
mation in large-scale ODE, resulting from a semidiscretization of PDEs, with
only few degrees of freedom in the initial values, like in case of the problem
under investigation in this paper.

Assume for simplicity that part of the equality constraints only depend on
variables at one multiple shooting point. This results in entries in the linear
system of the form:

Ai∆si = ai, i = 0, ..., m.

In the first step of the reduced approach we evaluate the block A0 and compute
an LQ-decomposition

A0 = [L0
A, 0]Q0

A,

with Q0
A orthogonal and L0

A lower triangular. Then the solution manifold can
be represented as ∆s0 = ∆s0

N + ∆s0
T ,

where ∆s0
N = (Q0

A)T







(L0
A)−1a0

0





 and ∆s0
T = (Q0

A)T







0

s0
T





 =: N s0
T with s0

T

free.

Now, we insert this solution into the first matching condition
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G0∆s0 + H0∆s1 = h0 (26)

which then can be rewritten as

G0s0
T − H0∆s1 = h0 − G0∆s0

N , G0 := G0N . (27)

We may apply to the matrix [G0, H0] the decomposition procedure described
in the previous section, determine the solution manifold and proceed to the
next multiple shooting interval.

The advantages of the reduced approach are obvious. To generate the lin-
earized matching conditions in the form (27), only the matrix G0 of the di-
rectional derivatives of the initial value problem (IVP) with respect to the
columns of N and one directional derivative G0∆s0

N have to be computed.
The matrix G0 itself is not needed. Thus, the effort for the (costly) computa-
tion of derivatives of the solution of the ODE is reduced considerably.

4.6 Computing the relaxation parameter α

The definition of ∆̄ (25) motivates the choice of α. If we choose

α = min











1,

√
2

2

∆
m−1
∑

i=0
||∆s̃i||22











then ∆̄2 ≥ 1
2
∆2, that gives us enough freedom to work on reducing the objec-

tive function.

4.7 Control of trust-region radii

The number ∆ is the so-called trust-region radius that characterizes the re-
gion in which the linearized model (17)-(19) is considered to be a good ap-
proximation to the nonlinear problem. In general, the step ∆s is accepted,
if it produces sufficient improvement in an appropriate merit function T (s).
In trust-region methods, the improvement is evaluated through the ratio of
the actual reduction in a merit function to the predicted reduction, that is
a prediction of what the reduction in the merit function will be according to
the approximation of the original problem. A traditional choice of the merit
function is the so-called exact l1-penalty function
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T1(s)=
1

2
||r1(s)||22 +

m2
∑

i=1

βi|r2i(s)| (28)

Here, βi > 0, i = 1, ..., m2, are the penalty parameters that have to be deter-
mined in the algorithm to guarantee the global convergence of the method.
Different strategies used for updating the penalty parameters and the trust-
region radius and corresponding convergence theory based on classical choice
of the merit function can be found e.g. in Conn et al. (2000).

However, it is well known that already in mildly ill-conditioned problems such
a trust-region control strategy may be very inefficient since it may produce
very small radii. Therefore we use the trust region generalization of the “re-
strictive monotonicity test” (RMT), see Bock et al. (2000), that has proved
to be very effective in practical applications. The idea of the RMT for control
of trust-region is that at sk we consider a modified nonlinear problem:

min
s

||r1(s)||22 + λk
LM ||s − sk||22, r2(s) = (1 − αk)r2(s

k), (29)

for some values of λk
LM and αk, and choose the maximal trust-region radius

∆k for which the iterates of the simplified Gauss-Newton method, i.e. Gauss-
Newton method with keeping Jacobian J(sk) fixed at all iterations, applied to
(29) are contracting. This leads to the following restrictive monotonicity test:

Compute ∆sk as a solution of (17)-(19) with given ∆k

∆sk = L(sk, αk, λk
LM)F (sk).

This corresponds to the first iteration of Gauss-Newton method applied to
solve (29). The second iteration, ∆̃sk, of the simplified Gauss-Newton applied
to (29) solves the linearized problem

min
∆s∈Rn

||r1(s
k + ∆sk) + J1(s

k)∆s||22 + λk
LM ||∆sk + ∆̃sk||22, (30)

s.t. r2(s
k + ∆sk) + J2(s

k)∆s = (1 − αk)r2(s
k),

and can be written as

∆̃sk = L(sk, αk, λk
LM)F (sk + ∆sk). (31)

We accept the step ∆sk if

||∆̃s
k|| ≤ η

2
||∆sk|| for some 0 < η < 2.
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The restrictive monotonicity test has shown very good performance in practice,
for the theoretical justification of the test we refer the reader to Bock et al.
(2000).

4.8 Statistical sensitivity analysis for the estimates

The first results for statistical sensitivity analysis were obtained by Gauss see
e.g. Gauss (1805, 1995). The discussion of the statistical sensitivity analysis
for the unconstrained case can be found e.g. in Bard (1974). Here we give the
results for the constrained least squares problems which are presented in Bock
(1987) and Bock et al. (2004). If the experimental data is normally distributed
then the estimated solution s∗ of the parameter estimation problem is also a
random variable which is normally distributed in the first order

s∗ ∼ N
(

strue, C
)

with the (unknown) true value strue as expected value and the variance-co-
variance matrix C given by

C = C(s∗) = J+







I 0

0 0





 J+T
. (32)

Here, J+ := L(s∗, 0, 1). The variance-covariance matrix describes the confi-
dence ellipsoid which is an approximation of the nonlinear confidence region
of the estimated variables. The matrix C can be cheaply computed using the
decompositions of the Jacobians that are computed anyway in the Gauss-
Newton method.

The 100β% confidence ellipsoid (0 ≤ β ≤ 1) can be described by

GL(β; s∗) = {s∗ + ∆s | ∆s = −J+(s∗)







η

0





 , ‖η‖2
2 ≤ γ2(β)}.

Here, the probability factor γ(β) is given by

γ2(β) = χ2
n−m1

(1 − β)

where n is the dimension of s, m1 is the dimension of the constraints of the
parameter estimation problem (15), and χ2

n−m2
(1 − β) is the quantile of the
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χ2 distribution.

The diagonal elements of the covariance matrix play an important role in
the statistical assessment of the estimates as well, namely they are used to
compute confidence intervals θi =

√
Ciiγ(β) for each variable si, i = 1, ..., n,

since

GL(β, s∗) ⊂
n

X
i=1

[s∗i − θi, s
∗

i + θi].

At the solution the statistical average of the residuals, the so called common
factor, can be computed by

ζ =
√

||r1(s∗)||22/(m1 + m2 − np)

where m1 is the number of measurements, m2 is the number of constraints,
np is the number of parameters. It can be used to check whether the model
reproduces the measurements within the expected statistical variation.

Let us note that in multiple shooting statistical information can be computed
for all variables including the values at multiple shooting nodes.

4.9 Overall algorithm

Let ε > 0, δ > 0, 0 < η1 < η2 < 2 and 0 < γ1 < 1 < γ2 be specified constants.
Let s0 and ∆0 be given.

For k = 0, 1, 2, ... do until convergence (that is until ||∆sk|| > ε)

(1) Compute ∆sk, λk and λk
LM as the solution of problem (17)-(19).

(2) Compute ∆̃sk as the solution of problem (30).
(3) If ||∆̃sk|| > η2/2||∆sk|| then do not accept the step, decrease the trust-

region radius ∆k := γ1∆
k and go to 1.

(4) Otherwise accept the new point sk+1 = sk + ∆sk.
(5) If ||∆̃sk|| > η1/2||∆sk|| then increase the trust-region radius ∆k+1 =

γ2∆
k.
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5 Application to the dollar/pound exchange rate

In this section we apply the methods described earlier to analyze the behavior
of the dollar/pound exchange rate during the post-Bretton Woods period. In
order to illustrate the qualitative improvements of the nonlinear model, we
take the standard mean reversion model as a benchmark

Linear model µ(t, X, Z)=C0(X1 − X)

Nonlinear model µ(t, X, Z)=C0(X1 − X)(X2 − X)(X3 − X)

The data for our investigation is taken from the International Monetary Fund’s
International Financial Statistics database, and run from March 1973 through
July 2005. In particular, the dollar/pound exchange rate X is given in line ”ag”
(expressed as home currency per unit of foreign currency). The dynamics of
the exchange rate attractors are determined by the relative behavior of the
interest rates iUS and iUK given in line ”60c”

Xj(i
US, iUK) = Cj exp(iUS)αj1 exp(iUK)αj2 .

Here, we restrict ourselves to the interest rates. Adding further exchange rate
fundamentals such as monetary aggregates or income measures does not im-
prove substantially the explanatory power of the model.

Applying the presented numerical methods to the dynamics of dollar/pound
exchange rates and comparing both linear and nonlinear approaches, we achieve
the following results:

• By considering multiple steady states we are able to capture the historic
price dynamics and distribution characteristics for the dollar/pound ex-
change rate. Contrary to the linear model, the generalized mean reversion
process detects main turning points over a period of thirty years. Timing
and direction of changes are caught surprisingly well.

• To compare the quality of the different models, we compute the root-mean-
squared-error (RMSE) and the mean-average-percentage-error (MAPE) over
different time periods.

These figures demonstrate a substantial improvement of quality of pricing.

• Beside the crucial role of nonlinearities interacting with stochastic distur-
bances, the results highlight the importance which a stronger involvement
of economic key variables has for the development of the foreign exchange
rates. The set of economic data is given and not modeled. The latter is
important for predictions. However, here we are mainly interested in in-
vestigating the influence of the economic variables and the effect of the
nonlinearities. Therefore, the reduction to this simpler case is justified at
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Fig. 4. Simulation results
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The figure shows the simulation results of the dollar/pound ex-
change rate from 1973 to 2005 (dotted in red) and the real data
(dotted in blue). In both linear (above) and nonlinear (below)
approaches, the quasi-steady states depend substantially on the
relative change of nominal interest rates. It can be observed that
by taking into account the interplay of nonlinearity and stochas-
tic perturbations improves the quality of pricing substantially.
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Table I: Estimates of the dollar/pound exchange rate

Linear: µ(t,X,Z) = C0(X1 − X)

Nonlinear: µ(t,X,Z) = C0(X1 − X)(X2 − X)(X3 − X)

Attractors: Xj(Z) = Cj exp(iUS)αj1 exp(iUK)αj2

Linear model Nonlinear model

parameter estimated ± standard parameter estimated ± standard

value deviations value deviations

x0 2.829 ± 0.082 x0 2.623 ± 0.021

C0 0.047 ± 0.001 C0 0.102 ± 0.001

C1 1.824 ± 0.013 C1 1.052 ± 0.006

α11 -0.034 ± 0.001 α11 0.025 ± 0.002

α12 -0.020 ± 0.001 α12 0.016 ± 0.001

σ 0.020 ± 0.001 C2 2.180 ± 0.030

α21 - 0.002 ± 0.002

α22 -0.013 ± 0.002

C3 1.722 ± 0.060

α31 -0.008 ± 0.004

α32 -0.027 ± 0.005

σ 0.017 ± 0.001

Table II: Diagnostics of the dollar/pound exchange rate

Linear model Nonlinear model

RMSE1 0.101 0.056

MAPE2 7.85 4.49

1Root Mean Squared Error, 2Mean Average Percentage Error

this state of research.

• We estimate the parameters generalizing results obtained for the quasi-
steady state situation. Least squares problems constrained by partial and
ordinary differential equations are already solved for real life problems such
as chemical reaction systems (see e.g. Bock et al (2000)). The applied nu-
merical method is characterized by both high accuracy and efficiency.

• In order to make forecasts, a modeling of the underlying explanatory vari-
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ables is in demand. As a consequence, we get a higher dimensional system
of nonlinear differential equation. In this case, the application of the pre-
sented forward Kolmogorov method depends on numerical algorithms for
high dimensional problems. Recently, several different numerical methods
have been developed for direct simulation for the differential equation in
high dimensions, e.g. using thin grid techniques. Parameter identification in
high dimension is still one of the challenges not yet overcome.

6 Conclusion

This paper treats the challenging inverse problem of the identification of the
dollar/pound exchange rate mechanism; numerical results are discussed. Large
price movements and multi-modal distributions can be explained by the tran-
sition between different quasi steady states which generalizes the linear mean
reversion process. The attractors depend on functions of highly oscillating
market fundamentals, e.g. nominal interest rates. modeling these determinants
would lead to a system of stochastic differential equations and therefore to high
dimensional Kolmogorov equations. This extension will be considered in future
work. The methods developed for the dynamics of foreign exchange rates can
be transferred to other areas in economics, e.g. the pricing of commodities. Of
course, each of these fields have its own special properties. However, they also
share common methodical features from a viewpoint of modeling, simulating,
and validation.
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