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Abstract

Refractive surgery has emphasized the need of accurate and precise methods for
measuring the power of the human cornea. Available techniques for measuring corneal
topography include keratometry, videokeratoscopy, and scanning slit imaging.

A new type of instrument, a corneal topographer based on a Hartmann-Shack
wavefront sensor for measuring corneal elevation over a spherical surface, is presented
in this thesis.

The performed tests of the topography system showed a high accuracy and repro-
ducibility of the measurements on spherical as well as on toric test sample surfaces that
approximate the curvature of the central human cornea. A comparison between the
data obtained by the topographer and those provided by a videokeratoscope showed
that the topographer is as precise as standard instruments used in clinical praxis.

The measurements on human corneas demonstrated the importance of a Z-tracker
module for the correct placement of the corneal surface. To enhance the accuracy
of the topography system, a better tracking of the corneal position is necessary to
compensate for the rapid eye movements during the examination that strongly affect
the measurements. Additionally, more clinical studies are necessary to test the to-
pographer on human cornea and to give an evidence for the clinical acceptance of the
instrument.

Zusammenfassung

Die refraktive Chirurgie gab einen Anstoß für die Entwicklung der präzisen Metho-
den zur Bestimmung der Brechkraft der menschlichen Hornhaut. Die vorhandenen
Techniken umfassen solche Methoden wie Keratometrie, Videokeratometrie und Slit-
Imaging Photographie.

In dieser Arbeit ist ein auf einem Hartmann-Shack Wellenfrontsensor basieren-
der Hornhauttopograph präsentiert, der die Hornhauterhebung über eine sphärische
Fläche bestimmt.

Die Testmessungen an Probekörpern, die ähnliche optische Eigenschaften besitzen
wie die menschliche Hornhaut, zeigten eine hohe Genauigkeit und Reproduzierbarkeit
des Hornhauttopographen. Ein Vergleich der Messdaten mit denen, die mit einem
Videokeratoskop gewonnen wurden, zeigte eine gute Präzision des Hornhauttopogra-
phen in der Bestimmung der sphärischen als auch asphärischen Oberflächenform der
Probekörper.

Die Testmessungen an menschlicher Hornhaut veranschaulichten die Notwendigkeit
eines Z-Trackers für eine genaue Positionierung der Hornhautoberfläche. Um die
Genauigkeit des Hornhauttopographen für die Messung an der menschlichen Horn-
haut noch weiter zu erhöhen, ist jedoch eine bessere als die benutzte Technik zur
Überwachung der Hornhautposition nötig. Diese muß in der Lage sein, rasche Augen-
bewegungen zu kompensieren, die die Messung mit dem Hornhauttopographen erhe-
blich stören. Weitere umfangreiche klinische Erprobungen des Hornhauttopographen
am menschlichen Auge sind erforderlich, um seine mögliche Anwendung in der Oph-
thalmologie zu beurteilen.
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Chapter 1

INTRODUCTION

The anterior part of the human eye is limited by a perfectly transparent media, called
the cornea. In addition to its mechanical function, the cornea has two major roles
in vision. First, it is transparent to enable light to be transmitted to the retina.
Second, its anterior surface is the primary refractive element of the human eye. With
its refractive power of about 42 diopters the cornea contributes almost 70% of the
total optical power of the eye (60 diopters). Thus, it plays an important role by the
refraction and focussing of the light on the retina, and subtle variations in its shape
significantly affect the patient’s visual acuity.

The optical quality of the cornea is a critical factor in proper visual function
of the human eye and can be determined using corneal topography - a method of
corneal shape examination assisted by computer analysis. Instruments that measure
the cornea’s topography are called corneal topographers, and they have recently be-
come a quite common tool for clinicians.

The most corneal topographers used in clinical praxis today are based on Placido’s
disc technique. They project a series of illuminated rings onto the corneal surface,
which are reflected back and captured by a video camera. The images of the reflected
rings of light are analyzed by a computer, and different topographical maps of the
cornea are generated that reveal any distortions of the cornea, such as the corneal
curvature, meridians of astigmatism, and corneal irregularities as well as the kerato-
conus or corneal scarring. This diagnostic procedure is essential for patients being
considered for refractive surgical procedures (such as LASIK1) and may even be nec-
essary in the follow-up of some patients who have undergone these refractive surgical
procedures.

In recent years some new and alternative methods for measuring corneal topogra-
phy were invented [41]. However, some instruments are widthwise used, some of them
are not commercially available or only in testing phase. One of these new methods
for measuring corneal topography is the wavefront analysis with a Hartmann-Shack
wavefront sensor.

1LASIK is an abbreviation for Laser-in-situ-Keratomileusis, a surgical procedure for correcting
refractive errors using an Excimer laser.

1



2 Chapter 1 INTRODUCTION

A Hartmann-Shack wavefront sensor (HSS) is a device that provides a way to
precisely measure the phase information of the wavefront. It uses an array of micro
lenses to focus the rays emerging from an optical system such as the human eye or
refracted from the cornea onto a CCD camera positioned in the focal plane of the lens
array. The local slope of the wavefront is determined by the lateral offset of the focus
from each micro lens. The phase information is then derived from the slope. Using
this technique the optical aberrations of the wavefront can be measured objectively
and described mathematically.

In this work a new method using the wavefront analysis technique with a Hartmann-
Shack wavefront sensor for measuring corneal topography is presented. A corneal
topographer, called the HSS Corneal Topographer, was built up and tested as an
instrument for possible clinical use. The test measurements showed that this system
offers one precise way of measuring the shape of the anterior corneal surface and the
accurate reconstruction of it.

The organization of the thesis is as follows.
In Chapter 2, the main anatomical factors governing the human eye, especially

the structure of the cornea and its optical properties are reviewed. It also describes
the common visual aberrations of the human eye, and how clinicians correct them.

Chapter 3 focuses on corneal topography. It provides information on historical
background and several methods for measuring corneal topography. The way the
corneal data is normally displayed and the basic terminology in corneal topography
is introduced to help one to better understand the data provided by the corneal
topographers.

Chapter 4 builds on wavefront analysis technique. It explains the basic concept of a
Hartmann-Shack wavefront sensor, its characteristics, and limitations. The wavefront
reconstruction and representation with Zernike polynomials are described.

Chapter 5 explains optical principle and technical aspects of the corneal topog-
raphy system (HSS Corneal Topographer) used in this work for measuring corneal
topography. A description of the least squares algorithm of modal wavefront estima-
tion from derivatives used in software tool follows.

Chapter 6 describes tests of the software algorithm. Special attention is given to
simulations and test measurements.

Finally, Chapter 7 summarizes the principal contributions of this dissertation and
discusses some possibilities to improve the topography unit in the future.

Additionally, Appendix A catalogues the software description and short user man-
ual.



Chapter 2

THE HUMAN EYE

The anatomy of the human eye is extensively reviewed in several ophthalmic and
physiological textbooks. In this chapter some important aspects including a short
description of the human eye, cornea, and its properties are highlighted. Additionally,
some of the corneal disorders and common vision problems which plague humans
and the customary solutions to those problems are investigated. For more detailed
information of the structural importance of the eye, see [42, 13, 33].

2.1 Anatomy of the Human Eye

The human eye is a complex anatomical device that remarkably demonstrates the
architectural wonders of the human body.

The general structure of the human eye is given in Fig. 2.1. The ultimate goal of
such an anatomy is to allow humans to focus images on the retina, and each optical
element of the eye plays a distinct part in enabling humans to see.

The eye is essentially an opaque eyeball filled with a water-like fluid. The transpar-
ent front surface of the eye is known as the cornea. The cornea has the dual purpose of
protecting the eye and refracting light as it enters the eye. As part of the tough outer
coat of the eye, the cornea, together with the sclera, should maintain the intraocular
pressure, support the intraocular structures, and resist trauma and infection.

After light passes through the cornea, a portion of it passes through an opening of
the iris known as the pupil. The iris, visible through the cornea, contains involuntary
muscles which react to incoming luminance, and thus, the iris has an automatic ability
to modify the pupil size playing an important optical function as an aperture. In
bright-light situations, the iris is minimized to reduce the size of the pupil and limit
the amount of light which enters the eye; and in dim-light situations, the pupil size
expands to its maximal size to allow in as much light as possible.

Light which passes through the pupil opening, enters the crystalline lens which
focuses the light onto the back of the eye. The crystalline lens is made of a transparent,
high-protein material - fibrous, contained within an elastic capsule. Its structure
is complex, composed of a radial pattern of fibrous layers which is the source of
diffraction halos people see at night. The lens is surrounded by ciliary muscles which

3



4 Chapter 2 THE HUMAN EYE

Fig. 2.1. A side view of the human eye.

relax and contract in order to change the shape of the lens (and therefore its refractive
power) to allow the eye to focus on objects at different distances - a process known as
accommodation. As the lens ages, it becomes harder and undergoes reduced flexibility
and transparency, severely limiting the degree of accommodation - a condition called
presbyopia.

The inner layer of the eye is the retina, which is an extension of the central
nervous system. The retina contains two types of light-sensitive cells called rods and
cones1. These cells convert the light energy into neural signals sent to the brain for
interpretation via the optic nerve. The rods are very sensitive to light and are suited
to and only function at low light levels. But they provide poor spatial resolution. The
cones are far less sensitive to light than rods and only function at high light levels.
On the other hand, the cones are capable of providing high spatial resolution and
color vision. They predominate in the central region of the retina called fovea. As
the distance from the fovea increases, the number of rods increases and the number of
cones decrease (the rods reach their maximum density at about 20◦ from the fovea).
The peripheral region of the retina is used more for light and motion detection, whereas
the foveal area (1.5 mm in diameter) is used more for form detection, color detection,
and resolution of fine detail.

There are as many as one-million neural pathways from the rods and cones to the
brain through that the nerve impulses travel. This network of nerve cells is bundled
together to form the optic nerve. The area where the optic nerve connects to the
retina, called optic disc, contains neither rods nor cones, and thus, this region is
blind, hence the name the blind spot.

1An adult eye is typically equipped with 120 million rods which detect the intensity of light and
6 million cones which detect the frequency of light.
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Fig. 2.2. Shape and dimensions of the human eye. The departure of the eye’s
cross section from a circle that best fits the sclera is shown. Note that
the sclera is flattened around the optical nerve and around the cornea.

2.2 Shape and Dimensions of the Human Eye

As for all organs, the dimensions of the human eye and its optical components vary
greatly from person to person and some further depend upon accommodation level,
age and certain pathological conditions. In spite of these variations, average values
have been used to construct representative or schematic eye (Section 2.3).

In an idealized geometrical form of the eye, the sclera would be a sphere having a
radius of about 12 mm with a transparent portion of a sphere of 8mm radius added
anteriorly to represent the cornea. The distance between the centers of these two
curvatures is approximately 5mm (Fig. 2.2).

To fully describe the optical properties of the eye, a number of axes should be
introduced. It is important to distinguish the geometrical axis from the visual axis.

The geometrical axis (also called optical axis) goes through the anterior and pos-
terior poles of the eye and is usually defined as the line joining the center of curvature
of the refracting surfaces. This axis requires the existence of the nodal point, which
only exists if the eye is rotationally symmetric. However, the optical system of the
eye is not perfectly rotationally symmetric, and therefore even if the four refracting
surfaces were each perfectly rotationally symmetric, the four centers of curvatures
would not be co-lined. In the case of the eye, we define the optical axis as the line of
best fit through these non co-lined points.

The visual axis is defined as the line joining the object of interest (fixation point)
and the fovea, which passes through the nodal points.

The optical and visual axes are tilted to each other by about 5◦.
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Fig. 2.3. The cornea-lens combination of the real eye can be represented in several
simplified forms: a - a reduced eye, b - Gullstrand’s schematic eyes named
as a ”simplified eye” (left) and an ”exact eye” (right). The cross-sectional
drawings of the eye show, to scale, the curvatures and dimensions of the
eye, along with the locations of the principal planes (P and P ′) and
nodal points (N and N ′). All the optical surfaces have constant radii of
curvature, that is, they are spherical surfaces [33].

2.3 Eye Models

To understand the optical function of the human eye some eye’s models are in use that
simplify and approximate an average or typical eye to some degree [42]. To construct
a model of the eye, population mean value for relevant ocular parameters is used, and
it can be done at different levels of sophistication.

A simple approximation is called a reduced eye (Fig. 2.3a). In this model the cornea
and lens have been replaced by a single optical surface having equivalent power of the
cornea-lens combination. At this surface the refractive index changes, and its power is
equivalent to the eye’s total power. The eye has a single nodal point (N). The corneal
radius of curvature and the axial length are unrealistically small.

A closer approach to the reality might have a separate cornea and lens. Fig. 2.3b
shows two of Gullstrand’s schematic eyes. The ”simplified eye” has a single corneal
surface and a lens with a single refractive index (Fig. 2.3b left). The ”exact” eye
includes both corneal surfaces and a lens with different central and peripheral refrac-
tive indices (Fig. 2.3b right). The differences between these two eye models are small,
but significant. The simplified eye has higher dioptric power, a flatter cornea, and a
thicker lens, for example. The differences between the schematic eyes mean that they
will give somewhat different answers to optical calculations. The exact eye will be
required for some purpose, while the simplified eye may be sufficiently adequate for
others.

In its ultimate form, the model eye is an attempt to represent the optical compo-
nents of the biological eye as accurately as possible, with curvatures, thickness, and
separations that mimic the true anatomy of the eye.
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2.4 Optics of the Human Eye

Optically, the eye is a two-element system, made up of the cornea and the lens, both
of which are plus lenses. The overall dioptric power of this system is the sum of the
power of its components and is given by the equation

PEye = PCornea + PLens − d

n
PCornea · PLens, (2.1)

where d is the distance between the posterior surface of the cornea and the anterior
surface of the lens (the anterior chamber depth), and n is the refractive index of the
aqueous humor (Tab. 2.1).

The cornea is the major refracting component of the eye and performs about two-
thirds of the refraction for the relaxed eye. The remainder is provided by the lens,
however, whose power increases during accommodation.

The difference between the anterior and posterior radii of corneal curvature yields
an average of 42 D of convergence (for the calculation, see Section 2.5), with the
anterior surface contributing 48D of convergence and the posterior surface 6D of
divergence.

The overall power of the lens is about half that of the cornea. Average radii
of curvature for the unaccommodated adult lens are around 10mm for the anterior
surface and -6mm for the posterior surface2. Combining these measurements with
a thickness around 4 mm gives a total unaccommodated lens power of about +20 D
(assuming the lens has a refractive index of 1.413). Therefore the lens contributes
about one-third of the eye’s total power in its unaccommodated condition. When
the lens increases in power with maximum accommodation, the anterior radius of
curvature is about 5mm and the posterior radius is about -5mm. The combined
effect increases the lens power to around +30D.

When the cornea and lens are considered as a combined optical system, these
values produce a total power for the eye of around +60D (unaccommodated eye) and
+70D (accommodated eye)3.

2.5 Cornea

The assessment of corneal topography is a valuable tool in the diagnosis and manage-
ment of certain corneal conditions. However, before using this technique to diagnose
abnormalities of corneal shape, it is vital to have a good understanding of the normal
corneal shape and its natural variations. When abnormalities of corneal topography
are detected, it is also important to be able to determine whether these are a result
of abnormalities of the cornea itself or whether they are artifacts arising from errors
in image acquisition or analysis.

2These are the values commonly used in schematic eyes.
3Other often cited values are based on a slightly smaller or lager corneal radius of curvature or on

a different index of refraction. The precise value of the refractive power of the eye is not important,
since no model is totally accurate.
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Tab. 2.1. Some important optical parameters of the human eye.

Segment/Structure Radius Power

(mm) (diopters)

Cornea

anterior surface 7.7 - 7.8 +48.8 - +48.2

posterior surface 6.5 - 6.8 -6.2 - -5.9

Cornea (entire) +42.8 - +42.4

Lens (unaccommodated)

anterior surface 10.0 - 11.0 +7.7

posterior surface -6.0 +12.8

Lens (unaccommodated) combined +20.3

Lens (accommodated)

anterior surface 5.0 +15.4

posterior surface -5.0 +15.4

Lens (accommodated) combined +30.1

Human eye (unaccommodated) +60.8 - +60.4

Human eye (accommodated) +69.5 - +70.4

Thickness

Cornea (at apex) 0.5mm

Cornea (at periphery) 0.7 - 1.2mm

Anterior camber depth 3.3 - 3.5 mm

Lens 3.5 - 4.0mm

Index of refraction

Air 1.0

Corneal anterior surface 1.376

Cornea (entire) 1.3375 (SKI∗)
Aqueous humor 1.336

Lens 1.413

∗SKI is the abbreviation for Standard Keratometric Index (Section 3.2.1).
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Fig. 2.4. The schematic cross-sectional structure of the five corneal layers [49].

2.5.1 Corneal Anatomy and Optics

The cornea is the transparent tissue covering the front of the eye and as a result of
its position, the cornea has to meet strict physical criteria and perform a variety of
specialized functions.

The basic anatomic components of the cornea account for its thickness, radius of
curvature, surface regularity, and the shape of the cornea, all of which play a role in
its anterior topography. Disorders of these basic components can directly affect the
shape of the cornea.

It is appropriate to begin any discussion of corneal topography with an analysis
of structural characteristics of the human cornea.

General Structure

The cornea has a complex structure. It is comprised of five layers, which are, in order
from the outer surface of the eye: the epithelium, Bowman’s membrane, the stroma,
Descemet’s membrane and the endothelium (Fig. 2.4).

• The epithelium is a layer of cells that cover the surface of the cornea and as-
sure the smooth form of the surface. It is only about 5-6 cell layers thick (50
µm). Only the innermost layer of these cells is able to divide. After cells are
formed, they move gradually towards the surface as the superficial cells are
shed. The epithelium protects the cornea by providing a barrier against water,
larger molecules, and toxic substances. It quickly regenerates when the cornea
is injured (cell regularity with a turnover time of 7 days).

The epithelium is always covered by a thin layer of tears, renewed with each
blinking of the eyelid. The tear film is essential for clear vision because it
moistens the cornea and fills up small irregularities of the epithelial surface
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improving the overall optics. The tear film does not contribute significant to
the refractive power itself, since it is only 4-7 µm thick. However, the importance
of the tear film is realized if it dries out. This is due to the fact that it nourishes
the cornea through absorption, and the epithelium, which has a high oxygen
demand, becomes hypoxic and loses its transparency.

• Bowman’s membrane lies just beneath the epithelium. It is 8-14 µm thick and
made up of tightly packed fine collagen fibrils. This layer being very tough and
difficult to penetrate protects the cornea from injury.

• The stroma is the thickest layer (500 µm) and lies underneath Bowman’s mem-
brane. It is composed of tiny collagen lamellaes that run parallel to each other.
This special formation of the collagen fibrils gives the cornea its clarity while
enhancing elasticity and mechanical strength.

• Descemet’s membrane lies between the stroma and the endothelium. The thick-
ness of this membrane is about 10-12 µm. It is the basement membrane of the
endothelial cells.

• The endothelium is just underneath Descemet’s membrane and consists of a
single layer of cells (5 µm), which are hexagonal and fit together like a honey-
comb. This layer regulates the fluid balance of the cornea in order to maintain
the stroma at about 78% hydration and to retain transparency. If damaged or
diseased, these cells will not regenerate.

Each corneal layer has its own refractive index, but since the stroma is by far the
thickest layer (90% of the entire corneal thickness), its refractive index dominates.
The mean value of refractive index is usually taken as 1.376 (Tab. 2.1).

Because there are no blood vessels in the cornea (expect fine capillaries at the very
extreme periphery), it is normally clear and has a shiny surface4.

The cornea is also extremely sensitive because there are more nerve endings in the
cornea than anywhere else in the body. Thus, the injuries of the cornea are painful.
If the injury penetrates more deeply into the cornea, it may leave a scar - an opaque
area, causing the cornea to lose its clarity and luster.

Thickness

The cornea is not uniformly thick throughout. Its thickness varies from a minimum
near the corneal apex5 (the geometric center of the cornea), being about 0.5mm thick,
to a maximum at the junction between cornea and limbus, where it is on the order of

4In disease, the cornea may be invaded by blood vessels, a condition known as pannus.
5The apex of the cornea is the highest spot of the cornea and location of the greatest sagittal

height on the anterior corneal surface. The apex of the normal cornea is close to the optical axis.
However, in pathological states such as keratoconus and after corneal surgery, the apex may be
displaced.
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Fig. 2.5. Cross section through the cornea demonstrating the increasing thickness
of the cornea from the center to the periphery. The vertical and horizon-
tal meridians are shown here as if they were optical sections [33].

0.7mm thick (Fig. 2.5). Temporal cornea tends to be thinner than the nasal cornea,
but the difference is very small. The average thickness at the limbus measures about
1.2mm.

Radius of curvature

Since the anterior and posterior surface are not parallel and thickness increases periph-
erally in all meridians, the posterior surface has a smaller radius of curvature than the
anterior surface. Consequently, the corneal cross section is that of a convex-concave
lens in which the power of the anterior surface is positive in sign, and the power of
the posterior surface is negative (Tab. 2.1).

The radius of the curvature at the corneal vertex was determined by numerous
authors (Tab. 2.2). The average radius of curvature of the anterior surface of the
cornea near the pole is about 7.8mm with the standard deviation of 0.4mm, so that
most of the subjects range between 7.0 and 8.5mm6. The horizontal radius is usually
0.05-0.25mm flatter than the vertical (with-the-rule astigmatism)7. In general, the
mean apical radius decreases with the higher myopia.

Even though, several studies have measured the anterior radius of curvature, there
have been far fewer investigations of the rear surface. It is difficult to measure the
shape of the posterior surface of the cornea because of the influence of anterior surface
shape on any measurement8. The radius of the posterior corneal surface has a slightly

6The experimental distribution of the corneal vertex radii shown that females have slightly steeper
anterior corneas than males.

7This equates to 0.25-1.25 D of the corneal astigmatism.
8The posterior corneal surface is of lesser significance than the anterior surface because of the

small refractive index difference across the posterior corneal boundary, but it is not of negligible
significance.
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Tab. 2.2. Population distribution of corneal vertex radii of curvature (mm) [1].

Anterior Posterior

Donders (1864)

females 7.8

males 7.86

Stenstrom (1948) 7.86±0.26

Lowe and Clark (1973) 7.65±0.27 6.46±0.26

Kiely et al. (1982) 7.72±0.27

Edmund and Sjøntoft (1985) 7.76±0.25

Guillon et al. (1986) 7.78±0.25

Koretz (1989)

females 7.69±0.23

males 7.78±0.24

Dunne et al. (1992)

females 7.93±0.20 6.53±0.20

males 8.08±0.16 6.65±0.16

Patel et al. (1993) 7.68±0.40 5.81±0.41

steeper radius of curvature than the anterior surface being 6.7 mm (Fig. 2.6) [12, 28,
38].

There is a high linear correlation between the anterior and posterior radii of cur-
vature, and a reasonable fit of this relationship is Rposterior = 0.81Ranterior [1].

Surface Regularity

The anterior surface of the cornea is lined with an epithelial layer. The superficial
cells of this epithelial layer are polyhedral in shape and, under normal circumstances,
do not keratinize. Their nuclei are flat and projected posteriorly. These qualities
combine to create for a very smooth anterior surface of the cornea.

An intact, healthy corneal epithelial surface with a normal, smooth tear film is an
essential component for the regular refraction of light by the eye, the formation of a
clear retinal image, and maximum visual acuity.

Corneal Size

At birth the corneal diameter is about 10mm. It continues to grow and reaches full
size by approximately 1 year.

Viewed from the front, the outline of the cornea formed by the corneal-limbal
junction is roughly elliptical (Fig. 2.7a). The longer horizontal axis of the ellipse is
typically about 11.7 mm, the vertical axis around 11.6mm (the standard deviations
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Fig. 2.6. The difference in the thickness from the center to the periphery deter-
mines the difference in radius of curvature between these two regions.

around these averages are about ±0.5mm) [33]. The smaller vertical diameter is
largely due to a superficial overlapping of the sclera onto the cornea. The outline of
the posterior surface of the cornea is circular.

Normally, pupil diameter ranges from 3mm to 6 mm, and this limits the optical
zone of the cornea to the central 6mm under most conditions.

Corneal Shape

The shape of the anterior corneal surface has been extensively studied. In profile,
the central 4mm of the cornea are approximately spherical9 (Fig. 2.7b). Outside this
optical zone, the cornea is aspheric and radially asymmetric.

The asphericity of the corneal shape means that the normal cornea becomes flat-
tened from the center to the periphery10 (i.e., the radius of curvature increases with
distance from the surface apex). The normal cornea has a prolate shape11. When
corneal curvature along one meridian varies symmetrically with respect to the corneal
apex, the profile of the cornea can be considered as part of an ellipse.

The asphericity of the cornea can be described with the asphericity parameter
Q (Section 3.4). The value of asphericity parameter for several surfaces is given in
Tab. 3.3. The normal cornea has peripheral flattening corresponding to the asphericity
factor of -0.26 [20].

Corneal Astigmatism

The anterior corneal surface exhibits toricity, which produces some degree of astigma-
tism. Corneal astigmatism is the difference in corneal curvature between two meridi-

9When examined critically, however, the cornea begins to flatten within 1mm of the corneal apex:
the curvature is always changing.

10At least in the adult; in a newborn baby, it is the opposite case.
11The reverse pattern is an oblate shape, as occurs on the long side of an ellipse (Section 3.4).

This is only seen in abnormal corneas, for example by keratoconus or after radial keratotomy.
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Fig. 2.7. Approximations of corneal size (a) and corneal shape (b). a - Viewed
from in front, the outline of the cornea is slightly elliptical, with a mean
vertical diameter about 1mm less than the mean horizontal diameter.
From behind, the outline of the cornea is circular [33]. b - The flatten-
ing of the peripheral cornea can be seen easily when its cross section is
compared to a circle (dashed line). The central 4mm of the cornea - the
optical zone - have a near constant radius of curvature. Peripherally, the
circle deviates from the corneal surface, and the deviation is such that
the corneal radius of the curvature is larger. That is, the normal cornea
is flatter. The posterior corneal surface has less peripheral flattening.
Here it is also compared to a circle (dotted line).

ans and means that the cornea has a higher curvature in one direction than another.

In most individuals the horizontal meridian is the flattest and the vertical meridian
the steepest12. The average difference between the refractive powers of these two
meridians usually lies between 0.5 and 1.0D and is called natural astigmatism.

Net Corneal Power

Most of the refraction of light occurs on the anterior surface of the cornea. It is the
only air-to-tissue interface in the eye, so the change in refractive index is much greater
than anywhere else. Thus, the anterior surface of the cornea dominates optically and
the corneas anterior radius of curvature is the major factor in the refractive status of
the eye13.

The refractive power generated at a single spherical surface is determined by
changes in the refractive index and the shape of the surface as follow

P =
n′ − n

r
, (2.2)

12This physiological tendency of the average cornea to have a steeper curvature vertically has not
been adequately explained. Some authors explain this difference with the pressure applied by the
blinking eyelids.

13The posterior surface of the cornea has a smaller radius of curvature than the anterior surface,
but the refractive indices of the cornea and the aqueous are so similar that the posterior surface of
the cornea is less important in refraction because of the relatively little refractive power.



2.5 Cornea 15

Fig. 2.8. Topographic zones of the anterior corneal surface. Diagrammatic repre-
sentation of the right cornea in vertical section (left) and from anteriorly
(right). None of these areas is discrete, because the cornea forms contin-
uous curves.

where P is the refractive power (in diopters) of the surface, n and n′ are the refractive
indices of the first and the second bounded mediums, and r is the radius of the
curvature (in meters).

As mentioned in Section 2.5, the average value for the anterior central radius of
curvature is around 7.8mm for a normal cornea, which contributes a refractive power
of +48.2 D (with the cornea’s refractive index of 1.37614). The mean value for the
posterior radius of curvature is around 6.8 mm, which translates to a power of -5.9D.

The refractive power of the entire cornea can be approximated to the sum of the
power of its anterior and posterior surfaces

PCornea = Panterior + Pposterior − d

n
Panterior · Pposterior . (2.3)

Combining the effects of the anterior and posterior surfaces and allowing for their
separation 0.5mm and the refraction index of 1.376 gives a total corneal power of
+42.4D.

2.5.2 Topographical Zones

Classically, the anterior corneal surface has been arbitrarily divided into four concen-
tric regions, called optical zones (Fig. 2.8). These divisions are somewhat variable as
the corneal surface is smooth and one zone blends with the next, but the concept is
useful when describing the normal corneal shape and has practical applications such
as the fitting of contact lenses.

14For the discussion about the refractive index of the cornea, see Section 3.2.1.
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Central Zone

The central zone (otherwise called the optical zone, corneal cap, or central spherical
zone) is the optically important area. This zone can be defined as the area surrounding
the corneal apex. It is about 4mm in diameter and is symmetrical and approximately
spherical. Its radius of curvature does not vary by more than 0.05mm (i.e., the
refraction differs by less than 0.25D).

The central zone is surrounded by the corneal periphery which is divided into three
zones: paracentral, peripheral, and limbal.

Paracentral Zone

The paracentral zone is an annulus 4 to 7-8 mm diameter. Normally, the paracentral
zone has a flatter radius of curvature than the central zone. After radial keratotomy,
this is the region where a marked change in curvature - the paracentral knee - between
the new, flatter, central zone and the new, peripheral, steeper corneas occurs.

Together with the central zone, it forms the apical zone used for contact lens fitting.
In an ideal situation, the apical zone of the cornea would be perfectly spherical. In
actuality, the majority of corneas are spherocylindrical lenses with the axis of highest
power separated from the axis of lowest power by 90◦. In certain situations, such as
high congenital astigmatism, the meridians may not be perpendicular to each other.

Peripheral Zone

The peripheral zone is defined as the area from the peripheral margin of the apical
zone to the central border of the limbus. This zone is approximately 7 to 11 mm
diameter. Topographically, this is the area in which the normal cornea flattens most
progressively and becomes more aspheric.

The peripheral curvature is of great importance when fitting contact lenses because
it is the region of the cornea that supports the greatest area of the maximum contact
with the lens. The contact lens should be fitted to the peripheral corneal curvature,
where it obtains most of its support. This zone also plays an important role with
regard to refractive surgery.

Limbal Zone

The limbal zone is defined as a rim 0.5-1.0 mm wide adjacent to the sclera. It is usually
covered by the conjunctival vascular arcade, and its exact extent depends upon the
amount of scleral override (normally, its size is approximately 12mm in diameter).
Because the cornea has a generally steeper radius of curvature than does the rest of
the globe, there is an apparent sulcus at this juncture that defines the end of the
cornea and the beginning of the sclera.

This region is also of significance because it is involved in many peripheral corneal
thinning disorders, as well as being the common site for numerous surgical procedures.
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Fig. 2.9. A side view of an emmetropic, myopic and hyperopic schematic eye shown
unaccommodated viewing a distant object. When all the components of
the eye are properly matched, and the optical image coincides with the
retinal plane, the refractive error is zero - this is emmetropia. In the case
of an ametropic eye the parallel rays of light are not focused exactly upon
the retina with eye in a state of rest causing the retinal blur. The myopic
eye has too much optical power in relation to its length. The hyperopic
eye is too short and has too little refractive power.

Surgical incisions or disease processes involving this region can indirectly change the
central corneal topography and affect visual acuity.

2.6 Eye Classification

Ideally, when the eye fixates an object of interest, the image is sharply focused on the
fovea. In paraxial optical terms, the object and fovea are conjugate. However, the
object can only be focused sharply if it is within the accommodation range of the eye.
If the accommodation range is inappropriate or too small, object of interest cannot
be focused sharply on the retina. In these cases, the retinal image is out-of-focus
or blurred, and visual acuity is reduced. The anatomical variables that affect visual
acuity are also relevant to refractive error and image defocusing. For an image of a
distant object to be in focus on the retina, the refractive power of the eye must match,
in a sense, the axial length of the eye (or vice versa).

Defocused retinal images occurs also when the refractive power of the eye varies
with meridian. This is commonly due to one or more refractive surfaces in the eye
being toroidal, transversely displaced or tilted. There are now two pairs, one corre-
sponding to each of two principal meridians. These errors are referred to as astigma-
tism or cylindrical refractive errors, in contrast to spherical refractive errors, which
are present when the refractive error is the same in all meridians.

Eyes are generally classified into three categories: emmetropic, myopic, and hy-
peropic. A comparison of their vision when viewing a distant object is shown in
Fig. 2.9. In addition, eyes may contain some astigmatism. An excellent characteriza-
tion of these conditions is found in [19], and is briefly summarized in the following
subsections.
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2.6.1 Emmetropia

Emmetropic eyes are those which when relaxed, or unaccommodated, focus distant
parallel light well onto the retina as shown in Fig. 2.9. The emmetropic eye is regarded
as the ”normal” eye. For the emmetropic eye a far point of district vision is at infinity.
A refractive anomaly occurs if the far point is not at infinity. An eye whose far point
is not at infinity is called an ametropic eye. Ametropia indicates a not coordinated
match between power of eye and its axial length resulting in the defocused image of
a point source that is a blur circle, the size of which is proportional to the amount
of refractive error measured in diopters. The departure from emmetropia is often
considered to be an error of refraction, and ametropia is also referred to as refractive
errors.

2.6.2 Myopia

Myopia, or nearsightedness, describes an eye which, when unaccommodated and view-
ing a distant object, focuses the light in front of the retina. This causes distant object
to be blurred out, as shown in Fig. 2.9. However, as the object nears the eye, there is
a distance MR, called the far point, at which the unaccommodated eye sees in perfect
focus. If the object is moved closer than that point, the eye simply accommodates to
keep it in focus. As myopes age, they do not have that luxury, so their uncorrected
eye can only see objects when placed at roughly MR.

Myopia is caused when the cornea is too highly curved (i.e., it has too much
refractive power), the axial length of the eyeball is too lang, or both.

2.6.3 Hyperopia

Hyperopia, or farsightedness, is the opposite of myopia, in that the unaccommodated
eye formes distant light behind the retina (or at least the optical image would lie
behind the retina, if the retina were not in the way). This also causes a retinal
image that is out of focus for distant objects, as shown in Fig. 2.9. To compensate,
the hyperope simply accommodates to focus the incoming light more and can see
distant objects, unlike myopes. As the object is brought near the eye, the degree of
accommodation increases correspondingly. As hyperopes age and lose that ability,
they become seeing anything in perfect focus without spectacle or surgical correction.

Hyperopia is caused by a cornea which is too flat (i.e., the refractive power is too
weak), or an eye which is not long enough, or both.

2.6.4 Astigmatism

Astigmatism can be defined as the refractive error in which no point focus is formed
owing to the unequal refraction of light in different meridians. The astigmatism
results in two separate and district foci, one for each principal direction of refractive
curvature. Thus, a point source usually does not have a circular image, because the
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Fig. 2.10. There is no single plane of focus for an astigmatic optical system. In-
stead, the meridians of greatest and least power have focal planes defining
a range of focus with a blurred ”circle of least confusion”, a midway be-
tween the extremes.

plane of focus varies from one meridian to the next15. The primary, or more curved
direction comes to a focus first (Fig. 2.10). Then the secondary focus is reached farther
back. At each of these foci the image from a distant point light source is a thin sliver,
oriented with the principal curvatures. A midway between these two focal planes is
a point where the point light source would be equally out of focus, and the blur is
most circular: this is called the circle of least confusion. The amount of astigmatism
is described as a degree of cylinder and its corresponding axis. It may originate
from any rotational asymmetry or decentration of the optical surface of the system
or irregularities in refractive index.

The most common cause of astigmatic error of the eye is due to the astigmatic
curvature of the anterior corneal surface (Section 2.5). This may occur both physio-
logically and pathologically. The astigmatism of the anterior corneal surface is usually
neutralized by inverse astigmatism of the posterior corneal surface or the lens.

In about 90% of eyes, the steepest meridian (meridian of greatest curvature) is the
vertical meridian (within 30%). This is termed ”direct” or ”with-the-rule” astigma-
tism. The meridians of greatest and least power may be also something other than
strictly horizontal and vertical (oblique astigmatism), or the meridians may not be
orthogonal (bioblique astigmatism).

Additionally, it is distinguished between regular and irregular astigmatism. The
regular astigmatism is where the refractive power changes gradually from one meridian
to the next by uniform increments. In the case of the irregular astigmatism the changes
in the curvature of the meridians are unequal and conform to no geometric pattern.

15Uncorrected astigmatism light distribution typically manifests itself as an oval smear on the
image plane.
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2.7 Correction of Refractive Errors

The ability of the eye to resolve images and distinguish form and detail can be affected
by refractive errors. These optical defects caused by the elements of the eye - cornea
and lens - degrade image quality, blur the image, or create a loss of visual acuity.

Whatever the cause of the refractive error, it can be corrected with appropriate
ophthalmic lenses, which include spectacles, contact and intra-ocular lenses. There
are also several surgical techniques to correct some of the refractive aberrations.

The most common is to pre-refract the light rays before they enter the eye with
spectacles or contact lenses with the desired correction [39]. Only two kinds of the
optical aberrations can be corrected by this way: sphere and cylinder. These aberra-
tions called regular are the most common optical aberration affecting human vision.
All other aberrations are called irregular and there is no standard way to correct them
with spectacles or contact lenses.

Another way to correct refractive errors of the eye is corneal refractive surgery,
which has become quite popular [3]. This surgical technique aims to change the shape
of the cornea with either a scalpel or laser to correct the vision (the myopic cornea
would be made flatter while the curvature of the hyperopic cornea should be increased
by making it steeper).

Surgical reshaping of the corneal surface has shown the importance of knowing
the shape of the cornea. Because the surgical procedure can also correct the irregular
aberrations it follows that the nature of the surgical approach is aided by knowing
the exact shape of the cornea that is to be modified [29].

2.8 Corneal Disorders

2.8.1 Keratoconus

Keratoconus (also called conical cornea) is an eye condition which results in the
bulging and thinning of the cornea, as well as localized regions of high curvature
(Fig. 2.11). The weakened tissue is forced to assume by the intraocular pressure on its
posterior surface. The almost conical shape usually reduces a patient’s visual acuity
and is associated with very high myopia and astigmatism. The visual disturbance
caused by keratoconus is mainly due to the irregular shape of the corneal surface.

2.8.2 Diplopia

Diplopia (more commonly known as ”Double Vision”) occurs when a patient fixates
on a single object but perceives multiple objects. It is usually caused by problems
with the muscles of the eye preventing a unique fused image from being formed.

Monocular diplopia is slightly different: the shape of the cornea of a single eye
creates multiple images of an object. It is believed to be caused by corneal warpage,
trauma or keratoconus. If a similar process occurs in both eyes (bilateral monocular
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Fig. 2.11. Cross-section trough a cornea: a - a normal cornea, b - a cone-shaped
cornea with the apex of the cone being forward represents keratoconus,
the most common form of corneal bulging.

diplopia), that is, the doubling is still present with either eye covered, the patient may
still only see two images. Seeing multiple images (polyopia) is rather rare.
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Chapter 3

CORNEAL TOPOGRAPHY

In this chapter traditional technique and more recent methodology for measuring
corneal topography are explained. The main goal is to present the basic terminol-
ogy in corneal topography that will help to understand the data measured by any
corneal topographer. The historical evolution of corneal shape measurements is also
reviewed1.

3.1 Historical Background

It has been known for over a century that the cornea is the main refractive element of
the eye, and already early the ophthalmologists have tried to determine its topographic
characteristics. This has not been a simple task given that the cornea possesses an
aspheric surface that is not radially symmetric. These efforts have been led to the
gradual development of instruments.

In 1619, Scheiner was the first to measure the corneal shape [40]. He observed that
shiny glasses spheres of different radii produced reflected images of different sizes. He
then produced a series of convex spherical mirrors of progressively larger curvatures
and tried to determine corneal curvature by matching the size of the image reflected
from a subject’s cornea with the image produced by one of the calibrated spheres.

In the 1820s, Cuignet developed a keratoscope. In his system, a light was projected
onto a target that was held in front of patient’s eye. The light, target, patient, and
observer were positioned in such way that the observer could visualize the reflected
image of the target on the patient’s cornea. Distortions of the reflected image, indicat-
ing abnormal corneal shape, could then be qualitatively interpreted by the observer.
His major problem was in the alignment of the lighting, target, patient, and observer
so that the image of the target was centered on the patient’s visual axis. Additionally,
the reflected image was viewed one-on-one ratio making it very difficult to see minor
distortions in corneal shape.

1It is referred to the excellent review articles by Binder [4] and Levene [24] describing the devel-
opment of technology for assessing corneal topography in details.

23
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Fig. 3.1. Placido’s disc.

Quantification of corneal curvature became possible in 1854 with the development
of a keratometer (also called ophthalmometer) by Herman von Helmholtz [14]. It was
the first true keratometer2. The distance measured between two pairs of reflected
points gave the spherocylindrical curvature of the central 3mm of the cornea in two
meridians.

The Cuignet’s problem was overcome in 1882 by Placido, who placed an observa-
tion hole in the center of the target [36]. His target was a disc with alternating black
and white concentric rings that had a hole in its center through which the observer
could visualize the patient’s cornea (Fig. 3.1). This was crucial for improving target
alignment with the patient’s visual axis. Not only could the observer grossly center
the target on the patient’s cornea, but the patient was also able to directly align his
or her visual axis with the center of the target disc. This technique is the origin of
Placido disc-based systems that are the basis of many topography systems commonly
used today.

This technique, while providing a visual representation of the corneal surface, does
not provide quantitative information. Although Placido’s disc certainly ameliorated
the problem with target alignment, the observer still had no magnification capabilities
and was incapable of detecting small degree of corneal topographic distortion.

The issue of magnification was addressed by Javal. In 1889, in order to extend
the area of cornea that could be analyzed, Javal attached a Placido-type disc to his
keratometer. The benefit of this system was that the ophthalmometer had an eyepiece
telescope system that magnified the observed keratoscopy image. He realized the need
to ”fix” the image and measure the size of the rings, but this was not practical until
1896, when Gullstrand applied photography to keratoscopy and captured the reflection
on film. So the first photokeratoscope was developed [?]. Numerous attempts were
made to quantify keratographs by comparing them to photographs of spheres of known
radius of curvature, but all methods were laborious, very time consuming, and not

2To learn the principle of operation of an ophthalmometer, see Section 3.2.2 or [53].
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really practical. This was the main reason that, until quite recently, the assessment
of corneal topography was almost totally confined to keratometry.

In the 1970’s, several photokeratoscopes were designed with attached Polaroid
camera. In 1981, Rowsey et al. reported a modified photokeratoscope, called the
Corneascope, which used a ”Comparator” allowed fast, in-office evaluation of the
Polaroid keratograph to determine the corneal radius of curvature [37]. Rowsey and
coworkers developed some of the earliest methods to provide quantitative information
from photokeratoscope images by comparing the mire diameter from corneas to those
reflected from standard reference spheres and by measuring hemichord length from
the center of the mire pattern to each keratoscope ring along several hemimeridians.
Doss et al. introduced a mathematical technique to determine the corneal profile
from keratoscopic images [11]. A little bit later Cohen developed statistical indices to
describe the geometrical distortions of the reflected mires [6].

Little progress was then made until the interest was renewed by the introduction of
contact lenses. But perhaps the factor most responsible for the resurgence of interest in
corneal topography has been the introduction of microsurgical and refractive technique
when interest turned to the optical power provided by the cornea. As the visual
results of refractive procedures have improved, fine-tuning of the refractive outcome
has become increasingly important. It became necessary to have information about
the shape of the whole corneal surface with great details and accuracy. This was first
possible with the explosion of video and computer technology. The computer analysis
applied to the data opened the way for detailed mathematical analysis of corneal
shape.

Corneal topography as we know it now became available in 1984, when Klyce
combined computer analysis and digital imaging into the videokeratoscope [23]. Since
then computerized topography (videokeratography) has continued to be an evolving
technology providing very fast, detailed, and precise corneal topography. This tech-
nique is now widely available and is the most commonly used in clinical practice
today. Additionally, Klyce refined Doss algorithm by using statistical methods to re-
duce errors inherent in manual digitizing [23]. Interpretation of the shape anomalies
and clinical utility were augmented with the adding of color coded topographic maps
by Maguire in 1987 [31]. And recently, Wilson introduced recommendations to the
scales to evaluate color coded maps [52].

The more recent explosion of refractive surgery has also opened up new avenues for
the development of topographic systems. As results, new topography systems based
on the principle of projection rather than that of reflection have been developed and
marketed. Additional instruments that use interferometry or raster stereography for
reconstructing the corneal surface have been reported.

3.2 Methods for Measuring Corneal Topography

This section describes several techniques for measuring corneal topography.
In Tab. 3.1 some available corneal topographers are listed.



26 Chapter 3 CORNEAL TOPOGRAPHY

Tab. 3.1. Some currently available corneal topography systems.

Type Name of unit Provider

Placido-based systems ATLAS Humphrey Systems

EyeSys 2000 EyeSys Technologies, Inc.

TMS-2N Tomey Corporation

Slit Scanning Photography Orbscan II ORBTEK, Inc.

Raster photogrammetry PAR CTS PAR Technology Corporation

Interferometric ET-800 Euclid Systems Corporation

Laser Holographic Interferometry CLAS-1000 Kerametrics Corporation

3.2.1 Basic Principle for Measuring Corneal Topography

From an optical perspective, the cornea is similar to a convex mirror. This fact is
used by the most instruments measuring corneal topography.

Let O be the size of an object, placed at a distance o in the front of a convex
mirror of radius r (Fig. 3.2). The magnification m produced by the mirror is the ratio
of the image size I to the object size O, and this is in turn proportional to the ratio
of the distances of the image and of the object from the mirror

m =
I

O
=

a

o
,

where a is the image distance from the mirror, and o is the object distance from the
mirror.

Due to the comparatively small radius of curvature of the anterior corneal surface,
the image is located very close to the focal point F , which lies halfway between the
anterior corneal surface and the center of curvature C. To a first approximation,
the image distance from mirror may be taken to be equal to half the radius of the
curvature of the mirror a ≈ r/2. Substituting

I = O
r

2o
.

From this equation the radius of curvature is obtained as

r = 2o
I

O
. (3.1)

Therefore the magnification of the image can be used to determine the radius of
curvature of the anterior surface of the cornea.

Clinicians think of curvature in terms of diopters (D). The radius of curvature
rCornea can be converted into the refractive power of the cornea PCornea because of
simple relationship between them by the following equation

PCornea =
nCornea − nAir

rCornea

, (3.2)
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Fig. 3.2. Image formation by a convex mirror. The image can be constructed using
two rays starting from the top of the object: a ray going parallel to the
optical axis and being reflected away from the principal focus F and a
ray passing towards the center of curvature C and then back along its
own path.

where nCornea and nAir are the refractive indices of the cornea and the air, respectively.
For any case, the refractive index of the air nAir is 1, and the anterior corneal cur-

vature rCornea is measured by keratometer or corneal topographer. For the refractive
index of the cornea nCornea there are two possibilities (Tab. 2.1). The first one is to
use the refractive index of the anterior corneal surface (corneal index of refraction)
which is 1.376. The second possibility is to set the refractive index of the cornea to
the refractive index of the entire cornea (Standard Keratometric Index or SKI) which
value represents a combined refractive index for the anterior and posterior corneal
surfaces and is 1.33753. In clinical practice, the standard keratometric index is used
to calculate the corneal refractive power from the radius of curvature. Therefore

PCornea =
SKI − 1

rCornea

=
0.3375

rCornea

, (3.3)

where the radius of the curvature rCornea is expressed in meters. Or, if the radius of
curvature is expressed in millimeters rather than meters

PCornea =
337.5

rCornea

. (3.4)

It should be noted, that the calculation of the refractive corneal power is performed
using paraxial formulas (Eq. (3.1)), which is acceptable only for small central area of

3The standard keratometric index (SKI) is a combined estimate of the posterior corneal curvature
and the refractive indices of the cornea and the aqueous. This concept is a simplification ignoring the
fact that the refracting surface is air-tear interface, and it does not account for the oblique incidence
of incoming light in the corneal periphery. As a result, it miscalculates a true corneal refractive index
of 1.376 to 1.3375 to correct some of these factors. That is the way those diopters more correctly
are termed as keratometric diopters to distinguish them from the diopters expressing more precisely
the true refractive power at certain corneal power. Most commercially available instruments convert
the radius of curvature to dioptric power using the standard keratometric index.
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the cornea, where this paraxial approximation is valid. Out of this area the Snell’s
low must be used

P =
n

f
, (3.5)

where f is distance from the corneal surface to the point, where the parallel rays pass
through the optical axis, and n is the refractive index of the cornea.

3.2.2 Keratometer (Ophthalmometer)

Until the mid 1980s the most common clinical method for monitoring corneal shape
was keratometry.

Keratometer (also called ophthalmometer) is an optical instrument used to de-
termine the radius of the anterior corneal surface along one meridian. It was first
described by Herman von Helmholtz in 1854 [14].

The principle of operation of a keratometer involves an assumption that the an-
terior corneal surface behaves as a convex mirror (Section 3.2.1). The mires of the
keratometer form an image that is reflected from the anterior corneal surface. Us-
ing Eq. (3.1) based on the theory of reflection from a convex mirror, one can then
determine the radius of curvature of the anterior corneal surface.

Eq. (3.1) shows that the radius of curvature r is proportional to the image size I
and is inversely proportional to the object size O. Thus, there are two general methods
by which these operation principles may be used to derive radius of curvature, and so
there are two types of keratometers4. One method uses a variable object size O and
a fixed image size I; and this is the method used by the Javal-Schiotz keratometer.
The second method involves a fixed object size O and a variable image size I; this is
the method used by the Helmholtz keratometer.

By Javal-Schiotz keratometer the object size is varied to achieve a predetermined
image size. This type of keratometer uses two colored mires (along a graduated arc)
that are able to be moved closer together or further apart, adjusting the size of the
object until the distance between the images of the mires has a predetermined size.
At this point the image size is known, and the object size can be measured. Then the
radius of curvature can be calculated, and corneal dioptric power deduced.

By Helmholtz keratometer (as utilized by the Bausch & Lomb keratometer (Fig. 3.3))
the image size is measured if the object size remains constant. Two reference marks5

with known distance are projected on the cornea. The distance between the images
of these two marks on the corneal surface is measured to determine the radius of
curvature in that meridian, based on the assumption that the corneal surface is sphe-
rocylindrical (Eq. (3.1)). Then the marks are rotated by 90◦, and the measurement is
repeated in this new meridian.

4In all keratometers the distance of the object from the corneal surface is constant (i.e., o=const
in Eq. (3.1)), being the focal distance of the viewing telescope.

5The marks differ depending on which keratometer is used. As an example the marks of the
keratometer manufactured by Bausch & Lomb is presented in Fig. 3.3.
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Fig. 3.3. The keratometer manufactured by Bausch & Lomb and its marks.

The keratometer has the capacity to measure a regular surface with an accuracy
of better than 0.25 diopters.

Keratometry provides only a limited amount of information (the sphere and reg-
ular astigmatism for two orthogonal meridians) about the shape of the small area of
central optical zone of the corneal surface about 3mm in diameter. The curvature
changes occurring over this region and the peripheral flattening of the cornea are
ignored. Additionally, the keratometer provides no information regarding the topog-
raphy central or peripheral to the points of measurement, and mild corneal surface
irregularity causes mire distortion that precludes meaningful measurements.

The limitation of the keratometer is also the assumption that the cornea is sym-
metric around the visual axis and has a spherocylindrical surface with a single radius
of curvature in each meridian and major and minor axis of curvature separated by 90◦.
However, the normal cornea is aspheric and flattens from the center to the periphery.
Thus, even for normal corneas, the keratometer provides a curvature that may be
flatter centrally and steeper peripherally than the true topography.

The keratometer is also not useful if the cornea varies from the spherocylindrical
shape, what is the case after surgical procedures or by keratoconus and others corneal
abnormalities, because no corneal irregularities or deformations of the corneal shape
can be assessed, however.

3.2.3 Videokeratoscopy

Videokeratoscopy (also called videokeratography) represents a significant advance in
the measurement of corneal curvature over keratometry and provides much more de-
tails about curvature variations over a large portion of the corneal surface than the
keratometry6.

The videokeratoscope contains a target, an imaging system (an objective lens and
a camera), and a computer system. The target is a disc or cone (modified Placido

6Most corneal topographers evaluate 8000 to 10000 specific points across the entire corneal surface.
By contrast, keratometers measure only four data points within the cornea’s central 3-4 mm; the small
size of this area can lead to errors in determining precise toricity.
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Fig. 3.4. An image of the videokeratoscopic mires on a human cornea: a - on a
normal cornea, b - on an astigmatic cornea.

disc) consisting of a set of concentric circular rings7. When the disc is placed in front
of the eye, the illuminated rings are reflected by the corneal surface that acts as a
convex mirror and forms a virtual image of target that is captured by a video camera
positioned at the videokeratoscope axis. The position, size, and spacing of the rings in
the reflected image are determined by the corneal shape. This two-dimensional image
is digitized and exported to various computer software program for rapid quantitative
analysis.

If the cornea is spherical, the rings appear round and regularly spaced (Fig. 3.4a).
But the reflective mires are closer together and narrower in areas of steeper cornea
(it indicates a greater refractive power of the cornea compered to that of a sphere),
and father apart and wider on flatter parts (it shows a less refractive power than that
of a sphere). If the cornea is oval or corneal astigmatism is present to more than a
minimal degree (0.5 D), it will change reflected circles to an elliptical shape, with the
steep axis of the cornea corresponding to the minor axis of the ellipse where rings
appear closer together (Fig. 3.4b). Localized changes, as irregularities of the surface,
will cause distortion of the mires in the area of the cornea where they are available.

An algorithm8 incorporating a number of approximations is used to reconstruct
three-dimensional shape of the cornea from two-dimensional photokeratoscopic image
based on the geometry of the videokeratoscope. The size and distortion of the rings
on the cornea are starting point for reconstruction of the corneal shape. The radial
distance is derived from the position of the rings regarding the center of the mires
cone. The radius of curvature is obtained from the size and spacing between the rings.
The corneal topography is then displayed in a clinically-useful format (Section 3.3).

This technique has certain limitations which reduce their clinical usefulness. First,
to get the ”true” surface information, the measured slope date must be integrated for

7The number of rings, its thickness, color, and position of the rings relative to each other vary
from system to system.

8Actual algorithms used by the commercial instruments are closely guarded secrets. They may
not be the same as those that appear in the open literature.
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Fig. 3.5. Several videokeratoscopes: a - ATLAS, b - EyeSys Vista, c - ORBSCAN
II.

calculation of corneal height. This integration process is biased by assumptions about
the corneal shape. Second, these systems will not work on corneas which do not
have the necessary qualities to reflect an image of the disk due to conditions such as
epithelial defects, scarring, or highly irregular shape. In addition, these systems are
sensitive to image centration and focusing errors.

Videokeratography provides both a qualitative and quantitative evaluation of
corneal curvature. Although the field of measurement is extend to the corneal pe-
riphery and is about 8-10mm in diameter, only limited information about the most
central portion of the cornea (1.5mm or more) is provided because that area is not
covered by the mires. These devices do not have mires at the central zone because
a camera is placed in the center of the rings, and the rings cannot be made arbi-
trarily small in diameter. Thus, the extrapolation and approximation of data in this
region is required. The used mathematical models such as spheric, aspheric, conic,
and toric models are suitable for normal cornea but can be the error source in the
case of abnormal or postoperative cornea.

The accuracy and reproducibility of the videokeratoscope is within 0.25D.

Placido-based videokeratoscopes comprise the vast majority of the units used in
clinical practice today (Fig. 3.5).

3.2.4 Raster photogrammetry

Raster photogrammetry (or raster stereography) is a method of obtaining topographic
information using a stereotriangulation technique [48].

In these systems a raster stereographic grid is projected onto the corneal surface,
and a camera captures the image of the grid from a known angle. Because the cornea
is a transparent nondiffusing surface, the projected grid is not visible unless a diffusing
material is used to provide a surface on which an image can be visualized. Therefore
these systems require a small amount of fluorescein dye to be placed as a thin film
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Fig. 3.6. Diagrammatic representation of the measurement of corneal height by
raster photogrammetry [8].

on the corneal surface. The flash illumination passes through a cobalt blue excitation
filter causing the stained corneal tear film to fluoresce in an alternating light and
dark grid pattern. This image is then viewed by the video camera and digitized for
analysis.

The position and separation of the grating lines on the cornea provide information
for determining the corneal topography. A computer calculates the topographic eleva-
tion trigonometrically by comparing the displacement and distortion of the projected
grid components on the cornea to their known positions when the grid is projected
onto a flat surface (Fig. 3.6).

The projected image covers the full cornea, including the central optical zone and
the limbus, thus, the elevation data over the whole cornea can be created.

One advantage of this technology seems to be that this methodology does not
require a smooth reflective surface (i.e., an intact epithelium), because it relies on
projection of the grid onto a film of fluorescein rather than on reflection from the
tear film. Thus, it is not affected by surface defects and irregularities and, therefore
intraoperative use of this methodology is possible. Images from corneas with irregular
or nonreflective surfaces can be also obtained. But because only the thin film of surface
fluorescence is photographed, this system cannot measure the actual anterior surface
of the cornea. Also, pooling of fluorescence may be a reason for image distortion.
Additionally, the use of the fluorescein is not ideal, because it is not sufficiently known
if it affects the thickness and the distribution of the tear film on the corneal surface.

The number of data points used by this method is initially limited by the number
of grid intersection. A far greater number of data points can be obtained if the lines of
the grid have a sinewave function, and the grey-scale value of each pixel is measured
to detect local changes in grating intensity.

The PAR Corneal Topography System was the first topography system used this
methodology [2].
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Fig. 3.7. A slit of a human eye with the slit-lamp.

3.2.5 Slit Scanning Photography

Slit scanning photography (also called scanning slit topography or scanning slit imag-
ing) uses a scanning slit-beam and direct stereotriangulation to measure the anterior
corneal surface [55]. The mathematical computation and the technique of direct
stereotriangulation are similar to that of the raster stereography.

When observing the cornea on the slit-lamp using a narrow beam, the shape of
the anterior and posterior corneal surface can be seen in one meridian due to the
curved appearance of the beam (Fig. 3.7). The projected beam of light produces
diffuse reflection from the cornea that is detected by a camera. If a slit beam scans
across the cornea, a series of 40 independent images (20 slits to the right and 20 to
the left) can be recorded from a known angle by a calibrated video camera positioned
at 45 degrees to the right and to the left of the video axis. Then those series of the
cornea ”slices” are overlapped to reconstruct the corneal shape.

One exam provides multiple diagnostic data - including topography of anterior
and posterior corneal surfaces and full corneal pachymetry9 over the entire cornea.

Slit scan imaging is not based on spherical assumptions that can distort or mis-
represent data. The system is tolerant of focus and centering errors because the
measurements are independent of the relative position of the instrument. The main
limitation of this technology is the relatively long time needed to image each slit in-
dividually (0.8-1.5 seconds) and the resultant possibility of introducing artefacts due
to eye movements10.

The only one available system using this method is Orbscan manufactured by
Orbtek [55].

3.2.6 Moiré Interferometry

Moiré interferometry is an easy and precise measurement of the configuration of three-
dimensional objects [45].

9Pachymetry is a measurement of the corneal thickness.
10During the examination the patient fixes on a light source, whose reflex is aligned with the

instrument axis. An ”eye tracking” software attempts to minimize the influence of involuntary eye
movement during an examination.
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Moiré interference occurs when two set of parallel lines are superimposed at direct
orientations. When two parallel gratings are projected onto a surface from different
angles, the image on the surface is a series of curved lines (Fig. 3.8). Grating projected
from the left and right sides produce images curved in opposite directions. Addition of
these two images results in moiré interference which generates ring-shaped interference
fringes visible on the corneal surface. The fringes follow contour lines representing
points of equal height and can be viewed directly on the cornea without any recourse
to mathematical assumptions or computations [18].

The width of the moiré fringes is partially determined by the spatial frequency
of the gratings. Their orientation is dependent upon the relative orientation of two
grating images and therefore upon the shape of the surface on which they are formed.
The number of contour lines produced is dependent upon the frequency and angular
displacement of the gratings used. As with raster stereography, if the gratings have a
sinewave function, a huge number of data point can be generated.

The fact that the moiré technique can be used on a diffusing and opaque surface
makes it difficult to generate moiré fringes on the cornea because the cornea is a
transparent structure reflecting the light specularly on its surface. Therefore the
moiré contours on the corneal surface can be generated only with some kind of surface
coating - the instillation of a fluorescein solution on the cornea. This way, the contour
map can be directly obtained using the moiré fringes.

Using this methodology, the corneal shape can be measured even on the corneal
periphery (with a very high resolution in the z-axis being 5 µm [7]). And this can be
done in the case of normal cornea as well as abnormal irregular cornea whose shape
cannot be expressed mathematically.

3.2.7 Laser Holography Interferometry

These systems utilize laser holographic interferometry fringe pattern to depict de-
viation of the corneal surface from a sphere by recording of an interference pattern
generated on the corneal surface by the interference of two coherent wavefronts. Two
wavefronts may be generated by light from separate illuminating and reference laser,
or the light from an illuminating laser may be directed through two distinct optical
pathways using a beam splitter.

The light of a laser diode (a spherical wavefront) is projected onto the corneal
surface, and the reflected light is captured by a camera. The interference of the il-
luminating and the reflected beam consisting of two frequency bands, the sum and
the difference frequency, is imaged by a CCD chip via a beam splitter. The phase
of the difference frequency signal characterizes the aberration of the wavefront, in-
dicating the differential height between ”best-fit sphere” and actual corneal height.
By varying the working distance the system can be adapted to different ”best-fit
sphere”. By analysis of the reflected wavefront towards the reference wavefront the
three-dimensional corneal shape (i.e., the deviations from a spherical surface) can be
reconstructed. The result is a three-dimensional surface map without interpolation.
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Fig. 3.8. Schematic diagram of generating moiré contour fringes on a surface [8].
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Fig. 3.9. The principle of the corneal topography measurement using a Hartmann-
Shack wavefront sensor.

The density of data points generated is dependent upon the wavelength of the
light.

One major advantage of this methodology is the high resolution in detection of
differences to a spherical surface. Disadvantages are that an excellent centration of the
cornea is necessary, and there are limitations in highly aspheric or irregular surfaces
because of the periodicity of the phase signal.

3.2.8 Wavefront Analysis with Hartmann-Shack Wavefront Sensor

This method is presented in details in Chapter 5. Here only a short description follows.

Fig. 3.9 shows the principle of a Hartmann-Shack wavefront sensor (HSS) applied
to measure the corneal topography. A laser beam is focused by an objective in such
way that the center of the corneal curvature C lies exactly in the focal point of the
objective. If the corneal surface is perfect spherical, the laser beam is reflected back
onto itself at every point on the surface. If it is not the case, and the corneal shape
varies from a perfectly sphere, the laser beam is reflected in other direction on locations
where there are the differences. The information about the differences in the elevation
of the shape are ”saved” in the phase of the wavefront. The light reflected from the
cornea falls on a lens array. Every micro lens of the lens array focuses the subbeam on
a CCD chip lying behind in the focal plane of the lens array. A spot pattern seen on
the CCD camera is imaged and analysed (Fig. 4.3). From replacements of the spots
toward the reference (a spot pattern from a perfectly spherical surface) the wavefront
can be reconstructed, and then the corneal elevation can be calculated.

The area measured on the cornea depends on the optics used (Section 5.4). The
advantage of this method is that the optically important cental zone of the corneal
surface is also measured directly. But requirements on the optics of the system are
very high, because optical aberrations of the system affect the spot pattern quality
(Section 5.4). The exact positioning of the corneal surface is also difficult.



3.3 Displaying Corneal Topography 37

3.3 Displaying Corneal Topography

After calculations have been done, and the corneal shape has been reconstructed,
the data regarding the corneal topography can be presented in any of several ways
depending on the individual patient requirement and user preferences. Each different
display presents the information differently.

In this section types of maps, how they are calculated and displayed, and also
some important definitions of statistical indices are explained. They answer critical
questions about how well and in what regions the cornea focuses light coherently onto
the retina and provide an approximation of what the patient actually sees.

3.3.1 Maps

Topographic information is commonly presented as a map in two dimensions (X
and Y ). The third dimension (height, curvature, refractive power, elevation etc.) is
encoded in a color scheme that the areas with the same values are depicted in the
same color. The color schemas vary from system to system, that sometimes makes a
direct comparison of the data difficult. Normally, warm colors (red, orange, yellow)
represent steeper areas of the cornea (i.e., small radius of curvature), while cool colors
(blue, violet) mark the flatter portions (i.e., large radius of curvature). Green detects
intermediate values. But an interpretation should never base on color alone.

Scaling is another important consideration with corneal topography. The normal-
ized and absolute scales are the most popular.

In most topographers, the user can utilize the auto-size (or normalized, relative)
scale. This strategy essentially subdivides the cornea being examined into dioptric
intervals based on its actual curvature range (usually a 0.4D to 0.6D range per color).
Actual colors are not specific to a dioptric value when using the normalized scale, but
rather are relative to that particular patient’s eye.

By contrast, the absolute (or standard) scale assigns a specific color to each dioptric
value and constrains the data to fit within that range. This strategy allows clinicians
to directly compare images from different eyes or from significant curvature changes in
one eye (e.g., pre- vs. postoperative refractive surgery status). The downside of using
the standard scale is that the dioptric range is greatly expanded; hence, clinically
significant irregularities may become somewhat obscured when comparing eyes with
very different curvature readings.

Clinically, it is probably best to use normalized maps when evaluating one partic-
ular eye and use standard maps when comparing two different eyes or comparing the
same eye over time.

Maps come in several basic types: curvature maps, refraction power map, elevation
map, and (ir)regularity maps. Each map reveals something different about the cornea
and can have different degrees of sensitivity and specificity according to the pathology
or condition of an eye being observed. No one particular map is always the ”best” or
”most accurate”, but all of these maps combined give clinician an overall perspective
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Fig. 3.10. a - The axial map calculation. b - The tangential map calculation.

about the curvature, refractive potential, shape, and optical quality of the corneal
surface. A lot of another numerous displays, including difference map, ray tracing
display, astigmatic analysis, are available. Displays discussed below represent those
most commonly used in clinical practice.

Axial Map

Axial map shows the global (or sagittal) radius of corneal curvature with the assump-
tion that all light rays striking the corneal surface from infinity are being refracted
at the same angel, explaining why this map is sometimes referred to as ”spherically
biased” map. Its downside is its tendency to ignore minor variations in curvature.

For calculation of the axial radius of curvature the normal at every point of in-
terest P of the corneal surface is determined (Fig. 3.10a). The spherical bias in the
calculation stems from the fact that this normal to the point of interest passes through
the optical axis of the corneal topography system. From this point C the distance
r along the normal from the point of interest P to the optical axis defines the local
radius of curvature at that point of the cornea.

Axial map is a simple way of describing the overall shape of the cornea and is most
common to users of corneal topography systems.

Tangential Map

Tangential map is another type of curvature map. It shows the instantaneous (or
local) curvature.

The calculation of the curvature is based on a tangent to the normal without a
constraint that the center of rotation fall on the optical axis of the topography system.

The location of the center of curvature for each point of the interest P is calculated
by a best fit line normal to the tangent, while the distance along the normal from the
point of interest on the corneal surface to the local center of curvature C defines the
local radius of curvature r at that point of the cornea (Fig. 3.10b).

Mathematically, this algorithm is more alike the standard mathematical definition
of the radius of curvature. The calculation has less spherical bias because curvature is
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Fig. 3.11. a - Axial map of a cornea. b - Tangential map of a cornea. Warm
colors such as red and orange show steeper areas; cool colors such as
blue denote the flatter areas; green represents mean radius of corneal
curvature. Important note: these maps represent not the same cornea.

calculated for individual small group of points without reference to the visual axis or
the overall shape of the cornea. Therefore there is a greater accuracy in the periphery
of the cornea and a better representation of local irregularities. In fact, it is the map
that more closely represents the actual curvature of the cornea over the axial map. It
does not assume the eye is spherical and does not have as many presumptions as the
axial map regarding corneal shape.

Compared with axial map, tangential map is more sensitive to local or immediate
change on the corneal surface. Tangential map also offers a better visualization of the
precise location of corneal defects. This view is most useful in following trends in the
post-surgical or pathologic eye. The tangential map is also best used in identifying or
locating a corneal pathology, where the exact apex of the cone can be established.

Axial and tangential maps can give the value of the radius of curvature in meters
or diopters, although these two values are intimately related (Eq. (3.3)) (Fig. 3.11).

Refractive Map

Refractive map (also sometimes called power map or Snell’s law map) shows the
refractive power of the cornea in its refractive state, measured in diopters. This map
applies Snell’s law to calculate the cornea’s actual refractive power (Eq. (3.5)). Taking
into account spherical aberration, the refractive map more closely illustrates how light
rays behave as they strike an aspheric surface, such as a human cornea (Fig. 3.12).

Refractive power map may differ from axial map in their reading of power and
radius. The biggest difference can be seen in the periphery and on eyes that have
unusual or abnormal shapes. This is due to the effect of the spherical aberration that
the refractive power map takes into account.

Clinicians use refractive map to evaluate visual performance of a postoperative
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Fig. 3.12. Demonstration of spherical aberration. A surface with increasing refrac-
tive power from the center to the periphery: If parallel light rays pass
through a surface from infinity they are refracted: Ray C crosses the
optical axis at the shortest focal distance, c, and thus, it has the great-
est refractive power. Rays B and A have longer focal lengths, b and a,
respectively, and therefore have the least refractive power.

patient or the result of a refractive surgical procedure. This map is useful in under-
standing the effect of surgery and the optical properties of the cornea and identifies
central islands in patients who have undergone PRK or LASIK.

Elevation Map

Elevation map gives information about how the cornea departs from sphericity. This
map describes the difference in height (or elevation) of the cornea, in microns, from
a reference spheric surface11. When displaying elevation map, the software chooses a
surface that will be the ”best fit” for a particular corneal surface. The software then
attempts to fit, or superimpose, this model12 onto the corneal surface, measuring the
difference between the model and the real corneal surface.

Fig. 3.13 illustrates the basis for the elevation map calculation. Elevation can
be measured as difference in height from a reference surface as positive or negative
microns. The reason for this is that the corneal surface can fall above or below the
best fit reference sphere. Positive elevation measurements indicate that the corneal
surface rises above the reference sphere at that point, while negative measurements
show that the corneal surface is below the reference sphere. If the cornea is perfectly
spherical, the map would be an uniform shade of one color (Fig. 3.14a).

This map is most useful in predicting fluorescein patterns with rigid lenses. Higher
elevations represent potential areas of lens bearing, while the lower areas will likely
show fluorescein pooling.

11Different manufactures use either an aspheric surface as reference.
12This reference model varies from patient to patient.
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Fig. 3.13. The elevation map calculation. An elevation map shows differences in
height between a corneal curvature and a computer-generated reference
surface.

Irregularity Map

Irregularity map (also called distortion map or surface quality map) shows the amount
of surface irregularity on the cornea and uses the same technique as the elevation map
to obtain this information, expect it takes the best fit surface methodology one step
further. It uses a best fitted spherocylindrical surface as a reference surface. This
eliminates any toricity, which the eye may have, and displays the elevation difference
which cannot be accounted for a spherocylindrical model. The difference between the
actual surface and the best-fit toric surface represents that part of the cornea that
cannot be optically corrected with a spherocylindrical lens or spectacles.

After the system has subtracted out both the spherical and cylindrical components,
the irregularity map displays the higher orders of the optical aberrations beyond
sphere and cylinder or irregularity which is left as wavefront error (Fig. 3.14b). The
deviation can be positive or negative that has equal effect on vision. Wavefront error
describes the condition of the light rays as they pass through the corneal surface
and are refracted onto the retina through the clear media and crystalline lens in the
human eye. The greater the concentration of wavefront error, the more the light is
not refracted properly onto the retina. This can result in aberrations, often described
by patients as ”ghosting”, ”halos”, or ”glare”.

Green color marks the areas that most closely matche a smooth fitted toric surface.
These areas are ”normal” or regular. Red indicates high wavefront error (i.e., greater
irregularity). Conversely, as the wavefront error becomes more negative and therefore
more blue, the irregularity can also become visually significant.

Difference Map

Difference map represents the change in corneal contour from one time point to an-
other. It is calculated by subtracting the first map from the second one. This is useful
for demonstrating the change occurring as result of a surgical procedure or during the
subsequent healing phase.
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Fig. 3.14. a - Elevation map of a cornea. Warm colors depict points that are higher
than the reference surface; cool colors designate lower points. Locations
with no differences from reference sphere are marked with green. b -
Irregularity map of a cornea.

3.3.2 Statistical Indices

Statistical indices are numbers which summarize a particular feature of the optical
quality of the cornea to help predict visual performance. Those can be compared to
a normal range or grouped to summarize the topography of several patients, as in
clinical trials.

However, different commercial systems may give indices different names, but most
of them are calculated in a similar way and perform the same function.

By understanding the statistical indices the clinicians become better adept at
interpreting the results and uncovering corneal irregularities and abnormalities.

Some important statistical indices are described below.

Simulated Keratometry Value

The simulated keratometry value (SimK) provides information equivalent to that mea-
sured by the keratometer and is therefore primarily for historical reference.

Normally, both spherocylindrical and nonspherocylindrical values are given. The
spherocylindrical SimK value provides the power and the location of the steepest
meridian and the meridian 90◦ away. The nonspherocylindrical SimK value provides
the power and location of the actual flattest meridian regardless of the angle between
the steepest and flattest meridian. The cylinder is given as difference between the
major and minor axes. These readings have the same limitations as keratometry.

Often total astigmatism (Tot Astig) measured as the difference between the steep
refractive power and the flat refractive power and regular astigmatism (Reg Astig)
measured as the amount and axis of the astigmatism that can be neutralized with
a spherocylindrical correction are also listed. The display between total astigmatism
and regular astigmatism is a measure of irregular astigmatism.



3.3 Displaying Corneal Topography 43

Surface Asymmetry Index

Surface asymmetry index (SAI) is a weighted summation of differences in corneal
power between corresponding points 180◦ apart on equally spaced meridians. It is
calculated from over the entire corneal surface, although the central points are given
more weighting.

SAI approaches zero for a perfectly radially symmetrical surface and increases as
the contour becomes more asymmetric. Since the normal cornea usually has a high
degree of central radial symmetry (SAI<0.5), the SAI can be an useful quantitative
parameter for monitoring changes that occur in patient’s cornea and an indicator of
the progression of corneal diseases such as keratoconus or peripheral corneal gutters.

The SAI is often higher than normal in keratoconus, penetrating keratoplasty,
de-centered myopic refractive surgical procedures, trauma, and contact lens warpage.
An adequate spectacle correction is often not achieved when SAI is high.

Surface Asphericity Index or Shape Factor

The surface asphericity index (SAI) indicates how much the curvature changes upon
movement from the center to the periphery.

As it will be mentioned in Section 3.4, most investigators use the conic equation
(Eq. (3.10)) with the asphericity parameter Q to describe the corneal shape. A normal
cornea is prolate (i.e., the cornea becomes flatter towards the periphery) and has the
asphericity Q of -0.26. If the cornea is flatter in the mid-periphery, the asphericity
parameter will be more negative. If it is steeper, as after radial keratotomy, the
asphericity parameter will be less negative or even positive.

In some cases instead of asphericity Q the shape factor p is used (Section 3.4). The
relation between the asphericity and the shape factor is described by simple equation
p=1+Q. Shape factor is also a measurement of the asphericity of the cornea and a
derivative of eccentricity, which is a well known calculation of corneal shape used by
contact lens fitters.

The shape factor can be also used to determine the asphericity and shows if the
cornea is more oval or elliptical in shape in vertical or horizontal meridian (Fig. 3.15).
The less spherical and more elliptical the cornea is in the horizontal meridian, the
more the cornea will remember a prolate shape - a positive shape factor. Highly
positive shape factor may imply that a pathology (such as keratoconus) exists. The
less spherical and more elliptical the cornea is in the vertical meridian, the more the
cornea will remember an oblate shape - a negative shape factor. A negative shape
factor would mimic a post-refractive surgery eye, with the center being flatter than
the periphery. A perfect sphere would have a shape factor of zero.

The shape factor distribution ranges in the human population are divided in three
groups as shown in Tab. 3.2 [56].
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Fig. 3.15. How corneal shape relates to asphericity Q and shape factor p.

Surface (Ir)Regularity Index

Corneal (ir)regularity measurement is a number, or index, assigned to represent the
smoothness of the corneal surface.

The surface regularity index (SRI) is a measure of the local fluctuations in corneal
power. Within the central corneal surface of 4.5mm in diameter, the power of each
point is compared with that of the point immediately surrounding it. This index
approaches zero for a normally smooth corneal surface and increases directly with
increasing irregular astigmatism. Normal corneas have low SRI values (SRI<1.0),
whereas those with poor visual potential due to irregular astigmatism have high values.
When SRI is elevated, the corneal surface will be irregular, leading to a reduction in
best spectacles-corrected visual acuity.

Some manufactures use the irregularity index instead of regularity index. The
calculation uses thousands of data point of the corneal topography data to determine
the difference in ”height” or elevation between the patients cornea and a toric model
of a cornea. The difference between the model and the actual cornea is measured in
microns, and the standard deviation is taken. This is defined as corneal irregularity
measurements.

Higher values of irregularity index, then, would tend to indicate a worsening
pathology such as keratoconus, stemming from the inherent thinning and ”wrinkling”
of the corneal surface that the pathology causes. High index can also be observed in
post-refractive surgery cornea due to the irregularity that the surgical procedure and
subsequent healing process cause.

An ideal even surface has an irregularity index equal to zero. The higher the
irregularity index, the more uncorrectable or uneven the surface is optically. This
index calls attention to irregular astigmatism that often results in visual distortions.

Irregularity index distribution rages in the human population are shown in Tab. 3.2
[56]. The distribution appears in the human population with a mean irregularity
index value of 0.63 microns, where 67% of the population falls between 0.03 and 0.64
microns. Inherent noise in the topography data itself accounts for the values between
0.00 and 0.03, which explains the reason for the normal range beginning at 0.03.

A similar measure is also the corneal uniformity index (CUI), which is a measure of
the uniformity of the distortion of the corneal surface within the 3mm pupil expressed
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Tab. 3.2. Distribution ranges of the shape factor and irregularity index in the hu-
man population [56].

Shape factor Irregularity index

Borderline 0.20 to 0.12; 0.36 to 0.46 0.69 µm to 1.00 µm

Normal Cornea 0.13 to 0.35 0.03 µm to 0.68 µm

Abnormal Cornea -1.00 to 0.10; 0.47 to 1.00 1.10 µm to 5.00 µm

as percentage. It varies from 0% if the cornea is completely irregular to 100% if the
optical quality of the cornea is almost perfectly uniform13. Normal values usually
exceed 80%.

In systems measuring corneal height, surface smoothness can be calculated from
the Root-Mean-Square (RMS) deviation from the best-fit surface.

All these indices correlate well with potential visual acuity (PVA) [51] and can
be used to predict the optical performance that might be expected in a particular
patient based on the corneal topography, if other components of the visual system are
functioning normally.

Potential Visual Acuity

The potential visual acuity (PVA) or predicted corneal acuity (PCA) is the estimated
range of visual acuity which could be expected if the cornea was the only one factor
limiting vision.

The predicted corneal acuity (PCA) is proposed to provide a single value in units
of Snellen acuity of the optical quality of a corneal surface within 3mm zone, ranging
from 20/10 to 20/200. The PCA can be very helpful in differentiating corneal from
lenticular disease. A regular corneal surface has a high PCA. Corneas with irregular
astigmatism have lower potential acuities.

Keratoconus Prediction Index

The keratoconus prediction index (KPI) is a much more specific, but more complex
index derived from the SimK and five other indices [30].

Some manufactures add extra maps, indices or functions to their software for more
detailed presentation of the corneal topography [17]. They serve for the extensive
description of the performance of the cornea as an optical system.

13This does not indicate that the cornea has good optical quality, simply that it is uniform; it
could be uniformly bad or good.
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3.4 Basic Corneal Models

The corneal shape can be described using of some mathematical models and several
parameters.

The anterior corneal surface is asymmetrically aspheric. That is, the radius of
curvature changes from the center to the limbus and does so at a different rate along
different semi-meridians. Such a complex shape is difficult to measure mathemati-
cally, difficult to represent graphically, and difficult to understand and treat optically.
Therefore the cornea is simplified by conceiving of the cornea as a spherocylindri-
cal lens or as a section of an ellipse, a practical assumption as proven of wearers of
spectacles and contact lenses. This simplification will some day be replaced by more
accurate ”shape factors”, mathematical indices, or ray tracing diagrams.

An useful simplification to understand the overall topographic pattern of the
cornea is to consider the corneal profile as a section of an ellipse (Fig.3.16). For
ellipses (ellipsoids in one section only), the following equation is popular

(z − a)2

a2
+

y2

b2
= 1 , (3.6)

where a and b are the major and the minor ellipse axis semi-lengths, and the z-axis
is the optical axis. The vertex radius of curvature R is related to a and b by the
equation

R =
b2

a
. (3.7)

The shape of an ellipse (i.e., the degree of elongation) is described by the eccentricity
parameter e defined by the equation

e =
c

a
=

√
a2 − b2

a
=

√√√√1−
(

b

a

)2

, (3.8)

where c is the distance from the origin O to a focus F . The eccentricity of an ellipse
has a value, 0 < e < 1, where a value of e=0 represents a sphere, and a value of e=1
is associated with another conic section, the parabola14. The ellipsoidal surface has
been described as an appropriate first-order model for the human cornea.

Another general mathematical expression for conic section, including ellipse, is
Barers formula (Eq.(3.10)), that has been popular among vision scientists for mod-
elling the corneal profile. This formula places the origin at the corneal apex and can
describe a wide range of normal corneal shapes by varying just two parameters, the
apical radius R and conic constant k.

If the cornea is to be represented by an aspheric mathematical model, the simplest
model is to assume that the cornea is rotationally symmetric and can be represented by

14Specifying asphericity using e is not completely satisfactory because e2 may be negative, in which
case e cannot have a value.
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Fig. 3.16. Basic geometry of an ellipse: O is the origin, F and F
′

are the focal
points, a and b are the major and minor axis length, respectively.

a conicoid in three dimensions or by a conic in two dimensions. A standard symmetric
conic surface (i.e., optical conicoid) can be expressed in the form15

h2 + (1 + k)z2 − 2zR = 0 , (3.10)

where R is the apical radius of curvature (i.e., at the point (0,0,0)), the z-axis is
the axis of resolution of the conicoid and also the optical axis of the cornea, and
h2 = x2 + y2, where x and y represent lateral distances from the optical axis. The
quantity k is a conic constant whose value and sign specifies the type of conicoid
(Tab. 3.3). The the conic constant k is related to a and b by the equation

k =

(
b

a

)2

− 1 . (3.11)

The conicoid described by Eq. 3.10 cannot account for corneal asymmetries. Some
asymmetries of corneal shape can be described mathematically by a conicoid in which
k and R are functions of azimuth16.

A number of studies have assumed a conicoid form but expressed the asphericity
in terms of ”shape factor” (or ”form factor”) p, which is related to conic parameter k
and eccentricity e by the simple equation

k = e2 = p− 1 or p = 1 + k = 1− e2 . (3.13)

15Sometimes the conicoid pole lies not at the origin of the coordinate axes, so Eq. 3.10 is modified
to

(x− x0)2 + (y − y0)2 + (1 + k)(z − z0)2 − 2(z − z0)R = 0 , (3.9)

where the variables x0, y0, z0 are the coordinates of the conicoid vertex.
16A mathematical model of a non-rotational conicoid considers the variation of radius and as-

phericity with meridian or azimuth in the surface. Thus, Eq. 3.10 should be modified to allow the
asphericity k and radius R to vary with azimuth θ

k(θ) = k1 + k2 cos2 (θ − α) R(θ) = R1 + R2 cos2 (θ − β) , (3.12)

where θ is the azimuth angle measured from the horizontal. The angles α and β specify one of the
angles of the azimuth containing either a maximum or minimum value of k or R.
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Tab. 3.3. The conic constant (asphericity) and shape factor of several surface types.

Conic constant k Shape Shape type Description Example
or factor

Asphericity Q p

less than -0.26 Prolate Marked peripheral Keratoconus
flattering

-0.26 Prolate Mild peripheral Normal human cornea
flattering

0 1 Spherical Uniform curvature Steel calibration ball
more than 0 Oblate Peripheral steepening Radial Keratotomy

In most normal corneas, the central zone is steeper than the paracentral and
peripheral zones, a configuration referred to as having a positive shape factor (positive
because the radius of curvature becomes larger from the center to the periphery) and
a prolate shape (the shape of a section across the steep end of an ellipse) (Fig. 3.15).
The opposite topographic pattern occurs rarely in normal eyes but commonly after
radial keratotomy: the central zone is flatter than the paracentral and peripheral
zones, a configuration referred to as have a negative shape factor and an oblate shape
(the shape of a section across the flatter side of an ellipse).

In the corneal topography the conic parameter k is often called the asphericity
parameter Q (k ≡ Q).

According to the study by Kiely the means and standard deviations of R and Q in
studied eyes were R = 7.72± 0.27 mm and Q = −0.26± 0.18 [20]. He found also that
the non-rotationally symmetric conicoid (Eq. (3.8)) gives a more accurate represen-
tation of corneal shape than the rotationally symmetric conicoid (Eq. (3.7)). Other
investigators found that the eccentricity e ranges from 0.4 to 0.9 (the corresponding
range for Q is therefore -0.16 to -0.81), but the values of Q was usually negative,
indicating that the cornea flattens away from the vertex.

3.5 Clinical Application of Corneal Topography

Clinicians need to know the shape and refractive power of the cornea for several
reasons. So the corneal topography may be indicated in many clinical situations.

At present, the most profitable and practical use of the corneal topography is the
refractive surgery for the purpose of vision correction. Corneal topography before and
after refractive surgery (LASIK, PRK) helps to evaluate patients17. Preoperatively,
corneal maps give insight into potential obstacles, such as scarring or irregular astig-
matism. Postoperatively, topography provides clues about the success or failure18 of
a particular procedure, and corneal mapping certainly records what happened and

17There are also software simulating a planned refractive surgery.
18The failure of a refractive procedure results in residual refractive error and irregular astigmatism.
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documents changes in an individual cornea. It can also help follow the healing phase.
The corneal topography may have its application in the fitting of contact lenses.

The optical and fit properties of the lenses are now set by trial-and-error. Having an
understanding of a patients corneal shape provides the eye care practitioners with a
better initial guess to fit contact lenses effectively. Most corneal topographers pro-
vide software that can design an appropriate contact lens based upon the topography.
They recommend lens material, size, design, and even simulate a fluorescein pattern.
One can manually alter diameter, base curve, and edge design and observe the im-
pact on the simulated pattern. There are even bitoric fitting programs designed for
highly astigmatic patients. This software can greatly simplify the gas permeable fit-
ting process, reduce chair time, and increase patient satisfaction. The information
that corneal topography provides, can greatly enhance the ability to manage complex
contact lens fits and increase overall success rate. Also, a current area of research is
providing fully customized rigid contact lenses with hundreds of parameters individu-
ally tailored to a patients needs. Shape construction would help to optimize the back
surface of the lens for maximum comfort.

Corneal topography is also useful for annually evaluating the topographical impact
of corneal changes in soft contact lens patients. It is also virtually mandatory in
corneal reshaping (Corneal Refractive Therapy or orthokeratology) to monitor the
corneal changes occurring as well as the lens positioning from overnight wear.

Topography can assist with diagnosis of eye conditions that can deleteriously af-
fect a patients vision. Degenerative eye conditions such as keratoconus and pellucid
marginal degeneration may exhibit corneal steepening before any biomicroscopic signs
are evident. In keratoconus, the topographical maps provide information of the loca-
tion, size, and curvature of the cones apex and so can help follow the progression of
the disease. Although contact lenses offer the potential of visual correction, it is dif-
ficult to fit a contact lens to a keratoconic cornea. In addition, these patients need to
be screened out as poor candidates for refractive surgery. In order to effectively follow
the progression of the disease and to fit a keratoconic cornea with contact lenses, it
is helpful to know the precise shape of the cornea.

Finally, corneal maps can also reveal peripheral irregularities produced by surgery,
trauma, or disease19.

19Standard keratometry will not detect such irregularities unless they are central, and they may
not be obvious with a slit-lamp unless there is some opacification.
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Chapter 4

WAVEFRONT ANALYSIS

This chapter presents the principle of a measurement of wavefront aberrations with a
Hartmann-Shack wavefront sensor.

4.1 Hartmann-Shack Wavefront Sensor

The Hartmann-Shack wavefront sensor (HSS), sometimes also called Shack-Hartmann
sensor, is a sensor for measuring wavefront aberrations [25].

The idea of a wavefront sensor based on a single lens is shown in Fig. 4.1. An
ideal plane wavefront falling on a lens is focused at the focal point of the lens F . In
contrast, the focal point of an aberrated wavefront is shifted in the focal plane to F ′.
The displacement d in x- and y-direction depends on the angle of incidence α and the
focal length of the lens f as follow

dx = f tan αx dy = f tan αy . (4.1)

That way the mean slope of the wavefront can be directly calculated from the focal
point displacement.

A Hartmann-Shack wavefront sensor consists of many micro lenses that build a
two-dimensional lens array (Fig. 4.2). Due to this lens array a beam is divided into
many individual beams. Every micro lens focuses the light in the focal plane to a
spot. An ideal wavefront is imaged as a regular grid of spots in the focal plane of
the micro lens array. A distorted wavefront causes lateral dislocations of the spots,
so the imaging is given by an irregular grid of spots. The spot of each micro lens is
located at a position whose dislocations δx and δy in x- and y-direction are linearly
related to the local average slope of the wavefront taken across the respective micro
lens aperture

δx = f tan αx δy = f tan αy . (4.2)

Usually, a CCD camera is used to detect the spot pattern of the Hartmann-Shack
wavefront sensor (Fig. 4.3). The image is digitized and then analyzed towards a
reference using computer software. The shape of an aberrated wavefront can be re-
constructed from the spot displacements based on appropriate curve fitting algorithm
and then presented using mathematical functions.

51



52 Chapter 4 WAVEFRONT ANALYSIS

Fig. 4.1. The basic idea for measuring wavefront aberrations with a single lens. F
is the focal point of the lens having the focal length f , d is the displace-
ment of the focal point in the focal plane in the case of an aberrated
wavefront, and α is the angle of incidence. The mean slope of an aber-
rated wavefront can be calculated from the focal point displacements dx

and dy.

Fig. 4.2. A schematic diagram of the principle of a Hartmann-Shack wavefront
sensor for measuring wavefront aberrations. An ideal plane wave is pre-
sented as a square grid of spots coded green. The spots of an aberrated
wavefront are shown in red.
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Fig. 4.3. A spot pattern as seen on a CCD camera.

Normally, the dynamic range of a Hartmann-Shack sensor is limited by the max-
imum slope angle that can be measured (Fig. 4.4). If the wavefront tilt is too large,
the spots leave their original subapertures and may overlap or change places with the
surrounding spots. Generally, this means that they cannot be separated or attached
directly to their respective subapertures1.

A micro lens of a lens array focuses a beam to a roughly round spot2 whose
diameter s equals to

s = 1.22
λf

DA

, (4.3)

where λ is the wavelength, f is the focal length of the micro lens array, and DA is the
diameter of the micro lens.

According to Rayleigh criterion for a diffraction-limited system two neighboring
spots can be separated from each other if the distance between them is more than
the half of the spot diameter s/2. Thus, the maximal lateral shift of one spot is
determined by

dmax = DA − s . (4.4)

The corresponding maximal local tilt αmax is

αmax = arctan
(dmax

f

)
= arctan

(DA − s

f

)
. (4.5)

The finest detectable shift dmin of a spot is limited by the pixel size SPixel of a
CCD camera. The finest resolvable local tilt is

αmin = arctan
(dmin

f

)
= arctan

(SPixel

f

)
. (4.6)

1In the meantime, some methods to overcome this problem have been developed [35].
2If the system is assumed to be diffraction-limited with a circular aperture, the spot size is equal

to an airy disc size.
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Fig. 4.4. The dynamical range of a Hartmann-Shack wavefront sensor is limited
by the numerical aperture of the micro lens.

The values of αmax and αmin describe the resolution of a Hartman-Shack wavefront
sensor3. Using a CCD camera with a finest pixel size or a lens array with a small
focal length the resolution of the Hartmann-Shack wavefront sensor can be increased.

4.2 Wavefront Reconstruction

A Hartmann-Shack wavefront sensor measures a set of lateral dislocations δxn and
δyn (n = 1, 2, ..., N , where N is the number of subapertures) of each spot relative
to the optical axis of the corresponding micro lens, i.e., the reference points. These
displacements can be interpreted as partial derivatives of the wavefront W (x, y)

∂W (xn, yn)

∂x
= tan αx =

δxn

f

∂W (xn, yn)

∂y
= tan αy =

δyn

f
, (4.8)

where f is the focal length of the micro lens array.
The general problem is to find a way to reconstruct the wavefront using these

discrete slope measurements, i.e., to determinate the phase of a wavefront from its
gradient.

Many approaches have been proposed to accomplish wavefront reconstruction [43].
Basically, each approach may be categorized as being either zonal [15] or modal es-
timation [9] depending on whether the estimate is a phase value in a local zone or
a coefficient of an aperture function. In either case, a least squares estimation al-
gorithm can be used to construct the wavefront from the measurement of derivative
information.

The modal estimation appears to be superior to zonal estimation, especially when
only a fixed number of modes are of interest. The modal estimation has advantages

3If the tilt angle α is small enough (tan α ≈ α), than Eqs. (4.5), (4.6) can be simplified to

αmax =
DA − s

f
αmin =

SPixel

f
. (4.7)
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on many aspects, for example the reconstruction is known to be less sensitive to noise,
and the reconstructed wavefront is easy to be interpreted. Furthermore, the modal
estimation is computationally easier and faster. Finally, both of these advances for
the modal estimation, noise propagation, and computational difficulty are enhanced
as the number of the measured data N increases.

In modal estimation, the estimated wavefront W (x, y) is primarily assumed to be
expanded in a set of basic functions in the form of

W (x, y) =
∑
m

fmFm(x, y) , (4.9)

where Fm(x, y) are the basic functions, also called spatial modes, and fm is the coeffi-
cient of the m-th mode. The base function may be Legendre polynomials, complex ex-
ponentials, Taylor polynomials (Section 4.3.2), or Zernike polynomials (Section 4.3.3).
The wavefront is estimated by optimal fitting the coefficients of a functional basis to
the measured local wavefront derivatives at several locations distributed over the sen-
sor entrance pupil. An evaluation method using a least-squares fitting algorithm for
wavefront reconstruction from the spot displacements is described in details in Sec-
tion 5.5.2.

4.3 Wavefront Representation

The reconstructed wavefront W ∗(x, y) can be represented with several mathematical
functions. In many cases, the wavefront is described by a few coefficients multiplying
the terms of a well-chosen polynomials (Eq. (4.9)). Typically the Taylor or Zernike
polynomials are used. One particular case to representation the primary aberrations
is the expression given by the Seidel polynomials.

The Zernike polynomials are complete, orthonormal basis sets of functions defined
on an unit circle and therefore natural candidates for describing an arbitrary wavefront
over a circular pupil. Taylor polynomials are also complete, but they are typically
defined in Cartesian coordinates. In practical terms, little difference exists between
these two sets of polynomials, but the common used functions to describe the optical
aberrations are the Zernike polynomials [54].

The wavefront is presented in rectangular coordinates, rather than polar coordi-
nates, to accommodate the usual design of wavefront sensor that measure tilt in the
subapertures in the x- and y-directions, rather than ρ- and θ-directions.

4.3.1 Seidel Polynomials

The Seidel aberrations were developed in the mid 19th century to account for the
monochromatic geometrical aberrations of centered optical systems, i.e., defects from
perfect imagery in optical systems that have an optical axis. The types of aberrations
can be developed from considerations of symmetry, and are given names such as
spherical aberration, coma, astigmatism, field curvature, and distortion. In addition
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Tab. 4.1. The Seidel polynomials.

Index Polynomial expression Meaning
i monomial polar
1 x ρ cos θ Tilt
3 x2 + y2 ρ2 Curvature of field (Defocus)
4 x2 + 3y2 ρ2 cos2 θ Astigmatism
5 y(x2 + y2) ρ3 cos θ Coma
6 (x2 + y2)2 ρ4 Spherical aberration

Tab. 4.2. The Taylor polynomials up to fourth degree.

Index Polynomial Index Polynomial Index Polynomial
k n m expression k n m expression k n m expression
0 0 0 1
1 1 0 x 6 3 0 x3 10 4 0 x4

2 1 1 y 7 3 1 x2y 11 4 1 x3y
3 2 0 x2 8 3 2 xy2 12 4 2 x2y2

4 2 1 xy 9 3 3 y3 13 4 3 xy3

5 2 2 y2 14 4 4 y4

to their type, aberrations are usually specified according to their order (third-order,
fifth-order, etc.), although sometimes they are called primary, secondary, etc.

The magnitude of the aberrations is expressed in terms of an aberration polynomial
(Tab. 4.1). The aberration polynomial coefficients can be found either from a series
expansion of the law of refraction.

The Seidel polynomials (in polar coordinates) are commonly used in optical design
to represent the wavefront phase of a rotationally symmetric optical system, but are
not recommended as a basis for wavefront fitting in the case of a Hartmann-Shack
wavefront sensor.

4.3.2 Taylor Polynomials

An alternative representation of a wavefront is in terms of monomials, i.e., powers of
x and y given by Taylor polynomials

WT (x, y) =
I∑

n=0

n∑

m=0

tnmTnm(x, y) , (4.10)

where tnm are Taylor coefficients, Tnm(x, y) = xn−mym are Taylor polynomials (Tab. 4.2),
and I is the degree of Taylor polynomial.

For an appropriate wavefront representation it is essential that the chosen set
of polynomials allows to compare the classical aberrations easily. Therefore Taylor
polynomials are not well suited for wavefront representation.
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4.3.3 Zernike Polynomials

The Zernike polynomials were introduced by Zernike in the early 20th century and
later developed by several workers to describe the diffraction theory of aberrations [54].

Like the Seidel aberration polynomials, Zernike polynomials describe defects from
perfect imagery, but the nature of the Zernike expansion is different from the Seidel
expansion. The Zernike polynomials describe the properties of an aberrated wave-
front without regard to the symmetry properties of the system that gave rise to the
wavefront.

An expansion of a wavefront W (x, y) in Zernike polynomials to order I has the
general form

WZ(ρ, θ) =
I∑

n=0

n∑

m=−n

znmZm
n (ρ, θ) , (4.11)

where znm are the coefficients of the Zernike polynomials Zm
n (ρ, θ).

The Zernike polynomials have some interesting and useful properties: they form
a complete set, they are readily separated into radial and angular functions, and the
individual polynomials are orthogonal over an entire unit circle4. The orthogonality
of the Zernike terms is the best advantage because it is useful for introducing higher-
order terms that are independent of the lower-order terms.

The Zernike polynomials are usually defined in polar coordinates Zm
n (ρ, θ), where ρ

is the radial coordinate ranging from 0 to 1, and θ is the azimuthal component ranging
from 0 to 2π. Sometimes the Zernike polynomials are also expressed in monomials
coordinates5 Zm

n (x, y).

Each of the Zernike polynomial consists of three components: a normalization
factor, a radial dependent components, and an azimuthal dependent component. The
radial component is a polynomial, whereas the azimuthal component is sinusoidal.

There are two different numbering schemes for Zernike polynomials in common
use: the single and double index scheme.

The double index scheme is useful for unambiguously describing the functions,
with the index n describing the highest power or order of the radial polynomial and
the index m describing the azimuthal frequency of the azimuthal component. In
general, the Zernike polynomials are defined in this case as

Zm
n (ρ, θ) =

{
Nm

n R|m|
n (ρ) cos mθ for m ≥ 0

−Nm
n R|m|

n (ρ) sin mθ for m < 0
, (4.11)

4Although the Zernike polynomials are orthogonal over an entire unit circle, they are not orthog-
onal over a portion of an unit circle, so that if the polynomials are generated by fitting to a limited
set of data points, the orthogonality relationship may not be maintained.

5By the conversion of the Zernike polynomials defined in polar coordinates into Cartesian coor-
dinates the following relations used here are: x = ρ cos θ and y = ρ sin θ. But some authors use the
reverse definition x = ρ sin θ, y = ρ cos θ.
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where (ρ, θ) are polar coordinates in the unit circle. The radial function R|m|
n (ρ) are

polynomials in ρ, containing the powers ρn, ρn−2, ..., ρm and are closely related to
Jacobi’s polynomials given by the following equations

R|m|
n (ρ) =

(n−|m|)/2∑

s=0

(−1)s (n− s)!

s!(0.5(n + |m|)− s)!(0.5(n− |m|)− s)!
ρn−2s .

The normalization factor Nm
n is defined as

Nm
n =

√
2(n + 1)

1 + δm0

,

where δm0 is the Kronecker delta function6.
The orthogonality and normalizing properties are expressed by the formulae

2π∫

0

1∫

0

Z∗ |m|
n (ρ, θ) Z

|m′ |
n
′ (ρ, θ) ρ dρ dθ =

π

n + 1
δmm′δnn′ , (4.12)

where δij is the Kronecker symbol6, and the asterisks denotes the complex conjugate;
or in Cartesian coordinates

∫ ∫
Z∗

nl(x, y) Zmk(x, y) dx dy =
π

n + 1
δmnδkl , (4.13)

where the integration is over the unit circle x2 + y2 ≤ 1.
The single index scheme provides a unique ordering of two index parameters n and

m in terms of one index parameter, i. The conversion between these indexing schemes
can be different. One of many possibilities is given by the following equation [46]

i =
n(n + 2) + m

2
(4.14)

suggested in the report by Thibos et al. [46]. This report gives recommendations on
definitions, conventions, and standard for reporting of optical aberrations of human
eyes. To avoid confusion, when describing individual Zernike terms, the double index
scheme should always be used. A standard single index scheme (Eq. (4.14)) should
only be used for bar plots of expansion coefficients.

The Zernike polynomials identified by the single and double index schemes are
shown in Tab. 4.3. There are also given the monomial form of the Zernike polynomials
and their meaning.

6The Kronecker symbol (Kronecker delta function) is defined as

δij =
{

1, if i = j
0, if i 6= j

.
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Fig. 4.5. Three-dimensional form of Zernike polynomials up to fourth order.
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Fig. 4.6. Two-dimensional (x-y) projections of Zernike polynomials up to fourth
order.
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Chapter 5

HARTMANN-SHACK CORNEAL TOPOGRAPHER

In this chapter the topography unit and the software are presented. The evaluation
algorithm is also described.

5.1 Optical Principle

The optical principle behind the method for measuring corneal shape with a Hartmann-
Shack wavefront sensor is shown in Fig. 5.1.

An objective is used to focus a beam on an ideal reference ball whose center of the
curvature lies exactly in the focus of the objective F . Because the ball is perfectly
spherical the beam rays are reflected back at every point of the surface into the
same direction they have come from1. If the shape of the ball has some variations
from the perfect sphericity, the rays are reflected into other directions at every point
of the surface where there are differences. That way the information regarding the
differences in the elevation of the surface is ”saved” in the wavefront. The wavefront
can be analyzed using a Hartmann-Shack wavefront sensor by the comparison of the
spot positions of the reference wavefront (reflected from an ideal sphere) and of the
one reflected from the actual surface (Chapter 4). The shape of the surface can be
reconstructed using some mathematical algorithms. It should be noted that by the
reflection the light runs a distance equal to the double value of the real elevation.
Thus, this must be taken into account for the shape reconstruction.

5.2 Experimental Optical Setup

Fig. 5.2 shows the schematic diagram of the experimental system (HSS Corneal To-
pographer) used for the measurements.

The system consists of four main components: a laser as a light source, a Hartmann-
Shack wavefront sensor as an image detector, a Z-tracker to control the position of the

1Assumed, the beam is an ideal wavefront and has not been aberrated by the objective. The
beam rays fall then on the ball surface exactly perpendicular and according to the laws of optics are
reflected back into themselves.

63
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Fig. 5.1. Optical principle behind the corneal elevation measurement using a
Hartmann-Shack wavefront sensor. Note, the differences in the eleva-
tion between the reference and the actual surface that are ”saved” in the
phase of the wavefront as double value.

Fig. 5.2. Optical setup of the Hartmann-Shack Corneal Topographer.



5.2 Experimental Optical Setup 65

cornea, and a computer system with an image acquisition unit. Additionally, there
are some other optical components for beam transformations.

The used laser is an UV-laser with an output of 20 µW at 780 nm. The laser beam is
collimated and formed with an anamorphic lens into a round beam having a diameter
of about 7mm and s-linear polarization state. The Hartman-Shack wavefront sensor
uses a micro lens array with 53mm focal length and 400 µm diameter of each micro
lens. The video image module consists of a CCD camera with 656x581 pixels on
6.4x8.3mm2 chip.

The computer system with a frame grabber card allows to digitize video signals
into images of 756x656 pixels at 8 bit. The images are analyzed with a software to
reconstruct the corneal shape.

The optical path is as follows (Fig. 5.2). The s-linearly polarized beam from the
laser is divided in two beams by a non-polarizing 50/50 beamsplitter. One beam
(shown in blue in Fig. 5.2) is used for the measurement of the corneal topography, the
other one (shown in red) for the positioning of the eye (or a sample) by a Z-tracker.

The first beam (which is colored blue) is reflected one time by the mirror M and
then by the 90/10 polarizing beamsplitter. The second beam (which is colored red)
is reflected by the 90/10 polarizing beamsplitter, goes trough the λ/4-waveplate that
changes the beam polarization from s-polarization to circular polarization. This beam
is focused by the lens LT on the mirror MT . After the beam has been reflected by the
mirror MT , the λ/4-waveplate transforms the beam polarization to p-polarization, and
so the beam passes trough two 90/10 polarizing beamsplitters. Both beams widened
by two lenses, L1 and L2, building a telescope. The objective LO focuses the beams
on a patient’s eye.

The light reflected from the anterior surface of the cornea goes trough the objective
and telescope back. A portion of the light from the first beam is reflected by the
beamsplitter and falls on the lens array LA. So the spot pattern can be seen on
the charge-coupled device (CCD) camera. The light from the second beam passed
through the beamsplitters is reflected by the mirror MT . After it has passed the
λ/4-waveplate it is s-linearly polarized again. Now the second beam is reflected by
the 90/10 polarized beamsplitter and falls on the lens LD that focuses the light on
the detector indicating the maximum intensity if the cornea is at the correct axial
position.

To have a correct measurement, the position of the anterior corneal surface must
be accurate. For this purpose the video camera is used to center the patient’s eye
in the lateral position (x- and y-directions). The tracking of the anterior corneal
position with the Z-tracker is used to determine the eye’s position in axial direction
(z-direction). The patient has also to fix on a visible target.

To start a measurement, the anterior surface of the cornea is feeded forward to a
new axial position by the distance that is equal to the reference radius. The reference
radius of the anterior corneal curvature Rref is set to 7.8mm.
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Fig. 5.3. A simplified schematic diagram of a confocal Z-tracker used in the HSS
Corneal Topographer.

5.3 Z-Tracker

The Z-tracker is used for the positioning of the cornea at the correct axial position.
The Z-tracker works by reflecting a beam off the anterior surface of the cornea. An
adequate reflection occurs only when the corneal surface is sufficiently perpendicular to
the beam. Because the cornea is spherical, the surface will no longer be perpendicular
to the beam if the eye moves in x- or y-direction relative to the system. Therefore
the requirement that the Z-tracker works imposes a limit on eye motion in lateral
directions.

5.3.1 Ray Path

Fig. 5.3 shows a simplified optical path of the Z-tracker used in the Hartmann-Shack
Corneal Topographer. The tracking of the corneal position is based on the confocal
principle2. The basic idea behind confocal Z-tracking is to illuminate the apex of
the cornea, and at the same time have a small detector aperture detect the reflected
illumination.

The illumination light source is a laser whose beam is focused by an objective to
a spot on the anterior corneal surface. Reflected light is travelling back through the
objective. A lens focuses the light onto a pinhole positioned in the focal plane of the

2”Confocal” is defined as ”having the same focus”. What this means in the Z-tracker is that the
final image has the same focus as or the focus corresponds to the point of focus in the object. The
object and its image are ”confocal”. The Z-tracker is able to filter out the out-of-focus light from
above and below the point of focus in the object. The confocal Z-tracker eliminates the out-of-focus
information by means of a confocal pinhole situated in front of the image detection plane which acts
as a spatial filter and allows only the in-focus portion of the light to be detected. Light from above
and below the plane of focus of the object is eliminated from the final image. So the illuminated
area and pinhole are in conjugate planes.
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lens. As a detection device a highly sensitive photomultiplier is employed. The light
is converted to an electrical signal by the detector. An analog digital card is used to
convert the electrical signal from the photomultiplier into a digital signal that can be
shown on a computer.

If the apex of the cornea is directly at the focus of the objective - ”in-focus position”
of the cornea, the reflected beam after passing through the objective is goes the
same way through the optical system back. The lens focusses this parallel beam on
the pinhole, so the beam passes completely through the pinhole, and thus, the light
intensity registered on the photomultiplier is maximal. If the anterior corneal surface
is at ”out-of-focus position” (indicated in Fig. 5.3 with a dotted line), a larger area
of the corneal surface is illuminated, and the beam is defocused. The reflected light
is taking a different path through the optical system and is not focussed onto the
detector aperture. Thus, it gives a much weaker light intensity on the detector that
acts for right positioning of the anterior surface of the cornea as a Z-tracker. That
way the detection of the axial corneal position is achieved3.

5.4 Requirements on the Optics

The diameter of the area measured on the cornea depends on the numerical aper-
ture of the objective LO (Fig. 5.4a). From simple geometry it is defined as follow

AB = 2rc sin

(
arctan

(
D

2fO

))
, (5.1)

where AB is the diameter of the area measured on the cornea, rc is the corneal radius
of curvature, D is the diameter of the illuminating beam, and fO is the focal length
of the objective.

It can be seen from Eq. (5.1) that the diameter of the area measured on the cornea
would be larger if the focal length of the objective would be smaller by the beam
diameter held constant4. Fig. 5.4b shows the relationship between the focal length of
the objective fO and the diameter of the field measured on the cornea AB calculated
for a beam diameter D being 46.7 mm and a corneal radius of curvature rc of 7.8mm.

Due to optical components used in the Hartmann-Shack Corneal Topographer the
beam diameter D is about 46.7 mm. This means the minimal aperture of the objective
should be around 50 mm. In order to achieve a minimal area of 6mm in diameter
covering the apical zone of the cornea, an objective having a focal length of about
55mm or less is required. Such an objective having a f-number5 of 1.0 is difficult to
design, and therefore it is very expensive.

3The effectuality of the tracking depends on the optics being used.
4But it should be not forgotten that there is a limit because it is impossible to manufacture an

objective having a very short focal length and a large aperture at the same time.
5The f-number of an objective is the ratio of its focal length and the diameter of the aperture.
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Fig. 5.4. a - The geometry of the calculation of the field measured on the cornea.
b - The relationship between the focal length of the objective fO and the
field measured on the cornea AB demonstrates the high requirement on
the optical quality of the objective used in the Hartmann-Shack Corneal
Topographer. For the calculation (Eq. (5.1)) the beam diameter D has
been set to 46.7mm and the corneal radius of curvature rc to 7.8mm.

In the actual setup a Leica Noctilux M 50mm/1.0 objective was used6. This ob-
jective is designed with seven elements and with ”air lenses” for additional correction
and has the focal length of fO=50mm and the f-number of 1.0. According to Eq. (5.1),
the theoretical possible diameter of the area that can be measured on the cornea is
about 6.6mm. Actually, the measured area is around 6mm.

5.5 Evaluation Algorithms

The topography of the cornea is determined by the analysis of the spot pattern seen
on the CCD camera of the Hartmann-Shack wavefront sensor. These images provide
the information about the wavefront reflected from the anterior corneal surface. The
elevation of the cornea is ”saved” in the wavefront shape that is measured with the
Hartmann-Shack wavefront sensor (Section 5.1).

From the measurement a discrete field of partial derivatives δxn and δyn (n =
1, 2, ..., N , where N is the number of subapertures) is obtained. An approximation
of the wavefront W ∗(x, y) can be calculated from these measurements by zonal or
modal methods and expanded in a power series (Section 4.2). Thus, the estimation
is to determine optimal expansion coefficients to best fit the measured directional
derivatives.

6In the previous work an Olympus photo objective 55mm/1.2 was used [22]. The area measured
on samples simulating the human cornea was 4.9mm in diameter. This is less than the theoretical
possible value because of the strong optical aberrations of this objective for the IR light. The area
measured on human corneas was smaller being 4.2 mm in diameter.
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Fig. 5.5. Scheme of the spot finding algorithm [32].

5.5.1 Method for Spots Finding

Before the wavefront can be reconstructed the positions of the actual spots must be
found7.

As centroid of the spot (XC ,YC) the gravity point having the maximum of the
gray value is mean. It is defined as the center of mass and can be determined by

XC =

∑
i

∑
j

xijgij

∑
i

∑
j

gij

YC =

∑
i

∑
j

yijgij

∑
i

∑
j

gij

,

where (xij, yij) is the position of pixel (i, j) and gij is its gray value [44].

Fig. 5.5 illustrates the spot finding algorithm. First, a start point near the expected
centroid of a spot is given (1). The creation of the gravity point is taking place on
the area of micro lens size (2). After the first rough centroid of the spot has been
found, the mask is made smaller (3), and a new gravity point creation is performed on
this smaller area around the first found centroid of the spot. If the new gravity point
has been found, the mask around this point is made smaller again, and the precess
is repeated. The iterations are continued iterative on always smaller areas until the
area size achieves the expected size that has been set before or the specified iteration
number has been achieved. The search for the next spot begins at the micro lens
distance (4).

7The method for spot finding is described in details in the diploma thesis presented by
F.Mueller [32].
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5.5.2 Least Squares Method for Wavefront Reconstruction

In this work the wavefront reconstruction is realized using the least squares method8.
This section describes the technique of best fitting a set of polynomial functions to a
set of experimental determined data.

The measured dislocations of each spot in x- and y-direction δxn, δyn (n =
1, 2, ..., N , where N is the number of subapertures) have been determined from Hartmann-
Shack wavefront sensor measurement. Now, a problem is to obtain the wavefront
W ∗(xn, yn) by ”fitting” a mathematical function to the measured spot shifts δxn, δyn.

The field of the measured dislocations δxn, δyn can be transformed to a set of local
wavefront derivatives Pn and Qn for each micro lens at the particular location in a
subaperture position. That is

Pn ≡ δxn

f
=

∂W ∗(xn, yn)

∂x
+ νn Qn ≡ δyn

f
=

∂W ∗(xn, yn)

∂y
+ µn,

where f is the focal length of the micro lens array, (xn, yn) are the coordinates of
the nth measurement, and n = 1, .., N numbers the experimental point data, with N
being the number of spots. The νn and µn represent the noise assumed here to be
zero9.

The estimated wavefront derivatives Pn and Qn can be expanded in a set of known
functions Li(x, y)

∂W ∗(xn, yn)

∂x
=

I∑

i=1

kiLi(x, y)
∂W ∗(xn, yn)

∂y
=

I∑

i=1

liLi(x, y), (5.2)

where ki and li are the coefficients of the estimated wavefront derivatives to be ob-
tained, and the definite number I means that truncated polynomials Li(x, y) are used.

The wavefront estimation is to find the optimal expansion coefficients ki and li in
Eq. (5.2), which make the wavefront function W ∗(xn, yn) best fit the measurements of
Pn and Qn. For this purpose a least square fit is used.

According to the least squares method, the estimation is the best if the sum of the
squares of all differences between the measured values and the estimation is as small
as possible. The least squares functional in this case is given by

S =
N∑

n=1

(
∂W ∗(xn, yn)

∂x
− Pn

)2

+
N∑

n=1

(
∂W ∗(xn, yn)

∂y
−Qn

)2

.

8The least squares method is not only one method to reconstruct the wavefront from the
Hartmann-Shack wavefront measurement. Another method is presented in [27].

9No real sensor measures the directional derivative at a point. In a real sensor the aperture
is partitioned into subapertures, and the measurement is actually an average of the directional
derivative (tilt) over the subaperture associated with the measurement. Since the wavefront phase
is analytic over the subaperture, a noise-free measurement would represent the phase at some point
in the subaperture (by the mean-value theorem). However, the measurement is ascribed to be the
tilt at the center of the subaperture. Thus, an instrumental error will exist in the estimation of
the wavefront, since the measurements are not the tilts at the sampling locations. To minimize the
instrumental error, one maximizes the number of subapertures.
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The criterion for choosing ki and li is to minimize the squared error, i.e., to minimize

Sx =
N∑

n=1

(
∂W ∗(xn, yn)

∂x
− Pn

)2

=
N∑

n=1

(
I∑

i=1

kiLi(xn, yn)− Pn

)2

Sy =
N∑

n=1

(
∂W ∗(xn, yn)

∂y
−Qn

)2

=
N∑

n=1

(
I∑

i=1

liLi(xn, yn)−Qn

)2

.

Now, Sx and Sy are to minimize with respect to ki and li, respectively. This results
in the following equations

∂Sx

∂ki

= 2
N∑

n=1

(
I∑

i=1

kiLi(xn, yn)− Pn

)
Lj(xn, yn) = 0

∂Sy

∂li
= 2

N∑

n=1

(
I∑

i=1

liLi(xn, yn)−Qn

)
Lj(xn, yn) = 0 .

This can be transformed to

N∑

n=1

PnLj(xn, yn) =
I∑

i=1

ki

N∑

n=1

Li(xn, yn)Lj(xn, yn)

N∑

n=1

QnLj(xn, yn) =
I∑

i=1

li
N∑

n=1

Li(xn, yn)Lj(xn, yn)

to calculate the coefficients ki and li

ki =

N∑
n=1

PnLi(xn, yn)

N∑
n=1

Li(xn, yn)Lj(xn, yn)
li =

N∑
n=1

QnLi(xn, yn)

N∑
n=1

Li(xn, yn)Lj(xn, yn)
. (5.3)

In the present treatment, where the wavefront estimation over a circular aperture
must be carried out, it is more appropriate to expand the reconstructed wavefront
W ∗(x, y) in terms of a complete set of polynomials Li(xn, yn) that are orthonormal
over the interior of the circle, i.e.,

N∑

n=1

Li(xn, yn)Lj(xn, yn) = δij ∀ i, j, (5.4)

where δij is the Kronecker delta. Due to this fact the calculation of the coefficients ki

and li can be simplified. So Eq. (5.3) is as follows

ki =
N∑

n=1

PnLi(xn, yn) li =
N∑

n=1

QnLi(xn, yn) . (5.5)
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Many sets of the orthonormal polynomials can be constructed10. In this work the
following set of the orthonormal polynomials was used11

L1(x, y) =
1

c1

L2(x, y) =
x

c2

L3(x, y) =
y

c3

L4(x, y) =
xy

c4

L5(x, y) =
x2 + c5

c6

L6(x, y) =
x2 + c7y

2 + c8

c9

(5.6)

L7(x, y) =
x2y + c10y

c11

L8(x, y) =
x3 + c12x

c13

L9(x, y) =
x3 + c14xy2 + c15x

c16

L10(x, y) =
y3 + c17x

2y + c18y

c19

The polynomial expansion was restricted to the determination of ten polynomials
I=10 (if the number of the polynomials would be higher, the more Zernike coefficients
could be obtained) [32].

For the orthogonality procedure of these polynomials the following conditions are
important:

1. The lenses of the micro lens array are positioned symmetrically with respect to
the coordinate axis. Thus, the sums

∑
n

xn and
∑
n

yn as well as all other sums

having an odd potency of x or y are zero.

10However, one such set are the Zernike polynomials.
11These polynomials can be used for a circle aperture as well for a square spot sample.
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2. The alignment of the micro lenses is invariant for a rotation through the angle
90◦. This implies the exchange by the summation and the equality of the sums
having an even potency such as the sums like

∑
n

x2
n and

∑
n

y2
n.

3. The coordinates x and y are independent from each other. This means summa-
tions like

∑
n

xnyn can be separated into two sums
∑
n

xn
∑
n

yn.

4. From conditions 1 and 3 follows that all sums are zero, if x or y occurs with
uneven power (as an example

∑
n

x2
nyn=0).

The constants ci can be found from the orthonormality condition (Eq. 5.4) of the
polynomials Li(x, y) in consideration of the conditions 1-4 listed above. They are as
follows

c1 =

√√√√
N∑

n=1

1 =
√

N

c2 =

√√√√
N∑

n=1

x2
n

c3 =

√√√√
N∑

n=1

y2
n

c4 =

√√√√
N∑

n=1

x2
ny2

n

c5 = −c2
2

c2
1

c6 =

√√√√
N∑

n=1

x4
n + c2

2c5

c7 = −
N∑

n=1
x4

n + c2
2c5

c2
4 + c2

3c5

c8 = −c2
2 + c2

3c7

c2
1

c9 =

√√√√
N∑

n=1

x4
n + c2

7

N∑

n=1

y4
n + c2

1c
2
8 + 2c2

2c8 + 2c2
3c7c8 + 2c2

4c7
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c10 = −c2
4

c2
3

(5.7)

c11 =

√√√√
N∑

n=1

x4
ny

2
n + c2

4c10

c12 = −
N∑

n=1
x4

n

c2
2

c13 =

√√√√
N∑

n=1

x6
n + c12

N∑

n=1

x4
n

c14 = −
N∑

n=1
x6

n + c12

N∑
n=1

x4
n

N∑
n=1

x4
ny2

n + c2
4c12

c15 = −
N∑

n=1
x4

n + c2
4c14

c2
2

c16 =
[ N∑

n=1

x6
n + c2

14

N∑

n=1

x2
ny

4
n + 2c14

N∑

n=1

x4
ny

2
n + c15

N∑

n=1

x4
n + c2

4c14c15

]1/2

c17 = −
N∑

n=1
x2

ny
4
n + c10

N∑
n=1

y4
n

N∑
n=1

x4
ny2

n + c2
4c10

c18 = −
N∑

n=1
y4

n + c2
4c17

c2
3

c19 =
[ N∑

n=1

y6
n + c2

17

N∑

n=1

x4
ny2

n + 2c17

N∑

n=1

x2
ny4

n + c18

N∑

n=1

y4
n + c2

4c17c18

]1/2

Thus, the analytical expressions of the coefficients of the partial derivations ki and
li (Eq. (5.5)) are as follow

k1 =

N∑
n=1

Pn

c1
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k2 =

N∑
n=1

Pnxn

c2

k3 =

N∑
n=1

Pnyn

c3

k4 =

N∑
n=1

Pnxnyn

c4

k5 =

N∑
n=1

Pnx
2 + c5

N∑
n=1

Pn

c6

k6 =

N∑
n=1

Pnx
2
n + c7

N∑
n=1

Pny2
n + c8

N∑
n=1

Pn

c9

k7 =

N∑
n=1

Pnx
2
nyn + c10

N∑
n=1

Pnyn

c11

k8 =

N∑
n=1

Pnx
3
n + c12

N∑
n=1

Pnxn

c13

k9 =

N∑
n=1

Pnx
3
n + c14

N∑
n=1

Pnxny2
n + c15

N∑
n=1

Pnxn

c16

k10 =

N∑
n=1

Pny3
n + c17

N∑
n=1

Pnx2
nyn + c18

N∑
n=1

Pnyn

c19

(5.8)

l1 =

N∑
n=1

Qn

c1

l2 =

N∑
n=1

Qnxn

c2
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l3 =

N∑
n=1

Qnyn

c3

l4 =

N∑
n=1

Qnxnyn

c4

l5 =

N∑
n=1

Qnx
2 + c5

N∑
n=1

Qn

c6

l6 =

N∑
n=1

Qnx
2
n + c7

N∑
n=1

Qny2
n + c8

N∑
n=1

Qn

c9

l7 =

N∑
n=1

Qnx
2
nyn + c10

N∑
n=1

Qnyn

c11

l8 =

N∑
n=1

Qnx
3
n + c12

N∑
n=1

Qnxn

c13

l9 =

N∑
n=1

Qnx
3
n + c14

N∑
n=1

Qnxny2
n + c15

N∑
n=1

Qnxn

c16

l10 =

N∑
n=1

Qny
3
n + c17

N∑
n=1

Qnx
2
nyn + c18

N∑
n=1

Qnyn

c19

5.5.3 Wavefront Presentation

After the coefficients of the partial derivations ki and li have been found, the wavefront
can be represented.

One simple way for the wavefront representation is the Taylor expansion of the
wavefront12

WT (x, y) =
∑

m=0

tmTm(x, y) , (5.9)

12In Section 4.3.2 it has been noted that the Taylor polynomials are not commonly used for the
wavefront representation. The fact that they are used here is an easier way to simplify the procedure
to obtain the information relating the wavefront from its derivative data in terms of the Taylor
coefficients first and then convert them to the Zernike coefficients using a matrix form (Eq. (5.20)).
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where tm are the Taylor coefficients, and the functions Tm(x, y) are Taylor polynomials
(Section 4.3.2).

In this work the Taylor polynomials as defined in Section 4.3.2 are used (Tab. 4.2).
The expansion of the wavefront into the Taylor polynomials is truncated by 14th
polynomials; that allows to calculate 14 Zernike coefficients. So the wavefront is
represented as follow

WT (x, y) = t0 + t1x + t2y + t3x
2 + t4xy + t5y

2 + t6x
3 + t7x

2y + t8xy2 +

+ t9y
3 + t10x

4 + t11x
3y + t12x

2y2 + t13xy3 + t14y
4 . (5.10)

The coefficients of the partial derivations ki and li as obtained by Eq. (5.8) can be
converted into the Taylor coefficients tm as described below using Eq. (5.2).

∂WT (x, y)

∂x
=

∂

∂x

14∑

m=0

tmTm(x, y) =
10∑

i=1

kiLi(x, y) (5.11)

∂WT (x, y)

∂y
=

∂

∂y

14∑

m=0

tmTm(x, y) =
10∑

i=1

liLi(x, y) . (5.12)

Using the expansion of the wavefront into the Taylor polynomials (Eq. (5.10))

∂WT (x, y)

∂x
= t1 + 2t3x + t4y + 3t6x

2 + 2t7xy + t8y
2 +

+ 4t10x
3 + 3t11x

2y + 2t12xy2 + t13y
3 (5.13)

∂WT (x, y)

∂y
= t2 + t4x + 2t5y + t7x

2 + 2t8xy + 3t9y
2

+ t11x
3 + 2t12x

2y + 3t13xy2 + 4t14y
3 (5.14)

and the orthonormal polynomials (Eqs. (5.6))

10∑

i=1

kiLi(x, y) =
k1

c1

+
k2

c2

x +
k3

c3

y +
k4

c4

xy +
k5

c6

x2 +
k5c5

c6

+
k6

c9

x2 +

+
k6c7

c9

y2 +
k6c8

c9

+
k7

c11

x2y +
k7c10

c11

y +
k8

c13

x3 +

+
k8c12

c13

x +
k9

c16

x3 +
k9c14

c16

xy2 +
k9c15

c16

x +

+
k10

c19

y3 +
k10c17

c19

x2y +
k10c18

c19

y . (5.15)

10∑

i=1

liLi(x, y) =
l1
c1

+
l2
c2

x +
l3
c3

y +
l4
c4

xy +
l5
c6

x2 +
l5c5

c6

+
l6
c9

x2 +

+
l6c7

c9

y2 +
l6c8

c9

+
l7
c11

x2y +
l7c10

c11

y +
l8
c13

x3 +
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+
l8c12

c13

x +
l9
c16

x3 +
l9c14

c16

xy2 +
l9c15

c16

x +

+
l10

c19

y3 +
l10c17

c19

x2y +
l10c18

c19

y . (5.16)

Now, the Taylor coefficients13 can be calculated by simple coefficients comparison
by the equal potency of x and y variables of Eq. (5.13) with Eq. (5.15) and of Eq. (5.14)
with Eq. (5.15) as follows. Note, that some coefficient comparisons give the double
equations, thus, they are summarized, and the half of the summation is taken to
calculate the appropriate Taylor coefficients.

t1 =
k1

c1

+
k5c5

c6

+
k6c8

c9

t2 =
l1
c1

+
l5c5

c6

+
l6c8

c9

t3 =
1

2

(
k2

c2

+
k8c12

c13

+
k9c15

c16

)

t4 =
1

2

(
k3

c3

+
k7c10

c11

+
k10c18

c19

)
+

1

2

(
l2
c2

+
l8c12

c13

+
l9c15

c16

)

t5 =
1

2

(
l3
c3

+
l7c10

c11

+
l10c18

c19

)

t6 =
1

3

(
k5

c6

+
k6

c9

)

t7 =
1

4

k4

c4

+
1

2

(
l5
c6

+
l6
c9

)

t8 =
1

2

k6c7

c9

+
1

4

l4
c4

(5.17)

t9 =
1

3

l6c7

c9

t10 =
1

4

(
k8

c13

+
k9

c16

)

t11 =
1

6

(
k7

c11

+
k10c17

c19

)
+

1

2

(
l8
c13

+
l9
c16

)

13The Taylor coefficient t0 can not be calculated. Besides also uninteresting because it represents
a constant only.
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t12 =
1

4

(
k9c14

c16

+
l7
c11

+
l10c17

c19

)

t13 =
1

2

k10

c19

+
1

6

l9c14

c16

t14 =
1

4

l10

c19

.

The best and commonly used wavefront representation is the expansion of the
wavefront into the Zernike polynomials14 Zm(x, y) (Section 4.3.3)

WZ(x, y) =
∑

m=0

zmZm(x, y) . (5.18)

Because the functions WT (x, y) (Eq. (5.9)) and WZ(x, y) (Eq. (5.18)) represent
the same wavefront, the Zernike coefficients zm can be computed from the Taylor
coefficients tm by simple coefficients comparison

WT (x, y) ≡ WZ(x, y) ⇒
14∑

m=0

tmTm(x, y) ≡
14∑

m=0

zmZm(x, y) . (5.19)

The last equation can be rewritten in a matrix form

~T = M ~Z , (5.20)

where ~T and ~Z are the column vectors containing the coefficients of the Taylor and
Zernike polynomials, respectively

~T =
(

t0, t1, t2, . . . , t14

)

~Z =
(

z0, z1, z2, . . . , z14

)
.

The square matrix M can be calculated easily

M =




1 0 0 0 −1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 −2 0 0 0 0 0 0
0 1 0 0 0 0 0 −2 0 0 0 0 0 0 0
0 0 0 0 2 1 0 0 0 0 0 0 −6 −3 0
0 0 0 2 0 0 0 0 0 0 0 −6 0 0 0
0 0 0 0 2 −1 0 0 0 0 0 0 −6 3 0
0 0 0 0 0 0 0 0 3 1 0 0 0 0 0
0 0 0 0 0 0 3 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 3 −3 0 0 0 0 0
0 0 0 0 0 0 −1 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 6 4 1
0 0 0 0 0 0 0 0 0 0 4 8 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 12 0 −6
0 0 0 0 0 0 0 0 0 0 −4 8 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 6 −4 1




.

14In Section 4.3.3 it is shown how these circle polynomials of Zernike may be derived, and some
of their properties are discussed. The Zernike coefficients are useful for describing the shape of a
cornea, as well as an aberrated wavefront in the pupil of an optical system [50].
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So the Zernike coefficients can be now calculated from Eq. (5.20) by a simply matrix
conversation

~Z = M−1 ~T , (5.21)

where the matrix M−1 is

M−1 =




1 0 0 1
4

0 1
4

0 0 0 0 1
8

0 1
24

0 1
8

0 0 1 0 0 0 0 1
6

0 1
2

0 0 0 0 0

0 1 0 0 0 0 1
2

0 1
6

0 0 0 0 0 0

0 0 0 0 1
2

0 0 0 0 0 0 3
16

0 3
16

0

0 0 0 1
4

0 1
4

0 0 0 0 3
16

0 1
16

0 3
16

0 0 0 1
2

0 − 1
2

0 0 0 0 3
8

0 0 0 − 3
8

0 0 0 0 0 0 0 1
4

0 − 1
4

0 0 0 0 0

0 0 0 0 0 0 0 1
12

0 1
4

0 0 0 0 0

0 0 0 0 0 0 1
4

0 1
12

0 0 0 0 0 0

0 0 0 0 0 0 1
4

0 − 1
4

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
8

0 − 1
8

0

0 0 0 0 0 0 0 0 0 0 0 1
16

0 1
16

0

0 0 0 0 0 0 0 0 0 0 1
16

0 1
48

0 1
16

0 0 0 0 0 0 0 0 0 0 1
8

0 0 0 − 1
8

0 0 0 0 0 0 0 0 0 0 1
8

0 − 1
8

0 1
8




Finally, the Zernike coefficients15 are derived from the following relations

z0 = t0 +
1

4
(t3 + t5) +

1

8
(t10 + t14) +

1

24
t12

z1 = t2 +
1

6
t7 +

1

2
t9

z2 = t1 +
1

2
t6 +

1

6
t8

z3 =
1

2
t4 +

3

16
(t11 + t13)

z4 =
1

4
(t3 + t5) +

1

16
(3t10 + t12 + 3t14)

z5 =
1

2
(t3 − t5) +

3

8
(t10 − t14)

z6 =
1

4
(t7 − t9)

z7 =
1

12
t7 +

1

4
t9 (5.22)

z8 =
1

4
t6 +

1

12
t8

15Here the single numbering schema is used (Section 4.3.3).
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z9 =
1

4
(t6 − t8)

z10 =
1

8
(t11 − t13)

z11 =
1

16
(t11 + t13)

z12 =
1

16
(t10 + t14) +

1

48
t12

z13 =
1

8
(t10 − t14)

z14 =
1

8
(t10 − t12 + t14)

Using these Zernike coefficients the estimated wavefront W ∗(x, y) and also the
corneal shape can be displayed as a two-dimensional map as well as a wire net.

5.5.4 Evaluation Performance

The performance of the wavefront estimation can be expressed in terms of the root
mean square errors (RMS) < (δW )2 > in the estimated wavefront W ∗(x, y), where
<> indicates the statistical expectation value.

The quality of the wavefront estimation < (δW )2 > can be obtained from the
differences between the spot positions actually measured (xn measured, yn measured) and
reconstructed (xn reconstructed, yn reconstructed) as follows

< (δW )2 > =
( 1

2N

N∑

n=1

[(xn measured − xn reconstructed)
2 +

+ (yn measured − yn reconstructed)
2]

)1/2
. (5.23)

Thereby, the coordinates of the reconstructed spots (xn reconstructed, yn reconstructed) are
calculated by the following equations

xn reconstructed = xn Reference + δx · f

yn reconstructed = yn Reference + δy · f ,

where δx and δy are the displacements of the reconstructed spots from the reference
that can be calculated from the Taylor coefficients ti obtained by Eq. (5.17)16

δx = t1 + 2t3x + t4y + 3t6x
2 + 2t7xy + t8y

2 + 4t10x
3 + 3t11x

2y + 2t12xy2 + t13y
3

δy = t2 + t4x + 2t5y + t7x
2 + 2t8xy + 3t9y

2 + t11x
3 + 2t12x

2y + 3t13xy2 + 4t14y
3 ,

where x and y are the coordinates of the reference spot positions (xn Reference, yn Reference).

16For the calculation of the displacements δx and δy the Zernike coefficients can be also used, but
this way makes the calculation more difficult.
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5.6 Calculation of Corneal Parameters

Some corneal parameters can be also calculated to describe the corneal shape and its
optical quality.

5.6.1 Corneal Defocus and Astigmatism

The Zernike coefficients of the second order (45◦ astigmatism - z3, focal shift - z4, and
0◦/90◦ astigmatism - z5) describe optical defects that can be corrected by conventional
spectacles, namely sphere and astigmatism. It is possible to convert this portion of the
wavefront aberration to the equivalent ophthalmic spectacle prescription of corneal
defocus and astigmatism.

The defocus17 and astigmatism of the cornea can be obtained from the Zernike
coefficients z3, z4, and z5 by the following equations [10]

Defocus =
4z4

R
(5.24)

Astigmatism = 4

√
z2
3 + z2

5

R
(5.25)

Axis of astigmatism =
180◦

2π
atan

z3

z5

, (5.26)

where R is the physical radius of the expansion on the cornea (in meters), and the
Zernike coefficients are expressed in no units18.

5.6.2 Statistical Indices

Additionally, statistical indices such as irregularity index and asymmetry index can
be calculated (for definitions, see Section 3.3.2).

Because the measurement method of the HSS Corneal Topographer is different
from that used by a videokeratoscope, the algorithms for calculation of the indices
may be also differ.

Surface irregularity index (SII) is the standard deviation of the difference in ele-
vation between the best fitted toric surface and an actual surface

SII =

√√√√√√
N∑

i=1
(hi − h̄)

N(N − 1)
, (5.27)

17A myopic wavefront error has a positive sign, but by clinical conversation, myopic prescriptions
are given a minus sign.

18The Zernike coefficients zi can be also expressed in microns if they are normalized on the aperture
radius or in wavelengths if they are normalized on the wavelength.
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where N is the number of data, hi is the elevation (in microns) at every point of the
surface, and h̄ is the mean value of the elevation defined as

h̄ =

N∑
i

hi

N
.

Asymmetry index (AI) of the surface is a summation of differences in corneal
power between corresponding points 180◦ apart19

AI =
∑

i

(Pi − P
′
i ) , (5.28)

where Pi is the refractive power at each position of the cornea, and P
′
i is the refractive

power 180◦ apart at the same radial distance. The refractive power Pi (in diopters)
at each point of the cornea is calculated by Eq. (3.3)

Pi =
n− 1

hi + RRef

=
3.76 .105

hi + 7800
, (5.29)

where n is the refractive index of the cornea being 1.376, hi is the elevation (in microns)
at that point, and RRef is the reference radius of the cornea set to 7.8mm.

5.6.3 Optical Quality of the Corneal Surface

From the topographic data, it is possible to calculate sophisticated measures of optical
performance.

When studying corneal optics, it is important to remember that each point in an
image is formed by all the light passing through the pupil. Description of corneal op-
tical performance should therefore consider the corneal optical zone as a whole. If the
goal is to depict optical performance of the cornea, other descriptors such as the point
spread function (PSF), the optical transfer function (OTF) may be more appropriate
than any of the topographic maps. Each of these functions can be computed from the
topography, but they are generally not available on current clinical instruments.

The HSS Corneal Topographer provides some parameters describing the optical
quality of the cornea that are obtained from a measurement.

Root-Mean-Square (RMS)

Root-mean-square (RMS) wavefront error provides a general estimate of the variation
of the measured wavefront from an ideal one. The higher the RMS wavefront error,
the larger the wavefront aberration is (i.e., the more the measured wavefront differs
from an ideal wavefront) and the worse the image quality.

19The surface asymmetry index provided by a standard videokeratograph is defined as a weighted
summation.
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The RMS wavefront error is calculated as the mean squared value of the wavefront
W (ρ, θ) over the pupil

RMS =

√√√√√√√√

r∫
0

2π∫
0

W 2(ρ, θ)ρ dρ dθ
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0

2π∫
0
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√√√√√ 1

πr2
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0

2π∫

0

W 2(ρ, θ)ρ dρ dθ , (5.30)

where r is the pupil radius.
If the wavefront is described using Zernike polynomials Zm

n (ρ, θ), the RMS wave-
front error can be directly calculated from the Zernike coefficients znm
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The RMS wavefront error can be calculated using Eq. (5.31) for different orders.
So if only the second and third order of the Zernike polynomials are considered by
the expansion of the wavefront into Zernike polynomials, then the RMS wavefront
error is referred as the RMS of the third order20. If the expansion of the wavefront is
truncated by the fourth order, one speaks about the RMS of the fourth order and so
on.

Optical Aberration Index

Optical aberration index (OAI) is defined as

OAI = 1− exp(−RMS) , (5.32)

where RMS is the RMS wavefront error generally calculated using Eq. (5.30).
The optical aberration index varies between zero and one. An optical system is

perfect if its optical aberration index is zero. The optical aberration index equal to
one stands for infinity aberrations. This index is very sensitive in the typical range
for higher order aberrations.

Strehl Ratio

To quantify the performance of an optical system, the Strehl ratio (SR) of the point
spread function (PSF) is used. The point spread function is interpreted as the image
plane intensity distribution that results from imaging a point source.

20The 0th order of Zernike coefficients can be set to zero. The first order Zernike coefficients can
be omitted in the calculation because they describe the tilt only (i.e., the position of the eye) and
do not give any information about the optical characteristics.
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Strehl ratio is defined as the ratio of the peak focal intensities of an aberrated
point spread function and a diffraction limited (i.e., ideal) point spread function

S =
I(x̄ = 0)aberrated

I(x̄ = 0)diffraction−limited

,

where I(x̄) is the intensity point spread function, and x̄ defines a point in the image
plane.

The Strehl ratio is given by the zero frequency component of the Fourier transform

S =
1

π2

[ 2π∫

0

1∫

0

e2πi∆W (ρ,θ)ρ dρ dθ
]2

,

where ∆W (ρ, θ) is the wavefront aberration relative to the reference sphere for diffrac-
tion focus in waves. The integrand may be expanded in a Taylor series

S =
1

π2

[ 2π∫

0

1∫

0

(
1 + 2πi∆W +

1

2
(2πi∆W )2 + ...

)
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.

If the aberrations are so small that the third-order and higher-order powers of 2π∆W
can be neglected, then

S '
[
1 + 2πi∆W − 1

2
(2π)2∆W 2

]2 ' 1− (2π)2(∆W 2 − (∆W )2) '
' 1− (2πσ)2 , (5.33)

where σ =
√

∆W 2 − (∆W )2 is the root-mean-square deviation of the wavefront mea-
sured in wavelengths.

A better approximation for most types of aberrations is

S ' e−(2πσ)2 , (5.34)

which is good for S >0.1.

5.7 Software Tools

A special software was written to make measurements, analyze the spot pattern,
calculate the Zernike coefficients, and reconstruct the corneal shape. This subsection
describes the software algorithm. For description of the program user interface, see
Appendix A. Tests of the software algorithm are described in Section 6.1.
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Fig. 5.6. Flow chart diagram of the software evaluation algorithm.

5.7.1 Software description

The flow chart diagram of the software is presented in Fig. 5.6.
First of all the reference spot positions are needed. The reference image can be

taken using a calibrated, ideal spherical steel ball. This reference image contains all
the optical aberrations of the system taken into account by every measurement.

After a spot pattern of a cornea is taken or an existing image is loaded the actual
spot positions can be found (Section 5.5.1). This happens manually by clicking on
the middle spot of the spot pattern.

The spot displacements are computed with respect to the spot positions from the
reference. The coefficients of the wavefront deviations can be obtained using the least
squares fitting to these displacement data as described in Section 5.5.2. Finally, these
coefficients are converted to Taylor and then to Zernike coefficients (Section 5.5.3).
The corneal topography maps and data are calculated using Zernike coefficients and
displayed.



Chapter 6

TESTS AND MEASUREMENTS

The first purpose of measurements was to assess the accuracy1 and reproducibility2

of the HSS Corneal Topographer. The second goal was a comparison of two systems
- the HSS Corneal Topographer and a standard videokeratograph.

One way to determine the measurement accuracy and precision of a system is to
use calibrated test surfaces that more closely model the cornea. Ideally, the accuracy
and precision should be also tested on human eyes. But measurements of the human
cornea are more difficult because the absolute power of a human cornea is unknown.
Therefore only the reproducibility (i.e., the precision and the repeatability) of the
instrument on the human eye could be determined.

This chapter presents tests of software and experimental results on tested objects
and human eyes. Additionally, the test measurements of the Z-tracker module and
the influence of the axial shift on the Zernike coefficients are presented.

The measurement execution is explored in Section A.2.

6.1 Tests of Software Algorithm

The software was tested to warrant that the calculation algorithm works correctly.
For this purpose pictures (as they would be seen on a CCD camera of a Hartmann-
Shack wavefront sensor) with known optical aberrations were generated and evaluated
(Fig. 6.1). So it was possible to test the evaluation algorithm for several Zernike
coefficients zi or for a group of the Zernike coefficients.

The tests showed a perfect reliability of the evaluation and calculation algorithm.
The results of the tests are shown in Fig. 6.2.

First, only one of the Zernike coefficients was entered. The value of each Zernike
coefficient (for example only z1, then only z2, and so on) was set to 0.5 µm. As seen
in Fig. 6.2a, if one selected aberration has been set to this value, the output value of
the corresponding Zernike coefficient3 zi (i=1, 2, ..., 14) was 0.5 µm while all other
Zernike coefficients were zero. This situation was observed for all possible aberrations.

1The accuracy describes the proximity of a value being measured to a real value.
2The reproducibility describes the precision and the repeatability.
3The Zernike coefficient z0 was not taken into account.

87
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Fig. 6.1. An example of a picture used for the test of the software algorithm.

Fig. 6.2. The tests of the software algorithm. a - The evaluation of several Zernike
coefficients. b - The evaluation of the Zernike coefficients composed in
groups.
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Fig. 6.3. Definition of the positive and negative axial shift for the simulation with
the ZEMAX software.

Afterwards, the evaluation of the images with groups of aberrations was estimated.
The value of each Zernike coefficient of a group (for example first order aberrations z1

and z2, then second order from z3 to z5 and so forth) has been set to 0.5 µm. Finally,
all aberrations from z3 to z14 and from z1 to z14 were set to 0.5 µm. In all cases the
calculated values of the Zernike coefficients were 0.0 µm except the entered coefficients
having value of 0.5 µm (Fig. 6.2b).

6.2 Axial Shift

To study the influence of the axial shift on the value of the Zernike coefficients, a sim-
ulation with ZEMAX Optical Design Program (Focus Software, Inc.) was performed.
The optical system of the HSS Corneal Topographer was modelled with a doublet,
while the anterior surface of the cornea was represented by an aspherical mirror hav-
ing an apical curvature radius Rapical of 7.8 mm and an asphericity parameter Q equal
to -0.26 (Fig. 6.3). The mirror was moved along the optical axis from the axial posi-
tion equal to ”zero” towards and backwards to the doublet. The axial position equal
to ”zero” was defined as the position at the focal point F of the doublet4 when the
center of curvature of the mirror lies exactly in the focal plane of the doublet. The
”positive” axial shift was chosen as the movement of the mirror towards the doublet
and the ”negative” axial shift - farther away. The simulation was performed for the
light wavelength of λ=780 nm. The values of the Zernike coefficients were calculated
at each axial position in intervals of 0.1 mm.

Tab. 6.1 presents changes in the value of the Zernike coefficients with the axial
shift. The results of this simulation are also shown graphically in Fig. 6.4.

Only two of the Zernike coefficients, namely z4 and z12 representing the defocus and
spherical aberration, respectively, changed with the axial shift, while other Zernike
coefficients did not change at all having the value of zero. Thereby, the defocus z4 has
a linear relationship with the axial shift (Fig. 6.4 left). The changes of the spherical

4As the focal point of the doublet the paraxial focal point (if the madrigal ray height is equal to
zero) was chosen.
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Tab. 6.1. Simulation of the influence of the axial shift on the value of the Zernike
coefficients. The changes in the value of the Zernike coefficients z4 and
z12 are given.

Axial shift Defocus z4 Spherical aberration z12

mm wavelengths wavelengths

-5 0.86686 0.00265

-4 0.69438 0.00218

-3 0.52146 0.00169

-2 0.34809 0.00116

-1 0.17427 0.00060

0 0.00000 0.00000

1 -0.17472 -0.00064

2 -0.34990 -0.00131

3 -0.52554 -0.00201

4 -0.70173 -0.00276

5 -0.87818 -0.00353

aberration z12 can be described with a polynomial of second degree (Fig. 6.4 right).

The test measurements were also performed with the HSS Corneal Topographer to
evaluate the influence of the axial shift on the value of the Zernike coefficients using
a test sample. The axial position of the sample was changed from -0.5mm to 0.5 mm
at the ”zero” axial position with the distance interval of 0.05mm. The axial position
equal to ”zero” (”in-focus-position”) was the correct axial position detected with the
Z-tracker.

The results of the measurements are similar to those of the simulation with the
ZEMAX software. Only the Zernike coefficients z4 and z12 were sensitive to the
axial shift (Fig. 6.5), while the others did not change significantly (Fig. 6.6). Already
a shift around 0.5 mm causes a change of 0.42D in the measurement of the sphere
(defocus). Thus, an incorrect axial placement of a sample (or of an eye) can yield
the wrong value of the defocus (z4) and the spherical aberration (z12) obtained from
a measurement. This reemphasizes the need of the use of the Z-tracker in the HSS
Corneal Topographer. And indeed, the use of the Z-tracker module increases the
reproducibility of the measurements with the instrument (Section 6.4.1).

Additionally, the measurements showed an agreement in the behavior of the Zernike
coefficients z4 and z12 compared to the simulations. The Zernike coefficient z4 has a
good linear regression with the axial shift. Also the changes in the value of the Zernike
coefficient z12 decrease with the axial shift, but it is more difficult to describe these
changes with a polynomial function. Note, that the values of the Zernike coefficients
could not be compared directly because ZEMAX calculates the value of Zernike coef-
ficients in wavelengths.
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Fig. 6.4. Simulation of the influence of the axial shift on the value of the Zernike
coefficients z4 (left) and z12 (right). The changes in the value of the
Zernike coefficients z4 and z12 are plotted (Tab. 6.1).

Fig. 6.5. The measurement of the influence of the axial shift on the value of the
Zernike coefficients z4 (left) and z12 (right). The changes in the value of
the Zernike coefficients z4 and z12 are plotted.
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Fig. 6.6. The measurement of the influence of the axial shift on the value of the
Zernike coefficients. The changes in the value of the Zernike coefficients
are plotted.

6.3 Test Measurements on the Samples

Test surfaces used in these studies were steel balls and calibrated spherical samples5

made of polymethyl methacrylate (PMMA6) representing an ideal spherical anterior
surface of the human cornea.

Another class of measured surfaces were toric surfaces. This class of surfaces
represents the simplest model of corneal astigmatism7. These samples are also made
of PMMA.

The accuracy of different instruments and the effect of investigators were assessed
using mixed-model analysis of variance that compared the mean deviation scores8. As
an acceptable performance for clinical instruments the mean of the deviation scores
must have a value of about ±0.25D. The precision of the instrument was assessed by
performing the Hartley test for homogeneity of the variance of the deviation scores.
The level of significance used in the statistical tests9 was 0.05.

5The samples were numbered from 1 to 20 for all measurements presented in this chapter.
6The polymethyl methacrylate (PMMA) has properties similar to that of the human cornea. It

was earlier used for contact lens manufacturing, but because of its insufficient transmissibility it is
not used any more.

7A toric surface has two orthogonal meridians, each with circular cross-sections, that are called
the principal meridians.

8A deviation score was calculated as difference between the given and measured value.
9The statistical tests were performed with the computer program OriginTM (Microcal Origin,

Inc.).
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Fig. 6.7. Relationship between the radius of curvature given by the manufacturer
and measured by the HSS Corneal Topographer. The measurements were
done on the steel balls.

6.3.1 Accuracy

The accuracy of the system was obtained by the use of precision steel balls with the
radius of 7.0, 7.5, 8.0, 8.5, and 9.0mm. They are readily available, low in cost, and
provide a precision spherical surface that represents the simplest model of the anterior
surface of the cornea. The use of these spherical surfaces to test a topography system
is the first logical step in testing the accuracy of the instrument. Additionally, the
calibrated PMMA spheres having the known refractive power (+48.2, +45.0, +42.2,
and +37.5D) were used to evaluate the accuracy of the system.

Each test object was measured three times10. Then the deviation score as dif-
ference between the measured and the given refractive power11 was calculated. The
measurements on the steel balls and the spheres are summarized in Tab. 6.2.

The relationship between the curvature radius of the steel balls given by the man-
ufacture and that measured with the HSS Corneal Topographer is represented graph-
ically by the scatter diagram in Fig. 6.7. The measurements on the steel balls showed
a statistically significant correlation (R=1.0025, N=15). The system has a tendency
to read generally a higher value of the curvature than the given by the manufacture.

The measurements on the steel balls as well as on the PMMA spheres showed
a good accuracy of the instrument. Fifty-three percent of the readings on the steel
balls and 67% of the measurements on the PMMA spheres were within ±0.25D of
the given value. The remaining 47% of the measurements on the steel balls showed a
difference of 0.26 to 0.41D from the known value. Thus, the system is able to obtain
the curvature radius (or the refractive power) close to the real value of the samples.

10It was assumed that there are no changes in system alignment or in the sample surface during
the measurements.

11The given radius of the steel balls as well as that measured was converted into the refractive
power using Eq. (3.4) and the refraction index of 1.3375 (SKI) to obtain the clinical performance of
the instrument.
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Tab. 6.2. Accuracy measurement of the HSS Corneal Topographer.

Ball/Sample Data by Measured by Deviation

number manufacture HSS Corneal Topographer score∗∗

(mm) (D∗) (mm) (D∗) (D)

Ball 1 7.0 +48.21 7.03 +48.01 +0.21

7.0 +48.21 7.02 +48.08 +0.14

7.0 +48.21 7.02 +48.08 +0.14

Ball 2 7.5 +45.00 7.45 +45.30 -0.30

7.5 +45.00 7.54 +44.76 +0.24

7.5 +45.00 7.55 +44.70 +0.30

Ball 3 8.0 +42.19 8.06 +41.87 +0.31

8.0 +42.19 8.07 +41.82 +0.37

8.0 +42.19 7.94 +42.51 -0.32

Ball 4 8.5 +39.71 8.55 +39.47 +0.23

8.5 +39.71 8.59 +39.29 +0.42

8.5 +39.71 8.54 +39.52 +0.19

Ball 5 9.0 +37.50 9.04 +37.33 +0.17

9.0 +37.50 9.06 +37.25 +0.25

9.0 +37.50 9.09 +37.13 +0.37

Mean±SD∗∗∗ 0.17±0.06

1 +48.2 +48.2 +0.05

+48.2 +48.2 +0.03

+48.2 +48.3 +0.08

4 +45.0 +45.2 -0.10

+45.0 +45.1 +0.20

+45.0 +45.1 +0.20

7 +42.2 +42.3 +0.31

+42.2 +42.1 +0.33

+42.2 +42.3 -0.16

10 +37.5 +37.6 +0.17

+37.5 +37.6 -0.26

+37.5 +37.7 +0.32

Mean±SD 0.10±0.06
∗ The given and measured radius of the steel balls were converted to the refractive
power using the refractive index of 1.3375 (Eq. (3.4)).
∗∗ The deviation score was calculated as difference between the given and the measured
refractive power.
∗∗∗ The abbreviation SD indicates the standard deviation.
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Tab. 6.3. Reproducibility measurements of the HSS Corneal Topographer.

Number of Sphere +45D Sphere +42.2 D

measurement Examiner 1 Examiner 2 Examiner 1 Examiner 2

1 +45.24 +45.25 +42.29 +41.93

2 +45.30 +45.30 +42.51 +41.87

3 +44.82 +45.30 +42.40 +41.82

4 +45.12 +45.42 +42.03 +41.93

5 +44.70 +44.94 +42.40 +42.35

6 +45.06 +45.40 +42.35 +42.29

7 +44.94 +44.64 +42.45 +42.08

8 +44.76 +45.52 +41.77 +42.03

9 +45.36 +44.58 +42.56 +41.72

10 +45.18 +45.27 +41.93 +42.03

Mean±SD +45.05±0.23 +45.16±0.33 +42.27±0.27 +42.00±0.20

The accuracy of the system on the PMMA spheres was a little bit better (Mean±SD:
0.10±0.06) than that on the steel balls (Mean±SD: 0.17±0.06). This may be caused
through the high reflection of the steel balls compared to that of the PMMA spheres.
This led to a worse signal-noise-ratio on the CCD camera of the Hartmann-Shack
wavefront sensor. So the spot finding was more difficult. Because of this fact the steel
balls were not included in further analyse.

6.3.2 Reproducibility

To determine the reproducibility of the system, two calibrated spheres (+45D and
+42.2D) were measured ten times by two investigators. The spheres were repositioned
after each reading. The mean refractive power and its standard deviation were then
calculated for each sphere and investigator (Tab. 6.3).

Fig. 6.8 shows the deviation scores. The measurements were highly reproducible,
but the tests, however, showed an effect of the examiner on the measurements (Tab. 6.4).
So the readings obtained by the first examiner are more precise (reproducible) than
those obtained by the second examiner. This could be explained by the fact that the
first examiner has more practice and is more familiar with the instrument than the
second examiner. The greatest difference between measurements by two investigators
was 0.84 D.

6.3.3 Measurements of Astigmatism

The measurement of the system accuracy and reproducibility on toric surfaces that
represent the regular astigmatism of the cornea was also explored.
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Fig. 6.8. Scatter diagram demonstrating the accuracy of the refractive power mea-
surements in form of deviation scores for two calibrated spheres (+45D
and +42.2D) measured by two examiners.

Tab. 6.4. Precision measurements of the HSS Corneal Topographer.

Sphere +45D Sphere +42.2D

Examiner 1 Examiner 2 Examiner 1 Examiner 2

Mean±SD -0.05±0.23 -0.16±0.33 -0.08±0.27 +0.18±0.20

The astigmatic surfaces were positioned at the ”best-in-focus” position and ro-
tated. The angle of rotation varied from 0◦ to 180◦ and back with the step of 5◦.
The value of astigmatism and the position of the major axis were calculated using
Eq. (5.25) from the Zernike coefficients z3 and z5 obtained from the measurement.

Fig. 6.9 shows the results of the measurements on an astigmatic PMMS sample
having +1D of regular astigmatism. The amount of measured astigmatism shows
a small variation with a mean value of +0.94 D and standard deviation of +0.10D.
Fig. 6.9 (left) shows the accuracy of the readings as a scatter diagram of the deviation
scores. Ninety-nine percent of the readings were within ±0.25D of the calibrated value
(only one measurement had a difference of +0.28 D). Thus, the measurements on the
toric surface could be also considered as accurate (Mean±SD of the deviation scores:
+0.06±0.10D). The measurements of the axis were significant with the correlation
coefficient R=0.9995, number of points N=74 (Fig. 6.9 right).

These measurements demonstrated that the system is both highly accurate and
reproducible in determining the topography of spherical as well as toric surfaces that
approximate the curvature of the central human cornea.

6.3.4 Reproducibility of the Zernike Coefficients

The reproducibility of the Zernike coefficients on the calibrated PMMA samples was
determined. A sample was measured ten times by two investigators. The sample was



6.3 Test Measurements on the Samples 97

Fig. 6.9. Measurements of the amount and the axis of the regular astigmatism.
Left: The scatter diagram of the deviation scores shows the accuracy of
the measurement on a toric surface. Right: The measurements of the
axis of the regular astigmatism show a good correlation.

repositioned after each reading. The mean value and standard deviation were then
calculated for each Zernike coefficient and investigator. The relative errors calculated
as the ratio of the standard deviation and the mean value for each Zernike coefficient
and investigator were also determined.

One typical measurement is presented in Tab. 6.5. Fig. 6.10 shows the reproducibil-
ity of the Zernike coefficients. These measurements demonstrate that the system is
reproducible to determine the Zernike coefficients on the PMMA samples. Addition-
ally, no effect of the examiner on the measurements was obtained. The mean relative
errors for the first and second investigator were 4.38% and 4.29%, respectively.

6.3.5 Comparison with Videokeratoscopy

The data measured with the HSS Corneal Topographer and those obtained with a
conventional corneal topographer based on Placido-disc technology (ATLAS manu-
factured by Humphrey Systems) were compared.

The measurements were done on the PMMA samples with the surface in the
”best-focus” position for both systems. The statistical comparison of the data was
done between these two systems for the keratometric data12 and the statistical index
describing the surface irregularity.

12Only the amount of astigmatism value could be compared because it was not possible to warrant
the equal position of the samples on both systems.
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Tab. 6.5. Measurements of the reproducibility of the Zernike coefficients on the
PMMA sample. The mean value of each Zernike coefficient with its stan-
dard deviation (Mean±SD) and the relative error in percent are given.

Zernike Examiner 1 Examiner 2

coefficient Mean±SD Relative Mean±SD Relative

Z∗
i error∗∗ error∗∗

Z1 -0.000192±0.000006 3.22 -0.000192±0.000004 2.10

Z2 -0.000172±0.000003 1.56 -0.000175±0.000005 2.62

Z3 -0.000070±0.000003 4.46 -0.000070±0.000003 4.45

Z4 -0.000420±0.000029 6.91 -0.000422±0.000024 5.76

Z5 -0.000280±0.000022 7.71 -0.000278±0.000022 7.88

Z6 -0.000102±0.000006 6.16 -0.000102±0.000006 6.13

Z7 0.000072±0.000004 5.55 0.000072±0.000004 5.44

Z8 -0.000102±0.000001 0.35 -0.000102±0.000001 1.36

Z9 -0.000011±0.000001 6.14 -0.000011±0.000001 4.43

Z10 -0.000010±0.000001 5.22 -0.000010±0.000001 5.10

Z11 -0.000004±0.000000 6.44 -0.000004±0.000000 6.43

Z12 0.000084±0.000002 2.82 0.000085±0.000002 2.81

Z13 -0.000100±0.000002 1.48 -0.000109±0.000002 2.17

Z14 0.000108±0.000004 3.34 0.000109±0.000004 3.31

Sphere (D) -0.29±0.02 -0.28±0.02

Cylinder (D) +0.19±0.02 +0.19±0.02

Axis (degree) 0.13◦±0.02◦ 0.13◦±0.06◦
∗ The used numbering schema corresponds with that presented in Tab. 4.3.
∗∗ The relative error was calculated as SD/Mean and is given in percent.

Comparison of Keratometric Data

The keratometric data (i.e., the astigmatism value13) were compared between the
Placido-disc and the wavefront sensor systems.

For the measurements a set of precision toric surfaces modelling the regular corneal
astigmatism from +1.0D to +6.0D was used. The value of astigmatism A for each
surface was calculated using the following formula

A = 337.5
( 1

rgreat

− 1

rsteep

)
, (6.1)

13The sphere could not be compared because ATLAS does not provide this value. Also, the
meridians of the astigmatism could not be compared because the samples could not be positioned
at the same angle on both systems.
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Fig. 6.10. Reproducibility of the Zernike coefficients on a calibrated sample. The
mean value of each Zernike coefficient and its standard deviation are
presented for two investigators.

where rgreat and rsteep are the curvature radii14 of the greatest and the steepest merid-
ian given in mm, respectively. The amount of astigmatism in the case of the measure-
ments with the HSS Corneal Topographer were obtained from the Zernike coefficients
z3 and z5 using Eq. (5.25).

The results are listed in Tab. 6.6. The axis of astigmatism could not be compared
because the measurements were done not at the same time, and thus, it could not be
warranted that the samples are positioned in the same way on both systems.

The measurements on both systems were significant having the correlation coeffi-
cient of R=0.99, N=8 for ATLAS and R=1.01, N=8 for HSS Corneal Topographer
(Fig. 6.11 left). But the measurements obtained with ATLAS were more accurate than
those obtained with the HSS Corneal Topographer (Fig. 6.11 right). The mean devia-
tion score value and its standard deviation in the case of the Placido-disc topographer
and the HSS Corneal Topographer were 0.04±0.08 and -0.06±0.09, respectively. A
worse precision of the HSS Corneal Topographer compared to that of ATLAS may be
caused through an insufficient placement although the Z-tracker was used.

Comparison of the Surface Irregularity Index

The measurements of the surface irregularity were compared. The data are listed in
Tab. 6.7.

Fig. 6.12 shows the correlation of the corneal irregularity measurement between
two systems that indicates a low agreement. The correlation coefficient is R=0.771
with the number of points N=20. This may be explained by the fact that the field

14The curvature radius of the greatest and the steepest meridian for each surface were given by
the manufacturer.
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Tab. 6.6. Measurements on the toric surfaces.

Sample Given Measured by Deviation Measured by Deviation

number value∗ ATLAS score∗∗ HSS Corneal score∗∗

(D) (D) (D) Topographer (D)

(D)

13 +3.72 +3.75 -0.03 +3.70 -0.18

14 +1.42 +1.25 0.17 +1.37 0.05

15 +6.03 +5.88 0.15 +6.11 -0.08

16 +2.81 +2.87 -0.06 +2.72 0.09

17 +1.00 +1.00 0.00 +1.13 -0.13

18 +4.62 +4.62 0.00 +4.72 -0.08

19 +0.89 +0.87 0.02 +0.99 -0.08

20 +2.28 +2.25 0.03 +2.31 -0.03

Mean±SD 0.04±0.08 -0.06±0.09
∗ The given amount of astigmatism for each surface was calculated using Eq. (6.1)
from the known curvature radius of the greatest and the steepest meridian given by
the manufacturer.
∗∗ The deviation score was calculated as difference between the given and the
measured astigmatism.

Fig. 6.11. Measurements on the toric surfaces. Left: The accuracy of the Placido-
disc (ATLAS) and the wavefront sensor (HSS Corneal Topographer) sys-
tems. Right: The scatter diagram of the deviation score values demon-
strating a good clinical accuracy of both systems.
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Tab. 6.7. Measurements of the surface irregularity index on the PMMA samples.

Sample Measured by Measured by

number ATLAS HSS Corneal Topographer

1 0.45 0.27

2 0.57 0.31

3 0.78 0.72

4 0.44 0.54

5 0.48 0.45

6 0.77 0.61

7 0.41 0.47

8 0.47 0.37

9 0.54 0.57

10 0.91 0.70

11 0.75 0.59

12 0.90 0.80

13 0.42 0.31

14 0.42 0.12

15 0.38 0.28

16 0.47 0.57

17 0.38 0.33

18 0.53 0.68

19 0.58 0.48

20 0.41 0.29

Fig. 6.12. Comparison of the surface irregularity measurement for ATLAS and the
HSS Corneal Topographer.
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of measurements on the samples are different for these two systems. ATLAS obtains
the irregularity index for a great area on the samples being about 8mm or more in
diameter, while the HSS Corneal Topographer measures the area of about 6mm in
diameter only.

6.4 Measurements on the Human Cornea

As mentioned in the introduction to this chapter the tests of the system on human
corneas are more difficult than those on the PMMA samples because the absolute
power of a human cornea is unknown. Also, it is not possible to assess the accuracy
of the instrument. So only the reproducibility of the Zernike coefficients on human
eyes could be determined. Additionally, the eye moves permanently complicating
the positioning of the anterior surface of the cornea at the correct axial and lateral
position.

The keratometric data could not be compared to those measured with a standard
videokeratoscope because they was not provided at the time when the measurements
were made with the HSS Corneal Topographer.

6.4.1 Reproducibility of the Zernike Coefficients

To determine the reproducibility of the Zernike coefficients on the human cornea,
human eyes were measured.

Tab. 6.8 shows a typical measurement on a human cornea. The measurements
were made with and without the use of the Z-tracker module to evaluate its need for
the measurements. The cornea was measured ten times by two investigators. The eye
was repositioned after each reading. The mean value, standard deviation, and relative
error were then calculated for each Zernike coefficient and investigator.

The measurements with the Z-tracker demonstrated a worse reproducibility of
the Zernike coefficients on the human cornea than that on the calibrated samples
(Fig. 6.13). The relative errors were in this case higher for all Zernike coefficients. This
fact can be explained through eye movements during the measurement. Although the
head and chin of the patient are positioned using the forehead and chin rests, and the
patient was asked to look on a target, the position of the cornea is not fixed during
the examination compared to that of the PMMA samples. No significant effect of
investigators on the measurements was found.

The reproducibility with the use of the Z-tracker is much better than that without
the Z-tracker (Fig. 6.14). All Zernike coefficients had a great relative error if no Z-
tracker was used for the measurements. The relative error of the Zernike coefficient
z4 was especially high. Also, the correct placement of the anterior surface of the
cornea is very important to get a correct measurement. A better reproducibility of
the measurements may be obtained if a better Z-tracker module would be used that
is able to compensate for the eye movements.
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Fig. 6.13. Reproducibility of the Zernike coefficients on a human cornea with the
use of the Z-tracker. The mean value of each Zernike coefficient and its
standard deviation are presented for two investigators.

Fig. 6.14. Reproducibility of the Zernike coefficients on a cornea with and without
the use of the Z-tracker. The mean value of each Zernike coefficient
and its standard deviation are presented. Note, a great relative error
for Zernike coefficients z4 representing defocus if no Z-tracker module is
used.
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Chapter 7

CONCLUSION AND OUTLOOK

Although technique for assessing corneal topography has been available for many
years, it is only relatively recently that its use has become more widespread, and
the field of corneal topography is rapidly expanding. New principles, methodology,
and new software for more realistic interpretation of the corneal surface are currently
being investigated.

With the growing use of new surgical procedures such as LASIK that correct
refractive errors by modifying corneal shape it is increasingly important that methods
for the analysis of corneal topography keep pace.

Nowadays, the standard method for measuring corneal topography in clinical
praxis is the videokeratoscopy. A videokeratoscope uses an improved version of
Placido’s disc that is projected on the cornea to evaluate the topography of the anterior
surface. Trained observers can obtain qualitative and semi-quantitative information
about the shape of the cornea from simple visual inspection of videokeratoscopic im-
ages. More exact quantitative information can only be obtained by more sophisticated
analysis of the images using computer software. Modern corneal topographers provide
qualitative as well as quantitative information about the corneal shape and condition
above a great area of the cornea.

The major deficiency of videokeratoscopy is the assumption about the corneal
shape that is approximated as a sphere. In reality, the cornea is asymmetrically
aspheric. Therefore the accuracy of the videokeratoscope normally decreases as the
corneal surface departs from a sphere.

In this work a corneal topographer using an alternative method for measuring
corneal topography than that used by a conventional corneal topographer is pre-
sented. This corneal topographer (called the HSS Corneal Topographer) bases on the
technique of the wavefront analysis with a Hartmann-Sack wavefront sensor known
from astronomy. The Hartman-Shack wavefront sensor has been successfully applied
for measurements of the optical aberrations on the human eye since a few years.

The major advantage of the HSS Corneal Topographer over a standard Placido’s
disc types topographer is its ability to directly obtain data of the corneal topography
for the most important central optical zone of the cornea without any approximations.

The optical principle of measuring corneal topography with the HSS Corneal To-
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pographer creates high demands on the optical components of the system. Especially
a focussing objective must have a high optical quality to obtain the information about
the topography for a large area on the human cornea. Using a wide angle objective1

having less optical aberrations, the field measured on the cornea could be increased
up to 6mm in diameter.

A special software was written to evaluate the measurements done with the HSS
Corneal Topographer. The software is extensive and contains many features providing
a lot of information regarding the shape and optical quality of the cornea. It implies
standard topographical maps (such as elevation and irregularity maps) and statistical
indices (such as irregularity and asymmetry indices) also provided by most modern
corneal topographers used by ophthalmologists. The calculation and presentation of
the topographical maps and parameters was made in such a way that the data could
be easily compared with those obtained by the standard corneal topographers. The
user interface was kept simple to make the handling of the computer program and the
measurement process for users as easy as possible.

An additional presentation of the corneal topography height data using the Zernike
polynomials promises excellent advances toward the calculation of clinically relevant
parameters being needed to compare different topography systems. The Zernike co-
efficients describing the optical quality of the corneal surface are also needed for the
wavefront-based refractive surgery that became popular in last years.

The tests of the software calculation algorithm showed a perfect reliability. So it
is warranted that the image analysis and evaluation processes run correctly.

The optical setup of the topography unit was improved significantly by adding a
Z-tracker module for a more correct and precise positioning of the anterior surface of
the cornea.

To evaluate the need of the Z-tracker module, a simulation with an optical de-
sign program (ZEMAX) was performed. The simulation showed that the incorrect
placement of the cornea yields wrong values of the Zernike coefficients. The use of
the Z-tracker is essential to derive an accurate and reproducible measurement on the
human cornea.

The measurements with the HSS Corneal Topographer confirmed the importance
of the Z-tracker module. Already, a slight displacement of a tested surface from the
correct axial position of about 0.1mm caused changes in the value of defocus of about
0.42D. The Zernike coefficient describing the spherical aberration was also affected
by the displacement. That showed that the Z-tracker module is very important for
correct measurements with the HSS Corneal Topographer.

Finally, the HSS Corneal Topographer was tested for its clinical acceptance.

The measurements of the system accuracy and precision on two classes of surfaces
representing the human cornea have been explored. First, the accuracy and precision
of the HSS Corneal Topographer were evaluated on calibrated steel balls and spherical
PMMA samples. Second, the tests on toric surfaces have been established. The

1A Leica objective with a focal length of 50mm and a f-number of 1.0.
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measurements demonstrated that the system is both highly accurate and reproducible
in determining the topography of spherical as well as toric surfaces that approximate
the curvature of the central human cornea.

The tests showed a small effect of the examiner on the measurements. So the
readings obtained by a trained examiner were more precise (more reproducible) than
those obtained by an examiner being less familiar with the instrument. So increasing
practice with the instrument will enhance the significance of the measurements.

The data obtained with the HSS Corneal Topographer were also compared to that
provided by a videokeratoscope used in clinical praxis (ATLAS corneal topographer
manufactured by Humphrey Systems). The comparison showed a good accuracy of
the HSS Corneal Topographer, but the measurements obtained with the conventional
corneal topographer were more precise than those obtained with the HSS Corneal
Topographer.

A comparison of the corneal irregularity measurements between these two systems
indicated a low agreement. This may be explained by the fact that the area has
been measured on the samples is different for these two systems. ATLAS obtains
the irregularity index for a greater area on the samples being about 8mm or more in
diameter, while the HSS Corneal Topographer measures the area of about 6mm in
diameter only.

The Zernike coefficients could not be compared because ATLAS does not provide
this kind of information.

The test measurements on human corneas were more difficult than those on the
samples because of eye movements.

The studies of the reproducibility of the Zernike coefficients demonstrated the
importance of the Z-Tracker for the correct placement of the corneal surface. While
the HSS Corneal Topographer achieves such a high degree of accuracy on the samples
acceptable for the clinical use, the instrument is not precise enough to be applied for
the measurements on the human cornea. Although a patient is asked to fix the look
on the target the remaining eye movements still significantly affect the measurements.
The Z-tracker module used in the current optical setup helps to adjust the anterior
surface of the samples at the correct axial position, but the Z-tracker is not able to
compensate for the axial eye movements during a measurement. Thus, a more precise
and accurate eye tracking is needed to get better measurements on the human cornea.

No comparison with the videokeratography data was possible for the measurements
on the human cornea because the videokeratoscope was not available at this time.

Some additional devices and programs could improve and expand the capabilities
of the HSS Corneal Topographer in the future.

First, an objective specially designed for the system2 would improve the optical
quality of the instrument. The images of the spot pattern would be especially good

2The Leica objective being used is designed for a photo camera, and so it is optimized for visible
light. The HSS Corneal Topographer uses an infrared laser as light source. Thus, from the optical
perspective the focusing of infrared light by this objective is normally worse than that for visible
light.
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if this objective would also correct the optical aberrations caused by other optical
components of the system.

In present version the software algorithm works manually. This complicates the
evaluation process performed by a user. The spot finding algorithm should be pro-
grammed to run automatically to eliminate the effect of the investigator on the results
of the measurements.

More functions (such as Modulation Transfer Function, Point Spread Function,
and so on) describing optical performance of the cornea and corneal visual acuity
would help to obtain the corneal contribution to the overall vision. That way the
corneal topography will allow a better understanding of correlations between the
shape, optical aberrations, and visual acuity of the cornea. Thus, one can deter-
mine if visual problems are caused by the cornea or through the inner optics of the
eye.

In spite of the Z-tracker, a measurement done with the HSS Corneal Topographer
seems to be affected by the placement of a tested surface. In the present optical setup
there is no possibility to compensate for eye movements during an examination that
strongly affect a measurement. An examiner has to align the axis of the instrument
with the visual axis of the patient’s eye using a watching camera. The correct axial
position is then given by the maximal intensity detected on the photomultiplier. This
works correctly for a fixed surface, but is sometimes insufficient for a constantly mov-
ing surface such as human cornea. An electronic module for the Z-tracker that is able
to persistently and rapidly compensate for the axial eye movements would enhance
the reproducibility of the measurements performed on the human cornea.

Additionally, more clinical studies for testing of the HSS Corneal Topographer on
human eyes are necessary. This will provide a better statistic and give an evidence for
a possible clinical usefulness of the instrument. Also comparisons of the topography
data obtained with the HSS Corneal Topographer on human eyes to those provided
by the standard corneal topographers are needed to estimate the clinical acceptance
of the system.



Appendix A

SOFTWARE DESCRIPTION

Corneal Topography is a computer program specially written for the HSS Corneal
Topographer. This software implies the image processing of the spot pattern to re-
construct the corneal shape.

This chapter provides explanation of the conventions used in the computer pro-
gram and description of available procedures. Tutorials on using the software are also
given.

A.1 User Interface

The interface of the software has been designed to be simple to use. Most features
are accessed by selecting options from either pop-up or pull-down menus. Keyboard
shortcuts are provided for quickly navigation or bypassing the menu structure. In this
section the details of the user interface are presented.

A.1.1 Main Menu

There are four menu options in the start up window: File, Edit, View, and Help.
Every of these menu headings has several drop-down menus. Some menu options are
available every time, some only by special conditions. Some of the menu options can
be also selected from tool bars.

File

From the File menu an exam can be started, an image loaded, saved and printed.

• New Exam. This option allows to start a new examination by showing and
taking a recent spot pattern.

• Open Exam. This option opens an existing exam.

• Save Exam. This option saves results of an examination into a file.

• Print Exam. This option prints the results of a current examination.
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• Open Image. This option opens an existing image.

• Save Image. This option saves a current image as BMP or TIFF file.

• Print Image. This option prints a current spot pattern.

• Save Spot Positions. This option allows the user to save the actual spot
positions into a file after they have been found.

• Save Coefficients. This option allows the user to save the Zernike coefficients
into a file after they have been calculated.

• Exit. This option closes the computer program.

Edit

The Edit menu option contains two basic choices. One choice Options is used to
show and modify system or calculation specifications. The other choice Reference
serves for the setting of the reference spot positions.

From the Edit/Options menu the system parameters can be changed. The op-
tions dialog window, as shown in Fig. A.1, contains several dialog tabs that allow
global preferences for the features in computer program to be specified.

• Calculation Algorithm. This dialog tab allows the user to specify some of
the important calculation parameters such as number of iterations, spot size,
and number of spots used for the image analysis. The user can determine the
corneal reference radius and the order of Zernike polynomials. The file with the
current reference spot positions is also shown here.

• CCD Chip. The user can specify the chip parameters of the used CCD camera.

• Lens Array. The characteristics of the micro lens array should be set here.

• Optical System. The parameters of the optical system can be changed here.

The user can navigate between the dialogs tabs by clicking on the tab with the mouse.
To change the parameters, move the cursor to the desired cell and type the new value
in. Some parameters are limited, and those value can be modified only by clicking
with the mouse on their up-and-down button near the cell to increase or minimize the
parameter value. The Options dialog window can be also quickly selected from the
tool bar.

From the Edit/Reference menu the reference spot positions can be set. To
change the reference spot positions, a reference image should have been opened. Af-
ter the spots have been found as described in Example 3, the user have to select
Edit/Reference and click an OK button in the message window. The reference
spot positions will be overwritten and set to those that have been even found.
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Fig. A.1. Option dialog tabs.
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View

The View menu option has the following items:

• Positions. This option allows to show the current reference and actual spot
positions as well as the differences between them.

• Coefficients. This menu option lists the Zernike coefficients that have been
calculated.

• Topography. This option shows the topographical maps and corneal parame-
ters.

Help

The Help menu option provides help information.

A.1.2 Tool Bars

The main window also displays a row of buttons just below the menu bar. This
toolbar buttons are used to quickly select some of common operations. All of the
buttons represent functions and features available on the menu.

The tool bars are as follow (from left to right): New Exam, Open Exam, Save
Exam, Print Exam, Open Image, Save Image, Show Reference, Show Spots, Show
Difference, Show Topography, Show Zernike coefficients, Set Options, and Help.

A.1.3 Keyboard Shortcuts

Most of the commonly used menu options have keyboard equivalent which may be
faster to use. The hot keys for common window operations are given in Tab. A.1.

Tab. A.1. Hot keys.

Key combination Description

Ctrl+N Start a new exam

Ctrl+O Open an existing image

Ctrl+S Save a current spot pattern into a file

Ctrl+P Print a current exam

Ctrl+Z Save the Zernike coefficients into a file

Ctrl+Q Close the computer program (Exit)

F1 Help

F9 Edit options
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A.1.4 Panels

The software has different types of panels, each of which serves a different purpose.

Live Image Panel

”Live Image” panel allows to show and take a current live image from the CCD camera
(Fig. A.2).

Using the scroll bars, the contrast and brightness of the CCD camera can be
changed. By clicking on ”Take Image” button the image will be taken and shown in
”Do Analysis” panel.

Additionally, an image from the watching camera with a patient’s eye can be
viewed that helps to center the eye on the visual axis of the instrument.

Do Analysis Panel

”Do Analysis” panel shows an actual opened image and allows the user to find the
current spot positions (Fig. A.3).

The number of spots to be taken into account by the evaluation can be selected
from the list using the drop down button. Also the form of the pattern (circular or
rectangular) has to be chosen using corresponding radio buttons.

The user can see the spot positions (marked as green crosses) loaded from the
reference file and the actual spots that have been found (marked as red crosses) as
well as the differences between them represented as yellow lines by clicking on the
check boxes next to the option. Additionally, the spot positions calculated from the
theory for the given parameters of the optical system can be shown1.

Show Results Panel

”Show Results” panel shows corneal topography: different maps, corneal parameters,
statistical indices, the Zernike coefficients, and some other data.

In Fig. A.4 the computer display of the Show Results panel summarizing the mea-
surement results of an eye is presented. In the left part of the panel, the elevation and
irregularity maps (Section 3.3.1) are displayed in a color-coded form. Every map has
a color scale that assigns particular color to data range. We used relative scale2 for
colors that identifies the actual minimal and maximal value of a particular cornea.

In the middle of the panel some corneal parameters and data are shown. The
corneal radius, refractive power, corneal elevation, and irregularity (wavefront error
in microns) at any point of the corneal surface can be shown by moving the mouse
above the maps to that point. All of these parameters are summarized at the top of

1The theoretical spot positions commonly differ from the reference spot positions being loaded
because they do not consider all existing optical aberrations of the system.

2The other often used scale type is an absolute scale with the number of colors, step size, and
range being constant. This scale gives sometimes a better presentation of the corneal topography.
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Fig. A.2. ”Live Image” panel.
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Fig. A.3. ”Do Analysis” panel.
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Fig. A.4. ”Show Results” panel.
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the middle column in the group ”Data”. In the group ”Indices” the evaluated corneal
statistics3 (such as irregularity and asymmetry indices) are listed. The box ”Corneal
Parameters” contains corneal sphere, cylinder4, and area measured on the cornea. In
addition, information regarding optical performance5 of the cornea (the indices such
as RMS of different orders, OAI, and Strehl ratio) is given.

On the right side of the panel, the Zernike coefficients up to 4th order are listed.
They can be shown without units or in microns.

A.2 Getting Started

This section goes through step-by-step examples that teach how to use the computer
program. In the first example an examination will be performed. In the second
example an existing image will be open, and in the third example an opened spot
pattern will be analyzed. The fourth example explains how to set or change the
reference spot positions.

A.2.1 Example 1 - Do a New Measurement

First of all, the computer program should be run. The main screen will appear. To
begin, show a live image by clicking on File/New Exam. Once ”Live Image” panel
is shown, the live image can be seen in the right part of the window. The contrast
and brightness of the CCD camera can be controlled with the scroll bars to achieve a
best signal-to-noise ratio.

Now, a patient’s eye should be positioned. There are two facilities helping by the
positioning. First, use the watching camera to center the eye on the visual axis of
the instrument moving the instrument up and down, left and right. Second, check
if the anterior surface of the cornea is at the correct axial position by watching the
intensity on the photomultiplier. It should be as maximal as possible to be sure
the eye is positioned correctly. To correct the axial position of the eye, move the
instrument towards or backwards to the eye in the axial direction. The patient’s chin
should be positioned on the chinrest and forehead pressed against the forehead rest.
Additionally, the patient has to fix on the target during the exam (black cross on the
green background).

After the eye has been positioned, a measurement can be done. To start the
measurement, click on ”Take Image” button. Now, ”Do Analysis” panel displaying
the taken image appears on the screen, and the image can be analyzed (see Example
3).

The taken image can be also saved or printed by clicking on File/Save Image or
File/Print Image, respectively.

3The highlighted statistic is explained in Section 3.3.2.
4These data are determined by Eq. (5.25).
5For more information, Section 5.6.3.
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Fig. A.5. By clicking on the middle spot of a spot pattern (a) the centroids (spot
gravity points) will be found and marked (b).

A.2.2 Example 2 - Open an Existing Image

The software allows to load an existing image, provides its analysis and graphical
presentation of corneal topography. The supported file formats are BMP and TIFF.

To load an image select File/Open Image. The list of files in dialog window will
be generated. When the image have been selected, click on the OK button, and the
program will open the image in ”Do Analysis” panel. Now, the image can be analyzed
(see Example 3).

A.2.3 Example 3 - Analyze an Image

After a new image has been taken (see Example 1) or an existing image has been
opened (see Example 2), it can be analyzed.

First, the reference spot positions should be loaded correctly. By program start the
reference is loaded from reference file. If there are some problems, a message informing
that the reference has not been found will appear at the start of the computer program.
If the reference spot positions are wrong or not loaded please follow Example 4 to load
or change the reference. The current reference spot positions can be shown by clicking
on the check box Current Reference in the group box ”Show”.

Next, the user need to set a number of the spots that should be taken into account
by the image analysis. It can be done using the drop down button. The form (rect-
angular or circular) of the spot pattern must be also selected for the analysis using
the corresponding radio button.

Ones more, the options must be correct. To see what options are defaults or to
edit them, click on Edit/Options in the menu or on the tool bar ”Set Options”.

Because the evaluation algorithm does not work automatically, the user has to
make evaluation manually. So click on the middle spot of the spot pattern to find all
centroids (spot gravity points) (Fig. A.5). After this, the spots being found will be
marked, and ”Show Results” button will be available. Clicking on this button takes
the user to the ”Show Results” panel showing the corneal topography (Section A.1.4).
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The results of an examination can be saved into a file or printed by clicking on
File/Save Exam Into File or File/Print Exam, respectively.

A.2.4 Example 4 - Set a Reference

The user can change the reference spot positions by loading a reference image (see
Example 2) and clicking on the middle spot of the spot pattern (see Example 3).
Before doing it, the number of spots and the form of the spot pattern should have been
chosen. The user can select the number of spots by clicking on the drop down button
for the spot number. The radio buttons ”Circular” and ”Rectangular” determine the
pattern form used by the image analysis.

The spot positions being found can be saved as reference positions by opening
Edit/Reference and clicking OK.
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