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1 Summary

Sugar beet (Beta vulgaris) is one of the few plants storing large amounts of sucrose. During

the development of its large taproot, sucrose is accumulated inside the vacuoles, reaching

concentrations of up to 20% (w/w) in modern cultivars. In the course of this study, the ex-

pression of the major sucrolytic enzymes in sugar beet was determined. Invertase activity is

negatively correlated with sucrose accumulation and during the major part of taproot devel-

opment, only sucrose synthase isoforms and no acid invertases are expressed. After wounding,

a cell wall and a vacuolar invertase are induced, of which the latter is of high importance for

post-harvest sucrose losses. E�orts to silence this vacuolar invertase by overexpression of an

invertase inhibitor from tobacco did not lead to a reduction of the wound-induced sucrose

hydrolysis.

An endogenous invertase inhibitor of sugar beet, BvC/VIF11, was identi�ed and function-

ally characterized. It is strongly expressed during taproot development and the recombinantly

produced BvC/VIF1 protein has a strong a�nity against acid invertases, especially against

vacuolar invertases. In order elucidate the pyhsiological role of the inhibitor during taproot

development, a transgenic approach to silence its expression was initiated. Furthermore,

sugar beet plants overexpressing BvC/VIF1 have been generated and �rst tests with these

plants have shown a signi�cant reduction of vacuolar invertase activity in leaves.

With an antiserum raised against the BvC/VIF1 protein, two inhibitor proteins are de-

tected in extracts from taproots, whereas in the cell wall of Beta vulgaris suspension culture

cells only one protein is found. For all three proteins, partial peptide sequences were identi-

�ed, which matched the known BvC/VIF1 sequence. In leaves of transgenic sugar beet plants

overexpressing BvC/VIF1, but not in leaves of wildtype plants, two proteins of a similar size

as observed in untransformed taproots were detected, suggesting that proteins of deviating

size may arise from the translation of a single BvC/VIF1 gene.

The subcellular localization of the inhibitor proteins was studied using GFP fusions. The

fusion proteins appeared either in the vacuole, indicating the presence of vacuolar sorting

signals in the BvC/VIF1 sequence, or aggregated in vesicle-like structures. Furthermore, a

proteolytic cleavage of the inhibitor-GFP fusion occurred, leading to the presence of free

inhibitor protein.

In untransformed cells, the smaller of the two inhibitor proteins seems to be localized

in the cell wall, as was deduced from di�erential extraction from taproots and suspension

culture cells.

The interaction between invertases and inhibitors has been studied in detail. Therefore, a

sugar beet invertase was produced recombinantly in bacteria and its enzymatic characteris-

tics were studied. The KM value of the invertase is in the low millimolar range and it shows

1Beta vulgaris cell wall or vacuolar inhibitor of β-fructosidase
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1 Summary / Zusammenfassung

a maximal activity between pH4 and 6. The interaction with the invertase inhibitor is also

strongly pH dependent, showing maximum inhibition between pH4 and 5. No inhibition and

binding of the inhibitor was observed above pH6. Since pH values in cellular compartments

like the cell wall or the vacuole underly dynamic changes, this leaves open a potential regu-

latory mechanism of the invertase inactivation.

In a second project, �rst results about the presence and regulation of proteins regulating

the e�ciency of respiration have been obtained. Whereas two identi�ed isoforms of uncou-

pling proteins are constitutively expressed in sugar beet, an induction of alternative oxidase

proteins during wounding and storage was observed. Members of both gene families are po-

tential target genes, which may in�uence sucrose losses during post-harvest storage. They

serve as energy-dissipating systems and their activity can increase respiration rates and con-

comitantly sucrose breakdown. The obtained results provide �rst evidence, that at least the

alternative oxidase shows a strong response to wounding and storage.
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Zusammenfassung

Regulation der Saccharoseakkumulation und -stabilisierung in der Zuckerrübe:

Ein�uss von Invertaseinhibitoren und Auftreten von mitochondriellen,

Energieüberschuss-abbauenden Proteinen

Die Zuckerrübe (Beta vulgaris) ist eine der wenigen P�anzen, die groÿe Mengen Saccharose

speichert. Während der Entwicklung der Speicherwurzel akkumuliert Saccharose in den Va-

kuolen und kann in modernen Sorten einen Anteil von bis zu 20% des Frischgewichtes errei-

chen. In der vorliegenden Arbeit wurde die Expression der wichtigsten Saccharose-spaltenden

Enzyme bestimmt. Die Aktivität von Invertasen zeigt eine negative Korrelation zur Saccha-

roseanreicherung und während des Groÿteils der Speicherwurzelentwicklung werden lediglich

Isoformen der Saccharose-Synthase und keine Invertasen exprimiert. Nach Verwundung wer-

den eine Zellwand-lokalisierte und eine vakuolären Invertase induziert, wobei letztere für

einen groÿen Teil der Saccharoseverluste nach der Ernte verantwortlich ist. Versuche die Ak-

tivität dieser vakuolären Invertase durch Überexpression eines Invertaseinhibitors aus Tabak

zu unterbinden erbrachten keine Verringerung der wundinduzierten Saccharosehydrolyse.

Ein endogener Invertaseinhibitor der Zuckerrübe, BvC/VIF12, wurde identi�ziert und

funktionell charakterisiert. Der Inhibitor zeigt eine starke Expression während der Spei-

cherrübenentwicklung und das rekombinant hergestellte BvC/VIF1-Protein zeigt eine hohe

A�nität zu sauren Invertasen, insbesondere zu vakuolären Invertasen. Um mehr über die

physiologische Rolle des Inhibitors während der Entwicklung der Zuckerrübenspeicherwurzel

herauszu�nden, wurde Versuche zur Verringerung der Expression dieses Gens unternommen.

Auÿerdem wurden Zuckerrübenp�anzen hergestellt, die BvC/VIF1 vermehrt exprimieren.

Erste Untersuchungen an diesen P�anzen zeigten, dass es hierdurch zu einer signi�kanten

Verringerung der vakuolären Invertaseaktivität in Blättern kommt.

Mittels eines gegen das BvC/VIF1-Protein erstelltem Antiserums wurden zwei Inhibitor-

proteine in Speicherwurzelextrakten nachgewiesen. Dahingegen trat in der Zellwand von Beta

vulgaris Suspensionskulturzellen nur ein Protein auf. Von diesen drei Proteinen wurden parti-

elle Peptidsequenzen ermittelt, die mit der bekannten BvC/VIF1-Sequenz übereinstimmten.

In Blättern von transgenen, BvC/VIF1 überexprimierenden, P�anzen wurden zwei Protei-

ne beobachtet, die eine ähnliche Gröÿe zeigen wie die in untransformierten Speicherwurzeln

beobachteten und die in Blättern von Wildtypp�anzen nicht vorhanden sind. Dies deutet

daraufhin, dass möglicherweise Proteine mit unterschiedlichen Gröÿen durch die Translation

eines einzelnen BvC/VIF1-Gens entstehen.

Die subzelluläre Lokalisierung der Inhibitorproteine wurde mittels GFP-Fusionen analy-

siert. Die Fusionsproteine wurden entweder in der Vakuole beobachtet, was auf das Vorhan-

densein von vakuolären Sortierungssignalen hindeutet, oder aggregierten in Vesikel-artigen

2Beta vulgaris cell wall or vacuolar inhibitor of β-fructosidase
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1 Summary / Zusammenfassung

Strukturen. Weiterhin trat eine proteolytische Spaltung von Inhibitor-GFP Fusionen auf, die

zum Nachweis von freiem Inhibitorprotein führte.

Mittels di�erentieller Extraktion aus untransformierten Speicherwurzeln und Suspensi-

onskulturzellen konnte gezeigt werden, dass das kleinere der beiden Inhibitorproteine in der

Zellwand lokalisiert zu sein scheint.

Um die Wechselwirkung zwischen Invertase und Inhibitor genauer zu untersuchen, wur-

de eine Zuckerrüben-Invertase rekombinant in Bakterien hergestellt und ihre enzymatischen

Eigenschaften untersucht. Der KM-Wert der Invertase liegt im unteren millimolaren Bereich

und das Enzym zeigt eine maximale Aktivität zwischen pH4 und 6. Die Wechselwirkung mit

dem Invertaseinhibitor ist ebenfalls in hohem Maÿe pH-abhängig und zeigt ein Maximum

zwischen pH 4 und 5. Oberhalb von pH6 kommt es zu keiner Bindung des Inhibitors an die

Invertase. Da die pH-Bedingungen von zellulären Kompartimenten wie der Zellwand oder

der Vakuole dynamischen Schwankungen unterliegen, handelt es sich hierbei möglicherweise

um einen Regulationsmechanismus der Invertaseinaktivierung.

In einem zweiten Projekt wurden erste Ergebnisse über das Vorhandensein und die Re-

gulation von Proteinen, die die E�zienz der Atmung regulieren erzielt. Zwei Isoformen von

sogenannten Uncoupling Proteinen werden konstitutiv in der Zuckerrübe exprimiert, wäh-

rend eine Induktion einer alternativen Oxidase nach Verwundung und Lagerung beobachtet

wurde. Mitglieder beider Genfamilien sind mögliche Zielgene, die Saccharoseverluste wäh-

rend der Lagerung beein�ussen können. Sie dienen als Energie-Ableitungssysteme und ihre

Aktivität kann die Respiration erhöhen, was einen vermehrten Saccharoseabbau zur Folge

hat. Die ermittelten Ergebnisse weisen daraufhin, dass zumindest die alternative Oxidase

eine starke Reaktion auf Verwundung und Lagerung zeigt.

4



2 Introduction

2.1 Sugar beet as a model system for sucrose storing

plants

Sugar beet is besides sugarcane the only industrially exploited source of table sugar, the

disaccharide sucrose. In most higher plants sucrose plays a central role as the transport form

of assimilated carbon. Carbohydrates produced in photosynthetic active parts of the plant

(source tissues) have to be transported to sink tissues, which require imported energy for

consumption. In most plant species the imported sucrose is either metabolized or converted

into storage compounds like starch, oil or storage proteins. Sugar beet plants however ac-

cumulate high levels of sucrose inside a large, vegetative storage root (taproot). At time of

harvest, modern sugar beet cultivars reach sucrose contents of up to 20% of the total fresh

weight. In order to accumulate and stabilize such a high concentration of the chemically and

osmotically very active sucrose, sugar beet must have developed special mechanisms to ful�ll

this task.

In the �rst chapters, the role of sucrose and sucrose cleaving enzymes during plant de-

velopment will be addressed. Later the current knowledge about these processes will be put

into context with the only limited understanding on the process of sucrose accumulation and

storage in sugar beet.

2.2 The role of sucrose during plant development

Most higher plants use sucrose as the transport form of carbohydrates from the organs of

production (sources) to the energy consuming regions of the plant (sinks). During photo-

synthesis, the �rst stable form of �xed carbohydrates are triose phosphates produced in

the Calvin cycle. In the chloroplasts the triose phosphates are either transiently stored as

starch, or exported into the cytosol, where sucrose can be formed through the synthesis

of sucrose-phosphate from UDP-glucose and fructose-6-phosphate by the enzyme sucrose-

phosphate synthase (SPS, EC 2.4.1.14). The hydrolysis of sucrose-phosphate to sucrose by

sucrose-phosphatase (SPP, EC 3.1.3.24) produces sucrose and drives the equilibrium of the

previous reaction into the direction sucrose-phosphate production (Taiz & Zeiger, 2000).

5



2 Introduction

2.2.1 Transport of sucrose involves phloem loading and unloading

The transport of photoassimilates from the place of production into sink tissues, where

they are either rapidly consumed or actively stored, is managed via the phloem part of

the plants conducting tissues. After sucrose is synthesized in leaf mesophyll cells, it di�uses

symplastically towards the phloem (Williams et al., 2000).

Phloem loading

For the entrance of sucrose into the phloem, in many plant species an apoplastic step is re-

quired. The release of sucrose into the apoplast and the active uptake into the phloem helps to

overcome the concentration di�erence of sucrose between the mesophyll cells (20-200mM su-

crose) and the sieve element-companion cell complex (300-1500mM sucrose, Williams et al.,

2000; Taiz & Zeiger, 2000). Sucrose released into the apoplast is not hydrolyzed into hexose

before entering the phloem (Delrot, 1989). This assumption is supported by the severe dis-

tortions in carbon partitioning produced by the overexpression of yeast derived invertases in

the apoplast of several plant species (e.g. Sonnewald et al., 1991; Heineke et al., 1992; Weber

et al., 1998).

The process of phloem loading is an important regulatory step to determine the carbon

partitioning between the source and sink tissues. Sugar beet is, due to the lack of sym-

plastical connections between the mesophyll cells and the conducting complex, a typical

example for apoplastic phloem loading. It was shown that this process is sensitive to anoxia

and uncouplers, suggesting that sucrose is loaded into the phloem in an energy dependent

process (Sovonick et al., 1974). For many plant species it has been shown, that sucrose is

loaded into the phloem via an sucrose-H+-symporter localized in the plasma membrane of

phloem cells (Williams et al., 2000 and ref. therein). In sugar beet the activity of the su-

crose symporter BvSUT1 is regulated by the availability of photoassimilates in the source

tissue (Chiou & Bush, 1998). Externally fed sucrose leads to a decrease in transport activity

of isolated membranes and a reduced expression of the sucrose symporter. The transporter

is speci�cally localized in phloem companion cells and the loss of sucrose transport activ-

ity is accompanied by the loss of protein abundance as a result of decreased transcription

(Vaughn et al., 2002). The response to sucrose accumulation is at least partially mediated

by a protein kinase involved in down-regulating the transcription of the BvSUT1 gene. Con-

versely, the transcription can be induced via a protein phosphatase dependent mechanism

(Ransom-Hodgkins et al., 2003). The authors propose, that this mechanism is a reaction of

the plant to a decreased sink demand leading to sucrose accumulation in the vascular tissue.

This accumulation is perceived by a yet unknown sucrose sensor in the phloem. Decreased

phloem loading then leads to a feedback inhibition of photosynthesis in the leaf mesophyll

cells. In contrary, a higher consumption of sucrose in sink tissues would lead to a induction

of phloem loading and a higher e�ux of photoassimilates from the leaves.

6



2.2 The role of sucrose during plant development

Inside the phloem, sucrose is transported via bulk �ow. The transport is regulated ac-

cording to the pressure �ow hypothesis by Münch (1930) through the di�erence in solute

concentration due to the loading into the sieve elements in source and the unloading in sink

tissues.

Phloem unloading

Phloem unloading in sink tissues can either be symplastical or involve an apoplastic step.

During symplastic unloading, sucrose leaves the phloem via plasmodesmatic connections

with the surrounding cells. This has been shown for young leaves of some species like sugar

beet (Schmalstig & Geiger, 1985, 1987) and tobacco (Taiz & Zeiger, 2000) and in the tips

of primary roots of A. thaliana (Oparka et al., 1995). In order to sustain the concentration

gradient between the phloem and the symplastically connected sink tissues, the imported

sucrose is either metabolized or stored in the vacuole (Eschrich, 1989).

Alternatively, removal of sucrose from the phloem can involve an apoplastic step. During

its transport through the phloem pathway, a constant concentration gradient between the

apoplastic space surrounding the phloem and the content of the sieve tube is present and

leakage of sucrose occurs frequently. In non-sink tissues the leaked sucrose is reloaded into

the phloem via sucrose-H+ symporters localized in the sieve element-companion cell complex

and transport is maintained (Patrick, 1997 and ref. therein). In generative or vegetative stor-

age tissues however, the sucrose released into the apoplastic space is drawn into surrounding

parenchyma cells and not reloaded into the sieve element (Eschrich, 1989). The removal of

sucrose into the parenchyma cells can either be realized by the direct uptake of sucrose via

sucrose transporters or, seemingly more widely distributed, involve cleavage of sucrose in the

apoplast. Cell wall bound invertases cleave sucrose and help to maintain a steep concentra-

tion gradient for sucrose between the phloem symplast and the surrounding apoplast. The

resulting hexoses are then taken up by hexose-H+ symporters speci�cally localized in sink

cells (Williams et al., 2000). Inside the parenchyma cells the hexoses are either phosphory-

lated for further metabolism (storage as starch or sucrose or degradation) or taken up into

the vacuole (Herbers & Sonnewald, 1998).
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2.3 Sucrose hydrolyzing enzymes

In plants, sucrose cleavage is catalyzed by two known enzymes: sucrose synthase (SuSy) and

invertase (Inv). The reactions catalyzed by the two enzymes are:

sucrose + UDP
SuSy

GGGGGGGGGBFGGGGGGGGG UDPglucose + fructose

sucrose + H2O
Inv

GGGGGGGA glucose + fructose

A major distinction between these two pathways is the amount of energy conservation:

whereas during the SuSy reaction the most of energy of the bond between glucose and

fructose is conserved by the formation of UDPglucose, invertase is a hydrolase and thus the

energy is dissipated. Whereas hydrolysis by invertase is irreversible, the cleavage of sucrose

is readily reversible (Geigenberger & Stitt, 1993). Additionally, SuSy generates only half as

many hexoses as Inv (and no free glucose), which are involved in sugar sensing (see below

and Koch, 2004).

2.4 Sucrose synthase

Although in vitro sucrose synthase (EC 2.4.1.13) is able to synthesize sucrose from UDPglu-

cose and fructose (Nakai et al., 1997), in vivo it generally catalyzes the cleavage of sucrose.

In general, SuSy is important for the entrance of the sucrose cleavage products into either

anabolic reactions via intermediates from glycolysis or for biosynthetic reactions, especially

the formation of cell wall polysaccharides (Koch, 2004).

During the synthesis of cellulose, SuSy, which is localized exclusively in the cytosol, is

described to associate with the plasma membrane, the actin cytoskeleton (Doblin et al.,

2002) and the cellulose synthase complex (Amor et al., 1995). The latter association supports

the supply of UDPglucose for cellulose synthesis and at the same time the e�cient recycling

of the released UDP.

Apart from biosynthetic reactions, SuSy is important for anabolic processes (Sturm &

Tang, 1999). UDPglucose is further metabolized inside the cytosol via UDP-glucose py-

rophosphorylase (UGPase, EC 2.7.7.9):

UDPglucose + PPi
UGPase

GGGGGGGGGGGGBFGGGGGGGGGGGG glucose-6-P + UTP

The formed UTP can be used for the phosphorylation of the previously released fructose and

so both hexose-phosphates can enter glycolysis with the consumption of only one pyrophos-

phate (PPi) molecule. The invertase pathway in contrast necessitates two ATP molecules for

hexose phosphorylation. Since pyrophosphate is produced as a byproduct in many biosyn-
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thetic reactions, the energy balance for the cell is even more favorable. SuSy activity has

been described to be an important factor for sink strength, for example in tomato fruits

(D'Aoust et al., 1999) and potato tubers (Zrenner et al., 1995). In carrot, inhibition of SuSy

activity leads to a decrease in plant size, indicating a general role for plant growth (Sturm

& Tang, 1999). The e�ciency of the SuSy reaction especially comes to the fore during detri-

mental conditions for ATP synthesis like cold and oxygen deprivation, during which SuSy

genes have been described to be induced (Zeng et al., 1999; Sturm & Tang, 1999; Hesse &

Willmitzer, 1996). Inside bulky storage tissues like potato tubers oxygen depletion occurs

(Geigenberger et al., 2000) and leads to the induction of SuSy genes (Bologa et al., 2003).

2.4.1 Regulation of SuSy activity

Sucrose synthase expression is regulated by various factors, of which sugar supply and oxy-

gen deprivation have been studied extensively. Baud et al. (2004) comprehensively analyzed

the six members of the SuSy gene family of A. thaliana. The expression of the individual

members is partially redundant, but during stress treatments or developmental phases the

isoforms show distinct responses. For maize, two SuSy isoforms have been described, which

show contrary reactions to sugar supplies. Whereas one isoform is especially active during

sugar depletion, the other isoform is induced during ample supply with carbohydrates (Koch,

1996). The presence of di�erentially regulated isoforms reinforces the need for co- and post-

translational regulation of SuSy protein expression and activity. Indeed it has been shown,

that SuSy is regulated cotranslationally, by changes in the subcellular localization and by

regulation of protein stability through phosphorylation (Koch, 2004 and ref. therein).

2.5 Invertases

Plants possess several isoforms of invertase (EC 3.2.1.26). Usually they are classi�ed ac-

cording to their pH optimum into acid and neutral or alkaline invertases. A second level of

classi�cation comes from their subcellular localization, which greatly in�uences their impor-

tance during di�erent developmental conditions. Neutral and alkaline invertases are localized

in the cytosol of the cell and therefore are also referred as cytosolic invertases (CI). The acid

invertases are further divided into cell wall (CWI or apoplastic invertase) and vacuolar in-

vertases (VI). VI is also referred to as soluble invertase, since, in contrast to CWI, it does

not bind to the insoluble cell wall material during extraction.

2.5.1 Cytosolic invertases

Invertase isoforms found in the cytosol of plant cells cleave sucrose at a pH optimum be-

tween 6.8 and 8.0 (Roitsch & Gonzalez, 2004). CIs are not glycosylated and are extremely

unstable, which has hampered their detailed biochemical characterization (Sturm, 1999).

9
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The available protein sequences of plant CIs are highly homologous to each other but not

to acid invertases. Homologs have only been found in plants and photosynthetic bacteria

leading to the speculation that they might have evolved from an ancestral prokaryotic gene

after an endosymbiotic event (Vargas et al., 2003).

Due to the lack of biochemical and physiological data on CIs, no clear function during

plant development has been assigned, but they are suspected to channel cytoplasmic sucrose

into catabolic reactions (Sturm & Tang, 1999). Lee & Sturm (1996) showed, that neutral and

alkaline invertases from Daucus carota are inhibited competitively by fructose (Ki=15mM)

and non-competitively by glucose (Ki=30mM), whereas only alkaline invertase was inhibited

by CaCl2, MgCl2 and MnCl2. The feedback inhibition by their reaction product could pose

and important regulation process, which adapts the cleavage of cytosolic sucrose to the

consumption of glucose and fructose in cytoplasmic sucrose metabolism (Lee & Sturm, 1996).

2.6 Acid invertases

2.6.1 Structural features of vacuolar and cell wall invertases

Vacuolar and cell wall invertases share enzymatic and sequence similarities, like the acidic pH-

optimum for sucrose cleavage and conserved sequence motifs. However, they possess distinct

properties, which in�uence their role during plant development. The obvious dividing feature

is the di�erence in the subcellular localization. Whereas the CWI probably reaches the cell

wall via the secretory pathway with no additional sequence signal apart from the N-terminal

signal peptide, VIs must contain an additional signal leading to a vacuolar localization. Unger

et al. (1994) predicted a short C-terminal extension found only on vacuolar invertases to be

a vacuolar sorting signal, but further experimental evidence was not provided for this. None

of the described vacuolar invertases from A. thaliana, carrot or sugar beet contains a typical

sequence motif of other protein localized in either protein storage vacuoles or lytic vacuoles

(Matsuoka & Neuhaus, 1999; Vitale & Raikhel, 1999).

Acid invertases cleave sucrose from the fructose residue and thus are β-fructofuranosidases,

which also cleave other oligosaccharides like ra�nose and stachiose (Sturm, 1999). Indeed,

recently it was shown by De Coninck et al. (2005), that at least two out of six genes an-

notated as cell wall invertases from A. thaliana do not cleave sucrose at all, but rather

cleave fructans. Fructans are linear or branched polymers of fructose, which are synthesized

from sucrose monomers (Van Laere & Van den Ende, 2002). They serve as storage polymers

in about 15% of all �owering plants, for example in grasses, onions and cereals (Vijn &

Smeekens, 1999). Chicory (Cichorium intybus L.) is used commercially as a source of inulin-

type fructans. Fructans are synthesized by sucrose:sucrose 1-fructosyltransferase (1-SST, EC

2.4.1.99) and fructan:fructan 1-fructosyltransferase (1-FFT, EC 2.4.1.100), which both seem

to have evolved from vacuolar invertases (Van den Ende et al., 2002). The fructan degrading
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fructan exohydrolases (FEH) however seem to be derived from cell wall invertases (Van den

Ende et al., 2000) and have also been discovered in non-fructan storing plant species like

sugar beet and A. thaliana (Van Den Ende et al., 2003; De Coninck et al., 2005). It was

speculated, that in these plants they are either involved in the degradation of fructans from

microbial pathogens or in the prevention of unwanted accumulation of endogenous fructans.

All of the above enzymes belong to the GH32 family of glycoside hydrolases, which have

been classi�ed based on sequence homologies between those enzymes (Henrissat & Davies,

1997; Pons et al., 1998)1. In summary, the annotations in public sequence databases for acid

invertases have to be taken with care, until their activity towards either sucrose or fructans

has been shown.

Both, CWI and VI, are characterized by their acidic pH optimum for the cleavage of

sucrose, which is slightly more acidic (pH 3.5-5.0) for CWI than for VI (pH 5.0-5.5) (Roitsch

& Gonzalez, 2004). Goetz & Roitsch (1999) showed that the di�erent pH optimum of the

two isoforms is determined by an amino acid exchange in the conserved WEC-P/V-D box,

which is characteristic for all acid invertases. CWIs carry a proline residue at the fourth

position where VIs have a valine residue (Roitsch & Gonzalez, 2004). By a proline to valine

exchange in the extracellular invertase CIN1 from Chenopodium rubrum, the pH optimum of

the heterologous expressed CIN1 was shifted from 3.75 to 4.4. Additionally, the cleavage rate

of ra�nose was lowered compared to the wildtype CIN1 protein (Goetz & Roitsch, 1999).

Another conserved sequence motif is the NDPNG motif close to the N-terminus of the

mature polypeptide found in invertases from plant, bacteria and yeast. It forms an important

part of the catalytic domain of acid invertases (Sturm, 1999).

CWI and VI are both synthesized as a prepropeptide, with a N-terminal signal peptide for

the entry into the ER and a propeptide of over 100 amino acids. The propeptide is cleaved

o� in the mature form of the enzyme and is not conserved between invertases from di�erent

plant species (Sturm & Chrispeels, 1990; Unger et al., 1994). No clear function has been

assigned to it yet. During their passage through the secretory pathway the acid invertases

become glycosylated (Roitsch & Gonzalez, 2004) and it has been shown that this is important

for protein stability (Pagny et al., 2003).

Recently the protein structure of a bacterial invertase and of a plant FEH has been solved

(Alberto et al., 2004; Verhaest et al., 2005). Both proteins belong to the GH32 family (see

above) and the overall three dimensional structure revealed to be very similar. The structure

resembles an earlier described levansucrase (Meng & Fütterer, 2003) belonging to the re-

lated family GH68 of glycosyl hydrolases. It consist of a N-terminal �ve-bladed β-propeller,

containing the active site, connected to a β-sandwich module. Three highly conserved amino

acids, which are part of conserved motifs of the GH32 family, form a crucial part of the active

site of the enzymes (NDPNG, FRDP, WECPD; identi�ed amino acids in bold). The two

β-sheets of the β-sandwich module are suspected to be involved in determining the substrate

1http://afmb.cnrs-mrs.fr/CAZY
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speci�city of the hydrolases. In the invertase structure, the potential sucrose binding cleft

is shielded in comparison to a more accessible situation in case of the fructan exohydrolase

and this could in�uence the speci�city of the enzymes (Verhaest et al., 2005).

2.6.2 Acid invertases are important for carbon partitioning and

sugar composition during plant development

CWI activity is important for development of storage tissues

As noted before, cell wall invertases play a key role for apoplastic phloem unloading (see

2.2.1). This mechanism has been extensively studied during seed development. Since develop-

ing seeds are not symplastically connected to the maternal tissue, import of carbohydrates

must involve an apoplastic step. It has been shown for the seeds of maize (Cheng et al.,

1996), barley (Weschke et al., 2003), oilseed rape (Hill et al., 2003) and especially well for

the seeds of Vicia faba (Weber et al., 1995; Wobus & Weber, 1999) that the �rst phases

of seed development are characterized by a high hexose to sucrose ratio maintained by a

high activity of acid invertases. Loss of CWI activity localized at the transfer layer between

maternal and �lial tissue in maize leads to a severe decrease in kernel size in the miniature1

mutant (Cheng et al., 1996).

The released hexoses can be taken up by hexose transporters, which have been shown to

be expressed in tissues in the vicinity of high CWI activity (Weber et al., 1997; Ehneÿ &

Roitsch, 1997; Weschke et al., 2003). In carrot taproots, a vegetative storage tissue, antisense

reduction of cell wall invertase activity leads to the abolishment of taproot formation (Tang

et al., 1999). For tomato, Fridman & Zamir (2000) showed that sugar content of tomato

fruits correlates with cell wall invertase activity. An amino acid change in the sequence of

the CWI leads to a decreased KM value and this is most likely responsible for the increased

hexose content in these plants (Fridman et al., 2004).

Later phases of seed development, when cell division declines and storage products start

to accumulate, are accompanied by a switch to a low hexose to sucrose ratio and a sharp

decrease in invertase activity (Weber et al., 1995; Hill et al., 2003; Weschke et al., 2003).

At least for fava bean seeds the parallel expression of sucrose transporters in the epidermal

cells of the developing embryo imply, that sucrose is then taken up without prior cleavage

in the apoplastic space (Weber et al., 1997). Inside the cells, sucrose is then metabolized

via sucrose synthase and either polymerized into starch or converted into other storage

compounds (Borisjuk et al., 2004 and ref. therein).

Isolated cotyledons of fava beans prolong their mitotic activity when incubated in hexose

rich medium. In contrast to this, when bathed in high sucrose medium, they develop char-

acteristics of cells already in the storage phase. This led to the postulation of the invertase

control hypothesis of seed development (Weber & Wobus, 1997), emphasizing the role of the

hexose to sucrose ratio that is to a substantial part regulated by the activity of cell wall
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invertases.

Vacuolar invertases regulate the amount of sucrose stored in vacuoles

Vacuolar invertases (VI) regulate the ratio and levels of hexoses and sucrose, either stored

temporarily or permanently, in vacuoles (Sturm & Tang, 1999). After cleavage by VI, the

formed hexoses can be exported to the cytosol by hexose-H+ symporters, where they are

further metabolized. VIs are especially active in growing zones and expanding tissues like

root tips, internodes and developing leaves. In these tissues they enhance cell enlargement

via the increase in osmotic potential (Weschke et al., 2003) and probably also play a role

in phloem unloading. In A. thaliana a quantitative trait locus (QTL) analysis showed, that

length of roots and hypocotyls correlated with acid invertase activity and that a major locus

for root length maps to one of two VI isoforms (at1g12240). A functional knock-out of this

gene, leading to 50% reduced VI activity, exhibited roots signi�cantly reduced in length

(Sergeeva et al., 2006)

A reduction of vacuolar invertase activity in transgenic carrot plants leads to a decrease

in taproot size and to decreased levels of soluble sugars (Tang et al., 1999), indicating an

important role for the expansion of the storage sink. In tomato fruits, the activity of vacuolar

invertase determines whether sugars are stored as hexoses or as sucrose. Klann et al. (1996)

showed, that by silencing VI transcription, hexose storing fruits are transformed into sucrose

storing fruits without a�ecting the allocation of assimilates to the fruits.

2.6.3 Acid invertases are part of a complex regulatory system

During normal plant development, vacuolar and cell wall invertase activities are generally

associated with developing tissues and a high mitotic activity. A strong down-regulation

is observed, when tissues (e.g. seeds) develop into storage organs. Apart from this, acid

invertases also show a strong induction in response to various stresses, which probably re�ects

a reaction of the plant to the need for changes in carbon partitioning (for review see Sturm,

1999; Roitsch et al., 2003).

Induction of CWI by mechanical or pathogen-induced wounding of leaves has been shown

among others in carrot (Sturm & Chrispeels, 1990), pea (Zhang et al., 1996) and Chenopodium

rubrum (Ehneÿ et al., 1997). The increase in apoplastic invertase activity probably re�ects

the energy demand of the cells a�ected by wounding, leading to the transformation into local

sinks. By cleavage of extracellular sucrose the export from leaf tissues is interrupted and the

carbon partitioning is changed so that the wounded tissue can respond to the stress with

the induction of pathogenesis defence genes and synthesis of cell wall material for the clo-

sure of wounds. This is corroborated by the �nding, that in A. thaliana sucrose and hexose

transporters, which are normally restricted to sink tissues, are induced by wounding (Meyer

et al., 2004; Truernit et al., 1996). However, the study by Quilliam et al. (2006) showed,
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that the knock-out of the wound-induced CWI isoform AtcwINV1 does not hamper the cre-

ation of localized sink tissues in wounded A. thaliana leaves, indicating the presence of other

mechanisms cooperating during this process.

Vacuolar invertases are regulated by abiotic stresses like drought, hypoxia and cold (Roitsch

& Gonzalez, 2004). In maize, hypoxia leads to a rapid decrease in the expression and activity

of two VI isoforms in roots (Zeng et al., 1999), whereas drought stress leads to the induction

of a speci�c VI isoform (Ivr2 ) in leaves and root tips (Kim et al., 2000). The authors propose,

that the induction of vacuolar sucrose cleavage leads to increased phloem unloading, osmotic

adjustment and the generation of hexose signals that participate in a signal transduction

cascade leading to increased resistance against drought stress. In contrast to this, drought

stress during young ovary development leads to a down-regulation of acid invertases in maize

kernels (Zinselmeier et al., 1995) and especially the down-regulation of Ivr2 is correlated with

seed abortion probably due to the reduction of symplastic phloem unloading in the a�ected

areas (Andersen et al., 2002).

In stored potato tubers cold storage leads to increased starch degradation and resynthesis

of sucrose, which is in turn cleaved by an induced VI (Sturm & Tang, 1999; Greiner et al.,

1999). Furthermore, VI is also induced under wounding conditions (Rosenkranz et al., 2001;

Roitsch & Gonzalez, 2004).

Acid invertases are also reported to be regulated by various phytohormones. The growth

promoting hormones auxin, cytokinin and gibberellic acid, as well as abscisic acid, have

been reported to promote invertase activity, whereas only the senescence promoting ethylene

represses transcription of extracellular invertases (Roitsch et al., 2003 and ref. therein).

Balibrea Lara et al. (2004) also showed, that senescence can be delayed in tobacco leaves

by either application of cytokinins or the overexpression of a CWI under the control of a

senescence induced promotor. The additional invertase activity seems to in�uence the carbon

partitioning and thereby delays senescence e�ects.

Sucrolytic enzymes play a key role in sugar signaling

Apart from the metabolic and osmotic functions of the produced hexoses, they have also been

described as a cellular signal molecule regulating the gene expression pro�le in a hormone-

like fashion (Koch, 1996; Smeekens, 2000; Rolland et al., 2002). Most often the regulatory

function of glucose has been addressed and the enzyme hexokinase and plasma-membrane

localized transporter-like genes have been implicated as the initial hexose sensors (Jang

et al., 1997; Rolland et al., 2002). Apart from hexose sensing, the regulatory function of

sucrose has been shown (Chiou & Bush, 1998; Rook et al., 1998) and other products of

sucrose metabolism have been proposed to be involved in signalling cascades (Rolland et al.,

2002). The role of hexose and sucrose signals during the development of Vicia faba seeds (see

2.6.2) is another important system, where sugars have been proposed in regulating tissue

development.
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After the sugar signal is sensed, a signal cascade, which involves protein kinases and

phosphatases, cytosolic Ca2+ concentration and other signal mediators is initiated (Smeekens,

2000) leading to transcriptional regulation of various genes.

Acid invertases themselves have been shown to be induced by hexoses (Ehneÿ et al.,

1997; Tymowska-Lalanne & Kreis, 1998) and sucrose (Sinha et al., 2002; Tymowska-Lalanne

& Kreis, 1998). Ehneÿ et al. (1997) showed, that induction of CWI by glucose is regulated

through a di�erent regulatory pathway than the induction of CWI and pathogenesis related

proteins in reaction to pathogen attack or fungal elicitors. The observed upregulation of

CWIs by hexoses might also be important for the ampli�cation of other stimuli by a positive

feed-forward mechanism through the reaction products (Roitsch & Gonzalez, 2004). In maize,

a di�erent reaction of two isoforms of vacuolar isoforms has been reported (Xu et al., 1996).

Whereas Ivr1 is repressed by sucrose, glucose and other sugars, Ivr2 is upregulated by the

same stimuli, indicating an isoform speci�c regulation. One vacuolar invertase isoform is

generally active in times of high carbohydrate supplies, whereas a second isoform is active

only during times when energy supply is limited. The same situation has been found for two

isoforms of sucrose synthase ("feast and famine" enzymes, see Koch (1996)).

Mechanisms regulating the activity of acid invertases

As described above, the adaptation of carbon-partitioning by up or down-regulation of acid

invertases is a key regulatory process during plant development. Most plant species contain

several invertase isoforms. In the genome of A. thaliana six CWI and two VI isoforms have

been annotated (Tymowska-Lalanne & Kreis, 1998; The Arabidopsis Genome Initiative,

2000), which di�er remarkably in their expression pattern. Tymowska-Lalanne & Kreis (1998)

and Sherson et al. (2003) analyzed the transcriptional regulation of some of the members

of the invertase gene family and observed di�erent spatial and temporal expression patterns

for each member of the vacuolar and cell wall invertases, suggesting a complex regulatory

system. It has to be noted however, that at least for two out of six members of the CWI

gene family it has been shown that the gene product does not cleave sucrose, but fructans

(see above and De Coninck et al., 2005).

Fast transcriptional up- and down-regulation of invertase isoforms has been described

under various conditions and seems to be a general regulatory mechanism of these genes

(Sturm & Chrispeels, 1990; Zhang et al., 1996; Ehneÿ et al., 1997; Zeng et al., 1999). For

potato, a posttranscriptional regulation via exon-skipping of a CWI gene has been described

(Bournay et al., 1996). The intron-exon gene structure of the invertase genes is conserved

between monocots and dicots (Roitsch & Gonzalez, 2004) and all but one described invertase

gene carry a small mini-exon of nine nucleotides, which encodes for the middle amino acids

of the conserved NDPNG motif and represents one of the smallest exons described in plants

(Simpson et al., 2000). In potato, aberrant splicing leading to the skipping of the mini-

exon has been observed (Bournay et al., 1996), suggesting a possible regulatory mechanism.
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However until now, no physiological relevance has been attributed to this process.

For A. thaliana a mechanism for the regulation of the targeting and the turnover of an

VI protein has been proposed. Rojo et al. (2003) described the importance of the vacuolar

processing enzyme VPEγ (at4g32940), a cystein protease, for the degradation of the vacuo-

lar invertase AtFruct4 (at1g12240) during senescence. In null mutants of VPEγ, AtFruct4

protein accumulates during ageing of leaves and roots, whereas in WT plants the invertase

protein is degraded. Even more intriguing, the authors showed that in young seedlings At-

Fruct4 colocalizes with VPEγ in so called precursor protease vesicles (PPV), a compartment

originally described in seed storage tissues. Here PPVs contain precursor of cysteine pro-

teases, which are activated during germination. Inside the PPV the VI is protected from

degradation because VPEγ is autocatalytically activated only when delivered into the acidic

lumen of the vacuole. Therefore, this mechanism seems to regulate the entry of the VI into

the lumen of the vacuole and at the same time the subsequent turnover of the invertase

(Koch, 2004).

2.7 Posttranslational regulation of invertases by

proteinaceous inhibitors

An additional mechanism to e�ciently silence invertase activity at certain stages of plant

development is the posttranslational inactivation through invertase inhibitor proteins. The

expression of specialized proteins, which speci�cally inhibit invertases, is probably based on

the need to silence invertase activity e�ciently and rapidly. Due to the high intrinsic stability

of invertases as glycoproteins, compartimentalized into either the cell wall or the vacuole,

transcriptional down-regulation and protein degradation alone seems not to be su�cient for

this task. Although the presence of invertase inhibitors has been known for a long time and

they have been described in various plant species, especially in storage organs of crop plants,

their physiological signi�cance is not yet fully understood. Albeit this, they have already

been used successfully in biotechnological approaches to silence invertase activity in plants

(Greiner et al., 1999; Balibrea Lara et al., 2004).

2.7.1 From the discovery of invertase inhibitors to the solution of

their 3D structure

Presence in storage tissues

The �rst description of invertase inhibitors came from potato tubers, where a low molecular

protein was described, that is bound to an endogenous invertase and lowers the activity of

invertase preparations (Schwimmer et al., 1961; Pressey, 1966). Later the presence of similar

proteins was also described in the storage tissues of sweet potato, red and sugar beet (Pressey,
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1968) and in the endosperm of maize kernels (Jaynes & Nelson, 1971). Further studies were

carried out on the invertase inhibitor from potato, which delivered biochemical data about

the inhibitor and the mechanism of inhibition. The invertase inhibitors are non-glycosylated

proteins, 15 - 23 kDa in size, showing an exceptional stability against treatment with heat

and acidic conditions (Rausch & Greiner, 2004).

Cloning and analysis of NtCIF

The �rst sequence data of the inhibitor protein came form the puri�cation and N-terminal

sequencing of inhibitors in tomato (Pressey, 1994) and tobacco (Weil et al., 1994) and even-

tually the �rst invertase inhibitor was cloned from tobacco (Greiner et al., 1998). NtCIF

(Nicotiana tabacum cell wall inhibitor of β-fructosidase) was puri�ed from a cell-wall frac-

tion of suspension culture cells in a stable complex with a CWI (Krausgrill et al., 1998).

In vitro the NtCIF protein inhibits both, CWI, its probable native target enzyme, but also

VI and inhibition also occurs with plant invertases from other plant species. However, for

NtCIF and also for the inhibitor from maize, no inhibition of invertase from fungal sources

is observed and thus a function in pathogen defence seems unlikely (Greiner, 1999; Pressey,

1967). The presence of divalent cations like Ca2+, Mg2+ and Zn2+ interferes with the inhi-

bition of NtCWI by NtCIF. A considerable pH dependency is observed: strongest inhibition

occurs at pH4.5, which is equivalent with the pH optimum of the CWI, while at pH5.5 and

6.5 only a weak e�ect on CWI activity is observed (Weil et al., 1994). Since the apoplastic

pH is reported to vary between pH 4.5 and 6.5 (Grignon & Sentenac, 1991), this could in-

dicate an in vivo modulation of the inhibition by pH. The invertase inhibitors are sensitive

to treatment with reducing agents (Pressey, 1967; Ovalle et al., 1995) due to the presence

of two disul�de bridges stabilizing the structure of the molecules (see Greiner et al., 2000;

Hothorn et al., 2004b and below).

Furthermore, NtCWI is protected from inhibition by presence of the substrate sucrose

with half maximum protection at 1.2mM sucrose (Weil et al., 1994), but this e�ect is not

seen when NtCIF protein is incubated with VIs and CWIs and from other plant sources

(Sander et al., 1996; Greiner, 1999), indicating that the availability of sucrose protection is

an intrinsic quality of the respective invertase. Additionally, the complex formation between

NtCIF and NtCWI is markedly slower than the binding of NtCIF to a VI preparation from

tomato fruit (Sander et al., 1996). After the sequence of NtCIF was available, additional

related genes were isolated and identi�ed as invertase inhibitors. NtVIF, a second inhibitor

isoform from tobacco was isolated and it was shown by heterologous overexpression in potato,

that this inhibitor is localized inside the vacuole (see 2.7.3 and Greiner et al., 1999).
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Invertase inhibitors form a gene family with pectin methylesterase inhibitors

With the onset of large-scale genome sequencing projects it became evident, that invertase

inhibitor proteins are part of a larger gene family and are present in monocots and dicots.

In A. thaliana approximately 40 genes show a signi�cant homology to invertase inhibitors

(S. Greiner, personal communication) and two of these genes (AtC/VIF1 (at1g47960) and

AtC/VIF2 (at5g64620)) have been functionally proven to inhibit invertases (Link et al.,

2004). Recently the situation has been complicated by the observation that related proteins

can also be ine�ective against invertases and instead inhibit a family of cell-wall modifying

enzymes called pectin methylesterases (PMEs). A PME inhibiting protein showing homolo-

gies to NtCIF was isolated from Kiwi fruit (Camardella et al., 2000) and two related genes

(AtPMEI1 (at1g48020) and AtPMEI2 (at3g17220)) from A. thaliana were identi�ed as in-

hibitors of pollen-expressed PMEs (Wolf et al., 2003; Raiola et al., 2004). All genes showing

homologies to either PMEIs or invertase inhibitors have been integrated into a sequence

family named PMEI-RPs (pectin methylesterase inhibitor-related proteins, Hothorn et al.

(2004b)).

Molecular structure of NtCIF and AtPMEI

The general protein sequence homology of this gene family is not very high. Already the

two identi�ed invertase inhibitors from tobacco and A. thaliana show only 47% and 29%

identical amino acids respectively and the general homology inside the PMEI-RP family is

only between 20 and 35 %. However, all members possess 4 cysteine residues at conserved

positions, which are important for the formation of two disul�de bridges. The principal

similarity between the invertase inhibitors and PMEIs was shown by the crystallization

and structure determination of the NtCIF (Hothorn et al., 2004a) and AtPMEI1 (Hothorn

et al., 2004b) proteins. These studies showed, that the two proteins show, albeit the limited

conservation of amino acids, a very similar overall fold, consisting of a four-helix bundle and

an uncommon N-terminal extension. Each structure is stabilized by a disul�de bridge and it

was shown, that the N-terminal extension of NtCIF is important for overall protein structure

(Hothorn et al., 2004a). By comparing the structure of AtPMEI1 with NtCIF a di�erent

orientation of the N-terminal helical extension became obvious (see Fig. 2.1). In NtCIF this

extension is directed towards the bundle core, whereas in AtPMEI1 it contacts a second

inhibitor molecule leading to the formation of AtPMEI1-dimers (Hothorn et al., 2004b). By

exchanging the N-terminal extension between the two inhibitors, the extension of AtPMEI1

was shown to be a key structure for PME inhibition, whereas for invertase inactivation the

structure of the extension together with the bundle core is important. Although these two

molecules have been studied in such detail, due to the low general sequence conservation

inside the PMEI-RP family, a prediction of the target enzyme of a given PMEI-RP based

on sequence data alone is not possible (Hothorn et al., 2004b). Thus, for every new PMEI-
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RP sequence to be analyzed, the true function has to be proven by generating recombinant

inhibitor protein and testing for inhibition activity on either invertases or PMEs. Until today,

no PMEI-RP has been observed to be active against both potential target proteins (Rausch

& Greiner, 2004).

Di Matteo et al. (2005) presented the structure of the complex between AcPMEI from kiwi

(Actinidia chinensis) and a PME from tomato. Contradictory to the previously described

results, the inhibitor contacts the target PME near the active site via the four-helix bundle

and the N-terminal extension points away from the PME, making a critical role for the

inhibition unlikely. Also no inhibitor dimers were observed. For the interaction of invertase

inhibitors with invertases however, no structural model is available. As described in chapter

2.6.1 on page 10, 3D structures of invertases have been described, but no model of the

complex between invertase and inhibitor is available yet and since PMEs and invertases show

a completely di�erent structure, no conclusions from the PME-PMEI complex described can

be drawn.

Figure 2.1: Ribbon representa-
tion of a PMEI dimer (A) and
NtCIF (B)
Both molecules feature a simi-
lar four-helix bundle core but the
N-terminal extension in AtPMEI1
points outward and is in contact
with a second molecule, whereas in
NtCIF it shields a hydrophobic path
in the bundle core. From Hothorn
et al. (2004b).

2.7.2 Expression and physiological functions of invertase inhibitors

Most of the early data on invertase inhibitors came from the puri�cation from potato tubers.

Here the inhibitor is found bound to a soluble invertase. The amount of inhibitor is variable

between potato varieties and it can be induced by storage at elevated temperatures (Pressey,

1967). For tobacco, expression data are available for the expression of the cell wall inhibitor

NtCIF. High amounts of NtCIF are found in suspension culture cells of tobacco, where it

is expressed in parallel with CWI during most of the cultivation period, but due to the

protective e�ect of sucrose on CWI inactivation, it probably only becomes active when

sucrose in the medium is depleted (Krausgrill et al., 1998). Similarly, NtCIF-related proteins

have been found in suspension culture cells of Chenopodium rubrum and Daucus carota,
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both of which also show a high CWI expression (Greiner et al., 2000). In tobacco, NtCIF is

most strongly expressed in �oral tissues, but is also found in source and senescent leaves. In

�owers, NtCIF is coexpressed with a CWI isoform during later stages of �oral development (S.

Bayer, personal communication). NtCIF shows an increased expression in response to ABA

and PEG treatment, which simulate conditions of senescence and drought stress (Rausch &

Greiner, 2004). This is in accordance with the data reported by Balibrea Lara et al. (2004)

suggesting that CWI activity counteracts senescence processes.

In A. thaliana, the two described inhibitors AtC/VIF1 and AtC/VIF2 show a di�erential

expression during plant development. AtC/VIF1, which seems to speci�cally inhibit VI in

vitro, is expressed strongly in the vascular tissues of �owers, roots and senescent leaves.

AtC/VIF2 however, shows a weaker still more broad expression in all analyzed tissues and

the recombinant protein inhibits CWI and VI (Link et al., 2004).

In the early development of maize kernels, a cell wall localized invertase inhibitor (ZmINV-

INH1 ) is expressed in the area surrounding the embryo, where it can interact with apoplastic

invertases (Bate et al., 2004). Since the embryo at that phase develops much slower than

the surrounding endosperm, the authors propose that the presence of ZmINV-INH1 ensures

that the embryo is exposed to lower hexose concentrations than the endosperm.

Several studies indicate the presence of invertase inhibitors in tissues, which simultaneously

are characterized by the presence of invertases, but up to now no convincing physiological

role of the inhibitors in planta could be provided. Although invertases and inhibitor proteins

are frequently isolated as a complex from di�erent plant tissues, it can never be completely

ruled out, that this complexes arise post-extraction due to the disruption of spatial sepa-

rations between the two proteins. Analysis of A. thaliana plants with reduced expression

of AtC/VIF1 and 2 showed no obvious phenotypic di�erence in growth and only a minor

increase in soluble invertase activity in the case of AtC/VIF1 (Link et al., 2004), most likely

due to the presence of multiple inhibitor isoforms with redundant functions.

2.7.3 Biotechnological approaches using invertase inhibitors

Since acid invertases play a key role during the development of seeds and vegetative storage

tissues, they are interesting targets for biotechnological approaches aiming to improve the

performance of crop plants. During the early phases of development of such storage organs,

invertases are a main factor for the establishment of sink strength and the maintenance of

mitotic activity (Wobus & Weber, 1999; Koch, 2004). Therefore higher or longer persisting

activities might enhance the import of photoassimilates or the proliferation of cells.

Whereas the overexpression of invertases on a whole plant level in either the cytosol, the

apoplast or the vacuole led to adverse e�ects (von Schaewen et al., 1990; Sonnewald et al.,

1991) a speci�c increase of apoplastic invertase activity during the development of potato

tubers (Sonnewald et al., 1997) lead to an increase in tuber size, albeit a total reduction

in tuber number. An increase in seed yield was observed when an apoplastic invertase was
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overexpressed in meristematic tissues of A. thaliana (Heyer et al., 2004). As shown by the

negative e�ect of invertase expression on whole plant level, the alteration of invertase activity

via overexpression of heterologous genes might have negative e�ects and is, due to the high

stability of the formed proteins, di�cult to control. Another option to prolong invertase

activity is the down-regulation of invertase-inhibitors described to be present in many storage

tissues. An antisense approach to suppress NtCIF expression led to an increase in seed weight

and oil content, concomitantly the number of seeds per �ower and the seed size was not

altered (Rausch, 2001). An extension of this approach onto seed crops like maize, soybean

and rapeseed, which all are described to express invertase inhibitors during seed development,

is a very promising target for the enhancement of these crops.

Contrary to the positive e�ect of invertase activity during development of storage tissues,

the induction of invertases during certain stresses (see 2.6.3 on page 13) can be unfavorable for

the accumulation of storage compounds. The cold-induction of vacuolar invertases in potato

leads to the accumulation of reducing sugars, which deteriorate the quality of these potatoes

at high processing temperatures during deep-frying. Via antisense repression of one soluble

invertase isoform, Zrenner et al. (1996) could reduce the accumulation of hexoses during

cold storage. However, the reduction of hexoses was only 34% compared to the wildtype in

the lines with the strongest antisense e�ect. By the overexpression of NtVIF, the vacuolar

invertase inhibitor from tobacco, Greiner et al. (1999) were able to reduce the hexose content

of the tubers up to 75%. The stronger e�ect of the heterologous inhibitor might be due to

its ability to inhibit more than one invertase isoform and thereby have an superior e�ect to

the invertase antisense approach.

2.8 Sucrose accumulation and storage in the sugar beet

taproot

2.8.1 The biology of sugar beet

Sugar beet (Beta vulgaris L. ssp. vulgaris var. altissima DÖLL) belongs to the family of

Chenopodiaceae, which, apart from the Beta vulgaris varieties mangold (swiss chard), fodder

and red beet, also contains spinach (Spinacia oleraceae) as another important crop species.

It is assumed, that the cultivated sugar beet originates from the wild maritime beet (Beta

vulgaris L. ssp. maritima (L.) TELL, Jung et al. (1993)). Sugar beet is a biennial plant. In

the �rst year of development the sucrose storing taproot is developed. After overwintering in

conditions without severe frost periods, a �owering stalk is developed from the taproot reach-

ing heights of 1.2m to 1.8m, and seeds are produced (Canadian Food Inspection Agency,

2001).
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2.8.2 Development of the sugar beet taproot

The sugar beet taproot is a vegetative storage organ formed by the main root and to a

smaller extent of the hypocotyl, from which the leaf rosette is formed. The taproot shows

an atypical growth with repeated concentric rings of cambium producing secondary phloem,

xylem and parenchymous cells, leading to a potentially unlimited growth (Milford, 2006).

Usually the root consists out of twelve to �fteen cambial rings and the six innermost account

for around 75% of the mature storage organ (Schneider et al., 1999).

Sucrose accumulation inside the storage cells of the taproot

The mechanism of sucrose accumulation in sugar beet is not yet fully understood. The main

controversial point is, whether sucrose incoming from the leaf rosettes is cleaved, prior to stor-

age inside of the vacuoles. In sugarcane, which accumulates sucrose to similar concentrations

inside the vacuoles of its internode cells, sucrose is cleaved by CWI and then resynthesized

from the imported hexoses inside the cells. By this mechanism, the concentration gradi-

ent between the importing phloem and the surrounding apoplastic space can be maintained

(Hatch et al., 1963; Glasziou & Gayler, 1972). Conversely, several studies in sugar beet show,

that during the major period of taproot development imported sucrose is not cleaved prior to

storage inside the vacuoles (Giaquinta, 1977, 1979; Wyse, 1979). The active process leading

to sequestration of sucrose inside the vacuoles of the storage parenchyma is most likely car-

ried out via an sucrose-H+ antiporter localized in the tonoplast (Saftner et al., 1983; Briskin

et al., 1985). Chiou & Bush (1996) described a tonoplast localized sugar transporter, that

could be responsible for the described active uptake.

Activity of sucrose-hydrolyzing enzymes during taproot development

The activities of invertases and sucrose synthase during the development of the sugar beet

taproot and its relation to the accumulation of sucrose have been addressed in several studies

(Silvius & Snyder, 1979; Berghall et al., 1997; Klotz & Finger, 2002). In general, the course

of activation of the di�erent sucrolytic enzymes is in agreement with the model developed for

the accumulation of storage products in seeds (see 2.6.2 on page 12). According to this model,

VI and CWI activity are important for sink initiation and expansion and their activity is

limited to the earlier phases of plant development. During initiation of storage compound

accumulation, SuSy is the predominant source of sucrolytic activity (Koch, 2004), probably

increasing the sink strength of the organ via a cycle of sucrose cleavage and resynthesis by

SPS followed by transport into the vacuole (Hesse & Willmitzer, 1996). Both the studies of

Berghall et al. (1997) and Klotz & Finger (2002) are in general accordance and show acid

invertase activity only in the earlier phases of development, where they are accompanied

by the highest relative growth rates. Silvius & Snyder (1979) showed, that acid invertase

activity is localized di�erentially inside the taproot. High invertase activity is found at the
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periphery of the taproot, where it in�uences the partitioning of photoassimilates between the

taproot and the surrounding �brous roots. As soon as the invertase activity drops, the cells

start to accumulate sucrose and the amount of free hexoses is strongly reduced. During this

time, SuSy is the main sucrose cleaving enzyme, with only a minor contribution of alkaline

invertases. When the taproot reaches the mature phase, SuSy activity also decreases, proba-

bly re�ecting the diminished energy demand of the plant (Klotz & Finger, 2002; Haagenson

et al., 2006).

A distinctly di�erent route for the sucrose accumulation in sugar beet is postulated in

the study by Fieuws & Willenbrink (1990). The authors describe an preferential uptake

of glucose via an H+-glucose symport mechanism into isolated protoplasts from taproots

and an additional uptake mechanism for fructose. Furthermore, considerable CWI and VI

activity was found in the conducting and storage tissues, as well as SPS activity, which is

required for the resynthesis of sucrose inside the cytosol. The proposed model emphasizes

the apoplastic cleavage of sucrose and subsequent uptake of hexoses for the maintenance

of a concentration gradient between the phloem and the surrounding parenchymous tissue

resembling the mechanism described in sugar cane.

SuSy and invertase isoforms in Beta vulgaris

Despite the limited amount of sequence data available for sugar beet, sequences of several

sugar beet isoforms of sucrose synthase and invertases are available in public databases. Two

SuSy isoforms are described, designated as SBSS1 (sugar beet sucrose synthase 1, Genbank

acc. X81974) and SBSS2 (AY457173). Hesse & Willmitzer (1996) described predominant

expression of the SBSS1 mRNA in taproots. Cold and anaerobiosis induce its expression,

whereas wounding of taproot slices leads to a repression. SBSS2 is also expressed mainly

in root tissues and when both isoforms are compared, SBSS2 seems to be more strongly

expressed in earlier phases of taproot development compared to SBSS1. The changes in

transcript level are re�ected on the protein level with signi�cant delay, indicating posttran-

scriptional regulatory mechanisms (Haagenson et al., 2006).

Two CWI (BvCWI1=Bin35,AJ278531; BvCWI2=Bin46, X81797 and AJ277969) and two

VI (BvVI1, AJ2774572 and BvVI2=Bin44, X81796) isoforms have been described for sugar

beet (Rosenkranz et al., 2001; Gonzalez et al., 2005). The cDNA denoted BvINV-V3 in

Gonzalez et al. (2005) of a vacuolar isoform is highly homologous to the BvVI2 cDNA and

therefore is probably an alternative allele of the same gene. Only few studies analyzed the

isoform speci�c expression of these genes. In accordance with the observation of low invertase

activities in the developing taproot, Gonzalez et al. (2005) found only weak expression of VI

and CWI in the taproot tissue. For both VI isoforms they found a light dependent expression

in leaf petioles, which was also re�ected on the activity level and decreased with ageing of

the leaves, indicating a possible role for the vacuolar invertases in assimilate partitioning.

2falsely annotated as BvVI1 in the Genbank database
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Invertase inhibitors in sugar beet

After �rst descriptions in other crop plants (see 2.7.1 on page 16), Pressey (1968) described

the isolation of an invertase inhibitor protein with a molecular weight of 18.1 kDa from sugar

beet. The inhibitor protein is active against soluble invertase preparations from potato, sweet

potato and red beet. The inactivation of invertases is pH-dependent, showing a maximum

inhibition at pH4.5.

2.8.3 Postharvest sucrose losses during sugar beet storage

One major part of the BREATH-LESS GABI project (see 2.10) was aimed at the identi�ca-

tion of processes in�uencing the amount of sucrose loss during storage of sugar beets before

processing. In order to increase the pro�tability of sugar production, older sugar-producing

factories are being closed and modern factories with a higher processing capability are prefer-

entially developed. In order to amortize the investments in these new factories, a prolongation

of campaign length is desirable. This implies the need for longer storage of sugar beets before

processing. After harvest, beets are usually stored in covered piles and should be protected

from severe frost, since subsequent thawing will lead to severe problems in processing due to

rotting of the beets. During this period, the plants use up part of the stored sucrose, which

leads to undesirable losses in yield. Earlier studies showed, that between di�erent sugar beet

breeding lines distinct di�erences exist in the amount of sucrose loss during that period and

that genetic dispositions are attributable for this di�erence (Wyse et al., 1978). Most of

these losses depend on the respiratory consumption of the stored sucrose (Vukov & Hangyal,

1985).

The loss due to respiration after harvest can be subdivided into two processes: reaction to

mechanical wounding and basic respiration. The wounding of sugar beet during harvest is

an inevitable side-e�ect of mechanical harvesting, mainly due to automatical removal of the

leaves by decapitation. The major loss in the �rst days after harvest is due to the hydrolysis

of sucrose and the subsequent wound reaction, which consumes energy and especially carbon

skeletons for the wound closure (Campbell & Klotz, 2006). The second process is the pre-

dominant source of sucrose loss during prolonged storage, when the plant respires its sugar

reserves to maintain vitality.

For both processes the mobilization of sucrose from its place of storage inside the vacuole

is a key regulatory step. During most of the taproot development, sucrose synthase is the

main source of sucrolytic activity. However, it is unclear whether SuSy is capable of accessing

the sucrose pool inside the vacuole or if it only cleaves sucrose entering the cell from outside.

In red beet, Etxeberria & Gonzalez (2003) described the possibility of ATP-stimulated e�ux

of sucrose across the tonoplast and the subsequent cleavage by a tonoplast associated form

of SuSy, implying an invertase-independent e�ux mechanism via a sucrose-transporter in

the tonoplast. A further route of sucrose export is described by one of the authors proposing
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the possibility of direct sucrose secretion via vesicles budding from the vacuole and fusing

with the plasmalemma (Echeverria, 2000). Both mechanism have so far only been described

for the mobilizing red beet hypocotyl parenchyma cells during sprouting and may be a very

speci�c mechanism during this developmental process.

The induction of vacuolar invertases has an important function for the mobilization of

sucrose from the vacuole, both during the wound reaction and also during basic respiration.

Wyse (1974) and Berghall et al. (1997) both observed a decrease in SuSy activity and an

increase of invertase activity during storage experiments, which was paralleled by an in-

crease in reducing sugar content. During wounding of sugar beets, a remarkable increase in

reducing sugars is observed. Rosenkranz et al. (2001) showed, that the induction of BvCWI1

precedes the induction of the BvVI1 isoform. The induction of BvVI1 however is accompa-

nied by the largest generation of hexoses, identifying it as the major isoform contributing to

sucrose losses after wounding. After cleavage, the generated hexoses are exported from the

vacuole via hexose-carriers and can be metabolized inside the cytosol (Rausch, 1991). The

large accumulation of hexoses after wounding indicates, that not all of the cleaved sucrose

is later metabolized. Therefore down-regulation of this process should not be detrimental

to the performance of the plant, making BvVI1 an appealing target for biotechnological

manipulation.

2.9 Proteins regulating the e�ciency of respiration

The respiration rate of non-photosynthesizing tissues like stored sugar beet taproots might

not only be controlled by the re-mobilization of sucrose and its subsequent catabolism via

glycolysis and the citric acid cycle, but can also be in�uenced by the e�ciency of the reactions

in the respiratory chain. Plants possess two type of proteins, alternative oxidases (AOX)

and uncoupling proteins (UCP), which in�uence the coupling ratio of mitochondria. Both

enzymes dissipate the energy of the electron transport chain without the formation of a

proton motif force, thereby uncoupling the action of the electron transport chain from the

ATP-synthase activity, leading to a decrease in ATP synthesis (Vercesi et al., 2006). Although

both, AOX and UCP, have the same principal function, namely preventing an over-reduction

of the mitochondrial respiratory chain and minimizing formation of reactive oxygen species

(ROS), they are unrelated proteins with entirely di�erent mechanisms.

UCPs catalyze the non-energetic transfer of protons

UCPs are integral membrane proteins of about 30 - 33 kDa residing in the inner mitochondrial

membrane. They are also referred as PUMP (plant uncoupling mitochondrial proteins) and

catalyze a free fatty acid activated transfer of protons from the intermembrane space back

into the mitochondrial matrix, thereby decreasing the generated protonmotive force (PMF)

without ATP synthesis. The activation by fatty acid is due to the importance of these
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for the UCP mechanism for which two models have been proposed (Vercesi et al., 2006).

In one model, UCPs catalyze the transfer of anionic fatty acids from the mitochondrial

matrix through the membrane and their spontaneous back-transfer after protonation in the

intermembrane space. Alternatively, the fatty acids could serve as a prosthetic groups of the

UCP without being transported through the membrane.

Originally UCPs were characterized in brown adipose tissue of newborn and hibernating

mammals, where they are involved in non-shivering thermogenesis. In plants they were �rst

discovered in potato mitochondria (Vercesi et al., 1995) and A. thaliana (Maia et al., 1998).

With the �nding of UCP homologs in various other animal and fungal species, it became

evident that UCPs are widely distributed in eukaryotes (Borecky et al., 2006; Vercesi et al.,

2006 and ref. therein).

The AOX protein is a non-protonmotive terminal oxidase

The alternative oxidase (AOX) is an additional terminal oxidase, which catalyzes the re-

duction of oxygen to water without the concomitant proton transfer observed during the

action of the cytochrome c oxidase. The electrons are taken from the ubiquinone pool of the

electron transfer chain. In contrast to cytochrome c oxidase, AOX activity is not inhibited by

cyanide. Initially, the AOX protein was puri�ed and characterized in the thermogenic Arum

species Sauromatum guttatum (Elthon & McIntosh, 1986) and Arum maculatum (Bonner

et al., 1986). Later AOX homologs were found in all higher plants, fungi, non-fermentative

yeasts and trypanosomes (Moore et al., 2002), indicating further functions apart from ther-

mogenesis. The AOX protein is not membrane spanning and occurs as a dimer, which can

either be non-covalently linked (reduced) or covalently linked via a disul�de bridge (oxidized

form). The oxidized form is less active than the reduced form, posing a potential regulatory

mechanism (Vanlerberghe & McIntosh, 1997). The existence of the inactive form of the AOX

protein is however questioned and might only arise during extraction (Millenaar & Lambers,

2002).

The activity of the AOX protein is stimulated by α-keto acids like pyruvate and the

reduction state of the ubiquinone pool, probably re�ecting its role as an over�ow mechanism

during conditions of limited activity of the cytochrome pathway to allow continuous activity

of the TCA cycle and to reduce the production of reactive oxygen species (Moore et al.,

2002). The AOX protein is induced upon various stresses, e.g. cyanide-addition, chilling,

wounding and pathogen attack and is often expressed in a tissue speci�c manner, with

varying responses of the members of the AOX multigene family (Saisho et al., 1997; McCabe

et al., 1998).
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AOX and UCP have a similar physiological function but are not redundant

Both, AOX and UCP, serve as energy dissipating systems in plants, that are able to uncouple

the reduction of oxygen from oxidative phosphorylation and lead to a decrease in ATP syn-

thesis. Although under certain conditions, like cold storage of potato tubers (Calegario et al.,

2003), both activities are induced, the di�erential expression patterns of the individual mem-

bers of the respective gene families points out, that the activities are not merely redundant,

but have di�erent physiological functions (Vercesi et al., 2006). Expression analysis of all pu-

tative A. thaliana AOX and PUMP genes during chilling revealed, that each isoform shows

a speci�c regulation, often in opposition to other members with the same presumed func-

tion (Borecky et al., 2006), indicating the involvement of multiple regulatory mechanisms.

Di�erences in the regulation of individual isoforms show, that the physiological functions

of the individual genes might well be variable in planta. Both enzymes are implicated in

the protection against oxidative stress, but they are stimulated by di�erent factors (UCP:

high PMF, ROS; AOX: high O2 concentration, excess of reduced ubiquinone). Furthermore

both are able to allow continuous action of the TCA cycle during conditions, when either

ADP supply or ATP consumption are limited, which can occur during conditions of high

biosynthetic demand for the carbon skeletons produced in the TCA cycle concomitantly to

reduced energy consumption.

Due to the energy wasting e�ect of both pathways, �ne-control of their action can in�uence

the rate of breakdown of storage products during post-harvest storage of crops and variations

in the expression and activity of both genes might in�uence the amount of economic losses

during inevitable storage periods.

2.10 Research objective

This thesis was prepared as part of the joint project "BREATH-LESS GABI: Molecular

physiology of storage organs: integrating genetics and genomics to reduce sucrose respiration

losses during storage of sugar beet" between the KWS SAAT AG (Einbeck), Südzucker

AG (Mannheim) and the University of Heidelberg. The main aim of this project was the

evaluation of sucrose losses during post-harvest storage of sugar beet and the characterization

of underlying genetic mechanisms. In this thesis, the biotechnological part of the project was

carried out and fundamental research about the regulation of sucrolytic enzymes during

taproot development was undertaken.

Regulation of sugar beet respiration during wounding and storage

For the analysis of sugar beet lines di�ering in post-harvest sucrose losses, possible target

genes regulating the e�ciency of respiration should be identi�ed. Focus was directed on

uncoupling proteins and alternative oxidase isoforms. The presence of those genes was in-

vestigated and then their expression during taproot development was analyzed, emphasizing
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possible regulations during wounding and storage of taproots.

Biotechnological approaches

In order to decrease sucrose losses due to the induction of vacuolar invertases after wounding,

transgenic sugar beet plants were generated, which constitutively express a vacuolar invertase

inhibitor from tobacco. These sugar beet plants were analyzed based on the following criteria:

� Which e�ects does the heterologously expressed inhibitor have on the wound-induced
invertase?

� Does the inhibitor lead to a decrease in sucrose loss during wounding?

� Is the overall performance of the plants altered?

Mechanisms for sucrose stabilization in sugar beet

Previous studies indicated the presence of invertase inhibitors in sugar beet taproots. At the

beginning of this thesis a sequence with homologies to invertase inhibitors from other plants

was available (BvC/VIF1). In order to investigate, if BvC/VIF1 is involved in regulation of

invertase activity during taproot development, the following questions were addressed:

� Does the BvC/VIF1 sequence code for an invertase inhibitor?

� Where and when during plant development is the inhibitor expressed?

� Where in the cell is the inhibitor localized?

� Which are the target proteins for the inhibitor and how is the interaction regulated?

� Is the inhibitor a potential target gene for biotechnological approaches?

Furthermore, by producing recombinant invertase protein, the interaction between inver-

tases and their inhibitory proteins should be studied in detail.
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3 Results

3.1 The life cycle of Beta vulgaris shows a distinct

regulation of sucrolytic enzymes

3.1.1 Expression of invertase isoforms

During the development of the sugar beet taproot high amounts of sucrose are accumulated

and stored in the vacuole. Since sucrose is cleaved by acid invertases, localized either in the

cell wall or inside the vacuole, in an irreversible reaction, these enzymes have to be tightly

controlled during plant development. Figure 3.2 shows the expression analysis of three acid

invertase isoforms from sugar beet. Whereas the cell wall invertase BvCWI1 is only present

in six week old roots and after wounding, BvVI1 is strongly expressed also in �oral and leaf

tissues. The second vacuolar invertase isoform BvVI2 is only detected in �oral tissues. For

a second CWI isoform (BvCWI2) no transcript was detected in the analyzed developmental

stages. From week six to eight after germination, depending on the growth conditions, the

storage phase of the taproot begins (Berghall et al., 1997; Klotz & Finger, 2002) and no acid

invertases can be detected in the main part of the taproot tissue. Only in the cortex of the

taproot, which is exposed to the soil, a weak expression of BvVI1 can be detected (see Fig.

3.1 for sample sources of taproot cross-section).

3.1.2 Expression of sucrose synthase isoforms

Figure 3.3 shows the expression of the two sucrose synthase isoforms SBSS1 and SBSS2

described for sugar beet (Hesse & Willmitzer, 1996; Haagenson et al., 2006). The sucrose

Figure 3.1: Cross-section of Beta

vulgaris taproot indicating the po-
sition of samples taken
The picture shows a cross-section of a
typical taproot used for sampling. Clearly
visible are the concentric rings of vascu-
lar tissues (phloem and xylem). Indicated
are the positions where the samples for
the Northern blots in the following �gures
are taken from.
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3 Results

Figure 3.2: Transcript analysis of the cell wall invertase BvCWI1 and the vacuolar
invertases BvVI1 and BvVI2.
In each lane, approximately 15 µg total RNA was loaded and after blotting hybridized with
biotinylated probes against the indicated genes. The taproot cross-section and the wounding
stages came from 28 week old, harvested taproots. Above each �lm panel, the EtBr stained gel
bands of the 28S rRNA are shown as a loading control.

synthase genes show a complementary expression pattern to the acid invertases in �gure

3.2. Both isoforms are expressed in the later phases of the taproot development and can

be detected across the complete cross-section of the mature taproot. SBSS2 seems to have

a much higher expression level than SBSS1, since the exposure time of the northern blot

�lm was signi�cantly shorter (2min in contrast to 3 d exposure for SBSS2 and SBSS1 re-

spectively). After wounding, SBSS1 seems to be further down regulated, whereas SBSS2 is

slightly induced.

3.1.3 Induction of acid invertases after wounding leads to major

sucrose losses

As described in Rosenkranz et al. (2001), wounding of taproot tissues leads to an induction

of acid invertases. This leads to a major breakdown of sucrose and to the accumulation

of hexoses, especially glucose (Figure 3.4.B). Although the increase of cell wall invertase

activity precedes the increase in vacuolar invertase activity, major sucrose losses appear only

after two to three days, when the soluble invertase activity exceeds cell wall bound activity.

This is also re�ected in the protein levels detected by western blot analysis (Figure 3.4.C),

where the amount of vacuolar invertase protein has its maximum at three and �ve days

after wounding. Only at these time-points the typical fragments of the vacuolar invertase
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3.1 The life cycle of Beta vulgaris shows a distinct regulation of sucrolytic enzymes

Figure 3.3: Northern blot of two sucrose synthase isoforms from sugar beet (SBSS1
and SBSS2).
In each lane, approximately 15 µg total RNA was loaded and after blotting hybridized with a
biotinylated probe. The taproot cross-section and the wounding stages came from 28 week old,
harvested taproots. Above each �lm panel, the EtBr stained gel bands of the 28S rRNA are
shown as a loading control. The exposure time of the �lm was 3 days for SBSS1 and 2 minutes
for SBSS2.

at 30 and 45 kDa can be detected. On transcript level, the isoforms BvVI1 and BvCWI1

are already detected 1 d after wounding (Fig. 3.2). Earlier results however showed, that

BvCWI1 transcript is already present 10 h after wounding, whereas BvVI1 is only detected

beginning from 1d after wounding (Rosenkranz et al., 2001). Taken together, these data

emphasize the importance of the VI for sucrose degradation, which is further supported by

the colocalization of the invertase with most of the stored sucrose in the vacuole.
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3 Results

Figure 3.4: Wound induced CWI and VI activity leads to sucrose degradation in
taproots
A: Invertase activity of the soluble and the combined salt-eluted and cell wall pellet frac-
tions, measured at pH 4.6. Error bars indicate the standard deviation of triplicates. B: Sucrose
hydrolysis and accumulation of glucose and fructose after wounding. Soluble sugars were ex-
tracted in 80% ethanol and measured using a coupled enzymatic assay. Error bars indicate the
standard deviation of triplicates. C: Vacuolar and cell wall invertases are induced in taproot
tissues by wounding. Soluble (VI) and cell wall bound (CWI) protein extracts from taproot
tissues were detected with the antiserum raised against BvVI1 and NtCWI. Soluble protein
extracts were acetone precipitated and 20 µg protein was loaded. For CWI the cell wall pellet
was boiled in SDS sample bu�er and the equivalent of 40mg fresh weight was loaded.
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3.2 Occurrence of proteins regulating respiration e�ciency

3.2 Occurrence of proteins regulating respiration

e�ciency

This thesis was prepared as part of the so-called "BREATH-LESS GABI" project, a joint

project between the industrial partners Südzucker AG (Mannheim), KWS AG (Einbeck)

and the university of Heidelberg. One aim of this project was to identify sugar beet breeding

lines di�ering in their post-harvest sucrose loss. The post-harvest respiration of these breeding

lines was analyzed by Südzucker and KWS with the aim to identify high and low respiring

lines. After the identi�cation of lines with signi�cant di�erences, those lines can be further

characterized with respect to di�erences in the expression or activity of potential target genes

in�uencing the respiration rate of the stored plants. Apart from sucrose-hydrolyzing enzymes,

which are important for the provision of carbon sources, the role of proteins in�uencing the

e�ciency of the respiratory chain in mitochondria was investigated.

After harvest, the taproots �rst show a strong increase in respiration due to the wound

reaction in bruised parts of the taproot. After this initial increase, the respiration rate de-

clines again to a relatively stable level (K. Harms, Südzucker, personal communication). In

order to test the in�uence of the wounding process, the oxygen consumption of taproot slices

was measured at di�erent time-points (Fig. 3.5). All samples show a strong increase after

wounding with the maximum activity 24 hours after wounding. Later the oxygen consump-

tion decreases and stabilizes at three to �ve days after wounding.

Figure 3.5: Oxygen consumption of three taproot samples at di�erent time points
after wounding.
Oxygen consumption was measured electrochemically using Clark-type electrodes. Each value
is the mean of three repetitive measurements, error bars indicate the standard deviation.
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3 Results

3.2.1 Expression of uncoupling proteins and alternative oxidases in

sugar beet

In order to investigate the presence of proteins regulating the respiration e�ciency in sugar

beet, cDNAs for two putative uncoupling proteins (BvUCP1 and BvUCP2) and an isoform

of alternative oxidase (BvAOX1) were identi�ed in an EST database. The matching cDNA-

clones were sequenced and analyzed. For the UCP isoforms, both cDNA clones contained a

putative full-length open reading frame, whereas the AOX isoform was incomplete. Therefore

the missing cDNA ends were determined by 5' and 3' RACE using a cDNA prepared from

unwounded taproots. The sequence data for the genes can be found in the appendix (see

page B).

Northern blot experiments were carried out with various tissues from Beta vulgaris. The

expression analysis for BvUCP2 is shown in �gure 3.6. BvUCP2 shows an evenly expression

in all tissues tested, wounding does not seem to alter the expression of the uncoupling

protein. For BvUCP1 only very weak signals, which also were present in all tested tissues,

were detected in the Northern blot (data not shown).

With the probe against the alternative oxidase isoform BvAOX1 no signals were detected

in the Northern blot. In order to test whether the protein is present in Beta vulgaris mi-

tochondria, Western blots were carried out using an monoclonal antiserum raised against

the alternative oxidase of Sauromatum guttatum (Elthon et al., 1989). Due to the high

conservation of AOX proteins between di�erent plant species, this antiserum has been used

successfully in a variety of species (McDonald et al., 2002). Mitochondria from leaf, wounded

and unwounded taproot were isolated and used for Western blotting. Figure 3.7 shows, that

in all tested tissues at least one band approximately 30 kDa in size appears. At one and three

days after wounding a distinct second band is detectable, probably representing a second

AOX isoform, which is upregulated by wounding. At six days after wounding, this second

isoform is not detected anymore. In the last lane a mitochondrial extract from a taproot,

which had been stored for more than a year in a cold room at 4� is loaded. This sample

shows a very strong signal, that is also composed of more than one protein band. In most of

the lanes a second signal appears at approximately 65 kDa, most likely due to the presence

of covalently linked AOX protein dimers. It is well known that AOX activity is regulated by

dimerization via an intermolecular disul�de bridge (Vanlerberghe & McIntosh, 1997). This

disul�de bridge is usually broken under the reducing conditions used for the SDS-gels, how-

ever here it might have remained partially intact by incomplete reduction of the sample. In

further western blotting experiments the intensity of the dimer band increases strongly, when

the protein samples are loaded without a reducing agent onto SDS-gels (data not shown).
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3.2 Occurrence of proteins regulating respiration e�ciency

Figure 3.6: Transcript analysis of the mitochondrial uncoupling protein BvUCP2
In each lane, approximately 15 µg total RNA was loaded and after blotting hybridized with
a biotinylated probe. Above the �lm panel, the EtBr stained gel bands of the 28S rRNA are
shown as a loading control.

Figure 3.7: Detection of AOX isoforms in di�erent tissues of Beta vulgaris

Mitochondria were puri�ed and in each lane 20µg mitochondrial protein was loaded. AOX
proteins were detected with the monoclonal antiserum against the Sauromatum guttatum AOX
protein.
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3 Results

3.3 Overexpression of the tobacco vacuolar invertase

inhibitor NtVIF in sugar beet

In order to suppress sucrose losses caused by the induction of vacuolar invertases after wound-

ing, transgenic sugar beets were generated overexpressing the vacuolar invertase inhibitor

NtVIF from tobacco. Previously it was shown in potato, that ectopic overexpression of this

inhibitor protein drastically reduced the production of hexoses during cold storage (Greiner

et al., 1999).

Transgenic sugar beet plants were generated in cooperation with KWS. For transformation,

the same binary vector construct as in Greiner et al. (1999) was used, featuring the tobacco

NtVIF cDNA expressed under the control of a CaMV 35S promoter, which should lead

to strong expression in all vegetative tissues. In addition, the vector confers kanamycin

resistance to the transformed plants.

3.3.1 In adventitious roots, no clear e�ect of the NtVIF transgene

is observed

After the petiol transformation using agrobacteria, plantlets were regenerated in sterile cul-

ture. At this stage, individuals can be propagated leading to several clonal plants of each

line. After the plantlets are transferred to soil, they develop a large adventitious root, which

accumulates comparable amounts of sucrose as seed-grown taproots. They also posses the

typical concentric arrangement of conducting tissues found in sugar beet taproots.

Initially 19 individual transgenic lines were produced by KWS. Thirteen lines belonged

to the genotype 8T0015 and six lines were transformed in genotype 6B2840. After a �rst

round of analyses, three lines from genotype 8T0015 were chosen for further characterization.

These lines (designated 2-72, 4-39 and 4-74) showed a strong expression of the transgene and

a reduction in vacuolar invertases activity after wounding. These results however were, due

to the lack of more plant material, based on only three individual plants per line. The number

of T-DNA insertions in the individual lines was determined via Southern blotting using a

NtVIF speci�c probe. Line 2-72 carried three, line 4-39 one and line 4-74 two DNA-insertions

(data not shown). None of the six lines from genotype 6B2840 showed any observable e�ect

of the transgene compared to the wildtype of the same genotype and these lines were omitted

from further analyses.

Figure 3.8 shows the expression of the NtVIF transcript in di�erent individuals of the three

chosen lines. The RNA was isolated from adventitious root tissue, which had been wounded

for three days. It is noteworthy, that although the used CaMV 35S promoter should not

respond to environmental stresses like wounding, a clear induction of the NtVIF transcript

was observed when unwounded and wounded root materials were compared (Figure 3.9).

Figure 3.10.A and B show the weight of the adventitious roots at harvest and the activity of
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3.3 Overexpression of the tobacco vacuolar invertase inhibitor NtVIF in sugar beet

Figure 3.8: Detection of NtVIF transcript in wounded adventitious roots of pri-
mary transformants
In each lane, approximately 15µg total RNA from wounded taproot tissue was loaded and
hybridized with a biotinylated probe against NtVIF. Above the �lm panel, the EtBr stained
bands of the 28S rRNA are shown as a loading control. RNAs from three wildtype (WT) are
loaded together with RNAs of four to �ve individuals from each line (A (2-72), B (4-39) and
C (4-74)). + indicates earlier tested overexpressing plants.

Figure 3.9: The expression of the NtVIF transgene is
induced by wounding
Total RNA was extracted from unwounded (0d) and wounded
(3d) adventitious root tissue of two transgenic lines (2-72, 4-39)
and the expression of the transgene was detected by Northern
blot analysis as described in Fig 3.8.

the vacuolar invertase three days after wounding. In Figure 3.10.C the sucrose concentration

before and after wounding in the same experiment are shown. None of the three lines showed

a signi�cant decrease neither in invertase activity, nor in the loss of sucrose after wounding.

Line A and C show a small decrease in invertase activity and sucrose loss, but due to the

high variation between individual plants no signi�cant e�ect is present.
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3 Results

Figure 3.10: Weight
of adventitious roots
at harvest, activity
of vacuolar invertase
after wounding, sucrose
concentrations and cal-
culated sucrose losses in
adventitious root tissues
A: Weight of roots at har-
vest. B: Soluble invertase
activity of transformants
and wildtype three days
after wounding. Invertase
activity was measured after
acetone precipitation of the
soluble fraction. C: Sucrose
concentration before (0d)
and after (3d) wounding of
wildtype and transformants
were determined enzy-
matically after ethanolic
extraction. The diamond
symbols and the given
values display the relative
loss of sucrose three days
after wounding.
2-72, 4-39, 4-74: transgenic
lines; WT: wildtype Each
value is the mean of ten
plants (2-72, 4-39, WT)
or �ve plants (4-74), error
bars indicate the standard
deviation.
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3.3 Overexpression of the tobacco vacuolar invertase inhibitor NtVIF in sugar beet

3.3.2 Seed grown NtVIF overexpressing sugar beets show no

reduction of wound induced VI activity

Since the previous results were only based on plants generated from in vitro culture, seeds

of the three lines were produced and new experiments were carried out with seed grown tap-

roots. These taproots were bigger and accumulated more sucrose compared to the previously

analyzed adventitious roots (see Figure 3.11). The presence of the transgene was tested via

Northern blot analysis and plants without expression of the transgene were omitted from

further measurements. Again all three transgenic lines showed a smaller root size and no

general reduction in wound induced invertase activity. Furthermore, the sucrose loss in the

transgenic lines was higher than in the control line (data not shown).

Figure 3.11: Weight of seed
grown taproots at harvest
and activity of vacuolar inver-
tase after wounding
A: Weight of taproots at harvest.
B: Soluble invertase activity of
transformants (2-72, 4-39, 4-74)
and wildtype (WT) three days af-
ter wounding. Invertase activity
was measured after acetone pre-
cipitation of the soluble fraction of
the wounded taproot tissues.

39



3 Results

3.4 Recombinant overexpression and characterization of

a sugar beet vacuolar invertase

Since the characterization and crystallization of the invertase inhibitor NtCIF from tobacco

(Greiner et al., 1998; Hothorn et al., 2004b), it was possible to produce further proteins of

the PMEI-RP protein family recombinantly in bacteria and to provide proof of their func-

tion as either invertase or PME inhibitors (Wolf et al., 2003; Link et al., 2004). One major

obstacle for the more intense characterization of the interaction between the inhibitors of

the PMEI-RP protein family and their target proteins was the lack of pure preparations

of target proteins. Most of the functional characterization of the inhibitors was carried out

with more or less crude plant extracts containing either PME or invertase activity. These

extracts however can contain several isoforms of the target protein and often include endoge-

nous inhibitor proteins bound to part of the tested target enzymes, thereby hampering the

interpretation of the observed activity data. Only recently the heterologous production of

invertases (Huang et al., 2003; De Coninck et al., 2005) and PMEs (Peng et al., 2005) was

described in the eucaryotic expression host Pichia pastoris.

In order to produce pure invertase protein, several expression systems and invertase iso-

forms were tested until the expression of the Beta vulgaris vacuolar isoform BvVI1 in E. coli

was successful. BvVI1 is the major vacuolar invertase isoform in Beta vulgaris, it is expressed

in leaf tissue and young roots and its induction after wounding of taproots is responsible for

a major part of the sucrose losses after harvest (see 3.1.1 and 3.1.3).

3.4.1 Overexpression and puri�cation of the vacuolar invertase

BvVI1 in E. coli

First experiments with the overexpression of the tobacco cell wall invertase NtCWI and

BvVI1 in the methylotrophic yeast Pichia pastoris using the vector pPICZαA (Invitrogen)

did not succeed in production of active invertase protein.

A new expression strategy for these proteins was initiated using the pETG-vector series1

(EMBL, Heidelberg) in E. coli. These vectors are based on the pET vector system (No-

vagen), that uses the strong viral T7 promoter in combination with the E. coli lac-operator

(Dubendor� & Studier, 1991). Expression can be induced by the addition of IPTG or other

galactosides. The pETG vectors contain attR recombination recognition sites, so that they

can be used with Gateway-Technology (Invitrogen, Hartley et al., 2000) and are constructed

to allow the expression of the gene of interest in frame with a variety of N-terminal fusion

tags. It has been shown for several proteins, that the addition of these tags can promote

solubility and proper folding of foreign proteins in E. coli. The used vectors and the results

obtained with the tobacco and the sugar beet invertase are summarized in table 3.1. Whereas

1http://www.embl.de/ExternalInfo/protein_unit/draft_frames/index.html
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3.4 Recombinant overexpression and characterization of a sugar beet vacuolar invertase

Vector N-terminal Fusion tag NtCWI expression BvVI1 expression
pETG-10A 6xHis - +
pETG-20A 6xHis-TrxA - +
pETG-30A 6xHis-GST - +
pETG-50A 6xHis-DsbA - +
pETG-52A 6xHis-llDsbA - +
pETG-60A 6xHis-NusA - +

Table 3.1: Overview of the used expression vectors and the obtained results with the NtCWI and
BvVI1 gene (6xHis: hexa-histidine tag; TrxA: ThioredoxinA-tag; GST: Glutathione-S-transferase-
tag; DsbA: DsbA-tag; llDsbA: leaderless DsbA-tag, protein is not secreted into the periplasmic
space; NusA: N utilization substance A-tag). No expression was observed with NtCWI, whereas all
tested constructs with BvVI1 lead to overerexpressed protein.

BvVI1 was expressed in all vectors used, no overexpressed NtCWI protein was detected. In

order to increase the amount of soluble protein, the expression was carried out after induc-

tion with 0.2mM IPTG at 18� overnight. Also the addition of 2.5% glucose to the growth

medium led to higher yields of soluble protein, whereas addition of sucrose had no signi�cant

e�ect.

All constructs contain a 6xHis-tag allowing puri�cation via immobilized metal a�nity

chromatography (IMAC) using Nickel resins. Since a recognition site for the TEV protease

was incorporated into the constructs, all fusion tags can be removed after puri�cation by

treatment with recombinant TEV-protease (also containing a 6xHis-tag) and a subsequent

second IMAC step. In this step, the fusion tag and the TEV-protease are removed (see

scheme in Fig. 3.12.A). The recombinant invertase protein is now free of any additional

tags and is collected in the �ow-through of the second IMAC column. Figure 3.12.B gives

a typical puri�cation of the BvVI1 protein expressed in the pETG-30A vector leading to

a GST-BvVI1 fusion protein. The pETG-30 vector was used, because it gave the highest

amount of soluble fusion protein compared to the other pETG-vectors (not shown). After

puri�cation of the fusion protein, the GST-Tag is cleaved o� together with the 6xHis-Tag

using TEV-protease.

41



3 Results

Figure 3.12: Overexpression and puri�cation of BvVI1
A: Schematic diagram showing the functional domains of the expressed fusion proteins: His-
Tag (6xHis), GST-tag (GST), recombination sites (attR1, attR2), TEV-cleavage site and the
BvVI1-ORF (without signal peptide).
B: Typical puri�cation of BvVI1-protein from bacteria with subsequent cleavage of the fusion
protein by TEV protease. On the �rst column, the GST-BvVI1 fusion protein is puri�ed from
the bacterial extract and eluted (E1-E4, M: protein standard, T: total protein sol: soluble
protein). After dialysis, the protein containing fractions (- TEV) are treated with TEV protease
(+ TEV) and then passed over a second Nickel-column. The cleaved BvVI protein is retained
in FT-2. After further washing (W I to W IV), the TEV-protease and the GST-tag (not visible)
is eluted (E TEV).
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3.4 Recombinant overexpression and characterization of a sugar beet vacuolar invertase

3.4.2 Characterization of the recombinant BvVI1 protein

After puri�cation, the BvVI1 protein was usually dialyzed into an acidic bu�er for activity

measurements. Invertase activity was determined in an enzymatical-optical test according to

Weil & Rausch (1990), in which the released glucose is converted in a reaction coupled to the

reduction of NADP+. All reactions were carried out at 37�. The activity of the recombinant

protein showed a linear dependency on the incubation time and the amount of protein used

(Figure 3.13). The enzyme showed a broad pH optimum with the maximum activity at

pH5.1 (Figure 3.14.A). In order to determine the KM value of the enzyme, the reaction was

carried out at di�erent substrate concentrations (Figure 3.14.B). The recombinant invertase

protein shows a typical Michaelis-Menten kinetic for the substrate sucrose. To determine the

KM value, the substrate concentration and the reaction velocity were plotted reciprocally in

a Lineweaver-Burk diagram (Lineweaver & Burke, 1934). Linear regression analysis yielded

a KM value for sucrose of 3.7mM. For comparison, the data were also plotted according to

Hanes and Woolf (Hanes, 1932) and calculated via best �t curve to the Michaelis-Menten

equation. With these methods a KM value of 4.3mM and 4.0mM sucrose respectively was

determined. The Vmax value was calculated as 0.55 nkat per µg enzyme.
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3 Results

Figure 3.13: Time (A) and dose (B) dependency of the recombinant BvVI1 protein
In A, 1 pmol of BvVI1 protein were incubated in bu�er (50mM sodium acetate, 300mM NaCl,
pH 5) containing 33mM sucrose and the reaction was stopped at the indicated time-points.
In B, increasing amounts of BvVI1 were incubated in the same bu�er and the reaction was
stopped after 60minutes.

Figure 3.14: pH dependency (A) and KM determination (B) for recombinant BvVI1
protein
A: Relative BvVI1 activity at di�erent pH. The activity at pH5.1 was set as 100% B:KM

determination: the plot shows the reaction velocity (v0) plotted against the used sucrose con-
centration [S]. The small diagram in the inset shows a Lineweaver-Burk plot of the obtained
data.
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3.5 BvC/VIF1 is a potent inhibitor of CWI and VI

3.5 BvC/VIF1 is a potent inhibitor of CWI and VI

The presence of proteinaceous inhibitors for invertases in the sugar beet taproot has been

described already several decades ago (see 2.8.2). However, no sequence data of the gene

coding for this inhibitor were available previously. By a BLAST homology search using the

invertase inhibitor NtCIF as a template sequence, a cDNA clone with homologies to PMEI-

RPs was found in a sugar beet EST library. The gene was named BvC/VIF1 for Beta vulgaris

cell wall or vacuolar inhibitor of β-fructosidase, re�ecting its homology to other invertase

inhibitors. Since the PMEI-RPs characterized previously either code for inhibitors of PME

or invertase, a functional characterization of the recombinant protein was carried out �rst.

3.5.1 Features of the BvC/VIF1 cDNA

An alignment of the predicted BvC/VIF1 protein and other functionally characterized in-

hibitors of PMEs and invertases is given in �gure 3.15. Noticeable is the conservation of four

cysteine residues, which have been shown to be important for the overall structure of the

inhibitor proteins by stabilizing the structure of the N-terminal hairpin (by linking helices

1 and 2) and the bundle core (connection between helix 5 and 6) via two disul�de bridges

(see Hothorn et al. (2004b) and �gure 2.1 on page 19).

3.5.2 The BvC/VIF1 cDNA encodes an invertase inhibitor protein

In order to con�rm, that the obtained BvC/VIF1 cDNA sequence indeed codes for an in-

vertase inhibitor, the protein was overexpressed in a bacterial system. The cDNA without

the predicted signal peptide was cloned into the vector pQE30 (Qiagen) and transformed

into E. coli. The expression of the target gene in the pQE30-vector can be induced by the

addition of IPTG and the protein is fused to a N-terminal 6xHis-tag. The E. coli expression

host Rosetta-gami (Novagen) was used, which contains an oxidizing cytosol promoting the

formation of disul�de bridges in order to facilitate the formation of correct folded inhibitor

proteins. In order to increase the amount of soluble protein, the expression was carried out

at 18� instead of 37� in TB-medium with the addition of one percent glucose to reduce

leaky expression of the promoter in the uninduced state.

Figure 3.16.A shows a typical puri�cation of the BvC/VIF1-protein. The elution frac-

tions containing most of the BvC/VIF1 protein were combined and dialyzed into an acidic

bu�er. To test whether the puri�ed protein contained disul�de bridges, it was analyzed by

SDS-PAGE in the presence and absence of reducing agents (Fig. 3.16.B). The protein in the

reduced form runs shortly above the 20 kDa marker band, whereas the corresponding unre-

duced protein band runs clearly below this band, indicating a more compact structure due

to the presence of disul�de bridges. The unreduced sample contains an additional band at

about 35 kDa, which is not present when the same sample is loaded in reduced state. This sec-
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3 Results

α1 α2
* *

AtPMEI1 .......MAANLRNNAFLSSLMFLLLIGSSYA ITSSEMSTICDKTLNPSFCLKFLN....
AtPMEI2 .......MAAYLTNRVLMSSLMFFVMTG.SLNA QVADIKAICGKAKNQSFCTSYMKSN..
AcPMEI .................................ENHLISEICPKTRNPSLCLQALESD..
BvC/VIF1 MTTLNTSLPHLHLLFITLLTLFTTSTLAYS RKTTNDLVTTTCKQTPDPILCEASLRSDS.
AtC/VIF1 ............MKMMKVMMLIVMMMMVMVMVSEGSII EPTCKETPDFNLCVSLLNSDP.
AtC/VIF2 .......MASSLIFLLLVTLTFS ASTLISAKSNTTTIIESTCKTTNYYKFCVSALKSD..
NtVIF ............MRNLFPIFMLITNLA FNDNNNSNNIINTTCRATTNYPLCLTTLHSDPR
NtCIF ...............MKNLIFLTMFLTILLQTNA NNLVETTCKNTPNYQLCLKTLLSD..

α1 α2

α2 α4 α5
* * *

AtPMEI1 .TKFASPNLQALAKTTLDSTQARATQTLKKLQS.IIDGGVDPRSKLAYRSCVDEYESAIG
AtPMEI2 .PKTSGADLQTLANITFGSAQTSASEGFRKIQS.LVKTATNPTMKKAYTSCVQHYKSAIS
AcPMEI .PRSASKDLKGLGQFSIDIAQASAKQTSKIIAS.LTNQATDPKLKGRYETCSENYADAID
BvC/VIF1 .RSSKAADSEGLILIMIDVVKTRFSDSFRYVED.LTRKTHDPDVIRALQECKQLYRVVLD
AtC/VIF1 ..RGSSADTSGLALILIDKIKGLATKTLNEING.LYKKRPE..LKRALDECSRRYKTILN
AtC/VIF2 .PRSPTADTKGLASIMVGVGMTNATSTANYIAGNLSATVKDTVLKKVLQDCSEKYALAAD
NtVIF TSEAEGADLTTLGLVMVDAVKLKSIEIMKSIKK.LEKSNPE..LRLPLSQCYIVYYAVLH
NtCIF .KRSATGDITTLALIMVDAIKAKANQAAVTISK.LRHSNPPAAWKGPLKNCAFSYKVILT

α3 α4 α5

α5 α6 α7
*

AtPMEI1 N.LEEAFEHLASGDGMGMNMKVSAALDGADTCLDDVKRLRSVDSSVVNNS..KTIKNLCG
AtPMEI2 S.LNDAKQSLASGDGKGLNIKVSAAMEGPSTCEQDMADFK.VDPSAVKNS..GDFQNICG
AcPMEI S.LGQAKQFLTSGDYNSLNIYASAAFDGAGTCEDSFEGPPNIPTQLHQAD..LKLEDLCD
BvC/VIF1 VSVGLAVRAVKQGDPKFGEQAMVDAGNEAEGCRMAFPEGK...VPGRIVGRTRMLHGVSN
AtC/VIF1 ADVPEAIEAISKGVPKFGEDGVIDAGVEASVCQGGFNGSS....PLTSLT..KSMQKISN
AtC/VIF2 S.LRLTIQDLDDEAYDYASMHVLAAQDYPNVCRNIFRRVKGLAYPVEIRRREASLRRICG
NtVIF ADVTVAVEALKRGVPKFAENGMVDVAVEAETCEFSFKYNG.LVSPVSDMN..KEIIELSS
NtCIF ASLPEAIEALTKGDPKFAEDGMVGSSGDAQECEEYFKGSK...SPFSALN..IAVHELSD

α5 α6 α7

α7

AtPMEI1 IALVISNMLPRN
AtPMEI2 IVLVISNMM...
AcPMEI IVLVISNLLPGS
BvC/VIF1 VAASMIKSLE..
AtC/VIF1 VTRAIVRMLL..
AtC/VIF2 VVSGILDRLVE.
NtVIF VAKSIIRMLL..
NtCIF VGRAIVRNLL..

α7

X nicht konserviert

X ähnlich

X konserviert

Figure 3.15: Alignment of PME and invertase inhibitor proteins
Alignment was carried with ClustalW (Thompson et al., 1994). Predicted signal peptides
are shown in italics, for BvC/VIF1 the signal peptide is predicted to include either amino
acids 1 to 28 or 1 to 30 (shaded in grey). Indicated are the α-helical parts of AtPMEI1
(�rst row) and NtCIF (last row) numbered according to Hothorn et al. (2004a,b). Residues
conserved between all proteins are marked with an asterisk.
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ond band probably consists of BvC/VIF1 dimers, which are covalently linked via a disul�de

bridge. Further indications for this come from the results of size exclusion chromatography

experiments (see 3.7.2).

Figure 3.16: Overexpression of BvC/VIF1 in E. coli and puri�cation via Nickel-
a�nity chromatography (A), and analysis of the reduction state of the recombinant
protein (B).
A: The BvC/VIF1 protein (without the signal peptide) was overexpressed with a 6xHis-tag in
the E. coli strain Rosetta-gami (Novagen) and puri�ed using a Ni-NTA matrix (Qiagen). UI
and I show the undinduced and induced bacterial samples, T the total protein after extraction.
After centrifuging the soluble protein was bound to the Nickel matrix. FT shows the unbound
bacterial proteins. After washing (W) the proteins were eluted in di�erent fractions (E1-E6)
with a bu�er containing 250mM imidazole (M, protein standard).
B: Recombinant BvC/VIF1 protein is present as monomer and dimer. Puri�ed BvC/VIF1
protein was loaded onto a SDS-gel under reducing conditions (+DTT) and non reducing con-
ditions (-DTT). Without a reducing agent, part of the recombinant protein runs at a molecular
size of approximately 35 kDa, indicating the presence of dimers, which are linked via disul�de
bridges. Note that the monomer fraction runs at a lower molecular weight than the reduced
protein, indicating the presence of intramolecular disul�de bridges (M, protein standard).

Figure 3.17 shows a comparison of the inhibitory capacity of the recombinant BvC/VIF1

protein in comparison with the two described tobacco inhibitors NtCIF and NtVIF (Rausch

& Greiner, 2004). Preparations of vacuolar and cell wall invertases from tobacco and sugar

beet leaves, two recombinant vacuolar invertases (see section 3.4) and vacuolar invertase

from wounded taproots were used as target proteins. The invertase inhibitor from sugar beet

and NtCIF show a comparable inhibition of all vacuolar invertases and also a comparable

inhibition of the CWI preparations. Increasing amounts of the respective inhibitor proteins

led to a progressive reduction of invertase activity. However, both proteins do not inhibit the

crude CWI preparations completely.

When comparing preparations of BvC/VIF1 and NtVIF, the vacuolar inhibitor from to-

bacco, only a weak inhibition of VI extracted from wounded Beta vulgaris taproots is ob-

served with NtVIF, whereas BvC/VIF1 is able to inhibit the same preparation completely

(Fig. 3.17.E,F). The NtVIF protein is however able to inhibit the invertase from tobacco

leaves.
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Figure 3.17: Inhibition of plant extracted and recombinant invertases by
BvC/VIF1 and the cell wall and vacuolar invertase inhibitor from tobacco (NtCIF
and NtVIF).
Extracts containing mainly vacuolar invertases from sugar beet leaves (A,B), wounded sugar
beet taproots (E,F) or tobacco leaves (A,B,E,F) and the recombinant invertase IbVI2 and
BvVI1 (C,D) were treated with di�erent amounts of recombinant inhibitor proteins. BvC/VIF1
and NtCIF were puri�ed in soluble form from the bacteria, whereas NtVIF was renatured from
inclusion bodies. BvC/VIF1 and NtCIF completely inhibit all vacuolar invertase preparations
tested. In contrast, NtVIF is only able to inhibit the VI from tobacco leaves, whereas the VI
from wounded taproots is only weakly inhibited.
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3.5.3 Genomic organization and expression analysis of the

BvC/VIF1 gene

The presence of isoforms with a high degree of sequence homology to the BvC/VIF1 sequence

was tested via Southern blotting. Beta vulgaris genomic DNA was isolated and digested with

restriction enzymes and hybridized with a probe against the coding region of the BvC/VIF1

cDNA (Fig. 3.18). No other closely related isoform is detected, since only one band appears

after EcoRI digestion, whereas two bands appear with the restriction enzymes BamHI and

HindIII, each recognizing one cleavage site inside the sequence fragment detected by the

BvC/VIF1 probe. Due to the low sequence conservation of invertase inhibitors in other

plant species, the presence of additional inhibitor isoforms not detected under the washing

conditions used, can however not be ruled out completely.

Figure 3.18: Southern blot analysis of BvC/VIF1-
sequences in the sugar beet genome
In each lane 10µg genomic DNA, which was digested with the
indicated restriction enzymes, was loaded and hybridized with a
500 bp probe against the coding region of the BvC/VIF1 cDNA.
Note that either BamHI and HindIII cut inside the region, which
was ampli�ed for the generation of the probe.

To gather more information about the importance of the BvC/VIF1 gene, a transcription

pro�le was created by Northern blotting (see Fig. 3.19). The results indicate a strong ex-

pression of the gene in Beta vulgaris suspension culture and in taproot tissues. A weaker

expression was detected in �oral tissues. No BvC/VIF1 expression was found in leaves. In the

developing taproot, BvC/VIF1 only shows a weak expression in six weeks old roots. In older

taproot stages the expression increases, reaching its maximum at the end of the vegetation

period, where a strong signal is present throughout the whole taproot cross-section. During

formation of the taproot BvC/VIF1 shows an inverse regulation of expression compared to

the acid invertases (Fig. 3.2 on page 30).

Surprisingly, during wounding of the taproot the expression of the inhibitor stays at a high

level and even shows a slight increase during the procedure. During this physiological state

the inhibitor and its putative target proteins are expressed in parallel.
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Figure 3.19: Northern blot of the BvC/VIF1 gene.
In each lane, approximately 15µg total RNA was loaded and after blotting hybridized with a
biotinylated probe. The taproot cross-section and the wounding stages came from 28 week old,
harvested taproots. Above the �lm panel, the EtBr stained bands of the 28S rRNA are shown
as a loading control.

3.5.4 Subcellular localization of BvC/VIF1:GFP reportergene

fusions

Invertase inhibitors have been described to be localized either in the apoplast or in the vac-

uole of plant cells (Rausch & Greiner, 2004). The subcellular localization of the inhibitor

proteins de�nes their target enzymes and since cell wall and vacuolar invertase have di�erent

functions during plant development, the localization of the BvC/VIF1 protein has an im-

portant implication for its role during taproot development. Using the predicted BvC/VIF1

protein sequence as an input, bioinformatic tools for the prediction of transit peptides recog-

nize a N-terminal transit peptide for the co-translational entrance into the secretory pathway.

However, two possible cleavage sites are predicted by the individual programs. The program

PSort (Nakai & Horton, 1999 settings: plant sequence)2 identi�es the most likely cleavage

site after amino acid number 30 of the BvC/VIF1 sequence (YS-RK, see Fig. 3.15), whereas

SignalP3.0 (Bendtsen et al., 2004)3 predicts the cleavage site to be after amino acid 28 (LA-

YS, see Fig. 3.20 for the graphical output of the prediction). The cleavage site after amino

acid 30 is however also recognized at a lower score.

In contrast to the well characterized structure of signal peptides for the co-translational

entrance into the ER, knowledge about vacuolar sorting signals in plants is limited. Although

several possible motifs have been identi�ed, often, a prediction whether a protein is sorted

into the vacuole or is secreted into the apoplastic space can not be made based on sequence

data alone (Matsuoka & Neuhaus, 1999).

2http://psort.nibb.ac.jp/
3http://www.cbs.dtu.dk/services/SignalP-3.0
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Figure 3.20: Graphical output of the signal peptide prediction for the BvC/VIF1
protein sequence using SignalP3.0 (Bendtsen et al., 2004).
The program predicts the presence of signal peptidase I cleavage sites. In addition, for each
amino acid it calculates the probability to be part of either the N-terminal, the central hy-
drophobic or the C-terminal region of a signal peptide.

Targeting of BvC/VIF1:GFP fusions to the vacuole

To elucidate the subcellular localization of the BvC/VIF1-protein, two constructs were gen-

erated for the expression of the BvC/VIF1-protein as an N-terminal fusion with the green

�uorescent protein (GFP) under the control of the CaMV 35S promoter. One construct was

generated in the vector pK7FWG2 (Karimi et al., 2002) using Gateway technology, the sec-

ond in the vector pFF19-GFP (Wachter et al., 2005). pK7FWG2 is a binary vector, which

can be used for plant transformation using agrobacteria. The second construct was gener-

ated, because the pFF19-vector is due to its smaller size better suited for usage in particle

bombardments. Both constructs were used to transiently transform onion epidermal cells.

Onion epidermis is a favorable system, since the epidermal cells are easily removed from

the leaf and consist of large, non-colored cells, which can be analyzed by light microscopy.

As a control, the cells were always cotransformed with a second construct leading to the

localization of a red �uorescent protein (RFP) in either the cytosol or in plastids.

Figure 3.21 shows two transformed onion epidermal cells, in which the BvC/VIF1:GFP

protein is localized inside the large central vacuole. The cell in Fig. 3.21.C to E has been

partially plasmolyzed using 1Mmannitol. The plasma membrane is partially detached from

the cell wall and the central vacuole has separated into two smaller ones. The RFP control

construct in B and E labels the plastids. These are restricted to the cytoplasmic layer sur-

rounding the vacuole. Figure 3.22 shows again an epidermal cell analyzed using confocal laser

scanning microscopy (CLSM), now transformed with the pFF19-BvC/VIF1:GFP construct.

In the analyzed optical plane the clear di�erentiation between the cytosol labeled with a
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RFP construct and the GFP labeled central vacuole can be observed.

It has to be noted however, that not all transformed cells showed a clear vacuolar local-

ization of the GFP-�uorescence, often only the ER of the cells was labeled with GFP (data

not shown).

In tobacco leaves, overexpressed BvC/VIF1:GFP fusion proteins are cleaved

proteolytically

A di�erent result was obtained, when the BvC/VIF1:GFP fusion construct was used to

transiently transform tobacco leaves by in�ltration with agrobacteria (Fig. 3.23). Here the

GFP-�uorescence was localized in vesicular structures at the borders of the cells and no

vacuolar �uorescence was observed.

When di�erentially extracted protein samples from the in�ltrated leaves were analyzed

with the BvC/VIF-antiserum (see ch. 3.5.5), two speci�c signals were observed. In the soluble

and the salt-eluted fraction, a protein was detected, which showed a similar size to the

BvC/VIF1 signals observed in taproots (e.g. Fig. 3.25). When the remaining cell wall material

was boiled in SDS-containing bu�er, a signal of approximately 45 kDa was detected. Since

this is the size expected for the BvC/VIF1:GFP fusion protein, this protein is probably the

inhibitor-GFP fusion protein. This was proven by performing a Western blot with a GFP

antiserum with the same samples. Here only the putative fusion protein was detected, but

not the inhibitor alone. This indicates a proteolytic processing event, which separates the

GFP-tag from the inhibitor found in soluble extracts. When the invertase activity of the

soluble and the cell wall bound fraction was analyzed in these samples, a clear reduction of

the soluble invertase activity was observed, whereas the cell wall bound activity showed no

clear alteration compared to unin�ltrated plants.
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Figure 3.21: In vivo localization of the pK7FWG2-BvC/VIF1-encoded
BvC/VIF1:GFP fusion protein in onion epidermal cells after transient transfor-
mation
Onion epidermal cells were transiently transformed by particle bombardment with the
pK7FWG2-BvC/VIF1 construct and the pFF19-AtGSH1-TP:RFP (Wachter et al., 2005),
which is exclusively localized in plastids, and analyzed by �uorescence microscopy. A and
D show the GFP �uorescence of the BvC/VIF1:GFP construct in the central vacuole, whereas
the RFP-labeled plastids are restricted to the small cytosolic layer at the boundary of the
cell (B and E). The epidermal cell in C-E was partially plasmolyzed by the treatment with
1Mmannitol, which led to the constriction of a second vacuole. C shows the cell from D and
E in transmitted light.

Figure 3.22: CLSM analysis of the localization of
BvC/VIF1:GFP in onion epidermal cells
Onion epidermal cells were transiently transformed by
particle bombardment with the pFF19-BvC/VIF1:GFP
and a pFF19-RFP construct, which leads to RFP expres-
sion in the cytosol. After incubation GFP and RFP �uo-
rescence was inspected using confocal laser scanning mi-
croscopy. The GFP �uorescence (A) is localized in the
central vacuole, whereas the RFP �uorescence (B) is re-
stricted to the peripheral cytosolic layer. The merge (C)
shows a clear di�erentiation of the two localizations.
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Figure 3.23: Detection of cleaved BvC/VIF1 and BvC/VIF-GFP in transiently
transformed tobacco leaves
Tobacco leaves were in�ltrated with agrobacteria containing the pK7FWG2-BvC/VIF1 con-
struct and analyzed 48 h after in�ltration. A-F: Confocal images of in�ltrated leaves A,D:
transmitted light; B,E: GFP �uorescence; C,F: overlay; G: soluble and cell wall bound in-
vertase activity of unin�ltrated (WT) leaves and leaves transformed with the BvC/VIF1:GFP
construct;H: Western Blot of soluble (sol.), salt-eluted (cw salt) and residual proteins extracted
by boiling the cell wall remnants in SDS sample bu�er (cw boiled). The samples were analyzed
with the BvC/VIF and a GFP-antiserum. The BvC/VIF1:GFP fusion protein detected with
both antisera is marked with an asterisk, the cleaved BvC/VIF1 protein by an arrow.
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3.5.5 Production and a�nity puri�cation of the BvC/VIF antiserum

In order to examine the expression of BvC/VIF1 on protein level, an antiserum was raised

against the recombinant inhibitor protein. A characterization of the di�erent bleedings ob-

tained from the immunization procedure can be found in the appendix, chapter 8.2.

In order to reduce the presence of unspeci�c bands, the generated antiserum had to be

a�nity puri�ed against recombinant BvC/VIF1 protein (Figure 3.24). The protein was co-

valently coupled to a sepharose matrix and used to bind speci�c antibodies from the immune

serum. After washing, the antibodies were eluted by a change to acidic pH. As shown in �gure

3.24, it was possible to remove two strong unspeci�c bands (present only in �ow-through)

and to increase the strength of the putative inhibitor signal. Another putative unspeci�c

band at 45 kDa is still present in the a�nity puri�ed serum.

Figure 3.24: A�nity puri�cation of the BvC/VIF antiserum against recombinant
BvC/VIF1 protein.
Di�erent amounts of recombinant BvC/VIF1 protein (0,1=0.1 µg, 0,02=0.02 µg) were loaded
together with a leaf extract (l - 5mg f.w. equivalent), an extract from Beta suspension cul-
ture cells (cc - 12.5mg f.w. equivalent) and a wounded taproot extract (tr_w - 12.5mg f.w.
equivalent)and detected with the unpuri�ed �nal bleeding, the a�nity puri�ed serum and the
�ow-through of the a�nity puri�cation (FT). A closed arrow indicates the size of the correct
band of the recombinant protein. The dashed arrow marks the corresponding BvC/VIF bands
from taproot and cell culture tissues. The strength of the immune reaction could be enhanced
by the a�nity-puri�cation and concomitantly two major unspeci�c signals could be removed
and appear only in the �ow-through of the a�nity column.

3.5.6 Detection of two inhibitor proteins in taproot tissues

Figure 3.25.A shows the detection of the putative inhibitor signals in a cross-section of a

sugar beet taproot and in a salt-eluted cell wall fraction of the Beta vulgaris suspension

culture. Since the used gel showed a higher size resolution than the gels depicted before (Fig.

3.24) the previously observed putative inhibitor signal in the extracts from taproot tissues

was separated into two bands of a size between 17 and 19 kDa. In the bark of the taproot,

the upper signal seems to be more pronounced, whereas in a salt-eluted fraction from Beta
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vulgaris suspension culture, which is strongly enriched in cell wall localized proteins, only

the lower signal is present.

After a sequential extraction of the soluble and the cell wall proteins from taproot tissue

(Figure 3.25.B) a di�erential localization of the two proteins became evident. In the soluble

fraction, both proteins are detected, whereas in the fraction containing the cell wall bound

proteins only the lower signal is present. These data indicate the presence of at least two

structurally related inhibitor proteins in the sugar beet taproot, of which the lower one seems

to be at least partially localized in the cell wall.

Figure 3.25: Detection of multiple BvC/VIF proteins in cross-sections of taproot
tissues.
A: Soluble extracts from a cross-section (0-4, bark) of a taproot and the non thickened part of
the same taproot. cc - cell wall is a salt-eluted cell wall extract from Beta vulgaris suspension
culture cells (25mg f.w. each). In the soluble extracts from the taproot, two bands of a size of
around 16 and 18 kDa are detected. In the cell culture cell wall fraction, only the lower band
is present. B: soluble fraction (25mg f.w.) and cell wall fraction (50mg f.w., extracted with
SDS-sample bu�er after removal of soluble proteins) of unwounded taproot interior. Only the
lower band is present in the cell wall fraction.

3.5.7 The BvC/VIF proteins form stable complexes with acid

invertases

In mature taproots strong inhibitor signals are detected (Fig. 3.25), but no acid invertase

expression is detected (Fig. 3.2). However, during wounding the inhibitor proteins and their

potential target invertases are coexpressed. If this expression occurs in the same cell types,

at least part of these proteins should be present as invertase-inhibitor complexes. To examine

the presence of these complexes, extracts from wounded taproots were separated via a size

exclusion chromatography (SEC) and the obtained fractions were then analyzed for the

presence of invertases and their inhibitor proteins in the same fractions. In comparison,

the same was done for extracts from unwounded taproots, where no invertase expression is

detectable.

As shown in �gure 3.26.A, in unwounded taproot extracts the inhibitors elute from the

column at elution volumes of 92 to 100ml. From runs with marker proteins on the same
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Figure 3.26: BvC/VIF proteins bind to invertases in wounded taproot tissue.
Extracts from unwounded taproot tissue (A) and �ve days wounded taproot tissues (B) were
separated via size exclusion chromatography on a Superdex200 column. 160µl of each frac-
tion were precipitated and run on a Western blot and detected with the antiserum against
BvC/VIF and BvVI (only B). Numbers give the elution volume in ml, ex = extract before
chromatography. In (A) the BvC/VIF proteins elute at the expected size for monomeric pro-
teins, whereas in (B), most of the inhibitor proteins elute in fractions together with the detected
invertase. C: Invertase activities of the obtained fractions of the wounded tissues.

column, this elution volumes correspond for globular proteins around 16 kDa in size. A weak

inhibitor signal is also present around an elution volume of 72ml.

In Fig. 3.26.B the same experiment is carried out with an extract from taproots �ve

days after wounding. Here the inhibitor mainly elutes between 74 and 78ml, which is in

range of the observed size of the smallest peak of the complexes formed by recombinant

BvC/VIF1 and BvVI1 protein (see Figure 3.30 on page 65). The Western blot developed

with the antiserum against the vacuolar invertase and the activity assay in 3.26.C show,

that the vacuolar invertase mainly elutes at an elution volume between 74 and 82ml. The

highest invertase activity is observed at 78ml, indicating, that either the invertase is present

in surplus to the inhibitor, or that the inhibitor does not completely inhibit the invertase

activity.
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3.6 Puri�cation of BvC/VIF proteins from Beta vulgaris

taproot tissue and suspension culture

The antiserum raised against the recombinant BvC/VIF1 protein detects two putative in-

hibitor proteins present in sugar beet taproot tissues (see Fig. 3.25). In order to proof the

nature of these bands, the corresponding proteins were puri�ed from Beta vulgaris tissues.

The puri�ed cross-reacting proteins were then partially sequenced via mass spectroscopy

(carried out at the ZMBH, Heidelberg) to test, whether the obtained protein sequences �t

to the BvC/VIF1 cDNA or belong to a further inhibitor isoform.

3.6.1 In Beta suspension culture cells, the BvC/VIF protein is

present as a complex with a cell wall invertase

In the Beta vulgaris suspension culture only the lower of the two observed BvC/VIF bands

is observed in Western blots (see Figure 3.25.A, page 56). This protein is localized in the

cell wall, since it can be removed from the cells by addition of 0.5M sodium chloride, which

elutes ionically bound proteins from the cell wall, leaving the cell membrane intact. A similar

approach was originally used to purify and identify the NtCIF protein from a tobacco cell

culture (Weil et al., 1994).

Figure 3.27 shows, that in the Beta vulgaris suspension culture the observed inhibitor forms

a complex with a cell wall invertase. During a lectin chromatography with a concanavalinA

(ConA) matrix, the invertase inhibitor, which is itself not glycosylated, is found both in

the lectin unbound fraction (cc ConA-), and also in the lectin bound fraction (cc ConA+).

The appearance of the inhibitor in this fraction is most likely due to the binding of a part

of the present inhibitor proteins to the cell wall invertase, which is strongly enriched in

the ConA+ fraction. This �nding is further supported by the observation, that during size

exclusion chromatography the observed inhibitor signal, like in the described experiment

with wounded taproot tissue (Figure 3.26), is partially present in the same elution volumes

like the cell wall invertase. Only part of the inhibitor proteins present are not bound to an

invertase and elute later at elution volumes corresponding to its monomeric size (data not

shown).

This hypothesis was later proofed in a diploma thesis (Claussen, 2005), in which the

BvC/VIF protein could be puri�ed and partially sequenced. The protein was puri�ed via a

sequential lectin and size exclusion chromatography of a cell wall enriched protein sample

from the Beta vulgaris suspension culture cells. The resulting peptide fragments are included

in table 3.2 on page 60. Out of four di�erent peptide sequences generated, two �t perfectly

to the predicted protein sequence of the BvC/VIF1-cDNA.
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Figure 3.27: In B.v. suspension culture cells, BvC/VIF forms a complex with a
cell wall invertase
Soluble and salt eluted samples from taproots (tr) and cell culture (cc) were detected with the
antiserum against BvC/VIF and against cell wall invertase (anti NtCWI, cc samples only). In
the soluble fraction from taproots (tr sol) both BvC/VIF bands are present, whereas in the
cell wall sample (tr cw) only the lower band appears. In salt eluted fractions from suspension
culture cells (cc cw) only the smaller BvC/VIF band appears. After lectin chromatography,
this signal appears in the unbound fraction (cc ConA-) and in the lectin bound fractions (cc
ConA+), where it elutes together with the cell wall invertase. (M, protein standard)

3.6.2 Puri�cation of both BvC/VIF proteins via a�nity

chromatography with recombinant BvVI1 protein

The identi�cation of peptide fragments from the cell wall of the suspension culture cells

matching the BvC/VIF1 protein sequence indicate a cell wall localization of the inhibitor

protein. However, these data contradicted the partial vacuolar localization of the BvC/VIF1-

GFP fusion protein in chapter 3.5.4. In samples from unwounded taproots the lower of the

two proteins detected is also at least partially bound to the cell wall (Fig. 3.25.B) and

corresponds in size to the protein isolated from the suspension culture. This led to the

assumption that this immuno signal corresponds to the BvC/VIF1 protein localized in the

cell wall of suspension culture cells. The second, approximately 1 to 1.5 kDa larger signal is

only found in soluble extracts and could either be a closely related second inhibitor isoform

with a di�erent localization, or a di�erent processing product of BvC/VIF1. In order to get

more insight into the nature of these signals, both proteins were puri�ed from taproot tissues

and again partially sequenced.

The strongest expression of both inhibitor proteins is observed in unwounded taproot

tissue. Since in this tissue, no or very little invertase is present, the puri�cation strategy

used before for the inhibitor from cell culture was not feasible. Therefore a new strategy

was developed using the recombinantly expressed BvVI1 protein (see ch. 3.4) as an a�nity

partner for the puri�cation of inhibitor proteins from crude taproot extracts (Figure 3.28).

First, BvVI1 protein was covalently coupled to CNBr-sepharose, since this coupling is

stable over the used pH-range. Second, the taproot extract (prepared at pH5, sugars present

were removed by ammonium sulfate precipitation) was passed over the column at a very
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low �ow rate, allowing the inhibitor proteins to bind to the invertase. Then the column was

washed with bu�er at pH5 followed by a change to pH8.5. In preliminary experiments and

by size exclusion chromatography (Fig. 3.31) it had been shown, that this pH change into

the basic range leads to the loss of binding between the invertase and the inhibitor.

The puri�cation was monitored by Western blotting of the di�erent fractions with the

BvC/VIF antiserum (Fig. 3.28.A). Most of the inhibitor proteins present in the initial extract

(ex) did not bind to the invertase column and are detected in the �ow-through (FT). However,

a strong signal for both inhibitor proteins appeared in the elution fractions (E). The elution

fraction was further precipitated and loaded onto a preparative SDS gel and stained with

colloidal coomassie (Fig. 3.28.B). In comparison with a Western blot carried out with the

same sample, two bands (marked with 1 and 2) could be identi�ed corresponding in size to

the observed immuno signals. These two bands were used for peptide sequencing via nano-

ESI-qTOF, which lead to the identi�cation of peptide fragments speci�c corresponding to the

BvC/VIF1 sequence (Fig. 3.28.C). These peptides were sequenced from both protein bands

and their position in the BvC/VIF1 sequence is limited by trypsin cleavage sites. Further

peptide sequences were only identi�ed for the gel sample surrounding the upper band 1, but

these showed no signi�cant homology to any known sequence (Table 3.2).

Source Obtained fragments Match with
BvC/VIF1

Suspension
culture cells
(cell wall
fraction)

[KQ]TPDPXXCEASXR x
YVEDXTR x
[KQ]XVG[FMox]ESVNXK -
YVXVSD[FMox]ESESCK -
YVXVSD.... -
YVXSD[FMox]E... -

Taproot Band 1

...PDPXXCEASXR x
YVEDXTR x
.........SVGHNK -
...DSAAVNSVGHNK -
VVXDVWGXGXR -

Taproot Band 2
...PDPXXCEASXR x
YVEDXTR x

Table 3.2: Sequences of the obtained peptide fragments from the puri�ed proteins
Amino acids in square brackets can not be di�erentiated by mass spectroscopy (carried out by Dr.
Th. Ruppert, ZMBH, Heidelberg). (Mox= oxidized methionine; X: L or I; . : unidenti�ed amino
acid)
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Figure 3.28: Puri�cation of BvC/VIF proteins from sugar beet taproot tissue.
A: Western blot monitoring the puri�cation of the BvC/VIF proteins via an invertase a�nity
column. An extract from sugar beet taproot (ex) was passed over a column onto which recom-
binant BvVI1 protein was covalently coupled. Although most of the inhibitor proteins did not
bind to the column (FT, �ow-through), after washing (WI, WII) BvC/VIF proteins could be
eluted by a pH change to 8,5 (E). B: Elution fraction E on a colloidal coomassie stained gel.
The two protein bands partially sequenced by nano-ESI-QTOF are marked with arrows. (M,
protein standard) C: BvC/VIF1 sequence showing the identi�ed peptides from both protein
bands in bold. The predicted signal peptide is in italics (see also Tab. 3.2).
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3.7 Characterization of the interaction between the

recombinant invertase BvVI1 and the inhibitor

BvC/VIF1

In the course of this thesis it was possible to produce highly active preparations of a re-

combinant invertase (BvVI1, see 3.4) and an invertase inhibitor from the same plant species

(BvC/VIF1, see 3.5.2) for the �rst time. This opened the possibility for more detailed studies

of the mechanism underlying the posttranslational silencing of invertases by proteinaceous

inhibitors.

3.7.1 Inhibition of BvVI1 by BvC/VIF1 is strongly pH dependent

Earlier studies (Weil et al., 1994) observed a strong pH-dependency during the inhibition of

invertases through inhibitor proteins. To test, whether this e�ect can be reproduced with

the pure protein preparations, the inhibition of the recombinant invertase was measured at

di�erent pH values using increasing amounts of the recombinant inhibitor protein.

Figure 3.29: pH depen-
dent inhibition of BvVI1
by BvC/VIF1
At each measured pH, the
activity of the invertase was
measured without and with
increasing amounts of re-
combinant BvC/VIF1 pro-
tein. Before addition of su-
crose, the invertase and in-
hibitor were incubated for
30minutes to allow the com-
plex to form. Each value is
a mean of three measure-
ments, error bars indicate
the standard deviation.

As shown in �gure 3.29, at pH5.6 the invertase is still highly active, but the e�ect of the

inhibitor is markedly decreased. At pH6.1 no inhibitory e�ect on the invertase is observed,

although the invertase without inhibitor possesses still 75% of the maximal activity observed

at pH5.1. The strongly reduced inhibition at elevated pH values might be physiological

relevant during in vivo changes of the apoplastic and vacuolar pH. An increase in the pH

might lead to reduced inactivation of the invertase albeit the presence of inhibitor proteins.

At pH4.1 and 4.6 near complete inhibition of the invertase is observed.
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3.7.2 Complex formation between recombinant BvVI1 and

BvC/VIF1

As previously described (Fig. 3.17.C on page 48), BvC/VIF1 inhibits recombinant BvVI1

protein. In order to study this interaction more closely, size exclusion chromatography ex-

periments were carried out using a Superdex200-column (Pharmacia). The recombinant in-

vertase and its inhibitor were run separately and in combination on the column and the

elution of the proteins was monitored by UV-absorption. The recombinant proteins di�er

widely in there content of UV-absorbing aromatic acids, therefore the high UV-absorbtion

of the BvVI1 protein had to be decreased mathematically to �t the absorption of both pro-

teins into one diagram. Figures 3.30 and 3.31 show the UV-absorption traces of several runs

under di�erent conditions. After puri�cation, the recombinant inhibitor protein is partially

present in a dimeric state (see Fig. 3.16.B on page 47), most likely due to the formation of

a intermolecular disul�de bridge. This is corroborated by the elution pro�le of the inhibitor

passed individually over the column. In �gure 3.30.A two peaks, corresponding in size to

proteins of 17 and 36 kDa respectively, can be observed (labeled 1 and 2).

In contrast to this, the BvVI1 protein alone runs as a single peak (3) under all tested

conditions, indicating the presence of only monomeric proteins. The peak is situated at an

elution volume of 82.5ml. In comparison with the elution volumes of the standard proteins

used for column calibration, this indicates a size of approximately 42 kDa (Tab. 3.3), whereas

the calculated molecular mass of the recombinant protein is 60.5 kDa. This elution behavior

indicates a very compact fold of the protein, leading to a retarded elution volume.

When both proteins are combined in acidic bu�er, the elution pro�le is altered dramati-

cally. A two-fold excess of BvC/VIF1 molecules was added to BvVI1 on a molar basis4. The

peaks observed with the individual proteins disappear and three new peaks at earlier elution

volumes (4,5,6) appear, probably due to the formation of higher molecular weight complexes

between the invertase and the inhibitor. This pro�le is not a�ected by the presence of sucrose

during the column run (Fig. 3.30.B).

At pH7.5 conditions no complex formation is observed (Fig. 3.31), emphasizing the strong

pH dependency of inhibition observed earlier (see Fig. 3.29 on page 62).

The elution volumes of the peaks 4, 5 and 6 indicate the formation of complexes with

di�erent composition. Table 3.3 gives an overview of the theoretical molecular weights for

the observed elution peaks, calculated from a standard curve based on the elution of standard

proteins. The peak with the highest elution volume (4) corresponds in size to approximately

65 kDa (calculated from the running behavior of the marker proteins), indicating a one to

one complex of monomeric inhibitor and the invertase. In contrast to this, the �rst peak (6)

elutes at the same volume as the 150 kDa marker protein. This leads to the interpretation,

that this complex must consist of two invertase proteins linked by a dimerized inhibitor. The

41 µg BvC/VIF1 = 52.3 pmoles; 1µg BvVI1 = 16.5 pmoles
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minor middle peak (5) might be an intermediate between these two states.

This interpretation is strengthened by the detection of the monomeric inhibitor protein

on SDS gels (Figure 3.32) only in the fraction corresponding to elution volume of peak 4.

The dimeric inhibitor, which can be visualized under non-reducing conditions is present

preferentially in earlier fractions. The invertase protein is present in all fractions, indicating

that the observed peaks indeed are formed by complexes between the two proteins.

peak number Ve [ml] MW calculated [kDa] Sample
1 92.3 19.7 BvC/VIF1
2 83.0 40.2 BvC/VIF1
3 82.3 42.4 BvVI1
4 77.2 62.6 BvVI1 + BvC/VIF1
5 73.5 83.2 BvVI1 + BvC/VIF1
6 67.8 128.7 BvVI1 + BvC/VIF1

Table 3.3: Elution volumes and molecular weights (MW) calculated for the peaks la-
beled in Fig. 3.30 and 3.31
MW was calculated based on a standard curve prepared with the elution volumes of the standard
proteins on the same SEC-column.

Invertase activity of fractions obtained after SEC

Invertase activity of all protein containing fractions from the SEC run at pH5 containing

BvVI1 and BvC/VIF1 was measured. The pro�le of the invertase activity followed closely

the pro�le of the protein content of the fractions, indicating that not all the invertase present

in the respective fraction is inactivated by the inhibitor (see Fig. 3.33). The total activity

of all fractions was approximately one third of the activity of the same amount of invertase

when incubated without inhibitor. The sample loaded on the column showed only a very low

invertase activity, indicating that at this point nearly all invertase was inactivated.
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Figure 3.30: Recombinant BvVI1 and BvC/VIF1 proteins form stable complexes,
which can be separated by size exclusion chromatography
The recombinant proteins were passed separately and combined over a Superdex200 column and
protein content was detected photometrically at 280 nm. The elution volumes and molecular
masses of the used standard proteins are also given (A, β-Amylase; B, Alcohol Dehydrogenase;
C, BSA; D, Carbonic Anhydrase; E, Cytochrome C) For the enumeration of the peaks please
refer to the text.
A: SEC without sucrose present (running bu�er: 50mM sodium acetate, 300mM NaCl pH5).
B: SEC with the addition of 30mM sucrose to the bu�er from A.
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Figure 3.31: At neutral pH, no complex between BvVI1 and BvC/VIF1 is observed.
The experiment was carried out as in Fig. 3.30 in a neutral running bu�er (50mM sodium
phosphate, 300mM NaCl pH7.5) Here no complex formation of BvVI1 and BvC/VIF1 can be
observed. Only a small new peak appears in the combined run (Ve=43ml), which elutes in the
void volume (V0) of the column.

Figure 3.32: Detection of BvVI1 and
BvC/VIF1 proteins in the elution
fractions of combined SEC run
The elution volumes of the major peaks
of the SEC run shown in 3.30.A were
separated on a SDS-gel either in reduced
(+DTT) or non-reduced form (-DTT).
The BvVI1 protein (arrowhead) runs sim-
ilarly under both conditions, whereas the
invertase inhibitor is in the non-reduced
stated either present as a dimer (dotted
arrow) or as an monomeric protein (closed
arrow).(M, protein standard; S, sample;
elution volumes in ml)
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Figure 3.33: Protein content and invertase activity pro�le of the SEC run shown
in Fig. 3.30.A containing 410 µg BvVI and 250 µg BvC/VIF1
After the SEC run, invertase activity of each protein containing fraction was determined.
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3.8 Characterization of sugar beet plants with increased

or down-regulated BvC/VIF1 expression

The initially generated transgenic sugar beet plants, which overexpressed the vacuolar in-

vertase inhibitor NtVIF from tobacco, did not lead to a signi�cant decrease in the activity

of vacuolar invertases after wounding (see 3.3).

After the discovery and characterization of the endogenous sugar beet inhibitor BvC/VIF1,

it became evident, that this inhibitor had, compared to NtVIF, a much stronger activity

towards vacuolar invertases from wounded sugar beet taproots (see Fig. 3.17.E and F on

page 48).

In order to pursue the aim of decreasing the postharvest sucrose losses due to hydrolysis by

acid invertases, a new biotechnological approach using altered expression of the endogenous

inhibitor BvC/VIF1 was initiated. This approach should also deliver valuable insights con-

cerning the still not comprehensively understood subcellular localization of the BvC/VIF1

protein in planta and its role during taproot development. The following constructs were

generated and used for the Agrobacterium mediated transformation of Beta vulgaris :

� p70S-BvC/VIF1: in this construct, the complete coding region with 29 bp of the

5' UTR of the BvC/VIF1-cDNA is expressed under the control of the constitutive

CaMV 35S promoter. To increase expression, the sequence of the promoter has been

duplicated leading to a so called double 35S (p70S) promoter.

� p2-1-48-BvC/VIF1: here the BvC/VIF1-cDNA is expressed under the control of

the primarily taproot speci�c 2-1-48 promoter, isolated and characterized by the work

group of Prof. Hehl (Braunschweig, Hehl et al. (2002); Oltmanns et al. (2006)). The 2-1-

48 promoter (Genbank accession: AX449164) belongs to the primarily taproot speci�c

Mll gene, coding for a homologue of the major latex-like protein from Mesembryan-

themum crystallinum (Kloos et al., 2002). This additional overexpression approach is

based on the assumption, that a decrease of acid invertase activity in all plant tissues

could lead to restrictions of the overall performance of the plants.

� p70S-RNAi-BvC/VIF1: in order to down-regulate the expression of the invertase in-

hibitor in the taproot, this construct was generated to knock-down the native BvC/VIF1

expression through a RNAi approach. A removal of BvC/VIF1 expression in the tap-

root could increase the understanding of the physiological role of invertase inhibitors.

The construct consists of approximately 260 bp of the BvC/VIF1 coding region �rst

in antisense and then in sense direction, linked by intron 2 of the A. thaliana gene

AtAAP6 (at5g49630), and is expressed under the control of the constitutive doubled

CaMV 35S promoter

All constructs are based on the vector p70S, which was provided by Dr. D. Stahl (Plant

GmbH, Einbeck). The transformations and regeneration of positive plantlets were again
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carried out by KWS. During the preparation of this thesis, only in vitro regenerated leaf

material of the transgenic plants was available for characterization. Of the �rst construct,

20 individual lines were generated, whereas for the taproot speci�c and the RNAi construct

only 11 and 4 lines respectively have been generated so far.

Detection of two protein in leaves of sugar beet plants overexpressing BvC/VIF1

For a �rst identi�cation of transgenic plants with an altered BvC/VIF1 expression, Northern

and Western blots were carried out using a probe against the BvC/VIF1 cDNA or the

BvC/VIF antiserum, respectively. Figure 3.34.A shows, that in most of the p70S-BvC/VIF1

lines a strong signal is observed in Northern blots, indicating the presence of high amounts

of BvC/VIF1 transcripts. As the wildtype plants (WT) and a transgenic line transformed

with a control construct (PR93/1) show only a very weak expression, it can be concluded,

that the p70S-BvC/VIF1 construct leads to a strong overexpression in the analyzed tissue.

The di�erent lines however show a variable level of overexpression, including lines like e.g.

IN10-1 and IN13-8 with no clear overexpression.

The strong overexpression in most of the lines was further supported by the detection of

strong signals in Western blots of the same tissues. As shown in Figure 3.34.B, the BvC/VIF

antiserum produces strong signals with the overexpressing plants, but not with the wildtype.

Surprisingly, the soluble protein fraction shows two strong immuno signals corresponding in

size to the observed signals in the untransformed taproots (see for instance Fig.3.25 and ch.

3.6.2). This observation strongly supports the idea, that both signals arise from one gene.

For the two other transformed constructs, which should either lead to a taproot speci�c

expression via the 2-1-48 promoter, or to a reduction of BvC/VIF1 expression via RNAi, the

analysis is hampered by the restriction on leaf material. Since the wildtype leaves show hardly

any detectable BvC/VIF1 expression in leaves, the RNAi e�ect can only be observed when

transformed root material is available, which shows a strong endogenous expression of the

inhibitor. For the p2-1-48-BvC/VIF1 constructs, the Northern blots in �gure 3.34.A shows

some lines, IN12-1, 2 and 10, with a signi�cantly increased BvC/VIF1 expression compared

to the wildtype controls. Since the aim of this construct is to speci�cally overexpress the

inhibitor in taproots, the selection of promising lines should also be based on the analysis of

taproot material, by which lines with a strong expression in taproots and no expression in

leaves can be identi�ed.

Vacuolar invertase activity is reduced in transgenic leaves

Figure 3.35 shows the invertase activity of the soluble and the cell wall bound fractions

of the leaf material from selected lines of the BvC/VIF1 transformants together with the

obtained signals for the BvC/VIF1 transcript in Northern blots. The activity of the highest

WT sample was arbitrarily set to 100%. Transgenic lines with a strong expression show a
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Figure 3.34: Transcript analysis (A) and Western blot (B) of leaf material with
downregulation or overexpression of BvC/VIF1
A: Transcript analysis of transgenic sugar beet lines with either constitutive (p70S) or taproot
speci�c (p2-1-48) overexpression and knock-down via RNAi. Approximately 15 µg of total RNA
isolated from in vitro-grown, regenerated plantlets was loaded and hybridized with a probe
against the BvC/VIF1 coding region. Two wild type plants (WT) and one transgenic control
(PR93/1, transformed with an unrelated construct) were loaded as a control on both gels. On
top of the �lm panel the 28S rRNA band is shown as a loading control. B: Immunological
detection of BvC/VIF proteins in selected overexpressing lines and in wildtype (WT) with
the BvC/VIF antiserum. Soluble (s) and salt-eluted cell wall proteins (cw) were extracted
separately. Note that for line 12-10 immunosignals for BvC/VIF-proteins appeared after long
exposure of the �lm (not shown). For the soluble fraction, the equivalent of 5.6mg and for cw
fraction the equivalent of 23mg fresh weight were loaded. (M, protein standard)

reduced invertase activity in the soluble fraction. The activity of the cell wall fraction seems

to be unaltered.
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Figure 3.35: Relative soluble and cell wall bound invertase activity of selected
BvC/VIF1 transgenic lines
A: Invertase activity of the soluble and cell wall bound fraction of in vitro-grown leaf material
of selected BvC/VIF1 transformants. Soluble and cell wall bound activity are expressed as
the relative activity of the WT2 sample, which was set to 100%. (soluble activity of WT2:
29 nkat/g fw; cell wall bound: 21 nkat/g fw) B: Detection of BvC/VIF1 transcripts in the tested
lines, reproduced from �g. 3.34. On top of the Northern blot �lm, the 28S rRNA loading control
is shown.
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4 Discussion

4.1 Post-harvest sucrose losses in sugar beet are

multi-causal

Sugar beet is one of the youngest crop plants grown on large scale in modern agriculture.

Breeding of fodder beet for sugar content began only at the end of the 18th century by

Franz Karl Achard and since then, the sugar content has been increased from originally 5

to 6% sucrose (w/w) to over 20% in modern sugar beet varieties (Pennington & Baker,

1995). While breeding has put much focus on the increase of sugar content in individual

plants, little attention has been drawn on sucrose losses after harvest. This is in part due to

di�culties in assessing this trait as part of a breeding program.

Several factors can in�uence the amount of sucrose lost during storage, i.e. the initial

amount of sucrose present, harvest techniques as well as the conditions and temperature of

storage (Burba, 1976). Also, earlier studies indicated signi�cant di�erences in post-harvest

sugar losses between di�erent sugar beet varieties (Wyse et al., 1978; Burba, 1976; Akeson

& Widner, 1981).

Physiologically, the loss of sucrose can be regulated at multiple levels. Initially sucrose,

the main source of carbon and energy in a decapitated taproot after harvest, has to be

remobilized from its place of storage inside the vacuole and cleaved. After this, the resulting

hexose sugars can be used in various processes of the cell's metabolism, but further regulatory

steps are likely to be involved.

The development of sugar beet lines with decreased post-harvest sucrose losses is a promis-

ing new aim of plant breeding. Therefore crosses with the most e�cient post-harvest meta-

bolism have to be identi�ed. Ideally, this breeding lines should only consume the minimal

amount of stored sucrose necessary to maintain the integrity of the taproot during storage

periods. The identi�cation and characterization of key genes for the consumption or stabi-

lization of sucrose, which can either be used as marker genes in breeding or as targets for

biotechnological manipulations, is of high importance for this task.

The focus of this thesis was drawn on the regulation of sucrose-hydrolyzing enzymes, which

are important for the cleavage of stored sucrose. Additionally, genes in�uencing the e�ciency

of mitochondrial respiration have been identi�ed and their expression in sugar beet has been

addressed.
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4.1.1 Acid invertase and sucrose synthase show an opposite

regulation during development of sugar beet taproots

In relation to the expression of sucrolytic enzymes, the development of the sugar beet taproot

can be divided into three phases.

The �rst phase of development is characterized by a high expression of vacuolar and cell

wall invertases. The near complete cleavage of sucrose incoming from the shoot leads to the

establishment of the root sink. In other developing plant tissues it has been shown, that VI

and CWI are important for the expansion of new tissues and that the high concentration of

hexoses generated serves as a metabolic signal, leading to high mitotic activity (reviewed in

Koch, 2004).

In the second phase, starting around eight weeks after germination, the taproot develops

and sucrose accumulation begins (Berghall et al., 1997; Klotz & Finger, 2002). This is ac-

companied by a drop in detectable invertase activity and no acid invertase expression can

be detected in the major part of the root (see Fig. 3.2). During this phase, two sucrose

synthase enzymes are expressed, which is also re�ected in increasing SuSy activity during

taproot development (Klotz & Finger, 2002). A similar course of invertase and SuSy activity

has been observed during seed development in several plant species (Weber & Wobus, 1997;

Hill et al., 2003) and seems to be a general model during the development of plant storage

tissues (Koch, 2004).

Two sucrose synthase isoforms are described for sugar beet (Hesse & Willmitzer, 1996;

Haagenson et al., 2006). Expression studies using isoform speci�c 3' UTR probes show a

stronger expression for SBSS2 than for SBSS1 in taproots (see Fig. 3.3). SBSS2 is already

present in six weeks old roots, whereas SBSS1 is detected only in older roots, in accordance

with other data showing a stronger SBSS2 expression in young roots (Haagenson et al.,

2006). Further SuSy isoforms are likely to exist in sugar beet, since e.g. for A. thaliana six

(Baud et al., 2004) and for pea and maize, at least 3 SuSy isoforms with a di�erent regulation

are known (Barratt et al., 2001; Carlson et al., 2002). The expression of both SBSS-genes in

the taproot points towards an important role for the e�cient accumulation of sucrose during

the major part of taproot development. The precise role of sucrose synthase in taproots is

however still unclear. On the one hand, it could be important for the maintenance of sink

strength by cleaving incoming sucrose before storage in the vacuole, as has been observed for

potato (Zrenner et al., 1995) and tomato (Wang et al., 1993). On the other hand, its activity

might only be important for the basic metabolism of the cell, whereas sucrose accumulation

is mainly dependent on the e�cient sequestration of sucrose in the vacuoles without the need

for prior cleavage.

One reason for the switch from an invertase based metabolic pathway to the more energy

conserving sucrose synthase pathway might be the hypoxic conditions developing in the bulky

storage tissues. Oxygen concentrations sharply decline in the interior of sugar beet taproots,
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with only 3.4% O2 in a depth of 2.5 cm (Schirmer, 2004). Incubation of potato tubers in

sub-ambient oxygen concentrations leads to a repression of invertase and an induction of

SuSy genes. Furthermore, ectopic overexpression of invertases in the potato tuber leads to

decreased oxygen concentration and reduced starch formation in the tubers (Bologa et al.,

2003), emphasizing the role of SuSy activity for tuber development.

The third phase of taproot development is initiated by the harvest of the plants. Inevitably

the plants are wounded. During the storage period preceding the processing in sugar factories,

sucrose is constantly lost. A close study of the expression of acid invertase isoforms (Fig.

3.2) and the resulting soluble and cell wall bound enzyme activities during wounding (Fig.

3.4) shows, that a cell wall (BvCWI1) and a vacuolar invertase (BvVI1) are induced. The

expression of two known SuSy isoforms (SBSS1 and SBSS2) however is not in�uenced by the

treatment. The induction of cell wall bound activity is already prominent at one day after

wounding, whereas the BvVI1 protein is only detected strongly three days after wounding.

Simultaneously a strong accumulation of hexoses is observed, emphasizing the role of BvVI1

as a key enzyme for sucrose mobilization (Rosenkranz et al., 2001). The characterization

of the recombinant BvVI1 protein showed (see 4.2.2), that the determined KM value of the

enzyme (around 4mM sucrose) is well below the sucrose concentration in a mature taproot

of up to 600mM sucrose. It is active over a broad pH range between pH4 and 6, indicating

that the enzyme's activity will not be limited by the availability of substrate or the vacuolar

pH.

4.1.2 Induction of alternative oxidases during wounding and storage

of taproots

Wounding and storage increase the respiration of sugar beet taproot material. A prominent

rise in O2 consumption of taproot disks is seen already one day after wounding (Fig. 3.5).

During the course of the wound reaction, the respiration rate declines again, albeit to an

increased level compared to the unwounded material. The same behavior has been observed

during the storage trials carried out on larger scale by Südzucker and others (K. Harms,

personal communication and Campbell & Klotz (2006)).

Respiration in mitochondria can be in�uenced by the activities of alternative oxidase

(AOX) and uncoupling proteins (UCP), which in�uence the e�ciency of the electron trans-

port chain. For both, sequences of high homology to isoforms in other plants have been found

in sugar beet EST collections. Expression of both gene families was detected during taproot

development.

BvUCP2 transcripts are present in all tissues analyzed (see Fig. 3.6), but showed no signif-

icant change during wounding. The second isoform, BvUCP1, showed a similar ubiquitous,

but much lower expression. Both genes seem to be part of a general defence mechanism

against over-reduction of the electron transport chain and reactive oxygen species that is ac-
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tive during all plant stages. It is however most likely, that the activity of the UCPs is strongly

regulated, for example by the presence of reactive oxygen species as has been observed in

other plants (Considine et al., 2003). In addition, for Arabidopsis thaliana di�erential expres-

sion of the �ve members of the AtPUMP gene family has been observed (Vercesi et al., 2006),

leaving open the possibility of further Beta vulgaris isoforms, which are induced during stress

responses.

An induction of alternative oxidase activity during ageing and wounding has been reported

in various species, e.g. in potato tubers (Hiser & McIntosh, 1990) and red beet (Potter

et al., 2000). The analysis of AOX protein expression in mitochondria from wounded sugar

beet slices showed a di�erential induction of at least two AOX-isoforms (Fig. 3.7). In the

unwounded taproot, only a single band is detected with the AOX antiserum, whereas 1 d

and 3 d after wounding, a second, slightly larger protein is detected. In source leaves, a

protein of the same size is present, whereas in sink leaves only the smaller one is observed.

The induction of the second AOX protein shows, that Beta vulgaris possesses multiple AOX

genes with distinct regulation patterns. Induction of the second isoform after wounding most

likely leads to an increased capacity of the alternative respiration pathway. An assignment

of the observed protein bands to the corresponding genes is so far not possible, since up to

now only one AOX gene (BvAOX1) has been identi�ed on a sequence basis. In Northern

blots, the BvAOX1 gene could not be detected, indicating a relatively low gene expression at

the mRNA level. However, expression in taproots was proven by reverse transcription PCR

(RT-PCR).

4.2 BvC/VIF1: a potential key factor for the regulation

of invertase activity in sugar beet

The presence of proteins with invertase inhibiting activity in Beta vulgaris was already pub-

lished in 1968. Pressey (1968) describe the isolation of a protein, 18.1 kDa in size, from fresh

sugar beet taproots by acid treatment, sequential precipitation and size exclusion chromato-

graphy. The protein is active against potato leaf invertase and inhibition is most pronounced

between pH4 and 5. Through the characterization of the recombinantly expressed BvC/VIF1

protein, expression analysis and studies of the complex formation between BvC/VIF1 and

plant invertases, increasing evidence accumulated during the preparation of this thesis, that

BvC/VIF1 is the gene corresponding to the earlier described invertase inhibitor.

The BvC/VIF1 sequence was identi�ed from a sugar beet EST library due to its homol-

ogy to described invertase inhibitors from tobacco (Greiner et al., 1998) and A. thaliana

(Link et al., 2004). Compared to other members of the respective gene family, the predicted

BvC/VIF1 protein sequence shows in a protein alignment (Fig. 3.15) typical features of

the PMEI-RP gene family, containing inhibitors of pectin methylesterase and invertase. It
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possesses four cysteine residues at conserved positions, which have been shown to be im-

portant for the structural integrity of the inhibitor proteins (Hothorn et al., 2004a). The

protein without the predicted signal peptide carries an basic isoelectric point (pI= 8.4) and

a molecular weight of approximately 17 kDa.

An assignment, whether BvC/VIF1 codes for an invertase or PME inhibitor, was however

not possible based on sequence data alone, due to the general low sequence conservation of

the protein family (Hothorn et al., 2004b). To elucidate the in vivo target enzyme of the

inhibitor, the protein was recombinantly produced and tested against invertase preparations.

4.2.1 Recombinant BvC/VIF1 protein shows a broad speci�city for

plant invertases

The BvC/VIF1 protein was expressed in bacteria without the predicted signal peptide and

could be puri�ed in soluble form. It is active against various plant invertases and shares

a comparable inhibition capacity with NtCIF (Fig. 3.17), the cell wall localized invertase

inhibitor from tobacco (Greiner et al., 1998). Vacuolar invertases, either extracted from

leaves of sugar beet and tobacco or from wounded Beta vulgaris taproots are inhibited

completely by increasing amounts of the inhibitor protein.

Whereas all vacuolar invertase preparation tested were fully inhibited, the protein showed

divergent activity against di�erent CWI isoforms. While CWI preparations from leaves are

only inhibited to around 50% of their basic activity, a CWI-preparation extracted from sugar

beet suspension culture cells and puri�ed by lectin chromatography was inhibited completely

by the protein (data not shown). This indicated, that BvC/VIF1 shows a di�erent speci�city

on CWI preparations, probably depending on the presence of di�erent CWI isoforms. This is

also shown by the e�ect, that already low amounts of BvC/VIF1, as well as NtCIF, inhibited

the leaf CWI preparation by 50%. Higher amounts of inhibitor led to no further reduction of

the activity, indicating the presence of multiple invertase isoforms deviating in their ability

to be inhibited by the used inhibitor proteins (Fig. 3.17.A and B).

4.2.2 Production of recombinant sugar beet invertase and

characterization of its interaction with BvC/VIF1

For a closer characterization of the interaction between invertases and their inhibitors, the ac-

tivity of the BvC/VIF1 protein was tested against recombinant plant invertases. In contrast

to assays using invertase preparations extracted from plants, the usage of recombinant inver-

tases possesses several advantages. Crude plant extracts often contain a mixture of di�erent

invertase isoforms and other contaminating proteins. Especially the presence of endogenous

inhibitor proteins, which remain bound to part of the prepared enzymes, hampers a detailed

analysis of the interaction with added recombinant inhibitor protein. During the preparation
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of this thesis, publications appeared describing the expression of vacuolar invertases from

sweet potato (Huang et al., 2003; Wang et al., 2005) and cell wall invertases from A. thaliana

(De Coninck et al., 2005) in the yeast Pichia pastoris. In order to obtain recombinant in-

vertases from sugar beet and tobacco, the Pichia pastoris expression system was tested for

the production of recombinant NtCWI and BvVI1 proteins. Although multiple constructs

deviating in the length of the expressed protein were tested, no expression of active invertase

protein was achieved.

Recombinant BvVI1 protein shows the typical activity of plant invertases

After the unsuccessful expression in yeast, an alternative invertase expression strategy in E.

coli was used. This led to the production of active BvVI1 protein. After testing of several

tags to increase solubility of the expressed protein in the bacteria, best expression yields

were obtained by expressing the protein in fusion with a N-terminal GST-tag, which could

be removed after puri�cation of the fusion protein. Addition of glucose to the medium en-

hanced the yield of the recombinant enzyme, possibly by a stabilizing e�ect on the invertase.

A promoting e�ect of the substrate sucrose itself was not noticed (data not shown). The pro-

duction of BvVI1 in E. coli is at present the only published expression of a plant invertase

in bacteria and will prove helpful for further analysis of the posttranslational regulation of

these important enzymes of plant primary metabolism.

BvVI1 is the major vacuolar invertase isoform in the life cycle of sugar beet, having a

high expression in leaves, young roots and in wounded taproots (Fig. 3.2 and Rosenkranz

et al., 2001). Regulation of its activity is therefore of high interest for the understanding of

sucrose accumulation and re-mobilization in sugar beet. The recombinant BvVI1 protein,

albeit lacking glycosylation due to the procaryotic expression hosts, shows a KM value and

pH optimum (Fig. 3.14) comparable to other vacuolar invertase preparations (Masuda et al.,

1988; Wang et al., 2005), which usually lies in the range between 1 and 30mM for sucrose

(BRENDA database1, Schomburg et al., 2002). The enzyme shows a maximal activity

between pH4.5 and 6, above pH6.5 the activity sharply declines. The observed pH optimum

is in accordance with values described for other plant VIs, which usually have a higher pH

optimum than CWIs (Roitsch & Gonzalez, 2004).

The BvVI1 protein is inhibited by recombinant invertase inhibitors

When incubated together with increasing amounts of BvC/VIF1 and NtCIF, recombinant

BvVI1 is fully inhibited. A similar behavior was observed, when either of the two inhibitors

was incubated with the IbVI2 protein, a VI isoform from sweet potato (Wang et al., 2005)

heterologously expressed in Pichia pastoris (Fig. 3.17.C and D). Since IbVI2 is produced in

glycosylated form in the eucaryotic expression system and is inhibited in a similar manner

1http://www.brenda.uni-koeln.de/
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as BvVI1, an in�uence of the post-translational glycosylation on the interaction between

invertase and inhibitor seems unlikely. Also an increased instability of the recombinant BvVI1

protein due to the lack of glycosylation was not observed, since the recombinant protein

showed an linear time dependency of its activity for at least 2 h at 37� (Fig. 3.13) and the

protein kept its activity during storage for several days at 4�.

Inhibition of BvVI1 is strongly pH dependent

A strong pH-dependency was observed for the inhibition of BvVI1 by BvC/VIF1. When

incubated together with BvVI1 at di�erent pH values between 4.1 and 6.1, a strong inhi-

bition was only observed below pH5.1 (Fig. 3.29). Above these pH values, the VI is still

active, but no inhibition occurs, opening the possibility of a regulation of inhibition through

changes in vacuolar or apoplastic pH. A similar behavior was reported for the inactivation

of a tobacco CWI by NtCIF (Weil et al., 1994), with the distinction that the tested CWI

showed without inhibitor a stronger intrinsic decrease of activity due to elevated pH, and for

the invertase inhibitor isolated from sugar beets (Pressey, 1968). At neutral pH, no complex

formation between the recombinant proteins occurred, as it was shown by size exclusion

chromatography (Fig. 3.31). Hothorn & Sche�zek (2006) determined the crystal structure of

the tobacco inhibitor NtCIF at di�erent pH values. The protein showed no major rearrange-

ments at di�erent pH values and it is proposed, that the pH-dependency of the inhibition is

most likely caused by changes in the surface charge of both interacting proteins.

The exact pH values and induced changes in the subcellular compartments of plants are

not clearly de�ned. Felle (2001) reviewed reports about measured values and changes in the

cell wall's pH. In roots, the apoplastic pH usually lies between 4.5 and 6 and is maintained

by active regulation through the plant (Taylor et al., 1996; Felle, 1998). Plant vacuoles in

general are also assumed to be acidic (Marty, 1999), but existence of acidic and non-acidic

vacuoles together in one cell or in di�erent cell types have been described (Di Sansebastiano

et al., 1998). Also the vacuolar proton pool is involved in regulations of cytosolic pH and

increases of the vacuolar pH due to acidi�cation of the cytosol have been reported (Roos

et al., 1998). The rapid loss of e�cient inhibition at increased pH values indicates a further

potential regulatory mechanism of the inactivation of plant invertases through transient

changes of the ambient pH. Co-expression of invertase and inhibitor together in a given

compartment alone might therefore be not su�cient for inactivation of the invertase, but it

is also dependent on the prevailing pH. When changes in the metabolic state of the cell are

re�ected via pH changes of the vacuole or the apoplast (e.g. by a�ecting the activity of proton

pumps in the apoplast or tonoplast), the cleavage of sucrose and the release of hexoses from

the vacuole (or the uptake from the apoplast), could be �ne-tuned to the cellular demand.
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BvVI1 and BvC/VIF1 form tight complexes

Invertase inhibitors are known to form tight 1:1 complexes with their target proteins (Kraus-

grill et al., 1998). The properties of the BvVI1-BvC/VIF1 complex were further analyzed

by size exclusion chromatography. The BvC/VIF1 protein alone shows two elution peaks,

corresponding to the presence of monomeric and dimeric forms of the protein (Fig. 3.30, peak

1 and 2). The inhibitor dimer puri�ed from E. coli is covalently connected via a disul�de

bridge, which can be opened by addition of reducing agents (Fig. 3.16.B). In planta, inver-

tase inhibitors have only been observed as monomers and also the elution volumes of the

BvC/VIF-proteins from unwounded taproot tissues (Fig. 3.26.A) corresponds to the elution

volume of the monomeric recombinant inhibitor proteins. Therefore the presence of dimeric

inhibitor protein after overexpression in bacteria is most likely an artefact of the heterologous

expression host.

The recombinant invertase BvVI1 alone showed only a single peak at an elution volume

corresponding to a molecular weight of only 42 kDa (Table 3.3 on p. 64), as compared to

the elution of standard proteins on the same column. The molecular weight of the recombi-

nant BvVI1 protein is however 60 kDa and this molecular weight was also observed during

SDS-PAGE of the puri�ed protein. The protracted elution from the SEC-column indicates

a very compact fold of the recombinant protein. A similar behavior was observed during the

puri�cation of the invertase from Thermotoga maritima and the authors proposed a nonspe-

ci�c interaction of the protein with the Sephadex column to be the cause for the protracted

elution (Alberto et al., 2004). The T. maritima invertase is, like the BvVI1 protein, present

as a monomer in solution, in contrast to yeast invertases that form dimer and even larger

oligomers (Kern et al., 1992).

When the inhibitor is combined with the BvVI1 protein in acidic pH, the proteins elute

together in a broad peak with three maxima consisting of complexes with di�erent compo-

sition. Either due to the relatively small size di�erences between the di�erent complexes, or

to a dynamic equilibrium of the complexes, a clear separation of the individual species is

not possible. By analyzing the corresponding fractions via SDS-PAGE in reduced and non-

reduced state (Fig. 3.32) it became obvious, that monomeric inhibitor is only present in the

peak at 77ml elution volume. The calculated molecular weight for a complex of this elution

volume is approximately 63 kDa (see Table 3.3) corresponding to the sum of the molecu-

lar weights for the peaks observed for the monomeric inhibitor (peak 1, 19.7 kDa) and the

BvVI1 protein (peak 3, 42.4 kDa). The other maxima consist of inhibitor dimers and prob-

ably one or two invertase molecules, as it can be concluded from the molecular weights in

table 3.3. Although it was shown for NtCIF and AtPMEI1, the best characterized members

of the PMEI-RP gene family, that the formation of two disul�de bridges is essential for the

function of the inhibitor, it is intriguing that the BvC/VIF1-dimer, which posses at least

one malformed disul�de bridge between the two molecules, is also able to form complexes

with one or two BvVI1 molecules. After SEC, the invertase activity pro�le closely followed
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the protein content of the fractions (Fig. 3.33). This indicated, that although the complex is

stable during SEC, part of the complex dissociates after the separation, leading to returning

invertase activity.

When recombinant NtCIF-protein (only monomeric) was combined with BvVI1, only one

invertase-inhibitor complex peak was observed (Fig. 4.1), probably representing the native

1:1 complex found in planta. This is corroborated by the observed elution of invertase-

inhibitor complexes extracted from wounded taproot tissues (Fig. 3.26.B) where both pro-

teins elute together between 72 and 80ml, corresponding to peak number 4 in Fig. 3.30.

Figure 4.1: Complex formation between recombinant BvVI1 and NtCIF during
size exclusion chromatography
A: Elution pro�le of recombinant BvVI1 and NtCIF proteins when run combined over a Su-
perdex200 column. The elution pro�le of BvVI1 alone is shown in red (Peak 3). Protein content
was detected photometrically at 280 nm. NtCIF was added in excess, leading to a complex peak
(2) and a peak of free inhibitor (1). The elution volumes and molecular masses of the used
standard proteins are also given (A, β-Amylase; B, Alcohol Dehydrogenase; C, BSA; D, Car-
bonic Anhydrase; E, Cytochrome C).
B: Samples from the SEC run with BvVI1 and NtCIF were analyzed via SDS-PAGE and
Coomassie-staining. Peak 1 at 94ml consists of only NtCIF, whereas peak 2 at 78ml contains
BvVI1 and NtCIF protein.

In tobacco, CWI is protected from inhibition by NtCIF through the presence of sucrose,

whereas VI is not (Sander et al., 1996). For the complex of BvVI1 and BvC/VIF1, the addi-

tion of sucrose during SEC has no in�uence on complex formation (Fig. 3.30.B). Therefore,

if the two proteins are co-localized in the vacuoles of sugar beet taproots, the high sucrose

concentration present should not circumvent complex formation. Also no signi�cant e�ect

on invertase inhibition was observed, when sucrose was present during complex formation

between BvVI1 and BvC/VIF1 (data not shown).

Invertase-inhibitor complexes can be puri�ed from plant extracts

The presence of stable invertase-inhibitor complexes was also shown for proteins extracted

from sugar beet taproots and suspension cultures. During the cultivation of the sugar beet
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suspension culture, BvC/VIF1 is expressed strongly in parallel with a CWI isoform. At least

in 8 d old cells, a complex between the CWI and the invertase inhibitor is present and can

be isolated from the cells by non-invasive salt-elution (Fig. 3.27). In extracts from wounded

taproots, the two inhibitor proteins elute together during size exclusion chromatography. In

contrast, in unwounded taproots the inhibitor is, due to the lack of target protein, predom-

inantly present in monomeric form (Fig. 3.26). This shows, that at least after extraction of

the taproot proteins under the given conditions (extraction and chromatography was car-

ried out at pH5.5), the major part of the present inhibitor is bound to invertases. However,

the obtained fractions still possessed signi�cant invertase activity, indicating that either the

invertase is present in surplus of the inhibitor, the association in the complex is not tight

enough to silence all invertase activity and dissociation occurs after the chromatography.

4.2.3 Presence of multiple inhibitor isoforms in taproot tissues

BvC/VIF1 is strongly expressed in taproots

The BvC/VIF1 cDNA shows an increasing expression level during taproot development.

It is already present in 6 week old taproots and its expression increases with a maximum

expression in mature taproots at harvest (Fig. 3.19). In cross-sections, the gene is slightly

higher expressed in the cortex, but shows a strong expression throughout the taproot. Also

during wounding, the expression stays at a very high level, with a slight increase three and

�ve days after wounding. It is also expressed strongly in the Beta vulgaris suspension culture

cells and in �oral tissues. Compared to the expression of its probable target enzymes, the

acid invertases, BvC/VIF1 shows an inverse regulation during taproot development (compare

Fig. 3.2 and 3.19).

Only during wounding and in �owers, acid invertases and BvC/VIF1 are expressed in

parallel. The increase of both CWI and VI activity after wounding appears despite the strong

expression of BvC/VIF1 observed on RNA level. The question arises, why no inhibition of

the invertase activity is observed. One explanation could be, that during wounding pH values

in either the cell wall or the vacuole change, which impede an inhibition of the invertases.

Also, the amount of newly formed invertase could be above the amount of inhibitor present

and only part of the invertase can be inhibited.

In taproots, two inhibitor related proteins are detected

For a closer characterization of the expression of the sugar beet inhibitor, an antiserum was

generated. To further increase the speci�city of the antiserum, it was puri�ed against the

recombinant BvC/VIF1 protein, which reduced the presence of unspeci�c bands detected in

taproot extracts (Fig. 3.24).

The detection of a 17 kDa protein, the expected molecular weight of BvC/VIF1, hinted,

that this signal is formed by the BvC/VIF1 gene product. Also the signal was detected in
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taproots and suspension culture, but not leaf tissue, where, according to Northern blots, the

gene is not expressed. A closer inspection of samples from taproots on higher resolving gels

(Fig. 3.25.A) revealed, that in taproots two proteins with a small size di�erence are detected.

In suspension culture cells, only the smaller of the two was detected and this protein was

strongly enriched when only a salt-eluted cell wall fraction of the cells was analyzed. During

di�erential extraction of the soluble and the cell wall bound proteins from taproot tissues, a

di�erential localization of the two proteins was observed (Fig. 3.25.B). In the soluble fraction,

containing proteins localized in either the cytosolic compartments including the vacuole and

proteins only loosely attached to the cell wall matrix, both proteins appeared. By contrast,

in the fraction containing proteins, which maintain bound to the cell wall during the applied

washing steps, only the smaller protein was detected.

Taken together, these data indicated the presence of at least two related inhibitor proteins

in taproots. The larger protein was found exclusively in the soluble fraction. The smaller

protein however, was detected in both fractions in taproots.

Puri�cation of BvC/VIF1 from the cell wall of suspension culture cells

In the salt-eluted cell wall fraction from suspension culture cells, which can be obtained

without prior disruption of the cells, only the smaller protein was detected. This indicates,

that the protein is at least in these cells secreted into the apoplast. During lectin and size-

exclusion chromatography, the cell wall localized inhibitor is found partially bound to a

CWI. The suspension culture cells grow in a sucrose rich medium and here a CWI-isoform

is strongly expressed, leading to an apoplastic cleavage of sucrose prior to the uptake into

the cells. The situation resembles the data obtained from transformed tobacco suspension

culture cells, where it was shown, that NtCIF forms a tight complex with a CWI (Weil et al.,

1994).

To test, whether the cell wall localized protein in suspension culture cells corresponds to

the BvC/VIF1 sequence or represents a second inhibitor isoform, the protein was puri�ed

from the cells and partially sequenced in a diploma thesis (Claussen, 2005). Two out of four

obtained peptides matched with the known sequence, whereas the other peptides did not

show homology to other invertase inhibitors or any sequences found in public databases (Tab.

3.2 on page 60). Due to the general low sequence conservation in the PMEI-RP gene family

(Rausch & Greiner, 2004), the detection of peptides with a perfect match to the known

sequence strongly indicated, that the protein recognized by the antiserum in the cell wall of

the Beta vulgaris suspension culture cells is indeed encoded by the BvC/VIF1 gene.

Partial sequencing of both taproot expressed proteins

To elucidate the nature of the two observed signals found in Western blots of unwounded

taproot tissues, a new approach was developed to purify and sequence both proteins. To
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achieve this, the recombinant expressed vacuolar invertase BvVI1 was coupled to a Sepharose

resin and used as an a�nity matrix. Both proteins bound to the recombinant invertase at

acidic pH, albeit with a relatively low e�ciency (Fig. 3.28). By increasing the pH on the

a�nity column, the inhibitors could be eluted from the invertase. The resulting puri�ed

fraction was analyzed by Western blot and the bands corresponding to the inhibitor signals

were subjected to tryptic digestion and partial sequencing using mass spectroscopy methods

(carried out by Dr. Th. Ruppert, ZMBH Heidelberg). The results (Tab. 3.2) revealed, that for

both protein bands two identical peptides matching the BvC/VIF1 sequence were identi�ed.

For the upper band, three additional peptides with no homology were identi�ed, which

probably are contamination with unrelated proteins. It has however to be kept in mind, that

the sequenced peptides arose from bands with only a small size di�erence and that cross-

contamination of the two bands can not be ruled out completely. The separation capacity of

SDS-PAGE should however be large enough to separate proteins with only a small di�erences

in size (Th. Ruppert, personal communication).

The �nding, that both proteins contained peptides matching the known sequence opens

some new interesting possibilities. Either the taproot contains two proteins, coded by closely

related genes or the two observed signals represent di�erentially processed proteins of a

single gene. If the proteins arise from di�erent genes, these genes seem to show an unusual

high sequence conservation, leading to for both proteins to the recognition by the antiserum

against BvC/VIF1 and the identi�cation of identical peptide sequences. A strong indication

for the proteins being the product of a single gene comes from the results obtained from

the analysis of sugar beet plants transformed with a BvC/VIF1 overexpression construct. In

the leaves of transgenic plants, two proteins of a similar size than the proteins observed in

untransformed taproots were expressed. This indicates, that the BvC/VIF1 gene may encode

both inhibitor proteins (see. 4.3.2).

BvC/VIF1:GFP fusion proteins are localized in central vacuoles and show a speci�c

processing

To test where the BvC/VIF1 protein is localized, constructs for the expression of the inhibitor

in fusion with GFP at the C-terminus were generated and used for transient transformation

of onion epidermal cells (Fig. 3.21 and 3.22) and sugar beet protoplasts. In both cases, GFP

�uorescence appeared in the central vacuole. In some cases, especially in protoplasts from

sugar beet, the endoplasmic reticulum was labeled in part of the cells, which could be due

to aggregation of the proteins due to the high expression level in the transformed cells.

These results showed, that the inhibitor:GFP fusion contains a functional signal peptide,

leading to co-translational entry in the ER. Furthermore, the BvC/VIF1 sequence seems

to contain a vacuolar sorting signal (VSS), as can be deduced from the observed GFP-

�uorescence in vacuoles. In plants, three types of VSS have been described. The signals are

found either as a N-terminal or C-terminal propeptide or as a physical structural motif inside
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the protein's sequence (Neuhaus & Rogers, 1998; Matsuoka & Neuhaus, 1999). However,

none of the described motifs of known VSSs shows a noticeable homology to the BvC/VIF1

sequence and, apart from motifs found in some storage proteins, the motifs are generally not

very conserved (Matsuoka & Neuhaus, 1999), rendering a prediction of vacuolar localization

di�cult. A analysis of the vacuolar proteome of A. thaliana also revealed, that several of the

soluble proteins found in leaf vacuoles contain no recognizable sorting signal (Carter et al.,

2004), indicating the presence of additional pathways leading to vacuolar localization.

GFP-�uorescence in the cell wall was not detected, even when the tissue was bathed in

neutral medium to prevent rapid degradation of GFP (Scott et al., 1999). A degradation of

GFP could also explain the missing �uorescence inside the vacuole observed in some cases.

For A. thaliana it is known, that GFP is subjected to speci�c degradation processes in the

vacuole, which show a light and pH dependent regulation (Tamura et al., 2003). The au-

thors also showed, that degradation of GFP is tissue dependent and they observed stronger

degradation of GFP in leaf epidermal cells than in root cells. Variations in the degrada-

tion activities of the transformed cells could also be responsible for the lack of vacuolar

�uorescence observed in some cells.

When tobacco leaves were transiently transformed with the inhibitor:GFP fusion con-

struct, a di�erent localization was observed (Fig. 3.23). GFP �uorescence was restricted to

large vesicle-like structures. From these vesicles, the fusion protein could only be extracted by

addition of SDS and was detected by antisera against GFP and BvC/VIF1. It is known from

other studies, that strong, transient overexpression can lead to an unspeci�c aggregation of

the overexpressed proteins, while the proteins are only slowly degraded (Pedrazzini et al.,

1997; Brandizzi et al., 2003). The BvC/VIF1:GFP fusion protein could only be re-solubilized

by addition of a strong detergent indicating that it formed tight aggregates inside the cell.

Additional to the BvC/VIF1:GFP fusion protein, the inhibitor alone could also be detected

in the transformed tissue. The size of the protein was comparable to the size observed in

taproots. Due to the strength of the signal detected during the Western blots, a distinction

whether this signal was formed by two di�erent proteins was not possible. However, prelimi-

nary data from stable A. thaliana plants transformed with the same construct indicate, that

this construct also forms a double band in the soluble fraction (data not shown).

In summary, these data indicate that the fusion construct is processed inside the cells. The

cleavage must occur at the C-terminal end of the BvC/VIF1 part, or at the N-terminus of the

GFP part of the fusion protein, since the cleaved signal is in size comparable to the native

inhibitor observed in sugar beets. Whether this processing at the C-terminus also occurs in

sugar beet and is responsible for the observed double signal, or occurs only in conjunction

with the GFP-fusion has to be further investigated. The observations of Tamura et al. (2003)

of a speci�c proteolytic degradation of recombinant GFP at its N-terminus in a light and pH-

dependent manner indicate however, that the processing of the fusion protein might occur at

the GFP part of the protein. After cleavage of the fusion protein, the GFP-part is probably
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further degraded and neither �uorescence nor the protein in Western blots was detected.

The inhibitor part of the fusion protein seems to be processed in a similar manner than the

native protein, since two signals were detected in the A. thaliana transformants (see above).

4.3 Regulation of sucrose cleavage by ectopic

overexpression of invertase inhibitors

Analysis of the mechanism of sucrose degradation in wounded and stored sugar beet taproots

indicated, that the cleavage of stored sucrose by a vacuolar invertase is a key step for post-

harvest sucrose losses occurring in sugar beet. An increase in invertase activity, which is

paralleled by a rise in the content of reducing sugars is observed during storage of sugar beets

(Wyse, 1974; Berghall et al., 1997). This increase is more pronounced during wounding of

taproots, were a speci�c induction of a vacuolar and cell wall invertase is observed (this work,

Rosenkranz et al., 2001). The increase in reducing sugars is paralleled with the induction of

the BvVI1 protein (Fig. 3.4), emphasizing the importance of this enzyme for the cleavage of

sucrose stored inside the vacuoles. A strong accumulation of glucose and fructose is observed

after wounding. Also during storage, a continuous increase in reducing sugar content has been

reported (Wyse, 1974). Since the formed hexoses are not consumed by the cell's metabolism,

a large proportion of this cleavage seems to be dispensable.

From a biotechnological perspective, a minimization of these sucrose losses is desirable. On

the one hand, because the implementation of longer storage periods after harvest will increase

the loss of the extractable sucrose, on the other hand, because the accumulation of reducing

sugars is a severe disturbance during the process of large-scale sucrose extraction (Burba,

1976; Milford, 2006). Invertase inhibitors pose a powerful biotechnological tool to modulate

invertase activity in plants (Rausch & Greiner, 2004). They have been used successfully to

in�uence senescence in tobacco leaves (Balibrea Lara et al., 2004) and to reduce cold-induced

hexose accumulation in potato tubers (Greiner et al., 1999). In a �rst approach to silence

invertase activity in wounded and stored taproots, NtVIF, the vacuolar invertase inhibitor

from tobacco, was transformed into sugar beet under the control of the constitutive CaMV

35S promotor.

4.3.1 Overexpression of the tobacco vacuolar inhibitor NtVIF in

sugar beet

In taproots, NtVIF overexpression does not a�ect sucrose loss after wounding

Altogether 19 individual transgenic lines overexpressing NtVIF were analyzed. From these,

part of the lines from one genotype showed a reduction of VI activity after wounding and

three lines from this genotype were analyzed in more detail.
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In contrast to these preliminary results, when a larger number of individual plants from

these three lines were analyzed, neither in adventitious roots of the T0 generation, nor in

seed-grown taproots of the T1 generation, a signi�cant reduction of VI activity, sucrose loss

and hexose content after wounding was observed (Fig. 3.10 and 3.11). Also no signi�cant

reduction of VI activity in leaves was observed (data not shown). This is in contrast to the

results obtained, when the same inhibitor was ectopically expressed in potato tubers. Here

a speci�c reduction of soluble invertase activity was observed in leaves (Greiner et al., 1999)

and tubers after wounding (P�ster, 2003). The missing e�ect of NtVIF on wound induced

VI activity in sugar beet can have several causes.

Concerning their activity against soluble invertase preparations from wounded sugar beet

taproots, the activity of recombinant NtVIF protein was weaker than the activity of the

endogenous sugar beet inhibitor BvC/VIF1. Although NtVIF is able to inhibit the invertase,

much larger amounts of recombinant protein are needed to reach a signi�cant inhibition (Fig.

3.17.E and F). At the same time, the recombinant NtVIF protein was able to inhibit soluble

invertase from tobacco leaves, its putative native target, e�ectively. The minor e�ect of

NtVIF overexpression on the wound induced invertase activity might therefore be due to a

weak a�nity of the tobacco inhibitor for the sugar beet invertase, since tobacco and sugar

beet are not closely related. In contrast to this, potato and tobacco belong to the same plant

family (Solanaceae) and therefore the target invertases are more closely related leading to

the successful inhibition of VI during transgenic overexpression of NtVIF in potato (Greiner

et al., 1999).

Another explanation could be, that the amount of the ectopically expressed inhibitor is

not su�cient for the large amount of invertase protein produced after wound induction.

Additionally, the conditions inside the vacuole could reduce the a�nity of the inhibitor for

the invertase, e.g. through an increase in vacuolar pH during wounding. This is supported

by the fact, that untransformed taproots show a strong induction of both cell wall and

vacuolar localized invertase activity after wounding, although BvC/VIF1, the endogenous

sugar beet inhibitor, is strongly expressed at the same time. The amount of BvC/VIF1

protein is therefore either not su�cient to inhibit all of the massively induced invertases, or

the ambient conditions, most likely the pH, prevent inhibition. Several of the above factors

probably contribute to the missing reduction of invertase activity after wounding.

Both, adventitious roots and seed-grown taproots, showed a reduced root weight compared

to untransformed plants of the same age (Fig. 3.10.A and 3.11.A). Although the di�erence

was due to large variations in the plant material not signi�cant, the repeated appearance

of this observation indicated an e�ect of the transgene on overall taproot development. A

reduction of root size has also been observed in A. thaliana, when a VI isoform was knocked

out (Sergeeva et al., 2006). This could indicate, that the overexpression of NtVIF in the

taproot could also reduce the size of taproots by inhibition of VI present in early root

development.
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The creation of plants, which overexpress the endogenous inhibitor BvC/VIF1 (see be-

low) will hopefully also add to the understanding of metabolic reactions caused by ectopic

expression of invertase inhibitors.

4.3.2 Transgenic approaches using the endogenous inhibitor

BvC/VIF1

The characterization of the endogenous sugar beet invertase inhibitor BvC/VIF1 showed,

that this protein shows a stronger a�nity for sugar beet vacuolar invertases than NtVIF.

Therefore, the generation of new transgenic sugar beet plants with an overexpression or down-

regulation of this gene was initiated. After cloning of the constructs, the transformation was

carried out by KWS. Due to the considerable time needed for the generation of transformed

sugar beets, only in vitro grown plantlets of these plants were available for analysis during

the preparation of this thesis.

Constitutive Overexpression

In vitro grown leaves from plants overexpressing BvC/VIF1 under the control of the consti-

tutive CaMV 35S promotor show a strong expression of the transgene, as can be deduced

from the detection of the transcript in Northern blots and the inhibitor protein with the

BvC/VIF-antiserum (Fig. 3.34). No expression was detected in WT or RNAi plants. In

Western blots, the same protein bands as in extracts from taproots were observed (compare

Fig. 3.25 and Fig. 3.34). Two proteins were detected in the soluble fraction, whereas in the

cell wall fraction only the smaller protein was found. Together with the result, that both

proteins puri�ed from taproots contained peptides of the BvC/VIF1 sequence (see 4.2.3),

this provides further evidence, that both proteins are products of one gene. The larger pro-

tein is again only detected in the soluble fraction, but the signal is compared to the smaller

fragment weaker in the transformants. It might therefore be possible that the larger protein

represents a propeptide of the inhibitor that is not fully processed.

The overexpression of BvC/VIF1 led to signi�cant inhibition of the soluble invertase ac-

tivity, whereas the CWI activity remained unchanged compared to the wildtype (Fig. 3.35).

Since the smaller, presumably fully processed inhibitor protein was found both in the soluble

and in the cell wall bound fraction, these data emphasize the speci�city of BvC/VIF1 for

vacuolar invertases, since the CWI activity in the insoluble fraction was not a�ected. When

the inhibitor was produced recombinantly in bacteria, it also showed a stronger inhibition

of VIs from leaves compared to CWIs (Fig. 3.17.A). CWI prepared from Beta vulgaris sus-

pension culture cells however was inhibited completely, indicating distinct a�nities of the

inhibitor for di�erent CWI isoforms.

Whether the marked inhibition of the soluble invertase activity in the transformed plants

is due to the co-localization of the overexpressed inhibitor protein with the VI in the vacuole
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in planta, or the inhibition is rather due to the binding of the inhibitor during the extraction

can at this moment not be decided. However, when NtCIF, the cell wall localized inhibitor

from tobacco, was overexpressed in tobacco and potato, a speci�c reduction of only CWI

was observed, whereas VI activity, which is also inhibited by recombinant NtCIF, was not

a�ected (Greiner, 1999). Similarly, the overexpression of NtVIF in potato only led to a

speci�c inhibition of vacuolar invertase in leaves (Greiner et al., 1999) and tubers (P�ster,

2003) and CWI activity was not a�ected.

Taproot-speci�c Overexpression

Down-regulation of either CWI or VI activity in the whole plant can lead to severe distortions

of plant development, as has been observed during repression of invertases by an antisense

approach in carrot (Tang et al., 1999). Similar e�ects might arise if a strong invertase in-

hibitor is expressed constitutively in the whole plant. Therefore, in parallel with the plants

with a constitutive overexpression of BvC/VIF1, a second strategy was used to overexpress

the inhibitor under control of a taproot speci�c promotor.

In some lines expressing the inhibitor under control of the presumably root speci�c 2-

1-48 promotor, a strong expression in leaves is detected. The used fragment of the 2-1-48

promotor, which normally controls the expression of the Mll gene, is described to deliver a

strong expression in young and old sugar beet roots and only very little activity in leaves

(Oltmanns et al., 2006). Although the detected BvC/VIF1 transcripts seem to contradict

these results, the leaves analyzed here were not from soil-grown plants but from tissue culture,

which might severely in�uence gene expression in the plant. A selection of plants showing

the desired strong expression in roots, but not in leaves, therefore can only be done based

on results obtained from seed-grown plants.

Downregulation of BvC/VIF1 Expression

The knock-down of the BvC/VIF1 gene via an RNAi approach is aimed at the generation

of plants with a decreased expression of the inhibitor. Silencing obtained by overexpression

of hairpin RNAs, which include an intron inside the linker of the sense and antisense part of

the target gene, has proved to be a very e�cient method for the targeted reduction of the

expression of a certain gene (Wesley et al., 2001). However, the reduction of the targeted

mRNA can vary between individual transgenic lines, giving rise to lines with di�erent degrees

of gene-silencing (Waterhouse & Helliwell, 2003). Therefore several transgenic lines have to

be analyzed concerning the expression of the BvC/VIF1-gene and to be compared with the

wildtype. Since the gene is strongly expressed only in taproots, this experiments can only be

carried out when such material will be available. Lines with a strong reduction in BvC/VIF1

expression will then be further characterized in order to elucidate the physiological role of the

inhibitor during taproot development. A �rst focus of the analyses will be the development of
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invertase activity and hexose content during taproot development. An increase of both would

be indicative of an important function of the inhibitor in maintaining minimal invertase

activity during taproot development.

4.4 BvC/VIF1: CIF of VIF, one or two genes?

At present, some important questions concerning the function of the newly identi�ed and

characterized invertase inhibitor from sugar beet still lack a decisive answer.

First, the identi�cation of two proteins in taproot, separated by a small di�erence in

molecular weight, indicated the presence of a second, closely related isoform to BvC/VIF1.

However, following research brought up new results indicating that both proteins may be

encoded by the same gene and represent di�erently processed variants.

Second, investigations about the subcellular localization of the BvC/VIF1 gene product(s)

yielded partially con�icting results. Transiently overexpressed fusion proteins with the �uo-

rescent marker GFP yielded di�erent results depending on the transformed plant material.

Furthermore, partial sequencing of proteins from Beta vulgaris suspension culture cells and

taproots, yielded sequences of the BvC/VIF1 protein, although the puri�ed proteins are

di�erentially localized.

In tobacco, two isoforms of invertase inhibitors have been found, which are either local-

ized in the cell wall (CIF) or in the vacuole (VIF), whereas in A. thaliana, the subcellular

localization of two described invertase inhibitors has not yet been determined (Link et al.,

2004).

4.4.1 Detection of two inhibitor proteins in taproots and BvC/VIF1

overexpressing plants

Several observations provide evidence, that the two observed proteins in the soluble fraction

of taproots are both encoded by the BvC/VIF1 gene. The overexpression of the BvC/VIF1

cDNA in sugar beet plants led to the detection of two proteins in the soluble fraction. These

proteins are of sizes similar to those observed in taproots. Again the protein with the smaller

molecular weight is also found in the cell wall bound fraction.

Also the partial sequencing of both bands from untransformed taproots yielded for both

protein bands peptide sequences �tting to the predicted BvC/VIF1 protein sequence. The

latter �nding could also be explained by the existence of two highly homologous genes, that

are expressed in parallel and show stretches of identical amino acids. However, the sequence

conservation of members of the PMEI-RP gene family is low and the characterized members

show only a moderate sequence conservation (Rausch & Greiner, 2004) and up to now, no

closely related ESTs from sugar beet have been found in available databases. Also Southern

blot analysis did not indicate the existence of sequences closely related to the BvC/VIF1
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sequence (Fig. 3.18).

Given that the above assumption is correct, the question arises what modi�cation leads

to the appearance of the two protein signals. One possibility could be a post-translational

processing event, occurring either at the N- or C-terminus of the protein. When the pre-

dicted BvC/VIF1 protein sequence is compared to other PMEI-RP sequences (Fig. 3.15), a

relatively high sequence conservation at the C-terminus is observed, making a major pro-

cessing here unlikely. The N-terminus of the BvC/VIF1 however, contains variations to the

other members leaving open the possibility for post-translational cleavage. For the best char-

acterized member of the gene family, NtCIF, the true in planta N-terminus was identi�ed

(Weil et al., 1994) and the 3D-structure of the protein has been determined (Hothorn et al.,

2004a). The homology between the BvC/VIF1 and the NtCIF sequence begins with the �rst

α-helix of the mature NtCIF protein containing the �rst cysteine residue. Compared to the

NtCIF sequence, the BvC/VIF1 protein contains further amino acids between the end of the

predicted signal peptide and this �rst α-helix. A cleavage of these amino acids could lead

to the size di�erence observed between the two proteins (approx. 1 kDa or less). Also the

tobacco vacuolar inhibitor NtVIF contains further amino acids here, which might lead to

the vacuolar localization of the protein, although this has not been shown yet. Furthermore,

the end of the signal peptide is not unambiguously predicted (Fig. 3.20), leaving open the

presence of additional amino acids that could be part of the cleaved propeptide.

In the Beta vulgaris suspension culture, only the smaller of the two proteins was found

in the cell wall fraction and the larger protein was not observed. Peptide sequences of this

protein matched the BvC/VIF1 sequence. If both proteins arise from one gene, this would

indicate, that the processing or the stability of the protein is also tissue dependent.

In order to investigate potential processing events further, the N-terminus of both proteins

has to be identi�ed by N-terminal sequencing. Since puri�cation of larger amounts of the

inhibitor proteins from taproots proved to be rather di�cult, the newly generated plants

overexpressing BvC/VIF1 will be a valuable tool. The high expression in these plants should

simplify the puri�cation of higher amounts of pure protein needed for Edman sequencing.

With this method, the native N-terminus of both proteins can be identi�ed, which would

also elucidate, whether a di�erential processing at the N-terminus is the reason for the size

di�erence between the two proteins.

4.4.2 Localization of the inhibitor proteins

Only the smaller of the two inhibitor proteins was found in soluble and salt-eluted fractions

containing proteins ionically bound to the cell-wall. The larger protein is only found in

the soluble fraction (Fig. 3.25). This indicated, that the two proteins, irrespective if they

are encoded by one or two genes, have a di�erent subcellular localization. In suspension

culture cells, the smaller protein was shown to be localized in the cell wall. Since the smaller

of the two proteins is also found in the cell wall fraction of taproots and the BvC/VIF1
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overexpressing plants, a cell wall localization of this protein can be concluded.

However, several other �ndings support a vacuolar localization of at least the larger of

the two proteins. In transient transformation experiments, BvC/VIF1:GFP fusion proteins

were targeted to the vacuole (Fig. 3.21 and 3.22), or, after proteolytic cleavage of GFP, led

to a reduction of soluble invertase activity (Fig. 3.23). In sugar beet leaves overexpressing

BvC/VIF1, again only soluble invertase activity was inhibited, although the protein was

found in the soluble and the cell-wall fraction (Fig. 3.34 and 3.35). The missing inhibition

of CWI in the overexpressing plants can likewise be explained by the weaker a�nity of the

protein for CWIs, however, it highlights vacuolar invertases as the most likely target for at

least the larger of the two proteins.

A dual targeting of one gene product is only common in plants for proteins found in

parallel in mitochondria and plastids (Small et al., 1998; Mackenzie, 2005), which have a

related protein import machinery. A dual targeting of a soluble protein to the cell wall and

the vacuole has only been observed during transient overexpression of vacuolar proteins,

leading to a saturation of the vacuolar sorting system followed by partial secretion of the

protein (Neuhaus et al., 1994; Frigerio et al., 1998).

Further e�orts have to be undertaken to elucidate the true in vivo localization of the

inhibitor protein(s). One approach could be immuno-localization experiments using the

BvC/VIF1 antiserum. However, this antiserum does not discriminate the two inhibitor pro-

teins, which could complicate interpretation of the results. Also a close monitoring of the

changes in the activities of acid invertases in the inhibitor overexpressing sugar beet plants

will help to �nd the target invertases of the BvC/VIF1 gene.

4.5 Outlook

Sugar beet breeders are trying to identify sugar beet lines with di�erences in post-harvest

sucrose losses in order to �nd genetic markers and target genes correlating with this trait.

The identi�ed genes regulating respiration e�ciency in sugar beet, which show in the case

of alternative oxidase a strong response to wounding and storage of taproots, are potential

target genes for this trait. The obtained data about these genes can be used for the compari-

son of sugar beet lines with extreme phenotypes in post-harvest respiration. The question to

address will be, whether these lines di�er in the expression and activity of UCPs and AOX,

which could in�uence di�erences in the overall respiration rates. However, both activities

could also be indispensable for the plant as a protection mechanism against reactive oxygen

species.

The role of acid invertases for sucrose losses in wounded and stored taproot has been

analyzed in detail. The endogenous invertase inhibitor BvC/VIF1 is a possible key regulator

of invertases during taproot development. The high expression in the developing taproot most

likely ensures the silencing of residual invertase activity. This assumption will be tested in
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transgenic sugar beet plants with a down regulation of BvC/VIF1 expression by testing

whether these plants show alterations of the invertase activities during plant development.

The overexpression of the gene in sugar beet will help to elucidate, why after wounding

of taproots the invertase activity dramatically increases, albeit the strong expression of

the inhibitor. Also the e�ects of constitutive overexpression of invertase inhibitors on plant

development have to be further analyzed.

The presence of two inhibitor proteins in taproots and BvC/VIF1 overexpressing plants

has raised further questions about a potential processing of the inhibitor and its subcellu-

lar localization. Identi�cation of the in vivo N-terminus of both proteins can provide new

evidence for processing events. Likewise, the impact of BvC/VIF1 overexpression and down-

regulation on invertase activities in transgenic plants will help to understand the localization

and the role of the gene.

Although NtVIF overexpression did not yield the expected strong reduction of invertase

activity after wounding, changes in root weight were observed. A more detailed analysis of

the impact of NtVIF overexpression during all stages of plant development might provide

helpful hints, how the inhibitor overexpression in�uences taproot development. These data

can then be compared with similar analyses of transgenic plants with altered BvC/VIF1

expression.

The establishment of overexpression of active plant invertases in E. coli opens many new

approaches for the in-depth characterization of the enzyme and its interaction with inhibitor

proteins. Both partners can now be produced in signi�cant amounts and are accessible for

further molecular studies, e.g. for mutational approaches aiming at the identi�cation of

important domains for the interaction.
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5 Materials and Methods

5.1 Plant Material

5.1.1 Sugar Beet

A diploid inbred line (Partie-Nr. VV-I/ZR 10738, KWS SAAT AG) of sugar beet plants
(Beta vulgaris L. ssp. vulgaris var. altissima DÖLL) were either �eld-grown between march
and october on the trial-�eld of the Heidelberg Institute for Plant Sciences or grown in the
green-house in special rose-pots (20 cm high) with 13 h of supplementing light.

Procedure for wounding of sugar beet taproots

Wounding of sugar beet taproots was carried out according to Rosenkranz et al. (2001) by
removing cylinders (2 cm in diameter) from the taproot interior with a cork borer and cutting
the cylinders into 2mm thick slices with a set of �xed razor blades. The slices were incubated
in a moist atmosphere for up to six days at room temperature in the dark.

Beta vulgaris suspension culture

The heterotrophic Beta vulgaris suspension culture was grown in the following medium:
3.17 g/l Gamborg B5 Medium (Serva) pH5.5, 60 g/l sucrose, 0.5mg/l Kinetin, 1 µg/l NAA
(1-Naphthaleneacetic acid) . The medium was sterilized by autoclaving.
Approximately 5ml of a densely grown culture were transferred weekly to 50ml fresh medium
and cultivated in the dark at 25� with shaking at 90 rpm.

5.1.2 Tobacco

For transient,Agrobacterium-mediated, transformation of leaves (see 5.6.2),Nicotiana tabacum
L. SNN and Nicotiana benthamiana L. plants were used. The plants were grown in soil in the
greenhouse and only young plants (5 to 10 expanded leaves) were used for the transformation.

5.2 Microbiological techniques

5.2.1 Escherichia coli

For cloning procedures the E. coli strain XL1-Blue (Stratagene) was used.
Genotype: recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac[F′ proAB lacIqZ∆M15 Tn10
(Tetr)]

For the expression of recombinant proteins the strain Rosetta-gami (Novagen) was used.
The strain carries an additional plasmid (pRARE, Chloramphenicol resistance), coding for
six tRNAs seldom used in E. coli, and therefore supports the expression of eukaryotic genes.
Mutations in the thioredoxin (trxB) and glutathione (gor) reductase enzymes promote the
formation of disul�de bonds in the E. coli cytoplasm.
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Genotype: ∆ara-leu7697 ∆lacX74 ∆phoAPvu II phoR araD139 ahpC galE galK rpsL

F′[lac+(lacIq)pro] gor522 ::Tn10 trxB ::kan pRARE

Media and antibiotics

Bacteria were either grown in LB-medium for cloning purposes or in TB-medium for bacte-
rial overexpression (both prepared according to Sambrook et al., 1989). Selection was carried
out with the following concentrations of the antibiotics:
Ampicillin 100µg/ml, Chloramphenicol 34 µg/ml, Kanamycin 50 µg/ml, Spectinomycin 100 µg/ml,
Tetracyclin 12.5µg/ml, Zeocin 25µg/ml (low salt LB (5gNaCl/l))

Preparation of electrocompentent E. coli cells and transformation by
electroporation

One liter of low salt LB containing the appropriate antibiotics was inoculated with 20ml of
an over night bacterial culture and incubated until OD600nm reached 0.7. Then the culture
was cooled to 4� and cells were collected by centrifugation. The pellet was washed twice
with 500ml of dd-H2O, then with 40ml 10% glycerol and �nally resuspended in 4ml 10%
glycerol, frozen in 50 µl aliquots in liquid nitrogen and stored at -80�.
The electrocompetent cells were transformed by electroporation with a GenePulserII (Bio-
Rad) set to 200W, 1.8 kV, 25 µF and incubated in 1ml SOC-medium for 1 h at 37� before
plating variable volumes on selective LB-plates.
SOC-medium: 20 g/l tryptone; 0.5 g/l yeast extract; 0.5 g/l NaCl; 0.186 g/l KCl; 2.03 g/l
MgCl2; 3.96 g/l glucose-monohydrate; pH 7.0

5.2.2 Agrobacterium tumefaciens

For stable transformation of Arabidopsis thaliana and transient transformation of Nicotiana
tabacum, the binary plasmids were transformed into the Agrobacterium strain C58C1 car-
rying the Ti-plasmid pGV2260. The plasmids for the transformation of sugar beet were
transformed into the strain GV3101.
Agrobacteria were grown in YEB-medium (1 g/l yeast extract, 5 g/l beef extract, 5 g/l pep-
tone, 5 g/l sucrose, 0.493 g/l MgSO4 x 7 H2O, pH7.5) supplemented with 100 µg/ml ri-
fampicin (genomic resistance) and either 50µg/ml carbenicillin (C58C1) or 25µg/ml gen-
tamycin (pGV2260) and depending on the transformed plasmid with 50µg/ml kanamycin
or 100 µg/ml spectinomycin.
Electrocompetent Agrobacteria were prepared by inoculating 200ml YEB-medium supple-
mented with the appropriate antibiotics with 3ml of an overnight culture and grown until
OD600nm reached 0.95. Cells were collected (4� , 2,000 g, 5min) and washed twice with 10%
glycerol, 1mM Hepes, pH 7. The cells were �nally resuspended in 2ml of the same solution
and frozen in liquid nitrogen as 50 µl aliquots.
Agrobacteria were transformed as described for E. coli, except that after transformation the
cells were incubated for 2 h at 28� in SOC-medium and allowed to grow on selective plates
for 2 days at 28�.

5.2.3 Pichia pastoris

For the puri�cation of the IbVI2 protein, the Pichia pastoris strain X-33 carrying the plasmid
pYIT2-M was used, which was kindly provided by Prof. Hsien-Yi Sung, National Taiwan
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University (Wang et al., 2005). Media and plates were prepared according to the Pichia
Expression Kit Manual provided by Invitrogen (Invitrogen, 2002).

5.3 DNA techniques

5.3.1 Separation of DNA molecules by electrophoresis

Agarose gels
For separation of puri�ed DNA, 0.8 to 1.5% agarose gels were prepared in 1xTAE-bu�er
(Sambrook et al., 1989). DNA samples were prepared by adding a suitable volume of 5x
loading bu�er (50% glycerol, 5x TAE-bu�er, 1% Orange G (w/v)). As molecular weight
markers, either SmartLadder (Eurogentec) or the 2-log ladder (NEB) were used. After the
gel run, DNA was stained using a solution of 0.1µg/ml Ethidium bromide in water.

Polyacrylamide gels
For the separation of smaller DNA fragments (< 800 bp) and to detect minor size di�erences,
DNA was separated in 11.25% polyacrylamide gels. Gels were prepared using 3ml dd-H2O,
2ml native separating bu�er (1.5M Tris, pH 8.8), 3ml acrylamide (29.2% (w/v) acrylamide,
0.8% N,N'-Methylene bisacrylamide (37.5:1)), 45µl APS (10% ammonium peroxodisulfate)
and 15 µl TEMED (N,N,N,N'-Tetramethyl-ethylenediamine)). The gel run was carried out
in native electrophoresis bu�er (3.6 g/l Tris, 14.4 g/l glycine, pH 8.6) at 200V and the gels
were stained as described above.

5.3.2 Oligonucleotides

All oligonucleotides were purchased fromMWG-Biotech (Ebersberg, Germany). The lyophilized
primers were dissolved in TE-bu�er (10mMTris, 1mM EDTA) at a concentration of 100 pmol/µl.
In the following list, the oligonucleotides are sorted according to the experiments they were
used for. A systematic name, the primer name and the primer sequence in 5' to 3' direction
are given.

Overexpression of BvC/VIF1 (pQE30/pETM-20)
- Bv-inh_l TCTAGTAGATGGTACCTATTCTCGCAAGACCACCAAC

- Bv-inh_r TTAGAACATTCTGCAGTCATTCCAAACTCTTAATCATAG

JE2 Bv_INH_forw2 TCACGATGTACATGTTCACCACCTCTACTTTAGCG

JE3 Bv_INH_rev TTAGAACATTGCGGCCGCTCATTCCAAACTCTTAATCATAG

RACE BvC/VIF1
JE4 Bv-INHH-Race1 GGCCTCATTACCCGCATCCACCATA

JE5 BV-INHH-Race-Nested ACACTCTTGCAGGGCCCGGATTACA

JE109 5'RACE-nested CGGAGCGAAGCTTCGCAAAGAATCGGGTCGGGT

JE110 5'RACE CCGGGTCAAGTCCTCTACATATCGAAA

JE6 Bv-INHH-RT-left 3'RACE GCGTATTCTCGCAAGACCACCAACG

CC9 spez-forw 3'RACE nested AACACCCGACCCGATTCTTTGCGAAGCT

RACE BvAOX
JE29 5'Race TGCACGGCAACCATAGCGCCTCTTA

JE30 5'Race_nested CGTGATGTTTGCTCAGATCAATGGA

JE31 3'Race GCCGAAATGGTACGAGAGACTATTGG

JE32 3'Race_nested TCCCCTAAGTTGGCACACAGAGT
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Overexpression of BvVI1 (pET-G vectors/pPICZαA)
JE75 12attB1TEV_BvVIwit TATTTTCAGGGCGGAGAAAGTGGTATTTCG

JE76 12attB2_BvVIwit_rev AGAAAGCTGGGTTCAAAAAATGTAGGGAG

JE81 pic_VIwit_sgis_KpnI ACTGCAGGGTACCAGTGGTATTTCGTTTGCG

JE82 pic_VIwit_reverse TAGCATCCCGCGGCAAAAATGTAGGGAGAAAG

Gateway 2-step PCR
JE77 attB1_TEV_adapt GGGGACAAGTTTGTACAAAAAAGCAGGCTCTGAGAATCTTTATTTTCAGGGC

JE78 attB2adapter GGGGACCACTTTGTACAAGAAAGCTGGGT

Construction of BvC/VIF1-GFP fusion constructs (pK7FWG2/pFF19-GFP)
JE33 Bv_full_forw GGGGACAAGTTTGTACAAAAAAGCAGGCTCCACCATGACAACTCTAAACACCTCTTTACC

JE34 Bv_full_rev GGGGACCACTTTGTACAAGAAAGCTGGGTATTCCAAACTCTTAATCATAG

JE44 BvC/VIF_NruI_forw TACTATATTCGCGACCACCATGACAACTCTAAACACC

JE42 BvCVIF_full_KpnI TACTATATGGTACCTTCCAAACTCTTAATC

Construction of BvC/VIF1 plant transformation constructs (see p. 101)
Construction of p2-1-48-BvC/VIF1
JE56 2-1-48_HindIII_XmaI_forw CATCGGAAGCTTCCCGGGCTGAACTGTTAATTATTTCAACTA

JE57 2-1-48_AgeIAscISacI_rev CATCGGGAGCTCTTGGCGCGCCAAACCGGTGGCTTTTGAAAATTTTGAAACGC

JE58 BvCVIF_AgeI_forw CATCGGAAGCTTCCCGGGCTGAACTGTTAATTATTTCAACTA

JE59 BvCVIF_AscI_rev CATCGGGGCGCGCCTCATTCCAAACTCTTAATCATAG

Construction of p70S-BvC/VIF1
JE63 p35d_XmaI_L CATCGGACTCCCGGGATGCCTGCAGGTCTCAGAAG

JE64 p35d_AgeI_R CATCGGACTACCGGTGTGGCCACTCGAGGTCCTC

Construction of p70S-RNAi-BvC/VIF1
JE47 BvCVIF_anti_fo CATCGGGGTACCCTCGAGTCATTACCCGCATCCACCAT

JE48 BvCVIF_anti_SacII_rev CATCGGCCGCGGAAGGCTGCTGACTCTGAAGGTT

JE49 BvCVIF_sense_SpeI_forw CATCGGACTAGTAAGGCTGCTGACTCTGAAGGTT

JE50 BvCVIF_sense_SacI_rev CATCGGGAGCTCTCATTACCCGCATCCACCAT

JE51 BvCVIF_intron_SacII_for CATCGGCCGCGGTCTAGGTCAGATTCGCTATCTAT

JE52 BvCVIF_intron_SpeI_rev CATCGGACTAGTCTTCCTCCTGTTTATCTTTTAAC

Generation of labeled probes
- vC175L TACTATATGGATCCAACACGACCTGCAGAGCCAC

- v558R TACACAATGTCGACTCAATTCATATCAGAAACTGGAG

JE7 lBv_AOX TCCGGCTGATTTGTCCATTG

JE8 rBv_AOX TGCCAACTTAGGGGAAAGCA

JE15 lBV_UCP1_UTR CGTTTTCTTAATCATCAGGCATC

JE16 rBV_UCP1_UTR GCAAAATTACAAGGCAATCCT

JE17 lBv_UCP2_UTR AAGGCCTTGCTGTCTCAGTC

JE18 rBV_UCP2_UTR TGGCGACAGGTACATTTTCA

JE37 CWI1_wit_forw GGCTAACGAGTCTTCAAGTGTGGA

JE38 CWI1_wit_rev AGAGAAGACCTGCTTTGGTCACTG

JE39 CWI2_nit_forw CCAGCCTCTCAAGAACTGGATGAA

JE40 CWI2_nit_rev TTGGTACAGATACGCCATTCCTCG

- bvi31/L ATAAATGGTGTTTGGACAGGGTCCGC

- bvi31/R ACTCACCAACCCAACCCCACAAAATCC

JE71 BvVInit_Sonde_l TCAATCGATCAATCTCCAAAAC

JE72 BvVInit_Sonde_r GGACCGTTTGGATCATTCAT

JE92 SBSS1_UTR_f GTGATCTGGCCAACTCTGTT

JE93 SBSS1_UTR_r TGATCACTGAAGAATCCGTT

JE94 SBSS2_UTR_f ACTTAGAAATGTTCTACGCC

JE95 SBSS2_UTR_r CTCCACAATCAAAAGACAAT

5.3.3 PCR techniques

For most PCR applications Taq Polymerase from Invitrogen was used with the supplied
bu�ers. A standard sample consisted of 1 µl template (various concentrations of cDNA or
plasmid), 1 µl dNTPs (10mM each), 2 µl of each primer (10 pmol/µl), 5 µl 5x PCR-bu�er,
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1.5 µl MgCl2 (50mM), 0.2µl Taq (5U/µl) and was adjusted to 50 µl with water. PCR was
carried out with in a Biometra Personal cycler with the following program:

Initial denaturation 95� 5min 1 cycle
Denaturation 95� 45 sec
Annealing 48 - 60� 45 sec 35 cycles
Extension 72� 0.5-3min

Final extension 72� 5-10min 1 cycle

The extension time and the annealing temperature were adjusted according to the length of
the ampli�ed product and the used primers respectively.
For cloning of larger PCR products, the proofreading Vent DNA polymerase (NEB) or
AccuPrime Pfx DNA Polymerase (Invitrogen) was used according to the manufacturers
instructions.

Production of biotinylated probes

Biotinylated probes were generated by adding (instead of normal dNTPs) 8µl of a mixture
containing 0.25mM Biotin-16-dUTP (Roche), 0.75mM dTTP and 1mM each of dATP,
dGTP and dCTP to a 100 µl PCR sample. Success of biotinylation was monitored by running
the PCR-generated probe on a polyacrylamide gel next to a PCR reaction carried out with
standard dNTPs. Biotinylated PCR products run, due to the incorporation of biotinylated
dUTP, at a slightly increased molecular weight compared to the unlabeled products.

Production of digoxigenin-labeled probes

For Southern blots, either digoxigenin (DIG) or biotin labeled probes were used. For the
generation of DIG-labeled probes, 10µl of a mix containing 0.1mM DIG-11-dUTP (alkali-
labile, Roche), 1.9mM dTTP, and 2mM each of dATP, dCTP, dGTP were added to a 100µl
PCR reaction. PCR was performed as described for biotinylated probes.

Probes for Northern and Southern Blotting

The following table gives the primer combinations used for the production of Biotin- or DIG-
labeled probes. (For the sequences of the individual primers see 5.3.2). The probes covered
either part of the open reading frame (ORF), or the more variable untranslated regions of
the mRNAs to allow distinction of closely related isoforms.

Gene Primer combination Length of generated probe
BvAOX JE7/JE8 391 bp ORF
BvC/VIF1 JE2/JE3 491 bp ORF
BvCWI1 JE37/JE38 468 bp ORF
BvCWI2 JE39/JE40 468 bp ORF
BvUCP1 JE15/JE16 250 bp 3' UTR
BvUCP2 JE17/JE18 360 bp 3' UTR
BvVI1 bvi31L/bvi31R 490 bp ORF
BvVI2 JE71/JE72 57 bp 5' UTR + 482 bp ORF
NtVIF vC175L/v558R 384 bp ORF
SBSS1 JE92/JE93 83 bp ORF + 213 bp 3' UTR
SBSS2 JE94/JE95 77 bp ORF + 272 bp 3' UTR
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2-step PCR for addition of Gateway-compatible overhangs

For the creation of PCR products with ends compatible for Gateway cloning, a two step
PCR protocol was used1. For the �rst PCR step, template speci�c primers were used with
the following bases added to the speci�c sequence:

left: 5'-TATTTTCAGGGC-(template speci�c sequence)-3'
right: 5'-AGAAAGCTGGGTN-(template speci�c sequence)-3'

A �rst PCR was carried out, which consisted of only the initial denaturation and ten PCR
cycles. Only 1µl of each primer (10 pmol/µl) was included in a 50 µl reaction.
In a second PCR, 4 µl of the following primers, containing the complete Gateway overhangs
and the TEV protease recognition site (amino acids: ENLYFQG, underlined bases), were added:

left: JE77 5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTCTGAGAATCTTTATTTTCAGGGC-3'
right: JE78 5'-GGGGACCACTTTGTACAAGAAAGCTGGGT-3'

The reaction included 10 µl of the �rst PCR as template and 4 µl of the two primers
(10 pmol/µl). The PCR program consisted of an initial denaturation step, followed by 5
cycles with an annealing temperature of 45�, 20 cycles at 52� and 10min of �nal ex-
tension. Denaturation and extension was carried out as described for standard PCRs (see
above).

RACE-technique: Determination of cDNA-ends

For the determination of the full length sequence of partially known cDNAs, the Generacer
Kit (Invitrogen) was used. Total RNA was isolated using the RNeasy Plant Mini Kit (Qia-
gen). The preparation of the RACE-cDNA was done according to the Generacer Kit manual.
First, incomplete mRNAs were 5' dephosphorylated with calf intestine phosphatase (CIP),
then the 5' cap structure of intact mRNAs was removed by tobacco acid pyrophosphatase
(TAP). At the resulting free 5' phosphate, the Generacer RNA oligo was ligated with T4
RNA ligase.
The reverse transcription using Superscript III reverse transcriptase and the Generacer Oligo
dT primer results in the RACE-cDNA containing full length cDNAs with known sequences
at the 5' and 3' end. By combining primers directed against either the Generacer oligo or the
overhang of the Generacer Oligo dT primer and an adequate gene-speci�c primer, the 5' or
the 3' end of the cDNA can be ampli�ed by PCR. In order to increase the speci�city of the
reaction, a nested PCR was carried out using the �rst PCR as template. The PCR products
were subcloned, and several clones from independent PCR reactions were sequenced.

5.3.4 Cloning procedures

Gel extraction and PCR puri�cation

For the puri�cation of DNA fragments from agarose gels or the clean-up of PCR products
the NucleoSpin Extract II Kit (Macherey-Nagel) was used according to the manufacturers
instructions.

1http://www.embl-hamburg.de/~geerlof/webPP/protocoldb/Cloning/gateway_2step_PCR.html
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Cloning using restriction digestion

All restriction enzymes were purchased from New England Biolabs (NEB) and used with the
supplied bu�ers. For analytical digestions 1µg and for preparative digestion 5 to 20 µg of
plasmid DNA were used. Incubation was performed for 2 to 16 h at recommend temperature.
Usually 3U of enzyme were added per µg of DNA.
Ligation of digested DNA fragments was carried out using T4-DNA Ligase (NEB). To 100 ng
of vector, the digested insert was added in 3 to 10 times molar excess. Ligation was carried
out in a thermal cycler using a program according to Lund et al. (1996), consisting of 100
alternating, 30 sec long incubations at 10� and 30�. Finally the ligase was denatured for
20min at 65�.
For subcloning of PCR fragments, the pGEM-T vector system (Promega) or the TA Cloning
Kit (Invitrogen) was used according to the manufacturers instructions.

Cloning using the Gateway system

For the recombination reactions used in Gateway technology, all enzymes were purchased
from Invitrogen. To 100 ng of pDONR201 vector, 1 to 3 µl puri�ed PCR products with
Gateway-compatible attB-overhangs, 1 µl of 5xBP clonase reaction bu�er and 1µl of BP
Clonase mix was added and incubated for at least 1 h at 25�. The reaction was stopped by
adding of 0.5µl Proteinase K (2 µg/µl) and incubating for 10min a 37�.
The recombination into a destination vector was carried out similarly, using approximately
equal molar ratios of entry and destination vector and LR clonase mix and bu�er.

5.3.5 Construction of the sugar beet transformation constructs

pBinAR-NtVIF

For the generation of sugar beet plants overexpressing NtVIF, the construct described in
Greiner et al. (1999), featuring the NtVIF cDNA in the vector pBinAR was used.

p70S-BvC/VIF1

In this construct, the expression of the BvC/VIF1 gene is driven by a double CaMV 35S
("p70S") promoter. The promoter was ampli�ed from the p70S-luc-kan plasmid (provided
by D. Stahl, Planta) using primers JE63 and JE64 and subcloned in pGEM-T (Promega).
The promoter was released from the pGEM-T plasmid by digestion with XmaI and AgeI
and introduced into the p2-1-48-BvC/VIF1 vector (see below), from which the 2-1-48 pro-
moter had been removed by digestion with the same enzymes to yield the p70S-BvC/VIF1
construct.

p2-1-48-BvC/VIF1

The 2-1-48 promoter was �rst ampli�ed from the plasmid pGUS3-2-1-48 (provided by D.
Stahl, Planta) using primers JE56 and JE57 and digested with HindIII and SacI. By digestion
of p70S-luc-kan with the same enzymes, the p70S promoter and the luciferase gene was
removed and subsequently replaced by the 2-1-48 promoter by ligating the digested PCR
product yielding p2-1-48. Thereafter, the BvC/VIF1 cDNA was ampli�ed using primers JE58
and JE59, which carried AgeI and AscI restriction sites respectively. The PCR product and
the p2-1-48 plasmid were digested with the corresponding enzymes and ligated, to produce
the p2-1-48-BvC/VIF1 construct.
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p70S-RNAi-BvC/VIF1

The BvC/VIF1-RNAi cassette was �rst assembled in the pBK-CMV vector (Stratagene).
First the antisense part of the construct was ampli�ed using primers JE47 and JE48 and
ligated into the pBK-CMV vector using KpnI / SacII digested PCR product (pBK-CMV-

anti). Then intron 2 of the Arabidopsis thaliana AtAAP6 gene (at5g49630) was ampli�ed
using primers JE51 and JE52 and subcloned into pGEM-T. The intron was released from
pGEM-T by digestion with SacII and SpeI and ligated into the equally digested pBK-CMV-

anti plasmid, giving rise to pBK-CMV-anti-intron. This construct was then digested with
SacI and SpeI and the sense part of the RNAi cassette, which had been ampli�ed using
primers JE49 and JE50 and equally digested, was ligated to yield pBK-CMV-anti-intron-

sense. The complete BvC/VIF1-RNAi cassette was then released from the pBK-CMV vector
by digestion with XhoI and SacI and ligated into the equally digested p70S-luc-kan vector.

5.3.6 Isolation of plant genomic DNA

To 100mg of grinded leaf material 550 µl of extraction bu�er (200mMTris-HCl, 400mM LiCl,
25mM EDTA, 1%SDS, pH9) and 550µl of PCI (phenol:chloroform:isoamyl alcohol 25:24:1
(v:v:v)) were added and vortexed for 20 sec. After centrifugation (5min, 15,000 g, 4�), the
supernatant was again vortexed with 550 µl of PCI and centrifuged. DNA was precipitated
by adding one volume of isopropanol to the supernatant and, after 15min incubation at RT,
collected by centrifugation (10min, 15,000 g, 4�). After removing the supernatant, the pellet
was air dried and resuspended in 500 µl TNE (10mM Tris-HCl, 100mM NaCl, 1mM EDTA,
pH8) plus 20µg RNaseA (from a 10mg/ml stock) and incubated for 10min at 37� to
allow RNA digestion. RNase was removed by shaking out with 550µl PCI and centrifuging
as before. The supernatant (approx. 475µl) was precipitated with 750µl isopropanol and
centrifuged (10min, 15,000 g, 4�). The pellet was washed once with 70% ethanol and, after
drying, resuspended in 50 µl TE-bu�er (10mM Tris, 1mM EDTA, pH8).

5.3.7 Southern Blotting

Restriction digestion

Usually, 10 to 15µg of the genomic DNA were digested with suitable restriction enzymes
(10U/µg DNA) for 4 h or overnight. The DNA was precipitated by adding 1/10 vol. of 3M
sodium acetate and 2.5 x vol. of ethanol and incubation for at least 1 h at -20�. After
centrifugation (15min, 15,000 g, 4�) the pellet was washed with 500 µl of 70% ethanol and
resuspended in 20µl TE-bu�er. Completion of the restriction digestion was monitored on an
agarose gel.

Gel electrophoresis and transfer

The digested DNA was separated on a TAE-agarose gel (0.7% agarose) and stained with
EtBr and photographed. The gel was then incubated in depurination solution (0.2M HCl)
for 10min. Thereafter the gel was incubated twice for 10min in denaturation solution (1.5M
NaCl, 0.5M NaOH) and then for 15min neutralized with 1.5M NaCl, 0.5M Tris-HCl, pH 7.4.
Between each step, the gel was washed in water for 5min.
Before the transfer, the gel was incubated for 10min in 10x SSC (1.5M NaCl, 0.3M sodium
citrate, pH 7) and the DNA was transferred by capillary blotting over night onto a nylon
membrane (Duralon-UV, Stratagene). On the next day, the membrane was incubated for
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5min in 10x SSC and dried. The DNA was then crosslinked to the membrane using UV-light
(Stratalinker, Stratagene, setting=Auto).

Hybridization and detection using biotinylated probes

The hybridization and detection steps were carried out in glass tubes inside a hybridiser
(HB-1D, Techne). The membrane was bathed in LSW (low stringency wash, 2x SSC, 0.5%
SDS) and inserted into a tube containing prehybridization solution (30% formamide, 1%
SDS, 1M NaCl, 6% polyethylene glycol 6000, 250 µg/ml DNA from salmon testes), which
was heated beforehand to 90�. The biotinylated PCR product was denatured for 10min at
95� in 0.5ml of prehybridization solution and added to further 20ml of the prehybridiza-
tion solution. After incubating the membrane for 45 to 60min at 42� in prehybridization
solution, the hybridization solution was added. Hybridization was carried out at 42� over
night. The membrane was then washed twice for 15min with LSW at RT and then for 40min
with HSW (high stringency wash, 0.2x SSC, 0.5% SDS) at 55�.
All following steps were carried out at RT. The membrane was incubated in blocking bu�er

(1x PBS, 0.5% SDS, 0.2% I-Block (Tropix)) twice for 5min and 1 time for 30 to 60min
and then for 40min in conjugate bu�er (1:6,000 alkaline phosphatase (AP) streptavidin
conjugate (Avid X, Tropix) in blocking bu�er). The membrane was washed again 3 times
for 5min with blocking bu�er, followed by three 5min washes in wash bu�er (1xPBS, 0.5%
SDS). Finally the membrane was incubated twice for 5min in assay bu�er (100mM Tris-HCl,
100mM NaCl, pH 9.5) and, after removal of excess bu�er, sprayed with AP substrate (CDP-
Star, ready to use (Tropix)) and incubated for 10min inside a plastic bag. The membrane
was sealed in a new plastic bag and chemiluminescence was detected on photographic �lm
(Hyper�lm ECL, Amersham).

Hybridization and detection using DIG-labeled probes

For the detection using DIG-labeled probes, prehybridization was carried out with DIG Easy
Hyb (Roche) for 1 to 2 h at 42�. For the hybridization, the DIG-labeled PCR product was
denatured in 500 µl prehybridization solution for 10min at 95� and added to 25ml of the
same solution. The DIG Easy Hyb solutions were stored at -20� and preheated to 65�
before use. The LSW and HSW washes were carried out as described above for biotinylated
probes. Subsequently the membrane was washed for 5min in wash bu�er (Maleic acid bu�er
(0.1M maleic acid, 0.15M NaCl, pH 7.5, autoclaved) + 0.3% Tween20) and then incubated
for 1 h in blocking bu�er (1%Blocking Reagent (Roche) in Maleic acid bu�er). Then the
membrane was incubated for 30 to 60min in conjugate bu�er (1:10,000 anti-DIG-alkaline
phosphatase (0.75 U/µl, Fab fragments from sheep, Roche) in blocking bu�er), washed 4
times for 5min in wash bu�er and �nally incubated twice for 5min in detection bu�er (0.1M
Tris-HCl, 0.1M NaCl pH9.5). The incubation with the CDP-Star substrate and further steps
were carried out as described for biotinylated probes.

5.4 RNA techniques

5.4.1 Isolation of total RNA

For cDNA synthesis, total RNA was isolated using the RNeasy Plant Mini Kit (Qiagen)
according to the manufacturer's instructions. For Northern blotting, total RNA was iso-
lated with a modi�ed protocol according to Logemann et al. (1987). All described solutions
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were prepared using DEPC-treated water. This was produced by addition of 0.1% DEPC
(diethylpyrocarbonate) to dd-H2O, stirring over night and subsequent two cycles of auto-
claving.
Plant material was grinded in deep frozen state using a ball mill (Retsch Mixer Mill

MM200) and to each 500mg of plant material, 1ml of extraction bu�er was added (8M
guanidine-HCl, 20mM MES, 20mM EDTA, pH 7; before use 8µl of β-mercaptoethanol per
ml bu�er was added). For leaf material, 500mg of tissue were su�cient, whereas for taproot
samples 2 g had to be used.
After thawing, 1ml PCI (phenol:chloroform:isoamyl alcohol 25:24:1 (v:v:v)) were added,
vortexed and centrifuged (10min, 15,000 g, RT). The aqueous supernatant was shaken out
with 1ml of CI (chloroform:isoamyl alcohol 24:1). The resulting supernatant was precipitated
with 0.2x vol. of 1M acetic acid and 0.7x vol. ethanol (over night -20�) and on the next
day centrifuged (15min, 4�, 15,000 g). The resulting pellet was washed �rst with 1x vol. of
3M sodium acetate (pH5.2) and then with 1x vol. of 70% ethanol and �nally resuspended
in 50 to 100µl DEPC-treated water, depending on pellet size. After incubation for 15min at
65�, residual insoluble material was removed by centrifugation.

Determination of RNA concentration

Concentration of RNA was determined photometrically at 260 nm (ε=25 µl x µg−1 x cm−1),
using appropriate dilutions of the RNA sample (usually 1:200). The OD at 230 nm and
280 nm was used to estimate contamination with polysaccharides or proteins, respectively
(Good quality RNA should have an OD260 nm/OD280 nm ratio of 1.8 to 2.0 and an
OD260 nm/OD230 nm ratio greater than 1.8).

5.4.2 Northern Blotting

For each gel lane, 15 µg RNA were used and the volume was adjusted to 16.6 µl with
formamide for all samples. To each sample, 8.4µl sample mix (consisting of 4.15µl 37%
formaldehyde, 1.25 µl 20x MOPS (0.4M MOPS, 0.1M sodium acetate, 20mM EDTA, pH7),
2.5 µl RNA loading bu�er (50% glycerol, 5% 20xMOPS, 1% bromphenol blue), 0.5µl EtBr
(0.5mg/ml)) were added. Before loading, the RNA was denatured for 10min at 65� and
cooled on ice. The samples were loaded on a denaturing agarose gel (1.4% agarose, 1x MOPS,
5.5% formaldehyde(37%)) and run at 70V in 1x MOPS bu�er.
After the run completed, the gel was photographed and washed twice for 10min each in 10x
SSC (1.5M NaCl, 0.3M sodium citrate, pH 7). The RNA was transferred overnight by capil-
lary blotting with 10x SSC as transfer bu�er onto a nylon membrane (Duralon-UV, Strata-
gene). Completion of transfer was con�rmed by inspecting the membrane under UV-light.
After drying of the membrane, RNA was crosslinked using a UV stratalinker (Stratagene,
setting=Auto).
The hybridization and detection steps were performed as described for Southern blotting
(see 5.3.7) with biotin-labeled probes, except that the detection was carried out with the
more sensitive horseradish peroxidase (HRP) instead of alkaline phosphatase. The washing
steps were identical to the above protocol, with the exception that the conjugate bu�er
contained the Streptavidin-HRP conjugate (1:20,000 Streptavidin-HRP conjugate (1mg/ml,
Pierce) in blocking bu�er) and that the washing in assay bu�er was omitted. The membrane
was incubated with the chemiluminescent HRP substrate (North2South Chemiluminescent
Substrate for HRP, Pierce) as described for AP detection.
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5.5 Protein techniques

5.5.1 General protein techniques

SDS-PAGE

SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) was done according to Sambrook et al.
(1989), using resolving gels containing 12 to 15% polyacrylamide and stacking gels with 5%.
Gels were either directly stained with Coomassie Brilliant Blue or used for Western blotting.
Samples for SDS-PAGE were denatured by addition of a 4x concentrated SDS-sample bu�er
containing a reducing agent (Roti-Load1, Roth) and boiling for 5min at 95�. For the
conservation of disul�de bridges, the non-reducing Roti-Load2 was used.

Coomassie staining

Gels were stained in 0.25% Coomassie Brilliant Blue G250, 45% methanol, 10% acetic acid,
destained with 45% ethanol, 10% acetic acid and stored in 45% methanol, 2.5% glycerol.
For more sensitive detection, gels were stained using colloidal Coomassie staining. Stain-
ing was carried out in 20% ethanol, 1.6% phosphoric acid, 8% ammonium sulfate, 0.08%
Coomassie Brilliant Blue G-250 over night. After destaining with water the gels were stored
in 0.1% acetic acid.

Silver staining

For silver staining, protein gels were �xed in 50% ethanol, 10% acetic acid, 0.05% formalde-
hyde (37%) for at least 1 h, washed twice for 25min in 50% ethanol. The gel was sensitized
for 1 to 2min in 0.02% sodium thiosulfate (Na2S2O3x5H2O), followed by rinsing the gel
in water twice. The gel was stained for 20min in staining solution (0.2% AgNO3, 0.075%
formaldehyde (37%)), rinsed three times in water and developed until bands were visible
with developing solution (6% Na2CO3, 0.0004% Na2S2O3x5H2O, 0.05% formaldehyde). De-
velopment was stopped by incubating the gel in 12% acetic acid.

5.5.2 Immunological techniques

Western Blot

After SDS-PAGE, the resolving gel was incubated in transfer bu�er (48mM Tris-base, 39mM
glycine, 20% methanol (v/v), 0.0375 % SDS) for 10min. The protein transfer was accom-
plished via a "semi-dry" electro transfer using the Trans-Blot SD apparatus (Bio-Rad). On
the anode, 3 layers of blotting paper (Whatman 3MM), moistened in transfer bu�er, the
membrane (Immobilon-P (Millipore), �rst incubated in methanol and then in transfer bu�er),
the gel and three further moistened paper were assembled, taking care to avoid trapped air
bubbles. Then the cathode was placed on top and the transfer was carried out for 45min at
15V and 3.5A per cm2 membrane.
After the blot, the membrane was blocked by incubation in 5% skim milk powder (w/v)
in TBST (20 mMTris, 150mM NaCl, 0.05% Tween 20, pH7.4) for 1 h at ambient temper-
ature. The primary antibody solution was prepared in TBST + 1% skim milk powder at
the dilutions indicated below. (For conservation purposes, 0.02% NaN3 were added.) The
primary antibody solution was usually incubated over night at 4�. Thereafter the mem-
brane was washed four times with TBST for 5min each under vigorous shaking, followed
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by a one hour incubation in the secondary antibody solution (for rabbit primary antibody:
horseradish peroxidase-conjugated goat anti-rabbit antibody (Pierce) 1:20,000 in TBST +
1% skim milk powder) at room temperature and a repetition of the washing procedure.
The membrane was incubated for 5min in the substrate solution (Super Signal Dura, Pierce)
and chemiluminescence was detected by putting the membrane under photographic �lm (Hy-
per�lm ECL, Amersham). Exposure times were adjusted according to signal strength, usually
between 30 sec and 30min.
Finally the proteins on the membrane were stained in Amido Black (0.1% Amido Black,
45% ethanol, 10% acetic acid) for 15min and, after background destaining in water, dried.

Production of the BvC/VIF antiserum

The production of the antiserum was carried out by Eurogentec (Belgium). Initially preim-
mune bleedings of twenty rabbits were tested by Western blotting for the presence of unspe-
ci�c antibodies against Beta vulgaris proteins. The immunization was carried out using the
rabbit with the lowest amount of cross-reacting proteins detected. The immunization proto-
col included four injections of the antigen, each time using 120 µg of recombinant BvC/VIF1
protein expressed in soluble form. The obtained bleedings were tested individually (see Fig.
8.1) and for further Western blots, an a�nity puri�ed fraction (see below) of the �nal bleed-
ing was used.

A�nity puri�cation of antisera

Due to the presence of multiple immuno-signals in Western blots with plant extracts from
sugar beet, the BvC/VIF-antiserum was a�nity puri�ed against recombinant BvC/VIF1-
protein (see Fig. 3.24). 2mg of the recombinant protein (dialyzed in coupling bu�er (0.1M
NaHCO3, 0.5M NaCl pH8.3)) was incubated with 0.5 g of CNBr-activated Sepharose 4B
(preswollen in 100ml 1mM HCl and equilibrated in coupling bu�er) for 1 h at ambient
temperature. The matrix was poured into a column (Econo-Pac, Bio-Rad) and the bu�er
was allowed to drain by gravity �ow.
The column was �rst washed with 50ml of coupling bu�er and residual amine binding sites
were blocked by incubation in 10ml 100mM Tris-HCl, pH 8 for 2 h at ambient temperature.
For washing, the column was incubated with 10ml 100mM sodium acetate, 500mM NaCl,
pH 4.5 and 10ml 100mM Tris-HCl, 500mM NaCl, pH 8 and this procedure was repeated
three times. Finally the a�nity matrix was incubated in 1xTBS (20mM Tris, 150mM NaCl,
pH 7.4).
The following steps were carried out at 4�. For binding of the antibodies, 500µl of 10xTBS
(200mM Tris, 1.5M NaCl, pH 7.4) were added to 5ml of the �nal bleed and incubated with
the CNBr-coupled BvC/VIF1 protein overnight. Then the unbound antibodies were allowed
to drain from the column. After washing with 50ml of 1xTBS, bound antibodies were eluted
with 0.2M glycine, 1mM EGTA, pH2.8, �rst as 500 µl then as 1ml aliquots (5 aliquots each).
The eluted antibodies were immediately neutralized by addition of 1/10 volume of 2M Tris,
pH 8.5. For stability reasons, 0.1mg/ml BSA and 0.02% NaN3 were added to the eluted
antibodies. The protein content of the produced fractions was tested and the fractions with
the highest protein content were combined. The puri�ed serum was tested using di�erent
dilutions. A dilution of 1:500 to 1:1000 was found suitable for Western blotting.
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Detection of acid invertases

For the detection of cell wall invertases, an antiserum raised against a tobacco CWI (Genbank
accession X81834), for the detection of vacuolar invertases an antiserum against the BvVI1
protein (AJ277457) was used. The production of the antisera is described in Rosenkranz
et al. (2001). Both antisera were used in a dilution of 1:5,000 of the crude �nal bleeding.

Detection of Alternative Oxidases

For the detection of the AOX proteins, a monoclonal antiserum raised against the AOX
proteins from Sauromatum guttatum was used diluted 1:100. This antiserum is described to
detect all three AOX-isoforms of this species (Elthon et al., 1989). As secondary antibody a
horseradish peroxidase-conjugated goat anti-mouse antibody (Pierce) was used.

Detection of green �uorescent protein

For the detection of GFP-fusion proteins, a polyclonal GFP antiserum from Invitrogen was
used in a 1:5000 dilution.

5.5.3 Puri�cation of recombinant inhibitor and invertase proteins

Puri�cation of recombinant BvC/VIF1 from E. coli

The BvC/VIF1-coding sequence without the predicted signal peptide was cloned into the
pQE30-vector (Qiagen, Primers Bv-inh_l and Bv-inh_r), which leads to the expression of
the protein in fusion with a N-terminal 6xHis-Tag. The vector was transformed into the E.
coli strain Rosetta-gami (Novagen).
In a typical puri�cation of the recombinant BvC/VIF1 protein, 3 l TB-medium were in-
oculated with 100ml overnight culture in LB-medium. Both, LB and TB medium, were
supplemented with 100µg/ml Ampicillin, 34 µg/ml Chloramphenicol and 1% glucose (w/v)
in order to decrease leaky expression of the protein. Bacteria were grown at 37� until
OD600 nm reached 0.8 to 1.0. After cooling the culture to 18�, expression was induced by
addition of 0.2mM IPTG.
Bacterial cells were harvested after 18 to 22 hours at 18� and 200 rpm by centrifugation,
resuspended in 200ml wash bu�er (500mMNaCl, 50mMNaPO4, 25mM imidazole, 10%
glycerol, pH 7.5) and lysed with an Emulsi�er (EmulsiFlex-C5, Avestin) at 70 to 100 MPa.
Insoluble protein was removed by centrifugation (22,000 g, 45min) and the supernatant was
applied to an IMAC-column �lled with 2 to 3ml Ni-NTA agarose matrix (Qiagen). The
column was washed with 300ml wash bu�er and the puri�ed protein was eluted in six 2ml
fractions with elution bu�er (500mMNaCl, 50mMNaPO4 pH7.5, 10% Glycerol, 250mM
Imidazole).
As an alternative to the Ni-NTA matrix, a silica-based Ni-TED matrix (Protino Ni-TED,
Macherey-Nagel) was used. For this matrix the imidazole was omitted from the wash bu�er.
BvC/VIF1-containing fractions were usually dialyzed into an acidic bu�er for activity test-
ing (P1 bu�er: 20mM Triethanolamine, 7mM Citric Acid, pH 4.6 or 50mM sodium acetate,
300mM NaCl, pH 5). Proteins precipitated during dialysis were removed by centrifugation.
For longer storage (> 3 days), the puri�ed protein was frozen in liquid nitrogen and stored
at -80� without substantial loss of activity.
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Puri�cation of recombinant NtCIF and NtVIF from E. coli

For the puri�cation of NtCIF, the pQE30 construct described in Greiner et al. (1998) was
used. The construct was transformed into Rosetta-gami cells, and expression was carried out
as described for BvC/VIF1 (see above) with the exception, that no glucose was added to the
TB-medium.

NtVIF was only expressed in insoluble form in inclusion bodies. Therefore the protein was
�rst resolubilized using a 8M urea solution. The protein was then bound to a Nickel ma-
trix and refolded in renaturing bu�er (25mM HEPES, 150mM NaCl, 100mM KCl, 2mM
MgCl2, 0.005% Tween20, 1mM PMSF, 0.66mM GSSG, 0.33mM GSH pH7.5) over night.
After refolding, the protein was eluted from the Nickel-column with renaturing bu�er +
250mM imidazole. The pQE30-construct and the refolding method was kindly provided by
Katja Lauer (Lauer, 2006).

Puri�cation of recombinant BvVI1 from E. coli

The BvVI1 protein was ampli�ed from Beta vulgaris cDNA using the primers JE81 and JE82
and �rst cloned into pPICZαA (Invitrogen) using KpnI and SacII restriction sites. This plas-
mid was used for the two-step ampli�cation with primers JE75 and 76 (step 1) and JE77
and JE78 (step 2) to add Gateway compatible overhangs and the TEV-protease-cleavage
site (see 5.3.3).
After recombining the PCR product into the Gateway entry-vector pDONR201 (Invitrogen)
and sequence veri�cation, it was introduced into the pETG vector series (EMBL, Heidel-
berg, see table 3.1 on page 41). Best yields of soluble BvVI1 protein were achieved using
the pETG-30 vector (providing a N-terminal 6xHis- and GST-tag), which was used for the
following puri�cations.
The expression and puri�cation using Nickel-resins was carried out as described above for
BvC/VIF1, except that 2.5% glucose were added to the TB-medium and after elution from
the Nickel-matrix, the protein was dialyzed in a bu�er for TEV-protease-cleavage (50mM
NaPO4, 200mM NaCl, pH 7.5). Recombinant 6xHis-tagged TEV protease and 5mM DTT
were added to the dialyzed protein and incubated for 3 h at 30� or over night at 4�.
Subsequently 1x vol. of wash bu�er (500mMNaCl, 50mMNaPO4, 25mM imidazole, 10%
glycerol, pH 7.5) was added and the sample was passed over 1ml of Ni-NTA matrix. Cleaved
BvVI1-protein was collected in the �ow-through (FT) of this second column, whereas the
TEV-protease and the cleaved GST-tag bound to the Ni-NTA matrix due to the presence of
6xHis-Tags. Further BvVI1 protein was collected by washing the column with 2ml fractions
of wash bu�er and after washing with another 25ml of wash bu�er, TEV-protease and the
GST-tag were eluted with elution bu�er. Wash fractions containing BvVI1-protein (deter-
mined by SDS-PAGE and Coomassie staining) were combined with the FT and dialyzed
against a bu�er of choice (usually 50mM sodium acetate, 300mM NaCl, pH 5). See Fig. 3.12
on page 42 for a typical BvVI1 puri�cation.

Puri�cation of recombinant IbVI2 from Pichia pastoris

For the puri�cation of the recombinant IbVI2 protein, the Pichia pastoris strain X-33 car-
rying the pPICZαA vector with the open reading frame of the Ipomoeas batatas soluble
acid invertase FRUCT2 (Wang et al., 2005 , Acc. number AAK71504) was used. A single
colony was used to inoculate 100ml BMGY-medium with 100 µg/ml Zeocin and was grown
overnight at 30�. To induce expression from the alcohol oxidase promoter, the culture was
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centrifuged (5min, 1300 g), resuspended in 1.5 l BMMY medium in a 5 l erlenmeyer �ask and
grown overnight at 30� with vigorous shaking.
To harvest the IbVI2 protein secreted into the medium, the culture was centrifuged (30min,
4,000 g, 4�) and the medium precipitated by adding 430 g of ammonium sulfate per liter
medium (70% saturation) under constant stirring at 4�. The precipitated protein was col-
lected by centrifugation (30min, 9,800 g, 4�), resuspended in 50ml of NaPO4 bu�er (50mM
NaPO4, 200mM NaCl, pH 7.5) and residual ammonium sulfate was removed by dialysis
against 10 l of NaPO4 bu�er.
Then 500 µl of Ni-NTA (Qiagen) was added to this solution and incubated for 1 h at 4�.
The matrix was poured in a Econo-Pac column (Bio-Rad) and washed with 200ml wash
bu�er (500mM NaCl, 50mM NaPO4, 10mM imidazole, 10% glycerol, pH 7.5). Finally the
IbVI2 protein was eluted in �ve 1ml fractions with elution bu�er (500mM NaCl, 50mM
NaPO4, 250mM Imidazole, 10% glycerol, pH 7.5) and dialyzed against 50mM sodium ac-
etate, 300mM NaCl, pH 5.

5.5.4 Extraction of soluble and cell wall proteins

Approximately 300mg of grinded leaf or taproot material was resuspended in 600µl of extrac-
tion bu�er (30mM MOPS, 250mMsorbitol, 10mM MgCl2, 10mM KCl, 1mM PMSF, pH6)
and after thorough vortexing centrifuged at 15,000 g in a table top centrifuge. All steps were
carried out at 4�. The supernatant, containing the soluble proteins, was removed and the
pellet resuspended in extraction bu�er plus 1% triton X-100, and, after vortexing, centrifuged
as before. The supernatant from this step is referred to as Triton-Wash. The residual pellet
was washed twice in extraction bu�er without Triton, the supernatants from these steps
were discarded. The residual cell wall pellet was resuspended in 100µl of 2x SDS-sample
bu�er (Roti-Load1, Roth). After boiling for 5 minutes and sequential centrifugation, the
supernatant contained the cell wall fraction.
Alternatively, the residual cell wall pellet was incubated in extraction bu�er+500mM NaCl
for 30min at 4� using an overhead shaker. The salt-eluted fraction was separated from the
residual pellet by centrifugation. During this step, proteins ionically bound to the cell wall
matrix are solubilized and removed from the cell wall material.
The soluble, the Triton-Wash and the salt-eluted fractions were precipitated by the addition
of 1600µl of ice-cold acetone to 400 µl of each fraction. After incubation for 20minutes at
-20� the sample was centrifuged and the protein pellet was resuspended in 100µl of 2x SDS-
sample bu�er. For leaf samples, the soluble fraction was not precipitated, but used directly
after denaturation in SDS-sample bu�er.

Salt-elution of the cell wall fraction from Beta vulgaris suspension culture cells
For the elution of ionically bound proteins from the cell walls of intact suspension culture
cells, the medium was removed from cells 8 days after transfer to fresh medium by �ltration.
The cells were transferred to a double volume of extraction bu�er (see above) plus 500mM
NaCl and gently stirred at 4� for 1 h. The cells were removed by centrifugation and the
supernatant was acetone precipitated and the resulting pellet was taken up in SDS-sample
bu�er.

5.5.5 Lectin chromatography

For the puri�cation of glycosylated proteins, lectin chromatography was carried out using
a Concanavalin A (ConA) sepharose conjugate. Plant material was extracted in 1xConA
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bu�er (50mM sodium acetate, 1mM CaCl2, 1mMMgCl2, 1mMMnCl2, 1mM PMSF (added
freshly), pH 6.3) and after centrifugation added to ConA-sepharose (equilibrated in the same
bu�er) and incubated for 1 h at RT. The suspension was loaded onto a column and non-
glycosylated proteins were collected in the �ow-through (ConA−-fraction). The column was
washed with 50ml of ConA bu�er and the bound proteins were eluted by addition of ConA-
bu�er + 15% methyl-α-D-glucopyranoside, giving rise to the ConA+-fraction.

5.5.6 Size exclusion chromatography

For size exclusion chromatography (SEC) of plant extracts and recombinant proteins, a
Pharmacia FPLC system at ambient temperature was used. The system consisted of a P-
500 Pump, a Superdex200 Hiload16/60 column (120ml matrix volume), a UV-MII UV-meter
and the fraction collector Frac-100 (all from Pharmacia). The system was controlled and the
results were processed using the software "FPLC-director version 1.1". For bu�er changes,
the column was equilibrated with at least 2 column volumes of the new bu�er. All bu�ers
were �ltrated using 0.2µm sterile �lters. Samples were loaded using a 1ml sample loop.
Plant extracts were separated in MES-bu�er (50mMMES pH5.5, 250mMKCl, 5mMMgCl2,
1mM CaCl2), recombinant proteins in either sodium acetate (50mM sodium acetate, 300mM
NaCl pH5) or sodium phosphate bu�er (50mM NaPO4, 300mM NaCl, pH 7.5).
For inspection via SDS-PAGE and Western blotting, the collected fractions were precipitated
by the addition of 4x vol ice-cold acetone. The resulting pellet was taken up in SDS sample
bu�er directly.

5.5.7 Measurement of soluble and cell-wall bound invertase activity

To each 100mg of grinded plant material (portioned in deep-frozen state into 1.5ml reaction
tubes) 250 µl of extraction bu�er (see 5.5.4) were added and the sample was vortexed vig-
orously. The soluble proteins were collected by centrifugation at 8,500 g at 4�. The pellet
was washed once with extraction bu�er + 1% Triton X-100 and twice with extraction bu�er
without Triton. Then the cell-wall pellet was resuspended in 250µl extraction bu�er and
used directly for the determination of invertase activity.
For the measurement of soluble invertase activity from sugar beet taproots, endogenous su-
crose was removed by acetone precipitation of the soluble fraction with 4 vol. of ice-cold
acetone and incubation for 20min at -20�. After centrifugation (15,000 g, 10min, 4�) the
pellet was resuspended in 500 µl P1 bu�er (20mM triethanolamine, 7mM citric acid, pH 4.6).
For the determination of acid invertase activity, 30 to 100µl (depending on activity of sam-
ple) of the obtained preparations were incubated with 100 µl of substrate (100mM sucrose
in P1 bu�er) and P1 bu�er up to 300µl. After 1 h at 37� the reaction was stopped by the
addition of 30µl 1M sodium phosphate, pH 7.5 and heating to 95� for 5min.
Liberated glucose was measured in a coupled enzymatic-optical assay. 10 to 100µl of the
reaction, 20 µl 30mM ATP, 20 µl 30mM NADP, 2µl Hexokinase/Glucose-6-Phosphate De-
hydrogenase suspension (340U/ml HK, 170U/ml G6P-DH, Roche) and up to 1ml bu�er
(40mM Triethanolamine, 8mM MgSO4 pH7.5) were mixed and incubated for 5min at room
temperature. Formation of NADPH was measured photometrically at 340 nm and the liber-
ated glucose was calculated using Lambert-Beer law (εNADPH

340nm
=6,23 l x mmoles−1 x cm−1).

Invertase activity was expressed in nkat per g fresh weight (1nkat=1 nmole Glc liberated /
sec).
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5.5.8 Functional assay of recombinant invertase inhibitors

To test recombinant inhibitor proteins for inhibitory activity against invertases, variable
amounts of the recombinant inhibitor proteins were added to a suitable invertase preparation
(recombinant or extracted from plant tissues) in P1 bu�er (20mM triethanolamine, 7mM
citric acid, pH 4.6) or sodium acetate bu�er (50mM sodium acetate, 300mM NaCl pH5) in
a total amount of 200 µl and incubated for 30min at 37� to allow complex formation. Then,
100 µl 100mM sucrose in the same bu�er were added and incubated for 60min at 37�. The
reaction was stopped by neutralization with 30µl 1M NaPO4 and boiling for 5min at 95�.
The amount of glucose released was measured as described in 5.5.7. In each experiment
samples without inhibitor proteins were included. For every combination of invertase and
inhibitor, 4 replicates were prepared, of which one was neutralized and boiled immediately
after sucrose addition. This value was subtracted from the others as background absorption.

5.5.9 Puri�cation of BvC/VIF proteins from sugar beet taproots

Preparation of invertase-column

For the coupling of recombinant BvVI1-protein to CNBr-matrix, 0.5 g CNBr-activated seph-
arose 4B (Amersham) was swollen by washing with 120ml 1mM HCl and equilibrated in
coupling bu�er (0.1M NaHCO3, 0.5M NaCl, pH 8.3). Then 15mg of recombinant BvVI1
protein (dialyzed against coupling bu�er) was added and allowed to bind for 1.5 h at RT
with constant agitation. The matrix was poured into an Econo-Pac column (Bio-Rad), the
�ow-through was collected and the column washed with 25ml of coupling bu�er. Blocking
was done according to the manufacturer's instructions for CNBr-sepharose over night with
0.1M Tris (pH8) at 4�. Then washing was carried out with 4 alternating washes with
0.1M sodium acetate bu�er (pH4) and 0.1M Tris (pH8), each bu�er supplemented with
0.5M NaCl. The column was stored in a bu�er containing 0.02% NaN3 to prevent microbial
growth.

A�nity-puri�cation of inhibitors

For the puri�cation of both BvC/VIF proteins from Beta vulgaris taproots, 250 g of cut
taproot material was homogenized in a Waring blender with 250ml of ice cold MES-bu�er
(50mM MES, 250mM KCl, 5mM MgCl2, 1mM CaCl2, 1mM PMSF, pH5) and �ltered
through Miracloth (Calbiochem). All steps were carried out at 4�. After centrifugation
(3,840 g, 20min), the supernatant was precipitated by adding solid ammonium sulfate to 80%
saturation (561 g/l). The ammonium sulfate was added and stirred over night. The pellet was
collected (15,000 g, 30min), resuspended in 5ml of acetate bu�er (50mM sodium acetate,
300mM NaCl pH5) and dialyzed against the same bu�er to remove residual ammonium
sulfate. After dialysis, the sample was cleared by high speed centrifugation (267,000 g, 30min)
and passed repeatedly over the invertase-column equilibrated with the same bu�er for 90min
at 37�. The �ow-through was collected and the column was washed with 60ml acetate
bu�er. The inhibitor proteins were eluted from the invertase by incubating the matrix in
4ml of 100mM Tris, 500mM NaCl, pH 8.5 for 20min at RT. A second elution was carried
out for 60min at RT.

Protein sequence determination by mass spectroscopy

The eluted fractions were acetone precipitated and resuspended in 60 µl of SDS-sample bu�er
(Roti-Load1, Roth). Proteins were separated by SDS-PAGE and the inhibitor bands were
identi�ed on the gel stained with colloidal Coomassie by carrying out a Western blot with
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the BvC/VIF antiserum with the second half of the gel in parallel.
Tryptic digestion and protein sequence determination by nanoESI QTOF was carried out

by Dr. Th. Ruppert at the ZMBH, Heidelberg in the department of Biomolecular Chemistry.

5.5.10 Puri�cation of mitochondria for Western blots

Sugar beet mitochondria were isolated according to Schwitzguebel & Siegenthaler (1984) and
Vanlerberghe & McIntosh (1992). 100 g tap root or 70 g leaf material were cut and disrupted
in 400ml of ice-cold extraction bu�er (350mM mannitol, 30mM MOPS, 1mMEDTA, 4mM
cysteine, 0.2% BSA, 0.6% polyvinylpolypyrolidone, pH 7.5) in a Waring blender and �ltered
through three layers of Miracloth (Calbiochem).
The �ltrate was centrifuged at 5,500 g for 2min to eliminate most of the plastids and nuclei
and the supernatant was then centrifuged for 5min at 23,000 g. The pellet was resuspended in
250ml wash bu�er (300mM mannitol, 20mM MOPS, 1mM EDTA, 0.2% BSA, pH7.2) and
centrifuged again for 2min at 5,500 g. Finally the mitochondria were sedimented from the
supernatant (5min, 18,000 g), resuspended in wash bu�er and the protein content determined
(BSA contained in the wash bu�er was subtracted).
A suitable amount of mitochondria were collected by centrifugation and the pellet taken up
in 2x SDS sample bu�er (Roti-Load1, Roth) at a concentration of 2 µg/µl and denatured for
5min at 95�.

5.6 Plant Transformation methods

5.6.1 Transient ballistic transformation

Ballistic transformation was carried out with the Biolistic PDS-1000/He particle gun (Bio-
Rad) according to the manufacturer's instructions. With this device, DNA-coated particles
are delivered with high pressure into plant tissues. When particles are delivered to cell nuclei,
the genes are expressed inside these cells.

Preparation of particles

30mg tungsten-paricles ("M-20 Microcarriers" Ø 1.318 µm, Bio-Rad) were vortexed in 1ml
70% ethanol for 20 sec. After 10min incubation, particles were centrifuged for 30 sec at
4,000 g. The supernatant was removed and the pellet vortexed for 10 sec in 500µl sterile
water and incubated for 10min. After centrifugation as before, particles were resuspended
in sterile 50% glycerol and stored at -20� until use.

DNA-coating of particles

For each shot, a total of 1 µg plasmid-DNA was added to 10µl of resuspended particles
and incubated for 15min on ice. Thereafter, 10µl 2.5M CaCl2, 4 µl 1.2mM spermidine and
23 µl 100% ethanol were added subsequently with short vortexing in between. After 15min
incubation on ice, particles were collected by centrifugation (10 sec, 1,000 g) and resuspended
in 7 µl 100% ethanol per shot.
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Bombardment of onion epidermal cells

Onions were purchased at local markets. Before the bombardment, the onion was quartered
and the individual leaves were separated and put into a 6 cm petri dish on moist �lter
paper. The DNA-coated particles were sonicated for 6 sec (Labsonic, U Braun), spread on a
macrocarrier (Bio-Rad) and the ethanol was allowed to evaporate. Setup of the particle gun
was performed according to the manufacturer, using 650PSI rupture disks and applying a
vacuum of 25 inches Hg. Each onion leaf was bombarded for three times targeting the inner
epidermis and incubated at room temperature in the dark for 24 to 48 h.
In order to visualize GFP-�uorescence in the apoplast, the epidermis was removed and
incubated for 12 to 24 h in 20mM PIPES (piperazine-N,N' -bis (2-ethanesulfonic acid), pH 7.0
as described by Scott et al. (1999).

5.6.2 Transient Agrobacterium-mediated transformation

The transient transformation of Nicotiana tabacum or Nicotiana benthamiana was done
according to Wroblewski et al. (2005). A liquid culture (5ml YEB with antibiotics in a 50ml
tube) of a single colony containing the binary vector in the Agrobacterium strain C58C1 was
started and incubated over night at 28� with shaking. From this starter culture, 2ml were
used to inoculate a new over night culture of 50ml YEB medium. After growing over night,
the bacteria were centrifuged (2,000 g, 15min, RT) and resuspended in sterile water. The
OD600nm of the suspension was adjusted to 1. Young leaves of tobacco plants were in�ltrated
by injecting the suspension through the lower side of the leaves using a 10ml syringe without
a cannula. Samples were taken between 36 and 48 h post in�ltration.

5.7 Microscopy

Fluorescence microscopy
Microscopic analysis of the plant cells transformed with �uorescent reporter protein con-
structs was carried out using an inverse light microscope (DMIL, Leica). For detection of
GFP �uorescence, a FITC �lter (excitation 450-490 nm, emission 515 nm longpass) and for
RFP-�uorescence the �lter XF 137-2 (excitation 540 +/- 30 nm, emission 585 nm longpass)
was used. Results were documented using a digital camera and the analySIS software (Soft
Imaging System).

Confocal laser scanning microscopy
Further microscopic analyses were carried out using a confocal laser scanning microscope
(LSM510 Meta, Zeiss). The following excitation and detection wavelength were used:
GFP: excitation: 488 nm; detection: bandpass 505-530 nm
RFP: excitation: 543 nm; detection: bandpass 560-615 nm
Chlorophyll auto�uorescence: excitation: 488 nm; detection: longpass 650 nm

5.8 Determination of soluble sugars

For the extraction of soluble sugars, taproot tissue was grinded in deep-frozen state. To
100mg of tissue, 500 µl of ethanolic extraction bu�er (80% ethanol, 10mM HEPES, pH7.5)
were added and incubated for 40min at 80�. After centrifugation (3min, 15,000 g, RT) the
extraction was repeated and both supernatants were combined and stored at -20�.
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For the determination of sucrose, taproot extracts were usually diluted 1:40 with ethanolic
extraction bu�er. The measurement was carried out in 96-well plates (Greiner Nr. 655101)
using a 96-well plate-reader (Fluostar Optima, BMG Labtech) at 340 nm. From each plant
sample, three independent extracts were prepared and every extract was measured in tripli-
cates.

Measurement of sucrose

In each well to 10µl of the diluted extract, 160µl of master mix were added. Per well,
the master mix contained 2µl 30mM NADP, 2µl 30mM ATP, 0.4 µl glucose-6-phosphate-
dehydrogenase (700U/ml, Roche), 0.4 µl hexokinase (1500U/ml, Roche) and 155.2 µl re-
action bu�er (100mM imidazole, 3mM MgCl2, pH 6.9). The plate was inserted into the
platereader, shaken vigorously and after 15min background absorption (abs1) from hexoses
present was measured. Then, 10 µl of invertase (2mg/ml in reaction bu�er, Sigma) were
added to each well, mixed and incubated for 60min (until absorption was constant) followed
by determination of absorbance (abs2). For the calculation of the extract's sucrose concentra-
tions, a standard curve was generated using sucrose solutions in ethanol between 0.1mg/ml
and 0.8mg/ml. Absorption caused by present hexoses was removed by subtracting abs1 from
abs2.

Measurement of hexoses

For the measurement of glucose and fructose from wounded taproot tissue, 2µl of undiluted
extract were added to 160 µl master mix containing 2µl 30mM NADP, 2 µl 30mM ATP, 0.4 µl
glucose-6-phosphate-dehydrogenase (700U/ml, Roche) and 155.6 µl reaction bu�er (100mM
imidazole, 3mM MgCl2, pH 6.9). After determination of background absorption (abs1),
4 µl of hexokinase (62,5U/ml, diluted in reaction bu�er) were added to each well. After
mixing and incubating for 15min, absorption (abs2) was measured. For the determination
of fructose, 4 µl of phosphoglucoisomerase (Roche, 44U/ml, diluted in reaction bu�er) was
added and absorption (abs3) was determined after mixing and incubation for 30min. For the
calculation of glucose, abs1 was subtracted from abs2, and for fructose, abs2 was subtracted
from abs3. The standard curve was prepared from measurements of solutions containing
between 0.1 and 0.8mg/ml glucose and fructose and concentrations of the extracts were
calculated according to the standard curve.

5.9 Electrochemical measurement of oxygen

consumption

Oxygen consumption of sugar beet disks was measured using a Clark-type O2 electrode ac-
cording to Walker (1990). For a review of the application see Hunt (2003). An O2 electrode is
a specialized form of electrochemical cell, consisting of a platinum cathode and silver anode.
The cathode and anode are connected by an electrolyte bridge (3M KCl) and an polarizing
voltage of around 700mV is applied. At the cathode, electrons are transferred to oxygen
and concomitantly at the anode silver is oxidized and silver chloride formed. The electrolyte
solution mediates the current �ow, which is directly related to the amount of oxygen present.
It is converted to a voltage output signal by the electrode control box and recorded on a
pen recorder. In the oxygen electrode units, the sample is put inside an airtight chamber
separated from the cathode only by an air-permeable te�on membrane.
For the measurements, LD1/2 oxygen electrode units (Hansatech Instruments Ltd., King's
Lynn, UK) connected to CB1-D manual control units (also from Hansatech) were used. The
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voltage signals were recorded on chart recorders (Kipp+Zonen). Calibration of the instru-
ment was done by injecting 1ml of air into the sample chamber and recording the occurring
change in current �ow, which is stoichiometrically related to the amount of oxygen injected.
By using the law of Charles and Gay-Lussac for ideal gases, the volume of one mole of air
at the ambient temperature of 22� can be calculated as 24.22 l. One ml of air therefore
equals 41.3µmoles and, given an O2 content of 20.9%, contains 8.63µmoles of oxygen. The
calibration was carried out 3 times before and after each measurement.
For the measurement of oxygen consumption by sugar beet disks, 7 disks (1 cm in diameter,
4mm thick) were inserted into the closed sample chamber and O2 consumption was moni-
tored in the dark for 30 to 45min. Respiration was expressed as nmoles O2 used per minute.
For measurement of the respiration rates during wounding, the disks were incubated in petri
dishes in which a moist �lter paper was inserted into the lid and measurements were carried
out at the indicated points in time (see Fig. 3.5).
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6 Abbreviations

6xHis hexa-histidine tag
acc accession
AG Aktiengesellschaft
AOX alternative oxidase
AP alkaline phosphatase
A. thaliana Arabidopsis thaliana

AU absorption unit
bp base pairs
BSA bovine serum albumin
Bv Beta vulgaris

CaMV Cauli�ower mosaic virus
cc cell culture
ch chapter
CI cytosolic invertase
CIF cell wall inhibitor of β-fructosidase
CLSM confocal laser scanning microscopy
C/VIF cell wall or vacuolar inhibitor of β-fructosidase
ConA Concanavalin A
CWI cell wall invertase
dd-H2O double distilled water
DEPC diethylpyrocarbonate
DTT dithiothreitol
f.w. fresh weight
ER endoplasmic reticulum
EST expressed sequence tag
EtBr Ethidium bromide
GFP green �uorescent protein
GH glycosyl hydrolase
HRP horseradish peroxidase
IMAC immobilized metal ion a�nity chromatography
Inv invertase
IPTG Isopropyl-beta-D-thiogalactopyranosid
kb kilo base pairs
M mol/l
mRNA messenger RNA
MW molecular weight
Nt Nicotiana tabacum

OD optical density
o/n over night
ORF open reading frame
p page
PAGE polyacrylamide gel electrophoresis
PME pectin methylesterase
PMEI pectin methylesterase inhibitor
PMEI-RP pectin methylesterase inhibitor-related protein
PPi pyrophosphate

117



6 Abbreviations

RACE Rapid Ampli�cation of cDNA Ends
ref references
RNA ribonucleic acid
ROS reactive oxygen species
rpm rounds per minute
RT room temperature
SDS sodium dodecyl sulfate
SEC size exclusion chromatography
SPS sucrose-phosphate synthase
SuSy sucrose synthase
tr taproot
UCP uncoupling protein
VI vacuolar invertase
VIF vacuolar inhibitor of β-fructosidase
vol volume
WT wildtype
w/v weight per volume
w/w weight per weight
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8 Appendix

8.1 Sequence Data

All sugar beet genes analyzed were identi�ed in EST-collections of KWS or sugar beet EST-
collections provided by the GABI primary database (GABI-PD1). The corresponding bacterial
clones (in the vector pCMV-SPORT6) were provided by KWS and the containing cDNAs were
sequenced using the T7 and SP6 promoter sequencing primers and internal primers if necessary.

8.1.1 BvC/VIF1

The cDNA clone containing the BvC/VIF1 sequence carried the number KWS3_190_f04 and
contained the complete 3' UTR of the cDNA but only 5 bp of 5' UTR. The 5'UTR was completed
by RACE and additional 29 bp could be added to the sequence. A shorter EST-clone, which contains
a fragment of the BvC/VIF1 cDNA sequence is annotated in Genbank under the accession number
BQ593123.

---------|---------|-------- ==> cDNA clone -----|---------|---------|---------|

1 GTTTTGTAGTAAATATACATTATACACACTAATCatgacaactctaaacacctctttaccacatcttcacctcctcttca 80

1 M T T L N T S L P H L H L L F I 16

---------|---------|---------|---------|---------|---------|---------|---------|

81 ttacccttcttacactattcaccacctctactttagcgtattctcgcaagaccaccaacgaccttgtaaccaccacgtgc 160

17 T L L T L F T T S T L A Y S R K T T N D L V T T T C 42

---------|---------|---------|---------|---------|---------|---------|---------|

161 aagcaaacacccgacccgattctttgcgaagcttcgctccgatcagactctcggagctccaaggctgctgactctgaagg 240

43 K Q T P D P I L C E A S L R S D S R S S K A A D S E G 69

---------|---------|---------|---------|---------|---------|---------|---------|

241 tttaatcctgatcatgatcgacgttgtcaaaactcggttttcggactcgtttcgatatgtagaggacttgacccggaaga 320

70 L I L I M I D V V K T R F S D S F R Y V E D L T R K T 96

---------|---------|---------|---------|---------|---------|---------|---------|

321 cccatgacccggatgtaatccgggccctgcaagagtgtaagcaactctatcgggttgtgttagatgtaagtgtaggttta 400

97 H D P D V I R A L Q E C K Q L Y R V V L D V S V G L 122

---------|---------|---------|---------|---------|---------|---------|---------|

401 gcagtgagagcagtaaagcaaggggatccgaaattcggggagcaagctatggtggatgcgggtaatgaggccgaggggtg 480

123 A V R A V K Q G D P K F G E Q A M V D A G N E A E G C 149

---------|---------|---------|---------|---------|---------|---------|---------|

481 tcggatggcgttcccggaaggtaaggttccgggtcggatcgtgggtcgaacacggatgctccatggagtatctaatgtgg 560

150 R M A F P E G K V P G R I V G R T R M L H G V S N V A 176

---------|---------|---------|---------|---------|---------|---------|---------|

561 ctgcttctatgattaagagtttggaatgaTGTTTTTTGTGATTTATGGTTAGCAAAGTATACAAGTATTTGACTATATGT 640

177 A S M I K S L E * 184

---------|---------|---------|---------|---------|---------|---------|---------|

641 CAAGGTATGTTGACATGTTTCCTTGAAAAATAAACGTCTCAGGAGCCTTGTCTATACTCTATAAAAAAAAAAAAAAAAAA 720

---------|---------|-

721 AAAAAAAAAAAAAAAAAAAAA 741

1http://gabi.rzpd.de/

A
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8 Appendix

8.1.2 BvAOX1
The BvAOX1 sequence was initially identi�ed by a homology search using protein sequences of AOX
isoforms from A. thaliana and Sauromatum guttatum as a query sequence and EST-collections from
B. vulgaris as input sequences (carried out by KWS, Einbeck). The EST-clone with the highest
homology carried the identi�cation number kws3_003_b02_ZR_PLT_DS and the available se-
quence of this EST is marked in the sequence below. In order to obtain the full sequence of the
cDNA, the corresponding plasmids were isolated and sequenced. However several bacterial clones
were analyzed, which did not carry the expected AOX related sequence, probably due to wrong
labeling in the cDNA collection. The full length sequence of the clone was therefore determined
using 5' and 3' RACE.

---------|---------|---------|---------|---------|---------|---------|---------|

1 AAAAATAAAAGTAAAAAAAATAATCAATCATCATATATAATTCCTACATACAAGTATACAACCGAAACAACTCACTGAGT 80

---------|---------|---------|---------|---------|---------|---------|---------|

81 CAACTCACCGAGTCACCGAGGAAGAAAGatgaatcgtctggtagcaaactcgtcgttgttgaagctttctctctcctccg 160

1 M N R L V A N S S L L K L S L S S V 18

---------|---------|---------|---------|---------|---------|---------|---------|

161 ttaatggcggacgtcggattctctccggaaacggcgtaattacgccggagtttcacacgtggaggtttggtgtgacggat 240

19 N G G R R I L S G N G V I T P E F H T W R F G V T D 44

---------|---------|---------|---------|---------|---------|---------|---------|

241 ttgcgccgggatatgacgtcatattcgccgaagtcggaggagaaagcggttgaggagagagaaaagaaggagttgaagaa 320

45 L R R D M T S Y S P K S E E K A V E E R E K K E L K K 71

---------|---------|---------|---------|---------|---------|---------|---------|

321 gatgaaggatggtttgccgatggtgtctagctattgggcggtttctaggccggaagttatgaaagaggatggtagtaaat 400

72 M K D G L P M V S S Y W A V S R P E V M K E D G S K W 98

---------|---------|---------|-------==> EST-sequence ----|---------|---------|

401 ggaattggaactgttttatgccatgggagacttatgaggctgatttgtccattgatctgagcaaacatcacgtaccaaag 480

99 N W N C F M P W E T Y E A D L S I D L S K H H V P K 124

---------|---------|---------|---------|---------|---------|---------|---------|

481 acatttgtggacaaagttgccttcagaacagtgaaactcttaaggatcccaactgatatcttctttaagaggcgctatgg 560

125 T F V D K V A F R T V K L L R I P T D I F F K R R Y G 151

---------|---------|---------|---------|---------|---------|---------|---------|

561 ttgccgtgcaatgatgcttgaaacagtggctgctgttcctggtatggttggcgggctactgctccatttgaggtcactcc 640

152 C R A M M L E T V A A V P G M V G G L L L H L R S L R 178

---------|---------|---------|---------|---------|---------|---------|---------|

641 gtaggttcgagcagagtggtgggtggatcaaagctttgctggaagaagctgagaatgagcggatgcacctaatgacattg 720

179 R F E Q S G G W I K A L L E E A E N E R M H L M T L 204

---------|---------|---------|---------|---------|---------|---------|---------|

721 gtggagcttgtgcagccgaaatggtacgagagactattggttctagttgtgcagggagttttctttaactgttattttgt 800

205 V E L V Q P K W Y E R L L V L V V Q G V F F N C Y F V 231

---------|--- EST-sequence <== -|---------|---------|---------|---------|

801 gctttatctgctttcccctaagttggcacacagagtggttggttacttggaagaggaggcaatttattcatacacagagt 880

232 L Y L L S P K L A H R V V G Y L E E E A I Y S Y T E Y 258

---------|---------|---------|---------|---------|---------|---------|---------|

881 atcttaaggacatagacagtggcgcgatcgaaaatgtacctgctcctgctattgctatcgactactggaggctgccaaag 960

259 L K D I D S G A I E N V P A P A I A I D Y W R L P K 284

---------|---------|---------|---------|---------|---------|---------|---------|

961 gatgccaatctgaaggatgttataactgtcattcgtgctgatgaagctcatcatcgtgatgtcaatcactttgcttccga 1040

285 D A N L K D V I T V I R A D E A H H R D V N H F A S D 311

---------|---------|---------|---------|---------|---------|---------|---------|

1041 tgtccatttccaggacaaaaaactgaaagaagcaccagctccaattggttatcattagATACGTTACATTTTGAGAAGTT 1120

312 V H F Q D K K L K E A P A P I G Y H * 329

---------|---------|---------|---------|---------|---------|---------|---------|

1121 CTATTTCATTCTTAACTCTATTAGATTGGGTACACGTATTAGTACAGCGCTACATGCATGTAAATCCTTCCGAACTTCTT 1200

---------|---------|---------|---------|---------|---------|---------|---------|

1201 GTATCCTGGAAGAGTGATTACTACTCATAAGTCATAACATCCATTTATGGACACCGATTTATTTCAAAAAAAAAAAAAAA 1280

--------

1281 AAAAAAAA 1288

B



8.1 Sequence Data

8.1.3 Uncoupling proteins

For the identi�cation of sugar beet cDNAs coding for uncoupling proteins, a BLAST search was
carried out using the sequences of the AtPUMP1 (At3g54110) and AtUCP2 (At5g58970) proteins
from Arabidopsis thaliana and the uncoupling protein from Solanum tuberosum (AJ002586). Below
the sequences with the predicted protein sequences of the cDNA-clones for BvUCP1 and BvUCP2
are shown.

BvUCP1

The cDNA-clone, which contained the BvUCP1 sequence is annotated in Genbank under the ac-
cession number BQ594533. For the BvUCP1 cDNA the available cDNA sequence contains no start
codon, probably due to incompleteness of the 5' region of the cDNA clone.

---------|---------|---------|---------|---------|---------|---------|---------|

1 cacgcgtccgcccacgcgtccgcccacgcgtccgctcggtcctcaaaccgagatctcattcgctggaaccttcattagta 80

1 T R P P T R P P T R P L G P Q T E I S F A G T F I S S 27

---------|---------|---------|---------|---------|---------|---------|---------|

81 gcgcaattgctgcttgttttgccgagttttgtacgttgccattagacactgctaaagtgaagcttcaacttcaaaagaaa 160

28 A I A A C F A E F C T L P L D T A K V K L Q L Q K K 53

---------|---------|---------|---------|---------|---------|---------|---------|

161 gcatcttcagctgatggagctgtttcagtcatatatacaggcatgttgggcactatagttacgattgcaaaggaagaagg 240

54 A S S A D G A V S V I Y T G M L G T I V T I A K E E G 80

---------|---------|---------|---------|---------|---------|---------|---------|

241 tttacctgcgctttggaagggaattgtgccagggttgcatcgccaatgtatctatggtggcttgagaattagcctgtatg 320

81 L P A L W K G I V P G L H R Q C I Y G G L R I S L Y D 107

---------|---------|---------|---------|---------|---------|---------|---------|

321 atcctttcaagatgttctttatgggagcttttctttttggagattttcctttatttcaaaagatattagctgctctatta 400

108 P F K M F F M G A F L F G D F P L F Q K I L A A L L 133

---------|---------|---------|---------|---------|---------|---------|---------|

401 actggtgcaattgcaatacttgttgccaatccaactgatcttgttaaagttcgacttcaagctgaaggaaaattgccacc 480

134 T G A I A I L V A N P T D L V K V R L Q A E G K L P P 160

---------|---------|---------|---------|---------|---------|---------|---------|

481 tggagtgccaaggcgctattcaggagccctacatgcttatagttccataataagacaggaaggactcttggctctttgga 560

161 G V P R R Y S G A L H A Y S S I I R Q E G L L A L W T 187

---------|---------|---------|---------|---------|---------|---------|---------|

561 ctgggctcggacccaacattgccaggaatgcaataataaatgctgctgaactagccagttatgatcaagtgaaactgact 640

188 G L G P N I A R N A I I N A A E L A S Y D Q V K L T 213

---------|---------|---------|---------|---------|---------|---------|---------|

641 atattggcgctcccaggattcactgataatgcacttactcacatcctggctggtttaggtgcagggttttttgcagtgtg 720

214 I L A L P G F T D N A L T H I L A G L G A G F F A V C 240

---------|---------|---------|---------|---------|---------|---------|---------|

721 cattggatctcccgtggatgtggtgaaatcaagaatgatgggagatacaacatataaaagcacggttgattgtttcgtca 800

241 I G S P V D V V K S R M M G D T T Y K S T V D C F V K 267

---------|---------|---------|---------|---------|---------|---------|---------|

801 agacattgaagaatgagggaccattggcattttataaaggatttctcccgaattttggcagattaggatcttggaatgtg 880

268 T L K N E G P L A F Y K G F L P N F G R L G S W N V 293

---------|---------|---------|---------|---------|---------|---------|---------|

881 gtcatgtttttgacattggaacaagtcaagaagatgttgcaagggcatgcatagGAGTTCATCCGTTTTCTTAATCATCA 960

294 V M F L T L E Q V K K M L Q G H A * 310

---------|---------|---------|---------|---------|---------|---------|---------|

961 GGCATCAGCATAGCCATAACAAGAGATGGCACAAACCGACATGTTTTAAGAGTTAAGACCGGCCCCTTGATTTTACATGG 1040

---------|---------|---------|---------|---------|---------|---------|---------|

1041 AGATTCATATGTTTGATTAATTTCGCATATACAGAGCTGCTTCTGAGAAGTTGGAAGGGAAAATGACAACATTGACGAAG 1120

---------|---------|---------|---------|---------|---------|---------|---------|

1121 TTCCAGTAGTATATATATCGATTCATTGTGTTGTAACAAGTTCCATTAGTATAGGATTGCCTTGTAATTTTGCACCATAT 1200

---------|---------|---------|---------|---------|---------|---------|---------|

1201 AGGTAAATTGTACACCATATTCTTTCTATTTGTATTGGTATTGAATTCTCAAGGAATGTCACACTATATATTATATCCTT 1280

C
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---------|---------|---------|---------|-----

1281 TATTCTTGAAGAGCATATGATACTTTTAACAAAAAAAAAAAAAAA 1325

BvUCP2

Genbank accession: BQ593889

---------|---------|---------|---------|---------|---------|---------|---------|

1 CTCTGTCTCTGTCTCTCTCCATTATAATCCCTTCGACCCTGCCTTGatgtctccatcgcccgatccaaagtctaacatct 80

1 M S P S P D P K S N I S 12

---------|---------|---------|---------|---------|---------|---------|---------|

81 cctttcctggaactttagctagcagtgcttttgctgcttgctttgctgagatttgtacaatccccttagacactgccaaa 160

13 F P G T L A S S A F A A C F A E I C T I P L D T A K 38

---------|---------|---------|---------|---------|---------|---------|---------|

161 gtcaggctacagcttcagaaaaaagtggttggagatgcaataccacaatatcgaggtatgttaggtgcagtggccaccat 240

39 V R L Q L Q K K V V G D A I P Q Y R G M L G A V A T I 65

---------|---------|---------|---------|---------|---------|---------|---------|

241 tggcagagaagaagggatagcatcactctggaaaggaattgttccaggattgcatcgtcaatgcttgtttggtggtctac 320

66 G R E E G I A S L W K G I V P G L H R Q C L F G G L R 92

---------|---------|---------|---------|---------|---------|---------|---------|

321 gaatagggttgtatgaacctgttaagacattctatgtgggtaaagaccatgttggtgacgttcccttgtccaagaaaata 400

93 I G L Y E P V K T F Y V G K D H V G D V P L S K K I 118

---------|---------|---------|---------|---------|---------|---------|---------|

401 cttgctgcacttacaactggcgccgttggaatcgcaattgctaatccaactgatcttggaaaagttcggcttcaagctga 480

119 L A A L T T G A V G I A I A N P T D L G K V R L Q A E 145

---------|---------|---------|---------|---------|---------|---------|---------|

481 ggggaaattgcctgctggtgtgcctaggcgctattctggagcattaaatgcctattcaactatagtcaagcaggaaggac 560

146 G K L P A G V P R R Y S G A L N A Y S T I V K Q E G L 172

---------|---------|---------|---------|---------|---------|---------|---------|

561 ttaaggccttatggactggccttgggccaaacgtagcacgcaatgctattataaatgctgctgaactggctagttatgat 640

173 K A L W T G L G P N V A R N A I I N A A E L A S Y D 198

---------|---------|---------|---------|---------|---------|---------|---------|

641 caagtgaagcagtccattttaaggatacctggattcacagacaatgttgtcacccatatgttagctggtcttggagcggg 720

199 Q V K Q S I L R I P G F T D N V V T H M L A G L G A G 225

---------|---------|---------|---------|---------|---------|---------|---------|

721 attctttgctgtctgcattggctcacctgttgatgtggttaaatccagaatgatgggagattctacatacaagagtacgc 800

226 F F A V C I G S P V D V V K S R M M G D S T Y K S T L 252

---------|---------|---------|---------|---------|---------|---------|---------|

801 tggattgttttatcaagaccttaaagaatgatggtcctcttgcattttacaagggatttatcccaaattttggacgtctt 880

253 D C F I K T L K N D G P L A F Y K G F I P N F G R L 278

---------|---------|---------|---------|---------|---------|---------|---------|

881 gggtcatggaatgtcattatgttcttgactttggaacaggcaaagaaggttgtgcgaaatttggagtcatcttgaGTTAA 960

279 G S W N V I M F L T L E Q A K K V V R N L E S S * 302

---------|---------|---------|---------|---------|---------|---------|---------|

961 GGATTTTGATAACATTCTCACTTGCAATCTCCTGAAAACTTATTAAAGAGAAATAAGGCCTTGCTGTCTCAGTCTGAAAG 1040

---------|---------|---------|---------|---------|---------|---------|---------|

1041 ATGACTTAACTGCAATATATCACATGGCATACATCTGAAGGCTGAAGTAGTAATGAACTATACGCAGATGAAGAGCTTAT 1120

---------|---------|---------|---------|---------|---------|---------|---------|

1121 AAATTGTAAAGACAGTCACAAGTAGGATCTTATTACTTCATAATGGTTCTTCTTCATCTTGCCTAGCTACTGAATCCATT 1200

---------|---------|---------|---------|---------|---------|---------|---------|

1201 ATTTTGAGTTCTAGCAAATCACTTTTGCTTCATATTATAACTATGTAANCAATATTGATATTTCTGTAAACTGGGTTAGT 1280

---------|---------|---------|---------|---------|---------|---------|---------|

1281 TGGTGTACCCCATATTATGGATATTTGATCTTGGGCAAACCAAGTGAAATTACCCATAATCGTTCGATTATAATTGAAAA 1360

---------|---------|---------|-------

1361 TGTACCTGTCGCCATTGCTGCAAAAAAAAAAAAAAAA 1397

D



8.2 Characterization of the raised BvC/VIF antiserum

8.2 Characterization of the raised BvC/VIF antiserum

Figure 8.1 shows a comparison of the di�erent bleedings obtained from the immunization procedure
(Eurogentec, Belgium). Dilutions of the di�erent bleedings were tested by Western blotting with
samples of the recombinant proteins and extracts from taproots. Compared to the �rst and second
bleeding, the �nal bleeding shows a higher sensitivity towards the recombinant BvC/VIF1 protein
(closed arrow). In the tested taproot extracts several prominent bands appear, of which most are
already present in the preimmune serum, indicating the presence of unspeci�c antibodies against
sugar beet proteins. However, in plant extracts an additional band of the expected size is only present
after immunization (dashed arrow). This band of approximately 18 kDa is especially pronounced in
the extract from wounded taproots.

Figure 8.1: Western blots with di�erent bleedings of the BvC/VIF antiserum.
Di�erent amounts of recombinant BvC/VIF1 protein (1=1µg, 0,1=0.1 µg, 0,02=0.02 µg) were
loaded together with two taproot extracts (tr_w: wounded taproot total protein, tr: unwounded
taproot total protein; 12.5mg fresh weight each) and detected with di�erent dilutions of the
�nal bleeding and 1:5000 dilutions of the preimmune serum and the �rst and second bleeding.
Closed arrows mark the size of the correct band of the recombinant protein. With the �nal
bleeding, 20 ng of the protein can be detected. The dashed arrows mark the corresponding
BvC/VIF bands from taproot tissues, which is not present in the preimmune serum.
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