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2 1 INTRODUCTION

1 Introduction

Bound states of two particles have been intensively studied since they were found a
long time ago. They play a main role for the explanation of the fundamental inter-
actions. While the weak and the electromagnetic interaction can be treated quite
precisely, it was not possible for a long time to explain the strong interaction in a sat-
isfactory way. Based on a quark model, a classification of hadrons was developed by
Gell-Mann [1] in the mid sixties. This allowed the description of hundreds of strong
interacting particles with three elementary spin-half quarks: the up, down, and
strange. In Gell-Mann’s classification by quantum numbers it was possible to calcu-
late masses, decay-rates and magnetic moments of mesons and baryons. The feature
that quarks obey Fermi-statistics led to the introduction of a new three-valued de-
gree of freedom called color. Its behavior characterized the color to be a suitable
strong interacting charge, on which a theory on forces between quarks can be based.
This non-abelian color-gauge theory called QCD (QuantumChromoDynamics) de-
scribes quarks as fields interacting by massless gauge-bosons, the gluons. Those
gluons carry color-charge as well, and are therefore able to interact with each other.
For decreasing distances this leads to an increasing effective color-charge and there-
fore to a decreasing effective coupling. This asymptotic freedom, a behavior being
contrary to that of QED, is a reason for the fact that perturbation theory is just
reasonable at small distances compared to the extension of a hadron being around
107 m = 1 fm. For larger distances confinement-effects dominate the dynamics.
Here the production of quark-pairs is becoming important, because hadrons are able
to decay into lighter hadrons or can mix with each other since they have the right
quantum numbers. With the discovery of the J/WU particle in 1974 [2, 3, 4] there
was evidence for the existence of the charm quark, predicted already in earlier theo-
ries [5]. In 1977 the Y-meson family gave a hint for the existence of a fifth particle,
named b-quark. The last remaining particle, predicted by the standard model, the
top-quark, was found in 1994 [6] at the Fermilab Tevatron Collider in Chicago. The
measurements on mesons including a top quark are still ongoing, so that no ex-
perimental masses for those mesons are currently available. Even for charm- and

bottom-including mesons not all mass-values are determined.

For the discovery of particles like J/W¥ or Y, the progress in accelerator physics

was essential. Without the highly energetic particles produced in, e.g., the Tevatron,



the top could not have been found.

Although great progress has already been made on the development of QCD [7],
the search for mesons is still ongoing, accompanied by great advancements in ac-
celerator physics. One of the great outstanding theoretical problems in QCD is the
calculation of meson masses. A first step in this direction is done in this thesis.

Therefore an effective Hamiltonian in momentum space is simplified so far that
the divergent integral kernel is the main object. The existence of such divergence is
known since ten years, but has never been isolated or analyzed. Here its influence
is worked out in an extreme model. The divergence gives rise to the discussion of
its regulation. To get rid of the regularization parameter p a simplified renormal-
ization procedure is performed. The fixing of an appropriate pair (ug, (o)) and of
the up- and down-quark mass lays the foundation to calculate the eigenvalues and
eigenfunctions of the scalar mesons. Mesons with orbital-angular momentum L = 0
are characterized by

JFC=0"", 17 . (1)

They are named pseudo-scalar mesons and vectormesons, respectively. Pseudo is a
synonym for the ‘unnatural’ (negative) parity of the scalar particle, because spinless
particles normally do not change their prefactor under parity transformation. Vector
represents a spin content of S = 1. Table 1 presents all mesons in their usual
nomenclature. This thesis focuses on scalar flavor off-diagonal mesons, which are
listed in Tab.1 in the lower rows under the diagonal. The flavor diagonal terms are
not discussed, since isospin-effects are not included.

The main issues are the analyzation of the divergence, the performance of the
corresponding renormalization program for QCD and the verification of the experi-
mentally measured meson masses. The discussion focuses on the description of the
pion. The pion root mean-square radius is evaluated and related to the experimen-
tally measured mean-square radius.

This thesis is a first step to a complex theory, intended to describe all meson
masses correctly, and later to serve the experimentalists in checking their results.
Therefore, such a simple model is sufficient to settle the techniques and to give
evidence for some basic effects according to mesons.

Moreover, the determination of the spectra and the wave functions of these parti-
cles with a covariant gauge-theory is one of the most important features in hadronic

physics. The method of Light-Cone Quantization supports this aim. It uses the
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Table 1: Table of mesons with L = 0 - the upper line indicates the vector mesons, the
lower one the pseudoscalar mesons. The brackets identify states, which come along in

different combinations.

well-known Hamiltonian dynamics as an interface to field theories, quantizes at
equal light-cone time and has other remarkable characteristics, which make it suit-
able for such an application. To reach all goals, the front-form Hamiltonian for QCD
has to be truncated to an effective Hamiltonian [8]. By definition, this acts only in
the Fock space of one quark (¢) and one anti-quark (g). Such a construction suggests
to evaluate all mesons simultaneously. The restriction to spherically symmetric sin-
glet S-states gives also the chance to easily build up the pion form factor from the
wave functions and calculate the root mean-square radius, as well as to determine

the up- and down mass which are the two last free parameters after renormalization.

Section 2 settles the basics and gives a short review over the evaluation of the
effective Hamiltonian in momentum space , while Sect. 3.1 describes the derivation
of the model equation. The numerical techniques, such as the counter-term method
and Gaussian quadrature, are used in order to handle the singularities are introduced
in Sect. 4.2. In Sect. 4.3 the combined model potential, Coulomb plus a regulated

delta function, is discussed with respect to the renormalization formalism and the



calculated quark mass values. Sect. 4.4 presents the same for the ‘completely reg-
ulated’ potential, i.e., the Delta and the Coulomb potential are both regulated. In
Sects. 5.1 and 5.2 the model corresponding results are collected and their impact
on the theory is discussed, especially the pion wave function. The obtained meson
masses are compared to the experimental values and the pion root mean-square
radius is calculated from the eigenfunctions. Some further aspects concerning the
assumptions of the model are theoretically discussed in Sect. 6. In Section 7 the
main features are discussed and compared to other theories. The Appendices A to

D complete this thesis.
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2 Basics

The long way from the Lagrangian in gauge theory to the effective Hamiltonian
is briefly reviewed keeping an eye on the advantages of this evolution. This sec-
tion starts with a short summary of light-cone quantization in order to specify the

Hamiltonian dynamics and then leads to the evaluation of the effective Hamiltonian.

2.1 Front Form Dynamics

In 1949 Dirac [9] showed that in a so called ‘front form’ of Hamiltonian dynamics
a maximum number of Poincaré generators become independent of the interaction,
including certain Lorentz boosts. In fact, unlike the traditional equal-time Hamilto-
nian formalism, quantization on a plane tangential to the light-cone can be formu-
lated frame-independently. An operator can be constructed whose eigenvalues are
the invariant masses of the composite physical particles. The eigenvectors describe
bound-states of arbitrary four-momentum and invariant mass.

Based on the definition of a Hamiltonian H as an operator acting on a state
|W(t)), which is equal to the partial derivative of this state with respect to the time
t, i.e.

0

H|®(t)) =i, [T()) (2)

each expectation value can be described as a constant of motion or energy. In a
covariant theory, time is one component of four-dimensional space-time. By gener-
alization the space can be redefined as a hypersphere in four-space and the time as
its forth component. Dirac showed that there are not more than three parameter-
izations of space-time with no mapping between them by Lorentz transformations.
The only difference is the position of the initial hypersphere which causes different
time and Hamiltonian representations. As shown in Fig. 1 the instant form has its
hypersphere at ¢ = 0, for the front form it lies tangential to the light-cone and in
the point form it is a hyperboloid with the time analogous to the eigentime of a
physical system.

Consider the front form parameterization in Fig.1: it is convenient to introduce

0 — 23 can be interpreted as a space coor-

0

generalized coordinates 7. Then 73 = x
dinate denoted by 2~ = ¢t — z, and therefore z° = z° + 23 necessarily is the time

coordinate with * = ¢t + z, or the light-cone time 7 =t + z/c.



2.1 Front Form Dynamics 7

A ct
|
z
y
The instant form The front form The point form
%0 = ct 0= ct+z %0=1 , ct= tcoshw
£l =x %= x %!'= o , x= tsinhosinb cos¢
2=y 2=y %2=0 , y= tsinhowsinfsing
%=z %3 = cl-z %= ¢ , x= tsinhowcosO
10 0 0 0o 0 0 % 1 0 0 Y
§=0—100 s | 0-1 00 ~=04“ 9, 0
W oo -1 0 fvilo 01 0 fwv =l 00 sinke 0
00 0 -1 10 0 0 0o 0 0 —v’sinh’o sin’0

Figure 1: Dirac’s three forms of Hamiltonian dynamics; taken from [10]

The prescription z, = g,,x” makes it obvious that z, = %x* are space and
r_ = %x’L are time coordinates. The corresponding spatial derivative is 0_ = %at
while 0, = %8* is the time-analogue. This convention is known as the Lepage-
Brodsky convention [10], compared to the Kogut-Soper convention, which comes
along with a factor of v/2: 9; = ¢’ withi = —, + j =+, —.

The occuring Lorentz indices +, — have different physical meanings whether
they are sub- or superscribed. There is no relation to co- or contravariant vectors.

In this approach the Hamiltonian is build up by one component of P* = (P,, P+, P_),
usually the interaction depending time-like one, a complicated non-diagonal opera-
tor. The partial derivative of the state |¥(z™))

Py () = i (a)) 3
Ox+t
defines — respecting the time- and space-like derivatives — the P, = %P* or P~ =
2P, as the Hamiltonian in transformed coordinates and P_ = %P* as the longitu-
dinal momentum. The other three spatial components P, = (P!, P?) and P* do
not depend on the interaction.

The choice of the front-form formalism depends on the lack of experience in the
point-form and the amount of disadvantages of the instant form, although this is
the conventional one. Even the choice of the name for the front-form approach is

not clear, because during a long period of time this approach has been re-invented
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several times. One of them is the ‘light-cone quantization’, which is misleading, since
the initial set of data is set on the plane tangential to the light-cone, not directly
on it.

In fact, the front form or light-cone quantization is an elegant approach to quan-
tum field theory providing a Hamiltonian gauge-fixed formulation that avoids many

of the great problems in conventional equal-time formulation.

2.2 Evaluation of the effective Hamiltonian

In gauge field theory the Lagrangian £ indicates the starting point. Its variation
results in the Euler equations. Such a canonical formalism is connected with the
study of symmetries in a field theory. It is known, that every continuous symmetry
of £ is associated with a vanishing four-divergence of a current and a conserved
charge. L is not explicitly coordinate-dependent, therefore every field theory in
3+1 dimensions has ten conserved four-currents. However the four-divergences of
the energy-momentum tensor 7% and of the boost-angular-momentum stress tensor
JM vanish, consequently the Lorentz-group has ten conserved charges: the four
components of the total momentum P* and the six components of the boost-angular
momentum M. These constants of motion are observables with real eigenvalues.
They are combined to fulfill the commutator-algebra of the Poincaré group. The
two group invariants are the operator for the invariant mass squared M? = P#P,
and the operator for the intrinsic spin squared S? = V#V,, with V# being the Pauli-
Lubansky vector V* = e**** P, M,,,. They are Lorentz scalars, and commute with
all generators P* and M, [10, 11].

The energy-momentum vector is manifestly gauge-invariant, even in the front
form, but it contains time-derivatives and other constraint field components. There-
fore P*" is expressed in terms of free fields and the dependence on the coupling
constant is isolated by the application of the color Maxwell- and Dirac-equations.
Those four color Maxwell-equations determine the four functions A%. One of them
is identically fulfilled by the chosen light-cone gauge A = 0. The others give a
constraint for the time- and space-derivatives. For the free case A# is reduced to
a free field Ag, which consequently is purely transverse. The color Dirac-equations
form by definition of free spinors an expression, which is independent of the inter-

action. Rewriting the time-like component P, it is given by a sum of the kinetic
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energy T, the vertex interaction V" and three further interactions, especially the four-
point gluon interaction, the instantaneous gluon interaction and the instantaneous
fermion interaction. It is remarkable that the relativistic Hamiltonian is additive
in the kinetic and potential energy, comparable to the non-relativistic Hamiltonian
H=T+U.

Because of the free solutions of the Maxwell- and Dirac equations the single
particle states are specified by the quantum numbers ¢ = (p*, p14, P1y, A, ¢, f), with
A being the helicity, ¢ the color and f the flavor. Their creation and annihilation
operators are contained in the commutating and anti-commutating relations which
carry the structure of the theory. Therefore all interactions can be expressed in
terms of these ladder operators. The sum of the associated single particle momenta
is essentially described by the difference between the sum of the particle momenta
and the sum of all momenta. As a consequence, a contribution vanishes if a term has
only creation or annihilation operators since the longitudinal momenta p* are always
positive and therefore can not add to zero. For that reason, all energy diagrams
which generate vacuum fluctuations in the usual formulation of QFT (Quantum

Field Theory) are absent in the front form.

The above substitution by ladder operators leads to a Hamiltonian that acts like
a Fock-space operator. The kinetic energy T becomes a sum of three diagonal oper-
ators. The interaction terms are distinguished according to the number of particles
changed. The verter interaction V is a sum of four operators: V = >7_, V;. Those
contributions V; represent different Fock states, their particle numbers differing by
one. The V; themselves contain matriz elements, which can be displayed as energy
graphs. The four-point interactions are separated into fork F' and seagull S interac-
tions, depending on whether they have an odd or even number of creation operators.
The fork interaction F is a sum of six operators F' = 3% | F;, which changes the
particle number by two. And the seagull interaction S can be written as a sum of
seven operators S = ZZZI S;, which acts only between Fock states with the same
particle number. The F- and S-interactions are as well connected to a number
of matrix elements. The matrix elements and their corresponding energy graphs
are discussed in detail in Ref.[10]. The Hamiltonian in Fock-space representation
is therefore a sum of the kinetic energy plus vertex-, fork- and seagull-interaction

contributions.

Now it has to be translated into a relativistic Hamiltonian eigenvalue problem.
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In the front form such an eigenvalue problem is in principle given by

M?+ P

p’z
H|T) = B L) , with H=P" . (4)

This has several advantages: with Pt always being positive, there are only positive
eigenvalues. It contains no square-root operator, which would restrict the eigenso-
lutions to be determined in the rest frame. The boost-operators are kinematic and

the formulation can be done frame-independently. The eigenstates are defined by
) =3 [ dlpt]lan) Ongn ) (5)

with |p,) a complete set of basis Fock-states, W, /(1) = (un|¥) the wave functions,
and A indicating the hadronic particle. The basis of Fock-states is constructed by
the application of products of free field creation operators to the vacuum state |0).
Those operators create bare particles, i.e. leptons, anti-leptons, vector bosons, which
are all ‘on-shell’: (k,k*); = m?.

Each Fock state |p,) = |n: k', k1, \;) is an eigenstate of P+, Py, and the free

part of the energy P, , with eigenvalues

2 2
m; + ki,

P+:Zk‘;—, PJ_:ZkJ_Z', P_:ZT (6)
i€En €N 1€En %
Since k;” and PT are positive, boost-invariant momentum fractions can be defined
ki :
.TZ':P+, with o<z <1,

as well as boost-invariant intrinsic transverse momenta k,,. Corresponding to the

intrinsic frame P =0 their values are fixed at

Z.TZ:l and ZELzzﬁ .

1EN 1EN

All particles in a Fock state |u,) have a boosted four-momentum

L - o m2+ (k4 z:PL)?
o=@ PLp )i= (xip+akJ_i+$iPJ_a i+ (ki +aiby)

xiP+

Therefore the free invariant mass square of a Fock state is developed as follows
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M} = (pr+p+...+py)°
= pPtpy - P?
m22+kii 52

1EN

_ Z (m12+(EJ_Z+.7)ZP’J_)2> —ﬁ2

1EN Ty

m? + k2
Cp(E)
1EN i
The evaluation includes the fact that the Fock and the physical vacuum have eigen-
values zero, as well as the restriction to T > 0. On the light-cone, each particle
forming a zero-momentum state must have a small k7. The free or Fock space
vacuum |0) is then an exact eigenstate of the full front-form Hamiltonian. The vac-
uum in QCD is undoubtedly more complicated due to the possibility of color-singlet
states with PT = 0 built on zero-mode massless gluon quanta, but the physical
vacuum in the front form is still far simpler than in the usual instant form.

The last expression of the free invariant mass square in Eq.(7) is a direct conse-
quence of the transverse boost properties. Conventionally, the phase space integra-
tion is given by

/d[,un] o= ) [dwidkyd) ...

AiEN
A being the helicity, which brings Eq.(4) into the form of an infinite set of coupled
integral equations. Since P and P, are diagonal operators it is possible to define

a light-cone Hamiltonian Hpc as the operator
H,c = PP~ — P! =PpP'P, (8)
so that its eigenvalues correspond to the invariant mass spectrum M?:
Hio|Wi) = M7 |¥;) . (9)

Hic itself is a Lorentz scalar and the wave functions are boost-invariant, features
that reflect the kinematical structure of the boost operators. With respect to the
following calculations on mesons we consider a pion in QCD with momentum P =
(P, P.), described by

rip) =3 [ dlu

n:x; Ptk + 2P, )\i> U/ (23, ki)
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with the sum over all Fock space sectors. The ability to specify the wave func-
tion frame-independently is a special feature of light-cone quantization. The wave
functions ¥,/ do not depend on the total momentum, since x; is the longitudinal
momentum fraction carried by the ¢** parton and k 1; 1s its momentum “transverse”
to the direction of the meson; both of them are frame-independent quantities. Those
wave functions are the probability amplitudes to find a Fock state of bare particles in
a physical pion. The attempt to solve Eq.(9) is seriously complicated by ultraviolet
singularities occuring at very large values of the transverse momenta, and endpoint
singularities caused by longitudinal momenta close to z ~ 0 or z ~ 1. Those dif-
ficulties demand the introduction of a cut-off, A, to regulate the theory, which in
turn has to be removed by regularization group analysis. Apart from the fact that
such an analysis is not available at the moment, one is confronted with an infinite
number of coupled integral equations. Their nature is hidden in the structure of the
kernel

(n|Hpeln'y = (n: 2, ki, M| Hpoln' = o), B, M)

Fig. 2 displays the structure of this many-body problem. Its analysis shows that
more than the half of the matrix elements are zero. This is due to the fact that
the Hamiltonian is zero for all sectors whose particle number difference is larger
than two. All other matrix elements are represented blockwise by the same energy
diagram. The infinite coupled integral equations behind that scenery are not easy
to handle. However, with periodic boundary conditions they are transformed into a
set of coupled matrix equations, which makes field theory more transparent. This
procedure is named Discretized Light-Cone Quantization (DLCQ). In 3+1 dimen-
sions it has the ambitious goal to calculate spectra and wave functions of physical
hadrons from a covariant gauge theory. This approach depends on a fixed cut-off A.
But the dimensionality of the Hamiltonian matrix increases exponentially with this
cut-off.

This problem of dimensional excess is similar to that in conventional many-
body physics, where the diagonalization of finite matrices with exponentially large
dimensions (typically > 10°) is required. In QFT it is more difficult since the particle
number is unlimited. Therefore an effective theory is needed which acts in smaller
matrix spaces and which has a well defined relation to the full interaction. This is
also helpful for the physical understanding. The main goal is to determine an exact

effective interaction between a quark and an anti-quark in a meson. To achieve
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Figure 2: The Hamiltonian matrix for a meson. The matrix elements are represented by
energy diagrams. Within each block they are all of the same type: either vertex, fork or
seagull diagrams. Zero matrices are denoted by a dot (-). The single gluon is absent since

it cannot be color neutral [10].

this, the Hamiltonian DLCQ-matrix is discussed in terms of block matrices. Fock
space sectors appear quite naturally in a gauge theory and each sector has a finite
number of Fock states. Therefore Eq.(9) is rewritten as a block matrix equation

with E; = M2,

N
> (i|Hreli)(j|¥) = EG@¥) V i=1,2...N . (10)
j=1

This matrix can now be mapped identically on a matrix equation which only

acts in sector |[n = 1). Such an effectiveness is based on the approach of Tamm [12]

and Dancoff [13]. Their approach can be interpreted as a reduction of the matrix

dimension from N — N — 1. It has been extended to the method of iterated re-
solvents, which truncates the matrix step by step until sector |1) is reached. The
whole procedure is summarized in a recursion relation, which describes all interme-

diate steps. Because of this recursive character any higher sector wave function can
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Figure 3: The three graphs of the effective interaction in the qg-space.

be retrieved by matrix multiplications from the eigenfunction in the lowest sector
from (1|¥). No additional matrix diagonalizations or inversions are required. The
method of iterated resolvents is applicable to any many-body theory.

In the continuum limit, the resolvents are replaced by propagators and the eigen-

value problem
Heq|¥) = M| )

becomes again an integral equation, but now rather transparent in only three con-

tinuous variables (z, &, ):

m2+ kY me+ kD

T l1—z

MZ(x, k15 Mgy M| 03) = (z, k1 ; Agy Mgl W) (11)

+ Y / da' 2R, R(a', k) (2, Fus Ay Mgl Uoai |2/, By Xo, AD) (& KLy N X[ 053)

o q
+ / da'd®F] R(2',K.) (2, Fis Ay AglUaa |2/, B A, ALY Gl B X, AL L),

A Ag
represented by the graphs in Fig. 3. This clarifies that QCD has only two struc-
turally different contributions to the effective interaction in the ¢g-space: one flavor-
conserving and one flavor-changing part. In a diagram both look like low order per-
turbative graphs, see Fig. 3. The effective one-gluon exchange Upgr = (U1,1, Ui 2)
conserves the flavor along the quark line and describes all fine- and hyperfine interac-
tions. The vertex interaction V creates a gluon and scatters the system virtually into

the ggg-space. As indicated in the figure by the vertical dashed line with subscript
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‘3’, the three particles propagate there under impact of the full Hamiltonian before
the gluon is absorbed. This can be done either by the quark or the anti-quark. If it
is absorbed by the quark, it contributes to the effective quark mass, m. The second
term in Eq.(11), the effective two-gluon annihilation interaction Urg4 is represented
by the graph Ui in Fig. 3. The virtual annihilation of the gg-pair into two gluons
can generate an interaction between different quark flavors.

By and large, the effective interaction scatters a quark with helicity A, and four-
momentum p = (LEP+,IP’J_ + l_ﬁl,p*) into a state with A} and momentum p' =
(z'P*,z'P, + fc”b p'n~) and correspondingly the anti-quark.

The domain of integration is set by the cut-off function
R(A)=© ((pl +p2)” = (M1 +mg)” — AQ) 3 (12)

which is a condition for vertex regularization. The eigenvalues refer to the invariant
mass M; of a physical state. The wave function (z, k. ; Ags Ag|W;) gives the probability
amplitude for finding in the gg-state a flavored quark with momentum fraction z,
intrinsic transverse momentum & 1 and helicity A\,, and correspondingly an anti-quark
with 1 —z, —EL and A\;. Both, the mass and the wave functions are boost-invariant.
The included mass terms are the effective quark masses m; and 7, yielded by the
diagram U, » in Fig. 3, i.e.
yan?—1_ A?

) 2
me = m5 +ms— In— . 13
s f T 2n, m2 (13)

A similar diagram for the effective gluon mass gives
mﬁ:@—%%jmiln(u%) . (14)
Both are obtained by light-cone perturbation theory [10] combined with vertex reg-
ularization. If the free, but perturbative propagators are now substituted by non-
perturbative ones, additional graphs to ¢q and gg vacuum polarization will appear.
So, the emission and absorption of a gluon along the same quark line changes the
bare mass my into the physical quark mass m;. On the other hand the emission of
a gluon from a quark and its absorption by an anti-quark represents an interaction.
Therefore it is possible to replace 2m; — 2m; — py. Similar considerations hold
for the gluon loop and lead to 2m, — 2m, — p,. Both u; and 4 are interpreted
as physical mass scales. The physical gluon mass m, vanishes due to gauge invari-

ance. From a resummation to all orders of the corresponding diagonal propagator
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products the effective coupling constant @ can be extracted for sufficiently large A,
ie.

1
1/a— byln (A2/K?) + b(Q)

11n K2 1 K2
ith b(Q) = ‘1 - — E In| ———
b (@) 127 n(ug-l-Q?) 67 n(,u?—i—Qz)

The constant by is identified by the number of colors and flavors, i.e. by = (11n, —

a(@A) = (15)

2nys)/12m. The parameter « is identical to the so-called QCD-scale Agcp. Hence,
the effective fine structure constant depends on the momentum transfer Q% across
the vertex and the cut-off A.

Now that the effective Hamiltonian is evaluated, it is discussed in more detail
and the hadron bound state problem is faced. In this thesis a divergence has to be
analyzed. Therefore the whole equation is restricted to a more appropriate model
to work out the main effects before starting the discussion of the complete and
more complicated equation. In the next Section, 3.1, the applied approximations
are explained, and in Section 3.2 regularization comes in. There, the details of

renormalization are also discussed.
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3 Derivation of the model equation

In this section the derivation of the model is described. Sect. 3.1 introduces the
main approximations that restrict the whole equation to a simple model. In Section

3.2 the divergence of the integral kernel is discussed and regulated.

3.1 Evaluation of a model for scalar mesons

The front-form Hamiltonian for QCD has been reduced in Section 2.2 to an effective
Hamiltonian, which by definition acts only in the Fock space of one quark (¢) and
one anti-quark (¢). By excluding flavor-diagonal mesons, as it is the case in this
thesis, the two-gluon annihilation interaction can be disregarded. The resulting
integral equation in (light-cone) momentum space is (the subscript A indicates the
hadron)

m2(A) + k2 . m2(A) + k2

| (@ kLA Al (16)

M (@, k5 Mg, Ag|Un) =

- 2 —_ —_ —_

+ > /dx'ko’L (, ks Ag, AglUogrl|’s kis Ap, M) (', KL Ay Al Wa)
A AL

An essential achievement of the last section is that the kernel of this integral equation

can be written in the explicit form

1 4a(Q)
O AalUoasl N N = — 15503

R, K5 A)
\/:E(l —z)x'(1 —a) .
All many-body effects reside in the effective quark mass m,(A) given in Eq.(13)
and in the effective coupling constant @(Q; A) (Eq. 15). The first term on the r.h.s.

of Eq.(16) is the free invariant mass-square of the quarks in relative motion. At

(Ag: AglS(Q)|Ag: A)

@ °q

(17)

equilibrium,
m

. k=0, (18)

T=T

mi + Mo
these quarks are in rest relative to each other, and the invariant mass-square becomes
the value (T +my)%. To remove this ‘frozen mass’ from both sides it is convenient

to introduce [14]

_— m§+l§i+m§+/§i
T 1—=z

) — (M +7)* (19)

D = M?*— (m +my)? . (20)
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Here, T'/(2ms) behaves like the conventional kinetic energy and D/(2my) like the
conventional binding energy. In the following the reduced mass and the sum are
used,

s, me= (M) (21)
which only makes sense when the constituent quark masses are different from zero.
The second term on the r.h.s. of Eq.(16) is the relativistic interaction. Its most
important aspect is the Coulomb denominator 1/Q?. The four-momentum transfer
()? is the mean of the single four-momentum transfers between quark and anti-quark,
(x —a')? lm? m3 ]

)

> | T U=2)(—-v

1 1 / 1 1
S (e R et 2
t\1-z =z 11—z 2 ’ (22)
e, Q7 = (@2 +Q2)/2 with Q2 = Q% = —(k, — k)? and Q2 = Q2 = —(ky — k1),
Close to the Coulomb singularity it is legitimate to write Q2 = (k — &')2 since both

Q = (EL—/;'L)Q-F

(x —2')?

- 2

parts are approximately equal [15]. The spinor factor

S = (Mg AalS(@Q)1 Xy, Np) = [Tk M)V ulkly, )] [Tk Aa) (b, Np)] (23)

q°q 9 °q 9 °q

represents the current-current coupling and describes all Coulomb, fine and hyperfine
interactions. The subscripts on S are dropped when not required. The Dirac spinors

are solutions of the free Dirac equations
(Yk, —m)u(k,\) =0, and (y"k,+m)v(k,\) =0 . (24)

The cut-off function R sets the domain of integration and is defined in Eq.(12).

The goal of reducing the many-body problem of M? = H;¢ to a single-body
problem with an effective interaction is reached now. Similar equations for QED
have previously been solved numerically [16, 17]. But the solutions for QED and
QCD still depend on the cut-off parameter A. Therefore, it has to be removed by
renormalization group analysis, which is one of the main issues of gauge theory. This
is going to be discussed in Sect. 3.2.

The present section is the foundation for later calculations. Therefore a number of
assumptions and approximations are introduced to rewrite the equation in order to

achieve a clearer starting-point.



3.1 Evaluation of a model for scalar mesons 19

Eq.(16) has two different domains of integration. The longitudinal momentum
fraction over the range 0 < z < 1 and the transversal momentum in the interval
—00 < kiz < oo. It is useful [16, 17] to transform the light-cone integration

variables (z, k) to a new coordinate system (k,, k) by

_ E1+kz

v=ak) =5 —F,

All components of k= (k, k 1) then have the same domain. The corresponding

Jacobian is

d 1 dk,
e - W (26)
z(l—z) me Az, k)
with A defined by
- 1 E\E
Alz, k)= ————— . 2
L A ) (27)
The factor A is absorbed by a redefinition of the wave function ¥,
. Az, k), -
U = (z,ki; Ay Ag|¥n) = m¢($akﬁ : (28)

Setting the conventional kinetic energy in Eq.(19)

1 1
+
FE,+m Ey +my

T(k) = C(k)F? with C(k) = (E1+m1+E2+m2)( ) . (29)

and replacing the invariant mass-square eigenvalue M? by the binding energy D, see

Eq.(20), the original integral equation (16) finally becomes

$BE 4a(Q)

-, - 1
D — C(k)K?| o(k) = — —
[ () ]¢( ) 47T2mT/ /A(E)A(E') 3 Q?

Therein the explicit reference to the helicity (A1, A\2) has been dropped.

SR (k') . (30)

At this point it is completely irrelevant that the equation actually holds for the
front form, since it is still exact. Its origin is simply not recognized. It could be
an equation in the instant form, where only the (usual) three momenta k play the
role of integration variables. Fourier transforming it to configuration space would
however not be trivial, since the factor A(z, k 1) prevents all attempts to do that in
a standard way.

Since obtaining a recipe for this non-trivial integral equation to be solved directly

in momentum space is a primary goal, the non-relativistic approximation is applied
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under the integral for simplicity reasons. Therefore, the function is set to

Ak) ~ AR = 1,
Q2 = (E_EI)Q ) (31)
Ok) = —*

In complete analogy to the relativistic case, the non-relativistic equation is given by

/ P . Q) s i) (32)

[D - —kQ] S(F) = o

m, 47r m,
The effects of the complete relativistic expression are discussed in Sect. 6.1. But
on the light cone, a non-relativistic equation is an excellent approximation to a

relativistic covariant equation.

Actually, Eq.(32) holds for all possible couplings @(Q), the spin content S and
cut-offs R. To derive a simple description for a ¢g-pair those three terms have to
be discussed carefully. The coupling @(Q) given in Eq.(15) represents a next-to-
lowest order approximation (NLA). In the lowest order approximation (LOA) the
effective mass m coincides with the bare Lagrangian mass m: m = m, and the
effective coupling constant @((Q) is equal to the bare Lagrangian coupling constant
a = ¢g?/4m: @ = a. To this level of approximation, QED and QCD differ by the
color factor (n? —1)/2n, = 4/3 for n. = 3.

This thesis uses @ = a which is sufficient for a simple model and leaves open the
possibility to compare the results with known ones from QED. The approximation
of the coupling @ to a constant is also required for a Fourier transformation of the
main equation (Eq. 32) to the configuration space. To keep this transformation as
simple as possible, the helicity contribution S should be a constant, too. Therefore,

a thorough study by spinor analysis of

Pas AglTIX, XY = %\/ngi@;ﬁ)f)
1 [k, Ay u(k', X)), [a(k, A)yuu(®', Al

2 Vaa! JA—2)(1 -




3.1 Evaluation of a model for scalar mesons 21
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Figure 4: The relevant vertex interaction graph with corresponding momenta and helici-

ties.

Fig.4 shows the relevant vertex interaction graph with corresponding momenta
and helicities. In the spinor convention of Lepage and Brodsky [18], S has the
dimension [mass?]. The matrix elements of T are calculated with respect to the
rules given in [10], Table 5. The diagonal and off-diagonal matrix elements are
tabulated in App. A. They are given for different quark and anti-quark masses
and with a phase ¢ according to k 1. The upper and lower half of the off-diagonal
elements are connected by T;; = T};(q < q)-

It can be recognized that all off-diagonal matrix-elements vanish for m; = 0,
t = 1, 2. Therefore, T can be divided into a massive part 7, and a mass-independent
one Ty (with a similar decomposition for S): T = T, + Ty, where Tj survives the
massless limit by definition. It turns out to be diagonal in the helicities, with
two contributions to the amplitude, for parallel (T, ;) and anti-parallel (T}, |+)

helicities. Using this knowledge to simplify the matrix-elements, they are given by

m? m2
Ty = Ty = —L 4+ 2 +T ,
1 27 o (1—2)(1—-2 A

(35)
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m? m2
Ty = Ty=— 2 T 36
33 = o T A=) I (36)
with

k2 k2 e~ ie—¢") eile—¢')
T, = L = k k! 37
lhd x(l—x)+:v’(1—a:')+ LL( zz! +(1—3:)(1—:13')) , (37)

ki k! e—ilo—¢")

L (38)

T = .
o z(1—z)2'(1 — 2')

Choosing the equilibrium (Eq. 18) and restricting to singlet amplitudes the ma-

trix elements 7j; and the momentum transfer Q? simplify to
j

T = Ty =2 2 k! 39
11 22 (my1 +mg)” + . 1 (39)
Ty = Ty =2(my+mg)* , (40)
T12 - 0 ; (41)
2
Ty = —kpew TS g (12)
mgo

with Q? = k2

)2
( xg) - STCB,QJ/T —9 (43)

T, =0 —= T3, =

Therefore, for the mass-independent part the helicity S is a number for all values of
k', . The evaluation of the massive part at kinematical rest shows as well a diagonal

content:

(Ags AqlSm|Ags Ag) = dmamy 0x, x a,x (44)

q°q

Considering only the simple singlet amplitude (A;, A;) = (1,]), the helicity contri-
bution becomes (S = Sy + Spn)

(LIS ) dmamy
Q?

+2 . (45)

This result is essential and thus used in the kernel of the model integral equation.
The consequences of the additive constant 2 in the kernel are closely connected with
the cut-off function R, used in the model. Because of its special importance this

will be discussed in the next section.
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3.2 The Divergence

The equation has now the following shape

[0 222 () = - ! / di”/&%a l4m1m2 + 2] R (i) (46)

my, 472m, Q?
The main problem here is that the kernel

1 4 S . S 4m1m2
—4mr goz @R with @ = o

is divergent. Therefore, the regulator function R has to be fixed. According to the

+ 2

regulator the equation has to be renormalized. With D being M7 —m?, all eigenvalues
M} depend on the cut-off A, the bare masses m and the bare a. Those are auxiliary
parameters and are replaceable by means of the modern interpretation of QFT by

(my, ap), functions of A, such that the eigenvalues are cut-off independent, i.e.

d
—MZ(A,ap,mp)) =0  Vn . (47)
dA

The effective Hamiltonian H = HSL depends on A only through my, @ and the
regulator R. The fundamental equation of the renormalization group (Eq. 47) can

then be expressed in operator form

oH OH o0H
dmfa—mf‘\ph> + da%‘\ll}» + dRﬁhI’h) =0 . (48)

To vary all three terms simultaneously causes severe problems. Therefore, the equa-
tion is divided into three independent equations

d d dROH

A =05 pa=0s o

v,)=0. (49)
The first two equations are functions of ma, apa. The first one defines the effective
flavor masses m; = m (A, aa,mp) as renormalization group invariants. The nu-
merical value of m; must be fixed by experiment. The second equation is then a
constraint for s at fixed values of ;. Using the expression for @(Q; A) in Eq.(15)

yields then [§]
1 1

= m ,thllS @(Q) = [)(—Q) y

with by and b(Q) given in Eq.(15). All A-dependence cancels exactly in favor of the

QA (50)

renormalization group invariant k. This scale must also be determined by experi-

ment. For a known «y the first equation can be used as a constraint to my. By
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fixing the functions ay and my all freedom is exhausted [19]. Since the cut-off has
been removed by renormalization, A can be driven to infinity, thus R(z/, K A)=1.
Formally, this solves the three equations of renormalization, but the relativistic in-
teraction S/Q? in the kernel of the integral equation tends to a constant for large
values of &/, . This causes a problem at large couplings a. The integral kernel after
renormalization has then the same shape as in Eq.(46).

Considering the large and small Q?-limits with K > k 1 shows the connection:

4 2 & 0
K=aS/Q> with S={ 52 @<
k" Q?>>0 (51)
QQ_ (EJ-_IQJ-)Z Q2<<O '
i Q>0

Thus,
i _ { 4mymy [ Q? Q* <0 (52)
Q? 1 Q%> 0
Accordingly, at very small momentum transfer Q% — 0, where x ~ 2’ and k o~ K 1
the effective coupling stays at the finite value b(0), see Eq.(15). The small Q?-limit
of the spinor function S represents the Coulomb-limit of the kernel. Its singularity
is square-integrable and can be solved by known numerical techniques [20]. For very
large momentum transfer Q* — oo, both S and Q? tend to diverge, but their ratio
tends to a finite value. Disregarding the very slow logarithmic increase of b(Q),
(Eq. 15), the kernel of the integral equation is therefore essentially a dimensionless

constant:

IC ~ const. for Q* — oo . (53)

This constant has the value 2, because of the proportionality factor between the

helicity representation 7" and S. Therefore the kernel is equal to

1 S 1 l4m1m2 2] (54)

IC = = —
b@)Q*  b(@Q) [ @
There is sufficient evidence [21] that the constant part of the kernel causes all known
problems, among which a diverging eigenvalue.
To get rid of the troubleterm a suitable regulator function R has to be fixed. The
sharp cut-off as introduced in Eq.(12) is a relic of the Fock-space regularization in

DLCQ and not really necessary. This sharp cut-off corresponds to a step-function,
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which possibly cuts the tail with most of the information. A possibility to find a
suitable regulator function is by multiplying the kernel with a constant factor. Then

it can be identically separated into two parts to avoid an infinitive denominator

1 Sp+@
K=Kithe = 01 o
R u?
Y ey (%9)
1 1
(o) TRy (56)

with an arbitrary mass parameter p. This method of kernel separation is already
known from nuclear physics. Therein it was used to describe the pairing of Cooper-
particles in the BCS-theory [22].

The two terms have a quite different behavior. The first one, K; (Eq. 55), is well
behaved and in the limit of large ? it tends towards a Coulomb singularity. X,
(Eq. 56) is almost everywhere a constant, as seen before in Eq.(52). Therefore, the
addition of a constant to a divergence, here of the kernel, leads again to a divergence.
Hence, this is not the best way to fix the regulator, but it gives evidence about the
behavior of the kernel.

To get further insight into the approximated integral equation Eq.(46) is dis-
cussed more carefully. Start again with Eq.(46):

[D - %/’52] o(F) = —gg /d3/-5" [% + 27” Ro(F) . (57)

Disregarding the regulator for the moment, (R = 1), the Fourier transformed equa-

tion has the shape of a local Schrédinger equation
[ _ %;ﬁ?] V() = 2mV(NU(F) ,  with 7=iV . (58)

my

The potential V () is similar to the familiar non-relativistic hyperfine-interaction in

the single channel V¢ 4(r)

Vi) = —%a (%4—7;;863(?)) , (59)
Vi) = -a (T4, (60

Actually the two expressions are the same with the protons gyromagnetic ratio g, =

2 and if the reduced mass is identified with the electron mass and the summarized
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mass with that of the proton.
The way to solve Eq.(58) is well known. First the hyperfine interaction is omitted
to receive the Coulomb wave function ¥¢, then W is perturbatively evaluated in
first order to derive AD = 2m,3(V;) as an expectation value. Assuming a pion the
hyperfine potential is not compatible to the scale given by the pion mass. Therefore
the equation has no satisfying solution.

The Delta function is, however, not a suitable function to be regarded as a
usual potential. It has to be changed into a distribution without loss of information
and worked out in a limiting procedure, realized by regularizing and renormalizing

Eq.(46). A possible choice for the regulator function R is with respect to Eq.(55),

12

= 12 + Q2
———/d?’k’l d ] i o(F) . (62)
p* + Q2

Eq.(62) is the main equation of the model. The scale p does not limit the momentum

: (61)

so that

{D _Msie| g

my

transfer to any finite value, but it controls the deviation of R from unity. In other
words, R is a kind of a ‘soft cut-off’ and prevents the additive constant to behave
like a Dirac Delta-function.

The Fourier transformation of Eq.(62) yields the following potential

2
o, a i _

V =—(e* —-1)—— wre 63

(7") r(e ) 7‘2m7nm36 ( )

Contrary to the ‘sharp’ Delta-function in Eq.(60) it is here smoothed in the form of

a Yukawa potential. The force related to this potential is in dimensionless variables

,dV u?
— = —H(1 -1 . 4
r’ oy = o tae (1+ pr) lerms ] (64)

Close to the origin and for y — oo, it is much stronger than the Coulomb force. But
regarding the whole scenery there is asymptotically only the }—dependence of the
Coulomb potential with the coupling %oz that survives. In fact there is no everlasting
confinement.

Since the effects of the constant 2 on the rest of the system are examined, it is at

first sufficient to work with the following equation:

2

= 4 ) ] 1 1
{D - EkQ] p(k) = —3%/d3k’ l% t o 2 i 0? oK), (65)
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where only the constant term is regulated and the Coulomb one remains unchanged.
This is possible, because the Coulomb potential needs not to be regularized. The

Fourier transform corresponding to this model is

Vi) = —2% <1+ i e‘*”) , (66)

3r 2m,my

which keeps essentially the same features as regulating the whole potential, see
Eq.(63). The main difference comes up for 4 = 0. Then Eq.(63) is totally zero,
while Eq.(66) is still a Coulomb potential.

In the end the kernel of both main equations (Eqs. 62, 65) is a combined poten-
tial of a Coulomb and a smooth Delta-potential. The difference between them is the

regulation of the Coulomb potential.

These regulated equations must now be renormalized to become independent of
the regularization parameter. Hence, a renormalized coupling constant oy, must be
determined to satisfy the renormalization group equation, Eq.(47). But this is only
one part of the renormalization program, which lays the foundation for an extensive
calculation of all scalar meson masses with arbitrary flavors. As an example, if
the goal is to reproduce the pion masses — especially the 7™ — the renormalization
procedure is started with the choice of the constituent mass for the up- and the
down-quark, and of a scale u = pg. In the next step an a = o must be found such
that Mp(ag, o) = My+. In the following this procedure has to be generalized to
all pairs (o, pu); satisfying M, (o, u); = My+. Those which are suitable define the
renormalized coupling a,. With determining o, all other quark masses are fixed.

At the moment there is no analytical expression for «,, but the numerical value
is sufficient for the beginning. It has also to be checked that except for the lowest
state (which was used to fix «,) even the whole spectrum of excited w*-states is
independent of .

In this section the divergence has been analyzed and its consequences have been
discussed. Accordingly, the kernel of the integral equation is regulated by a soft
cut-off. Afterwards, an outline of the renormalization program executed later in
Sect.4.3, 4.4 is given. Generally speaking, all remaining calculations and approxi-
mations for the derivation of the model equation (Eq. 62) are performed. For some

first examinations of the constant 2, a second model equation (Eq. 65) is introduced.
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In the next section the main numerical techniques are presented and the corre-

sponding potentials are discussed in detail.



29

4 Solving the model equation

In this section all numerical techniques used in this thesis are introduced. By the
example of a ‘Coulomb minus Yukawa’ potential the basic evaluation from the inte-
gral equation to a matrix equation is discussed. This relies on an earlier discussed
problem [20] and includes a short individual study of the potentials in configura-
tion space and a subsequent Fourier transformation back to momentum space. The
model is directly solved in momentum space, since later more complicated functions
can not be Fourier transformed anymore. According to a logarithmic divergence of
the matrix equation suitable counter terms are needed. This procedure leads to the
calculation of eigenvalues and eigenfunctions, where an optimization scale is intro-
duced. Afterwards the reader is guided to the two main equations (Eqs. 62, 65).
The renormalization program for the first model equation (Eq. 62) is performed and

later extended to the complete problem (Sect. 4.4).

4.1 Behavior in Configuration Space: Coulomb and Yukawa

To study the behavior of the Coulomb and the Yukawa potential individually, the

integral equation of reference [20] with equal masses m; = my = m is recalled, i.e.

=

— —

E—E] _——/d3k’ Q2+02) S(F) with  Q*=(k—F)? , (67)

and s? a dimensional scale. This looks already like a regularized version of a 1/Q*
kernel in the limit ¢ — 0, which is commonly understood as the Fourier transform
of a linear potential. Applying the Fourier transformations to configuration space a

simple Schrodinger equation is obtained, and the potential is given by

V(Z) = g e —1] (68)

where 3 = 2s%/c? is similar to the usual fine-structure constant. The shape of
the potential reflects the superposition of a Coulomb and a Yukawa potential, as

visualized in Fig. 5. The behavior

252 2
. —=+s°r forr -0,
V() = { 20 1 (69)

—= 2 for r - o0
ctr ’

can be observed in the figure: For sufficiently small distances the potential is linear

(up to an additional constant), and for large r it becomes a Coulomb potential. For
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Figure 5: The potential V (r) is plotted versus r for different values of n = 2¢/ffm, but
with the potential normalized to V(0) = 0. — For r — 0 the potential converges to the

finite value —2s2/c, with a linear slope.

either of these extremes the analytic solutions are known. The eigenvalue E used

in Eq.(67) depends on the three parameters m, s, and c. It exists a dimensionless

combination \
c 2 ¢
=—=—-— 70
= s Bm’ (70)
which appears by introducing dimensionless variables (Bohr units)
k 9 Q? 2F
- == = 71
p m,,_ﬂ’ q mggz’ € m,,_ﬁZ’ ( )
so that the equation reads
1 1 1
2 3,1 !
— =——[d R i 72
e = 7] ¢(p) 5/ dp qu o 772] o) (72)

This equation has two limiting cases:
1. For n — oo essentially the ¢~? singularity of the Coulomb problem shows up.

2. For n — 0, the ¢* singularity corresponding to a linear potential appears,
whose eigenfunctions are the Airy functions; This has been the topic of Hers-
bach’s work [23].
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The eigenvalues for the Coulomb problem are in the given units

1
en == 3 Vne~N. (73)
The eigenvalues for the linear potential are
(74)

En=—2n+&m3, VneN.

where &, are the zeros of the Airy functions Ai(&,) = 0 [24]. The knowledge of these

two limits is quite useful to test the numerical results.

4.2 Numerical Techniques for Coulomb and Yukawa poten-

tial
By restricting to S-waves, i.e rotationally invariant states, the angle-dependence of
the three-variable p’'can be integrated out, which leads to an equation in one variable
p=|p|, ie.
1o o[ (p—p)  (—p)+n
2 / /
€ — =— dp — |In —1In . 75
=) =1 [T PO P ) (o
To restore the Hamiltonian symmetry, it is usual [25], to convert this integral
equation for the unknown function ¢(p) to a matrix equation for the unknown num-

bers u; = \/wip;i¢; with ¢; = é(pi),

(pi 2 + ai,-) U; + Zaijuj = €u; ,

J#i

by approximating the integral with the finite sum according to the Gauss-Legendre

i,j=1,...N, (76)

algorithm,
0 N
| £ — it ) (77)
i=1
Therefore the non-diagonal matrix elements are given by
1 (pi — pj)” (pi —pj)° + 7

a;; = —\/wiw; [In —————= — In . 78
A [ (pi + p5)? (pi +p;)* + 17 (7%)

It is numerically practical to map the infinite interval of Eq.(75) onto a finite one

by transforming variables [26], according to
0 1 dp
[ fwap= [ o)y - (79)
0 —1 Yy
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The mapping function y(p) is arbitrary, but must satisfy the boundaries:

ylp=0)=-1, y(p=o00)=+1. (80)
With respect to the Coulomb contribution it is useful to choose
y(p)=2¢ * -1 , (81)

with an adjustable ‘stretching’ parameter z. With ¢(y) = dp/dy, the quadratures

then become
Z f(pi)wi = Z fyie(ys)wi (82)

i.e. the transformation changes the weights w; into w; = ¢(y;)@;. Thus

1+ Yi ~ z

Wi
L+

where the y; and @; are the tabulated abscissas and weights for the interval [—1, 1].

p; = —=z In and w; = , (83)

Finally Eq.(78) can be solved by conventional matrix diagonalization methods.

But, Eq.(76) is not integrable in the usual way: The diagonal matrix elements
a;; of the Coulomb potential diverge logarithmically. Such problems can be solved
by the Nystrgm method — the technique of counter terms — [26, 27, 28]. They are
important to reach a distinct converged result for a comparably small numerical
number. In principle a diagonal term F'(p)¢(p) is added and subtracted in Eq.(72).
By treating one of them analytically and the other by Gaussian quadratures the
singularity in a;; cancels.

The construction of suitable counter terms depends on the potential, therefore
the Coulomb and the Yukawa counter terms have to be calculated separately. Prac-

tically the Coulomb counter term is given by

1 L1 1+ p?)? .
Fop = [ap L UEPN e (84
m (P=P)2(1+p")2

with the function ( 22
gop) = —=- (85)

(1+p")?
basing on the known Coulomb ground wave function. The singularity of the Yukawa
potential is of the same kind as that of the Coulomb, therefore the same function

g(p,p') can be used. Thus the Yukawa counter term is

R = 1/d3ﬁ 1 (1452 _ 0+ p*+ (-1
i F-P)2 4+ (1 +p02 (BP0 —1)+4p°
[n(n +2)?
n(n+2)+p%+1

—

= pP+1-n(n+2)+

: (86)
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solved by the method of coefficients. Since the Coulomb counter-term in Eq.(84)
is included in the Yukawa term in Eq.(86) by setting n = 0, Eq.(86) can be stated
to be a kind of fundamental expression for counter terms to this kind of singular-
ity. Regarding the integral equation, where Fy should be added to, the expression
explains the following: the term p? is cancelled by the kinetic term of the Hamilto-
nian, the part (+1 — n(n + 2)) is indeed related to the eigenvalue and the fraction
vanishes for p — co. For n = 0 the expression is exact and gives F' = 1 + 52, which
is the known Coulomb counter-term. Even this term gives a hint for the relation
to the eigenvalue, since p? is also cancelled in the Coulomb problem. The lowest
eigenvalue of the Coulomb potential is in Bohr units E; = —1, which is directly
related to the factor 1. Depending on the form of the coupling «, the integral adds
an offset to the eigenvalue. Because of the close connection between Coulomb and
Yukawa counter-term, there is generally no need to discuss the Coulomb problem
individually, since it is already contained in the Yukawa one.

Combining appropriately the considerations for the Coulomb and the Yukawa
problem by including the counter terms (F:(p) + Fy (p))#(p) yield immediately the
extended integral equation

(e=r e = (1= OEIE )

L dp'_m[g;g:;j] 60) - R o) (7
LT [P o — E o)

For p = p' the term in the bracket vanishes, i.e. it is justified to restrict to j # ¢ in
the summation over j on the r.h.s. of Eq.(76). The improved diagonal elements are
now:

[n(n+2)?
77(77+2)+p?+1) (88)

ai = —(14+p))+ @ +1—nn+2)+

(1+p,2)2 Z“’

TP *

1
(1+p})? T wip; In [(pg i
™ i (

The off-diagonal elements a;; are not modified. In the following it should be asked

whether the results can be improved by a ‘stretching factor’ z, as given in Eq.(81).
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Therefore the optimization via z has to be so sensitive that no wave function runs
out of range. Generally, the wave function of the Bohr spectrum is given by

N
)
p
()]
with N an arbitrary normalization. Normalizing the function to ¥y,
2 2
Po
Vg 1+ (pg) ]
U, »\2]°
[1 + (%) ]

defines the observation interval. Choosing ¥p = Wg(N), with N the number of

\I’B(p) = (89)

Gaussian integration points, the behavior of the ratio ¥y /¥, can be examined with
respect to z by plotting it versus p/ pg. Fig. 6 shows schematically that functions
which are more like a Delta-function should be shifted away from the axis, while
functions which are out of range with an offset A at the interval boundary, should

be drawn back. The advantage of this procedure is that a particular choice shifts

*optimum’

Figure 6: The effect of the optimization by the ‘stretching factor’ z is illustrated schemati-
cally. Functions out of range with an offset A are drawn back; those comparable to a Delta
function should be shifted away from the axis. Generally, the corresponding integration
points are shifted to a region where the function is significantly different from zero, then

their distribution is more equal.

the bulk of integration points to a region where the wave function is significantly
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Figure 7: The Bohr eigenvalues for n = 2,3,4 are plotted versus the stretching factor
z for different matrix dimensions N (— - — N=8, — N=16, — — N=32 and o N=64).—
The exact eigenvalues —1/n? are shown as well.— Note the hatched area, in which the

numerical results are particularly stable against the number z.

different from zero. Because of the n-dependence of the example the factor z has to

be optimized for each value of 7.

Before summarizing the main issues of this combined potential, the results for the
single potentials are briefly reviewed. The z-optimization for the Coulomb potential
is shown in Fig. 7, where the numerical eigenvalues of Eq.(76) are plotted versus z
for different matrix dimensions N. As to be seen in the figure, the functions &,(z)
are rapidly varying (almost fluctuating) for low dimensionality and become flatter
with increasing N. For a z within the hatched area the numerical results are rather
stable as functions of N. All practical requirements are sufficiently satisfied by a
value of N = 32 (or 16). The lowest eigenvalue (¢; = —1.0) is not shown, since the
function (£1(z)) is completely flat. These observations are somewhat more quantified
in Table 2. The final results for the low lying part of the spectrum are accumulated
in Fig. 8. The spectrum is — with fixed z = 0.70 — remarkably insensitive to the
dimensions N. Even the numerical wave function as displayed in Fig. 9 is highly
accurate. The same procedure has been applied to the Yukawa potential. It covers
the fact that in the limit » — 0 the Coulomb problem is restored, which is an

explicitly check for the computer programs. For a comparatively small value of
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Figure 8: The numerical eigenvalues for
the Coulomb potential are plotted ver-
sus the number of integration points N

(8,16, 32, 64,128, 256) for z = 0.70.
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Figure 10:

The numerical eigenvalues of
the Yukawa potential for n = 0.1 are plot-
ted versus the number of integration points

N (8,16,32,64,128,256) with z = 0.70.

Amplitude

Figure 9: The exact Coulomb wave function
#(pi)1s (—) is plotted versus the momentum
p in Bohr units, and compared with the nu-
merical values u;//4nw;p; (filled ©). The Pa-
rameters are z = 0.70 and N = 8.- Note the

excellent agreement.
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Figure 11: The Yukawa ground-state wave
function for n = 0.1 is plotted versus the mo-
menta in Bohr units (N = 16,z = 0.70). The

continuous curve is supposed to guide the eye.
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Exact Calculated
n| —1/n? N=16 | N=32 | N=64 N=16 | N=32 | N=64
z=0.70 z=1.0
1 | -1.0000 | -1.0000 | -1.0000 | -1.0000 || -1.0000 | -1.0000 | -1.0000
2 || -0.2500 || -0.2545 | -0.2525 | -0.2516 || -0.2523 | -0.2510 | -0.2506
3 || -0.1111 || -0.1160 | -0.1135 | -0.1126 || -0.1145 | -0.1122 | -0.1117
4 | -0.0625 || -0.0683 | -0.0649 | -0.0639 | -0.0676 | -0.0637 | -0.0630
5 || -0.0400 || -0.0471 | -0.0425 | -0.0414 || -0.0485 | -0.0415 | -0.0406

37

Table 2: The eigenvalues of the Coulomb problem for two values of the stretching factor

z and three matrix dimensions N are compared with the exact values.

eigenvalues

-0.01 -

=

Il
1.2 14

16

Figure 12: The two lowest eigenvalues of the Yukawa problem with n = 1.0 are plotted

versus the stretching factor z for different matrix dimensions: (— - — N=8, __ N=16, —
— N=32 and o N=64).

n = 0.1, the low lying part of the spectrum and the wave function, as shown in the

Figs. 10 and 11, are quite similar to the Coulomb potential in Figs. 8 and 9. In either

case, the eigenvalues are practically insensitive to the matrix dimension NV, particular

for the stretching parameter z = 0.7, chosen to be the same as for the Coulomb case.

For n = 1.0 the value of z = 1.25 is obtained by the same optimization procedure as

shown in Fig. 12. It is notable that the Yukawa problem has only a finite number
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of bound states. The best values for n = 0.1 and n = 1.0 are listed in Table 3.

nS 1 2 3 4 )

n=0.1(z=0.7) || -0.8141 | -0.1022 | -0.0084 | -0.0019 | -0.0019
n =10 (z=1.25) || -0.0208 | -0.0003 | - - -

Table 3: The eigenvalues of all bound S-states for the Yukawa problem for two values of

1. The matrix dimension is either N = 32.

Combining the results for the Coulomb and for the Yukawa potential not only the
spectra and the wave functions depending on 7 are of interest, even the behavior of
the spectrum on 7 should be discussed carefully. In the limit n — oo the spectrum
of Eq.(75) is expected to be very close to the Coulomb spectrum, ¢, = —1/n?. In
Fig. 13 it is shown that the Coulomb limit is already well achieved for numerical
values of 7 > 2.0. This behavior is contrary to that for the Yukawa case, where the
Coulomb limit is reached for » — 0. In the limit n — 0 the spectrum is expected
to approach the spectrum for a linear potential, i.e. €, = —2n + &,n*/%. A typical
Airy-solution [24] is only obtained for very small values, i.e. n < 0.02, as to be

seen in Fig. 14. For all other values, the spectrum is somehow intermediate between

i z € =¢+2n || Airy regime | Coulomb regime
& ~1+2
0.001 || 0.0370 | 0.00021905 | 0.00023381
0.01 | 0.0714 | 0.00454474 | 0.00503728
0.1 0.2174 | 0.08860885 || 0.10852499
1.0 0.3861 | 1.48676105 2.3381
2.0 0.4762 | 3.31000318
4.0 0.8000 | 7.16112492
10.0 | 0.8333 | 19.04647165 19

Table 4: The eigenvalues ¢ of the combined Coulomb and Yukawa problem derived from
integral equation (75) are given for increasing values of the physical parameter . Column
2 gives the actual stretching parameter z. In the last two columns the corresponding

eigenvalue for the Airy or Coulomb regime are quoted for purpose of comparison.

those two extreme cases, as quantitatively demonstrated in Table 4 (superposition



4.2 Numerical Techniques for Coulomb and Yukawa potential 39

20.0
16.0 - B
120 1 Airy regime i
T 4/3
{n
8.0 I Arzn 1
Coulomb regime
4.0 - 1
(-7
24
0'0 L L L L L
0.0 2.0 4.0 6.0 8.0 10.0 12.0

Figure 13: The lowest eigenvalue €(n) = € + 2n is plotted versus n (o) corresponding to
the data in Table 4. The upper solid line indicates the Airy-type solution and the lower

solid line visualizes the Coulomb-type solution.
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Figure 14: A zoom of Fig. 13
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of the potentials). It is remarkable how the curve of the calculated eigenvalues
£(n) = 2n+¢1 in Fig. 14 interpolates between the two asymptotic curves £(1) ~ n*/3
and £(1) ~ 2n—1. Table 5 presents the spectra of the combined potential up to the

n | N=16 | N=32 | N=64 | N=16 | N=32 | N=64
n=0.01, z = 0.0714 n=01,z=02174
0.0045 | 0.0045 | 0.0046 | 0.0884 | 0.0886 | 0.0887
0.0073 | 0.0074 | 0.0075 | 0.1312 | 0.1316 | 0.1317
0.0092 | 0.0094 | 0.0095 | 0.1541 | 0.1548 | 0.1549
0.0106 | 0.0110 | 0.0110 | 0.1674 | 0.1685 | 0.1686
n=1.0, z = 0.3861 n=10.0, z = 0.833
1| 1.4860 | 1.4868 | 1.4871 | 19.0456 | 19.0465 | 19.0470
2 || 1.8183 | 1.8193 | 1.8196 || 19.7537 | 19.7551 | 19.7555
3| 1.9090 | 1.9102 | 1.9105 | 19.8877 | 19.8898 | 19.8903
4| 1.9447 | 1.9464 | 1.9468 | 19.9339 | 19.9372 | 19.9379

=W N =

Table 5: The combined spectrum e, + 27 for different values of n and N, at the optimized

value of z.

fourth level for various values of 7 and number of integration points N at optimized

zZ.

By the example of a combined Coulomb and Yukawa potential the techniques
have been outlined to solve the interaction kernel in momentum space by discretiza-
tion via Gaussian quadratures, and diagonalization of the so generated Hamiltonian
matrix. Much attention is paid to speed up convergence by counter-term technology
already developed for the pure Coulomb case [16, 26]. Special emphasis is put on
the free formal parameter, called ‘stretching factor’ z, which can be adjusted for a
considerably increased numerical precision and stability. This optimization supports
a restriction — on the average — to matrix diagonalization problems with a dimension
N = 32. While evaluating the technical tools the single and combined behavior of
the Coulomb and the Yukawa potential have been discussed, even their spectra and
eigenfunctions have been calculated. The results of this section can now be directly

applied to the actual model of this thesis, to be discussed in the next Sect. 4.3.
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4.3 Renormalizing the ‘Coulomb plus regulated Delta’ po-

tential
As derived from the basic equation in Sect. 3.2, the first main equation in this thesis
is an effective Hamiltonian with a ‘Coulomb plus regulated Delta’ potential (see
Eq. 65), i.e

- 1 4« - | dm,m w2 -
D——k2] R =— [ | iy
[ m, o(k) 4m, 372 @z p? + Q2 #F)

with the binding energy D (Eq. 20), the summarized mass ms = m;+ms, the reduced

mass 1/m, = 1/m; + 1/my, and the property m; # my. This main characteristic of
this model is that the ‘Delta’-function, the factor 2 from equilibrium considerations,
is regulated by a factor u2/(u? + Q?).

For the reason to calculate all scalar mesons the free parameters o and p have to
be fixed by renormalization. But before the whole program will be worked out, the
equation has to be rescaled. The ‘Coulomb minus Yukawa’-model has been solved
in Bohr units, i.e. in dimensionless quantities. Such an ansatz does not lead to the
correct physical numbers, therefore the ‘Coulomb plus regulated Delta’-model has to
be solved in suitable physical units. The counter terms have to be rewritten as well.

Generally, the ‘Coulomb plus regulated Delta’ integral equation has the following

form
k2 2 kl
Bo) = 5000~ 735 () | d’f% o
6 , (k)
~on? / d’k G-f)

where the regulated Delta has apart from a factor u? / 4m,m, basically the same
behavior as the Yukawa potential. The ‘3’ is an abbreviation for the coupling, it is
equal to 4/3 « in QCD or « in QED. To distinguish between both contributions,
different couplings ¢ are introduced:

2
t = K I} regulated Delta / scaled Yukawa |,
4dm,my

ty = I} Coulomb .

Hence, the application of the corresponding counter terms leads to the following

equation
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_ LY I PR SR YA Gl
Bg(k) = C(k) (k) [e¥ ~[wm MMWLMW]

2—71_2 _ /)2
t2 3 ,; n o M
- 5 P P W

The scales b;, © = 1,2, have been invented to guaranty that the equation is correct

(91)

in its units. The coefficient function C(k) has naturally three contributions, the

kinetic term and both analytically solved counter terms from the potentials

k? thby [ 4 s (n+2)?
_ _ e 2) + 1 92
Ck) 2m, 2 ( + P2+ (n+1)2 n(n+2) + (92)
toby 1 o
- )

with 7 = u/b; and p = k/b; for the regulated Delta and p = k/by for the Coulomb,

p and 71 dimensionless. Restoring the units leads to

k2 mrtl m,«tg tlbl tgbz
— 1— — — — 93
C(k) er ( b1 b2 ) 2 2 ( )
t o (p+2b)?
- —_— — + 2b
The scales by, by are adjusted by the cancelation of the coefficient of k2, i.e.
k'2 mrtl mrtg 1

1- — =0 . 94
er ( b1 b2 ) ( )

This makes sense, because in the dimensionless case the kinetic term p? cancels
automatically. A suitable ansatz is b; = m,t;/z;, 1 = 1,2, so that 1 — (1 + x2) 2 0.

This is followed by the prescription for a ‘combining’ scale b with

4 2
b= b1 = b2 = mr(tl =+ tg) = g&mT (]. + 4’]’)ijlm ) . (95)

This is not the only solution, but the only reasonable one for the limits ¢; — 0, 7 =
1,2, because it then restores the single potentials. The other possibility has no real
boundary for ¢; - 0 : b — oo, i = 1,2. Therefore the coefficient function C(k)

can be rewritten by means of the combining scale b,

am:—;m+m—ﬁ(w

i (1 + 2b)? : —u(u+2b)> _ (96)

k? + (pn+b)
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The derivation of the function C'(k) has been the last piece in the ‘history’ of prepar-
ing the model discretization to a matrix equation and afterwards description of the
renormalization procedure to finally calculate the meson masses.

The multiplication of Eq.(91) by 2m; restores the binding energy D, i.e. an ap-
proximated relation between the squared mass-eigenvalue and the energy-eigenvalue
E is given by

M? = (mq +mg)? +2(my + mo)E . (97)

With Eq.(20) the connection between both energies is defined by D = 2m,E. Con-

sequently the model equation appears as

tlms 9 (,LL + 2b)2
b k2 + (p+b

[D + bmg(t; + t2) + i w(p+ 2b)>] o(k)  (98)

tlms 3 I; n o M
¥ e [P~ 4|
tQms 371 1 n _ M

As for the example the calculation is restricted to S-waves, therefore the integra-

tion over the angles is carried out. Analogue to the procedure in Section 4.2 the
integral equation is converted into a matrix equation for the unknown numbers
u; = \J/wik;¢(k;) (see Eq. 76). The diagonal elements are now

s tl mg (,u—|—2b)2
i = —bQE—i— L A + 2b 99
¢ m,  (t1 +t2) m, (“ k? 4+ (u+ b)? ag ) (99)
timg ki (ki —kj)? + p? (k7 + b%)?
ij—“n 4 J 2 2 (12 1 p2)\2
tam, ki (ki = kj)? (k7 +0%)°
- ij—?ln J.2 2 2\2
T ki (ki + k;) (kj + b?)

(100)

with ¢;, t5 according to Eq.(91) and b in Eq.(95). These parameters t1, t5, b hide
the complexity of this simple model. They are the screws, which have to be turned,

to get to another kind of potential. They make this model so sympathetic, because
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they enable the chance to test the numerical results. Except for the solution of the
Coulomb potential, no values are known. Table 6 summarizes the testing properties.

For the Yukawa case b = 4/3 am, is independent of u. But for the smooth Delta

coupling variation resulting potential

to = 4/3« Coulomb

ty =4/3a- A | A= p?/(4m,m,) prunning | regulated Delta

u=0 Null-matrix
A=1 (4 Tunning Yukawa
uw=0 Coulomb

Table 6: The testing properties for the ‘Coulomb plus regulated Delta’ potential are
shown. In the first row the Coulomb potential is given. In the other rows the different
parameter-combinations for the regulated Delta are presented, even the Null-matrix and

the Coulomb case are reasonable testing cases.

potential the scale is a function of the regulator scale u, even the coupling itself
depends on pu.

This is essentially the point where renormalization starts. The procedure has
already been described theoretically in Sect. 3.2, here the program is carried out in
detail.

The matrix equation of the problem is set up, see Eqgs.(99,100). With the goal to
reproduce the pion mass — especially the 7+ — the initial constituent masses m; and
my have to be those of the up- and down-quark mass. But such constituent quark
masses are not precisely known, therefore they are chosen to be equal and around
400 MeV. In the progress of the work these two mass values have been adjusted
more carefully to the fit parameter, and are therefore fixed to 518.5 MeV. Moreover,
the masses my and my occur in the whole integral equation (Eq. 98) in combinations
as the reduced or the summarized mass. This gives reason to the assumption that
the calculated energies are out of any manageable size. To keep these quantities
tractable, it is useful to introduce a suitable scale k. Hence, the binding energy
D = M? — m? originally calculated in units of [MeV?], is now given in units of 2,
ie.

e=D/K*.
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Thus, all quantities are expressed in units of x: k = k/k , Q* = Q%/k? , i =
w/k b= b/k and m; = m;/k , i = r,s . This changes nothing on the appearance
of the integral equation except D being replaced by . The ‘tilde’ over the other
variables can be omitted. Because the masses are quite large input-parameters, they
deliver a convenient point to fix the scale. It is useful to choose x = 350 MeV, so
that 7,4 = myqe/k = 1.48. The point of renormalization is to find a coupling « for

fixed values of my = my, mys = my, and p to satisfy the condition
M}%(OQ) = M7%+ )

i.e. the calculated eigenvalue depending on « should be equal to the experimental
pion mass squared. The commitment of the problem to the 7 gives an estimate

for the eigenvalue

2 M?
e =M :27”2) + =25 = ~8.6208 (101)

with M+ = 139 MeV, m,, = my = 518.5 MeV, and k£ = 350 MeV. Table 7 shows
the negative of the lowest calculated eigenvalues, i.e. —¢ = m? — M?, in units of
k = 350 MeV, given for the mass parameters m, = my = 1.48 and different coupling
constants o and regulator scales p. The large values in the last column give evidence
for the introduction of a mass scale x of such size. The values for y = 0 in the first
column represent the Coulomb case. It is even remarkable that for increasing p and
a the first eigenvalue decreases rapidly to —oo.

Table 7 is a pedagogical tool to show the first calculation on the relation between
« and p, which gives a hint where the suitable values for the renormalized coupling
o, with respect to the pion mass can be found. For the most appropriate values
of « for fixed i the eigenvalues are underlined. For illustration the data of Table 7
is plotted as a plane in a 3 dimensional graph, see Fig. 15. Therein the dots mark
the underlined values and represent therefore the function «o(u). Because the values
in Table 7 belong to a first check-up, the dots in Fig. 15 are more qualitatively.
It is remarkable how fast the eigenvalue increases for comparably slowly increasing
(cv, p).

Fig. 16 shows the negative lowest eigenvalue —e versus the coupling constant
a for different values of the regulator scale pu. The curves represent the direct
connection between the eigenvalue and the value of i, because with increasing p the

curves increase rapidly unproportional. For each pu and « lower than 0.5 the curves
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oa|p=0 p=2 p=4 p=6 p=8 p=10

0.00 { 0.000 0.000 0.000 0.000 0.000 0.000
0.05| 0.010 0.010 0.014 0.038 0.100 0.213
0.10 | 0.039 0.040 0.057 0.168 0.506 1.280
0.15 | 0.088 0.092 0.132 0.412 1.391 3.908
0.20 | 0.156 0.168 0.241 0.760 2.731 8.095
0.25 | 0.244 0.269 0.381 1.145 4.108 12.22
0.30 | 0.352 0.398 0.551 1.480 4.937 14.11
0.35 0479 0.559 0.758 1.755 5.217 14.81
0.40 | 0.625 0.754 1.021 2.101 5.936 19.76
0.45]0.792 0.986 1.369 2.759 8.669 33.41
0.50 | 0.977 1.260 1.838 4.019 14.66 57.26
0.55 | 1.183 1.578 2.466 6.149 24.49 91.52
0.60 | 1.407 1.943 3.289 9.355 3841 136.1
0.70 | 1.915 2.823 5.650 19.49 78.86 256.5
0.75 12199 3.344 7.243 26.58 105.5 332.3
0.80 | 2.502 3.920 9.139 35.07 136.6 418.7
0.90 | 3.166 5.246 13.91 56.44 211.9 623.0
1.00 | 3.909 6.812 20.06 83.79 305.3 870.0
1.10 | 4.730 8.626 27.65 117.3 416.8 1160.
1.20 | 5.629 10.69 36.75 156.9 546.6 1493.
1.30 | 6.606 13.03 47.38 202.9 694.7 1869.
1.40 | 7.662 15.62 59.58 255.3 861.4  2289.
1.50 | 8.795 18.48 73.35 313.9 1046. 2752.

Table 7: The lowest negative eigenvalue of the integral equation, i.e. m? — M?, is given for
mass parameters mi = mg = 1.48 and different coupling constants a and regulator scales
w. All masses or energies are given in units of 350 MeV. The underlined values correspond
to the most appropriate values of a for fixed p, with respect to the first eigenvalue of the
pion at —e = 8.6208. — Note the very large values for y = 10 as compared to the Coulomb
case (u =10).

seem to lay upon each other, but Table 7 shows that the single contributions can be

resolved.
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Figure 15: 3D plot of the values shown in Table 7: coupling constant «, regularization
scale u, and eigenvalue (m? — M?) in units of kK = 350 MeV; the dots represent the
appropriate values of « for given u, analogue to the underlined values in the Table. They
belong to the renormalized function a(u). Note the strong ascent in (m? — M?) for

increasing u and .

According to Fig. 16 there is a function
f(@) = [M7 ~ (mu + ma)* — €]

for each value of u. Therein an appropriate value a(u) has to be found. By the
means of the Bisection method, the value aigaie = (Quow + up)/2 is calculated for
a chosen initial interval [0yey, 0uyp]. Whether the functional value is f(a) > 0 or
f(a) < 0, fixes whether the new aiaaqe is calculated left or right from the first.
After a given number of runs, usually X = 20, one value of o has been localized

with f(«) around zero and is put out with a X-dependent uncertainty
Opesutt £ A = Qpeql with Aa = (aup — ow)27F . (102)

Thus, this method finds one suitable coupling « for each regulator u, and therefore
defines the renormalized coupling «(p) more quantitatively. Fig. 17 shows the result
of this method, the coupling constant « is plotted versus the regularization scale
p in units of kK = 350 MeV. The data has been obtained with a slightly modified
method by requiring that the mass eigenvalue {/m?2 + ¢ with m; = my = 1.48 at



48 4 SOLVING THE MODEL EQUATION
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Figure 16: The lowest eigenvalue —e = m2— M? is plotted versus the coupling constant c.

The different lines refer to different values of the regularization scale u (u = 0,2,4,6,8,10).
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Figure 17: Renormalized coupling constant « versus regularization scale y in units of
k = 350 MeV. The data is obtained by requiring the constraint /m2 + ¢ = M+ in the
Bisection method. — Note the gap at y ~ 8.5.

fixed values of y is equal to the pion mass M,+ = 139.56995(14) MeV within 8
significant digits. Hence forward, this is the same constraint as for Table 7, but

because of the Bisection method the values are more precisely and quantitatively.
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It is remarkable that the behavior of the curve changes at u ~ 8.5. For lower u-
values the function is exponentially decreasing, while behind the gap the curve is
much flatter. Hence the function can be divided into two regions: u < perr and
W > perie With pere ~ 8.5. Where this separation visualized by the gap comes from
is not yet really understood. It might be a hint for numerical instability or for an
uncertainty in the renormalization procedure, especially ‘universality’. It can also
be the separation between two different potential regimes, the right corresponding to
the Coulomb region the other to something different, but connected to the Yukawa
potential.

As already mentioned in Sect. 3.2 the ‘universality’, i.e. independence of the
whole spectrum from p, has to be checked. At the moment there is no analytical
expression for the function a(p). Thus, for the beginning the numerical values
of the function «(p) obtained for the lowest state are considered to hold for the
whole spectrum. To become more precise whether the renormalization procedure
is successful for higher states, the first and second excited state to the pion are
regarded. Thus, two new constraints for the second and third eigenvalue have to be
fulfilled. The three demands are therefore

1 ,/mf—i—sl = M0,7r+ = 139,6 S()

2 m2+e,=M =980 S (103)

3 \/m§+83:M2N1010 Sz

The identification of the second mass value requires a short discussion on quantum
numbers and spectral energy levels. The 7 is a pseudo-scalar meson with J* = 0=,
Its first excited state is therefore characterized by J© = 17—, being identified with
a1(980). This classification relies on Table 8.

But the ordering of those excited states is all but clear and the literature is
full of contradictory statements. On the one hand the ‘a’ is a scalar meson with
quark content ud and J¥¢ = 0%+ [30], on the other hand it is the chiral partner
to the 7 with (uz + dd) [31]. According to Table 8 it is a particle with (uu — dd)
and JPC = 17 [29]. The fact is that several ‘a’-particles exist, which are nowhere
discussed in detail. The properties to identify the appropriate state are that it has
to be a S = 0-particle and, for being the first excited state to the m, L = 1, so that
JPC = 1%~ with the parity P = (—1)*! and the charge conjugation C' = (—1)E+5.
In the model only (S = 0, L = 0)-states can be calculated. Even the amplitude is
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JPC 1(0,2,..)7F (1,3,..)7 (1,2,..)7 (1,2,...)""
ut — dd s a p a
uii + dd n h w
s§ n W ¢ f!
cc Ne he J/v Xe
bb Mo hy T Xb
tt Uz hy © Xt

Table 8: Meson characteristic for arbitrary L. - For L # 0 the particles are grouped for
S = 0 in chains with even or odd J and identical discrete quantum numbers. For S = 1-
states the total momentum can be build up by (L — 1,L,L + 1). With the possibility
of double occupied places, which can not clearly be fixed from their preserved quantum

numbers, two new chains occur: (0,1,...)", (1,2,...)"~ [29, 30].

restricted to 1/-states without any mixing. Therefore the received energy levels can
be identified as 1'Sy, 21S;,... Fig. 18 sketches the spectrum of the pion and gives
the corresponding quantum numbers [29, 32, 33, 34].

L=1,S=0,F1

1 _"
27P [a] 9P%=1

L=0,S=0, 30
PC -+
J =0
L=0,s=1, k1
3 FC
17sg 5

1 -+
s, L=0,50,30 =0

P=(y b1 c=(1

Figure 18: Scheme of the energetic levels concerning the calculated ground- and first
excited state of the pion (7*) and those for the ‘p’- and the ‘a’-meson. All quantum
numbers are given. The arrows 2'P; — 118y, 138y — 118, indicate possible decays, the

arrows 218y — 21 Py, 218y — 138, the fit properties.
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The calculated first excited state 2'Sj lies energetically lower than the real first
excited state 2' P;, which corresponds to the ‘a’ with J¥¢ = 1*t~. This is clear from
the knowledge of any singlet system, because the orbital wave function to S = 0 is
symmetric and therefore the distance between the particles is smaller than for the
anti-symmetric case (S = 1), i.e. the Coulomb repulsion reduces its binding energy
more than for S = 1. Therefore the chosen fit-parameter ‘a’ is too high, it is supposed
to be an upper limit to the really calculated first excited state. The restriction of the
amplitude to one combination 1| even regards only one configuration of the pion.
Thus, the ground-state can just be characterized as a quasi-pion, with the correct

quantum numbers for a pseudo-scalar particle.

Disregarding the internal parity of the anti-quark, so that the parity is P = (—1)’
and the pion a ‘quasi-scalar’ particle, it would have JX¢ = 0**. Then its first
excited state would be J¥¢ =17~ (S = 0, L = 1). This state has the same parity
as the p-meson with (S = 1, L = 0), which is represented by the 13S; in Fig. 18.
Under this assumption and with the knowledge that states with the same total
angular momentum J are quite similar in their energies, the fit to the p-meson can
be regarded as a lower boundary to the first excited pion state. The corresponding

numbers and figures are given in App. C.

As this is the point where the values of the constituent masses m; = m, and
mo = my are adjusted, their choice is too high, because the reference points are
upper boundaries. The train of thought has been as follows: the first guess has
been m, = my = 350 MeV, so that m; = m;/k = 1, with K = 350 MeV. This
brought up the right pion mass, but the higher excited states were much below the
real mass values. Therefore the quark masses have been adapted by hand to obey
the constraints in (103) for all three s-states. For m, = my = 518.5 MeV the result
is satisfying the demands. It is also possible to vary the mass scale x and keep m;
fixed to 1, the result would be the same. Fig. 19 shows the spectrum of the first
three singlet S-states in MeV versus the scale p in kK = 350 MeV calculated with the
appropriate renormalized «. It is remarkable that the gap at pe.+ ~ 8.5 of Fig. 17
has such an effect on the higher states. While the 1S-state is completely flat and
insensitive to p, the 2S- (o), 3S- (O), and 4S-state (A) are functions of u. For
i < perir the levels are mainly equidistant and the mass value is in the proclaimed
region between 900 — 1000 MeV. Between p = 3 and p = 6 both states form small

plateaus. At pe+ ~ 8.5 both functions simultaneously break down to the 1S-level
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Figure 19: The spectrum of the first four singlet S-states in [MeV] versus p in [k]. The
1S-state is completely flat and insensitive to p, the 2S- (o), 3S- (O), and 4S-state (A\) are
functions of . The deep step at picrit ~ 8.5 corresponds to the gap in Fig. 17. The whole
spectrum is insensitive to u at p ~ b, accentuated by the tangents to the plateaus. For

i — oo the spectrum is not resolvable on this mass scale.

and stay there for y > pe+. On the mass scale of Fig. 19 the spectrum can not
be resolved for ;1 — oo. For the later calculations on scalar mesons one (a, p)-pair
has to be marked. Therefore the progress of the functions in p is discussed with
respect to the renormalization group equation (see Eq. 47). If & = a(u) and the
Hamiltonian no longer depends on y, the main relation dM7? (o, p) = 0 is fulfilled.
In Fig. 19 it is obvious that the Hamiltonian is not purely insensitive to u over the
whole range. There are mixings which occur from the Q?-term in the denominator
of the regulator. The most u-independent parts in this spectrum are the totally
independent ground level and both plateaus in 2S, 3S, and 4S. Drawing tangents to

the platforms and calculating

dM?
dp

=0 at a=a(w)

restricts the interval of suitable points to a very small region around p ~ 5. With
respect to the mass eigenvalues of the second and third state the appropriate nu-
merical value is gy = 4.8 - kK, kK = 350 MeV with a corresponding renormalized
a(ug) = 0.6977.
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The above method can be described as a kind of poor mans’ renormalization,
because universality over the whole spectrum is not given. But it is possible to
enforce total independence on p to find one (a, p)-pair which fulfills the condition. It
is remarkable that the found «(py) is around 0.7, since other theory groups calculate
with @sirong = 0.7 based on experience [35].

Now that ug and a(ug) are fixed, the ‘stretching factor’ z, invented in Eq.(81) in
Sect.4.2, has to be set. The intensity of the wave function is obviously coupled to p
and «. Because of the higher complexity of the problem the ‘ordinary’ optimization
procedure (see Figs. 7, 12) would be too expensive, i.e. for each («, p)-pair a suitable
z would have to be fixed. Here, the best function for z has been found by trying out

several relations in «, u. Therefore all calculated values are optimized with

w2 4 \?\ 4
zZ=m, (1 + pr— (ga) ) goz =m, (1+tits) ts (104)

ti = 4/3 ap?®/ (4m,m,) being the coupling of the regulated Delta potential and
to = 4/3 o that of the Coulomb.

300.0
a=0.7
[ \ g L 2 ® |.l=lO
200.0 i
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L * 13 ° 8
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0.0 a . . s 094
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Figure 20: The first negative eigenvalue —e is plotted versus the number of integration
points N (16,32,64,128) for m = 1.48 - k, k = 350 MeV, a ~ 0.7, and different values of

the scale . Note the excellent stability over the whole integration range.

Fig. 20 shows the first negative eigenvalue —¢ versus the number of integration
points N (16,32,64,128) for m; = my = 1.48-k, k = 350 MeV, a ~ 0.7, and different
scales p. It is visible that the function z(u,«) supports great stability over the
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whole range of integration points N. Therefore it is sufficient to calculate with 16
integration points.

Now the adjusted quark masses m; = mo = 518.5 MeV are used to fix the
remaining quark masses. With identifying m; = m, and my = mg4, the masses
of the strange, charm, and bottom have to be calculated. The top-quark mass
can not be derived, since no t¢g-states are currently known. But with a current
mass of m; = 174.3 + 5.1 GeV [30], the constituent mass is slightly more, about
175 GeV. This estimate comes from the fact that the constituent mass contains the
current or intrinsic mass plus a dynamic term, which belongs to a cloud of gluons
and seaquarks, where the quark is wrapped in. That term is somehow related
to the scale parameter of strong interactions and a thumb rule fixes it at about
300 — 400 MeV [29]. Including the found (uo, (po))-pair the masses are derived
by fitting to the appropriate g i-meson, which is again a bisectional iteration. The

results are given in Table 9.

fit meson | mass/[MeV] | derived masses/[MeV]
da 140 My =M 5185 (fixed)
su 494 ms 597.2
ci 1865 M 1636.8
bu 5279 my 5001.2

Table 9: The fitted remaining quark masses are given in [MeV].— In the first two columns
the corresponding fit meson and its mass are mentioned, in the third the derived value is
tabulated.

These four different quark masses (top excluded) together with the renormalized
coupling constant a and the regulator scale y build a complete set of parameters to
describe all mesons. The derived eigenfunction for the pion and the meson masses

are discussed in Sect. 5.1.

4.4 Renormalizing the ‘completely regulated’ potential

Before only the Delta function-like constant has been regulated. Now the completely

regulated potential, as introduced in Eq.(62), is discussed. With

1 2 1 1
Fie ol (08)
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the regulated Coulomb is divided into a Coulomb minus a Yukawa potential. Such
combination is known from the first calculations in Sect.4.2. With the regulated
Delta being similar to a scaled Yukawa, the potential of the ‘completely regulated’

equation is again a combination of a Coulomb and a Yukawa, i.e.

k2 o 2 .
(E - 2mr) Plk) = ?F/ds l@ <4mrms - 1) m] ¢(k) . (106)

This equation can be discussed by means of the factor u?/(4m,my). If u?/(4dm,m;)

is equal to 1, the pure Coulomb potential is restored. For p?/(4m,m,) < 1 Coulomb
and Yukawa are subtracted, and behave as in Sect.4.2. For p?/(4m,m,) > 1 both
potentials are added as in Sect. 4.3. Hence, the solutions of Eq.(106) can be esti-
mated. The potential strongly depends on the quark masses, so that the higher the
quark masses are, the smaller the scale n = 1/b gets. Thus, one point exists where
the sign between Coulomb and Yukawa turns to the opposite. Generally speaking
the ‘completely regulated’ potential is a refinement of the first model equation. It
can be calculated ‘ad hoc’, because the counter terms are the same as before. The

remaining matrix equation is again described by its diagonal

s 1 ms (1 + 2b)*
i = —b2m B i R I 2b 107
a gt (e ) o)
_tlms Z k 1 ( k]) 2 (sz + b2)2
T (ki + k)% + 2(k2-+b2)2
tom (ki — k;)? (k + b?)?
B Z‘”k_” (k; +k])2(k2+62) ’
i#i i

and off-diagonal elements

tim (ki — k;)° + p
i — A/ W; 1 108
ij T Wikj n(ki+kj)2+,u2 ( )
tgms (kl —_ kj)2
VWi 1 9
+ T Wiy (ki + k;)?
with
% 4
t = -1] -« for the scaled Yukawa ,
dm,my 3
4
to = e for the Coulomb |,

3
and b = m,(t; +t3) = (u? /4m,) 4/3 v as the combining scale. The only difference to

the first equation is given by ¢;, which contains the contribution of a pure Yukawa.
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This term cancels in b against the Coulomb one, and therefore the combining scale
has a new appearance. Now the complete renormalization machinery has to be
started again as discussed in Sect. 4.3.

The value for the up- and down mass occurs to be M, 4 = m, q4/k = 1.514 with
k = 350 MeV. Thus, to satisfy M7?(c;) = M?2, the lowest eigenvalue is

2 M?
___(m +2mz) + I = —9.01106 (109)
K K

with M+ = 139 MeV.

In a first calculation it is verified that for 4 = 0 and o = 0 all eigenvalues are
zero. Comparing the values to those in Table 7, the numbers for the ‘completely
regulated’ potential are not lying as deep, i.e. the first eigenvalue is not as rapidly

decreasing, see Fig. 21.
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Figure 21: The lowest eigenvalue —e = m?— M? is plotted versus the coupling constant .
The different lines refer to different values of the regularization scale u (u = 0,2,4,6,8,10).

The box marks the region around o ~ 0.7.

The figure shows the negative lowest eigenvalue —e versus the coupling constant
« for different scales p. The behavior of the curves is analogous to that of the
‘Coulomb plus regulated Delta’. To pick up one (1, a(f19))-pair the same constraints
on the pion ground state and the first excited one are used (see Eq. 103). The box
in Fig. 21 marks the region around a ~ 0.7. Choosing an « of about 0.65 and

i ~ 6, the first excited state is not reached. Adjusting the values, the best fitting
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numbers are o = 0.93617 and p = 4.0. The appropriate up- and down-quark mass
is therefore
my = mg = 1.514 - k = 529.9 MeV | (110)

which is 2.2% higher than before. With the found numbers for a, p, m; and my
the complete spectrum and the wave functions of the excited 7% can be described.
According to this problem the remaining quark masses are calculated. They are

given in Table 10 together with their corresponding fit meson.

fit meson | mass/[MeV] | derived masses/[MeV]
da 140 Ty =4 529.9 (fixed)
57 494 , 616.2
cu 1865 M. 1688.
bu 9279 my 5056.

Table 10: The fitted quark masses in [MeV].— In the first two columns the fit meson and

its mass are given, in the third the received value is listed.

In this section the numerical tools have been introduced and the renormaliza-
tion procedure for the two main equations (62) and (65) has been performed. A
guess of the first quark mass pair, the up- and down-mass starts the procedure.
All appropriate pairs (p,a(p)) are found via the Bisection method. According to
renormalization theory, the spectrum has to be independent of the renormalization
scale. This ‘universality’ holds not over the whole p-region, it exists a point pieit
which divides the spectrum in two parts. For pu < peq independence is obeyed,
for g > peris the spectrum depends strongly on p. Thus, the question of ‘univer-
sality’ fixes one suitable (pg, a(uo))-pair in the (u < perit)-regime. Moreover, the
up- and down-mass are adjusted to fit to the first excited state of the pion. The
restriction of the model to S-waves causes the problem that the first excited state is
not clearly identified. In fact, the real first excited state, the a-meson, is used as a
upper boundary to the 2S-state. Under the assumption of having a scalar pion, the
p-meson provides a lower boundary to the 2S-state. For comparison the fit to the
p-meson is done as well, see App. C.

Consequently three sets of parameters have been obtained, tabulated in Table 11.

The quark masses and p-values are all in the same region, while the renormalized
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parameter | Coulomb plus regulated Delta | complete
‘o’-fit ‘p-fit ‘a’-fit
0.6977 0.6904 0.9362
4.8 3.8 4.0
up 1.48 1.16 1.51
down 1.48 1.16 1.51
strange 1.71 1.45 1.76
charm 4.68 4.76 4.82
bottom 14.29 14.44 14.45
top 498.0 498.0 498.0

Table 11: Sets of parameters received from two different potentials and two different fits.
The quark masses and p are given in units of the scale k = 350 MeV. Up- and down quark

mass are supposed to be equal. The top-quark mass is not obtained from a fit.

Figure 22: 3D plot of all eigenvalues: coupling constant «, regularization scale u, and
eigenvalue (m? — M?) in units of k = 350 MeV; This plot shows the values up to an
arbitrary limit to show the relation between the three calculated cases. The scalar pion
has the strongest ascent, followed by the ‘Coulomb plus regulated Delta’ (CrD) and the
‘completely regulated’ potential.

coupling constant for the ‘completely regulated’ potential is over 20% higher than

the others. Fig. 22 shows how the eigenvalues according to a and p behave in three
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dimensions for all three problems. It is clear that two planes are closer to each other
than the third. These two belong to the ‘Coulomb plus regulated Delta’ (CrD)
and the ‘completely regulated’ potential (complete) fitted to the a-meson, while the
assumed scalar pion is separated. Taking only the scalar pion fitted to the p-meson
and the complete problem into account, Fig. 22 shows that both can be regarded
as an upper and lower boundary. Therefore, the real 2S-state would lie somewhere
between both planes.

After this adjustment of quark masses the singlet nS-states for the pion and all
other flavor off-diagonal scalar mesons are calculated. The results are discussed in

Sects. 5.1 and 5.2, respectively.
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5 Pion wave function and meson masses

Corresponding to the parameter sets according to the ‘Coulomb plus regulated Delta’
and the ‘completely regulated’ problem the spectrum and the wave functions of
the pion and the flavor off-diagonal meson masses are calculated. Those values
corresponding to the p-fit can be found in App. C.

The results are discussed by physical means. Additionally, for the ‘Coulomb
plus regulated Delta’ potential the pion form factor is approximately calculated and

related to the mean square radius.

5.1 ‘Coulomb plus regulated Delta’ potential

This discussion starts with the completely fixed spectrum and the wave functions of
the excited 7.

Table 12 shows the data for g = 4.8 - k, a(up) = 0.6904 and m; =my = 1.48 -k
with k = 350 MeV. The maximum momentum is at kg = 15.52 - k. In the

first row the mass eigenvalues M7 (in MeV) for the first six singlet nS-states are

2

2 (in k%) are shown beneath them. The

given, their energy eigenvalues ¢ = M? —m

highest eigenvalue is already in the continuum. Fig. 23 shows approximately the

Mev | 122 1=1 1=0 1=0 I=1 =2

1000 _| - -

800 _|
600 _|
pure Coulomb \ Coulomb + Delta

400 _| \

200 _|

Figure 23: On the right the spectrum of the pion is plotted as calculated for the param-
eters m1 = mo = 518.5 MeV, a = 0.6977, and u = 1680 MeV.- On the left the pure

Coulomb spectrum according to the same « and the same quark masses is shown.
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M,: 140 980 1009 1021 1034 1130

ki 1]-8620 -0.934 -0.460 -0.272 -0.058 1.644

0.01 | 10.000 10.000 10.000 10.000 -0.441 -0.008
0.05| 9.928 8702 5949 -0.234 1.543 -0.027
0.13 | 9.560 4.273 -1.058 0.010 -9.717 -0.157
0.25| 8582 0.705 -0.210 0.003 10.000 -1.469
0.40 | 6.888 -0.079 0.009 -0.000 -0.099 10.000
0.60 | 4.853 -0.100 0.017 -0.000 -0.464 -1.700
0.85| 3.054 -0.055 0.009 -0.000 -0.249 -0.879
1.15 | 1.783 -0.027 0.005 -0.000 -0.122 -0.404
1.51 | 0.999 -0.014 0.002 -0.000 -0.060 -0.193
1.95| 0.546 -0.007 0.001 -0.000 -0.030 -0.096
249 | 0.292 -0.004 0.001 -0.000 -0.016 -0.049
3.16 | 0.151 -0.002 0.000 -0.000 -0.008 -0.024
4.01| 0.074 -0.001 0.000 -0.000 -0.004 -0.012
2.15 | 0.033 -0.000 0.000 -0.000 -0.002 -0.005
6.84 | 0.013 -0.000 0.000 -0.000 -0.001 -0.002
10.00 | 0.003 -0.000  0.000 -0.000 -0.000 -0.001

Table 12: The spectrum and the wave functions for the excited n+. — Parameter values
are: a=0.6904, p= 4.8, m1 = mo= 1.48 (1 and masses in units of k = 350 MeV).
Calculations are done with 16 Gaussian integration points, with a maximum momentum
k1 = 15.52 k. — The first row gives the first 6 mass eigenvalues (in MeV), corresponding
to the first singlet-nS states. The second row shows the eigenvalues M? —m? (in units of
k?). Below each eigenvalue are the 16 eigenfunctions, labeled with the integration points
10k; / k16 shown in the first column. They are normalized such that the largest value has
the numerical value ‘10’. As expected the number of nodes increases , and the highest

eigenvalue is actually in the continuum.

spectrum of the first three eigenvalues of the pion for a ‘Coulomb plus regulated
Delta’ on the right, compared to the pure Coulomb spectrum on the left. The
parameters corresponding to both spectra are m; = my = 518.5 MeV, a = 0.6977,
and p = 1680 MeV. The spectra are quite different, i.e. the level shift of n = 1



62 5 PION WAVE FUNCTION AND MESON MASSES

100 -

5.0

0.0 |/

-5.0

-10.0 ! ! !
0.0 0.5 1.0 15 2.0

Figure 24: The first three and the fifth eigenfunction of the excited pion versus normalized
momenta 10k; /kig. For a better resolution of the single eigenfunctions the kj-interval
is stretched to k; = 2, the tails of some functions are therefore cut. As expected the
number of nodes increases with the excitement. For a higher resolution of the excited

eigenfunctions more than 16 integration points are needed.

is tremendous, while the shift for n = 2,3 is much smaller. The levels for [ = 1,2
have not been calculated, they are interpolated by means of quantum mechanic
aspects to symbolize higher states. In Table 12, corresponding to each eigenvalue
the six eigenfunctions are presented below, each element labeled with its integration
point 10 k; /kq6, tabulated in the first column, and therefore normalized to have
the largest value at ‘10’. Fig. 24 shows a combined plot of the first three and the
fifth eigenfunction. As expected the number of nodes increases, also to be seen in
the table. The excited eigenfunctions, especially the fifth, are given for imagination.
Their awkward appearance implies that more integration points are needed to receive

a higher resolution.

Taking only the first eigenfunction for 7+ (e), a comparison to the Coulomb wave
function (O) under the same conditions, i.e. same « and quark masses, is shown
in Fig. 25. Therein the arbitrarily normalized wave functions are plotted versus
the momentum, with the last value at |k|mee = 10. It is astonishing that the pion
wave function decreases much slower with the momenta than the Coulomb function.

Regarding the potential of a ‘Coulomb plus regulated Delta’ in the main equation
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10.0

Figure 25: The arbitrarily normalized pion wave function (e) is plotted versus the mo-
mentum, which is normalized to |E |maz = 10. It is compared to the Coulomb wave function
(3d) at the same coupling and quark masses in the same units.- The pion wave decreases

much slower with the momentum than the Coulomb wave.

(98), the difference must be an effect of the smoothed Delta potential. It is known
from Sect.4.3 that the regulated Delta is comparable to a scaled Yukawa. Therefore
this problem is similar to the first calculations on a combined Coulomb and Yukawa
in Sect.4.2, they differ in the relation between Coulomb and Yukawa. With the
relations 1 = nb and b = m,(4/3)a (1 + p?/ (4m,m;)) it is possible to calculate
the corresponding dimensionless scale 77, which for y = 4.8 - K, « = 0.6977 and
m, = mg = 1.48 - k is n = 1.9211. Now the behavior of the pion wave function can
be compared to that of the pure ‘Coulomb minus Yukawa’, especially with Figs. 13
and 14. The value of n = 1.9211 assigns that the new model is situated close to the
Coulomb limit. For the ‘Coulomb minus Yukawa’, the Coulomb-limit was already
well achieved for numerical values n > 2.0; therein the width of the eigenfunction
was decreasing with increasing 1. Now that the Coulomb and Yukawa are added,
the width of their wave function increases with increasing 7. The shape of the pion
wave in Fig. 25 gives evidence for the near of the Coulomb-limit, the width depends
on the scaling p?/ (4m,m,) = 2.6297, and therefore on the adjustment of the masses
and of y. The appearance of the pion wave function in the near of the Coulomb

limit is quite reasonable. Since for the pion the mass and its mean square radius are
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known, the general form of the ground state wave function can be estimated. For
the pure Coulomb potential the size of the pion is related to the Bohr momentum
pp = 4/3m,a = 0.688 = 1.42 fm, m, = 1.48/2 and « = 0.6977. With pg' ~ (r2)1/2
and (r2)!/2 = 0.67 fm [36, 37] it is obvious that the pure Coulomb radius is much
too large and can not describe the pion correctly. However, the Coulomb potential
is still the leading term, thus the pion wave function has a Coulomb-type shape.
Combining the Coulomb with a Yukawa potential will decrease the radius. Thus,
the smaller the root mean-square radius is the more the pion wave function is shifted
to higher momenta. The scaling of the Yukawa can also adjust the shift. Whether
a ‘Coulomb plus regulated Delta’ potential can verify the experimental root mean-
square radius, will be shown at the end of this section.

Now the scalar flavor off-diagonal mesons as given in the lower rows under the
diagonal in Table 1 are calculated.

To have an overview how large the experimental masses of the mesons are, they
are listed in Table 13.

u d 5 ¢ b u d 5 ¢ b
u 768 892 2007 5325 u 980 1060 2100 5464
d| 140 896 2010 5325 d| 140 1060 2100 5464
s | 494 498 2110 — s | 494 494 2174 5535
c | 1865 1869 1969 — c | 1865 1865 1916 6495
b | 5279 5279 5369 ~6400 b | 5279 5279 5324 6006 —

Table 13: Experimental masses of the 'Table 14: The calculated mass eigenstates
‘flavor off-diagonal’ mesons in MeV. Vec- of QCD in MeV. Singlet 1S-states are given
tormesons are in the upper triangle, scalars  in the lower triangle, singlet 2S-states in the

in the lower. upper.

The vectormesons are given for completeness. The calculation procedure is very
simple. The corresponding quark- and anti-quark mass are put into Eqgs.(99, 100)
and the resulting eigenvalues D = ¢ - x? are directly coupled to the square of the

mass eigenvalue,

D=¢-x>=M*— (my+my)* . (111)

The calculated ‘flavor off-diagonal’ mass-eigenstates are given in Table 14. Be-

cause of the restriction to scalar particles it is not possible to compile vectormesons.
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Instead of their real value those for the singlet 2S-state are given in the upper tri-
angle. Comparing the calculated singlet 1S-states to the experimental masses, it
has to be regarded that the up- and down-mass were fixed from the beginning and
that the q u-states have been the fit-values for the remaining quark-masses. With
m, = mq there can be no difference between the columns ¢@ and ¢d. Therefore
the values for ¢cs = D}, bs = BY, and be = B; are really calculated masses. They
deviate from experiment between 0.8% (BY) and 6.2% (B,) (2.7 % D). This is
a really good result, since the model is extremely simple. It has also to be noticed
that the experimental value for B, has recently been taken up into the list of the
‘particle data group’, its mass is therein given as 6.4 £ 0.39 £ 0.13 GeV [30]. It is
astonishing how well the singlet 2S-states fit to the vectormeson masses. The p*
has to be disregarded, since the ‘a’ has been the fitting parameter for the up- and
down mass, but even the other values differ just by +(2.5 to 15.8)%, the mean value

is at 4.4% . The experimental masses show some interesting relations between ¢

and u q:

1) 2 /0

di 140 wud 768 | 5.5
su 494 wus 892 1.8
o 1865 weé 2007 | 1.08
o 5278 wub 5325| 1.008

The heavier one of the constituents is, the smaller the difference between scalar (¢ )
and vector (u §) masses. Examining this effect for d-quark combinations brings along

the same proportionalities as for the u-quark:

(1) (2) (2)/(1)
sd 498 d5 896 | 1.7899
cd 1869 dé 2010 | 1.08
bd 5279 db 5325| 1.008

Testing the last experimentally known couple

(1) (2) (2)/(1)
s 2110 c3 1969 | 1.072
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Jeads to a kind of periodicity. The relation factor mirrors which quark is heavier,
e.g., a (u,s) or (d,s)-system is dominated by the strange-mass, but a (c,s)-system
obeys the charm-mass. With this proportionality factors it is possible to predict the

missing masses for sb and c¢b. Their order is given by the following

b5 =5375 MeV — sb=1.008 - 5375 MeV = 5418 MeV
bé ~ 6400 MeV — c¢b~1.008 - 6400 MeV ~ 6451.2 MeV .

Using the new knowledge and comparing the singlet 1S-states with the singlet 2S5-
states, shows that the proportionality factors are similar for light-light mesons and

higher for heavy-light or heavy-heavy compounds,

quark-combination experimental 2S / 1S | factor
(d,u) 980 / 140 7
(s,d)=(s,u) 1060 / 494 2.15
(s,¢) 2174 / 1916 1.135
(c,d)=(c,u) 2100 / 1865 1.26
(b,c) 6495 / 6006 1.081
(b,s) 5535 / 5324 1.039
(b,d)=(b,u) 5464 / 5279 1.035

J.e. with one mass increasing and the other decreasing (last three rows for (b,q))
the factor decreases. The first two rows are given for completeness. The difference
for the charm quark is not so drastically, because it is the ‘lightest’ of the heavy
quarks, the factor for charmed-mesons is about 1.2. For the b-mesons the value
is between 1.04 and 1.08. The difference between singlet 2S-states and calculated
‘vectormesons’ — with respect to (1S-mass - factor) from the experimental values —
is therefore about 5%. This means that the energy levels of the singlet 2S-states
for the scalar mesons and the ground state for vectormesons are approximately at
the same energy. The only term which can be responsible for such an effect is the
modified current-current interaction S = 4m;msy+2Q?, especially the Delta-function
corresponding factor 2. A tool to calculate the mass splitting between scalar and
vectormesons is the non-relativistic hyperfine interaction

3mgmg 9mgmg
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with (S, - S;) = 1/4 for vector , — 3/4 for pseudo-scalar. For scalar mesons its
value is Vi, = —(8/3)ma/(myme)8®(7), which is identical to Eq.(60). Therefore the
effect occurs from the hyperfine interaction, which is responsible for the splitting
of the meson ground state. Even in atomic physics the splitting is decreasing with
increasing mass.

A big advantage of this Hamiltonian method applied in the calculations of the
spectrum is the fact that spectrum and wave functions are obtained simultaneously.
Thus for each meson the appropriate eigenfunction is available. Fig. 26 shows the
ground wave functions of the mesons without pion. The data for (s,u) = (s,d),
(c,u) = (c,d), (¢, s), (byu) = (b,d), (b,s), (b,c), and all top-combinations are plot-
ted versus the momentum, with the largest value at ‘10’. It is visible that the
wave functions are getting broader the heavier the included quarks are. For top-
compounds all waves are lying upon each other, i.e., the top-mass overrules all other
possible effects. The other functions are also grouped with respect to the heavier

quark mass, but not as strong as for the top. The corresponding values are given in
the first three tables of App. B.
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Figure 26: The 1S eigenfunctions for the calculated mesons are plotted versus the mo-
mentum, with the largest value at ‘10°. The waves appear in their natural order (from left
to right): (s,u), (¢,u), (¢, s), (b,u), (b;s), (b,¢), (t,u) and (¢,b), while (¢,u) = (¢,d). The

top-wave functions, apart (t,u), lie upon each other, represented by (t,b).

With having all meson eigenfunctions it is possible to touch another interesting

topic, the form factor. The knowledge of the form factor would give the advantage
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to calculate the mean square-radius and therefore the last two ‘free’ quark masses,
up and down. This goal requires of course the form factor of a meson that contains
only up- and down quark, which makes the pion the best candidate. The pionic
wave function has already be given in Table 12 and Fig. 24. But first of all the pion
form factor has to be adapted to light-cone dynamics. Generally, the form factor
describes the difference of the scattering of an object to that of a point-charge at a

fixed value for the momentum transfer,

do ) ( do ) 9
<o) =2 P (113)
<dQ object ds2 point,Mott

a typical scattering process is shown in Fig. 27.

Figure 27: Illustration of the me — me-process with one-gluon exchange.

Experimentally the form factor is obtained by dividing the observed cross-section
by the calculated point cross-section, i.e. Mott cross-section. For point-like objects
the form factor is Fyuny = 1. The above explanation requires that the object is a
spherical-symmetric system, so that the momentum transfer has no distinct orienta-
tion. Since pions are spin-O-particles, they only have a so-called charge form-factor.
Its behavior can be described by a monopole or Dirac form factor,

6

Fr(Q?) = (1 + 3—5) h with o = - (114)
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If the mean square-charge radius is defined as
(%) = ax [ f )t (115)
0

with f(r) a charge distribution, the form factor for @* — 0 reads

F(QY) =1— é@?(ﬂ) o (116)

From the ascent in the near of the origin the mean square radius can be determined
‘by hand’ for one value of Q* (Eq. 116), or if F;(Q?) is known up to very small

values of () it can be calculated, i.e

dF (Q%)
dQ?

The experimentally measured values for the pion mean-square radius are

(r*y = —6 lg2=0 - (117)

(r*) =0.4440.02 fm? |

\V/(r?) =0.657+0.02 fm [36, 37|.

Compared to the proton with m = 0.862 fm pions are spatially less expanded.
This can be explained by their internal structure; they are ¢ g-states, while protons
are baryons. Kaons are as well meson states, but because of their larger masses,
their expansion is smaller than that of pions.

From the literature [8, 10| it is known that physical quantities calculated from
the light-cone bound-state wave function such as the form factor and the bound-
state spectrum are expected to be rotationally invariant. Thus, the form factor for

the lowest Fock-state contribution is given by [18]
F(§?) = [ dod By Wi (@, B )W, L+ (1-2)71) (118)

which is a convolution of two wave functions before and after the scattering by
a virtual photon with momentum ¢* = (¢ = 0,¢~ = ¢%,7.) and a momentum
transfer Q% = ¢2. In Eq.(118) ¥(z, k) is the wave function in (z,%.), while the
calculated ones are given by ¢(k,, k. ). However, the evaluation of Eq.(118) is quite
complicated. For such general calculation the following steps are needed: the known
function ¢(E) has to be transformed into the general probability function ¥(z, k 1),

which then has to be normalized. Afterwards the convolution integral has to be
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Figure 28: Pion form factor in the space like-region with ¢> < 0 from Amedolia et al. [37].
Its extrapolation to the time-like region is shown to the right. The curve is obtained with

an improved p meson dominance fit (Brown et al 1986).

performed to receive F(Q?) for all Q2. To imagine how the form factor in @* would
look like the data of Amedolia et al. is shown in Fig. 28 [37].

To calculate the mean square radius the derivative of the form factors has to
be taken in the limit Q> — 0. The derivative of the general form factor equation
dF(Q?)/dQ* together with the experimentally known mean square radius provides
the possibility to fix the up- and down-quark mass, which are the last free parameters
of the system. A precise adjustment of the up-, down-quark mass has to be done in
the near future with the general expressions.

From the shape of the pion wave function the proximity of the Coulomb wave
function is known. Thus, it is much easier to approximate the pion wave function

by the theoretical Coulomb one, i.e.

o, (k) ~ o (119)

2
(1 + k?k2k§>
B

with the ‘10’ from the scaling of the calculated wave function, ¢(py) = 10, k; the




5.2 ‘Completely regulated’ potential 71

obtained momenta (see Table 12), ¢; the eigenfunction and kp the Bohr momen-
tum [38]. Fourier transforming the above expression to ¥(&) ~ e #27 leads directly
to the mean square radius. The Bohr momentum is determined by a fit to the
seventh couple of the numerical data in Table 12, (p, ¢); = (0.85, 3.054), its value
is kg = 1.2595. This is much larger than the pure Coulomb Bohr momentum
p =4/3m1/2a = 0.5339, with m; = 1.16 in [«], K = 350 MeV, and o = 0.6904.
The mean-square radius can thus be defined as the normalized integral of the

wave function squared, i.e.

d3r¥*(r)r?v
7 =197 () ¥r) (120)
J &3 (r)?
Evaluating Eq.(120) the root mean-square radius of the pion becomes,
h
a2t = V30 665 b (121)

kg k
Comparing this result to the experimentally measured value of (rfr}% = 0.657 fm,
the difference is just 1.2%. Therefore, the root mean-square radius is excellently
described by the approximated expression in Eq.(119).

In this section the pion wave function is discussed with respect to the pure
Coulomb case. The scalar off-diagonal meson masses are obtained from the ‘Coulomb
plus regulated Delta model. Some relations between light and heavy mesons are dis-
cussed and the hyperfine structure is analyzed. The last point of this section is the

relation between the calculated eigenfunctions and the pion root mean-square radius.

5.2 ‘Completely regulated’ potential

Now the pion spectrum and its wave functions for the ‘completely regulated’” model
are discussed. Table 15 shows the data for py = 4k, a(ue) = 0.9362 and m; =
mo = 1.51k with k = 350 MeV. In the first row the mass eigenvalues M, (in MeV)

for the first six singlet nS-states are given, beneath them their energy eigenvalues

2

2 (in k?) are shown. The fifth and sixth eigenvalue are already in the

e=M;-m
continuum. Corresponding to each eigenvalue the appropriate eigenfunctions are
tabulated, each element labeled with its integration point 10k;/k1¢ and normalized
to have the largest value at ‘10’.

Fig. 29 shows a combined plot of the first four eigenfunctions. As for the
‘Coulomb plus regulated Delta’, the excited eigenfunctions need more than 16 in-

tegration points for a higher resolution. A comparison between the ground wave
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M,: 140 980 1023 1039 1119 1380

ki 1]-9.010 -1.321 -0.635 -0.364 1.043 6.388

0.01 | 10.000 10.000 10.000 10.000 -0.322 1.151
0.06| 9810 7901 4.627 -0.256 -0.418 1.161
0.13 | 8891 2252 -1.590 0.021 -2.979 1.212
0.25| 6.829 -0.068 -0.012 0.000 10.000 1.334
0.40 | 4.249 -0.160 0.061 -0.001 -1.998 10.000
0.60 | 2.233 -0.073 0.028 -0.000 -0.874 -4.595
0.85| 1.076 -0.031 0.011 -0.000 -0.340 -1.428
1.15| 0.504 -0.013 0.005 -0.000 -0.140 -0.533
1.51 | 0.234 -0.006 0.002 -0.000 -0.061 -0.221
1.95| 0.109 -0.003 0.001 -0.000 -0.027 -0.096
249 | 0.050 -0.001 0.000 -0.000 -0.012 -0.043
3.16 | 0.022 -0.001  0.000 -0.000 -0.005 -0.019
4.01| 0.010 -0.000 0.000 -0.000 -0.002 -0.008
5.15| 0.004 -0.000 0.000 -0.000 -0.001 -0.003
6.84 | 0.001 -0.000 0.000 -0.000 -0.000 -0.001
10.00 | 0.000 -0.000  0.000 -0.000 -0.000 -0.000

Table 15: The spectrum and the wave functions for the excited m+. — Parameter values
are: «=0.9362, p= 4.000, m; = mo= 1.51 (masses in units of kK = 350 MeV). Calculations
are done with 16 Gaussian integration points, with a maximum momentum kg = 15.52 k. —
The first row gives the first 6 mass eigenvalues (in MeV), corresponding to the first singlet-
nS states. The second row shows the eigenvalues M? — m? (in units of k?). Below each
eigenvalue are the 16 eigenfunctions, labeled with the integration points 10k;/ki¢ shown
in the first column. They are normalized such that the largest value has the numerical
value ‘10°. As expected the number of nodes increases , and the two highest eigenvalues

are already in the continuum.

function for 7 (e) and the Coulomb wave function (0) with the same « and quark
masses is shown in Fig. 30, where the wave functions are plotted versus the momen-
tum with |E lmax = 10. Comparing this plot with Fig. 25, it is remarkable that the

pion wave function is now closer to the Coulomb wave one. This behavior makes
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Figure 29: The first four eigenfunctions of the excited pion versus normalized momenta
10k; /ki6. For a better resolution of the single eigenfunctions the kj-interval is stretched
to k;j = 2, the tails of some functions are therefore cut. As expected the number of nodes
increases with the excitement. All nS wave functions with n > 1 need more than 16

integration points for a higher resolution.

Figure 30: The arbitrarily normalized pion wave function (e) is plotted versus the mo-
mentum, which is normalized to |E |maz = 10. It is compared to the Coulomb wave function
(3d) at the same coupling and quark masses in the same units.— The pion wave function

decreases nearly as fast with the momentum as the Coulomb one.
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sense, when the scaling in front of the Yukawa potential is taken into account. The

scaling is

2
( P 1) =1.7543—1=0.75 , (122)
dm,my

this value corresponds to a 71.5% weaker mixing between Coulomb and Yukawa,
in Sect. 4.3 the factor has been 2.6296. The appropriate dimensionless scale is
1 = 2.41935, which verifies that the pion wave function is dominated by the Coulomb
contribution. Thus the radius of the pion is larger than in Sect. 5.1. The obtained
value is (r2)z = 1.058 fm, which differs by 38% from the experimental value. The

pure Coulomb radius is (r2)2 = 1.033 fm, so that the ‘completely regulated’ case

pushes the pion wave function too far into the Coulomb-regime.

In Table 16 the meson mass eigenstates for the full problem are tabulated. Again

the singlet 1S-states are shown in the lower triangle, and the 2S-states in the upper.

u d s ¢ b

u 980 1066 2135 5501
d| 140 1066 2135 5501
s | 494 494 2214 5577
c | 1865 1865 1930 6562

b | 5279 5279 5337 6218 —

Table 16: The calculated mass eigenstates of QCD in MeV. Singlet 1S-states are given in

the lower triangle, singlet 2S-states in the upper.

Comparing the calculated singlet meson masses to the experimental masses in
Table 13 shows that the values for ¢s = D7} differ by 1.98%, those for b5 = BY by
0.596% and for b¢ = B, by 2.84%. This result is much better than that for the
‘Coulomb plus regulated Delta’. Even the difference between the singlet 2S-states
and the experimental vectormesons is +4%, except ud, u5 and d5. Regarding again

the proportionality factors, mentioned in Sect.5.1, the factors are now
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quark-combination experimental 2s / 1s | factor
(d,u) 980 / 140 7
(s,d)=(s,u) 1066 / 494 2.16
(s,c) 2214 / 1930 1.15
(c,d)=(c,u) 2135 / 1865 1.15
(b,c) 6532 / 6218 1.06
(b,s) 5577 / 5337 1.045
(b,d)=(b,u) 5501 / 5279 1.042

The factors are higher than between the experimental values, but they obey the
same regularity, as do those in Sect.5.1. The factors for charmed mesons are lower,
but clearly grouped. The same holds for bottomed mesons. For the ‘Coulomb plus
regulated Delta’ the factors corresponding to one quark are broader distributed,
while now the factors form distinct groups.

Together with the mass eigenstates all suitable eigenfunctions are derived. Fig. 31
shows the ground wave functions of the mesons without pion. The data for (s,u) =
(s,d), (c,u) = (¢,d), (c,8), (byu) = (b,d), (b,s), (b,c), and all top-combinations
are plotted versus the momentum, with the largest value at ‘10’. It is visible that
the wave functions are getting broader the heavier the included quarks are. For
top-compounds all wave functions show a strange behavior contrary to their stable
appearance in the ‘Coulomb plus regulated Delta’ case. A possible explanation
is, that for the mesons including the top-quark the interaction has changed into a
‘Coulomb minus Yukawa’, i.e., the point where the sign flips to the opposite has been
crossed. The strength of the coupling is for the (¢, u)-pair (Coulomb - 0.99 Yukawa),
which corresponds more to the ‘Airy regime’ than to the ‘Coulomb regime’. This is
contradictory to the behavior of heavy quarks, which since they are non-relativistic
particles are situated in or nearby the Bohr regime. Another more likely possibility
is that the largeness of the top-quark mass causes numerical instabilities at the
boundaries. The other functions are again grouped with respect to the heavier
quark mass. The data is shown in the last three tables of App. B.

In this section the numerical results for the ‘completely regulated’ problem are
given and discussed. The received pion wave function is more Coulomb-like than for
the ‘Coulomb plus regulated Delta’ case, thus the mixing of Coulomb and Yukawa
is not as strong. The same is verified by the root mean-square radius which is much

larger than for the ‘Coulomb plus regulated Delta’ potential.
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Figure 31: The 1S eigenfunctions for the calculated mesons are plotted versus the mo-
mentum, with the largest value at ‘10’. The waves appear in their natural order from

(s,u) to (t,b), while (¢,u) = (q,d). The top-wave functions show a strange behavior.

The calculated scalar meson masses differ from the experimental data by not
more than 3% (first case 6%), i.e., heavy quark compounds, apart top-including
ones, can be described very well non-relativistically, and they are situated in or
nearby the Bohr regime. For the top-mesons the interaction changes into a ‘Coulomb
minus Yukawa’, so that they seem to be in the ‘Airy or String regime’. However, the
higher complexity of the ‘completely regulated’ problem can cause a higher numerical
sensitivity to the effects of large masses, especially those of the top-quark. All
programs have been tested with masses around 1 MeV. The top mass is a factor 1000
larger, so that the boundaries can cause instabilities in the routines. The ‘Coulomb
plus regulated Delta’ provides the correct ansatz for the top-compounds. Light
quark compounds are not as easy to describe, because they move relativistically.
Here, those mesons are used as fit-masses, so that their values are fixed for the
whole calculation. However, the pion wave function is correctly described and the
spectrum is perfectly described. If all light mesons should be directly calculated like
the heavy mesons, the relativistic contributions to the main equation have to be
regarded. In the next section the relaxation of the non-relativistic limit and some

other suitable aspects of the model are discussed.
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6 Further aspects of the model

In this section some aspects concerning the assumptions of the model are discussed
to some degree. The first two features are the relaxation of the non-relativistic limit
and the isospin effects that will occur from an annihilation contribution. Then the
coupling constant is regarded, and the effects of the spin-orbit coupling are also

considered as the possibility to include a general spin table.

6.1 Relaxation of the non-relativistic limit

Now that the effects of the ‘full’ regularization are known the question on the rel-
ativistic contributions is obvious. Remembering where the non-relativistic limit
comes in (see Eq. 32 in Sect. 3.2) the kinetic and potential energy including the
relativistic description of the momentum transfer (?> have to be discussed. From

Eq.(30) the shape of the relativistic equation is already known

B o1 o 4 a B dm,ms u? -
(D= COR] o) =555, | A(E)A(E’)[ 5t

with C(k), the factor of the kinetic energy, given in Eq.(29) and the A-factor (Eq. 27)
corresponding to the Jacobian. Both include the energy E; = \/m? + EQL + k2 and
the four-momentum transfer @* (Eq. 22). The momentum itself has surely to be
transformed to (k,, k1) as well, but this expression of @2 is so complex, that it is
not regarded here. This means that Q? remains non-relativistically as (1%' — K )2
Without the expression for Q?, the first step would be semi-relativistically, only
including the terms C(k) and A(kK). Both, the kinetic and the potential term,
strongly depend on the chosen mass values mq, ms and they have additional admix-

tures of momenta. Therefore the equation is given by

[D - C(k)k?] (k) = (123)
L L. 1 o 4L .1
- L / B —2® Loy / @B F) 2F)_
m e E-Fp (k- iy
with the abbreviations
2
t = éa ( g _ 1) , to = éOz and B(k, k") = 41 —
3 \4m,m; 3 A(k)A(K")
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The relativistic contribution B (/;, K ) can also be generalized to a function consisting
of the effective running coupling @(Q) and the current-current interaction S, apart
from the relativistic factor A(k). This will be considered in due time. The function
C(k) is based on the kinetic energy T in Eq.(19) and defined as T(k) = C(k)k?2
in Eq.(29). The potential energy is varied by the A-factor (Eq. 27). The single
energy contributions E; can be expressed in terms of E; = m;A;, which contain the
corresponding A-factor for each component. Therefore the overall A-factor itself can

be expressed by masses and single A;-contributions, i.e.

AA
Ak) = (ma +ma) =2

C(k) in Eq.(29) is also given in terms of energies, thus this function can be rewritten

(124)

in terms of A;. Including these new relativistic declarations the integral equation of
the model is modified
[ma (1 + Ay (k) + ma(1 + As(K)) 2*2] -
D - k k) = 125
l mma(+ A+ ARy | W) (125)

/ = =,
_ tlmS/dSk'B P ¢k tQmS/d%' (k, k") (
p2 + (k — k)2

)
(k- #)

with

- o 1 my my my Moy
PR = \l (o 2) (2 A1<k'>>
and 1, to given above.

The non-relativistic limit is restored correctly, which makes the relativistic ap-
proach totally compatible to the work done before. The counter terms are already
known for the non-relativistic case, they have now to be assimilated to the rela-
tivistic case. Replacing D = 2m FE and including the counter terms, the relativistic

equation reads

[E — F(k)] ¢(k) = (126)
4 3.1 ! n_ (k2 + b%)Z
o e O | B 600 - BB o) (]
b [ L N (1 (k? + b3)”
_ ﬁ/d o lB(k,k)qﬁ(k) —B(k,k)qﬁ(k)m] ,

the new effective kinetic energy has thus the form
k 1 k? + b%)?2
@kQ _ B(kk 2/d3' (2+ 12)2
2m 27 w? 4 (k+ k)2 (k2 + b%)
L (K +03)?
— Bk k)2~ / B 2
( )271'2 (k‘ + k')2 (k/2 + b%)Z

F(k) = (127)
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This is equivalent to Eq.(93) for the model.

From Sects. 4.3 and 4.4 the introduction of a scale b, to keep the units, is known.
In principle b; and b, can be different numbers, but hence forward it is convenient
to find a ‘combining scale’ b = b; = by. In Sects. 4.3 and 4.4 the appropriate scale b
has been independent of the momenta £, but nothing can be said against replacing

it by a function b = b(k). The new combining scale b(k) is then given by

m mz) (1+ Ay (K)) (1 + Az(k))

bli) = s (AQ(/-c) TR ) (L A (k) + mo(1 + Aa(R))?

(ty+1t) . (128)

Restoring the binding energy D, the relativistic integral equation looks like

S S b 2
G+ 2) + tlgn W kQ(i—(i_MQ-i-)b)Q)] o) =

[D + B(k, k) <bms(t1 + ) —

bms [ L Nk — (K +6%)°
- 2 /d o [B(k,k)gb(k) Blk (k) {1 +b2)2]
— t27rT;ls /dwm [B(k,k')¢(k1) — B(k,k)qﬁ(k)%] (129)

Restricting to S-waves, and evaluating the matrix equation the non-diagonal
elements can be fixed, i.e.

1 (ki = ky)* + 472 (ki — k)
i = = Jow; Bki, kj) [trmgIn 77— tams In G
aij = —\/wiw; B( ,g)llm Ul k) T (k2

] ., (130)

as well as the diagonal elements,

tims 5 (u+2b)

ai; = B(kiaki) l—bms(tl + t2) ( + 2b) o b K k2 4+ (N + b)2
_tym, (kz kj)? + p? (kF +b°)°
wik; B(k;, k; 131
g; I TR T 2 (k2 + 02)? (131)
_ tam, (ki — kj)? (k7 + %)
w;k; B(k;, k;
; ) In (ki + kj)? (k7 + 02)?

These elements describe the whole relativistic problem with the restriction that
Q? remains (k — k')2. All relativistic effects of the considered model are hidden in
B(k, k') and the combining scale b. It is obvious that the contribution of the masses
and of the momenta is much higher, since B(k, k') and the relativistic completion
of b are mainly build up by combinations of m; and A; = /1 + (k2/m2). The effect
on the spectrum would be that the levels of the ‘relativistic’ eigenvalues are lying

higher than those for the non-relativistic case.
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Since the relativistic system is so sensitive to the mass values, the specification
of the constituent masses m; and my has a greater effect on the energy levels, i.e.
the mass eigenvalue is quite sensitive.

Even the different light and heavy quark masses cause more or less relativistic
effects. The influence of the factor A; decreases with increasing quark mass. If
m2>> k2 A; ~ 1 as in the non-relativistic limit. Thus the relativistic effect increases
with decreasing quark mass.

To examine the semi-relativistic effects as well as those of Q? more quantitatively

is a project for the future.

6.2 Isospin effects

Throughout this thesis only the one-gluon exchange diagrams have been regarded.
Here, the third interaction graph, the annihilation diagram, is ‘virtually’ included,
i.e.

Heg = (T + Uoer) + Urga - (132)

As already stated in Sect.2 the effective two-gluon annihilation interaction Urga
destroys a qg-pair and creates another one with the same or another flavor, which
builds up a new Hamiltonian matrix. As already known off-diagonal mesons can
be well described, while flavor-diagonal ones are more tricky to handle. The anni-
hilation also mixes the flavors in the charge-neutral flavor-diagonal mesons. These
effects on diagonal mesons belong to isospin contributions.

In the thirties Heisenberg introduced the concept of isospin in his studies of the
atomic nucleus. Tabl. 17 shows the extension to hadrons. All mesons are grouped

into their iso-multiplet.

I=1 ISOTRIPLETS | I =14 ISODOUBLETS |I=0 ISOSINGLETS
(nt, 7% 77) (KT, K% n,w, o, A
(I+, %0, 5) (&, K)
(p*,0%p7) (E%E7)

Table 17: Table of Hadron-multiplets

Isospin has the mathematical properties of an angular momentum, but it is

defined in an abstract space [29, 36, 39, 40]. Isospin-physics is based on a Lie-algebra
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that is isomorph to the spin algebra, i.e. isospin generators obey [[;, I;] = igjjxl,
the application of the third component I3 determines the place in the multiplet and
corresponding ladder operators I interchange between the elements. According to
the famous example of the nucleus as an isospin doublet, isospin symmetry is rather
an approximate symmetry than an exact one. If the symmetry would be exact, the
isospin generators would commute with the strong Hamiltonian [I;, Hs] = 0. Then
all members of an iso-multiplet would be strictly degenerate in their mass. This
is equivalent to the charge independence of nuclear forces. The mass differences in
an iso-multiplet are a good measure of symmetry breaking. Zhu and Li [41] have
measured the isospin symmetry breaking in terms of the decay constant of the pion
Afr = frt — fro. If the symmetry is violated, the degeneracy of the iso-multiplet is
cancelled, and the isospin-space is no longer isotropic. According to the Gell-Mann—
Nishijima formula @ = I3 4+ Y/2 with the hypercharge Y = B + S, B being the
baryon number and S the strangeness, hadrons are arranged in a symmetric I3 — Y-
diagram. Its content depends on the fundamental representation and their spectral
description J”. Suppose the three light quarks, up, down, strange. They belong
to the SU(3) and have two non equivalent fundamental representations. According

to the principles of Young tableaux, the quarks are combined into a singlet and an

octet,
O
O o o
0 x = 0O + (133)
O O
O
3x3 = 1+8 .

The corresponding I3 —Y-diagram for pseudo-scalar mesons is shown in Fig. 32. The
center is doubly occupied, both, the singlet and the triplet, have a ‘zero’-component
for Y = 0. Including the remaining three quarks would need an appropriate higher
transformation group.

Under the impact of isospin heavy and light quarks behave differently. Mesons
of heavy quarks (charm, bottom, (top)) are relatively simple to describe. The pure
quarkonia as charmonium (c€) and bottomium (bb) have quite different masses and
two strictly separated groups. This grouping is already verified by the model equa-
tions, see Figs. 26 and 31. The ‘D’- and ‘B’-mesons are with respect to flavor and

charge clearly put in the right gg-order. Because of their large masses it is possible
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Figure 32: The meson octet with spin S =0 and L = 0.

to describe them approximately non-relativistic, which has been seen in Sect. 4.4.
The mass difference between heavy quark meson-states can be attributed to the

spin-spin interaction of the components

877'7:1/3 6:q6"q (5

V;’s q) = s T ) 134
(09) = =5 @ g (Z) (134)
with
5oty = 45,512 = 2S(S +1) — sy(sg + 1) = sglsg + 1], (139)
and
-3 §=0
S? = (s + s~ 2 = . 136
Ok I (136)
Hence, the mass splitting is given by [36]
87h’  a
AE,, = (U[V,|0) = 45— % 1g(0)2 (137)
9¢c mym;

which is only valid for S-states, where ¥(0) # 0. The description of light quarks (up,
down, strange) is more difficult. Their constituent masses are only slightly different.
There is no demand for a strictly separated catalogue in quark-flavors, therefore mix-

ing states are possible. The relatively small mass makes a non-relativistic treatment
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questionable. But from considerations of meson mass-spectra, it is known that even
light quarks analogue to heavy ones can be described semi-quantitatively in a non-
relativistic model, see results in Sects. 5.1 and 5.2. This gives a physical meaning to
the concept of constituent quarks, up- and down-quark have the same constituent
mass. This degeneracy leads to the fact that states with the same quantum num-
ber, vt and dd, can mix. A description is given by the isospin-formalism; up and
down form an isodoublet with I = 1/2, and I3 = 1/2 (up), I3 = —1/2 (down).
Analogue to the spin, up and down couple to a singlet and a triplet. The strange
quark comes along with the quantum number S (‘strangeness’), which can only be
changed in weak interactions. Therefore, combinations of (s, 5) + (g, 7) are eigen-
states of the strong interaction. Any s, § can mix with u, @ or d, d with the same
quantum number JZ. But the strange constituent mass is larger than the up- and
down-mass, which suppresses the degree of mixing. This mass difference breaks
isospin-invariance, and thus the SU(3)-symmetry is less obvious. In an isotriplet
the masses are quite similar, in an iso-octet there are great differences. Including
any heavier quark would further decrease the symmetry. For pseudo-scalar mesons
with J” = 0~ three states exist with S = I3 = 0, especially one symmetric flavor
singlet-state and two corresponding to the octet. From the octet-states, one has
I =1 and therefore a mixing of u % and d d, which can be identified with the neutral
pion, 7°. The remaining octet-state and the singlet-state are able to mix because of
flavor SU(3)-symmetry breaking (ms # m,, 4). For pseudo-scalar mesons this mixing
is quite small, 7 and 1’ are nearly pure states, i.e.
1
n) ~ |ns) = 76
, 1
') ~m) = 7

The quark structure of vectormesons is similar, but their singlet- and octet-states

[lut @) +[dtdl)—2lst5 L) (138)
[lutad)+ldtdl)+][st5)]

are stronger mixed. This belongs to the naturally given mixing angle of about
arctan 1/v/2, so that the ¢-meson is a nearly pure s3-state and the ‘w’ a state of
u @ and dd with negligible s 3-contribution. Analogue to the heavy quarkonia with
S =0, 1itis possible to derive the intra-multiplet mass difference from the spin-spin

interaction given in Eq.(134). The mass shift is given by

3 _
9c® mgmyg

+1%ﬁ|\11(0)|2 for vectormesons .

—38n _mas 1 (0)|2 for pseudo-scalar mesons
AM,, = (139)
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The value of the shift depends on the constituent quark masses. The difference is
increasing the lighter the system is, it remains dominant although |¥(0)? ~ 1/r%
increases for heavy quarks. Thus the mass shift for light quarks is larger than for
heavy ones. Phenomenologically the absolute mass value for light quarks can be
described by

My =mg+mg+ AM;, (140)
with my 4, not known, but m, = my fixed and o |¥(0)> ~ const. Then only a
mean mass of each multiplet can be calculated, small mass differences according to
electromagnetic interactions are not explainable. Since no isospin is included in the

model, the multiplet can not be resolved.

In this sequel the main features of isospin and its effect on mesons with heavy and
light quarks are explained. Those give evidence for the fact that the flavor diagonal
mesons have not been calculated. The intra-multiplet mass-shifts are described as

well as flavor mixing effects with respect to flavor-SU(3).

6.3 Some more aspects

A further assumption has been the lowest order approximation (LOA) of the effective
running coupling. The model has been figured out with @(Q?) = 4/3 & and a kind of
a running coupling occurs therein in the form of the renormalized a(11). Relaxing this
assumption means to introduce from the beginning an effective running coupling,
that has a similar form as Eq.(15). However, the expression is too complicate for
some first steps in this direction. Therefore the coupling has to be approximated.
Emphasis has to be put on the well-behavior in the near of a Coulomb singularity.

Another main approximation has been that of the spin content. As in Eq.(23)
the spinor function can be identified with the product of two four-currents, S =
J? = J¥jgu- The complete calculation is given in the appendix of [42]. The next
important term to be included is the spin-orbit interaction or finestructure, because
it provides the possibility to enlarge the model to triplet states, and therefore to
vectormesons. It is obvious that the suppression of all other S = 1-contributing
terms brings along a new simplified spin content, but with more structural input.

A possibility might be with respect to the existing coupling

Snew = dmymy + 2¢% + 4i(P x §)S | (141)
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with 2P = (K +k), = (K —k), and S = 1/2(3+7), including quark (&) -anti-quark

(7) spinor relations. The spin-orbit coupling can be expressed as 4iL - S, with

—_

L-S=-(Px{@+7) ,

[\™]

where P can be identified with a kind of a radius and ¢ with a momentum.
According to the new finestructure content it might be interesting to discuss
whether a gg-state behaves similar to a multi-electron system in pure quantum me-
chanics. As for a multi-particle system the single spins of the quarks are added
via Russell-Saunders mechanism to a total Spin S = > s; with quantum numbers
S =0, 1. The same holds for the orbital-angular momentum L= > ili. The dis-
cussed model has been for the quantum numbers S = 0 and L = 0, i.e. singlet
states, so that an implementation of the finestructure should verify that there is no
splitting according to S-terms. For quantum numbers S = 1, L = 0 there should be
a finestructure splitting in (25+1) = 3 states, the usual triplet. Even the description
of the spin-orbit coupling for S = 1 with arbitrary L is interesting, but therefore a
completely generalized description of the spin content is needed. A generalization

attempt of the spin content is shortly discussed in App. D.

In this section the relaxation of some assumptions and the appropriate effects
are theoretically discussed. The individual calculation and the later relaxation of

all assumptions in the model is a project for the future.
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7 Discussion and Conclusions

In this thesis the full many-body Hamiltonian of QCD has been reduced to a gauge-
invariant effective Hamiltonian acting only in ¢q space. The present work is moti-
vated by the question of how the divergent integral kernel effects the results, how
to perform the renormalization program in QCD, and whether an extremely re-
duced model in a light-cone formalism can verify the experimentally measured me-
son masses. With this thesis the technical basics are introduced for further more
complicated calculations.

The analysis of the interaction of the model at equilibrium uncovered the crucial
point that it contains a divergence related to the hyperfine interaction in configura-
tion space. It is regulated by a smoothing function, which provided a structure that

is equal to a Coulomb plus a scaled Yukawa potential.

Such a structure is already known from calculations carried out in Ref. [20]. This
approach reproduces the long and short range asymptotics of the eigenvalues €(n).
The numerical values show that for n > 2.0 the data reach the Coulomb limit and
for n — 0 the values tend to the Airy-solution, as predicted.

Considering this result, the model equations with their specific interactions,
‘Coulomb plus regulated Delta’ and ‘completely regulated’ potential, are used to
derive the scalar meson masses. Generalized counter terms are set up and the com-
bination of both potentials is obtained by introducing a combining scale parameter
b. The ‘stretching factor’ z is given as a function of the masses and the parameters
(cr, 1). A stability test shows that convergence is already obtained for small matrix
dimensions.

Utilizing the advantage to compute the whole flavor-singlet spectrum at once, all
wave functions and eigenvalues of the singlet scalar mesons are calculated. It is pos-
sible to reproduce all mesons, i.e. their spectra and wave functions. In comparison
with the experimental data the calculated values for the ‘Coulomb plus regulated
Delta’ comply with an average error of 3%, while the numbers for the ‘completely
regulated’ potential differ from the measured ones by approximately 2%. These are
excellent results for such a simple model.

A comparison between the 2S-states and the experimental vectormesons shows
for both interaction kernels that the values deviate by 4% in average. Proportionality

factors are found, which group the mesons according to their contributing quark
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masses. The combination of the obtained meson ground state wave functions in one
plot has verified that for the ‘Coulomb plus regulated Delta’ the waves are strictly
grouped with respect to their quark content. For the ‘completely regulated’ potential
the grouping is stronger, but the top-mesons cause difficulties. This is possibly
related to the fact that the sign in the full potential can flip between ‘Coulomb plus
scaled Yukawa’ and ‘Coulomb minus scaled Yukawa’, or more likely to numerical

instabilities because of the large quark mass.

Comparing the pion ground state wave function with the Coulomb wave function
in the same variables illustrates that the pion is close to the Coulomb limit. The
pion wave function decreases slower than the pure Coulomb case. According to
the type of potential, or the fitting property, the decrease is different, i.e. for the
‘Coulomb plus regulated Delta’ the wave function decreases slower than for the
‘full regulated’ potential. This depends on the coupling strength between Coulomb
and scaled Yukawa, which is related to the mean square radius of the pion: The
stronger the coupling the smaller the radius. But the larger the radius the less
the wave function is shifted to higher momenta. The root mean-square radius of
the ‘Coulomb plus regulated Delta’ agrees excellently with the experimental value.
This result is the same for ‘a’- or ‘p’-fitted masses. For the ‘completely regulated’
potential the obtained values comply with an average error of 38%, while the pion
root mean-square radius and the pure Coulomb root mean-square radius differ by
only 2.4%. Thus, in this case the radius is highly sensitive to the mass-values and
the chosen couple (0, @(p0))-

The distance from the Coulomb regime is tested by transforming p to the scale
n in Ref. [20], i.e. for the ‘Coulomb plus regulated Delta’ the scale is n = 1.9211
corresponding to the pion and for the ‘completely regulated’ potential it is n =
2.41935, which are both situated nearby or in the Coulomb-regime. Also the coupling
strength between Coulomb and Delta/Yukawa is tested by the factor u?/4m,m;. For
the ‘complete regulated’ case with (u?/4m,m,)—1 = 0.75 for the pion the potentials
are 71.5% more weakly coupled than for ‘Coulomb plus regulated Delta’, therefore
the pion wave function is nearer by the Coulomb wave function. The large root
mean-square radius verifies this point. Taking the quark masses of the top and the
up, the coupling strength is —0.99, which indicates that the ‘Coulomb minus scaled

Yukawa’ regime has been reached.

The knowledge of the meson wave functions implies that the structure functions
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including the contributions from higher Fock states can be calculated from a covari-
ant theory. Those light-cone wave functions encode the properties of hadrons [43].
Given the wave function, any spacelike electromagnetic or electroweak form factor

can be constructed exactly from the diagonal overlap of the functions [44].

According to the assumptions and approximations used to derive the model,
some of them are discussed on a theoretical level to guide future studies. Relaxing
the non-relativistic limit illuminates the fact that heavy quarks are non-relativistic
particles, while light ones are not. Thus, to obtain the correct values for light-light
mesons the relativistic calculation is important. Another aspect concerns the isospin
effects that cause the mass differences between iso-multiplet members. Its inclusion
would also give the possibility to describe flavor-diagonal pseudo-scalar mesons and

vectormesons.

To compare this model and its techniques with other theories, conventional phe-

nomenological models and lattice gauge calculations have to be mentioned.

Phenomenologically, the quark-structure of mesons and renormalization proce-
dures are of some interest [45, 46, 47, 48, 49]. The variety of theories lies somewhere
between a kind of ‘tube’ model in (141)-dimensions, which is semi-analytical solv-
able [45], and the derivation of the structure of hadrons from the fundamental theory
of the strong interaction, QCD [46]. The last approach does not work without a
renormalization scheme tailored to it. The author in [46] has a controversy opinion
on a Pauli-Villars renormalization since it would drastically increase the size of the
Fock space and destroys the hermiticity of the Hamiltonian. Other authors [47]
explore how the bound-state energy scales emerge to guide the renormalization pro-
cedure. They discuss the similarities that may survive in a non-perturbative QCD
calculation, in the context of a precision non-perturbative QED-calculation, in a ped-
agogical review. They estimate that a renormalization group is needed to produce a
regulated effective Hamiltonian, which contains all interactions found in the canon-
ical Hamiltonian, and try to solve it by bound-state perturbation theory. Eq.(43)
in [47] is equivalent to the bare Coulomb equation (Eq. 72) in Sect. 4.1. The authors
examine this equation by means of an example the known Lamb shift in hydrogen.
In fact their work is proclaimed to ‘advanced state-of-art for bound-state problems
in light-front Hamiltonian gauge theory. Some other renormalization approaches are
introduced on one hand by [48] in a method designed to be applied to QCD. But
for simplicity they illustrate their model by computing the second- and third-order
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matrix elements of the Hamiltonian in massless ¢*-theory in six dimensions. On the
other hand, in [49] the author defines and illustrates on a few perturbative examples
a general method of calculating light-front Hamiltonians which can be used for the
relativistic description of interacting particles.

Compared to the work done here, nowhere else has a complete renormalization
procedure been worked out to calculate hadronic spectra in light-cone formalism and
in the continuum. Mostly authors concentrate on several theoretical aspects concern-
ing the broad variety of QCD-puzzles. All of them have to compute large matrices
to get numbers, since loop-effects are taken into account. Recently, Brodsky, Hiller
and McCartor have shown [50], that the Pauli-Villars method has advantages for
regulating light-cone quantized Hamiltonian theory.

Another method to calculate meson masses is lattice gauge theory. The dif-
ficulty with lattice calculations is the time needed to compute the data and the
restriction to only one or two states. There also occur uncertainties which belong
to finite size effects, discretization, and the lattice spacing a. The lattices used for
the compilations are between 122 x 24 [51] and 16 x 32 [52]. On the smaller lattice
flavor singlet mesons have been calculated by using dynamical quark configurations
from UKQCD. They explored the scalar and pseudo-scalar meson channels with
N; = 2 [51]. The larger lattice was used for the determination of masses of the
light and strange quarks using high-statistics lattice simulation of QCD with dy-
namical Wilson fermions in M'S scheme [52]. They calculated the bare up-/ down
and strange mass, not their constituent one. The dynamical quarks are identi-
fied with the degenerate doublet of isospin symmetric quarks. With a simulation
upon sea-quarks and by introducing valence quarks the authors are able to calculate
K, K*, ¢. They state a high sensitivity to lattice artifacts, which gains control.
For their calculations they needed three sets of configurations, each set comprises
200 independent gauge configurations. This consumes a great of computer time.

It has also been possible to perform the masses of low-lying heavy-light mesons
in quenched approximation using multi-state smearing technique from a spinless
relativistic quark model Hamiltonian [53]. For the calculation a static approximation
has been invented and the heavy quark propagator is replaced by timelike Wilson
line. This produces an overall scale uncertainty in the quenched approximation,

large one-loop renormalization suggests two-loop correction to be sizable.

As well as meson masses the strong coupling o, has been derived from a lattice-
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potential [54]. The potential has been determined from a static quark-anti-quark
force at short distances, in quenched QCD. Here, the discretization effects occur,
and the authors had difficulties in dealing with logarithmic effects.

This sequel illustrates the main problems lattice-gauge calculations have to deal
with. Thus, the presented Hamiltonian method provides a less computationally
intensive and complete approach to receive the meson spectra. No problems with
discretization or logarithmic effects occur.

An other approach to practical calculations involves combining light-cone quan-
tization with the transverse lattice formulation. Here the transverse dimensions
x, are discretized, while the longitudinal plane is left continuous. The light-cone
Hamiltonian is written down in terms of longitudinal gauge fields and transverse
link fields, and the resulting theory is studied numerically using a combination of
LC and Monte-Carlo techniques [55]. This formulation is advantageous for several
reasons, e.g. confinement is manifest for finite lattice spacing, there is no need to
diagonalize the entire Hamiltonian to study lowest states, but it has technical diffi-
culties in translating the solutions of the non-linear sigma model for application of
light-cone techniques.

In other applications, such as the calculation of the axial, magnetic, and quadrupole
moments of light nuclei, the QCD relativistic Fock state description provides new
insights which go beyond the usual assumptions of traditional hadronic and nuclear
physics [56].

Concluding, the main advantages of this approach are summarized. According
to the Hamiltonian theory all mesons are derived from one simple model and they
verify the experimental values excellently. In this environment the pion is perfectly
reproduced. Contrary to lattice gauge theory more than one or two states are
computed, even wave functions are produced. Knowing the wave functions, form
factors and thus the mean square radius can be calculated exactly. The hyperfine
structure is very important. After regularization it provides the correct interaction
input to describe the mesons properly. Contrary to the hydrogen atom it is here not
treated in first order perturbation theory.

The difference between QCD and QED is given in the factor of strong or weak
coupling and the non-abelian nature of QCD resides in the factor 4/3. As seen,
renormalization can be carried out exactly. The final equation of the model is of

such a simple form, that it can be solved on a desktop computer. Contrary to
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lattice gauge theory, calculations have required only seconds. The results show
quantitative agreement with the experiment. If the two-gluon exchange diagram
would be included, even the isospin structure of the theory could be understood.

With their simplicity, all techniques derived here can be applied to other theories.
Even light-front coordinates play a distinguished role in many high energy scattering
experiments (e.g. DIS) and light-front quantization represents the most physical ap-
proach towards a fundamental theoretical description of such experiments [57]. The
knowledge of the hadron wave function also opens a window to a deeper under-
standing of the physics of QCD at the amplitude level, illuminating exotic effects of
the theory such as intrinsic heavy quark effects, color transparency and diffractive
processes [43].

For the near future, the four main improvements that have to be kept in mind

are:
1. the calculation of the semi-relativistic equation,
2. the relaxation of the Q%-approximation to derive a full relativistic description;
3. the inclusion of the full spinor structure, and

4. the application of the effective coupling constant to the theory.



92 A  SPINOR MATRIX T

A Spinor matrix T

As mentioned in Sect. 3.2 in this Section the matrix elements according to Eq.(33)

are tabulated. The diagonal elements are

m? m3 k? k2
T, = M 2 1 |
H xx’+(1—x)(1—x’)+x(1—x)+x’(1—x’)
b e~ Ho—¢") eile—¢') A
+ , 142
L xa! +(1—3;)(1—:1;’)) (142)
Ton — m? m3 ki k! e~ie=¢)
33 =

o T A=)  2(l-2)(—2)

Ty, = T, Ty = Tss,
with m; and my being the masses of quark and anti-quark, respectively, and ¢ the
phase according to k 1- The upper half of the off-diagonal matrix is

mymg(z — z')?

T, _ 143
- zo'(1—2)(1 —x)’ (143)
mo X kL . ]Ci ]
T. — — L ip _ L g
13 1—x’1—x<xe 2 © ’
ml—xz( k. _. kK
T, — e ip i
" oz (1 —z° 1—2° ’
ml—z( k. koL
T. — 1 o _ ip
s ¥ x (1 — 1—z° )’
ma x ki _, kKo .
T — ML —dp ML —idp
2 1—x’1—x<xe 2 ’
T34 - 05
and the lower half of the off-diagonal matrix is with T;; = T};(q <> @)
roN2
T, = — 771"”(”3, z) , (144)
zz!(1—z")(1 — x)
15 = my T k—J'e_w — ﬁe_w’
1l—2z1—2a'\ z x! ’
Ty = _ml-a [k e — u e
z 1—x 1—a ’
ma 1-— LE, kJ_ . k;i Ly
T — el o ip
32 x (1 —z° 1—2°¢ ’
mo LL‘, ]CL . kj_ ]
T = — Moip  PL g
12 1—3:1—30’(336 2 ’

T43 = 0
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B Eigenfunctions

In this section the eigenvalues and eigenfunctions of the ground states for the
‘Coulomb plus regulated Delta’ and the ‘completely regulated’ potential are tab-
ulated. It is possible to compute all excited states to each spectrum with the same

program. The following tables include predictions for mesons with top-quarks.

The first three tables belong to the ‘Coulomb plus regulated Delta’ potential.
The first eigenfunctions of the calculated mesons are given in Fig. 26. Parameters
are o = 0.6977 and p = 4.8 - kK, kK = 350 MeV. The last three tables show the
eigenvalues and ground states wave functions for the ‘completely regulated’ case.
The wave functions of the calculated mesons are plotted in Fig. 31. The parameters
are « = 0.9362 and p = 4.0 - K, kK = 350 MeV. In both cases the dimension of the
matrix is 16 and the quark masses are given in units of £ and the meson masses in
[MeV].
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B EIGENFUNCTIONS

particle T K D D
(wd) | (su)=(s,d) | (cu)=(c,d) | (cs)
q mo =148 | mz3=1.71 | my =4.68 | my = 4.68
q my =148 | m; =148 | m; =148 | m3=1.71
mass 139.570 493.677 1864.600 1915.790
eigenvalue -8.620 -8.172 -9.538 -10.778
momentum eigenfunction 10*ulj,i]
0.010 10.000 10.000 10.000 10.000
0.054 9.928 9.928 9.951 9.957
0.133 9.560 9.561 9.696 9.734
0.249 8.582 8.584 8.986 9.107
0.405 6.888 6.886 7.637 7.888
0.603 4.853 4.840 5.768 6.132
0.849 3.054 3.029 3.835 4.219
1.150 1.783 1.755 2.284 2.596
1.513 0.999 0.975 1.259 1.468
1.954 0.546 0.529 0.662 0.784
2.492 0.292 0.281 0.338 0.404
3.159 0.151 0.145 0.168 0.201
4.010 0.074 0.071 0.080 0.096
5.153 0.033 0.032 0.036 0.042
6.843 0.013 0.012 0.014 0.016
10.000 0.003 0.003 0.003 0.004




particle B B B
(bu)=(b,d) | (bs) (byc)
q ms = 14.29 | ms = 14.29 | ms = 14.29
q my =148 | my=1.71 | my = 4.68
mass 5278.9 5323.913 6006.391
eigenvalue -21.231 -24.479 -65.196
momentum eigenfunction 10*ulj,i]
0.010 10.000 10.000 10.000
0.054 9.973 9.975 9.983
0.133 9.831 9.845 9.892
0.249 9.423 9.469 9.627
0.405 8.579 8.685 9.059
0.603 7.222 7.406 8.079
0.849 5.495 5.739 6.689
1.150 3.740 3.992 5.053
1.513 2.289 2.498 3.452
1.954 1.282 1.427 2.136
2.492 0.670 0.756 1.207
3.159 0.330 0.377 0.627
4.010 0.153 0.176 0.299
5.153 0.066 0.075 0.128
6.843 0.024 0.028 0.046
10.000 0.006 0.007 0.011
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particle T T T T
(tu)=(t,d) | (ts) (t,c) (t,b)
q me = 498 | mg =498 | mg = 498 | mg = 498
q mi; =148 | my =1.71 | m; =4.68 | ms = 14.29
mass 174593.7 174638.3 | 175230.8 177179.9
eigenvalue -641.195 -738.625 | -2023.902 | -6173.167
momentum eigenfunction 10*ulj,i]
0.010 10.000 10.000 10.000 10.000
0.054 9.984 9.985 9.985 9.985
0.133 9.902 9.903 9.904 9.905
0.249 9.662 9.663 9.668 9.669
0.405 9.142 9.145 9.156 9.159
0.603 8.234 8.240 8.262 8.266
0.849 6.919 6.927 6.960 6.967
1.150 5.324 5.335 5.376 5.384
1.513 3.709 3.720 3.761 3.770
1.954 2.334 2.343 2.377 2.384
2.492 1.333 1.339 1.363 1.367
3.159 0.695 0.699 0.713 0.715
4.010 0.331 0.333 0.340 0.341
5.153 0.141 0.142 0.145 0.146
6.843 0.050 0.051 0.052 0.052
10.000 0.012 0.012 0.012 0.012




particle T K D D
(wd) | (su)=(s,d) | (cu)=(cd) | (cs)
q mo =151 | m3=1.76 | my =4.82 | my = 4.82
q my =151 | my =151 | m; =151 | m3=1.76
mass 139.570 493.677 1864.600 1930.041
eigenvalue -9.010 -8.734 -11.775 -12.934
momentum eigenfunction 10*ulj,i]
0.010 10.000 10.000 10.000 10.000
0.054 9.810 9.816 9.895 9.905
0.133 8.891 8.920 9.361 9.422
0.249 6.829 6.888 7.991 8.164
0.405 4.249 4.301 5.795 6.080
0.603 2.233 2.253 3.477 3.771
0.849 1.076 1.074 1.772 1.978
1.150 0.504 0.496 0.812 0.921
1.513 0.234 0.228 0.353 0.402
1.954 0.109 0.105 0.150 0.170
2.492 0.050 0.048 0.063 0.071
3.159 0.022 0.021 0.026 0.029
4.010 0.010 0.009 0.011 0.012
5.153 0.004 0.004 0.004 0.004
6.843 0.001 0.001 0.001 0.001
10.000 0.000 0.000 0.000 0.000
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particle B B B
(b,u)=(b,d) (bss) (b,c)
q ms = 14.45 | mys = 14.45 | my = 14.45
q my = 1.51 mg =176 | my = 4.82
1mass 5278.9 5336.9 6218.396
eigenvalue -27.245 -30.148 -55.638
momentum eigenfunction 10*ulj,i]
0.010 10.000 10.000 10.000
0.054 9.946 9.947 9.927
0.133 9.675 9.684 9.634
0.249 8.937 8.969 8.907
0.405 7.542 7.612 7.464
0.603 5.587 5.684 5.405
0.849 3.548 3.639 3.276
1.150 1.939 2.000 1.655
1.513 0.936 0.965 0.710
1.954 0.411 0.421 0.268
2.492 0.168 0.170 0.092
3.159 0.065 0.064 0.029
4.010 0.023 0.023 0.009
5.153 0.008 0.007 0.003
6.843 0.002 0.002 0.001
10.000 0.000 0.000 0.000




particle T T T T
(tw)=(td) | (t:s) (t,c) (t,b)
q mg =498 | mg =498 | mg = 498 | mg = 498
q my = 1.51 | mg =176 | mqy =4.82 | ms = 14.45
mass 171912.3 174024.8 | 175971.6 123390.5
eigenvalue -8258.5 -2538.9 -47.1 -138313.6
momentum eigenfunction 10*ulj,i]
0.010 1.759 8.704 10.000 0.029
0.054 1.762 8.745 0.188 0.029
0.133 1.766 8.760 0.006 0.032
0.249 1.780 8.802 0.001 0.041
0.405 1.812 8.898 0.000 0.066
0.603 1.876 9.079 0.000 0.133
0.849 1.996 9.369 0.000 0.348
1.150 2.211 9.741 0.000 1.251
1.513 2.598 10.000 0.000 5.499
1.954 3.315 9.564 0.000 10.000
2.492 4.705 7.543 0.000 1.533
3.159 7.344 4.192 0.000 0.142
4.010 10.000 1.536 0.000 0.016
5.153 5.337 0.390 0.000 0.002
6.843 0.838 0.069 0.000 0.000
10.000 0.053 0.006 0.000 0.000
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C Scalar pion

As discussed in Sect.5.1 the fit-state to the first excited pion state is all but clear.
Assuming a scalar pion leads to a first excited state corresponding to the p-meson.
For completeness some numbers and main results according to this assumption are
given in this appendix.

A first calculation of the lowest eigenvalue shows that the values for g = 0 in the
first column represent the Coulomb case. It is also remarkable that for increasing p
and « the first eigenvalue decreases more rapidly to —oo than for m, = my = 1.48.

Fig. 33 shows the result of this method, the coupling constant « is plotted versus
the regularization scale p in units of kK = 350 MeV. The behavior of the curve
changes at u ~ 7. Hence the function can be divided into two regions: pu < e

and u > Herit with Merit ™~ 7.

Figure 33: Renormalized coupling constant « versus regularization scale y in units of
k = 350 MeV. The data is obtained by requiring the constraint \/m?2 + ¢ = M+ in the
Bisection method. — Note the gap at y ~ 7.

The assumption comes in, when ‘universality’ is checked to hold for the whole

spectrum. The constraints for the second eigenvalue is thus modified

\/m§+82:M1 =769 . (145)

This mass value is now identified as the p-meson. The values of the constituent

masses m; = m,, and my = my are adjusted to be m, = mg = 406 MeV = 1.16 - k,
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which is more than 100 MeV smaller than for the ‘Coulomb plus regulated Delta’ or
the ‘full regulated’ problem fitted to the ‘a’~meson. Fig. 34 shows spectrum of the

1000.0 T T T

800.0 1

I
M/ Mev
600.0 1

400.0 1

200.0 F 1

0'0 '} '} '}
0.0 5.0 10.0 15.0 20.0

Hg=38 H

Figure 34: The spectrum of the first three singlet S-states in MeV versus u. The 1S-state
is completely flat and insensitive to u, the 2S- (¢) and 3S-state (O) are functions of . The
deep step at perir ~ 7 corresponds to the gap in Fig. 33. The whole spectrum is insensitive
to u at u ~ 4, accentuated by the tangents to the plateaus. For y — oo the spectrum is

not resolvable on this mass scale.

first three singlet S-states in MeV versus the scale p calculated with the appropriate
renormalized «. The higher states show the same behavior as before, the gap at
Werit ~ 1 causes their ‘break-down’. For p < p.; the levels are mainly equidistant
and the mass value is in the region of 800 MeV. Between y = 3 and p = 5 both
states form small plateaus. The appropriate («a, p)-pair is found at (3.8, 0.6904).

The completely fixed spectrum and the wave functions of the excited 7% are
listed in Table 18.

Taking only the first eigenfunction for 7 (o), a comparison to the Coulomb wave
function (¢) under the same conditions, i.e. same a and quark masses, is shown in
Fig. 35. Therein the arbitrarily normalized wave functions are plotted versus the
momentum, with the last value at |E\ma$ = 10. The corresponding scale for the
pion is found to be n = 0.9326, which indicates that the pion is situated farer
away from the Coulomb regime than the two model equations. Therefore it is not

astonishing that the pion wave function is slower decreasing than in the ‘Coulomb
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M?2: 140 768 790 799 809 883
k;j 1] -5.223 -0.568 -0.283 -0.169 -0.042  0.980
0.01 | 10.000 10.000 10.000 10.000 -0.448 -0.017
0.05 | 9929 8.705 5952 -0.234 1.576 -0.037
0.13 | 9.564 4.285 -1.054 0.010 -9.776 -0.168
0.25 | 8592 0.713 -0.211  0.003 10.000 -1.497
0.40 | 6.908 -0.077 0.009 -0.000 -0.085 10.000
0.60 | 4.878 -0.099 0.017 -0.000 -0.460 -1.678
0.85| 3.077 -0.055 0.009 -0.000 -0.248 -0.873
1.15| 1.801 -0.027 0.005 -0.000 -0.121 -0.402
1.51| 1.012 -0.014 0.002 -0.000 -0.060 -0.193
1.95| 0.554 -0.007 0.001 -0.000 -0.031 -0.096
249 | 0.297 -0.004 0.001 -0.000 -0.016 -0.049
3.16 | 0.154 -0.002 0.000 -0.000 -0.008 -0.024
4.01| 0.076 -0.001 0.000 -0.000 -0.004 -0.012
5.15| 0.034 -0.000 0.000 -0.000 -0.002 -0.005
6.84 | 0.013 -0.000 0.000 -0.000 -0.001 -0.002
10.00 | 0.003 -0.000  0.000 -0.000 -0.000 -0.001

Table 18: The spectrum and the wave functions for the excited m*. — Parameter values
are: «=0.6904, p= 4.800, m1 = mo= 1.48 (masses in units of k = 350 MeV). Calculations

are done with 16 Gaussian integration points, with a maximum momentum kig = 15.52 k. —

The first row gives the first 6 mass eigenvalues (in MeV), corresponding to the first singlet-

nS states. The second row shows the eigenvalues M7 — m? (in units of k?). Below each

eigenvalue are the 16 eigenfunctions, labeled with the integration points 10k;/kig shown

in the first column. They are normalized such that the largest value has the numerical

value ‘10°. Note that the number of nodes increases as expected, and that the highest

eigenvalue is actually in the continuum.
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Figure 35: The arbitrarily normalized pion wave function (o) is plotted versus the mo-
mentum, which is normalized to |E |maz = 10. It is compared to the Coulomb wave function
(¢) at the same coupling and quark masses in the same units.— The pion wave function

decreases much slower with the momentum than the Coulomb wave function.

plus regulated Delta’ fitted to the ‘a’-meson, i.e. the width depends on the scaling
p?/ (4m,m,) = 2.6828, and therefore on the strength of the interaction between
Coulomb and Yukawa. Here the interaction is 72% stronger the in the ‘completely
regulated’ case, but just 2% stronger than in the ‘Coulomb plus regulated’ one.
Therefore, the root mean-square radius of the pion is (rfr)% = 0.662 fm, which is
0.4% smaller than in the ‘Coulomb plus regulated Delta’ case. The pure Coulomb
radius has (r2)2 = 1.8249 fm.

With the received basic parameters (a, p, m,, mg) the remaining quark masses

are calculated and tabulated in Table 19.

fit meson | mass/[MeV] | derived masses/[MeV]
du 140 My = Mg 406 (fixed)
s 494 M 508
ci 1865 M 1666
bu 5279 M 5054

Table 19: The fitted quark masses are given in [MeV].- In the first two columns the corre-

sponding fit meson and its mass is mentioned, in the third the derived value is tabulated.
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With this complete set of parameters all mesons are described. The derived
‘flavor off-diagonal’ mass-eigenstates are given in Table 20. For comparison, the

experimental values are shown in Table 13.

a d 5 ¢ b

u 768 871 2030 5418
d | 140 871 2030 5418
s | 494 494 2124 5510
c | 1865 1865 1929 6580

b | 5279 5279 5338 6114 —

Table 20: The calculated mass eigenstates of QCD in MeV. Singlet 1S-states are given in

the lower triangle, singlet 2S-states in the upper.

Again the singlet 2S-state are given in the upper triangle, instead of the real vec-
tormesons. Comparing the calculated singlet 1S-states to the experimental masses,
and regarding that the up- and down mass were fixed from the beginning, the values
for cs = D}, bs = B?, and b¢ = B are the really calculated masses. They deviate
from experiment by approximately 3%. Even in this case the singlet 2S-states fit to
the vectormeson masses. The p* has been a fitting parameter for the up- and down
mass, but the other values differ just by (1.1 to 2.9)%. They are therefore closer to
the masses of the vectormesons than for the other calculations. The proportionality
factors between 1S- and 2S-states are similar for light-light mesons and higher for

heavy-light or heavy-heavy compounds,

quark-combination experimental 2s / 1s | factor
(d,u) 768 / 140 5.5
(s,d)=(s,u) 871 / 494 1.76
(,0) 2124 / 1929 1.101
(c,d)=(c,u) 2030 / 1865 1.088
(b,c) 6580 / 6114 1.076
(b,s) 5510 / 5338 1.032
(b,d)=(b,u) 5418 / 5279 1.026

Comparing the factors to those for both cases fitted to the ‘a’, the present numbers
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are closest to the experimental proportionalities between scalar- and vectormeson.
The periodicity is clearly visible.

Remembering that this calculation has been on the assumption of a scalar pion,
the values fit quite well into the puzzle. Obviously, the singlet 2S-state of the pion
is in reality closer to the ‘p’-level than to the ‘a’-level. In fact the p-fitting seems to

be a possibility for a lower boundary to the problem.
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D Generalization attempt of the spin content

There are several possibilities to receive a system for arbitrary spins. The first is to
convert the helicity table (Ag, Ag| T}, A7), already calculated in Eqs.(142, 143, 144)
(see Sect. 3.1), into a spin matrix depending on the quantum numbers S and S,. A
possibility is to use a Melosh transformation, which ensures that the meson will be
an eigenfunction of the spin operator by rotating the quark helicities. Therefore a
spin-orbit wave function for Spin (S, S,) is defined as [58, 59, 60]

RS,SZ ('7/‘7 EJJ Aqa )\q) (]‘46)

o - 11
= Y (AR (@, kL, mg) A (A RE, (1 — =, —kL,mq)|x\'>(§§,A/\'\SSz> ;
AN

where the Melosh rotation is given by
m + xMy — i3(7 X k)
V(m+2Mo)? + B2

Ry, Frymy) = (147)

with 7 = (0, 0, 1) being a unit vector in z-direction, and the meson mass square taken
as M¢ = (E1+E»)%. To receive a spin matrix from the helicity matrix T the following
steps are required: first calculate (\ R}, (z, ki, mg)|A), then the corresponding for
the anti-quark with + — (1 — z) and k. — —k,. Hence both terms are combined
in Eq.(146) and Rsg, (A, A7) is developed. After taking its inverse the new spin
matrix is performed in a ‘sandwich procedure’, i.e.

Y Y Rl (A 2 (Mg Al TN, AR s, (A, Ap) - (148)

Ag:Ag Ny Nl
With having a spin-half system of a quark and an anti-quark, which couple to a
singlet with S = 0, S, = 0 and a triplet S =1, S, = —1, 0, 1, this matrix will
obviously be a 4 x 4 matrix which contains all possible spin combinations. Under
the impact of the rotational invariance of the Lagrangian in the x-y plane, which is
related to the projection of the total angular momentum J,, the coordinates can be

written as k = (kycosg, ky sing, k,). Therefore the Melosh rotations are

R L @ —hie® 4 oM, , and  (149)
= _ , a=my+x , an
! \/a2+ki ke a 1 0
1 b kJ_6_i(p
Re= ——o , . b=mg+(1—2)M, . (150
" m(_k ; ) rr i 0
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For the derivation of Eq.(146) the system corresponding Clebsch-Gordan elements
are needed [61]. In the end Eq.(146) has the shape of a rotational matrix

A1, A/S, S, (1,-1) (1,0) (0,0) (1,1)
N —bk e %@(ab +k2) %(ab —k?) —ak e
1 ak e % %(ab +k2) %(ki —ab)  bkie¥ (151)
™ —k2 e 2w k—\/%e_i‘p (a — ) %e‘i“’(a +0b) ab
1 ab —k—\/%ew (a—b) k—\/%ew (a+b) —k3e¥

with a denominator D = \/CL2 + ki\/b2 + k3 and the mass terms a = m, + My,
b=mg;+ (1 —x)M,. The determinant of the matrix R(S,S,) is unity, det R =1,
therefore the unitarity condition RIR = 1 is satisfied and the inverse of R is equal
to its adjoint. With these matrices the position is reached to compute the trans-
formation of the helicity to the spin table. The mathematical operation 7(S,S,) =
RIT(A1, A2)R has not yet come to a result. The calculation is quite complex since
all terms of the elements 7;; are necessary. The matrix multiplication brings up a
new matrix 7°(S, S,) with complicate elements and no obvious structure. It is known
from former tests that the helicity matrix has eigenvalues and can therefore be di-
agonalized, but including the Melosh transformation everything even gets worse.
Though the Melosh transform is a usual way to rotate basis states, it is used for to-
tal angular momentum J, while here the single contributions to angular momentum
Ji are implemented. This might cause difficulties and therefore this method has to
be improved.

Another possibility to think of is the separation of the integral equation into
a radial wave function and a spin-orbit part [32], ie. ¥ = ®(z, k1 )x(\, Aa).
This method is already known from the hydrogen atom, where the solution to
the Schrodinger equation has been found by a separation ansatz, i.e. U(r,0,¢) =
R(r)F (0, ¢). The hydrogen problem is exact solvable. For a multi-particle problem
everything is more complicate. Ji et al. [59, 62, 63] used a separation ansatz, but for
a fixed radial wave function and a spin-orbit one corresponding to J¥¢. Therefore
the whole system was settled and no integrals occured. But in a flexible system with
the angular momentum operators carrying the interaction, they are problematic to
define in front form dynamics. A way to proceed is that of Trittmann [21] who

Fourier transformed the spinor matrix 7', i.e.,

<$,EJ_,JZ,)\1,)\2|T|.TI,];;J_, ;a)‘lla)‘12> (152)
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1 27 . 2T . , 5 .
= 9 /s dsoe’ZL"“"/O dp' e (z, k15 0, A, Xa| T2 K L5 0, Ny, Ab)

The integration over (g, ¢') gives a helicity table for arbitrary J, = n with n € Z,
which is then implemented in the model equation. This method has the disadvantage
that it contains a double integral and is therefore not as comfortable as a separation

ansatz. But at the moment it seems to be the best alternative.
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