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Abstract

Aim of this work is the analysis and application of the reduction methods QSSA and ILDM.
Both methods were developed in the context of the modeling of chemical combustion pro-
cesses. They have in common that they reduce highly the number of species to be modeled,
which leads to an enormous reduction of the computation time. The produced systematic er-
ror prevents clearly the obtained solution to solve the detailed problem. In some applications
the reduced solution has therefore doubtful physical sense.

One focal point of this thesis is hence the investigation of the applicability of the reduction
methods as preconditioner for the solver. The treated problems are stationary systems of
equations. This way of the application ensures the convergence to a solution with physical
sense, given that convergence occurs at all. Unfortunately, it can and will be shown that
under no circumstances convergence can occur, if the reduction methods are applied as
preconditioners.

A second focal point is therefore the application of the reduction methods to instationary
problems. A given accuracy is to be reached with as many reduced time steps as possible
and with only few detailed time steps in order to have the result be accurate enough. The
technique of dual solutions leads to a strategy, which leads to a solution, which is by factors
closer to the detailed than the reduced calculated solution. Fortunately, the same strategy
can be used for an adaptive time stepping with almost no additional costs.



Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Analyse und der Anwendung der Reduktion-
smechanismen QSSA und ILDM, die beide im Rahmen der Modellierung von chemischen
Verbrennungsprozessen entwickelt worden sind. Beide Mechanismen reduzieren die Anzahl
der zu modellierenden Spezies erheblich, was eine bedeutende Kostenersparnis bei der nu-
merischen Behandlung zur Folge hat. Der dadurch entstehende systematische Fehler bedingt,
dass eine so erhaltene Lösung nicht notwendigerweise eine Lösung des detaillierten Prob-
lems ist. In einigen Anwendungen führt der reduzierte Lösungsweg daher zu physikalisch
fragwürdigen Ergebnissen.

Ein Schwerpunkt dieser Arbeit ist daher die Untersuchung der Anwendbarkeit dieser Reduk-
tionsmechanismen als Vorkonditionierer für Löser von stationären Problemen. Diese Art der
Anwendung impliziert die Konvergenz der Berechnungen zu einem physikalisch sinnvollen
Grenzwert, gegeben dass Konvergenz vorliegt. Unglücklicherweise kann gezeigt werden, dass
Konvergenz mit den Reduktionsmechanismen als Vorkonditionierer unter keinen Umständen
vorliegen kann.

Ein weiterer Untersuchungsschwerpunkt liegt in der adaptiven Anwendung der Reduktions-
mechanismen bei instationären Problemen. Mit so vielen reduzierten Zeitschritten wie
möglich und so wenigen detaillierten Schritten wie nötig soll eine zuvor vorgegebene Genauig-
keit erreicht werden. Mit Hilfe der Technik der dualen Lösungen kann ein Verfahren ent-
wickelt werden, das eine Lösung liefert, die um einen beliebig kleinen Faktor von der de-
tailliert gerechneten Lösung abweicht. Das Verfahren ist so konstruiert, dass mit gleichem
Rechenaufwand auch die Zeitschrittweite adaptiv gesteuert werden kann.
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1 Introduction

The simulation of phenomena involving chemical reactions, e.g. of chemical reactive flows,
is still very time consuming due to the stiffness of the equations and the enormous number
of degrees of freedom. They result from the large number of species, which are generally
involved in the reaction and the large grids, which are to be applied for the calculation of
PDEs in order to obtain decent numerical results. For advanced solving techniques like the
multilevel technique, the computation time grows linearly with the number of grid nodes,
but cubically with the number of species involved. Therefore reduction mechanisms have to
be applied in order to reduce the number of calculated species and hence the computational
costs.

This thesis will concentrate on two major reduction methods, namely the Quasi Steady State
Assumption (QSSA) and the method of the Intrinsic Low Dimensional Manifolds (ILDM).
The quasi steady state assumption takes advantage of the different timescales for the species.
Species with fast timescales are assumed to relax quickly to the so called quasi steady state,
whereas species with slow timescales drive the reaction. For an extensive discussion and the
application of QSSA in combustion systems, see for example [30, 39, 46]. The technique of
the ILDM is similar to the QSSA, but the idea is based on the differentiation of fast and slow
processes in a chemical reaction system rather than on fast and slow species. This technique
does not only reduce the number of equations, but also the stiffness. The technique of the
ILDM was introduced by Maas and Pope in 1992 [28] and is widely used, see for example
[8, 11, 34, 37, 44].

Both reduction methods QSSA and ILDM are introduced in detail in chapter 3, but the
basic ideas are already presented here by considering the simple example

u̇1 = −u1

u̇2 = 1000(1/u1 − u2)

with appropriate initial conditions. The solution to this system is given by

u1(t) = e−t

u2(t) =
1000

1001
et + ce−1000t,

where the initial condition u1(0) = 1 is assumed. The information of the initial value for u2

is contained in the constant c. The solution shows clearly, that the manifold

u2 =
1000

1001u1

3



1 Introduction

attracts the solution exponentially and independently of the initial value u2(0). Assume now
that one is able to identify this manifold a priorily, then one finds itself in the advantageous
situation that only the solution for u1 is to be calculated and u2 can be obtained from the
function ψ. The so obtained solution is of course not exact, but the difference to the exact
solution is only ∆u2(t) = ce−1000t, which is close to zero even for small values of t and can
therefore be neglected in most cases.

The reduction methods QSSA and ILDM are concerned with the approximation of these
manifolds. With the methods introduced in chapter 3, these approximations are calculated
to be

ψQ(u1) =
1

u1
and ψI(u1) =

998

999u1
.

Clearly, the function ψI obtained with ILDM is a better approximation to the exact manifold
parameterized by ψ than ψQ. The accuracy of the approximating manifolds depends strongly
on the source term for the fast variable u2. Replacing the factor 1000 by only 10 leads to
the exact representation of the attracting manifold

u2 =
10

11u1
,

whereas the manifolds calculated from QSSA and ILDM read

ψQ(u1) =
1

u1
and ψI(u1) =

8

9u1
.

Again, the manifold created with ILDM is of higher accuracy as the QSSA–manifold, but
the performance is in both cases much worse than above, where the source term for the
fast variable included the factor 1000. This indicates a relation between the accuracy of the
obtained manifolds and the spectral gap of the gradient of the source term. The difference
between the largest and smallest eigenvalue is now λ1 − λ2 = 9, whereas it is λ1 − λ2 = 999
in the above example.

Other reduction mechanisms are also possible to reduce the computational costs, but they
are not treated in this thesis. Think for example of the theory of partial equilibria (e.g.
[5, 30, 42, 43]), the method of computational singular perturbation [25, 26] or reduction
methods based on optimization approaches [40]. All reduction strategies are in principal
based on ideas of the Nobel price winner (1956) N.N. Semenov [45] and Bodenstein [7], who
proposed the Bodenstein quasi stationarity.

All these reduction methods have in common that they reduce the computational effort for a
chemical reaction system in the one or the other way. They all lead to an algebraic relation
of the so called process variables to the fast variables. Therefore in dynamical systems for
example, only the equations for the process variables are to be solved, the values for the fast
variables can be obtained from the reduction method. This procedure introduces of course
systematic errors, which leads directly to the goal of this thesis.

The aim of this thesis is to explore, how the reduction methods QSSA and ILDM can be
applied, such that the computational costs are reduced without systematic errors. This will
be done for various situations:

4



• QSSA and ILDM as preconditioners: Consider for example the preconditioned Richard-
son iteration for a system of linear equations

xn+1 = xn + P (b−Axn) = xn + h,

where P is obtained by the application of QSSA and ILDM to the system

Ah = b−Axn.

The conjecture is that this preconditioner leads to exact results with small computa-
tional effort.

• The reaction mechanisms define a quasi–Newton method: For the given problem
f(u) = 0, solve the linear equation

Df(un)δu = −f(un)

arising from the Newton method by the application of the manifolds obtained from
QSSA or ILDM. This strategy will clearly converge to the exact solution, given that
convergence occurs at all.

• Apply the reduction methods adaptively: Think of the ODE u̇ = f(u), which is solved
by an ODE solver, which leads clearly to errors. The application of QSSA and ILDM
is therefore not necessarily required to lead to exact results. The methods may still be
applied, if the occurring error is of the same order as the discretization error. Take for
example the above ODE. Then the application of a detailed solver for the first time
steps and using a reduced solver thereafter might easily lead to results with almost the
same accuracy as a detailed solver for the whole interval.

The outline of this thesis is as follows: First a broad introduction to the equations modeling
a chemical reaction is given in chapter 2. Then the reduction methods QSSA and ILDM will
be explained in detail. The basic ideas and the theoretical background will be presented as
well as a possible algorithm, which computes a single QSSA– or ILDM–point. A possibility,
how the obtained results may be stored, is also shown.

Chapter 4 gives an overview to the techniques, which may be taken to solve equations
involving chemistry. Special emphasis will be put to situations, where the reduction process
does not lead to systematic errors. It can be shown that for relevant examples the application
of the ILDM–method is exact.

The reader is then lead to the preconditioning of systems of linear equations. The main
result of chapter 5 is that the preconditioners obtained from QSSA and ILDM prevent the
iteration from convergence. An analytic result will show that convergence can practically
never occur. The effort, which has to be undertaken in order to force convergence anyway,
turns out to be as expensive as the detailed solution process.

Chapter 6 is then concerned with the quasi–Newton method, where the linear problem of the
Newton iteration is solved with a reduced solver. The surprising result will be that the hereby
reduced Newton iteration is only in very few examples comparable to the detailed Newton
method, even if the considered problem contains only the chemical source term. Disturbed

5



1 Introduction

problems are even more difficult to be solved, therefore convergence does in general not
occur. Even though analytical results cannot be presented, the behavior of the reduced
Newton method will be explained by an eigenvalue analysis.

Finally, the adaptive application of the reduction methods to ODEs will be investigated in
chapter 7. The goal is to find criteria, which indicate, whether the solution process is to
be switched from a reduced to the detailed strategy and vice versa. These criteria can be
presented on a basis of dual solutions, which indicate the influence of the residual to the
difference of the exact and calculated solution.

6



2 The Chemical Model

Historically, the ILDM–method was broad up for chemical reaction systems, especially, if
combustion is involved. In this thesis, the application is therefore also from the field of chem-
ical reactions and an overview over the generally used models and the underlying equations
is given. They have the property that conservation laws, for example the mass conservation,
are contained in the equations. A possibility will be presented, how these conservation laws
can a priori be identified.

2.1 Modeling a homogeneous reactor

A homogeneous reactor is a model for a perfectly stirred reactor without any movement of
the species, so effects like convection or diffusion are neglected. The modeling equations
are therefore a system of n + 1 ordinary differential equations, one equation describing the
temperature and n equations modeling the chemical species.

2.1.1 Modeling the chemical species

Let the species of the reactions be denoted by As, where s is an index of the set S of chemical
species involved in the reaction system. The index set R is supposed to contain all possible
elementary reactions in the reactor.

The reaction system can then be formulated by the reactions

∑

s∈S

αr,sAs

krGGGGGGA∑
s∈S

βr,sAs ∀ r ∈ R (2.1)

with the reaction coefficients αr,i and βr,i. The factor kr denotes the reaction rate. Consider
for example the oxidation of hydrogen atoms

H +O2GGGAHO +O, (2.2)

then

αH = 1 βH = 0

αO2
= 1 βO2

= 0

αHO = 0 βHO = 1

αO = 0 βO = 1.

7



2 The Chemical Model

The mathematical formulation of the reaction system (2.1) can be described by an ODE in
terms of concentrations ci of species Ai (compare [14, 6.3]):

dci
dt

= ωi :=
∑

r∈R

(βr,i − αr,i)kr

∏

s∈S

c
αr,s
s . (2.3)

The reaction rates kr are highly temperature dependent and are generally modeled by the
Arrhenius law [1]

kr = AT be−
E

RT .

The coefficients A, b and E are obtained from experiments for every reaction, R denotes the
gas constant R = 8.3145J/(mol ·K), see [31].

Other formulations to model the chemical reactions are also possible, take for example the
formulation in mass fractions yi with ci = ρyi

mi
, which is also widely used:

d(ρyi)

dt
= miωi.

Here, ρ denotes the density of the mixture and mi the specific molar mass of species Ai.

2.1.2 A simplification

The formulation of the reactions in terms of mass fractions has the advantage that the
physically side condition ∑

i

yi = 1

can be used to simplify the ODEs to

ρ
dyi

dt
= miωi, (2.4)

because ρ is constant in time: In the following section it will be shown that the mass
conservation implies

∑
imiωi = 0, therefore

∑
i ρyi = ρ

∑
i yi = ρ must be constant in time.

2.1.3 Modeling the temperature

The equation for the temperature is a direct consequence of the conservation laws for the
energy. The derivation can be found in [14, 3.2, 3.3] and leads to

ρcp
dT

dt
= −

∑

i∈S

himiωi.

The specific heat capacity cp of the mixture can be calculated by cp =
∑

i yicp,i with the heat
capacities cp,i of species Ai. The heat capacities cp,i of the species are usually calculated by
polynomial fits to experimental data, the specific enthalpies hp,i are obtained via the relation

hp,i =
∂cp,i

∂T
.

The dependent variable for the polynomial fit is the temperature T .

8



2.2 Conservation laws

2.1.4 The governing equations

Let u ∈ Rn+1 denote the state vector of a chemical reactor, where u0 denotes the temperature
T and ui describes the mass fraction yi of species Ai for all i = 1, ..., n. Then the homogeneous
reactor can be modeled by the system of ordinary differential equations

du

dt
= f(u), u(0) = u0,

where f : Rn+1 → Rn+1 is given by

f(u) =




− 1
cp

∑
i∈S himiωi

m1ω1
...

mnωn


 (2.5)

2.2 Conservation laws

The modeling equations (2.4) contain several conservation laws, which are not formulated
explicitely. As already mentioned in the previous chapter, we have the mass conservation
law. A chemical reaction can neither create nor destroy mass, therefore the total mass of
the products equals the total mass of the educts:

∑

i∈S

αr,imi =
∑

i∈S

βr,imi, (2.6)

which leads with (2.3) directly to ∑

i∈S

miωi = 0

and with (2.4) to
d

dt

∑

i

ρyi = 0.

This implies with
∑

i yi = 1 directly the constance of the density ρ in time.

The chemical reactions do not only preserve mass, also the number of the elements is con-
served in every reaction. Let Ej denote the elements, which are involved in the species of the
chemical reactor, and let ne be the total number of elements. Furthermore, let the coefficient
µi,j denote the number of elements Ej in species Ai. In water for example, these coefficients
are clearly µH,H2O = 2 and µO,H2O = 1. Then every species Ai can formally be written in
the form

Ai =

ne∑

j=1

µi,jEj (2.7)

and the chemical reaction (2.1) reads

∑

s∈S

αr,s

ne∑

j=1

µs,jEj

krGGGGGGA∑
s∈S

βr,s

ne∑

j=1

µs,jEj .

9



2 The Chemical Model

The mathematical formulation of the element conservation in terms of reaction rates is
∑

s∈S

αr,sµs,j =
∑

s∈S

βr,sµs,j ∀j ∈ {1, ..., ne}. (2.8)

This equation means that the number of elements on the educt side equals the number of
elements on the product side for every element in every reaction. The element conservation
can be used to calculate the left eigenvectors to the eigenvalue λ = 0 of the Jacobian ∇f of
the source term f given by (2.5). This result will later be used to formulate the so called
center manifolds.

Lemma 2.2.1 Let f : Rn+1 → Rn+1 denote the source term of a chemical reaction (2.5)
with ne elements involved in the species of the mixture. Then the Jacobian ∇f has an
eigenvalue λ = 0 with the corresponding left eigenspace of dimension nc ≥ ne.

Moreover, an ne–dimensional subspace of the left eigenspace is spanned by the vectors

vi =
(
0,

µ1,i

m1
, ...,

µn,i

mn

)
, i = 1, ..., ne (2.9)

where µk,i denotes the element composition as in (2.7).

Proof: The scalar product of vi and the chemical source term f(u) gives

vi · f(u) = 0 +
n∑

s=1

µs,i

ms

msωs

=

n∑

s=1

µs,i

∑

r∈R

(βr,s − αr,s)kr

∏

i∈S

c
αr,i

i

=
∑

r∈R

n∑

s=1

µs,i(βr,s − αr,s)

︸ ︷︷ ︸
=0 (with (2.8))

kr

∏

i∈S

c
αr,i

i .

Since the reaction coefficients α and β are independent of the state vector u, the same calculation is
valid, if f(u) is replaced by a column vector of ∇f(u), therefore

vi ·Df(u) = 0,

which finishes the proof.

Remark: In general, the dimension of the left eigenspace equals exactly the number of ele-
ments forming the species. The vector v =

(
0 1 ... 1

)
, which describes the conservation

of mass, is obviously also a left eigenvector to the eigenvalue 0. It is a linear combination
of the vectors vi denoted by (2.9). In order to prove this remark, let the specific mass of
element Ei be denoted by mEi

. Then
ne∑

i=1

mEi
vi =

ne∑

i=1

(
0,

mEi
µ1,i

m1
, ...,

mEi
µn,i

mn

)

=
(
0,

Pne
i=1

mEi
µ1,i

m1
, ...,

Pne
i=1

mEi
µn,i

mn

)

=
(
0, 1, ..., 1

)
.

This proof shows, that the conservation of the elements is only a more detailed description
of the mass conservation.
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2.3 Example: Ozone Reaction

2.3 Example: Ozone Reaction

The ozone reaction is one of the easiest realistic examples, because only three species are
involved, namely O, O2 and O3. Moreover, these species consist of only one element, which
makes it easy to identify the conservation laws.

The ozone mechanism can be formulated by

M + 2O
k1GGGGGGBFGGGGGG
k2

M +O2

M +O2 +O
k3GGGGGGBFGGGGGG
k4

M +O3

O +O3

k5GGGGGGBFGGGGGG
k6

2O2

with the reaction rates ki calculated from the Arrhenius coefficients in table 2.1. Other
reaction formulations containing ozone can be found in [36].

A [cm/(mol · s)] b E [kJ/mol]

k1 2.9 · 1017 −1 0
k2 6.772 · 1018 −1 496
k3 3.426 · 1013 0 −4.234
k4 9.5 · 1014 0 95.03
k5 5.2 · 1012 0 17.38
k6 4.381 · 1012 0 414.39

Table 2.1: The Arrhenius coefficients for the reaction rates of the ozone reaction.

The M inside the above reaction mechanism is a symbol for every species in the mixture
and is used as a third body. The first reaction for example is in fact a system of reactions
describing the following situation:

O + 2O
k1,1GGGGGGGBFGGGGGGG
k1,2

O +O2

O2 + 2O
k1,3GGGGGGGBFGGGGGGG
k1,4

O2 +O2

O3 + 2O
k1,5GGGGGGGBFGGGGGGG
k1,6

O3 +O2.

The reaction rates k1,i herein differ only slightly from k1. It is assumed that the Arrhenius
coefficients b and E remain the same as in table 2.1, whereas A may be changed by a constant
factor, the so called third body efficiency.

Figure 2.1 shows the behavior of the ozone reaction in a homogeneous reactor. As initial
conditions, the temperature is set to T = 700K, the mass fractions for O, O2 and O3 to 0.0,

11



2 The Chemical Model
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Figure 2.1: The ozone reaction in a homogeneous reactor. The right figure focuses on
the ignition of the reaction. The atomic oxygen O appears with very small
mass fractions at the same time, when the rate of change for the temperature
is maximal. The existence of O can therefore be used as an indicator of the
ignition time.

0.8 and 0.2 respectively. Obviously O is only an intermediate species, a so called radical. It
is generated only to a very small amount, if the temperature increases with maximal slope.
The species O can therefore be used to identify the flame front of the ozone combustion.
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3 Introduction to QSSA and ILDM

The reduction methods QSSA (Quasi Steady State Assumption) and ILDM (Intrinsic Low
Dimensional Manifold) are based on the idea that the state of a chemical reaction can
basically be described by the mass fraction of only very few variables, the so–called process
variables or slow variables. The mass fraction of the fast variables can then be obtained
by an algebraic relation independently of effects like convection or diffusion. This can be
interpreted to that effect that the fast species react, before they change their position due
to diffusion or similar effects.

This chapter will therefore consider the theory of these reduction methods and explain the
technical details. It will start with a small explanation of problems, which are typically
reduced with QSSA or ILDM, namely the spectral gap of the source term’s gradient. Then
techniques are presented, how the value ψ(u1) can be computed and the difficulties are
discussed. Also center manifolds are introduced as well as aspects on tabulation strategies.

3.1 Properties of stiff differential equations

Stiff systems of ordinary differential equations

u′(t) = f(u)

are characterized by the fact that the gradient of the source term ∇f(u) has eigenvalues with
big differences in their real part. This means that very different time scales exist. Due to
this phenomenon it is difficult to solve stiff ODEs numerically and the solution process with
explicit solvers produces a lot of overhead, because the time step k has to be small enough
to get reasonable results for all variables.

But an advantage can be taken out of the stiffness, if there is a big gap in the spectrum,
which means that disturbances of some variables relax much faster then disturbances of
others. Then the the state vector u can be split into so called fast and slow variables u2 and
u1. Assume further that an algebraic relation can be found a priori, which maps u1 to u2

by the function
ψ : Rn1 → Rn2 : u1 7→ u2. (3.1)

Here n1 is the number of slow variables combined in the vector u1, whereas the fast variables
in the vector u2 have magnitude n2.

Take for example the system of ODEs

u′(t) =

(
−1 1
1 −M

)
u(t) (3.2)
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3 Introduction to QSSA and ILDM

with M > 0. This system has a steady state
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Figure 3.1: Left: Solution to the ODE (3.2) withM = 50 and initial conditions u0 = (1, 1/50).
Right: The error produced by applying the reduction (3.3)

u∞ = 0

and u converges to this steady state for all initial values, if M > 0. An easy calculation shows
that u2 relaxes to half of its initial value already after short time, if M is large, whereas it
takes much longer for the variable u1. Therefore it seems to be reasonable to assume that
u2 does not change much for small values of t for constant u1. The algebraic relation

u2(t) = ψ(u1(t))

transforms the original ODE to the DAE

u′1(t) = −u1(t) + ψ(u1(t))

u2(t) = ψ(u1(t)).

Here we take

ψ(u1) =
1

M
u1 (3.3)

following the idea of the quasi steady state assumption QSSA, which will be introduced in
the following section. Now the calculation effort to obtain a solution decreases, because the
number of equations is reduced and the time steps can be increased due to loss of stiffness.

Obviously the reduction causes a loss of accuracy, as can be seen in figure 3.1. The accuracy
of the reduced problem depends on the spectral gap of the gradient ∇f(u). The bigger the
spectral gap, i.e. the difference between the real parts of the eigenvalues, the better the
approximation of the reduced to the detailed solution. In problem (3.2) the spectral gap

σ =
√
M2 − 2M + 5

14



3.1 Properties of stiff differential equations
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Figure 3.2: Left: The maximal difference between the reduced and the detailed solution of
problem (3.2) on the interval [0, 5] plotted against the spectral gap depending on
M . Right: The evolution of the eigenvalues of the gradient of the source term
of the ozone reaction. The evaluation point is the currently reached state in an
homogeneous reactor, cp. figure 2.1. Clearly, one eigenvalue has large negative
values.

depends almost linearly on M and figure 3.2 shows the increasing accuracy with increasing
spectral gap.

In chemical reaction systems the spectral gap can be reasonably big, if combustion is involved.
In general, most eigenvalues have large negative real parts, whereas the real part of only few
eigenvalues is around −1. This suggests the existence of an algebraic relation between the
slow and fast variables (3.1).

For example, the ozone reaction described in section 2.3 can be modeled by 4 variables,
namely the temperature and the mass fractions of O, O2 and O3. An eigenvalue analysis
of the gradient of the source term (cp. figure 3.2) shows that one eigenvalue has a large
negative value, whereas three eigenvalues are reasonably bigger for almost all times t. In
addition, one eigenvalue is exactly zero (up to rounding errors) and highlights the existence
of a conservation law. Therefore only two variables have to be calculated in an ODE, the
remaining two variables can be calculated algebraically by applying the function ψ introduced
by (3.1), which shrinks the number of variables for the ODE by the factor 1/2.

This factor decreases even further, when more advanced reaction systems are treated. In
the methane–air combustion for example, more than 30 species depend algebraically on only
four variables. This reduces the number of unknowns for the ODE by the factor 1/8.
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3 Introduction to QSSA and ILDM

3.2 QSSA and ILDM

In this thesis two different methods to obtain the algebraic relation u2 = ψ(u1) are consid-
ered, namely the Quasi Steady State Assumption (QSSA) and the Intrinsic Low Dimensional
Manifolds (ILDM). In both cases the function ψ is given implicitly by an equation of the
form

F2(u1, ψ(u1)) = 0,

where the definition of F2 differs in the two methods. Whereas F2 depends for QSSA directly
on the fast part of the source term f2, the eigenvectors of ∇f are included in F2 in case of
ILDM.

3.2.1 QSSA

By applying the QSSA to a system of ordinary differential equations, one distinguishes fast
and slow variables by the magnitude of their source terms. Variables with big source terms
are called fast variables and have the property that they relax quickly to a steady state,
when the slow variables are kept constant. In this steady state for the fast variables (the
quasi steady state for the system of ODEs) the time derivatives for these variables are zero:

u′2(t) = 0.

This equality is now assumed to hold for every state vector u(t) = (u1(t), u2(t)), because the
difference in terms of time between a given state and its corresponding quasi steady state is
supposed to be very small.

The idea of QSSA transforms therefore the original ODE

u′1(t) = f1(u1, u2)

u′2(t) = f2(u1, u2)

to the DAE

u′1(t) = f1(u1, u2)

0 = f2(u1, u2),

where the algebraic equation f2(u1, u2) = 0 describes a manifold, which can be parameterized
by (3.1). The function ψ is therefore given implicitly by the function F2 = f2.

There are basically two possibilities, how the variables can be characterized with respect to
“slow” and “fast”. The first one is based on trial and error, where a decent knowledge of the
equations and the underlying mechanisms is very much advantageous. Since this knowledge
can in general not be assumed, a mathematical method is needed. A successful method is
an eigenvalue analysis of the gradient of the source term. The fast variables can then be
characterized by the dominating entries in the eigenvectors of the fast eigenvalues.

The major drawback of this assumption is the fact that in almost no system of ODEs, “slow”
and “fast” variables can be sharply distinguished. In general, all variables are involved also in
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3.2 QSSA and ILDM

fast and in slow processes, therefore by using QSSA the size of the problem can be reduced,
but the reduced system might still be stiff. The advantage of QSSA is the relative low
expenses to obtain a QSSA–point ψ(u1).

3.2.2 ILDM

In contrast to the QSSA–assumption one assumes by applying ILDM that the system of
ODEs describes fast and slow processes instead of fast and slow variables. In order to
distinguish these processes, the system is transformed to the basis of the eigenvectors of the
gradient ∇f(u) of the source term f .

For a brief description let the function f be linear and be defined by the matrix A with
f(u) = Au. Let further Λ and V be the eigenvalue analysis of A with

AV = V Λ

assuming the diagonalisability of A. Then the original ODE

u̇ = Au

can be transformed to
V −1u̇ = V −1Au

which can be simplified to
ẏ = V −1AV y = Λy

with y = V −1u.

Since Λ is diagonal, the last equation describes a system of totally decoupled ODEs, where
the fast variables can be sharply distinguished from the slow variables in terms of y. This
means that if an algebraic relation between the fast and slow variables can be found, the
reduced system for the slow variables y1 is not stiff anymore.

The algebraic relation between y1 and y2 can be found by

[
Λ

(
y1

y2

)]

2

= 0,

which reads [
V −1A

(
u1

u2

)]

2

= 0

in terms of u.

The nonlinear equivalence to this formulation leads to the general ILDM–condition

[
V −1f(u)

]
2

= 0, (3.4)

where V and Λ are given by the eigenvalue analysis of the source term’s gradient:

∇f(u)V (u) = V (u)Λ(u).
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3 Introduction to QSSA and ILDM

Here, the difference between slow and fast variables is not as important as in the case of
QSSA. The only requirement on the process variables u1 is the uniqueness of the calculation
of the variables u2, and therefore the injectivity of the function ψ. This is in general given,
if the variables are distinguished in the same way as in the case of QSSA. This has the
advantage, that the comparison of these can easily be done. Further, it shows that QSSA
and ILDM are equivalent, if the slow eigenspace is orthogonal to the fast eigenspace.

Compared to the QSSA, the method of ILDM has the big advantage to reduce the stiffness
of the resulting equations even further. The price for this advantage is the calculation of the
left eigenvectors V (u)−1 of the gradient ∇f of the source term, which is numerically instable
and expensive.

These instabilities can be circumvented by considering the Schur factorization ∇f = QRQT

instead of the eigenvalue analysis ∇f = V ΛV −1. The Schur factorization is numerically
stable and leads to the same results in the calculation of the ILDM–points ψ(u1). In order
to see this equivalence, we first need a method to obtain the eigenvalue analysis of a matrix
A = V ΛV −1 assuming that the Schur factorization A = QRQT is already calculated:

Lemma 3.2.1 Let R ∈ Rn×n be of upper triangular form. Then the eigenvalue analysis
leads to R = WΛW−1 with

W =




w11 w12 . . . w1n

0 w22 . . . w2n
...

. . .
...

0 . . . 0 wnn


 and Λ =




r11 0 . . . 0

0 r22
...

...
. . . 0

0 . . . 0 rnn




Proof: Let W−1RW = Λ be diagonal. Then the last row of RW = WΛ reads

rnn(wn1, ..., wnn) = (r11wn1, ..., rnnwnn),

therefore
wnk = 0 ∀k < n.

The equality wij = 0 for i < j < n is then shown by induction.

This Lemma shows that for the given Schur factorization of a matrix A = QRQT there exist
a diagonal matrix Λ and an upper triangular matrix W such that A = (QW )Λ(QW )−1 is
an eigenvalue analysis of A. Moreover, W and Λ are the result of an eigenvalue analysis of
R. This phenomenon can directly be used to obtain the above mentioned equivalence.

Lemma 3.2.2 Let f : Rn → Rn be continuously differentiable such that

∇f(u) = Q(u)R(u)Q(u)T = V (u)Λ(u)V (u)−1

is the Schur and the eigenvalue transformation respectively with Λ(u) being diagonal for all
u. Let further P2 be in Rn2×n the trivial projection from the space of the physical variables
onto the space of the fast variables. Then the problem

P2V (u)−1f(u) = 0
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3.2 QSSA and ILDM

is equivalent to
P2Q(u)T f(u) = 0.

Proof: For simplicity assume P2 =
(
0 1). Otherwise reorder the eigenvalues in R and Λ. Let W

and R be in Rn×n such that
R = WΛW−1.

Lemma 3.2.1 shows that W−1 is of upper triangular form and can be written as

W−1 =

(
W11 W12

0 W22

)

with W22 ∈ Rn2×n2 invertible. Then

[V −1f ]2 = P2V
−1f = P2W

−1QT f

= W22P2Q
T f = W22[Q

T f ]2.

Since W22 is invertible, the proof is finished.

Lemma 3.2.2 shows that the ILDM formulation (3.4) can be reduced to

[
Q(u1, u2)

T f(u1, u2)
]
2

= 0 (3.5)

and the instable calculation of the eigenvectors is replaced by the numerically more stable
Schur factorization.

The function F2, which defines the manifold implicitly, is therefore given by

F2(u1, u2) = [QT (u1, u2)f(u1, u2)]2

and calculates the fast variables u2 from the process variables u1 by

F2(u1, u2) = 0

for given values of u1. Note that even though ILDM distinguishes fast and slow processes,
the result is still a relation from process variables to fast variables.

The major advantage of the ILDM is that the fast and slow processes can be distinguished
sharply. This leads to a reduction, where not only the size of the problem, but also the
stiffness is reduced. The price for this advantage is the treatment of the Schur factorization.
Its calculation is numerically expensive and makes the function F2 loose its continuity.

3.2.3 Numerical examples

We apply QSSA and ILDM to the example (3.2). In order to obtain the function ψ by QSSA,

u1 −Mu2 = 0

has to be solved, hence
ψQSSA(u1) = u1/M.
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3 Introduction to QSSA and ILDM

Consider now the approximation of the value u2 by ILDM. The fast eigenvalue of A is
λ2 = −(M + 1 +

√
M2 − 2M + 5)/2 with the corresponding left eigenvector given by v2 =(

−2, M − 1 +
√
M2 − 2M + 5

)
. The equation to be solved is therefore

[v2Au]2 = (M + 1 +
√
M2 − 2M + 5)u1 − 2(M2 −M + 2 +M

√
M2 − 2M + 5)u2 = 0,

which leads to the solution

ψILDM(u1) =
1

M
u1 +O(M−2) = ψQSSA(u1) +O(M−2).

This shows that the difference between QSSA and ILDM is reasonably small and decreases
with increasing spectral gap.

A more interesting example consists of a mixture containing the three species A, B and C.
The nonlinear reaction

2A
2GGGGBFGGGG
1

2B
1000GGGGGGGGBFGGGGGGGG
90

2C (3.6)

which is modeled by the ODE

ẏ =




−4y2
A + 2y2

B

4y2
A − 2002y2

B + 180y2
C

2000y2
B − 180u2

C


 , y(0) = y0,

assuming that the species A, B and C have the same specific molar mass.

Obviously B is only an intermediate product, which reacts to C almost instantaneously.
Therefore the mass fraction yB of species B is taken as a fast variable and will be approxi-
mated by the function ψ, which has to fulfill the equation

4y2
A − 2002ψ(yA, yC)2 + 180y2

C = 0, (3.7)

when QSSA as reduction mechanism is applied. Figure 3.3 shows the approximating function
ψQSSA and the relative small difference of the approximations with QSSA and ILDM.

Even though the difference of the values ψQ and ψI is rather small, the difference in an
application is surprisingly big. The reduction with ILDM turns out to perform much better
than problems reduced with the QSSA–formalism. Figure 3.4 shows the difference of ILDM
and QSSA when applied as a reduction to the ODE modeling the reaction system (3.6).
Clearly, the errors are very big even in the picture norm. The perfomance will be improved
by considering the center manifolds in the following sections. But still, the figure depicts
clearly that ILDM leads to better approximations than QSSA.

3.2.4 Problems

The manifold described by QSSA is much easier to be calculated than the values of ψILDM ,
but still difficulties arise:
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3.2 QSSA and ILDM

yA

yC yA

yC

Figure 3.3: Left: The value ψI(yA, yC) obtained by the ILDM for reaction (3.6). Right:
The difference ψI −ψQ. In both figures, the x–axis shows the mass fraction of A,
the y–axis of B in the range [0, 1]. Note that the figure is purely mathematical,
the condition

∑
i yi = 1 is neglected and will be taken care of in the upcoming

section.
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Figure 3.4: The reaction mechanism (3.6) in a homogeneous reactor with initial conditions
yA(0) = 1, yB(0) = yC(0) = 0. The dotted lines represent the detailed solution,
the full lines are the solution to the reduced DAE. In the left figure the manifold
obtained from QSSA is used, in the right figure the ILDM–manifold.
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• Even if there is a u1 and a u2 such that f(u1, u2) = 0, there is no guarantee that there
is a u2 for any given u1, such that f2(u1, u2) = 0. And if there is a solution, then it is
not necessarily unique. Take for example the function

f(u1, u2) =

(
u1

−u1 − u2
2

)
.

Then f2(u1, u2) = 0 for u1 = u2 = 0, but there is no u2 to solve f2(1, u2) = 0, whereas
the solution to f2(−1, u2) = 0 is not unique (u2 = ±1).

• The equation f2(u1, u2) = 0 is in general highly nonlinear and stiff, therefore a good
starting point for the Newton method is required. One acceptable possibility to cir-
cumvent this problem is doing a few time steps for the problem

u′2(t) = f2(u1, u2), u2(0) = u0
2. (3.8)

The starting point u0
2 might for example be the second part of the steady state

f(u∞1 , u
∞
2 ) = 0 or an already calculated solution u0

2 = ψ(v1), where |v1 − u1| is small.

Doing a few time steps has the big advantage that the solution û2 of f2(u1, u2) = 0
is stable from an ODE point of view, i.e. the solution to problem (3.8) with initial
condition u0

2 = û2 + ε relaxes again to û2 for small ε.

• The physical conservation laws for the state u = (u1, ψ(u1)) should not be violated.
When chemical reaction systems are treated, this means, that for example the mass
fractions of the species should sum up to one. Also the number of atoms of the elements
cannot change in a chemical reactor. These effects are summarized in the so called
center manifold, which is treated separately.

Figure 3.4 shows the effect, when the center manifold is neglected in the calculation of
ψ. Whereas the detailed solution is on the center manifold (it solves u1(t) + u2(t) +
u3(t) = 0 for all t ≥ 0), both the solutions obtained from QSSA and ILDM are not.

• There might be side conditions for the state vector u, which should not be violated by
the new state vector (u1, ψ(u1)). In chemical reaction systems for example, the mass
fractions yi must fulfill the inequality 0 ≤ yi ≤ 1. In general, this is not the case for
the state vector (u1, ψ(u1)) and has to be forced heuristically.

As an example, reconsider the nonlinear reaction (3.6) with QSSA and conservation
laws. The function ψ is then a function, which maps yA to (yB , yC) and has to solve
the equations

4y2
A − 2002ψ1(yA)2 + 180ψ2(yA)2 = 0, (3.9)

yA + ψ1(yA) + ψ2(yA) = 1.

The function ψ has then the solution shown in figure 3.5, where the function values
have to be adapted manually for large yA in order to assure the physically necessary
condition ψ > 0.
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Figure 3.5: The solution of equations (3.9). Since ψ is a reduction for a chemical model,
the function values should be positive for all yA ∈ [0, 1]. This is not the case
for yA > 0.96. The right figure shows one possibility to fix this problem: In the
domain where yC is negative, it is set to yC = 0 and the difference is subtracted
from yB in order not to conserve the relation yA + yB + yC = 1.

On top of the problems arising from the QSSA, there is a much more serious problem,
when the ILDM is calculated. Whereas the source term f is continuously differentiable, the
function QT f is not even continuous.

The reason for the discontinuities is the existence of multiple eigenvalues, a problem, which
cannot be circumvented nicely. Consider two eigenvalues λ1(t) and λ2(t) of ∇f(u(t)), where
u(t) describes a path such that λ1(t) < λ2(t) for t < t0 and λ1(t) > λ2(t) for t > t0. Since
the matrix R is sorted on its diagonal with respect to the real part of λi, this means that
the two eigenvalues λ1 and λ2 change their position on the diagonal of R at t = t0. Then, of
course, the rows of Q have to be reordered at t = t0, and this cannot be done in a continuous
way.

In order to find a solution to the ILDM formulation (3.5) anyway, very good starting points
for the Newton method are required in order to prevent the eigenvalues to intersect during
the solution process. Another idea might be to reuse the Schur factorization for a few Newton
steps, which avoids the discontinuities but may also reduce the convergence rates.

3.3 Center Manifolds

As already seen in 2.2, the modeling equations for chemical reaction systems contain con-
servation laws, which are not formulated explicitely. These implicitly given conditions in
the equations reduce the number of degrees of freedom for the variables, which ensures that
the set of all physically possible variables forms a manifold in the state space, the so called
center manifold. If the initial condition of an ODE is on this manifold, the whole trajectory
defined by the equations lies on the manifold as well.
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3 Introduction to QSSA and ILDM

Remark: Two small remarks for chemical reaction systems:

• In chemical reaction systems, the center manifold can be identified by lemma 2.2.1.

• From a physical point of view, two different types of conservation laws are to be
distinguished. The first type has to be fulfilled by the initial value, whereas in the
second type the initial value defines partly the center manifold. Consider the reaction
(3.10) with the initial condition y0 = (y0

A, y
0
B , y

0
AB). For a realistic simulation of this

reaction, the sum y0
A + y0

B + y0
AB has to be equal to one, but the number of A– and

B–atoms in the reactor is defined only by the initial value.

As an easy example, consider the simple reaction

A+BGGGAAB (3.10)

for the elements A and B with the specific molar masses mA and mB. This reaction can be
modeled by the ODE



ẏA(t)
ẏB(t)
ẏAB(t)


 =




−mAyAyB

−mByAyB

(mA +mB)yAyB


 , y(0) = y0,

where y describes the vector of the species mass fractions (yA, yB , yAB). There are two
obvious conservation laws in the model, namely

ẏA +
mA

mA +mB
ẏAB = 0 and ẏB +

mB

mA +mB
ẏAB = 0,

therefore only one degree of freedom is to be calculated by the ODE, see figure 3.6.
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Figure 3.6: The center manifold for reaction (3.10) with initial conditions yA(0) = yB(0) =
1/2. The blue colored surface describes the manifold for the conservation of
yA + 1

2yAB, the red surface the manifold for yB + 1
2yAB. The intersection yields

the green center manifold.

24



3.3 Center Manifolds

The chemical interpretation of these conservation laws is the conservation of the element
mass fractions. The term mA

mA+mB
yAB describes the element mass fraction of A, given that

A belongs to the molecule AB. This means that the total mass fraction of the element A
is denoted by yA + mA

mA+mB
yAB, which does not change in time, therefore the amount of

A–atoms remains constant in the reaction. This is obviously also valid for the element B,
as can be seen by the second conservation law.

In general, those conservation laws are not preserved in the calculation of the manifolds from
QSSA and ILDM. In order not to change the physical meaning of the equations and their
solution, the conservation laws have to be forced by hand.

To assure that the state vector (u1, ψ(u1)) is on the center manifold, the term F2(u1, u2)
does not only contain the equations describing the fast processes of the model, but also
the equations defining the center manifold. Reconsidering reaction (3.6), this means for the
reduction method by QSSA, that the function ψ is now a function from R to R2 and has to
solve the equations

4y2
A − 2002ψ1(yA)2 + 180ψ2(yA)2 = 0

yA + ψ1(yA) + ψ2(yA) = 1,

if yA is taken as a process variable.

The introduction of the center manifolds to the reduction function ψ has the big advantage,
that the results from the reduced system is much more reliable, as can be seen in figure 3.7.
But the center manifolds make the evaluation of ψ(u1) numerically more difficult, because
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Figure 3.7: The reaction (3.6) reconsidered and the difference between the reduced and
the detailed solution is plotted. The dotted lines represent the error, when the
center manifold is neglected. The full lines are the occurring error, when the
manifolds are now obtained by treating not only the fast variable yB, but also
the center manifold, which is in this case given by the equation yA+yB +yC = 1.
In the left figure, the reduction is based on QSSA, in the right figure on ILDM.
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3 Introduction to QSSA and ILDM

the equations for the center manifold introduce the eigenvalue 0 to the system (3.5), which
increases its stiffness.

3.4 Calculation of QSSA– and ILDM–points

One possibility to evaluate the function ψ for a given u1 is the following algorithm containing
three major steps:

• Finding an initial guess for the iteration

• Finding the zero by iterative methods (Newton’s method and minimization)

• Post-processing of the solution u2

3.4.1 The initial guess

As shown in section 3.2, the major problem of evaluating the function ψ at a given point u1

is identifying a decent initial guess for the Newton method. This is in fact the most time
consuming part in the algorithm.

The initial guess for evaluating ψ at a point u1 is obtained by doing time steps for the
problem

u′2(t) = F2(u1, u2), u2(0) = u0
2, (3.11)

where F2 is defined by f2 when the manifold is based on QSSA or by [QT f ]2 in case of
ILDM. Reasonable results were obtained by choosing u0

2, such that the fast variables (in
chemical problems: the radicals) have the initial value 0, whereas the variables, which are
to be calculated from the center manifolds, are chosen to have u0

2 as close as possible to the
center manifold. In chemical reaction systems they may be chosen, such that the sum over
all mass fractions equals one.

For the time stepping a reasonable step size has to be chosen as well as the number of time
steps, which are to be done. This is in fact a difficult task, simply because the system (3.11)
is still stiff and highly nonlinear. For this reason the process of finding an initial guess is
very time consuming.

When evaluating an ILDM–point, it is also possible to use the already calculated QSSA–
point as an initial guess. In the considered examples, this turned out to be very successful,
but in general there is no guarantee, that the existence of a QSSA–point implies the existence
of an ILDM–point and vice versa.

Take for example the problem

u̇1 = −u1

u̇2 = 1000(1 − u1u2).
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3.4 Calculation of QSSA– and ILDM–points

The parameterizations for the manifolds are clearly

ψQ(u1) = 1/u1 and ψI(u1) =
1000u1 − 1

1001u2
1 − u1

.

A QSSA–point does therefore exist for all u1 ∈]0, 1], whereas no ILDM–point can be found
for u1 = 1/1001.

3.4.2 The iteration

The heart or the iteration is of course the Newton iteration. With the initial guess as de-
scribed above, the method has in most cases nice convergence properties. But unfortunately,
convergence is not guaranteed, even if the starting point is close to the existing steady state of
(3.11), because the convergence radius for the Newton method is due to the high nonlinearity
of F2 very small.

In case of divergence of the Newton, a minimization strategy is applied to the function
‖f2(u1, u2)‖2 or

∥∥[QT (u1, u2)f(u1, u2)
]
2

∥∥
2

respectively. The difficulty for the common mini-
mization algorithms like BFGS [41, Chapter 1.6] or the gradient free simplex method [32] is
again the stiffness of f2, in general the result is only a poor approximation to the searched
zero u2. Anyway, this approximation can be used as a second initial guess to the Newton’s
method, which was successful in the considered examples.

3.4.3 Post–processing of the solution

Since center manifolds are included in the zero–finding process, the conservation laws of the
original problem are fulfilled for the state vector u = (u1, ψ(u1)), but there is no reason to
have the values of ψ(u1) to be in the interval [0, 1]. As already mentioned, there are only
heuristical solutions to this problem. The entries of ψ(u1) have to be changed somehow, if
one or more values are outside of [0, 1].

One possibility is to apply a minimization strategy as above and add some constraints to the
functional. In practice, this leads to problems, again due to the stiffness of the function f2 or
[QT f ]2. In fact, the standard minimization algorithms minimize mainly the fast part of the
functional, neglecting the equations resulting from the center manifold with slow properties.

The second and more successful possibility is based on pure heuristics. If one variable uk

turns out to be outside of the allowed interval [0, 1], this variable is set to either 0, if uk < 0
or 1 otherwise. Then the values of the other variables have to be changed such that the
conservation laws are not violated. This method turns out to work pretty well with small
examples with only a small number of variables, but it will definitely fail in big reaction
systems. A confident strategy to find a physically decent solution to this problem is still
part of research.
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3 Introduction to QSSA and ILDM

3.5 Tabulation of the manifold

In the previous section we have seen that the manifolds derived from both the quasi steady
state assumption and the intrinsic low dimensional manifolds are able to reduce big systems
of ordinary differential equations. The resulting systems, which are to be solved, are much
smaller (only 10% of the original size, when the methane–air combustion is considered) and
they are usually of nice behavior, because the stiffness is reduced.

This might give the impression that using these reduction methods makes the calculation
much faster and less memory consuming, but the contrary is true, as Deuflhard already
mentioned:

In order not to raise wrong expectations: in all of our experiments, the
direct numerical integration of the unprepared stiff ODE system was much
faster than the integration of the split DAE system [...] [12]

The reason for the high numerical costs is the solving process for the equations

f2(u1, u2) = 0 or
[
QT (u1, u2)f(u1, u2)

]
2

= 0,

which has to be performed in every single time step. In addition to the solving process the
Schur factorization has to be done in the ILDM case, which is also very expensive.

A solution to this problem is the a priori calculation of the function ψ. Since in only very
few problems the function ψ is given analytically, the value u2 = ψ(u1) is calculated for
all possible values of u1, before the solution process for the ODE is started. The resulting
vectors u2 have to be stored in a file which provides quick access to the data, whenever the
function ψ has to be evaluated at a point u1. This file is commonly called a table.

Obviously no computer is able to keep the function values for all possible vectors u1, therefore
only some vectors u2 are calculated and the value ψ(u1) for an arbitrary u1 is calculated by
interpolation of the surrounding points. One possibility to identify the stored points is the
discretization of the domain D = [a1, b1] × ...× [an1

, bn1
] of the function ψ by

U1 =




x ∈ D

∣∣∣∣∣ x =



a1
...
an1


+




k1 · h1
...

kn1
· hn1


 , 0 ≤ ki ≤ Ni




,

where hi is given by hi = bi−ai

Ni
. Other possibilities, for example with adaptively refined

domains, are discussed in [34].

The big advantage of this possibility is that the stored points u1 ∈ U1 can be addressed by
so called integer variables ki, and for two elements xa, xb ∈ U1, xa can be compared with
xb without discrepancies due to rounding errors. Together with an alphabetical equivalence
relation, this makes it possible to tabulate the function values ψ(U1) in a binary tree.

The structure of the binary tree ensures quick access to the data. The reading time grows
in fact only with the logarithm of the number of tabulated points, see [22, 3.2], and the size
of the table has therefore only little effect on the total calculation time.
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3.5 Tabulation of the manifold
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Figure 3.8: Both figures show the reaction (3.6) reduced with five different QSSA–tables,
each of them contains a different number of points. The table, which is denoted
by ∞, is in fact an analytically given parameterization. The left figure shows the
difference to the detailed solution ‖u(t)− uh(t)‖2, the right figure the difference
of the currently reached state to the analytically calculated steady state ‖u(∞)−
uh(t)‖2.

The interpolation error is clearly of order h2, if linear interpolation is applied, and decreases
therefore quadratically (or faster for interpolation strategies of higher order) with the number
of equidistantly tabulated points. Therefore large tables are expected to lead to better
performances. This is unfortunately only partly true. First of all, the logarithmic order of the
access time is only valid, if the whole table is stored in the memory, which leads to an upper
limit for the number of stored points. And secondly, the interpolation introduces rounding
errors, which cannot be circumvented by bigger tables, if the accuracy of the calculation
of the ILDM– or QSSA–points is not increased. This is especially in the calculation of
derivatives of ψ a serious problem. These derivatives are necessary in the Newton iteration,
as will be shown in the following sections.

One drawback of the tabulation is the enormous requirement of memory. A table for the
methane–air reaction mechanism for example with four process variables and 501396 stored
points as provided by the workgroup of Prof. Warnatz takes around 320 MB of disk space.
Due to the frequent access, which is required within the calculation of a reaction system,
the table has to be copied into the work space. The size of the table is therefore limited,
especially the number of process variables. Up to now, only tables with at most 4 process
variables can be treated.

A second possibility for the storage of the manifolds is based on orthogonal polynomials.
Details can be found in [35].
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3 Introduction to QSSA and ILDM

3.5.1 Criteria for the performance of the table

As shown in chapter 3.2.3, small differences in the function ψ can have big influences on the
accuracy of the solution of the reduced problem. Therefore the approximation goodness of
the discrete table to the continuously defined function ψ cannot be the only criterion for the
performance of the table.

Other criteria consider therefore the effect of the table to practical problems, here, two
possibilities are considered, both acting on ODEs. The first criterion is the error produced
in a certain time interval. Secondly, the steady state is considered and compared to the
detailed solution.

Figure 3.8 shows the effect of the size of a QSSA–table to the solution of an ODE. Here
four tables with N = 10p, p = 1, ..., 4 are considered. The figure shows that the size of the
table has nearly no influence to the solution in early stages, when the table with 11 points
is excluded. This is the region, where the systematic error produced by the reaction process
dominates the errors from the interpolation process. The contrary is true, if the solution is
considered close to the stationary point. Here bigger tables seem to perform much better
than the smaller ones up to a certain number of tabulated points. If the table contains too
many points, the interpolation error increases with increasing number of stored points. In
the considered case, where the tables are stored with an accuracy of 6 digits, the QSSA–table
with 1001 stored points seems to be the best. Even though the error of order 10−4 is still
accurate enough for many practical purposes, the bigger tables are to be preferred in order
to obtain higher accuracies.
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4 Solution Process with QSSA and ILDM

The goal of this chapter is to lead the reader to the difference of the detailed and the
reduced solution of systems of algebraic equations and develop then strategies to solve partial
differential equations with the reduction techniques.

First, linear reaction mechanisms are considered. On the one hand, they have the advantage
that many results can be proven analytically. On the other hand, the investigation of the
quasi–Newton method in chapter 6 is based on the reduction of the arising system of linear
equations. These linear equations are similar to equations with linear reaction mechanisms,
which motivates the separate treatment of linear reactions. It will be shown that ILDM
performs much better than QSSA, there are even relevant examples, where the reduction
with ILDM does not produce any errors.

Thereafter, the obtained results will be extended as far as possible to nonlinear reactions.
For both the linear and the nonlinear reactions, the analysis includes the treatment of exact
reductions, the error analysis for general equations and the consideration of a reaction–
diffusion equation as a more realistic problem. In both cases, mechanisms with and without
center manifolds are treated separately.

4.1 Description of the reduction strategy

Assume that the solution of the algebraic equation

L(u) + F (u) = b

with F denoting a chemical source term is to be calculated numerically with a black box
solver. If this solver is based on the Newton iteration, it has (at least) two interfaces for the
user. One interface addresses the residual of the underlying equations, the other interface
provides the solver with the Jacobi matrix. By implementing these two functions, the black
box solver can be used to solve the considered system of algebraic equations.

In order to use this solver for the reduced equation

L1(u1, u2) + F1(u1, u2) = b1

with a given function u2 = ψ(u1), a black box solver can be applied by implementing inter-
faces between the solver, which iterates only on the process variables u1, and the functions
providing the residual and the matrix of the system, see figure 4.1. These interfaces compute
the total state vector by applying the function ψ to u1 and send the resulting vector u to the
user–provided functions calculating the residual and its derivative. The obtained residual
res and matrix M is then splitted according to the process variables, and res1 and M11 can
be provided for the solver.
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11

1

1

1
1

11

1

1

M

res

u

res
u

M

(Black Box)

Solver
Matrix

(User)

Residual

res = res(u)

(User)

M = M(u)

M

Matrix
(Interface)

u u

M

Residual
(Interface)

u u

res

u

res

u

Figure 4.1: Solution strategy with reduction methods: The solver computes the solution
for the process variables only. If information about the residual or its derivative
is required, an interface has to get the total state vector via the tables, then
calculate the required entity and return only the slow part to the solver.

4.2 Linear equations without conservation laws

In order to understand the principles of QSSA and ILDM, consider a linear reaction mecha-
nisms without conservation laws first. Then the source term f : Rn → Rn can be described
by a matrix A:

f(u) = Au,

where A is due to the lack of conservation laws necessarily invertible.

This section will first introduce the analytic description of the QSSA– and ILDM–table and
their effect as reduction methods to systems of linear equations. Then criteria are given,
when the reduction methods lead to exact solutions without systematic errors. This result
will be extended to ODEs and PDEs, but also equations, where systematic errors occur,
will be investigated. This section concludes with a deeper analysis of a reaction–diffusion
equation and investigations on the computational costs.

The main result of this section is given in theorem 4.2.1 about the possibilities to reduce
systems of linear equations without any errors. A consequence of this theorem is that linear
ODEs are exactly solved by the application of ILDM, whereas QSSA introduces systematic
errors. The same is true for special examples of PDEs.

4.2.1 The parameterization of the manifolds

Let the general formulation of the ODE be

(
u̇1

u̇2

)
=

(
A11 A12

A21 A22

)(
u1

u2

)
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4.2 Linear equations without conservation laws

with the process variables u1 and the fast variables u2. Let further V,Λ ∈ Rn×n such that
Λ is diagonal and

V A = ΛV =

(
Λ1 0
0 Λ2

)(
V11 V12

V21 V22

)
.

Then the rows of V describe the left eigenvectors of the matrix A and the entries of Λ
its eigenvalues. The eigenvalues λi of A shall be ordered on the diagonal of Λ such that
Reλ1 ≥ ... ≥ Reλn. If A has a spectral gap, i.e. Reλn1

≫ Reλn1+1, then Λ1 shall be inRn1×n1 and Λ2 ∈ Rn1×n2 with n1 + n2 = n. Let further the equations be ordered such that
u1 describes the slow process variables.

The parameterizations of the manifolds are then given by the functions

ψQ(u1) = −A−1
22 A21u1 (4.1)

for the QSSA–parameterization and

ψI(u1) = −(V21A12 + V22A22)
−1(V21A11 + V22A21)u1 = −V −1

22 V21u1

for the ILDM–parameterization, assuming the invertibility of A22 and V22.

As an example, take the linear reaction

sp1

2GGGGBFGGGG
1

sp2

1000GGGGGGGGBFGGGGGGGG
90

sp3

500GGGGGGGAsp4, (4.2)

where the mass fractions of only the species sp1, sp2 and sp3 are modeled in the ODE and
the mass fraction of sp4 is obtained by y4 = 1 − y1 − y2 − y3. The parameterizations read
then

ψQ(u1) =

(
0.002357
0.003995

)
u1 and ψI(u1) =

(
0.002364
0.004021

)
u1.

In the upcoming parts, the calculation of the stationary points of the problem

u̇ = (A+ αB)u− βb

is considered with the matrix A describing the source term for the above chemical reaction,
for which the reduction mechanisms were calculated. The constants α and β and the (almost)
arbitrary disturbance matrix B is supposed to be chosen, such that A + αB is invertible.
The vector b shall also be arbitrary.

First of all, conditions for the disturbances B and b are given, such that the approximation
by the parameterizations does not produce any systematic errors. Then two possibilities for
the application of the parameterization ψ for arbitrary values of B and b will be considered,
namely the direct application of the original parameterization ψ, and the creation of a new
parameterization φ on the basis of the original parameterization will be treated.
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4 Solution Process with QSSA and ILDM

4.2.2 Description of reduced problems

The reduced problem to (A+ αB)u = βb reads now

(A11 + αB11)u1 + (A12 + αB12)ψ(u1) = βb1

u2 = ψ(u1),

hence

(A11 + αB11 − (A12 + αB12)A
−1
22 A21)u1 = βb1

u2 = −A−1
22 A21u1

for the QSSA–parameterization and

(A11 + αB11 − (A12 + αB12)V
−1
22 V21)u1 = βb1

u2 = −V −1
22 V21u1,

if the ILDM–parameterization is applied. The solution to these reduced problems solve in
case of QSSA the equations

(
A11 + αB11 A12 + αB12

A21 A22

)(
u1

u2

)
=

(
βb1
0

)
, (4.3)

and (
A11 + αB11 A12 + αB12

Λ2V21 Λ2V22

)(
u1

u2

)
=

(
βb1
0

)

for ILDM.

Clearly, the reduced equations and the original equation do in general have different solutions.
But under certain circumstances, the reduced equations lead to the same solution as the
detailed problem, as the following theorem shows.

Theorem 4.2.1 Let A ∈ Rn×n be arbitrary but invertible. Define the function ψ : Rn1 →Rn2 such that the vector u = (u1, ψ(u1))
T is on the manifold defined by QSSA (ILDM) for

all values of u1. If B ∈ Rn×n and r ∈ Rn are such that u is on the QSSA–(ILDM–)manifold
for the function f(u) = Bu− r, then the solution to the reduced problem

(A11 +B11 + (A12 +B12)ψ)u1 = r1

u2 = ψ(u1)

is also a solution of the original problem (A+B)u = r.

Proof: The proof will be split into two cases. In the first case, ψ is assumed to be created by the
QSSA–method, in the second case, ψ represents the ILDM–parameterization.
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4.2 Linear equations without conservation laws

1. Let u = (u1, u2)
T be the solution of the reduced problem, where the QSSA–parameterization

was applied. Then the relation u2 = ψ(u1) does necessarily hold. The fact that ψ is also the
QSSA–parameterization for the problem u̇ = Bu− r, leads to the relation B21u1 +B22u2 = r2,
and therefore to

(A+B)u =

(
A11 +B11 A12 +B12

A21 A22

)
u+

(
0 0
B21 B22

)
u =

(
r1
0

)
+

(
0
r2

)
= r.

The reduced solution does therefore solve the detailed problem.

2. Let the function ψ now represent the ILDM–parameterization for the problems

u̇ = Au and u̇ = Bu− r.

This implies the relation
V2Bu = V2r

for all u on the manifold. Let now u be the solution of the reduced problem. Then u is
necessarily on the manifold and the following holds:

( 1 0
V21 V22

)
(A+B)u =

(
r1

V2Bu

)
=

( 1 0
V21 V22

)
r,

because V2Au = 0. The existence of an ILDM–table implies the invertibility of V22, which
leads to the equation (A+B)u = r.

A few remarks to this theorem:

• The above described conditions for B and r are not the only possibility to obtain
solutions without systematic errors. Let for example r = 0. Then u = 0 is the solution
of both the reduced and the detailed problem independently of B.

• An easy possibility to fulfill the conditions in the case of QSSA is B21 = 0, B22 = 0
and r2 = 0.

• The approximation is also exact, if the fast variables are decoupled from the slow ones,
i.e. A21 = B21 = 0, which implies V21 = 0. In addition, b2 = 0 is required.

• The requirement
B21u1 +B22u2 = r2

in case of QSSA leads with u1 = (A11 + B11 − (A12 + B12)A
−1
22 A21)

−1r1 and u2 =
−A−1

22 A21u1 to the condition

r2 = (B21 −B22A
−1
22 A21)(A11 +B11 − (A12 +B12)A

−1
22 A21)

−1r1

for the vector r.

• The necessary conditions for the ILDM–parameterizations are fulfilled, if AB = BA
(which implies that the eigenvectors of A are also eigenvectors of B) and r2 = ψ(r1).

• The beautiful condition r2 = ψ(r1) can only be used for calculations with ILDM. It
leads to systematic errors for the QSSA–parameterization.
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4 Solution Process with QSSA and ILDM

4.2.3 The importance of the spectral gap

An interesting aspect of theorem 4.2.1 is the fact, that the existence of a spectral gap for
the matrix A was not required. In order to obtain the exact solution for linear problems,
the ILDM method can be applied to all (invertible) matrices, given that the right hand side
r and the possible second matrix B fulfill the conditions required in the theorem.

Nevertheless, the existence of a spectral gap leads still to advantages, if the required condi-
tions are not fulfilled exactly. Let in case of ILDM the fast part of the right hand side be
given by r2 = ψ(r1)+ δ. Then the error in the solution depends linearly on the perturbation
δ:

(A+B)−1

(
r1

ψ(r1) + δ

)
−
(
A11 +B11 A12 +B12

V21 V22

)−1(
r1
0

)

= (A+B)−1

(
r1

ψ(r1) + δ

)
− (A+B)−1

(
r1

ψ(r1)

)
= (A+B)−1

(
0
δ

)
.

Assume now that A+B is of block–diagonal form. Then the error for the slow variables is
zero and is for the fast variables given by (A22 + B22)

−1δ. This error is of course smaller
with larger values of A22 + B22, therfore with large eigenvalues. This is supported by a
big spectral gap. If A + B is not of block–diagonal form, the error does also depend on
the coupling between the fast and the slow variables, but is still independent of the block
A11 +B11.

The accuracy of the approximated solution of the problem

Au = b

with the QSSA method and b2 = ψ(b1) does also depend on the size of the eigenvalues of
the block A22. As an example, consider the three matrices

A1 =



−2 1 0
2 −1001 90
0 1000 −2000


 , A2 =



−2 1 0
2 −101 9
0 100 −200




and

A3 =



−2000 1 0

2 −1001 90
0 1000 −2000




with the right hand side b = (1, ψ(1))T . These matrices have the eigenvalues A1: λ ∈
{−2.0,−918,−2080}, A2 : λ ∈ {−2.0,−93,−208} and A3 : λ ∈ {−918,−2000,−2080}. The
first two matrices do therefore have a spectral gap of different size, whereas the matrix A3

has only large negative eigenvalues without spectral gap. The difference between the detailed
solution and the solution obtained by the QSSA method is then |u − uQ| = 3e − 6 for the
first matrix and |u − uQ| = 3e − 4 and |u − uQ| = 3e − 6 for the second and third matrix.
This suggests clearly, that for a decent approximation, the fast part has to be purely fast,
but is independent of the slow part A11 of the matrix and therefore of the spectral gap.

36



4.2 Linear equations without conservation laws

4.2.4 Reducing ordinary differential equations

A consequence of theorem 4.2.1 is that the ODE

u̇ = Au

u(0) =

(
u1,0

ψ(u1,0)

)

can be nicely reduced with the ILDM method: If the implicit Euler is applied for one time
step of size k, the corresponding linear equation

(1− k ·A)u(t + k) = u(t)

can be exactly reduced with ILDM in the first time step, because the table for the matrix
k · A equals the table of A, the matrices A and 1 commute and u(0) is on the manifold.
Clearly, the resulting state u(k) fulfills the condition u2(k) = ψ(u1(k)) and is therefore also
on the manifold generated by ILDM. But since u(k) defines the right hand side for the linear
equation for the next time step u(2k), the following time steps are also exactly reduced by
the ILDM method.

The reduction method QSSA cannot be used in the same way. In order to obtain the exact
solution by the application of the QSSA method in the first time step, the initial conditions
u0 have to be chosen such that

u0,2 = −A−1
22 A21(1− k(A11 −A12A

−1
22 A21))

−1u0,1. (4.4)

This can easily be verified by considering the reduced solution in the detailed equation:

(1− kA)

(
u1

−A−1
22 A21u1

)
=

(
u1 − k(A11 −A12A

−1
22 A21)u1

−A−1
22 A21u1

)
=

(
u0,1

u0,2

)
,

which leads to the above condition for u2,0.

Since the equations for the first time step are now exactly solved by the QSSA method, the
state vector u1 is clearly on the QSSA–manifold and fulfills the condition

u1,2 = −A−1
22 A21u1,1.

But in order to obtain an exact state in the second time step, the first time step has to fulfill
a condition similar to (4.4), which is a contradiction.

This observation leads to the question, how big the differences are between the exact solution
and the solution obtained by applying the QSSA method. The difference between the detailed
solver and the solutions obtained from QSSA for the problem

u̇ = Au

u(0) =

(
1

ψ(1)

)

for A as in (4.8) is shown in figure 4.2. The figure depicts clearly, that the error for QSSA
is dominated by the difference of the fast variables, which leads to an almost constant error.
The difference of the slow variable seems to increase linearly.
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Figure 4.2: The relative difference between the exact and QSSA reduced solution of u̇ = Au,
where A defines the source term of reaction (4.2).

4.2.5 Reduction of a simple reaction–diffusion equation

Consider now in 1d a very simple form of a reaction–diffusion equation. The diffusion shall
be modeled by the Laplacian with the same diffusion coefficient for all species, which leads
to the equation

−νu′′(x) = Au(x), x ∈ Ω := ]0, 1[. (4.5)

Dirichlet boundary conditions will be considered. The state vector u shall describe the mass
fraction of the three species of the linear reaction (4.2), the domain Ω shall be equidistantly
discretized by the grid points

Ωh := {0, h, ..., (N − 1)h,Nh}

with Nh = 1.

This leads with the finite element method to the linear algebraic equations

(Ah +Bh)uh = bh (4.6)

with blocked state vector uh, where each block describes the mass fractions of the chemical
species at the corresponding grid point. If the matrices are lumped, Ah and Bh read

Ah =




1 0 · · · · · · 0
0 −hA 0 0
...

. . .
. . .

. . .
...

... 0 −hA 0
0 · · · · · · 0 1




and Bh =




0 0 · · · · · · 0
−1/h1 2/h1 −1/h1 0

0
. . .

. . .
. . . 0

... −1/h1 2/h1 −1/h1
0 · · · · · · 0 0



,

and the right hand side bh is basically zero. Only the first and the last three entries are given
by the boundary values of the differential equation. In order to investigate the influence of
the parameterizations, the boundary values have to be chosen according to the value ψ(u1).
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4.2 Linear equations without conservation laws

Clearly, Ah and Bh commute, which might under certain circumstances lead to the exact
solution, if the ILDM–parameterization is applied. The trueness of this conjecture is shown
in the following lemma.

Lemma 4.2.2 Let the matrix A describe a linear chemical reaction without conservation
laws and let the rows of

(
V21 V22

)
describe the left eigenvectors of the fast eigenvalues of

A. Then the reduction of







1
A

. . .

A 1



+




0
a1 b1 a1

. . .
. . .

. . .

a1 b1 a1
0






u =




r
0
...
0
r




by the ILDM–parameterization leads to the same solution u as the original problem, if the
fast part of r is chosen to be r2 = ψ(r1).

Proof: The lemma can be proven inductively. Clearly the exact solution on the first and last node
is on the manifold. The exact solution fulfills on the inner nodes the relation

(A+ b)u = −a(uupper + ulower), (4.7)

which is solved exactly by the ILDM method (see theorem 4.2.1), because both uupper and ulower are

on the manifold by induction and therefore −a(uupper + ulower) as well.

This lemma shows that the above simple reaction–diffusion equation is reduced exactly with
the ILDM method. More advanced diffusion models, take for example Fick’s law [17], do in
general depend not only on one, but on several species, which introduces additional coupling
to the blocks of Bh. This contradicts the exact reduction by the ILDM method.

Note that a similar lemma for QSSA–parameterizations cannot exist: The exactness of the
QSSA–reduced problem requires r2 = −bA−1

22 A21(A11 + b1 − A12A
−1
22 A21)

−1r1 (compare
remark to theorem 4.2.1) in order to obtain correct values for u on the boundary nodes.
This implies u2 = ψ(u1) at the boundary, and (4.7) is not reduced exactly anymore.

This observation raises clearly the question to the size of the errors introduced by the appli-
cation of the QSSA method. An answer will be given in section 4.2.7.

4.2.6 Reduction of general equations

The previous sections showed clearly that the application of the reduction mechanisms does
not necessarily lead to systematic errors. For special examples, the reduced solutions equal
the exactly obtained solutions.
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4 Solution Process with QSSA and ILDM

Now the effect of the reduced solution processes to general problems shall be investigated.
For that reason, the difference between the detailed and reduced solution to the problem
(A+ αB)u = βb with

A =



−2 1 0
2 −1001 90
0 1000 −590


 , B =



−2 1 0
1 −2 1
0 1 −2


 and b =




1
1
1


 (4.8)

will be considered. This difference does in fact depend strongly on the influence of B and
the right hand side b and can be seen in figure 4.3. In this example, the matrix A describes
the source term of the linear reaction (4.2). The error seems to depend linearly on β and

Figure 4.3: The difference between the detailed and reduced solutions to (A+αB)u = βb, if
the original ILDM–parameterization ψI is applied. Here, A, B and b are defined
by (4.8). The right figure shows the difference of the solutions obtained by the
application of QSSA and ILDM.

decreases up to a certain limit with increasing α, therefore with increasing influence of the
second operator B.

Create a modified parameterization

The big errors produced by the application of the reduction methods to arbitrary equation
systems leads to the question, if the accuracy can be increased by allowing additional com-
putations in the evaluation of the tables. For that reason, a new parameterization will be
created on the basis of the original parameterization ψ. This new parameterization φ is sup-
posed to fulfill the conditions for QSSA and ILDM for the perturbed problem. The function
φ is therefore supposed to contain information not only on the chemical source term, but
also on the second matrix B and the right hand side b. In addition, the evaluation of φ shall
be based on the already existing parameterization ψ, such that the additional computational
effort for the calculation of φ is small.
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4.2 Linear equations without conservation laws

In the best case, the new parameterization φQ for the QSSA method solves the equation

(A21 + αB21)u1 + (A22 + αB22)φQ(u1) = βb2,

so the value of φQ(u1) is calculated to be

φQ(u1) = (A22 + αB22)
−1(A22ψ(u1) − αB21u1 + βb2). (4.9)

This formulation contains all the required information on the fast parts of B and b, but
requires the inversion of the matrix A22 +B22. Two possibilities arise:

• Accept the additional computational price.

• Reduce the above formulation to

φQ(u1) = ψQ(u1) + βA−1
22 b2.

Clearly, the inversion of A22 is equally expensive to the inversion of the matrix A22 +
B22, if the matrices describe the coupling of the species in one node. But if A and
B describe discretized differential operators on a large grid, then the chemical source
term A is of block diagonal form, whereas B contains also the coupling of the nodes.
Then the inversion of A22 + B22 is much more expensive than the inversion of A22,
which can be performed node–wise.

Consider the second possibility first. Note that the formulation of the renewed parame-
terization for ILDM–tables reads

φI(u1) = ψI(u1) + β(Λ2V22)
−1
(
V21 V22

)
b.

The solution u to the reduced problem resulting from the application of φ to the original
problem (A+ αB)u = βb is the solution to the system

(
A11 + αB11 A12 + αB12

A21 A22

)(
u1

u2

)
=

(
βb1
βb2

)

for QSSA and (
A11 + αB11 A12 + αB12

Λ2V21 Λ2V22

)(
u1

u2

)
= β

(
b1
b̃2

)

with b̃2 :=
(
V21 V22

)
, if the ILDM–parameterization φI is applied.

The absence of B21 and B22 in the formulations above leads of course to errors. These
errors are visualized in figure 4.4. The figure suggests that the error depends linearly on the
influence of the right hand side β, as in the case of the original parameterization, compare
figure 4.3. But an increasing α and therefore an increasing effect of B leads now to an
increasing error.
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4 Solution Process with QSSA and ILDM

Figure 4.4: The error produced by the application of the renewed ILDM–parameterization
φI to the problem (A+αB)u = βb with A, B and b as in (4.8). The right figure
shows the same error with a different scale.

This phenomenon is probably best understood, if both A and B are supposed to be of block
diagonal form and the QSSA–parameterization is applied. Then the solution to the original
problem

(A11 + αB11)u1 = βb1

(A22 + αB22)u2 = βb2

is to be compared with the two approximations

(A11 + αB11)u1 = βb1
A22u2 = 0

and
(A11 + αB11)u1 = βb1

A22u2 = βb2,

where the first system describes the application of ψ and the second the application of the
renewed parameterization φ. Let now β be constant. Then the fast part of the detailed
solution u2 tends to zero for increasing α, which is perfectly approximated by ψ, but not by
φ. This leads to the increasing error in figure 4.4 for constant β, whereas the error decreases
in figure 4.3.

A similar analysis can be done for constant α with increasing β. This explains the linear
dependence of the error on the size of b2.

The difference between the performance of the ILDM– and the QSSA–parameterization is
again rather moderate, as figure 4.5 shows. The figure shows clearly, that QSSA and ILDM
perform equivalently, if

• β = 0: Both reduction methods lead to the exact solution u = 0. This explains also,
why the error is zero for β = 0 in figure 4.4.

• α = 0: If u solves the system
(
A11 A12

A21 A22

)(
u1

u1

)
= β

(
b1
b2

)
,
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4.2 Linear equations without conservation laws

Figure 4.5: The difference between the application of the renewed parameterizations φQ

and φI to the problem (A+ αB)u = βb.

then it solves also the equations

(
A11 A12

)(u1

u2

)
= βb1

(
V21 V22

)
A

(
u1

u2

)
= β

(
V21 V22

)(b1
b2

)

and vice versa. This is also the reason for the exactness of the reduction for α = 0,
compare figure 4.4.

Consider now the first possibility. Now, the performance of the possibility, where the
inversion of A22 +B22 is allowed, will be investigated.

Instead of solving the equation (A+ αB)u = βb, the solution process reads now

(A11 + αB11)u1 − (A12 + αB12)ψ(u1) = βb1

(A22 + αB22)u2 = βb2 − (A21 + αB21)u1. (4.10)

The main information obtained from the table is therefore the splitting of the state vector u
into a slow and a fast part. The application of the function ψ for the first equation guarantees
that the original problem is splitted in two decoupled subsystems.

The solution the equation (A + αB)u = βb is by the above solution process approximated
by (

A11 + αB11 − (A12 + αB12)Y
−1
22 Y21 0

A21 + αB21 A22 + αB22

)
u = βb, (4.11)

where Y2i has to be replaced by A2i or Λ2V2i according to the type of table. The inexactness
of this possibility is on the one hand the difference in the Schur complement, which is created
with Y22 and Y21 instead of the original blocks A22 +B22 and A21 +B21. On the other hand,
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4 Solution Process with QSSA and ILDM

the original solution process considers the effect of b2 to the slow part u1, whereas the reduced
slow variables are independent of the fast part of the right hand side.

The errors produced by this solution technique can be seen in figure 4.6. The figure shows

Figure 4.6: The left figure shows the difference of the solution process (4.10) to the detailed
solution of the problem (A+αB)u = βb with matrices and right hand side given
by (4.8). The figure on the right hand side visualizes the difference between the
application of QSSA and ILDM.

clearly the same behavior as the pure application of ψ in figure 4.3, but the error is smaller.

4.2.7 A PDE example

Reconsider the 1d differential equation (4.5) in order to investigate the numerical errors
occurring by the application of the different reduction strategies. The exact solutions for the
boundaries corresponding to the ILDM–parameterization can be seen in figure 4.7.

Applying the parameterizations ψQ and ψI to the linear algebraic system reduces first of all
the size of the problem. The reduced system reads then

(Ah,11 +Bh,11)uh,1 + (Ah,12 +Bh,12)ψ(uh,1) = bh,1, (4.12)

where the evaluation of ψ is to be interpreted node–wise. The original 3N × 3N–system is
now reduced to a system containing only N equations.

As already seen in lemma 4.2.2, the ILDM method reduces the system of equations without
systematic errors, which is not the case for QSSA. Therefore the systematic error of the re-
duction is to be investigated for the QSSA–table and its variations. Also the errors produced
by the ILDM method will be calculated in order to see the effect of errors in the evaluation
of the tables.

The difference to the exact solution can be seen in table 4.1. This table substantiates clearly
the result of lemma 4.2.2. Note that the error for ILDM can be even further reduced by
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Figure 4.7: The detailed solution to problem (4.5) on a grid with 65 nodes. The right figure
shows the same plot with a different scale.

analytic param. tabulated param.

# points h QSSA ILDM QSSA ILDM

5 0.25 2.06e − 5 1.39e − 9 1.85e − 5 4.2e − 9
17 0.0625 2.15e − 5 1.39e − 9 1.93e − 5 3.97e − 9
65 0.015625 2.16e − 5 1.39e − 9 1.95e − 5 4.73e − 9

Table 4.1: The systematic error produced by the reduction of problem (4.5) with the QSSA
and ILDM method. In both cases, tables containing 1001 points were used, but
tables with only 11 points lead basically to the same results.

considering boundary values, which evaluate the parameterizations ψ with higher precision,
whereas the error for QSSA remains the same, compare lemma 4.2.2.

Note that the nice performance of the reduction methods depends strongly on the properties
of the second operator Bh and the right hand side bh of the algebraic equation. Here, the
matrix Bh does not change “slow” and “fast”, therefore the slow variables of the purely
chemical problem described by Ah are still considered to be slow in the problem described
by Ah + Bh. The right hand side bh plays also an important role. First of all, the param-
eterization ψ was created for right hand sides with bh,2 = 0 for the non–boundary nodes,
which is in the considered example the case. External sources for the slow process variables
can also be treated with the parameterizations ψ, but sources for the fast variables lead to
big errors. And secondly, the boundary values of the original problem have to be chosen
appropriately. Since the values of the fast variables depend algebraically on the slow vari-
ables, the boundaries of the original problem have to fulfill the property u2 = ψ(u1). If for
example the vector u = (0.9, 0.1, 0.0) is taken as boundary conditions, the error is for both
QSSA and ILDM approximately 0.098 for all grid sizes.

The choice of the boundaries in the considered example and the partial differential operator,
which does conserve the characteristics “slow” and “fast” for the variables ensures the good
approximation of the reduced iteration. Taking the boundary values as initial guess for the
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4 Solution Process with QSSA and ILDM

Newton iteration leads to an initial residual of order 10−1 for the process variables and of
order 10−7 for the fast variables. The reduced solution process leads to an approximation,
which has a residual of order 10−13 for the process variables, whereas the fast residual remains
constant with 10−3. These values were produced on a grid with 65 nodes.

Consider now the more expensive possibility and evaluate the tables by

φ(u1) = ψ(u1) +A−1
22 b2

and allow therefore the additional inversion of the block–diagonal matrix A22 in each itera-
tion. The solution process reads therefore

(Ah,11 +Bh,11 + (Ah,12 +Bh,12)ψ)uh,1 = bh,1 − (Ah,12 +Bh,12)A
−1
h,22bh,2

uh,2 = ψ(uh,1) +A−1
h,22bh,2.

The application of this technique to the global problem does not lead to new results, simply
because the fast part of the right hand side is zero as well as the matrix block B21. This
means that the modified tables have the same effect on the reduction of the PDE as the
original tables.

This is different, if not only A22, but also the matrix block A22+B22 is allowed to be inverted.
The reduced solution process for the reaction–diffusion equation (4.5) reads now

(Ah,11 +Bh,11 + (Ah,12 +Bh,12)ψ)u1 = bh,1

(Ah,22 +Bh,22)uh,2 = bh,2 − (Ah,21 +Bh,21)uh,1.

This improves of course the accuracy, because the effect of the fast part of Bh is also treated.
The difference between the detailed and the reduced solution is shown in table 4.2. This

# points h QSSA ILDM

5 0.25 5.79e − 7 1.05e − 8
17 0.0625 5.88e − 7 1.10e − 8
65 0.015625 5.89e − 7 1.10e − 8

Table 4.2: The difference between the detailed and the reduced solution of (4.5), if in
addition to the application of the parameterization ψ the matrix Ah,22 +Bh,22 is
allowed to be inverted.

table shows clearly that the inversion of Ah,22 + Bh,22 improves the application of the pa-
rameterizations ψ a lot, if QSSA is applied. The results for ILDM are at least comparable,
see also table 4.1. Also of importance is the fact that the error is basically independent of
the grid size.

Variation of the parameters

Clearly, different parameters for the reaction and different viscosities ν do not only change
the solutions, but also the accuracy of their approximations. Table 4.3 shows the influence of
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4.2 Linear equations without conservation laws

the viscosities to the accuracy of the reduced solution for three different reaction mechanisms
given by

sp1

2GGGGBFGGGG
1

sp2

1000 kGGGGGGGGGGBFGGGGGGGGGG
90 k

sp3

500 kGGGGGGGGGAsp4.

The reduction mechanism QSSA was applied to create this table. The influence of the

k ν = 1 ν = 10−2 ν = 10−4 ν = 1, ILDM

∆u1 = 2e− 5 ∆u1 = 2e− 5 ∆u1 = 4e− 6 ∆u1 = 6e− 8
1 ∆u2 = 6e− 7 ∆u2 = 6e− 7 ∆u2 = 4e− 7 ∆u2 = 4e− 9

res2 = 1e− 3 res2 = 3e− 4 res2 = 3e− 5 res2 = 4e− 6

∆u1 = 2e− 7 ∆u1 = 2e− 7 ∆u1 = 4e− 8 ∆u1 = 6e− 10
10 ∆u2 = 7e− 9 ∆u2 = 2e− 8 ∆u2 = 1e− 8 ∆u2 = 4e− 10

res2 = 1e− 5 res2 = 3e− 5 res2 = 3e− 6 res2 = 7e− 7

∆u1 = 3e− 9 ∆u1 = 2e− 9 ∆u1 = 4e− 10 ∆u1 = 8e− 12
100 ∆u2 = 7e− 11 ∆u2 = 2e− 10 ∆u2 = 2e− 10 ∆u2 = 4e− 11

res2 = 1e− 5 res2 = 3e− 6 res2 = 3e− 7 res2 = 5e− 7

Table 4.3: The table shows in each block the difference of the detailed to the reduced
solutions of the reaction–diffusion equation (4.5). The source term has the eigen-
values on the left hand side, the viscosity constants for the species shall be the
same for all three variables. The blocks are divided into three parts, the first two
parts are the difference of the slow and fast variables, whereas res2 denotes the
residual of the reduced solution for the fast variables.

viscosity is rather small compared to the influence of the spectral gap. The viscosity ν = 1 for
all three species in the considered example is much bigger than the viscosities are in general
in reality. Smaller values for ν do not change the performance of the tables significantly,
even though the solution differs a lot. Note that the performance is slightly increased, if
smaller values for the viscosity of the fast variables are considered, whereas bigger viscosities
leads to minor approximations.

Even though lemma 4.2.2 proves the exactness of the reduced solution, if ILDM is applied,
still errors occur due to errors for example in the evaluation of the table. These errors are
much smaller than the errors computed for the QSSA–reduction, compare the last column
of 4.3. The increasing spectral gap seems to have an improving effect on the accuracy.

The only possibility to decrease the performance significantly is to choose the viscosities such
that the process variables for the matrix Ah cannot be used as process variables for Ah +Bh.
This can be achieved by changing the original equation (4.5) for example to



−10−3 0 0

0 −102 0
0 0 −102


u′′(x) = Au(x), (4.13)

which leads to the results in figure 4.8. Clearly, the reduction methods resulting from QSSA
cannot be applied anymore. Again due to lemma 4.2.2, the reduced solution obtained by
the ILDM method should be exact. But the non-existing spectral gap of Ah + Bh leads to
almost the same effect as in the case of QSSA.
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Figure 4.8: The solution to problem (4.13). The upper figures show the detailed, the lower
two the reduced solution. The two figures on the right hand side show the same
plot as the left two figures, but with a different scale.

4.2.8 Numerical costs

In order to state the numerical costs for an algorithm, this section is divided into the con-
sideration of the computation time and the calculation of the consumed memory.

The considered system of linear equations shall be denoted by

(A+B)u = b,

where A and B are the finite element matrices similar as in section 4.2.7. The pattern of
the matrix A+B depends obviously on the dimension of the domain of the underlying PDE
and the discretization of the system. If the PDE is considered in one dimension in space
and the discretization is obtained by the finite element method with the trapezoid rule as
integration formula, the matrix A+B is of block–tridiagonal form. The same discretization
of a two dimensional domain leads to a matrix with blocks on the diagonal and basically two
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4.2 Linear equations without conservation laws

off–diagonals. Each block is of size n1 +n2, the number of blocks on the diagonal equals the
size of the grid.

The computation time for PDEs

Consider the problem

−∆u = f(u)

in two dimensions with f denoting the source term of a linear reaction. Here, this problem is
solved by the Newton’s method, even though it is purely linear. The solution process includes
therefore the computation of the defect and the multilevel solver for the Newton update.
The smoothing will be done by a preconditioned Richardson iteration, the preconditioner is
provided by the ILU.

Let now the domain be discretized with 1024 cells. The computation time can then be
seen in table 4.4 for reactions with 3, 5, 10 and 15 species. The chemical source term
describes reactions of the form (4.2) with additional fast variables as intermediate species
between sp3 and sp4. The table suggests clearly that the computational expenses for the

n2 detailed reduced reduced analytic preconditioned

2 3.3 35 12 36
4 44 39 15 58
9 555 55 24 432
14 2657 71 37 2160

Table 4.4: The computation time in seconds for the problem −∆u = f(u) with one pro-
cess variable and n2 fast variables. The compared solution techniques are the
detailed solving strategy without any reduction, the solution process with direct
application of the tables, the direct application of the analytically given tables
and the preconditioned method, where the inversion of A22 +B22 is allowed. The
computation was done on a Pentium IV with 1.4 GHz and 2 GB memory.

detailed problem grow with more than n3. It also shows that the reduced solution process
is very expensive, especially for reaction mechanisms, where the ration between the fast
and slow variables n2/n1 is small. The power of the application of the tables can only be
seen, if reaction mechanisms with many fast variables are considered. The computational
costs can be reduced, if the parameterizations of the manifolds is given analytically. The
preconditioned solver is slightly cheaper than the detailed solution process, but the numerical
costs do also grow with n3.

The computation times in more detail can be seen in table 4.5. Clearly, the most time-
consuming part of the detailed solution process is the calculation of the ILU, which grows
faster than with n3. The assembling of the matrix is relatively cheap, but grows also cu-
bically with the number of species. Only the calculation of the nonlinear residual seems to
be of almost the same costs independently of n. This behavior changes, if the reduction
mechanisms are applied. The calculation of the residual is still almost independent of n,
but the costs are much higher. The same with the assembling of the matrix, which is quite
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4 Solution Process with QSSA and ILDM

detailed reduced
n2 matrix ilu residual matrix ilu residual

2 0.76 0.10 0.42 19.3 0.11 7.00
4 3.7 31.7 0.53 22.2 0.11 7.8
9 22.2 516 0.56 31.9 0.11 11.0
14 79.7 2551 0.8 43.3 0.11 12.8

Table 4.5: The computation times of table 4.4 divided into the time to assemble the matrix,
to calculate the ILU and to compute the residual in the nonlinear iteration.

expensive, but grows less than linearly in n. The costs of the computation of the ILU do of
course not change, because the resulting linear system contains for all reaction mechanisms
only one variable.

Memory consumption for PDEs

In order to give a feeling for the memory usage of the solution processes, assume that the
matrix is stored as well as three vectors for the solution of a linear system. The three vectors
provide space for the right hand side, the iterate u and the current residual. The detailed
solver needs therefore

• 5Nn2[double] byte for the matrix (5N blocks containing n2 doubles. Note that the 5
is only correct in two dimensions with lumping.)

• Nn[double] byte for each vector

for a sparse linear system of equations. Let the computation be performed on a computer
with 1 GB memory and consider a reaction mechanism similar to the methane–air combustion
with n1 = 4 slow and n2 = 32 fast variables. This leads to a maximal grid size of 19 000
nodes. In two dimensions of space, grids with 105 and more grid points are considered for
reactive flows.

The reduction of the total system leads to a memory consumption of (5n2
1 + 3n1)N [double]

bytes in addition to the table. Consider again a reaction mechanism similar to the methane
flame. Then grids with up to 950 000 nodes can be considered on a computer with 1 GB
memory. Here, the table is assumed to require 300 MB space.

The treatment of the system

(A11 +B11 + (A12 +B12)ψ)u1 = b1

(A22 +B22)u2 = b2 − (A21 +B21)u1

instead of the original problem (A+B)u = b leads to two decoupled linear systems and can
be treated separately. The solution process for the first equation requires as much disk space
as the direct application of the tables, this means (5n2

1 + 3n1)N [double] bytes in addition to
the space required by the table. The second equation needs (5n2

2 +3n2)N [double] bytes, but
the table ψ is not necessary anymore. The limiting size is therefore the size of the second
equation. The maximal grid size, which can be considered with a reaction mechanism of the
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size of the methane–air reaction, is therefore N = 24000 nodes, which is approximately 25%
more than with detailed solvers.

4.3 Linear equations including conservation laws

The goal of this section is to provide a deeper understanding of the effect of center manifolds
to reduction methods. The outline of this section is therefore comparable to section 4.2.
The main difference to the previous chapter is that analytical results are slightly more tricky
to prove. The proof is often based on the fact that V 0

3 is invertible, for details see lemma
4.3.1. The existence of the center manifold leads also to a different behavior, if general
linear equations are treated, where the reduction methods produce systematic errors. This
difference can probably best be seen by comparing figures 4.4 and 4.11.

4.3.1 The parameterization of the manifolds

Consider now a linear reaction mechanism, where conservation laws occur. The modeling
ODE may then be given in the form



u̇1

u̇2

u̇3


 =



A11 A12 A13

A21 A22 A23

A31 A32 A33




︸ ︷︷ ︸
=:A



u1

u2

u3


 ,

where u3 ∈ Rn3 are the variables, which might be calculated from the process variables
u1 ∈ Rn1 and the fast variables u2 ∈ Rn2 by the conservation laws. The eigenvalue analysis
of A leads to

V =



V11 V12 V13

V21 V22 V23

V 0
1 V 0

2 V 0
3


 and Λ =




Λ1 0 0
0 Λ2 0
0 0 0




with V A = ΛV .

The matrix A has several nice properties:

• The rows of (
A11 A12 A13

A21 A22 A23

)

are linearly independent.

• The rows of (
A31 A32 A33

)

are linearly independent and depend linearly on the rows of
(
A11 A12 A13

)
and(

A21 A22 A23

)
, therefore there exist matrices Γ1 ∈ Rn3×n1 and Γ2 ∈ Rn3×n2 such

that

Γ1

(
A11 A12 A13

)
+ Γ2

(
A21 A22 A23

)
+
(
A31 A32 A33

)
= 0.
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• The matrix V 0
3 is invertible, as the following lemma shows.

Lemma 4.3.1 Let the rows of (
V 0

1 V 0
2 V 0

3

)

be the left eigenvectors to the eigenvalue λ = 0 of the block matrix

A =



A11 A12 A13

A21 A22 A23

A31 A32 A33




of size (n1 + n2 + n3) × (n1 + n2 + n3), where the last n3 rows are linearly independent and
depend linearly on the upper n1 + n2 rows. Then V 0

3 is invertible.

Proof: The dimension of the eigenspace to the eigenvalue λ = 0 is

dimE(0) = dimker(A) = n3,

therefore do the rows of
(
V 0

1 V 0
2 V 0

3

)
form a basis of E(0). So do the rows of

(
Γ1 Γ2 1) .

This implies the existence of an invertible matrix M ∈ Rn3×n3 with

(
Γ1 Γ2 1) = M

(
V 0

1 V 0
2 V 0

3

)
,

hence 1 = MV 0
3 .

The invertibility of M implies now the invertibility of V 0
3 .

The above formulation of the ODE is equivalent to the DAE



u̇1

u̇2

c


 =



A11 A12 A13

A21 A22 A23

V 0
1 V 0

2 V 0
3




︸ ︷︷ ︸
=: eA



u1

u2

u3


 , (4.14)

given that the rows of the matrix (
V 0

1 V 0
2 V 0

3

)

span the left eigenspace of the matrix A to the eigenvalue λ = 0 and that c describes the
conservation constant of the initial value

c =
(
V 0

1 V 0
2 V 0

3

)
· u(0).

The QSSA–parameterization ψQ and the ILDM–parameterization ψI are then described by
the functions

ψQ(u1) =

(
A22 A23

V 0
2 V 0

3

)−1((
0
c

)
−
(
A21

V 0
1

)
u1

)
(4.15)
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and

ψI(u1) =

(
Λ2V22 Λ2V23

V 0
2 V 0

3

)−1((
0
c

)
−
(

Λ2V21

V 0
1

)
u1

)
.

As an example, take the mechanism

sp1

2GGGGBFGGGG
1

sp2

1000GGGGGGGGBFGGGGGGGG
90

sp3, (4.16)

and let the mass fractions of all three species sp1, sp2 and sp3 be modeled. The source term
is therefore given by the matrix



−2 1 0
2 −1001 90
0 1000 −90


 , (4.17)

and the mass fraction of species sp3 can be calculated by the conservation law y1+y2+y3 = 1.
The parameterizations are then given by

ψQ(u1) =

(
0.082493
0.917507

)
−
(

0.08066
0.91934

)
u1

and

ψI(u1) =

(
0.082499
0.917501

)
−
(

0.0808141
0.919186

)
u1.

In this section, the problem
(A+ αB)u = βb

will be treated with the above parameterizations, which were introduced for the problem u̇ =
Au. The introduction of the matrix B together with the disturbance b leads to the problem
that the original conservation laws do not have to be valid anymore. The conservation laws
are only preserved, if both equations

(
V 0

1 V 0
2 V 0

3

)
B = 0 and

(
V 0

1 V 0
2 V 0

3

)
b = 0

hold, which is in general not the case. But due to the existence of the operator B, the
failure of these conditions does not contradict the existence of a steady state of the ODE
u̇ = (A+ αB)u− βb.

In order to simplify the investigation of the influence of the center manifold, note the following
technical lemma.

Lemma 4.3.2 Let A be a block matrix given by

A =

(
A11 A12

A21 A22

)

with A11 and A22 invertible blocks. If M := A11 − A12A
−1
22 A21 exists and is invertible, the

inverse of A is given by

A−1 =

(
M−1 −M−1A12A

−1
22

−A−1
22 A21M

−1 A−1
22

(1+A21M
−1A12A

−1
22

)
)
.
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4.3.2 Description of reduced problems

The application of the QSSA–parameterization ψQ introduces the conservation laws of u̇ =
Au to the problem u̇ = (A+αB)u− βb. The reduced problem to (A+αB)u = b reads now

(A11 + αB11) +
(
A12 + αB12 A13 + αB13

)
ψ(u1) = b1

for the process variables u1 and with the evaluation of ψ(u1) also to u2 and u3. By lemma
4.3.2, the reduced problem is clearly equivalent to



A11 + αB11 A12 + αB12 A13 + αB13

A21 A22 A23

V 0
1 V 0

2 V 0
3


u =



βb1
0
c




with c denoting the conservation constant

c =
(
V 0

1 V 0
2 V 0

3

)
u(0)

for the original problem u̇ = Au.

A similar analysis for the reduction with the ILDM–parameterization ψI leads to the equa-
tions 


A11 + αB11 A12 + αB12 A13 + αB13

Λ2V21 Λ2V22 Λ2V23

V 0
1 V 0

2 V 0
3


u =



βb1
0
c


 ,

which describe the solution, if the original problem is reduced with ILDM. Even though
these two linear systems differ in the description of the fast variables, they are equivalent, if
α = β = 0, as the following lemma shows.

Lemma 4.3.3 Let A and V 0
i be as above. Then the equivalence



A11 A12 A13

A21 A22 A23

V 0
1 V 0

2 V 0
3


u =




0
0
c


 ⇐⇒




A11 A12 A13

Λ2V21 Λ2V22 Λ2V23

V 0
1 V 0

2 V 0
3


u =




0
0
c




holds.

Proof: Let
(
A11 A12 A13

)
u = 0. Then

(
Λ2V21 Λ2V22 Λ2V23

)
u

=
(
V21 V22 V23

)
Au

=
(
V22

(
A21 A22 A23

)
+ V23

(
A31 A32 A33

))
u

By lemma 4.3.1 we get
(
A31 A32 A33

)
= −

(
V 0

3

)−1 (
V 0

1

(
A11 A12 A13

)
+ V 0

2

(
A21 A22 A23

))
,

therefore we have
(
Λ2V21 Λ2V22 Λ2V23

)
u =

(
V22 − V23

(
V 0

3

)−1
V 0

2

) (
A21 A22 A23

)
u,

which finishes the proof.

Theorem 4.2.1 can be reformulated for the case, where A is not invertible.
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Theorem 4.3.4 Let A ∈ Rn×n be arbitrary. Define the function ψ : Rn1 → Rn2+n3 such
that the vector u = (u1, ψ(u1))

T is on the manifold defined by QSSA (ILDM) for all values of
u1. Let further B ∈ Rn×n and r ∈ Rn are such that u is on the QSSA–(ILDM–)manifold for
the function f(u) = Bu− r. If A+B is invertible, then the solution of the reduced problem

(A11 +B11 +
(
A12 +B12 A13 +B13

)
ψ)u1 = r1(
u2

u3

)
= ψ(u1)

is also a solution as the original problem (A+B)u = r. If A+B is not invertible, the reduced
solution equals the exact solution of (A+B)u = r under the condition V 0u = c.

Proof: The proof will be split into two cases. In the first case, ψ is assumed to be created by the
QSSA–method, in the second case, ψ represents the ILDM–parameterization.

1. Let ψ represent the manifold created by QSSA. The fact that ψ is also the QSSA–parameterization
for the problem u̇ = Bu−r, leads to the relationsB21u1+B22u2+B23u3 = r2 and V 0Bu = V 0r,
if u is on the manifold. Let u = (u1, u2, u3)

T be the solution of the reduced problem, where the
QSSA–parameterization was applied. Then u is necessarily on the manifold and the following
holds:



1 0 0
0 1 0
V 0

1 V 0
2 V 0

3


 (A + B)u =




r1
B21u1 +B22u2 + B23u3

V 0Bu


 =



1 0 0
0 1 0
V 0

1 V 0
2 V 0

3





r1
r2
r3


 ,

because
(
A21 A22 A23

)
u = V 0Au = 0. The invertibility of V 0

3 (lemma 4.3.1) implies the
equation (A+B)u = r, the reduced solution does therefore solve the detailed problem.

2. Let the function ψ now represent the ILDM–parameterization for the problems

u̇ = Au and u̇ = Bu− r.

This implies the relations

V2(Bu− r) = 0 and V 0(Bu− r) = 0

for all possible u on the manifold. Let now u be the solution of the reduced problem. Then u
is necessarily on the manifold and the following is true:



1 0 0
V21 V22 V23

V 0
1 V 0

2 V 0
3


 (A+B)u =




r1
V2Bu
V0Bu


 =



1 0 0
V21 V22 V23

V 0
1 V 0

2 V 0
3


 r,

because V2Au = 0 and V 0A = 0. The existence of the ILDM–parameterization implies the

invertibility of the matrix

(
V22 V23

V 0
2 V 0

3

)
, which leads to the relation (A+B)u = r.

The linearity of the problems does in both cases assure the equivalence of the detailed and reduced

formulations.

A few remarks to this theorem:

• In case of QSSA, the reduced solution is clearly exact, if B2i = 0, B3i = V 0
i − A3i,

b2 = 0 and b3 = c.
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• Exactness is also obtained, if the fast variables are decoupled from the slow and con-
servation variables. This means that A21 = B21 = 0 and A23 = B23 = 0 together with
B3i = V 0

i −A3i, b2 = 0 and b3 = c is required.

• The conditions of the above theorem are fulfilled, if AB = BA and the right hand side
r is on the ILDM manifold.

• The conditions are especially fulfilled for ILDM, if

V2r = 0 and V 0Bu = c

for all u on the manifold.

4.3.3 Reducing ordinary differential equations

Similar as in section 4.2.4 it can be shown with theorem 4.3.4 that a linear ODE

u̇ = Au

with initial values on the manifold is exactly solved by the ILDM method, if the implicit
Euler algorithm is applied. The QSSA method introduces systematic errors. A closer look
to the argumentation in section 4.2.4 shows that the non–existing of the center manifolds
was not explicitly required, the introduced arguments are therefore also valid for the current
case with conservation laws and will not be repeated here.

The behavior of the systematic error introduced by the QSSA method is still interesting
compared to ODEs without conservation laws. The difference between the detailed solver
and the solutions obtained from QSSA for the problem

u̇ = Au

u(0) =

(
0.9

ψ(0.9)

)

for A as in (4.17) is shown in figure 4.9. The figure depicts clearly, that the error decreases
fastly unlike in the case, where no center manifold existed, compare figure 4.2.

4.3.4 Reduction of a simple reaction–diffusion equation

Similar as in the case without center manifolds (compare section 4.2.5), equations of the
form

−νu′′(x) = Au(x), x ∈ Ω := ]0, 1[ (4.18)

with A for example as in (4.17), can be exactly solved with the ILDM method, as the
following lemma shows.
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Figure 4.9: The solution (left figure) and the relative difference between the exact and
QSSA reduced solution of u̇ = Au, where A defines the source term of reaction
(4.16).

Lemma 4.3.5 Let the matrix A describe a linear chemical reaction with conservation laws.
The rows of

(
V21 V22 V23

)
describe the left eigenvectors of the fast eigenvalues of A, the

rows of
(
V 0

1 V 0
2 V 0

3

)
are the eigenvectors to λ = 0. Then the reduction of







1
A

. . .

A 1



+




0
−b/21 b1 −b/21

. . .
. . .

. . .

−b/21 b1 −b/21
0






u =




r
0
...
0
r




by the ILDM–parameterization leads to the same solution u as the original problem, if r
fulfills the relation (r2, r3) = ψ(r1).

Proof: The lemma can be proven inductively. Clearly, the exact solution on the first and last node
is on the manifold. The solution on the inner nodes fulfill the equation

(A+ b)u = b/2(uupper + ulower),

which is solved exactly by the ILDM method, if uupper and ulower are on the manifold, because then

(
V21 V22 V23

)
(uupper + ulower) = 0

and
b/2
(
V 0

1 V 0
2 V 0

3

)
(uupper + ulower) = bc,

compare the remarks of theorem 4.3.4.

Even though this lemma and its proof reminds on lemma 4.2.2, there is a major difference.
In the case of linear reactions without conservation laws, the manifold created by ILDM is
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linear, this means that u + v is on the manifold, if both u and v are on the manifold as
well. Here, the ILDM–manifold is only affine linear. If u and v are on the manifold, then
ku + (1 − k)v is on the manifold, but u + v definitively not. This leads to the necessary
condition for the disturbance matrix B that the sum of the elements in each row has to be
zero. Fortunately, this is the case for the discretized Laplacian.

By similar arguments as in section 4.2.5 it can be seen that the QSSA method does not lead
to correct results. The produced systematic error will be analyzed in section 4.3.6.

4.3.5 Reduction of general equations

The previous sections showed clearly that there are (relevant) examples, which are exactly
solved by the reduction methods. Now the produced errors for an arbitrary problem will be
studied with an example.

For general disturbances B and b of the original problem, exactness cannot be expected and
systematic errors occur. Figure 4.10 shows the error, which is produced by the application
of the reduction ψ to the system (A+ αB)u = βb with

A =



−2 1 0
2 −1001 90
0 1000 −90


 , B =



−2 1 0
1 −2 1
0 1 −2


 and b =




1
1
1


 . (4.19)

Here, A describes the source term of the linear reaction (4.16). The figure suggests that the

Figure 4.10: The left figure shows the error produced by the application of the ILDM–
parameterization ψI to problem (A+ αB)u = βb defined by (4.19). The right
figure shows the difference between the solutions obtained by the application
of ILDM and the application of QSSA.

influence of the entries of b is much bigger than of B. In fact, the error depends linearly
on β, whereas the performance seems to increase with increasing influence of the second
operator B.
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4.3 Linear equations including conservation laws

Compared to the application of the parameterizations to problems without conservation laws,
the error is enormously larger, especially for small values of α, compare figure 4.3. This is
not surprising, because the matrix A+αB becomes singular for α = 0. But also for bigger α
the difference is remarkable. Whereas the error tends to zero, if no conservation laws hold,
the error is here bounded away from zero. In fact, the difference between the detailed and
reduced solution is for α = 6000 and β = 1 with ∆u ≈ 4.2 · 10−4 rather small in case of no
conservation equations, whereas it is ∆u ≈ 0.89 for the problem with conservation laws.

Create a modified parameterization by the inversion of the chemical part

The original parameterization was created to solve the equation

(
A21

V 0
1

)
u1 +

(
A22 A23

V 0
2 V 0

3

)
ψ(u1) =

(
0
c

)
.

Now the parameterization shall be modified, such that information about the right hand
side b is contained in this formulation. As already seen in section 4.2.6, the consideration of
the fast part of the matrix B leads to a numerically very expensive calculation, so only the
right hand side b will be treated in the creation of a new parameterization.

The right hand side of the above equation may be changed to

•
(
βb2
c

)
: The parameterization contains more information about the right hand side as

the original parameterization and accepts the existence of the conservation laws. In
case of ILDM, replace b2 by V21b1 + V22b2 + V23b3.

•
(

0
0

)
: The resulting parameterization omits the constant c. The conservation laws are

therefore changed, but due to the existence of B, they might be invalid anyway.

•
(
βb2
0

)
: This parameterization does also omit the center manifold, but contains more

information on the right hand side of the problem as the parameterization introduced
before. If an ILDM–parameterization is to be created, replace again b2 by V21b1 +
V22b2 + V23b3.

All three parameterizations are generated on the basis of ψ by

φ(u1) = ψ(u1) +

(
Y22 Y23

V 0
2 V 0

3

)−1(
rhs1

rhs2 − c

)

with the values of rhs1 and rhs2 as above and Y2i = A2i for QSSA–parameterizations and
Y2i = Λ2V2i, if an ILDM–parameterization is modified.

These three possibilities lead to solutions u of the reduced problem, which solve the equation



A11 + αB11 A12 + αB12 A13 + αB13

Y21 Y22 Y23

V 0
1 V 0

2 V 0
3


u =




βb1(
rhs1
rhs2

)

 .
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4 Solution Process with QSSA and ILDM

They all neglect the effect of the second operator B to the fast variables, because the formu-
lation depends otherwise on the inverse of the fast and conservation part of A+αB, similar
as in (4.9), which is too expensive for practical purposes.

The absence of B2i and B3i leads to large errors, see figure 4.11. The difference between

Figure 4.11: The error produced by the reduction of the problem (A + αB)u = βb with
data as in (4.19) and the modified table with (βb2, c)

T on the right hand side.

the reduced solution with the original parameterization and the reduced solution with the
renewed parameterizations is small, and no difference is visible in a plot. But there are
differences, especially for large values of α. Let for example α = 6000 and β = 1 in the
problem (A + αB)u = βb with A and B defined by (4.19). Then the difference of the
reduced and detailed solutions is

• Original parameterization: ∆u ≈ 0.8859

• Parameterization considering the right hand side with conservation constant: ∆u ≈
0.8858

• Parameterization neglecting both the right hand side and the conservation constant:
∆u ≈ 4.8 · 10−4

• Parameterization neglecting the conservation constant but considering the right hand
side: ∆u ≈ 4.9 · 10−4

These results suggest clearly that it is advantageous to omit the conservation constant c.

The omitting of the conservation constant c leads to a difference, which is constant in α and
β:

∆u =



A11 + αB11 A12 + αB12 A13 + αB13

Y21 Y22 Y23

V 0
1 V 0

2 V 0
3




−1


0
0
c




with |∆u| ≈ 0.89 in example (4.19), if the ILDM–parameterization is used. Considering
also the fast part of the right hand side b2 or V21b1 + V22b2 + V23b3 respectively, leads to a
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4.3 Linear equations including conservation laws

difference to the solution with the original parameterization, which is still constant in α and
depends linearly on β:

∆u =



A11 + αB11 A12 + αB12 A13 + αB13

Y21 Y22 Y23

V 0
1 V 0

2 V 0
3




−1


0
βb2
0




with |∆u| < 0.1, if the ILDM–parameterization is applied to example (4.19) with α, β < 6000.
This means that no difference to figure 4.10 will be visible, if the error produced by the
application of the renewed parameterization φ to this problem is plotted.

Create a modified parameterization by the inversion of the chemical and physical part

Assume now that equations of the type

(
A22 +B22 A23 +B23

A32 +B32 A33 +B33

)
u = b2

may be solved in the solution process. The solution strategy for the problem (A+αB)u = βb
reads then

(A11 + αB11)u1 +
(
A12 + αB12 A13 + αB13

)
ψ(u1) = βb1(

A22 + αB22 A23 + αB23

A32 + αB32 A33 + αB33

)(
u2

u3

)
= β

(
b2
b3

)
−
(
A21 + αB21

A31 + αB31

)
u1.

The information of the table is therefore only used to decouple the first equation from the
fast variables.

The error produced by this solution strategy for the problem (A + αB)u = βb can be seen
in figure 4.12. Clearly, the performance is much better than in the cases, where the fast
variables are not calculated detailedly, compare figures 4.10 and 4.11.

4.3.6 A PDE example

Reconsider the 1d reaction–diffusion equation given by (4.18) with the source term for the
reaction (4.16). Here, the conservation law

∑
i ui = 1 is respected in the parameterizations.

The solution to the exact equation with the boundary values u = (0.9, ψ(0.9)) for x = 0 and
x = 1 can be seen in figure 4.13.

Similar as in the case without conservation laws, the existence of the matrix Bh describing the
discretized Laplacian introduces errors, which can be seen in table 4.6, where the difference
between the detailed and reduced solution is shown for analytically given parameterizations
and for tables, which introduce an additional interpolation error. The smallness of the errors
produced by ILDM is explained by lemma 4.3.5. Clearly, the performance can be even further
improved, if the function ψI is evaluated with higher accuracy in order to obtain suitable
boundary conditions. Similar as in the case without conservation laws, the nice behavior of
the two reduction methods is destroyed for boundaries, which are not on the manifold.
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4 Solution Process with QSSA and ILDM

Figure 4.12: The error produced by the solution technique with higher effort is shown in
the left figure. The difference between the application of the QSSA method
instead of ILDM can be seen on the right hand side.
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Figure 4.13: The solution to the problem −u′′(x) = Au(x) with corresponding boundary
conditions on a grid with 65 nodes. The matrix A describes the source term
of reaction (4.16). The right figure shows the error, if the problem is reduced
with QSSA.
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4.4 Nonlinear equations without conservation laws

analytic param. tabulated param.

# points h QSSA ILDM QSSA ILDM

5 0.25 1.17e − 4 1.39e − 9 1.33e − 4 2.68e − 7
17 0.0625 1.21e − 4 1.39e − 9 1.33e − 4 3.30e − 7
65 0.015625 1.22e − 4 1.39e − 9 1.33e − 4 3.86.e − 7

Table 4.6: The systematic error produced by the reduction of problem (4.18) with reac-
tion 4.16 with the parameterizations ψQ and ψI in the L∞–norm. The values
are obtained by comparing the detailed solution and the reduced solution with
analytically given and tabulated parameterizations.

4.4 Nonlinear equations without conservation laws

The results of the linear case presented in section 4.2 will be extended to nonlinear reaction
mechanisms in this section. This is unfortunately not very successful, because the equivalent
to theorem 4.2.1 raises only very few examples, which are reduced exactly by QSSA and
ILDM. Unlike in the linear case, ODEs can for example only be reduced with systematic
errors. The same is true for even very simple reaction–diffusion equations. Therefore the
occurring errors are investigated in this section for algebraic and differential equations. It
turns out that QSSA and ILDM show a similar performance.

4.4.1 The parameterization of the manifolds

Consider a system of nonlinear ODEs u̇ = f(u) splitted into

u̇1 = f1(u1, u2)

u̇2 = f2(u1, u2), (4.20)

such that u1 denote the slow and u2 the fast variables. Calculate the matrices V (u) and
Λ(u) such that

V (u)∇f(u) = Λ(u)V (u)

is an eigenvalue analysis of ∇f with Λ(u) being diagonal with the entries ordered with
decreasing real part.

The QSSA–parameterization ψQ to this problem fulfills the equations

f2(u1, ψQ(u1)) = 0,

the ILDM–parameterization ψI solves the equations
(
V21(u1, ψI(u1)) V22(u1, ψI(u1))

)
· f(u1, ψI(u1)) = 0

where the both parameterizations represent the fast variables u2.

Consider the nonlinear reaction

2sp1

2GGGGBFGGGG
1

2sp2

1000GGGGGGGGBFGGGGGGGG
90

2sp3

500GGGGGGGAsp4 (4.21)
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4 Solution Process with QSSA and ILDM

and take species sp1 as the process variable. Then the QSSA–parameterization is given by

ψQ(u1) =

(√
118/50059√
200/50059

)
u1. (4.22)

The ILDM–parameterization cannot be given analytically for this example. But the result
and the difference to the QSSA–parameterization is shown in figure 4.14.
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Figure 4.14: The left plot shows the value of the ILDM–parameterization ψI for reaction
(4.21). The right figure shows the difference between the QSSA– and the
ILDM–parameterization.

4.4.2 Description of reduced problems

The direct application of the parameterizations reduces the problem

f(u) + g(u) = 0

to

f1(u1, ψ(u1)) + g1(u1, ψ(u1)) = 0

u2 = ψ(u1).

Clearly, these two formulations may lead to different solutions. They are equal, if the
conditions of the following lemma are fulfilled.

Lemma 4.4.1 Let ψ be the (QSSA– or ILDM–)parameterization for the function f with
ψ(0) = 0 and let g be defined such that ψ is the parameterization for g as well. Then the
reduced solution to

f(u) + g(u) = 0

equals the detailed solution.
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4.4 Nonlinear equations without conservation laws

Proof: Let first ψ denote the QSSA–parameterization. Then the reduced solution u fulfills the
condition u2 = ψ(u1) and f2(u1, u2) = g2(u1, u2) = 0, because ψ is the QSSA–parameterization for
both f and g. Hence also the detailed problem is solved by u.

Let now ψ be parameterization of the ILDM–manifold. Then the reduced solution u = (u1, ψ(u1))
T

fulfills the relation V2(u1, u2)f(u1, u2)+V2(u1, u2)g(u1, u2) = 0, hence V21f1+V22f2+V21g1+V22g2 =

0, which leads with f1(u1, u2)+g1(u1, u2) = 0 and invertible V22(u1, u2) to f2(u1, u2)+g2(u1, u2) = 0.

The reduced solution does therefore solve the detailed problem.

Examples, which fulfill the conditions of this lemma, are given here:

• The functions g(u) = αf(u) fulfill the conditions for all α ∈ R for both the ILDM–
and QSSA–parameterization.

• In case of QSSA, the condition g2(u) = αf2(u) is sufficient. This means especially that
all functions g with g2(u) = 0 can be treated.

• A linear perturbation of the original problem of the form g(u) = bu, b ∈ R cannot be
solved exactly by the reduction with ILDM as it was the case in the linear theory. The
main difference to now is the fact, that in the linear case, the ILDM–parameterization
was given by ψ(u1) = −V −1

22 V21u1 and was therefore calculated directly of the fast left
eigenvectors, which implies V2(u)u = 0, if u is on the manifold. This relation does not
hold in the nonlinear case. Take for example the ODE

u̇1 = −u1

u̇2 = 1000(1/u1 − u2)

with the fast left eigenvector

V2 =
(

1000
999u2

1

1
)

of the gradient and the parameterization of the ILDM

ψ(u1) =
998

999u1
.

Then clearly V2(u1, ψ(u1)) · (u1, ψ(u1)) = 2/u1 6= 0. A linear perturbation of the above
form with exact reduction can therefore not exist.

• Taking a constant function g(u) = b can only be successful, if either b2 = 0 and the
QSSA–method is considered, or if the left eigenvectors to the fast eigenvalues of the
Jacobian of f are independent of u.

4.4.3 Reducing ordinary and partial differential equations

Claiming the exact reduction of the implicit Euler method for ordinary differential equations
means that the equation

u(t+ k) − kf(u(t+ k)) = u(t)
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4 Solution Process with QSSA and ILDM

is to be reduced exactly in each time step. This means at least that there is a vector r ∈ Rn

such that the equation

f(u) + bu = r

with b ∈ R is reduced exactly. But this is impossible, as the following observation shows:
Let V2(u) denote the fast left eigenvectors of the gradient of f . Then V2(u)(bu + r) = 0
for all u is the necessary condition to fulfill the conditions of lemma 4.4.1, hence especially
for u = 0. This implies that V2(u)r has to be zero, but this is only possible, if V2 does not
depend on u, which is in general not the case.

This means unfortunately that the ODE u̇ = f(u) cannot be reduced as nicely as in the
linear case. In order to see the systematic error produced by the application of the ILDM
method to an ODE, consider the problem

u̇ = f(u)

u(0) =

(
0.9

ψ(0.9)

)

with f denoting the source term of reaction (6.5) in the following section. The difference
between the detailed and reduced solution can be seen in figure 4.15. The figures show

0 0.5 1 1.5 2 2.5 3
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

time

1
2
3

0 0.5 1 1.5 2 2.5 3
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

time

1
2
3

Figure 4.15: The difference between the detailed and reduced solution for the ode u̇ = f(u)
with source term (6.5). In the left figure, the reduction depends on QSSA, for
the right figure, the ILDM method is applied.

clearly that systematic errors occur. They also show that the ILDM method performs much
better than the application of the QSSA.

The same observation can be done by equations of the form −u′′ = f(u), where even linear
differential operators contradict the exact reduction with ILDM, unless f is linear. A detailed
analysis of the produced errors will follow in the upcoming sections.
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4.4 Nonlinear equations without conservation laws

4.4.4 Reduction of general equations

As an example for a general disturbance g, which does not fulfill the conditions of the above
lemma, consider the equation

f(u) + αBu = βb (4.23)

with f denoting the source term of reaction (4.21) and

B =



−2 1 0
1 −2 1
0 1 −2


 , b =



−1
−1
2


 .

The error depending on the constants α and β is shown in figure 4.16. It shows that a bigger
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Figure 4.16: The left figure shows the error produced by the direct application of the ILDM–
parameterization ψI to equation (4.23). The right figure shows the difference
of the two reduced solutions, if the QSSA– and the ILDM–parameterization is
applied.

influence of the operator B leads to a better performance, whereas the error increases with
increasing right hand side b, similar as in the linear case. The figure does also suggest that
the difference between the reduction methods QSSA and ILDM is rather small.

4.4.5 A PDE example

Consider the partial differential equation

−νu′′(x) = f(u(x)), x ∈ Ω := ]0, 1[ (4.24)

with Dirichlet boundary conditions, where the function f describes the source term of the
nonlinear reaction (4.21). The solution and the error produced by the reduction process can
be seen in figure 4.17.

Similar as in the linear case (cp. table 4.1), the performance of the reduction is almost
independent of the grid size. In the above example with ν = 1, the difference between the
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Figure 4.17: The solution of the PDE (4.24) with ν = 1 is shown in the left figure. The
right figure shows the systematic error produced by the reduction with QSSA.

detailed and the reduced solution is ‖udet−ured‖∞ ≈ 2·10−3 for QSSA and 3·10−3 for ILDM.
Note that unlike in the linear case, the application of the ILDM–table leads to systematic
errors for equation (4.24).

Clearly, the performance depends strongly on the spectral gap in the reaction mechanism
and the viscosities. This dependence is shown in table 4.7 for the reaction mechanisms

2sp1

2GGGGBFGGGG
1

sp2

k · 1000GGGGGGGGGGGGBFGGGGGGGGGGGG
k · 90

sp3

k · 500GGGGGGGGGGGAsp4

with different values for k. The viscosity for the process variable u1 is taken to be ν1 = 10−2

in all cases. The table depicts clearly that the performance is best, if the viscosities for the
fast variables equals the viscosity of the process variables. It also shows that an increasing
k and therefore an increasing spectral gap leads to better approximations.

4.5 Nonlinear equations including conservation laws

Now reaction mechanisms are considered, which produce a center manifold. The difference
to the previous section is therefore mainly the conservation constant and the replacement of
part of the equations by the equations, which force the solution to be on the center manifold.
This effect leads to some differences compared to the results in the previous section, which
can probably best be seen by comparing figures 4.16 and 4.20.

The existence of the conservation laws does unfortunately not improve the results on exactly
reduced equations from the previous section. ODEs and PDEs can only be solved by applying
reduction methods, if systematic errors are accepted.
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4.5 Nonlinear equations including conservation laws

k ν2 = ν3 = 1 ν2 = ν3 = 10−2 ν2 = ν3 = 10−4

∆u1 = 5e− 4 ∆u1 = 2e− 9 ∆u1 = 9e− 6
1 ∆u2 = 2e− 2 ∆u2 = 4e− 8 ∆u2 = 2e− 3

res2 = 6e− 1 res2 = 3e− 7 res2 = 6e− 3

∆u1 = 2e− 5 ∆u1 = 1e− 10 ∆u1 = 3e− 7
10 ∆u2 = 5e− 3 ∆u2 = 4e− 9 ∆u2 = 2e− 4

res2 = 2e− 1 res2 = 7e− 8 res2 = 2e− 3

∆u1 = 7e− 7 ∆u1 = 2e− 11 ∆u1 = 9e− 9
100 ∆u2 = 8e− 4 ∆u2 = 5e− 9 ∆u2 = 2e− 5

res2 = 6e− 2 res2 = 2e− 7 res2 = 6e− 4

Table 4.7: The table shows the performance of the reduction provided by the ILDM method
in dependence of the spectral gap in the gradient of the source term and the
viscosities for the fast variables. The first two numbers in each block ∆u1 and
∆u2 denote the difference of the slow and fast variables between the detailed and
reduced solution ‖udet−ured‖∞. The number res2 denotes the detailed residual of
the fast variables of the reduced solution. The viscosity for the process variables
is always taken to be ν1 = 10−2.

4.5.1 The parameterization of the manifolds

Consider a system of nonlinear ODEs u̇ = f(u) splitted into

u̇1 = f1(u1, u2, u3)

u̇2 = f2(u1, u2, u3) (4.25)

u̇3 = f3(u1, u2, u3)

with the matrices V (u) and Λ(u) such that

V (u)∇f(u) = Λ(u)V (u).

The ODEs are supposed to include the conservation laws

V 0
1 f1(u) + V 0

2 f2(u) + V 0
3 f3(u) = 0

for all possible u, where V 0
i are independent of the state vector u. This means that the term(

V 0
1 V 0

2 V 0
3

)
u = c is constant in time and therefore defined by the initial conditions

c :=
(
V 0

1 V 0
2 V 0

3

)
u(0).

The rows of the matrix
(
V 0

1 V 0
2 V 0

3

)
do clearly span a subspace of the left eigenspace to

the eigenvalue λ = 0 of Df(u).

Let the system of ODEs be ordered such that u1 describes the process variables, u2 the fast
variables and u3 the variables, which might be replaced by the conservation laws and leads
to the DAE

u̇1 = f1(u1, u2, u3)

u̇2 = f2(u1, u2, u3)

c =
(
V 0

1 V 0
2 V 0

3

)
· u,
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4 Solution Process with QSSA and ILDM

which is equivalent to the original ODE.

The QSSA–parameterization ψQ to this problem fulfills the equations

f2(u1, ψQ(u1)) = 0

(
V 0

1 V 0
2 V 0

3

)( u1

ψQ(u1)

)
= c.

The ILDM–parameterization ψI solves the equations

(
V21(u1, ψI(u1)) V22(u1, ψI(u1)) V23(u1, ψI(u1))

)
· f(u1, ψI(u1)) = 0

(
V 0

1 V 0
2 V 0

3

)( u1

ψI(u1)

)
= c,

where the both parameterizations represent the variables u2 and u3.

Consider the nonlinear reaction given by (3.6) and take species sp1 as the process variable.
Then the QSSA–parameterization is given by

ψQ(u1) = 1/911

(
−90 + 90u1 +

√
90090 − 180180u1 + 91912u2

1

1001 − 1001u1 −
√

90090 − 180180u1 + 91912u2
1

)
. (4.26)

Note that the value for u3 is negative for u1 = 1. In order not to obtain negative mass
fractions, the negative values might be set to zero, if u2 is also changed such that the
conservation laws are not violated. The ILDM–parameterization cannot be given analytically
for this example. But the result and the difference to the QSSA–parameterization is shown
in figure 4.18.
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Figure 4.18: The left plot shows the value of the ILDM–parameterization ψ for reaction
(3.6) including conservation laws. Compare with figure 3.3 for a parameteriza-
tion, where conservation laws are not considered. The right figure shows the
difference between the QSSA– and the ILDM–parameterization.
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4.5 Nonlinear equations including conservation laws

4.5.2 Description of reduced problems

The direct application of the parameterizations reduces the problem

f(u) + g(u) = 0 (4.27)

to

f1(u1, ψ(u1)) + g1(u1, ψ(u1)) = 0

u2 = ψ(u1).

These two formulations are equivalent, if the conditions of the following lemma are fulfilled.

Lemma 4.5.1 Let ψ denote the parameterization of the manifold for the function f . If this
function ψ is also the parameterization for the function g, then the reduced solution to

f(u) + g(u) = 0

equals the detailed solution.

Proof: Let first ψ denote the QSSA–parameterization. Then the reduced solution u = (u1, u2) of
f(u) + g(u) = 0 is on the QSSA–manifold and fulfills therefore the relations f2(u) = g2(u) = 0 and
V 0(u)f(u) = V 0(u)g(u) = 0, because g has the same conservation laws as f . This leads together
with f1(u) + g1(u) = 0 to f3(u) + g3(u) = 0, which completes the proof for QSSA.

In case of ILDM, we have V2(u)f(u) = V2(u)g(u) = 0 for the reduced solution u, which leads

to V22(u)(f2(u) + g2(u)) + V23(u)(f3(u) + g3(u)) = 0. The conservation laws lead to the relation

V 0
2 (u)(f2(u) + g2(u)) + V 0

3 (u)(f3(u) + g3(u)) = 0. These two equations result in f2(u) + g2(u) = 0

and f3(u) + g3(u) = 0.

One example of g, which fulfills the conditions of the above lemma, is the function g =
αf with α ∈ R. Due to the treatment of the center manifold in the parameterization ψ,
this example cannot even be broadened for the QSSA–method as in the case, where no
conservation laws hold.

4.5.3 Reduction of ordinary and partial differential equations

Since conservation laws cannot improve the performance of the reduction methods with
respect to exactness and ODEs and PDEs cannot be reduced exactly for nonlinear equations
without conservation laws, these type of equations cannot be reduced without systematic
errors in the current case either.

In order to see the effect of the reduction methods to ODEs, consider the problem

u̇ = f(u)

u(0) =

(
0.9

ψ(0.9)

)
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4 Solution Process with QSSA and ILDM
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Figure 4.19: The difference between the detailed and reduced solution for the ode u̇ = f(u)
with source term (3.6). In the left figure, the reduction depends on QSSA, for
the right figure, the ILDM–method is used.

with f describing the source term (3.6). The differences between the detailed and reduced
solutions can be seen in figure 4.19. Clearly, systematic errors occur with the application of
the reduction method. But still, the ILDM–method performs much better than the reduction
with the QSSA–manifold.

4.5.4 Reduction of general equations

For general disturbances g, the reduced formulation introduces clearly systematic errors. As
an example, consider the equation

f(u) + αBu = βb (4.28)

with f denoting the source term of reaction (3.6) and

B =



−2 1 0
1 −2 1
0 1 −2


 , b =



−1
−1
2


 .

The right hand side b is chosen such that the conservation laws are fulfilled, if α = 0. The
error depending on the constants α and β is shown in figure 4.20. It shows that a bigger
influence of the operator B leads to a better performance, whereas the error increases with
increasing right hand side b, similar as in the linear case. The figure does also suggest that
the difference between the reduction methods QSSA and ILDM is rather small.

4.5.5 A PDE example

As an example, consider the reaction–diffusion equation

−νu′′(x) = f(u(x)), x ∈ Ω := ]0, 1[ (4.29)
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4.5 Nonlinear equations including conservation laws

Figure 4.20: The left figure shows the error produced by the direct application of the ILDM–
parameterization ψI to equation (4.28). The right figure shows the difference
of the two reduced solutions, if the QSSA– and the ILDM–parameterization is
applied.

with Dirichlet boundary conditions. Here, the diffusion is modeled by the Laplacian, but
more advanced models are also possible, think for example of Fick’s law [17]. The function
f describes the source term of the nonlinear reaction (3.6) by

f(u) =




−4u2
1 + 2u2

2

4u2
1 − 2002u2

2 + 180u2
3

2000u2
2 − 180u2

3


 .

The domain Ω shall be discretized by

Ωh := {0, h, ..., (N − 1)h,Nh}

with Nh = 1. This leads to the algebraic equations

fh(uh) +Bhuh = bh

with the state vector

uh =



u1

h
...
uN

h


 ,

where ui
h describes the mass fractions of the three species at the corresponding grid point.

If the trapezoid rule is applied as the integration strategy, this leads to

fh(uh) =




u1
h

−1/hf(u2
h)

...
−1/hf(uN−1

h )
uN

h




and Bh =




0 0 · · · · · · 0
−1/h1 2/h1 −1/h1 0

0
. . .

. . .
. . . 0

... −1/h1 2/h1 −1/h1
0 · · · · · · 0 0



.
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4 Solution Process with QSSA and ILDM

The right hand side bh is basically zero, only the first and last three entries are given by the
boundary conditions for the differential equations. Here, the boundaries (1, 0, 0)T are taken
for x = 0 and x = 1, because ψ(1) = (0, 0)T .

The solution to this problem is visualized in figure 4.21.
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Figure 4.21: The solution to the problem −u′′(x) = f(u(x)) with the nonlinear reaction
(3.6) and Dirichlet boundary conditions according to the table ψ. The right
figure shows the error produced by the reduction mechanism on a grid with 65
nodes.
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5 Preconditioning with QSSA and ILDM

Due to the systematic errors, which are produced by the application of the QSSA– and
ILDM–tables to general linear problems, an algorithm is required, which takes advantage
of the relative low costs of the application of the reduction methods, but which allows to
reduce the systematic error by spending little more computational effort. For that reason,
preconditioning strategies with QSSA and ILDM are investigated in this chapter.

The first two sections will deal with various possibilities to precondition linear iterative
solvers with and without center manifolds. In both cases, it will be shown that the reduc-
tion methods cannot be used successfully as preconditioners, because the iterations will not
converge. In case of the pure application of the tables, even analytical proofs are presented.

The conjecture is that the performance of the preconditioning can be increased by an operator
splitting. The chemical part shall be considered separately from the operators resulting
from physical phenomena and discretized differential operators. Therefore a third section
is presented, which treats a preconditioning technique with time steps. Within the time
stepping, the Strang splitting technique will applied to separate the chemical source term,
which can on its own perfectly be preconditioned by the reduction methods. But a detailed
analysis of the stationary points lead to the conclusion that this reduced Strang splitting
technique does not lead to convergence either.

The obtained results are clearly also valid for problems, where the ILDM–method leads to
exact results. This means that situations can be created, where the reduction of the problem
with ILDM does not lead to systematic errors, but the application of ILDM as preconditioner
prevents the algorithm from convergence.

5.1 The solution process

In order to explain the application of the reduction methods QSSA and ILDM as precondi-
tioners, consider the system of linear equations

(A+B)u = b

with A denoting the source term of a linear reaction and B an arbitrary disturbance, such
that A+B is invertible.

Then the most simple algorithm to obtain the solution iteratively is the Richardson iteration

un+1 = un + b− (A+B)un,
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5 Preconditioning with QSSA and ILDM

which converges only for special choices of A and B. An improvement can be achieved, if an
approximation P of the matrix (A+B)−1 is known. Then the iteration

un+1 = un + P (b− (A+B)un)

converges for all initial choices u0, if and only if the spectral radius of the system matrix

S := 1− P (A+B)

is less than one, see e.g. [13, Ch. 8.1].

The most commonly known preconditioners for full matrices are probably P = D−1 and
P = (D +L)−1 (D describes the diagonal and L the lower triangular part of A+B), which
lead to the Jacobi and the Gauss–Seidel iteration. For sparse matrices, the incomplete
LU–factorization or the incomplete Cholesky factorization lead to reasonable convergence
rates. These preconditioners are therefore used for the smoother in the multi–level solver in
Gascoigne [3].

In order to use the reduction methods QSSA and ILDM as preconditioners, reformulate the
iteration to

un+1 = un + h,

where h is the reduced solution of the linear system

(A+B)h = b− (A+ b)un,

which is obtained by the application of the QSSA or ILDM method.

5.2 Linear equations without conservation laws

In this section three possibilities to apply the reduction methods and their variations as
preconditioners to linear equations is investigated. In the first and main part, the eigenvalues
of the system matrix 1−P (A+B) will be proven to be zero and one. It will be shown that the
iteration can therefore only converge in the first iteration step and conditions for the initial
guess will be given, such that convergence occurs at all. The first part will investigate the
variations of the reduction methods, whereA22 or A22+B22 is allowed to be inverted. Finally,
a more realistic example will be considered, namely a linear reaction–diffusion equation in
one dimension of space.

The main results of this section are:

• Applying the reduction methods as preconditioner can only lead to convergence, if the
initial value is chosen appropriately. Then convergence occurs in the first iteration
step, but the method is unstable with respect to the initial guess.

• Applying A−1
22 on top of the reduction methods leads to divergence for realistic exam-

ples.

• Applying (A22 + B22)
−1 in addition to QSSA or ILDM leads to nice results, but the

strategy is too expensive for practical purposes.
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5.2 Linear equations without conservation laws

5.2.1 Preconditioning with QSSA and ILDM

Recall from section 4.2.2 that the approximated solution to the problem (A + B)u = b is
given by

u =

(
A11 +B11 A12 +B12

Y21 Y22

)−1(
b1
0

)

with Y2i = A2i for the QSSA method and Y2i = Λ2V22 for the application of the ILDM
method.

The preconditioner P can therefore be given explicitely by

P =

(
A11 +B11 A12 +B12

Y21 Y22

)−1(1 0
0 0

)
. (5.1)

Its performance can be characterized by the spectral radius of the system matrix, which is
calculated in the following lemma.

Lemma 5.2.1 Let A and B be block matrices as above and let P be given by (5.1). Then
the rows of the matrices

V1 =
(
Y21 Y22

)
and V2 =

(
A11 +B11 A12 +B12

)

denote the left eigenvectors of the matrix 1−P (A+B) to the eigenvalues λ1 = 1 and λ2 = 0.

Proof: Obviously
(
A11 +B11 A12 +B12

Y21 Y22

)
P =

(1 0
0 0

)

and
(
A11 +B11 A12 +B12

Y21 Y22

)
P (A+B) =

(
A11 +B11 A12 +B12

0 0

)
.

The proof is completed by treating the second equation row-wise.

This lemma shows that the Richardson iteration remains constant after the first step: Let
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5 Preconditioning with QSSA and ILDM

un denote the n–th iterate for an arbitrary initial value u0. Then un fulfills the equation

(
A11 +B11 A12 +B12

Y21 Y22

)
un

=

(
A11 +B11 A12 +B12

Y21 Y22

)
((1− P (A+B))un−1 + Pb)

=

(
A11 +B11 A12 +B12

Y21 Y22

)
(1− P (A+B))nu0

+

n−1∑

k=1

(
A11 +B11 A12 +B12

Y21 Y22

)
(1− P (A+B))kPb

︸ ︷︷ ︸
=0 by lemma 5.2.1

+

(
A11 +B11 A12 +B12

Y21 Y22

)
Pb

=

(
A11 +B11 A12 +B12

Y21 Y22

)
(1− P (A+B))u0 +

(
A11 +B11 A12 +B12

Y21 Y22

)
Pb

=

(
A11 +B11 A12 +B12

Y21 Y22

)
u1.

Due to the invertibility of

(
A11 +B11 A12 +B12

Y21 Y22

)
, the iterate un equals the first iterate

u1 for all n ≥ 1.

This means that the performance of the Richardson iteration depends highly on the first
iteration step and therefore on the initial value u0, which is to be chosen, such that the
Richardson iteration converges in the first step. This is technically possible. If the fast part
of u0 is chosen to be

u0
2 = (A22 +B22 − (B21P11 +B22P21)(A12 +B12))

−1

[
βb2 − (A21 +B21 − (B21P11 +B22P21)(A11 +B11))u

0
1

− β
(
B21 B22

)
Pb
]
, (5.2)

then, the existence of u0
2 provided, the Richardson iteration converges, if QSSA is used for

the preconditioning. The proof is obtained by the verification of the equation

(A+ αB)u1 = βb,

which is purely technical and therefore omitted in this thesis.

A similar formulation for the fast part of u0 can be given, if the preconditioner P is created
by the ILDM–parameterization. This formulation is of even higher technical difficulties,
because the difference of V2i and A2i +B2i is also required.

This observation shows that the parameterization can hardly be applied as a preconditioner.
First of all, the calculation of u0 involves the time consuming inversion of a matrix of type
A22+B22. And secondly, errors in the computation of the initial value will be inherited to the
following iterates, such that convergence occurs only theoretically. In practical applications,
the iterates will be bounded away from the exact solution.
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5.2 Linear equations without conservation laws

The fact, that the eigenvalues of the system matrix of the Richardson iteration are λ1 = 0
and λ2 = 1 is tempting to apply the parameterizations together with additional damping as a
preconditioner in order to circumvent the expensive calculation of the fast part of the initial
guess. But a closer look to the proof of lemma 5.2.1 shows, that the preconditioning matrix
Pω as a result of the damped preconditioner P leads to the eigenvalues λ1 = 1−ω and λ2 = 1.
This means that the damping leads to an even worse performance of the preconditioner.

Note that lemma 5.2.1 is also valid for matrices A and B with AB = BA. This means
that the ILDM method leads under certain circumstances to an exact solver, but the same
method applied as preconditioner is rather useless.

5.2.2 Preconditioning with modified parameterizations

Allow the inversion of A22

If the problem (A+B)u = b is solved with the modified reduction methods as in 4.2.6, where
the additional inversion of the block A22 was allowed in each evaluation of ψ, the obtained
solution reads

u =

(
A11 +B11 A12 +B12

A21 A22

)−1

b

or

u =

(
A11 +B11 A12 +B12

Λ2V21 Λ2V22

)−1(
b1

V21b1 + V22b2

)

depending on the reduction method. The application of the QSSA method leads therefore
to the preconditioner

P =

(
A11 +B11 A12 +B12

A21 A22

)−1

, (5.3)

the ILDM preconditioner reads

P =

(
A11 +B11 A12 +B12

Λ2V21 Λ2V22

)−1( 1 0
V21 V22

)
.

Consider the Richardson iteration for the problem (A+αB)u = b with A and B as in (4.8),
then the spectral radius of S grows with α for both QSSA and ILDM:

α = 1 =⇒ σ(S) = 0.002

α = 1000 =⇒ σ(S) = 2.0

For both reduction methods, λ2 is obviously greater than one for big values of α. This means
that convergence is only possible for small influences of the perturbation B.
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5 Preconditioning with QSSA and ILDM

Allow the inversion of A22 +B22

The possibility to invert the matrix block A22 + B22 in addition to the evaluation of the
tables leads to the solution

u =

(
A11 +B11 − (A12 +B12)Y

−1
22 Y21 0

A21 +B21 A22 +B22

)−1

︸ ︷︷ ︸
=:P

b,

of the problem (A+B)u = b. Let Y2i = A2i for the application of QSSA and Y2i = Λ2V2i, if
the ILDM method is applied.

Even though the above described solution process performs only slightly better than the pure
application of the table ψ (compare figures 4.6 and 4.3), the application of this technique
as preconditioner is much more successful. As before, consider the system matrix of the
Richardson iteration S = 1 − P (A + αB) with P as above. Then the spectral radius of S
remains small even for large α:

α = 1 =⇒ σ(S) = 0.0059

α = 1000 =⇒ σ(S) = 0.2311

α = 1000 000 =⇒ σ(S) = 0.3324

The spectral radius seems to be bounded, the iteration is therefore a contraction.

5.2.3 A PDE example

Reconsider the reaction–diffusion equation given by (4.5). The above introduced precondi-
tioners shall now be applied to the system of linear equations

(Ah +Bh)u = bh

resulting from the discretization of this PDE. The spectral radius of the system matrices
will be calculated in order to decide, whether Bh is of a form, which allows the application
of the pure or modified reduction methods.

The application of the QSSA method leads to the preconditioner

P =

(
Ah,11 +Bh,11 Ah,12 +Bh,12

Ah,21 Ah,22

)−1(1 0
0 0

)
.

The system matrix S has the eigenvalues shown in table 5.1. Independently of the grid size,
the spectral radius of S is σ(S) = 1. Taking into account that λ = 0 and λ = 1 are the only
eigenvalues, leads to the stagnation of the iteration after the first step. This means that the
convergence of this iteration depends only on the initial guess for the linear iteration. How
the initial guess is to be chosen in order to have convergence, can be seen in equation (5.2).
Note that this method is instable with respect to errors in the calculation of the initial guess.
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5.2 Linear equations without conservation laws

# points h QSSA ILDM

5 0.25 0; 1 0; 1
9 0.125 0; 1 0; 1
17 0.0625 0; 1 0; 1
33 0.03125 0; 1 0; 1
65 0.015625 0; 1 0; 1
129 0.0078125 0; 1 0; 1

Table 5.1: The table shows the eigenvalues of the system matrix S = 1− P (Ah +Bh).

Allow the inversion of A22

If in addition to the evaluation of the tables ψ the inversion of the block Ah,22 is allowed, the
spectral radius of the system matrix S = 1− P (Ah +Bh) behaves as shown in table 5.2 for
both QSSA and ILDM. Since the eigenvalues of S are clearly greater than one even on the

# points h QSSA ILDM

5 0.25 0.99 0.99
9 0.125 0.99 0.99
17 0.0625 2.35 2.35
33 0.03125 9.46 9.46
65 0.015625 37.91 37.91
129 0.0078125 151.7 151.7

Table 5.2: The table shows the spectral radius of the system matrix S = 1− P (Ah +Bh),
if the renewed tables φQ and φI are used as preconditioners. The values for the
spectral radii with QSSA and ILDM have a difference of order 10−6.

small grids, the modified tables cannot be applied as preconditioners. The application leads
due to the high spectral radius to divergence on all levels. This is especially remarkable, be-
cause the spectral radius is already too big on the coarsest grid, so combined preconditioners
consisting of multilevel techniques and tables, cannot work either.

Allow the inversion of A22 +B22

Let now the parameterization ψ in addition with the inversion of A22 +B22 be applied as a
preconditioner. The updates for the defect correction iteration are then calculated by

(Ah,11 +Bh,11 − (Ah,12 + αBh,12)ψ)δu1 = res1

(Ah,22 +Bh,22)δu2 = res2 − (Ah,21 +Bh,21)δu1.

The performance of this preconditioner is again described with the spectral radius of the
matrix S = 1− P (Ah +Bh). It can be seen in table 5.3. Since the spectral radius is clearly
less than one, this method can be applied as preconditioner for the considered reaction–
diffusion equation. But according to table 4.4, this possibility is almost as expensive as the
detailed solution without reduction mechanisms and will therefore not be considered any
further.
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5 Preconditioning with QSSA and ILDM

# points h QSSA ILDM

5 0.25 3.1e − 6 3.4e− 6
17 0.0625 3.1e − 6 3.4e− 6
65 0.015625 3.1e − 6 3.4e− 6

Table 5.3: The spectral radius of the system matrix S, if in addition to the application of
the parameterization ψ the matrix Ah,22 +Bh,22 is allowed to be inverted.

5.3 Linear equations including conservation laws

The main difference between the treatment of equations with and without conservation laws
is the conservation constant c. The existence of c prevents the iteration from convergence,
unless c = 0. Even though this in general not the case, there is still a practical application
of this situation: If the linear problems of the Newton method are considered with the
linearized original tables (details will be discussed in chapter 6), then clearly the conservation
constant is treated to be zero. This means that the Newton update does not change the
conservation laws of the nonlinear iterates. For that reason, the same analysis as in section
5.2 is performed.

The main results are:

• A condition for the initial value is presented such that convergence occurs in the first
iteration step. But the method is unstable with respect to errors in the calculation of
this initial guess.

• Applying the inverse of the fast part of the chemical matrix in addition to the reduction
mechanisms does not lead to convergence for practical problems.

• Taking instead the inverse of the fast part of the chemical and physical matrix leads
to nice performance, but the solution strategy is too expensive for realistic problems.

5.3.1 Preconditioning with QSSA and ILDM

Recall from section 4.3.5 that the reduced solution to the problem (A+B)u = b is given by

u =



A11 +B11 A12 +B12 A13 +B13

Y21 Y22 Y23

V 0
1 V 0

2 V 0
3




−1

b1
0
c




with the conservation constant c, which is in general unequal to zero. The preconditioner P
is therefore an affine linear mapping given by

P (d) =



A11 +B11 A12 +B12 A13 +B13

Y21 Y22 Y23

V 0
1 V 0

2 V 0
3




−1



1 0 0
0 0 0
0 0 0


 d+




0
0
c




 .

This means that the Richardson update δu = P (b− (A + B)un) is unequal to zero, even if
the defect d = b− (A+B)u equals zero. This leads to the divergence of the iteration.
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5.3 Linear equations including conservation laws

For completeness of the analysis, let now the conservation constant c be zero. Then the
update δu depends linearly on the defect d1 and the preconditioner can be written in the
form

P =



A11 + αB11 A12 + αB12 A13 + αB13

Y21 Y22 Y23

V 0
1 V 0

2 V 0
3




−1

1 0 0
0 0 0
0 0 0


 . (5.4)

Applying P and the block matrices

Ā :=




A11

(
A12 A13

)
(
Y21

V 0
1

) (
Y22 Y23

V 0
2 V 0

3

)

 and B̄ :=




B11

(
B12 B13

)
(
B21

B31

) (
B22 B23

B32 B33

)



to lemma 5.2.1 shows that the preconditioned Richardson iteration remains constant after
the first step. In order to have convergence, the fast part of the initial value has to be

(
u0

2

u0
3

)
=
(
Ā22 + B̄22 − (B̄21P11 + B̄22P21)(Ā12 + B̄12)

)−1

[
b2 − (Ā21 + B̄21 − (B̄21P11 + B̄22P21)(Ā11 + B̄11))u

0
1 −

(
B̄21 B̄22

)
Pb
]
, (5.5)

compare with (5.2). This makes the calculation of the initial value unfortunately very expen-
sive, because a matrix similar to Ā22 + B̄22 has to be inverted in order to have convergence.
Clearly, the calculation of the fast part of the initial guess for the Richardson iteration is
very high. The numerical costs are even higher, if the ILDM method is applied, because the
left eigenvectors of the matrix A are required. In addition, the iteration is unstable with
respect to errors in the computation of the initial value. These errors will be inherited to all
following iterates.

5.3.2 Preconditioning with modified parameterizations

Allow the inversion of the chemical fast part

In section 4.3.5 three possibilities for the evaluation of the tables were introduced, given that
the fast part of the matrix A was allowed to be inverted. These possibilities read

φ(u1) = ψ(u1) +

(
A22 A23

V 0
2 V 0

3

)−1(
rhs1
rhs2

)

with rhs being one of the vectors (b2, 0), (0,−c) or (b2,−c).
A necessary condition for the successful application of the parameterizations as precondi-
tioners is that the Richardson update δu is zero, if the current iterate un solves the equation
(A+ αB)un = βb exactly. This is unfortunately not the case for the first parameterization
with rhs2 = 0, because the conservation constant c included in ψ is not erased.

The second parameterization can be applied as a preconditioner, because the conservation
constant was set to c = 0. This leads to the situation of the application of the original ψ
given that the conservation constant c is zero.
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5 Preconditioning with QSSA and ILDM

The application of the parameterization obtained by the right hand side rhs = (b2,−c) leads
to the preconditioner

P =



A11 +B11 A12 +B12 A13 +B13

A21 A22 A23

V 0
1 V 0

2 V 0
3




−1

1 0 0
0 1 0
0 0 0


 ,

if the underlying parameterization is created with QSSA. Change the values of A2i to Λ2V2i

for the formulation with the ILDM method.

As an example, consider again the matrix A + αB with the definition of (4.19). Then the
spectral radius of the system matrix for the Richardson iteration S = 1− PA is

σ(S) = 1.003 (σ(S) = 1.003) for α = 1

σ(S) = 3.643 (σ(S) = 3.716) for α = 1000

for the QSSA– (ILDM–)parameterization. The spectral radius is in both cases clearly greater
than one and increases for increasing α. This means that the preconditioned Richardson
iteration cannot converge.

Allow the inversion of the chemical and physical fast part

Even though the evaluation of the tables is only used for the calculation of the slow variables
and therefore for the update of the slow variables (compare section 4.3.5), if preconditioning
is considered, the conservation constant c prevents the update from being zero, even if the
defect is zero. This means that this technique can only be applied as a preconditioner, if the
conservation constant c is zero. Otherwise a non–existing defect of the slow equation leads
still to an update of the slow variables, which contradicts the convergence.

In order to investigate the applicability of the above introduced solution technique as a
preconditioner, assume that the table ψ was created with conservation constant c = 0. Then
the spectral radius σ(S) of the system matrix S = 1− P (A+ αB) with the preconditioner
P as given by the solution process behaves nicely. It remains small even for large values of
α:

α = 1 =⇒ σ(S) = 0.1508

α = 1000 =⇒ σ(S) = 0.2848

α = 1000 000 =⇒ σ(S) = 0.3591

This indicates that this preconditioner is applicable for a wide range of problems.

5.3.3 A PDE example

Reconsider the 1d reaction–diffusion equation given by 4.16 with the linear source term given
by the matrix

A =



−2 1 0
2 −1001 90
0 1000 −90


 ,
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5.3 Linear equations including conservation laws

which describes the reaction (4.16). In order to use the ILDM– and QSSA–parameterization
as preconditioners, the conservation constant has to be equal to zero. This is clearly not the
case in this example, because the sum over all mass fractions has to be equal to one, the
conservation constant is therefore c = 1. This means that the parameterizations cannot be
applied as preconditioner to the above system.

If nonlinear reactions are considered with the Newton method, the linearized problem for
the calculation of the Newton update has basically the same structure as the considered
linear PDE 4.16. Then clearly c = 0 and preconditioning can theoretically be performed,
but the eigenvalues of the corresponding system matrix are zero and one. This contradicts
the convergence.

An eigenvalue analysis of the system matrix S = 1−P (Ah +Bh) is therefore performed only
for the preconditioner resulting from the modified parameterizations, where the conservation
constant is erased. The spectral radius can be seen in table 5.4. Clearly, σ(S) is greater

# points h QSSA ILDM

5 0.25 1.26 1.26
9 0.125 1.15 1.15
17 0.0625 1.12 1.12
33 0.03125 1.15 1.15
65 0.015625 1.25 1.25
129 0.0078125 1.48 1.48

Table 5.4: The table shows the spectral radius of the system matrix of the Richardson
iteration, if the modified parameterizations φQ and φI are used as preconditioners.
Even though the spectral radii seem to be the same for QSSA and ILDM, they
differ with the size of order 10−6.

than one on all grids. Even though the spectral radius shrinks on the first refinements, the
value of σ increases afterwards, which contradicts the convergence of the iteration.

If the inversion of the chemical and physical fast part is allowed, the spectral radius in
table 5.5 is clearly less than one and seems to be less than one for much finer grids. The

# points h QSSA ILDM

5 0.25 0.0087 0.0087
17 0.0625 0.0083 0.0083
65 0.0078125 0.0083 0.0083

Table 5.5: The table shows the spectral radius of the system matrix S, if the chemical and
physical fast part is allowed to be inverted in addition to the application of the
tables.

preconditioned iteration will therefore converge fastly.
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5 Preconditioning with QSSA and ILDM

5.4 Preconditioning with time steps

In the previous chapters, the application of the reduction methods QSSA and ILDM as
preconditioners leaded to big problems due to the existence of the disturbance B. The idea
is now to split the operator A + B, and treat the effect of A and B to the current iterate
separately. The advantage is clearly that the reduction methods can now be applied to
the part of the algorithm, which treats only the operator A, and apply a detailed solving
strategy, if B is considered.

One splitting possibility is provided by the algorithm of Strang [47], which acts on ODEs.
The solution to the problem

(A+B)h = res := b− (A+B)un,

which is approximated by the preconditioner, is therefore obtained by solving the ODE

ḣ = −(A+B)h+ res

and accepting h(t) for a certain time t as steady state and therefore as approximation for
the above equation.

For that reason, the Strang splitting is investigated in this section. First, the method is
presented in a very basic form, then the reduction methods will be applied to the chemical
part of the iteration. The main result of this section is, that the obtained preconditioner
is an approximation of the preconditioners obtained directly from QSSA and ILDM. The
Strang splitting can therefore not be applied as preconditioner.

5.4.1 Strang splitting

One solving technique for ODEs of the form

u̇ = Au− e+Bu− f

was introduced for nonlinear problems by Strang [47] and is based on the splitting of the right
hand side into Au−e and Bu−f . Here, Au is supposed to denote the linear chemical source
term without conservation laws, B shall describe an arbitrary second operator, possibly
describing physical phenomena.

Let then M∆t and N∆t denote the operators, which describe a numerical time step from t
to t+ ∆t by u(t+ ∆t) = M∆tu(t) and v(t+ ∆t) = M∆tv(t) for the problems

u̇ = Au− e and v̇ = Bv − f

respectively. Then the operators

S∆t = M∆t/2N∆tM∆t/2

and
T∆t = N∆t/2M∆tN∆t/2
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5.4 Preconditioning with time steps

do also describe one time-step and are of order one, if M∆t and N∆t are of order one. The
same result holds for second order operators, as shown in [47].

The formulation of S and T means that one time step is divided into three sub-steps. Assume
for simplicity that both M and N are explicit operators of first order, and are therefore of
the form

M∆tu = u+ ∆t(Au− e) and N∆tv = v + ∆t(Bv − f).

Then

u(tn+1/4) = u(tn) +
∆t

2
(Au(tn) − e)

u(tn+3/4) = u(tn+1/4) + ∆t(Bu(tn+1/4) + f)

= u(tn) +
∆t

2
Au(tn) + ∆tBu(tn) +

∆t

2
e+ ∆tf +O(∆t2)

u(tn+1) = u(tn+3/4) +
∆t

2
(Au(tn+3/4) − e) +O(∆t2)

= u(tn) + ∆t(A+B)u(tn) − ∆t(e+ f) +O(∆t2).

Clearly the solution process is independent of the way, how the constant vector e + f is
splitted.

For general ODEs, the operators S∆t and T∆t may both be taken for the solution process.
This is different, if one of the operators A or B is stiff. Then [24] showed that it is advan-
tageous to have the stiff solver as an outer solver. Let for example A be stiff and M∆t the
corresponding solution operator, then S∆t leads to better results than T∆t.

One drawback of this splitting technique is the treatment of the stationary point. The
stationary point of the ODE will never be reached exactly by a splitted algorithm. The
solution does not even remain constant, if the theoretical stationary point is used as initial
value, because it changes under the first step M∆t, which considers only a part of the total
right hand side.

5.4.2 Reduced Strang splitting

The pure splitting technique introduced by Strang has the possibility to reduce the stiffness of
the equations by choosing the splitted operators A + B appropriately, but the computational
costs for the solution process of the ODE are not reduced as efficiently as with ILDM. But the
clear separation of the chemical and physical part offers a great possibility to apply chemical
reduction mechanisms, and to take advantage of both the splitting and the reduction by the
parameterizations.

Since the reduced chemical part is assumed not to be stiff anymore, two splitting techniques
arise: The outer iteration in one time step can either be the chemical or the physical part.
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5 Preconditioning with QSSA and ILDM

Chemical part as outer iteration.

Let first the chemical part A describe the outer iteration M∆t of the Strang splitting. Then
one time step is calculated by

u1(tn+1) = u1(tn) + ∆t
(
A11u1(tn) + 1/2A12

(
ψ(u1(tn)) + ψ(u1(tn+3/4))

)

+B11u1(tn) +B12ψ(u1(tn+1/4))
)
− ∆t(e1 + f1) +O(∆t2)

for the fast and

u2(tn+1) = ψ(u1(tn+1))

for the slow variables.

The above formulation offers the possibility to treat the original tables ψQ and ψI on the
one side, but to consider also the modified parameterizations φQ and φI on the other side:

• The original parameterizations ψ(u1) lead to the formalisms

u1(tn+1) = u1(tn) + ∆t(A11 +B11)u1(tn)

− ∆t

(
(
A12 +B12 A13 +B13

)(Y22 Y23

V 0
2 V 0

3

)−1(
Y21

V 0
1

)
u1(tn)

)

+ ∆t

(
(
A12 +B12 A13 +B13

)(Y22 Y23

V 0
2 V 0

3

)−1(
0
c

)
− e1 − f1

)
+O(∆t2)

with Y2i = A2i for QSSA and Y2i = Λ2V2i for ILDM respectively. The new iterate
u1(tn+1) is independent of the fast part of the constant e+ f , therefore e+ f may be
treated with the chemical or the physical part. The stationary point is then

u(t∞) =



A11 +B11 A12 +B12 A13 +B13

Y21 Y22 Y23

V 0
1 V 0

2 V 0
3




−1

e1 + f1

0
c




again with Y2i replaced according to the reduction method.

• In order to investigate the influence of the renewed parameterizations to the iteration,
take the first possibility of section 5.3.2, where the fast part of the right hand side b2
and the conservation constant c was considered. This leads to the formulation

u1(tn+1) = u1(tn) + ∆t(A11 +B11)u1(tn)

− ∆t

(
(
A12 +B12 A13 +B13

)(Y22 Y23

V 0
2 V 0

3

)−1(
Y21

V 0
1

)
u1(tn)

)

+ ∆t

(
(
A12 +B12 A13 +B13

)(Y22 Y23

V 0
2 V 0

3

)−1(
e2
c

)
− e1 − f1

)
+O(∆t2)
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5.4 Preconditioning with time steps

This possibility introduces the fast part e2 to the calculation of u1(tn+1), but neglects
the influence of f2. Therefore it seems to be advantageous to set f to zero and to have
the total vector e+ f be treated in the chemical part. Here, the stationary point is

u(t∞) =



A11 +B11 A12 +B12 A13 +B13

Y21 Y22 Y23

V 0
1 V 0

2 V 0
3




−1

e1 + f1

e2
c




with Y2i chosen according to the type of the parameterization.

The preconditioning by doing several time steps is therefore in both cases an approximation
to the preconditioners introduced in sections 5.2.1 and 5.2.2, which were not applicable to
practical problems, and an improvement of the performance cannot be expected.

Chemical part as inner iteration.

Let now the inner time step be driven by the reduced chemical reaction. Then the calculation
of one time step reads for the slow variables

u1(tn+1) = u1(tn) + ∆t(A11 +B11)u1(tn)

+ ∆t(A12ψ(u1(tn+1/4)) + 1/2B12(u2(tn) + ψ(u1(tn+3/4))) − (e1 + f1)) +O(∆t2)

and for the fast variables

u2(tn+1) = ψ(u1(tn+3/4)) + ∆t/2(B21u1(tn) +B22ψ(u1(tn+3/4)) − f2) +O(∆t2).

In this formulation the new fast iterate does not only depend on the slow iterate via evaluating
the parameterizations, but also on the intermediate values of u1 and u2 after the first and
second splitted step.

Three interesting facts can be drawn out of this formulation:

• The Richardson defect e + f must be treated in the chemical part. The constant f2

has to be equal to zero, otherwise the solution will not become stationary, if both A
and B are of block diagonal form and no conservation laws occur. If this is the case,
the original parameterization ψ(u1) is zero for all u1, therefore u2(tn+1) is given by

u2(tn+1) = −∆t/2f2,

which contradicts the existence of a stationary point.

• The modified parameterizations cannot be used. By the same argument as before, the
fast part of the new iterate reads

u2(tn+1) = A−1
22 e2 − ∆t/2B22A

−1
22 e2,

if the renewed QSSA–parameterization φQ is applied and the matrices A and B are
both of block diagonal form. This means that the solution will never become stationary.
A similar analysis for the renewed ILDM–parameterization φI leads to the same result.
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5 Preconditioning with QSSA and ILDM

• For simplicity of the notations, assume that no conservation laws hold. Then the
existence of a stationary point implies u2(∞) = ψ(u1(∞)) by the second equation,
hence the relation

u2(∞) = −Y −1
22 Y21u1(∞)

holds. By the first equation, the existence of a steady state implies clearly the equality

(
A11 +B11 −A12Y

−1
22 Y21 − 1/2B12Y

−1
22 Y21 1/2B12

B21 −B22Y
−1
22 Y21 0

)(
u1(∞)
u2(∞)

)
=

(
e1 + f1

0

)
.

Both equations together lead to the steady state

u(t∞) =

(
A11 +B11 A12 +B12

Y21 Y22

)−1(
e1 + f1

0

)
,

where the blocks Y2i are to be chosen according to the type of parameterization.

The steady state

u(t∞) =



A11 +B11 A12 +B12 A13 +B13

Y21 Y22 Y23

V 0
1 V 0

2 V 0
3




−1

e1 + f1

0
c




is obtained by a similar analysis, if a center manifold is existent.

As before, the time steps lead to a steady state, which is equivalent to the formulation with
QSSA in section 5.2.2. This means that the time steps as preconditioner are an approxima-
tion to a preconditioner, which cannot be applied successfully.
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6 Quasi–Newton methods with QSSA and

ILDM

For nonlinear reaction mechanisms, the application of the reduction methods QSSA and
ILDM as solver for the linear problem arising from the Newton iteration shall be investi-
gated. The resulting quasi–Newton methods have the advantage that the convergence of
the iterations implies the convergence to the exact solution. This chapter will therefore
be concerned with the convergence properties of the various applications of the reduction
methods.

The main problem hereby is that the tables ψ are provided to reduce the nonlinear problem
u̇ = f(u). They have to be linearized in order to be valid for problems of the form v̇ =
Df(u)v. This linearization process contradicts the convergence of the quasi–Newton method
even for the relatively simple problem

f(u) = 0,

where f denotes only the chemical source term. Conditions to f and ψ will be given,
such that the quasi–Newton iteration does still lead convergence, but these conditions are
unfortunately irrelevant for problems in praxis. Modifications of the application of the
tables will neither lead to satisfying results, if more realistic problems f(u) + g(u) = 0 are
considered.

6.1 Convergence aspects for inexact Newton methods

Inexact Newton methods for finding zeros of functions f : Rn → Rn are variations of the
exact Newton’s method [33], which reads

Df(un)δu = −f(un)

un+1 = un + δu.

This algorithm is due to the creation of the derivative of f and due to the solution process
for the linear equation very expensive. Therefore various simplifications were investigated in
order to reduce the numerical costs of the iteration. The most commonly known strategy is
to keep the derivative f ′ for a few iterations and save therefore the effort of the assembling
of f ′.

A second possibility is to replace the linear equation leading to the Newton update δu by

‖Df(un)δu+ f(un)‖ ≤ θ‖f(un)‖, θ ∈ [0, 1], (6.1)
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6 Quasi–Newton methods with QSSA and ILDM

where the resulting δu is clearly not uniquely determined. For details see for example [15, 16].
It can be shown that the Newton method converges, if an M > 0 exists such that δu fulfilling
the above condition, satisfies δu < M in all iteration steps. For the proof, see [6].

The Newton update might also be calculated by

D̃fδu = −f(un), (6.2)

where the matrix D̃f is in some sense close to Df(un), but much cheaper to be inverted.
These methods are called quasi–Newton methods, see for example [23].

In this chapter, the Newton updates will be calculated by (6.2) with D̃f given by the
reduction methods QSSA and ILDM. A criteria for the convergence can then be the spectral
radius

σ(1−Df(un)(D̃f)−1).

If the spectral radius is zero, then (6.1) is by definition fulfilled and the quasi–Newton method
leads to the same performance as the detailed Newton iteration. The conjecture is now that
a small spectral radius leads at least to comparable results and that a large spectral radius
in an indication for poor convergence or even divergence.

6.2 Nonlinear equations without conservation laws

This section investigates the possibilities for the application of the reduction methods as
part of the linear solver within the Newton method. It starts on a very basic level, where
the Newton algorithm for the problem f(u) = 0 is considered, where f represents only the
non–disturbed source term of a chemical reaction. Then disturbances will be allowed and
the application of pure tables and modified tables will be tested on an algebraic level. The
results of this section are substantiated by considering a 1d reaction–diffusion equation.

The main results of this section are:

• The linearization ∇ψ can be used as reduction table for v̇ = Df(u1, ψ(u1)) · v.

• Even for the simple case f(u) = 0, the table ∇ψ can only be used in very special cases,
namely, if ψ is linear and the initial guess for the Newton iteration is already on the
manifold given by ψ.

• Modified tables are only of value, if A22 +B22 is allowed to be inverted. But then the
algorithm is very expensive.

6.2.1 The linearization of the pure source term

In the Newton iteration for the problem

f(u) = 0,
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6.2 Nonlinear equations without conservation laws

a linear equation of the form

∇f(un)δu = −f(un)

has to be solved to obtain the Newton update δu for the current iterate u. In order to apply
the reduction methods to this linear problem, the original table ψ shall be transformed to
be applied to the linearized problem

v̇ = ∇f(un)v

v(0) = v0

for the current iterate un. The following lemma shows that the tables ψ can be applied to
this linearized problem as well, if un is on the manifold defined by ψ.

Lemma 6.2.1 Let F be in C1(Rm) and ψ ∈ C1(Rm1 ,Rm2) such that

F2(u1, ψ(u1)) = 0.

Then [
∇F (u1, ψ(u1))

(
v1

∇ψ(u1)v1

)]

2

= 0 (6.3)

for all u1, v1 ∈ Rn1 .

Proof:

[
∇F (u1, ψ(u1))

(
v1

∇ψ(u1)v1

)]

2

=

(
∂F2

∂u1
+
∂F2

∂u2
∇ψ(u1)

)
v1

=
d

du1
F2(u1, ψ(u1))v1 = 0,

because F2(u1, ψ(u1)) is constant in u1 by assumption.

This lemma shows that the QSSA–table for the ODE

v̇ = ∇f(u1, ψ(u1))v

is defined by the function
φQ(v1) = ∇ψQ(u1)v1

by applying the function f to the above lemma. A closer look to the proof gives also a
relation between the gradient of ψ and the source term f :

∇ψQ(u1)v1 = −
(
∂f2

∂u2
(u1, ψQ(u1))

)−1 ∂f2

∂u1
(u1, ψQ(u1))v1. (6.4)

Lemma 6.2.1 can also be applied for ILDM–tables, if f is chosen such that the matrix
V containing the left eigenvectors is independent of u. Let then F be defined such that
F1(u) = f1(u) and

F2(u) =
(
V11 V12

)
f(u),
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6 Quasi–Newton methods with QSSA and ILDM

and let the ILDM–table ψI for problem (4.20) map the slow variables u1 to the fast variables
u2. Then the ILDM–table φI for the linearized problem is given by

φI(v1) = ∇ψI(u1) · v1

for all possible u1.

With these parameterizations φ = ∇ψ, the problem

Df(un
1 , ψ(un

1 ))δu = −f(un
1 , ψ(un

1 ))

can now be exactly reduced. This means that the Newton iteration with reduced linear
problem has the same convergence properties as the exact Newton iteration, if all iterates
un are on the manifold given by ψ. This is the case, if

• the starting value u0 fulfills the relation u0
2 = ψ(u0

1). Note that the iteration is instable
with respect to errors in the evaluation of ψ.

• the table ψ is linear.

The question, which arises out of this observation, is of course, how the violation of these
conditions effects the Newton iteration. For that reason, two examples are considered:

• The nonlinear reaction mechanism (4.21) has a linear QSSA–table, see (4.22). The
Newton iteration with reduced linear solver and initial guess u0 = (1, 1, 1) performs
nicely only for the process variables. The residual for the fast variables remains almost
constant. For details, see table 6.1, where also the spectral radius of the matrix 1 −
(D̃f)−1 ·Df can be found. D̃f describes the approximative inverse of the Jacobian of
f .

• The reaction mechanism given by

2sp1

2GGGGGAsp2

1000GGGGGGGGAsp3

500GGGGGGGAsp4 (6.5)

has the source term

g(u) =




−4u2
1

4u2
1 − 1000u2

1000u2 − 500u3


 (6.6)

for the first three species. The corresponding QSSA–table is clearly

(
u2

u3

)
= ψQ(u1) =

(
1/250
1/125

)
u2

1.

Take now the reduced Newton iteration in order to solve the equation g(u) = 0 with
the initial value u0 = (1, ψQ(1)), such that the fast part of the initial residual is zero.
Table 6.1 shows, how the iteration performs.
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6.2 Nonlinear equations without conservation laws

f(u) = 0 g(u) = 0

iteration ‖res1‖ ‖res2‖ σ ‖res1‖ ‖res2‖ σ

0 2.00e + 00 1.99e + 03 1.00 4.00e + 00 0.00e + 00 1.00
1 2.62e − 01 1.95e + 03 1.00 3.36e + 00 1.34e + 00 1.00
2 8.29e − 03 1.94e + 03 1.00 3.22e + 00 1.62e + 00 1.00
3 9.43e − 06 1.94e + 03 1.00 3.22e + 00 1.62e + 00 1.00
4 1.23e − 11 1.94e + 03 1.00 3.22e + 00 1.62e + 00 1.00
5 2.22e − 16 1.94e + 03 1.00 3.22e + 00 1.62e + 00 1.00
6 2.22e − 16 1.94e + 03 1.00 3.22e + 00 1.62e + 00 1.00

Table 6.1: The performance of the Newton iteration with reduced linear solver for the
problems f(u) = 0 (left) and g(u) = 0 (right). The initial guess is for the left
table chosen not to be on the manifold, the initial guess for the right table fulfills
the relation u0

2 = ψ(u0
1). The function f denotes the source term of (4.21), g is

given by (6.6).

Modified linearized tables

The above investigations demand a different treatment of the tables, because the fast part of
the residual seems to be necessary to be considered. Let the linear equation for the Newton
update be written in the form

Aδu = res.

Then the treatment of the fast residual res2 for the slow Newton update offers two possibil-
ities:

1. Apply A−1
22 to both the slow and the fast variables:

(A11 +A12∇ψ)δu1 = res1 −A12A
−1
22 res2

δu2 = ∇ψδu1 +A−1
22 res2

2. Accept the pure table for the slow variables and do not use the tables in the calculation
of the fast Newton update:

(A11 +A12∇ψ)δu1 = res1

A22δu2 = res2 −A21δu1

Note that the first and third possibility are closely related: If the source term f is linear,
they are equivalent, because then ∇ψ = −A−1

22 A21 holds. The development of the residuals
in the Newton iteration for the reaction mechanism (4.21) can be seen in table 6.2. Here,
the table ψ represents a linear function, but the condition u0

2 = ψ(u0
1) for the initial value is

violated. Clearly, the residual of the fast part decreases now, such that convergence occurs.
The consideration of the fast part of the residual in the linear solver leads even to the same
convergence properties as the detailed Newton solver.

95



6 Quasi–Newton methods with QSSA and ILDM

1. possibility 2. possibility

iteration ‖res1‖ ‖res2‖ σ ‖res1‖ ‖res2‖ σ

0 4.00e + 00 0.00e + 00 0.00 4.00e + 00 0.00e + 00 0.00
1 1.00e + 00 1.00e + 00 0.00 1.00e + 00 1.00e + 00 0.00
2 2.50e − 01 2.50e − 01 0.00 2.50e − 01 2.50e − 01 0.00
3 6.25e − 02 6.25e − 02 0.00 6.25e − 02 6.25e − 02 0.00
4 1.56e − 02 1.56e − 02 0.00 1.56e − 02 1.56e − 02 0.00
5 3.91e − 03 3.91e − 03 0.00 3.91e − 03 3.91e − 03 0.00
6 9.77e − 04 9.77e − 04 0.00 9.77e − 04 9.77e − 04 0.00

Table 6.2: The table shows the evolution of the residuals in the Newton iteration for the
problem g(u) = 0 with g denoting the source term of the reaction mechanism
(6.5). The initial value is chosen to be u0 = (1, ψ(1)).

6.2.2 The linearization of disturbed equations

Instead of the purely chemical equation f(u) = 0 in the previous section, the disturbed
equation

f(u) + g(u) = 0

will be now considered and the applicability of the table ψ for the linear problem arising from
the Newton’s method investigated. This investigation will be performed for three different
possibilities:

1. Use only ∇ψ for the reduction. This is the cheapest method, but numerical differenti-
ation of the table has to be done anyway.

2. Use ∇ψ for the reduction and allow the inversion of the matrix ∂f2

∂u2
(un

1 , u
n
2 ). The

inversion of this matrix leads of course to higher numerical expenses.

3. Finally, allow the inversion of ∂(f2+g2)
∂u2

(un
1 , u

n
2 ). This is the numerically most expensive

possibility, if f and g represent discretized operators from a partial differential equation.

In the following, these possibilities will be presented with the example

f(u) + α



−2 1 0
1 −2 1
0 1 −2


u =




1
0
0


 (6.7)

with α = 1 and α = 1000.

Application of the tables without inversion

If the Newton update is calculated without the inversion of any of the matrix blocks, the
formula for δu reads

(
∂(f1 + g1)

∂u1
+
∂(f1 + g1)

∂u2
∇ψ
)
δu1 = res1

δu2 = ∇ψ δu1,
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6.2 Nonlinear equations without conservation laws

where functions and derivatives are evaluated at the point (un
1 , u

n
2 ). Obviously, the fast part

of the residual is not considered, therefore this possibility will not lead to convergence, see
table 6.3. In the above example, the residual decreases fastly in the first few steps, but

α = 1 α = 1000

iteration ‖res1‖ ‖res2‖ σ ‖res1‖ ‖res2‖ σ

0 4.95e + 00 9.69e − 01 1.00 1.95e + 03 9.69e + 02 1.00
1 9.89e − 01 4.87e − 01 1.00 3.97e + 00 2.47e + 00 1.00
2 1.10e − 01 3.26e − 01 1.00 1.66e − 05 4.97e − 01 1.00
3 2.24e − 03 3.03e − 01 1.00 2.67e − 16 4.97e − 01 1.00
4 1.01e − 06 3.03e − 01 1.00 4.51e − 17 4.97e − 01 1.00
5 2.05e − 13 3.03e − 01 1.00 4.51e − 17 4.97e − 01 1.00

Table 6.3: The table shows the evolution of the residuals in the Newton iteration for problem
(6.7). The initial value is chosen to be u0 = (1, ψ(1)).

remains constant for the fast variables afterwards.

Application of the tables with inversion of the chemical part

The inversion of the matrix ∂f2

∂u2
(un

1 , u
n
2 ) gives the possibility to calculate the Newton update

by

(
∂(f1 + g1)

∂u1
+
∂(f1 + g1)

∂u2
∇ψ
)
δu1 = res1 −

∂(f1 + g1)

∂u2

(
∂f2

∂u2
(un

1 , u
n
2 )

)−1

res2

δu2 = ∇ψ δu1 +

(
∂f2

∂u2
(un

1 , u
n
2 )

)−1

res2.

Here, the fast part of the residual res2 does have an effect on the Newton iterates, therefore
convergence might occur. Table 6.4 shows clearly that this conjecture is true for small values

α = 1 α = 1000

iteration ‖res1‖ ‖res2‖ σ ‖res1‖ ‖res2‖ σ

0 4.95e + 00 9.69e − 01 0.20 1.95e + 03 9.69e + 02 1.00
1 9.87e − 01 6.28e − 02 0.33 1.79e + 03 7.47e + 02 1.00
2 1.09e − 01 1.69e − 02 0.42 5.39e + 02 8.52e + 02 1.00
3 2.22e − 03 3.21e − 03 0.44 2.75e + 02 8.52e + 02 1.00
4 1.02e − 06 7.66e − 05 0.44 2.75e + 02 8.52e + 02 1.00

Table 6.4: The table shows the evolution of the residuals in the Newton iteration with
reduced linear solver and modified tables for problem (6.7). The initial value is
chosen to be u0 = (1, ψ(1)).

of α. If the influence of the function g is too big, the iteration does not converge.
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6 Quasi–Newton methods with QSSA and ILDM

Application of the tables with inversion of the chemical and physical part

The formulation of the equations for the Newton update with inversion of the block matrix
∂(f2+g2)

∂u2
(un

1 , u
n
2 ) offers three possibilities. Calculate the fast Newton update with

δu2 =

(
∂(f2 + g2)

∂u2

)−1

(res2 −
∂(f2 + g2)

∂u1
δu1),

given that the slow update δu1 was calculated by the application of ∇ψ. This strategy leads
to convergence for both values of α, see table 6.5.

α = 1 α = 1000

iteration ‖res1‖ ‖res2‖ σ ‖res1‖ ‖res2‖ σ

0 4.95e + 00 9.69e − 01 0.00 1.95e + 03 9.69e + 02 0.29
1 9.86e − 01 2.27e − 01 0.00 2.52e + 00 3.13e − 01 0.32
2 1.07e − 01 3.85e − 02 0.00 6.79e − 01 1.36e − 03 0.32
3 1.65e − 03 1.41e − 03 0.00 2.15e − 01 1.39e − 04 0.32
4 2.02e − 05 5.41e − 07 0.00 6.81e − 02 1.40e − 05 0.32
5 1.87e − 08 1.35e − 11 0.00 2.16e − 02 1.40e − 06 0.32
6 9.34e − 12 8.89e − 17 0.00 6.82e − 03 1.40e − 07 0.32

Table 6.5: The table shows the evolution of the residuals in the Newton iteration with re-
duced linear solver and detailed linear solver for the fast Newton update. The con-
sidered problem is given by (6.7), the initial value is chosen to be u0 = (1, ψ(1)).

6.2.3 A more advanced example

Let now the table ψ be applied to the linear problems arising from the Newton’s method.
First, the pure application of the tables will be investigated, the additional inversion shall
be allowed.

Application of the tables without inversion.

As before, the application of the tables does not consider the fast part of the residual in the
calculation for the Newton update, if no additional inversion of the matrices is allowed. This
contradicted the convergence of the Newton iteration in the simple examples in the previous
section and does also prevent the iteration from convergence in the above PDE example. A
typical phenomenon is the decreasing residual in the first few Newton steps, but also the
constance afterwards. Let for example ν be given by

ν =




10−4 0 0
0 10−5 0
0 0 10−6



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6.2 Nonlinear equations without conservation laws

and Ω be discretized with 129 nodes. Then the residual decreases from 1.87 to 1.06 · 10−3

in 7 Newton steps, but does not decrease any further. The grid size does not change this
behavior significantly.

Application of the tables with inversion of the chemical part.

The treatment of the fast part of the source term’s gradient has a negative effect on the
convergence properties of the Newton iteration. In general, the iteration diverges, which is
shown in four configurations of problem (4.24).

• Let the boundaries be u(0) = u(1) = (0.9, ψ(0.9)) and the viscosities νi = 1. The
Newton iteration with detailed linear solver converges then after 3 steps independently
of the grid size, whereas the iteration with reduced linear solver diverges. On all grids,
the residual decreases in the first few steps and increases afterwards. For the residuals
on a grid with 33 nodes, see table 6.6. The values for the residual are not surprising,
if the spectral radius σ(S) = σ(1− P (A+B)) is known.

• Take now the viscosities to be νi = 0.1 with boundaries as above. Then the Newton
iteration with detailed linear solver converges after 4 steps on each grid. If the linear
problem is reduced, the iteration diverges on all grids. The evolution of the residuals
and the spectral radius of the matrix 1− P (A+B) is shown in table 6.6.

• Now boundaries are considered, which are not on the manifold described by ψ. Let
therefore u(0) = u(1) = (0.5, 0.3, 0.2) and the viscosities νi = 1. With detailed linear
solver, the Newton iteration needs 6 steps to reach convergence. The reduced linear
solver leads to divergence.

• Finally, the viscosities νi = 0.1 are treated with the new boundaries. The Newton’s
method with detailed linear solver needs 7 steps to converge on every grid and the
reduced linear solution leads again to divergence. The residuals of the iteration steps
can be seen in table 6.6.

1. configuration 2. configuration 3. configuration 4. configuration

step residual σ(S) residual σ(S) residual σ(S) residual σ(S)

0 0.56 7.7e− 8 0.56 2.5e− 8 37.8 11.1 37.8 1.11
1 0.31 9.3e− 4 8.61 7.34 22.7 76.8 915.4 0.77
2 0.39 1308 8.80 30.5 22.6 60.5 915.8 0.76
3 5.30 141.8 9.91 55.6 22.4 92.5 916.3 0.75
4 5.27 372.6 10.08 49.3 27.1 482.0 916.7 1.89
5 5.12 5.0e+ 4 10.31 2.78 29.0 152.9 917.1 2.08
6 292.91 — 10.37 — 41.2 — 917.5 —

Table 6.6: The table shows the residuals of the Newton iteration with reduced linear solver
including the inversion of the chemical fast part. The boundaries and viscosities
are as described in the four configurations.
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6 Quasi–Newton methods with QSSA and ILDM

Application of the tables with inversion of the chemical and physical part.

Even though the purely algebraic problem in the previous section suggested that the Newton
iteration with inversion of the chemical and physical gradient might diverge, the convergence
properties in the reaction–diffusion example are very nice. The number of Newton steps
required to obtain a residual of order 10−6 are shown in table 6.7. This table suggests that

Boundaries: u1 = 0.9, (u2, u3) = ψ(0.9)

viscosities 33 nodes 65 nodes 129 nodes

ν1 = ν2 = ν3 = 1 3 (3) 3 (3) 3 (3)
ν1 = ν2 = ν3 = 10−2 6 (6) 6 (6) 6 (6)

ν1 = 10−2, ν2 = ν3 = 10−4 6 (6) 6 (6) 6 (6)
ν1 = 10−2, ν2 = ν3 = 1 6 (6) 6 (6) 6 (6)

Boundaries: u1 = 0.5, u2 = 0.3, u3 = 0.2

viscosities 33 nodes 65 nodes 129 nodes

ν1 = ν2 = ν3 = 1 6 (6) 6 (6) 6 (6)
ν1 = ν2 = ν3 = 10−2 9 (9) 9 (9) 9 (9)

ν1 = 10−2, ν2 = ν3 = 10−4 9 (9) 9 (9) 9 (9)
ν1 = 10−2, ν2 = ν3 = 1 7 (7) 7 (7) 7 (7)

Table 6.7: The table shows the number of Newton steps required for the reaction–diffusion
equation (4.24) for different viscosities on different grids. Here, the linear problem
is reduced with ∇ψ and the inversion of the chemical and physical matrix. The
number in brackets is the number of required detailed Newton steps.

the size of the grid has no influence on the convergence properties, neither do the viscosities
ν2 and ν3 of the fast variables. The number of required Newton steps seems to depend only
on the viscosity ν1 of the process variables and the chosen boundary conditions. But these
choices do not change the performance of the Newton iteration, if the linear part is reduced.

An interesting side effect of this method is that the convergence of the Newton’s method is
independent of the choice of the boundary values, whereas the errors of the direct reduction
of the nonlinear equations depends highly on the choice of the boundaries.

6.2.4 Numerical costs

The computation times for the solution process are studied with the problem

−∆u = f(u) (6.8)

on the domain Ω = [0, 1] × [0, 1] with Dirichlet boundaries. The function f denotes the
source term of reactions of the type 6.5, where intermediate species are added between sp3

and sp4 in order to investigate the computation time for bigger reaction mechanisms.

The problem shall be discretized by the finite element method on a grid with 1024 cells, the
resulting nonlinear algebraic equations are solved by the Newton’s method. The linear prob-
lems are solved by a multigrid strategy, the smoothing is performed by few preconditioned
Richardson steps, where the ILU is taken as a preconditioner.
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6.3 Nonlinear equations including conservation laws

The computation times depending on the number of fast variables can be seen in table 6.8
for the detailed and reduced solver. It depicts clearly that the computation costs for the

detailed reduced

n2 Newton total matrix ilu Newton total matrix ilu

2 4 9 2.8 0.7 2 68 45 0.24
4 2 81 7.47 64 2 73 49 0.2
9 2 1031 45 961 2 97 66 0.2
14 2 4956 140 4762 2 130 91 0.21

Table 6.8: The computational costs for the nonlinear problem (6.8). Depending on the
number of fast variables n2, the required number of Newton steps are plotted as
well as the computation costs in seconds. The computation time is splitted into
the total time, the time for the evaluation of the matrix and the computation of
the ILU.

detailed solver grow faster than with n3, whereas the costs for the reduced solver grow less
than linearly in the number of species. Most of the computational costs for the linear solver
has to be spent for the computation of the ILU. Since only one process variable is to be
computed, the computation of the ILU is rather cheap in the reduced case.

The computation time for the Newton method, where the inversion of A22 +B22 is allowed
in the linear solver, can be seen in table 6.9. Except for the smallest reaction system, the

n2 Newton total matrix1 ilu1 matrix2 ilu2

2 5 204 101 0.5 9.0 5.3
4 2 116 41.4 0.2 8.0 28.0
9 2 840 57 0.2 43.0 657
14 2 4070 80.0 0.2 136 3752

Table 6.9: The computational costs for the nonlinear problem (6.8), if the inversion of
A22 + B22 is allowed in the linear solver. Depending on the number of fast
variables n2, the required number of Newton steps are plotted as well as the
computation costs in seconds. The computation time is splitted into the total
time, the time for the evaluation of the matrix and the computation of the ILU.

computation is almost as expensive as with the detailed solver.

6.3 Nonlinear equations including conservation laws

The difference between section 6.2 and this section is the existence of the center manifold.
Here, this difference is not too important, because the linearization ∇ψ is taken as reduction
method for the linear problem within the Newton method, and the conservation laws con-
sidered in ∇ψ have the constant c = 0. But still, differences to the previous section occur
due to the replacement of the blocks A3,i by the left eigenvectors to the eigenvalue λ = 0.
The effect of this difference is shown in this section.
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6 Quasi–Newton methods with QSSA and ILDM

The main results are comparable to the main results of the previous section.

6.3.1 The linearization

Similar as in section 6.2.1, the nonlinear table ψ can under certain circumstances be used to
reduce the linear problem arising from the Newton iteration. The table for the problem

Df(u1, ψ(u1))x = b

is given by

φ(x1) = ∇ψ(u1)x1,

as can be seen in lemma 6.2.1, if F is defined such that

F1(u) = f1(u) and F2(u) =

(
f2(u)

V 0
1 u1 + V 0

2 u2 + V 0
3 u3 − c

)
.

Since the formulation of φ depends on the derivative of F2, the constant c has clearly be
equal to zero for the linearized problem. But this is not necessarily a restriction, especially, if
the reduction method is used for the calculation of the Newton update. The Newton update
is supposed not to change the conservation constant for the nonlinear problem, therefore

(
V 0

1 V 0
2 V 0

3

)
δu = 0

has to hold.

This new table φ can now be applied to reduce the linear problem without systematic errors,
if

• the starting value u0 is on the manifold and fulfills the equation u0
2 = ψ(u0

1),

• the table ψ is affine linear.

The linearity of ψ assures that the first and the following iterates are also on the manifold,
if this is true for the initial guess u0.

In order to see the effect of the violation of these conditions to the Newton iteration, consider
the problem

f(u) = 0

with f denoting the source term of reaction (3.6), which has the nonlinear QSSA–table
(4.26). The initial value for the Newton iteration shall be chosen to be u0 = (0.5, ψ(0.5)),
which is on the manifold with the conservation constant c = 1. The behavior of the residuals
in the iteration can be seen in table 6.10. The residual is reduced in the first iteration
step, then the residual for the process variables decreases further, whereas the fast residual
increases again. The whole iteration remains almost constant after a few iteration steps, eve
though the residual is still remarkably big.
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iteration ‖res1‖ ‖res2‖ σ

0 9.73e − 01 9.73e − 01 1.00
1 3.99e − 01 4.33e − 01 1.00
2 3.34e − 01 4.67e − 01 1.00
3 3.15e − 01 4.79e − 01 1.00
4 3.11e − 01 4.82e − 01 1.00
5 3.09e − 01 4.83e − 01 1.00
6 3.08e − 01 4.83e − 01 1.00

Table 6.10: The performance of the Newton iteration for the problem f(u) = 0 (f denotes
the source term of reaction (3.6)), if the linear problem is reduced on the basis
of the nonlinear table ψ. The initial value is chosen to be u0 = (0.5, ψ(0.5)).

Modified linearized tables

Fortunately, the pure application of the tables not the only possibility to apply the tables ψ
to the linear problem. Three more possibilities arise, if in addition to the calculation of ∇ψ
the inversion of parts of the Jacobian Df is allowed. Let the linear equation to be solved for
the Newton update δu be written as

Aδu = res.

Then the three possibilities on top of the pure reduction read:

1. Accept the pure table for the slow variables and apply the inverse of the fast part only
for the fast update:

(A11 +
(
A12 A13

)
∇ψ)δu1 = res1
(
δu2

δu3

)
= ∇ψδu1 +

(
A22 A23

V 0
2 V 0

3

)−1(
res2

0

)

2. Accept the pure table for the slow variables and do not use the tables in the calculation
of the fast Newton update:

(A11 +
(
A12 A13

)
∇ψ)δu1 = res1(

A22 A23

A32 A33

)(
δu2

δu3

)
=

(
res2
res3

)
−
(
A21

A31

)
δu1

Here, the conservation laws are only treated for the slow Newton update.

The performance of the Newton iteration to the problem f(u) = 0 with the Newton updates
calculated by the above reductions can be seen in table 6.11. The first iterations seem to
show that convergence occurs only for the second possibility. Here, the convergence rate is
even better than for the detailed Newton method. But the situation changes after a few
more iteration steps, the strategy according to the first possibility converges now.
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1. possibility 2. possibility detailed Newton

iteration ‖res1‖ ‖res2‖ ‖res1‖ ‖res2‖ ‖res1‖ ‖res2‖
0 4.00e + 00 4.00e + 00 4.00e + 00 4.00e + 00 4.00e + 00 4.00e + 00
1 3.35e + 00 2.40e + 00 3.35e + 00 2.40e + 00 3.35e + 00 2.40e + 00
2 2.97e + 00 2.18e + 00 2.60e + 00 1.94e + 00 2.81e + 00 2.15e + 00
3 2.63e + 00 2.33e + 00 1.78e + 00 1.84e + 00 1.93e + 00 2.17e + 00
4 2.42e + 00 2.47e + 00 4.26e − 01 3.18e − 01 4.56e − 01 5.73e − 01
5 2.28e + 00 2.55e + 00 8.84e − 02 1.43e − 01 1.82e − 01 1.29e − 01
6 2.15e + 00 2.63e + 00 1.11e − 02 8.27e − 03 2.84e − 02 4.11e − 02
...

...
...

...
10 1.13e + 00 2.96e + 00 3.97e − 15 7.11e − 15 1.39e − 17 2.01e − 14
11 2.58e − 01 1.44e + 00 3.57e − 15 0.00e + 00 0.00e + 00 0.00e + 00
12 4.50e − 02 9.43e − 02 3.57e − 15 7.11e − 15 0.00e + 00 0.00e + 00
13 3.27e − 03 5.14e − 03 3.30e − 15 0.00e + 00 0.00e + 00 0.00e + 00
14 2.37e − 05 3.44e − 05 3.29e − 15 7.11e − 15 0.00e + 00 0.00e + 00

Table 6.11: The table shows the evolution of the residuals for the slow and fast variables
for the problem f(u) = 0 with initial value u0 = (1, ψ(1)). The Newton update
is calculated with the reduction possibilities described above.

6.3.2 The linearization of disturbed equations

Instead of the equation f(u) = 0, a disturbed equation

f(u) + g(u) = 0

is now considered.

The applicability of the original table ψ will be investigated for three different cases:

1. Use only ∇ψ for the reduction. This is numerically the cheapest method.

2. Use ∇ψ for the reduction and allow the inversion of the matrix ∂f2

∂u2
(un

1 , u
n
2 ). The

inversion of this matrix leads of course to higher numerical expenses.

3. Finally, allow the inversion of ∂(f2+g2)
∂u2

(un
1 , u

n
2 ). Even though this is of equal numerical

expenses as the previous possibility, the treatment of g2 introduces additional coupling,
if g denotes a discretized differential operator.

In the following, these possibilities will be presented with the example

f(u) + α



−2 1 0
1 −2 1
0 1 −2


u =




1
0
0


 (6.9)

with α = 1 and α = 1000. The function f will again be given by the source term of the
reaction (3.6).
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α = 1 α = 1000

iteration ‖res1‖ ‖res2‖ σ ‖res1‖ ‖res2‖ σ

0 4.95e + 00 4.22e + 00 1.00 1.96e + 03 8.72e + 02 1.00
1 4.15e + 00 2.97e + 00 1.00 1.29e + 03 1.29e + 03 1.00
2 3.67e + 00 3.06e + 00 1.00 6.56e + 02 1.49e + 03 1.00
3 3.52e + 00 3.16e + 00 1.00 5.79e + 02 1.51e + 03 1.00
4 3.42e + 00 3.25e + 00 1.00 5.75e + 02 1.52e + 03 1.00
5 3.38e + 00 3.29e + 00 1.00 5.74e + 02 1.52e + 03 1.00

Table 6.12: The residuals in the first 5 Newton steps for equation (6.9) with initial condition
u0 = (1, ψ(1)).

Application of the tables without inversion

If the table ψ is to be applied for the linear equation in the Newton iteration without any
further inversion of matrix blocks, the Newton iteration reads

(
∂f1

∂u1
+
∂g1
∂u1

+

(
∂f1

∂u2
+
∂g1
∂u2

∂f1

∂u3
+
∂g1
∂u3

)
∇ψ(un

1 )

)
δu1 = −f1 − g1

(
δu2

δu3

)
= ∇ψ(u1)δu1

with f and g evaluated at the current nonlinear iterate un = (un
1 , u

n
2 , u

n
3 )T . Clearly, the

residual for the fast variables is neglected in this formulation, which explains the unfortunate
convergence behavior of the iteration: The residual decreases in the first steps and remains
almost constant afterwards. For details, see table 6.12.

Application of the tables with inversion of the chemical part

Assume now that the fast part of Df is easy to be inverted, hence equations of the form

( ∂f2

∂u2

∂f2

∂u3

V 0
2 V 0

3

)(
x2

x3

)
=

(
b2
0

)

are allowed to be solved in each evaluation of the tables. This offers the possibility to
compute the fast Newton update by

(
δu2

δu3

)
= ∇ψ(u1)δu1 +

( ∂f2

∂u2

∂f2

∂u3

V 0
2 V 0

3

)−1(
res2

0

)
,

if res2 denotes the fast part of the nonlinear residual.

The evolution of the residual in the solution process of equation (6.9) can be seen in table
6.13. For both values of α, convergence is not achieved. Clearly, for α = 1000, the iteration
diverges much faster than for the smaller value α = 1.
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α = 1 α = 1000

iteration ‖res1‖ ‖res2‖ σ ‖res1‖ ‖res2‖ σ

0 4.95e + 00 4.22e + 00 1.00 1.96e + 03 8.72e + 02 1.40
1 3.82e + 00 3.45e + 00 4.82 1.92e + 03 7.76e + 02 3.42
2 3.66e + 00 2.91e + 00 6.02 1.76e + 03 9.75e + 02 1.32
3 3.66e + 00 2.91e + 00 6.03 1.34e + 03 1.29e + 03 22.82
4 3.66e + 00 2.91e + 00 6.03 8.79e + 02 1.51e + 03 36.56
5 3.66e + 00 2.92e + 00 6.04 1.22e + 00 1.23e + 03 31.96
6 3.66e + 00 2.92e + 00 6.04 1.22e + 00 1.23e + 03 32.03

Table 6.13: The residuals in the first 6 Newton steps for equation (6.9) with initial condition
u0 = (1, ψ(1)). Here the two possibilities are considered, if the inversion of the
fast part of the chemical matrix is allowed.

Application of the tables with inversion of the chemical and physical part

Finally, allow the computation of the solution to problems of the form

(
∂f2

∂u2
+ ∂g2

∂u2

∂f2

∂u3
+ ∂g2

∂u3

∂f3

∂u2
+ ∂g3

∂u2

∂f3

∂u3
+ ∂g3

∂u3

)(
x2

x3

)
=

(
b2
b3

)

in every evaluation of the tables. This allows the computation of the Newton update for the
slow variables by

(
∂f1

∂u1
+
∂g1
∂u1

+

(
∂f1

∂u2
+
∂g1
∂u2

)
∇ψ(un

1 )

)
δu1 = −f1 − g1

and to obtain the fast update by solving the above linear equation for b = −f2 − g2. The
evolution of the residuals in the iteration are shown in detail in table 6.14. Clearly, the
iteration converges for both values of α.

6.3.3 A more advanced example

Reconsider the differential equation

−νu′′(x) = f(u(x)), x ∈ Ω := ]0, 1[

with Dirichlet boundary conditions, where the function f describes the source term of the
nonlinear reaction (3.6).

Application of the tables without inversion

Let the table φ(v1) = ∇ψ(u1)v1 reduce the linear problem

∇F (un
1 , u

n
2 )δu = b− F (un

1 , u
n
2 )
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6.3 Nonlinear equations including conservation laws

α = 1 α = 1000 σ

iteration ‖res1‖ ‖res2‖ ‖res1‖ ‖res2‖ α = 1 α = 1000

0 4.95e + 00 4.22e + 00 1.96e + 03 8.72e + 02 0.11 0.26
1 3.82e + 00 3.31e + 00 6.87e + 01 1.51e + 01 0.21 0.42
2 2.92e + 00 3.10e + 00 2.72e + 01 1.08e + 00 0.26 0.41
3 4.07e − 01 7.67e − 01 1.08e + 01 1.77e − 01 0.31 0.40
4 1.16e − 01 1.38e − 01 4.34e + 00 2.85e − 02 0.32 0.40
5 1.04e − 02 1.49e − 02 1.74e + 00 4.60e − 03 0.33 0.40
6 3.95e − 03 1.28e − 04 6.99e − 01 7.44e − 04 0.33 0.40

0 4.95e + 00 4.22e + 00 1.96e + 03 8.72e + 02
1 4.15e + 00 2.96e + 00 3.97e + 00 3.93e + 00
2 3.47e + 00 2.86e + 00 1.56e − 05 1.01e − 03
3 2.35e + 00 2.83e + 00 1.40e − 13 3.57e − 10
4 8.58e − 01 6.13e − 01 2.72e − 16 1.76e − 16
5 6.53e − 02 2.51e − 01 5.02e − 17 6.55e − 17
6 5.22e − 04 3.58e − 03 5.02e − 17 6.55e − 17

Table 6.14: The performance of the Newton iteration with the reduced linear solver de-
scribed above. The initial condition to solve equation (6.9) is u0 = (1, ψ(1)).
The lower part of the table shows the evolution of the residuals with the detailed
Newton iteration.

in the Newton’s method. Then the reduced problem

(
∂F1(u

n
1 , u

n
2 )

∂u1
+
∂F1(u

n
1 , u

n
2 )

∂u2
∇ψ(un

1 )

)
δu1 = b1 − F1(u

n
1 , u

n
2 )

is to be solved. The Newton update for the fast variables is then obtained by δu2 = φ(δu1).

It is probably not surprising that this technique cannot lead to convergence of the iteration,
because the update for the fast variables δu2 is totally independent of the defect for the fast
variables.

In the numerical example, the residual of the slow variables is quickly reduced to values of
order 10−5 and less. This implies the smallness of the slow update and due to the linear
dependence of the fast on the slow update, the smallness of the fast update, even though
the fast part of the residual is big. For this reason, convergence cannot occur.

In the concrete example, the residual for the process variables is in the first three steps
reduced from ‖res1‖ = 25 to ‖res2‖ = 10−9, but the fast part of the residual res2 increases
from ‖res2‖ = 2.1 to ‖res2‖ = 20.4 and remains constant in the following iteration steps.

Application of the tables with inversion of the chemical part

The consideration of the fast residual for the slow Newton update by inverting the fast
chemical block leaded to questionable results in the algebraic case. This is also the case
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6 Quasi–Newton methods with QSSA and ILDM

νi = 1 νi = 0.1 νi = 0.01

step res σ res σ res σ

0 7.96e − 1 0.07 7.96e − 1 0.27 7.96e − 1 2231
1 7.66e − 1 0.10 1.33 0.47 1.72e + 2 269
2 7.77e − 1 0.10 1.11 0.93 1.70e + 2 629
3 7.98e − 1 0.10 1.11 0.88 1.67e + 2 2642
4 8.09e − 1 0.10 1.11 0.81 1.64e + 2 526
5 8.19e − 1 0.10 1.11 0.72 1.61e + 2 683

Table 6.15: The residuals and spectral radii in the Newton iteration for problem (4.24) on
33 nodes with boundaries u(0) = u(1) = (0.9, ψ(0.9)). As initial value constant
mass fractions fulfilling the boundary conditions are chosen.

in the computation of solutions to the reaction–diffusion equation. The Newton iteration
diverges in the considered examples, see table 6.15.

Even though the initial values are reasonable for the Newton iteration with detailed linear
solver, they might still be too far from the solution for the iteration with reduced linear
solver. For that reason, initial values are considered, which are obtained by the detailed
Newton iteration after 5 and 6 steps. The performance of the iteration can be seen in the
right table 6.15. Clearly, divergence occurs even with a starting point with residual of order
10−6.

Application of the tables with inversion of the chemical and physical part

Apply now the given table ψ only for the calculation of the slow Newton update. The fast
update will be calculated in detail by inverting the corresponding block of the physical and
chemical matrix. The number of required Newton steps can be found in table 6.16. As in
the case without conservation laws (cp. table 6.7), the performance of the Newton iteration
seems to be (almost) independent of the grid size and depends in the detailed formulation
only slightly on the viscosities. But the reduced Newton iteration performs much worse with
smaller values of ν.

In order to understand this phenomenon, consider the solution process of the equation

−10−3 u′′(x) = f(u(x)), x ∈ Ω := ]0, 1[

u(0) = u(1) =

(
0.9

ψ(0.9)

)

on a grid with 65 nodes. The solution to this reaction–diffusion equation can be seen in
figure 6.1, also the difference between the detailed and reduced nonlinear problem is shown.
With errors of order 10−4 for the fast variables and even 10−5 for the process variables, the
reduced solution leads to a decent approximation of the total problem.

Consider now the reduction of the linear problem for the Newton update. Then the nonlinear
residual decreases within the first six Newton steps from 0.57 to 5.9 · 10−5, see table 6.17.
Then, another 36 iterations are necessary in order to decrease the residual to 10−5, the
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6.3 Nonlinear equations including conservation laws

Boundaries: u1 = 0.9, (u2, u3) = ψ(0.9)

viscosities 33 nodes 65 nodes 129 nodes

νi = 1 5 (4) 5 (5) 5 (5)
νi = 10−2 16 (7) 16 (7) 16 (7)
νi = 10−3 93 (7) 93 (7) 93 (7)
νi = 10−4 527 (7) 526 (7) 528 (7)

Boundaries: u1 = 0.5, u2 = 0.3, u3 = 0.2

viscosities 33 nodes 65 nodes 129 nodes

νi = 1 4 (4) 4 (4) 4 (4)
νi = 10−2 14 (4) 14 (4) 14 (4)
νi = 10−3 79 (4) 79 (4) 79 (4)
νi = 10−4 298 (4) 302 (4) 299 (4)

Table 6.16: The table shows the number of Newton steps required for the reaction–diffusion
equation (4.24) for different viscosities on different grids. Here, the linear prob-
lem is reduced with ∇ψ and the inversion of the chemical and physical matrix.
The number in brackets is the number of required detailed Newton steps.

Newton step residual, detailed linear residual, reduced linear σ(1− P (A+B))

0 0.567596 0.567596 0.6475
1 0.542231 0.538301 0.8450
2 0.338205 0.208876 0.9053
3 0.255162 0.201844 0.9370
4 0.031354 0.024962 0.9433
5 0.001073 0.001175 0.9457
6 1.41e − 06 5.91e − 05 0.9458
7 3.20e − 11 5.52e − 05 —

Table 6.17: The residuals of the first seven Newton steps for the iteration with reduced
and detailed linear problem. The third column shows the spectral radius of the
matrix 1− P (A +B), where P denotes the preconditioner created by ∇ψ and
the inversion of the fast parts of the chemical (A) and physical (B) matrix.

109



6 Quasi–Newton methods with QSSA and ILDM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
u1
u2
u3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

time

u1
u2
u3

Figure 6.1: The solution to the reaction–diffusion equation with ν = 10−3 and the produced
error, if the total problem is reduced with the QSSA–table ψQ.

residual of order 10−6 is reached after 81 iterations. This observation suggests clearly that
the residual decreases fastly at the beginning and convergence problems arise at the end of
the iteration. This behavior is substantiated by the eigenvalue analysis of the system matrix
for the Richardson iteration. Clearly, the spectral radius tends to one, which leads to the
poor convergence properties.

The quite decent performance in the first steps is is also supported by figure 6.2, which
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Figure 6.2: The difference between the detailed solution and the “solution”, which is ob-
tained by the reduced Newton iteration after 5 steps. The right figure shows the
residual after 5 iterations.

shows the difference between the detailed solution and the iterate, which is obtained by the
reduced Newton iteration after 5 steps. Also the residual after 5 iterations is plotted. Both
figures suggest clearly that the 5–th iterate is already close to the detailed solution. The
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6.3 Nonlinear equations including conservation laws

differences are biggest in the center of the domain, where the diffusion term plays a minor
role.
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7 Adaptive Model Reduction

The previous chapter showed clearly that preconditioning with QSSA and ILDM cannot be
performed for stationary problems. This chapter will therefore concentrate on instationary
homogeneous processes, where the introduced reduction methods will be applied in order
to reduce the computational costs. Clearly, the application of these methods introduces
systematic errors in the time steps, which cannot be avoided. The goal of this chapter is
therefore to find criteria, which indicate, if the next time step can be performed with ILDM
or has to be calculated in detail in order to obtain errors with a certain tolerance.

The first section will concentrate on the information, which can be obtained by considering
only the residual of the ODE. It will turn out that this information is not sufficient in order
to find criteria, whether the forthcoming time step is to be calculated in detail or not. The
section thereafter combines then the residual with the so called dual solution of the problem,
a strategy, which proves to be expensive, but also very successful, if computation time plays
a minor role. It can be expected that the method performs nicely, if the original problem is
highly nonlinear, such that each dual time step is rather cheap compared to the original time
step. The third section in this chapter will finally investigate the possibilities of applying
the obtained dual solution also for estimating the discretization error. It will turn out to
work nicely.

7.1 Solving strategy for ODEs

In this section, an ODE involving chemical combustion shall be solved. The goal is to do as
many time steps with ILDM as possible and use a detailed solver only, if the produced error
is too big. This procedure reduces the numerical expenses dramatically, if the reduction
works nicely. And in the worst case, where all reduced time steps have to be redone with a
detailed solver, only little more effort has to be spent than the pure detailed solver requires,
see table 7.1. Here, the computation time for an ODE with n variables can be seen. Two
different linear reaction mechanisms are considered, where only one variable is considered to
be a process variable in the first reaction. Two process variables exist for the second source
term. The reaction formalism is similar as in (4.2) with additional species and adjusted
reaction rates.

In general, there are three sources for big errors for the application of ILDM:

• The previous iterate is not on the manifold. This phenomenon occurs frequently at
the beginning of the solution process, if the initial value is not on the manifold.

• External sources are not consistent with the reduction mechanisms.
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7 Adaptive Model Reduction

1 PV 2 PV

n detailed ILDM detailed ILDM

20 3.0 1.5 2.8 2.2
40 21 3.8 20 5.7
60 67 7.3 66 9.6
80 167 12.5 154 14.9
100 309 18.7 313 24.7

Table 7.1: The computation time in seconds for an ODE with n variables, where 1 and 2
variables are process variables respectively. Clearly, the numerical costs grow
with n3 for the detailed solver, whereas they grow with less than n2, if ILDM is
applied.

• The reduction mechanisms are not valid, for example due to a change in the spectrum
of ∇f .

Because of these phenomena, ODEs exist, where the solution process for one time step has
to be switched from an ILDM–solver to a detailed solver and vice versa. Therefore criteria
have to be found, which indicate that a change in the solution method is necessary.

In order to investigate the behavior of the detailed and reduced solution and to find possible
criteria, the ODE

u̇ = f(u) + b

u(0) = u0

shall be considered, where f denotes the source term, for which the table ψ was created. The
vector b shall be a (possibly time–dependent) external source term, which is not contained
in ψ.

7.1.1 Switching from detailed to reduced solver

Let now the source term f be given, such that the spectral gap remains almost constant and
the set of physically fast variables does not change in time. The external source b is set to
zero, but the initial value u0 is chosen not to be on the manifold given by either QSSA or
ILDM.

The detailed solution of the ODE does therefore relax fastly onto the manifold and remains
on it, until it eventually reaches the stationary point. This means mathematically

u2(t) ≈ ψ(u1(t)) ∀t ≥ t0,

which leads to a criterion, how the acceptance of an ILDM–solution can be detected, if the
current time steps are solved in detail: Switch to ILDM, if

|u2(t) − ψ(u1(t))| < tol · |u2(t)|.
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7.1 Solving strategy for ODEs

In order to see the relation between the solution and the manifold, consider the distance of
the detailedly obtained trajectory to the manifold for the ODEs

u̇ = f(u) u̇ = g(u) (7.1)

u(0) =




1
0
0


 u(0) =

(
1
0

)

for the source term f of the reaction (4.21). The function g shall be defined by

g(u) =

(
−u1

1000(1/u1 − u2)

)

Clearly, both initial values are not on the manifold. The value |u2(t) − ψ(u1(t))|/|u2(t)|
can be seen in figure 7.1. The figure depicts clearly that the manifold created by ILDM
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Figure 7.1: The relative difference of the fast part of the solution to the manifolds given by
QSSA and ILDM. The left figure was created for the ODE u̇ = f(u), the right
figure for u̇ = g(u) as in (7.1).

attracts the detailed solution much better than the manifold by QSSA. The tolerance tol
has therefore to be much smaller for the treatment of ILDM, the figures suggest the values

tolQSSA = 10−1 tolILDM = 10−5

for the problems defined in (7.1). The errors produced by the switched strategy can be seen
in figure 7.2 for the chemical ODE. For the ODE u̇ = g(u), the error for the process variables
is zero, because the source term for the slow variables is independent of the fast variables.
The difference in the fast variables can be seen in figure 7.3.

Both figures (7.2 and 7.3) depict clearly that the introduced criteria can be applied to
determine, whether the following time step shall still be calculated detailedly, or if the
reduction method can be applied. The above suggested values for tol are suitable for the
considered examples, but do in general depend on the given problem and its spectral gap.
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Figure 7.2: The relative difference between the switched and the detailed solution for the
ODE u̇ = f(u) as in (7.1). The left figure shows the reduced time steps with
QSSA, the right figure with ILDM. In both cases, 2000 time steps were per-
formed, the number of detailed time steps is 40 for ILDM and only 1 for QSSA.
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Figure 7.3: The relative difference between the fast variables in the detailed and switched
solution process for the ODE u̇ = g(u). For both reduction methods, 4 of the
2000 time steps were performed in detail, before the solution process switched
to the reduced solver.
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7.1.2 Switching from reduced to detailed solver

The more difficult task in the switched solution strategy is to find criteria to determine,
whether the time step, which was calculated with ILDM, is still accurate enough. Otherwise
this time step has to be repeated with a detailed solver. This means basically that the table
is not valid anymore.

Clearly, the above criteria and therefore the distance between the current time step and the
manifold cannot be used, because the current state is by definition on the manifold, if the
last time step was calculated with the reduction methods.

In this section, three different possibilities for this criteria are investigated:

• Comparison of detailed and reduced solution.

• Validation of the table.

• Calculating the detailed residual of the reduced time step.

Compare the detailed with the reduced solution

The difference between the detailed and the reduced solution does clearly contain valuable
information about the applicability of the reduction methods, but has the big disadvantage
that the detailed solution is unknown. And even if the detailedly calculated state vector is
known, then there is no need to proceed with the less accurate reduced state vector. So this
paragraph is only of theoretical interest in order to obtain a feeling for the behavior of the
solution, if the manifold is valid for the problem or not.

For that reason, compare the two ODEs

u̇1 = −u1 v̇1 = −v1 (7.2)

u̇2 = 1000(1/u1 − u2) v̇2 = 1000(1 − v1v2)

Both systems have the same manifold ψ(u1) = 1/u1, if the QSSA–method is considered. For
the left problem, this manifold is always valid, whereas it is only valid in certain regions for
the problem on the right hand side. This can easily be seen by considering the gradients of
the right hand side, which read

∇f(u) =

(
−1 0

−1000/u2
1

−1000

)
and ∇f(v) =

(
−1 0

−1000v2 −1000v1

)
.

The eigenvalues for the gradient of the left problem are clearly constant in u and therefore
also in time (λ1 = −1, λ2 = −1000), therefore the spectral gap does not change. The
eigenvalues for the right hand side depend on the current state (λ1 = −1, λ2 = −1000v1)
and the spectral gap decreases linearly with decreasing v1. This means that the manifold is
only valid for the right problem, if v1 is big enough.

This can be seen by performing a few time steps from a state on the manifold with reasonably
small u1. Let for example u1 = 10−5, therefore u2 = 105. The next five time steps with
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Figure 7.4: The phase diagram of the reduced solution for both problems described by (7.2),
together with the time steps obtained from the reduced solver.

step size k = 10−3 can be seen in figure 7.4. Clearly, the detailed time steps for the ODE
on the left hand side with valid manifold removes only slightly from the reduced solution
(and therefore from the manifold) and shows similar behavior as the reduced solution in the
following. This is typical and shows the difference between the exactly calculated attracting
manifold and its approximation calculated with QSSA. The problem, for which the manifold
is not valid anymore, shows totally different behavior. Already in the first step, the current
state removes strongly from the manifold and keeps removing in the following time steps.
This is clearly a (very expensive) indicator that the reduced solution does not lead to accurate
solutions anymore.

Validate the table

As already seen before, the provided tables can only be valid, if a spectral gap exists and is
reasonably big. The information about the spectral gap can therefore be used as an indicator
for the applicability of the reduction methods. This leads to the idea to estimate the spectral
gap in each time step and decide, whether the following time step is to be done in detail.

This procedure has two major drawbacks:

• The computational costs are very high. In order to calculate the spectral gap, in-
formation about the eigenvalues is required, which can be obtained by two different
approaches. The first possibility is the execution of the QR–algorithm [49]. Due to
the convergence properties, the eigenvalues right beside the spectral gap are fastly ob-
tained, such that the algorithm does not have to be executed until convergence occurs
for all eigenvalues.

The second possibility is the inverse iteration [21, Ch. 7]. Assuming that the fastest
slow eigenvalue and the slowest fast eigenvalue do not change much in one time step,
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7.1 Solving strategy for ODEs

the corresponding eigenvalues of the previous time step can be used as an initial guess
for the new inverse iteration. This will in general lead to quick convergence.

But still, even little QR–steps require the QR–factorization in each iteration step and
the inverse iteration the solution of a linear system of the size of the detailed problem.
This leads to similar numerical costs as one or even more Newton steps for the detailed
problem, so the whole procedure will be almost as expensive as the detailed calculation
of the upcoming time step.

• This criterion is only valid, if ODEs without disturbance are considered. An external
source might easily lead to big differences between the detailed and reduced solution,
even though the analysis of the spectral gap is not affected at all. This means that
the switched solution process will continue to solve the problem with the reduction
methods and lead to big errors.

Because of the second problem, this criteria can only be applied, if problems of the form
u̇ = f(u) with the table created for f are considered. If this is the case, switch from the
reduced solution to a detailed solver, if

λn1+1 − λn1

λn1

< SG

for a given constant SG ∈ R.

Consider again the ODE u̇ = g(u) as defined on the right hand side of (7.2) with initial
condition u(0) = (1, 0)T . The evolution of the spectral gap is shown in figure 7.5 as well as
the difference between the detailed and the switched solution for different values of SG. The
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Figure 7.5: The left figure shows the evolution of the eigenvalues in time. The considered
problem is the second problem of (7.2). The right figure shows the relative
difference between the detailed and the switched solution for the fast variable,
if SG is chosen to be in {2, 5, 10, 100}.

error is of course bigger, if the switching occurs at later stage, but then the computational
costs are also lower. From the 2000 performed time steps are 1545 steps calculated in detail
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for SG = 100, whereas only 760 detailed steps are necessary for SG = 2. An interesting
property of this example is that the error decreases after the switching.

Also chemical reaction systems can have a changing spectral gap. Consider for example the
reactions

sp1

k1GGGGGGBFGGGGGG
k2

sp2

sp1 + sp2

k3GGGGGGAsp1 + sp3

sp2

k4DGGGGGGsp3

sp3

k5GGGGGGAsp4,

which differs from reaction (4.2) only in the second reaction, where now sp1 forms a third
body. One can also think of the reaction mechanism

sp1

k1GGGGGGBFGGGGGG
k2

sp2

k3 · u1GGGGGGGGGGBFGGGGGGGGGG
k4

sp3

k5GGGGGGAsp4, (7.3)

where the reaction rate for the reaction sp2 −→ sp3 depends on the mass fraction of species
sp1. These two formulations are equivalent. If only sp1, sp2 and sp3 are calculated, this is a
nonlinear reaction system without conservation laws. It has qualitatively the same properties
as the above considered example.

The detailed residual as switching indicator

If one considers the residual of an ODE to a solution u, the term

ρ(u) = f(u) − u̇

is treated. From the numerical point of view, this is of course impossible, because the exact
derivative of u is in general unknown. One possibility to approximate the residual is given
by

ρ(un+1) = f(un+1) − 1/k(un+1 − un)

with un = u(tn) and un+1 = u(tn + k). This is basically the algebraic residual of an implicit
Euler step.

An analysis of the examples (7.1) and (7.2) will show that the switching criteria cannot be
based directly on the residual. In order to see, why this proposition is valid, consider first
the residual of the fast variables if QSSA is used as reduction method. Then the residual of
the fast variables reads

ρ2(u1, ψ(u1)) = f2(u1, ψ(u1)) − u̇2 = −u̇2,

because f2(u1, ψ(u1)) = 0 by definition.

Now four problems are considered:
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7.1 Solving strategy for ODEs

• The ODE defined by the source term of reaction (4.21). The reduction methods per-
form nicely, the relative difference between the reduced and detailed solution is less
than 0.1%.

• The second ODE is defined by the reaction (7.3). Here, the application of the reduced
solver leads to errors of size 100%.

• The problem defined by

u̇ =

(
−u1

1000(1/u1 − u2)

)

can perfectly be reduced, the produced error is again less than 0.1%.

• The last problem is obtained by the above defined ODE with the second equation
changed to

u̇2 = 1000(1 − u1u2).

The QSSA–table of the last two problems is clearly the same, but here, the reduction
produces errors of more than 100%.

For all four problems, the detailed residuals of the reduced solution can be seen in figure 7.6.
Clearly, the residuals for the first and second problem show similar properties. They are of
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Figure 7.6: The relative residuals for the four previously defined ODEs. For problems 1
and 3, the reduction methods produce only small errors, whereas the reduced
solvers lead to big errors for problems 2 and 4.

the same size and are generally decreasing. Also the reductions of problem three and four
lead to similar behavior of the big and increasing residuals. But the reduction methods show
only nice behavior for the first and third problem, which indicates, that the fast residual on
its own cannot be used to distinguish good and bad performance of the reduction methods.

In order to see that the slow residual can neither be used as an indicator for the performance
of the reduction, reconsider the third and the fourth problem. Since the source term for the
process variable is independent of the fast variables, the reduced solver leads to the same
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solution for the slow variables as the detailed solver. This means that the slow part of the
residual is zero (up to rounding errors). Again, one of these problems can be successfully
reduced, whereas the reduction mechanisms produce a big error for the other ODE.

7.2 A posteriori error control with dual solutions

As shown in the last section, information about the residual is not sufficient in order to obtain
criteria, when the reduced solution is to be recalculated with a detailed solver. One possibility
to obtain a relation between the residual and the produced error, is the consideration of dual
problems. They provide information, how the residual effects the error of the solution. This
strategy was invented for Galerkin methods with adaptive step sizes in order to find an
optimal discretization. For details, see for example [4] and [9]. In this section, this method
will be explored for the application of the reduction methods.

7.2.1 A basic introduction into dual problems

Assume that the solution to the ODE

u̇ = f(u)

u(0) = u0

is to be calculated on the interval I = [0, T ], which is equivalent to the weak formulation

∫

I
(u′ − f(u), ϕ)dt = 0 ∀ϕ ∈ C(I)

u(0) = u0,

if u is in C1(I). A second equivalent formulation is

N∑

n=1

(∫

In

(u′ − f(u), ϕ)dt + ([u]n−1, lim
t↓tn

ϕn−1)

)
= 0 ∀ϕ ∈ V (I) (7.4)

u(0) = u0,

where V (I) = {v : I → Rd|v|In
∈ C1

c (In)} and [u]n = limt↓tn u− limt↑tn u. Taking the finite

dimensional space S(r)(I) = {v ∈ V (I)|v|In
∈ Pr(In)} of all piecewise polynomials of degree

r or less instead of V (I) in the above formulation, leads to discontinuous Galerkin methods.
If r = 1, this method is even equivalent to the implicit Euler algorithm.

Solving (7.4) with S(r)(I) instead of V (I) leads to an approximation uh of the exact solution
u. The residual

ρ(uh)(ϕ) =

N∑

n=1

(∫

In

(f(uh) − u′h, ϕ)dt − ([uh]n−1, lim
t↓tn

ϕn−1)

)

is therefore unequal to zero.
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7.2 A posteriori error control with dual solutions

In order to obtain a relation between the residual and the actual difference between u and
uh, dual problems are considered. Assume therefore that the error J(e(T )) = (j, e(T )) is
of interest. Think for example of j = (δi,k)i, then J(e(T )) describes the error ek(T ) =
xk(T ) − uk(T ) of the k–th variable at time T . Let further the matrix B be defined by

Be :=

∫ 1

0
f ′(u+ se)e ds

with e := u− uh and let z be the solution of the dual problem

ż +B∗z = 0

z(T ) = j.

Here, z is called the dual solution to the original problem u̇ = f(u). Then the error identity

(j, e(T )) = ρ(uh)(z)

holds, and describes the effect of the residual to the error. The values of the ρ(uh)(z) on the
intervals In can therefore be used as an indicator, where the detailed calculation has to be
performed, such that the mixed solution process has an optimal effect to the error. Clearly,
the error identity can only be valid, if z was calculated exactly. The value of ρ(uh)(zh) equals
zero, if zh is an approximation of z with zh in S(r)(I).

Note that not only errors at the final time T can be calculated. Change the dual problem to

ż +B∗z = j

z(T ) = 0,

if the error e(T ) =
∫ T
0 (j, x(t) − u(t)) dt is to be calculated.

In order to estimate the error produced by the reduction methods, the discretization error can
be neglected, because only the difference between the discretized solution and the discretized
reduced solution is of interest. For a given reduced solution uh,red, the dual solution zh is to
be calculated and the term ρh(uh,red)(zh) estimates the systematic error produced by QSSA
or ILDM.

This method has two bottle–necks:

• For the creation of the dual problem, the exact solution is required, which is for obvi-
ous reasons impossible. The matrix B has therefore to be approximated by only the
approximating solution ured and might be calculated to be B = f ′(ured).

• The calculation of the dual solution z is very expensive, even though the problem
is only linear. The linearity means that the solution process is as expensive as the
detailed solution process of the original problem ẋ = f(x), if it is assumed that only
one Newton step is required in each time step. The adaptive strategy can therefore
only be time saving, if

– the dual problem can be reduced, or
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– the original problem is highly nonlinear, such that many Newton steps are required
in each time step.

The algorithm to calculate the solution to an ODE with a switched strategy is therefore:

1. calculate the reduced solution

2. estimate the error by solving the dual solution, which was created with the just obtained
reduced solution

3. calculate the switched solution

4. estimate the error by the renewed dual solution. The dual problem changes, because
the switched solution leads to a different approximation of B.

5. repeat steps 3. and 4. until the desired tolerance is reached.

7.2.2 The reduced creation of the dual problem

The effect of the non–existing exact solution for the creation of the matrix B and therefore
of the dual problem shall here be investigated with two examples. The first ODE is given by

u̇ = f(u) + b(t) (7.5)

with initial conditions on the manifold and the source term f of reaction (4.21). The time
interval of interest is [0, 3] and the disturbance b acts on the fast variables only for 1 < t < 2.
With b = 0, the ODE is nicely approximated by the application of the tables, the existence
of b ensures therefore that the tables are not valid in the time region, where b(t) 6= 0. The
reduced solver leads to an approximation, which differs from the detailed solution at time
t = 3 by 2 · 10−2 for the slow and 10−3 for the fast variables. The averaged error is 6 · 10−2

and 2 · 10−1 respectively.

The second problem is the ODE

u̇ =

(
−u1

1000(u3
1 − u4

1u2)

)
(7.6)

for t ∈ [0, 1]. The initial value is chosen to be on the manifold. For this problem, the spectral
gap changes in time. The application of the tables leads therefore to decent results in the
first time steps, but its accuracy decreases highly for t → 1. The errors produced by the
application of the reduction methods are 10−1 and 9 · 102 for the slow and fast variables at
time t = 1. The averaged error is 2 · 10−2 and 5 · 101 respectively. The solution to these
problems can be seen in figure 7.7. The right figure shows clearly, that the produced errors
are also relatively very big.

In tables 7.2 and 7.3, the effects of the approximated creation of the dual problem can be
seen. Table 7.2 suggests clearly that the creation of the dual problem with the approximated
solution leads to similar results as the exact dual solution. It also shows that there is basically
no difference, if the fast or the slow variables are controlled. The situation for the second
problem (7.6) is a bit different. Here, the controlling of the fast variables leads of course to
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Figure 7.7: The solutions to the problems (7.5) (left) and (7.6) (right). The values of the
solution at the final time is u(3) = (6 · 10−3, 2 · 10−5, 3 · 10−5) in the left figure.

Final time Average

control measure dual exact dual approx. dual exact dual approx.

slow variables # detailed 469 472 484 481
error slow 2e− 3 2e− 3 5e− 3 6e− 3
error fast 1e− 4 1e− 4 3e− 2 3e− 2

fast variables # detailed 469 481 538 482
error slow 2e− 3 2e− 3 3e− 3 6e− 3
error fast 1e− 4 1e− 4 2e− 2 3e− 2

Table 7.2: The behavior of problem (7.5), if the dual problem is either exactly or approxi-
matively created. The table is splitted into controlling the error of the slow (fast)
variables at time t = 3 and controlling the error averaged over the time interval
[0, 1]. The total number of iteration steps is 2000.

an improvement of their accuracy, but the accuracy of the slow variables is not improved, see
table 7.3. If the controlled variables are the process variables, the error for the fast variables
is also dramatically reduced, but the solution process is much too expensive. Fortunately,
this observation holds for both the exactly and approximatively created dual problem.

It can therefore be concluded that the approximative creation of the dual problem leads to
similar performances as the creation of B with the exact solution of the original problem.

7.2.3 The reduction of the dual problem

A major drawback of the idea of solving dual problems is the numerical expenses for the
calculation of the backward solution z. Since the forward solution u was calculated with
a reduced solver, the dual solver might easily be even more expensive, if the dual problem
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Final time Average

control measure dual exact dual approx. dual exact dual approx.

slow variables # detailed 1027 1652 1445 1425
error slow 1e− 3 1e− 4 7e− 4 8e− 4
error fast 3e− 3 3e− 4 5e− 3 1e− 1

fast variables # detailed 20 20 391 420
error slow 1e− 1 1e− 1 1e− 2 1e− 2
error fast 87 87 5e− 1 5e− 1

Table 7.3: The behavior of problem (7.6), if the dual problem is either exactly or approxi-
matively created. Note that the nice behavior at the control of the slow variables
is very expensive, because the number of detailed steps is high. In addition,
three to four adaptive cycles had to be performed, such that the detailed solution
process is in fact much cheaper.

is solved in detail. This leads directly to the question, whether the dual problem can be
reduced as well.

Clearly, if the dual problem is reduced, it has to be reduced with the same table as the
forward problem, because the creation of a new table just for the dual problem is for obvious
reasons much too expensive. The application of the derivative of the function ψ created
for the solution process of u is therefore to be investigated for the applicability for the dual
problem.

Consider therefore the two dual problems

{
ż +B∗z = 0
z(T ) = j

and

{
ż +B∗z = j
z(T ) = 0

related to the control of the error at final time t = T and the averaged error. The vector j
equals, given that the error of the k–th variable is to be controlled, the k–th unit vector.

Error control of fast variables

Assume now that one of the fast variables is to be controlled. The reduced dual problems
read then {

ż1 + ((B∗)11 + (B∗)12∇ψ(u1))z1 = 0
z1(T ) = 0

for both detailed dual problems, because j1 = 0. Clearly, the equation is linear in z1, the
unique solution for both problems is therefore z1(t) = 0 due to the right hand sides and
initial conditions. The total solution is

z(t) = 0,

because the reducing function ∇ψ provides a linear relation between z2(t) and z1(t). The
residual ρ tested with z is clearly also zero and does therefore not contain any information
about the relation between the residual and the actually produced error. It can be concluded
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7.2 A posteriori error control with dual solutions

that the dual problem has to be solved with a detailed solver, if a fast variable is to be
controlled.

Error control of process variables

The situation is a bit more optimistic, if one of the slow variables is controlled. The dual
problem for the control of the error at time t = T reads then

{
ż1 + ((B∗)11 + (B∗)12∇ψ(u1))z1 = 0
z1(T ) = j1,

which has a solution different from zero. The question is now, under which circumstances the
table ψ for the problem u̇ = f(u) can be applied as reduction method for its dual problem.

The question will be stated more precisely by considering example (7.6). The detailedly
calculated dual solution for the second problem is shown in figure 7.8. It clearly differs
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Figure 7.8: The dual solution to problem (7.5).

highly from the reduced dual solution, which is calculated to be

z(t) =

(
e999(1−t)

−e999−997t

)
.

This can easily be seen by reducing the original dual problem

ż +

(
−1 3000u2

1 − 4000u3
1u2

0 −1000u4
1

)
z = 0

to

ż1 − z1 + (3000u2
1 − 4000u3

1u2)

(
− 1

u2
1

)

︸ ︷︷ ︸
=1000, if u2=1/u1

z1 = 0.
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Note that the fast part of the exact dual solution is

z2(t) = 0.

This difference has a strong effect on the error estimator: The residual for the first equation
is clearly zero up to rounding errors, because the first part of the source term is independent
of the second variable u2. The estimated error depends therefore only on the term ρ2 · z2.
With z2(t) = 0 for the detailedly calculated dual solution, the error is clearly estimated to
be zero, whereas the reduced dual solution leads to a strong overestimation and therefore to
detailed time steps in the next solution cycle.

Even though the combination of the reduced dual solver with few detailed time steps for
the original problem might be advantageous from the computation cost of view, the above
analytic results are somehow misleading. The reason is the large values of the reduced dual
solution. Even though the dual solution can analytically be given in this example, it cannot
be obtained numerically, simply because e999 is larger than the biggest possible double value.
The question about the applicability of the reductions to the dual problem is therefore to be
split into two questions:

• Can the reduced dual problem be solved on a computer?

• Given that the reduced solution can technically be calculated, how accurate is the
estimated error?

The first question. The first question can at least be partly answered by considering the
products of a chemical reaction: If a variable describes a product of a reaction and is con-
sidered to be fast, then the reduced dual problem cannot be solved numerically.

In order to substantiate this statement, consider a linear reaction with three species sp1, sp2

and sp3, where sp3 is supposed to be the product. The reaction can therefore be described
by the ODE

u̇ =




−a11 a12 a13

a21 −a22 a23

a11 − a21 −a12 + a22 −a13 − a23


u

with the coefficients aij > 0. Moreover, since sp3 is the product, the coefficient a13 + a23 is
much smaller than a11−a21 and −a12 +a22. This implies that at least one of the coefficients
a11 and a22 is big, whereas the other coefficients are comparably small. For a concrete
example, consider reaction (4.16). Since the ODE contains the conservation law

∑
i ui = 1,

the reaction can be modeled by replacing one equation by the conservation law. Here, the
replacement of the second and third equation will be investigated in order to see the effect,
if the product is still in the reaction formalism or not. For both cases, sp1 will be considered
to be the process variable (which implies the smallness of a11, therefore a22 is the biggest
coefficient in the above ODE).

Equivalent formulations of the above dynamical system are

(
u̇1

u̇2

)
=

(
−a11 − a13 a12 − a13

a21 − a23 −a22 − a23

)(
u1

u2

)
+

(
a13

a23

)
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and
(
u̇1

u̇3

)
=

(
−a11 − a12 −a12 + a13

a11 + a12 − a21 − a22 a12 − a13 − a22 − a23

)(
u1

u3

)
+

(
a12

a22 − a12

)
,

if the missing variable is computed by the conservation laws within the post–processing. The
corresponding reduced dual problems read

ż1 +

(
(a21 − a23)

2

a22 + a23
− a11 − a13

)
z1 = 0, z1(T ) = 1

and

ż1 +

(
(a11 + a21 − a21 − a22)

2

a13 + a22 + a23 − a12
− a11 − a12

)
z1 = 0, z1(T ) = 1.

Clearly, the factor in front of z1 is small for the first dual problem and large for the second
dual problem, because only a22 is big. At least in the second case, this factor is even
positive, which leads to the very large values of z1(0). For reaction (4.16), these factors are
approximately 5 and 914 for the first and second equation respectively, so z1(0) ≈ e5 for the
first dual problem and z1(0) ≈ e914 for the second problem, if T = 1. Clearly, even for this
simple problem, the reduced dual solution cannot be calculated numerically, if the product
sp3 is modeled, because e914 is much bigger than the biggest possible double value.

The second question. Recall from lemma 6.2.1 that the linearization of the function ψ can
be applied to problems of the form ẏ + By = 0, if B was created with a nonlinear state u
on the manifold. Since the last section showed that the dual problem can be created with
the reduced solution, this condition is perfectly fulfilled. But does the applicability of the
linearized table ∇ψ to problem ẏ + By = 0 imply the applicability of the same reduction
method to ż + B∗z = 0? This is clearly true, if B = B∗, which is at least for realistic
problems almost never the case. For realistic problems, the reutilization of ∇ψ will lead to
less accurate solutions, the less symmetric the matrix B is.

A criteria for the grade of symmetry of B is for example the minimal angle between the
eigenvectors. B is clearly symmetric, if the eigenvectors are pairwise orthogonal. Moreover,
the minimal angle between the eigenvectors depends continuously on the symmetry of the
matrix B: If the symmetric matrix B is disturbed by a nonsymmetric small Υ, then the
maximal scalar product of the eigenvectors depends clearly continuously on the eigenvectors,
which depend continuously on Υ. This can be proven by the implicit function theorem
applied to the function

F (A,X) = F

(
A,

(
λ
x

))
=

(
Ax− λx∑

i xi − 1

)
.

In order to see the effect of the missing symmetry, consider the problem

u̇ =

(
−1 a12

a21 −100

)
u, u(0) =

(
1
0

)
(7.7)

and compare the error produced by the reduction methods at time t = 1 with its estimations
for varying a12 and a21. The result can be seen in tables 7.4 and 7.5, where either a12 or a21
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a21 |u(1) − ured(1)| η ηred

1 3.72e − 05 3.69e − 05 3.70e − 05
11 4.03e − 04 4.03e − 04 7.64e − 03
21 7.43e − 04 7.54e − 04 2.15e − 01
31 1.05e − 03 1.07e − 03 3.10e + 01
41 1.34e − 03 1.34e − 03 3.28e + 04
51 1.76e − 03 1.52e − 03 2.52e + 08

Table 7.4: The error and its detailed and reduced estimates for problem (7.7) with a12 = 1.

a12 |u(1) − ured(1)| η ηred

1 3.72e − 05 3.69e − 05 3.70e − 05
11 3.90e − 02 3.99e − 02 3.93e − 02
21 8.21e − 02 8.39e − 02 8.27e − 02
31 1.30e − 01 1.32e − 01 1.31e − 01
41 1.82e − 01 1.86e − 01 1.84e − 01
51 2.39e − 01 2.45e − 01 2.42e − 01

Table 7.5: The error and its detailed and reduced estimates for problem (7.7) with a21 = 1.

is set to one respectively. The estimate obtained with the reduced dual solution is clearly
far beyond acceptable for large values of a21, but is still very reasonable, if the matrix entry
a12 becomes large.

The explanation for this phenomenon is rather simple: If a21 is zero (or at least small), then
the matrix defining the dual problem reads

A∗ =

(
a11 0
a12 a22

)

and the influence of the table is neglected in the calculation of the slow dual solution because
of the zero in the upper right part of A∗. The table influences therefore only the fast variables
of the dual solution. They are approximated to be decreasing or even to be zero from the
very beginning, because the decreasing of the fast variables was a necessary requirement
for the numerical solvability of the dual problem. If now the exactly calculated fast dual
variables are decreasing, the approximation by the tables is at least qualitatively correct.

A more interesting and nonlinear example is given by (7.5), where the gradient

∇f(u) =



−8u1 4u2 0
8u1 −4004u2 360u3

0 4000u2 −2360u3




is clearly nonsymmetric, but the coupling from the fast to the slow variables (8u1, 0)
T is at

least for certain values of u1 and u2 small compared to the entries in A22. The reduced dual
solution for this problem shows similar properties as the detailed dual solution, see figure
7.9. The small differences in the dual solutions does of course lead to differences in the
estimation of the errors. The exact error for the initial values u(0) = (0.9, ψ(0.9)) at time
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Figure 7.9: The detailed (left) and reduced (right) dual solution to problem (7.5).

t = 3 is 1.9 ·10−2 and is estimated to be 2.5 ·10−2 with the detailed and 1.1 with the reduced
dual solution. But the effect to the adaptive application of the reduction methods is similar.
The detailed dual solution leads to detailed time steps in the time interval [1.27, 1.94], the
reduced dual solution to the slightly bigger interval [1.24, 1.94], where a detailed solver is to
be applied.

The experiences with the considered problems showed clearly that the dual problem cannot
always be reduced with the tables created for the original problem. In case of controlling the
fast variables, the dual solution is zero and does therefore not contain any information about
the produced error. If the process variables are to be controlled, the situation is different,
but only more optimistic, if the fast variables are decreasing and the coupling of the fast
variables to the slow equations is small. For practical problems this will hardly be the case,
the application of the reduction methods to the dual problem is therefore not recommended.

This observation is probably surprising to the readers, who are familiar with [2], where a
method was presented, how the error of a reduced problem can be controlled with a reduced
dual solution. In the cited paper, the problem

a(u, φ) + d(u, φ) = (f, φ) ∀φ ∈ V

was considered, where the reduced solution um solves only the equation

a(um, φ) = (f, φ) ∀φ ∈ V.

The equations describe for example a reaction–diffusion equation, where the term a describes
the diffusion phenomena by Fick’s law and d the difference between this relatively simple
diffusion model and the more detailed multicomponent model. It is shown that the error
identity

j(e) = −d(um, z) = −d(um, zm) +O(‖d‖2)

holds, where e = u − um is the difference between the detailed and reduced solutions and
z denotes the detailed dual solution. The reduced dual solution is denoted by zm. This
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identity indicates clearly, that the error can be estimated by the reduced dual solution. But
this identity can only be achieved, because

‖z − zm‖ ≤ α‖d‖‖z‖

holds, which shows that the difference between the detailed and reduced dual solution is
relatively bounded. The observation of the reduced dual solutions for the problems of this
thesis shows clearly, that such an estimate cannot be achieved for the reduction methods
QSSA and ILDM.

7.2.4 Numerical example

In order to treat a more realistic example, a reaction mechanism with 20 species is considered.
The mechanism itself is given by the reactions

sp1

2GGGGBFGGGG
1

sp2

sp1 + sp2

1000GGGGGGGGAsp1 + sp3

sp2

90DGGGGGGsp3 (7.8)

sp3

1000GGGGGGGGBFGGGGGGGG
90

sp4

1000GGGGGGGGBFGGGGGGGG
90

sp5 ... sp18

1000GGGGGGGGBFGGGGGGGG
90

sp19

500GGGGGGGAsp20

3sp4 + 2sp5

1000GGGGGGGGBFGGGGGGGG
90

5sp18.

The second elementary reaction contains sp1 as third body, which can formally be interpreted
as a reaction from sp2 to sp3 with the reaction rate k = 1000 · y1 depending on the mass
fraction of sp1. A second source for nonlinearities is the last reaction. It ensures that each
time step takes on average 3 Newton steps to converge. Note that more nonlinearities in the
reaction mechanism does not necessarily increase the number of Newton steps required in
each time step.

In order to simplify the investigations of this mechanism, the source term f is reduced by the
mass fraction of the 19–th species. This value can be obtained by y19 = 1 −∑i6=19 yi. The
solution to the ODE u̇ = f(u) with f being the source term of the above reaction mechanism
and initial conditions u(0) = (1, 0, ..., 0)T can be seen in figure 7.10. The figure on the right
hand side shows clearly the effect of the second elementary reaction, which depends strongly
on the current state of species sp1. For an even further understanding of this mechanism,
the evolution of the eigenvalues along the solution trajectory is visualized in figure 7.11.
The left eigenvector to the slowest eigenvalue is largest in its first entry, which suggests to
take the mass fraction of species sp1 as process variable. The variable related to the second
slowest eigenvalue is the mass fraction of species sp2. sp2 can therefore be treated as process
variable or as fast variable. Three variables are now favorable as control variables for the
error estimation:
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Figure 7.10: The solution to the ODE u̇ = f(u) with f describing the source term of (7.8),
the right figure shows a different scale.

• species sp1, because it is the process variable

• species sp2, which is a physically fast variable in the beginning of the solution process,
but becomes slow close to the stationary point

• species sp20, because it is the product.

This small analysis is substantiated by figure 7.12, which shows that these three variable
have a different error behavior compared to the rest of the species.

Adaptive solution process

The adaptive solution strategy leads to the errors shown in figure 7.13, if the process variable
sp1 is controlled. This improvement compared to the reduced error is obtained by doing 40%
(52%) of the time steps with a detailed solver, if the error at the final time (averaged error)
is controlled. Considering other variables as control variables leads basically to the same
solution. The only difference occurs by controlling the averaged error of sp20, because the
error at the beginning of the solution process is very high. For that reason, detailed solution
steps are performed also at the start of the iteration.

The computation time for the solution processes for the ODEs u̇ = f(u) with f describing
the above reaction mechanism (7.8) or similar mechanisms with 40 and 80 variables can be
seen in table 7.6. The values describe the computation times for the detailed solver, the
reduced solver and the adaptive solver. The adaptive solver takes 2 adaptive cycles in order
to reduce the controlled error by 1/10, therefore the computation time for only one cycle is
also given. But even for performing only one adaptive cycle, the detailed solver turns out to
be cheaper.

Due to the exact solution process for the dual solution, this result is probably not surprising.
In order to obtain reasonable results, the dual problem has to be solved with the reduction
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Figure 7.11: The evolution of the eigenvalues of reaction mechanism (7.8) along the solution
trajectory (compare figure 7.10).

20 40 80

detailed 0.6 4.1 32
reduced 0.3 0.7 2.1
adaptive 2.0 12.7 94

adaptive (1 cycle) 1.2 6.6 47

estimated measured

reduced error 2.7e − 4 2.4e − 4
adaptive error 1.4e − 5 1.4e − 5

Table 7.6: The computation times for reaction mechanisms with 20, 40 and 80 variables.
The number of process variables is in all cases 1. The right table shows the
estimated and exactly calculated errors.

methods. In the above constellation, this is clearly impossible, because the product sp20 is
considered as a fast variable, the reduced dual problem can therefore not be solved numer-
ically. So sp20 has either to be the process variable or the variable, which is obtained via
post–processing by the evaluation of the conservation laws. For the latter, the computation
times can be seen in 7.7. The computational costs for the detailed and reduced solver are
clearly similar to the case, where the species sp19 was neglected in the computation, compare
table 7.6.

7.3 A posteriori control of modeling and discretization errors

The application of the reduction methods to the solution process for ODEs leads to two
different errors, namely to the error produced by the reduction itself and the discretization
error. The last two sections concentrated on the reduction errors, in this section, a strategy
will be presented, how the reduction and the discretization error can be estimated at the
same time. This will be done by considering the dG(0) algorithm, which is equivalent to the
implicit Euler. For general considerations, see for example [2].
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Figure 7.12: The difference between the exact and the reduced solution to u̇ = f(u) with
reaction (7.8). The reduced solution for the left figure was calculated with one
process variable, the right figure with two.
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Figure 7.13: The errors produced by the adaptive strategy, if the error of species sp1 is
controlled. In the left figure, the error at the final time is controlled, in the
right figure the averaged error over the whole time interval.

20 40 80

detailed 0.6 4.6 36
reduced 0.4 0.8 2.4
adaptive 1.1 3.4 17.2

estimated measured

reduced error 1.9e − 4 8.4e − 4
adaptive error 5.9e − 5 3.2e − 5

Table 7.7: The computation times for reaction mechanisms with 20, 40 and 80 variables.
The number of process variables is in all cases 1. For the adaptive calculation,
the dual solution is obtained by a reduced solver. The second table shows the
errors at time t = 5.
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For the reduced implicit Euler, four problems are considered: The detailed problem, the
reduced problem and the detailed and reduced discretized problems, compare figure 7.14.
The reduced implicit Euler leads to the solution uh,red of the reduced discretized problem,

detailed problem:

u̇ = f(u)

ρ(v) := f(v) − v̇

reduced problem:

u̇1 = f1(u1, ψ(u1))

ρ(v) := f1(v1, v2) − v̇1

discretized reduced problem:

1/k(un+1

1 − un1) = f1(u
n+1

1 , ψ(un+1

1 ))

discretized detailed problem:

1/k(un+1 − un) = f(un+1)

ρ(v) := f(v) − 1/k(v − un)

η

ηtime

ηmodel

Model Reduction

D
is

cr
et

iz
at
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n

Figure 7.14: The error estimators for the reduced discretized problem.

where its difference to the solution of the detailed problem is to be estimated. On top of
that, the estimate is to be split into a part resulting from the model reduction and a second
part, which represents the error resulting from the time discretization. Instead of calculating

η = ρ(uh,red)(z),

the estimates
ηtime = ρh(uh,red)(z) and ηmodel = ρm(uh,red)(z)

are calculated for a suitable z and η is estimated by η ≈ ηtime + ηmodel.

The estimate ηmodel can be calculated by considering the dual solution, which solves the dual
problem of the discretized detailed problem, compare section 7.2. The estimator ηmodel is
then obtained by testing the residual with the obtained dual solution. In order to obtain a
reasonable estimator ηtime, it is clearly necessary to calculate the dual solution of the reduced
problem created with the discretized reduced solution.

This strategy leads clearly to exact error estimators ηmodel and ηtime, but has the big dis-
advantage that two dual problems have to be solved, where at least the dual problem for
the estimator of the discretization error can only be approximated. Less accurate estima-
tors can be obtained by considering an approximation of the dual solution of the detailed
problem for both estimators. Then only one dual problem is to be solved, which reduces the
computational costs.

This approximation of the dual solution cannot be obtained by accepting the dual solution zh
of the discretized detailed problem, because zh ∈ S(r)(I) and therefore ρ(uh)(zh) = 0, which
leads to a bad approximation of the estimator ηtime. It has therefore to be guaranteed that
the accepted approximation z̃h is not in S(r)(I). This can be achieved by two possibilities:

• Calculate z̃h with a higher order solver.
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7.3 A posteriori control of modeling and discretization errors

• Accept a higher order interpolation of zh as z̃h.

Here, the second possibility is taken. The by the implicit Euler obtained dual solution zh
is discontinuous and piece–wise constant and can easily be interpolated to a continuous and
piece–wise linear function by

z̃h(t) = zh(tn) +
t− tn

tn+1 − tn
(zh(tn+1) − zh(tn))

for tn ≤ t ≤ tn+1. Clearly, z̃h /∈ S(r)(I), which implies ηtime = ρred(uh,red)(z̃h) 6= 0.

This leads to the following solution process:

1. Calculate the reduced solution for a given time discretization.

2. Solve the discretized dual problem and obtain zh.

3. Interpolate zh and obtain z̃h.

4. The residuals tested with the dual solutions zh and z̃h lead to the estimates ηmodel and
ηtime and therefore to a total estimate η ≈ ηmodel + ηtime.

5. Find the intervals, which have the biggest influence on the estimators ηtime and ηmodel.
If the effect of the model error in the considered interval is higher than the effect of
the discretization error, mark the interval, such that a detailed solver is to be applied
in future, and set νmodel = 0 in this interval. Otherwise split the corresponding time
interval in two parts and set νtime = 0 herein.

6. Repeat step 5, until a tolerance is reached.

7. Calculate a new solution and the corresponding error estimators. If the error is still
too large, repeat steps 5–7.

The performance of this strategy shall exemplarily be shown with problem (7.6). The initial
time discretization shall be set to 50 equidistant time steps. The error of the fast variable
of the reduced solution is 1.1 · 10−1 and shall be reduced by the adaptive strategy by 90%.
After four adaptive cycles, the error is 1.5 · 10−2 (estimator: 1.1 · 10−2), where the error by
the reduction mechanisms is 7.6 · 10−4 (estimator: 7.5 · 10−4) and the discretization error is
estimated to be 10−2. An exact measure of the discretization error is not possible. In the
last adaptive cycle, 85 time steps were performed.

In the final solution cycle, the error is dominated by the discretization error for an obvious
reason: Doing a detailed instead of a reduced solution step, leads to an almost zero model
error in the corresponding interval, whereas an error remains, if the the time interval is
splitted into two parts.

The distribution of the time steps is visualized in figure 7.15, as well as the difference
between the obtained solution and the solution obtained by a detailed solver with the same
time discretization. The figure shows clearly, that the switching in the type of the solver
has a bigger influence than the mesh refinement. It also shows that the model adaption is
independent of the refinement of the time discretization: The problem is solved with the
reduction methods at time t = 0.6, but a mesh refinement was performed. And even though
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Figure 7.15: The time distribution for problem 7.6 and the resulting error, if the adaptive
algorithm is applied.

the mesh is twice refined towards t = 1, the last two time steps are solved with the reduced
solver.
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8 Conclusion and Outlook

8.1 Conclusion

This thesis showed first various possibilities to apply the reduction methods QSSA and
ILDM to stationary problems with linear and nonlinear reaction mechanisms. A reduction
method using the tables was presented as well as several possibilities, how the tables may
be applied as preconditioners. Secondly, the application of the QSSA– and ILDM–method
to instationary homogeneous reactors was presented.

Even though it could be shown that at least ILDM reduces some problems exactly, the results
for the stationary problems are rather frustrating:

• Preconditioning with the pure reduction methods cannot lead to convergence. An
analytic proof for this statement was presented.

• Applying modified tables as preconditioners can have nice convergence properties, but
the iteration is almost as expensive as preconditioning with standard methods like ILU.

• The quasi–Newton method, where the Newton update is calculated with a reduced
solver, does not converge.

• As in the case of the preconditioners, the modified tables can lead to convergence of
the quasi–Newton method, but the computational price is very high.

This leads to the conclusion that QSSA and ILDM are not suitable for the calculation
of stationary problems, if systematic errors are to be avoided. This is especially true for
iterations, where the pure reduction methods are used as preconditioners.

The application of the reduction methods to instationary problems leads to more optimistic
results. By calculating the dual solutions, a relation between the current residual and the
produced error is obtained, therefore an optimal distribution of detailedly calculated time
steps can be found, such that the error is reduced to a certain fraction of the error produced
by the totally reduced solution strategy. But even here, the computational costs are very high
due to the effort, which is to be spent for the dual solution. Still, the presented iteration can
successfully be applied, if the source term is highly nonlinear, such that the Newton iteration
for each time step needs several iterations to converge. The more Newton iterations per time
step are needed for the detailed model, the more effective is the presented mixed solution
strategy.
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8 Conclusion and Outlook

8.2 Outlook

8.2.1 Application of incomplete tables

In this thesis, the reducing function ψ obtained from QSSA or ILDM was always well defined
for the whole possible domain of the process variables. As a consequence, the representing
table was complete, the value ψ(x1) can therefore be interpolated by the tabulated sur-
rounding values for all x1. But for practical problems, the equations defining the function ψ
implicitly are not necessarily solvable. This effect leads to incomplete tables, where some of
the tabulated points do not contain information about the fast variables. Therefore methods
have to be invented, how the introduced applications of the tables can be transformed, such
that incomplete tables can also be used.

Another possibility to circumvent this problem is the creation of trajectories, where all values
of the process variables have a corresponding value for the fast variables. A quite promising
method minimizes the entropy production and is introduced in [27].

8.2.2 Adaptivity in ODEs

In section 7.1, it was shown, how the existence of a table can be used to solve ODEs adap-
tively, such that the computational effort is reduced, but also the introduced systematic
error is controlled. The control switched from the reduced solver to the detailed solution
process, if the error is too big. As already seen, the switching from considering only few
process variables to considering all variables as process variables, makes the strategy very
expensive.

An interesting continuative question is therefore, if there is a possibility to increase the
accuracy of the obtained solution with less effort than the detailed solver needs. One possi-
bility is to have more than only one table in a hierarchy with different numbers of process
variables. Tables with more process variables perform better, but are also more expensive
in the application, because more equations are to be solved in the solution process. Then
the controlling function has the possibility to redo a reduced time step with slightly higher
effort, but still with much less computational costs than the detailed solver produces. The
applicability of this idea and its performance is part of forthcoming research.

8.2.3 Adaptivity in PDEs

A PDE involving a given reaction system with a corresponding table ψ offers up to now
only two possibilities: Reduce the problem with ILDM or do not use the reduction methods
at all. But in many practical applications, the reduction methods lead to very accurate
results in certain regions, but produce large systematic errors in other parts of the domain,
for example the cold regions in a flame. It is therefore desirable to have a solution strategy,
which allows the reduction on some nodes of the grid, but uses the detailed solving strategy
in other nodes.
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Forthcoming projects will therefore have to create and investigate algorithms, which allow
to solve problems of the form

(
A1 +B1 B2

B3 A2 +B4

)(
u1

u2

)
=

(
b1
b2

)
,

which represents a discretized PDE on a grid with two nodes. The algorithm for the solution
process shall allow to solve the problem with reduction methods for the first node and with
a detailed solving strategy for the second node.

One possibility to tackle this problem is the application of splitting strategies, which split
the above matrix into two operators, where one contains only the chemical parts Ai and the
other contains the blocks Bi. Then the chemical part can be solved node–wise, which allows
the application of the reduction methods on certain nodes.

The Strang splitting (see also section 5.4) strategy might for example be applied, if the above
equation results from a time–dependent problem. Then it is to be investigated, to which
extend the theory of dual problems as in section 7.2 can be applied. The problem is that
within the Strang splitting only one chemical time step will be applied, whereas the theory
about the dual problems is based on several time steps.

Other splitting schemes, which might also be applied, are the Godunov splitting scheme [20].
For several other splitting schemes, see [19].
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