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Abstract

This thesis deals with a special subset of multi-dimensional set of points, called the Skyline.
These points are the maxima or minima of the complete set and are of special interest for the
field of decision support. Coming from basic algorithms for computing the Skyline we will
develop ideas and algorithms for “on-the-fly” or online computation of the Skyline. We will
also extend the concept of Skyline with new application domains leading us to user profiling
with the help of Skyline.

Zusammenfassung

Diese Arbeit behandelt eine spezielle Untermenge einer multi-dimensionalen Punktemenge,
Skyline genannt. Diese Punkte sind die Maxima oder Minima der ganzen Menge und sind
im Gebiet des Decision Support von besonderem Interesse. Wir werden grundlegende Skyline
Algorithmen vorstellen und Ideen und Algorithmen, um die Skyline “on-the-fly” oder online
zu berechnen. Wir werden außerdem das Skyline Konzept mit neuen Anwendungsgebieten
erweitern wobei wir Benutzerpräferenzen mit Hilfe der Skyline berechnen wollen.
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CHAPTER 1

Motivation

It is impressive how the Internet, namely the World Wide Web, has become part of our daily
life. Barely know 15 years ago, the Internet is now known to everyone. 15 years ago the
Internet was used by a few people who used the WWW to interchange information with their
kind. The information was well structured and concise in presentation. Now, 15 years later,
the information on the WWW is overwhelming. The quantity of information has been greatly
increased. This tremendous rise in the amount of information makes filtering vital for finding
what one needs, because most information is not relevant for the individual person.
Not only has the quantity of information increased but also the pace the information arrives in,
for example, RSS feeds, or online information systems such as online stock market systems.
This again makes efficient information filtering necessary to find one’s preferred information.
In a nutshell - filtering becomes more and more important for users to find the information they
need.

These information filters can either be static, meaning they work on a static set of data, or
dynamic, meaning they continuously scan an information stream and pick out data for the user.
Huge data sets that can be regarded as static are, for example, astronomical data, for example
the SETI data [Set06] or the connection data of a telecommunications company, for example
the connection data of all land lines of the Deutsche Telekom [Tel06] of last month. Both data
sets are so big that before any analysis can take place the data has first to be reduced to an
interesting subset. This reduction should not eliminate data that is interesting. So filtering,
meaning reduction of data, is a tightrope walk.
Never ending dynamical data streams are, for example, data collected from sensors, click
streams of WWW links, or online shops/auction updates. Here it should be possible to filter
the data according to user profiles. The user chooses again facts that are interesting for him or
her.

The Skyline is one way of doing filtering on static an dynamic data sets. It is not the magic
bullet in reducing data. But it is certainly an interesting approach among others to handle the
ever-growing volume of data.
This thesis is divided into 5 parts: Part I is the introduction to the topic. It includes the math-
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10 CHAPTER 1. MOTIVATION

ematical foundations of the Skyline, some application domains, some other explanation neces-
sary to understand this thesis, and last but not least an overview of work related to the Skyline.
Part II shows different Skyline algorithms for static data set. They all have been previously
published and extensively discussed. Part III is the link between the static part and the dynamic
part. It displays two Skyline algorithms for static data sets but also shows an alley for comput-
ing Skyline on dynamic data sets. All algorithms in Part III are fundamental to dynamic data
sets. They also have been published previously. Part IV then deals with all aspects of changing
data and shows Skyline algorithms and ideas to efficiently handle dynamic data sets and mul-
tiple queries. In Part IV we use the Skyline as a representation for user profiles. Part V finally
concludes this thesis with an overall conclusion and an some closing words.



CHAPTER 2

Application Domains

This chapter gives an overview of applications we have in mind when we are talking about
the use of the Skyline. Each of the following examples displays a possible application for
the Skyline in different areas. Please note: Not all applications are possible for all Skyline
algorithms. This chapter merely serves as an “appetizer” where we are addressing different
problems that can be solved by Skyline processing.

2.1 Hotel Booking

Imagine a travel agency. You are planning a vacation in Lido di Jesolo, Italy [Jes06]. There
are plenty of hotels there. The hotel of your choice should be close to the beach, the Mare
Adreatico at your toe tips, and the rate for the room should also be not too expensive, that is, as
cheap as possible. Since the price and the distance to the beach are closely related to each other,
the closer to the beach the higher the price, the database system at your travel agents’ cannot
decide which hotel suits you the best, but it can present you all interesting hotels. Interesting
hotels are not worse than any other hotel for both conditions, that is, no hotel is cheaper and
closer to the beach at the same time. This set of interesting hotels we call the Skyline because
of its graphical representation (see next section). Now it is up to you to make the final decision
which hotel to book from the Skyline.
We will not dig any further here for this example because we will explain this particular example
in greater detail later. It will be used throughout Parts II and III for illustrating various Skyline
algorithms.

2.2 Visualization

Have you ever been to New York City [Nyc06]? Have you ever been walking the hustling,
bustling streets of Manhattan down to Battery Park? Have you ever been on a ferry to Staten Is-
land and looked at the skyline of southern Manhattan? Have you ever wondered what buildings
can be seen from the ferry? It is easy, if you think for a moment: You can see buildings that are

11



12 CHAPTER 2. APPLICATION DOMAINS

either tall or near to the Hudson river. Those buildings form the skyline of southern Manhattan
– buildings that are either tall or near to river form the Skyline.

2.3 Electronic Market Places
Consider Autoscout24 [Aut06], it is a German car Internet broker. One can sell and buy cars
on this site. If you want to buy a car you register with a certain profile. Your profile contains a
selection of criteria your “new” car should have, for example, cheap cars that are not too old,
or cheap cars that are fast, additionally you further narrow your search space, for example by
defining criteria like with air-conditioning, with power locks, or with airbags. Table 2.1 shows
an example of the current database of available cars. For illustration purposes we left out any
additional properties of the cars.

Model Price Age Speed
BMW 330 xd EUR 30,000 5 years 200 km/h
Ford Focus EUR 8,000 3 years 150 km/h
Toyota Avensis EUR 10,000 4 years 170 km/h

Table 2.1: Used car market: offers

Table 2.2 shows the preferences of two users. User 1 is interested in cheap cars and cars of
low age, User 2 is interested in cheap cars that have a high speed. Table 2.2 shows also the
cars that are interesting for each user taking Table 2.1 as data basis. For User 1 only the Ford
is interesting since both the BMW and the Toyota are worse in terms of price and age than the
Ford. For User 2 all three cars are of interest. These initial interesting cars represent the Skyline
of the current car database (Table 2.1). Each user has a different Skyline.

Preferences Interesting Offers
User 1 { price (min), age (min) } { Ford }
User 2 { price (min), speed (max) } { BMW, Ford, Toyota }

Table 2.2: Used car market: user preferences

Both users do not want to by a their car right away but they both want to stay informed when
new cars are offered or cars of their interest are sold. A new offer that is registered in the
database might be the following:

(VW Golf, EUR 12,000, 2 years, 180 km/h)

User 1 must be informed about this new offer since it is interesting in terms of price and age, it
is younger than the Ford. However, User 2 must not be informed about this new offer because
the VW is worse in terms of price and speed compared to the Toyota. This way, the Skyline
model serves as an information filter in this application scenario. Now let us assume that the
Ford is sold to another user. Of course, both User 1 and User 2 must be informed because the
Ford is no longer available and that offer was interesting for both users. In addition, User 1
should be informed about the Toyota because the Toyota now has become an interesting offer
for this user.
We will use this example as basis for Part IV.
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2.4 Stock Ticks
This is a similar application scenario as we have seen in the previous section. Consider a stock
broker at the Deutsche Börse in Frankfurt [Boe06]. It is impossible to keep an eye on each and
every stock that is traded there. As with the previous scenario the stock broker could have a
Skyline of interesting companies, for example, rated by the growth, the earning per stock or the
price of the stock, and would like to be informed if there are relevant changes in the business
metrics she is interested in. In this application scenario an update of, for example the stock
price, would mean a deletion and arrival of new stock price information. The only difference to
the previous example is the rate at which updates of the data basis occur. The rate of updates
for stock prices is probably much higher than registering a new offer at the Internet broker, for
example, the main stock index at Deutsche Börse, the DAX, is computed every second.

2.5 Quality Assurance
Another scenario with slightly different requirements is depicted in Figure 2.1. This figure
shows a curve of acceptable temperatures and pressures (dashed line) in a manufacturing pro-
cess, for example, the production of polyethylene plastic bags. The dots and asterisks represent
measurements from temperature and pressure sensors. For a complete monitoring the measure-
ments are taken continuously at the same time for temperature and pressure. Both measure-
ments are denoted as one point in the diagram. All points (dots) below the dashed line stand for
“normal” production conditions. All points (asterisks) above the dashed line stand for critical
production conditions. In these situation at least an alarm must be raised or if the condition do
not drop below the dashed line the whole production process must be stopped.
Raising alarms in critical situations can be implemented using continuous Skyline queries. The
set of interesting points (the Skyline) is initialized with the corner points of the curve of ac-
ceptable temperatures and pressures and the Skyline query defines temperature and pressure as
interesting properties. Using this model, the critical points that raise alarms are those points
which are either dominated by one or more Skyline points or which are incomparable to all
Skyline points. Points that dominate any Skyline point are guaranteed to be acceptable.
A manufacturing process, for example in the chemical industry, may involve many dimensions
representing conditions the manufacturing process must obey to be successful. These dimen-
sions can be represented as different sets of corner points. While the Skyline model used here
is the same as in the market place scenario, the requirements are slightly different: In the manu-
facturing scenario, the sets of interesting points, that is, the curves of acceptable measurements
are static whereas these sets are dynamic in the market place scenario.
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CHAPTER 3

Mathematical Foundations

In the literature Skyline computation is known as the maximum vector problem. Sometimes it
is referred to as Pareto optimality but in contrast to a Pareto probability distribution which can
be expressed by a closed formula, the Skyline cannot be expressed by a formula. Connecting
Skyline points by a line, as is is done in Figure 3.1(a), looks similar to a Pareto probability
distribution curve.
We will first take a look at the definition of the problem itself and will then be describing the
surrounding fields in a formal way. Note: The words vector and point are synonymous, and we
will mostly use point instead of vector.

3.1 Maximum Vector Problem
The maximum vector problem was first discussed in [KLP75]. It describes the problem of
finding the maximum of a set of vectors. What is the maximum of a set of vectors or points?
For example

A(5,5) and B(2,2)

If point A is greater in all dimensions than point B then A is clearly the maximum of the set
of points {A,B}. But what happens if A is greater in all dimensions than B except for one
dimension?

A(5,2) and B(2,3)

Then a more sophisticated measure for comparing points has to be applied. The measure is
called dominance and was defined in [PS85]. Since our goal in this thesis is finding the min-
imum of a set of points not the maximum, we formulate the definition of dominance in its
original way and in parenthesis in the way we use it.

Dominance: Let D be a set of points{
p(1), ..., p(N)

}
⊆ Rd ,

15



16 CHAPTER 3. MATHEMATICAL FOUNDATIONS

where

p(k) =
(

p(k)
1 , ..., p(k)

d

)
(representing each point) and d the number of dimensions.

A point p dominates another point q if

pi ≥ qi (pi ≤ qi) for all i = 1, ...,d.

A point p ∈D is called a maximum (minimum) of D if there does not exist another point q ∈D
that dominates p.

We denote dominance with the ≺-symbol where possible. If not possible we will write <
expressing our understanding of one point less than the other point.

The problem now consists of finding all the maxima (minima) of D. We look for minima
because our application scenarios (see Chapter 2) mostly trying to minimize dimensional values
instead of maximizing them. However, everything said in this thesis can be adapted to find the
maxima of a set of points. Mostly only the comparison (≥ instead ≤) has to be changed.

3.2 Maximum Vector Problem for “1-dimensional” Vectors
This is just a little shoot-out to demonstrate the consistency of the definition of dominance. Of
course, the maximum vector problem for “1-dimensional” vectors, that is, numbers in R, is also
defined. In contrast to the maximum vector problem in Rd the result in a “1-dimensional” space
is not a set of vectors. It is only one result. Finding the maximum or minimum vectors for R is
finding the maximum or minimum of a set of numbers. This can be done, for example, by sort-
ing. For sorting there are some well-known algorithms that work well in different application
domains. For Sorting see [AHU74], for instance.

3.3 Skyline Properties

3.3.1 Number of Skyline Points
Two typical Skylines are depicted in Figure 3.1(a) and (b). Figure 3.1(a) shows a two-dimensional
data set, Figure 3.1(b) a three-dimensional data set. We show these two picture just to give the
reader the impression how the Skyline looks and what we are talking about. A detailed descrip-
tion of the data sets we used is given in Chapter 6.
The Skyline points in Figure 3.1(a) and (b) are printed in bold. In the 2-dimensional picture
there are additionally connected with a dashed line. This is just for illustration purpose.
There are two important properties about the number of Skyline points (“Skyline size”) we want
to show here:

• The size of the Skyline increases with increasing dimensionality.

• The Skyline size increases also with increasing number of points in the data basis.

A theoretical model determining the number of Skyline points in a data set has been derived
in [BKST78] and some techniques for cardinality and cost estimations related to Skyline pro-
cessing haven been proposed in [CDK06]. We do not pursue this theoretical alley any further
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Figure 3.1: Skylines

since in this thesis we will concentrate on more pratical issues, that is. how we can compute the
Skyline and how the Skyline can be used in different ways. Additionally to the above said, the
Skyline size also depends of the character of the data set, that is, the value distribution of the
points within the data set. So we postpone any further discussion about the number of Skyline
points until Chapter 6.

3.3.2 Treatment of Duplicate Points
As a direct consequence of the definition of the Skyline in the previous section: Duplicates
can occur. For example, if an algorithm, in some way, produces a superset of the Skyline, and
further, this superset contains some duplicates points, then a Skyline algorithm will not find
these duplicates. It will characterize all duplicates as Skyline points.

3.3.3 No Emphasis of Certain Dimensions
Another property of the Skyline of a set D is that for any monotonic scoring function

s : D→ R,

if p ∈ D maximizes (minimizes) the scoring function s, then p belongs to the Skyline.
That means, no matter how you emphasize your preferences (a cheap hotel or near to the beach),
your most favorite hotel will be in the Skyline.
Additionally, for every point p belonging to the Skyline, there exists a monotonic scoring func-
tion such that p maximizes (minimizes) that scoring function, That means, the Skyline does not
contain any hotels which are nobody’s favorite [BKS01].

3.3.4 Transitivity
Transitivity means that if one point dominates another point and this point dominates a third
point then the third points is also dominated by the first point.
Consider three points, p, q, and r, point p dominates q and q dominates r then p also dominates
r, that is,

p≺ q ∧ q≺ r =⇒ p≺ r.
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If p would not dominate r then r would be better or equal than p in at least one dimension. But
since p dominates q point r would also be better than q in at least one dimension, hence q would
not dominate r. This would be a contradiction to our first consideration �



CHAPTER 4

Taxonomy

4.1 Point Comparisons
Comparing two points for Skyline characteristics is slightly more complicated than a “normal”
comparison. Each dimensions has to be considered and depending on the comparison of the
previous dimension the complete Skyline comparison function is done or has to continue with
the remaining dimensions. Figure 4.1 shows some pseudo-code for a Skyline comparison. But
first we have a look at the outcomes a Skyline comparison can have. There are four states a
Skyline comparison can return:

• Equal: Two points have the same values in each dimension, that is, for two points p and
q having the same dimensionality d the following holds ∀ i,1≤ i≤ d, pi = qi.

• Greater: Two points have the same value in each dimension, but one point has a greater
value in at least one dimension, that is, for two points p and q having the same dimension-
ality d and p greater as q the following holds ∀ i,1≤ i≤ d, pi = qi ∧ pk > qk,1≤ k≤ d.

• Less: Two points have the same value in each dimension, but one point has a smaller value
in at least one dimension, that is, for two points p and q having the same dimensionality
d and p less than q the following holds ∀ i,1≤ i≤ d, pi = qi ∧ pk < qk,1≤ k ≤ d.

• Incomparable: Two points have the same value in each dimension, but one point has a
greater value in at least one dimension and a smaller value in at least another dimension,
that is, for two points p and q having the same dimensionality d and p incomparable to q
the following holds ∀ i,1≤ i≤ d, pi = qi ∧ pk > qk,1≤ k ≤ d ∧ pl < ql,1≤ l ≤ d.

Figure 4.1 shows the pseudo-code for the Skyline comparison function as it will be used through-
out this thesis. The comparison function gets two points p and q and returns the on of the
four possible states discussed above. The following variables are used: p.dimension holds the
number of dimensions of the points, of course, q.dimension would also possible; p.data[i] and
q.data[i] refer to the value of the point in each dimension. The key word continue (line 7) skips
the remaining 4 if-clauses and continues with the next dimension.

19
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1 enumeration {INCOMPARABLE, LESS , EQUAL, GREATER} ;
2

3 f u n c t i o n Sk y l in eCo mpar i so n ( Point p , Point q )
4

5 i n t s t a t e = EQUAL;
6 f o r ( i n t i := 1 to p . d imens ion ) do
7 i f ( p . d a t a [ i ] = q . d a t a [ i ] ) ) c o n t in u e ;
8 i f ( p . d a t a [ i ] < q . d a t a [ i ] && s t a t e == GREATER)
9 re turn INCOMPARABLE;

10 i f ( p . d a t a [ i ] < q . d a t a [ i ] ) s t a t e = LESS ;
11 i f ( p . d a t a [ i ] > q . d a t a [ i ] && s t a t e == LESS )
12 re turn INCOMPARABLE;
13 i f ( p . d a t a [ i ] > q . d a t a [ i ] ) s t a t e = GREATER;
14 end ;
15 re turn s t a t e ;
16

17 end ;

Figure 4.1: Skyline comparison function

As one can easily see, for two points to be incomparable it is sufficient for the first dimen-
sion to be greater (less) and the second dimension to be less (greater). In these cases it is not
necessary to look at the remaining dimensions and the Skyline comparisons is done with the
two points being incomparable. This is not true for the less, greater, or equal outcome. For
those three states all dimensions of the points have to be considered resulting in more time spent
in the Skyline comparison. Figure 4.2 shows the cumulative times for the different outcomes.
We measured 10 million comparisons for 2-dimensional point and 5-dimensional points. For
2-dimensional points we found almost no difference between the four outcomes. Equal was
the fastest, less and greater the slowest, and incomparable in between. The same is true for
5-dimensional comparisons. But here the differences between the fastest and the slowest com-
parisons is much more observable. The reason for equal being the fastest comparisons, even
though all dimensions have to be considered, is that of all if-clauses only the first has to be
executed. The remaining ones are skipped, that is what the key word continue does.

4.2 Domination

A point dominates another point if it is as good or better in all dimensions and better in at
least one dimension. Depending on the definition of better one is looking for all maximum
points (better means greater) or all minimum points (better means less). Throughout this thesis
we say: A point dominates another point if the points comparison returns less. Of course, all
definitions, proofs, and algorithms also work if domination is defined as the point comparison
returning greater. If a point p dominates point q, we write p ≺ q. If it is not possible to use
the ≺-sign, for example in pseudo-code, we use the normal “less than” <. This endorses our
thinking of domination that a point is “less than” another point.
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Figure 4.2: Time for 10 million Skyline comparisons and different dimensionalities

4.3 Skyline Queries
[BKS01] introduced an extension to SQL which we want to use as well. The SQL SELECT

statement is extended by an optional SKYLINE OF clause describing the attributes (dimensions)
that should be considered for Skyline computation:

SELECT projection
FROM collection
WHERE predicates
SKYLINE OF dim1 [MIN|MAX|DIFF], ..., dimn [MIN|MAX|DIFF];

Projection, collection, and predicates have the same semantics as in standard SQL. If not oth-
erwise said, there is no explicit projection and only one collection, the data set the Skyline is
computed of.

SELECT *

FROM data set

...

The SKYLINE OF clause describes for each dimension if this particular dimension should be
minimized (MIN), maximized (MAX), or simply be different (DIFF). The SKYLINE OF clause is
computed after the SELECT, FROM, WHERE, GROUP BY, and HAVING part of the SQL statement
but before an ORDER BY part.
For example, consider two points with dimensionality n

p = (p1, ..., pk, pk+1, ..., pl, pl+1, ..., pm, pm+1, ..., pn) and
q = (q1, ...,qk,qk+1, ...,ql,ql+1, ...,qm,qm+1, ...,qn).

Point p dominates point q for a Skyline query having the following SKYLINE OF clause

SKYLINE OF dim1 MIN, ..., dimk MIN,
dimk+1 MAX, ..., diml MAX,
diml+1 DIFF, ..., dimm DIFF
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if the following conditions hold

pi ≤ qi ∀ i = 1, ...,k (MINs)
pi ≥ qi ∀ i = (k +1), ..., l (MAXs)
pi 6= qi ∀ i = (l +1), ...,m (DIFFs).

Dimensions dimm+1, ...,dimn are irrelevant for Skyline computation, but are, of course, part of
the point and are output to the user as well as all other dimensions (dim1, ...,dimm).

4.4 Skyline Algorithms

In this section we want to give the reader a quick overview of different ways to compute the
Skyline without giving particular Skyline algorithms. This overview concentrates on three dis-
tinguishing marks: User interaction, display Skyline points before end of computation, and one
pass over data to complete Skyline computation. With user interaction we mean a possibility for
the user to control the sequence of returning Skyline points, displaying Skyline points before the
end of computation is of particular interest for quick overviews of how the Skyline looks like,
and one pass over data is important in the field of database systems. The given classification of
Skyline algorithms will be used throughout this thesis. An overview is given in Table 4.1. This
is, however, only a quick overview of different Skyline algorithms. A more detailed description
of batch, progressive, non-online, and online algorithms is given in Chapter 8 and Chapter 16.

User interaction
possible

Display Skyline
points before end of
computation

One pass over data
for complete com-
putation

Online algorithms yes yes yes
Progressive algo-
rithms

partly yes yes

Batch algorithms no no no

Table 4.1: Classification of Skyline algorithms

A short explanation for each class of algorithm is given in the following sections.

4.4.1 Batch Algorithms

In Part II we will take a look at, what we call, batch algorithms. Those algorithms take a set
of points and compute the Skyline of this set of points in a batch sort of way, that is, without
any user interaction and without displaying found Skyline points before the end of the complete
computation. Characteristic to all of these algorithms is that on average they require more than
on pass over the data set to completely compute the Skyline. More than one pass means that
points of the data set might be examined twice or more times during computation.
As an add-on to the batch algorithms we present some early ideas to pre-filter the data set in
order to reduce the number of points a later Skyline algorithm has to look at to determine the
Skyline. One could think of the reduced data set as a “candidate Skyline” that contains definitely
all points that belong to Skyline but also non-Skyline points that the filter could not eliminate.
The pre-filtering should be adequate to support a later Skyline algorithm.
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This pre-filter should not be confused with our information pre-filter which is described below
and has a totally different application scenario. The data set reduction algorithms are described
in Chapter 14.

4.4.2 Progressive Algorithms
Progressive algorithms are also discussed in Part II. They also compute the Skyline in a batch
sort of way. However, they mostly require only one pass over the data set to compute the
complete Skyline and they can display found Skyline points before the the whole computation
is finished. More to these algorithms is said in Chapter 8.

4.4.3 Online Algorithms
These algorithms do not compute the Skyline of a set of points in batched or detached way. Their
unique property of using Nearest Neighbor queries to find Skyline points makes it possible to
iteratively and interactively compute the Skyline, that is, as soon as a Skyline point is found it
is output to the user and the user can choose the area he or she wants to see the next Skyline
points. This adjustment is made without changing basic parameters of the computation, thus
preserving the results computed so far. These algorithms also require only on pass over the data
set to compute the complete Skyline, no point is looked at twice. Part III, is concerned with
these algorithms.

4.5 Information Pre-filter
In Part IV we take a different view of the Skyline. In this part we do not strive to compute the
Skyline in elegant ways as we did the parts before. Instead we use the Skyline, that is, the points
that form the Skyline as filter points for arriving and leaving points of our data set. The data set
is not static anymore. However, the ultimate goal remains the same: Have the current Skyline of
the data set prepared for the user. We even take this scenario one step ahead and say that there
are multiple user registered with a query system, each user having his or her own profile, that is,
a query asking for the Skyline on specified dimensions and having further predicates restricting
the points that are of interest for the user. In this part, we want to efficiently compute multiple
Skyline queries in the face of arriving and leaving points of the data set. The computation will
be continuous, meaning that the Skyline query willbe computed over and over again.
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Related Work

We divide this section into different parts. The first part shows Skyline papers and different
aspects of Skyline processing and related areas of multi-dimensional ranking. The second part
is concerned with different ways of user profiling and user preferences. The third part deals with
streaming and continuous query processing. The fourth part shows some aspects of multiple
query optimization and finally the fifth part is a collection of various aspects more or less closely
related to our Skyline story.

5.1 Skyline, Convex Hull and Top-K Processing

In the literature computing the Skyline is known as the maximum vector problem. Kung et al.
[KLP75] first discussed the problem of finding the maximum or minimum of a set of vectors.
They introduced an optimal recursive algorithm and showed a lower bound for the number of
comparisons for this algorithm. Preparata et al. restated the idea in [PS85]. Other approaches
to the maximum or minimum vector problem are, for example, Stojmenovic et al. [IS88],
Matoušek [Mat91] and Rhee et al. [RDL95]. All algorithms depicted in these papers assume a
complete main memory representation of the data set.
Börzsönyi et al. [BKS01] were the first (to the best of our knowledge) who discussed the idea
of the maximum or minimum vector problem in the view of database systems. They introduced
two algorithms for Skyline computing. One, an enhancement of the straightforward way to
compute the Skyline and two, an adaption of Kung’s recursive algorithm. Furthermore, they set
the use cases for Skyline computing in database systems and discussed various alternative ideas
to compute Skyline using means database systems provide.
Chomicki et al. [CGGL03] introduced a batch Skyline algorithm which uses a topological sort
to speed up Skyline processing. Godfrey, one of the co-authors of this paper, discussed cardinal-
ity estimations for Skyline processing in [God04]. Some more theory on sorting based Skyline
processing is given in Chomicki et al. [CGGL05]. Some sorting based Skyline processing ideas
were also formulated in [Ros01].
Progressive Skyline algorithms were first introduced by Tan et al. in [TEO01]. The authors
showed two algorithms which outperformed previous batch Skyline algorithms for some use

24
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cases. In [EOT03] the authors generalized their ideas from [TEO01] and showed a few en-
hancements for their algorithms.

Kossmann et al. introduced the concept of online Skyline algorithms in [KRR02]. They de-
scribed a Skyline algorithm using a multi-dimensional indexing structure and Nearest Neighbor
Search. Papadias et al. [PTFS03] used the Nearest Neighbor idea to devise an optimal Skyline
algorithm with respect to R-tree node accesses.

Balke et al. [BGZ04] introduced concepts to compute the Skyline of data that is distributed
over the web at different data sites and Lo et al. [LYLC04] added progressiveness to Balke’s
algorithm.

Another concept for Skyline is the processing of partially-ordered domains, that is, computing
the Skyline of domains which include interval data (for example, temporal data) categorical
data (for example, type or class hierarchies). Some work has been done that addresses these
kind of problems of partially-ordered domains, for example, [CET05a] and [CET05b].

There has been some attention on sub-space Skyline processing. The question is, what is the
relationship between the Skylines in the subspaces and those in the super-spaces? Work done
in this area include Pei et al. [PJET05], Tao et al. [TXP06], and Yuan et al. [YLL+05].

Computing the Skyline on a sliding window of streamning data has been subject to many recent
research work, including Lin et al. [LYWL05], Morse et al. [MPG06], and Tao et al. [TP06].

Closely related to Skyline computing is the problem of computing the convex hull of a data set.
The convex hull is a subset of the Skyline. The convex hull optimizes the data set for a linear
scoring function whereas the Skyline optimizes the data set for any monotonic scoring function.
In theory the convex hull has been discussed, for example, by Preparata et al. in [PS85]. There
exist also lot of algorithmic approaches to compute the convex hull, for example, Akl et al.
[AT78] and Green et al. [GS79], only to name two of them. However, most of these approaches
assume the data set to be in main memory. A newer paper tackling the problem in a database
context is Böhm et al. [BK01].

Another related field to Skyline is the Top-K query processing. Those queries return the best k
objects that maximize or minimize a certain preference function. Top-K processing was subject
of, for example, Carey et al. [CK97a] and [CK97b]. However Top-K processing would certainly
find some interesting hotels but would also return non-interesting hotels. Top-K processing is,
however, a good way to post-filter the Skyline further reducing the result size. A newer paper
discussing Top-K processing in a streaming data environment has been published by Babcock
et al. [BO03].

An interesting approach of combining Top-K retrieval and Skyline processing is presented in
Balke et al. [BZG05].

Closely related to Skyline is the topic of Nearest Neighbor queries. A Nearest Neighbor queries
looking for an optimal hotel with “zero cost” and “zero distance” would return interesting ho-
tels but would also ignore a hotel fare away from the beach but extremely cheap (this hotel is
certainly part of the Skyline). Nearest Neighbor queries has been discussed in various papers,
for example, Roussopoulos et al. [RKV95] or Berchthold et al. [BBKK97]. A query returning
k Nearest Neighbors, so called kNN-Queries would return interesting points but also points that
are dominated by interesting points. These kNN-Queries have been, for instance, the topic of
Seidl et al. [SK98] or Yu et al. [YOTJ01].
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5.2 User Preferences and User Profiling

Defining queries with user preferences is the topic of Kießling [Kie02]. The paper presents a
model for the formulation of user preferences and shows how to decompose complex prefer-
ences into simpler ones for efficient computation. Skylining and Pareto preferences are part of
these decompositions.
Some newer work about preferencing includes Balke [Bal06].
User preferences and user profiling has been subject to many paper recent paper, primarily in
the XML area. With being far from complete we try to point out some projects in the area XML
and user preferences. These systems are mostly called Publish and Subscribe systems. Indexing
predicates for faster trigger processing has been the idea in Hanson et al. [HCH+99]. Fabret et
al. [FJL+01] also uses indices on predicates and a special clustering method in oder to reduce
the number of required subscription checks. Gupta et al. [GS03] studied the evaluation of a large
number of XPath filters, that is, a way to describe predicates in XML, by constructing a single
deterministic pushdown automata. The Stanford Information Filtering Tool (SIFT) project, for
example Yan et al. [YGM99] proposed various techniques for publish and subscribe systems.
Routing and information filtering for XML messages has been subject in the XFilter project,
Altinel et al. [AF00] and the YFilter project, Diao et al. [DFZF03].

5.3 Streaming and Continuous Query Processing

In Part IV we will use the Skyline as pre-filter for incoming points. Pre-filtering incoming
points means continuously processing Skyline queries over continuously arriving points, that is,
streaming data. The term continuous query has been formed by Terry et al. [TGNO92]. Other
early work on processing continuous queries was carried out by Liu et al. [LPBZ96, LPT99]
and recently, there has been significant work done in the area of streaming processing including
continuous query processing.

There is the Stanford Stream Data Management (STREAM) Project [Sta04]. The group pub-
lished various papers about data stream management, for example, Babcock et al. [BBD+02]
being a good overview article about different aspects in stream processing, or Babu et al.
[BW01].

Streaming data processing in sensor networks has been studied in the COUGAR project [Cou05]
at Cornell. Papers the group published include Bonnet et al. [BGS01] and Yao et al. [YG03].

Continuous Query processing over XML data has been subject of the NIAGARA project [Nia04]
at the University of Wisconsin-Madison and the Oregon Health & Science University. Publica-
tions like Naughton et al. [NDM+00] or Chen et al. [CDTW00] laid out the case.

Another data streaming, or data-flow engine has been developed within the Telegraph project at
UC Berkeley. Their seminal paper, Avnur et al. [AH00], describes an adaptive query processing
engine. Other basic papers of this group include Hellerstein et al [HFC+00] and Madden et al.
[MSHR02]. This group also studied sensor networks and how sensor with limited capability
can be queries continuously, Madden et al. [MF02].

Last but not least, there is the Aurora project at Brown University and Brandeis University in
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combination with the Medusa project from the Massachusetts Institute of Technology. Aurora
being a streaming processing engine and Medusa providing a special network infrastructure for
Aurora operation. An overview of both projects is given in Carney et al. [CÇC+02] or Zdonik
et al. [ZSC+03].

5.4 Multiple Query Optimization and View Maintenance
Also in Part IV we will consider multiple Skyline queries and how we can efficiently answer a
group of Skyline queries. This touches the topic of multiple query optimizing. Sellis [Sel88]
laid the basis for grouping queries in his work about multiple query optimization.

Another related topic is the incremental maintenance of materialize views. This topic has been
subject of numerous research work, for example, Gupta et al. [GMS93] or Abiteboul et al.
[AMR+98]. Both papers propose only a partial recomputing of the materialized view instead
of recomputing the complete view.

5.5 Continuous Skyline Processing
For continuous Skyline processing there has been some research done for continous Skyline
compuation over sliding windows. A Skyline algorithm working on sliding windows considers
only the last n points for Skyline computation that have arrived at the systems.

5.6 Miscellany
Some algorithms in Part II and Part III make use of common indexing structure in database
systems. Those indexing structures include B-trees and their variations and R-trees and their
variations. Comer [Com79] discussed various aspects of the B-tree which was introduced by
Bayer et al [BM72]. Beckmann et al. [BKSS90] extended the R-tree, called R*-tree, first
introduced by Gutman [Gut84]. A good survey of multidimensional indexing tructures was
published by Gaede et al. [GG98].
Algorithms in Part IV make use of Nearest Neighbor queries that search for Nearest Neigh-
bor only in a certain area and Nearest Neighbor queries that are issued multiple times. A
commonly used Nearest Neighbor algorithm in combination with R-trees is the Branch-and-
Bound algorithm by Rossopolous et al. [RKV95]. Nearest Neighbor queries within a certain
area, so called constrained Nearest Neighbor queries, have discussed in Ferhatosmanoglu et al.
[FSAA01]. Continuously issued Nearest Neighbor queries have recently been studied by Tao et
al. [TPS02].



CHAPTER 6

Settings for Performance Measurements

These sections deal with the kind of data sets and the environment that was used to conduct
performance measurements. The sections give a general overview of data sets and computers
that were used. Not all data sets were used for all measurements and computers could be
changed for single measurements. The corresponding measurement environment is given with
each performance results.

6.1 Multi-Dimensional Data Sets
The data sets we used are the same [BKS01] proposed in their seminal Skyline paper. Those
data sets include anti-correlated, correlated and uniformly distributed data value distributions.
We will describe the generation process for those distributions here.
We also introduce a new data set, Correlation Groups, which resembles one of our application
domains from Chapter 2, namely the car Internet broker (Section 2.3). The generation of this
data set is also described here.

We used floating point numbers for each dimension. The range of values for each dimen-
sions was [0.0;1.0) with 6 decimal digits. That means that the value ranged from 0.000000 to
0.999999. The dimensionality of the points in the set ranged from two dimensions up to 10 di-
mensions. Mostly, data sets with 100,000 points were used. Some measurements included data
sets containing 1,000,000 points. Figure 6.1 shows 2-dimensional samples of the three value
distributions anti-correlated, correlated, and uniformly distributed. The correlation groups value
distribution is not shown here (see later for explanation).

Data Set: Anti-correlated

An anti-correlated data set represents data in which that points are good in one dimension tend
to be bad in one or all other dimensions. Our hotel example (Section 2.1) falls into this category.
For this distribution we first choose a plane perpendicular to the line from (0, ...,0) to (1, ...,1)
using a normal distribution. The variance used for the normal distribution was very small so
that points are placed close to the point (0.5, ...,0.5). Within the plane, the attribute values

28
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Figure 6.1: Visualization of the data sets

are generated using a uniform distribution. Figure 6.1(a) shows a 2-dimensional anti-correlated
data set with 2000 points.

Data Set: Correlated

Correlated points tend to be good in all dimensions. Certain aspects of our car Internet broker
example fall into this category: speed and horse power are certainly correlated. A random point
for this data value distribution is generate as follows. First, a plane perpendicular to the line
from the origin to (1, ...,1) is selected using a normal distribution. A normal distribution is
used in order to get more points in the middle than at the ends. The new point will be in that
selected plane. Within the plane, all attribute values of the point are generated using a normal
distribution. This ensures that most points are placed close to the diagonal from (0, ...,0) to
(1, ...,1). Figure 6.1(b) shows a 2-dimensional data set containing 2000 points.

Data Set: Uniformly Distributed

Uniformly distributed means, that in each dimension a value is equally likely. For this kind of
data set all attribute values are generated independently using a uniform distribution. Figure
6.1(c) displays a 2-dimensional data set with 2000 points.

Data Set: Correlation Groups

This data set consists of two or more correlation groups. A correlation group consists of values
that are correlated within the group but have no observable correlation to the other correlation
groups. For example, consider a 5-dimensional data set describing the significant attributes of a
car. We can identify two correlation groups, that is, {price, insurance, taxes} and {speed, horse
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power}. The dimensions are grouped into two correlation groups. Within a group, values are
correlated, that is, normally a higher price results in higher a higher insurance rate and speed and
horse power are also correlated. On the other hand horse power and price have not necessarily a
correlation (OK, OK, more expensive cars normally have more horse power, but there are also
cheaper cars having more horse power than you might expect - a Rennsemmel). We generate
a correlation groups data set by taking two correlated data sets with lower dimensionality. For
the example given above we used a 2-dimensional correlated data set concatenated to a 3-
dimensional correlated data set. Depending on which two dimensions you would choose the
picture of a correlation groups data set would look like Figure 6.1.

Number of Skyline Points

As we already said we used mostly data sets containing 100,000 points. Table 6.1 gives the
number of Skyline points for an anti-correlated, correlated, and uniformly distributed containing
100,000 points. The correlation groups data set is left out here because it serves a special
purpose. We only used a 5-dimensional correlation groups data set.

Dimensions Anti-correlated Correlated Uniformly distributed
2 49 1 12
3 632 3 69
4 4239 11 267
5 12615 17 1032
6 26843 21 1986
7 41484 43 5560
8 55691 121 9662
9 67101 243 16847
10 75028 378 26047

Table 6.1: Skyline sizes for a 100,000 points data sets

The following comparison hold true for the data set and any subset that was constructed out of
the original data set:

SkylineSize(anti-correlated) > SkylineSize(uniformly distributed) >

SkylineSize(correlation groups) > SkylineSize(correlated)

The percentage of Skyline points of a data set ranges from 0.001 % (2-dimensional correlated
data set) to 75 % (10-dimensional anti-correlated data set).

6.2 Conducting Measurements

6.2.1 Distinguishing
There are two kinds of algorithms: Algorithms designed by us, and algorithms designed by
others. That leads to different ways of reporting measurement results. As for Part II and Part
III some algorithms are designed by us and some are not. For these two parts our performance
reporting completely relies upon results published in papers, either by us or by other authors.
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Mostly, the underlying data sets are the same as reported in the previous section but the comput-
ers the measurements are conducted on vary. That is no big deal, since results always compare
either our algorithms to other authors’ algorithms or vice versa. The reader should get the
picture even if the result resembles the picture of computers that were used 2 or 3 years ago.
In Part IV, the (historically) latest part, we show extensive measurement on todays’ available
computers. See next section for more details.

6.2.2 Machine Data
Most measurements were conducted on a Pentium 4 processor at 3.2 GHz. with 2000 MB of
main memory. The operation system was SuSE Linux 9.0 (Kernel 2.6). The data was hosted
on 596 GB SCSI RAID systems. Almost all algorithms worked solely in main memory and
were CPU bound. The loading times for the data were neglected, that is, the running time
measurements started after the data have been loaded.



CHAPTER 7

Hotel Example and Pseudo Code

7.1 Example

We want to introduce a short example. This example is used throughout this thesis to illustrate
the techniques of the different Skyline algorithms. For some algorithms it can be taken as
is, for some Skyline algorithms it has to be adapted. The example resembles an application
domain given in the introduction: Hotels with price and distance to the beach. For each Skyline
algorithm the example is repeated and adaptions, if necessary are shown.
There are, for now and for ease of presentation only three dimensions describing the character-
istics of hotels, These correspond to attributes of a table. The first dimension is the name of the
hotel, the second dimension is the price for a double bedroom per night and the third dimension
is the distance to the beach. A short example occurrence is given in Table 7.1. Hotel names in
bold are Skyline hotels.

Name Price [EUR] Distance [m]
Hotel Arena 45 100
Hotel Aden 40 200
Hotel International 42 300
Hotel Aurora 35 400
Hotel Majestic Toscanelli 50 280
Hotel Monaco & Quisisana 60 150
Hotel Elpiro 55 50
Hotel Marlisapier 65 250
Hotel Al Gambero 72 40
Hotel Rex 40 500
Hotel Heron 68 100

Table 7.1: Hotels in Lido di Jesolo

Figure 7.1 shows a graphical representation of Table 7.1. The hotel example would be charac-
terized as an anti-correlated data set as denoted in Chapter 6.
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Figure 7.1: Hotel in Lido di Jesolo, graphical representation

All hotels are all located in Lido di Jesolo, Italy [Jes06]. Please note: Hotel names correspond
to real hotels in Lido di Jesolo. Prices and distances, however, are totally fictitious. They are
made up to to illustrate the facts in the following parts and sections. Of course the distance to
the beach should be as short as possible since no one wants to walk too far before he or she
can jump into the Mare Adreatico. And, of course, the price should be as low as possible. Who
wants to pay more than necessary?

7.2 Pseudo Code

All algorithms that are shown in this thesis are displayed in pseudo code. The main keywords
of the pseudo code are described here. The pseudo code is Pascal-like. Blocks normally start
with begin and end with end. However, if the start of a block is clear, the begin will be omitted.
This is true for the if-, while-, and for-statement. We also add some object-oriented constructs
to our pseudo code. The members and methods of the objects should be self-explaining. If not,
they are explained somewhere in the code or in the description of the code.
The following describes the basic statements used in the pseudo code, keywords are printed in
bold, statements are concluded by a semi-colon.

• Comment: // ... or /* ... */.

• Negation: !bool-expression, negates a boolean expression.

• Assignment: variable := expression, assigns the right-hand expression to the left-hand
variable.

• Comparisons: expression1 = expression2, tests if expression1 equals expression2. Other
comparison operators are <, >, <=, >= with the usual meaning.

• Block: begin [Name] statements end: Describes a block of statements, begin can be
omitted (see above).

• Loop: for (loop-index begin to loop-index end) do statements end: Normal for-loop.
Loop is executed until loop-index end is reached.
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• Loop: while (loop-condition) do statements end: Normal while-loop. Loop is executed
until loop-condition evaluates to false.

• Conditional execution: if (condition) then statements [else statements] end: If condition
evaluates to true the statements after then are executed, if condition evaluates to false the
statements after else are executed.

At the beginning of each algorithm input and output variables are declared. These variables
behave like global variables, that is, they are visible throughout the program code and also in
sub-functions. All other variables are visible in the block they are declared in and all subordinate
blocks. Variables can have a variety of types:

• Simple data types

– int: Integer numbers, a subset of the natural numbers (0, 1, 2, ...) and their negatives
(-1, -2, ...). In mathematics denoted with Z. Integers number are limited in range
due to a limited number of bits in their internal representation, mostly 32 bits.

– float: Floating point numbers, a subset of the real numbers and their negatives.
In mathematics denoted with R. Floating point numbers are limited in range and
precision due to a limited number of bits in their representation, mostly 32 or 64
bits.

– bool: Boolean variable, a variable that is either true or false.

• Complex data types:

– Point: Describing a point with a float value for each dimension. A point also has a
method dim that returns the number of dimensions.

– Dataset: Set of Points. Typical methods are insert(Point), delete(Point) with the
usual meaning, and length returning the number of elements in the data set.

– Skyline: Set of Points, subset of a Dataset with Skyline property. Typical methods
are insert(Point), delete(Point) with the usual meaning, and length returning the
number of elements in the Skyline.

– File: Pointer to a file on disk containing information needed.

– Todolist: Set of Points describing minimum bounding rectangles in an R-tree. Since
our minimum bounding rectangles always have the origin as lower left point, another
point is sufficient (see Chapter 17) to describe a d-dimensional minimum bounding
rectangle.

The purpose of the pseudo code is to describe the algorithms more formally than it is possible
with text only. Readers having some knowledge in a modern programming language will not
have any problems understanding the pseudo code.



Part II

Batch and Progressive Skyline Computation
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CHAPTER 8

Classification

The following pages describe what we call batch and progressive Skyline algorithms. Both
kinds of algorithms treat the Skyline computation as a detached operation with no user interac-
tion. The described algorithms can be easily incorporated into existing DBMS. There is almost
no change required to the logical data model, that is, the relational schema of the data.

8.1 Batch Algorithms
We classify the Skyline algorithms published in [Bör99] and [BKS01] as batch algorithms,
meaning that they take a set of points and compute the Skyline of this set of points. There is
no user interaction and the output of the computed Skyline takes place at the very end of the
computation. Like in the “old” days of main frame computing, the program code was submitted
(via punched card) and sometime later the program was finished and the results were picked up
by the user who wrote the program.
Common to all of these algorithms is that they do multiple passes over the data they compute
the Skyline of. Even stronger, the require at least one complete pass of the data to output a
Skyline point. The following algorithms fall into this group:

• Standard/naive algorithm: This algorithm is described in Chapter 9.

• Block-Nested-Loops algorithm: This algorithm is described in Chapter 10.

• Divide-and-Conquer algorithm: This algorithm is described in Chapter 11.

8.2 Progressive Algorithms
Skyline algorithms we classify as progressive algorithms were published in [TEO01]. They also
compute the Skyline in a batch sort of way as described in the previous section. They require,
however, only one pass of the data and output Skyline points continuously during Skyline com-
putation. Some Skyline points can be output with one pass of the data. We shall see the main
difference to other continuously outputting algorithms in Part III. Progressive algorithms are:
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• Bitmap based algorithm: This algorithm is described in Chapter 12.

• Partition-Index algorithm: This algorithm is described in Chapter 13.

8.3 Candidate Skyline Computation - Skyline Pre-filters
In Section 14 we show two ideas to pre-filter the data set the Skyline is computed on, that is,
the data set is run trough a filter in order to eliminate points that definitely cannot belong to
the Skyline. The resulting reduced data set is then run through a normal batch or progressive
Skyline algorithm to determine the Skyline.



CHAPTER 9

The Standard Algorithm

9.1 Algorithm Description
It is quite clear how to compute the Skyline of a set of points: Compare each point with every
other point in the data set. The only thing which one has to check, is that identical points are
not compared to each other. That would yield false positives since according to the definition in
Chapter 4 two identical points are both part of the Skyline. To avoid these false positives simply
omit the points with the same index in the data set.

Name Short Price [EUR] Distance [m]
Hotel Arena a 45 100
Hotel Aden b 40 200
Hotel International c 42 300
Hotel Aurora d 35 400
Hotel Majestic Toscanelli e 50 280
Hotel Monaco & Quisisana f 60 150
Hotel Elpiro g 55 50
Hotel Marlisapier h 65 250
Hotel Al Gambero i 72 40
Hotel Rex j 40 500
Hotel Heron k 68 100

Table 9.1: Hotel example for the Standard algorithm

Applying the Standard algorithm to out hotel example is straightforward. Table 9.1 shows the
hotel example. No changes need to be applied to the data. The algorithm simply takes the first
point a and compares it with all other points (b through k). It does not compare a with itself.
Having looked at all points the algorithm can say that a is a Skyline point. Now the algorithm
continues with b and looks at all other points starting from a through k skipping itself. This
continues until all points have been compared with each other.
The Standard algorithm in pseudo code is displayed in Figure 9.1. The < (line 20) denotes
domination as defined in Chapter 3. The algorithm simply makes a copy of the data set the
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1 I n p u t : Datase t D
2 Outpu t : S k y l i n e S
3

4 begin S t a n d a r d A l g o r i t h m
5

6 / / Walk t h r o u g h o u t e r d a t a s e t
7 f o r ( i n t i := 1 to D. s i z e ( ) ) do
8 Point p := D[ i ] ;
9

10 / / D a t a s e t needed a second t i m e
11 Datase t D temp := D;
12

13 / / C o n t r o l S k y l i n e
14 bool h i t := t rue ;
15

16 / / Walk t h r o u g h i n n e r D a t a s e t
17 f o r ( i n t j := 1 to D temp . s i z e ( ) ) do
18 Point q := D temp [ j ] ;
19

20 i f ( i != j && q < p ) then
21 h i t := f a l s e ;
22 break ;
23 end ;
24 end ;
25

26 i f ( h i t ) then
27 / / p s u r v i v e d one pass
28 S . i n s e r t ( p ) ;
29 end ;
30 end ;
31

32 end ;

Figure 9.1: Standard algorithm for Skyline computing

Skyline is computed on and compares each point in the outer data set with each point in the
inner data set. Note: The algorithm does not make a complete copy of the data set. It simply
opens up another pointer to the file or table in the database system.

9.2 Discussion
It is by fare the easiest algorithm to compute the Skyline. The easiness of the algorithm is
its main drawback. Going through tho whole data set for every point is not efficient enough
for modern application requirements. But, nevertheless, for small data sets it is fast enough
and implementing does not require in-depth knowledge of Skyline computation. The Standard
algorithm is mostly used as “worst case” example, but still performs well for low dimensionality
or small data sets. Some algorithms discussed later require the computation of a pre-Skyline,
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that is, the Skyline of a small subset of the whole data set. The Standard algorithm is suitable for
these kinds of computations. Moreover, it does not favor any data distribution. As we will see in
further chapters, some algorithms - batch, progressive, or online algorithms - perform better for
certain data value distributions. The Standard algorithm is “immune” to changes in data value
distributions which makes it applicable for small Skyline problems with possibly different data
value distributions. It is also suitable when memory usage is of importance since it does not
require any additional memory except for comparing two points and storing the Skyline. As we
will see in later Chapters there are algorithms which need additional memory.
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The Block-Nested-Loops Algorithm

10.1 Description
The Block-Nested-Loops algorithm is based on the Standard algorithm from Chapter 9. It
compares each point in the data set to a window of incomparable points, that is, points that
represent the Skyline of the points in the data set seen so far, we call it the candidate Skyline. If
a new point of the data set is dominated by any point in the window, it is discarded. In this case
it has not to be compared to all points in the data set which marks the main difference to the
Standard algorithm. If a new point of the data set dominates one or more points in the window,
these points are deleted from the window and the new point is inserted into the window. If a new
point is not dominated by any point of the window it is a potential new Skyline point and hence
inserted into the window. The Block-Nested-Loops algorithm in pseudo code is displayed in
Figure 10.1.
The algorithm pays particular attention to the fact when the candidate Skyline points, the win-
dow, does not fit into main memory anymore (indicate by a computer flag memAvailable. Then
the newly read point is swapped to a temporary file on disk. The time when a point was swapped
out is denoted by a timestamp (timestampOut). Before an new point is read from the data set
the candidate points are checked for any points that have already been identified as Skyline
points, that is, all points that have been compared to all points in the data set and are still in the
candidate Skyline. That is true for all points in the candidate Skyline that have the same input
timestamp (timestampIn) than the current timestamp. After that check a new point is read from
the data set and assigned the current timestamp. It is put into the window and compared to all
points in there (except itself, of course). If it is dominated it is deleted from the window and
the algorithm continues with the next point from the data set. If it dominates candidate Skyline
points all dominated points are delete from the window and the new point stays in the window.
After the algorithm is done with the data set it checks if there are any points swapped out on
disk. If this is true the temporary file is loaded and the algorithm finishes up the points from the
temporary file points. At the end all points that are still in the window are copied to the Skyline.
Let us take a look at the first few steps of the Block-Nested-Loops algorithm considering our
example in Table 9.1. We assume a window size, that is, memory limitations, of three points.
Table 10.1 displays the value of important variables after each step (lines 43).
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1 I n p u t : Datase t D
2 Outpu t : S k y l i n e S
3

4 begin BNLAlgorithm
5 Datase t c a n d S k y l i n e ; F i l e temp ;
6 i n t t i m e s t a m p I n := 0 ; i n t t imes tampOut := 0 ;
7

8 f o r ( i n t i := 1 to D. s i z e ( ) ) do / / Walk t h r o u g h d a t a s e t
9

10 / / a l l p o i n t s t h a t s u r v i v e d one pass
11 f o r ( i n t t := 1 to c a n d S k y l i n e . s i z e ( ) ) do
12 Point q := c a n d S k y l i n e [ t ] ;
13 i f ( q . t imes t amp ( ) = t i m e s t a m p I n ) then
14 S . i n s e r t ( q ) ; c a n d S k y l i n e . d e l e t e ( q ) ;
15 end ;
16 end ;
17

18 / / Read p o i n t from d a t a s e t
19 Point p := D[ i ] ;
20 p . t imes t amp := t imes tampOut ;
21 c a n d S k y l i n e . i n s e r t ( p ) ; t i m e s t a m p I n ++;
22

23 / / Compare t o ”window” o f p o i n t s , s k i p ” l a s t ” p o i n t ( p )
24 f o r ( i n t t := 1 to c a n d S k y l i n e . s i z e ()−1) do
25 Point q := c a n d S k y l i n e [ t ] ;
26 i f ( p > q ) then
27 c a n d S k y l i n e . d e l e t e ( p ) ; break ; / / p i s domina ted by q
28 e l s e
29 c a n d S k y l i n e . i n s e r t ( p ) ; c a n d S k y l i n e . d e l e t e ( q ) ; / / p d o m i n a t e s q
30 end ;
31 i f ( ! memAvailable ) then
32 temp . i n s e r t ( p ) ; c a n d S k y l i n e . d e l e t e ( p ) ;
33 t imes tampOut ++;
34 end ;
35 end ;
36

37 / / a l g o r i t h m done w i t h D
38 i f ( ! temp . empty ( ) && i = D. s i z e ( ) ) then
39 D. l o a d ( temp ) ; temp . c l e a r ( ) ;
40 t i m e s t a m p I n := 0 ; t imes tampOut : = 0 ;
41 end ;
42

43 end ;
44

45 f o r ( i n t t := 1 to temp . s i z e ( ) ) do
46 Point q := temp [ t ] ;
47 S . i n s e r t ( q ) ; temp . d e l e t e ( q ) ;
48 end ;
49 end ;

Figure 10.1: Block-Nested-Loops algorithm for Skyline computing
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Step Read candS tsIn tsOut temp Skyline
Load D - 0 0 - -

1 a a (0) 1 0 - -
2 b a (0), b (0) 2 0 - -
3 c a (0), b (0), c (0) 3 0 - -
4 d a (0), b (0), c (0) 4 1 d (0) -
5 e a (0), b (0), c (0) 5 1 d (0) -
6 f a (0), b (0), c (0) 6 1 d (0) -
7 g a (0), b (0), c (0) 7 2 d (0), g (1) -
8 h a (0), b (0), c (0) 8 2 d (0), g (1) -
9 i a (0), b (0), c (0) 9 2 d (0), g (1), h (2) -
10 j a (0), b (0), c (0) 10 2 d (0), g (1), h (2) -
11 k a (0), b (0), c (0) 11 2 d (0), g (1), h (2) -

Load temp - 0 0 - -
12 d (0) d (0) 1 0 - a (0), b (0), d (0)
13 g (1) d (0), g (0) 2 0 - a (0), b (0), d (0)
14 h (2) d (0), g (0), h (0) 3 0 - a (0), b (0), d (0)

Table 10.1: Steps of the Block-Nested-Loops algorithm

The number in parentheses after each point shows the timestamp of the point. The last step is
omitted, that is, taking all remaining points from the window and transferring it to the Skyline.

A variation of the Block-Nested-Loops algorithm organizes the window of candidate Skyline
points as a self-organizing list, that is, a point which dominates another point from the data set
is moved to the beginning of the window. That way most dominant points are located at the
beginning of the window and hopefully incoming points are kicked out by these points without
having to look at large portions of the window. This variant is particular effective for skewed
data, that is, if there are some points that dominate many other points.

Additional variants of the Block-Nested-Loops algorithm are depicted in [BKS01]. The authors
played with different variations of the Block-Nested-Loops algorithm and showed an extensive
performance study.

10.2 Discussion
The Block-Nested-Loops algorithm works particular well if the Skyline is small, that is, during
computation the candidate Skyline points fit into the window and main memory. This algorithm
needs additional memory, namely the window. If the window is too small the algorithm has to
reload parts of the window from the temporary disk storage and perform multiple runs. The best
case for the Block-Nested-Loops algorithm is, obviously, when all (candidate) Skyline points fit
into the window. This is true for data sets having a small dimensionality and higher-dimensional
data sets having a correlated or uniformly distributed data value distribution (see Chapter 6 for
details). For more details on performance of the Block-Nested-Loops algorithm the interested
reader is referred to [BKS01].
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The Divide-and-Conquer Algorithm

11.1 Description
The Divide-and-Conquer algorithm was first described in [KLP75, PS85]. This basic Divide-
and-Conquer algorithm works by recursively partitioning the data set along a pre-determined
median value of one dimension. See Figure 11.1(a). It displays the hotel example from Table
9.1:

1. Choose an arbitrary dimension dp for partitioning, for example price. Compute the me-
dian or some approximate median mprice.

2. Divide the data set into two partitions P1 and P2 such that P1 contains all points whose
value of dimension dprice is better than mprice, that is, p ∈ P1 ⇐⇒ pprice ≤ mprice and P2
contains all points that have a worse value in dimension dprice, that is p∈ P2 ⇐⇒ pprice >
mprice.

3. Compute the Skylines S1 of P1 and S2 of P2. In order to do so, apply the algorithm
recursively on P1 and P2.

4. The recursion stops if a partition contains only one or a few points. The Skyline for
one point is trivial, the Skyline of a few points can, for example, be computed with the
Standard algorithm from Chapter 9.

5. Compute the overall Skyline by merging S1 and S2. While merging those points of S2 are
eliminated that are dominated by points in S1.

Step 5 means basically computing the Skyline of S1∪S2 using the Standard algorithm (Chapter
9) or the Block-Nested-Loops algorithm (Chapter 10). This can be quite time consuming and
memory intensive, that is, if S1∪ S2 does not fit into main memory. Another idea is described
in [PS85] and is depicted in Figure 11.1(b). The idea is to partition S1 and S2 using a median of
another dimension dm with dp 6= dm. In our case we use the dimension distance with mdistance.
As a result we get 4 partitions, S1.1, S1.2, S2.1 and S2.2. The following observations facilitate the
merging process (i ∈ {1,2}):
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• Points in S1.i are better in dimension dp than points in S2.i.

• Points in Si.1 are better in dimension dm than points in Si.2

Merging has to be done between S1.1 and S2.1, S1.2 and S2.2, and S1.1 and S2.2. S1.2 and S2.1 need
not be merged since points of both partition are definitely incomparable, that is, ∀ p∈ S1.2∧∀q∈
S2.1 | px < qx∧ py > qy. Merging of all other pairs is done recursively by partitioning all pairs
again. The recursion stops if all dimensions have be considered or if one partition is empty.
Merging is then trivial.
As an example consider again Figure 11.1. We stop the partition recursion after one step, as it
is depicted in Figure 11.1(a) and compute the Skyline of P1 and P2 by the Standard algorithm,
S1 = {c,d,e} and S2 = {a,b,g, i} (see Figure 11.1(b)). During the merging phase we also stop
the recursion after on step. This is depicted in Figure 11.1(c). Now we perform the merging.
As said above merging has to be done between S1.1 and S2.1, the resulting Skyline here is
r1 = {a,b,g, i}; between S1.2 and S2.2 resulting in r2 = {c,d,e} (note: S2.2 = {}); and S1.1 and
S2.2 resulting in r = {a,b}. Instead of merging S1.1 and S2.2 to r S1.1 can be immediately merged
with r2 yielding r3 = {a,b,d}. The resulting overall Skyline is then r1∪ r3 = {a,b,d,g, i}.

In [BKS01] two variants of the Divide-and-Conquer algorithm are given which enhance the
basic Divide-and-Conquer algorithm. We want to quickly introduce the two variants here since
they mark the best performing variants of the Divide-and-Conquer algorithm.
The first variant is called m-way partitioning. The idea is to divide into m partitions so that
each partition is expected to fit into main memory. The m-way partitioning can be applied to
the partitioning step to produce partitions P1, ...Pm so that each partition fits into main memory
as well as the merging step to produce partitions in a way that all partitions necessary for one
merging step fit into main memory.
The second variant is called early Skyline. This variant changes the partitioning step where
the data set is partitioned into m partitions. This variant simply computes a candidate Skyline
before the partitioning step takes places, that is, load as many points as fit into main memory
and compute a candidate Skyline of these points by applying the basic Divide-and-Conquer
algorithm. Points that are already being dominated are deleted from main memory. Divide the
remaining points into m partitions and proceed with the m-way Divide-and-Conquer algorithm.
The pseudo code of the basic Divide-and-Conquer algorithm is given in Figure 11.2 and Figure
11.3.

11.2 Discussion
If the input data set does not fit into main memory the performance of the Divide-and-Conquer
algorithm degrades heavily. The reason for this can easily be seen: the data set is read from
disk, partitioned, partly written to disk, read again from disk, and so on. This is done until a
partition fits into main memory. The two proposed variants relieve this problem a bit.
The Divide-and-Conquer algorithm has the same complexity in the worst and in the best case.
In bad cases where the data set contains many Skyline points, it outperforms the Block-Nested-
Loops algorithm. In good cases, it is outperformed by the Block-Nested-Loops algorithm.
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(a) Partition recursion (b) Skyline computation

(c) Merging recursion

Figure 11.1: Partitioning for Divide-and-Conquer algorithm
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1 I n p u t : Datase t D
2 Outpu t : S k y l i n e S
3

4 begin DCAlgorithm
5 S k y l i n e B a s i c (D, dim ) ;
6 end ;
7

8 f u n c t i o n S k y l i n e B a s i c ( Datase t D, i n t dim )
9

10 i f (D. s i z e ( ) = 1 )
11 re turn D;
12 end ;
13

14 / / P a r t i t i o n d a t a s e t D u s i n g d i m e n s i o n dim
15 f l o a t p i v o t := median (D, dim ) ;
16 Datase t p1 , p2 ;
17 ( p1 , p2 ) = p a r t i t i o n (D, dim , p i v o t ) ;
18

19 / / R e c u r s i v e
20 S k y l i n e s1 := S k y l i n e B a s i c ( p1 , dim ) ;
21 S k y l i n e s2 := S k y l i n e B a s i c ( p2 , dim ) ;
22

23 / / Merge
24 re turn un ion ( s1 , MergeBasic ( s1 , s2 , dim ) ) ;
25 end ;

Figure 11.2: Divide-and-Conquer algorithm for Skyline computing
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1 f u n c t i o n MergeBasic ( S k y l i n e s1 , S k y l i n e s2 , i n t dim )
2

3 S k y l i n e r ;
4 i f ( s1 . s i z e ( ) = 1 ) then
5 Point p := s1 [ 1 ] ;
6 f o r i n t i := 1 to s2 . s i z e ( ) do
7 Point q := s2 [ i ] ;
8 i f ( q < p ) then
9 r . i n s e r t ( q ) ;

10 end ;
11 end ;
12 e l s e i f ( s2 . s i z e ( ) = 1 ) then
13 r := s2 ;
14 f o r i n t i := 1 to s1 . s i z e ( ) do
15 i f ( p < q ) then
16 r := NIL ;
17 end ;
18 end ;
19 e l s e i f ( dim = 2) then
20 Point min := minimum ( s1 ) ;
21 f o r i n t i := 1 to s2 . s i z e ( ) do
22 Point q := s2 [ i ] ;
23 i f ( q < min ) then
24 r . i n s e r t ( q ) ;
25 end ;
26 end ;
27 e l s e
28 f l o a t p i v o t = median ( s2 , dim − 1 ) ;
29 S k y l i n e s11 , s12 , s21 , s22 ;
30 ( s11 , s12 ) := p a r t i t i o n ( s1 , dim − 1 , p i v o t ) ;
31 ( s21 , s22 ) := p a r t i t i o n ( s2 , dim − 1 , p i v o t ) ;
32 S k y l i n e r1 := MergeBasic ( s11 , s21 , dim ) ;
33 S k y l i n e r2 := MergeBasic ( s12 , s22 , dim ) ;
34 S k y l i n e r3 := MergeBasic ( s11 , r2 , dim − 1 ) ;
35 r := un ion ( r1 , r3 ) ;
36 end ;
37

38 re turn r ;
39 end ;

Figure 11.3: Merge algorithm for D&C Skyline computing



CHAPTER 12

Bitmap Based Algorithm

This algorithm has first been published in [TEO01]. Some enhancement has been published in
[EOT03]. We explain the original Bitmap algorithm by applying it to our hotel example.

12.1 Algorithm Description

Previous algorithms had to look at the points in the data set at least once to determine all
Skyline points (most algorithms required multiple passes over the data set). In this section we
describe an algorithm that requires exactly one pass over the data set to compute all Skyline
points. This algorithm uses bitmaps to encode all information that is needed to decide whether
a point is part of the Skyline or not. A point p = (p1, p2, ..., pd) with d being the number
of dimensions is mapped to a bit vector. This bit vector holds information about the rank of
each value p1, p2, ..., pd compared to other values of the same dimension. The length of the bit
vector is determined by the number of distinct values over all dimensions. Let ki the number
of distinct values in the ith dimension then m is the sum of all kis, that is, m = ∑

d
i=1 ki. For our

hotel example see Table 12.1. This table shows all distinct values and their rank of the hotel
example. The number of distinct values in the first dimension is k1 = 10 and the number of
distinct values in the second dimension is k2 = 10. This means m = k1 + k2 = 10+10 = 20.
The bitmaps encode the rank or position of the value of the point in each dimension. Assume
that pi, the value of point p in the ith dimension, is jith smallest value in dimension i, that means
that j−1 values in dimension i are smaller than this value. This value pi will be encoded with
ki bit (see above) where the ki− ji +1 most significant bits are set to 1 and the remaining ones
are set to 0. Take a look at Table 12.2. “Hotel Heron” (the last one) has a price of 68 EUR
which is the 9th smallest value of all points. That means that the 10−9+1 = 2 most significant
bits of the bitmap representing dimension 1 will be set to 1 and the remaining bits will be set
to 0, 1100000000. Similarly, the distance of “Hotel Heron” is 100 m which is the 3rd smallest
value of all points, the bitmap representation will contain 10− 3 + 1 = 8 1s at the beginning,
1111111100.
Now let us take a look at two example points. By accessing the point we want to decide whether
it is part of the Skyline or not. We first take a look at a Skyline point, “Hotel Elpiro” with

50
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Rank Value
Dimension 1 (price) Dimension 2 (distance)

1 35 40
2 40 50
3 42 100
4 45 150
5 50 200
6 55 250
7 60 280
8 65 300
9 68 400

10 72 500

Table 12.1: Number of distinct values

Name Price [EUR] Distance [m] Bitmap
Dimension 1 Dimension 2

Hotel Arena 45 100 1111111000 1111111100
Hotel Aden 40 200 1111111110 1111110000
Hotel International 42 300 1111111100 1110000000
Hotel Aurora 35 400 1111111111 1100000000
Hotel Majestic Toscanelli 50 280 1111110000 1111000000
Hotel Monaco & Quisisana 60 150 1111000000 1111111000
Hotel Elpiro 55 50 1111100000 1111111110
Hotel Marlisapier 65 250 1110000000 1111100000
Hotel Al Gambero 72 40 1000000000 1111111111
Hotel Rex 40 500 1111111110 1000000000
Hotel Heron 68 100 1100000000 1111111100

Table 12.2: Hotel example for Bitmap algorithm

the bitmap representation (1111100000, 1111111110). The algorithm creates two bit-slice
a1=11111010010 and a2=00000010100. These bit-slice contain 11 bits, one entry for each
hotel. The bit-slice are obtained by “reading” the bitmaps in Table 12.2 column wise. The
column is determined by the point that is to be checked for Skyline property. It is the least
significant column that contains a 1, that is for a1 the 6th column (counted from the end of
bitmap for dimension 1), and the 2nd column for a2. The result of a bitwise AND operation is

A = a1∧a2 = 11111010010∧00000010100 = 00000010000

The bit-slice A has the property that the nth bit is set to 1 if the nth point has dimension values
less or equal to the dimension values of the point to be checked for Skyline property. Now the
algorithm creates a second bit-slice for each dimensions. This second bit-slice is the preceding
bit-slice of a. This yields another two bit-slices b1=11111000010 and b1=00000000100. The
results of a bitwise OR operation is

B = b1∨b2 = 11111000010∨00000000100 = 11111000110

Bit-slice B has the property that the nth bit is set to 1 if the nth point has some dimension values
less than the value of the corresponding dimension of the point in turn. If there is no preceding
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bit-slice the result of this operation is set to 0. The final bit operation determines the Skyline
property of “Hotel Elpiro”

C = A∧B = 00000010000∧11111000110 = 0000000000

Since the final bit operation yields a bit-slice that does not contain 1s, that is, it is 0, “Hotel
Elpiro” belongs to the Skyline.
Now let us try this with an non-Skyline hotel. We choose “Hotel Heron”. The algorithm again
creates two column wise-bitmaps a1=11111111011 and a2=10000010101. The result of the
first bitwise AND operation is

A = a1∧a2 = 11111111011∧10000010101 = 10000010001

The bitwise OR operation yields

B = b1∨b2 = 11111111010∨00000010100 = 11111111110

And the final bitwise AND yields

C = A∧B = 10000010001∧11111111110 = 10000010000

It does not belong to the Skyline since the resulting bit-slice contains 1s. Moreover, we can
see that “Hotel Heron” is dominated by the 1st and the 7th hotel, because the resulting bit-slice
contains the 1 at the first and 7th position. Figure 12.1 shows the pseudo-code of the Bitmap
algorithm. The function determineIndex computes the number of the bit-slice to be taken (see
above). The function getBitSlice gets two input parameters, the first one is the index of the
bit-slice, the second one the dimension to be taken.

12.2 Discussion
The Bitmap algorithm can return Skyline points by scanning the whole data set once. By using
bitmap operation it decides on the Skyline property. The efficiency of the algorithm relies totally
on the speed of bitwise operations. A major drawback of this algorithm lies in the use bitmaps
and bit-slices in order to determine if a point is in the Skyline or not. This drawback is two-fold.
First, for each point inspected the algorithm must retrieve the bitmaps of all dimensions of all
points in order to get the bit-slices. Second, if the number of distinct values is large, in our
example we only had 10 different values per dimension, the space consumption of the bitmaps
may be prohibitive for the algorithm. Remember that the length of the bitmaps over all dimen-
sions is the sum of distinct values in each dimension (see above). Consider a 5-dimensional
data set with 100,000 points. We assume, we have 1000 distinct value for each dimensions.
By choosing randomly generated floating point values for each dimension, this seems not too
much. That means the total length of the bitmap is lBitmap = 5 · 1000 Bits = 5000 Bits. The
space consumption is s = 100000·5000 Bits

8 Bits/Byte = 62500000 Bytes≈ 62.5 MBytes. These bitmaps are
needed in addition to the data set. Compared to the size of the data set sd = 100000 ·5 ·4 Bytes =
2000000 Bytes≈ 2 MBytes this seems too much. The Bitmap algorithm can only be applied if
the number of distinct values is small. For a concise performance discussion and some ideas to
overcome the space overhead, please see [TEO01] or [EOT03].
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1 I n p u t : Datase t D
2 I n p u t : Bitmap [ ] BM / / as s een i n Tab le
3 Outpu t : S k y l i n e S / / P o i n t by p o i n t
4

5 begin Bi tmapAlgor i thm
6

7 f o r ( i n t i := 1 to D. s i z e ( ) ) do
8

9 / / f i n d s t h e i n d e x f o r t h e b i t s l i c e
10 i n t k := BM[ i ] . d e t e r m i n e I n d e x ( ) ;
11

12 / / g e t k t h b i t s l i c e f o r f i r s t d i m e n s i o n
13 / / and per form f i r s t AND
14 Bitmap A := BM[ i ] . g e t B i t S l i c e ( k , 1 ) ;
15 f o r i n t j := 2 to dim do
16 A := A & BM[ i ] . g e t B i t S l i c e ( k , j ) ;
17 end ;
18

19 / / g e t p r e c e e s i n g b i t s l i c e
20 Bitmap B := BM[ i ] . g e t B i t S l i c e ( k−1, 1 ) ;
21 f o r i n t j := 2 to dim do
22 A := A | BM[ i ] . g e t B i t S l i c e ( k−1, j ) ;
23 end ;
24

25 Bitmap C := A & B ;
26

27 i f (C = 0) then
28 S . i n s e r t (D[ i ] ) ;
29 end ;
30

31 end ;
32

33 end ;

Figure 12.1: Bitmap algorithm
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Partition-Index Algorithm

This algorithm has been originally published in [TEO01]. Some enhancement has been pub-
lished in [EOT03]. We explain the original Partition-Index algorithm by applying it to our hotel
example.

13.1 Algorithm Description

Before we can apply the Partition-Index algorithm to our hotel example we need to normalize
the values in each dimension. Explanation why we need to normalize is given later on. For
normalization we use the ranks of each dimension value as given in Table 12.1. The dimension
values are transformed by substituting the real value by its rank among all values. Table 13.1
shows the result of this transformation.

Name Short Price [EUR] Distance [m] Price [rank] Distance [rank]
Hotel Arena a 45 100 4 3
Hotel Aden b 40 200 2 5
Hotel International c 42 300 3 8
Hotel Aurora d 35 400 1 9
Hotel Majestic Toscanelli e 50 280 5 7
Hotel Monaco & Quisisana f 60 150 7 4
Hotel Elpiro g 55 50 6 2
Hotel Marlisapier h 65 250 8 6
Hotel Al Gambero i 72 40 10 1
Hotel Rex j 40 500 2 10
Hotel Heron k 68 100 9 3

Table 13.1: Hotel example for Partition-Index algorithm

The Partition-Index algorithm partitions the d-dimensional points in the data set into d lists in
a way that point p = (p1, p2, ..., pd) is put into list i if the value of point p in the ith dimension
is the minimum value among all dimensions of p, that is, pi ≤ p j ∀ 1≤ i, j ≤ d ∧ i 6= j. For
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instance, point d (“Hotel Aurora”) is put into list 1, because its normalized dimension values
are (1,9), whereas point i (“Hotel Al Gambero”) is put into list 2, since its values are (10,1).
The two lists are shown in Table 13.2. The points in the two lists can be indexed by any one-
dimensional indexing structure. The authors of [TEO01] used a B+-tree to index the points. An
example of such a B+-tree is shown in Figure 13.1.

List 1 List 2
Point Minimum distance Point Minimum distance

d 1 i 1
b, j 2 g 2

c 3 a, k 3
e 5 f 4

h 6

Table 13.2: Example lists for Partition-Index algorithm

Figure 13.1: Example B+-tree for Partition-Index algorithm

A batch in the ith list in Table 13.2 consists of points that have the same minimum distance.
There is a batch containing points {b, j} in list 1 or a batch containing point {i} in list 2, for
instance. For our example all batches contain a single point except batch number 2 in list 1, this
batch contains two points, and batch number 3 in list 2, this batch also contains two points. The
algorithm starts with the first batch of each list and handles the one with minimum distance.
Since both (first) batches in our example have the same minimum distance, the algorithm starts
with the batch from list 1, {d}. Processing a batch has two steps. First, compute the Skyline
inside the batch. The size of a batch is small compared to the number of total points, so the
Standard algorithm (Chapter 9) should suffice. Second, among the computed (pre-) Skyline
points from the batch the algorithm adds those points to the Skyline that are not dominated by
any already found Skyline points. The first batch from list 1, {d}, contains only one point. So
d is added to the Skyline, since it is not dominated by any Skyline point (the Skyline is still
empty). The next batch in list 1 has a minimum distance of 2, so the algorithm switches to
list 2. Processing batch 1 from list 2 results in another Skyline point, i is the only point in the
batch and is not dominated by S = {d}. Now, batch 2 from list 1 is handle, {b, j}, the pre-
Skyline is point b. It is also not dominated by any Skyline point and thus added to the Skyline,
S = {d, i,b}. Batch 2 from list 2, {g}, is also a Skyline point. Batch 3 from list 1 does not add
a Skyline point since c is dominated by Skyline point b. Batch 3 from list 2 adds a point to the
Skyline. The pre-Skyline of this batch is point a which is not dominated by any other Skyline
point. The Skyline now consists of 5 point, S = {d, i,b,g,a}. The algorithm terminates since
both dimension values of a (4, 3) are smaller than or equal to the minimum distance of the next
batches from both lists, that is, batch {e} has minimum distance 5 and batch { f} has minimum
distance 4.
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1 I n p u t : Datase t D
2 I n p u t : B+− t r e e B
3 Outpu t : S k y l i n e S
4

5 begin I n d e x P a r t i t i o n A l g o r i t h m
6

7 bool s e a r c h p a r t i t i o n [ ] ;
8 f l o a t max va lue [ ] ;
9 f l o a t m i n v a l u e [ ] ;

10 Point p [ ] ;
11

12 f o r ( i n t i := 1 to d ) do
13 s e a r c h p a r t i t i o n [ i ] = t rue ;
14 p [ i ] = B . ge tPo in tMinDimens ionVa lue ( i ) ;
15 max va lue [ i ] = p [ i ] . getMaxDimValue ( ) ;
16 m i n v a l u e [ i ] = p [ i ] . getMinDimValue ( ) ;
17 end ;
18

19 f l o a t mn = min ( max va lue ) ;
20 f l o a t mx = min ( m i n v a l u e ) ;
21

22 f o r i n t i := 1 to d do
23 i f (mn < max va lue [ i ] ) then
24 s e a r c h p a r t i t i o n [ i ] = f a l s e ;
25 end ;
26 end ;
27

28 <c o n t i n u e d i n p a r t 2>
29

30 end ;

Figure 13.2: Partition-Index algorithm for Skyline computing, part 1

Figure 13.2 and Figure 13.3 show some pseudo code for the Partition-Index algorithm. The
algorithm contains some functions that need to be explained.
The function getPointMinDimensionValue traverses the B+-tree until it finds the point with
the smallest value in dimension i. Routines getMaxDimValue and getMinDimValue return the
maximal and the minimal value of a point. A simple function, done checks the boolean vector
search partition if there are still partitions left that need to be processed. To retrieve the next
point from the B+-tree the getNextPoint function is used. This function retrieves the next point
according to the algorithm description given above, that is, the function chooses the correct list
and retrieves the next point or retrieves the next point from a batch. Finally, the computeSkyline
function computes the Skyline of a partition or merges Skylines.

Is this algorithm correct? The authors of [TEO01] give three Lemmata that show that the
algorithm works correctly. The first lemma is needed to prune some points, the second lemma
says that Skyline points contain minimal values, and the third lemma is necessary to compute
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1 whi le ( ! done ( s e a r c h p a r t i t i o n ) ) do
2 S k y l i n e s [ ] ;
3 P a r t i t i o n P [ ] ;
4 i n t j := 1 ;
5

6 f o r ( i n t i := 1 to d ) do
7 i f ( min [ i ] = mx) then
8 P [ j ] . a d d P o i n t ( p [ i ] ) ;
9 p [ i ] := B . g e t N e x t P o i n t ( p [ i ] ) ;

10

11 whi le ( p [ i ] . getMinDimValue ( ) = mx) do
12 mn := min (mn , p [ i ] . getMaxDimValue ( ) ) ;
13 P [ j ] . a d d P o i n t ( p [ i ] ) ;
14 p [ i ] := B . g e t N e x t P o i n t ( p [ i ] ) ;
15 end ;
16

17 min [ i ] := p [ i ] . p [ i ] . getMinDimValue ( ) ;
18 end ;
19 end ;
20

21 s [ j ] = P [ j ] . c o m p u t e S k y l i n e ( ) ;
22 S = S . c o m p u t e S k y l i n e ( s [ j ] ) ;
23 j := j + 1 ;
24

25 mx := min ( m i n v a l u e ) ;
26

27 f o r ( i n t i := 1 to d ) do
28 i f (mn < max va lue [ i ] ) then
29 s e a r c h p a r t i t i o n [ i ] = f a l s e ;
30 end ;
31 end ;
32 end ;

Figure 13.3: Partition-Index algorithm for Skyline computing, part 2
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the Skyline partition-wise by looking at partitions in ascending order. All lemmata are proven
in [EOT03], but the authors use the max-notation. In order to give the reader an idea, we note
the lemmata in min-notation and the ideas for proving them.

Lemma 1: Consider two d-dimensional points p = (p1, p2, ..., pd) and q = (q1,q2, ...,qd). Let
pmax = maxd

j=1(p j) and qmin = mind
j=1(q j). Let pmax occur at dimension dmax and qmin occur

at dmin. Then if pmax < qmin, p dominates q.

Lemma 2: Let D be a data set containing |D| d-dimensional points. We define m as

m =
|D|

min
i=1

(
d

min
j=1

pi j

)
(m is the minimal value of all dimensions of all points) where pi j corresponds to the value of
the jth dimension of the ith point of D. We define M as

M =
{

(p1, p2, ..., pd)|(p1, p2, ..., pd) ∈ D∧
d

min
j=1

p j = m
}

(M is set of points of D that have m as their minimum value). Let SD be the Skyline of D and
SM the Skyline of M. Then SM ⊆ SD.

Lemma 3: Let D be a data set containing |D| d-dimensional points. Let there be k distinct
values in the dimensions of the points in D. Let m1 denote the minimal value, m2 the second
smallest value, and so on, and finally mk the maximal value. Moreover, let us split D into k
partitions P1, ... Pk, such that

Pi =
{

(p1, p2, ..., pd)|(p1, p2, ..., pd) ∈ D∧
d

min
i= j

p j = mi

}
Let SD be the Skyline of D, and Si the Skyline of Pi. Let us compute SD by examining partitions
in the order P1, P2, ..., Pk. Then, when we are examining Pl , we can determine whether points in
Sl are in SD without having to look at Pl +1, ..., Pk.

Lemma 1 is obvious to proof: pmax is the maximum value of all p j, and qmin is the minimum
value of all q j, since pmax < qmin all values q j are larger than values p j. Hence, p dominates q.
For Lemma 2 one has to show that none of the points in D−M dominate a point p ∈ SM: With
m′ being the minimal value of all dimensions of all points in |D−M| on can see that m′ > m.
Thus, no point in |D−M| dominates p.
Finally, Lemma 3 is proven by induction over the partitions P1, ..., Pk.

13.2 Discussion
One advantage of the Partition-Index algorithm can be seen by looking at Table 13.2. At the top
of each list Skyline points occur with high probability. Hence, the Partition-Index algorithm can
quickly return Skyline points and produce Skyline points at a high rate. But its main advantage
is its disadvantage as well. The Skyline points in each list are sorted by extreme values first.
This means the Partition-Index algorithm will return extreme Skyline points, that is, points
that are extremely good in one dimension, first. This is OK, when computing the complete
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Skyline. It does not matter when Skyline points are produced and eventually the Partition-Index
algorithm will find all Skyline points, in particular those that do not have extreme values in
the dimensions. But returning extreme points first is not very helpful in online scenarios as
described in Part III where a fast computed “big picture” is necessary. In such a scenario it
is neither helpful to compute the whole Skyline. A comparison between this algorithm and
true online algorithms is given in Chapter 17. Another disadvantage of the Partition-Index
algorithm is that the lists (and the corresponding index structure) have to be pre-computed
for each possible combination of Skyline attributes. Supporting m− d-Skyline queries would
require to pre-compute all combinations of dimensions, that means, that 2d combinations would
have to be pre-computed. Another disadvantage is seen in the first section of this chapter. The
Partition-Index algorithm is not directly applicable to dimensions having different domains. In
our example the price and the distance had to transformed to integer values between 1 and 10
in order to make the algorithm work. The list approach expects similar dimension domains.
Nevertheless, the Partition-Index algorithm is probably the fastest known algorithm to compute
the complete Skyline in a batch / progressive sort of way.



CHAPTER 14

Candidate Skyline Computation - Skyline
Pre-filters

In this chapter we present two ideas for reducing the data set so that the subsequent batch
Skyline algorithm finds an already pre-aggregated data set for its Skyline computation. First,
we show a filter algorithm that uses a sorted data set and, second, we show a filter algorithm
that uses a multi-dimensional indexing structure such as the R-tree [Gut84] (and its derivatives)
or the UB-tree [Bay97].

Common to both pre-filter algorithms are the following steps:

• Run data set through filter (either sorted or indexing structure). This results in a smaller
data set.

• Run smaller data set through Skyline algorithm. This results in the Skyline of the original
data set.

Both ideas have previously been published in [Ros01].

14.1 Pre-filtering a Sorted Data Set

14.1.1 Scoring
In [Ros01] this way of pre-filtering the data set is described with the term Scoring. By scoring
we mean converting a point, that is, a multi-dimensional object, to a one-dimensional object,
the score. This conversion can be done in different ways. Common to all ways is the use of
a monotonic increasing function applied to all dimensions of a point. For example, one could
sum up all dimensions of a point and use the resulting value as the score. We define the score
of a point p as

score(p) = Fd
i=1 pi

with d being the number of dimensions and pi the value of point p in dimension i (i = 1..d).
The function F is a monotonic increasing function such as sum or multiplication. The use of a
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monotonic increasing function is necessary, because the following requirement must hold when
using the score for Skyline computation: If point p is greater than point q, that is p is greater in
all dimensions than q, the score of point p must also be greater than the score of point q. There
are two ways each dimension can be treated by F . One, all dimensions are treated equally
by F or, two, function F could put emphasis on certain dimensions. Both ways are feasible
for Skyline computation. We choose the first way, that is, not putting an emphasis on certain
dimensions.
After the scoring has taken place, the data set is sorted by ascending score. This results in a
data set which is most likely to have the Skyline points at the beginning, since small dimension
values result in a small score value.
The whole scoring procedure comprehends three steps. These are:

1. computing the score for each point,

2. extracting the maximum value of each dimension for later purpose,

3. and sorting the points by ascending score.

Computing the score and extracting the maxima can be done in one step. For sorting one has
to wait until scoring and extracting the maxima are finished. These steps could be done while
gathering statistics of the data set which is done regularly by a Database Management System.

14.1.2 Filtering

For computing the Skyline of a sorted data set one needs to first look at an example to understand
how the algorithm works. Figure 14.1(a) shows a 2-dimensional scenario. We chose an arbitrary
point p for illustration. The purpose of filtering is to determine points that definitely cannot
belong to the Skyline. Since our Skyline tries to minimize, these points lie, for a 2-dimensional
set of points, in the right-upper rectangle of point p. These lie within the gray shaded rectangle
in Figure 14.1(a). Assume p belongs to the Skyline. The minimum x-value of the rectangle
is the x-value of p and the minimum y-value of the rectangle is the minimum y-value of p.
So, points that still can belong to the Skyline lie within two rectangles, R1 with the lower point
(xp,0) and upper point (xM,yp) and R2 with the lower point (0,yp) and the upper point (xp,yM).
Rectangle R3, with the lower point (0,0) and the upper point (xp,yp), contains no points. If R3
would contain any points p would not be in the Skyline, since p then would be dominated by the
points in R3 (the points in R3 are better in every dimension than p). Note that even for higher
dimensionality we need only two points to describe the “rectangle”. These two points must be
diagonal within the n-dimensional space. All hyper-planes of the object must be parallel to the
axes.
The Skyline, of course, is unknown while filtering. But it is not necessary to know if point p
belongs to the Skyline. If we read a point p from the data set we can discard all the points that
are dominated by this point, even if the point we read is not in the Skyline. If the point p is not
in the Skyline it will be discarded later, but all the points that were dominated by p are also be
dominated by the newly found point q that dominates p. This property we described in Chapter
3 as transitivity. In order to get results quickly and not having to read all the points in the data
set, the points should be ordered in some way. The simplest way is an ordering that yields a
data set that is most likely to have the Skyline points at the beginning. This is accomplished by
the scoring and sorting procedure described in the previous section.
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Figure 14.1: Sorted Skyline computation

The filter algorithm basically scans through the whole data set, that is reading the points includ-
ing the score, one by one. It determines by the means of the score if a point can belong to the
Skyline or not. If the score of the point last read is greater than some minimum score, which is
explained later, then the point cannot belong to the Skyline and is discarded. Since all subse-
quent points have scores greater than the score of the point last read, all subsequent points can
be discarded. The algorithm terminates with a superset of the Skyline, the candidate Skyline.
The pseudo-code of the algorithm is shown in Figure 14.2. Also the function calculating the
score is shown (line 36).
The function maxOfVector determines the maximum value of a vector, here the maximum of
the array high[]. The algorithm has two data structures which are used to determine whether
the point last read could belong to the Skyline or not. The first one, alltimehigh[], is computed
at the very beginning. It contains the highest possible score values without the dimension i. For
a d-dimensional data set this is

alltimehigh[i] = calcScore(max(dim1), ...,max(dimi−1),max(dimi+1), ...,max(dimd)).

with dimi being the value in the ith dimensions. The values of alltimehigh[] do not change
during the filtering, the maximum value of each dimension was extracted during pre-processing
(see previous section).
The second data structure is called high[]. It holds the score of the ith dimension of the point
and alltimehigh[i], that is,

high[i] = calcScore(alltimehigh[i],p[i]).

The score, which is used to determine if a point can belong to the Skyline or not, is the maximum
of high[i]. We call it abortScore. If the score of a point becomes larger than the abortScore, the
filtering is done. See Figure 14.1(b). This maximum corresponds to the minimal possible rect-
angle, for 2-dimensional points, that can be neglected for Skyline computation. The maximum
of high[] has to be taken, because otherwise one would discard points that could still belong to
the Skyline. For example, in Figure 14.1(b) if not the maximum of high[], that is high[2], but
the smaller value high[1] would be taken instead, then one would discard points that lie between
the y-axis and the high[2]-line. These points can still be part of the Skyline.
For a proof of correctness of this method, results of how effective the filter can reduce the
number of points that still have to be check by a Skyline algorithm, and some variations of the
described filtering method we refer the reader to [Ros01].
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1 I n p u t : s o r t e d Datase t D / / s o r t e d da ta s e t i n c l . s t a t i s t i c s
2 I n p u t : i n t dim / / number o f d i m e n s i o n s
3 I n p u t : f l o a t [ ] a l l t i m e h i g h / / pre−c a l c . from s t a t i s t i c s
4 Outpu t : c a n d i d a t e S k y l i n e S
5

6 begin S o r t e d S k y l i n e F i l t e r
7

8 f l o a t a b o r t S c o r e := 1 0 0 0 0 0 0 . 0 ;
9 f l o a t [ ] h igh ;

10

11 f o r ( i n t i := 1 to D. s i z e ( ) ) do
12 Point p := D[ i ] ;
13

14 i f ( p . s c o r e <= a b o r t S c o r e ) then
15

16 f o r ( i n t j := 1 to dim ) do
17 h igh [ j ] := c a l c S c o r e ( a l l t i m e h i g h [ j ] , p [ j ] ) ;
18 end ;
19

20 i f ( a b o r t S c o r e > maxOfVector ( h igh ) )
21 a b o r t S c o r e := maxOfVector ( h igh ) ;
22 end ;
23

24 e l s e
25 / / f i l t e r i n g i s done
26 e x i t ( 0 ) ;
27 end ;
28

29 S . i n s e r t ( p ) ;
30

31 end ;
32

33 end ;
34

35

36 f u n c t i o n c a l c S c o r e ( f l o a t a , f l o a t b )
37 re turn a {+ , ∗} b ;
38 end ;

Figure 14.2: Pseudo-code for sorted Skyline pre-filtering

14.2 Pre-filtering with a Multi-dimensional Indexing Structure

Instead of representing the data set for Skyline computation by a flat file as it is true for all
previously described algorithms, the data set can also be represented by an indexing structure.
As a multi-dimensional indexing structure we use an R*-tree [BKSS90]. All points are read
into the R*-tree. Instead of having row identifiers in the leaf node of the R*-tree the points
directly lie within the leaf nodes. So the R*-tree represents the complete data set.
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A naive way of Skyline pre-filtering would be

• Traverse to each leaf node (only leaf nodes carry points) the R*-tree,

• calculate the candidate Skyline of each leaf node and

• concatenate leaf candidate Skylines to the overall candidate Skyline of the complete data
set (represented by the R*-tree).

The resulting candidate Skyline must be run through a normal Skyline algorithm to determine
the real Skyline. This naive R*-tree algorithm works astounding well as is can be seen in
[Ros01]. It serves also as the first step to a smarter way of using the R*-tree in terms of Skyline
computation, the Branch-and-Bound Skyline pre-filter. The Branch-and-Bound Skyline pre-
filter algorithm is an optimization of the naive algorithm. Instead of reading all leaf nodes (if all
leaf nodes are visited all intermediate nodes have also be visited) and computing the candidate
Skyline out of every leaf node, the Branch-and-Bound algorithm visits only those nodes which
definitely contain points that could be part of the Skyline according to some intermediate con-
dition. This intermediate condition is derived from an already computed candidate Skyline. For
example, if we read the points of Node 1 in Figure 14.3 first and compute a candidate Skyline,
then we do not have to access the remaining nodes. This is because any point of the candidate
Skyline computed from Node 1 dominates every point contained in nodes 2 through 4. The
rectangles correspond to the minimum bounding rectangles (MBR) of each node.

Figure 14.3: Explanation for the Branch-and-Bound R*-Tree filter algorithm

In other words, if the lower left corner of an MBR is dominated by one or more candidate
Skyline points then this leaf node cannot contain any Skyline points. Therefore, this node (for
leaf node) or this subtree (for an internal node) can be discarded. Note that even for higher
dimensions only two points are needed to describe the MBR. These points must be diagonal
points, the lower point and the upper point of the MBR.
The Branch-and-Bound Skyline pre-filter algorithm works like following:

• Traverse the R*-Tree in a depth-first way. In every internal node take the first entry and
descend down to the leaf (think of the leftmost leaf).
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• Calculate the Skyline of this leaf. This candidate Skyline will be the pruning condition
for the following subtrees.

• Test the remaining subtrees if they can contain Skyline points: Read the MBR of the
subtree in turn and check if any point in the candidate Skyline dominates the lower point
of the MBR. If yes, ignore the subtree, it contains no points that could participate in the
Skyline; if no, traverse the subtree and start the test again.

• If in leaf node, compute the Skyline of this leaf node, concatenate it to the already existing
candidate Skyline.

The selection of the first subtree and eventually the first leaf, which gives the first pruning
condition is vital for this algorithm. For example, if one would find the one Skyline point of a
2-dimensional correlated data set in the first leaf, the algorithm would terminate very quickly
since all subsequent test would prune all the remaining subtrees.
For brevity reason we do not show the results of the Branch-and-Bound Skyline pre-filter algo-
rithm here. The interested reader is forwarded to [Ros01]. The use of another multi-dimensional
indexing structure, the UB-tree [Bay97], is also not discussed here.



CHAPTER 15

Summary: Skyline Computation

In Chapters 8 through 14 we gave an introduction to 5 different Skyline algorithms that - in
our terms - qualify to be either a batch or a progressive algorithms and showed an idea how to
pre-filter the Skyline. We also laid out our classification for batch and progressive algorithms
and discussed why we classified each algorithm into the particular group.

All Skyline algorithms have their particular advantages and disadvantages, the Standard algo-
rithm, for example, is good for small amounts of data points but has a major drawback when it
comes to larger data sets. But its particular simplicity of implementation makes this algorithm
worth considering when it comes to choosing a Skyline algorithm. All other algorithms are
more complex to implement and more sophisticated when computing the Skyline.

The decision what Skyline algorithm to use requires a thorough analysis of the situation the al-
gorithm should be used for and a thorough consideration of the pros and cons of each algorithm.

Since all these algorithms and ideas have been published previously this part should be seen as a
concise compendium on Skyline algorithms. For a thorough discussion the reader is forwarded
to the particular paper given at the beginning of each section.
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CHAPTER 16

Scenario and Requirements

16.1 Scenario
The previous chapters dealt with mostly detached Skyline computations, meaning that some
query on the database wants to compute the Skyline, but the user who submitted the query does
not care when the query is done. The user “picks up” the result sometime later.
Now the scenario changes: Consider our hotel example (Chapter 7) in an online booking system
for hotels. The user submits the online query. With our previously described algorithms the user
waits a long time before any result is presented. Then the user gets the whole Skyline, meaning
all hotels in Lido di Jesolo with price and distance to the beach. But does the user need to
see all the results before he or she decides that, for example, the distance to the beach is more
important to him or her than the price? In most cases it is sufficient to give the user a “big
picture” of the Skyline, meaning some points having a low price and a high distance, some
points having a high price and a low distance, and some points in the middle. Now the user
can decide what is more important to him or her since he or she has a first impression what the
results will look like. Assuming the results are presented in a graphical user interface, the user
can click on a region which is interesting to him or her, telling the computer, that the user’s
preferences lie in the area he or she just clicked on. The computer should now return results
in that area without changing the overall Skyline query, that means, not suddenly weighing one
dimension more than the other. Simply the order the Skyline points are returned should change.
The generality of the Skyline points returned so far and all future Skyline points should not be
lost. Furthermore, the user does not want to wait long for first results, he or she should be able
to look a the graphical user interface and see points appearing incrementally starting right after
issuing the query.

For the previously described scenario the batch and progressive algorithms depicted in Part II
are only partly applicable or not applicable at all. We will see a comparison between the fastest
algorithm from Part II and the Nearest Neighbor algorithm from this part in Section 17. The
comparison focuses on the quality of the returned results stressing the things we said previously
about the “big picture”.
Before we come to describing two variations of the Nearest Neighbor algorithm we set up some
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requirements a Skyline algorithm has to fulfill to be called an online algorithm.

16.2 Requirements for an Online Algorithm

The previous section has already shown some demands we have in order to call an Skyline al-
gorithm an online Skyline algorithm. In this section, we will highlight some additional require-
ments for an online algorithm. Adopting the criteria set from the Control project [HAC+99],
we demand the following properties from an online Skyline algorithm:

1. The first results should be returned almost instantaneously. It should be possible to give
guarantees that constrain the running time to produce the first few results. This is partic-
ularly important for an only Skyline algorithms since patience is probably not the user’s
most distinctive talent.

2. The algorithm should produce more and more results the longer it runs. Eventually, if
given enough time, the algorithm should produce the full Skyline. The user looks at the
initial results and while he or she watches more and more points appear on the screen.

3. The algorithm should only return points which are part of the Skyline. In other words,
false-positives are not allowed. For instance, the algorithm should not return good hotels
at the beginning and then replace these good hotels with better hotels, that is, Skyline
hotels. Most users will be interested in stable answers: They do not want answers to
appear and then disappear on their screen.

4. The algorithm should be fair. In other words, the algorithm should not favor points that
are particularly good in one dimension, instead it should continuously compute Skyline
points from the whole range. This is an important property to guarantee the “big picture”.

5. The user should be in control of the computation. In other words, it should be possible for
the user to make preferences while the algorithm is running. For example, if the algorithm
has run for a while and returned mostly cheap hotels, then the user should be given the
opportunity to specify that he or she is more interested in hotels which are near the beach.
The algorithm should adapt itself and subsequently look for interesting hotels which are
close to the beach. Using a graphical user interface, the user should be able to click on
the screen and the algorithm will return the next points of the Skyline which are near the
point that the user has clicked on. The overall Skyline query should not be altered.

6. The algorithm should be universal with respect to the type of Skyline queries and data
sets. It should also be based on standard technology, that is, indices, and it should be
easy to integrate the algorithm into existing database systems. For a given data set, for
example, hotels one index should be enough to consider all dimensions that a user might
find interesting. The algorithm should also be universal with respect to:

• dynamic data: independent of changes to the data set

• scalability: both dimensionality and data size

• data value distribution
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• type of Skyline query: if the data set has d dimensions, it should be possible to ask
for Skyline queries that involve only m dimensions (m < d); the other dimensions
can be part of predicates in the WHERE clause of the query. We call such queries m-
d-Skyline queries. We believe that such m-d-Skyline queries will be very frequent
in practice because not every user is interested in all aspects.

With these requirements in mind we now can describe the Nearest Neighbor online algorithm.
The first algorithm in Chapter 17 introduces the ideas and relations that lie behind Nearest
Neighbor computation and Skyline computation. We describe the original Nearest Neighbor
Skyline algorithm. This algorithm was published in [KRR02]. Chapter 18 focuses on an im-
proved version of the original algorithm, published in [PTFS03]. Unfortunately, the authors
of [PTFS03] call their algorithm “progressive”. We used “progressive” as an enhancement of
batch algorithms. However, their algorithm qualifies as an online algorithm, as we will see.



CHAPTER 17

Nearest Neighbor Algorithm

17.1 Relationship Between Nearest Neighbors and the Skyline
What is Nearest Neighbor computing? In a nutshell - the Nearest Neighbor is the point clos-
est to another point. Considering a set of point D, a point n ∈ D is the Nearest Neighbor of
a point q ∈ D if no other point is closer to q than n according to some distance function f .
Nearest Neighbor computation has been subject of various papers, for example, [RKV95] or
[BBKK97].

The relationship between Skyline points and Nearest Neighbors and the resulting algorithm has
first been described in [Ros01].

Before we start describing the algorithm, let us look at two basic observations that constitute
the foundation of our Nearest Neighbor algorithm for computing the Skyline of a data set. The
first observation describes a direct relationship between a Nearest Neighbor and a Skyline point,
the second observation deals with the transitivity of the first observation. For a graphical repre-
sentation take a look at Figure 17.1, the table displaying names and values in each dimensions
(Table 7.1) is left out here for brevity reasons. Both observations use the following parameters:

• n is the Nearest Neighbor.

• f is any monotonic distance function, for example the Euclidean distance.

• D is a two-dimensional data set containing positive floating point values, that is each point
p ∈ D has an x and a y value, denoted as px and py, with px ≥ 0.0 and py ≥ 0.0.

• q is the query point the Nearest Neighbor is computed to. In our case the query point is
always the origin, q = (0,0).

A Nearest Neighbor n of a point q is then defined as

{n ∈ D | ∀ x ∈ D, n 6= x : f (n,q)≤ f (x,q)}

We formulate our two observations as lemmata:
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Lemma 1: Let f , D and q be defined as given above, and let n be the Nearest Neighbor of q.
Then, n is in the Skyline of D.

Proof (Lemma 1): This lemma can be proven by contradiction. Let n = (nx,ny). Furthermore,
we assume that n is not part of the Skyline. As a result, there must be a point b = (bx,by) that
dominates n, otherwise n would be a Skyline point. In other words, bx < nx and by ≤ ny or
bx ≤ nx and by < ny. Under these circumstances, however, f (b,q) must be smaller than f (n,q)
because f is a monotonic distance function. This is a contradiction to n being the Nearest
Neighbor of q. As a result, n must be part of the Skyline. �

Going back to Figure 17.1 it can easily be seen that “Hotel Arena” (45 EUR, 100 m) is the
Nearest Neighbor to the origin and is part of the Skyline. Obviously this lemma also holds for
higher-dimensional data sets. Simply extend above given proof for higher dimensions.

The other observation is an extension of the first. It says that any Nearest Neighbor n to the
origin q within a certain region that is constrained by the origin and an upper right corner point
m is part of the Skyline of the subset Dm of D and, furthermore, is part of the Skyline of the
whole data set D. A region is given by two diagonal points, a lower left corner point and an
upper right corner point. In our case the lower left point is always the origin. So it suffices to
specify a region by its upper right point.

Lemma 2: Let f , D and q be defined as previously, let m = (mx,my) be a point defining the
region (0,0;mx,my) and let Dm be a subset of D such that Dm contains all points of D with
x < mx and y < my. Let n ∈ Dm be a Nearest Neighbor of the point q according to f . Then, n is
in the Skyline of D (naturally, n is also in the Skyline of Dm, using Lemma 1).

Proof (Lemma 2): The proof of this lemma is almost identical with the one of Lemma 1. The
only additional step is to prove that the (imaginary) point b must also be in the given region,
which is trivial based on the transitivity of the <-relation: If n is not the Nearest Neighbor of q
then bx < nx and by ≤ ny or bx ≤ nx and by < ny (1). Since n ∈ Dm, nx ≤ mx and ny ≤ my. With
(1) it follows that bx < nx ≤ nx and by ≤ ny ≤ my or bx ≤ nx ≤ mx and by < ny ≤ my. Hence,
b ∈ Dm. �

Also this lemma can be extended for higher-dimensional data sets. Essentially, the second
lemma means that if we partition the data set with region described above, then it is sufficient
to look for Skyline points using Nearest Neighbor search in each region separately. These two
lemmata lead to a divide & conquer algorithm using Nearest Neighbor search.

17.2 Nearest Neighbor Algorithm for 2-dimensional Skylines

First, let us take a look at an example. This example is based on Figure 17.1 but contains more
points to illustrate how the algorithm works. This will be the first part of this section. The
second part of this section contains an in-depth description of the Nearest Neighbor algorithm
and some pseudo-code of the algorithm.
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17.2.1 Example
The following example illustrates the Nearest Neighbor algorithm for 2-dimensional Skyline
queries. We use the hotel example from Figure 7.1 but add a few more points not shown in the
table.

Figure 17.1: Hotel example for Nearest Neighbor algorithm

We describe the first 6 steps of the algorithm. These steps are also depicted in Figure 17.2. As
distance function we use f = price+distance.

• Step 1 and 2: The algorithm starts off with a Nearest Neighbor search within the whole
data set, that is, not restricted by any region. If a Nearest Neighbor is found, n0 =
(xn0,yn0), the data set is partitioned into three regions. The first region has the coordi-
nates region1 = (0,0;∞,yn0). It is positioned “along” the x-axis. The second region has
the coordinates region2 = (0,0;xn0,∞) and is positioned “along” the y-axis. Both regions
are labeled in Figure 17.2(a) and (b). The third region is not labeled. It has the coordi-
nates (xn0,yn0;∞,∞). This region contains all points that are dominated by the just found
Nearest Neighbor n0. This region is of no interest anymore, the points can be discarded.

• Step 3 and 4: After the first and second step the algorithm only needs to investigate
previously defined regions (region1 and region2). The algorithm continues in the same
ways as for step 1. A new Nearest Neighbor search is issued but now the Nearest Neigh-
bor search is limited by the boundaries of region1. The newly found Nearest Neighbor,
n1 = (xn1,yn1), further divides region1 into region1.1 and region1.2 with the coordinates
region1.1 = (0,0;∞,yn1) and region1.2 = (0,0;xn1,xn0). Points not within these regions are
discarded. Note: The four points along the y-axis are not discarded since the are located
in region2 which is dealt with separately. Steps 2 and 3 are depicted in Figure 17.2(c) and
(d).

• Step 5 and 6: Now the algorithm deals with region2. A Nearest Neighbor search bounded
by region 2 is issued. With the Nearest Neighbor found region2 is divided into region2.1
and region2.2 with coordinates region2.1 = (0,0;xn0,yn1) and region2.2 = (0,0;xn0,∞).
Points not in these two regions are again discarded.

• Further steps: The algorithm continues with all found regions that have not been searched
for a Nearest Neighbor, that are, region1.1, region1.2, region2.1 and region2.2. For region1.1
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the Nearest Neighbor search and partitioning steps continue. For all other regions the
Nearest Neighbor search does not return any points, the regions are empty. So for those re-
gions no partitioning is done and the algorithm terminates for those regions. For region1.1
the algorithm will do two more Nearest Neighbor searches and partitioning steps. Then all
regions that are produced will be empty and the algorithm terminates completely having
found all Skyline points for the data set.

There are some additional facts that should be mentioned here. First, the Nearest Neighbor
dividing a region is not part of the newly produced region. If it would be part of a produced
region, our algorithm would find this Nearest Neighbor over and over again, not making any
progress at all. Second, the order in which regions are processed does not matter at all. This
can be easily proven by Lemma 1, any Nearest Neighbor to the origin is a Skyline point. Here
we can see the possible user interaction, the user clicks on the screen an the algorithm chooses
the region closest to the point the user has clicked on and starts returning Skyline points waning
from this region.

17.2.2 Algorithm Description

For the algorithmic description, please take a look at Figure 17.3, the pseudo-code. We assume
the availability of a function that computes the Nearest Neighbor to the origin with certain
boundaries. When using a multi-dimensional indexing structure such as an R*-tree [BKSS90]
such a function can easily be implemented by slightly changing the Branch-and-Bound Nearest
Neighbor algorithm by [RKV95]. The B&B Nearest Neighbor algorithm eliminates branches of
the R*-tree which cannot contain the Nearest Neighbor since their distance to the query point
(the one the Nearest Neighbor is computed to) is too high. We additionally eliminate those
branches of the R*-tree that are “out of bounds”, that is, branches where the corresponding
region (or MBR, that is minimum bounding rectangle) lies out of the given boundaries. Conflicts
are solved by accessing branches that are partly out of bounds, possibly returning a Nearest
Neighbor and then checking if the Nearest Neighbor lies within the given boundaries. If this is
not the case, the branch is eliminated and the Nearest Neighbor search continues regularly with
the next branch. These are only a few adjustments to the original Branch-and-Bound Nearest
Neighbor algorithm by [RKV95]. In the following, when we speak about Nearest Neighbor
algorithm, we mean the Nearest Neighbor algorithm with boundary restrictions.

We introduce a ToDoList. The ToDoList stores regions that still have to be processed, that is,
regions that were produced by previous steps but have not been searched for Nearest Neighbors
yet. At the beginning the ToDoList contains one region, the whole data set without restriction
(line 10). Note: Since the regions always have the origin as lower left point and since the
edges of the regions are parallel to the x- and y-axis, we only need one point to fully describe a
region, that is the upper right point. The algorithm runs until the ToDoList is empty (lines 12).
Each step of the algorithm takes another region from the ToDoList. The function nextMBR also
deletes the region from the ToDoList since after processing the region is not needed anymore.
The boundedNNsearch gets the query point (in our case always the origin), the data set D, the
boundaries of the region (represented by the upper right point) and a monotonic distance func-
tion f for the Nearest Neighbor computation (in our case the Euclidean distance). It performs
the Nearest Neighbor search on the R-tree R. If the Nearest Neighbor search returns a point
this point is used to produce new regions according to the previous section. This is done by the
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

(e) Step 5 (f) Step 6

Figure 17.2: Nearest Neighbor algorithm, first 6 steps

function setMBR. In each step the Nearest Neighbor that has been found is added to the Skyline
and output to the user.

The algorithm employs an R*-tree by [BKSS90] and uses a slightly changed Nearest Neigh-
bor algorithm by [RKV95]. However, other multi-dimensional indexing structures, such as the
UB-tree [Mar99], can also be used. In general, any indexing structure can be used that bears
the possibility of searching for Nearest Neighbors. In order not to violate the online require-
ments from Chapter 16, one must take care that the Nearest Neighbor algorithm used can return
points almost instantaneously or has a fixed (time) constraint when first Nearest Neighbors are
returned.
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1 I n p u t : R−Tree R / / D a t a s e t D r e p r e s e n t e d by i n d e x s t r u c t u r e
2 I n p u t : f u n c t i o n f / / D i s t a n c e f u n c t i o n
3 Outpu t : S k y l i n e S / / P o i n t by p o i n t
4

5 begin NNAlgorithm
6

7 T o d o l i s t T ; / / s t o r e s MBRs f o r bounded NN c o m p u t a t i o n
8 Point qp := ( 0 , 0 ) ; / / p o i n t where t h e NN i s computed t o
9

10 T . addMBR ( ( i n f , i n f ) ) ; / / add ”whole u n i v e r s e ” as s e a r c h r e g i o n
11

12 whi le ( ! T . empty ( ) ) do
13

14 Point m := T . nextMBR ( ) ; / / l ower bound o f MBR i s a lways ( 0 , 0 )
15

16 i f (R . boundedNNsearch ( qp , D, m, f ) != NULL) then
17 Point n := R . boundedNNsearch ( qp , D, m, f ) ;
18 T . setMBR ( n ) ;
19 S . add ( n ) ; / / or o u t p u t P o i n t n
20 end ;
21

22 end ;
23

24 end ;

Figure 17.3: Nearest Neighbor algorithm for 2-dimensional Skylines

17.3 Nearest Neighbor Algorithm for d-dimensional Skylines
As we have seen in the previous section, the Nearest Neighbor algorithm for 2-dimensional
Skyline problems works fine. For 3- and higher-dimensional Skyline problems the algorithm
needs to be slightly adapted. These adaptions do not change the basic character of the Nearest
Neighbor algorithm. In particular, they do not violate the online requirements from hapter
16. They arise from particularities only observable with more than two dimensions. Those
particularities, namely the chance to encounter the same Skyline point more than once and why
this can happen, are dealt with in the first part of this section. The second part of this section
discusses different possibilities of dealing with those duplicates. Also we need to explain if
and how the two basic observations can be extrapolated for d- dimensional Skyline problems in
order to apply our Nearest Neighbor algorithms for those kind of Skyline problems.

17.3.1 Particularities

Before we start talking about specialties of the d-dimensional Skyline algorithm we should
first talk about the applicability of the 2-dimensional Skyline algorithm of Figure 17.3 for
higher dimensions. Figure 17.4 shows a 3-dimensional data space and a Nearest Neighbor
n = (xn,yn,zn). Following the ideas of the previous section the data space can be partitioned
into four regions. The regions have the following coordinates region1 = (0,0,0;xn,∞,∞),
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region2 = (0,0,0;∞,yn,∞) and region3 = (0,0,0;∞,∞,zn). Region 1 to 3 have to be further
processed by our algorithm. The fourth region with the coordinates (xn,yn,zn;∞,∞,∞) does
not need to be considered any further since it only contains points that are dominated by the
Nearest Neighbor n. Lemmata 1 and 2 can be applied. Both proofs are almost identical, just
use 3- instead of 2- dimensional points and regions. That means that n can be given to the user
as a Skyline point and region 1 to 3 can be processed separately for further Skyline points.

(a) All 4 regions (b) Region 1

(c) Region 2 (d) Region 3

Figure 17.4: 3-dimensional regions for Skyline computation

Moreover, lemmata 1 and 2 can be generalized to d dimensional Skyline queries with d > 2
leaving us with the benefit that the algorithm of Figure 17.3 is also applicable for d dimensions
if it is adjusted to work with d +1 regions after each partitioning step instead of only 3 regions
as in the 2-dimensional case. The ToDoList grows by d regions in each step, the region which
contains dominated points is, of course, not added to the ToDoList, hence, only d regions are
added in each step. Table 17.1 shows the growth of the ToDoList for some dimensions.

Step Dimension
2 3 5 10

Step 1 1 1 1 1
Step 5 5 9 17 37
Step 10 10 19 37 82
Step 20 20 39 77 172
Step 30 30 59 117 262
Step 40 40 79 157 352
Step 50 50 99 197 442
Step 100 100 199 397 892

Table 17.1: Growth of ToDoList

As it can be seen, the ToDoList grows somewhat fast for higher dimensionality. However, we
expect the ToDoList to fit into main memory. In the case when it does not fit into main memory
anymore, parts of it can be swapped out to disk and later, when needed, reloaded into main
memory.
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Now we have to talk about the particularities of higher-dimensional Skyline queries. For that,
we should go back to Figure 17.4. We can observe that the regions in 3-dimensional (and
higher-dimensional) space overlap in contrast to a 2-dimensional space. They overlap in such a
way that the same Skyline points can be found twice or even more often. Take a look at point
p in Figure 17.4. Say, that point p is a Skyline point, that means that p is not dominated by n
because it is better than n in the y and z dimensions. As it can be seen, point p can be found
when processing region2 or region3. Such duplicates could not occur with the Nearest Neighbor
algorithm in 2-dimensional space. Duplicates seem to be a subtlety of high-dimensional data
sets and there are many ways to carry out duplicate elimination, for example, as described in
[BD83] or [Lar99]. However, as we will see, such duplicates can influence the performance of
the Nearest Neighbor algorithm severely. In the next section, we will present alternative ways
to extend the Nearest Neighbor algorithm in order to deal with such duplicates.

17.3.2 Duplicate Treatment

In this section we will describe how duplicates as they occur in the Nearest Neighbor Skyline
computation in high-dimensional environments can be either eliminated or avoided. Each tech-
nique has its advantages and trade offs. We will also study these. The end of this section also
gives a performance comparison of the different techniques.

Laisser-faire Method

The first technique is called Laisser-faire. This approach eliminates duplicates in a post-processing
step. Each Nearest Neighbor found is checked against a main memory hash table. If the current
Nearest Neighbor is found in the hash table, it is a duplicate and thus it is not output to the user.
Nevertheless, the region the Nearest Neighbor is found in has to be subdivided according to the
Nearest Neighbor (the duplicate) and the emerging regions are put into the ToDoList for further
inspection. If the Nearest Neighbor is not found in the hash table it is a new Skyline point. It is
then recorded in the hash table and output to the user.
The approach with a main memory hash table is simple to implement and sufficient to eliminate
duplicates [Lar99]. If a main memory hash table is not usable any more, that is, the hash table
grows too much, an index on second storage, for example, a B-tree [Com79], can be used. One
disadvantage of this algorithm is that this approach results in a great deal of wasted work. Using
this approach, it is possible that the Nearest algorithm does not make any or only little progress
because it finds the same Skyline point several times. In the worst case, a point can be found
d−1 times.
There is another disadvantage. According to the original Skyline definition in [BKS01], dupli-
cates that occur in the input data set, so-called real duplicates, are eliminated as well by this
approach. Those duplicates, however, should be part of the Skyline. In order to overcome this
shortcoming, we suggest the use of a unique identifier for each point and take this identifier into
account when eliminating duplicates.

Propagation Method

Instead of eliminating duplicates after they occur, it is possible to prevent duplicates before
the occur. A Nearest Neighbor can be found again if it is contained in another region in the
ToDoList. So whenever the Nearest Neighbor algorithm finds a Skyline point we scan the
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whole ToDoList. If the Nearest Neighbor is contained in one ore more regions, these regions
are subdivided by the Nearest Neighbor and then deleted from the ToDoList. Thus, we avoid
the Nearest Neighbor search for this region. This is correct since only points that are dominated
by a Skyline point are discarded by this operation. It is called the Propagation approach. The
big advantage of this approach is that it completely avoids wasted work to find duplicates.
However, the big disadvantage is that scanning the whole ToDoList for every Nearest Neighbor
found implies significant overhead. This overhead can be partly remedied when using a main
memory indexing structure for indexing the regions in the ToDoList. Instead of scanning the
ToDoList, an index access quickly finds regions that can be eliminated.

Merge Method

We now turn to a technique that can be used to improve both the Laisser-faire and Propagate ap-
proaches. The idea is to merge (or even eliminate) regions of the ToDoList under certain circum-
stances. The basic idea of merging is quite simple. Assume that two regions a = (a1,a2, . . . ,ad)
and b = (b1,b2, . . . ,bd), d being the number of dimensions, are in the ToDoList. As said before,
we denote only the upper right point for a region. Essentially, this means that we still need to
look in both of these areas for more Skyline points. Now, we can merge these two regions into
a single region: a⊕b = (max(a1,b1),max(a2,b2), . . . ,max(ad,bd)). Region a⊕b supersedes
both regions; thus, we are sure not to miss any points if we investigate a⊕b only. A particular
situation arises, if a supersedes b; that is, if a1 ≥ b1, a2 ≥ b2, . . . , and ad ≥ bd . In this particular
situation, a = a⊕b and thus b can be simply discarded from the ToDoList. In this situation, b
can be discarded from the ToDoList even if a has already been processed and is not part of the
ToDoList anymore. Merging reduces the size of the ToDoList. On the negative side, merging
increases the size of the regions. Furthermore, finding good candidates to merge can become
expensive. In addition, eliminating regions which are superseded by other regions involves re-
membering regions after they have been processed. Therefore, merging must be employed with
care. We propose the following heuristics to make use of merging:

• Propagate: For the propagate approach, we propose making no use of merging and only
consider the special case in which a region of the ToDoList can be discarded because it is
superseded by another region.

• Laisser-faire: For the laisser-faire approach, we propose to make use of merging whenever
a duplicate is detected. That is, we only merge regions if they were derived from the same
Skyline points. At the same time, we must be careful not to merge a region with one of
its ancestor regions - this restriction is necessary in order to guarantee termination of the
algorithm. If a region was merged with its ancestor region the algorithm would be trapped
in an endless loop since the same regions would be produced over and over again.

Fine-grained Partitioning

Another option to avoid duplicates is to partition the regions in a fine-grained way so that they
do not overlap. However, overlap-free regions mean that not only d regions have to be further
processed but 2d − 2 regions (see Figure 17.4). Table 17.2 shows the growth of the ToDoList
(please see also Table 17.1 for comparison).
This exponential increase of regions is a major drawback of this strategy. In Figure 17.4, for
instance, we could partition into 8 non-overlapping regions of which 6 regions would be rele-
vant for further processing. Implementing this approach, however, results in a sharp growth of
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Step Dimension
2 3 5 10

Step 1 1 1 1 1
Step 5 5 21 117 4085
Step 10 10 46 262 9190
Step 20 20 96 552 19400
Step 30 30 146 842 29610
Step 40 40 196 1132 39820
Step 50 50 246 1422 50030
Step 100 100 496 2872 101080

Table 17.2: Growth of ToDoList with fine-grained partitioning

the number of regions in the ToDoList. Furthermore, this approach involves a complex post-
filtering step in order to determine points of a region which are dominated by points of another
region. Therefore, we did not pursue this approach any further.

Hybrid Method

Finally, we propose a hybrid technique to deal with duplicates. As mentioned above, merging
can be combined with both the laisser-faire and the propagate approach. Another option would
be to start and propagate duplicates until the ToDoList has reached a certain size. Then the
algorithm switches to laisser-faire because propagation might be too expensive for a larger
ToDoList.

17.4 Online Algorithm?

This section recalls the requirements set forth in Chapter 16. We want to discuss if the previ-
ously described algorithm fulfills these requirements. Only if it fulfills all of these requirements
can we call it an online algorithm. Let us take a look at each requirement:

1. First few results: With the help of a multi-dimensional index structure such as an R-tree,
Nearest Neighbor search is a cheap operation so that the Nearest Neighbor algorithm
returns the first results almost instantaneously. Even more, not only the first result can
produced almost instantaneously but the first few results can be returned in less than a
second even for high-dimensional data sets (we will see this in a later section). Due to
the curse of dimensionality, Nearest Neighbor search can become an expensive operation
for very high-dimensional data. In practice, however, we do not expect users to specify
more than, say, five dimensions as part of their Skyline queries, particularly, in interactive
environments.

2. Compute the complete Skyline: The algorithm will explore all regions and will find all
points of the Skyline.

3. No false-positives: Considering the two lemmata mentioned at the beginning of this chap-
ter, all Nearest Neighbors found by our Nearest Neighbor algorithm are part of the Sky-
line.
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4. Fairness: The Nearest Neighbor algorithm produces results from the whole range of re-
sults very quickly. We will further discuss this property in a later section.

5. Control: There are two ways in which the Nearest Neighbor algorithm can react to pref-
erences specified by the user, that is, change the order in which query results are returned:

• First, if a user clicks on a particular point in the graphical user interface during
the running time of the algorithm, the algorithm can process those regions of the
ToDoList next that are located near the point the user has clicked on.

• Second, the distance function f is a parameter of the Nearest Neighbor algorithm
and can be changed any time during the execution of the algorithm. This property
can be exploited in the following way. At the beginning, the algorithm starts with
some default distance function, for example, f = price+distance. If the user clicks
on the point (price = 40, distance = 200), the user puts more emphasis on a cheap
hotel rather than a short distance to the beach. The distance function can now be
adjusted to f = 2 ·price + distance. With every interaction of the user, the distance
function can be adjusted accordingly. We have to stress here that changing the
distance function does not change the Skyline. From Lemma 1 we can see that
the Skyline is independent from the distance function. Only the order in which
the Skyline points are output is changed when the distance function is changed.
The Skyline points returned before changing the distance function remain valid as
well as the ToDoList. As a result, the Nearest Neighbor algorithm can continue to
produce Skyline points using the new distance function without any adaptions.

6. Universal: As we have seen, the algorithm can be extended so that it works for Skyline
queries that involve more than two dimensions. It can be applied if the query involves
additional predicates (indexed and not indexed) and it can also be applied in a mobile
scenarios (more of that in Part IV). It is based on multi-dimensional index structures (R-
tree) that support Nearest Neighbor search. Such index structures are well known and
provide scalability, dynamic updates, and independence of the data value distribution. If
the data set involves, say, five dimensions which are potential criteria for Skyline queries,
then a single five-dimensional R-tree will be sufficient to execute all Skyline queries.

The Nearest Neighbor algorithm fulfills all online requirements. Only now is it possible to think
about mobile applications of this algorithm. Mobile environments contain continuous queries
which should be answered immediately, or in other words, which should be answered online.
More of this will be discussed in Part IV.

17.5 Discussion
This section presents some running time results of the Nearest Neighbor algorithm. The first
part of this section compares the Nearest Neighbor algorithm with batch algorithms from Part II.
Those results were published in [KRR02]. The second part of this section takes the progressive
algorithms from Part II and compares them to the Nearest Neighbor algorithm. These results
were also published in [KRR02]. This section concludes with a discussion about the quality of
Skyline results when computed in an online fashion.

All experiments were carried out on a SUN Ultra 1 with a 167 MHz processor and 128 MB
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of main memory. The operating system was Solaris 8. Data sets we used were anti-correlated,
correlated, and uniformly distributed (see Chapter 6 for details).

17.5.1 Comparisons with Batch Algorithms
For these experiments we used the Nearest Neighbor algorithm as described previously. As
duplicate treatment strategy we used the Propagate approach. The data sets contained 100,000
and 1 million points. As value distributions we used an anti-correlated data set, a correlated data
set, and a uniformly distributed data set. Detailed descriptions of the three types of data sets can
be found in Chapter 6. As Batch algorithms we deployed a variation of the Block-Nested-Loops
algorithm depicted in Chapter 10 and a variation of the Divide-and-Conquer algorithm depicted
in Chapter 11. Table 17.3 displays the results for 2-dimensional Skyline queries.

100,000 Points 1,000,000 Points
Anti. Corr. Unif. Dist. Anti. Corr. Unif. Dist.

NN 0.57 0.02 0.20 0.69 0.02 0.50
BNL 1.77 1.65 1.68 17.16 16.24 16.07
D&C 2.63 2.56 2.63 28.65 28.53 28.50

Table 17.3: Batch vs. NN [KRR02], size of Skyline, running times [secs] for 2-dimensional Skyline

We can observe that the Nearest Neighbor algorithm (NN) is the overall winner in this experi-
ment. As mentioned before, 2-dimensional Skylines are a particularly good case for the Nearest
Neighbor algorithm. The Block-Nested-Loops (BNL) and the Divide-and-Conquer (D&C) al-
gorithms show relatively poor performance because both algorithms involve reading the whole
data set, whereas the Nearest Neighbor algorithm can use the R*-tree in order to quickly re-
trieve Skyline points. When comparing the running times for the small and large data set, it can
be seen that the Nearest Neighbor algorithm scales best. Its running time stays almost constant,
whereas the running times of the other algorithms increase sharply. To be more precise, the
running times of the Nearest Neighbor algorithm do not increase even when the data set size
is increased by a factor of ten. (100K points versus 1M points). For the Block-Nested-Loops
and Divide-and-Conquer algorithms the running times increase approximately by a factor of ten
when comparing the 100K and 1M data sets. It is quite clear why. Both Batch algorithms need
to scan the whole data set at least once to be able to decide on the Skyline membership or not.
The Nearest Neighbor algorithm draws advantage from its unique property that is does not have
to look at the whole data set to decide Skyline membership.

17.5.2 Comparison with Progressive Algorithms
Now we want to compare the Nearest Neighbor algorithm to the Bitmap algorithm and the
B-tree algorithm published in [TEO01], described in Chapter 12 and Chapter 13, respectively.
Table 17.4 is displays the results of our Nearest Neighbor algorithm, the Bitmap algorithm and
the B-tree algorithm. Again, 100,000 and 1 million points with anti-correlated, correlated, and
uniformly distributed data values were used.
Again, the Nearest Neighbor algorithm is the winner in this contest. The Bitmap algorithm
must consider all points in the data set. This leads to the same observation as previously for
the Block-Nested-Loops and Divide-and-Conquer algorithm: The running times for the large
data sets is about 10 times higher than for the small data set. The B-tree algorithm performs
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100,000 Points 1,000,000 Points
Anti. Corr. Unif. Dist. Anti. Corr. Unif. Dist.

Skyline size 49 1 12 54 1 12
NN 0.57 0.02 0.20 0.69 0.02 0.50
Bitmap 6.09 0.84 1.40 57.12 12.23 17.90
B-tree 13.86 0.01 0.26 > 200 0.12 0.92

Table 17.4: Progressive vs. NN, size of Skyline, running times [secs] for 2-dimensional Skyline
[KRR02]

well for the correlated and uniformly distributed data sets. However, it shows poor performance
for the anti-correlated data sets. In this case, the B-tree algorithm must also read (almost)
the whole data set in order to compute the full Skyline because the termination condition, the
special trick of this algorithm, does not apply until the very end in this particular data value
distribution. Furthermore, the B-tree algorithm has fairly high overhead for each point: it must
compare each point with all Skyline points found so far. For the large data sets, we had to stop
the execution of the B-tree algorithm for the anti-correlated database after 200 seconds, it had
produced only 30 Skyline points up to then.

Although we believe that for this particular Skyline setup the 2-dimensional problems are by
far the most important problems, we also want to take a look at higher dimensional data sets,
here a 5-dimensional anti-correlated data set with 1 million points. The size of the Skyline is
fairly large. The Skyline contains about 36,000 points. Computing the full Skyline takes a long
time, regardless what algorithm is used. As a result, online characteristics of an algorithm are
of particular interest for interactive applications in this scenario. Rather than flooding the user
with results, first results should be returned immediately and the user should be able to pick his
or her choice from relevant points.

NN B-Tree Bitmap
Time for first
100 points [secs] 8.4 0.1 23.6
Response to User
Interaction [secs] 0.1 ∼ 300 ∼ 87
Skyline points returned
before user point found 0 15000 5117

Table 17.5: Progressive vs. NN , first results [KRR02]

Table 17.5 shows the running times of the alternative Skyline algorithms to produce the first
100 Skyline points. In addition, it shows how quickly the algorithms can return points based on
user preferences. In this experiment, the B-tree algorithm produces the results very quickly: it
takes less than a second to produce the first 100 Skyline points. This is not surprising because
this algorithm simply needs to scan through the extended B-tree and return points that are ex-
tremely good in one dimension. The Nearest Neighbor and Bitmap algorithms need to perform
significantly more logic. So the B-tree algorithm is good in order to return some results. How-
ever, if the user gives preferences, the B-tree algorithm cannot adapt well. In this experiment,
we simulated a user that is interested in a point that is good in all dimensions: If one uses the
B-tree algorithm it takes 300 seconds to find such a point and more than 15,000 points need
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to be inspected before such a point is returned. In terms of interactivity, the Nearest Neighbor
algorithm is the clear winner. Whenever a user gives a preference, the Nearest Neighbor al-
gorithm adjusts its distance function and returns the next point that matches these preferences
immediately: it only takes 0.1 seconds for the Nearest Neighbor algorithm to adapt. In some
sense, the B-tree algorithm (blindly) scans through the Skyline whereas the Nearest algorithm is
able to (selectively) pick points from the Skyline based on user preferences. Naturally, blindly
scanning has less overhead per point than selectively picking points. We will stress this fact in
a later section where we take a look at the first results returned by different Skyline algorithms
in the 2-dimensional case, a quality check.

17.5.3 Comparisons of Different Duplicate Treatments of the Nearest Neighbor
Algorithm

We now turn to a discussion of the performance trade offs of the variants of the Nearest Neigh-
bor algorithm for Skyline queries of more than two dimensions. These variants have been
previously described. Figure 17.5 shows the performance of four variants for a 5-dimensional
Skyline with an anti-correlated data set and 1 million points.
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Figure 17.5: Comparison of Nearest Neighbor variants

We measured the following variants: Laisser-faire; Laisser-faire and merge regions whenever a
duplicate is found; Propagate; Hybrid, that is, propagate to the first 20 % entries of the ToDoList,
duplicates that are not prevented by the reduced propagation are handled with the laisser-faire
approach. No index on the ToDoList was used to find entries in the ToDoList. Nevertheless,
the last two variants (Propagate and Hybrid) clearly outperform the other variants. The merge
and laisser-faire variants spend too much time on duplicates. On average four nearest neighbor
searches needed to be carried out for these two variants in order to find a new result. Further-
more, the performance of the hybrid variant can be improved by tuning. In some experiments,
it performed better when only 10 %, rather than 20 %, of the ToDoList were scanned or when
only a fixed number of entries of the ToDoList was considered.

17.5.4 Quality of Results
As said in Chapter 16, mostly users are not probably interested in all Skyline points (for exam-
ple, all hotels in Lido di Jesolo). They want a good overview of their choices in order to pick
their most favorite hotel. The user wants a “big picture” rather than being struck by thousands
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of results. In this section we compare the B-tree algorithm, that produces Skyline points at very
high rates, and the Nearest Neighbor algorithm, that has a good interactive performance. Figure
17.6 shows a 2-dimensional Skyline anti-correlated Skyline problem. Figure 17.6(a) shows all
Skyline points in a coordinate system. Figure 17.6(b) shows the first 10 points returned by the
Nearest Neighbor algorithm and Figure 17.6(c) shows the first 10 points returned by the B-tree
algorithm.
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Figure 17.6: Quality of results

The Nearest Neighbor algorithm returns points that are good in all dimensions, giving the user
an excellent “big picture” of, for example, the hotel situation. It returns some hotels that are
cheaper and have a longer distance to the sea and it returns some hotels that are more expensive
but have a shorter distance to the sea. Now, the user can decide what is more important to him
or her and click on one of the hotels or select an area which is of more interest. The Nearest
Neighbor algorithm adapts to this new situation and starts returning points that lie in the area the
user has clicked on. If the user chooses an area located at the x- or y-axis the Nearest Neighbor
algorithm will start returning extreme points, that are either very cheap or very close to the
beach.
The B-tree algorithm fails to give the user a “big picture” of the hotel situation. It returns
extreme points first, that is five hotels that are cheap and five hotel that are close to the beach.
After these 10 points, however, the user does not get a good picture of the price/distance trade-
offs. The users has to wait until the B-tree algorithm starts returning points “in the middle”
since they cannot control the behavior of the B-tree algorithm. When the B-tree algorithm starts
returning even-tempered points the screen will be filled with extreme points preventing the user
from getting the big picture due to an overwhelming amount of points.



CHAPTER 18

Branch-and-Bound Skyline Algorithm

This algorithm has been published in [PTFS03]. We will explain the main algorithm by applying
it to our hotel example. Some newer work about this algorithm has been published in [PTFS05].

18.1 Algorithm Description

Table 18.1 recalls our hotel example from Chapter 7. We add two more columns to the table.
The first added column abbreviates the hotel names with characters from a to k. The second
added column displays the value of the distance function for each hotel. As distance function
we use f = price+distance. These values are later necessary to perform a sorted processing of
the entries. Please note that these values do not have to be precomputed when using an R-tree
as indexing structure for the points. The distance can be computed “on the fly” when accessing
the R-tree nodes.

Name Short Price [EUR] Distance [m] Distance f
Hotel Arena a 45 100 145
Hotel Aden b 40 200 240
Hotel International c 42 300 342
Hotel Aurora d 35 400 435
Hotel Majestic Toscanelli e 50 280 330
Hotel Monaco & Quisisana f 60 150 210
Hotel Elpiro g 55 50 105
Hotel Marlisapier h 65 250 315
Hotel Al Gambero i 72 40 112
Hotel Rex j 40 500 540
Hotel Heron k 68 100 168

Table 18.1: Hotel example for Branch-and-Bound algorithm

As previously mentioned it is handy to use an R-tree as indexing structure for the hotels. Figure
18.1 shows one possible R-tree with a node capacity of 3 points per node. In Figure 18.1(a) the

87
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points (hotels, a to k), the leaf nodes (n1 to n4), and the intermediate node (n5, n6) are shown
with their orientation in a 2-dimensional plain. The root node r is not shown. It contains nodes
n5 and n6. Figure 18.1(b) displays the R-tree.

(a) Orientation (b) Nodes

Figure 18.1: R-tree layout

For all leaf nodes and intermediate nodes the distance is also needed. Table 18.2 shows those
distances. The distance of a node is defined by its lower left corner. Again, these distances are
inherent information when using an R-tree. If they are not computed and stored when building
the R-tree, they can be computed when accessing the specific node. So almost no overhead is
implied when computing these distances. The distance function is, of course, the same function
as used for the distance of each point.

Node Distance f
n1 335
n2 140
n3 105
n4 108
n5 135
n6 95

Table 18.2: R-tree, distance of nodes

With this additional information, we can now describe the Branch-and-Bound Skyline algo-
rithm. Table 18.3 displays each step to compute the Skyline of the example. The Branch-and-
Bound Skyline algorithm is an adaption of the “Incremental Nearest Neighbor” algorithm from
[HS99]. It starts at the root node r and inserts all entries (e5, e6) into a heap sorted according to
their distances. Each entry e corresponds to a node n. The the first entry, that is, the one with the
minimum distance (e6) is expanded. Expanding means retrieving all entries from lower nodes
that the entry is pointing to. Here, e6 expands to e3 and e4. These two entries are also inserted
into the heap according to their distance. Again the entry with the lowest distance is is expanded
(e3). This yields the first three points (g, f , h) in the heap, inserted in order of distance. The
algorithm discovers the first Nearest Neighbor (g, in bold). It is the first entry in the heap and it
is not dominated by any Skyline point since the Skyline Sis still empty. The Nearest Neighbor
(g) is inserted into the Skyline (or output to the user) and removed from the heap. Now the
expansion procedure continues with the next entry in the heap. The only differences now is that
all new entries of the heap are pruned (in square brackets) with the Skyline (so far only one
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point, g). If the entry is dominated by this point (later by any Skyline point) it is removed from
the heap without looking at it. This is the case for the next expansion step (e4) which would
yield two new entries (i and k). The entry i is inserted into the heap whereas entry k is pruned
since it is dominated by g. With i the algorithm finds its second Nearest Neighbor, hence i is
inserted into Skyline S. This procedure continues until the heap is empty. Whenever a point
(as opposed to an intermediate node entry) is at the top of the heap it is a Nearest Neighbor.
The last step here does not execute expansions any more since only points are still in the heap.
These points are pruned with the Skyline.

Action Heap contents S
Access root e6 (95), e5 (135)
Expand e6 e3 (105), e4 (108), e5 (135)
Expand e3 g (105), e4 (108), e5 (135), f (210), h (315) g
Expand e4 and prune with S i (112), [k (168)], e5 (135), f (210), h (315) g, i
Expand e5 and prune with S e2 (140), e1 (335), f (210), h (315) g, i

a (145), b (240), [e (330)], e1 (335), f (210), h (315) g, i, a, b
Expand e1 and prune with S [c (342)], d (435), [ j (540)], f (210), h (315) g, i, a, b, d
Prune with S [ f (210)], [h (315)] g, i, a, b, d

Table 18.3: Brand-and-Bound Skyline algorithm steps

Figure 18.2 displays the pseudo-code for the Branch-and-Bound algorithm. The domination-
function returns true if the entry in turn is dominated by a Skyline point and false if no Skyline
point dominates the entry. Each entry is checked twice for Skyline dominance: before it is
inserted into the heap and before it is expanded. This is necessary because an entry in the heap
might become dominated by a Skyline point discovered after it has been inserted. In this case
the entry can be discarded right away and does not have to be expanded any further.

Is this algorithm correct? The authors of [PTFS03] give three lemmata that show that the
Branch-and-Bound Skyline algorithm works correctly. We want to briefly discuss these lem-
mata and their proofs here.

Lemma 1: The Branch-and-Bound algorithm visits (leaf and intermediate) entries of an R-tree
in ascending order of their distance to the origin.

Lemma 2: Any data point added to the Skyline during execution of the algorithm is a Skyline
point.

Lemma 3: Every data point will be examined unless one of its ancestor nodes has been pruned.

Lemma 1 is proven straightforward: A heap is used to preserve a sorted order of leaf and inter-
mediate tree entries. Lemma 2 can be shown by contradiction: Assume that p was added to S,
but p is not a Skyline point. Then p must be dominated by (at least) one Skyline points s which
is (at least) better in one dimension (see definition of domination in Chapter 4). This means that
distance(s) < distance(p). With Lemma 1, s must be have been visited before p and hence, p
should be pruned by s. Finally the proof of Lemma 3 is obvious, since all entries that are not
pruned by a Skyline point are inserted into the heap and later examined.

In [PTFS03] the authors also discuss the I/0 optimality of this algorithm, which we omit here,
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1 I n p u t : R−Tree R / / D a t a s e t D r e p r e s e n t e d by i n d e x s t r u c t u r e
2 I n p u t : D i s t a n c e f u n c t i o n f
3 Outpu t : S k y l i n e S / / P o i n t by p o i n t
4

5 begin BBSAlgorithm
6

7 Heap H( f ) ; / / s o r t t h e heap a c c o r d i n g t o f
8 Node n := R . g e t R o o t ( ) ;
9

10 f o r ( i n t i := 1 to n . g e t F a n o u t ( ) ) do
11 H. i n s e r t ( n . getNextNode ( ) ) ;
12 end ;
13

14 whi le ( !H. empty ( ) ) do
15

16 Entry e = H. ge tTop ( )
17

18 i f ( d o m i n a t i o n ( e , S ) ) then
19 / / d i s c a r d e
20 e l s e
21 i f ( e . i n s t a n c e o f ( ) = Node ) then
22 / / i n t e r m e d i a t e node : i n s e r t a l l c h i l d r e n
23

24 f o r i n t i := 1 to e . g e t F a n o u t ( ) do
25 Entry k := e . getNextNode ( ) ;
26 i f ( d o m i n a t i o n ( k , S ) ) then
27 / / d i s c a r d k
28 e l s e
29 H. i n s e r t ( k ) ;
30 end ;
31 end ;
32

33 e l s e
34 / / e i s da ta p o i n t
35

36 S . i n s e r t ( e ) ;
37

38 end ;
39 end ;
40 end ;
41

42 end ;

Figure 18.2: Branch-and-Bound algorithm
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and they describe some variants of Skyline queries, which we also omit. The interested reader
is forwarded to [PTFS03]. However, in a later section we briefly show some running time
results that compare the Nearest Neighbor Skyline algorithm to the Branch-and-Bound Skyline
algorithm.

18.2 Online Algorithm?
As we previously said, the Branch-and-Bound Skyline algorithm qualifies as an online algo-
rithm. We want to quickly scan through the requirement from Chapter 16 to check each re-
quirement separately.

1. First few results: As soon as the algorithm accesses a leaf node it finds the first Skyline
point. With the characteristics of an R-tree this requires not more than a few page accesses
on disk which normally is very quick. Consecutive points are also found very quickly
since only a few more page accesses are required.

2. Compute the complete Skyline: Lemma 3 ensures this property. Every point will be
examined unless it is dominated or one of its ancestor nodes is dominated. In this case
the point is also dominated.

3. No false-positives: Lemma 2 guarantees that only real Skyline points are inserted. into
the Skyline.

4. Fairness: The Branch-and-Bound algorithm finds the Skyline points according to their
distance. This distance involves all dimensions equally balanced.

5. Control: By changing the distance function the user can control the order in which Skyline
points are output. However, changing the distance function during computation is not
possible, since then all heap entries would have to be re-sorted. In that case Lemma 2
does not hold anymore.

6. Universal: This property is also fulfilled. The Branch-and-Bound algorithm can be used
with with different indexing structures. The same indexing structure can be used for
m-d-Skyline queries. No data value distribution is favored.

Besides the control property, the Branch-and-Bound algorithm completely fulfills all require-
ments. The control property is partly fulfilled. Nevertheless, we call the Branch-and-Bound
Skyline algorithm an online algorithm.

18.3 Discussion
Let us take a short look at some running time experiments which compare the Nearest Neighbor
Skyline algorithm with the Branch-and-Bound Skyline algorithm. Those results were published
in [PTFS03]. The results were produced on Pentium 4 computer running at 2.4 GHz with 512
MB of main memory. The authors used anti-correlated and uniformly distributed data sets as
described in Chapter 6 with 100,000 and 10 million points. They used an R*-tree by [BKSS90].
In Figure 18.3 the Branch-and-Bound algorithm is compared to the Nearest Neighbor algorithm
with 1 million points of 2, 3, 4, and 5 dimensions. The data sets used had an anti-correlated and



92 CHAPTER 18. BRANCH-AND-BOUND SKYLINE ALGORITHM

uniformly distributed data value distribution. The full Skyline was computed. It can be seen
that the Branch-and-Bound algorithm outperforms the Nearest Neighbor algorithm for all di-
mensions. Even more, for 5 (uniformly distributed) and for 4 and 5 (anti-correlated) dimensions
the Nearest Neighbor algorithm did not come to an end. The gain of the Branch-and-Bound al-
gorithm was at least 10 times as fast as the Nearest Neighbor algorithm.

(a) Anti-correlated (b) Uniformly distributed

Figure 18.3: Running time BBS vs. NN, 1M points, dim 2 to 5
[PTFS03]

Figure 18.4 again compares the Branch-and-Bound algorithm to the Nearest Neighbor algo-
rithm in terms of data set sizes. The data set sizes ranked from 100,000 to 10 million points.
Again, the Nearest Neighbor algorithm is no match for the Branch-and-Bound algorithm.

(a) Anti-correlated (b) Uniformly distributed

Figure 18.4: Running time BBS vs. NN, dim 3, 100K to 10M points
[PTFS03]

The Branch-and-Bound Skyline algorithm is superior to the Nearest Neighbor Skyline algo-
rithm in all cases. The only drawback is its lack of user control possibilities discussed in
Chapter 18. Since the running time of the Branch-and-Bound algorithm is much lower than
the running time of the Nearest Neighbor algorithm the lack of user control could be overcome
be simply recomputing the Skyline from scratch.



CHAPTER 19

Summary: Online Skyline Computation

In Chapters 16 through 18 we showed two Skyline algorithms that qualify as online Skyline
algorithms. We also presented requirements for an algorithm to be called an online Skyline
algorithm. Also we laid out a scenario for which online algorithms can be used and showed
why we think this scenario will happen in daily life.

The Nearest Neighbor Algorithm was the first algorithm to be suitable for our online scenario
exploiting the relationship between Skyline and Nearest Neighbors as discussed in [Ros01]. It
is superior to most Skyline algorithms given in Part II especially for data sets with low and
medium dimensionality. It is also the algorithm of choice if you want to have a quick glance
at the shape of the Skyline since it produces the first Skyline points quickly with no particular
emphasis to any dimension. A fine add-on is also that the user can control the sequence the
Skyline points are computed.

The Branch-and-Bound Skyline Algorithm is an adaption and extension of the Nearest Neighbor
Algorithm. Its particular strength lies in the overall speed of computing the Skyline, being less
affected by data sets with high dimensionality. A minor drawback of the algorithm is that due
to its construction there is no user control like for the Nearest Neighbor Algorithm.
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Part IV

Continous Skyline Computation
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CHAPTER 20

Layout

Part IV takes Skyline computation a leap ahead. Instead of trying to compute the Skyline in
efficient ways we will use the Skyline, the set of incomparable points, as an information pre-
filter as described in Chapter 4.
There are two implications with this: First, an information pre-filter usually works on changing
data, for example, stock ticks quoting new prices for stocks are sent to each stock broker. The
information pre-filter has to decide if, according to some user preferences, if the new quote
should be displayed to the stock broker or not. Certainly, each stock broker has his or her own
the of stocks of interest. So in order to use the Skyline as an information pre-filter we have to
enable the Skyline computation to deal with changing data. We call this scenario continuous
Skyline computation since changing data certainly involves recomputing the Skyline in some
way. Depending of the rate the changes of the data occur this Skyline re-computation becomes
a continuous computation. Chapter 21 deepens this scenario and Chapter 22 explains two basic
operations that are needed for this scenario.
And second, when using the Skyline as an information pre-filter, then certainly there is not only
one pre-filter but thousands, each having a slightly different appearance. For example, one stock
broker is interested in petro-chemical companies, the other in companies which sells consumer
goods. We have to make sure that each pre-filter is efficiently recomputed when data changes
occur. Again Chapter 21 deepens this scenario and Chapter 23 depicts a way to efficiently
recompute many Skyline queries.
Specifying user preferences can be done in many ways. We choose to use an adaption of SQL
as proposed in Chapter 4. So user express their preferences in an SQL notation, a Skyline query.

97



CHAPTER 21

Continuous Skyline Scenario

21.1 Continuous Skyline Queries
Continuous Skyline queries are Skyline queries that are recomputed on a regular basis. Recom-
puting a Skyline query means recomputing the set of incomparable points, the Skyline. On a
regular basis means, whenever an event occurs, the Skyline query is recomputed. An event for
recomputing the Skyline query might be the insertion or deletion of a point into or from the
underlying data set. Then definitely the Skyline query has to be recomputed since an insertion
or deletion might influence the Skyline.
Before we dwell into details about what is needed to react to changing data sets, we want to
restrict the Skyline query as given in Chapter 4. The Skyline queries in the following have the
form given below:

SELECT projection
FROM collection
WHERE predicates
SKYLINE OF dim1 [MIN|MAX], ..., dimn [MIN|MAX];

Projection and collection have the same meaning as previously said. Predicates are restricted
to range predicates on n dimensions concatenated by AND, for example,

SELECT *
FROM data set
WHERE 0.1 < dim1 < 0.2 AND 0.1 < dim4 < 0.2
SKYLINE OF dim1 MIN, dim2 MIN;

We do not consider queries with joins or group by. Also we do not consider Skyline queries
with diff annotations as described in Chapter 4. This is done to facilitate the handling of queries,
especially when multiple continuous queries are computed. Figure 21.1 shows the pseudo-code
representation of a query.
A query consists of five parts: The first part holds the Skyline S, that is, all incomparable
points at present time. For instance, the Skyline can be an array of points. The second part
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1 s t r u c t u r e Query
2

3 / / h o l d s t h e c u r r e n t S k y l i n e o f query
4 S k y l i n e S ;
5

6 / / r e p r e s e n t a t i o n o f SKYLINE OF c l a u s e ( compar i son f u n c t i o n )
7 / / r e t u r n s : p {LESS | GREATER | EQUAL | INCOMPARABLE} q
8 f u n c t i o n compare ( Point p , Point q , bool dims ) ;
9

10 / / r e p r e s e n t a t i o n o f WHERE c l a u s e
11 / / r e t u r n s : p f u l f i l l s p r e d i c a t e s or n o t {TRUE | FALSE}
12 f u n c t i o n p r e d i c a t e s ( Point p ) ;
13

14 / / e v e r y t h i n g t h a t has t o be done when a p o i n t i s
15 / / i n s e r t e d i n t o t h e da ta s e t
16 f u n c t i o n i n s e r t ( Point p ) ;
17

18 / / e v e r y t h i n g t h a t has t o be done when a p o i n t i s
19 / / d e l e t e from t h e da ta s e t
20 f u n c t i o n d e l e t e ( Point p ) ;
21

22 end ;

Figure 21.1: Pseudo-code of a query

(compare) is an internal representation of the SKYLINE OF clause. This is a modification of the
comparison function given in Figure 4.1. The modifications include the possibility to compute
m-d-Skylines, that is, only a subset m of the d dimensions (m < d) is used to compute the Skyline
on. The comparison function gets two points p and q and a representation of the dimensions the
Skyline is computed on, dims, and returns p is less than, greater than, equal to, or incomparable
to q with respect to dims. This comparison function is denoted as cQ in subsequent chapters.
The third part (predicates) is an internal representation of the WHERE clause holding all the
predicates. The function gets a points and checks if the point fulfills all predicates. It, therefore,
returns true or false.
The functions insert and delete represent the operations that have to be done with respect to the
Skyline query when a new point is inserted into the data set or deleted from the data set except
the insertion or deletion of the point from the data set itself. This is done in a separate step.
Later we will take a closer look at the functions compare and predicates and the functions insert
and delete. For now they serve as a placeholder for the further discussion of continuous Skyline
queries.

Please note: The internal representation of a Skyline query as given in Figure 21.1 is an extended
representation of a Skyline query arranged for continuous Skyline queries. The insert and delete
functions are, of course, not part of SQL.

Now the questions arises if the Skyline query has to be completely recomputed for the complete
data set dropping the Skyline computed so far or if, for example, the Skyline of the query
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can be used to determine if the change in the data set has an effect on the specific query and
the resulting Skyline points. Those questions are answered in Chapter 22. We will give our
considerations, algorithms and operations, and proofs for certain details in this chapter. We
will also present measurements for each operation necessary for continuous query processing
helping the reader to assess the complexity of the operations.

21.2 Skyline Queries and User Profiles
Three of our given application domains from Chapter 2, the Electronic Market Places, the Stock
Ticks, and the Quality Assurance examples use a Skyline query in a continuous way. This
means, that in these application scenarios a Skyline query is continuously submitted to check
whether the underlying data set has been changed or not and if the Skyline has to be recomputed.
A change of the data set occurs if, for example, a new point is inserted into the data set or a
point is deleted from the data set.
The Electronic Market Places example is also the scenario which our special 5-dimensional
data set, the correlation groups data set is made for. Chapter 6 explains how the data set is
constructed.

The Skyline query and its associated points, the Skyline, represent all points that the user who
specified the query is interested in. Looking at it from this point of view a Skyline query can
be seen as a user profile. The profile describes preferences a user has. For example, Table 21.1
displays the offer table from our application domain “used car market” (Chapter 2).

Model Price Age Speed
BMW 330 xd EUR 30,000 5 years 200 km/h
Ford Focus EUR 8,000 3 years 150 km/h
Toyota Avensis EUR 10,000 4 years 170 km/h

Table 21.1: Used car market: offers

A user preference cheap cars that are fast and price < 20,000 EUR results in the following
Skyline query:

SELECT *
FROM offers
WHERE 0 < price < 20000
SKYLINE OF price MIN, speed MAX;

The associated Skyline S, the points of interest, contains two point, the Ford and the Toyota,
S = {Ford,Toyota}.
Now, the following offer is inserted into the data set:

(VW Golf, EUR 9,900, 2 years, 180 km/h)

This new offer changes the points of interest for the user who specified the above query, since
now the Toyota is dominated by the VW. The new Skyline consists of the Ford and the VW,
S = {Ford,VW}. The Skyline query and its associated points serve as a user profile in this
application scenario.
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21.3 Multiple Continuous Skyline Queries

As you surely have noticed in the previous section our “user profile” scenarios will not have
only one registered Skyline query with the system but many, possibly thousands of Skyline
queries which all have to be answered continuously, that is if new points arrive or points are
deleted from the data set. One possibility of answering all those queries is in a sequential way.
This means each query is inspected separately for each new point that is inserted or each point
that is deleted. Figure 21.2 shows this approach.

1 I n p u t : Query Q[ ] / / a r r a y o f r e g i s t e r e d q u e r i e s
2

3 procedure S e q u e n t i a l C h e c k i n g ( Point p , bool i n s e r t e d )
4

5 i f ( i n s e r t e d )
6 f o r ( i n t i := 1 to Q. l e n g t h ) do
7 Q[ i ] . i n s e r t ( p ) ;
8 end
9 end

10 e l s e
11 f o r ( i n t i := 1 to Q. l e n g t h ) do
12 Q[ i ] . d e l e t e ( p ) ;
13 end
14 end ;
15

16 end ;

Figure 21.2: Sequential checking of all queries

The procedure SequentialChecking is called each time a point is inserted into the data set or
deleted from the data set. It has two input parameters, the point which was inserted or deleted
and a switch determining if the point was inserted or deleted. Global parameter is an array
holding the queries in our internal representation (see Figure 21.1). A system as we speak of
will be explained in the next section. At each a call the procedure loops through every query and
depending on insertion or deletion of the point a function insert respectively delete is called.
These two function are also part of our query representation in Figure 21.1. They make sure
that, after insert or delete is called, the Skyline remains the set of incomparable points according
to the user preferences (represented by compare and predicates) and, of course the changed
underlying data set. The steps that have to be done if a point is inserted or deleted from the data
set will be explained later.

Obviously with thousands of queries registered, looping through all queries may become quite
time consuming. In Chapter 23 we will present efficient methods to check queries in a “grouped”
sort of way so that “similar” queries can be checked together. We will present extensive mea-
surements comparing, for example, the time needed for sequentially checking all registered
queries and the time needed for checking all registered queries in an “intelligent” way.
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21.4 Taxonomy
Figure 21.3 shows a query system as we think of. The data set is the one which is update, either
points are inserted there or points are deleted from there. The query engine makes sure that
each registered query, Q1,Q2, ...,Qn, is executed after an update of the data set has occurred.
The query engine could be the function given in Figure 21.2, checking each Skyline query in an
naive, sequential way after an update has occurred.

System

Data set

Query
engine

Q1

Q2

Qn

…

registered
Queries

Figure 21.3: Query system

Skyline queries Q1,Q2, ...,Qn are queries as depicted in Figure 21.1 holding all necessary de-
scriptions of a Skyline query including the set of Skyline points. Each query was registered by
a user at some point in time. Registering means: The user submits the query to the system and
the query engine computes the Skyline of the query using the current data set. After that, the
query “waits” in the query system for new points to arrive or for points to be deleted.



CHAPTER 22

Operations for Continuous Skyline Queries

In this chapter we want to describe two basic operations that are necessary to handle continuous
Skyline queries over changing data sets. These operations are an insert operation and a delete
operation. Points can be inserted into the data set or deleted from the data set. Updating a point,
for example, adjusting one dimension value, can be realized with first deleting the point and
then inserting a “new” point.
This chapter establishes the operations that we introduced in Figure 21.1 and used in Figure
21.2.

22.1 Insert Operation
For describing the insert operation we look at the following setup: The data sets we use here
are similar to those we used for batch, progressive, and online Skyline algorithms from Part II
and Part III. The difference here is that the data set is not static, points arrive at the system and
are inserted into the data set.
Recomputing the complete Skyline query seems not an option since we learned from previous
chapters (especially those in Part II and Part III) that computing the complete Skyline of a data
set can be quite time-consuming. Nevertheless, after an insert has occurred the Skyline S (in
Figure 21.1) must remain the set incomparable points of data set D with respect to the particular
Skyline query Q.
The idea is to use the already computed Skyline itself to check if the recently occurred insert
has any effect on the Skyline query. When a new point is inserted into the data set the following
observations can be made:

• New point is dominated by a Skyline point: By the transitivity property of the Skyline
(see Chapter 3) it can be concluded that the new point cannot be part of the Skyline, thus
it is discarded. It is inserted into the data set but the Skyline of the query stays unchanged.

• New point dominates one or more Skyline points: Again, with the transitivity property it
can be said that the new point is part of the Skyline, thus all points that are dominated by
the new point are deleted from the Skyline and the new point is inserted into the Skyline.
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The deleted (previous) Skyline points stay in the data set and, of course, the new point is
also inserted into the data set.

• New point is incomparable to all Skyline points: This means that a new Skyline point
was inserted. The new point is inserted into the Skyline and also inserted into the data
set.

If the new points is equal to a Skyline point, for example, a second car with similar properties is
offered, it is also inserted into the Skyline. The user has now two choices of cars with the same
properties. This is again a direct consequence of the definition of the dominance in Chapter 3.

22.1.1 Algorithmic Description
What was said above is formulated as pseudo-code in Figure 22.1. As one might notice, there is
no access to the data set necessary since all decisions can be made with information held by the
Skyline query itself, namely the Skyline of the query. Since this is the case, we do not display
the insertion of the new point into the data set.
First, it is checked if the new point fulfills the predicates of the the query Q. If this is not the
case the new point is not relevant for this particular query and is discarded. If the point fulfills
the predicates of the query the further processing of the point is initiated. By walking through
the Skyline the new point is compared against all Skyline points. Depending on the outcome
of the compare function, the new point is either discarded (if a Skyline point is less than the
new point) or inserted (if one or more Skyline points are greater than the new point, if a Skyline
point is equal to the new point, or if all Skyline points are incomparable to the new point).

22.1.2 Performance of Insert Operation
Table 22.1 show the running times for the insert operation for 2- and 5-dimensional Skyline
queries. All inserts were carried out sequentially, meaning a new point was inserted after a
previous point was fully processed. It can be observed that the running times are higher for
the uniformly distributed and anti-correlated data value distributions; in particular, for the 5-
dimensional queries. The reason is that the sizes of the Skyline S became very large in these
cases. Please note: In this special case we report the time for 10,000 inserts instead of a 1000
inserts (as it is done later on). This is in order to get stable, comparable results.

Time [s]
Anti-corr. 0.0010

Corr. 0.0008
Unif. 0.0090

Corr.-groups 0.0008

Time [s]
Anti-corr. 0.200

Corr. 0.002
Unif. 0.020

Corr.-groups 0.003
(a) 2-dimensional Skyline (b) 5-dimensional Skyline

Table 22.1: Running time for a 10,000 inserts

The running times for all four data sets are low considering the number of points that were
inserted. The reason for this is the beauty of the insert operation: only the Skyline has to be
checked when a new point is inserted, no access of the data set is necessary.
Still the difference between the anti-correlated, correlated, uniformly distributed, and correla-
tion groups data sets can be seen. For the anti-correlated data set it takes the longest to insert
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1 f u n c t i o n i n s e r t ( Point ip , Query Q)
2

3 / / check p r e d i c a t e s
4 i f ( !Q. p r e d i c a t e s ( i p ) ) then
5 re turn f a l s e ;
6 end ;
7

8 / / walk t h r o u g h S k y l i n e S
9 f o r ( i n t i := 1 to Q. S . s i z e ( ) ) do

10

11 s w i t ch (Q. compare (Q. S [ i ] , i p ) ) do
12 c ase LESS :
13 / / S k y l i n e p o i n t d o m i n a t e s new p o i n t
14 re turn f a l s e ;
15 cas e GREATER:
16 / / one or more S k y l i n e p o i n t ( s ) are domina ted by new p o i n t ,
17 / / d e l e t e S k y l i n e p o i n t ( s ) , i n s e r t new p o i n t
18 Q. S . d e l e t e (Q. S [ i ] ) ;
19 Q. S . i n s e r t ( i p ) ;
20 re turn true ;
21 cas e EQUAL:
22 / / new p o i n t i s e q u a l t o a S k y l i n e p o i n t
23 Q. S . i n s e r t ( i p ) ;
24 re turn true ;
25 cas e INCOMPARABLE
26 / / a l l S k y l i n e p o i n t s are i n c o m p a r a b l e t o new p o i n t
27 / / n o t h i n g t o do here
28 end ;
29

30 end ;
31

32 / / S k y l i n e p o i n t s were domina ted ( g r e a t e r ) or a l l S k y l i n e p o i n t s
33 / / a re i n c o m p a r a b l e
34 / / i n s e r t new p o i n t
35 Q. S . i n s e r t ( i p ) ;
36 re turn t ru e ;
37

38 end ;

Figure 22.1: Pseudo-code for insert operation

10,000 points, that is, because of the number of points already in the Skyline which is signifi-
cantly higher compared to, for example, a correlated data set. These points have to be checked
when an new point is inserted. The correlated data set is the fastest when it comes to inserting
points. The Skyline for this data value distribution is the smallest compared to other data value
distributions. So only a few Skyline points have to be checked when a new point is inserted into
the data set.
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22.2 Delete Operation

The setup for this operation is almost the same as described in the previous section, except that
points are not inserted into the data set but delete from the data set. However, the objective stays
the same. The Skyline S must remain the set of incomparable points of data set D and query Q.
There are two possible case that can occur:

• Deleted point is not part of the Skyline: The point is delete from the data set D. The
Skyline does not have to be adjusted.

• Deleted point is part of the Skyline: This is, obviously, the more interesting case. First,
the point is deleted from the data set D and the Skyline S. Then, the data set D has to be
searched for new Skyline points that were previously dominated by the just deleted point.
Those points may now be part of the Skyline.

Searching for new Skyline points can be accomplished be recomputing the complete Skyline of
the data set D. But the objective is to re-use the remaining Skyline points to save work that has
been done previously.
Figure 22.2 illustrates the first step of our approach. Points s1, d, s2 constitutes a section of a
Skyline before the deletion of point d. The dominance area of each Skyline point is also given
in the figure (the lines starting from each Skyline point). Points p1, ..., p5 are sample points for
illustration purposes. Points p5 and p4 are dominated by Skyline points s1 and s2, respectively.
These points remain dominated when point d is deleted. Point p1, p2, p3 are all dominated by
point d and become potential new Skyline points - candidate points - when d is deleted since
they are only dominated bey d and not by any other Skyline points.

s1

s2

p1

d

p5

p4
p2

p3

R

Figure 22.2: Deleting a point from the Skyline

As one can easily see, the gray shaded range R is the area that has to be searched for new
Skyline points when point d has been deleted. It is limited by the origin and the remaining
Skyline points s1 and s2. New Skyline points can only be found in this area. So the existing
Skyline can be used to limit the search area and one has not to recomputed the Skyline of the
complete data set. The range R has coordinates (0,0;xs2,ysy). Unfortunately, points s1 and s2
are unknown in the sense of not knowing which Skyline points limit the range R. Any two
points in the remaining Skyline could be the ones that are needed. This is the reason we have to
take an iterative approach of finding these two limiting points. This iterative approach is shown
in Figure 22.4.
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22.2.1 Algorithmic Description
First, we want to describe the delete algorithm as given in Figure 22.3. The function to compute
the candidate points is described later.

1 I n p u t : Datase t D
2

3 f u n c t i o n d e l e t e ( Point p , Query Q)
4

5 / / walk t h r o u g h S k y l i n e S
6 f o r ( i n t i := 1 to Q. S . s i z e ( ) ) do
7

8 / / d e l e t e d p o i n t b e l o n g e d t o t h e S k y l i n e
9 i f (Q. compare (Q. S [ i ] , p ) = EQUAL) then

10

11 / / d e l e t e p o i n t from S k y l i n e
12 Q. S . d e l e t e (Q. S [ i ] ) ;
13

14 / / compute c a n d i d a t e p o i n t s t a k i n g o t h e r S k y l i n e p o i n t s
15 / / i n t o a c c o u n t
16 Datase t candSky := c a n d i d a t e P o i n t s (Q, D, p ) ;
17

18 / / compute new S k y l i n e p o i n t s from c a n d i d a t e p o i n t s
19 S k y l i n e addSky := s k y l i n e ( candSky ) ;
20

21 / / add new S k y l i n e p o i n t s
22 Q. S . i n s e r t ( addSky ) ;
23

24 re turn true ;
25

26 end ;
27

28 end ;
29

30 / / d e l e t e d p o i n t d i d n o t be lo ng t o t h e S k y l i n e
31 re turn f a l s e ;
32

33 end ;

Figure 22.3: Pseudo-code for the delete operation

The delete algorithm is simple, walks through the Skyline and check if the point that is going
to be deleted is part of Skyline or not. If the point is not part of the Skyline it is just deleted
from the data set (not shown here). If it is part of the Skyline it is deleted from the Skyline.
Then the candidate Skyline points are computed with the help of the remaining Skyline points,
this is done in the function candidatePoints. After the candidate points have been computed the
Skyline of the candidate points are computed, denoted by skyline. This can be done with any
normal Skyline algorithm as they are described in previous parts. Finally, the Skyline of the
candidate points are added to the Skyline of the query. Since the candidate points are restricted
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to an area that is not influenced by any other Skyline point, except the outer bounds of the area,
the Skyline points of the candidate points can just be added the the Skyline of the query without
any further processing.
Figure 22.4 depicts the algorithm for candidate computation. The algorithm starts with the
whole universe as the area for candidate points. With each new Skyline point it refines that area
to be smaller than the previous area. If a Skyline points produces an area that is larger than the
previous one that area is not taken into account. The only thing the algorithm has to make sure
is that the deleted point is contained in the produced area.

1 f u n c t i o n c a n d i d a t e P o i n t s ( Query Q, Datase t D, Point p )
2

3 / / a r r a y d e s c r i b i n g t h e range , t h a t i s ,
4 / / t h e upper r i g h t c o r n e r o f a r e c t a n g l e
5 / / w i t h lower l e f t c o r n e r ( 0 , 0 , . . . , 0 )
6 f l o a t r a n g e [ ] ;
7

8 / / range i s t h e c m p l e t e da ta s e t
9 f o r ( i n t j := 1 to p . dim ) do

10 r a n g e [ j ] = 1 0 0 0 0 0 0 . 0 0 ;
11 end ;
12

13 / / narrow range w i t h each S k y l i n e p o i n t
14 f o r ( i n t i := 1 to S . s i z e ( ) ) do
15

16 Point q = S [ i ] ;
17

18 f o r ( i n t j := 1 to p . dim ) do
19 r a n g e [ j ] = min ( q [ j ] , r a n g e [ j ] )
20 end ;
21

22 end ;
23

24 / / f e t c h p o i n t s from t h e da ta s e t
25 Datase t cand = D. g e t P o i n t s ( r a n g e ) ;
26

27 / / check p r e d i c a t e s o f Query on r e t r i e v e d p o i n t s
28 f o r ( i n t i := 1 to cand . s i z e ( ) ) do
29 i f ( !Q. p r e d i c a t e s ( cand [ i ] ) ) then
30 cand . d e l e t e ( cand [ i ] ) ;
31 end ;
32 end ;
33

34 re turn cand ;
35

36 end ;

Figure 22.4: Pseudo-code for the candidatePoints operation
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Initially, the whole data set is considered. With every Skyline point in the remaining Skyline
the range R is narrowed, thereby eliminating all points from the data set that are dominated by
the Skyline point in term. As a result R contains all points that are dominated by d, but which
are not dominated by any other point in the Skyline. Retrieving the range R is done by native
methods of the data set. In our case we used an R*-tree with a given method for retrieving
points within an MBR.

22.2.2 Performance of Delete Operation

Table 22.2 shows the running times for the delete operation for 2- and 5-dimensional Skyline
queries. We carried out 1000 deletes. Furthermore, Table 22.2 shows how many deletes (in
percent) caused a reorganization of the Skyline S of the query, that is, the deleted point was part
of the Skyline and after the deletion the Skyline had to be partly recomputed. All deletes were
carried out sequentially. It can be observed that the running times are significantly higher for
the independent and anti-correlated data value distributions; in particular, for the 5-dimensional
queries. The reason is that the sizes of the Skyline S became very large in these cases.

Time [s] Reorgs [%]
Anti-corr. 0,07 1,6%

Corr. 0,02 0,1%
Unif. 0,03 0,7%

Corr.-groups 0,02 0,1%

Time [s] Reorgs [%]
Anti-corr. 8,74 37,3%

Corr. 0,11 0,8%
Unif. 0,59 4,3%

Corr.-groups 0,04 0,4%
(a) 2-dimensional Skyline (b) 5-dimensional Skyline

Table 22.2: Running time for a 1000 deletes, complete algorithm

Table 22.3(a) shows the running times of the algorithm that recomputes the Skyline from can-
didate points if a point of the Skyline has been deleted. Comparing tables 22.2 and 22.3(a), it
becomes clear that the cost of carrying out the delete operation is dominated by the cost to com-
pute the Skyline of the candidates. Only for 5-dimensional Skyline queries with an independent
or anti-correlated data set, the costs of the candidate algorithm are significant. The effectiveness
of the candidate algorithm depends on the number of dimensions, the value distribution in the
data set and on the specific Skyline point that is deleted. In many cases, the candidate algorithm
restricts the set of candidates to a few points only. In (rare) extreme cases (anti-correlated, 5
dimensions, certain deleted points), the candidate algorithm returns a range R that contains 25
percent of the points in the data set as candidates.

Time [s] Reorgs [%]
Anti-corr. 6,00 37,3%

Corr. 0,09 0,8%
Unif. dist. 0,51 4,3%

Corr.-groups 0,02 0,4%

Time [s] Reorgs [%]
Anti-corr. 40,15 37,3%

Corr. 0,19 0,8%
Unif. dist. 1,72 4,3%

Corr.-groups 0,10 0,4%
(a) with candidates (b) naive way

Table 22.3: 1000 deletes: Running time for recomputing the Skyline after a delete (5-dimensional)

Table 22.3(b) shows the running times of a naive algorithm to recompute the Skyline after a
delete has occurred. This algorithm recomputes the Skyline using the whole data set without
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making use of the candidate algorithm in order to limit the number of candidate points to which
the Skyline algorithm is applied. Comparing tables 22.3(a) and 22.3(b), it becomes clear that
this naive algorithm has unacceptably high performance compared to the algorithm proposed in
the previous section. For the tough cases (anti-correlated database, 5 dimensional queries), the
naive algorithm is outperformed by our algorithm by a factor of 7.



CHAPTER 23

Multiple Continuous Skyline Queries

As we already have pointed out, there will not only one continuous Skyline query registered at
the system, but many. And as we have seen in the previous chapter the cost for adjusting the
Skyline of a query can be time-consuming in some cases. So the questions arises, if there is a
more intelligent way to compute the residue for many queries of a changed data set, after either
insertion or deletion of points.

23.1 Basic Considerations
Consider two Skyline queries. Query Q1 asks for fast cars that are not too expensive and addi-
tionally restricts the price of the car to be not more than EUR 25,000, that is

SELECT *
FROM offer
WHERE price < 25000
SKYLINE OF speed MAX, price MIN;

or (in a different representation)

Q1 ({max(speed),min(price)},price < 25,000)

A second query Q2 asks for all cars that are fast and cheap with a price not more than EUR
30,000. That is

SELECT *
FROM offer
WHERE price < 30000
SKYLINE OF speed MAX, price MIN;

or

Q2 ({max(speed),min(price)},price < 30,000).

111
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Both queries are very similar. The only difference is that the second query is less restrictive to
the price. The Skyline conditions are the same. The points that are interesting for the users that
issued Q1 and Q2 to the system, the Skyline, will have many points in common. Only cars that
obey the Skyline restrictions with a price higher than EUR 25,000 will shown to user Q2 and
not to both users.
If we could answer both queries “as one” for each update of the data set we certainly would
save a lot of work. The only difference in the treatment of inserted or deleted points has to be
made is for points 25,000≤ price < 30,000.

Now consider hundreds of queries differing only a “penny”. Those queries could be answered
in a sequential way, meaning each query is treated separately for each update of the data set
(see Chapter 21 with Figure 21.2) or we could answer those queries “as one query” by making
sure that the actual differences of the queries are handled properly saving possibly hundreds of
similar operations.

23.1.1 Grouping Skyline Queries

The idea we will pursue in this part is to group similar Skyline queries into a hierarchy or tree.
The grouping will be done in a way so that decisions made on the top level of the hierarchy
will hold for all branches below. With individual Skyline queries at the branches it will be
possible to discard, for example, a point that is inserted into the data set, right at the top level
node, saying that this particular point is of no interest for all underlying Skyline queries. One
decision for a number of Skyline queries.

23.1.2 Further Sections

Grouping will be done on similarities of Skyline queries, meaning that only similar Skyline
queries will be grouped together. When it comes to comparing similarities, one should first take
a look on how similarity can be described. So before we discuss the idea of grouping Skyline
queries in detail we first take a look at measuring the differences between Skyline queries.
Measuring distances and looking for similarities are two sides of the same coin. Chapter 23.3
deals with distances between Skyline queries.
Chapter 23.4 deals with speeding up the insert operation given in Figure 22.1. It is divided
into two sections, one dealing with Skyline restrictions in the SKYLINE OF clause and one
dealing with predicate restrictions in the WHERE clause. In another chapter (Chapter 23.5) we
will combine the consideration on distances between Skyline queries and the consideration on
speeding up the insert operation from Chapter 23.4 discussing contingent adjustments.
Grouping Skyline queries on similarities can be done in various ways, Chapter 23.6 introduces
two simple approaches how to group queries into hierarchies, a first fit approach and a best fit
approach.
A benchmark design section and a section with performance measurements are given in Chapter
23.7 and Chapter 23.8. A concluding sections (Chapter 23.9) depicts some possible enhance-
ments to the delete operation.

Before we start with our discussion, the next section is a short shoot-out to recapture an obser-
vation which was mentioned a few times ago, the concept of correlation groups.
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23.2 Correlation Groups
Our construct called correlation group arises from prior observations that differences in cor-
related dimensions of a data set have a lesser effect on the distance between two queries than
differences in other dimensions.
A correlation group is simply a set of dimensions that have correlated data values, that is, if
dimension one has a small value then dimension 2 must also have a small value. For our four
data sets displayed in Chapter 6 this means:

• Anti-correlated data set: The dimensions have no correlation between each other. This
means each dimension is its own correlation group. We say that the data set consists of
n = d correlation groups, d being the number of dimensions

• Correlated data set: All dimensions are correlated between each other. The data set con-
sists of only one correlation group comprehending all dimensions.

• Uniformly distributed data set: The dimension values of this data set are uniformly dis-
tributed. This means that no assertion can be made about the correlation between dimen-
sions. This data set also consists of n = d correlation groups with d being the number of
dimensions.

• Correlation groups data set: This kind of data set is designed to consist of exactly the
number of correlation groups as we wanted if to have. The number of correlation groups
depends on the building process of the data set. For the special 5-dimensional data set
representing car offerings, this means that we have two correlation groups, a correlation
group consisting of 2 dimensions and a correlation group consisting of 3 dimensions.

In general, we divide the dimensions of the data set into n correlation groups. A correlation
group is a group of dimensions that have correlated data values. If no dimensions are correlated
the data set contains n = d correlation groups, that is, each dimension is its own correlation
group. If all dimensions are correlated there is only one correlation group comprehending all
dimensions of the data set.

23.3 Distance of Skyline Queries
In this section we will describe two approaches for measuring the distance between Skyline
queries. The first one is an analytical approach, the second one is an empirical approach.

23.3.1 Analytical Distance Between two Skyline Queries
A Skyline query as depicted in the previous Section has four query parameters. These are

• the set of Skyline dimensions: The dimensions stated in the SKYLINE OF clause. These
are the dimensions the Skyline is computed on. Short sd - skyline dimension.

• the set of predicate dimensions: The dimensions stated in the WHERE clause. Each dimen-
sion is restricted by a following range predicate. Short pd - predicate dimension.

• the lower bounds of the predicate dimensions, also stated in the WHERE clause. Short l pv
- lower predicate value
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• the upper bounds of the predicate dimensions, also stated in the WHERE clause. Short upv
- upper predicate value.

A Skyline query having k range predicates can therefore be written as

Q({sd},(l pv, pd,upv)1, ...,(l pv, pd,upv)k)

Examples of Skyline queries are given in the above section, Q1 and Q2. In the following, how-
ever, we will use numbered dimensions, that is, dim1, dim2, ..., dimn, for Skyline dimensions
and predicate dimensions. The data values in each dimensions are in the interval [0.0,1.0[.
Please see Chapter 6 for details about the data sets we used throughout this thesis.

Q denotes a Skyline query of the set of all Skyline queries Q. The distance function for the
distance between two Skyline queries ∆(Q1,Q2) we define as:

∆(Q1,Q2) = δsky(Q1,Q2)+δpred(Q1,Q2)+
δlpv(Q1,Q2)+δupv(Q1,Q2) (23.1)

It consists of 4 sub-distances. Each sub-distance is concerned with one part of a Skyline query.

Distance in Skyline Dimensions

The distance between Skyline dimensions, δsky(Q1,Q2) in Formula 23.1, is not quite obvious.
What is the difference between two queries with Skyline dimensions dim123 and dim45 or
dim12 and dim123? The distance should take into account that certain dimensions are correlated
and certain are not correlated. Distances in correlated dimensions are of less significance than
differences in non-correlated dimensions. The distance between Skyline dimensions of two
queries Q1 and Q2 is defined as

δsky(Q1,Q2) =


0 : sdQ1 = sdQ2

0 : sdQ1 ' sdQ2

fdim : else
(23.2)

Formula 23.2 determines the distance in Skyline dimensions to be zero if either the Skyline
dimensions of both queries are equal or the Skyline dimensions of both queries are in the same
correlation group. Both Skyline dimensions being in the same correlation group is denoted
by '. The distance is fdim if the Skyline dimensions of both queries do not correspond. The
penalty factor fdim is explained later.
Looking at an example, we consider a 5-dimensional data set with correlation groups c1 =
{dim1,dim2,dim3} and c2 = {dim4,dim5}. This could be the example given previously:
{price, insurance, taxes} and {speed, horse power}. Considering only 2-dimensional Skyline
definitions, that is, sd = {dim12,dim13, ...,dim45}, there are all in all 10 different possibilities,
Table 23.1 shows which Skyline queries have - Skyline dimensions wise - distance 0.
Looking at Table 23.1, two Skyline queries with have distance 0 if the two queries have the same
Skyline dimensions (diagonal entries) or if they are within the set {dim12,dim13,dim23}.
For a correlated data set the table contains only 0, for anti-correlated and uniformly distributed
data sets the values of the table are fdim.
In a later section we will evaluate the possibilities of combining Skyline queries according to
Table 23.1.
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dim12 dim13 dim23 dim14 dim24 dim34 dim15 dim25 dim35 dim45
dim12 0 0 0 fdim fdim fdim fdim fdim fdim fdim

dim13 0 0 0 fdim fdim fdim fdim fdim fdim fdim

dim23 0 0 0 fdim fdim fdim fdim fdim fdim fdim

dim14 fdim fdim fdim 0 fdim fdim fdim fdim fdim fdim

dim24 fdim fdim fdim fdim 0 fdim fdim fdim fdim fdim

dim34 fdim fdim fdim fdim fdim 0 fdim fdim fdim fdim

dim15 fdim fdim fdim fdim fdim fdim 0 fdim fdim fdim

dim25 fdim fdim fdim fdim fdim fdim fdim 0 fdim fdim

dim35 fdim fdim fdim fdim fdim fdim fdim fdim 0 fdim

dim45 fdim fdim fdim fdim fdim fdim fdim fdim fdim 0

Table 23.1: Grouping matrix for 2-dimensional Skyline queries and 5-dimensional data set

Distance in Predicate Dimensions

The distance between predicate dimensions, δpred, is defined in the same way as δsky. For
computing the distance between two Skyline queries all dimensions that occur in the predicates
of one query are treated together. For example, consider two queries,

Q1 ({min(dim1),min(dim2)},0.00 < dim1 < 0.75,0.00 < dim3≤ 0.50)
Q2 ({min(dim1),min(dim2)},0.00≤ dim2 < 0.50,0.00 < dim3≤ 0.40)

the first query has range restrictions on dimensions dim1 and dim3, the second query on dimen-
sions dim2 and dim3. The difference δpred is computed using the same formula as for computing
the distance δsky.

Distance in Lower Values of Predicates

The distance between all lower values of the predicates, δlpv, is defined as:

δlpv(Q1,Q2) =
p

∑
i=1
|Q1.lvi−Q2.lvi| (23.3)

with Q.lv meaning the lower value of the predicate bound of a query Q and p being the num-
ber of the corresponding predicates. Corresponding means that only predicates are taken into
account that have the same predicate dimensions in both queries. For example, consider again
the two queries given above. The first range restriction of each query is on a different dimen-
sion, dim1 for Q1 and dim2 for Q2, the second range restriction of each query is on the same
dimension, dim3 for both queries. Only the second range restriction of both queries is taken
into account for the difference in the lower value of the predicates. The difference in the lower
value of the first range restrictions is overwritten by the difference in the predicate dimensions.

Distance in Upper Values of Predicates

Almost the same definition is used for the distance between all upper values of the predicates,
δupv:

δupv(Q1,Q2) =
p

∑
i=1
|Q1.uvi−Q2.uvi| (23.4)
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with Q.uv meaning the upper value of the predicate bound of a query Q and p being the number
of the corresponding predicates. Again, only predicates are taken into account that have the
same predicate dimensions in both queries.

Weight of Sub-distances

Table 23.2 originates from our empirical testing. What we found out there, in a nutshell, results
in a weight list of sub-distances.

Weight Distance
δsky 3

δpred 2
δlpv 1
δupv 1

Table 23.2: Weight of distances

The table should be read as follows: If two queries differ in Skyline dimensions, δsky, then all
other dimensions normally are of lesser importance. This is also the reason why we compute the
distances in lower and upper predicate values only on corresponding dimensions. Differences
in lower and upper predicate values of non-corresponding dimensions are taken care of with the
distance in predicate dimensions.

This approach of determining the distance of Skyline queries is called the Query Analyzing
approach.

23.3.2 Empirical Distance Between two Skyline Queries

This is another approach of determining the distance between two Skyline queries. This ap-
proach does not check query parameters to determine the distance but checks the queries for
similarities after a certain number of points have been inserted. There are different ways to
check similarities of Skyline queries. One could monitor incoming points and note how each
query treats the points. Treating means if the query discards the point or accepts the point into
its Skyline. Each query needs a structure to hold the information about each points, for exam-
ple, a boolean vector where “true” means that point was accepted into the Skyline and “false”
meaning that the point was discarded. Entry 1 in each structure stands for the treatment of point
1 and so on. After a certain number of inserts the structures of all queries are taken into account
when it comes to determining the distance between the Skyline queries.

Instead of keeping track what each query is doing with the inserted points, another way would
be looking at the intersection of Skyline points from the different queries after a certain num-
ber of inserts. If the intersection contains more points than a certain limit, for example, more
than 30% of the points of the smallest Skyline is in the intersection of the two queries, Skyline
queries can be grouped together. The advantage of this second approach is that no additional
structure is needed for determining the distance between the two queries. As we will see later
on, intersections between Skylines have to be computed anyway, so this second approach uses
techniques which will be used later again. So we use the second approach to determine the
distance between Skyline queries.
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This approach requires a “learning step”. We define the learning step as a detached step that
takes places before any “real” points arrive at the system. It consists of two parts. In the first
part the learning points are inserted into n queries, yielding Skyline points for each query. In
the second part, the comparison step, queries are checked by their Skyline intersection.

The distance ∆(Q1,Q2) between two queries Q1 and Q2 is defined as

∆(Q1,Q2) = 1− |Q1∩Q2|
min(|Q1|, |Q2|)

with |Q| meaning the number of points in the Skyline. The distance takes into account the
number of points in the intersection of Skyline points and the minimum number of points in
each individual Skyline.
For this approach the distance between two queries is measured in the number of points in the
Skyline intersection.

23.4 Speeding up the Insert Operation
Now that we have talked about distances between queries, we want to show an idea how to
answer many Skyline queries “as on query”.
The idea is to group queries and their Skyline points (SQ) in order to answer queries together.
In other words, given queries Q1, Q2, ..., Qm and corresponding sets of Skyline points SQ1 , SQ2 ,
..., SQm , and a point p that is inserted, we construct a query Q1...m and a set of Skyline points
SQ1...m with the following property:

insert(p,Q1...m) = false =⇒
∀ i : insert(p,Qi) = false

With insert we mean the insert operation depicted in Figure 22.1. This way, we only need to
investigate Query Q1...m rather than inspecting each of the m queries individually in order to
filter out a new data point p.

The idea of grouping queries can be applied in different ways to speed up the insert operation
for sets of queries by using adaptions of the same techniques proposed in the following section.
However, we will concentrate on quickly detecting for which queries a new point is not relevant
because we believe that this case will be the most important case in practice. Another way, for
example, would be applying the grouping in a way to find out if the newly inserted point is
relevant.
First, we will focus on indexing queries that have an empty WHERE clause. After we have devel-
oped an idea for grouping queries without predicates we will take a look at processing predicates
for grouped queries. As we will see in a later section, processing predicates is somewhat or-
thogonal to processing Skyline conditions, meaning both computations can be split into two
separated steps.

Note: The terms “indexing queries” and “grouping queries” can and will be used synonymously
throughout this thesis. The reason for this is that we arrange the group of queries that can be
answered simultaneously in a tree structure. This tree structure is then used to quickly classify
subtrees as important or unimportant for further processing. This is exactly how indices work.
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Figure 23.1: Hierarchy of filters

23.4.1 Grouping Skyline Queries

Let Q1, ..., Qm be a set of queries. Let Qi be characterized by SQi , the Skyline for Qi, and
sdQi , the set of dimensions specified in the SKYLINE OF clause of query Qi. Then, Q1...m can be
characterized as follows:

SQ1...m :=
⋂

i=1,...,m

SQi (23.5)

sdQ1...m :=
⋃

i=1,...,m

sdQi (23.6)

Recall the car market example from Chapter 2 with used cars in the data set and users interested
in different car properties.

Model Price Age Speed
BMW 330 xd EUR 30,000 5 years 200 km/h
Ford Focus EUR 8,000 3 years 150 km/h
Toyota Avensis EUR 10,000 4 years 170 km/h

Table 23.3: Used car market: data set

Table 23.3 shows the data set with three cars and Table 23.4 shows two users with the dimen-
sions they are interested in and the Skyline for these dimensions.

Preferences Interesting Offers - Skyline
User 1 { price, age } { Ford }
User 2 { price, speed } { BMW, Ford, Toyota }

Table 23.4: Used car market: interesting dimensions

We can group the two (base) query, Q1 for user 1 and Q2 for user 2, and construct a query Q1−2
for both users. This query would be characterized with the Skyline dimensions the query is
defined on, sdQ1−2 , and the resulting set of interesting points, the Skyline SQ1−2:

• sdQ1−2 := {price, age, speed}
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• SQ1−2 := {(Ford Focus, EUR 8,000, 3 yrs, 150 km/h)}

Now consider a new car offer arriving at the system

(Alfa Spider, EUR 12,000, 4 years, 140 km/h)

Using the constructed query Q1−2, its Skyline S = {Ford}, and its comparison function cQ1−2

that considers all three dimensions), it is possible to immediately find out that the offer for the
Alfa is irrelevant for both users because the Alfa costs more, is older and slower than the Ford.
Thus saving one Skyline comparison in this example.
If a new offer is posted that is incomparable to the Ford in terms of price, age, and speed, then
this offer must be considered by the base queries, Q1 and Q2, individually in order to find out
for which users this offer is relevant. In this case, the grouping is not effective.

Just from this short example, it is quite clear, the larger the root node Skyline (SQ1−2) is the
greater the chance to discard a new point. In Chapter 23.5 we will explain the relationship
between the previous distance discussion and the discussion of grouping here. In a nutshell, the
lesser the distance of Skyline queries, the larger the root Skyline.

The correctness of filtering with query Q1−2 and S1−2 can be proven considering the following
observation:

sdQi ⊂ sdQ j ∧ cQ j(p,q) ∈ {less,equal}=⇒
cQi(p,q) ∈ {less,equal}

In other words, if a point p dominates q or is equal to q according to Q1−2, point p can be used
to filter out q for queries Q1 and Q2. The proof for this observation is straightforward and uses
the definitions of cQ j and cQi which depend on sdQ j and sdQi �

Just like Skyline queries, groups of Skyline queries can be combined, using the same rules.
This way, it is possible to construct hierarchies of filters. Figure 23.1(a) shows four contin-
uous Skyline queries Q1, ...,Q4 in a 4-dimensional data space. Note: For ease of presenta-
tion dimension dim1 is shorten to d1, dim2 to d2 and so on. Q1 involves dimensions dim1
and dim2 (denoted as Q1(dim1,dim2)), Q2 involves dimensions dim1, dim2, and dim4, etc.
Q1, Q2, and Q3 are grouped to Q1−3(dim1,dim2,dim4). Q1−3 and Q4 are in turn grouped to
Q1−4(dim1,dim2,dim3,dim4). Figure 23.1(b) shows the corresponding tree that represents the
sets of points associated to each Skyline query and each group of Skyline queries. S1−4 con-
tains all points of the intersection of SQ1 ∩ ...∩SQ4 . S1−3 contains all points of the intersection
of SQ1 ∩ SQ2 ∩ SQ3 that are not in S1−4. S1 contains all points of SQ1 that are not in SQ1−3 or
SQ1−4 , and so on. Thus, the Skyline of Q1 is S1−4∪ S1−3∪ S1, a walk along the tree branches
from the root to the leaf.

Using the trees of Figure 23.1, the insert operation is executed for a new data point p as follows.
First, the comparison function of Q1−4, cQ1−4 , is used to compare p with all points of S1−4. If
one of the points of S1−4 dominates p according to cQ1−4 , then p is not relevant for any query
and the execution terminates. Otherwise, the comparison function of Q1−3 is used in order to
compare p with all points of S1−4 ∪ S1−3. Again, if p is dominated by any point in this step,
we do not need to consider p for any of the first three queries. In the worst case, we need to go
down to the leaf level where each query is processed individually. In this case, the additional
effort to consider grouped Skyline queries is wasted work.
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The constructed filters do not only serve for discarding new points, they can also be used to
quickly identify points that are interesting for a group of queries. If p dominates one point of
S1−4 then it is guaranteed that p is a Skyline point for all Skyline queries Q1, ...,Q4. Again, this
assertion holds at every level of the filter hierarchy. Consequently, we have two stop conditions
for our algorithm and only in the case of p being incomparable we have to recursively go
through the complete hierarchy. These two stop conditions can be summed up with

• If a newly inserted point p is dominated by a point in one of the Skylines of the hierarchy,
it can be discarded for all Skylines that are below the Skyline which discards the point,
that is, the subtree in the hierarchy.

• If a newly inserted point is interesting for on of the Skylines of the hierarchy, it is also
interesting for all Skylines that are below the Skyline for which the inserted point is
interesting.

For the insert operation, the sets of points associated with each Skyline query, that is, the Skyline
of each query, and each group of queries must be updated when a new interesting point is
inserted. In particular, the intersection property must be maintained. Maintaining this property,
however, is straightforward and cheap.
However, not all points need to be considered using the comparison functions of the grouped
queries. Using grouped Skyline queries can be seen as a pre-filtering step and limiting the
amount of work done in such a pre-filtering step, limits the overhead carried out in bad cases,
that is, when the pre-filter fails.

23.4.2 Predicate Processing for Grouped Skyline Queries
After having looked at processing restrictions given in the SKYLINE OF clause of a Skyline
query, we want to take a look at restrictions given in the WHERE clause of a Skyline query. Any
predicate given in the WHERE clause restricts the underlying data set, for example, if

Q1(some Skyline conditions, model = ’Ford’).

only Ford cars are of interest to the user and all other brands are filtered out. The number of
data points is (possibly) greatly reduced.

For simplification, we allow only one predicate per Skyline query, that is, a range restriction
on one dimension of the data set. However, everything said here, works also for multiple range
restrictions on different dimensions and the theory in the previous sections is also laid out with
more than one predicate per Skyline query. As previously said, a restriction in the WHERE clause
can greatly reduce the amount of data to be checked for Skyline affiliation. For an inserted
point this means, if it is discarded by the predicate the rest of the insert operation can be skipped.
Testing a range predicate takes certainly less time than executing Skyline comparison functions,
so for single queries predicates should be checked before any Skyline operation. This is depicted
in Figure 22.1 (insert operation). However, checking many predicates for grouped queries can
be time consuming and some predicates might be unnecessary to check, for example, when
the insert operation at Q1−4 (Figure 23.1) discards an incoming point then the predicates of
Q1, ...,Q4 do not have to be checked.
We propose a simple strategy to evaluate predicates of grouped Skyline queries: For each in-
coming point we perform the insert operation on the root node, for example, node Q1−4, without
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checking the predicates. If it returns “less” the point is discarded. No query predicates have to be
evaluated, we are done for this point. If the insert operation on the root node returns “greater”,
“equivalent” or “incomparable” we check the predicates of all leaf-level queries and keep track
of each predicate that was checked so we do not evaluate a predicate twice.
If a predicate of a Skyline query returns false that particular Skyline query needs not to be check
by a later insert operation. If all predicates of Skyline queries of a subtree evaluate to false that
particular subtree needs not to be checked by a later insert operation. All other queries are
checked by the method proposed in the previous section. If all predicates evaluate to false, the
incoming point is also discarded. No other operation has to be performed for that point.
Treating predicates has been the subject of numerous work. One can think of many way to
evaluate predicates of Skyline queries, for example, indexing predicates would also be possible.
Methods to index predicates of continuous queries has been the subject of earlier work (for
example, [HCH+99] and [FJL+01]). Those techniques are directly applicable to continuous
Skyline queries.

23.5 Finding Good Groups for the Insert Operation

23.5.1 Empirical Testing
Extensive empirical tests preceded the formulation of above facts. Our testing included the
variation of all query parameters, that is,

• the Skyline dimensions,

• the predicate dimensions,

• the lower bound of the range predicates, and

• the upper bound of the range predicates,

one at a time, leaving all other query parameters untouched. By doing that we developed an
intuition how sensible the grouping reacts to changes in query parameters. The previous “dis-
tance” sections and also the following sections are the results derived from these tests.

23.5.2 Evaluation of Skyline Distances
As one can easily see, the grouping idea from the previous section works best the more Skyline
points reside in the root node of the Skyline query tree. The bigger the Skyline of the root node
the better the filtering, the bigger the chance to discard a new point because of it is dominated
by s Skyline point.
To makes this clear, consider the 2-dimensional correlated data set (Chapter 6). The Skyline of
this particular data set contains only one Skyline point, the Skyline point. Now think a Skyline
query hierarchy where this one Skyline point resides in the root Skyline. All incoming points
would be discarded right away since there is no second Skyline point. All Skyline queries that
were grouped together in this query hierarchy would be answered by a single insert operation
per incoming point on the root node.
So grouping works well if there is a sufficient number of Skyline points in the root Skyline
of the tree of grouped queries. The root Skyline contains all points that are in common to all
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queries grouped together in the tree. To end up with a sufficient number of Skyline points in
the root Skyline the underlying queries need to be similar. Which queries are similar or have a
small distance was discussed in Chapter 23.3.
We take a look at a correlated data set. According to what we said previously, all queries can be
- Skyline wise - grouped together since all dimensions are correlated (hence a correlated data
set). We checked the intersection of Skyline points for a couple of combinations of Skyline
queries without any predicates. Table 23.5 shows the size of the intersection of 10,000 points.

Skyline dims
⋂

Skyline dims
⋂

Skyline dims
⋂

dim12/dim13 1 dim13/dim23 1 dim23/dim24 3
dim12/dim14 1 dim13/dim24 1 dim23/dim25 4
dim12/dim15 2 dim13/dim25 0 dim23/dim34 2
dim12/dim23 5 dim13/dim34 2 dim23/dim35 2
dim12/dim25 4 dim13/dim35 1 dim23/dim45 1
dim12/dim34 2 dim13/dim45 2 ... ...
dim12/dim35 1 dim13/dim14 1
dim12/dim45 2 dim13/dim15 3

Table 23.5: Intersection size of combinations of Skyline queries

For example, if we group two Skyline queries with Skyline dimensions sd1 = dim12 and sd2
= dim23 we have 5 Skyline points in the intersection of Skyline points (remember the whole
correlated data set consists of 100,000). As long as we only group Skyline queries having sd =
dim12 or sd = dim23 these 5 Skyline points will “survive”. However if we group a Skyline query
having sd = dim13 these 5 Skyline points will be reduced to one Skyline point at the most since
Skyline queries with sd1 = dim12 and sd2 = dim13 have only one Skyline point in common. The
more different Skyline queries we group together the less the chance to have a sufficient number
of Skyline points in the Root-Skyline for efficient filtering. Therefore we decided to allow only
two different Skyline queries - Skyline wise - to be grouped together. After a different Skyline
query is grouped to a tree, the penalty factor, fdim, is altered to a higher value preventing a
second different Skyline query to be grouped to the tree. For example, the first query in the
tree t has sd1 = dim12. The penalty factor fdim = a allowing a Skyline query with sd2 = dim23
to be grouped to the tree t. Now, since sd1 6= sd2 the the penalty factor fdim is altered to be
fdim = 2 ·a, preventing a third Skyline query with sd3 = dim34 being grouped to the tree t.

23.5.3 Evaluation of Predicate Distances

Following our prior empirical testing it seems not a good idea to group Skyline queries which
differ in predicate dimensions. Differences in predicate dimensions might yield similar Skyline
points, but initial tests showed that the Skyline points are not similar. So, for our performance
experiments we forbid grouping with different predicate dimensions.
Also big differences in the lower bound of a predicate seems not a good idea since changes here
mean changing the origin of the Skyline computation and thus yielding different Skyline points.
For our performance experiments only small distances for δlpv where allowed.
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23.6 First Fit and Best Fit Grouping
After we have discussed how to speed up the insert operation, that is, building a hierarchy or
tree of Skyline queries and their associated Skylines, we want to take a look at how queries
can be grouped to a tree for processing insert operations. We study two different approaches to
assign queries to trees. Both approaches can be classified as greedy algorithms.
We take a look at a FirstFit approach that assigns a query to the first tree that fulfills certain rules
and we take a look at a BestFit approach that assigns a query to the tree where (a) certain rules
are fulfilled and (b) the distance between the new query Q and the tree T is minimal, that is,
∆(Q,ρT ) is minimal. Figure 23.2 depicts the FirstFit approach, ρT specifies the representative
of the tree T . This representative is also a Skyline query, for example, the first Skyline query
that was associated with the tree.
Note: In the figure ρT is depicted as T[j]. For each query Q ∈Q (Q, the set of all queries, is
represented by the array Q[]) the algorithm looks at all trees T ∈ T and computes the distance
between Q and the representative of the tree. If the distance is less than |ε| the query is assigned
to the tree. This repeats until all queries are assigned. If a query does not fit to any tree, that is,
∀ T ∈T , ∆(Q,ρT ) > |ε|, it is made he initial query of a new tree.

1 I n p u t : Query Q[ ]
2 I n p u t : i n t n o o f q u e r i e s
3

4 procedure F i r s t F i t G r o u p i n g ( f l o a t e p s i l o n )
5

6 Tree T [ ] ;
7 i n t n o o f t r e e s = 0 ;
8

9 f o r ( i n t i := 1 to n o o f q u e r i e s ) do
10 f o r ( i n t j := 1 to n o o f t r e e s ) do
11

12 i f ( d i s t a n c e (Q[ i ] , T [ j ] ) <= abs ( e p s i l o n ) ) then
13 T [ j ] . a s s i g n ( [ i ] )
14 end ;
15

16 break ;
17

18 end ;
19

20 T . newTree (Q[ i ] ) ;
21

22 end ;
23

24 end ;

Figure 23.2: FirstFit grouping algorithm

Figure 23.3 shows the BestFit approach. Instead of assigning the query Q to the first tree that
meets the requirements, all trees in T are checked for the best fitting tree. The query is either
assigned to the best tree or it is the initial query of a new tree.
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1 I n p u t : Query Q[ ]
2 I n p u t : i n t n o o f q u e r i e s
3

4 procedure B e s t F i t G r o u p i n g ( f l o a t e p s i l o n )
5

6 Tree T [ ] ;
7 Tree t m i n ;
8 f l o a t e p s i l o n m i n ;
9 i n t n o o f t r e e s = 0 ;

10 bool found ;
11

12 f o r ( i n t i := 1 to n o o f q u e r i e s ) do
13 f o r ( i n t j := 1 to n o o f t r e e s ) do
14

15 found = f a l s e ;
16

17 i f ( d i s t a n c e (Q[ i ] , T [ j ] ) <= abs ( e p s i l o n ) ) then
18 ( e p s i l o n m i n , t m i n ) = min ( ( e p s i l o n m i n , t m i n ) ,
19 ( d i s t a n c e (Q[ i ] , T [ j ] ) , T [ j ] ) ) ;
20 found = t rue ;
21 end ;
22

23 end ;
24

25 i f ( found ) then
26 t m i n . a s s i g n (Q[ i ] ) ;
27 e l s e
28 T . newTree (Q[ i ] ) ;
29 end ;
30 end ;
31

32 end ;

Figure 23.3: BestFit grouping algorithm

Note: The number of Skyline queries does not change in our scenario, that is, the set of Skyline
queries within the system is static.

23.7 Benchmark Design

23.7.1 Questions to be Answered

There is one questions which arises immediately when talking about grouping Skyline queries:
Does grouping work? Meaning, can we benefit from grouping by saving time to process the
Skyline queries? Along with this question, there are more questions that should be answered by
a benchmark. These questions include:
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• How much improvement is made through grouping concerning the running time against
a sequential answering of queries?

• How much improvement is made through grouping concerning other parameters, memory
usage, for example?

• How well do the alternative approaches, analyzing the Skyline query parameter or learn-
ing similarities, to group queries work?

• Does grouping scale for large numbers of queries and high volumes of data?

In order to answer these questions, we carried out a series of comprehensive performance exper-
iments using the techniques described in the previous sections with a varying number of queries
and different data value distributions distributions. This section describes the benchmark and
experimental environment used. The following section presents the results of the performance
experiments.

23.7.2 Query Workloads
The data that had to be filtered (described in Chapter 6) consisted of multi-dimensional float-
ing point values with 6 significant digits after the decimal point. Correspondingly, the range
predicates in the Skyline queries also involved floating point values as their upper and lower
bounds.
Query generation involved the generation of the WHERE and SKYLINE OF clauses of a query.

The SKYLINE OF clause is generated as follows: First, the number of Skyline dimensions is
chosen, for example, Skyline queries involving two dimensions in the SKYLINE OF should be
generated. Then all possible combinations of Skyline dimensions are generated according to the
number of dimensions contained in the data set that should be used for the measurement, for ex-
ample, a five-dimensional data set should be used. Those combinations of Skyline dimensions
we call candidate Skyline combinations. Then the Skyline dimensions are chosen randomly,
using a Zipf distribution, among the candidate Skyline combinations.

For example, consider a five-dimensional data set with all two-dimensional combinations of
Skyline dimensions, the following were the generated candidate combinations of Skyline di-
mensions: dim12, dim13, dim14, dim15, dim23, dim24, dim25, dim34, dim35, and dim45.

In the experiments reported in the next section, two-dimensional and 5-dimensional Skyline
queries were studied in 5-dimensional and 10-dimensional data sets, respectively. For the two-
dimensional Skyline queries, all ten dimension combinations were candidate combinations. For
the five-dimensional Skyline queries all 252 dimensions combinations were candidates for the
SKYLINE OF clause. The selection of dimension combinations was carried out randomly using
a Zipf distribution; as a result, certain dimensions were more popular than others (for example,
the price of a car is usually relevant for all potential buyers).

In all experiments in this chapter the WHERE clause contained only one range predicate on one
dimension. Again, the dimension of that predicate was chosen randomly among the 5 or 10
dimensions possible according to the data set using a Zipf distribution. The upper and lower
bounds of these predicates were generated randomly using a uniform or Gaussian distribution
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Range of values Distribution
Skyline dimensions All 2-dimensional

combinations in a 5-
dimensional data set (10
possibilities): dim12, ...,
dim45

Zipf distribution with θ =
2. Probability for the i
value is Pi = 1

i2

All 5-dimensional
combinations in a 10-
dimensional data set (252
possibilities): dim12345,
..., dim678910

Zipf distribution with θ =
2. Probability for the i
value is Pi = 1

i2

Predicate dimensions dim1 to dim5 Zipf distribution with θ =
2. Probability for the i
value is Pi = 1

i2

dim1 to dim10 Zipf distribution with θ =
2. Probability for the i
value is Pi = 1

i2

Lower predicate values Between 0.2500 and
0.5000. Significance
s = 4, that is, four digits
after the decimal point

Uniform

Between 0.1500 and
0.3500. Significance
s = 4, that is, four digits
after the decimal point

Gaussian

Upper predicate values Between 0.5000 and
1.0000. Significance
s = 4, that is, four digits
after the decimal point

Uniform

Between 0.6500 and
0.8500. Significance
s = 4, that is, four digits
after the decimal point

Gaussian

Table 23.6: Overview of benchmark parameters

with mean, deviation, and significance as shown in Table 23.6. That table also summarizes
the other benchmark parameters. In all, the different query workloads study a wide range of
possible workloads: workloads in which many queries can be grouped because they have simi-
lar filtering effects and workloads in which grouping is not beneficial because the queries have
highly varying filtering characteristics.

23.7.3 Data Set Generation
The data generation follows the rules given earlier in Chapter 6. Our special 5-dimensional
data set - the correlation groups data set - for the Electronic Market Place scenario (Chapter
2) will also be used here. This data set resembles the fact that some dimensions in a multi-
dimensional data set are correlated and some are not. For example, consider a 5-dimensional
data set describing the significant attributes of a car. We can identify two correlation groups,
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that is, {price, insurance, taxes} and {speed, horse power}. The dimensions are split into two
correlation groups. Within a group, values are correlated, that is, normally a higher price results
in higher a higher insurance rate and speed and horse power are also correlated. On the other
hand horse power and price have not necessarily a correlation.

23.7.4 Generating Query Sets and Benchmark Execution

As mentioned in a previous section, there is a set of points, SQ associated to each Query Q.
A new point is compared to the points in SQ according to cQ in order to find out whether the
new point is relevant or not. This set of points is determined for each query and experiment by
generating a database of 10,000 points. For Query Q, SQ is set as the result of applying Q to
that database of 10,000 points as if Q were a regular (rather than a continuous) Skyline query
simulating an already running query system.
After that, another 90,000 points are generated and these 90,000 points are filtered using all
queries and their associated set of points and the time to filter these 90,000 points is measured.
In all, an experiment involved carrying out the following steps:

• Generate queries.

• Compute the Skyline of the 10,000 initial data set points for each query.

• Analyzing approach: Group queries into trees and compute the intersection of Skyline
points where necessary.

• Learning approach: Generate additional sample points for filtering and group queries into
trees and compute the intersection of Skyline points where necessary.

• Start time measurement.

• Test the filtering of 90,000 points.

• Stop time measurement.

This procedure is repeated several times and the overall average time is reported in order to get
stable results.

23.7.5 Experimental Environment

All measurements are carried out on an Intel Pentium 4 machine at 3.2 GHz with 2 GB of
main memory. If not stated otherwise, the parameters for the Learning and query Analyzing
approach are set in all experiments as shown in Table 23.7. In one experiment, the number
of sample points for the Learning approach is varied in order to study the sensitivity of this
approach towards that parameter. We do not show experiments that study the sensitivity of the
approaches to the other parameters because this sensitivity was very low in general.
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Analysis Learning
fdim 0.2 n.a.
δsky 0.1 n.a.
ε 0.41 (δsky = 0.20,

δlpv +δupv = 0.21)
0.33

Sample points n.a. 10000

Table 23.7: Default Parameter Settings

23.8 Performance of the Insert Operation
In this performance section we take a closer look at our grouping approaches. These two group-
ing approaches arise from our discussion about determining the distance between two Skyline
queries. We discussed an analytical approach for determining the distance between two Skyline
queries, in the following this approach is called the Analyzing approach or grouping by analyz-
ing; and an approach which looks for intersections between Skylines, an empirical approach for
determining the distance between two Skyline queries, the Learning approach or grouping by
learning. Both approaches were discussed in Chapter 23.3.
Our performance measurements showed no difference between a FirstFit grouping and a BestFit
grouping (as described in Chapter 23.6). So we only report the running times for the FirstFit
approach here.

23.8.1 Two-dimensional Query Workload
Uniform Predicate Bound Distribution

We start our performance section with 2-dimensional Skyline queries and uniform predicate
bound distribution. We used 5-dimensional data sets with anti-correlated, correlated, and uni-
formly distributed data value distribution. We also used our special correlation groups data set.
We varied the number of queries from a 1000 queries to 100,000 queries. Figure 23.4 displays
the results for ungrouped computation, grouped computation using the Analyzing approach and
grouped computation using the Learning approach.
For the Analyzing approach we used a rule which allowed the following deviations: a maximal
deviation of ±0.01 for the lower predicate bound and a maximal deviation of ±0.20 for the
upper predicate bound, predicate dimensions had to be equal. For Skyline dimensions queries
with two different combinations of Skyline dimensions were allowed, that is, the distance in
Skyline dimensions was set to δsky = 0.2 and fdim = 0.1. After a query with a different com-
bination of Skyline dimensions was assigned to the tree fdim was set to 0.4, preventing a third
different combination of Skyline dimensions be present in the tree. The overall distance of two
Skyline queries was therefore ∆(Q1,Q2)≤ |0.41| and ∆(Q1,Q2)≤ |0.61|.
For the Learning approach the number of learning points was 10,000 and 66 percent of the
Skyline points of the minimal Skyline had to be in the intersection, that is, ∆(Q1,Q2)≤ 0.33.
Grouping is the clear winner for this setup. No matter what data set was used grouped compu-
tation wins by a factor between 1.5 and 2.5 compared to the ungrouped computation. Looking
at the correlated and correlation-groups measurements one can see that grouping by learning is
slightly better than grouping by analyzing. A tree built by the learning approach always has a
sufficient number of Skyline points in the top node of the tree to do the pre-filtering. The Ana-
lyzing approach sometimes shoots itself in the foot by putting a query into a tree that eliminates
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Figure 23.4: Running time for up to 100K queries, uniform predicate bound distribution

most of the top node Skyline points.
Nevertheless both approaches yield similar tree structures which can be seen by looking at
the number of trees: for example, 2276 trees (100,000 queries, correlated data set, Analyzing
approach); 2214 (100,000 queries, correlated data set, Learning approach).
Looking at the anti-correlated and uniformly distributed data set, grouping by analyzing wins
even against the Learning approach. For these two data sets no difference in Skyline dimensions
were allowed in trees. This brings some advantages for the Analyzing approach since it is now
more efficient than the Learning approach.

Gaussian Predicate Bound Distribution

The second measurement has almost the same setup as the first one. The only difference is that
instead of a uniform predicate bound distribution a Gaussian predicate bound distribution is
used. Again, for the Analyzing approach a maximal deviation of ±0.01 for the lower predicate
bound and a maximal deviation of ±0.20 for the upper predicate bound was allowed, predicate
dimensions had to be equal; Skyline dimensions had the same restrictions as given above, that
is, the distance in Skyline dimensions was set to δsky = 0.2 and fdim = 0.1. After a query with
a different combination of Skyline dimensions was assigned to the tree fdim was set to 0.4, pre-
venting a third different combination of Skyline dimensions be present in the tree. The overall
distance of two Skyline queries is therefore ∆(Q1,Q2)≤ |0.41| and ∆(Q1,Q2)≤ |0.61|. Figure
23.5 shows the results for all four data sets (anti-correlated, correlated, uniformly distributed,
and correlation groups).
The Learning was done with the same parameters as above: number of learning points was
10,000 and 66 percent of the Skyline points of the minimal Skyline had to be in the intersection,
that is, ∆(Q1,Q2)≤ |0.33|.
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Figure 23.5: Running time for up to 100K queries, Gaussian predicate bound distribution

The change in predicate bound distribution has a small effect on all grouped running times.
They become slightly better. This expresses itself in a slight increase of the factor grouped
computation is gaining compared to ungrouped computation. The number of constructed trees
was in the same ball park than reported previously.

23.8.2 Five-dimensional Query Workload

The next measurement shows the performance of the grouping algorithms for all 5-dimensional
Skyline combinations in a 10-dimensional data set. Deriving from our previous experiment we
used only uniformly distributed predicate bound distribution. Figure 23.6 shows the result. Data
sets used were anti-correlated, correlated, and uniformly distributed. Our special data set, cor-
relation groups, was solely designed for a two-dimensional query workload in a 5-dimensional
data set, so we did not used it here in this high-dimensional scenario.
In this high-dimensional example there are two things to observe. First, for this setup, grouping
by analyzing wins only for the correlated data set (factor of approximately 1.4 compared to the
ungrouped computation). For the anti-correlated and uniformly distributed data sets grouping
by analyzing looses. The reason for this can be see in Table 23.8. This table shows the insert
selectivity of our Skyline pre-filter, that is, the number (or percentage) of points that when
run through the filter qualify as new Skyline points and hence have to be inserted into the
Skyline. For the anti-correlated and uniformly distributed data sets approximately each 14th
points respectively each 33rd point is inserted into the Skyline. This decision is made by the new
point not dominating any Skyline point but by being incomparable to all other Skyline points
resulting in a vast number of Skyline comparisons and therefore in an increased overhead for
the grouped computation. The decision of a point being incomparable to all other Skyline points
is done at the very end of the comparison process. So all Skyline points so far have to be looked
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Figure 23.6: Running times for up to 10K queries, 5-dimensional Skylines, uniform predicate bound
distribution

at before this decision can be made and the Skylines for these two data sets are extremely large
(for a 100,000 points data sets the Skylines for anti-correlated data or uniformly distributed sets
contain approximately 75,000 points respectively 26,000 points). For the correlated data set
only each 100th point is inserted (Skyline size for a 100,000 points data set is approximately
400).

To ease up this situation we could change the semantic of the Skyline comparison so that points
are “less” incomparable. A short example of this idea is given in the next section.

Distribution Selectivity (2 dim) Selectivity (5 dim)
Anti-corr. 0.08% 6.82%

Corr. 0.06% 0.74%
Unif. dist.. 0.07% 2.62%

Corr.-groups 0.04% 0.85%

Table 23.8: Insert selectivities for 2- and 5-dimensional Skylines, 10K queries, 10000 inserts

The second observation is that the grouping by learning degrades heavily. The reason for this
degrading of the Learning approach is that the Learning approach groups too much. For the
anti-correlated data set it produces about 350 trees whereas the Analyzing approach produces
about 2200 trees. Grouping too much means less points in the Skyline intersection residing in
the root node and hence less decision possibilities for incoming points.
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23.8.3 Changing Skyline Comparison for 5-dimensional Skylines

Making the Skyline comparison “less” incomparable should yield a better performance for the
grouped computation in a high-dimensional example. We changed the Skyline comparison
in a way that points are treated as “incomparable” only if more than 2 dimensions (out of 5
dimension) differ more than 25%. Otherwise the new point is considered to be close to the
point it is compared to and therefore discarded. This should speed up the comparison process
since more points should be discarded. Table 23.9 shows the running times for a 1000 queries
and 1000 inserted points for the unchanged Skyline comparison on the one hand and on the
other hand the running times for the changed Skyline comparison.

Normal Compare Changed Compare
ungroup. group. Select. ungroup. group. Select.

Anti-corr. 33.6 39.5 6.82% 8.3 6.6 0.33%
Corr. 1.5 1.3 0.74% 0.9 0.5 0.03%

Uniform. 6.2 6.2 2.62% 4.4 4.1 1.20%

Table 23.9: Running times (in secs) for 1000 queries and 1000 inserts, normal and changed Skyline
compare (5-dimensional)

As it can be seen, the changes in Skyline comparison particularly support a faster decision for
anti-correlated data set, that is, the selectivity drops from almost 7% to 0.3%. The running times
for the ungrouped and grouped computation also decrease but the gain for the grouped compu-
tation is higher. The same is true for the uniformly distributed data set. However, the decrease
is less since the selectivity decreases less. Also the correlated data set is affected. Changing the
Skyline comparison in the proposed way especially helps the grouped computation.

23.8.4 Memory Usage

This section shows another advantage of grouping queries: Because of the fact that grouping
queries means less duplicate points have to be stored (for ungrouped computation each query
has its own Skyline), the grouping approach in general has the advantage that it uses less mem-
ory than the ungrouped approach. This is particular interesting for higher-dimensional Skyline
queries (the higher the Skyline dimensionality the more Skyline points are found).
Figure 23.7 displays this advantage for a 2-dimensional and a 5-dimensional example. Group-
ing needs less memory. Ungrouped queries do not “know” each other, each query holds its own
Skyline points. This means that possibly many points are stored multiple times as some queries
have Skyline points in common (remember: that is one of the ideas for grouping). By grouping
those queries which have points in common, either by analyzing query parameters or by learn-
ing, we reduce the number of points stored multiple times and therefore save memory. This
effect can be seen through all grouping algorithms and all data sets. The gain in saving memory
depends on the number of Skyline points per query. This depends heavily on the type of data set
that is used, for example, for an anti-correlated data set the gain is more than for a correlation
groups data set and, of course, it depends also on the number of Skyline dimensions. In Figure
23.7 we do not show the memory usage over running time but over number of points processed.
This way we can compare the ungrouped computation with the grouped computation.
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Figure 23.7: Memory usage for 10K queries

23.8.5 Variations

In this subsection we take a look at the sensitivity to grouping parameters, that is, we vary the
deviation in Skyline dimensions for the Analyzing approach and the number of learning points
for the Learning approach.
In Figure 23.10 we show the running times to insert 1000 points into 10,000 queries. We var-
ied δsky, the allowed distance in Skyline dimensions and fdim the penalty for differences in
Skyline dimensions and noted the running time to insert the points and the number of trees pro-
duced by the grouping (by analyzing) algorithm. We used two-dimensional Skyline queries in a
five-dimensional correlated data set, uniform predicate distribution with previously mentioned
parameters.
The grouping takes place in clusters. Each cluster has a specific number of trees (for example,
369, 481, 1351). The running time is the same for each cluster. Grouping with no difference in
Skyline dimensions obviously yields the best running time. But also grouping with differences
in Skyline dimensions yields better running times than sequential computation (running time
4.2 secs).
In Figure 23.11 we varied the number of learning points: Instead of 10,000 learning points we
only used 1000 learning points.
The interesting result is that for a correlated and correlation groups data set a shorter learning
period yields a slightly better running time. The gain, however, is not much, so for previous
results we kept the learning period at 10,000 points. Varying the distance function, that is,
changing the percentage of Skyline points in the intersection, does not yield better results.

23.9 Speeding up the Delete Operation

Having talked extensively about speeding up the insert operation we should spend some thoughts
on speeding up the delete operation. Can the same idea, arranging Skyline queries in a hierarchy
of queries, be applied for the delete operation?
Grouping is also possible for the delete operation. Consider two grouped queries Q1 and Q2
and root node R in Figure 23.8. There are overall 5 points (p1, ..., p5) in Skylines. Two situation
can occur: a Skyline point in a leaf-Skyline is deleted, for example, p3, or a Skyline point in
the root Skyline is deleted, for example, p2. Overall, the computation steps for the grouped
delete operation are the same. First, delete the point and compute the candidate points, second,
compute new Skyline points from the candidate points. If p3 is deleted the particular steps are
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δsky fdim Running Time (in s) Trees
0.10 0.025 3.9 369
0.10 0.05 3.8 481
0.10 0.01 1.7 1351
0.20 0.025 3.9 369
0.20 0.05 3.9 369
0.20 0.10 3.8 481
0.20 0.15 1.6 1351
0.20 0.20 1.6 1351
0.40 0.025 3.9 369
0.40 0.05 3.9 369
0.40 0.10 3.9 369
0.40 0.15 3.8 481
0.40 0.20 3.8 481
0.40 0.30 1.6 1351
0.40 0.4 1.6 1351

Table 23.10: Varying δsky and fdim

Ungrouped Analysis Learning (1000) Learning (10000)
Anti-corr. 44.8 15.5 22.0 26.4

Corr. 46.8 14.8 26.5 23.6
Unif. dist.. 39.6 15.4 18.8 27.6

Corr.-groups 45.7 19.6 26.0 22.3

Table 23.11: Running time (in secs, 1000 inserts) for 100K queries, uniform predicate distribution,
different number of learning points

the following:

• Delete p3.

• Compute candidate points for Q1 according to schema in Figure 22.4.

• Compute new Skyline points from candidate points. The new Skyline points reside in
leaf-Skyline of Q1.

If p2 is deleted the following steps are necessary:

• Delete p2.

• Compute candidate points for Q1 and Q2 according to schema in Figure 22.4 in separate
computations.

• Compute new Skyline points for Q1 and Q2 from the candidate points separately for each
query. These points reside in the leaf-Skylines of Q1 respectively Q2

• Compute the intersection of the Skylines from Q1 and Q2 to get the new root Skyline.
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Figure 23.8: Grouping for delete operation

Taking the previous example into account, only one step, that is, the actual deletion of the
point, can be speed up by grouping. The time consuming step, that is, the re-computation of
Skyline points from candidate points, has to be carried out separately for each query. Also the
computation of the candidate points has to be done for each query separately. So speeding up
the delete operation by grouping the queries like it is done for the insert operation would yield
only marginal improvements in performance. For this reason, we did not perpetuate grouped
deletion any further.
The performance of the delete operation is given in Chapter 22.2. We consider these results “as
good as they get”.



CHAPTER 24

Summary: Continuous Skyline Computation

In Chapters 21 and 23 we took Skyline computation on step further. For all Skyline algorithms
presented in Part II and Part III the underlying data set for computing the Skyline was static,
that is, during Skyline computation no points were added or deleted from the data set.

Inspired by the characteristics of the Online algorithms, the Nearest Neighbor Algorithm and
the Branch-and-Bound Skyline Algorithm, we thought of a scenario where the underlying data
set for computing the Skyline is not static, that is, many Skyline points are added to the data
set during Skyline computation and a few points are deleted from the data set during Skyline
computation. A striking question had to be answered: Do we have to re-compute the complete
Skyline computed so far or can we use parts of the Skyline to adjust it reflecting the new situa-
tion, that is, having an additional point in the data set or missing one point? The answers was:
We can re-use the already computed Skyline to adjust to the new situation saving lots of time.

In our understanding each Skyline query represents a filter for a user who is interested in certain
details, for example, certain attributes of a used car. Now there are thousands of users looking
for a used car. Another striking question arose: Can we answer similar queries together saving
time for computation and memory consumption. And the answers was: We can answer similar
queries together. By building up an “index” of queries, they can be answered together in an el-
egant way. As with any index it must be used with caution. An index used in a wrong way does
not help at all, mostly it takes longer to get results. We showed circumstances where the index
works very well and we showed circumstances where indexing queries should not be used.
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CHAPTER 25

Conclusion

The title of this thesis, “Skyline Query Processing”, gives the reader a first impression what to
expect, a thorough discussion about Skyline, that is, coming from practical examples showing
some modern day problems with vast amounts of data, going over different ways of determin-
ing the Skyline, showing you different aspects of Skyline computation, and finally extending
the topic for new applications of the Skyline. This thesis is, therefore, divided into three major
parts: The first part deals with Skyline in general, from Skyline examples to mathematical foun-
dations. The second part deals with Skyline algorithms different authors have thought of. Each
Skyline algorithm is presented using the same example, so the reader can easily see how each
algorithm works. Finally, the third part brings something new, the extension of Skyline compu-
tation to dynamic data sets and thousands of Skyline queries to be answered in an efficient way.

This is not the first thesis on Skyline. Some problems have already been discussed in [Ros01].
So this thesis can be seen as a direct sequel of [Ros01], picking up some parts and playing them
a little further.

In Chapter 2 we introduced a set of examples which illustrate different application scenarios
Skyline processing can be used for. This chapter merely is used as teaser to give you a glance of
how the Skyline can be used. All scenarios are take from “daily life” since we did not want to
create any artificial - solely scientific - scenario giving the reader the chance to get accustomed
with Skyline problems making the Skyline easier to understand. This is also the reason why we
put the scenarios at the beginning of this thesis not having talked Skyline at all. Please note: Not
all scenarios were suitable for all parts of Skyline However, each part refered to the scenario
which can be used for it.

Chapter 3 took you to the mathematical basics of the Skyline. The Skyline is based on the
maximum vector problem. Trying to compute the maximum of a set of (multi-dimensional)
vectors it is, in our consideration, a direct extension of finding the maximum of a set of (one-
dimensional) numbers. For finding the maximum (or minimum) of a set of numbers there are a
bunch of efficient algorithms that work well for different application scenarios. For finding the
maxima (or minima) of a set of vectors there are, now, a bunch of efficient algorithms that work

139



140 CHAPTER 25. CONCLUSION

well for different application scenarios. We also took a look of some Skyline properties which
come in handy in later chapters.

Chapter 4 introduced you to the basic wording used in this thesis. It also introduced the Skyline
query, the “star” in this thesis. All discussions “orbit” around the Skyline query, like planets
around a star. The chapter also served as the first step to a classification of Skyline algorithms
according to their computational behavior.

Chapters 6 and 7 gave you the technical knowledge you needed to understand this thesis. It
introduced our basic data sets, our basic example to explain the working of the different Skyline
algorithms, and a pseudo-code all Skyline algorithms in this thesis are displayed in.

Chapter 8 classified the Skyline algorithms given in Chapters 9, 10, 11, 12, and 13 according
to our taxonomy of Skyline algorithms. The algorithms in these chapters all classify as batch
or progressive algorithms, that is the Standard Algorithm, the Block-Nested-Loops Algorithm,
the Divide-and-Conquer Algorithm, the Bitmap Based Algorithm, and the Partition-Index Al-
gorithm. The basic example from Chapter 7 is used to demonstrate the techniques of each
algorithm. Attached to this part is Chapter 14 which demonstrated a way of doing some pre-
filtering to facilitate later Skyline computation.

Chapters 16 through 18 took the Skyline application one step ahead. In Chapter 16 we intro-
duced an online scenario for Skyline computation giving several properties for a Skyline algo-
rithm to be classified as an online algorithm. In Chapter 17 we presented the first online Skyline
algorithm, the Nearest Neighbor Algorithm. It is explained in great detail, demonstrating how
it works, its particularities, and its properties to be classified as an online Skyline algorithm.
The quality of results plays a central role for the Nearest Neighbor algorithm. What is meant by
quality of results and a comparison to other Skyline algorithms concluded this chapter. Chapter
18 showed the second Skyline algorithm to be called an online Skyline algorithm, the Branch-
and-Bound Skyline Algorithm. The properties of this Skyline algorithm and its classification to
be an online Skyline algorithm is discussed. Both Skyline algorithms are presented using our
basic example.

Finally, Chapters 21 to 23 took the Skyline application another step ahead. Instead of dealing
with static data sets we now faced the challenge of changing data sets, data was inserted into and
deleted from the data set. In Chapter 21 we span the idea. Chapter 22 gave you all necessary
operations we needed to cope with changing data sets, finding out that we could reuse parts of
the Skyline so far to deal with incoming and outgoing data, making a complete recalculation of
the Skyline unnecessary. Chapter 23, again, took us one step ahead. Now dealing with many
queries which worked on changing data sets. We developed techniques which allowed us to
answer queries not one by one but in groups, saving computation time and memory usage.



CHAPTER 26

Closing Words

Recently the Skyline has reached some considerable attention. From introducing new efficient
Skyline algorithms for “classical” Skyline problems to new Skyline application domains there
has been considerable research effort. Funnily, the theoretical foundations of the Skyline were
proposed more than 30 years ago, the Skyline has begun to attract attention in the database
context not before the late 90s.
The Skyline is a neat subject which can help to reduce the ever-enlarging amounts of data. All
papers on the Skyline subject have the reduction of data in common.
Reduction of data in any field of information processing has become essential, even vital. The
volume of data which decisions are based on increases every day and decisions have to be made
in a shorter period of time. This is because the world chances faster today. So concepts for
reducing data have to provide reliable results for the decisions to be reasonable.
The fact that the world changes faster today is, of course, somehow a “self inflicted wound”,
without computers this would have probably never happened. But turning back the time is not
possible and undoubtedly computers help us in myriad ways.
So data reduction is the only way we can go. Skyline is casted for a role in this play of data
reduction. One among many others. For each act there is a role which plays a leading part,
some roles that have a supporting part, and some roles that are not on stage for this particular
act. Skyline certainly has acts where it has a leading part. As it is with all plays a director is
need who coordinates the performances of each role and assembles them for a scene.
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APPENDIX A

Numbers

Tables A.1 and A.2 show the size of the Skyline for 100,000 points and 1,000,000 points for the
anti-correlated, correlated, and uniformly distributed data sets.

Dimensions Anti-correlated Correlated Uniformly distributed
2 49 1 12
3 632 3 69
4 4239 11 267
5 12615 17 1032
6 26843 21 1986
7 41484 43 5560
8 55691 121 9662
9 67101 243 16847
10 75028 378 26047

Table A.1: Skyline sizes for a 100,000 points data set

The following data sets were barely used in this thesis. The table just illustrates how the Skyline
size grows when the number of points in the data set grows.

Dimensions Anti-correlated Correlated Uniformly distributed
2 54 1 12
3 1012 5 88
4 8545 25 453
5 35947 21 1851

Table A.2: Skyline sizes for a 1,000,000 points data set

For the interested reader we note the number of nodes within the R*-tree that is used for the
Nearest Neighbor Algorithm in Part III. Tables A.3, A.4, and A.5 depict the number of interme-
diate and leaf nodes of an R*-Tree built with no specific ordering of the points. The R*-Tree
contained 100,000 points.
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Dimension Internal nodes Data nodes ∑ nodes
2 4 418 422
3 7 556 563
4 10 716 726
5 17 866 883
6 22 1025 1047
7 30 1151 1181
8 36 1298 1334
9 43 1442 1485
10 54 1600 1654

Table A.3: Number of nodes for a anti-correlated data set, 100,000 points

Dimension Internal nodes Data nodes ∑ nodes
2 4 412 416
3 8 561 569
4 11 714 725
5 15 848 863
6 22 975 997
7 25 1111 1136
8 31 1220 1251
9 39 1358 1397
10 50 1501 1551

Table A.4: Number of nodes for a correlated data set, 100,000 points

Dimension Internal nodes Data nodes ∑ nodes
2 5 421 427
3 7 571 578
4 10 725 735
5 16 859 875
6 21 999 1020
7 28 1157 1185
8 34 1295 1329
9 44 1431 1475
10 55 1599 1654

Table A.5: Number of nodes for a uniformly distributed data set, 100,000 points



List of Figures

2.1 Quality assurance: temperature / pressure curve . . . . . . . . . . . . . . . . . 14

3.1 Skylines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Skyline comparison function . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Time for 10 million Skyline comparisons and different dimensionalities . . . . 21

6.1 Visualization of the data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.1 Hotel in Lido di Jesolo, graphical representation . . . . . . . . . . . . . . . . . 33

9.1 Standard algorithm for Skyline computing . . . . . . . . . . . . . . . . . . . . 40

10.1 Block-Nested-Loops algorithm for Skyline computing . . . . . . . . . . . . . 43

11.1 Partitioning for Divide-and-Conquer algorithm . . . . . . . . . . . . . . . . . 47
11.2 Divide-and-Conquer algorithm for Skyline computing . . . . . . . . . . . . . . 48
11.3 Merge algorithm for D&C Skyline computing . . . . . . . . . . . . . . . . . . 49

12.1 Bitmap algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

13.1 Example B+-tree for Partition-Index algorithm . . . . . . . . . . . . . . . . . . 55
13.2 Partition-Index algorithm for Skyline computing, part 1 . . . . . . . . . . . . . 56
13.3 Partition-Index algorithm for Skyline computing, part 2 . . . . . . . . . . . . . 57

14.1 Sorted Skyline computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
14.2 Pseudo-code for sorted Skyline pre-filtering . . . . . . . . . . . . . . . . . . . 63
14.3 Explanation for the Branch-and-Bound R*-Tree filter algorithm . . . . . . . . 64

17.1 Hotel example for Nearest Neighbor algorithm . . . . . . . . . . . . . . . . . 74
17.2 Nearest Neighbor algorithm, first 6 steps . . . . . . . . . . . . . . . . . . . . . 76
17.3 Nearest Neighbor algorithm for 2-dimensional Skylines . . . . . . . . . . . . . 77

147



148 LIST OF FIGURES

17.4 3-dimensional regions for Skyline computation . . . . . . . . . . . . . . . . . 78
17.5 Comparison of Nearest Neighbor variants . . . . . . . . . . . . . . . . . . . . 85
17.6 Quality of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

18.1 R-tree layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
18.2 Branch-and-Bound algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
18.3 Running time BBS vs. NN, 1M points, dim 2 to 5 . . . . . . . . . . . . . . . . 92
18.4 Running time BBS vs. NN, dim 3, 100K to 10M points . . . . . . . . . . . . . 92

21.1 Pseudo-code of a query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
21.2 Sequential checking of all queries . . . . . . . . . . . . . . . . . . . . . . . . 101
21.3 Query system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

22.1 Pseudo-code for insert operation . . . . . . . . . . . . . . . . . . . . . . . . . 105
22.2 Deleting a point from the Skyline . . . . . . . . . . . . . . . . . . . . . . . . . 106
22.3 Pseudo-code for the delete operation . . . . . . . . . . . . . . . . . . . . . . . 107
22.4 Pseudo-code for the candidatePoints operation . . . . . . . . . . . . . . . . . . 108

23.1 Hierarchy of filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
23.2 FirstFit grouping algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
23.3 BestFit grouping algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
23.4 Running time for up to 100K queries, uniform predicate bound distribution . . 129
23.5 Running time for up to 100K queries, Gaussian predicate bound distribution . . 130
23.6 Running times for up to 10K queries, 5-dimensional Skylines, uniform predi-

cate bound distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
23.7 Memory usage for 10K queries . . . . . . . . . . . . . . . . . . . . . . . . . . 133
23.8 Grouping for delete operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



List of Tables

2.1 Used car market: offers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Used car market: user preferences . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Classification of Skyline algorithms . . . . . . . . . . . . . . . . . . . . . . . 22

6.1 Skyline sizes for a 100,000 points data sets . . . . . . . . . . . . . . . . . . . 30

7.1 Hotels in Lido di Jesolo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

9.1 Hotel example for the Standard algorithm . . . . . . . . . . . . . . . . . . . . 39

10.1 Steps of the Block-Nested-Loops algorithm . . . . . . . . . . . . . . . . . . . 44

12.1 Number of distinct values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
12.2 Hotel example for Bitmap algorithm . . . . . . . . . . . . . . . . . . . . . . . 51

13.1 Hotel example for Partition-Index algorithm . . . . . . . . . . . . . . . . . . . 54
13.2 Example lists for Partition-Index algorithm . . . . . . . . . . . . . . . . . . . 55

17.1 Growth of ToDoList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
17.2 Growth of ToDoList with fine-grained partitioning . . . . . . . . . . . . . . . . 81
17.3 Batch vs. NN [KRR02], size of Skyline, running times [secs] for 2-dimensional

Skyline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
17.4 Progressive vs. NN, size of Skyline, running times [secs] for 2-dimensional

Skyline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
17.5 Progressive vs. NN , first results [KRR02] . . . . . . . . . . . . . . . . . . . . 84

18.1 Hotel example for Branch-and-Bound algorithm . . . . . . . . . . . . . . . . . 87
18.2 R-tree, distance of nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
18.3 Brand-and-Bound Skyline algorithm steps . . . . . . . . . . . . . . . . . . . . 89

21.1 Used car market: offers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

149



150 LIST OF TABLES

22.1 Running time for a 10,000 inserts . . . . . . . . . . . . . . . . . . . . . . . . . 104
22.2 Running time for a 1000 deletes, complete algorithm . . . . . . . . . . . . . . 109
22.3 1000 deletes: Running time for recomputing the Skyline after a delete (5-

dimensional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

23.1 Grouping matrix for 2-dimensional Skyline queries and 5-dimensional data set 115
23.2 Weight of distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
23.3 Used car market: data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
23.4 Used car market: interesting dimensions . . . . . . . . . . . . . . . . . . . . . 118
23.5 Intersection size of combinations of Skyline queries . . . . . . . . . . . . . . . 122
23.6 Overview of benchmark parameters . . . . . . . . . . . . . . . . . . . . . . . 126
23.7 Default Parameter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
23.8 Insert selectivities for 2- and 5-dimensional Skylines, 10K queries, 10000 inserts 131
23.9 Running times (in secs) for 1000 queries and 1000 inserts, normal and changed

Skyline compare (5-dimensional) . . . . . . . . . . . . . . . . . . . . . . . . . 132
23.10Varying δsky and fdim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
23.11Running time (in secs, 1000 inserts) for 100K queries, uniform predicate distri-

bution, different number of learning points . . . . . . . . . . . . . . . . . . . . 134

A.1 Skyline sizes for a 100,000 points data set . . . . . . . . . . . . . . . . . . . . 145
A.2 Skyline sizes for a 1,000,000 points data set . . . . . . . . . . . . . . . . . . . 145
A.3 Number of nodes for a anti-correlated data set, 100,000 points . . . . . . . . . 146
A.4 Number of nodes for a correlated data set, 100,000 points . . . . . . . . . . . . 146
A.5 Number of nodes for a uniformly distributed data set, 100,000 points . . . . . . 146



Bibliography

[AF00] M. Altinel and M. J. Franklin. Efficient filtering of XML documents for selective
dissemination of information. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), pages 53–64, Cairo, Egypt, September 10-14,
2000.

[AH00] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query processing.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, pages 261–272, Dallas, Texas, USA, May 16-18, 2000.

[AHU74] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Massachusetts, USA, 1974.

[AMR+98] S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and J. L. Wiener. Incremental
maintenance for materialized views over semistructured data. In Proceedings of
the International Conference on Very Large Data Bases (VLDB), pages 38–49,
New York City, New York, USA, August 24-27, 1998.

[AT78] S. G. Akl and G. T. Toussaint. A fast convex hull algorithm. Information Process-
ing Letters, 7(5):219–222, 1978.

[Aut06] Autoscout24, website, 2006. http://www.autoscout24.de/.

[Bal06] W.-T. Balke. Efficient evaluation of numerical preferences: Top k queries, sky-
lines and multi-objective retrieval. In Preferences: Specification, Inference,
Applications, Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum (IBFI), Schloss Dagstuhl, Germany, 2006.

[Bay97] R. Bayer. The universal B-tree for multidimensional indexing: General concepts.
In World-Wide Computing and Its Applications ’97 (WWCA ’97), Tsukuba, Japan,
March 10-11, 1997.

151

http://www.autoscout24.de/


152 BIBLIOGRAPHY

[BBD+02] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues
in data stream systems. In Proceedings of the ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 1–16, Madison, Wisconsin,
USA, June 3-5, 2002.
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[CÇC+02] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. B. Zdonik. Monitoring streams - a new class
of data management applications. In Proceedings of the International Conference
on Very Large Data Bases (VLDB), pages 215–226, Hong Kong, China, August
20-23, 2002.

http://www.cs.cornell.edu/database/cougar/


154 BIBLIOGRAPHY

[DFZF03] Y. Diao, M. J. Franklin, H. Zhang, and P. M. Fischer. Path sharing and predicate
evaluation for high-performance XML filtering. ACM Transactions on Database
Systems (TODS), 28(4):467–516, 2003.

[EOT03] P.-K. Eng, B.C. Ooi, and K.-L. Tan. Indexing for progressive Skyline computation.
Data & Knowledge Engineering, 46(2):169–201, 2003.

[FJL+01] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha. Filter-
ing algorithms and implementation for very fast publish/subscribe. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, pages
115–126, Santa Barbara, CA, USA, May 21-24, 2001.

[FSAA01] H. Ferhatosmanoglu, I. Stanoi, D. Agrawal, and A. El Abbadi. Constrained nearest
neighbor queries. Lecture Notes in Computer Science, 2121:257–278, 2001.

[GG98] V. Gaede and O. Günther. Multidimensional access methods. ACM Computing
Surveys, 30(2):170–231, 1998.

[GMS93] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incremen-
tally. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, pages 157–166, Washington, D.C., USA, May 26-28, 1993.

[God04] P. Godfrey. Skyline cardinality for relational processing. In Foundations of In-
formation and Knowledge Systems, Third International Symposium, pages 78–97,
Wilhelminenburg Castle, Austria, February 17-20, 2004.

[GS79] P. J. Green and B. W. Silverman. Constructing the convex hull of a set of points in
the plane. The Computer Journal, 22(3):262–266, 1979.

[GS03] A. Gupta and D. Suciu. Stream processing of XPath queries with predicates. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data, San Diego, California, USA, June 9-12, 2003.

[Gut84] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data,
pages 47–57, Boston, Massachusetts, USA, June 18-21, 1984.

[HAC+99] J. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Raman, T. Rotha, and
P. Haas. Interactive data analysis: The control project. IEEE Computer, 32(8):51–
59, 1999.

[HCH+99] E. N. Hanson, Chris Carnes, L. Huang, M. Konyala, L. Noronha, S. Parthasarathy,
J. B. Park, and A. Vernon. Scalable trigger processing. In Proceedings of the
International Conference on Data Engineering (ICDE), pages 266–275, Sydney,
Australia, March 23-26, 1999.

[HFC+00] J. M. Hellerstein, M. J. Franklin, S. Chandrasekaran, A. Deshpande, K. Hildrum,
S. Madden, V. Raman, and M. A. Shah. Adaptive query processing: Technology
in evolution. IEEE Data Engineering Bulletin, 23(2):7–18, 2000.

[HS99] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM
Transactions on Database Systems, 24(2):265–318, 1999.



BIBLIOGRAPHY 155

[IS88] M. Miyakawa I. Stojmenovic. An optimal parallel algorithm for solving the maxi-
mal elements problem in the plane. Parallel Computing, 7(2):249–251, 1988.

[Jes06] Lido di Jesolo, website, 2006. http://www.jesolo.it/.

[Kie02] W. Kießling. Foundations of preferences in database systems. In Proceedings of
the International Conference on Very Large Data Bases (VLDB), pages 311–322,
Hong Kong, China, August 20-23, 2002.

[KLP75] H.T. Kung, F. Luccio, and F.P. Preparata. On finding the maxima of a set of vectors.
Journal of the ACM, 22(4):469–476, 1975.

[KRR02] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: An online algo-
rithm for Skyline queries. In Proceedings of the International Conference on Very
Large Data Bases (VLDB), pages 275–286, Hong Kong, China, August 20-23,
2002.

[Lar99] P.-A. Larson. Grouping and duplicate elimination: Benefits of early aggrega-
tion. Technical report, Microsoft Corporation , Redmond, Washington, USA, 1999.
http://www.research.microsoft.com/ palarson/.

[LPBZ96] L. Liu, C. Pu, R. S. Barga, and T. Zhou. Differential evaluation of continual
queries. In International Conference on Distributed Computing Systems, pages
458–465, Hong Kong, May 27-30, 1996.

[LPT99] L. Liu, C. Pu, and W. Tang. Continual queries for internet scale event-driven
information delivery. Knowledge and Data Engineering, 11(4):610–628, 1999.

[LYLC04] E. Lo, K. Yip, K.-I. Lin, and D. W. Cheung. Progressive skylining over web-
accessible database. unpublished, August, 2004.

[LYWL05] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the sky: Efficient skyline compu-
tation over sliding windows. In Proceedings of the IEEE International Conference
on Data Engineering (ICDE), pages 502–513, Tokyo, Japan, April 5-8, 2005.

[Mar99] V. Markl. MISTRAL: Processing Relational Queries using a Multidimensional
Access Technique. PhD thesis, Fakultät für Informatik, Technische Universität
München, Germany, January, 1999.
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