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Zusammenfassung 
 

Leishmania HASPB ist ein Lipoprotein, das unconventionell sowohl von 

Leishmania Parasiten als auch von Säugetierzellen exportiert wird (Denny et 

al., 2000; Stegmayer et al., 2005). Exportiertes HASPB bleibt aufgrund einer 

Myristoylierung und einer Palmitoylierung in der N-terminalen SH4 Domäne 

auf der extrazellulären Oberfläche der Plasmamembran verankert (Denny et 

al., 2000; Stegmayer et al., 2005). Diese SH4-spezifische Acylierung erfolgt 

an intrazellulären Membranen und ist die Voraussetzung für den Transport 

von HASPB zur Plasmamembran. Zum heutigen Standpunkt jedoch ist der 

Exportweg von HASPB noch ungeklärt, im speziellen der subzelluläre Ort der 

HASPB Membrantranslokation. Zudem sind mögliche molekulare Ma-

schinerien für den Export von HASPB noch nicht bekannt. Aus diesem Grund 

wurden mittels somatischer Mutagenese klonale CHO Mutanten generiert, die 

sich durch einen Defekt im HASPB Export auszeichneten. HASPB war in 

einer solchen Mutante (CHO K3) sowohl myristoyliert als auch palmitoyliert 

und konnte assoziiert mit der Plasmamembran nachgewiesen werden, wie 

konfokale Mikroskopie und subzellulare Fraktionierung gezeigt haben. Im 

Gegensatz dazu war der Transport von HASPB an die extrazelluläre 

Oberfläche der Plasmamembran, trotz eines mit dem Wildtyp überein-

stimmenden Expressionslevels, in CHO K3 Zellen stark reduziert. Dies wurde 

sowohl mittels Durchflusszytometrie als auch biochemischer Zelloberflächen-

biotinylierung nachgewiesen. Daraus resultierend scheint die Plasmamem-

bran der subzelluläre Ort der HASPB Membrantranslokation zu sein. Dies 

wird durch die Akkumulation des Fusionsproteins an dieser Stelle im Falle 

eines Exportdefekts bestätigt. Anhand dieser Daten kann ein Exportmodell 

aufgestellt werden, in dem, im ersten Schritt, die SH4 Acylierung den intra-

zellulären Transport von HASPB an die Plasmamembran vermittelt. Dort wird 

dann im zweiten Schritt die Translokation von HASPB über eine Plasma-

membran-lokalisierte Maschinerie, welche in CHO K3 Zellen defekt zu sein 

scheint, ermöglicht. Interessanterweise werden FGF-2 und Galectin-1, beides 

unkonventionell sezernierte Proteine, in CHO K3 Zellen an die Oberfläche der 
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Plasmamembran transloziert. Dies beweist, dass die entsprechende Kom-

ponente, die in der Exportmaschinerie von CHO K3 Zellen defekt ist, eine 

wichtige Funktion spezifisch im Export von HASPB einnimmt. Der in CHO K3 

Zellen identifizierte Chemokine Orphan Rezeptor 1 konnte als Ursache für 

den HASPB Exportdefekt dieser Zellen ausgeschlossen werden.  

Im zweiten Teil dieser Arbeit konnte gezeigt werden, dass das SH4 Protein 

HASPB, neben seiner Lokalisation an der Zelloberfläche, zudem noch mit 

extrazellulären Vesikeln assoziiert ist. An der Plasmamembran lokalisiertes 

HASPB führt zur Bildung von dynamischen nicht-apoptotischen Aus-

stülpungen (Tournaviti et al., 2006 submitted). Aus diesem Grund wurde der 

Zellkulturüberstand von HASPB-exprimierenden Zellen auf sedimentierbares 

Material mittels Ultrazentrifugation untersucht. Darin konnte in Nycodenz 

Flotationsgradienten eine HASPB-assoziierte Vesikelfraktion nachgewiesen 

werden. Interessanterweise konnten andere SH4 Proteine wie Src, Fyn, Yes 

and Lck nicht in extrazellulären Vesikeln gefunden werden. Aufgrund der 

Tatsache, dass diese Ausstülpungen der Plasmamembran in diesen Zelllinien 

beobachtet werden konnten, kann angenommen werden, dass die extra-

zellulären HASPB-assoziierten Vesikel nicht durch das Abschnüren dieser 

verursacht wurden. Bestätigt wird diese Beobachtung durch die Analyse von 

HeLa Zellen, bei denen HASPB-assoziierte Vesikel nachweisbar waren, 

jedoch Ausstülpungen der Plasmamembran nur in gerigem Maße beobachtet 

wurden. Wie mit Proteaseschutz-Experimenten bewiesen werden konnte, ist 

HASPB im Lumen dieser extrazellulären Vesikel lokalisiert. Kolokalisations-

experimente mit verschiedenen Exosomenmarkern bestätigte des weiteren, 

das HASPB, vermittelt durch die MVB Maschinerie, in Vesikeln exportiert 

wird. Diese Aussage konnte mit den Ergebnissen von linearen Sucrose-

gradienten und mittels Elektronenmikroskopie noch bekräftigt werden. 

HASPB-assoziierte Vesikel liegen mit einer Dichte von 1,15 g/ml (Heijnen 

et al., 1999) im Dichtebereich von Exosomen und besitzen, ebenso wie 

Exosomen, einen Durchmesser von weniger als 100 nm (Stoorvogel et al., 

2002). Zusammenfassend kann ein zweites Exportmodell aufgestellt werden, 

in dem vollständig acyliertes HASPB, welches an der cytoplasmatischen Seite 

der Plasmamembran lokalisiert ist, Zutritt zur MVB Maschinerie gewährt wird 

und schließlich in Vesikeln exportiert wird.  
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Summary 
 

Leishmania HASPB is a lipoprotein that is exported to the extracellular space 

from both Leishmania parasites and mammalian cells via an unconventional 

secretory pathway (Denny et al., 2000; Stegmayer et al., 2005). Exported 

HASPB remains anchored in the outer leaflet of the plasma membrane 

mediated by myristate and palmitate residues covalently attached to the  

N-terminal SH4 domain of HASPB (Denny et al., 2000; Stegmayer et al., 

2005). HASPB targeting to the plasma membrane depends on SH4 acylation, 

which occurs at intracellular membranes. How acylated HASPB is targeted to 

the plasma membrane and, in particular the subcellular site of HASPB 

membrane translocation is unknown. Furthermore, possible secretory 

mechanisms for HASPB are not yet clarified in molecular terms.  

In order to address this issue, a screening for clonal CHO mutants derived 

from somatic mutagenesis that are incapable of exporting HASPB, was 

performed. In such a CHO mutant cell line HASPB was myristoylated and 

palmitoylated and was mainly localized to the plasma membrane as judged by 

confocal microscopy and subcellular fractionation. However, based on a 

quantitative flow cytometry assay and a biochemical biotinylation assay of 

surface proteins, HASPB transport to the outer leaflet of the plasma 

membrane was largely reduced in this mutant despite a normal expression 

level of the HASPB reporter molecule compared to CHO wild-type cells. 

These findings indicate that the subcellular site of HASPB membrane 

translocation is the plasma membrane as the reporter molecule accumulates 

in this location when export is blocked. Hence, based on these results a two-

step process of HASPB cell surface biogenesis can be defined, in which SH4 

acylation of HASPB mediates intracellular targeting to the plasma membrane. 

In a second step, the plasma membrane-resident machinery that is apparently 

disrupted in the CHO mutant cell line, mediates membrane translocation of 

HASPB. Intriguingly, the angiogenic growth factor FGF-2 and Galectin-1, a 

lectin of the extracellular matrix, proteins secreted by unconventional means, 

were shown to be secreted normally from the HASPB export mutant cell line. 
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These observations demonstrate that the export machinery component 

defective in the export mutant cell line functions specifically in the HASPB 

export pathway. However, as revealed from the mutagenesis analysis the 

identified chemokine orphan receptor 1 was not the reason for the perturbed 

HASPB membrane localization in CHO K3 cells since its expression did not 

seem to be affected in CHO K3 cells.  

In the second chapter of this thesis, the SH4 protein HASPB, besides being 

localized to the cell surface, was found to be associated with extracellular 

vesicles. HASPB induces curvature of the plasma membrane resulting in the 

formation of highly-dynamic non-apoptotic plasma membrane blebs 

(Tournaviti et al., 2006 submitted). Based on these observations cell culture 

supernatants from HASPB expressing CHO cells were analyzed. As revealed 

by flotation analysis the detected sedimentable material contained a vesicle-

associated HASPB population. Importantly, other SH4 proteins such as Src, 

Fyn, Yes and Lck were not detectable in extracellular vesicles. Since these 

proteins were able to induce the formation of plasma membrane blebs, the 

extracellular HASPB vesicle population was shown not to be a consequence 

of plasma membrane blebbing, a process promoting the shedding of plasma 

membrane-derived vesicles that are released into the extracellular space. 

This observation was confirmed by results obtained from HeLa cells that were 

able to produce HASPB-containing vesicles. Importantly, the formation of 

plasma membrane blebs was largely reduced in this cell line. As judged by 

protease protection experiments HASPB was shown to be located on the 

inner leaflet of the vesicle membrane. Colocalization analysis with different 

exosomes markers further confirmed that HASPB might be exported via 

vesicles being released by the MVB sorting machinery. Furthermore 

employing linear sucrose gradients and electron microscopy, these vesicles 

corresponded to the reported density of 1.15 g/ml for exosomes (Heijnen 

et al., 1999) as well as to the exosomal size with diameters <100 nm 

(Stoorvogel et al., 2002). Together, these findings strongly suggest that dually 

acylated HASPB localized on the inner leaflet of the plasma membrane is 

delivered into vesicles that are released by the MVB sorting machinery into 

the extracellular space. 
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1 Introduction 
 

In eukaryotic cells, internal membranes create compartments and organelles 

into which different metabolic processes are segregated (Gal and Raikhel, 

1993; Lee et al., 2004). Besides other functions, this elaborate membrane 

system makes up the secretory pathway. It consists of a number of 

independent organelles that function sequentially to mediate protein secretion 

to the extracellular environment. Each compartment provides a specialized 

environment that facilitates the various stages of protein biogenesis, such as 

posttranslational modifications, sorting, and ultimately, secretion (Gal and 

Raikhel, 1993; Lee et al., 2004). 

Cells that secret proteins by exocytosis in large amounts are characterized by 

a permanent turnover of transport vesicles (Gruenberg and Clague, 1992). 

Proteins destined for export are synthesized in the ER followed by a transport 

to the Golgi via various kinds or transport vesicles (Bonifacino and Glick, 

2004; Rothman, 1990; Rothman and Orci, 1992). In the Golgi proteins get 

modified and packed into vesicles for further transport to the target organelle, 

i.e. the plasma membrane (Keller and Simons, 1997). Upon fusion of the 

vesicle membrane with the plasma membrane its content is released into the 

extracellular space. Vesicles also bud from the plasma membrane 

transporting proteins into the cell. Based on this balance between exo- and 

endocytosis, the size of the plasma membrane does not vary (Pryer et al., 

1992). Moreover, based on this permanent recycling of membranes, the ER 

gets regenerated. Similarly, this process regenerates plasma membranes, 

which have a high throughput of endocytosed material (Hong and Tang, 

1993). The fusion of membranes and different compartments is termed 

membrane flow and represents the dynamics of cells (Bennett, 1956). With 

the exception of mitochondria, plastids and peroxisomes, the ER, Golgi, 

lysosomes and the plasma membrane are involved in this process. In case of 

the nucleus, only the outer membrane, which is identical to the membrane of 

the rough ER is studded with ribosomes engaged in protein synthesis 

(Dingwall and Laskey, 1992; Newport and Forbes, 1987). The proteins made 

on these ribosomes are transported into the space between the inner and 
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outer nuclear membranes (the perinuclear space), which is continuous with 

the ER lumen (Dingwall and Laskey, 1992; Newport and Forbes, 1987). In the 

first step on a pathway to another destination proteins enter the ER followed 

by a transport to the Golgi network. (Pryer et al., 1992). Transport from the ER 

to the Golgi network and from the Golgi to other compartments of the 

endomembrane system is carried out by the continuous budding and fusion of 

transport vesicles containing newly made proteins (Bonifacino and Glick, 

2004). The accurate delivery of proteins to the correct target organelle e.g. for 

secretion from the cell, is therefore necessary for a cell to be able to grow, 

divide and function properly (Lee et al., 2004; Sudhof, 2004).   

 

1.1 Classical or ER-Golgi-mediated protein secretion 

 

The endoplasmic reticulum (ER) is the most extensive membrane system in 

eukaryotic cells and serves as an entry point for proteins destined for other 

organelles, as well as for the ER itself (Depierre and Dallner, 1975; Lee and 

Chen, 1988). Proteins will then be ferried by transport vesicles from organelle 

to organelle and, in some cases, from organelles to the plasma membrane or 

the cell exterior (Rapoport, 1992). The ER exists in two different forms, the 

rough ER and the smooth ER (Borgese et al., 1974; Jones and Fawcett, 

1966). The region termed rough ER contains membrane-bound ribosomes, 

which synthesize proteins being translocated into the ER. These proteins are 

destined for export, for lysosomes or for transport to the plasma membrane 

(Borgese et al., 1974; Jones and Fawcett, 1966; Rapoport, 1992; Vertel et al., 

1992). Free ribosomes are not associated with membranes and synthesize all 

of the other proteins encoded by the nuclear DNA. Membrane-bound 

ribosomes and free ribosomes are structurally and functional identical, they 

differ only in the proteins they are making at any given time (Borgese et al., 

1974; Jones and Fawcett, 1966; Rapoport, 1992; Vertel et al., 1992). When a 

protein is translated on a ribosome with an ER signal sequence, the signal 

sequence, a segment of hydrophobic amino acids, directs the ribosome to the 

ER membrane (Blobel and Dobberstein, 1975a; Blobel and Dobberstein, 

1975b; Rapoport et al., 1992; Walter et al., 1984). This process is supported 
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by the signal recognition particle (SRP) present in the cytosol that binds to the 

ER signal sequence exposed on the ribosome (Tajima et al., 1986). In 

parallel, the SRP receptor, an a/ß-dimer consisting of two G-proteins, 

embedded in the membrane of the ER, recognizes SRP (Gilmore, 1993; 

Siegel, 1995; Walter and Lingappa, 1986). Binding of SRP to a signal 

sequence causes protein synthesis by the ribosome to slow down until the 

ribosome and its bound SRP bind to an SRP receptor (Gilmore, 1993; Siegel, 

1995; Tajima et al., 1986; Walter and Lingappa, 1986). At the same time, 

exchange of SRP-bound GDP for GTP is stimulated. The contact between 

SRP and its receptor facilitates the binding of the ribosome to the Sec61 

complex, a translocase providing a hydrophilic channel with an aqueous 

milieu (High et al., 1991; Powers and Walter, 1996; Rapoport, 1992). This 

cycle, termed the SRP-cycle, is completed upon hydrolysis of GTP by SRP 

and its receptor, leading to the dissociation of SRP from the ER membrane 

(Blobel and Dobberstein, 1975a; Blobel and Dobberstein, 1975b; Gilmore, 

1993; Siegel, 1995; Tajima et al., 1986; Walter and Lingappa, 1986). The 

channel of the Sec61 complex opens into the direction of the ER luminal side, 

followed by an association of the signal sequence to the TRAM-protein 

(translocating chain associating membrane), an integral transmembrane 

protein (High et al., 1991; Powers and Walter, 1996). Upon continuation of 

translation, the polypeptide is being threaded into the lumen of the ER. The 

signal sequence not only directs proteins to the ER but also functions to open 

the translocation channel. It remains bound to the channel while the rest of 

the protein chain is threaded through the membrane (Crowley et al., 1993; 

Dalbey and Von Heijne, 1992; Goerlich et al., 1992). During translocation, the 

signal sequence is cleaved off by a signal peptidase located on the luminal 

side of the ER membrane (Blobel and Dobberstein, 1975a; Blobel and 

Dobberstein, 1975b; Dalbey and Von Heijne, 1992). The signal peptide is then 

released from the translocation channel and rapidly degraded to amino acids 

(Blobel and Dobberstein, 1975a; Blobel and Dobberstein, 1975b; Dalbey and 

Von Heijne, 1992). Once the C-terminus of the protein has passed through 

the membrane, the protein is released into the ER lumen (Blobel and 

Dobberstein, 1975a; Blobel and Dobberstein, 1975b; Dalbey and Von Heijne, 

1992). Additionally proteins also remain embedded in the ER membrane as 
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integral transmembrane proteins. The N-terminal signal sequence initiates 

translocation, but the transfer process is halted by a stop-transfer sequence, 

an additional sequence of hydrophobic amino acids, within the polypeptide 

chain (High and Dobberstein, 1992; Singer, 1990; Thrift et al., 1991). The 

stop-transfer sequence is released from the translocation channel and drifts 

into the plane of the lipid bilayer, where it forms an alpha-helical membrane-

spanning segment anchoring the protein in the membrane (High and 

Dobberstein, 1992; Singer, 1990; Thrift et al., 1991). Simultaneously, the  

N-terminal signal sequence is also released from the channel into the lipid 

bilayer and is cleaved off. As a result, the translocated protein ends up as a 

transmembrane protein inserted into the membrane with a defined orientation, 

the N-terminus on the luminal side and the C-terminus on the cytosolic side of 

the lipid bilayer (High and Dobberstein, 1992; Singer, 1990; Thrift et al., 

1991). As opposed to type I transmembrane proteins, proteins containing the 

N-terminus on the cytosolic side and the C-terminus on the luminal side of the 

lipid bilayer represent type II transmembrane proteins. Once inserted into the 

membrane, a transmembrane protein does not change its orientation, which is 

retained throughout any subsequent vesicle budding and fusion events 

(Hartmann et al., 1989; Kyte and Doolittle, 1982).   

Vesicular trafficking between membrane-enclosed compartments of the 

endomembrane system is highly organized (Lee et al., 2004). The secretory 

pathway starts with the biosynthesis of proteins on the ER membrane and 

their entry into the ER. Proteins are sorted in the trans Golgi network and are 

transported in vesicles to their final destinations. In the absence of specific 

targeting signals, proteins are carried to the plasma membrane by constitutive 

secretion. Alternatively, proteins can be diverted from the constitutive 

secretion pathway and targeted to other destinations such as lysosomes or 

secretory granules destined for regulated secretion (Fig. 1) (Balch, 1990; 

Rothman and Orci, 1992).  
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Fig. 1 Intercellular transport pathways. For details, see main text. 

 

Usually the Golgi is located near the cell nucleus and consists of a collection 

of flattened, membrane-enclosed sacs (cisternae). They are piled like stacks 

of plates. (Mollenhauer and Morre, 1991; Rambourg and Clermont, 1990). 

The Golgi is an assymetrical, polar structure containing two distinct faces 

(Mollenhauer and Morre, 1991; Rambourg and Clermont, 1990). The cis-side 

or entry side is typically orientated towards the ER, from where transport 

vesicles containing proteins derived from the ER enter the Golgi (Warren and 

Malhotra, 1998). The proteins travel through the cisternae in sequence by 

means of transport vesicles which bud from one cisternae and fuse with the 

next. Proteins packed in transport vesicles exit the trans-Golgi network 

destined for either the cell surface or for lysosomes (Hong and Tang, 1993). 

Vesicles that bud from membranes are usually covered with a coat on their 
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surface, therefore termed coated vesicles (Kirchhausen, 2000; Robinson, 

1987). COPII-coated-vesicles (COPII, COP is shorthand for coat protein) 

mediate anterograde transport from the ER to the Golgi network (Barlowe, 

1998; Lee et al., 2004; Rothman, 1994; Rothman and Orci, 1992). COPII coat 

assembly is initiated by the ER resident protein, Sec12, which serves as a 

guanine nucleotide exchange factor (GEF) for the small GTPase Sar1 

(Barlowe et al., 1993). GTP binding by Sar1 exposes an amphiphatic α-helix 

that facilitates association with the ER membrane (Bielli et al., 2005). 

Membrane-associated Sar1 recruits the Sec23-24 heterodimer and this 

complex interacts with cargo proteins via specific sorting signals (Matsuoka 

et al., 1998). The Sar1-Sec23-Sec24 complex then recruits the Sec13-31 

heterotetramer leading to polymerization and membrane deformation to yield 

a COPII vesicle (Schekman and Orci, 1996). After budding from its parent 

organelle, the vesicle sheds its coat, allowing its membrane to interact directly 

with the target membrane (Barlowe, 1998). Besides COPII-coated-vesicles, 

COPI-coated-vesicles (COPI) are necessary to transport ER-specific proteins 

as well as cargo from the membrane of the cis-side of the Golgi to the ER, 

termed retrograde transport (Cosson and Letourneur, 1994; Letourneur et al., 

1994; Nickel et al., 2002; Orci et al., 1997; Sonnichsen et al., 1996). 

Alternatively, COPI vesicles mediate transport between various Golgi 

cisternae (Orci et al., 1997). COPI coat assembly is initiated by GDP-GTP 

exchange onto Arf1, mediated by the Arf GEF, Gea1 (Peyroche et al., 1996). 

Membrane-bound Arf1 then recruits the preassembled coatomer complex, 

which contains seven subunits: the α/β’/ε complex and the β/γ/δ/ζ complex 

(Pavel et al., 1998) to the p24 receptor-family in the membrane (Bonifacino 

and Glick, 2004). The COPI coatomer complex likely contains multiple cargo 

recognition sites on separate subunits that mediate recruitment of cargo 

proteins (Austin et al., 2000). Ultimately, the coat is polymerized and 

membrane curvature may facilitate the recruitment of an Arf GTPase-

activating protein (Arf GAP), stimulating GTP hydrolysis on Arf and 

subsequent dissociation from the membrane (Goldberg, 1998; Goldberg, 

1999). Brefeldin A, an antibiotic from Penicillium procumbens targets the 

complex between a domain in Arf GEF and GDP-bound Arf. As a result the 
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fungal metabolite disrupt Arf1-dependent trafficking (Helms and Rothman, 

1992; Mossessova et al., 2003b; Orci et al., 1991; Robineau et al., 2000). In 

mammalian cells the selective and efficient capture of cargo proteins into 

COPI vesicles also takes place in an additional membrane-bound 

compartment, the ER-Golgi intermediate compartment (ERGIC). The ERGIC 

is a site for concentrating retrograde cargo into COPI vesicles for delivery 

back to the ER. The ERGIC is delivered en bloc to the Golgi in a microtubule-

dependent manner. This compartment is thought to arise from the homotypic 

fusion of COPII vesicles and is the main sorting station for the retrieval of 

escaped ER resident proteins (Lee et al., 2004; Martinez-Menarguez et al., 

1999). 

Besides COPI and COPII vesicles there are clathrin-coated vesicles budding 

from the Golgi apparatus on the outward secretory pathway and from the 

plasma membrane on the inward endocytic pathway (Brodsky, 1988; Morris 

et al., 1989). Clathrin (190 kDa) is able to assemble as trimers into a basket 

like network (triskelions) on the cytosolic surface of the membrane (Pearse 

et al., 2000). After the formation of clathrin-coated pits the assembly process 

starts shaping the membrane into a vesicle (Ahle et al., 1988; Cupers et al., 

1994). Binding of clathrin coats to the membrane is mediated by 

heterotetrameric adaptor proteins that secure the clathrin coat to the vesicle 

membrane and help to select cargo molecules for transport (Pearse and 

Robinson, 1990). AP-1 functions on the membrane of the trans-Golgi network 

(Stamnes and Rothman, 1993), whereas AP-2 is necessary for the binding of 

clathrin coats on the plasma membrane (Traub et al., 1996). Together with the 

small G-proteins Rab5A, 5B and 5C (Bucci et al., 1992), recruited to the neck 

of the vesicle, the GTP-binding protein dynamin causes the ring to constrict, 

resulting in the release of the vesicle from the membrane. Subsequently, an 

uncoating ATPase, a chaperon of the Hsp70-family and auxilin are required 

for the dissociation of the vesicle coat upon destabilization of the clathrin 

molecules that are recycled into the cytoplasm (Takel et al., 1995; Warnock 

et al., 1996).  

In addition to their role in vesicle formation, coat proteins also drive the 

selective capture of proteins into vesicles by interacting with specific signals 

present on the cytoplasmic domains of membrane proteins (Goldberg, 2000; 
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Lee et al., 2004; Mossessova et al., 2003a; Pelham, 1990). The polymerized 

coat thus acts as an affinity matrix to cluster selected cargo proteins into 

forming vesicle buds. Soluble proteins within the lumen of the parental 

organelles can in turn be selected by binding to the luminal domains of certain 

membrane cargo proteins (e.g. KDEL signal sequence and KDEL receptor) 

(Lewis and Pelham, 1992). The combination of coat recruitment to the correct 

donor membrane and signal-specific interactions between the coat and the 

cargo proteins contributes to the directionality and fidelity of vesicular 

transport (Lippincott-Schwartz, 1993; Pelham, 1991). 

To deliver its contents to its correct destination a transport vesicle has to 

recognize and dock to the target organelle. Only then, fusion of the vesicle 

membrane with the target membrane and unloading of the vesicle’s cargo is 

guaranteed (Jahn and Grubmuller, 2002; Rothman and Wieland, 1996; 

Schekman and Orci, 1996). The impressive specificity of vesicular transport is 

mediated by a family of related transmembrane proteins termed SNAREs 

(Söllner et al., 1993; Söllner and Rothman, 1996). The SNARE family consists 

of compartment-specific type II membrane proteins (Bock et al., 2001). 

SNAREs on vesicles (v-SNARE) are recognized specifically by complemen-

tary t-SNAREs on the cytosolic surface of the target membrane  

(t-SNARE) (Ungar and Hughson, 2003; Weber et al., 1998). At the structural 

level, a fully assembled v-/t-SNARE complex consists of a four-helix-bundle, 

with the v-SNARE contributing one helix and the t-SNARE contributing three 

helices (Sutton et al., 1998). The assembled trimeric t-SNARE provides the 

folding template for the v-SNARE. These reactions appear to occur in a 

zipper-like fashion progressing towards the membrane (Sollner, 2002; Söllner 

and Rothman, 1996). Following membrane fusion, v/t-SNARE cis-complexes 

that are extremely stable become the substrate for cytosolic SNAPs (soluble 

NSF attachment proteins) and the hexameric ATPase NSF (N-ethylmale-

imide-sensitive factor, belongs to the family of AAA-type ATPases). ATPase 

hydrolysis by NSF disassembles SNARE complexes (Söllner et al., 1993). 

Free v-SNAREs are recycled by retrograde-oriented COPI-vesicles back to 

the donor organelle, while t-SNAREs remain in the target membrane for 

further fusion events (Jahn and Grubmuller, 2002; Jahn and Sudhof, 1999). In 

a following budding and fusion event, v-SNAREs are specifically recognized 
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by coat proteins. Binding and structural analysis further suggest that the 

vesicle coat proteins select the fusion competent conformation of SNAREs 

(Mossessova et al., 2003a). The direct coupling of vesicle budding and 

specific SNARE packaging ensures the production of fusion-competent 

vesicles (Lee et al., 2004; Sollner, 2002; Söllner and Rothman, 1996). 

Besides the delivery of cargo from the vesicle into the interior of the target 

organelle, fusion also leads to the addition of the vesicle membrane to the 

membrane of the corresponding organelle. Each organelle as well as each 

type of transport vesicle carries a unique SNARE, resulting in two types of 

fusion events, a heterotypic and a homotypic fusion event since interactions 

are restricted to complementary SNAREs. Only then transport vesicles can 

fuse with the correct membrane (Lee et al., 2004; Sollner, 2002; Söllner and 

Rothman, 1996). 

 

1.2 Non-classical or Unconventional protein secretion 

 

As opposed to classical secretion (section 1.1) where proteins contain an  

N-terminal signal peptide (Walter, 1992) that mediates translocation into the 

lumen of the ER followed by ER-Golgi-dependent vesicular transport to the 

cell surface (Mellman and Warren, 2000; Nickel et al., 1998; Rothman and 

Wieland, 1996; Schatz and Dobberstein, 1996), soluble factors with defined 

extracellular functions exist that get exported via an ER/Golgi-independent 

pathway (Hughes, 1999). This pathway has been termed non-classical or 

unconventional secretion (Cleves, 1997; Hughes, 1999; Muesch et al., 1990; 

Nickel, 2003; Prudovsky et al., 2003; Rubartelli and Sitia, 1991). As illustrated 

in Fig. 2, the most prominent examples are the angiogenic growth factors 

FGF-1 (Jackson et al., 1992; Jackson et al., 1995; Landriscina et al., 2001; 

LaVallee et al., 1998; Mandinova et al., 2003; Prudovsky et al., 2002; Shin 

et al., 1996; Tarantini et al., 1998) and FGF-2 (Engling et al., 2002; 

Florkiewicz et al., 1995; Mignatti et al., 1992; Mignatti and Rifkin, 1991; Trudel 

et al., 2000), cytokines like interleukin-1ß (IL1-ß) (Andrei et al., 1999; Andrei 

et al., 2004; Rubartelli et al., 1990) and migration inhibitory factor MIF (Flieger 

et al., 2003) as well as the galectin protein family, lectins of the extracellular 
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matrix (Cleves et al., 1996; Cooper and Barondes, 1990; Lutomski et al., 

1997). Also viral proteins such as Herpes simplex tegument protein VP22 

(Elliott and O'Hare, 1997), Human immunodeficiency virus (HIV) Tat protein 

(Ensoli et al., 1993) and Foamy virus Bet protein (Lecellier et al., 2002) are 

released by non-classical export. Another quite remarkable example of 

nonclassical protein export from eukaryotic cells is the mechanism of cell 

surface expression of Leishmania HASPB which is found associated with the 

outer leaflet of the plasma membrane only in infectious stages of the parasite 

lifecycle (Alce et al., 1999; Denny et al., 2000; Flinn et al., 1994; McKean 

et al., 2001; Pimenta et al., 1994). These and other unconventional secretory 

proteins are characterized by the lack of a signal peptide and therefore are 

rejected by the ER translocation machinery (Cleves, 1997; Hughes, 1999; 

Prudovsky et al., 2003). These proteins are not found in subcellular 

compartments that belong to the ER/Golgi-dependent pathway (Cleves, 1997; 

Hughes, 1999). Despite bearing multiple consensus sites for glycosylation, all 

proteins have been reported not to contain this post-translational modification 

(Cleves, 1997; Hughes, 1999). Furthermore, their export mechanism is fully 

functional in the presence of brefeldin A, a drug that blocks ER/Golgi-

dependent protein transport (section 1.1) (Lippincott-Schwartz et al., 1989; 

Misumi et al., 1986; Orci et al., 1991). The secretory proteins discussed here 

are soluble factors synthesized on free ribosomes in the cytoplasm and are 

found in the extracellular space. These observations led to the postulation of 

alternative secretory mechanisms in eukaryotic cells and therefore have been 

termed unconventional secretory processes. However, the molecular 

machineries mediating these processes are still not known in molecular terms 

(Cleves, 1997; Hughes, 1999). 
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Fig. 2 Overview about unconventionally secreted proteins and their suggested export 

routes. Four different plasma membrane translocation processes involved in non-

classical export can be distinguished. FGF-1 and FGF-2 are directly translocated 

across the plasma membrane using plasma membrane resident transporters. 

Leishmania SH4 protein HASPB is also directly translocated across the plasma 

membrane potentially involving a flip-flop mechanism since the protein is membrane 

anchored via its dual acylation at the extreme N-terminus. Galectins are exported by 

membrane blebbing, a process promoting the shedding of plasma membrane-derived 

microvesicles that are released into the extracellular space. IL-1β, En2 and HMGB1 

exit the cell packaged into intracellular vesicles originating form multivesicular 

endosomes or secretory lysosomes. (Courtesy of Walter Nickel (Nickel, 2003)) 

 

It has generally been assumed that proteins like FGF-2 are released following 

cell death and the disruption of plasma membrane integrity (McNeil et al., 

1989; Muthukrishnan et al., 1991). However, nonconventional protein 
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secretion was shown to be dependent on both energy and temperature, is 

stimulated or inhibited by various treatments (Cleves, 1997; Hughes, 1999). 

Moreover, nonconventional protein secretion was shown to be regulated for 

example by cell differentiation (Cooper and Barondes, 1990; Lutomski et al., 

1997), NF-κB-dependent signaling pathways (Wakisaka et al., 2002), and 

post-translational modifications such as phosphorylation (Maizel et al., 2002). 

Based on these observations, it has to be concluded that the secretory 

proteins exit eukaryotic cells in a controlled manner mediated by protein-

aceous machineries. As depicted in Fig. 3, four potential mechanism of 

unconventional protein export have been discussed in the literature to 

mediate translocation of cytosolic factors into the extracellular space (Hughes, 

1999).  

 

 
 
Fig. 3 Vesicular and non-vesicular pathways involved in unconventional secretory 

processes. (1) Export by secretory lysosomes (2) Export mediated by plasma 

membrane-resident transporters (3) export through the release of exosomes derived 

from multi-vesicular bodies (4) Export mediated by plasma membrane shedding of 

microvesicles. For details, see main text. 

 

Two of these involve intracellular vesicles of the endocytic membrane system, 

such as secretory lysosomes (Clark and Griffiths, 2003; Stinchcombe et al., 
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2004) and exosomes (Stoorvogel et al., 2002). In the fist case export involves 

secretory lysosomes, which upon fusion of the plasma membrane release 

their contents into the extracellular space (Fig. 3, mechanism 1), a 

mechanism known for cytotoxic T lymphocytes for example as well as for 

melanocytes (Clark and Griffiths, 2003; Stinchcombe et al., 2004). In case of 

melanocytes, vesicles that fuse with the plasma membrane are then termed 

melanosomes (Stinchcombe et al., 2004). The second mechanism involving 

intracellular vesicles of the endocytic membrane system is characterized by 

an export through the release of exosomes derived from multi-vesicular 

bodies (MVBs) (Fig. 3, mechanism 3) (Stoorvogel et al., 2002).  

Two alternative unconventional secretory mechanisms are characterized by a 

direct translocation of cytosolic factors across the plasma membrane using 

either membrane systems such as ABC transporters (Fig. 3, mechanism 2) 

(Cleves et al., 1996) or a process called membrane blebbing (Fig. 3, 

mechanism 4). In the latter case cells shed plasma membrane-derived 

microvesicles into the extracellular space (Freyssinet, 2003; Hugel et al., 

2005; Martinez et al., 2005). Overall, these mechanisms give an idea of 

unconventional secretory mechanisms, however, further research is required 

to bring much more light into the phenomenon of unconventional protein 

secretion in the future. 

 

1.3 Hydrophilic acylated surface protein B (HASPB) 

 

Hydrophilic Acylated Cell Surface Proteins (HASPs) are components of the 

cell surface coat of Leishmania parasites (Alce et al., 1999; Flinn et al., 1994; 

McKean et al., 1997). Leishmania HASPB is an unconventional secretory 

protein and is exclusively expressed in infective parasites in both extracellular 

metacyclics and intracellular amastigotes of L. major and L. donovani (Alce 

et al., 1999; McKean et al., 2001; McKean et al., 1997; Rangarajan et al., 

1995) suggesting a role in parasite virulence (McKean et al., 2001). 

Intriguingly, following heterologous expression dually acylated HASPB is also 

externalized by mammalian cells (Denny et al., 2000; Stegmayer et al., 2005) 

suggesting that endogenous factors exist in higher eukaryotes that are 
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exported in a mechanistically similar manner. The characteristics of HASPB 

are discussed in more detail in the following sections since HASPB is the 

main focus of the present study. Furthermore, FGF-2 as well as Galectin-1 will 

be described as these proteins were used in various experimental approaches 

as examples for other unconventionally secreted proteins.  

 

1.3.1 Dual acylation mediated by myristoylation and palmitoylation 

 

Peripheral membrane proteins are often anchored in a membrane via a 

covalent lipid modification (Resh, 1999). However association with a 

membrane mediated by only one fatty acid is not really tight (Bijlmakers and 

Marsh, 2003). Addition of a second lipid anchor or electrostatic interactions 

between basic amino acid residues and acidic phospholipids allow for a stable 

interaction of lipoproteins with membranes (Bhatnagar and Gordon, 1997). 

This covalent attachment is a widely recognized form of protein modification. 

Proteins containing fatty acids play key roles in regulating cellular structure 

and function (Bhatnagar and Gordon, 1997; Resh, 1999).  

As noted above HASPB is an unconventionally secreted protein (Denny et al., 

2000). One of its characteristics represents the dual acylation of its N-terminal 

SH4 domain, which mediates a stable association of the protein with the 

plasma membrane (Denny et al., 2000). HASPB is myristoylated at glycine 2 

and palmitoylated at cysteine 5 (Denny et al., 2000). 

Myristoylation is characterized by an amide bond between an N-terminal 

glycine residue with myristate, a 14-carbon saturated fatty acid (Fig. 4, left 

hand side) (Resh, 1999). All proteins destined for myristoylation start with the 

amino acids methionine, which is cotranslationally removed during the 

reaction followed by glycine (Resh, 1999). N-myristoylation is catalyzed by  

N-myristoyl transferase (NMT) and starts with the binding of myristoyl CoA to 

NMT (Rudnick et al., 1990). In a second step the peptide substrate binds to 

NMT and myristate is transferred to the N-terminal glycine of the peptide 

(Deichaite et al., 1988). Finally, both CoA and the myristoyl-peptide are 

released from the enzyme (Wilcox et al., 1987). N-myristoylation is a cotrans-

lational process that occurs while the nascent polypeptide chain is still 
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attached to the ribosome (Resh, 1999; Rudnick et al., 1990; Wilcox et al., 

1987). A number of proteins including the human immunodeficiency virus type 

1 Nef protein (Bentham et al., 2006), the alpha subunit of trimeric G-proteins 

(Resh, 1999) as well as tyrosine kinases of the Src-family (Liang et al., 2004; 

Yasuda et al., 2000; Hirsch et al., 2005; Chou et al., 2002) are myristoylated 

at their N-terminal glycine.  

                        
 
Fig. 4 Fatty acylation of protein modification. Myristoylation and palmitoylation facilitates 

stable membrane association. For details, see main text. 

 

Palmitoylated proteins are acylated by a thioester linkage of the sulfhydryl 

group of cysteine to palmitate, a 16-carbon saturated fatty acid (Fig. 4, right 

hand side) (Bijlmakers and Marsh, 2003). This attachment occurs post-

translationally and is localized near the N- or C-termini of proteins or near 

transmembrane domains. The reaction is catalyzed by a membrane-bound 

enzyme, palmitoylacltransferase (PAT), which exhibits a preference for 
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myristoylated protein substrates and for palmitoyl-CoA over other acyl CoA 

substrates (Resh, 1999). To this end, PAT activity has been detected at the 

plasma membrane (Dunphy et al., 1996; Schroeder et al., 1997), the 

intermediate compartment (Bonatti et al., 1989), Golgi complex (Dunphy et al., 

1996; Solimena et al., 1993) and mitochondria (Dunphy et al., 1996). 

However, the further characterization of their specificities and subcellular 

distributions will be important steps forward (Bijlmakers and Marsh, 2003). 

Furthermore, it has been shown that two cytosolic proteins, SNAP25 and 

GAP43 are not palmitoylated in presence of brefeldin A. This suggests that 

palmitoylation of these proteins requires functional Golgi membranes either to 

deliver the proteins to a specific location or, perhaps, to facilitate the reaction 

itself (Gonzalo and Linder, 1998). By contrast, palmitoylation of several viral 

proteins is insensitive to brefeldin A (Veit and Schmidt, 1993). Proteins 

containing this kind of lipid modification are for example the transferrin 

receptor (Resh, 1999), rhodopsin (Bijlmakers and Marsh, 2003), ankyrin in 

erythrocytes (Resh, 1999) as well as members of the Src family (Bijlmakers 

and Marsh, 2003). Both myristoylation and palmitoylation can be dynamically 

regulated: the myristate moiety can be sequestered through the use of 

myristoyl switches, while palmitate can be removed by protein palmitoyl 

thioesterases (Resh, 1999). 

While myristoylation is clearly necessary for membrane binding of some 

proteins, it is not sufficient (Resh, 1999). A second signal within the N-myristo-

ylated protein is therefore required for efficient membrane binding (Peitzsch 

and McLaughlin, 1993). Interestingly, myristoylation is absolutely required for 

a protein to get palmitoylated (Bijlmakers and Marsh, 2003). Domains 

containing one or both lipid modifications are termed SH4 domains (Chou 

et al., 2002; Hirsch et al., 2005; Rudd et al., 1993; Yasuda et al., 2000). This 

short conserved NH2-terminal region is found in HASPB and in Src-family 

kinases such as Src, Yes, Fyn, Lck, Fgr, Hck, Blk, Lyn and Yrk, respectively 

(Rudd et al., 1993) (Fig. 5). 
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Fig. 5 N-terminal sequences of various SH4 proteins. Myristoylation and palmitoylation 

sites are highlighted in red and green, respectively. For details, see main text. 

 

Besides myristoylation and palmitoylation two other forms of lipid modification 

have been described: the carboxy (C)-terminal isoprenylation of cytoplasmic 

proteins and the modification of plasma membrane proteins with 

glycophosphatidylinositol (GPI)-anchors (Bijlmakers and Marsh, 2003). The 

first one is characterized by a thioether-linkage of a cysteine residue in the  

C-terminal region of a protein with the farnesyl (C15) or geranylgeranyl (C20) 

isoprenoid (Bhatnagar and Gordon, 1997; Rocks et al., 2005). It can be found 

on heterotrimeric G-proteins (Bhatnagar and Gordon, 1997) and GTP-binding 

Ras proteins (Rocks et al., 2005). As opposed to all other lipid modifications 

the covalent attachment of the phospholipid phosphatidylinositol to the  

C-terminal of a protein via a glycan chain and ethanolamine is localized on the 

extracellular site (Fevrier et al., 2005; Ilgoutz and McConville, 2001; Naderer 

et al., 2004; Resh, 1999). This form of lipid attachment, also termed shortly 

GPI-anchor (glycosylphosphatidylinositol) is found on various surface proteins 

of trypanosomes (Ilgoutz and McConville, 2001; Naderer et al., 2004), on 
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alkaline phosphatases (Resh, 1999) as well as on prion proteins (Fevrier et 

al., 2005).  

 

1.3.2 Leishmania parasites 

 

The Trypanosomatids, or Kinetoplastids, are a widespread group of 

flagellated protozoa (Shlomai, 2004). The major distinguishing feature of this 

group is a subcellular structure known as the kinetoplast, which is distinct 

from the nucleus. In fact, it is a distinct region of mitochondria containing 

extranuclear DNA (Shlomai, 2004). Members of this group parasitize virtually 

in all animal groups as well as plants and insects. Three distinct 

trypanosomatids cause human disease: Leishmania species (Fig. 6) 

(Leishmaniasis), Trypanosoma brucei complex (African sleeping sickness) 

and Trypanosoma cruzi (Chagas disease) (Schuster and Sullivan, 2002). 

They are parasites of the blood and/or tissues of the human host and are 

transmitted by arthropod vectors (Rittig and Bogdan, 2000; Schuster and 

Sullivan, 2002). 

 

 
 

Fig. 6 Subcellular distribution of HASPB-N18-GFP fusion proteins expressed in 

Leishmania parasites as determined by confocal microscopy. Confocal images 

of L. mexicana expressing HASPB-N18-GFP. (A) Nomarski image (B) GFP-derived 

fluorescence was viewed with a Zeiss LSM 510 confocal microscope.  
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Leishmania species are sandfly-transmitted protozoan parasites that cause 

disease in more than 12 million people world-wide and 2 million new cases 

are diagnosed per year (Ilgoutz and McConville, 2001). Depending on the 

species and host genetics, infection with Leishmania parasites can result in 

cutaneous infections (one or more skin ulcers), mucocutaneous leishmaniasis 

(involving extensive destruction of mucous membranes) and visceral 

leishmaniasis (kala azar) that is invariably lethal unless treated (Schuster and 

Sullivan, 2002). At present there are no defined vaccines against 

leishmaniasis and only a limited number of drugs are available for treatment 

(Croft et al., 1996; Davies et al., 2003). 

 

1.3.3 Life Cycle of Leishmania parasites 

 

The lifecycle (Fig. 7) of Leishmania parasites relies upon transmission of a 

hematophagus arthropod (Peters et al., 1987). Two different genera of 

sandflies transmit Leishmania: Phlebotomus (Old World) and Luzomyia (New 

World), which only house tropic and subtropic climates (Schuster and 

Sullivan, 2002).  

 

 
 
Fig. 7 Lifecycle of Leishmania. For details, see main text. 

 



Introduction
 

28 

In the sandfly the parasites live as flagellated promastigotes within the midgut 

where they undergo developmental changes and become highly virulent upon 

migration to the mouthparts, especially the pharynx of the sandfly (Sacks, 

1989; Sacks et al., 1983). The differentiation from non-infective procyclics into 

infective metacyclic parasites is also called metacyclogenesis and is a pre-

requisite for resistance to complement-mediated lysis as well as intracellular 

survival (Franke et al., 1985; Sacks, 1989). These promastigotes are then 

transferred to the vertebrate host during feeding (Franke et al., 1985; Sacks, 

1989). Because of their high density promastigotes plug the pharynx and the 

sandfly must regurgitate to take a blood meal resulting in the expulsion of 

promastigotes into the bite wound and accordingly to the transfer in the 

bloodstream of the mammalian host (Franke et al., 1985; Sacks, 1989). Within 

the vertebrate host the promastigotes are phagocytosed by macrophages 

(Peters et al., 1987). This parasite-containing phagosome fuses with a 

lysosome (Rittig and Bogdan, 2000). Normally the pathogen is destroyed in 

the resulting phagolysosome, but Leishmania parasites are resistant to the 

acidic pH and hydrolytic enzymes present in the phagolysosome (Rittig and 

Bogdan, 2000). Additionally, the parasite shuts down the generation of 

reactive oxygen intermediates by the macrophage (Rittig and Bogdan, 2000). 

The promastigotes differentiate into non-flagellated amastigotes within the 

phagolysosome, which replicate by binary fission and fill up the infected 

macrophage (Peters et al., 1987; Rittig and Bogdan, 2000). When the 

macrophage cell ruptures, amastigotes are released from the host cell and 

are taken up by another macrophage leading to another round of replication. 

Alternatively, released amastigotes are taken up by the sandfly vector in a 

subsequent blood meal (Peters et al., 1987; Rittig and Bogdan, 2000). The 

release of the amastigotes is generally described as a bursting of the host cell 

(Rittig and Bogdan, 2000). However, the parasitophorous vacuoles containing 

amastigotes have been reported to accumulate at the periphery of the 

infected cell and amastigotes are continuously released over several hours 

(Rittig and Bogdan, 2000). Accordingly, release of amastigotes resembles an 

exocyctosis-like process involving the fusion of the parasitophorous vacuolar 

membrane with the host cell plasma membrane (Rittig and Bogdan, 2000). 

Finally, the lifecycle is completed when the amastigotes differentiate back into 
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flagellated promastigotes in the sandfly midgut (Coulson and Smith, 1990; 

Ilgoutz and McConville, 2001; Peters et al., 1987; Rittig and Bogdan, 2000). 

 

1.3.4 Composition and assembly of the Leishmania surface coat 

 

The cell surface of all trypanosomatids is dominated by glycosyl-

phophatidylinositol (GPI)-anchored proteins and/or free GPI glycolipids 

(Ferguson et al., 1994; Smith et al., 1994). These molecules form a protective 

surface coat, which also mediates essential host-parasite interactions (Ilgoutz 

and McConville, 2001; Smith et al., 1994). Based on biochemical studies, the 

best characterized virulence determinants of Leishmania parasites are cell 

surface components such as GPI-anchored glycoproteins, heavily 

glycosylated GPI-anchored proteophosphoglycans and complex protein-free 

lipophosphoglycans (Ilgoutz and McConville, 2001; Smith et al., 1994). Other 

virulence determinants are the zinc metalloprotease GP63, also termed 

leishmanolysin (Bordier, 1987; Brittingham et al., 1995) on the parasite 

surface as well as specific cysteine proteases (Mottram et al., 1998). Their 

expression is upregulated in metacyclics (Ramamoorthy et al., 1992; Turco 

and Descoteaux, 1992). Together, these surface molecules facilitate 

resistance to complement-mediated lysis that results in a successful parasite 

infection within host macrophages (Joshi et al., 1998; Mosser and 

Brittingham, 1997). Additionally, a family of novel hydrophilic proteins 

encoded by the LmcDNA 16 gene locus on chromosome 23 of Leishmania 

major (Flinn and Smith, 1992; Knuepfer et al., 2001; McKean et al., 1997) has 

been identified. Two of the five genes in this array, SHERP1 and SHERP 2 

(small hydrophilic endoplasmic reticulum (ER)-associated protein) (Fig. 8) 

encode for small non-integral membrane proteins. They localize to the 

endoplasmic reticulum and the outer mitochondrial membrane only in 

extracellular metacyclics (Knuepfer et al., 2001). The two SHERP genes show 

a high homology with 98.8% identity and are conserved across the 

Leishmania genus (Knuepfer et al., 2001). SHERP transcripts are upregulated 

in infective metacyclic parasites and its expression may be a specific 
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requirement for organellar function during Leishmania differentiation, an 

essential process for vector transmission (Knuepfer et al., 2001).  

 

 
 
Fig. 8 Schematic representation of the LmcDNA 16 locus. LmcDNA 16 genes are 

represented as boxes, with colors and vertical bars to indicate unique or shared 

sequences. For details, see main text. 

 

Moreover, within the LmcDNA 16 locus, genes encoding hydrophilic acylated 

surface proteins (HASPs) have been identified representing a novel family of 

components of the Leishmania surface coat (Fig. 8) (Coulson and Smith, 

1990; Flinn et al., 1994). The HASP protein family consists of three closely 

related isoforms termed HASPA-1, HASPA-2 and HASPB, encoded by the 

LmcDNA 16 gene locus (Denny et al., 2000; McKean et al., 2001; Stager et 

al., 2000). They are a family of stage-regulated genes that are expressed 

exclusively in the infective forms of Leishmania parasites (metacyclics and 

amastigotes) (McKean et al., 2001). HASPA1 and HASPB mRNAs derived 

from the polycistronically transcribed LmcDNA 16 locus are detected only in 

metacyclic and amastigote stages, whereas HASPA2 mRNA is present at low 

level in procyclics, more abundant in metacyclics but absent from amastigotes 

(Knuepfer et al., 2001). The HASP family was originally found following a 

differential cDNA library screen for the identification of genes upregulated or 

uniquely-expressed in infective extracellular (metacyclics) stages of 

Leishmania major (Coulson and Smith, 1990). Interestingly, based on 

homology searches HASPs appear to be unique factors of Leishmania 

parasites as similar open reading frames could not even be found in closely 

related parasites such as trypanosomes (McKean et al., 2001). However, 

these observations do not rule out the presence of functional homologues of 

HASPs in trypanosomes or other related parasites. There are only limited 

sequence variations between various Leishmania species (Alce et al., 1999; 

McKean et al., 2001; McKean et al., 1997). The HASP surface molecules 

contain highly conserved N- and C-terminal domains and more divergent 
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central repetitive regions (McKean et al., 2001; McKean et al., 1997). In 

L.major, HASPB has an extensive region of repeats between the N- and  

C-terminal conserved regions while HASPA, the smallest member, has only 

17 additional amino acids. This structural similarity between family members 

is conserved in all Leishmania species (Alce et al., 1999; Bhatia et al., 1999; 

McKean et al., 1997). Interestingly, their attachment to the surface is not via a 

GPI anchor, rather their N-terminal 18 amino acids are both myristoylated and 

palmitoylated (Denny et al., 2000). Collectively, these components form an 

effective macromolecular diffusion barrier in that they protect promastigotes 

from complement-mediated lysis, oxygen radicals and hydrolases in the 

mammalian and insect host environments (McConville et al., 1992; Turco and 

Descoteaux, 1992). 

 

1.3.5 Non-classical export of HASPB 

 

The HASPB protein family members are characterized by large internal 

repetitive regions containing mainly charged amino acids, interspersed with 

proline residues (Flinn et al., 1994). Similar repeats are found in HASPs from 

different Leishmania species, although their number and composition show 

inter- and intraspecific variation (Alce et al., 1999; McKean et al., 1997). 

HASPs contain an N-terminal SH4 domain that undergoes dual acylation at 

glycine 2 (co-translational myristoylation) and cysteine 5 (post-translational 

palmitoylation). These modifications are essential for HASPB transport to the 

cell surface (Denny et al., 2000). A palmitoylation-deficient HASPB mutant in 

which cysteine 5 has been changed to alanine has been demonstrated to 

localize to the cytoplasmic leaflet of the Golgi (Denny et al., 2000). These 

findings indicate that the palmitoylacyltransferase (PAT, section 1.3.1) 

represents a Golgi-resident enzyme. The 18 N-terminal amino acids 

representing the SH4 domain are sufficient to target a reporter molecule such 

as GFP to the cell surface of parasites (Denny et al., 2000). At this location, at 

least a proportion of HASPB molecules are displayed on the external surface, 

as shown by both high resolution microscopy and biochemical analyses 

(Denny et al., 2000; Pimenta et al., 1994). Intriguingly, heterologous 
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expression of HASPB in mammalian cells results in cell surface localization as 

well, suggesting that the corresponding translocation machinery is conserved 

among eukaryotes (Denny et al., 2000; Stegmayer et al., 2005). Brefeldin A, a 

drug that causes a collapse of the Golgi into the ER in mammalian cells 

(Lippincott-Schwartz et al., 1989), does not interfere with the appearance of 

HASPB at the plasma membrane of CHO cells (Denny et al., 2000). Based on 

these observations HASPB has been termed an unconventional secretory 

protein as it gets access to the extracellular space under conditions where the 

functional integrity of the ER/Golgi system has been perturbed (Denny et al., 

2000). Consistently, HASPB does not contain a classical signal peptide, which 

would allow translocation across the membrane of the endoplasmic reticulum. 

Furthermore, the protein is not glycosylated, a modification that starts 

cotranslationally in the ER and continues in the Golgi (Denny et al., 2000). 

Based on these facts, export of fully acylated HASPB is likely to rely on 

plasma membrane-resident transporters (Fig. 3, mechanism 2). Interestingly, 

current evidence suggests that endosome sorting is an essential process for 

differentiation and virulence of Leishmania major (Besteiro et al., 2006). In this 

study the function of multivesicular bodies (MVBs) in Leishmania major has 

been investigated by characterizing the leishmanial Vps4 homologue, an 

AAA-ATPase involved in the MVB sorting machinery (Besteiro et al., 2006). 

They reported that a dominant-negative Vps4 mutant (Vps4E235Q) accumu-

lated the mutated protein around vesicular structures of the endocytic system 

and showed a defect in transport to the MVT (Multi vesicular tubule)-

lysosome. Indeed, although this unusual lysosomal compartment has been 

shown to be downstream of an MVB-like network of vesicular endosomes that 

surrounds the flagellar pocket (Mullin et al., 2001), very little is known about 

them in Leishmania parasites. Thus, the findings described above are similar 

to what has been observed in yeast and mammalian Vps4 mutants, 

suggesting a conserved role for this protein in MVB architecture from the early 

branching kinetoplastid flagellate lineage to mammals. Moreover, L. major-

overexpressing Vps4E235Q were impaired in their differentiation in culture and 

their resistance to starvation, suggesting a crucial role for Vps4 and the MVB 

compartment in these processes (Besteiro et al., 2006). Accordingly, export of 

HASPB through the release of exosomes derived from multi-vesicular bodies 
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(MVB) might be another potential mechanism as indicated in Fig. 3, mecha-

nism 3. Multivesicular bodies (MVB), also called multivesiclular endosomes 

(MVE) represent endocytic intermediates, which are formed through 

invagination and pinching-off of the endosomal membrane (Stoorvogel et al., 

2002). Since this vesicle budding process occurs in the opposite orientation 

compared with other budding events of cellular membranes, i.e. outwards 

from the cytosol, this molecular mechanism must be different from coated 

vesicle budding at the plasma membrane or at the Golgi (Raiborg et al., 2003; 

Stoorvogel et al., 2002). For the formation of MVBs three different complexes 

termed ESCRT-I-III (Endosomal Sorting Complex Required for Transport) are 

necessary (Fig. 9) (Babst et al., 2002; Bache et al., 2003; Katzmann et al., 

2001). They contain several subcomplexes, small coiled-coil proteins known 

as Vps class E proteins. The Vps27 protein initiates the MVB-sorting process. 

It is targeted to endosomal membranes via its FYVE domain that bind PI(3)P, 

and its UIM domains (short helical motifs that bind ubiquitin with low affinity), 

which bind ubiquitinated cargo such as carboxypeptidase S (CPS). Vps27 

subsequently recruits and activates the ESCRT-I complex via the P(S/T)XP 

motif in the C-terminal domain of Vps27 that interacts with the UEV (ubiquitin 

E2 variant) domain of Vps 23 in ESCRT-I. ESCRT-I, consisting of the three 

subunits Vps 23, Vps28 and Vps37 recognizes ubiquitinated cargo via binding 

to the UEV domain of Vps23. However, it should be noted, that not all proteins 

require ubiqitination for their sorting into the MVB pathway (Reggiori and 

Pelham, 2001). This process is followed by the recruitment of ESCRT-II 

(Vps22, Vps25 and Vps36) and ESCRT-III (Snf7-Vps20 and Vps2-Vps24) to 

endosomal membranes. ESCRT-III seems to function in the concentration of 

cargoes into MVBs and coordinates the association of accessory factors such 

as Bro1/Alix and the Doa-4-deubiqutinating enzyme that removes ubiquitin 

from cargo. Finally, the membrane dissociation of the ESCRT complexes is 

controlled by the AAA-type ATPase Vps4 (Ahle et al., 1988; Babst, 2005; 

Babst et al., 2002; Greco et al., 2001; Gruenberg and Stenmark, 2004; Hurley 

and Emr, 2006; Raiborg et al., 2003; Thery et al., 2001; Thery et al., 2002; 

van Niel et al., 2006). For all class Vps (vacuolar protein sorting) E proteins, 

with the exception of Vps37, mammalian equivalents have been identified 

indicating that these complexes have conserved function (Raiborg et al., 
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2003). TSG101, for example, identified as one of the major components of the 

ESCRT-1 complex is the human homologue of Vps23. This protein is found 

on endosomes and is required for lysosomal trafficking of endocytosed EGF 

(Babst et al., 2000; Bishop et al., 2002; Garrus et al., 2001; Pisitkun et al., 

2004). Bro1/Alix, a protein involved in apoptosis and inducing cytoplasmic 

vacuolization functions as an ESCRT-III binding partner (Chatellard-Causse et 

al., 2002). 

 

 
 
Fig. 9 The ESCRT complexes in MVB sorting (Hurley and Emr, 2006). For details, see 

main text. 

 

These kinds of intraluminal vesicles have been proposed to serve several 

important functions: i) transmembrane proteins in the intraluminal membrane 

will be susceptible to degradation by lysosomal hydrolases, ii) intraluminal 

vesicles might represent storage vehicles for transmembrane proteins that are 

to be released to the extracellular space via these vesicles (Raiborg et al., 

2003) or iii) they can participate in receptor signaling, which might be possible 

from the limiting membranes of MVBs, but not from the membranes of 

intraluminal vesicles. This means that sorting into MVBs can determine both 

the delivery of transmembrane proteins to lysosomes and the extracellular 
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space, and also the ability of endocytosed receptors to transmit signals 

(Raiborg et al., 2003; Stoorvogel et al., 2002; van Niel et al., 2006).  

In addition to the observations described above HASPB induces curvature of 

the plasma membrane resulting in the formation of highly dynamic tubules 

and plasma membrane blebs (Tournaviti et al., 2006 submitted). Plasma 

membrane blebs are cell protrusions generated by the osmotic pressure of 

the cell interior upon localized destabilization of the cortical actin network at 

the plasma membrane (Charras et al., 2005; Cunningham, 1995; Sheetz 

et al., 2006). These reorganizations of the plasma membrane require the 

membrane association of the SH4 domain depend on the integrity of F-actin 

as well as microtubule architecture and are regulated by the activities of Rock 

kinase and Myosin-II ATPase (Tournaviti et al., 2006 submitted). Furthermore 

as revealed by RNAi analysis, the actin and microtubule regulating 

diaphanous related formin (DRF) FHOD1 has been identified as a factor that 

facilitates plasma membrane bleb formation (Tournaviti et al., 2006 

submitted). Based on these findings, export mediated by plasma membrane 

shedding of microvesicles might also be an alternative secretory mechanism 

for HASPB (Fig. 3, mechanism 4) (Freyssinet, 2003; Hugel et al., 2005; 

Martinez et al., 2005). Microvesicles are fragments shed almost 

spontaneously from the plasma membrane blebs of virtually all cell types 

when submitted to a number of stress conditions, including apoptosis. Vesicle 

release is an integral part of the membrane-remodeling process resulting in 

the occurrence of phosphatidylserine (PS) in the exoplasmic leaflet that 

generally is located mainly in the inner (cytoplasmic) leaflet of the plasma 

membrane. Translocation of PS to the outer leaflet of the plasma membrane 

is a hallmark of programmed cell death. In this location PS acts as a periph-

eral membrane protein that links activated/apoptotic cells to phagocytes 

(Freyssinet, 2003; Hugel et al., 2005; Martinez et al., 2005). However, 

HASPB-induced membrane blebbing could be observed over hours without 

apparent damage of cells. Consistent with this observation, these cells were 

strictly negative for markers of apoptotic events such as cell surface exposure 

of phosphatidylserine or nuclear fragmentation (Tournaviti et al., 2006 

submitted). Based on these observations HASPB secretion might not involve 

shedding of plasma membrane vesicles.  
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1.3.6 HASPB is of exceptional biomedical relevance 

 

HASPB is expressed exclusively in infective parasites (both extracellular 

metacyclics and intracellular amastigotes of L. major and L. donovani) (Alce 

et al., 1999; Flinn et al., 1994; Rangarajan et al., 1995). In L. mexicana, 

expression is low in metacyclics but high in amastigotes (Nugent et al., 2004). 

Deletion of the Leishmania LmcDNA 16 locus containing all isoforms of HASP 

proteins has been demonstrated to cause changes in cell surface coat 

structure resulting in an increased sensitivity to complement-mediated lysis 

(McKean et al., 2001). This phenotype is similar to non-infective procyclics 

that do not express HASP proteins. HASP null mutants have been shown to 

remain infectious, however, this has so far only been tested in high dose 

experiments in highly susceptible mouse mutant strains (McKean et al., 

2001). Therefore, it remains to be established whether HASP-deficient 

parasites are infectious under physiological conditions, i.e. in experiments 

using sandfly-mediated low dose infections into a wild-type host background. 

Additionally, overexpression of the gene products of the LmcDNA 16 locus 

results in avirulence (McKean et al., 2001). Together, these findings confirm 

that HASPs are critical determinants of both virulence and parasite survival 

within the vertebrate host and targets suited for the development of a novel 

class of anti-parasitic drugs. 

In addition to these observations HASPB is recognized by human sera 

collected in endemic regions with high specificity and sensitivity (Jensen et al., 

1999) and shows promise as a target vaccine antigen for visceral 

leishmaniasis (Stager et al., 2003; Stager et al., 2000). Recent data have 

demonstrated that L. donovani HASPB is able to protect against infection in 

vivo via a novel immune mechanism involving natural antibodies and 

complement (Stager et al., 2003). Whether the cell surface localization of 

HASPB contributes to this immune response is currently unclear. However, 

recent experiments using the N-terminal acylated HASPB domain to target a 

model antigen, ovalbumin, to the parasite plasma membrane have clearly 

demonstrated that HASPB in this location is presented preferentially to the 

immune system in vivo (Prickett et al., 2006). Therefore the elucidation of the 
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molecular apparatus catalyzing HASPB export might pave the way for the 

development of a novel class of anti-parasitic drugs causing alterations in the 

coat structure of Leishmania parasites potentially inducing avirulance and/or 

lability towards the host immune system. 

 

1.4 Fibroblast Growth Factor-1 and- 2 (FGF-1 and -2) 

 

FGFs belong to a large family of heparin-binding growth factors, which, apart 

from their mitogenic activity (Burgess and Maciag, 1989; Schweigerer et al., 

1987), are key stimulators of tumor-induced angiogenesis (Christofori and 

Luef, 1997). Although acidic and basic fibroblast growth factors (aFGF1, 

bFGF2) are often regarded as prototypic members of the FGF family, neither 

one has a classical leader sequence that might explain their presence outside 

cells (Bikfalvi et al., 1997; Szebenyi and Fallon, 1999). Accordingly, they 

belong to the unusual class of unconventionally secreted proteins (Cleves, 

1997; Nickel, 2003). FGF-2 was first identified as an 146-amino acid protein 

isolated from the pituitary (Bohlen et al., 1984). Upon expression of the  

FGF-2 cDNA, five isoforms could be identified with molecular masses ranging 

from 18, 22, 22,5 and 24 kDa that arise from a single mRNA transcript as a 

result of alternate utilization of AUG or CUG translation start sites (Florkiewicz 

and Sommer, 1989; Prats et al., 1989). The longer forms of 22, 22.5 and 

24 kDa, initiated by CUG codons are localized in the nucleus, whereas the 

AUG-initiated 18kDa form is localized to the cytoplasm (Florkiewicz et al., 

1995; Florkiewicz and Sommer, 1989) and has been shown to be secreted by 

unconventional means (Jackson et al., 1992; Mignatti et al., 1992; Trudel 

et al., 2000). Using recombinant FGF-2, several groups have determined the 

three-dimensional structure of the 18-kDa form of FGF-2 (Eriksson et al., 

1991; Zhu et al., 1991). FGF-2 contains 12 anti-parallel β-sheets organized 

into a trigonal pyramidal structure (Baird et al., 1988). This FGF-prototype has 

pleiotropic effects in different cells and organ systems. FGF-2 is a potent 

angiogenic molecule in vivo and in vitro stimulates smooth muscle cell growth, 

wound healing, and tissue repair (Basilico and Moscatelli, 1992; Schwartz and 

Liaw, 1993). In addition FGF-2 may stimulate hematopoieses (Allouche and 
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Bikfalvi, 1995; Bikfalvi et al., 1995) and may play an important role in 

differentiation and/or function of the nervous system (Baird, 1994; Logan 

et al., 1991; Unsicker et al., 1992), the eye (McAvoy et al., 1991), and the 

skeleton (Fallon et al., 1994; Riley et al., 1993).  

FGF-2 is able to initiate differentiation, i.e. the transformation of fibroblasts to 

adipocytes (Rogelj et al., 1989). By contrast, FGF-2 blocks the differentiation 

of myoblasts in the muscle and thereby prevents apoptosis (Rogelj et al., 

1989). FGF-2 is involved in mitogenesis by inducing the synthesis of DNA in 

various cells (Gospodarowicz et al., 1987). It stimulates the secretion of 

proteases, for example plasminogenactivator, collagenases and gelatinases 

upon receptor-mediated signaling (Ye et al., 1988). As a result of the 

activation of plasmonogenactivator, the protease plasmin arises upon scission 

of peptides by plasminogen and is able to digest basal membranes that 

usually prevent the migration of cells (Ye et al., 1988). All FGF-2-forms entail 

high affinity interactions with tyrosine kinase FGF receptors and low-affinity 

interactions with proteoglycans (HSPGs) containing heparan sulfate 

polysaccharides (Johnson and Williams, 1993; Rusnati et al., 2002). Binding 

of soluble FGF-2 to heparanproteoglycans of cells induces oligomerization 

(Gleizes et al., 1995). The oligomerization of FGFs triggered by binding to 

heparan sulfates promotes the recruitment of several FGFRs leading to 

receptor dimerization and activation (Powers et al., 2000). Dimerization of 

FGFRs induces autophosphorylation of cytosolic tyrosine residues, which, in 

turn, activates phospholipase Cγ (PLCγ), a protein found to be associated with 

FGFRs (Burgess and Maciag, 1989; Burgess et al., 1990). PLCγ cleaves 

phophatidyl-inositol-4,5-bisphosphate (PIP2) to inositol triphosphate (IP3) and 

diacylglycerol (DAG) leading to an increase of the intracellular concentration 

of Ca2+-ions by release from the ER reservoir in response to the stimulus by 

IP3. Ca2+-ions function as second messengers that induce numerous cellular 

responses and additionally DAG together with the released Ca2+-ions 

activates proteinkinase C (PKC) (Clapham and Sneyd, 1995). Another 

signalling pathway, which can be activated by FGFR dimerization is 

Ras/MAP-kinase signalling (Marshall, 1995). 
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These signaling cascades mediated by FGF-2 represent the basis for its 

function as tumor-producing direct acting stimulator of angiogenesis, a 

process that is essential for tumor growth and metastasis (Bikfalvi et al., 

1995). Upon growing of endothelial cells, new blood vessels are formed that 

regulate the exchange between blood stream and the surrounding tissue 

(Ferrara, 1999; Mignatti and Rifkin, 1991). Upon release of FGF-2, endothelial 

cells, organized as monolayer in blood vessels form capillary tubes, secret 

proteases, proliferate and form new capillaries (Ferrara, 1999; Mignatti and 

Rifkin, 1991). As a result, the extracellular matrix (ECM) gets degraded by the 

proteases and the endothelial cells grow towards the tumor (Ferrara, 1999; 

Mignatti and Rifkin, 1991). Based on this neovascularisation, a connection of 

the tumor cell to the blood vessel and thereby to the whole blood system is 

guaranteed representing the prerequisite for tumor growth and metastasis 

(Liekens et al., 2001).  

Besides the common functions of FGF-1 and FGF-2, there exists a lot of 

differences, as the secretion of FGF-2 is blocked upon heat shock treatment 

(Jackson et al., 1992; Mignatti and Rifkin, 1991) while FGF-1 secretion is not 

influenced by stress conditions such as heat shock (Hughes, 1997; Jackson 

et al., 1992; Lindquist, 1986; Tsay et al., 1999). In case of FGF-1, export 

requires the formation of a Cys30-mediated FGF-1 homodimer (Jackson 

et al., 1995; Tarantini et al., 1995) as well as the association of FGF-1 with the 

extravesicular p40 fragment of p65 Syt1, an integral transmembrane protein 

participating in secretory vesicle docking (LaVallee et al., 1998; Tarantini 

et al., 1998). Additionally, S100A13, a member of the family of intracellular 

calcium-binding S100 proteins is implicated in this multiprotein release 

complex (Landriscina et al., 2001; Mouta Carreira et al., 1998). Furthermore, 

serum starvation has been reported to inhibit export of FGF-2 (Mignatti et al., 

1992) while it was found to induce secretion of FGF-1 (Shin et al., 1996). 

Similarly, methylamine has an effect only regarding FGF-2 export (Jackson 

et al., 1995). FGF-2 secretion is blocked in presence of ouabain (Florkiewicz 

et al., 1998). Ouabain binds to the alpha-subunit of the Na/K-ATPase and 

prevents FGF-2 secretion suggesting that the Na/K-ATPase regulates FGF-2 

secretion. This observation is confirmed by experiments with an ouabain-

resistant mutant expressing the alpha subunit of the ATPase since FGF-2 
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export can be restored (Dahl et al., 2000). Despite the apparent 

mechanistically differences in the export modes of FGF-1 and FGF-2, it 

appears quite likely that FGF-1, alike FGF-2, is exported by a direct 

translocation across the plasma membrane of mammalian cells (Fig. 3, 

mechanism 2). This is consistent with earlier findings in that FGF-2 is capable 

of crossing the membrane of plasma membrane-derived inside-out vesicles in 

vitro (Schäfer et al., 2004). Additionally, current evidence suggests that 

HSPGs are essential components of the FGF-2 export machinery, thereby 

acting as FGF-2 export receptors (Zehe et al., 2006). The specific binding of 

FGF-2 to heparan sulfate proteoglycans (HSPG) (Faham et al., 1996; Faham 

et al., 1998; Raman et al., 2003) requires a functional structure that seems to 

be the case upon export as FGF-2 membrane translocation occurs in a folded 

state (Backhaus et al., 2004). Collectively, translocation of FGF-2 might be 

coupled to a mechanism that ensures secretion only of functional FGF-2 

implicating that exported FGF-2 has passed quality control measures 

(Backhaus et al., 2004). 

As recently reported (Taverna et al., 2003), the shedding of plasma 

membrane vesicles has also been proposed as a main mechanism of FGF-2 

secretion  (Fig. 3, mechanism 4). This work was initiated based on the 

previous findings that following secretion FGF-2-GFP concentrates in heparan 

sulfate proteoglycans (HSPG)-containing clusters on the outer leaflet of the 

plasma membrane (Engling et al., 2002). These structures were interpreted 

as potential exovesicles originating from the plasma membrane (Taverna 

et al., 2003). However, further work is needed to establish a role for this 

mechanism in the release of FGF-2 from mammalian cells, especially 

because in the absence of various forms of cell activation. FGF-2 export has 

been found to occur in a constitutive manner from many cells (Prudovsky 

et al., 2003).  

 

1.5 Galectin-1 

 

Galectin-1 belongs to a family of ß-galactoside-binding lectins expressed in 

distinct patterns during development and in differentiated tissues (Hughes, 
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1999). These lectins are associated with components of the extracellular 

matrix (ECM) and counter receptors on the cell surface of mammalian cells 

(Liu and Rabinovich, 2005). Due to the ß-galactoside-binding capability, 

galectins can be clustered through interactions with glycoproteins and 

glycolipids representing a key event in galectin signal transmission to 

downstream targets (Brewer et al., 2002). Cell surface association of galectins 

is mediated by both N- and O-glycosylated ß-galactose-terminated oligo-

saccharide side chains of glycoproteins (Hughes, 1997; Perillo et al., 1998) as 

well as by galactose-containing glycolipids such as GM1 (Kopitz et al., 1998; 

Perillo et al., 1995). Regarding Galectin-1 it is involved in tumor-mediated 

immune response, promoting immune suppression by inducing apoptosis of 

activated T cells upon secretion from tumor cells (He and Baum, 2004; Perillo 

et al., 1995). Accordingly, galectins have been implicated in a wide range of 

physiological processes such as apoptosis, tumor progression, inflammation 

and cell adhesion (Liu and Rabinovich, 2005; Perillo et al., 1995; Rabinovich 

et al., 2002). Each galectin contains one or two highly conserved carbohy-

drate recognition domains (CRDs) made up of about 135 amino acid residues 

and great varieties concerning their carbohydrate-binding specificities 

(Hughes, 1999). Most galectin CRDs have similar affinities for lactose or  

N-acetylglycosamine. Moreover, they have highly conserved amino acid 

residues in the primary carbohydrate site responsible for binding to  

ß-galactosides (Henrick et al., 1998; Seetharaman et al., 1998). Interestingly, 

Galectin-3 has an extended binding site for accommodation of longer 

oligosaccharides such as polylactosamines, suggesting that the differences in 

carbohydrate-binding-specificities are important for specific downstream ef-

fects (Henrick et al., 1998; Lukyanov et al., 2005; Seetharaman et al., 1998). 

Each galectin may interact with a discrete spectrum of glycoconjugate 

receptors leading to consequent downstream signaling (Henrick et al., 1998; 

Seetharaman et al., 1998). Galectin-1, a homodimeric lactose-binding lectin, 

is highly expressed in muscle cells, thymus, kidney, placenta and motor and 

sensory neurons and export of galectin-1 from these tissues can both promote 

and inhibit cell adhesion (Barondes et al., 1994). In early studies (Lindstedt 

et al., 1993; Sato et al., 1993), it has been proven that galectin secretion does 

not abrogate in presence of brefeldin A, indicating that they exit the cells 
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through an alternative, non-classical route, the unconventional secretion 

(Cleves et al., 1996). For galectins, different pathways have been proposed 

according to the structure of the lectin, the cell type and its polarity (Hughes, 

1999). It seems likely that part of the diversity in secretory pathways used by 

galectins lies in interaction with different sets of intracellular proteins that 

direct them to specific sites during their secretion (Hughes, 1999). This also 

implicates the translocation through a limiting membrane of a vesicular 

compartment or at the cell surface (Hughes, 1999). The association of 

galectins with actin (Huflejt et al., 1997; Joubert et al., 1992) and cytokeratins 

(Goletz et al., 1997) could be involved in focal concentration of the protein at 

specialized regions of the cytoskeleton (Hughes, 1999). Galectin-1 was 

reported to accumulate in such evaginations of the plasma membrane as 

revealed by immunolocalization studies at intermediate stages of the 

differentiation process (Cooper and Barondes, 1990). The protein has been 

found in the extracellular space upon differentiation of muscle cells from 

myoblasts to myotubes (Cooper and Barondes, 1990). Furthermore,  

Galectin-1 was detected in exovesicles apparently in the process of detaching 

from the plasma membrane (Cooper and Barondes, 1990), suggesting an 

export mediated by plasma membrane shedding of microvesicles (Fig. 3, 

mechanism 4). Besides Galectin-1, Galectin-3 has been proposed to get 

exported via membrane shedding of labile vesicles into the supernatant of 

COS cells (Mehul and Hughes, 1997). Intriguingly, Galectin-3 has been 

identified as a major component of exosomes, which were isolated from cell 

culture supernatants of dendritic cells (Thery et al., 2001) suggesting that the 

shedded exovesicles are derived from multivesicular bodies (MVB) (Fig. 3, 

mechanism 3) rather than by membrane blebbing. Moreover, it has been 

reported, that Galectin-1 is capable of translocating across the membrane of 

plasma membrane-derived inside-out vesicles (Schäfer et al., 2004) 

suggesting an export via mechanism 2 (Fig. 3). Based on this result, plasma 

membrane derived transporters could be implicated in Galectin-1 secretion 

(Seelenmeyer et al., 2005). So far, the idea of an interaction of galectins with 

their counter receptors such as laminin, fibronectin, lamp1 and 2 or GM1 

glycolipid was not operated. However, current evidence suggests that these 

interactions have been shown to be an integral part of the export mechanism 
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itself (Seelenmeyer et al., 2005) proving that the elusive targeting motif of 

Galectin-1 is primarily defined by its ß-galactoside-specific carbohydrate 

recognition domain (Seelenmeyer et al., 2005). Their ligands such as  

ß-galactoside-containing glycolipids act as cargo receptors, which either act at 

an intracellular level or at an extracellular level, both resulting into a 

directional transport of galectins across the plasma membrane (Seelenmeyer 

et al., 2005). 

 

1.6 Aim of the current study 

 

The specific aim of this thesis was to analyze the molecular mechanism of 

HASPB targeting to the plasma membrane. In this regard, there is also a 

complete lack of knowledge about the subcellular site of HASPB membrane 

translocation, a process that eventually allows HASPB exposure on the cell 

surface of eukaryotic cells. Therefore, a novel experimental system was 

planned to be established that permits the precise quantification of HASPB 

export from mammalian cells based on flow cytometry. Using this assay, the 

aim was to screen somatic CHO mutants that are incapable of exporting 

HASPB-GFP fusion proteins employing retroviral insertion mutagenesis. 

Based on a detailed biochemical and morphological characterization of 

mutants with this phenotype, the site of HASPB membrane translocation was 

studied. Moreover, based on the mutagenesis strategy used, the analysis of 

the component that might be potentially involved in the unconventional 

secretion process of HASPB export mutants was aimed. 

In the second chapter of this thesis, the aim was to analyze whether HASPB-

mediated plasma membrane blebbing (Tournaviti et al., 2006 submitted) 

results in shedding of plasma membrane-derived HASPB-containing vesicles 

into the extracellular space (section 1.3.5). Based on various biochemical 

approaches the analysis of cell culture supernatants from HASPB-N18-GFP 

expressing CHO cells was planned. Using these methods, a major aim was to 

analyze and characterize alternative secretory mechanisms that potentially 

might drive export of the unconventionally secreted protein HASPB. 
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2 Material and Methods 

2.1 Material 

2.1.1 Chemicals 

 

Chemicals Manufacturer 

AEBSF Sigma-Aldrich Chemie GmbH, 

Steinheim 

Agar   Becton Dickinson, Le Pont de 

Claix, France 

Agarose electrophoresis grade Invitrogen Ltd., Paisley, UK 

alpha-MEM Biochrom AG, Berlin 

Ammonium chloride Carl Roth GmbH, Karlsruhe 

Ampicillin sodium salt Gerbu Biotechnik GmbH, Gaiberg 

APS (Ammonium peroxo disulfate) Carl Roth GmbH, Karlsruhe 

β-Mercaptoethanol  Merck, Darmstadt 

EZ-Link Sulfo-NHS-SS-Biotin Pierce, Perbio Sciences, Bonn 

Bromphenol Blue Na-salt Serva Electrophoresis GmbH, 

Heidelberg 

BSA (Bovine serum albumine,  

Albumin fraction V) 

Carl Roth GmbH, Karlsruhe 

Calcium chloride dihydrate Applichem, Darmstadt 

Cell dissociation buffer (CDB) Invitrogen, Paisley, UK 

Chloroquine Sigma-Aldrich Chemie GmbH, 

Steinheim 

CL-4B Sepharose (Beads) Amersham Biosciences Pharmacia, 

Uppsala, Sweden 

Clear Nail Protector Wet’n Wild USA, North Arlington, 

USA 

Complete Mini (Protease Inhibitor 

Cocktail Tablets) 

Roche Diagnostics, Mannheim 
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Deoxycholic acid sodium salt Sigma-Aldrich Chemie GmbH, 

Steinheim 

DMEM Biochrom AG, Berlin 

DMSO (Dimethyl sulfoxide) J.T. Baker, Deventer, USA 

DNA ladder (1 kb and 100 bp) New England Biolabs, Frankfurt 

dNTP-Mix Peqlab, Erlangen 

Doxicycline Clontech, Palo Alto, USA 

ECL Western Blotting Detection 

 Reagent  

Amersham Biosciences Pharmacia, 

Uppsala, Sweden 

EDTA (Ethylene diamine tetraacetic 

 acid) 

Merck, Darmstadt 

Ethanol pro analysi Riedel-de Haën, Seelze 

FCS (Fetal Calf Serum) PAA Laboratories GmbH, Linz, 

Austria 

Fluoromount G Southern Biotechnologies Associa-

tion Inc., Birmingham, USA 

Glycerol Carl Roth GmbH, Karlsruhe 

Glycine  Applichem, Darmstadt 

Hepes Carl Roth GmbH, Karlsruhe 

ImProm-IITM Reverse Transcription 

System 

Promega 

Isopropanol Merck, Darmstadt 

Kanamycin sulfate Gerbu Biotechnik GmbH, Gaiberg 

L-Glutamine Biochrom AG, Berlin 

Magnesium chloride hexahydrate Applichem, Darmstadt 

Methanol pro analysi Merck, Darmstadt 

Milk Powder Carl Roth GmbH, Karlsruhe 

Nonidet P40 (NP-40) Roche, Mannheim 

Nycodenz Axis Shield 

Paraformaldehyde Electron Microscope Sciences, 

Hatfield, UK 

Penicillin/Streptomycin for cell culture Biochrom AG, Berlin 
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Ponceau S Serva Electrophoresis GmbH, 

Heidelberg 

Potassium dihydrogen carbonate Carl Roth GmbH, Karlsruhe 

Potassium hydroxide J.T.Baker, Deventer, USA 

Protein A-Sepharose (Beads) Amersham Biosciences Pharmacia, 

Uppsala, Sweden 

PVDF Membrane Immobilon P Millipore Corporation, Bedford 

PVDF Membrane Immobilon FL Millipore Corporation, Bedford 

Rotiphorese Gel 30 (37.5:1) Carl Roth GmbH, Karlsruhe 

Sodium chloride J.T. Baker, Deventer, USA 

Sodium dodecyl sulfate  Serva Electrophoreis GmbH, 

Heidelberg 

Sodium hydrogen carbonate J.T. Baker, Deventer, USA 

Sodium hydroxide  J.T. Baker, Deventer, USA 

Sucrose J.T. Baker, Deventer, USA 

TEMED (N,N,N',N'-tetramethyl- 

ethylenediamine) 

Bio-Rad, München 

Trichloroacetic acid Carl Roth GmbH, Karlsruhe 

Tris Carl Roth GmbH, Karlsruhe 

Trition X-100 Roche, Mannheim 

Trypsin/EDTA for cell culture Biochrom AG, Berlin 

Trypsin Sigma-Aldrich Chemie GmbH, 

Steinheim 

Tryptone Becton Dickinson, Le Pont de 

Claix, France 

Tween 20 (Polyoxyethylene- 

sorbitan monolaurate) 

Carl Roth GmbH, Karlsruhe 

UltraLink immobilized streptavidin 

(Beads) 

Pierce, Perbio Sciences, Bonn 

Whatman MM  Whatman AG, Würzburg 

Xylencyanol FF Serva Electrophoresis GmbH, 

Heidelberg 



Material and Methods 
 

47 

Yeast Extract Beckton Dickinson, Le Pont de 

Claix, France 

 

 

Technical devices Manufacturer 

Anthos 2001 Microplate Photometer Anthos, Hombrechtikon, 

Switzerland 

Bacterial Incubator Infors HT ITE Infors AG, Einsbach 

Bacterial Shaker Centromat R Braun, Melsungen 

Centrifuge 5415 R Eppendorf, Hamburg 

Centrifuge 5417 R Eppendorf, Hamburg 

Centrifuge Avanti J-25 Beckman Coulter, Krefeld 

Centrifuge Megafuge 1.0 R Kendro, Langenselbold 

Centrifuge Optima TLX Ultracentrifuge Beckman Coulter, Krefeld 

Centrifuge Rotor Sorvall SS-34 Kendro, Langenselbold 

Centrifuge Sorvall Evolution RC Kendro, Langenselbold 

Centrifuge Sorvall RC 6 Kendro, Langenselbold 

Ultracentrifuge Rotor TLA-45 Beckman Coulter, Krefeld 

Ultracentrifuge Beckman Coulter, Krefeld 

FACSAria Becton Dickinson, Heidelberg 

FACSVantage Becton Dickinson, Heidelberg 

FACSCalibur Becton Dickinson, Heidelberg 

Gel Doc 2000 Bio-Rad, München 

Incubator Heraeus CO2-Auto-Zero Kendro, Langenselbold 

LKB Ultraspec III Amersham Biosciences, Freiburg 

Microscope Axiovert 40 C Zeiss, Göttingen 

Microscope LSM 510 Meta Confocal Zeiss, Göttingen 

Mini Trans-Blot Cell Bio-Rad, München 

Mini-PROTEAN 3 Electrophoresis 

System 

Bio-Rad, München 

Nanodrop ND-1000 Spectrophotometer Peqlab, Erlangen 

Odyssey Infrared Imaging System LI-COR Biosciences, 

Bad Homburg 
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PCR Primus Advanced 25 and 96 Peqlab, Erlangen 

pH-Meter 766 Calimatic Knick, Egelsbach 

Power Pack 200 and 300 Bio-Rad, München 

Roto-Shake Genie Scientific Industries, Bohemia, 

USA 

Sonorex Super RK 103 h Bandelin, Berlin 

Thermomixer compact and comfort Eppendorf, Hamburg 

Tricorn 5/150 Column Amersham Biosciences, Freiburg 

 

2.1.2 Plasmids  

 

Name Origin 

pRevTRE2-HASPB-N18-GFP AG Nickel, BZH, Heidelberg 

pRevTRE2-Δpalm-HASPB-N18-GFP AG Nickel, BZH, Heidelberg 

pRevTRE2-Δmyr-HASPB-N18-GFP AG Nickel, BZH, Heidelberg 

pRevTRE2-Src-GFP-IgG AG Nickel, BZH, Heidelberg 

pRevTRE2-Yes-GFP-IgG AG Nickel, BZH, Heidelberg 

pRevTRE2-Fyn-GFP-IgG AG Nickel, BZH, Heidelberg 

pRevTRE2-Lck-GFP-IgG AG Nickel, BZH, Heidelberg 

pGEM-T Promega, Madison, USA 

pGEM-T-cmkor AG Nickel, BZH, Heidelberg 

pRTi-cmkor-IRES-CD8  AG Nickel, BZH, Heidelberg 

pBICD4 AG Schwappach, ZMBH, Heidelberg 

pRevTRE2 Clontech, Mountain View, USA 

pRevTRE2-GFP AG Nickel, BZH, Heidelberg 

pcDNA 16-Δpalm-HASPB-N18-GFP Deborah Smith, York, UK 

pcDNA 16-Δmyr-HASPB-N18-GFP Deborah Smith, York, UK 

pcDNA 16-HASPB full length Deborah Smith, York, UK 

pFB-hrGFP Stratagene, La Jolla, USA 

pVPack-Eco Stratagene, La Jolla, USA 

pVPack-GP Stratagene, La Jolla, USA 
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2.1.3 DNA modifying enzymes 

 

Enzyme Manufacturer 

AmpliTaq Polymerase Perkin Elmer (Roche), Branchburg, USA 

PfuTurbo Polymerase Stratagene, La Jolla, USA 

Age I New England Biolabs, Frankfurt 

BamH I New England Biolabs, Frankfurt 

EcoR I New England Biolabs, Frankfurt 

Nde I New England Biolabs, Frankfurt 

Not I New England Biolabs, Frankfurt 

Pac I New England Biolabs, Frankfurt 

Pme I New England Biolabs, Frankfurt 

Xba I New England Biolabs, Frankfurt 

Calf Intestinal Phosphatase (CIP) New England Biolabs, Frankfurt 

Klenow New England Biolabs, Frankfurt 

 

2.1.4 Primers and oligonucleotides 

 

Primers and oligonucleotides were purchased from Thermo Electron Com-

pany. 

 

PCR primers for HASPB-N18 and eGFP: 

 

5'-primer for HASPB-N18 (pRevTRE2-GFP), BamHI-restriction-site: 
5‘-GATCCCGCCACCATGGGAAGTTCTTGTACAAAGGACTCCGCAAAGG 

AGCCCCAGAAGCGTGCTGATGGA - 3‘ 

3'-primer for HASPB-N18 (pRevTRE2-GFP), AgeI-restriction-site: 

5‘-CCGGTCCATCAGCACGCTTCTGGGGCTCCTTTGCGGAGTCCTTTGT 

ACAAGAACTTCCCATGGTGGCGG - 3‘ 
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PCR primers for cmkor 1-RT-PCR: 

 

5'-primer for cmkor 1 (No.1): 

5‘ - AACAGCAGCGACTGCATTGTGGTGGACAC - 3‘ 

3'-primer for cmkor 1 (No.1):  
5‘ - CCTGTTTTGGCCGAGTACTTGAAGATGAAGGC- 3‘ 

5'-primer for cmkor 1 (No.2):  

5‘ - ATGGATGTGCACTTGTTTGACTATGCAGAGCC- 3‘ 

3'-primer for cmkor 1 (No.2):  
5‘ - TCACTTGGTGTTCTGTTCCAGGGCAGAGTACTC- 3‘ 

 

PCR primers for pRTi-cmkor 1-IRES-CD8: 

 

5'-primer for cmkor (pRTi-cmkor 1-IRES-CD8), BamHI-restriction-site: 
5‘ - CGGATCCATGGATGTGCACTTGTTTGACTATGCAGAGCCTGGG - 3‘ 

3'-primer for cmkor (pRTi-cmkor 1-IRES-CD8), PacI-restriction-site: 
5‘ - CCTTAATTAATCACTTGGTGTTCTGTTCCAGGGCAGAGTACTCCG- 3‘ 

 

PCR primers for pRTi-sequencing:                                                                                                                                      

 

5'-primer for pRTi: 
5‘ - CCACGCTGTTTTGACCTCCA - 3‘ 

3'-primer for pRTi: 

5‘ - CGCACACCGGCCTTATTCC- 3‘ 

 

siRNA oligonucleotides directed against cmkor 1 (CHO): 

 

No.1 Sense:  
5’-CGCUCUCCUUCAUCUACAUtt -3’ 

No.1 Antisense:  
5’-AUGUAGAUGAAGGAGAGCGtg -3’ 

 
No.2 Sense:  
5’-CCUUUUCGGGAGCAUCUUCtt -3’ 
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No.2 Antisense:  
5’-GAAGAUGCUCCCGAAAAGGtt -3’ 

 

No.3 Sense:  
5’-GCUCACAUGCAAGGUCACAtt -3’ 

No.3 Antisense:  
5’-UGUGACCUUGCAUGUGAGCtc-3’ 
 

2.1.5 Bacteria and bacterial media 

 

Transformation and plasmid amplification were performed with competent 

DH5a cells (Invitrogen). They were grown in LB medium (Luria Bertani) or on 

LB agar plates supplied with ampicillin in a final concentration of 100 µg/ml in 

order to select for successfully transformed cells carrying plasmids containing 

a resistance gene. 

 

Bacteria: subcloning efficiency DH5α competent cells, Genotype:  

 F- φ80dlacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 

(rk
-, mk

+) phoA supE44 λ- thi-1 gyrA96 relA1 

 

LB medium:  0.5% (v/w)  NaCl 

   1% (w/v)  Tryptone 

   0.5% (w/v)  Yeast extract 

    

LB agar plates: 0.5% (w/v)  NaCl 

   1% (w/v)  Tryptone 

   0.5% (w/v)  Yeast extract 

   1.6% (w/v)  Agar 
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2.1.6 Eukaryotic cell lines 

 

In order to produce stable packaging cell lines the 293 cell derivative 293T 

HEK (Human Embryonic Kidney) cell line allowed the production of high-titer 

viral supernatants following transient cotransfection of the viral vector together 

with expression vectors encoding the gag, pol and env genes.  

CHO (Chinese Hamster Ovary) cells and HeLa (Henrietta Lacks) cells were 

used as target cell lines for retroviral transduction. Upon incubation of viral 

supernatant with the target cells a stable transduction with cDNA constructs 

was achieved. Retroviral transduced cell lines expressing various reporter 

molecules were used in in vivo systems to study proteins in an eukaryotic 

living cell environment. 

 

Eukaryotic cell lines: HEK 293Tcells (ATCC CRL-11268) 

    CHO cells (ECACC 85050302) 

    HeLa cells (ATCC CCL-2.1) 

 

2.1.7 Eukaryotic cell culture media (Wilson et al., 1994)  

 

α Modification of the Minimal Essential Medium (αMEM) 

 

αMEM (F0925, Biochrom AG) was used for the cultivation of CHO cells.  

To produce 5 l αMEM dry powder was dissolved in H2OMilliQ and 10 g of 

sodium hydrogencarbonate was added to adjust the pH to 7.4. The prepared 

medium was sterile filtered into autoclaved bottles and stored at 4°C. Before 

incubation of cells with αMEM, 10% (v/v) fetal calf serum (FCS), 100 µg/ml 

Streptomycin/Penicillin and 2 mM L-Glutamine, only after storage over 

4 weeks, was supplemented. 
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Dulbecco’s Modified Eagle Medium (DMEM) 

 

DMEM (F0415, Biochrom AG) was used for the cultivation of HEK 293T and 

HeLa cells.  

To produce 5 l DMEM dry medium was dissolved in H2OMilliQ and 10 g of 

sodium hydrogencarbonate were added to adjust the pH to 7.4. The prepared 

medium was sterile filtered into autoclaved bottles and stored at 4°C. Before 

incubation of cells with DMEM, 10% (v/v) FCS, 100 µg/ml Strepto-

mycin/Penicillin and, 2 mM L-Glutamine, only after storage over 4 weeks, was 

supplemented. 

 

2.1.8 Primary antibodies 

 

Anti-GFP antibodies were generated by immunization of rabbits with 

recombinant  

N-terminally His6-tagged eGFP expressed in E.coli. The resulting anti-serum 

was incubated with His6-tagged eGFP coupled to Epoxy-sepharose 

(Amersham Pharmacia). Bound antibodies were eluted under acidic and basic 

conditions according to standard procedures.  

Monoclonal antibodies against the CD4 epitope and CD8 epitope were 

derived from the hybridoma Okt 4 (ATCC CRL-8002) and Okt 8 (Hoffmann, 

1980) cells, respectively. 

Antibodies directed against the transferrin receptor were from Zymed, 

antibodies directed against GM130 were purchased from BD Transduction 

Laboratories and were both kind gifts of Felix Wieland (Biochemiezentrum 

Heidelberg). 

Antibodies directed against TSG101 (1:500) were from Gene Tex, antibodies 

directed against Hsc70 (1:750) were purchased from Stressgen. Antibodies 

directed against GAPDH (1:4000) were obtained from Ambion. Antibodies 

directed against Alix were the kind gifts of Oliver Fackler (Hygieneinstitut 

Heidelberg). 
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To detect GFP-containing reporter constructs affinity-purified anti-GFP 

antibodies (Pineda Antibodies, acidic elution) were used (Engling et al., 2002). 

They were applied in a 1:300 dilution for Western blot and in a 1:200 dilution 

for FACS analysis. 

In immunoprecipitation experiments 20 µl of affinity-purified anti-GFP anti-

bodies (Pineda Antibodies, basic elution, (Engling et al., 2002)) were coupled 

to 20 µl Protein A sepharose: CL4B beads per reaction. 

 

2.1.9 Secondary antibodies 

 

HRP-coupled goat anti-rabbit (1:5,000) and goat anti-mouse (1:5,000) IgG 

antibodies used for Western blot analysis were from Biorad. 

Alexa 680-coupled goat anti-rabbit (1:20,000), goat anti-mouse (1:10,000) and 

goat anti-rat (1:10,000) IgG antibodies used for western blot analysis were 

obtained from Molecular Probes. 

APC (Allophycocyanin)-conjugated anti-rabbit and anti-mouse IgG antibodies 

used for FACS analysis were from Molecular Probes and used in a 1:750 

dilution. 

 

2.2 Molecular biological methods 

 

2.2.1 Bacterial transformation 

 

For the transformation of chemically competent DH5α cells 1 to 5 µl (1-10 ng 

DNA) or 5 µl of each ligation reaction were directly added to 45 µl competent 

cells, mixed by tapping gently and incubated for 30 minutes on ice. After heat-

shock for exactly 20 seconds at 37°C and placing for further incubation period 

of 2 minutes on ice, 900 to 950 µl of pre-warmed medium (w/o ampicillin) 

were added to each vial followed by an incubation at 37°C for exactly 1 hour 

at 225 rpm in a shaking incubator.  
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From each transformation vial 20 to 200 µl were spread on separate, labelled 

LB agar plates supplemented with 100 µg/ml ampicillin and incubated at 37°C 

for 12 to 16 h. 

 

2.2.2 Selection and amplification of plasmids 

 

Bacteria grown on agar plates form colonies originating from a single 

bacterium. In order to obtain genetically identical plasmids a single colony 

was selected and transferred to 10 ml LB medium supplemented with the 

respective antibiotic by using a 20 µl pipet tip. After incubation at 37°C 

overnight at 280 rpm in a shaking incubator the selection for bacteria carrying 

plasmids containing a resistance gene is guaranteed. 

 

2.2.3 Plasmid preparation 

 

Plasmids were prepared from overnight LB medium cultures of transformed 

bacteria by the application of Qiagen or Macherey Nagel DNA purification kits. 

The appropriate kit was chosen in dependence on the volume of the overnight 

culture. 

Volume of bacterial culture Qiagen Kit Macherey Nagel Kit 

5 - 10 ml QIAprep Spin Miniprep Kit Nucleospin Plasmid 

20 – 150 ml QIAGEN Plasmid Midi Kit Nucleobond-PC 100 

More than 150 ml QIAGEN Plasmid Maxi Kit Nucleobond-PC 500 

 

Purification was performed following the manufacturer’s manual employing 

alkaline lysis and binding of DNA to silica membranes or anion-exchange 

resins, respectively. Elution of the DNA was performed using appropriate 

volumes of H2OMilliQ. 
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2.2.4 Isolation of genomic DNA from cultured cells 

 

In eukaryots the genomic DNA is located in the nucleus and consists of 

chromosomes varying in number due to different organisms. Isolated genomic 

DNA represents a collection of all genes within an organism. The isolation of 

genomic DNA from cultured cells was prepared by the application of the 

DNeasy Tissue kit (Quiagen). Cells grown in 10 cm plates were washed with 

PBS, scratched from the plates and spinned for 3 min at 300 g. Following 

incubation in an appropriate volume of proteinase K buffer at 70°C for 

10 minutes and further washing steps, genomic DNA was eluted with buffer 

provided by the kit. Since storage at -20°C can cause sharing of genomic 

DNA, the genomic DNA isolated from cultured cells were stored at 4°C. 

 

2.2.5 Isolation of RNA from cultured cells 

 

The isolation of RNA from cultured cell was performed employing the RNeasy 

kit (Quiagen). Due to further applications total or cytoplasmic RNA was 

isolated with the RNeasy Micro kit or the RNeasy Midi/Maxi kit, respectively. 

Since the cytoplasm contains RNA in its mature form, the isolation of 

cytoplasmic RNA from cultured cells is particularly advantageous in applica-

tions where unspliced or partially spliced RNA is not desirable. In applications 

such as RT-PCR where the absence of DNA contamination is critical, traces 

of DNA were removed either by centrifugation for cytoplasmic RNA isolation 

or by DNase treatment for total RNA isolation, respectively. To isolate 

cytoplasmic RNA cultured cells were lysed in a buffer containing a non-ionic 

detergent. Nuclei remain intact during the lysis procedure and were removed 

by centrifugation. Following extensive washing optimal conditions for selective 

binding of the RNA to the silica gel membrane were provided. Contaminants 

were efficiently washed away and high quality RNA was eluted in RNase-free 

water and stored at -70°C. Cytoplasmic RNA accounts for 85% of total cellular 

RNA. Similarly, total RNA from cultured cells was isolated. Traces of DNA that 

may copurify were removed by DNase treatment on the RNeasy spin column. 

DNase and any contaminants were removed by washing and high-quality total 
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RNA was eluted in RNase-free water and stored at -70°C. This procedure 

enriches for mRNA since most RNAs smaller than 200 nucleotides such as 

5.8S rRNA, 5S rRNA and tRNAs (which together make up 15-20% of total 

RNA) are selectively excluded. 

 

2.2.6 Determination of DNA/RNA concentrations 

 

The concentration of a given DNA was determined upon a photometrically 

measurement of the optical density (OD) at a wavelength of 260 nm. In a 

photometer with UV-lamp the absorption of the diluted DNA solution 

transferred to a quartz- cuvette was performed. An optical density (OD) of 1 

corresponds to a concentration of 50 µg/ml of double stranded DNA. Using 

this DNA-specific multiplication factor, the dilution and the OD at 260 nm, the 

exact concentration of the DNA was calculated. The OD value should range 

between 0.1 and 1.0 to ensure optimal measurement.  

Alternatively, the concentration was measured by directly pipetting 1 µl of the 

DNA solution in a Nanodrop photometer.  

The ratio OD260/OD280 represents the grade of purity since pure DNA shows a 

value between 1.8 and 2.0. An OD260/OD280 below 1.8 indicate that the 

preparation is contaminated with proteins and aromatic substances (e.g. 

phenol). In contrast, an OD260/OD280 above 2 indicate a possible contamina-

tion with RNA. 

Analogous to the determination of DNA concentration the concentration of 

RNA was performed using a conventional UV-containing photometer or the 

Nanodrop photometer, respectively.  

Concerning RNA an optical density (OD) of 1 corresponds to a concentration 

of 40 µg/ml of ssRNA. To obtain pure RNA the ratio OD260/OD280 should be 

between 1.9 and 2.1 in 10 mM Tris buffer. An OD260/OD280 smaller that 2.0 

indicate, that the preparation is contaminated with proteins and aromatic 

substances.  
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2.2.7 Agarose gel electrophoresis 

 

Agarose gel electrophoresis was used to separate and identify DNA-

fragments of 0.5 to 25 kb in length. An appropriate amount of agarose was 

solved in electrophoresis buffer (TAE) upon heating. In order to make the 

DNA visible ethidiumbromide was added and a gel with pockets was poured. 

After curing, the DNA solution was transferred into the pockets and electricity 

was subjected that leads to the migration of the negatively charged DNA 

fragments towards the anode. The migratory behaviour of DNA fragments 

depends on their size and is limited by the pore size of the gel, which is 

defined by the amount of agarose used. To achieve a good separation of DNA 

fragments between 300 and 5000 bp generally agarose concentrations of  

0.8-2% were used.  

 

Agarose gels were prepared by dissolution of 1% agarose (w/v) in TAE buffer 

upon heating. After cooling, ethidiumbromide was added in a final concentra-

tion of 0.5 µg/ml and the solution was poured into an agarose gel-casting 

chamber containing a plastic comb forming the loading pockets. Following 

completely curing the gel was stored at 4°C until use. 

Electrophoresis was performed upon transfer of the gel into an agarose gel 

running chamber and addition of TAE. DNA samples containing DNA sample 

buffer in a 1:5 dilution were transferred into the pockets and electrophoresis 

was performed at 100 V until sufficient separation was reached visualized by 

the migration behaviour of the blue bromphenol marker front. Agarose gels 

were documented using the Gel Doc 2000 imaging system (Bio-Rad). 

 

TAE buffer (50x):   242 g  Tris 

     57.1 ml Glacial acidic acid 

     100 ml 0.5 M EDTA, pH 8 

     ad 1 l   H2OMilliQ 
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2.2.8 DNA sample buffer/loading buffer 

 

Since DNA solutions have a density similar to that of electrophoresis buffer, 

transfer of DNA-containing samples into the pockets of an agarose gel is not 

possible. Upon addition of sample buffer to the DNA solution, which in turn 

results in increasing of the density, the loading of the samples was achieved. 

To visualize the DNA sample during electrophoresis generally dyes such as 

Xylencyanol, Bromphenol Blue or Orange G are added. 

 

DNA sample buffer (5x):  0.25% (w/v) Bromphenol Blue  

     0.25% (w/v) Xylencyanol FF  

     30% (w/v) Glycerol 

 

2.2.9 DNA marker 

 

To determine the size of a loaded DNA sample DNA ladders were used as 

size standard. They contain DNA-fragments in a regular distance, the 1 kb 

DNA ladder (New England Biolabs) containing DNA fragments ranging from 

sizes of 500 to 10,000 bp was used to calculate large inserts and vectors. To 

analyze smaller DNA fragments the 100 bp DNA ladder (New England 

Biolabs) containing DNA fragments of defined sizes ranging from 100 to 

1,500 bp was used. 

The markers were applied by loading 10 µl of a stock solution containing 

0.05 µg/µl DNA in DNA sample buffer. Besides the determination of the size 

of a given DNA sample, the marker can be used to approximate the mass of 

DNA of an unknown sample. Since each band of the marker contains a 

defined amount of DNA the determination of the mass of the unknown sample 

was achieved by comparing band intensities visually.  
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2.2.10 Polymerase chain reaction 

 

To amplify genes or DNA fragments a polymerase chain reaction (PCR) was 

performed (Lawyer et al., 1989; Saiki et al., 1988).  

Using this method a DNA template defined by a forward and reverse 

oligonucleotide primer was amplified in high amounts and could be used for 

further cloning to generate desired reporter constructs. The amplification 

reaction was mediated by the thermostable DNA-polymerase, AmpliTaq 

polymerase (Perkin Elmer) an enzyme generating adenosine overhangs at 

the 3’-ends. Based on this 3’-overhangs ligation of PCR products into the 

pGEM-T vector containing thymidine overhangs at its 3’-ends was achieved 

and used for further cloning.  

The following reaction mix was used for PCRs. 

 

Sample reaction (total 100 µl): 

10 µl 10x reaction buffer 

2 µl (10 ng) dsDNA template 

1 µl (25 pmol) oligonucleotide forward primer  

1 µl (25 pmol) oligonucleotide reverse primer   

10 µl (10 mM) dNTP mix 

5.9 µl (25 mM) MgCl2 

69.1 µl H2OMilliQ 

1 µl of AmpliTaq DNA Polymerase (2.5 U/µl) 

 

The PCR reaction was performed employing a Primus Advance Thermocycler 

(PeqLab). In principle the PCR contains three main steps, denaturation, 

annealing and elongation. At 94°C, the double-stranded DNA is denatured 

and both strands get divided. In a second step the temperature is dropped to 

55°C resulting in hybridisation of the oligonucleotide primers to the single-

stranded DNA. Upon increase of the temperature back to 72 °C, the tempera-

ture optimum of the AmpliTaq polymerase, elongation of the primers is 

achieved. As a result double-stranded DNA was produced that corresponds 

exactly to the used template-DNA. Since the complementation is performed 
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on both DNA strands the amount of template DNA is doubled in one PCR-

cycle. Upon repeating of a cycle the amount increases to a four fold and 

continues by using some rounds of cycles. The following program was used to 

amplify DNA. 

 

Cycling parameters: 

Denaturation  2 min, 95°C    

 

Amplification  45 sec, 94°C   Denaturation 

(30 cycles)  1 min, T<Tm of primers Hybridization   

   1 min, 72°C   Elongation 

 

Elongation  10 min, 72°C    

 

Store   ∞, 4°C 

 

The annealing temperature was determined depending on the melting 

temperatures (Tm) of the used primers. It was chosen after subtracting 5°C 

from the Tm of the primer having the lower Tm (T = Tm – 5°C). Generally 

melting temperatures were defined depending on the amount of the bases 

guanine (G) and cytosine (C) and were calculated for each individual primer 

according to the following equation. 

 

  

! 

Tm = 81.5 +16.6" log Na+[ ] + 41"% GC#
675

N
 

 

  

! 

Na
+[ ] = 0.05 M 

  

! 

% GC = GC content of annealing sequence 

  

! 

N = number of annealing bases 

 

As Mg2+ influences the annealing of the primers, the separation of the DNA 

strands during denaturation and the specificity of the product the 

concentration of MgCl2 needs to be optimized for each PCR reaction. 
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Furthermore the enzyme needs free Mg2+-ions for its optimal activity. 

Therefore perfect Mg2+ concentrations are a prerequisite for an optimal PCR 

reaction. Additionally, dimethyl sulfoxide (DMSO) until 10% (v/v) and 

Formamid until 5% (v/v) increase the specificity and facilitates the amplifica-

tion of sequences containing high amounts of GC. To accelerate the reaction 

Glycerin, PEG 6000 and Tween 20 can be used. 

 

2.2.11 RT-PCR 

 

To detect the transcription of a gene in cells, the reverse transcriptase-

polymerase chain reaction (RT-PCR) was performed. RNA isolated from cells 

was used for the synthesis of cDNA in the RT reaction that in turn was used 

as template for the PCR reaction. In the reverse transcription reaction gene-

specific primers (section 2.1.5) were used. 

The RT-PCR was performed by the application of ImProm-IITM Reverse 

Transcription Sytem kit (Promega). 

The following steps were used for the synthesis of cDNA from RNA (RT): 

 

A. Target RNA and primer combination and denaturation: 

up to 1µg RNA template 

20 pmol gene-specific primer 

Nuclease-free water to a final volume of 5 µl 

 

This mixture was placed into a preheated 70°C heat block for 5 minutes. 

Immediately the sample was chilled in ice-water for at least 5 minutes and 

spinned for 10 seconds in a microcentrifuge.  
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B. Reverse Transcription: 

Reverse Transcription mix (total volume 15 µl): 

3.7 µl Nuclease-free water 

4.0 µl ImProm-IITM 5xReaction Buffer 

4.8 µl (25 mM) MgCl2 

1.0 µl (10 mM) dNTP mix 

0.5 µl Recombinant RNasin Ribonuclease inhibitor 

1.0 µl ImProm-IITM Reverse Transcriptase  

 

After vortexing, the reverse transcription mix was added to the RNA and 

primer mix (step A) resulting to a final reaction volume of 20 µl per tube. 

Analogous to the PCR-reaction the reverse transcription was performed in the 

following steps. 

Annealing:  The tubes were placed in a controlled temperature heat block 

 equilibrated at 25 °C and incubated for 5 minutes. 

Extension:  The tubes were incubated for 1 hour in a controlled temperature 

heat block at 42 °C 

Inactivation of the reverse transcriptase: To proceed with the PCR, the 

reverse transcriptase was thermally inactivated prior to amplification. The 

tubes were  incubated in a controlled temperature block at 70°C for 

15 minutes. 

 

C. PCR Amplification 

The following reaction mix was used for the PCR amplification. 

PCR mix (total 80 µl): 

62.4 ml Nuclease-free water 

8 µl 10x thermophilic polymerase reaction buffer (w/o MgCl2) 

5.6 µl (25 mM) MgCl2  

1 µl (10 mM) dNTP mix  

1 µl (1 µM) oligonucleotide forward primer   

1 µl (1 µM) oligonucleotide reverse primer   

1 µl of Taq DNA Polymerase (5.0 U/µl) 

The PCR mix was combined with the cDNA sample (20 µl) to a final volume of 

100 µl and amplified by the following programme. 
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Cycling parameters: 

 

Denaturation  2 min, 94°C    

 

Amplification  1 min, 94°C   Denaturation 

(25 cycles)  1 min, 60°C               Hybridization/Annealing 

   2 min, 72°C   Elongation 

 

Elongation  5 min, 72°C    

 

Store   ∞, 4°C 

 

The PCR products were analyzed by agarose gel electrophoresis using 

approximately 10% of the total reaction. The amplification product obtained 

using the positive control RNA (1.2 kb Kanamycin positive control RNA, 

0.5 µg/ml) with the upstream and downstream control primers applied with the 

ImProm-IITM Reverse Transcription Sytem kit, is 323bp long. 

 

2.2.12 PCR purification 

 

PCR products were purified for further analysis in order to remove primers 

and reaction mix components employing a PCR purification kit (QiaQuick 

PCR purification kit, Qiagen). Under high salt conditions the amplified DNA 

was bound to a silica membrane and eluted after washing with an appropriate 

volume of H2OMilliQ. 

 

2.2.13 Gel extraction of DNA fragments 

 

To isolate pure DNA after a restriction digest the reaction mix was separated 

on a 1% agarose gel. DNA fragments were transiently visualized with an UV 

lamp (366 nm) and the desired DNA fragment was cut out of the gel with a 

sharp blade. To separate the agarose gel from the DNA and to purify the DNA 
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the samples were processed using a gel extraction kit (Qiagen). Upon 

incubation of the samples in lysis containing buffer at 50°C the agarose was 

melted. The samples were transferred to column tubes applied by the 

manufacturer and DNA was bound to a silica membrane under high salt 

conditions. Elution was performed after a washing step in an appropriate 

volume of H2OMilliQ. 

 

2.2.14 Restriction digests 

 

To digest DNA for further cloning experiments restriction enzymes or 

restriction endonucleases (New England Biolab) were used. These enzymes 

recognise a specific target sequence within the DNA mostly ranging four to 

eight nucleotides and digest DNA at exactly specific base pairs resulting in 

sticky or blunt ends. Restriction digests were performed according to the 

manufacturer’s manual. DNA, H2OMilliQ, an appropriate enzyme and buffer 

optimized for the given enzyme were incubated for at least 2 hours at 37°C. In 

the case of a double digest a buffer was chosen that provides the highest 

cleavage efficiency for both enzymes or the digest was performed sequen-

tially for an appropriate time followed by combining both samples. Depending 

on the enzyme and the quality of the DNA 1 to 5 U/µg DNA were used in a 

restriction digest. 

 

2.2.15 Elongation of DNA using the Klenow fragment 

 

To elongate digested DNA in order to generate blunt ends for further cloning 

the Klenow fragment (New England Biolab) was used. The Klenow fragment 

is the big subunit of the DNA Polymerase I of E. coli and functions as  

5’-3’ polymerase. Synthesis of DNA was performed according to the 

manufacturer’s manual. Klenow, H2OMilliQ, dNTPs and buffer were added to 

the digested DNA and incubated for 15 minutes at 25°C. For the synthesis of 

3 basepairs 1 U/µg Klenow was used. 
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2.2.16 DNA dephosphorylation 

 

Digested DNA contains phosphates at its 5’-ends that are necessary for 

further cloning such as ligation. In order to prevent self-ligation of the vector 

based on these phosphates, the dephosphorylation of the vector was 

achieved using the Calf Intestinal Phosphatase (CIP, New England Biolabs). 

The enzyme was added to the reaction mix in a concentration of 1 U/µg DNA 

for 30 min at 37°C and in turn was heat inactivated by incubation at 70°C for 

10 min. 

 

2.2.17 Ligation of DNA fragments 

 

The ligation of PCR products or other DNA fragments to each other or into 

linearized vectors was performed using a ligation kit (Takara Bio Inc.). 

Digestion of the ligation partners with the same restriction enzymes providing 

compatible ends is a prerequisite for ligation reactions. Based on the 

application of the manufacturer, 50 ng of vector DNA were used and the 

amount of insert (digested DNA or annealed oligonuceotids) was calculated 

according to the following equation. 

 

  

! 

amount vector ng[ ] "number of basepairs insert bp[ ]
number of basepairs vector bp[ ]

= amount insert ng[ ]
 

The DNA sample was combined with 5 µl of Takara Solution 1 containing the 

standerd enzyme for ligations (T4 DNA ligase) as well as an optimized buffer 

in a 2-fold concentration. The reaction was filled to a total volume of 10 µl, 

mixed and incubated for 2 h at 37°C or for at least 16 h at 4°C. To stop the 

ligation reaction the mix was heat inactivated by incubation at 65°C for 

10 min. 
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2.2.18 DNA sequencing 

 

For further use of cloned products the sequence of cloned inserts or cDNA 

constructs in different plasmids were analyzed by sequencing to rule out 

mutations and to verify the correct sequence. Plasmid samples and 

appropriate primers were sent to commercial sequencing companies (Seqlab, 

Göttingen or GATC, Konstanz). Sequenced data was analyzed employing the 

Lasergene software suite (Lasergene, DNAStar) or the ‘align 2 sequences’ 

function of the BLAST project: 

http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi 

 

2.2.19 Short interfering RNAs (siRNAs) in mammalian cells 

 

Short interfering RNAs or simply RNA interference were used to inactivate 

genes in cell culture lines in order to study gene function. RNAi is an effective 

tool for shutting down genes individually based on controlling gene 

expression. Double stranded RNA molecules, whose nucleotide sequence 

matches that of the gene to be inactivated, were introduced into a cell. The 

RNA molecule was hybridized with the mRNA produced by the target gene 

and directs its degradation. Small fragments of this degraded RNA were 

subsequently used by the cell to produce more double-stranded RNA that 

directs the continued elimination of the target mRNA. Since these short RNA 

fragments were passed on to progeny cells, RNAi can cause heritable 

changes in gene expression. 

In order to achieve a specific silencing of target genes, siRNA target sites are 

typically chosen by scanning the mRNA sequence of interest for AA 

dinucleotides, recording the 19 nucleotides downstream of AA. Subsequently 

the potential siRNA target sequences were compared with an appropriate 

genome database to eliminate any sequences with significant homology to 

other genes. To generate siRNAs the siRNA Target Finder and Design Tool” 

provided by Ambion was used: 

http://www.ambion.com/techlib/misc/siRNA_finder.html 
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The three different siRNAs obtained were transfected into CHO cells using 

Oligofectamine. An appropriate amount of siRNA was mixed with Opti-MEM I 

Reduced Serum Medium and combined to a mixture of Oligofectamine and  

opti-MEM I Medium (1:4). Following incubation for 20 minutes at room 

temperature to form siRNA:Oligofectamine complexes, the mixture was added 

to the cells that in turn were placed back into the CO2-incubator at 37°C. After 

24-72 hours the cells were used for gene knock down assays. 

 

2.3 Eukaryotic cell culture techniques 

 

2.3.1 Maintaining cell lines 

 

Optimized growth conditions of adherent cells were achieved on culture 

dishes in fresh media supplemented with some constituents necessary for 

growth (section 2.1.8). The cells were grown at 37°C in a CO2-incubator at 

100% humidity. Since cell physiology is highly sensitive to pH variations CO2 

is needed to control pH and was optimized to 5% CO2 for the used media. 

Based on the density, the cells were splitted every 3-5 days by washing with 

PBS and addition of 0.125% (w/v) Trypsin/EDTA in PBS. Following incubation 

for 1 minute, Trypsin was removed and the cells were resuspended in an 

appropriate volume of medium used for the corresponding culture dish. 

Subsequently, cells were seeded in the desired dilution on new culture dishes 

containing fresh medium. Since cell lines tend to be unstable and features 

may change with time in culture, cells were cultured for four to six weeks 

depending on their passage number. Additionally due to mycoplasma 

contamination, one of the major problems in biological research using cultured 

cells, freshly thawed cells were treated with Mycoplasma Removal Agent 

(MRA) (MP formerly ICN Biomedicals, Inc.). MRA was added in a 1:100 

(0.5 µg/ml) dilution to the medium and was removed after an incubation time 

for 1 week.  
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PBS (Phosphate buffer saline):  140 mM   NaCl 

       2.7 mM  KCl 

        10 mM   Na2HPO4 

       1.8 mM   KH2PO4 

 

Trypsin/EDTA:    0.5 mM   EDTA  

      0.125% (w/v)  Trypsin  

      up to final volume PBS 

 

2.3.2 Freezing of eukaryotic cells 

 

Since cells should not kept in culture for a period longer than 6 weeks, cells 

were frozen for long-term storage. In order to prepare frozen stocks, the cells 

were grown to about 100% confluency. After washing once with PBS cells 

were detached using 0.125% (w/v) Trypsin/EDTA in PBS. Following 

resuspending in normal growth medium and transfer to a 15 ml tube, the cells 

were collected by centrifugation (200 gav, 5 min, 4°C). The sediment was 

carefully resuspended in 2 ml freeze medium and transferred to 1.8 ml cryo-

vial (Greiner). Alternatively, cells were resuspended directly in freeze medium 

after detaching. Prepared cryo-vials were stored at -80°C in special cryo-

boxes that ensure a temperature decrease of 1°C per minute. After incubation 

for at least 24 hours, frozen cryo-vials were transferred to liquid nitrogen tanks 

in order to guarantee long-term storage. 

 

Freeze Medium: 20% (v/v)  FCS  

   10% (v/v)   DMSO  

   100 µg/ml  Streptomycin/Penicillin 

   up to final volume αMEM or DMEM 
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2.3.3 Thawing of eukaryotic cells 

 

To unfreeze cells, the cryo-vials were removed from liquid nitrogen and 

immediately thawed in a water bath at 37°C. Following transfer of the cell 

suspension to 20 ml fresh, pre-warmed culture medium in a 50 ml tube, cells 

were sedimented by centrifugation (200 gav, 5 min, 4°C). After removing of the 

DMSO-containing medium, the cell sediment was resuspended in fresh 

culture medium. Subsequently, cells were seeded on corresponding culture 

dishes used for preparing the frozen stocks and incubated at 37°C with 5% 

CO2. 

 

2.3.4 Retroviral transduction 

 

In order to generate genetically modified reporter cell lines the stable 

integration of vector DNA containing reporter genes into the genome of target 

cells was performed employing the MBS Mammalian Transfection Kit 

(Stratagene). According to the instructions of the manufacturer’s manual the 

production of high titer recombinant retrovirus that are capable of infecting a 

virtually limitless range of cell types was achieved. Using an MMLV-based 

expressing vector and the pVPack vector system applied by the manufacturer, 

viral supernatant was produced. The vectors include a gag-pol-expressing 

vector (pVPack-GP) that is cotransfected with the retroviral expression vector 

containing the gene of interest and an env-expressing vector (pVPack-Eco). 

Within four days the production of retroviral particles using HEK 293T as host 

cells and the infection of target cells were performed. As target cell lines 

CHOMCAT-TAM2 (Engling et al., 2002) and HeLaMCAT-TAM2 cells expressing the 

murine cationic transporter MCAT-1 (Albritton et al., 1989; Davey et al., 1997) 

on the cell surface were chosen facilitating recognition by the virus and 

mediating docking and uptake. All constructs were cloned into the retroviral 

expression vector pRev-TRE2 that contains the constitutively expressed 

doxicycline-sensitive transactivator rtTA2-M2 (Urlinger et al., 2000) and 

guarantees the production of reporter proteins in a doxicycline-dependent 

manner (Engling et al., 2002). Besides pRev-TRE2 that allows doxicycline-
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dependent protein synthesis due to a doxicycline transactivator responsive 

element mediating mRNA formation, pFB and pRTI-CD8 vectors were used 

as expression vectors. The retroviral expression vector pRTi-CD8 promotes 

the doxicycline-dependent expression of CD8 and simultaneously, due to an 

IRES element (Jang et al., 1988; Liu et al., 2000), the doxicycline-dependent 

expression of the gene of interest (cmkor 1). In case of pFB, GFP was 

constitutively expressed after successful transduction and used as control in 

various experimental approaches. 

 

On the first day of the retroviral transduction the corresponding DNA mixture 

was precipitated using 1 ml 100% (v/v) ethanol and 0.1x volume 3 M sodium 

acetate. After incubation at -80°C for 30 minutes, the DNA sediment was 

collected by centrifugation at 12,000 gav for 10 minutes. The supernatant was 

discarded and 1 ml 70% (v/v) ethanol was added. Following centrifugation 

(12,000 gav, 4°C, 5 min) the supernatant was discarded and the wet sediment 

was stored at 4°C overnight. In parallel, the virus producing HEK 293T cells 

were seeded on freshly prepared culture dishes in an appropriate density 

facilitating a successful transfection on the following day.  

HEK 293T cells were transfected with the precipitated DNA pellets prepared 

the day before according to the manual of the MBS mammalian transfection 

kit and incubated for 48 h at 37°C to produce retroviral particles. Alternatively, 

if virus was to be harvested 72 hours post-transfection, all steps from day four 

were performed on the following day.  

On the third day, the medium from the HEK 293T cells was removed and 

replaced by fresh medium. Additionally, the target cells, CHOMCAT-TAM2 or 

HeLaMCAT-TAM2 cells, respectively, were seeded on culture dishes in an 

appropriate density useful for transduction 24 h later.  

Finally, on day four, the viral supernatants were harvested from transfected 

HEK 293T cells and passed through a sterile 0.45 µm filter. Subsequently, the 

viral supernatant supplemented with 25µM chloroquin was transferred to the 

target cells. After 3 hours growth medium was added and the cells were 

incubated for two days in order to allow successful transduction efficiency. 

Residual viral supernatant was frozen in liquid nitrogen and stored at -80°C 

for further use.   
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Transduction was achieved by virus mediated gene transfer generating stable 

integration of the construct into the genome of the target cell. Transduced 

cells were used for further applications such as flow cytometry or biochemical 

assays, respectively. The transduction efficiency was controlled measuring 

GFP positive cells transduced with pFB-hrGFP by flow cytometry. 

Vectors: pVPack-GP  (Stratagene) 

pVPack-Eco   (Stratagene) 

pFB-hrGFP (Clontech) derived from Moloney Murine 

Leukemia Virus (MMLV) 

pRevTRE2 (Clontech) derived from MMLV, contains 

tet-response element (TRE) 

 

2.3.5 Doxicycline-dependent protein expression 

 

In order to induce the expression of the various reporter constructs by the ret-

roviral expression vector pRev-TRE2 containing the tetracycline/doxicycline-

responsive element, doxicycline (Clontech) was added to the culture medium 

used for growth of the reporter cell lines. The stock solution of 1 mg/ml in PBS 

was diluted 1:1,000 with culture medium to obtain a final concentration of 

1 µg/ml. Depending on the used cell line, doxicycline was added for different 

time periods, ranging from 12 to 48 hours. 

 

2.4 Biochemical methods 

 

2.4.1 Generation of cell lines expressing various HASPB-GFP fusion 
proteins  

 

All HASPB fusion proteins used in this study are based on enhanced GFP 

(Clontech). The 18 N-terminal amino acids (MGSSCTKDSAKEPQKRAD) of 

HASPB were fused to the N-terminus of eGFP through a short linker 

sequence (GPVAT). In case of Δmyr-HASPB-N18-GFP and Δpalm-HASPB-
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N18-GFP, two single amino acid changes were introduced to prevent 

myristoylation and palmitoylation (G2A), and palmitoylation (C5S), respec-

tively. All constructs were cloned into the retroviral expression vector pRev-

TRE2 that contains a doxicycline-dependent promotor. Generation of CHO 

cell lines and HeLa cell lines expressing the various HASPB fusion proteins 

and GFP alone employing retroviral transduction was performed as described 

(section 2.3.4). 

 

2.4.2 Sample preparation for SDS polyacrylamide gel electrophoresis 
(SDS-PAGE) 

 

In order to allow separation of proteins for SDS-gelelectrophoresis, samples 

were mixed with SDS sample buffer in a ratio of 3:1 followed by an incubation 

at 95°C for 5-10 minutes. Following centrifugation (5,000 gav, 4°C, 1 min) the 

samples were loaded into the pockets of the SDS-gel. 

 

SDS sample buffer (4x): 200 mM  Tris-HCl, pH 6.8 

    25% (w/v)  Glycerol  

    2% (w/v)  SDS  

    0.2% (w/v)  Bromphenol Blue  

    0.7 M   β-Mercaptoethanol 

 

2.4.3 SDS polyacrylamide gel electrophoresis 

 

Proteins are amphoteric macromolecules and contain different amounts of 

positively (lysine, arginine) and negatively charged (aspartic acid, glutamic 

acid) as well as ionic (histidine, cysteine) amino acid residues. To separate 

proteins exclusively in size a treatment with the anionic detergent sodium 

dodecyl sulfate (SDS) together with reagents (ß-mercaptoethanol) braking 

sulfur-bridges was performed. Using this method, proteins were denatured 

and dissociate into their subunits. Hydrophobic interactions between the 

polypeptides and the negatively charged SDS lead to an overlapping of the 
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proteins self-charge. As a result proteins have a constant ratio of charge to 

mass and can be electrophoretically separated by their relative molecular 

masses using gel-matrices.  

To separate SDS denatured proteins according to their size SDS polyacryla-

mide gel electrophoresis was performed as described (Laemmli et al., 1970) 

using the Mini PROTEAN III Electrophoresis System (Bio-Rad). The 

separating gel solution containing 13% acrylamide was poured between to 

glass plates fixed in a casting frame and in turn was overlayed with 

isopropanol to obtain an well-balanced surface. After polymerization, 

isopropanol was removed completely followed by pouring the stacking gel 

solution into the gel cassette. Subsequently, a plastic comb was inserted from 

the top necessary to form the loading wells. After polymerization the gel with 

dimensions of 80 x 73 mm and a thickness of 0.75 mm was wrapped in wet 

towels and stored at 4°C for further use. 

Electrophoresis was performed using the PROTEAN III system. The gel was 

placed into the electrode assembly and electrophoresis-running buffer was 

added to the inner and outer chamber of the tank. The comb was carefully 

removed and the samples were transferred into the wells of the stacking gel 

using extra-long loading pipet tips. Electrophoresis was performed at 200 V 

for ∼55 minutes and stopped before emerging of the Bromphenol Blue front of 

the SDS sample buffer out of the separating gel. 

 

Separating Gel Solution:  13% Gel 

     1.25 ml 1.5 M Tris-HCl, pH 8.8 

     50 µl  10% (w/v) SDS  

     2 ml  30% (w/v) Acrylamide/Bis  

     25 µl  10% (w/v) APS  

     2.5 µl  TEMED 

     1.68 ml H2OMilliQ 
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Stacking Gel Solution:  4.8% Gel 

     0.625 ml 0.5 M Tris-HCl, pH 6.8 

     25 µl  10% (w/v) SDS  

     335 µl  30% (w/v) Acrylamide/Bis  

     12.5 µl 10 % (w/v) APS  

     2.5 µl  TEMED 

     1.53 ml H2OMilliQ 

 

Electrophoresis running buffer: 25 mM Tris-HCl, pH 8.3 

     192 mM Glycine 

     0.1%  SDS  

 

Alternatively, Novex NuPAGE 10% Bis-Tris-HCl Polyacrylamide-gels (pH 6.4) 

were used according to the manufacturer’s manual. To separate proteins 

under reducing conditions, 0.5 ml Antioxidant (Novex) was added to the MES 

running buffer into the inner chamber of the XCEll II™ MINI-CELL apparatus. 

Electrophoresis was performed at 200 V for approximately 35 min.  

 

MES (Morpholineethanesulfonic acid)-running buffer (20 x): 

   1 M   MES  

      1 M   Tris Base 

     69.3 mM  SDS 

     20.5 mM  EDTA 

  

2.4.4 SDS-PAGE protein molecular weight standards 

 

In order to calculate the size of proteins following electrophoresis, protein 

molecular weight standards peqGOLD Protein-Marker I (Peqlab) or Odyssey 

Protein Molecular Weight Marker (LICOR) were used, respectively. The 

peqGold marker, ranging from sizes of 14 to 116 kDa, was loaded analyzing 

gels by Western blot using the ECL detection method. The Odyssey marker, 

ranging from sizes of 10 to 250 kDa, was applied performing the analysis in 

an Odyssey infrared imaging system. Using this system the protein markers 
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are prestained with Coomassie and can be visualized. SDS-PAGE protein 

molecular weight standards were applied by loading 1 to 5 µl of the premixed 

solutions. 

 

2.4.5 Silver staining 

 

Silver staining was performed in order to impregnate proteins fixed in the 

SDS-gel by generating complexes of silver nitrate in presence of sodium 

thiosulfate. Gels were incubated for 1 hour in staining solution 1. Following 

three washing steps (20 minutes) in ethanol and incubation for 1 minute in 

sodium thiosulfate (staining solution 2), the gel was washed again three times 

with H2OMilliQ for 20 seconds and stained for 20 min in silver nitrate containing 

solution (staining solution 3). Subsequently, the gel was washed twice 

(20 seconds with H2OMilliQ) and stained with sodium thiosulfate solution 

(staining solution 4) until staining of proteins were visible (1-2 minutes). After 

fixing for 10 minutes in acetic acid the gel was stored in H2OMilliQ. 

 

Staining solution 1:   50%    MetOH  

      12%    CH3COOH 

     50 µl    Formaldehyde 

     up to final volume  H2OMilliQ 

 

Staining solution 2:   20 mg   Na2S2O3 

      up to 100 ml    H2OMilliQ  

 

Staining solution 3:   200 mg  AgNO3 

      75 µl    Formaldehyde 

     up to 100 ml    H2OMilliQ 

 

Staining solution 4:   6 g    NaCO3  

      50 µl    Formaldehyde 

     0.4 mg  Na2S2O3 

     up to 100 ml    H2OMilliQ  
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Washing buffer:   50%    EtOH  

      up to final volume  H2OMilliQ 

 

Fixing solution:   7%    CH3COOH  

      up to final volume  H2OMilliQ 

 

For long-term storage, gels were dried employing the gel drying solution 

(Invitrogen). SDS-gels, stored in H2OMilliQ were incubated for 20 minutes in gel 

drying solution. Subsequently, the gels were placed between two sheets of 

cellophane equilibrated with gel drying solution and fitted into a plastic frame. 

Following incubation overnight at room temperature dried gels were taken out 

of the frame and residual cellophane was removed by cutting.  

 

2.4.6 Western blot analysis 

 

Since proteins contain various different antigenic determinants (epitopes), 

antibodies directed against these epitopes can bind to proteins based on their 

corresponding binding sites (paratopes). In order to identify antigens using 

specific antibodies western blot analysis were performed. Proteins separated 

by SDS-PAGE were transferred to a polyvinylidene fluoride (PVDF) 

membrane for further analysis (Towbin et al., 1979) using a wet blot transfer 

device (Mini Trans-Blot Cell, Bio-Rad). To prepare PVDF membranes for 

western blotting analysis membranes were activated by incubation in 100% 

methanol for 1 min. Subsequently, membranes and filter papers (Whatman 

3MM, Whatman AG), cut to the size similar of the gels as well as sponges and 

sandwich-blotting cassettes were equilibrated in blotting buffer. All 

components were assembled into layers avoiding air bubbles as depicted in 

the following figure. 
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anode (+) 

 

Sponge 

Filter paper 

PVDF membrane 

SDS-Gel 

Filter paper 

Sponge 

 

cathode (-) 

 
Fig. 10 Schematic overview: Assembly of a Western blot sandwich cassette. 

 

After transfer of the assembled blotting cassette into the blotting tank, an ice 

block was added for cooling and the tank was filled with blotting buffer. 

Protein transfer was achieved at 100 V for 1 h under constant stirring. 

 

Blotting buffer:  192 mM  Glycine 

    25 mM  Tris, pH 8.4 

    20% (v/v) MetOH  

 

2.4.7 Immunochemical protein detection using the ECL system 

 

Following western blotting as described above (section 2.4.6) Immobilon-P 

PVDF membranes (Millipore Corporation) were incubated in blocking buffer 

for 1 h at room temperature or at 4°C overnight on a shaker. After washing 

with PBS-T, membranes were incubated with primary antibodies directed 

against the protein of interest in the desired dilution for 1 hour at room 

temperature on a shaker. Following washing (3x 5 min) with PBS-T, mem-

branes were incubated with secondary goat anti-rabbit IgG or goat anti-mouse 

IgG antibodies coupled to HRP in a 1:5000 dilution. Membranes were washed 

again (3x 5 min) with PBS-T on a shaker and subsequently, were incubated 

with ECL solution for 1 min at room temperature employing the enhanced 
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chemiluminescence system (ECL, Amersham Pharmacia). Using this system 

chemiluminescence was detected using medical x-ray films (Super RX 

Medical X ray film, Fuji). 

 

Blocking buffer:   5% (w/v)  Milk powder  

     up to final volume PBS-T 

 

Primary antibody buffer:  3% (w/v)  BSA  

     0.02%  (w/v)  Sodium azide 

     up to final volume PBS-T 

 

Secondary antibody buffer:  3% (w/v)  Milk powder  

     up to final volume PBS-T 

 

2.4.8 Immunochemical protein detection using the LICOR system 

 

Alternatively, following western blotting as described (section 2.4.6), the 

LICOR system was performed. Upon using Immobilon-FL PVDF membranes 

(Millipore Corporation) optimized for the detection of fluorescence, mem-

branes were incubated in blocking buffer for 1 h at room temperature on a 

shaker. Analogous to the procedure described above, membranes were 

washed and incubated with the primary antibody solution. As secondary 

antibody goat anti-rabbit IgG (1:10,000), goat anti-mouse IgG (1:5,000) or 

goat anti-rat IgG (1:10,000) antibodies coupled to the fluorophor Alexa 680 

were used, respectively. Following incubation for 30 min at room temperature 

under constant shaking in the dark, membranes were washed three times and 

incubated in PBS (w/o Tween 20) for at least 5 minutes. Visualization was 

performed using the Odyssey infrared imaging system. 

 

Blocking buffer:   5% (w/v)  Milk powder  

     up to final volume PBS 
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Primary antibody buffer:  3% (w/v)  BSA  

     0.02% (w/v)  Sodium azide  

0.1% (w/v)  Tween 20  

     up to final volume PBS 

 

Secondary antibody buffer:  3% (w/v)  Milk powder  

     0.01% (w/v)  SDS  

     0.1% (w/v)  Tween 20  

                                                      up to final volume  PBS 

 

2.4.9 Preparation of cell lysates 

 

Expression of the various fusion proteins in CHO or HeLa cells were 

performed by cultivating cells in the presence of doxicycline (1 µg/ml) for 48 h 

at 37°C. Following detachment of cells from the culture dishes using PBS, 

0.5 mM EDTA pH 8.0 (10 min, 37°C), an appropriate amount of cells was 

mixed with SDS-sample buffer and incubated for 10 minutes at 95°C before 

analyzed employing the SDS-gelelectrophoresis (section 2.4.4).  

 

2.4.10 Biotinylation of cell surface proteins 

 

The biochemical analysis of cell-surface-associated proteins was performed 

using the biotinylation assay. The membrane impermeable biotinylation 

reagent added to cells binds covalently to all free ε-amino groups of lysines 

present in surface-associated proteins. After quenching and removing excess 

amounts of the biotinylation reagent, cells were lysed and subjected to 

streptavidin affinity chromatography to separate biotinylated (cell surface) 

from non-biotinylated (intracellular) proteins.  

CHO cells expressing various fusion proteins were grown in six-well plates in 

presence of 1 µg/ml doxicycline for 48 h at 37°C. Following removal of the 

medium, the cells were washed twice with PBS containing Ca2+ and Mg2+ 

(2 mM each). A membrane-impermeable biotinylation reagent (EZ-Link Sulfo-
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NHS-SS-biotin; Pierce) dissolved in 10 mM triethanolamine, 150 mM NaCl 

and 2mM CaCl2 (pH 9) was added to a final concentration of 0,5 mg/ml. 

Following incubation for 30 minutes at 4°C quenching of excess amounts of 

biotinylation reagent was achieved by adding 100 mM PBS/glycine. Cells 

were then washed twice with PBS (without Ca2+ and Mg2+). Cell lysates were 

prepared by adding PBS containing NP-40, followed by sonication (water bath 

for 3 min). Cell lysates were cleared by centrifugation (18,000 gav, 10 min, 

4°C) and biotinylated and non-biotinylated proteins were separated by 

streptavidin affinity chromatography. After incubation for 1 hour at room 

temperature under constant rotation, these streptavidin beads were washed 

three times with washing buffer 1 and two times with washing buffer 2. 

Sedimentation of the beads was performed by centrifugation (3,000 gav, 4°C, 

1 min). After the last washing step the supernatant was carefully discarded 

and bound material was eluted by incubation with SDS sample buffer for 

10 min at 95°C. The biotinylated and non-biotinylated fractions were probed 

for the presence of the desired fusion proteins using SDS-PAGE 

(section2.4.3) and western blotting (section 2.4.6) using affinity-purifies anti-

GFP antibodies. 

 

PBS Ca2+/Mg2+:  1 mM   MgCl2 

    0.1 mM  CaCl2 

    up to final volume PBS 

 

Incubation buffer:  150 mM   MgCl2 

    10 mM  Triethanolamine, pH 9 

    2 mM   CaCl2 

     

Quenching buffer :  100 mM  Glycine 

    up to final volume PBS Ca2+/Mg2+ 

 

Lysis buffer:   62.5 mM  EDTA 

    50 mM  Tris-HCl, pH 7.5 

    0.4% (w/v)  Deoxycholate  

    1/10 ml  Protease Inhibitor tablet (mini) 
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Washing buffer 1:  62.5 mM  EDTA 

    50 mM  Tris-HCl, pH 7.5 

    0.4% (w/v)  Deoxycholate  

    1% (w/v)  NP-40 

    0.5 M   NaCl 

 

Washing buffer 2:  62.5 mM  EDTA 

    50 mM  Tris-HCl, pH 7.5 

    0.4% (w/v)  Deoxycholate 

    0.1% (w/v)  NP-40 

    0.5 M   NaCl 

 

2.4.11 Biochemical analysis of membrane association of HASPB-GFP 
fusion proteins  

 

In order to determine whether an integral membrane protein has achieved 

stable insertion into the bilayer carbonate extraction analysis was performed. 

Using this biochemical assay, membrane association of HASPB-GFP fusion 

proteins were analyzed. Basically treatment with sodium carbonate at pH 11.5 

results in disruption of protein-protein interactions. However, protein-lipid 

interactions remain and the bilayer is otherwise intact. Thus, cytosolic, 

cisternal and peripheral membrane proteins are retained to sediment with the 

membrane remnants. 

CHO cells expressing the various kinds of HASPB-GFP fusion proteins were 

cultured in 10 cm plates for 2 days at 37°C in the presence of doxicycline 

(1 µg/ml). Following detachment using PBS/EDTA (10 min at 37°C), cells 

were sedimented by centrifugation (500 gav, 5 minutes, 4°C) and resuspended 

in PBS/sucrose (500 µl) homogenization buffer. Cells were lysed by 

sonication (3 times a 20 seconds) and then subjected to ultracentrifugation for 

60 minutes at 100,000 gav. The resulting supernatant was defined as the 

cytosolic fraction (fraction 1), the sediment was resuspended in homogeniza-

tion buffer (250 µl) and defined as the membrane fraction (fraction 2). For 

carbonate extraction experiments, membranes were again collected by 
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ultracentrifugation (20 minutes, 100,000 gav, 4°C). Following resuspension in 

250 µl Na2CO3 (0.1 M, pH 11.5), the samples were incubated for 30 minutes 

at 4°C. Membranes were re-isolated by ultracentrifugation (30 min, 

100,000 gav, 4°C) and separated into supernatant (peripheral membrane 

proteins, fraction 3) and membrane sediment (integral and tightly associated 

proteins, fraction 4). 5% of each fraction was combined with SDS sample 

buffer and analyzed for HASPB-GFP fusion proteins by SDS-PAGE (section 

2.4.3) following western blotting (section 2.4.6) using affinity-purified anti-GFP 

antibodies. 

 

Homogenizationbuffer: 10% (w/v)  Sucrose 

    up to final volume PBS 

     

Sodium carbonate buffer: 100 mM  Na2CO3, pH 11.5  

    up to final volume PBS 

 

2.4.12 Metabolic labeling of CHO cells using 3[H]myristate and 
3[H]palmitate 

 

To investigate whether myristoylation and palmitoylation is present in the  

N-terminal SH4 domain of HASPB-GFP fusion proteins, metabolic labeling of 

CHO cells using 3[H]myristate and 3[H]palmitate was performed. CHO cells 

expressing HASPB-GFP fusion proteins were grown in six-well plates for 

48hours at 37°C in the presence of doxicycline (1 µg/ml) to about 80% 

confluency. Following two hours of incubation in FCS-free medium, cells were 

incubated in FCS-free medium containing either 250 µCi 3[H]palmitic or 

100 µCi 3[H]myristic acid. After three hours of incubation in labeling medium 

at 37°C, cells were washed and lysed in buffer containing detergent by 

sonication. Following removal of insoluble material by centrifugation 

(14,000 gav, 10 minutes), the lysates were subjected to immunoprecipitation of 

HASPB-GFP fusion proteins employing affinity-purified anti-GFP antibodies. 

Antibody-bound protein was eluted with SDS-ample buffer and subjected to 

SDS-PAGE (section 2.4.3). For this purpose, the samples were split into two 
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fractions in order to analyze the eluted proteins by both fluorography and 

silver staining. For fluorography, SDS-gels were treated with NAMP100 

amplifier solution (Amersham) and then dried for exposure using HyperfilmTM 

(Amersham). Typically, SDS-gels containing 3[H]myristic acid-labeled proteins 

were exposed for about two weeks whereas SDS-gels containing 3[H]palmitic 

acid-labeled proteins were exposed for up to six weeks. 

 

2.4.13 Biochemical analysis of the subcellular distribution of HASPB-
GFP in CHO cells using subcellular fractionation 

 

Subcellular fractionation of CHO cells was performed as described in (Schäfer 

et al., 2004). CHO cells were grown in 15 cm plates in the presence of 

doxicycline (1 µg/ml) for 48 hours at 37°C. Cells from five plates were washed 

with PBS and detached with PBS/EDTA (3 ml, 10 minutes at 37°C). Subse-

quently, the cells were combined and centrifuged at 500 gav for 10 minutes at 

4°C. The cell sediment was lysed in 7 ml of hypotonic buffer supplemented 

with protease inhibitor mixture (Roche Applied Science). Following incubation 

for 2 hours at 4°C (fraction 1), the cell lysate was centrifuged at 100,000 gav 

for 40 min at 4°C. The sediment was resuspended in 1 ml of hypotonic buffer 

and homogenized by passing 15 times through a 24-gaugle needle and 

10 times by a 27-gauge needle. Following dilution in incubation buffer in a 

ratio of 1:2, the lysate was centrifuged for 10 min at 12,000 gav at 4°C. The 

sediment was resuspended in 500 µl of incubation buffer and again subjected 

to the procedure described. Postnuclear supernatants from both steps were 

combined (fraction 2) and subjected to ultracentrifugation at 100,000 gav for 

40 min at 4°C. The resulting sediment was resuspended in 700 µl of 

incubation buffer and manually homogenized as described above (fraction 3). 

The resulting membrane suspension was layered on top of a 9.5 ml 38% (w/v) 

sucrose solution. Following centrifugation at 280,000 gav for 2 hours in a 

Beckman SW41 swing-out rotor, membranes in the 0/38% interface were 

collected. This suspension was again homogenized with a 27- and 24-gaugle 

needle followed by ultracentrifugation at 100,000 gav for 40 min at 4°C. The 

corresponding sediment was resuspended in 50 µl SDS-sample buffer and 
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equal amounts were analyzed by SDS-PAGE (section 2.4.3) following west-

ern blotting (section 2.4.6). 

 

Hypotonic buffer:  0.5 mM  NaPO4, pH 8 

    0.1 mM  EDTA 

    (1 Tab/10 ml  Protease-inhibitor, EDTA-free) 

 

Incubation buffer:  10 mM  Tris-HCl, pH7.4 

    250 mM    Sucrose  

    (1 Tab/10 ml  Protease-inhibitor, EDTA-free) 

 

Sucrose solution in 5 mM HEPES-KOH pH 7.4 

 

2.4.14 Biochemical analysis of HASPB export from CHO cells using 
immunoprecipitation from cell culture supernatants  

 

To immunoprecipitate GFP fusion proteins a mixture of Protein A-Sepharose 

beads, CL-4B beads (Amersham Pharmacia) and 20% ethanol (1:1:2) were 

prepared and 40 µl slurry beads (corresponding to 20 µl packed beads) per 

sample were used. Beads were washed three times with IP-Buffer 1 and sedi-

mented at 800 gav for 3 min at 4°C. Affinity-purified anti-GFP antibodies were 

coupled to beads by incubation with 20 µl anti-GFP antibodies (basic elution) 

in 180 µl buffer 1 overnight at 4°C on a rotation wheel. Subsequently, the 

beads were washed three times using IP-buffer 2. After sedimentation and 

removal of the buffer, the beads were ready for the incubation with the sample 

containing GFP fusion proteins. Cell culture supernatants (1 ml, supple-

mented with and w/o 1% trypsin) obtained from the respective reporter cell 

line grown in six-well plates in presence of doxicycline (1 µg/ml) were 

combined with the beads followed by an 2 to 4 h incubation at 4°C. After this 

incubation period, the beads were washed three times with IP-buffer 0. Bound 

material was eluted by addition of 15-30 µl SDS sample buffer and incubation 

at 95°C for 10 minutes. 
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IP-buffer 0:  25 mM   Tris-HCl, pH 7,4 

150 mM  NaCl 

1 mM    EDTA 

 

IP-buffer 1:  25 mM   Tris-HCl, pH 7,4 

150 mM  NaCl 

1 mM    EDTA 

0.5% (w/v)  NP-40 

 

IP-buffer 2:  25 mM   Tris-HCl, pH 7,4 

150 mM  NaCl 

1 mM    EDTA 

    

2.4.15 Precipitation of HASPB-GFP fusion proteins using TCA 

 

To precipitate proteins from diluted solutions, trichloroacetic acid (TCA) was 

used. Samples containing proteins obtained from various experimental 

approaches were mixed with 2% DOC (deoxycholate, 1/10 volume) followed 

by 100% TCA (1/10 volume). After incubation for 15 minutes on ice, samples 

were centrifuged (21,000 gav (14,000 rpm), 15 min, 4°C) and the resulting 

sediments were evaporated with ammonia (NH3)-steam and resuspended in 

appropriate amounts of SDS-sample buffer. Following incubation at 95°C for 

10 minutes, samples were probed for the desired proteins employing SDS-

PAGE (section 2.4.3) and western blotting (section 2.4.6) using the 

corresponding antibodies. 
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2.4.16 Biochemical analysis of membrane sediments containing various 
GFP fusion proteins using ultracentrifugation of cell culture 
supernatants  

 

To investigate the presence of various fusion proteins in cell culture 

supernatants of CHO or HeLa cells, respectively, membrane sediments were 

generated by ultracentrifugation of the corresponding cell culture super-

natants. CHO or HeLa cell lines expressing the various fusion proteins were 

grown in 10 cm plates in the presence of doxicycline (1 µg/ml) for 48hours at 

37 °C in 3.5 ml of the corresponding medium. After centrifugation (1000 gav for 

20 min at 4°C) in order to remove dead cells, the supernatants were 

centrifuged at 100,000 gav for 1 hour at 4°C. Following ultracentrifugation, the 

supernatants were removed and the resulting membrane sediments were 

either resuspended in SDS-sample buffer to analyze total material using SDS-

PAGE or were subjected to Nycodenz flotation gradients (section 2.4.17) or 

linear sucrose gradients (section 2.4.18) for further analysis, respectively. 

 

2.4.17 Biochemical analysis of extracellular vesicles containing various 
GFP fusion proteins using flotation in Nycodenz gradients 

 

To discriminate vesicles from aggregates, the membrane sediments 

(section 2.4.16) were recovered and concentrated by flotation in a Nycodenz 

(Axis Shield) step gradient as described in (Weber et al., 1998). Membrane 

sediments obtained after ultracentrifugation were resuspended in 150 µl 

reconstitution buffer supplemented with protease-inhibitors and were mixed 

with 150 µl of 80% (w/v) Nycodenz dissolved in reconstitution buffer. This 

mixture was transferred into a 5x41 mm ultraclear centrifuge tube and 

overloaded with 250 µl 30% (w/v) Nycodenz solution followed by 50 µl 

reconstitution buffer. Samples were then centrifuged in an SW55 rotor 

(Beckman) with the appropriate adaptors at 48,000 rpm (218,438 gav) for 

4 hours at 4°C. Vesicles were harvested from the 0/30% Nycodenz interphase 

in 50 µl aliquots generating three fractions containing ~100 µl, 150 µl and 

350 µl. Subsequently, proteins in each fraction were subjected to precipitation 
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using TCA (section 2.4.15) and analyzed by SDS-PAGE (section 2.4.3) fol-

lowed by western blotting (section 2.4.6) using affinity-purified anti-GFP 

antibodies. 

In order to determine the density of each fraction, refractive indeces (σ) were 

measured using a refractometer. Densities were then calculated using the 

following equation: 

     Density [g/ml] = (σ x 3.287) – 3.383 

 

Reconstitution buffer: 25 mM   Hepes-KOH, pH 7,4 

100 mM  KCl 

10% (w/v)   Sucrose 

    1mM   DTT 

    (1 Tab/10 ml  Protease-inhibitor) 

 

2.4.18 Biochemical analysis of extracellular vesicles containing various 
GFP fusion proteins using continuous sucrose gradients 

 

To generate a more precise separation of vesicles continuous sucrose 

gradients were performed. Membrane sediments obtained following 

ultracentrifugation of cell culture supernatants (section 2.4.16) from CHO cells 

or HeLa cells expressing the various fusion proteins were resuspended in 

150 µl reconstitution buffer supplemented with protease inhibitors. The 

mixtures were loaded on top of a five-step sucrose gradient, containing 2 M, 

1.6 M, 1.2 M, 0.8 M and 0.4 M sucrose dissolved in reconstitution buffer. 

Following centrifugation in a SW55 rotor with the appropriate adaptors at 

26,000 rpm (65,000 gav) for 16 hours at 4°C, 60 µl aliquots were generated. 

Proteins in each fraction were precipitated using TCA (section 2.4.15) and 

samples were analyzed by SDS-PAGE (section 2.4.3) following western 

blotting (section 2.4.6) using affinity-purified anti-GFP antibodies. In order to 

confirm the linearity of the used gradient, refractive indeces were measured 

employing a refractometer. Densities were determined using the data on the 

following www-page:  

http://homepages.gac.edu/~cellab/chpts/chpt3/table3-2.html 
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Reconstitution buffer: 25 mM   Hepes-KOH, pH 7,4 

100 mM  KCl 

10% (w/v)   Sucrose 

    1mM   DTT 

    (1 Tab/10 ml  Protease-inhibitor, EDTA-free) 

 

2.4.19 Biochemical analysis of the localization of HASPB-GFP in 
extracellular vesicles using protease protection experiments 

 

To analyze the localization of HASPB-GFP fusion proteins in vesicles 

protease protection experiments were performed. CHO cells expressing 

HASPB-GFP fusion proteins were grown in 10 cm plates in the presence of 

doxicycline (1µg/ml) for 48 hours at 37°C. Cell culture supernatants (3.5 ml) 

were centrifuged at 1000 gav for 20 minutes at 4°C in order to remove dead 

cells. Subsequently, supernatants were centrifuged at 100,000 gav for 1 hour 

at 4°C and the resulting membrane sediments (section 2.4.16) were subjected 

to protease treatment following resuspension in TNE-buffer. Trypsin (0.5 µg) 

was added in the presence and absence of the detergent NP-40 by adding 

the corresponding buffers (1x trypsin-buffer with and w/o NP-40). Following 

incubation for 30 minutes at room temperature, the protease was inactivated 

by adding AEBSF. After addition of SDS-sample buffer, the samples (100%) 

were analyzed by SDS-PAGE (section 2.4.3) following western blotting 

(section 2.4.6) using affinity-purified anti-GFP antibodies.  

 

TNE-buffer:   10 mM   Tris, pH 7,4 

100 mM  NaCl 

1 mM   EDTA 

 

Trypsin buffer:  50 mM   Tris, pH 8 

10 mM  CaCl2 

1 mM   DTT 

1% (w/v)  NP-40 
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2.5 Flow cytometry 

 

2.5.1 Fluorescence activated cell sorting (FACS) 

 

To analyze GFP fluorescence and exported reporter proteins in living cells by 

specific antibody cell surface staining, cells were processed according to the 

following protocol and analyzed via fluorescence-activated cell sorting 

(FACS). 

CHO cells expressing the various fusion proteins were grown in six-well plates 

to a confluency of about 80% in the absence or presence of doxicycline 

(1 µg/ml) to obtain samples used as negative and positive controls regarding 

expression of the reporter constructs. In order to detach the cells from the 

culture plates without using protease-based protocols, 500 µl cell dissociation 

buffer (Life Technologies) or PBS/EDTA, respectively, were used to generate 

a cell suspension devoid of cell aggregates. Following incubation of 10 min at 

37°C, cells were softly removed from the culture dishes by resuspension. 

Where indicated, cells were treated with 300 µl affinity-purified anti-GFP 

antibodies in the desired dilution for 1 hour at 4°C on a rotating wheel. Wash 

procedures with growth medium were carried out by sedimenting the cells at 

200 gav for 3 minutes at 4°C. Primary antibodies were detected with 300 µl 

goat anti-rabbit secondary antibodies coupled to allophycocyanin (APC; 

Molecular Probes) in a 1:750 dilution for 30 minutes at 4°C on a rotating 

wheel in the dark. Cells were washed once as described above and the 

resulting sediments were resuspended in 500 µl sorting medium. Prior to 

FACS analysis, propidium iodide (1 µg/ml) was added in order to detect 

damaged cells. GFP-and APC-derived fluorescence was analyzed using a 

Becton Dickinson FACSCalibur flow cytometer. Autofluorescence was 

determined by measuring non-induced cells that were treated with primary 

and APC-coupled secondary antibodies.  

 

PBS/EDTA:   0.5 mM  EDTA 

    up to final volume  PBS   
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Primary antibodies:  αMEM supplemented with FCS (10% (v/v)) 

Affinity-purified anti-GFP anibodies (acidic elution) 

1:200 

Monoclonal anti-CD4 antibodies (1:10) 

Monoclonal anti-CD8 antibodies (1:50) 

 

Secondary antibodies: αMEM supplemented with FCS (10% (v/v))  

goat anti-rabbit IgG APC-coupled antibodies 1:750 

goat anti-mouse IgG APC-coupled antibodies 

1:750 

 

Sorting Medium:  5% (v/v)  CDB 

    0.2% (v/v)  FCS 

    up to final volume αMEM w/o FCS 

 

2.5.2 FACS-sorting  

 

FACS-based isolation of cell populations and single clones was performed 

using a Becton Dickinson FACS cell sorter in collaboration with Dr. Blanche 

Schwappach from the Center of Molecular Biology Heidelberg (ZMBH).  

The procedure used for FACS sorting was carried out under sterile conditions. 

Cells were grown in presence or absence of doxicycline for 48 h due to further 

analysis. Following washing with PBS cells were detached from culture dishes 

using CDB (Invitrogen). The resulting cell suspensions were added to 5 ml 

cell culture medium. After centrifugation (200 gav, 4°C, 5 min) supernatants 

were discarded and the sediments were carefully resuspended in sorting 

medium (section 2.5.1). Cells were transferred through cell strainer caps 

(Becton Dickinson) into 5 ml round bottom FACS tubes (Becton Dickinson) 

and propidium iodide was added to a final concentration of 1 µg/ml. 

Subsequently, cells were sorted using a FACSVantage or FACSAria sorting 

device obtaining pools ranging from 30.000 to 100.000 cells into  

six-well plates. Alternatively, individual cells were sorted into 96-well plates in 

order to generate single cell lines. 
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2.5.3 Retroviral insertion mutagenesis and FACS-based isolation of 
HASPB export mutants 

 

To randomly mutate CHO cells, retroviral particles were prepared encoding 

the cell surface protein CD4 (pBI-CD4) (Liu et al., 2000) using the Viraport 

system (Stratagene) (section 2.3.4). CHO cells expressing HASPB-N18-GFP 

were transduced according to standard procedures (section 2.3.4). Following 

three days of incubation at 37°C CD4-positive cells were selected by FACS 

sorting. In order to isolate HASPB export mutants CD4-positive cells were 

subjected to multiple rounds of FACS sorting, selecting for cells with high GFP 

fluorescence and low cell surface staining. In the third round of FACS sorting, 

individual cells were collected and further propagated in 96-well plates at 

37°C. The corresponding mutant clonal cell line (CHO K3) was then 

characterized as described in the first section (section A) of the current thesis. 

 

2.6 Confocal microscopy 

 

2.6.1 Confocal microscopy using fixed cells 

 

To visualize cells by confocal microscopy, cells were grown on glass 

coverslips to about 70% confluency in 24-well plates for 48 hours in the 

presence of doxicycline (1 µg/ml). Following extensive washing with PBS on 

ice, 300 µl Paraformaldehyde (PFA) dissolved in PBS was added (3% (w/v)) 

for 20 min at 4°C in order to fix cells. Following washing with PBS, quenching 

of PFA was achieved by adding 50 mM NH4Cl for 10 minutes. Cells were 

washed four times with PBS. The specimens were then mounted in 

Fluoromount G (Southern Biotechnology Associates) and incubated overnight 

at room temperature in the dark. For long-term storage clear nail polish was 

used to seal the edges of the cover slip. GFP-derived fluorescence was 

viewed with a Zeiss LSM 510 Meta confocal microscope. 
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PFA in PBS:  3% (w/v)  PFA  

   up to final volume PBS 

 

NH4Cl in PBS: 50 mM  NH4Cl 

   up to final volume PBS 

 

2.6.2 Live confocal imaging 

 

To analyze cells in a live status, cells were grown in appropriate cell culture 

dishes in the presence of doxicycline (1 µg/ml) for 48 hours at 37°C. Using 

3 cm plates (Nunc) or 8-chamber plates (Nunc), respectively, GFP-derived 

fluorescence was directly viewed with a Zeiss LSM 510 Meta confocal 

microscope. 

 

2.7 Electron microscopy 

 

2.7.1 Electron microscopy using microsections of membrane 
sediments containing HASPB-GFP  

 

To visualize extracellular vesicles derived from HASPB-GFP expressing CHO 

cells, electron microscopy analysis were performed in collaboration with Prof. 

Zentgraf (DKFZ). CHO cells expressing HASPB-GFP fusion proteins were 

grown in 10 cm plates in the presence of 1 µg/ml doxicycline for 48 hours at 

37°C. Cell culture supernatants were centrifuged (1000 gav for 20 minutes) in 

order to remove dead cells. The corresponding supernatants were 

ultracentrifuged (100,000 gav for 1 hour at 4°C, section 2.4.16) and the 

resulting membrane sediments were directly fixed using 2% glutar aldehyde in 

sodium cacodylate buffer (0.1 M sodium cocadylate, pH 7.2) for 30 minutes at 

4°C. Following repeating washing steps using cold 0.05 M sodium cacodylate 

buffer (pH 7.2), samples were incubated for 2 hours using 2% (w/v) osmium 

tetroxide (OsO4) in 0.05 M sodium cocadylate buffer (pH 7.2). Subsequently, 
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samples were washed using H2OMilliQ and dehydrated by incubation in various 

ethanol concentrations for 30 minutes. Following two incubation steps in 

100% ethanol, samples were transferred in propylene oxide and embedded in 

Epon 812 (Ciba). Microsections were generated using the ultramicrotom 

OmU2 (Leica) and stained using uranyl acetate (4% w/v) and lead citrate 

upon washing steps in CO2-free H2O.  
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3 Results 

A. Direct transport across the plasma membrane of 

 mammalian cells of Leishmania HASPB as revealed by a 

 CHO export mutant 
 

The unconventionally secreted Leishmania protein HASPB is a component of 

the surface coat of Leishmania parasites (Alce et al., 1999; Flinn et al., 1994; 

McKean et al., 2001). HASPB is expressed on the cell surface of Leishmania 

parasites (Denny et al., 2000). Only in infectious stages of the parasite 

lifecycle HASPB is associated with the outer leaflet of the plasma membrane 

(Flinn et al., 1994; Pimenta et al., 1994). The N-terminal SH4 domain of 

HASPB containing a myristoylation and a palmitoylation is the molecular basis 

of how HASPB is anchored in the membrane in Leishmania parasites and 

mammalian cells (Denny et al., 2000). Mutational analysis revealed that a 

HASPB construct lacking the palmitoylation site is associated with the 

cytoplasmic surface of the Golgi (Denny et al., 2000). Furthermore mutants 

lacking both acylations have been found redistributed in the cytosol (Denny 

et al., 2000). Based on these observations, HASPB is transferred from the 

cytoplasm to the outer leaflet of the Golgi membrane, from where it is 

transported to the plasma membrane and in turn translocated across the 

membrane, resulting in the insertion of the two acyl chains in the outer leaflet 

of the plasma membrane. This unconventional cell-surface expression of 

HASPB by Leishmania parasites appears to be tightly correlated with host cell 

infection (Flinn et al., 1994; Pimenta et al., 1994) and, therefore, the HASPB 

export pathway might be an excellent target for the development of drugs 

against tropical and subtropical diseases termed the leishmaniasis. The 

identification of inhibitors that do not interfere with the essential function of the 

classical secretory pathway might be therefore a great step forward towards 

the prevention of such diseases, which can be fatal unless treated. Notably, 

after synthesizing on free ribosomes in the cytoplasm, HASPB can be found 

in the extracellular space. However, the mechanism of this transport process 

is completely unknown. There is also a complete lack of knowledge about the 



Results 
 

96 

subcellular site of membrane translocation of HASPB, a process that 

eventually allows HASPB exposure on the cell surface of eukaryotic cells. 

Therefore the elucidation of the molecular machinery controlling this 

nonclassical export might provide a whole variety of novel target proteins 

suitable for drug design. In the current study a novel experimental system was 

established that permits the precise quantification of HASPB export from 

mammalian cells based on flow cytometry. Using this assay, a genetic screen 

was used to identify mutants with a defect in HASPB in order to identify 

components involved in this pathway.  

 

3.1 Generation of model cell lines to study HASPB export   

from mammalian cells 

3.1.1 Retroviral transduction of HASPB-N18-GFP reporter molecules in 
pRevTRE2 

 

The HASPB export process appears to be a unique mechanism of eukaryotic 

protein secretion as the corresponding targeting motif depends on dual 

acylation within a SH4 domain comprising 18 amino acids at the extreme  

N-terminus (Denny et al., 2000) (Fig. 11A). When transferred to a reporter 

molecule such as GFP, the corresponding fusion protein has shown to be 

exported from both Leishmania parasites and mammalian cells (Denny et al., 

2000; Stegmayer et al., 2005). As control, Δpalm-HASPB-N18-GFP (C5S), 

Δmyr-HASPB-N18-GFP (G2A) and GFP were generated. In order to study the 

export mechanism of HASPB on a quantitative basis in mammalian cells, 

HASPB-GFP fusion proteins were expressed from a retroviral vector contain-

ing a doxicycline/transactivator-sensitive element. Following transduction of 

CHOMCAT-TAM2 cells that constitutively express both an ecotropic retrovirus 

receptor and a doxicycline-sensitive transactivator, it was possible to precisely 

quantify (Fig. 11B) HASPB membrane translocation by simultaneous 

measurements of HASPB cell surface presentation (antibody staining) and the 

expression level of the reporter molecule (GFP-derived fluorescence). 
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Fig. 11 Schematic description of HASPB reporter molecules and general model system 

to generate reporter cell lines. (A) Overview about the various HASPB-GFP 

containing reporter constructs as well as of GFP alone. (B) In order to generate CHO 

cell lines expressing the various reporter molecules shown in A, CHO cells were 

transfected with an ecotropic retrovirus receptor (MCAT-1) and a doxicycline-

sensitive transactivator (rtTA2-M2/CD2), followed by the transduction of the various 

fusion proteins. With this general model system, doxicycline-dependent HASPB-N18-

GFP export was quantified by FACS analysis using affinity-purified anti-GFP 

antibodies and APC-derived secondary antibodies. 

 

3.1.2 Sorting of doxicycline-inducible single clones 

 

Using the described general model system (section 3.1.1) CHO cells were 

generated, expressing various kinds of HASPB-GFP fusion proteins in a 

doxicycline-dependent manner. Following transduction of CHOMCAT-TAM2 cells 

GFP-positive cells were isolated by three rounds of FACS sorting in the 

presence and absence of doxicycline (Fig. 12, HASPB-N18-GFP as example 

for the sorting procedure). In the third round single cells were selected 
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characterized by GFP-derived fluorescence only after the addition of doxicy-

cline.  

 

 
 
Fig. 12 Sorting of doxicycline-inducible single clones. HASPB-N18-GFP-transduced 

CHO cells were grown for 48 hours in the presence of 1 µg/ml doxicycline at 37°C 

and subjected to three rounds of FACS sorting. (A) GFP-positive cell pools were 

isolated as illustrated on the x-axis by FL-1 that represents the green channel 

measuring GFP fluorescence. (B) In absence of doxicycline GFP-negative cell pools 

were isolated. (C) In presence of doxicycline, single clones, showing a high GFP 

expression, were isolated.  

 

3.1.3 Characterization of HASPB fusion protein-expressing cell lines 

 

As illustrated in Fig. 13 clonal cell lines genetically modified with HASPB-N18-

GFP or other constructs were found to express the reporter molecules only 

following incubation of the cells with doxicycline as analyzed by western 

blotting employing anti-GFP antibodies. 
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Fig. 13 Doxicycline-dependent expression of HASPB-GFP fusion proteins in CHO cells. 

CHO cells expressing HASPB-GFP fusion proteins as indicated were grown in  

six-well plates in the absence (lanes 1, 3, 5 and 7) or presence (lanes 2, 4, 6 and 8) 

of 1 µg/ml doxicycline (dox). Cells were detached and collected by centrifugation 

followed by lysis in SDS sample buffer. 1% of each lysate corresponding to cells from 

one well were subjected to SDS-PAGE. Following SDS-PAGE and western blotting 

HASPB-GFP fusion proteins were detached using affinity-purified anti-GFP 

antibodies. 

 

3.1.4 Subcellular distribution of HASPB-N18-GFP fusion proteins as 
determined by confocal microscopy 

 
In order to characterize the subcellular distribution of various HASPB-N18-

GFP fusion proteins confocal microscopy was performed. When compared to 

the staining pattern of GFP without modification (cytoplasmic and nuclear 

staining, Fig. 14, panel D), a dramatic change in the subcellular localization 

was observed when HASPB-N18-GFP was transferred to the N-terminus of 

GFP (Fig. 14, panel A). Evidently, the N-terminal targeting motif directed the 

fusion protein to the plasma membrane, which in turn resulted to a localization 

mainly to the plasma membrane as well as to droplet-like structures that were 

typically located in close proximity to the plasma membrane. By contrast, 

mutations that either prevented palmitoylation or both myristoylation and 

palmitoylation caused mislocalization of the reporter molecule. Δpalm-

HASPB-N18-GFP was not at all associated with the plasma membrane but 

was rather localized on intracellular membranes showing a perinuclear 

staining (Fig. 14, panel B). As expected, Δmyr-HASPB-N18-GFP was found 
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exclusively, like GFP, in the cytoplasm (Fig. 14, panel C). Thus, membrane 

association of HASPB-N18-GFP depends on dual acylation of the HASPB  

N-terminal SH4 domain. These results are consistent with previous studies 

analyzing similar constructs in Leishmania parasites (Denny et al., 2000). 

 

 
 
Fig. 14 Subcellular distribution of HASPB-GFP fusion proteins as determined by 

confocal microscopy. Cells were grown on glass coverslips in the presence of 

1 µg/ml doxicycline for 48 hours at 37°C. GFP-derived fluorescence was viewed with 

a Zeiss LSM 510 confocal microscope. (A) HASPB-N18-GFP; (B) Δpalm-HASPB-

N18-GFP; (C) Δmyr/Δpalm-HASPB-N18-GFP; (D) GFP 
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3.1.5 Functional analysis of HASPB-N18-GFP export from CHO cells 
based on quantitative flow cytometry 

 
Based on previous observations (Denny et al., 2000), an export assay was 

developed that simultaneously measures both the expression level of a given 

HASPB-GFP fusion protein and its export to the outer leaflet of the plasma 

membrane on a quantitative basis. Following translocation to the surface of 

Leishmania parasites, HASPs remain membrane-anchored via their  

N-terminal acyl chains. Therefore, similar to FGF-2 and Galectin-1 export 

assays (Engling et al., 2002; Seelenmeyer et al., 2003), the extracellular 

population can be decorated with affinity-purified anti-GFP antibodies to 

assess a potential cell surface localization of HASPB-N18-GFP. This 

subpopulation is then specifically detected using APC-conjugated secondary 

antibodies.  Employing flow cytometry GFP- and APC-derived fluorescence 

monitored by the expression levels of the various reporter molecules and by 

the exported population, respectively, can be measured simultaneously. All 

three HASPB-GFP fusion proteins as well as GFP lacking a N-terminal 

HASPB tag were expressed at similar levels by titration with doxicycline 

(Fig. 15, panel A). As demonstrated in Fig. 15 panel B (shown in dark blue) 

only the HASPB-N18-GFP reporter molecule could be detected on the cell 

surface. No signal could be observed under control conditions (without 

doxicycline; shown in light blue) and with the control molecules Δpalm-

HASPB-N18-GFP, Δmyr-HASPB-N18-GFP and GFP. Again, these data are 

consistent with previous observations made in parasites (Denny et al., 2000) 

in which the export to the extracellular leaflet of the plasma membrane of 

mammalian cells is critically dependent on dual acylation of the SH4  

N-terminus of HASPB. The in vivo assay introduced in Fig. 15 allows for a 

precise quantification of HASPB export under normalized conditions with 

respect to the expression level of a given HASPB-GFP fusion protein. 
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Fig. 15 Quantitative analysis of cell surface localized HASPB-GFP fusion proteins 
using flow cytometry. (A) GFP-derived fluorescence (expression level). (B) APC-

derived fluorescence (cell surface staining). Cells were incubated in the presence and 

absence of 1 µg/ml doxicycline as indicated followed by processing for FACS sorting. 

HASPB-N18-GFP, light and dark blue curves; Δpalm-HASPB-N18-GFP, yellow and 

orange curves; Δmyr/Δpalm-HASPB-N18-GFP, light and dark green curves; GFP, 

light and dark red curves. 
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3.1.6 Biochemical analysis of HASPB-N18-GFP export to the outer 
leaflet of the plasma membrane of CHO cells 

 
To demonstrate by means of an independent method that an external 

population of HASPB-N18-GFP is associated with the outer leaflet of the 

plasma membrane biotinylation experiments were carried out employing a 

membrane-impermeable biotinylation reagent. Cells were incubated in the 

presence of doxicycline, the cell culture supernatant was removed followed by 

treatment with the biotinylation reagent. After quenching and removing excess 

amounts of the biotinylation reagent, cells were lysed in a detergent. The 

lysate was then subjected to streptavidin affinity chromatography to separate 

biotinylated (cell surface) from non-biotinylated (intracellular) proteins.  

 
 
Fig. 16 Biochemical quantification of cell surface localized HASPB-GFP fusion 

proteins. CHO cells expressing HASPB-GFP fusion proteins as indicated were 

treated with a membrane-impermeable biotinylation reagent. Cell lysates were 

generated and biotin-labeled and biotin-unlabeled proteins were separated by 

streptavidin affinity chromatography. Input material (lane 1; 2%), streptavidin 

supernatant (non-biotinylated proteins, lane 2; 2%) and streptavidin-bound proteins 

(biotinylated proteins, lane 3, 50%) were separated by SDS-PAGE followed by 

western blotting using affinity-purified anti-GFP antibodies. 
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HASPB-N18-GFP could be detected in the fraction eluted from streptavidin 

beads (Fig. 16 lane 3) whereas Δpalm-HASPB-N18-GFP, Δmyr-HASPB-N18-

GFP and GFP alone were absent from this fraction. These results 

demonstrate that the biotinylation reagent does not traverse the plasma 

membrane and, therefore, the positive signal for HASPB-N18-GFP in the 

fraction of biotinylated proteins represents an exported population located on 

the cell surface of these cells. 

 

3.1.7 Membrane association of HASPB-N18-GFP fusion proteins 
expressed in CHO cells 

 

The SH4 domain of the N-terminus of HASPB-N18-GFP is required and 

sufficient to target the fusion protein to the plasma membrane where it is 

anchored via dual acylation at the extreme N-terminus. To analyze the overall 

membrane association of the various HASPB fusion proteins, a soluble pool 

representing the cytosol (Fig. 17, lane 1) and a membrane fraction (Fig. 17, 

lane 2) were generated by subcellular fractionation. Additionally, the 

membrane fraction was subjected to carbonate extraction (Fujiki et al., 1982) 

to discriminate loosely attached material (Fig. 17, lane 3) from protein tightly 

associated with membranes (Fig. 17, lane 4). Typically roughly equal amounts 

of HASPB-N18-GFP were found in the cytosolic and the membrane fractions. 

About two thirds of the membrane-bound material was found to be resistant to 

carbonate treatment. In the case of Δpalm-HASPB-N18-GFP (C5S), as 

expected, the population found in the cytosolic fraction was significantly larger 

than that present in the membrane fraction (Fig. 17). About 50% of 

membrane-associated Δpalm-HASPB-N18-GFP was found to be resistant to 

carbonate treatment. The vast majority of Δmyr-HASPB-N18-GFP (G2A), a 

mutant that lacks both myristoylation and palmitoylation, was found in the 

cytosolic fraction. The same applied to GFP lacking the SH4 N-terminal region 

of HASPB (Fig. 17). Consequently, subcellular fractionation combined with 

carbonate extraction allows to distinguish between different forms of HASPB 

fusion proteins with regard to their acylation status. 
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Fig. 17 Membrane association of HASPB-GFP fusion proteins expressed in CHO cells. 

CHO cells expressing HASPB-GFP fusion proteins as indicated were separated into 

a cytosolic (lane 1) and a membrane fraction (lane 2). Additionally, the membrane 

fraction was subjected to carbonate extraction resulting in a carbonate pellet 

containing proteins tightly associated with membranes (lane 4). Each fraction (5%) 

was combined with SDS sample buffer and proteins were separated by SDS-PAGE. 

Following western blotting, HASPB-GFP fusion proteins were detected with affinity-

purified anti-GFP antibodies. 
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3.2 Random somatic mutagenesis by retroviral insertion in 

order to generate CHO mutants defective in HASPB 

export 

 

3.2.1 Random somatic mutagenesis by retroviral insertion 

 

The principal aim of this study was to establish a genetic screening procedure 

for molecular components of the HASPB export machinery. CHO cells were 

initially chosen because they have been reported to export HASPB (Denny 

et al., 2000). Additionally, since they are pseudo-diploid (Robbins and Roff, 

1987) CHO cells were an ideal choice for somatic mutagenesis studies as 

mutation of genes with a specific function in a given pathway directly resulted 

in a phenotype due to no functional compensation by a second intact allele. In 

order to develop a FACS-based screening procedure to identify and isolate 

export-deficient CHO mutant cells, it was necessary to demonstrate the 

system’s ability to detect a mutant phenotype of individual cells among a vast 

excess of wild-type cells. To simulate such a scenario, it was tested whether 

HASPB-N18-GFP-expressing and non-expressing cells present in a mixed 

culture, treated with doxicycline and subjected to a FACS analysis measuring 

GFP- and APC-derived cell surface fluorescence could be distinguished from 

each other with regard to HASPB-N18-GFP cell surface staining. As shown in 

Fig. 18, panel A, following individual gating of the two populations in the FACS 

setup based on GFP-derived fluorescence HASPB-N18-GFP-expressing 

(shown in blue) and non-expressing cells (shown in green) clearly differed in 

cell surface staining by a factor of about 3 to 4. However, cell surface staining 

of HASPB-N18-GFP-non-expressing cells was in fact significantly higher than 

the autofluorescence background defined by antibody-treated CHOMCAT-TAM2 

cells (Fig. 18, panel A red curve) suggesting that a certain amount of HASPB-

N18-GFP was transferred from HASPB-N18-GFP-expressing cells to non-

expressing cells.  
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Fig. 18 Retroviral insertion mutagenesis of CHO cells. (A) Intercellular spreading was 

monitored by growing CHOMCAT-TAM2 cells (‘CHO wild-type’) with CHOMCAT-TAM2 cells 

retrovirally transduced with the HASPB-N18-GFP construct in a mixed culture. 

HASPB-N18-GFP expression was induced by 1 µg/ml doxicycline for 48 hours at 

37°C. CHOMCAT-TAM2 cells and CHOMCAT-TAM2 cells expressing HASPB-N18-GFP were 

gated based on GFP fluorescence and APC-derived fluorescence of CHOMCAT-TAM2 

cells (green curve) and CHOMCAT-TAM2 cells expressing HASPB-N18-GFP (blue curve) 

was measured as depicted in the histogram. Autofluorescence was measured using 

CHOMCAT-TAM2 cells treated with antibodies. (B) Schematic overview of the insertion 

mutagenesis achieved by a retroviral transduction of CHOMCAT-TAM2 cells expressing 

HASPB-N18-GFP with the pBI-CD4 plasmid in order to generate HASPB-N18-GFP 

export mutants. (C) CHOMCAT-TAM2 cells expressing HASPB-N18-GFP were treated 

with retroviral particles encoding the cell surface protein CD4. Following transduction, 

CD4-positive cells were selected based on anti-CD4 cell surface staining employing 

FACS-sorting. 
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This result was actually not necessarily expected since substantial amounts of 

intercellular spreading for both FGF-2 and Galectin-1 following export from 

CHO cells (Engling et al., 2002; Seelenmeyer et al., 2003) could be observed 

(Supplementary Fig. 53). In this case, it was virtually impossible to identify 

and isolate for example FGF-2 export deficient mutant cells in the presence of 

wild-type cells. In conclusion, this observation emphasizes the results from 

the experiments shown in Fig. 15 and Fig. 16. The extracellular population of 

HASPB-N18-GFP could be defined by its appearance on the surface of cells 

that were incapable of expressing the reporter molecule when mixed with 

HASPB-N18-GFP-expressing cells. With regard to the mutagenesis strategy, 

however, these experiments demonstrate that HASPB-N18-GFP exported 

from CHO wild-type cells is largely retained on the cell surface of the 

secreting cells. This result, in turn, allows for the identification and isolation of 

export-deficient CHO mutant cells based on FACS sorting (Fig. 18, panel A), 

even in the presence of a large excess of wild-type cells. To address this point 

clonal CHO mutants were randomly generated by retroviral insertion 

mutagenesis that were characterized by a negative HASPB export phenotype. 

As illustrated in Fig. 18B, CHO cells carrying the HASPB-N18-GFP reporter 

gene were transduced with retroviral particles encoding the open reading 

frame of the integral plasma membrane protein CD4 (Liu et al., 2000). In this 

context, CD4 was used as a marker for mutagenized cells that were 

subsequently enriched by FACS (Fig. 18, panel C, horizontal bar above the 

blue curve). 

 

3.2.2 Screening for somatic CHO mutants characterized by a defect in 
HASPB export 

 
The pool of CD4-positive mutagenized cells, enriched by the procedure 

described in section 3.2.1, was subjected to a selection of CHO mutants 

expressing the HASPB-N18-GFP reporter molecule at a level compared to 

wild-type cells, however, did not present the fusion protein on their surface.  
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Fig. 19 Genetic screening for HASPB export mutants. (A) CD4-positive cells as enriched 

in the FACS experiment depicted in Fig. 18, panel C were subjected to FACS sorting 

as shown by an example for the sorting strategy. Cells were monitored in dot blot 

mode with GFP-derived fluorescence shown on the y-axis and HASPB-N18-GFP cell 

surface staining shown on the x-axis. The left-hand panel shows the population 

grown in the absence of doxicycline. To select for HASPB export mutants the sorting 

window was adjusted as depicted in the right-hand panel (in presence of 1 µg/ml 

doxicycline) to isolate cells characterized by high GFP fluorescence and low APC cell 

surface staining. (B) CD4-positive cells were subjected to three rounds of FACS 

sorting as depicted in panel A. In the first two rounds of FACS sorting 0.52% and 

3.66% of HASPB-N18-GFP expressing cells with a negative export phenotype were 

isolated. In the third round 2.52% of HASPB-N18-GFP expressing cells were isolated 

as single clones. (C) The mutant CHO K3 cell line showing a negative export 

phenotype was positive for CD4 cell surface staining due to the retroviral transduction 

while the CHO wild-type cell line showed no CD4 cell surface staining using anti CD4 

antibodies in the FACS measurement. 
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For this purpose, cells were viewed in the FACS setup in a dot blot modus 

and a sorting window was defined to select for the phenotype described as 

shown in panel A of Fig. 19. Cells isolated from this sorting window in the first 

round of selection procedure (Fig. 19B, panel A) were negative for HASPB 

cell surface staining. About 0.5% of the total population were propagated and 

subjected to a second round of cell sorting in which 3.66% (Fig. 19 B, 

panel B) of the selected population displayed the desired phenotype. Finally, 

in the third round, single cells were selected in the sorting window that was 

defined as described in panel C of Fig. 19B (2.52%). From this selection 

procedure a clonal CHO cell line (from here on referred to as “K3”) was 

isolated that was positive for successful mutagenesis as indicated by CD4 

staining (Fig. 19, panel C, red curve) employing flow cytometry. As expected, 

the parental cell line HASPB-N18-GFP CHO wild-type (Fig. 19, panel C, blue 

curve) was negative for the integral plasma membrane protein CD4. 

 

3.2.3 Sequence analysis of HASPB-N18-GFP in CHO wild-type and CHO 
K3 cell lines 

 
As the somatic mutagenesis might result in a mutation of the reporter 

molecule itself, sequence analysis of the fusion protein expressed in the 

clonal CHO K3 cell line was performed (Stella Tournaviti). Genomic DNA was 

isolated followed by amplification of the HASPB-N18-GFP open reading 

frame. As shown by sequencing of the corresponding PCR products, the 

sequence of the N-terminal SH4 domain of the reporter molecule was 

confirmed to be unchanged compared to the parental CHO wild-type cells 

(Fig. 20).   
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Fig. 20 Sequence analysis of HASPB-N18-GFP in CHO wild-type and CHO K3 cells. 

Genomic DNA of CHO wild-type and CHO K3 cells were isolated and subjected to 

PCR-amplification using vector-specific primers. The resulting PCR products were 

sequenced and aligned. The cloning sites (marked in red) used for integration into the 

doxicycline-dependent vector (pRevTRE2) are indicated. The HASPB-N18 sequence 

(yellow) containing a Kozak region (blue) was spaced by a short linker from the GFP 

sequence (green). 
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3.2.4 Characterization of HASPB-N18-GFP export from CHO wild-type 
cells compared to CHO K3 mutant cells employing FACS-analysis 
and Biotinylation 

 

In order to analyze the CHO K3 mutant cell line regarding HASPB cell surface 

localization compared to CHO wild-type cells flow cytometry as well as the 

biochemical biotinylation assay were performed. Based on GFP-fluorescence, 

the expression level of HASPB-N18-GFP did not significantly differ between 

wild-type and K3 mutant cells as analyzed by FACS (Fig. 21, panel A, blue 

bars). However, HASPB-N18-GFP cell surface staining was largely reduced 

to about 30% as compared to wild-type levels (Fig. 21, panel A, red bars). 

These data were confirmed by a biochemical assessment of the extracellular 

population of HASPB-N18-GFP in wild-type versus K3 mutant cells using a 

membrane-impermeable biotinylation reagent and streptavidin-based 

immunopurification of factors exposed on the cell surface. As illustrated in 

Fig. 21 panel B, the amount of biotinylated cell surface HASPB-N18-GFP 

(lower box, lane 3) derived from K3 cells was largely reduced to about 30% as 

compared to CHO wild-type cells (upper box, lane 3). As expected, the control 

proteins Δpalm-HASPB-N18-GFP, Δmyr-HASPB-N18-GFP and GFP were not 

detectable on the cell surface. 
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Fig. 21 Characterization of HASPB-N18-GFP export from CHO wild-type cells compared 

to CHO K3 mutant cells. (A) FACS analysis. CHO wild-type cells and CHO K3 cells 

were grown for 48 hours at 37°C in the presence of doxicycline (1 µg/ml). Cells were 

processed for FACS sorting using affinity-purified anti-GFP antibodies and APC-

coupled secondary antibodies to detect exported HASPB-N18-GFP by cell surface 

staining. For a statistical analysis of four independent experiments, GFP-derived 

fluorescence and APC-derived cell surface staining of CHO wild-type cells expressing 

HASPB-N18-GFP was set to 100%, respectively. (B) Biochemical analysis of 

exported HASPB-N18-GFP in CHO wild-type cells, CHO K3 cells and various control 

cell lines using cell surface biotinylation. The experiment was conducted exactly as 

described in the ‘Material and Methods’ section. Input material (lane 1, 2%), 

streptavidin supernatant (non-biotinylated proteins, lane 2, 2%) and streptavidin-

bound proteins (biotinylated proteins, lane 3, 50%) were separated by SDS-PAGE 

followed by western blotting using affinity-purified anti-GFP antibodies. 
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3.2.5 Expression level, membrane association and post-translational 
acylation of HASPB-N18-GFP in CHO wild-type cells and mutant 
K3 cells 

 
As dual acylation of HASPB-N18-GFP is a critical determinant for plasma 

membrane targeting and export, it was important to analyze whether the 

reporter molecule HASPB-N18-GFP itself was properly modified in K3 cells. 

Therefore, in a first set of experiments, overall membrane association of 

HASPB-N18-GFP was tested in CHO K3 cells by a carbonate extraction 

analysis. The input material of HASPB-N18-GFP was comparable in wild-type 

CHO and K3 cells, which was consistent with the FACS experiment shown in 

Fig. 21, demonstrating that the expression level of HASPB-N18-GFP does not 

differ significantly in the two cell lines (Fig. 22, panel A). Similarly there were 

no apparent differences in the distribution of HASPB-N18-GFP between 

cytosol and membranes when CHO wild-type and K3 cells were compared 

(Fig. 22B, lanes 1 and 2). Finally, when the membrane fractions of wild-type 

and K3 cells were subjected to carbonate extraction, the distribution of 

HASPB-N18-GFP between the membrane-associated and the soluble pool 

was identical between the two cell types (Fig. 22B, lanes 3 and 4). These data 

indicate that the acylation status of HASPB-N18-GFP does not differ between 

CHO wild-type and K3 cells.  

This conclusion was confirmed by metabolic labeling of HASPB-N18-GFP in 

wild-type and K3 cells using [3H]-labeled myristate and [3H]-labeled palmitate 

(performed by Stella Tournaviti). Incorporation of both fatty acids into HASPB-

N18-GFP could be detected in both wild-type and K3 cells whereas the 

corresponding negative controls were either labeled with [3H]-myristate alone 

(in case of Δpalm-HASPB-N18-GFP) or not labeled at all (for Δmyr-HASPB-

N18-GFP and GFP) (Fig. 22, panel C). Together, these results strongly 

suggest that HASPB-N18-GFP gets normally acylated in the CHO K3 mutant 

cell line. Therefore, the lack of HASPB-N18-GFP present on the cell surface 

of these cells must be due to the translocation machinery itself from which at 

least one component is apparently disrupted in K3 cells. 
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Fig. 22 Expression level, membrane association and acylation of HASPB-N18-GFP in 

CHO wild-type cells and CHO mutant K3 cells. (A) CHO wild-type cells and CHO 

K3 cells (both expressing HASPB-N18-GFP) were grown in six-well plates to about 

80% confluency in the absence (lane 1) or presence (lane 2) of doxicycline (1 µg/ml) 

for 48 hours at 37°C. Cells were detached with PBS/EDTA, collected by 

centrifugation and lysed in SDS sample buffer. 1% of each lysate, corresponding to 

cells from one well, were subjected to SDS-PAGE. HASPB-N18-GFP was detected 

by western blotting using affinity-purified anti-GFP antibodies. (B) CHO wild-type cells 

and CHO K3 cells (both expressing HASPB-N18-GFP) were grown in six-well plates 

to about 80% confluency in the presence of 1 µg/ml doxicycline for 48 hours at 37°C. 

Subcellular fractionation and carbonate extraction of membranes were performed and 

5% of each fraction was combined with SDS sample buffer and proteins were 

separated by SDS-PAGE. Following western blotting, HASPB-GFP fusion proteins 

were detected with affinity-purified anti-GFP antibodies. (C) CHO wild-type cells, 

CHO K3 cells (both expressing HASPB-N18-GFP) as well as control cell lines 

expressing Δmyr-HASPB-N18-GFP and Δpalm-HASPB-N18-GFP, respectively, were 

grown in six-well plates to about 80% confluency in the presence of 1 µg/ml 

doxicycline for 48 hours at 37°C and labeled with [3H]-myristate and [3H]-palmitate. 

Cell lysates were prepared and subjected to immunoprecipitation using affinity-

purified anti-GFP antibodies. Immunopurified fractions were split into two samples, 

separated by SDS-PAGE and either processed by fluorography (upper panel) or 

silver staining (lower panel). 
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3.2.6 HASPB-N18-GFP localizes to the plasma membrane in CHO K3 
cells 

 
To this point the experiments have shown that HASPB export was largely 

reduced in the CHO K3 mutant cell line as compared to CHO wild-type cells. 

Intriguingly, similar to CHO wild-type cells, HASPB-N18-GFP expressed in 

CHO K3 was stably associated with the plasma membrane. In order to define 

the subcellular site of HASPB-N18-GFP membrane translocation, the precise 

localization in CHO wild-type cells versus CHO K3 cells was analyzed 

employing confocal microscopy and subcellular distribution. There was 

virtually no difference in the subcellular distribution of HASPB-N18-GFP in the 

two cell types and in both cases the majority of the material was localized to 

the plasma membrane (Fig. 23, panel A and B). These morphological data 

were confirmed by a biochemical analysis employing subcellular fractionation 

(Fig. 23, panel C). After purification of plasma membrane-derived vesicles 

(Schäfer et al., 2004) the enrichment of the HASPB-N18-GFP reporter 

molecule in plasma membranes of CHO wild-type cells (Fig. 23C, lanes 1-4) 

and CHO K3 cells (Fig. 23C, lanes 5-8) was compared, respectively. 

Compared to the homogenate (lanes 1 and 5), HASPB-N18-GFP was found 

to be enriched in gradient-purified plasma membrane vesicles using the 

plasma membrane marker transferrin receptor (TfR) (Futter et al., 1998) in 

both CHO wild-type and CHO K3 cells (lanes 4 and 8, respectively). Using the 

Golgi marker GM130 (Nakamura et al., 1995), the plasma membrane vesicle 

fraction was depleted of Golgi membranes demonstrating the significance of 

the findings described above. The association of HASPB-N18-GFP with 

plasma membranes in both CHO wild-type cells and K3 cells was considered 

to be quite striking, as it demonstrated a defect in CHO K3 cells directly in the 

translocation machinery rather than some kind of intracellular segregation of 

HASPB-N18-GFP. In the latter case, access to the site of membrane 

translocation would be prevented. Together, these findings confirm that the 

HASPB-N18-GFP translocation apparatus is a plasma membrane-resident 

machinery. 
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Fig. 23 Subcellular localization of HASPB-N18-GFP in CHO wild-type and CHO K3 

mutant cells as determined by confocal microscopy and subcellular 

fractionation. (A) HASPB-N18-GFP expressed in CHO wild-type cells. (B) HASPB-

N18-GFP expressed in CHO K3 mutant cells. Cells were grown on glass coverslips in 

the presence of 1 µg/ml doxicycline for 48 hours at 37°C and processed for confocal 

microscopy. GFP-derived fluorescence was viewed with a Zeiss LSM 510 confocal 

microscope. (C) Subcellular fractionation of CHO wild-type cells and CHO K3 cells 

was conducted as described earlier (Schäfer et al., 2004). To identify plasma 

membranes, antibodies directed against the transferrin receptor were used (Futter 

et al., 1998). To detect Golgi membranes, antibodies directed against GM130 were 

used (Nakamura et al., 1995). Four fractions were generated and analyzed for each 

cell line: a hypotonic lysate (lanes 1 and 5), a post-mitochondrial supernatant (lanes 2 

and 6), a microsomal membrane fraction (lanes 3 and 7) and gradient-purified plasma 

membranes (lanes 4 and 8). For each fraction 15 µg total protein were separated by 

SDS-PAGE and analyzed by western blotting using the antibodies indicated. 
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3.2.7 An FGF-2-GFP reporter molecule is exported from CHO wild-type 
and K3 mutant cells at similar levels 

 

In CHO K3 mutant cells, as revealed from the somatic mutagenesis screen, a 

component essential for HASPB export might be disrupted since the fusion 

protein expressed in CHO K3 is transported and associated to the plasma 

membrane, however, its translocation to the outer cell surface is blocked. To 

assess whether the disrupted export component in CHO K3 cells is a specific 

factor for HASPB export or rather a general component for non-classical 

secretory processes, the export of FGF-2 from CHO K3 cells, a classical 

example for unconventional secretory proteins (Florkiewicz et al., 1995; 

Mignatti et al., 1992; Mignatti and Rifkin, 1991; Nickel, 2003), was analyzed. 

For this purpose, both CHO K3 and the parental CHO wild-type cells 

expressing the HASPB-N18-GFP fusion protein were transduced with 

retroviral particles encoding an FGF-2-GFP fusion protein (Backhaus et al., 

2004; Engling et al., 2002). Owing to the different molecular weights (25 and 

45 kDa, respectively), the two reporter molecules could be easily 

distinguished in the cell surface biotinylation assay (Figs. 16 and 21). There 

was no difference in FGF-2 cell surface expression between CHO wild-type 

and CHO K3 cells (Fig. 24, compare lanes 3 and 6, upper panels), 

respectively. By contrast, HASPB-N18-GFP analyzed from the same cell 

preparations was exported only from CHO wild-type cells (compare lanes 3 

and 6, lower panels). Overall, the experiment show that the component 

disrupted in CHO K3 cells is a specific component of the HASPB export 

pathway. 
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Fig. 24 Export of an FGF-2-GFP reporter molecule from CHO wild-type and CHO K3 

cells. Parental CHO wild-type (lanes 1-3) and CHO K3 mutant cells (lanes 4-6) 

expressing HASPB-N18-GFP were transduced with retroviral particles containing the 

FGF-2-GFP open reading frame controlled by a doxicycline-dependent element. 

Transduction efficiency was about 65% as determined by GFP-derived fluorescence. 

Both cell types were treated with a membrane-impermeable biotinylation reagent. Cell 

lysates were generated and biotinylated and non-biotinylated proteins were separated 

by streptavidin affinity chromatography. Input material (lane 1 and 4; 4%), streptavidin 

supernatant (non-biotinylated proteins, lanes 2 and 5; 4%) and streptavidin-bound 

proteins (biotinylated proteins, lanes 3 and 6; 50%) were separated by SDS-PAGE 

followed by western blotting using affinity-purified anti-GFP antibodies. 

 

3.2.8 Secretion of Galectin-1 from CHO K3 cells occurs as efficiently as 
from parental CHO wild-type cells 

 
Interestingly coincident with FGF-2 (Schäfer et al., 2004; Zehe et al., 2006), 

Galectin-1 (Seelenmeyer et al., 2005) was reported to translocate directly 

across the plasma membrane. Moreover, as described previously, Galectin-1 

was shown to accumulate in evaginations of the plasma membrane followed 

by an export mechanism that appears to involve the formation of membrane-

bound vesicles (Cooper and Barondes, 1990; Hughes, 1999; Mehul and 

Hughes, 1997; Sato et al., 1993). To assess the relevance of Galectin-1 

export in the context of the compromised export mutant K3, the biochemical 
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assessment of the extracellular population of HASP-N18-GFP and Galectin-1-

GFP in the wild-type compared to K3 mutant cells was analyzed. Employing 

the biotinylation assay (compare Fig. 24), Galectin-1 and HASPB fusion 

proteins could be distinguished based on their molecular sizes (40.5 kDa for 

Galectin-1-GFP and 25 kDa for HASPB-N18-GFP). 

 

 
 
Fig. 25 Export of a Gal-1-GFP reporter molecule from CHO wild-type and CHO K3 cells. 

Parental CHO wild-type (lanes 1 and 2) and CHO K3 mutant cells (3 and 4) 

expressing HASPB-N18-GFP were transduced with retroviral particles containing the 

Gal-1-GFP open reading frame controlled by a doxicycline-dependent element. 

Transduction efficiency was about 30% as determined by GFP-derived fluorescence. 

Both cell types were treated with a membrane-impermeable biotinylation reagent as 

described in the ‘Materials and Methods’ section and streptavidin-bound proteins 

(biotinylated proteins, lanes 2 and 4; 50%) were separated by SDS-PAGE followed by 

western blotting using affinity-purified anti-GFP antibodies. 

 

As expected, HASPB-N18-GFP was exported only from CHO wild-type cells 

(Fig. 25, lanes 2 and 4, lower panel). By contrast, Galectin-1-GFP was 

exported from CHO wild-type as efficiently as from the mutant K3 cell line 

(Fig. 25, lanes 2 and 4, upper panel). This observation confirms previous 

findings indicating that the defect in the mutant CHO K3 cell line is specific for 

HASPB-N18-GFP export and not a general component of non-classical 

secretory processes. 
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3.3 Analysis of the phenotype observed in the CHO K3 

mutant cell line 

3.3.1 Identification of the chemokine-orphan-receptor 1 (cmkor 1) in the 
CHO K3 mutant cell line  

 

To identify the disrupted component in the CHO K3 mutant cell line, a LAM 

(linear amplification mediated)-PCR was performed (GATC).  

 

 
 

Fig. 26 LAM-PCR. Genomic DNA was amplified using vector-specific primers to obtain a 

linear PCR-product. After purification and complementation the product was digested 

using an enzyme generating blunt ends followed by addition of a linker cassette. Due 

to the known sequence of the added linker cassette, PCR amplification was possible. 

 

As illustrated in Fig. 26, the insertion site of the retroviral vector was amplified 

performing a LAM-PCR followed by sequencing of the corresponding 

products. Since CD4 was used as a marker for mutagenized cells 

(section 3.2.1), one integration site was found employing the LAM-PCR of 

genomic DNA isolated from the K3 mutant CHO cell line by using CD4-

specific primers.  
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Fig. 27 Identification of cmkor 1. (A) LAM-PCR products. Out of the tested clones amplified 

by the LAM-PCR, one product of 255 bp (lane 4) was detected employing agarose 

gel electrophoresis. (B) Alignment of the LAM-PCR product with the NCBI database, 

provided on the following web page: http://www.ncbi.nlm.nih.gov/BLAST/. The 

alignment of the 255 bp fragment amplified by the LAM-PCR revealed a homology 

with the cmkor 1 sequence of the mouse genome. 

 

Interestingly the identified 255 bp fragment (Fig. 27, panel A) aligned with a 

specific mouse sequence (Fig. 27, panel B) located on chromosome 1 

(Fig. 28, panel A) of the mouse genome. In this regard, the retrovirus 

integrated into a non-coding region, an intron flanked by two exons (Fig. 28, 

panel B, red box). The gene, chemokine orphan receptor 1, belongs to a 

family of G-protein coupled receptors, which includes hormones, neuro-
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transmitter and light receptors, all of which transduce extracellular signals 

through interaction with guanine nucleotide (G) binding proteins (Shimizu 

et al., 2000). Upon binding of their respective chemokines they play a pivotal 

role in diseases such as autoimmune and allergic inflammatory disorders, 

cancer and organ transplant where excessive cellular recruitment plays a 

deleterious role. Their function is not limited to recruitment, since they also 

play a role in cellular activation, differentiation, degranulation and in 

processes such as organ development, angiogenesis, lymphogenesis and 

wound repair (Bruhl et al., 2001; Rot and von Andrian, 2004). As described 

recently the protein seems to function as a coreceptor for human immunodefi-

ciency viruses (HIV) (Shimizu et al., 2000). However, at this stage its 

endogenous ligand has not yet been identified (Shimizu et al., 2000; 

Tilakaratne and Sexton, 2005). Together, these findings strongly suggest that 

cmkor 1 might be an important component necessary for HASPB export from 

mammalian cells.  
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Fig. 28 Localization of cmkor 1. (A) NCBI, the provided database, identified the 255 bp 

fragment as the chemokine orphan receptor 1 located on chromosome 1 of the 

mouse genome. (B) Mouse genome informatics. Employing NCBI database, the 

retrovirus integrated into a non-coding region, an intron, located between two exons 

within the chemokine orphan receptor 1 (red box). 
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3.3.2 Sequence analysis of the chemokine orphan receptor 1 expressed 
in CHO cells 

 
To validate the link between the expression of cmkor 1 and the HASPB export 

defect in the mutant K3 cell line RNA interference experiments were planned. 

For this kind of experiments it was crucial to analyze the sequence of the 

chemokine orphan receptor 1 expressed in CHO cells. Therefore, RNA from 

CHO wild-type cells was isolated. The following RT-PCR was performed with 

two cmkor 1-specific primer pairs flanking conserved regions of the mouse 

and the human cmkor 1-sequences (Supplementary Fig. 54, purple and blue 

boxes). The resulting PCR products were introduced into a vector and 

following amplification five positive clones were identified. After sequencing, 

the CHO sequence of the chemokine orphan receptor 1 (Supplementary 

Fig. 55) was used for the design of three different siRNAs. 

 

3.3.3 HASPB-N18-GFP export from CHO wild-type is not affected by 
downregulation of cmkor 1 

 
To this point the experiments showed that HASPB-N18-GFP export from the 

mutant CHO K3 cell line was not as efficient as in CHO wild-type cells. To 

verify whether the reduced HASPB export in the mutant CHO K3 cell line was 

due to the integration of the retrovirus inserted into the genome of CHO K3 

cells RNA interference experiments were performed. CHO wild-type and K3 

cells were transfected with three different cmkor-specific siRNA oligos in two 

different molar ratios by using Oligofectamine as transfection reagent. 

Following isolation of the corresponding RNA and reverse transcription-PCR, 

the amplified products were separated on agarose gel electrophoresis. As 

illustrated in Fig. 29A, lanes 1-6, a cmkor 1 knockdown was observed 

(Fig. 29A, lanes 5 and 6) only by using siRNA oligo 2 and 3 in low concentra-

tions (80 nM) during the transfection procedure. However, a parallel 

experiment using only the transfection reagent (Fig. 29, lane 7) revealed the 

same result. This was not expected, as cmkor 1 mRNA should not get down-
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regulated under control conditions. Additionally, cmkor 1 mRNA was 

detectable in both CHO wild-type and, quite strikingly, in CHO K3 cells as 

shown by the analysis of cytoplasmic and total RNA (Fig. 29B, lanes 1-4). In 

contrast to these paradox results, the RT-PCR was shown to be functional 

(Fig. 29C, lanes 1 and 2). Moreover the cells were strongly affected regarding 

growth due to the transfection procedure.  

 

 
 
Fig. 29 Cmkor downregulation in CHO wild-type cells. (A) CHO wild-type cells were 

transfected with three different cmkor 1-specific siRNAs (lanes 1-6) in two different 

molar ratios (lanes 1-3 and 4-6) using Oligofectamine. As control CHO wild-type cells 

were treated only with Oligofectamine. After RNA isolation a RT-PCR was performed. 

(B) Cytoplasmic and total RNA from CHO wild-type (lanes 1 and 2) and CHO K3 cells 

(lanes 3 and 4) were isolated and subjected to RT-PCR. (C) Positive RT-PCR control 

(lane 1) and negative RT-PCR control (lane 2) as given by the RT-PCR manual. All 

samples were separated by agarose gel electrophoresis.  

 

To further assess the relevance of cmkor 1 in the context of the perturbed 

HASPB membrane translocation in CHO K3 cells RT-PCR products obtained 

from isolation of cytoplasmic and total RNA from CHO wild-type and CHO K3 

cells, respectively, were sequenced. As illustrated in the alignment 

(Supplementary Fig. 56, red parts indicate homology with the cmkor 1 

sequence) both cell types contained cmkor 1 mRNA. Overall, the experiment 

showed that cmkor 1 has no influence on the HASPB export defect in CHO 

K3 cells as HASPB export from CHO wild-type cells was not blocked 

employing RNA interference. Since cmkor 1 mRNA was detectable especially 
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in CHO K3 cells the expression of chemokine orphan receptor 1 seems not 

affected in the CHO K3 mutant cell line.  

 

3.3.4 Overexpression of cmkor 1 in CHO wild-type and CHO K3 cell 
lines  

 

To monitor a possible effect of the chemokine orphan receptor 1 on HASPB 

export, overexpression of the cmkor 1 gene in CHO wild-type as well as in 

CHO K3 cells was performed. The cmkor 1 sequence was introduced into an 

expression vector encoding the cell surface protein CD8 (Hoffmann, 1980) as 

marker protein. Since the vector contained an IRES element (Jang et al., 

1988; Liu et al., 2000) a simultaneous expression of cmkor 1 as well as CD8 

was achieved. Following retroviral transduction of the cmkor 1 clones 4 

(Fig. 30, panel A, B, E and F) and 9 (Fig. 30, panel C, D, G and H) into CHO 

wild-type and CHO K3 cells, the cell lines were sorted twice in order to select 

for cmkor 1-expressing cells represented by CD8 cell surface staining 

(Fig. 30, shown on the y-axis by CD8 cell surface staining). The enrichment of 

cmkor 1-positive cells could be achieved in a second round of sorting as 

shown in Fig. 30, panel B, D, F and H.  
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Fig. 30 Generation of cmkor-expressing CHO wild-type and CHO K3 cell lines. 

CHO wild-type and CHO K3 cells were retrovirally transfected with a vector 

containing an IRES element allowing for simultaneous expression of cmkor 1 as well 

as CD8. CD8 was used as a marker protein in order to select for cmkor 1-positive 

cells by two rounds of FACS sorting (first round: left hand panels; second round: right 

hand panels, FSC-H represents the size of the cells). CHO wild-type cells (A-D) and 

CHO K3 (E-H) cells were transduced with two different cmkor 1 clones, 4 and 9, 

respectively. 
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3.3.5 HASPB-N18-GFP export from CHO K3 cell line cannot be restored 
by overexpression of cmkor 1 

 
In order to analyze whether HASPB export from CHO K3 cells can be 

restored by overexpression of cmkor 1 or rather can be blocked in CHO wild-

type cells, HASPB-N18-GFP cell surface staining was monitored by flow 

cytometry. As shown in the quantitative analysis in Fig. 31, the expression 

level of HASPB-N18-GFP in CHO K3 cells was only slightly reduced 

compared to wild-type levels (Fig. 31, panel A, green bars). However, as 

expected (compared to Fig. 15), the HASPB-N18-GFP cell surface staining 

was largely reduced to about 60% (Fig. 31, panel A, blue bars). By contrast, 

overexpressing the cmkor 1 gene, HASPB-N18-GFP cell surface staining of 

the mutant CHO K3 cell line could not be restored to wild-type levels. 

Moreover, due to overexpression, HASPB export could not be blocked in 

CHO wild-type cells (Fig. 31, panel A, blue bars). To verify the expression of 

cmkor 1, both cell lines were analyzed regarding CD8 cell surface expression. 

As illustrated in Fig. 31, panel B, CHO wild-type and CHO K3 cells, respec-

tively, were successfully transduced with cmkor 1 as shown by positive 

staining for CD8. Together, these results strongly suggest that the chemokine 

orphan receptor 1 has no influence on HASPB export. 
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Fig. 31 Characterization of HASPB-N18-GFP export from cmkor 1 transduced CHO 

wild-type and CHO K3 cells as analyzed by FACS. (A) Cmkor 1 transduced CHO 

wild-type and CHO K3 cells as well as their corresponding parental cell lines were 

grown for 48 hours at 37°C in the presence of 1 µg/ml doxicycline. Cells were 

processed for FACS sorting using affinity-purified anti-GFP antibodies and APC-

coupled secondary antibodies to detect exported HASPB-N18-GFP bound on the cell 

surface. For a statistical analysis of three independent experiments, GFP-derived 

fluorescence and APC-derived cell surface staining of CHO wild-type cells expressing 

HASPB-N18-GFP was set to 100 %, respectively. (B) To monitor cmkor 1 expression, 

the cells were processed as described in A, and analyzed for CD8 cell surface 

staining using CD8 antibodies coupled to anti-mouse APC secondary antibodies. 
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3.3.6 Quantitative analysis of cell surface localized HASPB-N18-GFP 
fusion proteins exported from cmkor 1 transduced CHO wild-type 
and CHO K3 cell lines 

 
To demonstrate by means of an independent method that overexpression of 

cmkor 1 has no positive effect regarding HASPB export from CHO K3 cells a 

biochemical assessment of the extracellular population of HASPB-N18-GFP 

in cmkor 1 transduced wild-type and K3 cell lines were performed. As shown 

in Fig. 32, panel A, lanes 1 and 3, the expression levels were comparable 

between the various cell lines. Importantly, there was no difference in the 

HASPB-N18-GFP cell surface staining between CHO wild-type cells (Fig. 32A 

lane 2, upper panel) and CHO K3 cells (Fig. 32, A lane 4, upper panel), when 

compared to their cmkor 1 transduced cell lines (Fig. 32A, lanes 2 and 4 

middle and lower panel). This result was confirmed by a quantitative analysis 

of HASPB-N18-GFP cell surface exposure in the various cell lines (Fig. 32, 

panel B). As expected, HASPB-N18-GFP export in CHO K3 cells was largely 

reduced to about 60% compared to CHO wild-type cells. However, the 

expression of the chemokine orphan receptor 1 did neither restore HASPB-

N18-GFP export from CHO K3 nor block export of HASPB-N18-GFP from 

CHO wild-type cells. This observation is in line with previous findings 

described in sections 3.3.3, 3.3.5 and 3.3.6, and confirms that the defect in 

the mutant CHO K3 cell line regarding HASPB export does not result from 

cmkor 1 downregulation. The chemokine orphan receptor 1 seems not to be 

an essential component of the HASPB export pathway. Since only one 

integration site was found (section 3.3.1), this does not rule out the possibility 

of other integration sites of the retrovirus causing the perturbed HASPB 

membrane translocation in CHO K3 cells.  
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Fig. 32 Quantitative analysis of HASPB-N18-GFP export from cmkor 1 transduced CHO 

wild-type and K3 cells as well as from their parental CHO cell lines. (A) Cmkor 1 

transduced CHO wild-type and K3 cells as well as their corresponding parental cell 

lines were treated with a membrane-impermeable biotinylation reagent. Cell lysates 

were generated and proteins were separated by streptavidin affinity chromatography. 

Input material (lanes 1 and 3; 3,8%) and streptavidin-bound proteins (biotinylated 

proteins, lanes 2 and 4; 50%) were separated by SDS-PAGE followed by western 

blotting using affinity-purified anti-GFP antibodies. (B) Quantitative analysis. For a 

statistical analysis of three independent experiments, HASPB-N18-GFP export from 

CHO wild-type cells was set to 100%, respectively. 
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B. The SH4 protein HASPB is released in extracellular 

 vesicles in a palmitoylation-dependent manner 
 

As described previously heterologous expression of an HASPB-N18-GFP 

fusion protein induces curvature of the plasma membrane resulting in the 

formation of highly dynamic, non-apoptotic tubules and plasma membrane 

blebs (Tournaviti et al., 2006 submitted). Plasma membrane blebs are cell 

protrusions generated by the osmotic pressure of the cell interior upon 

localized destabilization of the cortical actin meshwork at the plasma 

membrane (Charras et al., 2005; Cunningham, 1995; Sheetz et al., 2006). 

The Rho effector kinase Rock provides acto-myosin contractility required for 

the formation of most types of plasma membrane blebs (Leverrier and Ridley, 

2001). Furthermore, diaphanous-related formins (DFRs) are actin nucleators 

and modulate actin dynamics governed by select small GTPases but also 

stabilize microtubules and coordinate F-actin and microtubule networks (Faix 

and Grosse, 2006). Moreover, the DFR FHOD1 functionally interacts with 

Rock to alter cellular F-actin and microtubule organization facilitating plasma 

membrane bleb formation (Gasteier et al., 2003; Gasteier et al., 2005). 

Together, based on these observations it is likely that the SH4 protein HASPB 

could be released from cells due to plasma membrane blebbing, a process 

promoting the shedding of plasma membrane-derived vesicles that are 

released into the extracellular space (Freyssinet, 2003; Hugel et al., 2005; 

Martinez et al., 2005). To gain insights into plasma membrane bleb formation, 

cell culture supernatants of various cell lines were analyzed for HASPB-

containing vesicles employing Nycodenz flotation gradients.   
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3.4 Characterization of HASPB-mediated plasma membrane 

bleb formation  

3.4.1 Heterologous expression of an HASPB-N18-GFP fusion protein 
induces curvature of the plasma membrane resulting in the 

formation of highly dynamic, non-apoptotic plasma membrane 
blebs 

 

Employing confocal microscopy as described in section 3.1.4, HASPB-N18-

GFP was mainly localized to the plasma membrane. Furthermore, HASPB 

was organized to droplet-like structures that were typically located in close 

proximity to the plasma membrane. By analyzing living cells using confocal 

microscopy, the formation of plasma membrane blebs (Tournaviti et al., 2006 

submitted) was clearly visible indicating that the observed droplet-like 

structures were due to a fixation artefact. As illustrated in Fig. 33, panel A, 

formation of plasma membrane blebs was induced by heterologous 

expression of HASPB-N18-GFP. Furthermore, as revealed by confocal real 

time imaging analysis and annexin V staining experiments the plasma 

membrane blebs were shown to be highly dynamic as well as of non-apoptotic 

origin (Tournaviti et al., 2006 submitted). Importantly, the expression of the 

myristoylation mutant (Δmyr-HASPB-N18-GFP) as well as the palmitoylation 

mutant (Δpalm-HASPB-N18-GFP) did not induce curvature of the plasma 

membrane resulting in plasma membrane bleb formation (Fig. 33, panel B 

and C). In agreement with previous findings (section 3.1.4) Δmyr-HASPB-

N18-GFP was found mainly in the cytosol and Δpalm-HASPB-N18-GFP was 

localized on intracellular membranes in a perinuclear position.  
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Fig. 33 Subcellular distribution of HASPB-GFP fusion proteins as determined by live 

confocal microscopy. Cells were grown in 8-chamber plates in the presence of 

1 µg/ml doxicycline for 48 hours a 37°C. GFP-derived fluorescence was viewed with a 

Zeiss LSM 510 confocal microscope. (A) HASPB-N18-GFP; (B) Δmyr-HASPB-N18-

GFP; (C) Δpalm-HASPB-N18-GFP  

 

3.4.2 The Leishmania protein HASPB can be found in extracellular 
vesicles following ultracentrifugation of cell culture supernatants 
from growing HASPB-N18-GFP expressing cells 

 
To investigate whether plasma membrane blebbing might lead to the 

shedding of plasma membrane-derived HASPB-containing vesicles that are 

released into the extracellular space, cell culture supernatants of growing 
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CHO cells expressing HASPB-N18-GFP were ultracentrifuged in order to 

sediment their contents.  

 

 
 
Fig. 34 Biochemical analysis of cell culture supernatants from growing CHO cells 

expressing HASPB-GFP fusion proteins. Cells were grown in six-well plates in the 

presence of 1 µg/ml for 48 hours at 37°C. For the biochemical analysis of exported 

HASPB-GFP the cell surface biotinylation assay was used and the experiment was 

conducted exactly as described in the ‘Material and Methods’ section. Input material 

(lanes 1 of A, B and C; 3,8%) and streptavidin-bound proteins (biotinylated proteins, 

lanes 2 of A, B and C, 50%) are shown. Additionally, cell culture supernatants of 

HASPB-GFP expressing CHO cells were centrifuged (lanes 5 of A, B and C; 100%) 

at 100,000 g for 1 hour (membrane sediment).  The resulting supernatants (lanes 4 of 

A, B and C, 50%) as well as cell culture supernatants from growing CHO cells 

(lanes 3 of A, B and C; 50%) were subjected to immunoprecipitation using affinity 

purified anti-GFP antibodies. All samples were separated by SDS-PAGE followed by 

western blotting using affinity-purified anti-GFP antibodies. (A) HASPB-N18-GFP; 

(B) Δmyr-HASPB-N18-GFP; (C) Δpalm-HASPB-N18-GFP 

 

As shown in Fig. 34, panel A, most of the extracellular HASPB-N18-GFP 

population was found to be associated with the cell surface of CHO cells 

(lane 2) with only a minor portion being found in the cell culture supernatant 

(lane 3). However, extracellular material derived from HASPB-N18-GFP 

expressing cells was quantitatively found in the membrane sediment (lane 5). 

Only small amounts were detectable in the supernatants following 

ultracentrifugation of the medium (Fig. 34A, lane 4). The control proteins, both 

acylation mutants, Δmyr-HASPB-N18-GFP (Fig. 34B) and Δpalm-HASPB-

N18-GFP (Fig. 34C), were compared with HASPB-N18-GFP. As expected, 
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both mutants could neither be detected on the cell surface (Fig. 34,B and C, 

lanes 2) nor in the cell culture supernatants (Fig. 34,B and C, lanes 3). 

Furthermore, no extracellular material was found in the membrane sediments 

of Δmyr-HASPB-N18-GFP (Fig. 34,panel B, lane 5) and Δpalm-HASPB-N18-

GFP (Fig. 34, panel C, lane 5) expressing CHO cells and in the supernatants 

following ultracentrifugation of the medium (Fig. 34,B and C, lanes 4), 

respectively. Taken together, these results indicate that HASPB can be found 

in extracellular vesicles obtained following ultracentrifugation of cell culture 

supernatants.  

 

3.4.3 Flotation of HASPB-containing vesicles in Nycodenz gradients 

 
In order to discriminate aggregates from vesicles containing HASPB, the 

sedimentable material (section 3.4.2) was analyzed in Nycodenz flotation 

gradients. This membrane sediment was dissolved in Nycodenz to obtain a 

40% Nycodenz solution as load in the bottom of the centrifuge tube (Fig. 35A, 

fraction (#) 3). A 30% and 0% Nycodenz solution (Fig. 35A, fraction (#) 2 and 

fraction (#) 1) were layered on top of the load fraction in order to achieve a 

0%/30% interphase to recover and concentrate vesicles. As illustrated in 

Fig. 35B, lane 2, the majority of the HASPB-N18-GFP fusion protein was 

found in the 0%/30% interphase (fraction 1) containing a density of 

∼1.14 g/ml. Since aggregates have a higher density, HASPB seems to be 

associated with low-density vesicles. Together, these results strongly suggest 

that the sedimentable material (membrane sediment) contains HASPB-

associated vesicles that are released to the extracellular space. 
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Fig. 35 Analysis of HASPB-N18-GFP-containing vesicles in Nycodenz gradients. 

(A) Schematic description of Nycodenz gradients. CHO cells expressing HASPB-

N18-GFP were grown in 10 cm plates in the presence of 1 µg/ml doxicycline for 

48 hours at 37°C. Cell culture supernatants were centrifuged at 100,000 g for 1 hour. 

The membrane sediments were mixed with 80% Nycodenz to give a 40% load 

sample (fraction (#) 3). This fraction was overlaid with 30% (fraction (#) 2) and 0% 

Nycodenz solutions (fraction (#) 1). The gradient was centrifuged at 48,000 rpm 

(218,438 g) for 4 hours followed by fractionation as indicated. (B) Analysis of cell 

culture supernatants from HASPB-N18-GFP-expressing CHO cells employing 

Nycodenz flotation gradients. Proteins in each fraction were precipitated using TCA. 

The samples (lanes 2-4; 100%, load, lane 1; 0,1%) were separated by SDS-PAGE 

followed by western blotting using affinity-purified anti-GFP antibodies. 
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3.4.4 Characterization of the floated material using different exosomes 
markers 

 
Vesicles found in the extracellular space might be derived through the release 

of exosomes or by plasma membrane shedding/blebbing of microvesicles 

(section 1.3.5) (Freyssinet, 2003; Hugel et al., 2005; Martinez et al., 2005; 

Stoorvogel et al., 2002). In the latter case the plasma membrane forms 

evaginations resulting in vesicles pinching off the cell. By contrast, exosomes 

are derived from MVBs (multi vesicular bodies) that are formed through 

invaginations of endosomal membranes (Greco et al., 2001; Thery et al., 

2002). MVBs consist of three endosomal sorting complexes required for 

transport, so called ESCRT I-III and represent endocytic intermediates (Greco 

et al., 2001; Thery et al., 2002). They release vesicles termed as exosomes 

into the extracellular space upon fusion with the plasma membrane. To 

monitor HASPB-containing vesicles regarding their origin, the HASPB-

containing vesicle fraction was characterized with different exosomes markers 

(Stoorvogel et al., 2002). As expected, extracellular vesicles were found in 

fractions obtained from CHO wild-type (Fig. 36, lane 2, upper panel) and CHO 

K3 cells (Fig. 36, lane 6, upper panel), respectively. In agreement with 

previous findings (section 3.4.2) since Δpalm-HASPB-N18-GFP was absent 

from the membrane sediment, no extracellular vesicles were detectable 

(Fig. 36, lane 10, upper panel). As illustrated in Fig. 36 two MVB-pathway 

components were found in vesicle fractions derived from CHO wild-type, CHO 

K3 and CHO Δpalm-HASPB-N18-GFP. TSG101 (Babst et al., 2000; Garrus 

et al., 2001) (Fig. 36, lanes 2, 6 and 10, middle panel), the mammalian 

homolog to Vps23, one of the major components of the ESCRT-1 complex 

and Alix (Chatellard-Causse et al., 2002; Pisitkun et al., 2004) (Fig. 36, 

lanes 2, 6 and 10, lower panel), an ESCRT-III binding partner, were 

detectable.  
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Fig. 36 Detection of various exosomes markers in HASPB-containing vesicle fractions. 

CHO cells expressing HASPB-N18-GFP and Δpalm-HASPB-N18-GFP as well as 

CHO K3 mutant cells were grown in 10 cm plates in the presence of 1 µg/ml 

doxicycline for 48 hours at 37°C. Cell culture supernatants were subjected to 

centrifugation at 100,000 g. Vesicles in the resulting membrane sediments were 

concentrated by flotation in a Nycodenz step gradient as described in the ‘Material 

and Methods’ section. To verify exosomes, antibodies against TSG101 (Garrus et al., 

2001) and Alix (Chatellard-Causse et al., 2002) were used. To detect exosomes-

released proteins and cytosolic proteins, antibodies directed against Hsc70 

(Whetstone and Lingwood, 2003) and GAPDH (Elbashir et al., 2001) were used. 

Three fractions were generated and analyzed for each cell line: #1 (lanes 2, 6 and 

10); #2 (lanes 3, 7 and 11); #3 (lanes 4, 8 and 12). The samples (fractions, 100%; 

load, lanes 1, 5 and 9, 0,1%) were separated by SDS-PAGE following western 

blotting using the antibodies indicated. 

 

Importantly, these markers were enriched in the vesicle fractions. Further-

more, Hsc 70 (Whetstone and Lingwood, 2003) (Fig. 36, lanes 2, 6 and 10, 

fourth panel), a chaperone of the heat shock family and a typically exosomes-

released protein was also, but to a much lower extent, present in these 

vesicle fractions. Quantitatively more amounts were found in the input fraction 

(lanes 1, 5 and 9, fourth panel). In contrast, a cytosolic housekeeping enzyme 

essential for glycolysis, GAPDH (Elbashir et al., 2001) (Fig. 36, lanes 1, 5 and 

9, second panel) was only detectable in the input fraction. Interestingly, 
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TSG101, Hsc70 and Alix were enriched in the vesicle fraction obtained from 

CHO K3 cells compared to CHO wild-type cells and CHO cells expressing the 

palmitoylation mutant. This suggests that CHO K3 cells produce substantially 

more amounts of vesicles rather than vesicles containing quantitatively more 

HASPB. In summary, these results are consistent with HASPB-containing 

vesicles being released by the MVB machinery, i.e. HASPB-N18-GFP might 

be exported in exosomes. 

 

3.4.5 HASPB-N18-GFP is localized in the lumen of extracellular vesicles 
as revealed by protease protection experiments 

 
To this point the experiments suggest that HASPB is exported via vesicles 

being released by the MVB machinery. To verify the localization of HASPB-

N18-GFP in these vesicles protease protection experiments were performed.  

 

 
 
Fig. 37 Protease protection experiments of HASPB-containing vesicles. CHO cells 

expressing HASPB-N18-GFP were grown in 10 cm plates in the presence of 1 µg/ml 

doxicycline for 48 hours at 37°C. Cell culture supernatants were centrifuged at 

100,000 g for 1 hour and the resulting membrane sediments were subjected to 

protease treatment in absence (lanes 1-3) and presence of detergent (lane 4), 

respectively. Samples (lanes 1-4, 100%) were separated by SDS-PAGE followed by 

western blotting using affinity-purified anti-GFP antibodies.  

 

Upon addition of the protease only small parts of the HASPB-N18-GFP fusion 

protein were digested (Fig. 37, compare lane 1, input material, with lane 2). 

As control, HASPB-N18-GFP remained protected when directly adding the 
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protease inhibitor together with the protease (Fig. 37, lane 3). Importantly, the 

protected protein was accessible by the protease only upon treatment of the 

vesicles with detergent (Fig. 37, lane 4). Together, this experiment demon-

strates that HASPB-N18-GFP is associated with the inner leaflet of the vesicle 

membrane suggesting that HASPB-N18-GFP is initially located on the inner 

leaflet of the plasma membrane from where it is delivered into vesicles being 

released by the MVB sorting machinery into the extracellular space.  

 

3.4.6 Quantitative analysis of extracellular vesicles containing various 
HASPB reporter molecules  

 
In order to confirm the presence of other HASPB reporter molecules in 

extracellular vesicles, Nycodenz flotation gradients were performed. As shown 

in Fig. 38A, lane 2, besides HASPB-N18-GFP derived from CHO wild-type 

cells (upper panel), HASPB-N18-GFP derived from CHO K3 cells (second 

panel from top) and HASPB-GFP full length (lower panel) expressed from 

CHO wild-type cells were found in extracellular vesicles as well. Compared to 

the membrane sediments (Fig. 38A, lane 5), the enrichment of the various 

reporter molecules in the vesicle fractions was clearly visible. The controls, 

both acylation mutants (Δpalm-HASPB-N18-GFP and Δmyr-HASPB-N18-

GFP) (Fig. 38A, lane 2, third and fourth panel from top) as well as GFP alone 

(Fig. 38A, lane 2, fifth panel from top) were absent from the vesicle fractions. 

Not surprisingly, no material was detectable in the membrane sediments 

(Fig. 38A, lane 5 in each panel). In agreement, the quantitative analysis of 

extracellular vesicles containing the various reporter molecules (Fig. 38, 

panel B) confirmed this result. Interestingly, a pronounced amount of 

extracellular HASPB-containing vesicles was observed for CHO K3 cells 

compared to CHO wild-type and CHO cells expressing HASPB-GFP full 

length, respectively. This observation is in line with the result obtained in 

section 3.4.4 indicating that CHO K3 cells produce quantitatively more 

amounts of vesicles that are released into the extracellular space.  
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Fig. 38 Analysis of extracellular vesicles containing various HASPB reporter molecules 

employing Nycodenz flotation gradients. (A) CHO cells expressing various 

reporter molecules were grown in 10 cm plates in the presence of 1 µg/ml doxicycline 

for 48 hours at 37°C. The corresponding cell culture supernatants were centrifuged at 

100,000 g for 1 hour (membrane sediment, lanes 5). The resulting membrane 

sediments were subjected to Nycodenz flotation gradients as described in the 

‘Material and Methods’ section and proteins in each fraction were precipitated using 

TCA. The samples (lanes 2-4, 100%; load, lane 1, 0,1%) were separated by SDS-

PAGE followed by western blotting using affinity-purified anti-GFP antibodies. 

(B) Quantitative analysis of extracellular vesicles containing various HASPB reporter 

molecules. HASPB-N18-GFP-containing vesicles were set to 100%.  

 

3.4.7 Quantitative analysis of extracellular vesicles containing FGF-2 
and Galectin-1  

 
As described previously galectin counter receptors promote the directional 

transport of Galectin-1 across the plasma membrane (Seelenmeyer et al., 

2005). Furthermore, galectins have been shown to accumulate directly below 

the plasma membrane followed by an export mechanism that appears to 

involve the formation of membrane-bound vesicles that pinch off before being 

released into the extracellular space (Cooper and Barondes, 1990; Hughes, 

1999; Mehul and Hughes, 1997; Sato et al., 1993). This mechanism 

distinguishes Galectin-1 export from FGF-2 export, as there is no evidence 
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that this protein is packaged into such vesicles (Cooper and Barondes, 1990; 

Hughes, 1999; Mehul and Hughes, 1997; Sato et al., 1993). In 

correspondence to Galectin-1, FGF-2 was shown to translocate to the outer 

surface of the plasma membrane by direct translocation across the plasma 

membrane (Schäfer et al., 2004; Zehe et al., 2006). The secreted FGF-2 

population then accumulates in large HSPG-containing protein clusters on the 

extracellular surface of the plasma membrane (Engling et al., 2002; Zehe et 

al., 2006). As currently available, these large protein clusters were propagated 

to be exovesicles suggesting that vesicle shedding represent a mechanism for 

the release of biologically active FGF-2 from viable cells (Taverna et al., 

2003). To assess the relevance of Galectin-1 and FGF-2 export in the context 

of the presence of extracellular vesicles in cell culture supernatants from CHO 

cells, cell lines expressing the corresponding proteins were analyzed 

regarding extracellular vesicles employing Nycodenz flotation gradients. As 

shown in Fig. 39A, lane 2, only HASPB-N18-GFP could be found in 

extracellular vesicles. Other unconventionally secreted proteins such as  

FGF-2 and Galectin-1 were absent from the vesicle fractions (Fig. 39A, 

lane 2, second and third panel). Not surprisingly, a similarly result was 

observed in the membrane sediments (Fig. 39A, lanes 5). In agreement, the 

control proteins (Δpalm-HASPB-N18-GFP and GFP alone) (Fig. 39A, lanes 2 

and 5, fourth and fifth panel) were not detectable in these fractions. A quanti-

tative analysis (Fig. 39, panel B) of extracellular vesicles containing FGF-2 

and Galectin-1 provided additional indications that only HASPB-N18-GFP was 

found in extracellular vesicles. This observation confirms previous findings, 

indicating that only the SH4 protein HASPB is delivered into vesicles that are 

released into the extracellular space.  
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Fig. 39 Analysis of extracellular vesicles containing FGF-2 and Galectin-1 employing 

Nycodenz flotation gradients. (A) Cell culture supernatants from CHO cells 

expressing HASPB-N18-GFP, FGF-2-GFP, Galectin-1-GFP, Δpalm-HASPB-N18-

GFP and GFP were subjected to Nycodenz flotation gradients as described in the 

‘Material and Methods’ section. Proteins in each fraction were precipitated using TCA. 

The samples (lanes 2-4; 100%; load, lane 1; 0,1%) were separated by SDS-PAGE 

followed by western blotting using affinity-purified anti-GFP antibodies. 

(B) Quantitative analysis of extracellular vesicles containing FGF-2-GFP and 

Galectin-1-GFP. HASPB-N18-GFP-containing vesicles were set to 100%.  

  

3.4.8 Extracellular HASPB-containing vesicles have an apparent 
density similar to that of exosomes 

 

To validate the notion that HASPB might be exported via exosomes, the 

buyont density was determined and compared with the reported density of 

exosomes ranging from 1.14 to 1.18 g/ml (Heijnen et al., 1999). In order to 

achieve a more precise separation of vesicles derived from different origins 

continuous sucrose gradients were performed (Fig. 40, panel B).  
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Fig. 40 Analysis of HASPB-containing vesicles in continuous sucrose gradients. 

(A) CHO cells expressing HASPB-N18-GFP were grown in 10 cm plates in the 

presence of 1 µg/ml doxicycline for 48 hours at 37°C. Cell culture supernatants were 

centrifuged at 100,000 g for 1 hour. The membrane sediments were dissolved and 

subjected to a continuous sucrose gradient at 26,000 rpm (65,000 g) for 16 hours. 

Proteins in each fraction (lanes 1-11) were precipitated using TCA, separated by 

SDS-PAGE and analyzed by western blotting for the presence of HASPB-N18-GFP 

using affinity-purified anti-GFP antibodies. (B) The linearity of the gradient was shown 

by the refraction index on the x-axis and the density on the y-axis.  

 

As illustrated in Fig. 40, panel A, HASPB-containing vesicles were present in 

fractions equilibrating at densities of ∼1.13 g/ml and ∼1.15 g/ml (fraction 5 

and 6) on the sucrose gradient. This observation is consistent with the 

exosomal density of ∼1.15 g/ml (Heijnen et al., 1999). Taken together, the 

experiment indicates that HASPB-containing vesicles might represent 

exosomes that are released into the extracellular space upon fusion of MVBs 

with the plasma membrane. 

 

 

 

 

 

 

 



Results 
 

147 

3.5 The role of Rock kinase on HASPB-N18-GFP-induced 

plasma membrane blebbing and vesicle-associated 

HASPB-N18-GFP 

3.5.1 HASPB-N18-GFP mediated plasma membrane blebbing is blocked 
in the presence of Rock inhibitor 

 

Heterologous expression of HASPB-N18-GFP fusion protein induces 

curvature of the plasma membrane resulting in the formation of plasma 

membrane blebs (Fig. 33) (Tournaviti et al., 2006 submitted). Plasma 

membrane blebs are cell protrusions generated by the osmotic pressure of 

the cell interior upon localized destabilization of the cortical actin meshwork at 

the plasma membrane (Charras et al., 2005; Cunningham, 1995; Sheetz 

et al., 2006). These reorganizations of the plasma membrane require the 

membrane association of the SH4 domain in HASPB depend on the integrity 

of F-actin as well as microtubule architecture and are regulated by the 

activities of Rock kinase and Myosin-II ATPase (Tournaviti et al., 2006 

submitted). Since HASPB-induced plasma membrane blebs are highly 

dynamic and display distinct kinetics during bleb formation and retraction 

(Tournaviti et al., 2006 submitted) it has to be clarified whether this process 

may promote the shedding of plasma membrane-derived HASPB-containing 

vesicles that are released into the extracellular space. To investigate whether 

extracellular vesicles were still detectable in the absence of plasma 

membrane blebbing, it was crucial to block plasma membrane bleb formation. 

In this regard, the cells were treated with Rock inhibitor (Coleman et al., 2001; 

Leverrier and Ridley, 2001) and analyzed employing confocal microscopy. As 

illustrated in Fig. 41, panel B, plasma membrane blebbing was completely 

blocked in presence of Rock inhibitor (Y-27632). In contrast, under control 

condition, the formation of plasma membrane blebs distributed over the whole 

plasma membrane was clearly visible (Fig. 41, panel A).  
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Fig. 41 HASPB-N18-GFP induced plasma membrane bleb formation is blocked in the 

presence of Rock inhibitor as determined by live confocal microscopy. 

CHO cells expressing HASPB-N18-GFP were grown in 8-chamber plates in the 

presence of 1 µg/ml doxicycline for 48 hours at 37°C. GFP-derived fluorescence in 

presence and absence of 90 µM Rock inhibitor (Y27632) for 2 hours was viewed with 

a Zeiss 510 confocal microscope. (A) HASPB-N18-GFP without Y-27632 (control) 

(B) HASPB-N18-GFP with 90 µM Y-27632 

 

3.5.2 Levels of HASPB-containing extracellular vesicles only partially 
decrease in the presence of Rock inhibitor 

 
To further assess whether the prevention of plasma membrane blebbing by 

Rock inhibitor has an impact on the vesicle-associated HASPB population, 

HASPB-N18-GFP expressing CHO cells were analyzed in the presence and 

absence of Rock inhibitor employing Nycodenz flotation gradients. CHO cells 

expressing HASPB-N18-GFP were treated with Rock inhibitor for 30 minutes 

to block plasma membrane bleb formation. Subsequently the cells were 

incubated for two hours in the presence and absence of Rock inhibitor. As 

control, cells expressing HASPB-N18-GFP were not at all treated with Rock 

inhibitor. As shown in Fig. 42A, lane 2, upper panel, a reduction of HASPB-

containing vesicles in the presence of Rock inhibitor could be observed 

(Fig. 42A, lane 2, middle panel). Similarly, extracellular material found in the 
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membrane sediments was notably reduced in the presence of Rock inhibitor 

(Fig. 42A, lanes 5).  

 

 
 
Fig. 42 Levels of HASPB-containing extracellular vesicles in the presence and absence 

of Rock inhibitor employing Nycodenz flotation gradients. (A) CHO cells 

expressing HASPB-N18-GFP were grown in 10 cm plates in the presence of 1 µg/ml 

doxicycline for 48 hours at 37°C (control). In parallel, cells were treated for 30 min 

with 90 µM Rock inhibitor (Y-27632) followed by a treatment of 2 hours in absence 

(recovery) and presence of Y-27632. Cell culture supernatants were then centrifuged 

at 100,000 g for 1 hour (lanes 5; 100%). The resulting membrane sediments were 

subjected to Nycodenz flotation gradients. Proteins in each fraction were precipitated 

using TCA and samples (lanes 2-4; 100%; load, lane 1; 0.1%) were separated by 

SDS-PAGE followed by western blotting using affinity-purified anti-GFP antibodies. 

(B) Quantitative analysis of HASPB-containing extracellular vesicles in absence and 

presence of Y-27632. HASPB-N18-GFP-containing vesicles in the absence of Rock 

inhibitor were set to 100% (control). 

 

A quantitative analysis of HASPB-containing extracellular vesicles confirmed 

these data. Consistently, the presence of Rock inhibitor resulted in a decrease 

of HASPB-containing vesicles to about 50% (Fig. 42, panel B). Surprisingly, 

HASPB-containing vesicles were notably increased when the cells were 

treated only for 30 minutes with Rock inhibitor followed by incubation for two 

hours in absence of the inhibitor as recovery (Fig. 42, panel B). This suggests 

that plasma membrane blebbing, at least partially, leads to shedding of 
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plasma membrane-derived HASPB-containing vesicles into the cell culture 

supernatants of CHO cells. Hence, in contrast to the complete prevention of 

HASPB-mediated plasma membrane blebbing in presence of Rock inhibitor 

as observed by confocal microscopy, HASPB-containing vesicles were still 

detectable. Together, these findings confirm the presence of a HASPB-

containing vesicle population that does not result from plasma membrane 

blebbing leading to the shedding of plasma membrane-derived vesicles into 

the extracellular space.  

 

3.6 Characterization of Src, Fyn, Yes and Lck regarding 

plasma membrane blebbing and extracellular vesicles 

 

3.6.1 Plasma membrane blebs are also induced by Src, Fyn, Yes and 
Lck 

 
HASPB contains an N-terminal SH4 domain that becomes dually acylated by 

myristoylation of glycine 2 and palmitoylation of cysteine 5 (Denny et al., 

2000). These posttranslational modifications are essential for HASPB target-

ing to the cell surface of Leishmania parasites (Denny et al., 2000; Pimenta et 

al., 1994) as well as of mammalian cells (Denny et al., 2000). Furthermore, 

the membrane association of the SH4 domain in HASPB induces curvature of 

the plasma membrane resulting in the formation of plasma membrane blebs 

(Tournaviti et al., 2006 submitted). Moreover, as demonstrated so far, it has 

been well documented that HASPB is detectable in extracellular vesicles 

being released by the MVB sorting machinery. Based on these observations, 

it was crucial to investigate whether the SH4 domains of plasma membrane-

targeted protooncogenes of the Src kinase family (Bijlmakers and Marsh, 

2003) induce plasma membrane blebbing in a fashion similar to HASPB. 

These proteins become myristoylated at glycine 2 and, with Src at exception, 

palmitoylated at cysteine 3 (Fig. 43).  
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Fig. 43 Schematic description of SH4 proteins. Overview about various SH4-containing 

reporter constructs. 

 

Similar to HASPB-expressing CHO cells analogous stable CHO cell lines 

expressing the SH4 domains of Src, Fyn, Yes and Lck were analyzed 

employing live imaging (performed by Stella Tournaviti) (Fig. 44). 

Interestingly, coincident with HASPB (Fig. 44, panel A), Yes, a typical 

representative of the Src kinase family, induced curvature of the plasma 

membrane of CHO cells resulting in the formation of plasma membrane blebs 

(Fig. 44, panel B). 
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Fig. 44 Analysis of plasma membrane blebs induced by HASPB-N18-GFP and Yes-N16-

GFP employing live confocal microscopy. CHO cells expressing HASPB-N18-

GFP and Yes-N16-GFP, respectively, were grown in 8-chamber plates in the 

presence of 1 µg/ml doxicycline for 48 hours at 37°C. GFP-derived fluorescence was 

viewed with a Zeiss LSM 510 confocal microscope. (A) HASPB-N18-GFP; (B) Yes-

N16-GFP 

 

3.6.2 Quantitative analysis of extracellular vesicles containing Src, Fyn, 
Yes and Lck 

 
To evaluate the notion that the SH4 proteins of the Src-family might be 

present in extracellular vesicles since they are able to induce plasma 

membrane blebbing, membrane sediments obtained from cell culture 

supernatants of CHO cells expressing Src, Fyn, Yes and Lck were analyzed 

employing Nycodenz flotation gradients. In agreement with previous findings, 

HASPB-N18-GFP was found in extracellular vesicles as shown in Fig. 45, 

panel A, lanes 2 and 5. By contrast, the amount of Src-, Fyn-, Yes- and Lck-

containing extracellular vesicles was notably reduced compared to the 

amount of HASPB-containing extracellular vesicles (Fig. 45, panel A, lanes 2). 

Similarly, less Src-, Fyn-, Yes- and Lck-containing extracellular material was 

detectable in the membrane sediments (Fig. 45, panel A, lanes 5). As 
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expected, Δpalm-HASPB-N18-GFP was absent from these fractions (Fig. 45, 

panel A, lanes 2 and 5, lower panel). 

 

 
 
Fig. 45 Levels of extracellular vesicles containing Src, Fyn, Yes and Lck employing 

Nycodenz flotation gradients. (A) CHO cells expressing HASPB-, Src-, Fyn-, Yes-, 

Lck- and Δpalm-GFP fusion proteins were grown in 10 cm plates in the presence of 

1 µg/ml doxicycline for 48 hours at 37°C. The corresponding cell culture supernatants 

were centrifuged at 100,000 g for 1 hour and the resulting membrane sediments 

(lanes 5, 100%) were subjected to Nycodenz flotation gradients at 48,000 rpm for 

4 hours. Proteins in each fraction were precipitated using TCA and samples (lanes  

2-4, 100%; load, lane 1, 0.1%) were separated by SDS-PAGE followed by western 

blotting using affinity-purified anti-GFP antibodies. (B) Quantitative analysis of 

extracellular vesicles containing Src, Fyn, Yes and Lck. HASPB-N18-GFP containing 

vesicles were set to 100%. 

 

In agreement, a quantitative analysis of extracellular vesicles containing Src, 

Fyn, Yes and Lck confirmed this result (Fig. 45, panel B). Compared to 

HASPB-containing vesicles normalized to the corresponding load and set to 

100%, Src-, Fyn-, Yes- and Lck-containing extracellular vesicles were largely 

reduced to about ∼20-70% as compared to wild-type levels. These data 

provide evidence for the presence of HASPB in extracellular vesicles 

suggesting that extracellular vesicles containing Src, Fyn, Yes and Lck might 
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be due to plasma membrane blebbing, a process promoting the shedding of 

plasma membrane-derived vesicles that are released into the extracellular 

space.  

 

3.6.3 The extracellular vesicle populations containing Src, Fyn, Yes and 
Lck are notably reduced in presence of Rock inhibitor compared 
to the HASPB-containing vesicle population 

 

To assess whether extracellular vesicles containing Src, Fyn, Yes and Lck are 

reflecting membrane-bound vesicles pinching off the cell due to plasma 

membrane blebbing, CHO cells expressing these proteins were treated with 

Rock inhibitor. Using this approach the Src-, Fyn-, Yes- and Lck-containing 

vesicle populations were expected to be absent from vesicle fractions 

employing Nycodenz flotation gradients since plasma membrane bleb 

formation was completely blocked in the presence of Rock inhibitor as 

revealed by confocal microscopy. Consistent with previous findings the 

HASPB-N18-GFP fusion protein was the most prominent protein found in 

extracellular vesicles (Fig. 46A, lane 2, first panel from top). As expected, the 

amount of extracellular HASPB-containing vesicles was reduced in the 

presence of Rock inhibitor (Fig. 46B, lane 2, first panel from top, compare 

Fig. 42). This observation was in line with the result obtained from Src, Fyn, 

Yes and Lck. Similarly, the amount of extracellular vesicles containing Src, 

Fyn, Yes and Lck was reduced in the presence of Rock inhibitor (compare 

Fig. 46, panel A and B).  
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Fig. 46 Biochemical analysis of extracellular vesicles containing Src, Fyn, Yes and Lck 

in the absence and presence of Rock inhibitor. CHO cells expressing HASPB-, 

Src-, Fyn-, Yes- and Lck-GFP fusion proteins were grown in the presence of 1 µg/ml 

doxicycline for 48 hours at 37°C. In parallel, cells were cultured in the presence of 

Rock inhibitor. Membrane sediments obtained following ultracentrifugation of the cell 

culture supernatants were analyzed employing Nycodenz flotation gradients. The 

experiment was conducted exactly as described in the ‘Material and Methods’ 

section. Proteins in each fraction were precipitated using TCA and samples (lanes  

2-4, 100%; load, lanes 1, 0.1%) were separated by SDS-PAGE following western 

blotting using affinity-purified anti-GFP antibodies.  

 

Importantly, a quantitative analysis of extracellular vesicles containing the 

various SH4 proteins revealed that the extracellular vesicle populations 

containing Src, Fyn, Yes and Lck were notably reduced compared to the 

HASPB-containing vesicle population in the presence of Rock inhibitor 

(Fig. 47, compare blue bars with red bars). Indeed, HASPB-containing 

vesicles were only reduced to about 90% as compared to Src-, Fyn-, Yes- and 

Lck-containing vesicles with to about 0-40% in the presence of Rock inhibitor. 

Overall, in correspondence with the observation obtained in section 3.5.2 and 

3.6.2, plasma membrane blebbing leads to shedding of plasma membrane-

derived vesicles containing the various SH4 proteins that are released into the 

extracellular space. Importantly, only in case of Src, Fyn, Yes and Lck these 
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vesicle populations were notably reduced by prevention of plasma membrane 

blebbing in presence of Rock inhibitor. Together, these findings confirm that 

only the SH4 protein HASPB is delivered into vesicles being released by the 

MVB sorting machinery and that these vesicles are not derived from plasma 

membrane blebbing leading to the shedding of plasma membrane-derived 

vesicles into the extracellular space.  

 

 
 
Fig. 47 Quantitative analysis of extracellular vesicles containing Src, Fyn, Yes and Lck 

in the absence and presence of Rock inhibitor. The experiments were exactly 

conducted as described in the legend of Fig. 46. HASPB-N18-GFP containing 

vesicles were set to 100%. 
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3.7 Characterization of HASPB-containing vesicles derived 

from HeLa cell lines 

3.7.1 HASPB-N18-GFP mediated plasma membrane blebbing is notably 
reduced in HeLa cells compared to CHO cells 

 

To test the functional requirement of proteins involved in the MVB machinery 

regarding HASPB-containing extracellular vesicles, an antisense RNA 

approach was planned. Since the CHO genome is not fully sequenced the 

human HeLa cell line was used. To investigate whether HeLa cells were able 

to induce plasma membrane curvature resulting in the formation of plasma 

membrane blebs, confocal microscopy was performed. Consistent with the 

phenotype observed in sections 3.4.1 and 3.6.1 heterologous expression of 

HASPB-N18-GFP in CHO cells resulted in the formation of highly dynamic 

plasma membrane blebs (Fig. 48, panel B). By contrast, plasma membrane 

blebbing in HeLa cells expressing HASPB-N18-GFP was notably reduced 

(Fig. 48, panel A). 

 

     
 
Fig. 48 Analysis of HASPB-mediated plasma membrane blebbing in HeLa and CHO 

cells as analyzed by live confocal microscopy. HeLa cells and CHO cells both 

expressing HASPB-N18-GFP were grown in 8-chamber plates in the presence of 

1 µg/ml doxicycline for 48 hours at 37°C. GFP-derived fluorescence was viewed with 

a Zeiss 510 confocal microscope. (A) HeLa cells expressing HASPB-N18-GFP; 

(B) CHO cells expressing HASPB-N18-GFP 
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3.7.2 Flotation of HASPB-containing extracellular vesicles derived from 
HeLa cells in Nycodenz gradients 

 

To validate the notion that HASPB being expressed in HeLa cells is exported 

via vesicles, Nycodenz flotation gradients were performed. In correspondence 

with the observation obtained from CHO cells regarding HASPB-containing 

extracellular vesicles a similarly pronounced effect was observed for HeLa 

cells (Fig. 49A, lanes 2, compare upper and lower panel). Interestingly, a 

quantitative analysis of extracellular vesicles containing HASPB, which has 

been expressed in both cell lines, revealed that the amount of HASPB-

containing extracellular vesicles derived from HeLa cells was reduced to 

about 40% as compared to the amount derived from CHO cells (Fig. 49, 

panel B). This result was expected since HASPB-mediated plasma membrane 

blebbing was largely reduced in HeLa cells. Consequently, less amounts of 

HASPB-containing extracellular vesicles were detectable. This observation 

confirms previous findings indicating that a substantial amount of HASPB-

containing extracellular vesicles are a consequence of plasma membrane 

blebbing, a process promoting the shedding of plasma membrane-derived 

HASPB-containing vesicles being released into the extracellular space.  
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Fig. 49 Levels of HASPB-N18-GFP-containing extracellular vesicles derived from CHO 

and HeLa cells employing Nycodenz flotation gradients. (A) CHO and HeLa cells 

expressing HASPB-N18-GFP were grown in 10 cm plates in the presence of 1 µg/ml 

doxicycline for 48 hours at 37°C. Cell culture supernatants were centrifuged at 

100,000 g for 1 hour. The resulting membrane sediments were subjected to 

Nycodenz flotation gradients as described in the ‘Material and Methods’ section. 

Following precipitation of the proteins, the samples (lanes 2-4, 100%; load, lanes 1, 

0.1%) were separated by SDS-PAGE followed by western blotting using affinity-

purified anti-GFP antibodies. (B) Quantitative analysis of extracellular vesicles from 

CHO and HeLa cells expressing HASPB-N18-GFP. HASPB-containing vesicles 

derived from CHO cells were set to 100%. 

 

3.7.3 HASPB-containing extracellular vesicles derived from HeLa cells 
have an apparent density similar to that of exosomes 

 

To confirm the concept that HASPB-containing extracellular vesicles derived 

from CHO and HeLa cells, respectively, are of the same origin the buyont 

density was analyzed employing continuous sucrose gradients (Fig. 50, 

panel B).                 
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Fig. 50 Analysis of HASPB-containing extracellular vesicles derived from HeLa cells 

employing continuous sucrose gradients. (A) HeLa cells expressing HASPB-N18-

GFP were grown in 10 cm plates in the presence of 1 µg/ml doxicycline for 48 hours 

at 37°C. Cell culture supernatants were centrifuged at 100,000 g for 1 hour. The 

Membrane sediments were dissolved and subjected to a continuous sucrose gradient 

at 26,000 rpm (65,000 g) for 16 hours. Proteins in each fraction were precipitated 

using TCA and samples (lanes 1-11, 100%; load, lane 1, 0.1%) were separated by 

SDS-PAGE and analyzed by western blotting for the presence of HASPB-N18-GFP 

using affinity-purified anti-GFP antibodies. (B) The linearity of the gradient was shown 

by the refraction index on the x-axis and the density on the y-axis.  

 

As expected, the density of HASPB-containing extracellular vesicles derived 

from HeLa cells was consistent with the density revealed for HASPB-

containing extracellular vesicles derived from CHO cells (Fig. 40, panel A). 

Indeed, the density of 1.13 g/ml of extracellular vesicles containing HASPB, 

which has been expressed in HeLa cells (Fig. 50, panel A) is similar to the 

exosomal density range of ∼1.14 g/ml to ∼1.18 g/ml (Heijnen et al., 1999). 

Together, HASPB-N18-GFP fusion proteins are exported from HASPB 
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expressing HeLa cells as well as from CHO cells via vesicles of similar origin. 

Moreover, it is likely that these vesicles might represent exosomes that are 

released by the MVB sorting machinery into the extracellular space. 

 

3.7.4 Confocal images of extracellular vesicles containing various 
reporter molecules 

 
To investigate whether HASPB-containing extracellular vesicles could be 

visualized based on the GFP-derived fluorescence of the fusion proteins, 

membrane sediments obtained following ultracentrifugation of cell culture 

supernatants from various cell lines were analyzed employing confocal 

microscopy. As expected, HASPB-containing extracellular vesicles derived 

from CHO cells were found as shown by the green dots in Fig. 51, panel B. 

Not surprisingly, extracellular vesicles were observed from HeLa cells 

expressing HASPB-N18-GFP (Fig. 51, panel A) and from CHO K3 cells 

(Fig. 51, panel C) as well. The six-fold magnification revealed clearly the 

presence of these HASPB-containing vesicles (Fig. 51, panel K, L and M) 

derived from the corresponding cell lines. Consistent with previous findings, 

quite less amounts of extracellular vesicles containing Src, Fyn, Yes and Lck 

were detectable (Fig. 51, panel G-J). Furthermore, no extracellular vesicles 

containing the control proteins, the acylation mutants (Δpalm-HASPB-N18-

GFP and Δmyr-HASPB-N18-GFP) (Fig. 51, panel D and E) and GFP alone 

(Fig. 51, panel F), respectively, were visible. These observations are in line 

with the biochemical data indicating that only the SH4 protein HASPB is 

delivered into vesicles being released by the MVB sorting machinery into the 

extracellular space.  
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Fig. 51 Visualization of extracellular vesicles containing various reporter molecules 

employing confocal microscopy. Membrane sediments from various cell lines were 

diluted in PBS and subjected to poly-lysine coated coverslips. GFP-derived 

fluorescence was viewed with a Zeiss LSM 510 confocal microscope. (A) HeLa cells 

expressing HASPB-N18-GFP; (B) CHO cells expressing HASPB-N18-GFP; (C) CHO 

K3 cells expressing HASPB-N18-GFP; (D) CHO cells expressing Δpalm-HASPB-

N18-GFP; (E) CHO cells expressing Δmyr-HASPB-N18-GFP; (F) CHO cells express-

ing GFP; (G) CHO cells expressing Src-N16-GFP; (H) CHO cells expressing Fyn-

N16-GFP; (I) CHO cells expressing Yes-N16-GFP; (J) CHO cells expressing Lck-

N16-GFP; (K) HeLa cells expressing HASPB-N18-GFP, six-fold magnification; 

(L) CHO cells expressing HASPB-N18-GFP, six-fold magnification; (M) CHO K3 cells 

expressing HASPB-N18-GFP, six-fold magnification. 
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3.7.5 Ultrastructural analysis of extracellular vesicles employing 
electron microscopy 

 

To further confirm the presence of extracellular vesicles, an ultrastructural 

analysis was performed in collaboration with Prof. Zentgraf (DKFZ). 

Microsections of membrane sediments obtained following ultracentrifugation 

of cell culture supernatants from CHO wild-type and CHO K3 cells, 

respectively, were analyzed by electron microscopy.  

 

 
 
Fig. 52 Ultrastructural analysis of extracellular vesicles employing electron 

microsocopy. CHO wild-type and CHO K3 cells were grown in 10 cm plates in 

presence of 1 µg/ml doxicycline for 48 hours at 37 °C. Cell culture supernatants were 

centrifuged at 100.000 g for 1 hour. The resulting membrane sediments were fixed in 

2% glutar aldehyde and sodium cacodylate buffer for 30 min at 4°C. Following 

repeating washing steps for 30 min using ethanol, samples were embedded in Epon 

812 (Ciba). After generating microsections, the staining was performed using uranyl 

acetate and lead citrate. (A) CHO wild-type; (B) CHO K3. 

 

As illustrated in Fig. 52, extracellular vesicles derived from CHO wild-type 

(Fig. 52, panel A) and CHO K3 cells (Fig. 52, panel B) were characterized by 

a diameter between 80 and 300 nm. This range in size indicates that there 

exist two populations of extracellular vesicles. One subpopulation, consisting 
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of vesicles with a diameter of up to 100 nm might represent exosomes. 

Interestingly, this observation corresponds to the reported size for exosomes 

containing diameters between 40 and 100 nm (Stoorvogel et al., 2002). The 

subpopulation of vesicles with a diameter larger than 100 nm might be a 

consequence of plasma membrane blebbing, a process promoting the 

shedding of plasma membrane-derived vesicles that are released into the 

extracellular space.  

 

3.8 Supplementary Figures 

 

        
 
Fig. 53 Intercellular spreading of FGF-2-GFP expressing CHO cells as analyzed by 

FACS. Intercellular spreading was monitored by growing CHOMCAT-TAM2 cells (‘CHO 

wild-type’) with CHOMCAT-TAM2 cells retrovirally transduced with the FGF-2-GFP 

construct in a mixed culture. FGF-2-GFP expression was induced by 1 µg/ml 

doxicycline for 48 hours at 37°C. CHOMCAT-TAM2 cells and CHOMCAT-TAM2 cells 

expressing FGF-2-GFP were gated based on GFP fluorescence and APC-derived 

fluorescence of CHOMCAT-TAM2 cells (green curve) and CHOMCAT-TAM2 cells expressing 

FGF-2-GFP (blue curve) was measured as depicted in the histogram. 

Autofluorescence was measured using CHOMCAT-TAM2 cells treated with antibodies. 
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Fig. 54 Alignment of the cmkor 1 sequence mus musculus vs cmkor 1 sequence 

human. Two primer pairs were designed flanking regions with different homologies 

(purple and blue box). 
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Fig. 55 Alignment of the cmkor 1 sequence mus musculus vs cmkor 1 sequence of 

CHO cells. CHO K3 mRNA was isolated and subjected to RT-PCR using cmkor 1-

specific primers. Following cloning of the corresponding product into the pGemT 

vector, the cmkor 1 gene was sequenced and aligned with the cmkor 1 sequence of 

the mouse genome. 
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Fig. 56 Alignment of the sequenced RT-PCR products obtained from isolation of 

cytoplasmic and total RNA from CHO wild-type and CHO K3 cells. Cytoplasmic 

and total RNA isolated from CHO wild-type and CHO K3 cells were subjected to RT-

PCR using cmkor 1-specific primers. The cDNA products were sequenced and 

aligned with the CHO cmkor 1 sequence (red parts indicate homology). 
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4 Discussion 
 

Transport of most secretory proteins to the extracellular space is mediated by 

the ER/Golgi-dependent secretory pathway (Nickel et al., 2002; Palade, 1975; 

Rothman, 1994; Rothman and Wieland, 1996). In case of soluble factors, the 

principal targeting motifs are N-terminal signal peptides that direct classical 

secretory proteins to the translocation machinery of the ER (Keenan et al., 

2001). However, for a number of soluble factors with defined extracellular 

functions, it has been demonstrated that ER/Golgi-independent routes of 

protein secretion exist (Cleves, 1997; Hughes, 1999; Muesch et al., 1990; 

Nickel, 2003; Nickel, 2005; Prudovsky et al., 2003; Rubartelli and Sitia, 1991). 

Among these, Leishmania HASPB is an unconventionally secreted protein 

that is a component of the surface coat of Leishmania parasites (Alce et al., 

1999; Flinn et al., 1994; McKean et al., 2001). HASPB contains an  

N-terminal SH4 domain that becomes dually acylated by myristoylation of 

glycine 2 and palmitoylation of cysteine 5 (Denny et al., 2000). These post-

translational modifications are essential for HASPB targeting to the plasma 

membrane and subsequent to the cell surface of Leishmania parasites 

(Denny et al., 2000; Pimenta et al., 1994) and mammalian cells (Denny et al., 

2000; Stegmayer et al., 2005). Interestingly, the extreme N-terminus of 

HASPB consisting of 18 amino acids is sufficient for targeting a reporter 

molecule like GFP to the cell surface (Denny et al., 2000) suggesting that 

endogenous factors exist in higher eukaryotes that are exported in a 

mechanistically similar manner. 

The specific aim of this study was to investigate the molecular mechanism of 

HASPB export. In this regard, especially the targeting to the plasma 

membrane and the identification of the subcellular site of membrane 

translocation of HASPB, a process that eventually allows HASPB exposure on 

the cell surface of eukaryotic cells was aimed. This question is of general 

interest since HASPB has been shown to contact intracellular membranes 

such as the Golgi during its biogenesis (Denny et al., 2000) suggesting that 

HASPB associates at least transiently with membranes of the classical 
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secretory pathway. Therefore, even though palmitoylacyltransferases have 

not only been localized to the Golgi but also to the ER and plasma 

membranes (Bijlmakers and Marsh, 2003), it is likely that Golgi membranes 

contain the palmitoyltransferase required for the thioester-based acylation of 

cysteine 5 in the N-terminal SH4 domain of HASPB. From this point on it is 

not clear whether fully acylated HASPB translocates across the membrane of 

the Golgi or whether it is first transported to the plasma membrane associated 

with the cytoplasmic leaflet of secretory vesicles. Even though overall cell 

surface expression of HASPB has been shown not to be affected by brefeldin 

A (Denny et al., 2000), this result does not unequivocally rule out the 

possibility that HASPB is traveling to the plasma membrane associated with 

the cytoplasmic leaflet of TGN-derived secretory vesicles. It is also possible 

that transfer to the plasma membrane involves an intermediate step, in which 

HASPB might be transported from the TGN to the endosomal system from 

where it might get access to the plasma membrane.  

 

A. Direct transport across the plasma membrane of 

 mammalian cells of Leishmania HASPB as revealed by a 

 CHO export mutant 
 

Based on the uncertainties discussed above the aim was to establish an 

experimental system that allows for a quantitative analysis of HASPB cell 

surface expression under conditions where defined steps in HASPB 

biogenesis are blocked. In particular, it was necessary to develop experimen-

tal conditions where dual acylation of the N-terminal SH4 domain of HASPB 

occurs normally, but HASPB export to the outer leaflet of the plasma 

membrane is blocked. In this regard, CHO cells were used as a model system 

as they are well suited for the generation of random somatic mutants. To 

efficiently mutate CHO cells expressing HASPB-N18-GFP in a doxicycline-

dependent manner, retroviral insertion mutagenesis was used. Employing this 

mutagenesis strategy using CD4 as a cell surface marker, mutated cells were 

efficiently enriched by FACS and the isolation of clonal CHO mutants with the 
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desired phenotype was successful. One of these obtained mutants, referred 

to as K3, has been characterized in detail in the current study. 

 

4.1 Transduced CHO cells stably expressing HASPB-N18-

GFP export the fusion protein to the cell surface 

 

A general model system in which HASPB-GFP fusion proteins are expressed 

from a retroviral vector containing a doxicycline/transactivator-sensitive 

element was developed. Following transduction of CHOMCAT-TAM2 cells 

(Engling et al., 2002; Seelenmeyer et al., 2003) that constitutively express 

both an ecotropic retrovirus receptor and a doxicycline-sensitive transactiva-

tor, individual GFP-positive cells were isolated by several rounds of FACS 

sorting. Clonal cell lines genetically modified with HASPB-N18-GFP or other 

control constructs were found to express the reporter molecules in a 

doxicycline-dependent manner at similar levels. As revealed by confocal 

microscopy (Fig. 14, page 100), the N-terminal targeting motif directs the 

HASPB-N18-GFP reporter molecule to the plasma membrane. While the 

palmitoylation mutant (Δpalm-HASPB-N18-GFP) showed a perinuclear 

staining, both Δmyr-HASPB-N18-GFP and non-tagged GFP were character-

ized by cytoplasmic staining. Following translocation to the surface of 

Leishmania parasites, HASPs remain membrane-anchored via their  

N-terminal acyl chains. Based on a robust and efficient FACS-based assay 

(Fig. 15, page 102) (Engling et al., 2002; Seelenmeyer et al., 2003), it was 

possible to quantitatively assess the amount of HASPB-N18-GFP released to 

the extracellular space in living cells. This allowed specific detection of 

secreted HASPB-N18-GFP with affinity-purified anti-GFP antibodies under 

native conditions based on flow cytometry. In this way, GFP-derived 

fluorescence was used to normalize the overall expression of the reporter 

molecule under various experimental conditions, whereas the secreted 

population could be exclusively detected on the cell surface with antibodies 

coupled to a second fluorophore such as allophycocyanin. These data were 

confirmed by a biochemical assessment of the extracellular population of 
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HASPB-N18-GFP in wild-type versus control cells using a membrane-

impermeable biotinylation reagent and streptavidin-based immunopurifcation 

of factors exposed on the cell surface (Fig. 16, page 103). Since dual 

acylation of HASPB-N18-GFP is a critical determinant for plasma membrane 

targeting and export, carbonate extraction analysis (Fig. 17, page 105) were 

performed to test the overall membrane association. In combination with the 

cell surface biotinylation assay these data provide evidence that HASPB-N18-

GFP is targeted to the plasma membrane where it is stably associated and 

finally translocated to the extracellular space. 

 

4.2 HASPB-N18-GFP expressed in CHO K3 mutant cells is 

stably associated with the plasma membrane, but gets 

exported to reduced levels as compared to CHO wild-

type cells  

 

In order to establish a genetic screening procedure to identify potential 

molecular components of the HASPB export machinery, a FACS-based assay 

was developed to identify and isolate export-deficient CHO mutant cells. 

HASPB-N18-GFP-expressing and non-expressing cells present in a mixed 

culture could be distinguished from each other regarding HASPB-N18-GFP 

cell surface staining. As a consequence an identification and isolation of 

export-deficient CHO mutant cells based on FACS sorting was possible. As 

noted above, to efficiently mutate CHO cells expressing HASPB-N18-GFP in 

a doxicycline-dependent manner, retroviral insertion mutagenesis was used. 

Employing the mutagenesis strategy using CD4 as a cell surface marker to 

enrich mutated cells by FACS, a HASPB-N18-GFP mutant CHO cell line (K3) 

could be isolated. It is characterized by a negative HASPB-N18-GFP export 

phenotype, and, quite important for the strategy used, positive for CD4 cell 

surface staining (Fig. 19, page 109).  

In the context of this work, it was most critical to isolate CHO mutants that do 

not have any defect in the HASPB-N18-GFP sequence itself. Sequence 

analysis (Fig. 20, page 111) of both HASPB-N18-GFP in CHO wild-type cells 
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and in the mutant CHO K3 cell line documented that this was not the case. 

The negative HASPB-N18-GFP export phenotype by which the clonal CHO 

K3 cell line was isolated could be confirmed by both FACS-based cell surface 

staining experiments and a biochemical assessment of HASPB-N18-GFP 

export using a membrane-impermeable biotinylation reagent (Fig. 21, 

page 113). Both methods consistently demonstrated that HASPB-N18-GFP 

cell surface expression in CHO K3 cells is greatly reduced to ~10-30% of the 

population found on the cell surface of CHO wild-type cells. As shown by 

GFP-derived fluorescence determined by FACS and by western blotting, the 

expression level of HASPB-N18-GFP does not differ significantly between 

CHO K3 and wild-type cells. Thus, it could be concluded that the process of 

HASPB-N18-GFP membrane translocation is perturbed in the mutant cell line.  

Since the N-terminal targeting sequence in CHO K3 mutant cells is identical 

compared to CHO cells, however its membrane translocation seems to be 

affected it was most critical to investigate, whether the isolated mutant has 

any defect in the co-and/or post-translational processing of HASPB. In regard 

to the genetic system used, mutants that are still capable of adding both 

myristate and palmitate to the SH4 domain of HASPB would be interesting. In 

case of CHO K3 cells, this was shown to be the case by carbonate extraction 

experiments to probe overall membrane association of HASPB-N18-GFP. 

Furthermore employing metabolic labeling experiments, the incorporation of 

[3H]-labeled myristate and palmitate into HASPB-N18-GFP was demonstrated 

when expressed in CHO K3 cells. These experiments (Fig. 22, page 115) 

unequivocally demonstrated that HASPB-N18-GFP is processed normally in 

CHO K3 mutant cells resulting in a membrane association that is 

indistinguishable from HASPB-N18-GFP expressed in CHO wild-type cells. 

Based on the perturbed HASPB-N18-GFP membrane translocation in the 

mutant CHO K3 cell line, it was then crucial to analyze whether the steady-

state distribution of the reporter molecule is changed in CHO K3 cells as 

compared to wild-type cells. As demonstrated by confocal microscopy and 

subcellular fractionation (Fig. 23, page 117), in both cell lines the majority of 

the HASPB-N18-GFP population localizes to the plasma membrane. 

Intriguingly, an FGF-2-GFP as well as a Galectin-1-GFP fusion protein is 

secreted equally well from the CHO K3 mutant cell line and the parental CHO 
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wild-type cells, demonstrating that the disrupted factor in K3 cells is a specific 

component of the HASPB export pathway. 

 

4.3 The integration of the retrovirus into the genome of CHO 

K3 cells does not cause the perturbed HASPB 

membrane translocation  

 

In the context of this work it was most critical to identify the integration site of 

the retrovirus. As revealed by a LAM-PCR (Fig. 26, page 121), it was possible 

to identify and sequence the region flanked by the integration of the retrovirus. 

As illustrated in the alignment with the mouse genome the chemokine orphan 

receptor 1 (cmkor 1) was identified on chromosome 1 of the mouse genome. 

The retrovirus integrated into an intron flanked by two exons suggesting that 

cmkor 1 might get translated based on splicing reactions. However, 

integration into a non-coding region might also result in mRNA transcripts 

leading to affected translation of a desired protein. Cmkor 1 belongs to a 

family of G-protein coupled receptors, all of which transmit extracellular stimuli 

to intracellular signals (Tilakaratne and Sexton, 2005). Since there is only 

sparse information about its functions and its ligands, it was of interest to 

investigate whether downregulation or disruption of the receptor caused the 

observed phenotype of the mutant CHO K3 cell line. To perform RNA 

interference the cmkor 1 gene in CHO cells was cloned and sequenced. As 

shown by the antisense RNA approach (Fig. 29, page 126) using three 

different siRNA oligos cmkor 1 could not get downregulated in CHO wild-type 

cells. In contrast, cmkor 1 mRNA was detectable in CHO K3 cells as revealed 

by sequencing of RT-PCR products obtained from total and cytoplasmic RNA 

isolation (Suppl. Fig. 56, pages 167-170). Together, these findings suggest 

that there might exist other non-identified integration sites of the retrovirus 

causing the perturbed HASPB membrane localization in the mutant CHO K3 

cell line.  

In parallel to the RNAi experiments a possible contribution of the chemokine 

orphan receptor 1 on the HASPB perturbed membrane translocation in CHO 
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K3 cells was analyzed by overexpression of the cmkor 1 gene in CHO wild-

type and CHO K3 cells. Cmkor 1 was cloned into a vector containing both an 

IRES element and CD8 as cell surface marker. An IRES (internal ribosome 

entry side) allows translation initiation of multiple proteins from a single 

transcript (Jang et al., 1988; Liu et al., 2000). Following transduction cmkor 1 

expressing cells were efficiently enriched by FACS based on CD8-derived cell 

surface staining. HASPB-N18-GFP export from cmkor 1 transduced CHO 

wild-type and CHO K3 cells was analyzed based on flow cytometry (Fig. 31, 

page 130) and the biochemical biotinylation assay (Fig. 32, page 132). Export 

of HASPB-N18-GFP could be neither restored to wild-type levels in case of 

CHO K3 cells nor get reduced or enhanced in CHO wild-type cells due to an 

overexpression of the cmkor 1 gene. This observation confirms previous 

findings, indicating that cmkor 1 expression is not affected in CHO K3 cells. 

This suggests that other non-identified integration sites of the retrovirus 

resulting in disruption of a gene could cause the perturbed HASPB membrane 

localization in CHO K3 cells.  

 

In summary, these studies show that the mutant CHO K3 cell line has a direct 

defect in the molecular machinery promoting membrane translocation of 

HASPB. Importantly, the perturbed HASPB membrane translocation was not 

caused by disruption of the cmkor 1 gene. The subcellular distribution of the 

reporter molecule was unchanged comparing wild-type and K3 cells, with 

HASPB-N18-GFP detected in both cases as a plasma membrane-resident 

protein. As cell surface exposure of the reporter was largely reduced in the 

mutant cell line, the plasma membrane was identified as the subcellular site of 

membrane translocation of HASPB-N18-GFP (Stegmayer et al., 2005). Thus, 

along with the angiogenic growth factors FGF-1 and FGF-2 (Prudovsky et al., 

2002; Schäfer et al., 2004) as well as Galectin-1 (Seelenmeyer et al., 2005), a 

lectin of the extracellular matrix, HASPB represents another example of an 

unconventional secretory protein that is translocated directly across the 

plasma membrane of mammalian cells in order to be exposed to the 

extracellular space.  

Finally, a two-step process for the overall biogenesis of HASPB can be 

described. This process is defined by acylation-dependent targeting to the 
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inner leaflet of the plasma membrane followed by translocation across the 

plasma membrane, resulting in a membrane-anchored lipoprotein on the 

surface of both parasites and mammalian cells. 

 

B. The SH4 protein HASPB is released in extracellular 

 vesicles in a palmitoylation-dependent manner 
 

As discussed previously, HASPB is transiently associated with, and most 

likely palmitoylated at, the Golgi followed by plasma membrane targeting in a 

brefeldin A-insensitive manner (Denny et al., 2000).  

Based on these observations HASPB trafficking appears to be distinct from all 

known classes of plasma membrane-targeted proteins carrying dual acylation 

motifs at their N-termini (Bijlmakers and Marsh, 2003). The routes of only two 

acylated proteins belonging to the Src-family of receptor tyrosine kinases 

(RTK) have been studied at the molecular level. The Src kinase Lck is 

palmitoylated at the Golgi followed by brefeldin A-sensitive transport to the 

plasma membrane (Bijlmakers and Marsh, 1999; Bijlmakers and Marsh, 

2003). The plasma membrane targeted N-terminal acylated protein Fyn does 

not appear to contact intracellular membranes but rather is directly targeted 

from the cytoplasm to the plasma membrane. Consistently, brefeldin A does 

not affect Fyn targeting (Bijlmakers and Marsh, 2003; van't Hof and Resh, 

1999). In contrast to these well characterized SH4 containing proteins 

regarding their export, less is known about the trafficking of Yes and Src. Yes 

is the closest relative to the prototypical family member, Src, with the two 

proteins sharing more than 80% homology (Sukegawa et al., 1987). 

Importantly, it is noteworthy that Src becomes only myristoylated in its  

N-terminal SH4 domain (Bijlmakers and Marsh, 2003). Moreover, both 

proteins are expressed ubiquitously (Thomas and Brugge, 1997). Yes is 

localized to the cytoplasmic leaflet of intracellular membranes and is 

hypothesized to control virion trafficking, since it has been shown to be 

involved in WNV (West Nile Virus) assembly and egress (Hirsch et al., 2005). 

Src represents a component of the MAP kinase pathway and localizes usually 

to the plasma membrane. Furthermore, Src is also found at other locations in 
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the cell such as focal adhesion sites (Rohrschneider, 1980), on endosomes 

(Kaplan et al., 1992) and synaptic vesicles (Linstedt et al., 1992). As indicated 

above, current knowledge about HASPB targeting to the plasma membrane 

does not fit with any of these examples. Interestingly, the extensive induction 

of non-apoptotic highly dynamic plasma membrane blebbing has been 

reported as a novel and conserved activity of SH4 domains derived from the 

HASPB proteins of Leishmania parasites as well as the prototypic Src kinases 

Src, Fyn, Yes and Lck (Tournaviti et al., 2006 submitted). These re-

organizations of the plasma membrane require the membrane association of 

the SH4 domain depend on the integrity of F-actin as well as microtubule 

architecture and are regulated by the activities of Rock kinase and Myosin-II 

ATPase (Tournaviti et al., 2006 submitted). Furthermore as revealed by RNAi 

analysis, the actin and microtubule regulating diaphanous related formin 

(DRF) FHOD1 has been identified as a factor that facilitates plasma 

membrane bleb formation (Tournaviti et al., 2006 submitted).  

Based on these observations it is likely that plasma membrane-associated 

SH4 proteins could be released from cells as a result of plasma membrane 

blebbing, a process promoting the shedding of plasma membrane-derived 

vesicles that are released into the extracellular space (Freyssinet, 2003; 

Hugel et al., 2005; Martinez et al., 2005). In case of HASPB as a major 

component for virulence in Leishmania (Alce et al., 1999; Flinn et al., 1994; 

McKean et al., 2001; Rangarajan et al., 1995), alternative secretory 

mechanisms could contribute to the effectiveness of these parasites to invade 

vertebrate hosts. To gain insights into plasma membrane blebbing and its 

consequences concerning HASPB export, cell culture supernatants were 

analyzed for the presence of HASPB-containing vesicles. The various 

experimental conditions resulted in a new export pathway for HASPB-N18-

GFP that has been characterized in more detail in the current study. 
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4.4 HASPB-N18-GFP-expressing CHO cell lines induce bleb 

formation and release HASPB-containing vesicles into 

the extracellular space 

 

Heterologous expression of a HASPB-N18-GFP fusion protein induces 

curvature of the plasma membrane resulting in the formation of highly 

dynamic, non-apoptotic tubules and plasma membrane blebs (Fig. 33, 

page 135) (Tournaviti et al., 2006 submitted). Plasma membrane blebs are 

cell protrusions generated by the osmotic pressure of the cell interior upon 

localized destabilization of the cortical actin meshwork at the plasma 

membrane (Charras et al., 2005; Cunningham, 1995; Sheetz et al., 2006). 

Based on this observed phenotype cell culture supernatants from CHO cells 

were analyzed for the presence of the reporter molecule employing 

ultracentrifugation (Fig. 34, page 136). Indeed, the HASPB-N18-GFP fusion 

protein was found in the resulting membrane sediment. To verify whether 

HASPB is exported via vesicles the membrane sediment was floated into a 

Nycodenz gradient. Employing Nycodenz flotation gradients, a 0%/30% 

interphase was generated in order to discriminate aggregates from vesicles. 

Importantly, HASPB was found in the low-density vesicle fraction (Fig. 35, 

page 138). Interestingly, TSG101 and Alix, two proteins necessarily required 

in critical steps in the MVB sorting pathway were also detectable in this 

HASPB-containing fraction (Fig. 36, page 140).  

Multivesicular bodies (MVBs) represent endocytic intermediates and are 

formed from sorting (early) endosomes. During this process maturing MVBs 

accumulate internal vesicles that have been internalized through endocytosis 

(Raiborg et al., 2003). These luminal vesicles are formed through invagination 

and pinching-off the endosome membrane (Katzmann et al., 2001). Besides 

other functions one possible fate of MVBs occurs when their limiting 

membrane fuses with the plasma membrane, resulting in the release of the 

internal vesicles, which are now termed exosomes (Denzer et al., 2000). For 

the sorting and multivesicular body formation three separate heteromeric 

protein complexes called ESCRT-I, ESCRT-II and ESCRT-III are required 

(Raiborg et al., 2003). These protein complexes are transiently recruited from 
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the cytoplasm to the endosomal membrane where they function sequentially 

in the sorting of transmembrane proteins into the MVB pathway and in the 

formation of MVB vesicles. Initially the ESCRT-I protein binds to endosomal 

cargo and is required for the activation of ESCRT-II. ECRT-II in turn initiates 

the oligomerization of at least four small coiled coil proteins resulting in the 

formation of a large endosome-associated structure, the ESCRT-III complex. 

ESCRT-III seems to function in the concentration of MVB cargo (Katz et al., 

2002). Finally, after protein sorting has been completed a multimeric  

AAA-type ATPase, Vps4, binds to ESCRT-III and disassembles the ESCRT-III 

complex in an ATP-dependent manner. The Vps4-dependent dissociation of 

the ESCRT machinery is currently the final distinguishable step of cargo 

sorting and is a prerequisite for vesicle formation (Katzmann et al., 2001; 

Wendland, 2002). 

TSG101 (Garrus et al., 2001), the mammalian homolog to Vps 23, is a 

member of the ESCRT-I complex involved in recognition of cargo by MVBs 

and Alix (Chatellard-Causse et al., 2002) functions as an ESCRT-III binding 

partner. Since these proteins were enriched in the HASPB-N18-GFP-

containing vesicle fractions HASPB was hypothesized to get exported in 

vesicles being released by the MVB sorting machinery. Staining of the 

exosomes-released protein Hsc 70 (Whetstone and Lingwood, 2003) in this 

fraction as well as the absence of a cytosolic housekeeping enzyme, GAPDH 

(Bown et al., 2002), in the corresponding fraction provided additional evidence 

of the proposed pathway. In this regard, the localization of HASPB in 

extracellular vesicles was of interest. HASPB-N18-GFP was found to be 

mainly present on the inner leaflet of the vesicle membrane as revealed by 

protease protection experiments (Fig. 37, page 141). The digestion of the 

reporter molecule was only visible in presence of a detergent. Consistent with 

HASPB-N18-GFP found in extracellular vesicles HASPB-GFP full length was 

detectable in the vesicle fraction to the same extent. Intriguingly, twice the 

amount of HASPB was found in extracellular vesicles derived from CHO K3 

cells as compared to CHO wild-type cells. This observation was expected 

since HASPB in the mutant CHO K3 cell line is accumulated on the inner 

leaflet of the plasma membrane resulting in an increased amount of HASPB-

N18-GFP in extracellular vesicles. However, based on the pronounced 
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presence of TSG101, Alix and Hsc 70 in the vesicle fractions of CHO K3 cells 

documented that the mutant CHO K3 cell line produces more amounts of 

vesicles rather than vesicles containing quantitatively more HASPB. At this 

stage the reason for this observation is not known. Interestingly, an FGF-2-

GFP as well as a Galectin-1-GFP fusion protein was not found in extracellular 

vesicles suggesting that only the SH4 protein HASPB gets access to the MVB 

machinery releasing HASPB-containing vesicles into the extracellular space. 

The similarity between HASPB-containing vesicles and exosomes was 

supported by analysis of the buyont densities. As revealed by continuous 

sucrose gradients (Fig. 40, page 146) the densities in the peak fractions of 

1.13 g/ml and 1.15 g/ml of HASPB-containing vesicles are consistent with the 

reported exosomal density of 1.15 g/ml (Heijnen et al., 1999). In agreement 

with previous findings as described in the first part of the discussion there 

exist two independent extracellular HASPB populations, a cell surface 

localized HASPB-N18-GFP population and, in addition, a population of 

vesicle-associated HASPB-N18-GFP.  

 

4.5 The Rock inhibitor blocks the formation of blebs but 

only partially reduces the amount of HASPB-containing 

vesicles 

 

Since Rock is one of many effectors for the Rho GTPases regulating the 

organization of the actin cytoskeleton, it controls actomyosin filament 

assembly and myosin contractile activity necessary for bleb formation 

(Coleman et al., 2001; Leverrier and Ridley, 2001). To assess the relevance 

of plasma membrane blebbing in the context of the detection of HASPB-

containing extracellular vesicles, CHO cells expressing HASPB-N18-GFP 

were treated with Rock inhibitor (Y-27632). As revealed by confocal 

microscopy (Fig. 41, page 148) HASPB-mediated plasma membrane bleb 

formation was blocked in presence of Rock inhibitor. By contrast, a parallel 

experiment employing Nycodenz flotation gradients (Fig. 42, page 149) 

revealed that HASPB-containing extracellular vesicles were still detectable. 
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Together, these observations strongly suggest that the amount of HASPB-

containing extracellular vesicles found in the cell culture supernatants of CHO 

cells is only partially derived from plasma membrane blebbing, a process 

promoting the shedding of plasma membrane-derived vesicles that are 

released into the extracellular space.  

 

4.6 Src, Fyn, Yes and Lck mediate plasma membrane 

blebbing, however less amounts of the reporter 

molecules compared to HASPB are found in 

extracellular vesicles  

 
As noted above, the export routes of other SH4 containing proteins were 

distinguishable from the HASPB export pathway (Bijlmakers and Marsh, 2003; 

Denny et al., 2000; Hirsch et al., 2005; Sukegawa et al., 1987; Thomas and 

Brugge, 1997; van't Hof and Resh, 1999). By contrast, the extensive induction 

of non-apoptotic highly dynamic plasma membrane blebbing has been 

reported as a novel and conserved activity of SH4 domains derived from the 

HASPB protein of Leishmania parasites as well as the prototypic Src kinases 

Src, Fyn, Yes and Lck (Tournaviti et al., 2006 submitted). Based on these 

observations, it was most crucial to analyze whether Src-, Fyn-, Yes- and Lck-

containing extracellular vesicles could be detected in cell culture supernatants 

from Src, Fyn, Yes and Lck expressing CHO cells. As revealed by confocal 

microscopy (Fig. 44, page 152) and Nycodenz flotation gradients (Fig. 45, 

page 153), in contrast to the extensive plasma membrane bleb formation,  

Src, Fyn-, Yes- and Lck-containing vesicles were reduced to ~20-70% as 

compared to HASPB-containing vesicles. In agreement with previous findings 

(section 4.5) plasma membrane bleb formation was blocked in presence of 

Rock inhibitor. Interestingly, employing Nycodenz flotation gradients, the 

amount of extracellular vesicles containing Src, Fyn, Yes and Lck was 

reduced to a manifold as compared to HASPB-containing vesicles in 

presence of Rock inhibitor (Figs. 46, 47, page 155,156). Notably these 

vesicles were the result of plasma membrane bleb formation leading to the 
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shedding of plasma membrane-derived vesicles that are released into the 

extracellular space. These findings provide evidence that the targeting motif 

lies within the SH4 domain of only HASPB, resulting in its export in vesicles 

being released by the MVB sorting machinery into the extracellular space.  

 

4.7 HASPB-N18-GFP expressed in HeLa cell lines can be 

found associated with extracellular vesicles, however 

plasma membrane blebbing is largely reduced  

 

To further assess that HASPB is localized in extracellular vesicles being 

released by the MVB sorting machinery, RNA interference experiments 

should be performed. For this purpose the human HeLa cell line was used 

and characterized employing the various experimental approaches since its 

genome is fully sequenced. Intriguingly, HeLa cells expressing HASPB-N18-

GFP showed a notably reduced plasma membrane blebbing as revealed by 

confocal microscopy (Fig. 48, page 157). By contrast, HASPB-containing 

vesicles were found in cell culture supernatants from HeLa cells employing 

Nycodenz flotation gradients (Fig. 49, page 159). In this regard, a study with 

HeLa cells would be even more interesting, as there are no additional 

HASPB-containing extracellular vesicles that are derived from plasma 

membrane blebbing leading to the shedding of plasma membrane-derived 

vesicles into the extracellular space. The similarity between HASPB-

containing extracellular vesicles derived from HeLa and CHO cells was 

supported by an analysis of their densities, corresponding to the exosomal 

density of 1.15 g/ml (Fig. 50, page 160, Fig. 40, page 146) (Heijnen et al., 

1999). As revealed by confocal microscopy (Fig. 51, page 162), HASPB-

containing vesicles were clearly visible only for CHO wild-type, CHO K3 and 

HeLa cells expressing HASPB-N18-GFP. Moreover, employing electron 

microscopy (Fig. 52, page 163) extracellular vesicles derived from CHO wild-

type and CHO K3 cells, respectively, ranged in sizes with diameters between 

80 nm and 300 nm. Based on this observation, there might exist two 

subpopulations of extracellular vesicles with different origins. Vesicles with a 
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diameter up to 100 nm might represent exosomes, since their size correspond 

to the reported size of 40-100 nm for exosomes (Stoorvogel et al., 2002). By 

contrast, the subpopulation containing vesicles with a diameter larger than 

100 nm could be caused by plasma membrane blebbing, a process promoting 

the shedding of plasma membrane-derived vesicles that are released into the 

extracellular space.  

 

In summary, this study shows that the Leishmania SH4 protein HASPB can 

be found associated with extracellular vesicles indicating that there exists an 

alternative secretory mechanism for HASPB. Indeed, as revealed by 

Nycodenz flotation gradients with membrane sediments obtained from 

ultracentrifugation of cell culture supernatants, HASPB is enriched in 

extracellular vesicles. As revealed by protease protection experiments 

HASPB is located in the lumen of these vesicles. Colocalization experiments 

with different exosomes markers further confirmed that HASPB is exported via 

vesicles being released by the MVB sorting machinery. Furthermore, the 

HASPB-containing extracellular vesicle population was shown to be of 

intracellular origin since other SH4 proteins such as Src, Fyn, Yes and Lck 

mediate plasma membrane blebbing similar to HASPB but are not 

quantitatively detectable in extracellular vesicles. Interestingly, this 

observation was confirmed by results obtained from HeLa cells expressing 

HASPB-N18-GFP. HASPB is found in extracellular vesicles however HASPB-

mediated plasma membrane blebbing is notably reduced in these cells. As 

revealed by sucrose gradients, HASPB-containing extracellular vesicles 

derived from CHO as well as from HeLa cells have an apparent density 

similar to that of exosomes. Moreover, employing electron microscopy 

extracellular vesicles range in sizes with diameters between 80 and 300 nm 

that are consistent with the reported exosomal size containing diameters of 40 

to 100 nm (Stoorvogel et al., 2002). Together, these findings lead to explore 

the concept that HASPB is exported via vesicles, potentially representing 

exosomes being released by the MVB sorting machinery into the extracellular 

space. 
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4.8 Models for the unconventional secretion of HASPB 

 

Leishmania HASPB is a lipoprotein that is exported to the extracellular space 

from both Leishmania parasites and mammalian cells via an unconventional 

secretory pathway (Denny et al., 2000). The HASPB primary structure differs 

from all other unconventional secretory proteins as it contains an N-terminal 

SH4 domain commonly found in Src kinases that is a substrate for N-terminal 

protein acylation (Resh, 1999; Resh, 2004). Combining the data presented in 

the current study, two export models for HASPB can be proposed. As shown 

in Fig. 57, after synthesizing on free ribosomes in the cytoplasm, the protein 

gets cotranslationally myristoylated at its N-terminal SH4 domain. A second 

acylation step involves palmitoylation at cysteine 5 by the enzyme palmitoyl 

acyltransferase. HASPB palmitoylation mutants (Δpalm-HASPB-N18-GFP, 

C5A) localize to Golgi membranes, as shown in Figs. 14 (page 100) and 33 

(page 135), suggesting that the putative palmitoylacyltransferase is a resident 

enzyme of the Golgi apparatus (Denny et al., 2000; Stegmayer et al., 2005). 

Dual acylation of the SH4 domain of HASPB mediates stable membrane 

association of the molecule to the Golgi. Following transient association with 

the Golgi, HASPB is transported to the inner leaflet of the plasma membrane. 

As illustrated in Fig. 57, it is currently unclear how this transport step is 

mediated. However, in principle there are three options: i) HASPB might be 

transported to the plasma membrane associated with the cytoplasmic leaflet 

of secretory vesicles, ii) HASPB might be targeted first to endosomal 

structures followed by translocation to the plasma membrane or iii) HASPB 

transport from the Golgi to the plasma membrane might not at all rely on 

transport vesicles. In any case, palmitoylation of HASPB is strictly required for 

plasma membrane targeting as palmitoylation-deficient mutants of HASPB are 

efficiently retained at the level of the Golgi (Denny et al., 2000; Stegmayer et 

al., 2005). The final localization of HASPB is characterized by its stable 

association with the outer leaflet of the plasma membrane with the protein 

moiety being exposed to the extracellular space. Based on this model, 

HASPB must translocate across at least one membrane during its biogenesis 

pathway. In case intracellular HASPB transport would rely on vesicular 
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intermediates, membrane translocation could occur at any membrane during 

its transport to the cell surface, e.g. the Golgi, the plasma membrane and, 

potentially, secretory or endosomal vesicles. However, from the data 

presented, membrane translocation was shown to occur at the level of the 

plasma membrane rather than at intracellular sites (Stegmayer et al., 2005).  

 

 
 
Fig. 57 Biogenesis and export of HASPB as discussed in the first chapter (chapter A). 

For details, see main text. 

 

Based on the findings discussed in the second chapter (chapter B), HASPB is 

exported via vesicles being released by the MVB sorting machinery. 

Multivesicular bodies or multivesicular endosomes (MVBs/MVEs) are 

endosomal compartments that contain multiple vesicles, which derive from a 

delimiting membrane by inward budding. The formation of MVBs is initiated at 

the early endosomal state as a result of the inward budding of the endosomal 

delimiting membrane. During the maturation of early endosomes to late 
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endosomes, tens or even hundreds of vesicles accumulate in their lumen. As 

discussed previously one option is the fusion of the MVB limiting membrane 

with the plasma membrane that results in export of vesicles, termed 

exosomes into the extracellular space (Denzer et al., 2000; Katzmann et al., 

2001; Katzmann et al., 2003; Raiborg et al., 2003; Stoorvogel et al., 2002). As 

indicated in Fig. 58 during this process, HASPB ends up as intraluminal 

protein associated with the inner leaflet of the vesicle membrane. In this 

model HASPB does not translocate across any membrane confirming the 

results discussed in the first chapter, i.e. the presence of membrane-resident 

transporters in the plasma membrane promote membrane translocation of 

HASPB to the outer cell surface (Stegmayer et al., 2005). 

 
 
Fig. 58 Vesicle-associated export represented as exosomes as discussed in the 

second chapter (chapter B). For details, see main text. 
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The sorting of transmembrane proteins into topologically distinct limiting and 

intraluminal membranes has been proposed to serve several important 

functions: i) transmembrane proteins in the intraluminal membrane will be 

susceptible to degradation by lysosomal hydrolases, ii) intraluminal vesicles 

might represent storage vehicles for transmembrane proteins that are to be 

released from the cell in a regulated manner in these vesicles or iii) receptor 

signaling is, at least in principle, possible from the limiting membrane of 

MVBs, but not from the membranes of intraluminal vesicles. These findings 

suggest that sorting into MVBs can determine both the delivery of 

transmembrane proteins to lysosomes and the extracellular space, and also 

the ability of endocytosed receptors to transmit signals (Futter et al., 1996; 

Kleijmeer et al., 2001; Mullock et al., 1998; Stoorvogel et al., 2002).  

In specialized cell types, for example antigen-presenting cells, exosomes 

have attracted interest as vehicles of immunomodulation (Stoorvogel et al., 

2002; Thery et al., 2002). Furthermore it has been postulated that exosome-

like vesicles might act as carriers for morphogens (Greco et al., 2001). In 

melanocytes and hemotopoietic cells, MVBs serve as intermediates in the 

formation of secretory lysosomes, such as melanosomes, MHCII 

compartments and lytic granules (Blott and Griffiths, 2002). Exosomes may be 

used by tumoral cells to invade normal tissue, and by pathogens such as 

prions and HIV to maximize their spreading in between cells (van Niel et al., 

2006).  

Since HASPs are critical determinants of both virulence and parasite survival 

within the vertebrate host (Alce et al., 1999; Flinn et al., 1994; McKean et al., 

2001; Nugent et al., 2004; Rangarajan et al., 1995), HASPB might use this 

alternative secretory mechanism to efficiently invade their vertebrate hosts. 

HASPB is recognized by human sera collected in endemic regions with high 

specificity and sensitivity (Jensen et al., 1999) and shows promise as a target 

vaccine antigen for visceral leishmaniasis (Stager et al., 2003; Stager et al., 

2000). Recent data have demonstrated that L. donovani HASPB is able to 

protect against infection in vivo via a novel immune mechanism involving 

natural antibodies and complement (Stager et al., 2003). Since it was unclear 

whether the cell surface localization of HASPB contributes to this immune 

response, recent findings have clearly demonstrated, that proteins in this 
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location are presented preferentially to the immune system in vivo (Prickett et 

al., 2006). Furthermore, as recently published L.major VPS4 mutants 

(VPS4E235Q) accumulated the mutated protein around vesicular structures of 

the endocytic system and showed a defect in transport to the MVT-lysosome 

(Besteiro et al., 2006). This observation is quite similar to what has been 

observed in yeast and mammalian Vps4 mutants, suggesting a conserved 

role for this protein in MVB architecture from the early branching kinetoplastid 

flagellate lineage to mammals (Besteiro et al., 2006). Based on these 

observations export of HASPB via extracellular vesicles might serve to 

present the protein to the immune system by an alternative pathway.  

In conclusion, the unconventionally secreted Leishmania protein HASPB, 

found in the extracellular space, is exported via two independent secretory 

mechanisms. HASPB is either directly exported across the plasma membrane 

or via extracellular vesicles. In the first case translocation across the plasma 

membrane seems to occur via plasma membrane-resident transporters 

potentially acting as flippases since HASPB is stably anchored in the 

membrane due to its dual acylation. In the second model, transport across the 

plasma membrane, representing the barrier for export, is mediated via 

vesicles being released by the MVB sorting machinery into the extracellular 

space. In the forthcoming years, light should be shed on the mechanisms 

regulating these export pathways, so that methods can be designed to 

interfere with unconventional secretion of HASPB. With this advance, much 

more could be discovered on how this unconventionally secreted protein 

functions in physiological and pathological situations. 
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