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Abstract
We identify anthropometric parameter for models of human beings and the

corresponding macroscopic movement. The models are based on rigid–body for-
malisms and formulated as mechanical DAEs. We use the Generalized Gauß–
Newton method based on multiple shooting discretization to estimate the param-
eters of this dynamic nonlinear parameter estimation problem using measurement
data taken from motion capturing.

We adapt modelling, integration and optimization independently and in com-
bination. The modelling based on Natural Coordinates is modified to efficiently
evaluate the right–hand side of the DAE in linear time w.r.t. the number of bodies.
The formulation does not introduce additional redundant constraints and we devel-
oped constraint partitioning to treat inherent singularities of the physical model.
Furthermore, we include additional biomechanical elements like passive muscles
and wobbling masses.

As Natural Coordinates lead to a set of redundant coordinates, we have to re-
lax to treat inconsistent variables during the optimization process. To efficiently
generate the sensitivity information needed for the optimization algorithm, we ap-
ply reduced methods to evaluate a minimal number of directional derivatives and
exploit the structure of the model equations to calculate each of them. Finally, we
present parameter estimation results for a complex, full three-dimensional biome-
chanical model of the human body with 82 kinematic degrees of freedom.

This is implemented in the object–oriented modelling tool MBSNAT and the
parameter estimation package Parfit++.
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Zusammenfassung
Wir identifizieren die anthropometrischen Parameter von Menschmodellen für

die Untersuchung makroskopischer Bewegung. Diese Modelle basieren auf Star-
rkörperformalismen and werden als mechanische DAE formuliert. Wir verwenden
das Verallgemeinerte Gauß–Newton Verfahren basierend auf Multiple–Shooting
Diskretisierung, um die Parameter dieses nichtlinearen dynamischen Parameter-
schätzproblems an Messdaten anzupassen, die mit Hilfe von Motion Capturing
gewonnen wurden.

Hierfür adaptieren wir die Modellierung, die Integration und die Optimierung
sowohl einzeln als auch in Kombination. Die Modellierung basierend auf Natür-
lichen Koordinaten wird modifiziert, so daß die rechten Seite der DAE in linearer
Komplexität bzgl. der Anzahl der Körper effizient ausgewertet werden kann. Un-
sere Formulierung führt zu keinen zusätzlichen redundanten Nebenbedingungen
und inherente Singularitäten des physikalischen Modells werden mit Hilfe von con-
straint partitioning behandelt. Desweiteren verwenden wir zusätzliche biomecha-
nische Elemente wie passive Muskeln und Schwabbelmassen.

Da die Verwendung von Natürliche Koordinaten auf einen Satz redundanter
Variablen führt, muß zur Behandlung von inkonsistenten Variablen während der
Optimierung relaxiert werden. Für die Generierung der für das Optimierungsver-
fahren benötigten Ableitungsinformation verwenden wir reduzierte Verfahren, um
die Anzahl der benötigten Richtungsableitungen zu minimieren, und nutzen die
Struktur des Modells für die Berechnung jeder einzelnen aus. Zuletzt präsen-
tieren wir Parameterschätzungsergebnisse für ein komplexes, voll dreidimension-
ales biomechanisches Menschmodell mit 82 kinematischen Freiheitsgraden.

Dies ist im objekt–orientierten Werkzeug MBSNAT und dem Parameterschätz-
paket Parfit++ implementiert.



Introduction

The study of the human itself is perhaps the most important task of natural science.
It comprises the examination of the human on different scales: from biochemical
reactions in the cell to – as the most palpable field – the movement of the human
body as a whole. This macroscopic motion is typically studied based on rigid–body
models developed for technical mechanics which are formulated based on ordinary
differential equations (ODE) or mechanical differential algebraic equations (DAE).
These formalisms have to be extended for biomechanical models, which include a
larger variety of joint types and body forms, complex actuators in the form of
muscles, connected groups of bones and neighboring soft tissue, and specific forms
of passive plasto–elastic elements.

A particularly difficult issue in modelling human motion and the previously
described elements is the determination of correct model parameters. Anthropo-
metric data are typically assembled by a combination of in vivo measurements and
extrapolations of cadaver studies. When we consider idealized models, some pa-
rameters may be different to real values and we have to rely on heuristic rules.
Furthermore, most of the model parameters are highly dependent on the individual
person’s age, size, height, sex, physical condition etc. Thus, there is a tremendous
need for a reliable method to determine correct model parameters for a given indi-
vidual. In this work, we contribute to this aim by providing a different approach
to estimate the anthropometric data of a human. It is not based on invasive surgery
but on data from motion capturing, i.e. measurement data that are easy to get, like
the position of some markers in a given time–interval which are filmed by several
special synchronized cameras – a typical setting for modern gait laboratories. Esti-
mating the parameters of a model based on measurement data, leads to a nonlinear
high–dimensional parameter estimation problem.

Due to the complexity and size of the resulting dynamic parameter estimation
problem, it is not sufficient to just combine an arbitrary modelling tool, an inte-
gration scheme and an optimization algorithm. To achieve the efficiency that is
needed, one has to reexamine each component independently and in combination
in this context.

As a starting point, we apply a Generalized Gauß–Newton (GGN) method with
multiple shooting discretization as introduced by Bock [Boc85] to solve the nonlin-
ear parameter estimation problem. We provide the biomechanical model as a me-
chanical DAE of index 3, and we use our version of Natural Coordinates originally

1



2 Introduction

introduced by García de Jalón and Bayo [GB94]. The solution of this differential
equation and the corresponding sensitivity differential equation – to provide the
necessary information for the derivative–based GGN – is the most time–consuming
part of the overall optimization process. Therefore, we apply methods that reduce
the number of directional derivatives one has to calculate explicitly.

Contributions

To gain the high efficiency we need, we adapt the parameter estimation methods to
large (bio–) mechanical models. We want to focus on the following topics, which
summarize the various modifications needed:

• We adapt Natural Coordinates as introduced by García de Jalón and Bayo
to high–dimensional models as encountered in biomechanics. We use a dif-
ferent linear algebra method, which is of linear complexity in the number
of bodies. In contrast to García de Jalón and Bayo, who use point–sharing
to reduce the dimension, but thereby destroy the structure, we exploit the
block–structure of the Augmented system. Additionally, by using sub–
block structures and the simplicity of the equations based on our version of
Natural Coordinates, we are able to efficiently evaluate the right–hand side
of the differential equation.

• In order to fulfil the prerequisites of our linear algebra method, we adapt the
formulation of certain constraints to avoid redundancy. Furthermore, we
develop constraint partitioning to handle closed loop systems, which may
exhibit redundant constraints, or even systems where no globally unique set
of non–redundant constraints exists. Therefore, we are able to supply an
efficient and robust algorithm for arbitrary topologies.

• Using the simplicity and structure of the equations formulated based on Nat-
ural Coordinates, we are able to efficiently calculate the derivative of the
right–hand side of the differential equation. We calculate one directional
derivative in linear complexity w.r.t. the number of bodies. Due to the use
of IND, we are able to reuse the decomposition of the Augmented system.
Therefore, the evaluation of a directional derivative is approximately two to
three times faster than the evaluation of the right–hand side of the differen-
tial equation.

• Due to the huge amount of redundant variables of models based on Natu-
ral Coordinates, it is of upmost importance to provide methods which re-
duce the number of directional derivatives one has to calculate explicitly.
We study the Fixfit–approach of Schlöder [Sch88], which uses constraints
of the parameter estimation problem – especially fixed initial values – and
two methods which exploit constraints corresponding to the invariants of the
IVP, based on [SBS98]. Fixfit–approach is especially useful, if the initial
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state variables are fixed, whereas the invariant–based methods allow for a
parallelization on the level of the multiple shooting discretization.

• We introduce the limit form of non–stiff Baumgarte relaxation to treat in–
consistent variables of the mechanical DAE during the optimization process.
This method is equivalent to an ideal projection at the start of the integration
interval and classical drift–avoidance during the simulation. Combined with
a version of the projection algorithm for the initial states, which is adapted
to mechanical systems, we have been able to show that our approach per-
forms better and is more robust than methods based on consistent optimiza-
tion variables as well as methods using other relaxation approaches.

• Furthermore, we study the influence of various options of the parameter es-
timation algorithm, e.g. the globalization strategy, numerically. Especially
the Restrictive Monotonicity Test with Back Projection is best suited for
the mechanical systems we examine here.

Due to the size of the resulting software, we encounter the difficulty of imple-
menting these methods in one package and to maintain usability, maintainability
and flexibility. As we attach high importance to these properties of the code, we
apply recent results of software engineering to design the object–oriented pack-
ages Parfit++ and MSBNAT, the first of which implements the parameter estima-
tion algorithm, while the second provides an interactive tool to model and eval-
uate biomechanical models. We implement both packages based on a three–tier
model. Furthermore, we use interface–oriented programming to modularize the
code and levelization when an additional overhead is not desirable.

These mathematical and numerical results implemented in Parfit++ and MB-
SNAT are studied based on several examples including the parameter estimation of
a hexapod machine tool. By this, we show the performance of our methods.

Furthermore, we study the parameter estimation of a huge biomechanical
model of a sitting human. We want to pro-
vide a validated model which can be used
to evaluate the effect of vibrations on the
human body, for example, in a car. There-
fore, we focus on the reaction of the spine
to vertical excitations of the car and model
this part of the human body in more detail.
The rigid body model consists of 17 bod-
ies representing the skeletal system. Ad-
ditionally, we include five bodies repre-
senting wobbling masses [GDSR87]. A
simple model for the car consisting of six
bodies is assumed. The motion of these Figure 1: Model of a Human

bodies is restricted by constraints, which results in 82 kinematic degrees of free-
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dom. We use biomechanical forces with high stiffness coefficients to realistically
represent the behavior of the soft tissue, which is important for studying the effect
of vibrations. This property and the size of the model lead to a large computational
effort even in the simulation context. As we want to do parameter estimation an
efficient treatment is mandatory. We will present the identification of a selection
of ten parameters associated with either idealized force–elements or parameters of
the spine which are difficult to identify otherwise.

Thesis Outline

The work is structured into five parts each of which starts with a more detailed
introduction and is divided into several chapters.

Part I In this part we introduce the classical parameter estimation used in the ODE
context. We present an overview of the well–known theory of parameter
estimation.

Ch. 1 We first introduce the GGN method for a general class of parameter es-
timation problems. This includes the formulation of the problem, opti-
mality conditions, convergence properties and globalization strategies
(including a short description of the Restrictive Monotonicity Test).

Ch. 2 Then we specialize to dynamical systems. We present a short overview
of different types of differential equations, including sensitivity gener-
ation and integration schemes to solve these equations. Furthermore,
we introduce the multiple shooting discretization.

Ch. 3 At last we discuss further topics concerning parameter estimation. We
present how to handle multiple experiment structures and how to auto-
matically generate good initial values and present a sensitivity analysis
of the solution. Furthermore, we briefly discuss differential equations
with discontinuities and their consequence for parameter estimation.

Part II The second part is dedicated to the introduction of the modelling of multi
body systems based on Natural Coordinates including biomechanical exten-
sions. We will restrict ourselves to the simulation context.

Ch. 4 We first introduce our version of Natural Coordinates for modelling
multi body systems. This chapter includes the description of the block–
oriented solver to decompose and solve the linear system in linear com-
plexity. Moreover, we exploit the sub–block–structure to provide a
very efficient algorithm.

Ch. 5 Furthermore, we focus on the more advanced topics of alternative for-
mulations, constraint partitioning and singular kinematic positions to
treat redundant constraints and event handling. Thus, we are able to
model arbitrary topologies.
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Ch. 6 Additionally, we extend to the field of biomechanics. We show how
to cope with the addition of different 3D forces and wobbling masses,
ground contacts and muscles, which is needed in biomechanics.

Part III Next, we discuss the various adaptations to the parameter estimation algo-
rithms presented in part I and the formulation of the mechanical DAE in part
II, if we combine them.

Ch. 7 Therefore, we focus on general properties of the variational differential
equation and on the efficient calculation of one directional derivative in
linear complexity w.r.t. the number of bodies.

Ch. 8 In this chapter we discuss how to handle inconsistent initial values
for the mechanical DAE and the corresponding variational differential
equation. In particular, we present the limit form of non–stiff Baum-
garte relaxation in combination with a projection which is adapted to
the mechanical systems.

Ch. 9 At last we discuss various approaches that reduce the number of direc-
tional derivatives one has to calculate explicitly.

Part IV In this part we present the software engineering background applied to the
implementation of the methods presented in the first three parts.

Ch. 10 We first give a brief overview of object–oriented programming and mo-
tivate to apply techniques of software design as described in the next
chapter.

Ch. 11 Then we present different approaches, like the three–tier model, lev-
elization and interface–oriented programming, to cope with the com-
plexity of object–oriented software. Furthermore, we concentrate on
how they were applied in the design of Parfit++ and MBSNAT, which
have been implemented as a result of this work.

Part V In the last part we present numerical results.

Ch. 12 The linear complexity w.r.t. the number of bodies and the efficiency of
our modelling approach in the simulation and optimization context is
shown numerically.

Ch. 13 Then we compare the options presented before when applying param-
eter estimation to mechanical models based on Natural Coordinates.

Ch. 14 As the highlight, we present the solution of a parameter estimation
problem based on a high–dimensional biomechanical problem in 3D.
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Parameter Estimation 9

To study nature, it is possible to use mathematical models which describe the
real process. Besides choosing the correct type of equation, it is necessary to adapt
some numerical values of the model. A convenient way to adapt these so–called
parameters to the specific process – and to estimate how good these values are – is
to use parameter estimation (PE).

This part is dedicated to presenting the well–known theory of the (Generalized)
Gauß–Newton method, which is used to solve the non–linear parameter estimation
problem. For this purpose, we first recapitulate optimality conditions, convergence
theorems and globalization strategies. In the first chapter, the methods are applied
to algebraic problems with general nonlinear conditions. Not until in the second
chapter will we extend to dynamic problems, i.e. problems with an underlying dif-
ferential equation. Doing this, we first want to stress that the same theory and
algorithms presented in the first chapter is used w.r.t. various types of parameter
estimation problems, which is represented in the structure of the implementation
(see part IV). Second, we want to emphasize that in order to treat the dynamic op-
timization problem we are interested in, it is necessary to solve several underlying
algebraic sub problems.

To solve dynamic PE problems, one has to solve the underlying differential
equation using integration schemes, which must be able to provide first order
derivatives needed for the derivative based Gauß–Newton method. Multiple shoot-
ing discretization is used to increase the performance and stability of the method,
while the resulting structure of the Jacobian matrix is exploited by condensing al-
gorithms to be efficiency.

After describing the basic algorithm, several more advanced topics like multi-
ple experiment problems, automatic generation of good initial values using mea-
surement information, discontinuous differential equations and the statistical anal-
ysis of the solution are discussed in the last chapter of this part. Again we stick
to PE problems of general type not specializing to mechanical systems. After dis-
cussing the modelling (and simulation) of mechanical systems in part II, we then
adapt the optimization methods of this part to this special class of differential equa-
tions.
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Chapter 1

The Generalized Gauß–Newton
Method

In this first chapter we discuss non–linear constrained least squares problems and
their solution with a generalization of the Gauß–Newton method proposed by Bock
[Boc81],[Boc83],[Boc87]. At first we will restrict ourselves to algebraic problems
without an underlying differential equation. This contributes to a modularization of
the theoretical presentation, which finds its counterpart in the software implemen-
tation presented in part IV. Furthermore, solving algebraic problems is a task en-
countered several times as a subproblem of a dynamic parameter estimation prob-
lem (see section 3.2). In the next chapter, we treat problems which are constrained
by differential equations of various types.

We first present the general form of parameter identification problems as non–
linear constrained least squares problems. Carrying on, these non–linear problems
will be solved using the Gauß–Newton method, which needs derivatives of first or-
der. In the context of parameter estimation, this method is typically able to perform
better than methods using derivatives of higher order like SQP [Wil63], [Han76],
[Pow78] or methods like the Nelder–Mead algorithm [GMW81],[NM65] which
do not need derivative information. The preconditions and optimality conditions
needed are briefly shown in the next section, followed by the local contraction
theorem, which proves linear convergence for well–defined problems. Finally, we
will show several globalization strategies to (theoretically) achieve a solution for
arbitrary initial guesses.

1.1 Problem Definition

The aim of this section is to study the class of nonlinear, constrained least squares
problems, that is finding the minimum of a nonlinear function in some norm –

11
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typically the l2–norm – w.r.t. equality and inequality constraints

min
x
‖r1(x)‖2

2 (1.1)

r2(x) = 0 (1.2)

r3(x) ≥ 0 , (1.3)

where riεC
3(D,Rni), and we have n1 least squares conditions and n2 respectively

n3 equality or inequality constraints.
The solution method we use is a damped Generalized Gauss-Newton method,

that is we iteratively
xi+1 = xi + αi∆xi (1.4)

solve the nonlinear problem where the increment is the solution of a linearized
problem

min
∆xi

‖J1(xi)∆xi + r1(xi)‖2
2 (1.5)

J2(xi)∆xi + r2(xi) = 0 (1.6)

J3(xi)∆xi + r3(xi) ≥ 0 , (1.7)

with Jacobian Jj(x) := ∂rj(x)
∂x . Appropriate relaxation factors αi (see section

1.3.2) are chosen for every step to globalize the convergence of the method.
In the case of parameter estimation, we have measurement data ηi correspond-

ing to observation functions o(x)

ηi = oi(x) + εi, (1.8)

with a measurement error of εi. Therefore, the least squares condition r1 is speci-
fied further by

min
x
‖r1(x)‖2

2 = min
x

∑
i

‖σ−1
i (ηi − oi(x)) ‖2

2. (1.9)

This weighted minimization w.r.t. l2–norm yields a Maximum–Likelihood estima-
tion, if the following conditions are fulfilled. The measurement errors εi must be
independent and normally distributed with zero mean. We choose σ−1

i , i.e. the
inverse standard deviation of εi, as the weight.

1.2 Optimality Conditions

To be able to solve this problem, a number of criteria have to be fulfilled. For the
ease of presentation we restrict ourselves to equality constrained problems in the
following sense:
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Definition 1 (Active Inequality Constraints)
We define the index set of the active inequality constraints by

I(x) := {i ∈ {1, ..., n3}| r3i(x) = 0} (1.10)

at some state x, furthermore

rc(x) =
(

r2(x)
r̄3(x)

)
, (1.11)

where r̄3 consists of all components of r2 and the components r3,i with i ∈ I(x)
of r3.

Using this definition, it is possible to show that a modified problem

min
x
‖r1(x)‖2

2 (1.12)

rc(x) = 0 (1.13)

with the corresponding linearized problem

min
x
‖J1(x)∆x + r1(x)‖2

2 (1.14)

Jc(x)∆x + rc(x) = 0 (1.15)

is equivalent to the original problem in a neighborhood of the solution.
Problems containing inequality constraints are solved based on active set strate-

gies as described in [Boc87]. As the topic of inequality constraints and active set
strategies is not a central part of this work, it will not be discussed further.

Definition 2 (Constraint Qualification (CQ))
The Constraint Qualification is satisfied if

Rg(Jc(x)) = nc = n2 + |I(x)| . (1.16)

A state xεD is said to be regular if x satisfies CQ.

Definition 3 (Positive Definitness (PD))

PD : Rg

(
J1(x)
Jc(x)

)
= n ∀ xεD , (1.17)

is equivalent to
zT JT

1 J1z > 0 ∀ z 6= 0 ∨ Jcz = 0. (1.18)

Definition 4 (Lagrangian Function)
The Lagrangian function for the nonlinear problem (1.12) - (1.13) is defined as

L(x, λ) =
1
2
‖r1(x)‖2

2 − λT rc(x) , (1.19)

where λ ε Rnc is called Lagrange multiplier.
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Using these definitions, we are able to formulate the basic theorem.

Theorem 1 (Necessary Conditions)
Let x∗ be regular and a solution of (1.12)-(1.13). Then x∗ is feasible, i.e.
rc(x∗) = 0, and the first order necessary condition holds: There exists a multi-
plier vector λ∗ that uniquely solves the stationary condition

∂

∂x
L(x∗, λ∗) = r1(x∗)T J1(x∗)− λ∗T Jc(x∗) = 0 . (1.20)

Additionally, the second order necessary condition is satisfied: For all directions

w 6= 0 : Jc(x∗)w = 0

the Hessian matrix of L is positive semi-definite

wT H(x∗, λ∗)w ≥ 0, H(x∗, λ∗) :=
∂2

∂x2
L(x∗, λ∗) . (1.21)

Definition 5 (Karush-Kuhn-Tucker Point (KKT Point))
A vector (x∗, λ∗), which is feasible and satisfies the stationary condition (1.20), is
called a Karush-Kuhn-Tucker point (KKT point).

Lemma 1
If CQ (2) and PD (3) are satisfied, then the following equivalence holds:

(x∗, λ∗) is a KKT point of (1.12)-(1.13)
⇐⇒ (0, λ∗) is a KKT point of (1.14)-(1.15) ,

i.e. a KKT point of the nonlinear problem (1.12)-(1.13) is a fixed point of the
Gauss-Newton iteration.

A great advantage of the Generalized Gauss-Newton method is that a general-
ized inverse J+ can be defined, which solves the linearized problem (1.14)-(1.15).
This allows for a uniform theoretical treatment of nonlinear equation systems, un-
constrained and constrained least squares problems.

Theorem 2 (Existence of a Generalized Inverse)
If J = (JT

1 , JT
c )T in the linear constrained least squares problem (1.14)-(1.15)

satisfies the conditions [CQ] and [PD], we can conclude:

1. For any r = (rT
1 , rT

c ) ∈ Rn1+nc there is exactly one Karush-Kuhn-Tucker
point (∆x, λ) for (1.14)-(1.15), and ∆x is a strict minimum.

2. There exists a linear mapping J+ : Rn1+nc → Rn, such that

∆x = −J+r (1.22)

solves (1.14)-(1.15) for any r ∈ Rn1+nc with

J+ =
(
I 0

)( JT
1 J1 JT

c

Jc 0

)−1(
JT

1 0
0 I

)
. (1.23)
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3. The solution operator J+ is a generalized inverse and satisfies the defining
condition

J+ = J+JJ+. (1.24)

1.3 Convergence Properties

1.3.1 Local Convergence

The Local Contraction Theorem of Bock [Boc87] provides conditions for the lo-
cal convergence of the Generalized Gauss-Newton method and it also quantifies
the convergence. This theorem also holds for the unconstrained case, where J+

becomes the Moore-Penrose pseudo-inverse, and for nonlinear equation systems,
where J+ reduces to the normal inverse J−1. In the latter case, convergence can
also be shown for suitable approximations of J−1.

Theorem 3 (Local Convergence Theorem)
Let J(x)+ be the generalized inverse of the Jacobian J(x) = (J1(x)T , Jc(x)T )T

with respect to the function r = (rT
1 , rT

c )T ∈ C1(D,Rn1+nc) in a nonlinear con-
strained least squares problem. The Jacobian J respectively its generalized inverse
J+ satisfy the following Lipschitz conditions:

||J(y)+
(
J(x + t(y − x))− J(x)

)
(y − x)|| ≤ ωt||y − x||2, ω < ∞ (1.25)

||
(
J(z)+ − J(x)+

)
R(x)|| ≤ κ(x)||z − x|| ≤ κ||z − x|| (1.26)

R(x) := r(x)− J(x)J(x)+r(x) (residuum) κ < 1

∀ t ∈ [0, 1], ∀x, y, z ∈ D and x− y = J(x)+r(x).

Then for all x0 ∈ D with

δ0 :=
α0ω

2
+ κ < 1, αj := ||J(xj)+r(xj)|| (1.27)

D0 := K
(
x0,

α0

1− δ0

)
⊂ D (1.28)

follows:

1. The iteration

xi+1 = xi + ∆xi, ∆xi = −J(xi)+r(xi) (1.29)

is well-defined and remains in D0.

2. xi → x∗ ∈ D0 (j →∞) with J(x∗)+r(x∗) = 0.

3. The convergence is linear with

||∆xi+1|| ≤
(αiω

2
+ κ
)
||∆xi|| =: δi||∆xi||.
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4. For the ith iteration the following a priori estimation holds

||xi − x∗|| ≤ δi
0

α0

1− δ0
.

Remark 1
The Lipschitz constant ω characterizes the nonlinearity of the model. Its inverse
limits the region in which the linearization is valid. See also the next sub–section
(1.3.2).

The Lipschitz constant of J+, κ, measures the compatibility of the data with
the model. For κ < 1, the fixed point x∗ is not only a stationary point but a strict
local minimum. In contrast to this, for κ ≥ 1 there may exist perturbations of the
measurement data in the same order of magnitude as the measurements, such that
the fixed point is stationary, but not a minimum ([Boc87]).

1.3.2 Globalization of Convergence

Considering highly complex and non–linear real-life parameter estimation prob-
lems, one often can not provide initial guesses x0 that are sufficiently close to the
solution to satisfy the requirements of the Local Convergence Theorem.

One way to globalize the convergence of the method is by damping or under-
relaxation. The iterations are then defined by

xk+1 = xk + αk∆xk αk ∈ (0, 1] (1.30)

with a relaxation factor αk. The relaxation factor is chosen such that the next iterate
xk+1 is ”better” than xk. As a measurement of convergence, we ask for descent of
a suitably chosen level function T . Because of lemma (1), we reach a stationary
point if a descent w.r.t. such a level function is no longer possible. The choice of
the level function is crucial for fast convergence. A good choice is the iteratively
weighted natural level function

T k(ε) := ‖J+(xk)r(xk + ε∆xk)‖2 . (1.31)

Out of this condition and an estimate of the nonlinearity ω, we are able to estimate
a suitable steplength without a complete linesearch. For further study, see [Boc81],
[Boc87] and [Sch88].

Additionally, we want to consider a new approach, the so–called restrictive
monotonicity test (RMT). This technique may be interpreted as a stepsize strategy
analogous to those used in numerical methods for the discretization of ODE with
invariants for the Davidenko differential equation associated with the solution of
the parameter estimation problem (for a more detailed discussion see [BKS00]).

It is possible to additionally apply back projection

x̄k+1 = xk + αk∆xk

xk+1 = x̄k+1 + ∆̄xk
(1.32)
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with
∆̄xk = −J(xk)+ (r(x̄k+1)− (1− αk)r(xk)) (1.33)

instead for (1.30) as a form of second order error correction [BKS00]. Doing this,
we better follow the trajectory defined by the Davidenko differential equation.

1.4 Solution of Constrained Minimization Problems

To solve the nonlinear problem, it is necessary to repeatedly solve the linearized
problem (see equations 1.14 and 1.15)

min
∆x

‖J1(x)∆x + r1(x)‖2

Jc(x)∆x + rc(x) = 0.

For the solution of this linear constrained least squares problem, the first step is
to eliminate part of the variables using the constraints. One possibility is to apply
an LQ–decomposition, which results in the following constrained system

(
Lc 0

)
Q

(
∆xc

∆xl

)
=
(

Lc 0
)( ∆x̃c

∆x̃l

)
= −rc(x) (1.34)

and, therefore,
∆x̃c = −L−1

c rc (1.35)

After applying this transformation to the minimization part and eliminating the
part corresponding to the known increment ∆x̃c, we get:

min
∆x̃l

‖J̃ l
1∆x̃l + r̃1(x)‖2 (1.36)

where (
Jc

1 J l
1

)
=
(

J̃c
1 J̃ l

1

)
Q (1.37)

and
r̃1(x) = r1(x)− J̃c

1∆L−1
c rc (1.38)

This linear unconstrained minimization problem is solved using a QR–decomposi-
tion. To establish the complete increment we compute(

∆xc

∆xl

)
= QT

(
∆x̃c

∆x̃l

)
. (1.39)
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Chapter 2

Parameter Estimation for
Dynamic Systems

While we previously focused on the properties of parameter estimation problems,
which are also valid for algebraic ones, we now focus on problems constrained by
an differential equation.

For simplicity reasons we will start with an Ordinary Differential Equation
(ODE)

ẏ = f(t, y, q) (2.1)

with time t, differential variables y(t) (states) and parameters q. In this case, the
least squares conditions and constraints are functions of the states at different time
points and the parameters

ri(x) = ri(y(t0), y(t1), ..., y(tk), q) . (2.2)

When we examine least squares conditions, the time points ti correspond to the
time of measurement, while constraints can be initial conditions at time t0, bound-
ary conditions at times t0 and tk or interior point conditions.

One possibility to parameterize, is to use initial states y0 and parameters q,
where

y(t0) = y0. (2.3)

Then the optimization variables x are
(

yT
0 qT

)
. A different parameterization

will be presented in section 2.3.
In many cases, the general form of conditions (2.2) can be simplified to a more

specific form

ri(x) =
M∑

j=1

rj
i (y(tj), q) , (2.4)

where the function ri is written as a sum of parts only depending on the state at
one time point and the parameters. A typical situation in parameter estimation
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problems is that each component of ri does only depend on the state at one time–
point.

As a result, we formulate a non–linear parameter estimation problem with an
underlying differential equation (here ODE)

min
y0,p

‖r1(y(t1; y0, q), y(t2; y0, q), ..., y(tk; y0, q), q)‖2
2 (2.5)

rc(y(t1; y0, q), y(t2; y0, q), ..., y(tk; y0, q), q) = 0 (2.6)

ẏ = f(t, y, q), y(t0) = y0 (2.7)

2.1 Differential Algebraic Equations

The differential equation (2.1) is an ODE. In several applications it is useful to
introduce algebraic conditions g with algebraic variables z. This leads to a Differ-
ential Algebraic Equation (DAE)

A(t, y, z, q)ẏ = f1(t, y, z, q) (2.8)

0 = g(t, y, z, q) , (2.9)

where A is a regular matrix and f1 the right–hand side.

Definition 6 (Differential Index)
Equation (2.9) has the differential index id = k, if k is the minimum number of
total differentiations

g(t, y, z, q) = 0, ġ(t, y, z, q), ... , g(k)(t, y, z, q) , (2.10)

such that g, ġ, ..., g(k) can be transformed into an explicit ODE ż = g̃(t, y, z, q)
using algebraic manipulations.

DAE’s of higher index are often reduced to index 1.

2.1.1 DAE Index 3 (Full Descriptor Form)

Models of mechanical systems can be formulated in redundant coordinates as a
DAE of index 3. To enhance readability we omit the parameters in the following.

M(p)p̈ + G(p)T λ = f3(t, p, ṗ) (2.11)

gpos(p) = 0 . (2.12)

Here M is the so–called mass matrix, f3 are forces, gpos are kinematic con-
straints and G is their derivative w.r.t. the positions p. Reformulation to order 1
and reduction of the index 3 constraint gpos to index 1 leads to the following linear
system: (

M(p) G(p)T

G(p)

)(
a
λ

)
=
(

f3(t, p, v)
γ(t, p, v)

)
(2.13)

where
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G(p) := ∂
∂pgpos(p)

γ(p, v) := d2

dt2
gpos(p) - G(p)a .

In this context, position variables p and velocity variables v := ṗ are dynamic vari-
ables, while the Lagrange multipliers λ and the acceleration a := p̈ are algebraic
variables.

Furthermore, it should be possible to include behavior which is not described
by a multi–body approach, i.e. introduce so–called variables of external dynamic e
and corresponding differential equations.

This previous constraint gpos is of index 3 and is implicitly included by the
index 1 acceleration constraint (the lower part of equation (2.13)). The original
kinematic constraints gpos and the corresponding first derivatives gvel are known
as invariants, and are used to project to the corresponding manifold. This avoids a
drift of the numerical solution away from the manifold defined by the position and
velocity invariants [Sha86], [Eic92].

The inclusion of external variables and invariants results in the so–called Full
Descriptor Form:

ė = fe(t, p, v, e)
ṗ = v
v̇ = a

(2.14)

(
M(p, e) G(p, e)T

G(p, e)

)(
a
λ

)
=
(

f3(t, p, v, e)
γ(t, p, v, e)

)
(2.15)

with invariants:

gpos(p, e) = 0
gvel(p, v, e) = d

dtgpos(p, e) = G(p, e)v = 0.
(2.16)

Here we focus on the mathematical formulation. To be able to solve the linear
system (2.15), G must have full rank. Furthermore, M must be positive definit on
the null space ker(G) of G. For a further discussion we refer to the part II.

Remark 2 (Non-Autonomous and Non–Holonomic constraints)
Besides purely kinematic constraints gpos(p), there are explicit time–dependent
constraints gnaut(t, p) or constraints which can not be described w.r.t. position
variables only gnhol(t, p, v). These types of constraints are easily included in the
scheme above and do not present any further numerical problems [Che96]. For
notational reasons, these types will be omitted further on.

An up–to–date and detailed reference of several tailored integration schemes
to solve mechanical DAEs in Full Descriptor Form can be found, for example,
in [Sch99] and [Win01]. In this work, we restrict ourselves to the use of these
algorithms and as such will not go into detail.
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2.2 Sensitivity Generation

Besides supplying a function evaluation, derivative based optimization algorithms
like the Generalized Gauß–Newton method need the first derivative of the defining
functions (2.2) w.r.t. optimization variables:

∂ri(x)
∂x

=
∂

∂(y0, q)
ri(y(t1; y0), y(t2; y0), ..., y(tk; y0), q) . (2.17)

A function may be defined at several time-points which are in general not the
start of the underlying integration interval. Therefore, the derivative of the condi-
tions w.r.t. the optimization variables can be written as

∂ri(x)
∂x

=
∂ri

∂y(t1)
∂y(t1)
∂(y0, q)

+
∂ri

∂y(t2)
∂y(t2)
∂(y0, q)

+. . .+
∂ri

∂y(tk)
∂y(tk)
∂(y0, q)

+
∂ri

∂q
. (2.18)

Every part, except for the derivative w.r.t. the parameters, is separated into a
derivative of ri w.r.t. the states at this time–point and the derivative of this state
w.r.t. initial states and parameter.

We now take a closer look at the second part:(
W (t, t0) W q(t, t0)

)
:=
(

∂y(t;y0,q)
∂y0

∂y(t;y0,q)
∂q

)
. (2.19)

One way to calculate this is to solve the variational differential equation cor-
responding to the differential equation (here shown for the ODE case (2.1)):(

Ẇ (t, t0) Ẇ q(t, t0)
)

:=
(

∂ẏ(t)
∂y0

∂ẏ(t)
∂q

)
=

(
∂f(y,q)

∂y
∂y
∂y0

∂f(y,q)
∂y

∂y
∂q + ∂f(y,q)

∂q

)
(2.20)

=
(

∂f
∂y W (t, t0) ∂f

∂y W q(t, t0) + ∂f
∂q

)
with initial values(

W (t0, t0) W q(t0, t0)
)

=
(

∂y(t0)
∂y0

∂y(t0)
∂q

)
=
(
I O

)
. (2.21)

A detailed study for mechanical DAE will be presented in chapter 7. For DAE of
index 1 we refer, for example, to [Bau99].

In some cases, only a subspace D̄ is of interest, then we restrict the derivative
generation to this part. The corresponding initial directions are

D(t0, t0) = D0 , (2.22)

where D0 ∈ Rn×nDir is a basis of the tangent space of the subspace D̄ at y(t0)
and n, nDir are the number of states respectively the dimension of the subspace.
Derivatives in this form are called directional derivatives.
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2.2.1 Internal Numerical Differentiation

To solve a variational differential equation corresponding to a differential equation
one has to keep in mind, that the numerical solution of the DE is typically done
based on an integration scheme with an adaptive stepsize and order strategy. To
avoid errors of the derivative generation due to this, we use internal numerical
differentiation (IND) to provide the derivative of the numerical solution of the DE
w.r.t. initial values and parameters. For further readings we refer to [Boc85].

2.3 Multiple Shooting

One possibility to treat the dynamic parameter estimation problem (2.5,2.6,2.7) is
to solve an initial value problem (IVP) (2.7). The solution of the IVP may not
exist for arbitrary initial states or parameters. Even if there is not such an ex-
treme situation, the initial trajectory may be far off the solution trajectory – with
corresponding bad derivative information – and may introduce a high nonlinearity
into the optimization problem. One solution is to introduce the multiple shooting
discretization as in [Boc85].

2.3.1 Discretization

We subdivide the integration interval, inspired by the methods used for multi–point
boundary value problem approaches (BVP). For a suitable grid of the integration
interval [t0, tend]

t0 = τ0 < τ1 < ... < τm+1 = tend, (2.23)

we introduce additional optimization variables si which are initial values for the
differential equations defined on each sub–interval. Using information originating
from measurements, constraints or additional input, we are able to provide ”good”
initial values for the states at the multiple shooting nodes [Boc85],[Jac01]: The
corresponding initial trajectory is discontinuous, but exists on the complete interval
and is near to the solution trajectory. Furthermore, the nonlinearity of the parameter
estimation problem may be reduced.

This leads to the following set of optimization variables

xT =
(
sT
0 , sT

1 , ..., sT
m, q

)
, (2.24)

where si is used as the initial values of the integration interval [τi, τi+1). To eventu-
ally achieve a continuous solution trajectory, we have to state additional matching
conditions:

hi(si, si+1, q) := y(τi+1; si, q)− si+1 = 0 , i = 0, ...,m− 1 (2.25)
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At last, we formulate the parameter estimation problem using multiple shooting
discretization:

min
s0,..,sm,q

‖r1(s0, s1, ..., sm, q)‖2
2 (2.26)

rc(s0, s1, ..., sm, q) = 0 (2.27)

hj(sj , sj+1, q) = 0 ∀j ∈ {0, ...,m− 1} (2.28)

and an underlying differential equation

ẏ(t) = f(t, y(t; q, si), q) t ∈ [τi, τi+1) (2.29)

y(τi) = si (2.30)

2.3.2 Condensing Algorithm

The multiple shooting approach drastically increases the dimension of the param-
eter estimation problem. Fortunately, it exhibits a special structure of the Jacobian
that can be exploited, which mainly offsets the increased computational cost re-
sulting from a higher dimension.

Looking at the solution of the corresponding linearized system we recognize
the following structure

∆s0

∆s1
...

∆sm

∆q

 = −


D0 D1 D2 . . . Dm Dq

H0 −I Hq
0

H1 −I Hq
1

. . .
...

Hm−1 −I Hq
m−1


+

d
h0

h1
...

hm−1


,

(2.31)
where

d =
(

r1

rc

)
, Di = ∂d

∂si
, Dq = ∂d

∂q ,

Hi := ∂hi(si,si+1,q)
∂si

, Hq
i := ∂hi(si,si+1,q)

∂q .

The condensing algorithms presented here use the structure of (2.31) to effi-
ciently reduce the dimension. The computational cost is typically negligible com-
pared to that of solving the differential equation and variational differential equa-
tion.

In the following, we will study the block–oriented Gauß–decomposition. The
−I matrix is used to eliminate one Hi, Hq

i -block. In part III we will adapt this
form of the condensing algorithm to mechanical systems.

We define
D̃m := Dm, D̃q

(m)
:= Dq . (2.32)
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For i = m− 1, ..., 0 we apply column transformations to parts of the Jacobian
and the increment:  Di D̃i+1 D̃

(i+1)
q

−I Hq
i−1

Hi −I Hq
i

 ∆si

∆si+1

∆q


⇓ Di + D̃i+1Hi D̃i+1 D̃

(i+1)
q + D̃i+1H

q
i

−I Hq
i−1

−I 0

 ∆si

∆si+1 −Hi∆si −Hq
i ∆q

∆q


=:

 D̃i D̃i+1 D̃
(i)
q

−I Hq
i−1

−I

 ∆si

∆s̃i+1

∆q

 .

(2.33)
The resulting system is
∆s0

∆s̃1
...

∆s̃m

∆q

 = −


D̃0 D̃1 D̃2 . . . Dm D̃

(1)
q

−I
−I

. . .
−I



+
d
h0

h1
...

hm−1

 . (2.34)

From this, we can easily calculate the increments ∆s̃i, i ∈ 1, ...,m

∆s̃i+1 = hi (2.35)

and get the so–called condensed system and a solution for ∆s0 and ∆q(
∆s0

∆q

)
= −

(
D̃0 D̃

(1)
q

)+
(

d +
m−1∑
i=0

D̃i+1hi

)
. (2.36)

To calculate the increments ∆si, i ∈ 1, ...,m we compute

∆si+1 = hi + Hi∆si + Hq
i ∆q.
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Chapter 3

Various Topics Concerning
Parameter Estimation

The first two chapters of part I introduce a basic functionality to treat parameter
estimation problems. In this chapter, we discuss several extensions needed for
more demanding problems.

• We discuss parameter identification based on measurement data combining
information of more than one experimental setting (multiple experiments
problem). This type of problem shows a certain structure that can be ex-
ploited.

• A difficulty, especially with increasing problem dimension, is to generate
initial values in the context of multiple shooting. In the case of parameter
estimation, information in the form of measurements is available to automat-
ically calculate good initial guesses in a preprocessing step.

• We examine problems containing an underlying differential equation with
discontinuities. We will see that, under certain conditions, classical opti-
mization methods can still be applied.

• The statistical analysis of the solution is studied as a postprocessing step.

3.1 Multiple Experiments Problems

In several occasions it is not possible to estimate all parameters using data evalu-
ated in one type of experimental setting. Using several different settings provides
additional information and allows for parameter estimation with better statistical
properties. Furthermore, this typically improves the numerical condition number
of the problem. This leads to the so–called multiple experiments problems. We
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formulate a problem that consists of set of N experiments with diverse local pa-
rameters or states xi and a common set of global parameters xg.

min
xi,xg

N∑
i=1

‖ri
1(x

i, xg)‖2
2 (3.1)

ri
c(x

i, xg) = 0 ∀i = 1, ..., N (3.2)

The resulting problems are of high dimension, but the Jacobian exhibits a typ-
ical block-structure 

J1
x1 J1

qg

J2
x2 J2

qg

. . .
...

Jn
xn Jn

qg

 , (3.3)

where J i
xi is the Jacobian of the ith experiment w.r.t. the corresponding local states

xi. J i
xg

is the Jacobian w.r.t. the global parameters xg of the ith experiment.
During the solution process, every block is treated separately, excluding the

columns corresponding to the common parameters from pivoting strategies. The
remaining sub–systems corresponding to the remainder of all J i

g are solved by
standard minimization techniques. A detailed treatment can be found in [Sch88].

3.1.1 Using Multiple Experiment Formulation to Identify a Parame-
terized Surface

The multiple experiment formulation is applicable if one wants to identify a pa-
rameterized surface using measurements of the states at several points.

The surface is defined using a function f of the form

f(x, q) = 0 (3.4)

with states x ε Rn, parameters q ε Rnp and f ε Rn+np → Rnf . Because these
parameters typically can not be estimated directly, it is useful to provide several
points on the surface as measurements. This results in an algebraic constrained
least squares problem

minxi,q
∑

i ‖
xi−x̂i

σi
‖2
2

fi(xi, q) = 0 ∀i,
(3.5)

where xi is the estimation of the state on the surface corresponding to the measure-
ment x̂i, which includes a measurement error which is normally distributed with
a standard deviation of σi. We typically use several of these measurements and,
therefore, introduce multiple experiment problems. Every experiment corresponds
to one set of states xi, while every experiment have the parameters q in common.

Especially in the case of complex surfaces, it is useful to combine measurement
data from different experimental settings each measuring at several measurement
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points. This again has a multiple experiment structure which results in a stacked
multiple experiment structure for the complete parameter estimation problem.

The resulting stacked multiple experiment is of the following form

min
x,ql,qg

M∑
j=1

Nj∑
i=1

‖
xj

i − x̂j
i

σj
i

‖2
2 (3.6)

f j
i (xj

i , q
j
l , qg) = 0 ∀i = 1, ..., N j{∀j = 1, ...,M} (3.7)

where M denotes the number of experiments or series of measurements, N j the
number of measurements in the jth series, xj

i the set of estimated states of the jth
series and ith measurement, x the complete set of xj

i , qj
l the local parameter of the

jth series, ql = {q1
l , ..., q

M
l } all local parameters, qg the global parameters of all

series and f j
i the constraints of the jth series and ith measurement point.

3.2 Automatic Generation of Good Initial Values

A crucial point of an iterativ method like the Generalized Gauß–Newton method is
to have good initial values. We have shown in section (2.3) that by using multiple
shooting we are able to give a better approximation of the solution trajectory. This
is true, if we are able to provide good guesses for the initial values at the multiple
shooting nodes.

The first option to provide initial guesses is to guess them. If we measure all
states at several time–points and if we choose these time–points, or a selection of
them, as multiple shooting nodes, we are easily able to use these measurements to
achieve a non–continuous initial trajectory which fulfills all conditions except the
matching conditions, and as such we have good initial values. Unfortunately, this
simple scenario is not the typical case. In general, we measure only a selection of
states or nonlinear functions of them, and the others must be given by hand.

Alternatively, one can provide initial values for the first multiple shooting node
only and use the states, calculated by integration, at the end of a previous multiple
shooting interval to initialize the others. The latter method may not succeed at all
if the nonlinearity of the differential equation is so high that one is not able to even
integrate till the end of the interval.

Better initial guesses may be provided by a mix of the methods mentioned
above. We guess suitable initial values at the beginning of the complete interval.
Using these initial values, we integrate to the first time–point ti, at which a condi-
tion is stated (this may be the beginning of the integration interval and, therefore,
supply good initial guesses for the start of the integration interval). At ti we solve
an algebraic constrained optimization problem

miny(ti)+ ‖y(ti)− − y(ti)+‖2
2

r̄i(ti, y(ti)+, q) = 0 ,
(3.8)
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such that y(ti)+ fulfils all conditions r̄i at time–point ti and has a minimal distance
to the values y(ti)− of the solution of the integration. Here r̄i are the least squares
conditions and constraints of the original problem, that are evaluated at ti. If a
condition is evaluated at several time–points, we include this condition only at the
last time–point, because then we are able to evaluate the complete condition using
the evaluation of parts at previous time–points. Repeating this for every time–
point for which any condition is stated, we result in a discontinuous trajectory,
which fulfils all conditions stated in the optimization problem, and as such is near
the solution trajectory. The states of this trajectory at the multiple shooting nodes
are used to provide initial values.

This approach is a generalization of the method which is used if we use the
measurement information by hand, because we are no longer restricted to choosing
the multiple shooting grid as a sub–grid of the measurement grid. Furthermore,
this method is done automatically using the information and data–structure already
included in the original optimization problem.

In the case of many measurement–points, it may be better not to project to the
surface defined by f but to use the weighted average of y(ti)+ and y(ti)−. This
would eliminate a part of the statistical fluctuations.

For further readings and numerical examples we refer to [Jac01].

3.3 Discontinuities

Frequently the underlying differential equation has a discontinuous right–hand side
f or parameters q which change discontinuously1

ẏ =
{

f1(t, y, q1) ; s(t, y, q3) ≥ 0
f2(t, y, q2) ; s(t, y, q3) < 0

}
, (3.9)

or the states y jump
y(t+) = y(t−) + j(t, x(t−), q) (3.10)

at the root of some switching function s.
In the case of mechanical models, the first happens if, for example, a force is

defined by piecewise constant functions. A jump occurs if any body collides with
another and this impact is modelled in an idealized discontinuous form.

The root ts of a switching function s is defined explicitly by

s(t, y, q) = t− ts = 0 (3.11)

or implicitly by
s(ts, y(ts), q) = 0 . (3.12)

The root of such a switching function can be efficiently found based on the internal
interpolated representation of the trajectory computed by the integration scheme

1here shown as an ODE for presentation reasons
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[Win01]. If such a root is found, a modification of the differential equation or the
states is possible. In the optimization context we additionally have to consider the
sensitivity information.

3.3.1 Update Formula for Sensitivities

At the time-point of the root of a switching function, an update of the sensitivity
matrix is done in the following way. This update is derived in [KE85], [Boc87]

W (tj+1, tj) = W (tj+1, ts)+UW (ts, tj)−

Wq(tj+1, tj) = W (tj+1, ts)+ (UWq(ts, tj)− + Uq) + Wq(tj+1, ts)+,
(3.13)

where
U := (f+ − f− − jt − jyf

−) sy

ṡ + I + jy

Uq := (f+ − f− − jt − jyf
−) sq

ṡ + jq,
(3.14)

W (t, t0) := ∂x(t)
∂x(t0) , Wq(t, t0) := ∂x(t)

∂q and f+, f− are the right–hand side of the
differential equation defined w.r.t. to the two regions separated by the switching
function.

A formula adapted to mechanical DAE is given e.g. in [Sch99].

3.3.2 Differentiability Considerations for the Parameter Estimation
Problem

The next question arising is: If we have a non–smooth trajectory, do we have to
use an algorithm capable of treating discontinuous optimization problems?

To be more exact the question is, if a non–differential underlying differential
equation leads to a non–differential parameter estimation problem, i.e. a problem
where the differentiability conditions are violated.

If the sequence and the number of the roots of the switching functions do not
change in an interval [tb, te], the states y(te) at te smoothly depend on initial states
y(tb) and parameters. In parameter estimation context, this condition has to be
fulfilled for every interval [ti, tj ], where ti and tj are time–points at which some
condition, be it least squares equation or constraint, or a multiple shooting node is
defined. If this condition is met, the assumptions of the optimization algorithms
are fulfilled, and we can use the methods shown previously [Boc77].

Because we are able to give good initial values for the multiple shooting nodes
based on measurement information, this is the case in a broad variety of practical
applications. Therefore, we explicitly exclude the treatment of non–differential
optimization problems in this work.

3.4 Statistical Analysis of the Solution

In addition to the solution of the parameter estimation problem, a statistical inter-
pretation of the solution is necessary. We need an assessment of the reliability of
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the solution i.e. in the form of confidence intervals and variance-covariance ma-
trices. In this section, we outline how this information can be provided in the
framework of Generalized Gauss-Newton methods [Boc87].

Let r contain all conditions, J the Jacobian of the complete system (2.31) in
the solution point x∗ and J+ the respective generalized inverse. Under the as-
sumption about the measurement error made in section (1.8), the solution ∆x =
−J+r is also a random variable. An approximation to the corresponding variance-
covariance matrix is given by

C(x) := E(∆x∆xT ) = E(J+εεT J+T ) = J+E(εεT )J+T = β2J+ΛJ+T
,

(3.15)
where

E(εεT ) = β2

(
In1 0
0 0

)
= β2Λ (3.16)

and ε is the measurement error, β2 a common factor, and In1 a unity matrix corre-
sponding to the n1 leastsquares conditions.

This information is computed easily, due to the fact that a decomposition of J
at the solution is available at the end of an optimization process.

The variance–covariance matrix C can be evaluated only for the diagonal ele-
ments and only for parameters q or additionally the initial states s0 or the complete
dynamic variables. The latter supplies a statistical analysis of the solution trajec-
tory in a discretized form [Sch88]. This is of particular interest if the quality of the
solution of states has to be assessed and no direct data are available.

In case the common factor β2 should be unknown, it can be obtained by

β2 :=
||r1(x)||22

l2
, (3.17)

where l2 := n1 − l1 and l1 := (ny + np) − (nc). Approximations to the corre-
sponding joint confidence intervals θi can be computed by

θi = b
(
Ciil1Fl1,l2;1−α

) 1
2 i = 1, . . . , np , (3.18)

where Fl1,l2;1−α denotes the (1− α)-quantile of the Fl1,l2-distribution.
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Several fields of biology, medicine are physics are interested in the movement
of physical objects. If only the coarse motion is of interest neglecting e.g. deforma-
tions, it is useful and adequate to use a rigid body formulation. There are several
approaches which are typically distinguished by the choice of coordinates and by
the way the equations of motion, based on this choice, are built.

One possibility is to use Natural Coordinates as introduced by García de Jalón
and Bayo . They first define the position (and velocity) of each body and then re-
strict the relative motion of two bodies by introducing additional constraints. By
using the large number of twelve position–variables per body, they are able to re-
strict themselves to very simple constraint equations of typically maximal second
order. Due to this, the system of differential equation is of high dimension, but
each entry is very easy to compute. Until then do we follow the approach of García
de Jalón and Bayo, but in the following the systems of equations are treated dif-
ferently. García de Jalón and Bayo, continue by using the fact that one can share
variables between different bodies to reduce the dimension of the system. A rev-
olute joint between two bodies fixes one point and one axis, such that this point
and axis can be shared between the two bodies. We do not apply point–sharing
to preserve the structure of the system matrix, which can be exploited. Further-
more, we apply a different linear algebra method to the resulting linear system.
Our method is able to evaluate the right–hand side of the differential equation with
linear complexity in contrast to the quadratic complexity of the classical approach.
To apply this method, one has to guarantee a set of non–redundant constraints. As
this is not automatically given with the classical approach, several constraints are
formulated differently. This is done in such a way that the basic property of the
original formulation is regained, i.e. only constraint equations of maximal second
order are needed.

In our formulation, the equation of motion leads to the so–called Full Descrip-
tor Form, where the DAE of index 3 is reduced to index 1. The main computational
effort is the decomposition and solution of the linear system of the acceleration
constraint. Because we trade the reduction of the state dimension for the structure
of the system matrix, special attention has been paid to the efficiency of the de-
composition and the solution. First, because of the block–structure arising from
our approach of not using point–sharing, we were able to provide it in linear com-
plexity. Second, the constraint matrix and mass matrix of each block has a special
sub–structure, too. This additional structure, which is due to the simplicity of mod-
elling using Natural Coordinates, is used to further improve the efficiency of the
algorithm. As a result, we are able to provide a method which is competitive to
other methods, especially for a large number of bodies, while providing a set of
equations which are very simple. This simplicity is very helpful if one wants to
study more complex elements or provide derivative generation, which both is the
case in this work of parameter estimation of bio–mechanical models.

After this first chapter, which presents the core modelling task, the second
chapter leads us to several more advanced topics resulting from the use of Natural
Coordinates in our formulation. We introduce an alternative formulation of Natural
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Coordinates, which eliminates some constraints of the rigid body to reach into the
field of flexible bodies.

The linear algebra method is applicable to a set of non–redundant constraints.
Although we eliminate one possible source of redundancy, as discussed before,
it is possible that no global set of non–redundant constraints exists. Therefore,
we have developed constraint partitioning, which handles constraints in a similar
way as coordinate partitioning handles variables. The main difference is that our
approach does not lead to a restart of the integration method and, thus, improves
the performance of the computation. The neighboring topic of singular kinematic
positions is discussed briefly; nature or engineers are typically intelligent enough
not to model such systems. This might not be the case for ”simple” test–examples
or idealized models.

At last, we discuss discontinuous models again – this time from the perspective
of the modelling task, and in a simulation context.

As a result, we are able to model systems of arbitrary topology in a way that
combines simplicity of the formulation and numerical efficiency. Therefore, we
are more than competitive with other methods.



Chapter 4

Modelling in Natural Coordinates

Rigid body formulations provide a physical description of a special kind of multi–
body systems with several non–deformable bodies. They can rotate or translate
as a whole, but do not change their shape. These bodies are connected by joints,
i.e. elements that restrict several possible relative motions between two bodies or
one body and the reference system. Therefore, the number of kinematic degrees
of freedom – of originally six times the number of bodies – is reduced. Further-
more, there are forces interconnecting the bodies or applied to the bodies from the
environment. It is typically assumed that these forces or torques can be formulated
in such a way that they are applied to one point respectively around an axis of the
body [Sch86].

At first glance, this seems to be a major idealization of reality. However, for a
vast number of applications it is a suitable approximation. Therefore, we focus on
this approach throughout this chapter, which deals with the basics that can be ap-
plied to technical mechanics. The last chapter of this part extends the applicability
to the field of bio–mechanics. We will see, that even in the case of human beings,
which do not consist of rigid elements as a robot, this idealized approach can be
applied.

We first look at the basic question of how to choose the coordinates. We choose
a modified version of Natural Coordinates [GB94] and derive the necessary infor-
mation to provide the evaluation of the right–hand side of the differential equation
describing this model. We will see that the simplicity of the basic transforma-
tion originating from the way we choose the coordinates leads to simple equations,
too. Furthermore, we get a special structure of the linear system we have to solve;
which can be exploited to get an algorithm of linear complexity w.r.t. the number
of bodies.

4.1 Coordinates in Multi–Body Systems

The fundamental issue of modelling multi–body systems is how to choose the co-
ordinates. There are several approaches to this issue, and the question of an op-
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timal choice is an area of ongoing research. Tree–structured mechanisms without
closed kinematic loops can be modelled recursively traversing through the kine-
matic chains. This usually leads to a set of ordinary differential equations (ODEs)
for the equations of motion.

Alternatively, we see the usage of a variety of redundant coordinate systems
for modelling multi–body systems (MBS) on the basis of Lagrangian equations of
the first kind. This leads to the well–known set of differential algebraic equations
of index 3 for MBS. Index–reduction for numerical treatment of this DAE leads us
to the Full Descriptor Form of index 1 (see equations 2.14, 2.15, 2.16):

ė = fe

ṗ = v
v̇ = a(

M GT

G 0

)(
a
λ

)
=
(

f
γ

)
gpos(p) = 0

gvel(p, v) = 0

(4.1)

with position p, velocity v = dp
dt , acceleration a = dv

dt , external variables e, cor-
responding right–hand side of the differential equation fe, mass matrix M , forces
f , kinematic constraints gpos, velocity constraints gvel, acceleration–independent
part of the acceleration constraints γ, Lagrange–multiplier λ and constraint matrix
G = dgpos

dp .
A unifying idea for most modelling techniques is to establish a local coordinate

system in each body of the MBS. The coordinate choice is usually the choice of an
efficient parameterization of the affine transformation between the global (world)
and each one of the local (body) coordinate systems. Reference point coordinates
in 3D e.g. model the Cartesian coordinates of the origin of the local coordinate sys-
tem together with three angles (Eulerian angles). While this leads to the most com-
pact possible set of coordinates, they exhibit two singular position, which causes
a variety of numerical problems. Since any parameterization of a free body in 3D
with exactly 6 coordinates has at least two such singular points, it is only possible
to overcome this drawback with redundant coordinate systems if one global map
should be used.

Our modelling method of choice is based on Natural Coordinates as described
by García de Jalón and Bayo in [GB94]. Although this method uses the 12 coordi-
nates per body and, therefore, a model of very high dimension, we will show that
the resulting equations are very simple and have a distinct structure. In contrast
to García de Jalón and Bayo, who use this structure to reduce the dimension of
the dimension of the variables, we exploit this structure. As a result, we are able
to provide a evaluation of the right–hand side of the differential equation in O(n)
w.r.t. the number of bodies, whereas García de Jalón and Bayo have a complexity
of O(n2) w.r.t. the number of bodies. To be able to do this, we heavily modified
the original formulation.
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4.2 Natural Coordinates

In most other methods, the affine transformation is specialized to the combination
of a translational part of the origin and a rotational part. But the orientation matrix
does not have to be an element of SO(3). A more general view that allows scaling
and shearing can be used to adjust the coordinate system to the local topology of
the model. Natural Coordinates parameterize the underlying affine transformation
in a natural and more general way.

An affine transformation of a body–fixed point r, expressed in local coordi-
nates, to its global representation r̄ is given by

r̄ = o + Xr (4.2)

where o εR3 is the translation of the origin of the local coordinate system and
X εR3×3 is the corresponding orientation matrix.

Figure 4.1: Affine Transformation

Natural Coordinates do not parameterize X , but uses all 9 entries of X as dy-
namic variables. Because of this relation between the dynamic variables and the
orientation matrix, every local point can be transformed into its global representa-
tion by a linear transformation of the dynamic variables.

r̄ = o + Xr = o + (e1|e2|e3)r
= 1o + r1e1 + r2e2 + r3e3

=

 1
1

1

r1

r1

r1

r2

r2

r2

r3

r3

r3


︸ ︷︷ ︸

Cr


o
e1

e2

e3


︸ ︷︷ ︸

p

= Crp
(4.3)
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where Cr εR3×12 is defined by the local affine coefficients and p ε R12 are the
dynamic variables of each body. The equation holds true for the first and second
derivative with the same matrix Cr ( ˙̄r = Crṗ, ¨̄r = Crp̈).

Remark 3 (Translation Vectors)
Besides affine points, as shown above, the modelling process uses translation vec-
tors. Setting the leading 3x3 block of Cr to zero gives the correct transformation
while preserving the structure.

4.3 Deriving the Mass Matrix

In the following section, we derive the mass matrix in a general form. To allow
for a comparison to the better known moment of inertia w.r.t. Eulerian angles, we
first derive this form for one free body[LL75]. We write the global position r̄ of a
point w.r.t. the reference frame as a superposition of the position of the origin of
the body o, and r̃ as the position of one point w.r.t. the local frame (r̃ = Xr)

r̄ = o + r̃. (4.4)

In this formulation, the origin is equivalent to the center of mass.
We are able to write the differential of r̄ in the following form

dr̄ = do + dϕ× r̃, (4.5)

where dϕ is an infinitesimal rotation. Using the definition of the differential, we
get the velocities

v = vo + Ω× r̃, (4.6)

where vo is the velocity of the center of mass and Ω the angular velocity of the
body.

The kinetic energy T is typically written as

T =
∫

V

%vT v

2
dV (4.7)

with constant or variable density %, and integrated over the whole body. Substitut-
ing v with equation (4.6), we get

T =
∫

V

%

2
(vo + Ω× r̃)T (vo + Ω× r̃)dV. (4.8)

Using the well–known transformations we get the final form of the kinetic energy

T =
m

2
v2
o +

1
2

∑
i,k

ΘikΩiΩk, (4.9)
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with mass m and the classical moments of inertia w.r.t. Eulerian angles Θ with
components

Θik =
∫

V
%(r̃2

l δik − r̃ir̃k)dV. (4.10)

Therefore, the complexity of the form of Θ is a direct result of the definition of v
(4.6).

We will see that the very simple form of the corresponding equation in Natural
Coordinates (first derivative of (4.3)) results in a less complex form of the moment
of inertia.

To derive the moments of inertia w.r.t. Natural Coordinates, we start with the
general form of the kinetic energy (4.7), too. Following the previous transfor-
mations, we use the first derivative of transformation (4.3). With respect to the
dynamic variables p, we write the kinetic energy

T =
1
2

∫
V

% ṗT CT
r Crṗ dV. (4.11)

As the integral is independent of the dynamic variables which are derived from
the transformation of the whole rigid body, we write

T =
1
2

ṗT

(∫
V

% CT
r Cr dV

)
ṗ =:

1
2

ṗT Mṗ (4.12)

and, thereby, define a mass matrix M ∈ R12×12.
We get a bi–linear form with respect to the velocity, which means that we

can establish the mass matrix for Natural Coordinates. Because of the structure
of Natural Coordinates, the mass matrix M does in general not separate into a
translational and a rotational part. This property is reproduced only if the origin
corresponds to the center of mass of the body, which is a prerequisite when mod-
elled using Eulerian angles. We see that the mass matrix in Natural Coordinates
is of simpler mathematical form than the Eulerian counterpart, which is a direct
result of the simplicity of the underlying transformation. Furthermore, we stress
that this formulation does not introduce additional terms originating from coriolis-
or centrifugal forces as long as the reference system is an inertial system.

The mass matrix in Natural Coordinates is constant (as in many formalisms
with a body–fixed coordinate system) and sparse – a fact that follows directly from
the structure of the transformation matrix Cr.

As the classical moment of inertia is widely available, we give a transformation
to Natural Coordinates if the origin of the coordinate system is the center of mass

M =
(

m
trΘ
2 I −Θ

)
⊗ I3, (4.13)

where trΘ is the trace of Θ and ⊗I3 denotes the tensorial product with the three–
dimensional unity matrix, which results in the 12–dimensional quadratic mass ma-
trix of Natural Coordinates. This is easily seen by comparing the formula w.r.t. Eu-
lerian angles and Natural Coordinates. This formula is valid if the origin of the
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local coordinate system coincides with the center of mass of the body. Otherwise,
one has to transform to this form.

4.4 Modelling Rigid Bodies

In Natural Coordinates the orientation matrix X may not be an element of SO(3).
However, when modelling rigid bodies, there is a set of algebraic relations between
the natural coordinates. These so–called rigid body constraints restrict the coordi-
nates to the suitable 6–dimensional subspace. The relations keep the length of the
axis and the angles between them fixed

gRC
p,i = 1

2eT
i ei − 1

2 l2i (i = {1, 2, 3})
gRC
p,4 = eT

1 e2 − a1

gRC
p,5 = eT

1 e3 − a2

gRC
p,6 = eT

2 e3 − a3 .

All these equations are polynomial of second order, so that they and their
derivatives, which are used in the full descriptor form, are very cheap to compute.
The resulting constraint matrix is linear with respect to the dynamic variables, and
it has a special structure

GRC(p) =
∂gRC

pos

∂p
(p) =

o e1 e2 e3︷ ︸︸ ︷

eT
1

eT
2

eT
3

eT
2 eT

1

eT
3 eT

1

eT
3 eT

2

 . (4.14)

The computation of γ can be rather time–consuming in other formulations be-
cause it corresponds to the second derivative of a possibly highly nonlinear kine-
matic constraint. As numerical experience show for other approaches, the compu-
tation of γ consumed up to 80% of the time needed to evaluate the model. In our
formulation, the computation of γ is as cheap as the evaluation of the kinematic
constraints,

γRC
i = −ėi

T ėi (i = {1, 2, 3})
γRC

i = −2ėj
T ėk (i = {4, 5, 6}). (4.15)

4.5 Defining Joints by Constraints

Introducing joints even more restricts the degrees of freedom of the complete sys-
tem. This way, modelling joints can be achieved by imposing additional joint con-
straints. The two key concepts for modelling standard joints are, on the one hand,
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restricting translational movement in one direction and, on the other hand, rota-
tional movement around an axis. Both are realized by keeping two vectors parallel.

A formulation introduced by García de Jalón and Bayo uses the vector product,
leading to a set of three linearly dependent equations. But for numerical treatment,
we need a constraint matrix with full row rank. This problem can be avoided by an
adapted formulation using two orthogonality relations of the following form

a‖b ⇐⇒ ∃ h1 ⊥ h2, a ⊥ h1, a ⊥ h2 : b ⊥ h1 ∧ b ⊥ h2, (4.16)

where a, b, h1 and h2 are the global representation, a, h1, h2 are fixed w.r.t. the first
body whereas b is fixed w.r.t. the second body and h1, h2 are unity vectors. The
two orthogonality relations are realized using scalar products. Due to the linearity
of the basic transformation (4.3) are the resulting kinematic constraints equations
of second order w.r.t. the dynamic variables.

Figure 4.2: Assembly of a Revolute Joint

Example (Deriving the constraints for a revolute joint) We have to fix two
bodies at a common point with local representations b1, b2, which is a special form
of disallowing translational movement. This is modelled as a direct comparison of
the two points and leads to three equations of first order. With transformation (4.3)
we get

gJ
p;1,2,3(p1, p2) = [b1(p1)− b2(p2)]1,2,3 := [Cb1p1 − Cb2p2]1,2,3 = 0. (4.17)

Furthermore, we have to forbid rotations other than around the rotation axis
(local coordinates d1, d2)

gJ
p;4(p1, p2) = d1(p1)T h1(p2) := (Cd1p1)T Ch1p2 = 0 (4.18)

gJ
p;5(p1, p2) = d1(p1)T h2(p2) := (Cd1p1)T Ch2p2 = 0. (4.19)
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where h1 and h2 are perpendicular to d2.
For cylindrical or prismatic joints, we restrict translational movement in spe-

cific directions. This is accomplished by defining a translational vector by the
difference vector of two points. Therefore, restricting translational motion leads
again to formulating constraints which ensure parallelism of vector in their global
representation; the same concept we used for restricting rotation. More complex
joints or constraints are modelled using these basic formulations. For further read-
ing concerning the definition of other joints we refer to [GB94] and [Kra97].

4.6 Forces

We now want to derive the formula for point-forces or volume-forces that are ex-
pressed in the first form, e.g. the gravitational force. We start with the principle of
virtual work

δW = δrT
P fP (4.20)

for a point force fP ∈ R3 at point P , with global position rP ∈ R3 and cor-
responding transformation matrix CP ∈ R3×12. Using transformation (4.3), we
get

δW = δpT CT
P fP (4.21)

and, by comparison, we get the force f̂ w.r.t. Natural Coordinates

f̂ = CT
P fP . (4.22)

Further information again can be found in [GB94] and [Kra97].

4.7 Solving the Linear System

We have introduced Natural Coordinates for mechanical systems resulting in ele-
gant and very simple equations. But this is achieved by introducing a very high
number of dynamic variables, which typically leads to increased computational
costs, and, therefore, would be a major drawback.

In this chapter we show that Natural Coordinates in our approach do not only
result in equations of low order, but in equations of a very special structure, too.
Using this structure on two qualitatively different levels leads to an efficient algo-
rithm of linear complexity w.r.t. the number of bodies in contrast to an algorithm
by Gacía de Jalón and Bayo, which has quadratic complexity. Due to this, we get
better performance for larger systems, retaining the advantages discussed in the
previous chapter, and paving the way for the treatment of complex problems, as
shown in the last chapter of this part.
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4.7.1 Block–Sparse Structure

The local topology of bodies and joints leads to a block–sparse structure of the lin-
ear system (2.15). In the original formulation of Gacía de Jalón and Bayo, point–
sharing, that is sharing of variables corresponding to points or axes defining a joint
between bodies, is used in order to shrink the system. They introduce a decompo-
sition algorithm with quadratic complexity, which is fast for small models.

Instead of reducing the system via point sharing, our approach keeps the full
structured matrix and exploits the structure based on a block–oriented Rational
Cholesky–decomposition

A = LT DL, (4.23)

where A is the original matrix, L a lower left block–tridiagonal matrix and D
a block diagonal matrix. We study this at the three principle types of topology:
linear chains, tree–structured systems and system with closed kinematic loops.



1 |
− + −

| 2 |
− + −

| 3 |
− +


Figure 4.3: Linear Chain

For systems consisting of linear chains (see figure 4.3), there exists a block–
ordering that results in a block–banded matrix of the linear system. The Aug-
mented system of the mass matrix and the rigid body constraints corresponding to
each body are placed on the main diagonal, and the constraint matrix block cor-
responding to joints are placed on the first sub–diagonal. In the following figures,
each block corresponding to a body is denoted by a number, while parts of the con-
straint matrix corresponding to the joints are marked by ”−” and ”|”. As a result
of the decomposition, the fill–in ”+” is generated. The sparsity pattern of the fig-
ures show a combination of the original matrix and the result of the decomposition
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L. In the original matrix there is obviously no fill–in, whereas L is a lower left
tridiagonal block–matrix.

This symmetric matrix is decomposed in linear time w.r.t. the number of bodies.
In this case fill–in is not avoidable and corresponds to the Schur–complement in
the non–blocked case.



1 |
− + −

| 2 |
3 |

− + −
− + −

| | 4 |
− +



Figure 4.4: Tree–Structured System

If the model–topology is a tree–structured system (see figure 4.4), additional
off–diagonal elements are introduced, but if a suitable ordering is used, these do not
lead to an additional fill–in because of the block–pattern of the remaining matrix.
The decomposition of this type of matrix can also be done in linear time.

If there are joints which lead to closed kinematic loops (see figure 4.5) off–
diagonal blocks are introduced. These propagate fill–in ”◦” in the magnitude of
the size of the loop.

The behavior of more complex systems is qualitatively the same as shown in
the simple examples. The linear complexity w.r.t. the number of bodies is regained
if the number of closed kinematic loops is not too high. In the limit of a system
where every body is connected with every other body, the complexity of the de-
composition increases, but this is not the typical case in (bio-) mechanical systems.
A complex example with many closed kinematic loops and a small overhead is the
hexapod [WK00], also discussed in section (5.1.2). More examples can be found
in [Kra97] or [KWB00].
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1 | |
− + − ◦

| 2 | ◦
− + − ◦

| 3 | ◦
− + ◦ −

− ◦ ◦ ◦ ◦ ◦ + −
| | 4 |

− +



Figure 4.5: System with closed kinematic loop

4.7.2 Sub–Block Structure

The method discussed in the previous section uses the inherent topology of the
model in order to drastically reduce the computational effort. In addition to this,
we recognize a specific substructure of each block, which can be exploited.

The matrices on the main diagonal correspond to the mass matrix and the rigid
body constraints, i.e. the full definition of one body,

M̄ =

(
M GRCT

GRC

)
. (4.24)

The mass matrix M has a very special structure – it is constant and very sparse
– but this can not be exploited in the context of our block–oriented sparse solver.
Before the decomposition of M̄ , this block is modified with full matrices that are
part of the joint treated before. A typical modification looks like

M̃i = M̄i +
∑

j

L̃ijM̃
−1
j L̃T

ij , (4.25)

where L̃ are blocks corresponding to joint constraints. As a result of this, the
pattern is destroyed. But there is a less obvious structure, which is used and leads
to a speed–up of the computation by a factor of two.
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During their decomposition of the block–structured system, block–operations
of the type M̄−1L̃T , comprise most of the computational effort. We take a closer
look at the rigid body constraint matrix of one body, which is defined w.r.t. coordi-
nates in standard form of one point as the origin and three additional vectors (x, y,
z as in equation 4.3):

GRC =



0 eT
1 0 0

0 eT
2 eT

1 0
0 eT

3 0 eT
1

0 0 eT
2 0

0 0 eT
3 eT

2

0 0 0 eT
3

 (4.26)

The structure of GRC is further improved by multiplication from the right–hand
side with

R(p) =


R̃

R̃

R̃

R̃

 , (4.27)

where

R̃(p) =

 eT
1

eT
2

eT
3

−1

. (4.28)

This transformation reduces GRC to a matrix with only 9 entries equal to one.
If one chooses the underlying coordinate system to be orthonormal, the inversion
needed to compute R is only a transposition, and therefore is immediately at hand.
In this case, R corresponds to a rotation.

By applying the null–space method and explicitly using the very simple struc-
ture of the transformed and constant matrix

(
GRCR

)
, we are able to drastically

reduce the overall computational time for this type of operation, but, on the other
hand, the decrease of computational effort here is partially negated by the fact
that the joint blocks have to be transformed, too. Much of the computational ef-
fort needed is avoidable if the transformed constraint matrix is computed directly.
If this is done in an efficient way, the previously mentioned speed–up of two is
achieved for the general class of mechanical models.

Remark 4 (Adapting Coordinates to Joints)
The Adaptation of the choice of coordinates to the joints connected to the corre-
sponding body leads to an even simpler transformation matrix C (4.3), where some
entries are zero, which reduces the computational effort of the mass-matrix update
(4.25). This simplification is less universal than the one mentioned above, and the
code–optimization of today’s compilers are impaired, so that it is not implemented.



Chapter 5

Advanced Topics of Modelling
Based on Natural Coordinates

Chapter 4 has illustrated the convenience of modelling mechanical systems using
Natural Coordinates in our approach. Now we focus on several special and ad-
vanced topics:

• We introduce an alternative formulation of Natural Coordinates to adapt to
special kinematic structures or simple elastic bodies, which shows the high
flexibility of our approach.

• We look at the problem of introducing redundant constraints due to auto-
matic modelling. In addition we treat the situation that no global set of
non–redundant constraints may describe the physical model correctly. We
developed constraint partitioning which is able to efficiently treat this prob-
lem by selecting a non–redundant subset of the constraints. Our approach
is qualitatively more efficient than the well–known coordinate partitioning,
because we do not need to restart the integrator.

• We study physical models with kinematic singularities, which exhibit a vary-
ing number of degrees of freedom. This behavior is qualitatively different
from the previous topic because it is a property of the physical model and
not only its mathematical description.

5.1 Alternative Formulations

In the previous chapter, we have introduced Natural Coordinates in a specific form.
Besides this standard formulation, many variations are possible and contribute to
the flexibility of describing physical models in Natural Coordinates. We show
some promising modifications of the basic definition.
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5.1.1 Coordinate System Definition

The basic definition of a coordinate system of an affine vector space in 3D uses one
point for the origin (o) and three translational vectors (e1, e2, e3) that form the basis
of the underlying vector space. Therefore, we are able to give the transformation
of a locally defined point to global space as in equation (4.3):

r̄ = o + r1e1 + r2e2 + r3e3

= Crp,

where pT =
(
oT eT

1 eT
2 eT

3

)
and

Cr =

 1 r1 r2 r3

1 r1 r2 r3

1 r1 r2 r3

 .

A translational vector is described by a modified matrix Ćr, where the leading 3x3-
unity matrix is replaced by a zero matrix.

An alternative formulation of the coordinate system is given when we define
one or more of the axes ei by the difference of two points. This is useful if, for
example, the body is connected to its neighbor via two spherical joints. Each joint
is defined by a constraint using only one point. So if two points are available at
the correct local position, the definition of the constraint is much simpler; two sets
of dynamic variables, in contrast to two linear combinations of dynamic variables,
have to be equal.

Let us use two points a, b and two vectors u, v instead of one point o and three
axes e1, e2, e3. Using this definition, the corresponding transformation is

r̄ = a + rx(b− a) + ryu + rzv
= (1− rx)a + rxb + ryu + rzv

= C̃rp,

(5.1)

with

C̃r =

 1− rx rx ry rz

1− rx rx ry rz

1− rx rx ry rz

 .

(5.2)
Based on these transformations, we are able to derive (modified) mass matrices as
well as constraints or joints.

An interesting type of coordinate definition uses four affine points and no trans-
lational vectors to describe the position and orientation of a body.

5.1.2 Modelling Non-Rigid Bodies

Another possible modification can be seen if we look at the physical interpretation
of the so-called rigid body constraints. They are introduced in order to guarantee a
fixed local coordinate system that implies a rigid body.
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Vice versa, we introduce an additional degree of freedom to the body, if one or
more of these rigid body constraints, like one that fixes a length, is omitted. In this
case, we model a deformable body and enter the domain of simple elastic bodies
(with low discretization).

We described one example for this type of modelling in [WK00], where a hexa-
pod machine tool was modelled, consisting of a platform that can be moved in all
six degrees of freedom by six actuators. A classical way of modelling uses thirteen
bodies: one body for the platform and two rigid bodies per actuator. The alterna-
tive formulation uses only one body per actuator, which has no fixed length. The
corresponding constraint is replaced by an actuating force element. This does not
only reduces the number of bodies but also the computational effort per body.

Furthermore, a simple length-dependent moment of inertia is automatically in-
cluded in this formulation because of the definition of the mass matrix in Natural
Coordinates, which includes a scaling according to the length of the defining coor-
dinate axes.

5.2 Constraint Partitioning

In modern interactive user interfaces, it is suitable to hide internal structures. If
possible, an application–oriented user should not need to ”know” the underlying
mathematics. If one automatically builds up a model that has closed kinematic
loops, it might happen that one of the prerequisites of the mathematical equations
is violated: the constraints must not be redundant. A violation leads to a singular
constraint matrix and therefore to a singular system matrix. An automatic treatment
of such a situation drastically improves the usability of the modelling approach.

The first question is: How can constraints be redundant? Let us look at a closed
chain of four bodies connected to each other with revolute joints, such that they are
restricted to a two–dimensional plane. If one looks at the last joint which closes
the revolute joint, the possible movement of the bodies is already restricted to a
plane. As a result of this, the restriction of the rotational freedom, imposed by
the joint, is not necessary. The corresponding constraints are redundant. In this
simple example, this fact is obvious, and the problem may be interactively fixed
by the user. Since the model can get arbitrarily complex, an automatic treatment is
desirable.

As mentioned before, redundant constraints lead to a rank–deficient system
matrix. The other way round, a rank analysis can be used to detect redundant con-
straints. If they are detected, this enables us to eliminate them. The result is a
physically equivalent mathematical formulation without singularities. As we par-
tition the constraints in a set of independent and redundant constraints, this method
is called constraint partitioning. It is similar to coordinate partitioning, which se-
lects a number of non–redundant variables. We want to stress that a globally valid
set of non–redundant constraints need not exist. Therefore, we have to monitor and
adjust the set during the simulation. As we have to check at every integration–step,
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a method with only a small additional effort is of upmost importance.
It is convenient to define the rigid body constraints to be always in the set of

used constraints, because they would also be present in the non–redundant open
loop case. Furthermore, we restrict ourselves to only monitoring each diagonal
joint block independently, using the same argument.

We use the Cholesky decomposition for the joint–block. If an (almost) zero
diagonal element appears during the decomposition, the corresponding constraint
is dynamically eliminated. We compute this information, because we need to mon-
itor a change in the set of redundant constraints. If a change in the active set of
non–redundant constraints is detected, we do not need to re–decompose, but we
can keep the previously computed part of the decomposition. In this case, the
computational effort is equivalent to a decomposition of the full system using all
constraints. In the typical case of relatively few redundant constraints, we can
neglect the additional effort.

It is important to mention that a restart of the integration scheme is not needed,
because a change in the non–redundant set of constraints only leads to a discon-
tinuous Lagrange multiplier. The differential part of the DAE does not depend ex-
plicitly on these Lagrange multipliers. This drastically improves the performance
of the method in comparison to coordinate partitioning, where every change leads
to a very costly restart of the integration scheme. The method of detecting rank–
deficiency is only valid if one stays near the consistent manifold, which is guaran-
teed by all state–of–the–art mechanical integration packages.

As an example for the performance of this technique, we present the six–bar–
mechanism in section 12.3.

5.3 Singular Kinematic Positions

As mentioned in the previous section, it is not always possible to give a global
non–redundant set of constraints. We considered the fact that constraints may be
redundant at some point of the manifold, but we kept the number of non–redundant
constraints constant up to now. There are several examples where at one point of
the manifold its dimension changes; the physical model exhibits singular kinematic
points.

Singularities of lowest order, and therefore the most common ones, can be
categorized as: One isolated point with an additional degree of freedom and a
crossing of two manifolds, which results in an additional degree of freedom.

A simple two–dimensional example of the first case is defined by

g1(x1, x2) =
(

vT
+v+ − 1

vT
−v− − 1

)
= 0, (5.3)

where

v+ :=
(

x1

x2

)
−
(

+1
0

)
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and

v− :=
(

x1

x2

)
−
(
−1
0

)
The solution of the system is the origin.

Let us look at the constraint matrix

∂g1(x1, x2)
∂(x1, x2)

=
(

2(x1 − 1) 2x2

2(x1 + 1) 2x2

)
. (5.4)

It has full rank except for the origin, which is the solution. As a result of this, we
encounter an isolated singular point at which the constraints are redundant, while
they are non–redundant everywhere else. To avoid this difficulty it is necessary to
reformulate the constraint. One possibility is

ḡ(x1, x2) =
(

x1

x2

)
= 0. (5.5)

In our modelling package MBSNAT, we avoid this kind of singularity by simply
not formulating constraints of this type where the distance to a point is fixed. The
alternative presented here or, to be more exact, its generalization is used exclu-
sively.

The second type can be shown in

g2(x1, x2) = x1 · x2 = 0 (5.6)

with the constraint matrix

∂g2(x1, x2)
∂(x1, x2)

=
(

x2 x1

)
. (5.7)

This single equation defines the x1–axis and the x2–axis as the allowed manifold.
The two parts of the manifold cross in the origin, where we have a singular point
with two degrees of freedom and as such a rank–deficient constraint matrix. If the
residuum is changed the manifold will change qualitatively, depending on the sign
of the residuum

g̃2(x1, x2) = x1 · x2 = ±ε ; ε > 0. (5.8)

This problem of changed kinematic will be treated in section 8.6.2. We now want
to focus on the difficulties arising for the simulation of this kind of problem.

This case is more difficult than the first one, because no universal and simple
reformulation is possible. This kind of singularity can be detected but not avoided
by applying a rank analysis to the linear system as described in the previous sec-
tion. A general treatment is possible based on a Gröbner basis and an algebraic
reformulation as described by Stossmeister [Sto04].
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Chapter 6

Biomechanical Extensions

The modelling techniques described so far can be easily applied to the field of
technical mechanics. Bodies are typically well described by rigid bodies. Joints
as mentioned before originate from this field, and one typically tries ro build the
real system to conform with the idealized description. Furthermore, we encounter
actuators, springs and dampers which drive a specific degree of freedom. This
characterization may be a bit too optimistic, because there are several deviations
from this ideal behavior that have to be modelled in order to be precise, like e.g. vi-
brations in motors or flexibility of segments, but the methods described so far are
a very good first order approximation. As a generalization, one is able to state:
Technical systems are built based on a model that is described using the idealized
elements of rigid body dynamics.

This changes in the field of bio–mechanical systems. Nature as an engineer is
not based on some idealized physical description, which leads to a more complex
realization: e.g. the human body. Only the bones of the human body are (more or
less) rigid. This does not apply for other parts like muscles or fat. The muscular
system as the driving force is very complex in terms of where and how it connects,
and in terms of the internal dynamics. Moreover, the previously rigid joints are
realized using tendons and do not have the simple structure of technical systems.
Besides this complexity of the elements, additional difficulties arise because of the
overall number of elements like bones, muscles, tendons and other organs. As a
result of this, an exact treatment of bio–mechanical systems is only possible by
using finite–element models. But the use of these methods would lead to a very
high computational cost, which is typically not acceptable at the moment. Finite–
elements are only usable for short time–spans or for a part of the complete system.

To solve this dilemma, one has to select the parts of the system one wants
to model in more detail and simplify the rest. This leads to a reexamination of
rigid body dynamics adapted to bio–mechanical systems. If a first approximation
using only the elements described before is not accurate enough, which is true
in most cases, one has to think about extensions that are not commonly used in
technical mechanics but still can be described using the typical methods of rigid
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body dynamics like:

• Several joints of the human body are described using spherical joints or, like
the knee joint, even more complex joints with moving rotational axes.

• When modelling intervertebral disks, i.e. tissue that provides a connection
between vertebras of the spine, we have to include tensorial force–elements
(see section 6.2.2).

• When thinking about the soft tissue of the human body, the usage of rigid
bodies is a very bad approximation. Better results can be achieved using ad-
ditional ”wobbling masses”. The soft tissue is modelled using an additional
body which is connected to the bone (the original rigid body) via a general
tensorial force (see section 6.2.3).

• In several occasions, it is useful to model muscles in more detail, and not
to use an idealization by simple force–elements. Because muscles typically
do not connect two neighboring segments and display a more complex force
law, they will be treated separately in section 6.4.

• The contact of the human body with the environment, like the foot–ground
contact, is very common and must be treated (see section 6.3).

Before all these extensions are described in the following sections, we first
want to look at the question how to provide valid anthropometric data to describe
a human.

6.1 Anthropometry

The anthropometric data needed to describe the human body consist of the kine-
matic definition (e.g. position and types of forces, length of segments) and the
dynamic properties of the bodies (i.e. mass, center of mass and moment of inertia)
as well as of the internal force–elements which represent, for example, tendons,
intervertebral discs and other cartilage, and especially muscles. Even in the case
of technical mechanics, these quantities are difficult to estimate. In the case of
humans, this is even more difficult, because we do not have access to the construc-
tion plan of a human and detailed measurements are either very complex, of an
invasive nature or both. Furthermore, there is a big variety in individual humans,
which turns the generalization into an exercise of statistics. Nevertheless, there
are databases available [NAS78], [Erg86] which provide a statistically valid set of
anthropometric data based on correlated data – originating from such experiments
– and based on user inputs like gender, mass, height etc, which are easy to provide.

Through surgery, x-ray examinations or magnetic resonance imaging, one is
able to measure several internal data of humans, like structure of the skeleton, loca-
tion of muscles, tendons and other tissues. Furthermore, one is able to provide data
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using minor invasive surgery on selected individuals to directly get information.
Doing this for a big number of individuals results in the correlated anthropometric
data we need. Further studies can be made using corpses. Although this may lead to
further insight, some properties differ from living humans. The most problematic
information is about dynamic data. Although it is possible to study muscles from
animals individually and extrapolate to human living tissue, this includes several
possible sources of error.

Measurements like the ones described above are done and compiled in a cor-
related database. In connection with that, we want to mention a thorough study
of the NASA (NASA reference publication 1024) [NAS78] which used male per-
sonal of European origin in the 50’s to 70’s and a study of the Deutsche Institut für
Normierung e.V. [Erg86] resulting in DIN–Norm 33402. Both studies have their
drawbacks. The NASA study only used humans of European origin, and more-
over, they used their own personal, so that the database corresponds well to better
trained individuals. The German study focused on ergonomic values. Furthermore,
the set of data is naturally not complete for all possible applications. As a result,
it is necessary to call in additional medical information of literature and geometric
approximations.

Figure 6.1: One possible Segmentation of a human body [Fri00]

Hahn [Hah93] and Günther [Gue97] provide the software package Calcman3d,
which is able to generate anthropometric data for a good rigid body approximation
based on values that are easy to estimate, like height, gender and mass. Calcman3d
is extensible in the sense that additional data originating from further experiments
can be included to increase the accuracy of the model and in the sense that it is
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possible to generate a model for different idealizations and situations. The resulting
models are accurate enough to study general human behavior, like human walking,
where one only needs a sensible set of data compatible with the assumptions.

One possibility to provide better anthropometric data for individual humans is
to measure more information than just height, gender or mass. Several methods
exists, that scan more information, e.g. the Body Scanner VITUS of tecmath AG.
These systems typically provide very good static information, but lack the possi-
bility to provide information about dynamic properties of human.

Our aim is to use a non–invasive and simple type of measurement setting to
provide accurate static and dynamic information about one individual. We use
motion capturing for measurements and a complex numerical method – nonlinear
parameter estimation – to estimate the data, which is only implicitly defined by
these measurements.

As the performance of the Generalized Gauß–Newton method we use to solve
the parameter estimation problem heavily depends on good initial guesses, the es-
timates of the methods presented before are still of upmost importance.

6.2 Force–Elements

Typical force–elements of technical mechanics depend on the relative position or
velocity of two points. They apply forces to one rotational or translational degree of
freedom or to model external forces like gravitation. All these forces are relatively
simple and easy to model using the techniques as shown in the first chapters of
this part. Because of the complexity of biomechanical models, it is more likely to
encounter more complex force–elements in this case.

6.2.1 Spherical Forces

In the field of bio–mechanics, several segments i.e. bodies are connected with joints
which restrict a lower degree of freedom. This leads to the question of how to
model force–elements that depend on all three rotational degrees of freedom, which
can be parameterized using Eulerian or Cardan angles (α, β, γ).

Using this definition of variables, one can formulate a spherical force as

f =

 c11 c21 c31

c21 c22 c32

c31 c32 c33

 α
β
γ

+

 d11 d21 d31

d21 d22 d32

d31 d32 d33

 α̇

β̇
γ̇

 . (6.1)

To define the angles we need, one has to calculate the rotation between the two
connected bodies w.r.t. each other and to an initial rotation. We first calculate the
initial difference of orientation

D0 = B(p0)E(p0)T , (6.2)

where B(p), E(p) are the orientation matrices of the first respectively second body.
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Using this, we calculate the difference of the rotation at position p

Dp = B(p)T D0E(p) =
(
B(p)T B(p0)

) (
E(p0)T E(p)

)
(6.3)

and velocity level v

Dv = B(v)T D0E(p) + B(p)T D0E(v)
=

(
B(v)T B(p0)

) (
E(p0)T E(p)

)
+

(
B(p)T B(p0)

) (
E(p0)T E(v)

) (6.4)

w.r.t. this initial torsion. The resulting matrices contain the whole information we
need in order to calculate the rotational angles w.r.t. the initial position. A detailed
derivation can be found in [Mut04].

The crucial part is how to define these angles. A difficulty of Eulerian an Car-
dan angles are two singular points, as described in section 4.2. These singularities
are in a position corresponding to no rotation in Eulerian angles and a position
where the z-axis is perpendicular w.r.t. the original axis in Cardan angles. Since
we want to formulate force–elements near the initial orientation, i.e. a unity rota-
tion matrix, we choose Cardan angles.

To determine the Cardan angles using a rotation matrix, one has to calculate the
rotation matrix using Cardan angles, and then to compare. This is easily possible
if the angles are small and a linear approximation is valid. If this prerequisite
does not hold, a more complex algorithm has to be used. This still does not solve
the problem of singularities, which is only treated by switching between the two
definitions of angles. Because of the types of models of humans we want to study,
we restrict ourselves to the simple first approximation. This decision is backed
by knowing the fact that the whole treatment using spherical forces is a drastic
simplification of the original biological situation in both cases.

6.2.2 Tensorial Forces

In the previous section we introduced spherical forces to model passive forces be-
tween two bodies connected by a spherical joint. In this sub–section we want to
generalize this type of force to tensorial forces and apply them to a more realistic
idealized model of the biological tissue.

In some cases, not only the rotational degrees of freedom are correlated, but
also the translational ones, which results in the following formula:

f = C̄x + D̄ẋ , (6.5)

where x are the translational and rotational degrees of freedom, and C̄, D̄ ∈ R6×6.
An application of this kind of force–elements are intervertebral discs between the
vertebras. Several authors [Den85],[DG87] and [Mut04] use so–called bushing–
elements, i.e. special tensorial forces.

In this special case, the stiffness matrix C̄ is set to
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0BBBBBBBBBBBB@

x0 ≥ 0 : 140000
x0 < 0 : 50000

0 8000 0 −800 0

0 122000 0 450 0 300

8000 0
x2 ≥ 0 : 390000
x2 < 0 : 1083000

0 −380 0

0 450 0 179.9 0 −1.5

−800 0 −380 0
x4 ≥ 0 : 151.8
x4 < 0 : 185.6

0

0 300 0 −1.5 0 149

1CCCCCCCCCCCCA
(6.6)

and D̄ to a diagonal matrix with translational elements of 300 and rotational ones
of 1. All the translational forces are measured in Ns/m, and all the rotational ones
are measured in Ns/rad.

More detailed approaches of the biological system are described in literature,
e.g. [AL94], [MOR95], but they are too complex for the level of detail we want to
discuss here. For this first step in parameter estimation of bio–mechanical models,
we restrict ourselves to this simpler case.

6.2.3 Wobbling Masses

To better describe the soft tissue of the human body, like muscles and fat, we intro-
duce wobbling masses as described in [GDSR87]. An additional body represents
the soft tissue, which is connected by a nonlinear force to the original body, i.e. the
skeleton. This additional mass is needed for a proper description of the motion of
bio–mechanical models of humans.

The corresponding force–law is given as

fi =
ct(pi − pi0)3 + dtvi i = 1, 2, 3
cr(pi − pi0) + drvi i = 4, 5, 6,

(6.7)

where the first three equations correspond to translational degrees of freedom, and
the last three equations correspond to rotational degrees of freedom based on Car-
dan angles as described above. ct, cr and dt, dr are the associated stiffness of the
spring and the coefficients of the damper.

6.3 Ground Contacts

When we model humans, there is an additional difficulty because of various con-
tacts between the human and the surrounding environment. A fixed contact, which
can be modelled using constraints, does not represent the reality appropriately.
Therefore, we conventionally introduce soft constraints, i.e. force–elements and
not kinematic constraints.

These forces are typically point–area forces. We simplify them using a small
number of point–point Hertz type forces with certain properties as described in
[Gue97].
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This force model assumes that the size of the areas having contact increase up
to a maximal value. Then a linear force law applies. Equation (6.8) represents
the force law of a sphere with radius r0 perpendicularly intruding into a surface.
Parallel movement leads to a force against the motion (6.9).

f =


0 p > 0

−a0(p2 − p3

3r2
0
) 0 > p > −r0

−a0(p− r0
3 ) p < −r0

(6.8)

ff = −fc3v. (6.9)

Here p denotes how much the sphere intrudes into the surface, v is the com-
ponent of the relative velocity between sphere and surface, which is parallel to the
surface, a0 is the stiffness of this contact and c3 is the friction coefficient.

6.4 Muscles

Spherical or tensorial forces as described in the previous section are a very good
first approximation to the real biological system, and they are a marginal extension
of classical force–elements of technical mechanics, but they are not motivated from
the biological system. In reality, the driving motion is produced using muscles. We
will see that the modelling of this kind of elements is qualitatively different from
previous force–elements. A thorough examination is given by Hatze [Hat81], van
Soest [Soe92] and Günter [Gue97]. Here we provide an adaptation to Natural
Coordinates.

Each biological muscle is composed of the muscle fibre with surrounding tissue
and tendons connecting the whole system to the skeleton. These elements are
connected in series, with the tendons as a first and last part. Abstractly speaking, a
contractile element (CE) together with a parallel elastic element (PEE) is connected
in series to two serial elastic elements (SEE).

6.4.1 Elastic Elements

Tendons, i.e. the SEE, are modelled as elastic deformable elements. They are im-
portant for human movement because they store kinetic energy and as such drasti-
cally influence the behavior of the human body especially in the case of running or
walking. The exact behavior of tendons is studied in several experiments which get
a negligible viscosity and only a small amount of tendon strain. As a result, ten-
dons or, to be more exact, all connective tissue in series with the muscle fibre can
be modelled as a nonlinear spring. Van Soest [Soe92] models the tendons using a
second order polynomial. For elongations greater than zero we get

FSEE = KSEE (LSEE − LSLACK)2 . (6.10)
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FSEE is the resulting force of a SEE, KSEE the stiffness constant, LSEE the length
of a serial elastic element, and LSLACK the maximal length of the tendon, where
the force is zero. KSEE can be calculated from

KSEE =
FMAX

(UMAXLSLACK)2
,

where FMAX is the maximal force and UMAX the relative elongation at maximal
isometric force.

From a structural point of view, the SEE and PEE are similar. As such, the PEE
is modelled as a second order polynomial, too.

6.4.2 Contractile Elements

The muscle fibres are built out of smaller elements, which are called sakromeres.
Out of the microscopic properties of these elements, one is able to propose an
equation describing the force–length relation of a fibre

Fisom(l) = −cl2 + 2cl − c + 1 (6.11)

with
c =

1
width2

and
l =

lCE

LCEopt

,

where width is a parameter to describe the geometrical structure of the fibre, and
LCEopt the optimal operation length of the fibre if vCE = l̇CE = 0. Out of Fisom

it is possible to compute the force, considering the activation q and the maximal
force Fmax

FCE |vCE=0 = qFmaxFisom(lCE) . (6.12)

The activity q dependends on the concentration of Ca2+ and other microscopic
details of sakromeres that will not be discussed further. Models based on Hatze
[Hat81] and Zajac [Zaj89] have already been developed.

A connection to moving muscles, i.e. vCE 6= 0, was given by Hill [Hil38]
using experimental knowledge. As we are only interested in passive muscles in
the context of this work we do not want to discuss this further but refer to Günther
[Gue97].

6.4.3 Geometry and Topology of Muscles

Until now have we discussed the length–force relation of muscles and tendons.
Besides the fact that these are more complex w.r.t. previously discussed force–
elements including additional differential equations to describe the internal struc-
ture in detail, we also have to consider the qualitatively more complex geometric
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structure of muscles. The muscles not only connect two "neighboring" bodies ex-
pressing forces depending on the length of a straight line between two body–fixed
points or the corresponding equation on velocity level, but they typically connect
non–neighboring bones, while the connection depends on the intermediate bones
and is not a direct connection at all.

In the case of a two–dimensional model, the path of the muscle is easy to

Figure 6.2: Muscle–path in 2D

compute. The length of the path only depends on the angles at the contact C,
i.e. the angle between CACO and CBCO (see figure 6.2). The relative position
between CA and A and CB and B is of the same type as in previous models. An
additional force has to be supplied at CO, with a direction that is easy to calculate.

This changes when we model in 3D and when we consider the fact that the
muscle need not have contact to C.

We introduce additional virtual points (pA, pB corresponding to the contact
points CA, CB) that define the path of the muscle. The position of these points is
defined by constraints of the following form (here for pA):

(pA − o(p))2 = r2 (6.13)

(pA − o(p))T (pA − a(p)) = 0 (6.14)

(pA − o(p))T d(p) = 0 , (6.15)

with the global position o(p) of the origin of the contact–cylinder, the global direc-
tion d(p) of its axis and the contacts on the bones a(p). We want to stress that o, a
and d are fixed positions respectively the axis w.r.t. to the moving frame of a body.

In order to retain the structure of the mechanical DAE, we define additional dy-
namic variables and additional kinematic constraints, where the dynamic variables
pA, pB correspond to zero mass. This leads to the following linear system

M GT

G
O GT

A,B

GA,B




a
λ

p̈A,B

λA,B

 =


f
γ
0

γA,B

 , (6.16)



64 Biomechanical Extensions

where GA,B is the corresponding constraint matrix and γA,B the acceleration in-
dependent part of the additional constraints of (6.13, 6.14, 6.15) for each virtual
point. This is in addition to the original Augmented system.

Equations (6.13, 6.14, 6.15) and their first derivative w.r.t. time can be treated
as invariants and are used to project to the consistent manifold.
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We now apply the parameter estimation algorithms described for ODEs in the
first part to the mechanical DAEs as described in the second part. We will see
that we have to cope with the high number of variables arising from using Natural
Coordinates but again are able to use the structure and simplicity of the equations
to gain an efficient and flexible algorithm. To summarize, this chapter discusses
three aspects of the combined methods of the first two parts:

• The efficient calculation of the information necessary for a derivative–based
method like the Generalized Gauß–Newton method.

• The treatment of arbitrary initial values of the underlying initial value prob-
lem in the context of an iterative scheme like the Generalized Gauß–Newton
method.

• The parameterization of the model in a suitable and user–friendly way.

The first topic is of special importance because the generation of derivatives –
or, to be more exact, the sensitivity of the solution of the underlying differential
equation w.r.t. variations in some directions – is the most time–consuming part of
the overall optimization algorithm. Due to the high dimension of models described
which are based on Natural Coordinates, we have to apply reduced methods that
calculate derivative information w.r.t. a minimal number of directions only. This
can either be just one direction w.r.t. dynamic states, if one uses constraints which
fix initial dynamic variables, or a number of directions equal to the degrees of free-
dom of the system and the number of parameters by using the constraints arising
from the invariants of the mechanical DAEs.

Besides the reduction of the number of directions, we use the structure origi-
nating from the use of Natural Coordinates to efficiently calculate the right–hand
side of the variational differential equation w.r.t. each direction. Because of the
simplicity of the equations – the kinematic constraints are only quadratic equations
w.r.t. the dynamic variables, and the mass matrix is sparse and constant – we are
again able to achieve linear complexity w.r.t. the number of bodies with a very small
scalar factor. Using internal numerical differentiation, we are able to reuse the de-
composition of the Augmented system already done for the main trajectory. The
evaluation of one directional derivative is approximately two to three times faster
compared to the evaluation of the right–hand side of the differential equation.

Considering mechanical DAEs formulated based on the Full Descriptor Form,
arbitrary initial states may violate the position– and velocity constraints, i.e. the
invariants. They may be inconsistent. Besides using a non–redundant subset of the
states as optimization variables, it is possible to relax, i.e. modify the differential
equation such that arbitrary initial states are consistent and introduce additional
constraints in a way that the states are consistent w.r.t. the original equations in the
solution.

We present standard relaxation and non–stiff Baumgarte relaxation for mechan-
ical systems. Moreover, we discuss singularities due to relaxation and reexamine
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non–stiff Baumgarte relaxation. The new idea is to take this approach to the limit
by theoretically applying a damping factor of infinity. This is equivalent to an
ideal projection of initial values and the use of standard drift avoidance techniques.
This version of the projection combines the advantages of non–stiff Baumgarte
relaxation, i.e. low error due to a drift from the non–relaxed manifold, without
encountering the difficulties arising from certain singularities. We discuss several
ideal projections with an increasing adaption to mechanical systems. The numeri-
cal tests of chapter 13 suggest that our combination is favorable in comparison to
methods choosing a non–redundant subset of variables and to methods based on
other types of relaxation.

Besides efficiency in terms of speed, we achieve efficiency in terms of flexi-
bility and usability due to our version of Natural Coordinates. We show that some
physical properties of the moments of inertia, which are difficult to guarantee if
they are modelled based on, for example, Eulerian angles, are automatically ful-
filled, if the mass matrix, which contains this information, is formulated based on
Natural Coordinates.

Furthermore, our version of Natural Coordinates results in a fully parameter-
ized model, which regains all design information in an explicit form that is easy to
access. This state of the art property, which is regained for the software package
due to the software approach we choose, distinguishes this approach from most
others.



Chapter 7

Variational Differential Equation
of Mechanical Models based on
Natural Coordinates

The Generalized Gauß–Newton method requires the evaluation of derivatives. As
already discussed in section 2.2, each row of the Jacobian matrix is calculated by
the directional derivative of a component of the right hand side r(y0, q)

∂ri(y0,q)
∂y0,q D0 = ∂ri

∂y(t1)
∂y(t1)
∂(y0,q)D0 + ∂ri

∂y(t2)
∂y(t2)
∂(y0,q)D0

+ . . . + ∂ri
∂y(tk)

∂y(tk)
∂(y0,q)D0 + ∂ri

∂q D0,q,
(7.1)

where q are the parameters and y0 are the initial values. The columns of D0 contain
the initial directions, and D0,q is the part of D0 corresponding to the parameters.
In the case of multiple shooting, we have to calculate the derivative information
w.r.t. the initial values si of the corresponding multiple shooting interval. While
the first part of each term is rather easy to compute, the second term

∂y(ti)
∂(y0, q)

D0

requires the derivative of the solution of the differential equation w.r.t. some ini-
tial directions D0, i.e. the solution of the corresponding variational differential
equation (VDE) w.r.t. these initial directions. This typically requires most of the
computational time of the complete optimization algorithm.

Therefore, we study the efficient evaluation of the right–hand side of the VDE
in general and in particular for models formulated in the Full Descriptor Form
(section 2.1.1) based on Natural Coordinates. We will see that exploiting the struc-
tures, which originate from the use of Natural Coordinates and which were already
mentioned in the simulation context, and the advantages of internal numerical dif-
ferentiation allows for an efficient calculation of the solution of the VDE. The
evaluation is of linear complexity w.r.t. the number of bodies and linear complex-
ity w.r.t. the number of directions. This bilinear complexity is even better than a

69
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mere matrix–matrix multiplication, which is needed for a naive evaluation of the
right–hand side of the VDE.

To further clarify the advantages of Natural Coordinates, we focus on present-
ing the derivative of the Augmented system of the Full Descriptor Form(

M GT

G

)
,

which consists of the constraint matrix and the mass matrix. Because the con-
straints are quadratic equations, a directional derivative is very simple to compute,
although the mathematical formula includes derivatives of matrices. The vectorial
terms, like the forces or the constraints, follow the same principle and are as easy
to evaluate. We will see that the solution of a linear system, based on the same
matrix as in the simulation context, is the most time–consuming task. The efficient
methods described for simulation are reused.

To do parameter estimation based on a dynamic model, one has to parameter-
ize this model, i.e. define some basic properties of the model by parameters which
are then optimized. In the simplest case, these parameters are formerly constants.
Otherwise, if, for example, the structure of the model equations is used to reduce
the dimension of the variables, or some constant values, which are defined by a
function of constants corresponding to such basic properties, are pre–computed,
it may be not longer possible to parameterized every property. As this is not de-
sirable, we avoid this by providing a fully parameterized model. This is easily
possible, because we do not use the structure to reduce the dimension, but exploit
it. Furthermore, we thoroughly know the structure of our equations, and, there-
fore, are able to parameterize every property, even if, for performance reasons, we
pre–compute constants. Together with the possibilities supported by the imple-
mentation shown in part IV parameters are just added to previously defined model
description. This of special importance, if the model is already testes in the sim-
ulation context, because then it is guaranteed that we do not introduce additional
implementation errors in an already tested model.

7.1 Evaluation of the Variational Differential Equations

We consider the variational differential equation, as in equation (2.20),(
Ẇ (t, t0) Ẇ q(t, t0)

)
=
(

∂f
∂y W (t, t0) ∂f

∂y W q(t, t0) + ∂f
∂q

)
corresponding to a differential equation

ẏ = f(t, y, q)

and with some initial direction

W (t0, t0) = D0,
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where D0 ∈ Rn×nDir and n the number of differential equations and nDir the
number of directions one is interested in. The huge computational effort arises
from the fact that the variational differential equation is of dimension n · nDir.

The main part of the VDE can be computed by

• first computing ∂f
∂y and then multiplying with W (t, t0) respectively W q(t, t0)

• or computing the directional derivative ∂f
∂y W (t, t0) , ∂f

∂y W q(t, t0) + ∂f
∂q

directly.

If we look at the first approach, we see that the multiplication of the two terms,
while neglecting the computation of the terms themselves, already has the com-
plexity of a matrix–matrix multiplication and is O(n3). We will see that we are
able to compute the full directional derivative in O(n2). For this reason, the first
possibility is not considered further.

One possibility to calculate the derivative information is to approximate by
using finite differences

∂

∂x
f(x)|x=x0∆x ≈ f(x0)− f(x0 + ε∆x)

ε
. (7.2)

The correct derivative is generated if we take the limit of ε → 0. But in this
case, we encounter numerical difficulties arising from the cancellation error. Vice
versa, a huge ε arises in discretization errors. Even an optimal choice leads to an
accuracy of only the square root of the accuracy of the function evaluation. When
considering second derivatives, it gets even worse. At the latest, then the achieved
accuracy is not sufficient.

The other possibility is to provide the derivative explicitly in some way. We
give the hand–optimized derivatives of the elementary terms, like the linear trans-
formation (4.3), directly to provide upmost performance at the basic level, which
is the inner loop of the evaluation, and use methods of automatic differentiation to
calculate the derivative information for a combination of these elements. There-
fore, we are able to automatically and efficiently provide a right–hand side of the
VDE for arbitrary topology and elements.

7.2 Mechanical Systems

We have to consider the structures introduced by the index 1 form of mechanical
DAEs, the so–called Full Descriptor Form as given in equations (2.14), (2.15) and
(2.16).

The algebraic variables are the solution of a linear system. Therefore, we are
able to compute them at every consistent state and eliminate these variables di-
rectly. Furthermore, we add a simple differential equation for parameters q for
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notation purposes. This results in the following set of ODE’s

ṗ = v

v̇ = a :=
(

1 0
)( M(q) G(p, q)T

G(p, q)

)−1(
f(p, v, q)
γ(v, q)

)
q̇ = 0

. (7.3)

The structure of these equations directly corresponds to a special structure of
the corresponding variational differential equation Ẇp

Ẇv

Ẇq

 =

 0 I 0
∂a
∂p

∂a
∂v

∂a
∂q

0 0 0

 Wp

Wv

Wq

 . (7.4)

The only non–trivial part is the derivative of the algebraic variable a. This
variable is computed as the solution of a linear system. Using relation

∂A(x)−1

∂x
d = −A(x)−1 ∂A(x)

∂x
A(x)−1d ∀x (7.5)

we are able to calculate the derivative of the inverse of a matrix using only the
derivative of a matrix. Furthermore, we reuse the solution of the linear system(

M GT

G

)(
a
λ

)
=
(

f
γ

)
, (7.6)

which is already available, and get

∂a

∂x
=
(

1 0
)( M GT

G

)−1 [
∂

∂x

{(
M GT

G

)}(
a
λ

)
+

∂

∂x

(
f
γ

)]
,

(7.7)
which only includes derivatives of vectors and matrices.

A derivative of a matrix is a tensor of third order. To clarify the formula we
introduce tensor notation

∂

∂xk

{(
M GT

G

)i

j

}(
a
λ

)j

(7.8)

The direct calculation of this derivative is impractical not only due to memory
usage. To circumvent this problem, we remember that we are not interested in this
tensor itself. We multiply the derivative with one direction, and then multiply the
resulting matrix with the solution of the linear system

∂

∂xk

{(
M GT

G

)i

j

}
dk

(
a
λ

)j

, (7.9)

where dk is a column of W or W q.



Optimization of Mechanical Systems 73

The result of this operation is a vector that can be treated very easily. We will
see in the next section that Natural Coordinates and their simple structure allow for
an efficient way to compute this vector directly.

At this point, we want to stress that, after computing the result from the deriva-
tive of the system matrix and the derivative of the force and γ-terms, we only have
to solve a linear system. We are able to reuse the decomposition computed for the
main trajectory if we use IND (section 2.2.1). This combination provides the high
performance we need.

7.3 Special Structures due to Natural Coordinates

We now focus on the efficient computation of the directional derivative (term 7.9).
Due to the simplicity of Natural Coordinates, we are able to compute this term with
a very low computational effort.

The use of Natural Coordinates leads to a formalism based on local coordinate
systems. That is, every body has its own set of variables and every joint connects
only two bodies. Therefore, the system matrix is very sparse, and every entry in
this matrix depends only on a small subset of the whole variable space.

7.3.1 Constraint Matrix

The constraint matrix is the derivative of the kinematic constraints w.r.t. the po-
sition variables. The kinematic constraints of typical joints are either linear or
quadratic equations w.r.t. dynamic variables. In the first case we have:

g1
p(p) = Ap (7.10)

with some sparse matrix A composed of transformation matrices Ci and zero ma-
trix blocks. For example, equality of two points, which defines a spherical joint, is
given by

C1p1 − C2p2 = 0 (7.11)

with small and sparse transformation matrices Ci and the position vectors of only
one body each.

In the case of constraints modelled using quadratic equations, we are able to
provide a slightly more complex form

g2
p(p) = pT AT

1 A2p (7.12)

with again very sparse matrices Ai of similar structure.

Derivatives w.r.t. States

The derivative w.r.t. position, that is one row of the constraint matrix G, is then

G1
i (p) = A (7.13)
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resp.
G2

i (p) = pT (AT
1 A2 + AT

2 A1). (7.14)

Term (7.9) w.r.t. position is zero in the case of constraints based on linear equations
or

diT
p (AT

1 A2 + AT
2 A1)a (7.15)

respectively
diT

p (AT
1 A2 + AT

2 A1)T λ (7.16)

in the case of quadratic equations, where di
p is the position part of di.

We arrive at a form where it is obvious that the calculation of the interesting
term is very cheap. It is only slightly more expensive than the computation of
the position constraints – which has a negligible computational effort especially if
compared to several other approaches – or it generates no cost at all in the case
of a linear kinematic constraints. As the acceleration–independent part of the ac-
celeration constraint γ(v) is either zero or a quadratic equations w.r.t. the dynamic
variables, this term has a negligible computational effort compared to methods
based on other formalisms, too.

Derivatives w.r.t. Parameters

At last we have to consider derivatives w.r.t. parameters which define the kinematic
design of the model, i.e. define the position and orientation of the joints. As the
joints are defined by a set of constraints, a parameterization of the joints is equiva-
lent to a concerted parameterization of the constraints.

Reexamining the constraints as described above, we see that, depending on
the exact type the constraint, the the directional derivative is a linear or quadratic
equation w.r.t. the transformation matrices C. As we model based on Natural coor-
dinates, this is equivalent to linear or quadratic equations w.r.t. the local definition
of a point or an axis as described in equation 4.3. Therefore, directional derivatives
w.r.t. parameters have the same nice property as directional derivatives w.r.t. dy-
namic variables: they are very easy and cheap to compute.

7.3.2 Mass Matrix

We compute the derivative of the mass matrix by directly computing the directional
derivative as shown before. Compared to the derivative of the constraint matrix it is
even less complex. When using Natural Coordinates, the mass matrix is very sparse
and constant, i.e. independent of the state variables. For this reason the derivative
w.r.t. state variables is zero. Moreover, the derivative of one mass matrix block cor-
responding to a body is only non–zero w.r.t. a parameter of the dynamic properties
of this body. Therefore, the derivative of the mass matrix w.r.t. parameters is very
sparse.
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In the case of the mass matrix we encounter the additional difficulty that the
entries of this matrix must fulfill additional conditions to be physically meaning-
ful. If we first look at the the moments of inertia of one body, we encounter the
following well–known conditions:

• no principal moment of inertia is bigger than the sum of the other two

• the matrix of the moments of inertia has to be positive definite and symmet-
ric.

If we look at the matrix of the moments of inertia w.r.t. Eulerian angles (see
equation 4.10)

Θik =
∫

%(r̃2
l δik − r̃ir̃k)dV,

where δik is the Kronecker symbol, we see that the first condition is expressed in
the term r̃2

l δik − r̃ir̃k.
When modelling in Natural Coordinates, this term just does not appear (see

equation 4.12)

M =
∫

V
% CT

r Cr dV =
(

m
trΘ
2 −Θ

)
⊗ I3,

but is introduced by the transformation between the two representations of the ma-
trix of Inertia. Therefore, the first condition is automatically fulfilled in the case of
the mass matrix formulated based on Natural Coordinates.

To guarantee a positive definite, symmetric matrix is more complex. One pos-
sibility is to use these conditions to guarantee the existence of a Cholesky decom-
position

M = LT L. (7.17)

The six free entries of the lower left matrix L are used as parameters. This choice
automatically guarantees a symmetric and positive semi–definit mass matrix. To
guarantee positive definiteness it is possible to apply simple inequality bounds to
these parameters.

To summarize, the computational cost for the evaluation of (7.9) is negligible
compared to a solution of the overall system. Furthermore, we were able to reuse
the previously computed decomposition of the system matrix. As a result of this,
our method is more accurate than methods based on finite differences. Further-
more, we were able to use the special structure of Natural coordinates to effectively
compute derivative information, where the major computational effort just lies in
the solution of the system. The calculation of one directional derivative is approxi-
mately two to three times faster than the evaluation of the main trajectory, as shown
in part V.
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Chapter 8

Generation of Consistent Initial
Values for Mechanical DAE and
Corresponding Variational
Differential Equation

The initial values of the differential algebraic equation (DAE) must fulfil the al-
gebraic conditions and the invariants. The same is true for the initial values of the
corresponding variational differential equation (VDE). We now study the treatment
of initial values which do not fulfil these conditions, i.e. are not consistent.

Definition 7 (Consistency)
A state x of a model, described by a DAE of index 1, is called consistent, if the
algebraic conditions are fulfilled.

In the case of the Full Descriptor Form, these algebraic conditions not only
include the index–1 condition (2.15), but also the position and velocity constraints
as invariants (2.16). The mathematical model only describes the physical reality
correctly if the initial values and all intermediate states are consistent.

Arbitrary initial values are typically not consistent. To avoid in–consistent
states, two methods can be applied:

The first approach partitions all the variables of the differential algebraic equa-
tion into a maximal set of non–redundant variables and the other ones. When
considering this in the optimization context, we apply the optimization algorithm
only to the non–redundant set, i.e. the optimization variables are a sub-set of all
variables of the differential equation, while the other variables are calculated using
the constraints and invariants. This method obviously does not lead to inconsistent
initial values. The disadvantage of this approach is a typically higher nonlinearity,
because we restrict ourselves to a nonlinear manifold of the flat complete space.

When studying models used in chemical engineering and in the context of
optimization, we find that another approach leads to better convergence proper-
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ties [LBBS02]. We observe that the solution of the consistency condition for the
IVP is the inner loop of a non–linear optimization problem. As we are only inter-
ested in the optimal solution w.r.t. the correct physical model, we are free to work
with modified models during the optimization process. To be more precise, we
solve the consistency condition and the optimality condition together. Following
this idea, we modify the model such that the IVP–problem is now formulated using
consistent initial values, i.e. we relax it, and impose additional BVP–constraints,
such that we get consistent initial values w.r.t. the original formulation in the solu-
tion.

After studying relaxation strategies applied to the general class of DAE with
index 1, we adapt them to mechanical systems, where one has to take into account
that, for example, the velocity constraint is the time–derivative of the position con-
straint. In the case of mechanical systems, we present several simple examples
where the thoughtless use of relaxation may lead to problems. Singularities may
appear. Therefore, to avoid such difficulties in the general case, we reexamine the
existing relaxation techniques in this context.

Because of this difficulty, we modify one of the relaxation strategies, the non–
stiff Baumgarte relaxation, by taking it to the limit w.r.t. damping, which is equiv-
alent to an adapted projection. As we will see in part V, this method avoids the
difficulties arising from singularities and provides the better results than the other
relaxation techniques in the test set we examined numerically.

After considering consistent initial values of the differential equation, we study
methods for the computation of initial values of the corresponding variational dif-
ferential equation and the corresponding invariants they have to fulfil. We exploit
the structure and our knowledge of the system again to provide a fast method of
linear complexity to calculate each initial direction. This is especially important
because solving an parameter estimation problem without using the structure is of
O(n3) and has to be applied at every multiple shooting node. For an increasing
dimension this would dominate the cost of the complete optimization process.

8.1 Relaxation Strategies

We first study different relaxation strategies for DAEs of index 1. A specialization
to mechanical DAEs in the Full Descriptor Form including the treating of invariants
is given in the next section.

By applying relaxation we modify the original IVP–constraints g such that the
state x of the model is consistent w.r.t. the new equations. The simplest form is

ĝ(x, x0) := g(x)− g(x0). (8.1)

We subtract the initial inconsistency g(x0) calculated w.r.t. the initial values x0.

Besides this simple form, we describe more sophisticated versions in the fol-
lowing, which try to improve the convergence of the optimization algorithm.
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Non–Stiff Baumgarte Relaxation If we start with an initial value far off the
solution–manifold, this alters the derivative information we get by solving the vari-
ational differential equation, due to the fact that we evaluate the variational differ-
ential equation based on a trajectory which is far of a consistent trajectory. With
this in mind, it is opportune to reduce this effect using a adequate relaxation tech-
nique. This method should treat arbitrary initial values, and it should reduce the
inconsistency, i.e. the distance from the non–relaxed manifold, during integration.
We choose to reduce it exponentially

ĝB(x, x0) := g(x)− g(x0)e
−α t−to

te−t0 , (8.2)

with the damping constant α, and we examine the integration interval [t0, te]. The
inconsistency g(x(t)) is exponentially damped with a factor e−α at the end of the
integration interval. This approach follows Baumgarte stabilization used to avoid
drift in the simulation context, but it does not impose additional numerical stiffness
for damping factors α that are not too high. As we know the "error", i.e. g(x0), and
the time interval, we are able to construct the reduction accordingly. Therefore, it
is called non–stiff Baumgarte relaxation [BEJ88], [SBS98].

8.2 Invariants of Mechanical Systems

In the case of mechanical systems and index reduction, we additionally have to
consider the position and velocity invariants. It is important that the velocity con-
straints are the time–derivative of the position constraints, which has to be retained
if the constraints are relaxed.

The Augmented system (2.15), which contains the algebraic constraints, is lin-
ear. Therefore, it is adequate to eliminate the algebraic variables including the
acceleration directly. In this case we implicitly use the first method of treating
”in–consistent” initial variables. Due to the linear nature of the system, there is no
underlying non–linearity.

This is different in the case of invariants. Considering a velocity invariant in
simple form

ĝvel(p, v, p0, v0) := gvel(p, v)− gvel(p0, v0), (8.3)

the proper position invariant is

ĝpos(p, p0) := gpos(p)− gpos(p0)− (t− t0)gvel(p0, v0). (8.4)

This form of a relaxed velocity constraint retains the property to be the first time–
derivative of the position constraint. A corresponding modification of non–stiff
Baumgarte relaxation

ĝpos(t, p) := gpos(p)
− [gpos(p0) + (gvel(p0, v0) + αgpos(p0))(t− t0)
+ (αgvel(p0, v0) + α2

2 gpos(p0))(t− t0)2
]
e−α(t−t0)

(8.5)
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ĝvel(t, p, v) := gvel(p, v)
− [gvel(p0, v0) + αgvel(p0, v0)(t− t0)
− (α2gvel(p0, v0) + α3

2 gpos(p0))(t− t0)2
]
e−α(t−t0)

(8.6)

γ̂(t, p, v) := γ(p, v)
+

[
−(3α2gvel(p0, v0) + α3gpos(p0))(t− t0) + (α3gvel(p0, v0)

+ α4

2 gpos(p0))(t− t0)2
]
e−α(t−t0)

(8.7)
is given in [SBS98]. Further studies about relaxation strategies can be found in

[Sto04].

8.3 Singularities

The difficulties arising from singularities which are inherent in the model (section
5.3) or introduced by the mathematical description (section 5.2) in the simulation
context must be treated in the optimization context, too. Additionally, we are con-
fronted with singularities arising from the relaxation strategy.

8.3.1 Redundant Constraints due to Relaxation

Using the Full Descriptor Form, we have to solve for the acceleration (and La-
grange multipliers), which includes a decomposition of the system matrix. A
unique, non–trivial solution is only possible if this matrix is non–singular, which
implies full rank of the constraint matrix (see (2.1.1)). We have to ensure that the
constraints are not redundant.

If one arbitrarily changes the state of the model, the kinematic design of the
model is changed, too. Besides various other effects, we first want to study an
extreme case. A constraint introduces a singularity into the system matrix because
the derivative is zero.

Let us study an example of a simple one–dimensional kinematic constraint
fixing the distance of some coefficient pi of the position vector to the origin

gpos(p) = p2
i − l2 (8.8)

with a (simple) relaxed form of

ĝp(t, p, t0, p0, v0) = p2
i − l2 − p2

i,0 − 2pi,0vi,0(t− t0) (8.9)

where pi, vi are components of p repectively v with initial values pi,0 and vi,0. The
constraint matrix row is

Gj(p) = piδ
i
j . (8.10)
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This is exactly zero if pi is zero, i.e. an initial value of zero leads to a model that
is not defined properly, and a modification of the model in either direction will
lead to models with completely different physical properties. We are not able to do
derivative–based optimization, if we reach or cross this point.

One might say it is very unlikely that exactly this state is chosen as the initial
value. But let us consider the more realistic case that the model is not in a sin-
gular position at the beginning, but on one side of the singularity with an initial
inconsistent velocity propelling it into the singularity.

As we have seen in this example, even simple constraints like a length condition
can lead to unsolvable problems if an arbitrary modification of the kinematic design
of the model is allowed. This includes modifications of the initial state in the
context of optimization. A practical relaxation technique must pay attention to
these problems.

One possible solution will be introduced in section 8.4. A possible mathemat-
ically inspired solution is given by Stossmeister in [Sto04] using a reformulation
based on Gröbner bases.

8.3.2 Redundant Constraints

Figure 8.1: Two relaxed manifolds due to different initial values

We have seen in section (5.3) that the mechanical model itself can introduce
kinematic singular positions. To study this behavior, we first want to examine a
simple problem that is typical for this kind of singularity.

We study a sub–manifold of a 2–dimensional model which is defined by the
following constraint

gpos(p1, p2) = p1p2. (8.11)
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Now we use inconsistent initial values and relax this constraint (ignoring ve-
locity inconsistency)

ĝp(p1, p2, p
0
1, p

0
2) = p1p2 − p0

1p
0
2. (8.12)

Looking at graph (8.1) of this equation w.r.t. the inconsistency p1,0p2,0, we see
that the solution of a differential equation w.r.t. similar initial values(

p1,0 p2,0

)
=
(

p1,0 0± ε
)

(8.13)

discontinuously depends the small variation ε. Furthermore, the critical point of
the optimization is for the not varied value with ε = 0.

Moreover, the method of detecting redundant constraints described in section
(5.2) depends on exact kinematic design information. An arbitrary change of the
initial state, resulting in a changed kinematic design, leads to completely changed
properties. This includes a change in the number of degrees of freedom. Discontin-
uous models of this kind can not be treated with classical Gauß–Newton methods;
therefore we want to avoid discontinuous models.

As a result of this, it is worth reexamining the question if relaxation techniques
which produce excellent results with index–1 models of e.g. chemical engineering
are as appropriate in mechanical problems.

8.4 Taking non–stiff Baumgarte Relaxation to the Limit

Due to the difficulties arising from the singularities discussed in the previous sec-
tion, we now reconsider non–stiff Baumgarte relaxation. We will see that taking
a damping factor to the limit enables us to treat the difficulties while probably the
performance of the relaxation in terms of convergence of the parameter estimation
problem is improved for certain situations.

Allowing arbitrary initial values leads to inconsistent initial values, which are
treated using a relaxation technique. We study the effect of relaxation based on
the assumption that consistency is an information that should be used to increase
the performance of the complete algorithm. In this sense it follows one of the
motivations of multiple shooting – to start with an initial trajectory as near to the
solution trajectory as possible. A special case, where the following line of thought
does not hold, is when the manifold that is defined by the kinematic constraints
depends on parameters. On the other hand, we do not assume that this approach
will hamper in that situation.

Let us examine the following nonlinear least squares problem

minx0,q
∑nls

i=1 f i
1(x(ti;x0, q,R(x0)), q)2

f i
c(x(ti;x0, q,R(x0)), q) = 0 i = 1, ..., nc

hi(x(ti;x0, q,R(x0)), q) = 0 i = 1, ..., nh

gi(x0) = 0 i = 1, ..., nkin,

(8.14)
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where f1 are the least squares conditions, fc are associated to the boundary con-
ditions of the underlying DAE, h correspond to the matching conditions which
are formulated w.r.t. directions in the tangent space of the manifold, and g are the
consistency conditions which are formulated w.r.t. directions perpendicular to the
tangent space of the manifold. R is the relaxation technique used to modify the
”original DAE” such that it is possible to treat arbitrary initial state variables. We
want to add, that f1, fc and h typically depend on the solution x(ti) of the differ-
ential equation at certain time–points ti, which depends on the initial values x0, q
and the relaxationR. In contrast to that, we assume that the consistency conditions
g do not depend on the relaxation (and, as mentioned above, not on the parame-
ters), because they give conditions for the initial values of the underlying IVP. We
want to stress here that the solution of the nonlinear problem does not depend on
the relaxation, because the last condition (g(x)) is fulfilled in the solution, i.e. the
optimization variables are consistent w.r.t. the invariants of the underlying DAE.

8.4.1 Motivation for the Limit Form of non–stiff Baumgarte Relax-
ation

To give an impression of the effect of a specific relaxation method, we want to
consider a DAE of index 1. The situation is more complex for mechanical systems,
as there is a relation between position and velocity invariants, but the general line
of thought remains the same. If we apply the simplest form of relaxation (see
equation (8.1))

ĝ(x, x0) := g(x)− g(x0),

the distance of the relaxed manifold is constant and equal to the initial inconsis-
tency g(x0), where g is the original invariant of the underlying DAE. In the case of
non–stiff Baumgarte relaxation (8.2)

ĝB(x, x0) := g(x)− g(x0)e
−α t−to

te−t0 ,

we damp this initial inconsistency exponentially with a damping factor α. Thus,
the distance of the trajectory using non–stiff Baumgarte relaxation to the consistent
manifold is less than in the case of applying simple relaxation. As the consistent
manifold does not depend on the parameters, i.e. is already known during the opti-
mization, it is better to keep the relaxed trajectory as near to the consistent manifold
as possible, because this should result in a trajectory near to the solution trajectory.
In that sense, a perturbation perpendicular to the manifold can be seen as a worse
initial guess compared to the consistent value.

Therefore, it seems to be suitable to damp the effect of such a perturbation as
much as possible. Unfortunately, there seems to be a contrary effect, because an
increasing damping factor α increases the (numerical) stiffness of the differential
equation, and, thus, a medium–sized damping factor should be used to balance
these effects. This is a result described in [Lei95] for chemical DAEs of index 1.
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Fortunately, this effect does not appear if we choose a theoretical damping
factor which goes to infinity, which is equivalent to projecting the initial values
to the manifold and then using standard drift avoidance techniques, i.e. invariant
projection, during the simulation. This effect is comparable to not using Baum-
garte stabilization but invariant projection in order to avoid drift, which avoids
the introduction of (mechanical) stiffness as it is well known for using Baumgarte
stabilization in the simulation context.

Applying this form of non–stiff Baumgarte relaxation, which we call the limit
form, thus eliminates the (bad) effect of inconsistent initial values to the trajec-
tory, if the manifold is not defined by unknown parameters. Besides the effect of
better sensitivity information due to a trajectory which should be near to the solu-
tion trajectory, the integration is done on the consistent trajectory, which obviously
avoids the difficulties discussed in section 8.3. Therefore, the limit form of non–
stiff Baumgarte relaxation is an option to consider. The numerical tests shown in
chapter 7 suggest that it is better than classical relaxation techniques and consistent
methods for parameter estimation based on mechanical DAE that are formulated
using Natural Coordinates.

8.4.2 Comparison to Methods using Consistent Initial Values

This form of relaxation seems to be comparable to consistent methods which only
use a non–redundant set of variables or always keep the initial values of the un-
derlying differential algebraic equation, i.e. the dynamic part of the optimization
variables, consistent w.r.t. the original invariants. This is not the case because the
latter corresponds to the following problem

minπ(x0),q

∑nls
i=1 f i

1(x(ti;π(x0), q), q)2

f i
c(x(ti;π(x0), q), q) = 0 i = 1, ..., nc

hi(x(ti;π(x0), q), q) = 0 i = 1, ..., nh

g(π(x0)) = 0 i = 1, ..., nkin,

(8.15)

where the the minimization is done w.r.t. projected optimization variables π(x),
i.e. the invariant conditions g are fulfilled in a nonlinear sense during the optimiza-
tion based on linearized auxiliary problems. As algorithms based on relaxation
use optimization variables which are inconsistent w.r.t. the underlying DAE with
invariants, the methods are not equal.

8.5 Different Types of Projection for the Limit Form of
Non–Stiff Baumgarte Relaxation

We have showed that the limit form of Non–Stiff Baumbarte stabilization is equiv-
alent to an ideal projection to the allowed manifold. In the following we compare
several types of ideal projections.
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8.5.1 Projection During Integration – Avoiding Drift

Discussing how to project according to the limit form of Non–Stiff Baumgarte Re-
laxation, one has to distinguish between the initial projection at the start of the
integration interval and the projection done to avoid drift away from the mani-
fold during the integration. The latter projects values which are almost consistent.
Therefore, the exact type of projection is not important and we prefer the most ef-
ficient one. We use the invariant projection w.r.t. Energy norm as described in the
following (as in e.g. integration package MBSSIM [Sch99], [Win01]).

First, we generate a consistent initial position by fulfilling the position con-
straints. This is equivalent to the following algebraic constrained minimization
problem

minp ‖p− p0‖2
M

gp(p) = 0.
(8.16)

The distance of the optimized position p and the original position p0 is minimal
in some norm – here the mass matrix norm – w.r.t. the position constraint. As a
second step, we fix this position and state the following problem

minv ‖v − v0‖2
M

gv(p, v) = 0,
(8.17)

which projects on the velocity level using the original velocity v0 and the already
projected position p.

The usage of the mass matrix norm is adapted to mechanical systems, because
in the case of velocity projection it asks for a a minimal energy difference [Ali92].
Furthermore, if we project the position and velocity variables independently, we
are able to reuse the decomposition already done to evaluate the right–hand side
of the differential equation. The linearized form of the projection on the position
level is (

M G(pi)T

G(pi)

)(
∆pi

λ

)
= −

(
pi − p0

gp(pi)

)
. (8.18)

The same matrix is used for the projection on the velocity level.

8.5.2 A First Algorithm to Project Initial Values

Although the exact type of projection is less important during the simulation, it
does have an impact in the case of the first projection of the initial values. As
the solution of the differential equation is in the inner loop of an iterative scheme,
which ”arbitrarily” changes the initial values, these values can be far off the con-
sistent manifold, at least compared to the situation when projection is used to avoid
drift during the integration.

A first approach uses the same idea already proposed for the treatment of in-
consistent initial values to avoid relaxation completely. We select a subset of inde-
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pendent variables xn and calculate the other variables xd, such that

minxn,xd
‖xn − x0

n‖2

g(xn, xd) = 0,
(8.19)

where g are all invariants gp, gv and ∂g
∂xd

is regular. This is equal to fixing some
variables and calculating the other variables, such that the constraints are fulfilled.
As we will see in the next chapter, it is sometimes important to compare results of
a projection at different states. Using this method, we apply a pivoting strategy to
find the variables xn, which leads to difficulties if we use different pivot vectors
for the two states. As we are no longer able to do such a projection in the extreme
case, where no common pivot vector can be found such that ∂g(x1

n,x1
d)

∂xd
and ∂g(x2

n,x2
d)

∂xd

are regular at two points (x1
n, x1

d) and (x1
n, x2

d), a better approach is needed.

8.5.3 Full Euclidean Projection for Initial Values

A better approach in terms of differentiability and adaption to the local manifold
uses an Euclidean projection on the full space. Reusing the definition of g, we
write

minx ‖x− x0‖2
2

g(x) = 0.
(8.20)

In this case we project w.r.t. a direction perpendicular to the allowed manifold.
Therefore, the result of the ideal projection is differentiable w.r.t. the initial values.

The Augmented system of the linearization of this non–linear projection is
I GT GT

v

I GT

G
Gv G




∆pi

∆vi

λp

λv

 = −


pi − p0

vi − vi
0

gp(pi)
gv(pi, vi)

 , (8.21)

where Gv := ∂gv

∂p and, as we recall, ∂gv

∂v ≡ G.

8.5.4 Projection Adapted to Mechanical Systems

The last approach, which is discussed here, does use two independent projections.
It was already used for the projection to avoid drift during the simulation (see
equations 8.16 and 8.17). The main difference is that the position is fixed during
the second projection, i.e. the position and velocity variables are more independent,
than in the full Euclidean case shown in the previous subsection. This version is
more adapted to mechanical systems and the results of numerical experiments,
shown part V, suggest that this approach leads to better convergence properties of
the overall iterative scheme.
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To compare to the Euclidean projection as presented in the previous subsection,
we combine the linearized forms of both ideal projections.

M GT 0
M GT

G
Gv G




∆pi

∆vi

λp

λv

 = −


pi − p0

vi − vi
0

gp(pi)
gv(pi, vi)

 . (8.22)

The only difference is the zero matrix block in the upper right corner.

8.5.5 Projection of the Initial Direction of the Variational Differential
Equation

Besides the projection of the initial states, we have to study the projection of the
initial directions, i.e. the initial states of the corresponding variational differential
equation.

The invariants for initial directions d are

∂g

∂x
d = 0. (8.23)

We introduce the following abbreviations: G = ∂gp

∂p is the constraint matrix of

the mechanical system, Gv = ∂gv

∂p , Gq
p = ∂gp

∂q and Gq
v = ∂gv

∂q . Furthermore, we

remember that ∂gv

∂v ≡ G.
In the case of mechanical systems, we specialize these invariants to(

G Gq
p

Gv G Gq
v

) dp

dv

dq

 =
(

0
0

)
. (8.24)

Because of the structure of the derivatives, we want to keep dq constant:(
G
Gv G

)(
dp

dv

)
=
(
−Gq

pdq

−Gq
vdq

)
. (8.25)

To give a unique solution, we additionally state a minimization of the difference
between initial and projected direction using some norm. Depending on this norm,
the method is compatible with the corresponding projection of the initial state. In
the case of Euclidean projection, we get the following linearized system:

I GT GT
v

I GT

G
Gv G




dp

dp

λp

λv

 = −


d0

p

d0
v

−Gq
pdq

−Gq
vdq

 . (8.26)

We see that the system matrix is the same as for the projection of the states. This
property is regained in principle for the other variants. Therefore, we do not repeat
the formulas.
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In the case of the mechanically adapted version, we are again able to reuse
the highly efficient decomposition and solution algorithms developed to solve the
Augmented system corresponding to the acceleration constraints of the mechanical
DAE.

8.6 Computing Initial Directions

Finally, we want to discuss the very important step of generating the necessary ini-
tial directions for the invariant based reduction methods as described in the next
chapter. These directions must fulfil the consistency conditions adapted to the cor-
responding VDE, i.e. they must be consistent w.r.t. the according invariants. Fur-
thermore, they should be unique because we want to have a continuous formulation
of the basis of the tangent space (see relation 9.30). Besides this, the computation
should be as fast as possible. Furthermore, we want to reuse existing code to min-
imize the amount of the additional implementation.

This work is done in two steps. First we generate a suitable set of good initial
guesses which is inspired by Relative Coordinates of the open loop case to avoid
the treatment of the large basis of the full space. Then we generate a basis using
this generating system.

8.6.1 Generating Initial Guesses

A first guess of initial directions would be to use the unity matrix, i.e. a basis of
the full space. This selection already fulfils one of the conditions we aim at. It
is guaranteed that we do not miss a direction. Unfortunately, there are too many
initial directions, which leads to an increased computational cost. The redundancy
of the resulting basis (after projection) will not lead to a methodic problem, but
again to an increased computational cost.

Therefore, we look for a better approach with less directions. In the case of
an open–loop system the minimal set of variables is, for example, provided by
Relative Coordinates. Comparing this approach to a formalism with local coordi-
nate systems, like when applying Natural Coordinates, we see that these variables
correspond to directions not restricted by constraints in the our case. Therefore,
if we use the directions corresponding to constraints not formulated for a specific
joint, we get a basis of the tangent space of the consistent manifold. Talking of
corresponding directions, we use the derivative of the constraints w.r.t. position
variables. This is equivalent to the fact, that one row of the constraint matrix cor-
responds to a direction perpendicular to the manifold.

The resulting initial directions are then projected to fulfill the corresponding
invariants according to section (8.5.5).
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8.6.2 Treatment of Redundancy

In the case of automatically generated models, which include closed kinematic
loops, redundant constraints may occur. This does not impede the computation of
consistent initial directions as described in the previous sub–section, because we
use the linear algebra method which is able to treat such situations as introduced in
the integration context (see section 5.2).

The approach stated above uses all directions that correspond to the degrees
of freedom of the open–loop system. Consequently, we may have calculated the
sensitivity information w.r.t. too many initial directions. One possibility to avoid
this is to orthogonalize the generating system. Based on this, it is possible to
provide a basis of the tangent space. Thus, we are able to calculate sensitivity
information w.r.t. a minimal number of directions.
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Chapter 9

Various Reduced Methods for
Mechanical DAEs

The most time–consuming task of the optimization algorithm, is to calculate the
solution of the VDE w.r.t. some directions. The methods of this chapter try to min-
imize the number of directions one has to calculate explicitly. This complements
the topics of chapter 7, which discussed the efficient solution w.r.t. one direction.
We examine different methods to use various information already present in the
optimization problem.

• initial or interior point constraints of the boundary value problem (BVP) (see
equation (1.2))

• algebraic constraints respectively invariants of the mechanical DAEs (see
(2.9,2.15) and (2.16))

In the first case we use BVP–constraints, to fully specify a linear combination
of our increment without calculating the corresponding derivative of the underlying
dynamic system. This is the so–called Fixfit–approach of Schlöder [Sch88]. In the
special case of fixed initial states, the number of derivatives one has to compute is
the number of parameters plus one.

The second approach, which is based on [SBS98], recognizes the connection of
invariants of the initial value problem (IVP) to implicitly or explicitly given BVP–
constraints. As, in the solution, invariants and acceleration constraints must be
fulfilled at every state, this is especially true for the start of each multiple shooting
interval. Therefore, one has to specify corresponding BVP–constraints to ensure
a consistent solution of the optimization problem, if the differential equations are
relaxed. These BVP–constraints can be used to eliminate the need to generate
derivative information w.r.t. these directions according to the Fixfit–approach. Due
to the number of invariants and, for this reason, the number of BVP–constraints per
multiple shooting node, one has to generate dynamic derivatives w.r.t. a number of
directions equal to the degree of freedom of the mechanical model plus the number
of parameters.

91
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A major difference of the second approach compared to the Fixfit–approach
is that the BVP–constraints originating from invariants are formulated at every
multiple shooting node independently. This allows for an independent calculation
of directional derivatives of the solution of the differential equation and as such for
a parallelization of this method w.r.t. the multiple shooting discretization.

For the latter approach we present two versions. Both use the BVP–constraints
to avoid the need for generating dynamic derivative information w.r.t. the corre-
sponding directions. The first version then computes sensitivity matrices H =
∂h(si,si+1)

∂si
, which have the same dimension as the original full system. The second

approach additionally uses the structure of the BVP–constraints w.r.t. the invariants
to reduce the amount of work which has to be done in the context of the condensing
algorithm.

All these methods have to take into account the treatment of inconsistent ini-
tial values and the corresponding relaxation strategy with the eventual projection
algorithm. We will see that not all the projection methods of the limit form of the
non–stiff Baumgarte relaxation can be applied to every reduction method.

9.1 Using BVP–Constraints to reduce the computational
effort

The basic idea of the Fixfit–approach of Schlöder [Sch88] is to use initial value
constraints to implicitly eliminate some variables, and thus to reduce the computa-
tional effort of derivative generation and condensing, i.e. decomposing and solving
the part of the system originating from the multiple shooting discretization.

We start with the condensed system (2.36) and partition the vector of incre-
ments (

∆s0

∆p

)
=

 ∆s01

∆s02

∆p

 , (9.1)

such that D21 of the following system has full rank

min
∆s01,∆s02,∆p

‖D11∆s11 + D12∆s12 + Dp1∆p + d1‖2
2 (9.2)

D21∆s01 + D22∆s02 + Dp2∆p + d2 = 0 (9.3)

D31∆s01 + D32∆s02 + Dp3∆p + d3 = 0. (9.4)

Here d1 are least square conditions, d2 are constraints fixing initial values,
while d3 are constraints w.r.t. intermediate points or end–points.

∆s01 will be formally eliminated, which results in a condensed system of ∆s02

and ∆p only:

min
∆s02,∆p

‖D̃12∆s02 + D̃p1∆p + d1‖2
2 (9.5)

D̃32∆s02 + D̃p3∆p + d3 = 0. (9.6)
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To calculate this subdivision, we need a basis of the space perpendicular to the
tangent space defined by the constraints d2. We define

−1HE :=
(
−D−1

21 D22

I

)
−1HP :=

(
−D−1

21 Dp2

I

)
−1HR :=

(
−D−1

21 d2

I

)
,

(9.7)

where
( −1HE

−1HP

0 I

)
is this basis.

If we recursively define

kHE := Hk ·k−1 HE
kHP := Hk ·k−1 HP + Hp

k
kHR := Hk ·k−1 HR + hk,

(9.8)

we are able to compute the condensed system.
We initialize (l = {1, 3})

D̂0
l2 := D0

l ·−1 HE

P̂ 0
l := D0

l ·−1 HP +0 Dp
l

d̂0
l := D0

l ·−1 HR + r̂0
l

(9.9)

and calculate
D̂i

l2 := D̂i−1
l2 + Di

l ·i−1 HE

P̂ i
l := P̂ i−1

l + Di
l ·i−1 HP +o Dp

l

d̂i
l := d̂i−1

l + Di
l ·i−1 HR + r̂i

l .

(9.10)

By this, we get
D̃l2 = ÊN

l2

P̃l = P̂N
l

d̃l = d̂N
l

(9.11)

as the condensed system.
After solving the condensed system, we are able to compute the increments. A

fast version uses stored matrices kHα(α = E,P, R)

∆sj =j−1 HE∆s02 +j−1 HP ∆p +j−1 HR. (9.12)

Further information and a derivation of the formulas can be found in [Sch88].
An important difference to the other methods shown in this chapter is the effi-

cient mix of derivative generation and condensing saving computational work, but
restricting this method to the class of serial algorithms.



94 Various Reduced Methods for Mechanical DAEs

Remark 5 (Using all constraints)
To reduce the number of directional derivatives needed, it is possible to use all the
constraints, not only the constraints w.r.t. initial values of the first multiple shooting
interval. At the time–point a constraint depends only on this and previous time–
points, a corresponding linear combination of increments is defined and can be
formally eliminated with the same approach as shown above.

9.2 Invariant Based Reduction Method

The methods in this section examine BVP–constraints originating from invariants
of the mechanical system. Eliminating the need to generate derivative information
in directions already specified by invariants, we solve the VDE w.r.t. a number of
directions equal to the degrees of freedom of the underlying model. Especially in
the case of Natural Coordinates with many redundant variables, this is of highest
importance. We want to remind that algebraic variables and algebraic constraints
are not used in the optimization context.

To specify the interesting directions, we provide a unique decomposition of the
tangent space of the full Euclidean vector space. The first part is a basis of the
tangent space of the manifold that fulfils the invariants, and the second part is a
basis of the orthogonal space and is given by the derivatives of the invariants. For
simplicity reasons we omit a possible dependency of the constraints w.r.t. parame-
ters and non–holonomic constraints in this presentation. A generalization is easily
done

Ĝ(p, v) =

(
∂gpos(p)

∂p 0
∂gvel(p,v)

∂p
∂gvel(p,v)

∂v

)
. (9.13)

The basis of the tangent space S(p, v) is fully orthogonal to this subspace, such
that

B(p, v) :=
(

S(p, v)
Ĝ(p, v)

)
(9.14)

has full rank and the scalar products Si(p, v)ĜT
j (p, v) and ĜT

j (p, v)Si(p, v) are
zero, where Si(p, v), Ĝ(p, v)i are rows of the matrices and a basis of the Euclidean
vector space at (p, v). A computation of Si is given in section 8.6.

To give a separation of the Jacobian of the parameter estimation problem into
derivatives in the manifold and orthogonal to it, we transform the linear system
with block matrices of the form BT

i := B(si)T from the right–hand side.


D0B

T
0 D1B

T
1 . . . DNBT

N Dp

H0B
T
0 −BT

1 Hp
0

. . .
...

HN−1B
T
N−1 −BT

N Hp
N−1




B−T
0 ∆s0

B−T
1 ∆s1

...
B−T

N ∆sN

∆p

 ;


l

h0

...
hN
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Looking at the Jacobian, we have two sets of directional derivatives. Deriva-
tives in direction of the manifold (HiS

T
i ), (DiS

T
i ) are fully specified by the dy-

namics of the underlying differential equations. The other directions perpendicular
to the manifold (HiĜ(si)T ), (DiĜ(si)T ) are implicitly given by the relaxation
technique as described in the last section.

Using the limit form of non–stiff Baumgarte relaxation, we get sensitivity in-
formation w.r.t. the matching conditions

Hi

(
Si

Ĝi

)T

≡
(

HiS
T
i 0

)
=:
(
Ĥi0

)
(9.15)

Ĥi is calculated directly using directional derivatives and matching initial direc-
tions.

In the case of least square conditions or constraints, we get

Di

(
Si

Ĝi

)T

≡
(

DiS
T
i DiĜ

T
i

)
=:
(
D̂iD̂

G
i

)
. (9.16)

If we assume that we first apply the projection of the limit form of Non–Stiff Baum-
garte relaxation, we have D̂G

i = 0.

To summarize, we only need to compute the solution of the VDE w.r.t. a re-
duced set of directions. These are specified by a set of initial directions Si. This
procedure is equivalent to multiplying the complete sensitivity matrix Hi with Bi

from the left–hand side. In the following two sub–sections, we present two differ-
ent methods to apply the condensing algorithm based on this efficient generation
of the derivative information.

9.2.1 Invariant–Based Reduction Method I

The first method reverses this transformation after the sensitivity has been calcu-
lated w.r.t. a reduced set of directions.

H̄i =
(
Ĥi0

)( Si

Ĝi

)−T

(9.17)

D̄i =
(
D̂i0

)( Si

Ĝi

)−T

(9.18)

We get singular sensitivity matrices H̄i and D̄i, but we want to stress that this
singularity does not transport itself to the Jacobian of the optimization problem
because of the term−I in each matching conditions block–row, except for the first
multiple shooting node. At the first node we formulate BVP–constraints which
guarantee consistent initial value of the underlying IVP in the solution and by the
continuation condition of the complete trajectory

gpos(s0) = 0
gvel(s0) = 0.

(9.19)
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The resulting system is of the same form and dimension as the one in standard
formulation and can be treated with the same algorithms.

This method was developed by the author and first implemented by Stossmeis-
ter.

9.2.2 Invariant–Based Reduction Method II

While method I uses the invariants to reduce the computational effort of solving
the VDE, method II additionally exploit the structure to reduce the effort of the
condensing algorithm.

Although we know by experience, that the computational effort of the condens-
ing algorithm is negligible, this might not be the case in our context. This is due to
the high dimension originating from the complexity of the (bio–mechanical) model
and the use of Natural Coordinates, which introduce 24 variables per body. Further-
more, we saw that the generation of derivative information is quadratic w.r.t. the
number of bodies1, while the decomposition is of O(n3). Therefore, there is a size
of the model at which the decomposition algorithm is more expensive. We estimate
that this break even point is at approximately several hundred bodies. Although,
we do treat models with a smaller number of bodies, it is useful to keep future
developments in mind.

This huge amount of work during the condensing algorithm can be avoided
or at least postponed to higher dimensional models by eliminating variables in a
similar way to section 9.1. This is achieved by transforming the system from the
left–hand side in addition to the transformation from the right–hand side.

We want to take a first look at the linearized system.
D0 D1 . . . DN Dp

G0 Gp
0

H0 −I Hp
0

. . .
...

HN−1 −I Hp
N−1




∆s0

∆s1
...

∆sN

∆p

 ;


l
g0

h0
...

hN−1

 , (9.20)

The transformed system is
D̃0 D̃1 . . . D̃N Dp

G̃0 G̃p
0

H̃0 −Ĩ1 H̃p
0

. . .
...

H̃N−1 −ĨN H̃p
N−1




∆s̃0

∆s̃1
...

∆s̃N

∆p

 ;


l
g̃0

h̃0
...

h̃N−1

 , (9.21)

1For this assessment we assume that the number of degrees of freedom is approximately propor-
tional to the number of bodies. This is the typical case except for models with a high number of
closed kinematic loops.
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where we defined

g̃0 :=
(

gpos(s0)
gvel(s0)

)
h̃i := B−T

i hi

D̃i := DiB
T
i

D̃p
i := Dp

i

G̃0 := G0B
T
0

G̃p
0 := Gp

0

H̃i := B−T
i+1HiB

T
i

H̃p
i := B−T

i+1H
p
i

Ĩi := B−T
i IBT

i = I

∆s̃i := B−T
i ∆si.

Examining B−T , we see(
ST+

ĜT+

)(
ST ĜT

)
=

(
ST+ST ST+ĜT

ĜT+ST ĜT+ĜT

)
=

(
(SST )−1SST (SST )−1SĜT

(ĜĜT )−1ĜST (ĜĜT )−1ĜĜT

)
=

(
I O
O I

)
,

(9.22)

because ĜST = 0 and SĜT = 0 as of the construction of S, and therefore we get
a better suited representation of the the left–hand side inverse B−T .

Using this, we write

H̃i = B−T
i+1HiB

T
i =

(
S+T

i+1

Ĝ+T
i+1

)(
Ĥi 0

)
=
(

S+T
i+1Ĥi 0

Ĝ+T
i+1Ĥi 0

)
=:
(

ĤS
i 0

ĤG
i 0

)
(9.23)

with
ĤG

i = Ĝi+1Ĥi ' 0 (9.24)

and zero in the solution. A detailed discussion of this term is shown at the end of
this section. It is possible to give an equivalent form for derivatives w.r.t. parame-
ters.

According to equation (9.23), we write the increment as

B−1
i ∆si = B+T

i ∆si

=
(

S+T
i ∆si

Ĝ+T
i ∆si

)
=:

(
∆s̃S

i

∆s̃G
i

) (9.25)
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and the matching conditions as

B−1
i hi = B+T

i hi

=
(

S+T
i hi

Ĝ+T
i hi

)
=:

(
h̃S

i

h̃G
i

) (9.26)

This results in two decoupled systems if one neglects ĤG
i . One system corre-

sponds to increments in the manifold


D̂0 D̂1 . . . D̂N Dp

ĤS
0 −I ĤS,p

0
. . . . . .

...
ĤS

N−1 −I ĤS,p
N−1




∆s̃S
0

∆s̃S
1

...
∆s̃S

N

∆p

 ;


l

h̃S
0
...

h̃S
N−1

 . (9.27)

We have reobtained a system in the same form but a reduced dimension.
The other system corresponds to increments perpendicular to the manifold2:

−I
0 −I

. . . . . .
0 −I




∆s̃G
0

∆s̃G
1

...
∆s̃G

N

 ;


−g̃0

h̃G
0
...

h̃G
N−1

 . (9.28)

Every term except the first reads like

Ĝ+T
i ∆s̃G

i = Ĝ+T
i hi

or
Ĝi∆s̃G

i = Ĝihi.

This is equal to one linearized projection step to the consistent manifold using the
pseudo inverse Ĝ+T

i . The increment of the first multiple shooting node can be
re–formulated to an equal form.

As a result, we get a modified system of much lower dimension as in reduction
method I. Furthermore, the decomposition and solution of the second system can
be done in parallel, too.

At last we examine if to neglect

ĤG
i = Ĝi+1Ĥi = Ĝi+1HiS

T
i (9.29)

is a valid approximation.
2Here shown, if the manifold is not parameterized, i.e. the constraints do not depend on the

parameters
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The columns of Si are a basis of the tangent space of the consistent manifold
at si. As we integrate along the consistent manifold, HiS

T
i is a basis of the tangent

space at xi := y(ti+1), i.e. the state at the end of the integration interval. As we
have a non–linear manifold, this tangent space is not equal to the tangent space at
si+1.

As we use a unique and continuous generation of the basis in the following
sense

lim
(x−y)→0

Sx − Sy = 0, (9.30)

where Sx, Sy are the basis of the tangent space at states x and y, the tangent spaces
are equal in the solution of the parameter estimation problem, where the matching
conditions are fulfilled.

To estimate the error of neglecting ĤG we compute

H̃i = Bi+1HiB
T
i =

(
Si+1

Ĝi+1

)(
Ĥi 0

)
=:
(

ĤS
i 0

ĤG
i 0

)
=

(
Si+1

Ĝi+1

)(
Sxi

Ĝxi

)−1(
Sxi

Ĝxi

)(
Ĥi 0

)
= T

si+1
xi

(
SxiHSsi 0

0 0

)
,

(9.31)

where T
si+1
xi is the transformation between the tangent space at x(τi+1; si) and

si+1. If the consistent manifold would be an Euclidean space, the transformation
matrix T

si+1
xi would the unity matrix. According to previous considerations, in

the non–linear case there is an additional term proportional to the curvature of the
manifold and the difference of the two points, i.e. the matching conditions. For this
reason, the approximation leads to an error of the same quantity.

The nonlinearity of the manifold is fixed. Therefore, to bound the error in-
troduced by this approximation, the norm of the matching conditions hi has to be
bounded. These values correspond to the gap between the state at the end of one
multiple shooting node and the initial state of the next node. Refining the mul-
tiple shooting discretization, i.e. distributing more multiple shooting nodes to the
same integration interval, will decrease the norm of each matching condition, while
keeping the norm of all norms of the matching conditions almost equal.

Due to this, the error of neglecting ĤG
i can be bounded by choosing a corre-

sponding granularity of the multiple shooting grid and suitable initial guesses for
the states at the multiple shooting nodes. Therefore, it is valid to approximate the
Jacobian by neglecting ĤG

i .

9.3 Theoretical Comparison of the Reduction Methods

We now present a theoretical comparison of the three methods described in previ-
ous sections. A numerical comparison will be shown in part V.
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The Fixfit–approach is especially useful if all (or at least most) initial dynamic
states are fixed. Then, it is only necessary to compute directional derivatives
w.r.t. the parameters and one additional direction corresponding to the violation
of the matching condition. This number of directions is much smaller than the
number of degrees of freedom of mechanical models, especially in the case of
biomechanical systems, where the motion of the bodies is less restricted by joints
than in the case of technical mechanics. In this case, some joints typically restrict
a less number of degrees of freedom and some bodies are only connected to other
bodies via forces. A special example for the latter is the modelling of wobbling
masses.

On the one hand, the reduction methods based on invariants only reduce to
the dimension of the degrees of freedom. On the other hand, they use constraints
which are formulated at each multiple shooting node. Therefore, a parallelization
w.r.t. the multiple shooting discretization is possible.

Furthermore, we want to look at the different types of relaxation which can
be applied to the different reduction methods. Fixfit and the first reduction method
based on invariants are not restricted, but this is not the case in the second reduction
method, which implicitly formulates the projection by transforming one part of the
sensitivity matrix of the matching conditions

ĤS
i = ST

i+1HiS
T
i .

While applying the condensing algorithm one has to compute terms of the form

ST
i+1S

T
i+1Hi. (9.32)

The term ST
i+1S

T
i+1 corresponds to a projection that is equivalent only to an Eu-

clidean projection as shown in the following.
The Augmented system of the linearized form of the Euclidean projection for

initial directions is (
I ĜT

Ĝ

)(
d
λ

)
=
(

d0

0

)
, (9.33)

with

Ĝ =
(

G
Gv G

)
, (9.34)

and initial respectively projected directions d0 and d. According to this equation,
the projected direction is

d =
{
I − ĜT

(
ĜĜT

)−1
Ĝ

}
d0. (9.35)

Because

I =
(

ST ĜT
)( ST+

ĜT+

)
= ST ST+ + ĜT ĜT+

= ST
(
SST

)−1
S + ĜT

(
ĜĜT

)−1
Ĝ,

(9.36)
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we reformulate (9.35) to
d = ST ST+d0,

which proves the connection to equation (9.32). As there does not exist a com-
parable simple reformulation of the projection adapted to mechanical systems, we
are not able to use this type of projection for the second invariant–based reduction
method. Because will see that this projection method has the best properties, this is
a drawback of the second method. In part V, we study the severity of this drawback
by means of numerical experiments.

All methods need initial directions for the variational differential equation at
each multiple shooting interval, but provide different approaches to calculate these
directions. For the following considerations we restrict ourselves to initial direc-
tion w.r.t. states, fixed initial values to simplify the formulation w.r.t. the Fixfit–
approach and do not consider the first multiple shooting interval.

Fixfit–approach uses the directions at the end of the previous multiple shooting
interval added to the matching condition: kHR = Hk ·k−1 HR + hk (see equa-
tion 9.8). As the manifold is non–linear, kHR is not consistent at sk and will be
projected due to the limit form of non–stiff Baumgarte relaxation at the start of
the integration of the next multiple shooting interval. In the case of the invariant–
based methods, we calculate the initial directions based on the tangent space of the
manifold at the multiple shooting node with basis Sk which is consistent w.r.t. the
manifold.

As the solution trajectory is continuous and, therefore, HkSk−1 = Sk in the
solution, this effect does not effect the solution. As we assume a suitable multiple
shooting discretization as discussed at the end of the previous section, we can as-
sume that for typical situations, the difference of the two methods does not effect
the convergence properties of the GGN significantly. This assumption is approved
by numerical tests as shown in part V; no significant advantage of one of the two
approaches is seen.
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The first three parts of this work study the theoretical aspects of the numerical
algorithms that are used to solve parameter estimation problems applied to (bio–)
mechanical models. This part studies the practical aspect, i.e. the implementation,
of these algorithms and approaches. Mechanical systems are ”models that consist
of bodies that interact with each other and the environment by joints and forces”.
Therefore, it is natural to think in terms of objects which implement these bodies,
joints and forces and, therefore, use an object–oriented approach. We think that
object–oriented programming (OOP) is a suitable software design also for the pa-
rameter estimation part, because it is able to treat the complexity originating from
various options and extensions one has to consider when implementing all methods
presented in the numerical part of this work. As not all possible options are consid-
ered in this work, it is even more important to provide a flexible, maintainable and
especially extendable program. These are exactly the difficulties object–oriented
programming tries to treat.

We first present a brief introduction to OOP by discussing the three major
paradigms: encapsulation, inheritance and polymorphism. By exploiting these
paradigms, OOP promises the advantages cited above. Afterwards, we discuss
the prejudice of a lack of performance of OOP compared to procedural approaches
and refer to guidelines which help to avoid this disadvantage. Furthermore, we fo-
cus on problems of OOP as discussed in the middle of the 90’s. Due to the increase
of design options and the increase of interactivity between different parts of the
program, the complexity of the program increases. This leads to a decrease of flex-
ibility, usability and maintainability because individuals or groups of humans are
no longer able to treat the complexity. This is the opposite of what OOP promises.
Moreover, this disadvantage gets worse with an increasing size of the program.
Considering the size of the implementation presented in this work, some 80’000
lines of source–code, this would be a major drawback.

In the second chapter of this part, we discuss and apply various methods in-
vented to avoid this problem. We first provide a theoretical description and then
apply the methods directly to one or both of the two major packages that form this
work: Parfit++ (PARameter FIT using C++), which implements the parameter es-
timation tool as described in part I, and MBSNAT (MultiBody System simulation
based on NATural coordinates), which provides the implementation of the (bio–)
mechanical model as described in part II. The theory of part III is represented in
both packages. All these methods successfully try to increase the structure, and
thus reduce the design possibilities and complexity of the package, by splitting it
into more manageable parts.

We first discuss the three–tier model, which separates the presentation layer and
database access from the main computational task, i.e. the numerical algorithms.
This has the additional effect that parts of the program which are highly dependent
on the hard– and software environment are separated from the main computational
task.

The other way round, the core of the program, i.e. the numerical algorithms, is
still implemented in one part. Therefore, we introduce additional structure originat-
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ing from levelization or hierarchy. In OOP we have to distinguish object–hierarchy,
like a model consisting of bodies, and class–hierarchy, like spring and damper el-
ements inheriting from a general force–element. Both hierarchies can and must
be applied such that every feature is located exactly in one particular part of the
program: the dynamic properties of a body are distinguished from that of a force
(object–hierarchy) and from the methods of the body used during the decomposi-
tion of the system (class–hierarchy). This approach is well suited for the package
MBSNAT.

A further approach recognizes the problem of physical and logical coupling
between different parts of the program. Whereas the latter method tries to reduce
the complexity of the program by organizing the location of one feature, it does
nothing to reduce the coupling. To avoid this, each class inherits from one or more
interfaces, i.e. classes which only provide a minimum of information. Further-
more, different classes communicate only by such lightweight interfaces. Thus,
the classes are not coupled directly, i.e. strongly, knowing the complete definition
of the other class. A drawback of this approach is the increase of indirection, which
slightly decreases the performance, originating from the use of interfaces. There-
fore, it is suitable to strongly couple parts of the program, which heavily commu-
nicate with each other, and only use light coupling otherwise. This results in the
so–called interface– or component–oriented programming, which decomposes the
whole program in smaller component, which are strongly coupled internally and
loosely coupled to other components. This approach is used in Parfit++. Due to
the decrease of performance in the case of MBSNAT, which is the inner loop of the
whole package, we implement it as one component.

Therefore, we avoid the drastic increase of complexity originating from a naive
application of OOP by using a combination of all three approaches, while the
special demands of Parfit++ and MBSNAT are considered by the question how
strongly we apply them. Thus we get a highly structured and efficient set of com-
ponents which, in different combinations, amount to either Parfit++ or MBSNAT.
Efficiency in this context is achieved in terms of speed and flexibility, maintain-
ability and usability.
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Object–Oriented Programming

Object–oriented programming (OOP) provides developers with a powerful concept
to cope with the growing complexity of today’s software. Mostly because of the
high flexibility and extensibility of this concept, OOP is widely accepted, which
includes the community of numerical mathematics in recent years. This is due
to the fact that especially programming in C++ has reached such a mature state
that one obtains the speed of Fortran 77 while retaining the good properties of the
object–oriented concept. In order to be competitive with Fortran 77 in terms of
speed, we have to keep in mind several guidelines that will be discussed briefly in
section 10.1 together with a short introduction into the basic concepts of OOP.

Unfortunately, this richness of features of C++ can lead to incomprehensible
and overly complex programs. This typically is not a problem with small software
projects, but with programs growing in size it can lead to unbearable difficulties. In
order to prevent this, several restrictions have to be accepted, which inhibits an un-
controlled growth of software. During the first years, several solutions were devel-
oped [Lak96], [Dat97], concluding in the industry–standard solution: Component–
Oriented Programming [Gri98]. This is a concept to further improve structure on
a higher level. The paradigm is one of the basics of (D)COM(+) [Box98], Corba
[Bor01],[Lin98] or Enterprize Java Beans (EJB) [Ste98]. Although these concepts
can be used to support distributed computing, we will apply a subset on this stand–
alone project. We supply our own implementation in order to retain an easy support
of different programming environments. Furthermore, in chapter 11 we will take a
closer look at how this is implemented .

10.1 Introduction to Object–Oriented Programming

In order to understand efficient object–oriented programming, one first has to know
the paradigms. The fundamental abstraction unit is the class, which corresponds
to some (abstract) physical object such as a body, or some more abstract numerical
entity like a matrix or an iteration scheme. An instance of a class is called an
object. The class is a collection of methods, that is a set of functions providing
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actions the class can do, and member variables which represent the properties or
states of the class. A special form of class which only defines methods, but does
not provide any implementation or member variables is called an interface. In
procedural languages, data move ”through” a series of procedures, which results
in the classical calling–tree. In contrast to this, data are fixed to one object in
object–oriented languages, and operations on data are done by requesting them
from the corresponding object, which then administers its own data. Therefore, the
communication structure is more flexible.

The philosophy of OOP is best outlined by three paradigms associated with
it – encapsulation, inheritance and polymorphism – which are described in the
following.

10.1.1 Encapsulation

The paradigm encapsulation means that the internal design is hidden from the user
of this class, and only the minimum of necessary information is presented to him.
In practice, this is equivalent to only knowing the class declaration that defines the
public interface to the rest of the program, and not the implementation. As a result,
the user knows what the class does but not how. Furthermore, data are typically
accessible by get- and set- methods so that the internal data–structure is hidden
from the user. This allows for additional code to implement dependencies between
data and to guarantee a valid internal state of the object. E.g. when changing the
dimension of a vector–object, the variable storing the dimension and the internal
array holding the data are both changed. This results in a less complicated and more
flexible usage. Furthermore, one gains the possibility of modifying the internal data
structure without a need to change the rest of the program. Part of this information
hiding is already applied in procedural languages, but object–oriented languages
realize this benefit in a more flexible way and better support this paradigm.

10.1.2 Inheritance

The paradigm of inheritance is one of the most powerful and well known concepts
in object–oriented programming. When thinking of animals, it is possible to define
a tree classifying them. So, for example, mammals and birds are animals while
bats and horses are mammals (figure 10.1).

If one implements this example, it is possible to consider the similarities and
distinctions between these types. Inheritance allows for reusing code – not just
copying it – if the behavior is equal, while it is possible to overwrite it if the be-
havior is different. In the above example, one feature of mammals is that they typ-
ically use four–legged movement. As a result, it is suitable to implement a method
MOVE() in the class MAMMAL based on four–legged movement. As horses use
this type of movement, we can reuse this code, which is not possible for bats be-
cause their type of movement is different. Therefore, we have to override the corre-
sponding implementation in this case. This is strongly connected to encapsulation
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Figure 10.1: Inheritance Tree

because a bat still implements the method MOVE(), which still results in move-
ment, but uses a different implementation. The exact internal detail is hidden.

Another example for the use of inheritance is the implementation of spring and
damper elements. Each one is a specialization of a general force element, and
they share much of their principle behavior, like connecting to bodies and applying
some force. They are distinguished by the force law, though.

A further improvement of this concept is multiple inheritance. Looking at bats
and birds, you can see that they are both animals and have the same principle
behavior. But the structure we used until now is not able to represent the additional
similarity which is shared by these two types, namely that they are able to fly. It is
desirable to represent this connection, based on the same reasons to get inheritance
at all. Therefore, we introduce another ”base–class” (CANFLY) to provide it (figure
10.2).

Figure 10.2: Multiple Inheritance

As a result, the bird and the bat inherit methods of flyer like FLYHIGHER().
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By using multiple inheritance, it is possible to easily extend the functionality of a
class by adding further interfaces, which improves the flexibility and reusability of
a class. Furthermore, a class is not a black box, but one is able to interact in a very
adapted way.

10.1.3 Polymorphism

The last paradigm we want to mention is polymorphism. As already said in the
context of inheritance, we typically have class–trees implementing similar behav-
ior, e.g. that horses and eagles are both animals and as such inherit from the corre-
sponding class. As a result of this, we are able to define a collection of animals and
call a method, i.e. MOVE(), of all animals. We define a heterogenous collection
of objects which we can principally treat in the same way, as long as we use their
shared interface. If we consider the concept of multiple inheritance, we are able to
cast to another base–interface at runtime (e.g. CANFLY) and use this functionality
if it is supplied, again gaining much flexibility.

10.2 Complexity of OOP

Although the properties of OOP improve the flexibility, reusability and maintain-
ability, one has to consider several possible limitations or difficulties when using an
object–oriented language like C++. Because it extends the functionality of C, C++
is harder to learn and provides much more design possibilities. This impairs the
usability of source code by others. Furthermore, the code may be more complex
because separate parts of a code have more possibilities of interaction. We will see
that if one does not introduce structure, and by that narrow the design options, one
looses properties of OOP like reusability and maintainability because of the limit
of complexity a human being or a group is able to handle. A direct drawback in
terms of performance at compile time is the topic of section 10.2.2, and the de-
sign aspects are presented in chapter 11. We first want to take a closer look at a
prejudice regarding OOP, which says that there is a lack of numerical efficiency.

10.2.1 Efficient Numerics

In the beginning of using the object–oriented paradigm, the software often lacks the
performance of procedural code written, for example, in C or Fortran. As numeric
applications are typically very time–consuming, this was a major drawback. But
OOP in itself does not lead to excessively slow programs if one follows several
rules. A thorough examination is done in [Yan01]; Here we do not want to go into
details, but restrict ourselves to the most important topics:

• Machine–optimized BLAS- and LAPACK-libraries should be used for the
most time–critical parts. Thus, one achieves upmost efficiency independent
of the programming language.
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• Arguments in calling functions, which are not of basic data type, should be
passed by reference and not by value. The latter would lead to copying of
internal data and may be to time–consuming memory allocation and deallo-
cation.

• Constant qualifiers should be used wherever possible to allow for optimiza-
tions of the compiler.

• Inline functions avoid the offset of a function call – they are similar to macros
but use a thorough type check – and should be used in very time–critical parts
of the code.

• Virtual functions, which allow polymorphic behavior, should be avoided in
time–critical parts, if they are not needed.

All these requirements can be met without impairing the functionality of OOP. The
measures above lead to a performance of programs almost as good as in procedural
languages. If one stresses this approach, which is done in programs like ATLAS
[ATL], one is even faster. The disadvantage of programs like ATLAS is a less
readable code. As a result, one has to balance between performance in terms of
speed and performance in terms of flexibility, reusability and readability. As we
will see later, the decision which method to use depends on the exact environment
of a specific part of the code.

10.2.2 Complexity and Possible Consequences

Classes typically export several interfaces with several methods. Furthermore, the
objects interact with each other in various ways, which leads to a more complex
calling structure compared to the classical calling–tree of procedural programs. An
object may access quite a number of other objects of different types. Therefore, the
class must know the definition of several other classes.

This logical complexity of coupling between the classes results in physical
complexity. A file containing references to various classes needs to include several
header–files that contain the definition of these classes. If one includes the indirect
connections – a class includes a header file, which again includes another header –
this may lead to the inclusion of all the header files of a complete package. Because
every class or a small group of classes defines a header file with quite a lot of
entries, this may lead to a bottleneck at compile time.

Let us look at a test case done in [Lak96]. We define a number of arbitrary
header files of fixed length. Furthermore, we supply an equal number of source
files which include all the header files and, besides from that, are empty. This will
lead to the following compile–times done on a SunSPARC 20 with 32MB:
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System Size 100 lines headers 1000 lines headers
1 0.1s 0.4s
2 0.1s 1.0s
4 0.2s 1.0s
8 0.4s 3.4s
16 0.8s 11.0s
32 2.4s 32.2s
64 8.2s 137.7s

128 26.5s 497.5s
256 98.1s > 1 day
512 397.6s
1024 > 1day

Considering the fact that the program package we are talking about in this work
includes some 280 header files, this is at least an annoyance. This annoyance may
lead to avoiding a modification of the code if this would result in a recompilation
of the whole package, and as such may leads to inferior code. The solution of
this problem is the same as in the case of design complexity: to impose additional
structure to the software design.



Chapter 11

Structure of the Software
Implemented in the Packages
MBSNAT and Parfit++

As we have seen in the previous chapter, using an object–oriented approach in the
first moment seems to lead to overly complex programs annihilating the advan-
tages of this approach. In the case of the software packages Parfit++ (PARameter
FITting based on C++) for parameter estimation and MBSNAT (Multi Body Sys-
tems modelled using NATural coordinates) to model mechanical systems, which
were developed in this work, we are talking about some 80’000 lines of code and
additional Fortran libraries implemented in this work group. Therefore, it is of
upmost importance to design the implementation of the software efficiently.

To solve the problem of too complex code, it is necessary to restrict the design
possibilities and by that drastically increase the structure of the design. This will
reduce the complexity to a manageable level.

In this chapter, we want to present three possibilities we used in the software–
packages : the (three–)tier model, the hierarchy or levelization and the interface-
or component–oriented programming. We will show that every option is suitable
in different parts of the program, resulting in a well–designed structured software
package.

11.1 Three–Tier Model

In modern software, the overall package is typically divided into several reasonable
parts, also called tiers. In the case of two–tier models, this is the well–known
client–server approach. In the three–tier model [Blo99], the program is broken up
further.
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First Tier Presentation (GUI)
Second Tier Business Logic (Middleware)
Third Tier Backend (Databases)

Figure 11.1: Three Tier Model

11.1.1 First Tier

This tier represents the graphical user interface, including menus, dialogs and
graphical output. This is highly dependent on the environment i.e. the operating
system (like Windows or Unix), the framework (like for example MFC, OpenGL or
Qt) or if the program is used via the web. This presentation tier typically includes
very simple input/outpout checking, leaving the more complex ones to the second
tier.

In the case of our program, we supply several packages which form this tier.

• In the case of MBSNAT, we provide an interactive graphical user interface
based on Microsoft Foundation Classes (MFC). This interface allows for an
interactive graphical build–up of the model based on mouse–clicks, menus
or dialogs.

• We support 2D-graphics for diagrams. To adapt to different platforms, we
need several different implementations based on file or Gnuplot output or
online Matlab linkage based on ActiveX.

• It is possible to show a 3D–representation of the mechanical model based
on OpenGL. This drastically increases the usability and debug–ability of the
package.

• By using the picking and selection capabilities of OpenGL and additional
dialogs we are able to interactively add, edit or remove arbitrary elements of
the model.

As can be seen at the examples shown above, the implementation of this tier
highly depends on the exact platform and software environment.

11.1.2 Second Tier

The second tier, which implements the middleware, deals with the actual computa-
tion or ”business–logic”. In the case of numerics, this level includes the complete
actual numerical computation. In contrast to the first tier, this part typically does
not depend on the environment. Therefore, it is suitable to include more com-
plex routines concerning the user interface, too. A more detailed discussion of the
middleware, which points out its significance, is done later on.
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11.1.3 Third Tier

This third tier supplies access to the data, i.e. implements a connection to the
database. In this case, several high–performance implementations are at dispo-
sition. Different realizations are suitable, depending on the amount of data and the
environment. In the case of this package we do not expect a high number of input–
data compared to other applications. Therefore, we choose the industry standard
XML.

XML is based on human readable and structured ASCII text similar to HTML,
and therefore is easy to learn and handle. XML allows for syntax definition and
checking using DTD (document type declaration) or similar methods. It is also eas-
ily presented in a more graphical form using XSLT (eXtensible StyLesheet Trans-
formation) and a common web browser. Furthermore, modern industry standard
databases are able to supply the result of a request in XML, such that one is able to
cope with an increasing number of input data if this is necessary.

Although this approach is very suitable, the main problem of reducing the com-
plexity is not solved. The type of program we discuss here typically focuses on the
second tier which is also represented in the amount of code. It is still by far too
much, thus it is necessary to introduce additional structure.

11.2 Hierarchy or Levelization to Structure Software

A second possibility of introducing structure is to use a fixed hierarchy with cer-
tain levels of a fixed ordering. Because of inheritance and the focus on classes or
objects, we must differentiate between object–hierarchies and class–hierarchies.

Class–hierarchies originate from the paradigm of inheritance. A class typically
inherits from a super–class, or it is this super–class. This leads to a tree–structured
system. The introduction of multiple inheritance destroys the tree–structure and
may introduce loops, while being still hierarchical. We may introduce a numbering
of the classes, such that each class belongs to one particular level.

The second hierarchy originates from the fact that some objects hold a collec-
tion of several other objects. A suitable example of this is the mechanical model
which is defined by the bodies, forces and joints (see figure 11.2). The model
contains them. This association between different objects is representable in a
tree–structured system, which is called the object hierarchy.

It is possible to implement an association using both methods, but after this has
been determined, these hierarchies are orthogonal to each other. In the example of
figure (11.2) we see a model containing (by pointers) a body and a joint. This is
the ”vertical” object–hierarchy. The ”horizontal” hierarchy is due to inheritance,
where the class NMODEL inherits from DMODEL and the other classes accord-
ingly. To increase the structure, it is important that the implementations done in
level ”D” are of one category and different to level ”N”. The application of this
segmentation throughout the program drastically increases the readability because
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Figure 11.2: Object- and Class–Hierarchy

it is more easy to locate a specific code–segment. Adding functionality only leads
to an extension of one level in the class–hierarchy or an additional element in the
object hierarchy. This improves the flexibility of the overall program.

11.2.1 Object–Hierarchy of MBSNAT

The main object–hierarchy of MBSNAT is shown in figure (11.3). It represents
the fact that the model is defined by a collection of bodies, joints and forces (and
additionally events and parameters), while the joints themselves are defined using
constraints.

Figure 11.3: Object–Hierarchy of MBSNAT
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In the software package, several other elements which represent discontinu-
ities or parameters are included. Nevertheless, applying this approach leads to a
better structure of the overall system and a better manageability of the code and the
representation of the model in the computer.

Figure 11.4: Class–Hierarchy for Model

11.2.2 Class–Hierarchy of MBSNAT

This hierarchy originates from the different features of a class, each level imple-
menting one of these features. In the case of mechanical systems these are:

D: a dynamic description of the elements, like the mass of a body, contact points
and force–law.

K: the same structure originating from bodies and joints seen from a kinematic
point of view. We have implemented a fast way of kinematic movement
based on relative coordinates.

EXT: additional handling of external dynamics, which is not part of the framework
of mechanical DAE of index 3.

B: code implementing the block–sparse decomposition described in chapter 4.7.

P: parameters as elements that parameterize previously defined elements and
code to automatically generate derivative information w.r.t. dynamic vari-
ables or these parameters.

E: events are elements that modify previously introduced elements to imple-
ment discontinuous behavior and to detect the exact time–point at which
they have to be modified.
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GL: extensions holding pointers to shapes, implemented in a component handling
3D–Graphics (see first tier; section 11.1.1).

N: the final level of the general implementation and the basis for specialized
elements.

The last layer implements the complete shared functionality of classes of one
type, be it a force, a joint or a parameter. Furthermore, the corresponding classes
of level N are the base–classes for every specialized class of that type. The classes
originating from that level are discussed further in appendix C, which shortly de-
scribes the elements implemented in MBSNAT.

Using both of these structures, it is easy to locate a certain functionality of an
object by selecting the corresponding class–type, like forces, and the correct layer
of the class–hierarchy this feature belongs to. Therefore, although we are working
with a huge package, the code is still easily manageable, because we only have to
search a rather small amount of code in every case. Furthermore, in the case of
extending the functionality of the model, other parts of the package are modified as
little as possible, because most of the new functionality is located in only a small
specific part of the program.

11.3 Concepts of Interface–Oriented Programming

Looking at the previous section, we see that there has been introduced a form
of structure that reduces the complexity of the design. Every logical entity cor-
responds to one part of the program, while familiar ideas are located nearby. Al-
though this is good in terms of design, it does almost nothing to reduce the coupling
between different parts.

When we look once more at figure (11.2), we see that NMODEL holds a pointer
to NJOINT and as such ”knows” this class and all the base classes (e.g. DJOINT).
The class NMODEL or, to be more exact, an instance of it, is indirectly coupled,
physically and logically, to a huge portion of the overall program. This may lead
to difficulties discussed in section 10.2.2 for increasing program size.

Due to this insight, the coupling is reduced if an object points to an instance of
a base class – in this case DJOINT. Following this line of thoughts, the coupling is
minimized by using the most basic class, which defines only the absolute minimum
in order to access it. This minimum is provided by the definition of the methods,
omitting any implementation of these methods and any member variables. This
type of ”class” is fully abstract and therefore an interface. We define an interface
for every feature of a class, such that every class inherits from a number of inter-
faces using multiple inheritance. Applying this concept to every class, we see that
an object is only associated to another object via one (or more) of its interfaces.
This drastically reduces the coupling between these parts of the program. These
parts are loosely coupled, in contrast to strong coupling when pointing to the class
directly or even inheriting from it. Furthermore, this loose coupling enhances the
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idea of information hiding, only providing the minimum of information defined in
the interface while hiding internal details and extensions which are not needed in
this context. In contrast to a black box approach, it is always possible to use the
concept of dynamic casts to get a pointer to another aspect of an object which is
defined by another interface. But there is also a drawback of loose coupling: only
a subset of the complete functionality is given by one pointer, so that we must use
virtual functions and the corresponding indirection. This leads to a slight perfor-
mance decrease.

These interfaces can be used to further increase the logical structure, by group-
ing a set of objects to a so–called component1. Members of the same group are
strongly coupled, that is they communicate directly in a fast way, while members
of different components only know each other via interfaces, i.e. are loosely cou-
pled.

Figure 11.5: Strong and Loose Coupling

As a conclusion, interfaces are used to decouple different parts of a program.
This gives the possibility to further structure a program, leading to components
or a better structure inside such a component. This is valid in a logical sense,
as the classes only need to know a couple of interfaces, as well as in a physical
sense, because a file includes only header files containing interface definitions.
This loose coupling is bought with a slightly decreased performance depending on
the granularity of the decomposition. Usually, one has to balance complexity or

1The term ”component” is typically used in the context of distributed computing. The complexity
in our context is drastically reduced omitting especially the problem of threading models.
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readability and performance. This balancing leads to different design decisions in
the two major packages (Parfit++ and MBSNAT). In the case of MBSNAT, which
heavily uses a hierarchic structure and levelization as described before, we do not
use interface–oriented programming to the previously defined high extent. Instead
we keep the core of MBSNAT in one component, to achieve the necessary high
performance of the linear algebra solver implemented by MBSNAT.

In the case of Parfit++, the time–consuming calculations are big matrix–vector
or matrix–matrix operations, which are calculated using machine–optimized BLAS
and LAPACK routines as described in section 10.2.1. Therefore, we are free to
apply the concept of interface–oriented programming to further increase the flexi-
bility and maintainability of Parfit++.

11.4 Applying Interface–Oriented Programming to
Parfit++ and MBSNAT

In this section, we first describe how the parameter estimation algorithm is devided
into several smaller parts following the structure already theoretically introduced in
part I. These parts are associated with components. We discuss the basic interfaces
which show

• the connection of the different parts / components,

• the functionality of the component itself.

This is done in detail at a very simple version of the iterative solution of a nonlinear
least squares problem. Doing this we want to give an impression of the structure of
the implementation and how interfaces are used. In this overview we will present
only a small selection of over 100 interfaces used in the two packages. After this
introduction we will present the implemented components, which in combination
either amount to Parfit++ or to MBSNAT.

11.4.1 Basic Structure

To illustrate the component structure of this part, we look at a simple example
(compare to equations 1.12)

min
x
‖r(x)‖2

2.

This problem can be solved using a QR–Decomposition, and the solution is found
as a fixpoint of the iteration scheme:

xi+1 = xi − (Q(xi)R(xi))
+ r(xi)

When we look at this problem in a more abstract point of view, we have
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• a nonlinear problem at some state xi, which should be able to supply the
linearized form: J(xi), f(xi). This is our first component, the PROBLEM.

• The linear form is solved by applying a QR–decomposition: the second com-
ponent which is called SOLVER.

• The solution is used to apply an iterative scheme: the ITERATOR. This
scheme iteratively sets the PROBLEM to a new state until some tolerance
is fulfilled and the corresponding nonlinear problem is solved.

This is shown in figure (11.6).

Figure 11.6: Component model of an algebraic problem

Besides the decomposition in three components, we also specify a number of
interfaces such that the components are able to communicate with each other: IN-
EWTON, ISOLVER, ISOLVER_RHS and IPROBLEM. A slightly simplified version
of these interfaces is shown in appendix B. To illustrate the basic functionality of
these interfaces, we want to take a closer look at INEWTON and IPROBLEM.

IPROBLEM holds the problem definition. The class is specified as a state ma-
chine holding its own state x. Thus, a procedural function call f(in, out) is split
into three parts: UPDATE(), CALCULATE() and ACCESS(). This structure is rep-
resented in the interface. We want to stress here that the state is stored inside the
problem because of the state–machine or object–oriented approach. This has the
advantage that the state may be structured, which remains hidden from the rest of



122 Structure of the Software

the program, or that there is some other method to set or modify the state, which
does not impair this principle calling structure.

INEWTON is the basic interface to the iteration scheme. As this is the topmost
component, it must know about the other components. Furthermore, the initializa-
tion is done in the first part. The second part of the interface deals with the internal
state of the iteration scheme and provides functionality to set the tolerance or the
maximum number of steps, and also to ask for information. The last method of
the interface is the actual main routine OPTIMIZE(). We want to point out that the
procedure has no argument, because all the information, in particular the state as
an internal detail of the problem, is already known. The interface provides access
to an iterative scheme with minimal functionality. As prerequisites, we provide a
problem (which should be solvable with an iterative scheme) and a solver using
information of the problem to provide an increment.

Although this framework may be disproportionate for such a simple problem,
it is valid in a much more complex environment, and the principle properties of the
approach can be seen in this simple example. Furthermore, we typically need to
extend only one component, using another interface and multiple inheritance, thus
a complex model is built by small extensions of the simple ones.

Considering a constrained minimization problem (see equations 1.12 and 1.13),
the situation changes slightly

min
x
‖r1(x)‖2

2

rc(x) = 0.

In this case, we must distinguish between least squares conditions and equality
constraints. As a result, the problem component supplies an additional interface:
IPROBLEM_LEASTSQUARES. Moreover, we have to adapt the solver component
to be able to solve constrained minimization problems, but this is just an imple-
mentation detail, as in the latter case. The topic we want to stress here is that we
do not change the original interface but only add another interface. Therefore,
other components working with the original version of this component are still
fully functional in contrast to the situation in classical procedural languages.

Until now, we have restricted ourselves to algebraic problems. In the case
of dynamic problems, it is useful to extend the component model by adding an
INTEGRATOR and a MODEL which supply the differential equation and a method
to solve the corresponding IVP. This is shown in figure (11.7).

The basic connections between the components are that the optimization vari-
ables of the problem are the start values of the integration, i.e. the initial state of
the model. The model supplies the right–hand side evaluation of the differential
equation, while the integration scheme modifies the state of the model according
to the differential equation. This is reflected in the methods of the corresponding
interfaces: IINTEGRATOR and IMODEL with MODE, as the ODE–extension of a
simple storage for variables.
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Figure 11.7: Component model of a dynamic problem

11.4.2 Description of Components

In the following, we want to present a short description of the components of which
Parfit++ consists. The description is enriched by several references to the theoreti-
cal part, which are used to describe the exact content of the implementation.

Iterator The component is accessed via the basic interface INEWTON and the ba-
sic functionality is described above (see appendix B). There are three implemented
classes, which are both inside the same DLL: a simple full–step Gauß–Newton
method, a damped Gauß–Newton method based on line search and natural level
functions, and one method based on the restrictive monotonicity test as described
in section 1.3.2.

Solver This component is used to solve the linearized form of constrained least
squares problems (see section 1.4). All the classes in this component inherit from
ISOLVER (see appendix B) and provide the corresponding functionality. There are
several implementations which are distinguished from each other by the type of the
linear algebra solver used to treat the constraints and the unconstraint minimiza-
tion. Furthermore, as the constraint qualification (definition 2) must be fulfilled
and the system should be positive definite (definition 3), we apply regularization to
guarantee the latter (see section 1.4).

The classes in this component do not only provide a solution of constraint min-
imization problems, but they also give statistical information about the solution,
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i.e. the decompositions are used to calculate the corresponding covariance matrix
and to provide the standard deviation (see section 3.4).

An extension of this component is the solution of multiple experiments prob-
lems (see section 3.1). The structure is implemented as a list of problems orig-
inating from the component PROBLEM_DYNAMICS or PROBLEM_ALGEBRAIC.
From the point of software engineering, it is necessary to administrate this list and
prevent the elimination of ”global parameters” during the solution of local prob-
lems. This is again done using additional interfaces.

Problem_Dynamics This component implements the dynamic problems based
on multiple shooting including the corresponding condensing algorithm.

The component PROBLEM_DYNAMICS uses an INTEGRATOR component to
solve a differential equation specified in MODEL in order to evaluate the least
squares conditions and constraints at different time–points, and to generate deriva-
tive information. The optimization variables correspond to initial values of the DE.
For the corresponding mathematical theory, see chapter 2.

The implementation of multiple shooting leads to an extensive internal struc-
ture. As described in section 3.1, the time–interval is discretized (see equation
2.23). This is realized as a list of multiple shooting nodes. Apparently, not using
multiple shooting discretization is equivalent to only one multiple shooting node.
Moreover, we defined conditions w.r.t. several time–points (see equation 2.4) that
need not coincide with the start of the multiple shooting intervals. Therefore, we
implement another list with elements of type STOPPOINT which hold the terms
of the equations w.r.t. one time–point. These objects are associated to the corre-
sponding node. The two separate lists allow for a flexible treatment of the multiple
shooting discretization and are used to exploit the structure of the derivative of the
conditions. This includes the possibility to automatically generate initial values of
the multiple shooting node by using arbitrarily distributed least squares conditions
or constraints (see section 3.2).

The data concerning the multiple shooting discretization are stored in a class of
this component. Because the condensing algorithm uses these structures to allow
for an efficient decomposition and solution of the corresponding part, it is evident
to apply these steps inside the component. As a result, classes of this component
inherit from ISOLVER, too. Furthermore, it is possible to apply reduced methods
as described in chapter 9.

Problem_Algebraic This component implements the formulation of algebraic
problems originating from the identification of a parameterized manifold by mea-
suring several states as described in section (3.1.1). Due to the fact that the states
are different and the parameters are the same at different measurement–points, we
automatically get a multiple experiment structure. An efficient specialized treat-
ment is implemented in this component. If we formulate several series of measure-
ments with partly different parameters, we get an additional level of the multiple
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experiment structure which has to be realized using the multiple experiment imple-
mentation of component SOLVER.

Equation Looking at the formulation of all these problems, we are able to inter-
pret them as a set of functions ri : Rn → R1. Each of these functions has a specific
meaning, i.e. they are part of a constraint or least squares condition. Although the
meaning may vary, the basic structure is the same. This is a good example of the
use of polymorphism and information hiding. These terms are implemented in this
component and the corresponding classes inherit from IEQUATION (see appendix
B).

Integrator This component provides integration methods to solve differential
equations of different types. Several up–to–date methods are available, but they
are written in Fortran. Because of this, we provide wrapper classes to neatly fit
these methods in this framework. These libraries are ODESIM and ODEOPT for
ODEs, MBSSIM and MBSOPT for mechanical DAE of index 3 (see section 2.1.1;
[vW97], [Sch99], [Win01]) and DAESOL for stiff DAE of index 1 (see section 2.1;
[BBS99], [Bau00]). ODEOPT, MBSOPT and DAESOL provide sensitivity infor-
mation as described in section 2.2. All methods are able to treat non–discontinuous
differential equations as described in section 3.3.

These wrapper classes provide the same interface for the same feature of an
integration package, independent of the exact underlying package or scheme. If a
package can treat, for example, discontinuities, it has an appropriate interface, and
it is the same interface for all the methods. The internal ”detail” of how the inter-
face is implemented is not important. This is a example to distinguish interface–
oriented programming and object–oriented programming. While the latter means
implementation inheritance when speaking of inheritance, the former only focuses
on inheritance of the interfaces. In this case, the code base is surely very different.

Model This component implements a differential equation, be it an ODE, DAE
of index 1 or a mechanical DAE. It contains classes that hold a state (IMODEL)
and a time and are able to supply the right–hand side of a differential equation
(e.g. MODE). Several further interfaces are defined supporting differential equa-
tions of different types. There exist two variations of this component: one supplies
various differential equations used to test Parfit++, the other one is the complete
core of MBSNAT described before.

Besides these core components, there are several utility components, which are
typically associated with the first or third tier, i.e. presentation layer or database
layer. This exemplifies that is is useful to combine several approaches in order to
reduce the complexity of the software. The components associated with the first
tier are the following:
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• A graphical user interface based on MFC of Microsoft.

• A collection of dialogs, also based on MFC, to support the interactive gen-
eration and editing of mechanical elements of MBSNAT.

• An engine handling 3D–data based on OpenGL, which supports the inter-
active definition and removing of elements. This uses selection and pick-
ing support of OpenGL. The main loop of an GUI–based system always re-
sides in the GUI. Therefore, we need an additional code to interpret several
mouse–events to add another element.

• A wrapper interpreting data from the core routines to present them as 2D–
diagrams. Depending on the environment, one can use a version that commu-
nicates online with Matlab via ActiveX, or a version that generates data–files
and control–files, which can be read by Gnuplot.

The component associated with the last tier is

• an xml–wrapper handling of XML–based input independently of the plat-
form. Depending on the environment, it is based either on MSXML 3.0 of
Microsoft or on our development based on string handling.

Again we see that the components presented above are highly dependent on the
platform and on the software environment. Therefore, it is very important to pro-
vide specialized versions of these components. This keeps the core routines plat-
form independent, i.e. we do not need to change these routines when we move to
another platform, but we can still use the tools provided especially for this plat-
form. Furthermore, a porting of such functionality to a previously not supported
platform is very simple because it is not necessary to case about the highly complex
numerical core routines in this case.

11.5 Object-Instantiation – The Factory Concept

Previously, we have focused on the modularization of the code e.g. by using inter-
faces. We have stressed the importance of interfaces to regain the properties typi-
cally associated with OOP. When considering the allocation of the object, we have
to expose the complete definition of the corresponding class to the calling compo-
nent. Therefore, one has to change the way of doing the allocation of objects to
avoid this strong coupling. The degree of flexibility this can be accomplished with
is a major criteria for the usability and flexibility of the whole program.

The first and simplest dynamic form one can think of in C++ is to just type in
the code for dynamically allocation of one specific object, let us say, an object a of
a class A:

A *a = new A();
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This object is allocated on the heap and at runtime, so that we can avoid some
of the problems associated with languages like Fortran. But this form does not
consider a choice: The type of a is hard coded into the program. If we want to
allow user–interaction, it is necessary to select the correct class according to the
user’s wish. Let us say we have two additional classes B and C that inherit from
A, and we want to initialize again the (polymorphic used) variable a:

switch (user_input) {
case ’b’: a = new B(); break;
case ’c’: a = new C(); break;
default : a = NULL;

};

With this construct, the type of variable a is easily selectable by the user input. But
when we take a closer look, we see that this has some major drawbacks: The type
of the object can be selected, but only from a predefined set of classes that is hard–
coded in this code segment. If one wants to broaden the set of classes, one has
to modify the existing code at maybe several different places, which is obviously
prone to errors.

One possibility to avoid this is not only to use the dynamic allocation of ob-
jects, but to define the set one can choose from dynamically. Therefore, we define
global object, the so–called finder, which contains a map2 of so–called factory–
objects, such that every selectable class is included in form of one instance. By the
specification of the key the finder returns a pointer to the selected element, which
is an instantiation of the desired class. This object is able to CLONE() itself, that is
to return an instance of the desired class. The corresponding code is:

A* p = dynamic_cast<A*>(finder->Get(key));

A new instance of the wanted type of class is selected by the ”key” argument of the
GET() method of the finder. The pointer is of a common type which we have to
cast to the correct one. Other methods would generate code dependencies as seen
above. This approach is known as the factory–concept [Lin98].

With this method, we are now able to dynamically request a new instantiation
of a class specified by a key. This allows for an interactive build–up of arbitrary
models or optimization problems using a GUI, without recompilation after every
slight modification. Furthermore, we are able to extend existing environments with
additional functionality, which is possible without recompilation of the existing
code, either. As such, the user is able to code plug–ins.

This concept is well known in distributed computing and used by Microsofts
technology COM [Box98], by CORBA or Sun’s JAVA–RMI. Our implementation
is kept much simpler, because topics like object–replication on a different machine

2This map is not to be confused with a mathematical map. It is a container holding pairs of keys
and an element sorted by the key. This is a standard container of the Standard Template Library of
C++.
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are not needed here, but the factory–concept is one of the basics of component–
oriented programming which has guided the overall design of this software.
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This part is dedicated to the presentation of the efficiency of the algorithms and
implementations shown in this work. This concerns namely the (bio-)mechanical
modelling tool MBSNAT with its numerical properties, and the parameter iden-
tification tool Parfit++ in combination with MBSNAT. As in the previous parts,
efficiency means performance in terms of speed as well as flexibility and usability.
In the first chapter, this is discussed in detail at models originating from technical
mechanics, and, in the next chapter, it will be applied to a large bio–mechanical
model of a human.

We start with simple examples like the single planar pendulum, and then in-
crementally increase the topological complexity. We append additional bodies and
show the decomposition and solution of the Augmented system of the algebraic
part of the DAE in linear complexity w.r.t. the number of bodies. By changing the
type of the topology to tree–structured systems, we regain this linear complexity. If
one extends the type to closed loop systems, it is possible to regain linear complex-
ity w.r.t. a varying size of the models if one fixes the principle topology. The linear
complexity is achieved by using the structure of the matrix and not by eliminating
parts at the startup.

Afterwards we move on to the optimization context and show the performance
of the derivative generation routine, which is the most time–consuming task of the
overall optimization algorithm. We will see that, by using the structured decom-
position algorithms and IND, the effort to evaluate one directional derivative is
approximately two to three times faster than the evaluation of the main trajectory.

The next sections are dedicated to several more complex examples: the hexa-
pod machine tool and the 6–bar–mechanism. The first model is characterized by
a huge number of closed kinematic loops. The model consists of a load that is
connected to the inertial system by six hydraulic actuators, such that the load can
be moved in all six degrees of freedom of the free body. Each actuator is modelled
using two rigid bodies, which results in a model of 13 bodies corresponding to 312
dynamic variables.

After this, we present the 6–bar–mechanism with only one closed kinematic
loop but with the additional difficulty that no globally valid set of minimal coordi-
nates exist. We will show a simulation of this model, using coordinate partitioning
as introduced by us in section 5.2.

In the second chapter, we discuss various reduction methods introduced to use
BVP–constraints to efficiently solve the linearized optimization problem. We dis-
cuss the effects of different combinations of the following categories:

• relaxation (chapter 8)

• projection in the case of the limit form of non–stiff Baumgarte relaxation
(section 8.5)

• reduction methods (chapter 9)

• globalization strategy (section 1.3.2)
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The best result is achieved by a combination that depends on the problem and on
the question whether one wants to use a parallelized version.

Not considering parallel computers and focusing on problems with fixed initial
dynamic values, the best results is achieved

• by applying RMT with back projection (see section 1.3.2)

• to the linearized problem reduced by applying the Fixfit approach (see sec-
tion 9.1)

• where we use the limit form of non–stiff Baumgarte relaxation (see section
8.4)

• based on a projection adapted to mechanical systems (see section 8.5.4).

Using RMT with back projection, we better follow a consistent homotopy path as-
sociated with the solution of the non–linear parameter estimation problem. In the
case of mechanical DAEs, this will be shown to be very beneficial. If the initial
dynamic variables are fixed, then Fixfit–approach is optimal to reduce the number
of directional derivatives needed while regaining the advantages of multiple shoot-
ing. Furthermore, our version of relaxation will prove to perform better compared
to either other relaxation approaches or methods based on a non–redundant set of
variables in the optimization context. These results emphasize the need to carefully
adapt all parts of the optimization algorithm and modelling.

Because the Fixfit–approach does not allow for a parallelization on the multiple
shooting level, it may then be advisable to use Reduction Method II (see section
9.2.2) and the same relaxation and globalization technique as presented before.
Regrettably, because of the structure of the linear algebra, the previously favored
projection method can not be applied. One has to use the Euclidean Form (see
section 8.5.3).

After studying the algorithms for some test cases, we then apply the combina-
tion that we found to be the best one, to a huge bio–mechanical model.

As input data we use the position of markers stuck to the body and filmed by
stereo–cameras, which is a typical situation found in modern gait laboratories. We
will see, that the measurement data of just one such experiment is not enough to
identify the parameters of the model accurately. Therefore, we combine the data of
eight independent measurement series.

The model consists of 22 bodies for the bio–mechanical model of a human and
6 bodies for an additional seat model, summarizing to 672 variables. As param-
eters that are to be estimated we selected force–constants of intervertebral discs,
forces connecting wobbling masses to the skeleton, and 3D–forces to realize pas-
sive muscles. Our approach tries to find these internal parameters of a model of a
human based on a non–invasive examination, which is in heavy contrast to invasive
surgery or x–ray examinations. Furthermore, we are not interested in the constants
defining the force of the real body parts, but in parameters, such that the idealized
model fits the real human.



Chapter 12

Numerical Properties of the
Modelling and Sensitivity
Generation Algorithms

We start to study the numerical properties of our approach by focusing on the linear
algebra used to decompose and solve the Augmented system of the mechanical
DAE in Full Descriptor Form (2.14). This is the most time–consuming part in
the simulation context. Therefore, it is useful to achieve a minimal complexity
w.r.t. the number of bodies and, therefore, a good performance in the case of huge
models. Furthermore, we also want to be efficient in the case of less complex
models. The approach shown here is competitive with other approaches in the case
of medium and large automatically generated models.

Besides studying the performance in the simulation context, we also present
the efficient evaluation of the right–hand side of the variational differential equa-
tion. Due to the structured solver, we are able to get a complexity of O(nBodies ·
nDirection), where nBodies is the number of bodies and nDirection is the number
of directional derivatives. Due to using IND and exploiting the resulting struc-
ture, the calculation of one additional direction is faster than the evaluation of the
right–hand side of the original differential equation by a factor of approximately
three.

12.1 Modelling of Different Types of Pendulums

We start the study with increasingly more complex types of pendulums in the simu-
lation context. The numerical results prove the linear complexity of the evaluation
of the right–hand side for different types of models and topologies. For this first
test, we choose to use small examples, so that we can study the behavior in a man-
ageable environment.

We use SI–units throughout the test set.
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12.1.1 N–Pendulum

The first model contains one body, which is connected to the inertial system by a
revolute joint. An OpenGL representation of the model is shown in figure 12.1.

Figure 12.1: Single Pendulum (Initial State)

To exemplify the modelling process, we present the XML–Script of this model.
After an introductory part concerning the simulation and some remarks, we

define the body ”Body1”

<body>
<id> Body1 </id>
<position>

<o> 0.0 0.0 0.0 </o>
<x> 1.0 0.0 0.0 </x>
<y> 0.0 1.0 0.0 </y>
<z> 0.0 0.0 1.0 </z>

</position>
<mass> 2.0 </mass>
<center_of_mass> 0.5 0.0 0.0 </center_of_mass>
<moment_of_inertia>

<x> 2.5 0.0 0.0 </x>
<y> 0.0 2.0 0.0 </y>
<z> 0.0 0.0 2.0 </z>

</moment_of_inertia>
</body>
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which is located at the origin and has the same orientation as the inertial system.
Furthermore, the body has a mass of 2.0 kg, the center of mass of the body is lo-
cated at

(
0.5 0.0 0.0

)
w.r.t. the local body–fixed frame, and the moment of

inertia [Nm2] in the classical form w.r.t. Eulerian Angles is given. We do not spec-
ify a node for the velocity, which is interpreted as zero velocity (and accordingly
zero angular velocity). For simplicity reasons, we omit the node for the shape,
which defines the optical look of the body as drawn by OpenGL.

The next step is to connect the body to the inertial system by using a revolute
joint.

<joint key="Revolute">
<id> Joint1 </id>
<begin id="Inertial">

<o> 0.0 0.0 0.0 </o>
<x> 0.0 0.0 1.0 </x>
<y> 1.0 0.0 0.0 </y>
<z> 0.0 1.0 0.0 </z>

</begin>
<end id ="Body1">

<o> 0.0 0.0 0.0 </o>
<x> 0.0 0.0 1.0 </x>
<y> 1.0 0.0 0.0 </y>
<z> 0.0 1.0 0.0 </z>

</end>
</joint>

The key attribute defines the type (”Revolute”) of the joint. The ID is ”Joint1”. Fur-
thermore, there are two markers associated with the ”Inertial”–system and the body
with ID ”Body1”. The joint fixes the local origin of ”Body1” w.r.t. the body–fixed
coordinate system to the origin of the inertial system. The global representation of
the z–axes of both markers define the rotational axis, which will be the y–axis of
the global system. The definition of x– and y–axes of the markers are optional. As
a result, the body is able to rotate only around the global y–axis.

At last, we define a driving force, which is the gravitation.

<force key="Gravitation">
<id> Gravitation </id>
<constants> -9.81 </constants>

</force>

This force naturally affects all bodies. The gravitational gravitational constant is
−9.81m

s2 .
The script shown above provides the implementation of a simple single pen-

dulum. Longer chains are modelled as easily by just adding bodies with different
initial positions and joints which connect the respective neighboring bodies.

Different joints are modelled using different keys and suitable interpretations
of the markers. Other forces connecting two bodies are modelled in the same way
as in the case of the joints. A complete listing can be found in appendix C.
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Now we want to look at the scaling of the performance w.r.t. the number of
bodies. Each new body is added at the end of the chain and positioned along the
x–axis. All initial velocities are zero.

The calculation has been done on an Athlon 1.2GHz using Windows XP and
Microsoft Visual C++.Net. We simulate for 10 seconds and want to achieve an
relative error of 10−6 and an absolute error of 10−8 using the Adams–Bashforth–
Moulton method (MBSABM) of MBSSIM.

The table shows the number of bodies together with the cost of the evaluation,
decomposition and solution in milliseconds. To better compare the costs we addi-
tionally provide the cost per body. All results we done by averaging the cost using
1000 samples.

Evaluation [ms] Decomposition [ms] Solution [ms] All [ms]
#Bodies all p. body all p. body all p. body p. body

1 0.077 0.077 0.047 0.047 0.016 0.016 0.140
3 0.124 0.041 0.187 0.062 0.047 0.016 0.119
5 0.171 0.034 0.328 0.066 0.078 0.016 0.115
7 0.249 0.036 0.468 0.067 0.109 0.016 0.118

10 0.344 0.034 0.672 0.067 0.172 0.017 0.119
12 0.407 0.034 0.828 0.069 0.203 0.017 0.120
15 0.484 0.032 1.032 0.069 0.250 0.017 0.118
20 0.656 0.033 1.391 0.070 0.328 0.016 0.119
25 0.829 0.033 1.750 0.070 0.407 0.016 0.119
30 0.954 0.032 2.109 0.070 0.500 0.017 0.119
40 1.312 0.033 2.954 0.074 0.703 0.018 0.124
50 1.812 0.036 3.985 0.080 1.015 0.020 0.136
100 6.125 0.061 8.219 0.082 2.547 0.025 0.169

An additional overhead can be seen for a very low number of bodies and for
a very high number of bodies. The first is an always expected overhead, while
the second is may be due to cache–management and –sizes. Nevertheless, the
calculation time for one evaluation of the right–hand side grows approximately
linearly w.r.t. the number of bodies for the range of dimensions we are interested
in.

If one wants to compare these results with other modelling tools, it is neces-
sary to keep in mind that the effort of our method increases with the number of
constraints, while an approach using some kind of minimal coordinates scales with
the number of degrees of freedom. Therefore, we want to present results from a
system similar to the open loop case shown above, but with spherical joints instead
of revolute joints.

The table shows the number of bodies together with the sum of the cost of one
evaluation, decomposition and solution for both models divided by the number of
bodies. Additionally we show the relative cost of the model with spherical joints
compared to the model with revolute joints.
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Spherical Revolute
# Bodies cpu–time [ms] cpu–time [ms] Rel. Effort

5 0.091 0.115 79%
10 0.091 0.119 76%
20 0.089 0.119 75%
30 0.090 0.119 76%
50 0.095 0.136 70%
100 0.119 0.169 70%

The cost of the evaluation of the model using spherical joints is approximately
20% less than the one using revolute joints. An ideal scaling w.r.t. the number of
constraints is not achieved, because this would neglect the decomposition of the
block corresponding to the Augmented system of one body.

We will see that free bodies or joints which restrict a low number of degrees
of freedom, i.e. have less constraints per body, are more often used in the field of
biomechanics in than technical mechanics. Therefore, a modelling technique that
has a better performance for a lower number of constraints – as our approach – is
better suited to treat the biomechanical models we are most interested in.

12.1.2 Tree–Structured and Closed Loop Systems

To study the performance w.r.t. different topologies (see section 4.7), we compare
the following models:

• a linear chain of n bodies (see figure 12.2),

• a tree–structured system, where one chain of n bodies is connected to the
ground and two other chains of n bodies which are connected to the end of
this chain (see figure 12.3),

• a system with closed kinematic loop, which consists of 5n bodies organized
in a loop of 4n bodies, which are connected at one point to a chain of n,
which is then connected to the inertial system (see figure 12.4).

Doing so, we are able to compare different types of topologies with the same num-
ber of bodies.

Figure 12.2: Linear chain of n (here n = 1) bodies

All systems have an initial velocity of zero. The linear chain is has an initial
position along the x–axis, each part of the tree–structured system is again posi-
tioned along the x–axis (in contrast to figure (12.3) where we positioned one part
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Figure 12.3: Tree–structured system of 3n (here n = 1) bodies

Figure 12.4: System of 5n (here n = 1) bodies with closed kinematic loop

parallel to the z–axis for presentation reasons), and the system with closed loop is
positioned as shown.

First, we want to compare the tree–structured system to a linear chain. The
table shows the number of bodies together with the complete cost of one evalua-
tion, decomposition and solution of both models. Additionally the table presents
the relative cost of the tree–structured system compared to the linear chain. The
following tables again show the average cost based on 1000 samples.

Tree–Structured Linear Chain
#Bodies cpu–time [ms] cpu–time [ms] Rel. Effort

15 0.119 0.118 101%
30 0.120 0.119 101%
45 0.130 0.130 100%

As expected, the decomposition and solution of the Augmented systems of
tree–structured systems has a negligible overhead w.r.t. the linear chain. This is
due to the fact that no additional fill–in is produced.

In the second example, we compare the linear chain with a corresponding
closed loop system. We achieve the following results:

Closed Loop Linear Chain
#Bodies cpu–time [ms] cpu–time [ms] Rel. Effort

5 0.181 0.115 157%
10 0.172 0.119 145%
15 0.171 0.118 145%

In contrast to the tree–structured system, there is an overhead because of fill–in
that can not be avoided. This overhead is constant w.r.t. the number of bodies if the
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fundamental topology is unchanged, which is achieved by replacing every body by
two or more bodies, i.e. by fixing the relative number of bodies of each part.

As a result, we are have linear complexity of the decomposition and solution al-
gorithm w.r.t. the number of bodies in the case of linear chains and tree–structured
systems. In the case of closed kinematic loops with only one loop, we need an ad-
ditional effort which is proportional to the size of the loop. Depending on the exact
configuration of more complex systems, we do not longer have linear complexity,
but for the situation where we replace each body with two other bodies, i.e. fix the
topology, we again achieve linear complexity.

12.1.3 Sensitivity Generation

Next, we evaluate the performance of the MBSNAT w.r.t. derivative generation.
Therefore, we extend the previous models to include parameters. Due to the
object–oriented approach and because we have a fully parameterized model, it is
very easy to add a parameterization. To parameterize e.g. the value of the gravita-
tional constant, we just add the following line to the XML–input file:

<parameter key="Constant_0"> Gravitation </parameter>

The first constant (which is the gravitational constant) of the force ”Gravitation” is
now a parameter.

We repeat the numerical experiment for the linear chain as described in the
previous section, but now we include the derivative w.r.t. a modification of the
gravitational constant and all degrees of freedom of the system. As we assume
a linear chain connected by revolute joint, we have n kinematic degrees of free-
dom per body or 2n additional directions. Here, we again used 1000 samples. In
the simulation case, we computed the effort as the sum of each part: computing
the mass and constraint matrix together with the forces and γ, the decomposition
of the Augmented system, and the solution of the linear system of the algebraic
constraints.

The tables show the number of bodies and directions together with the sum
of the cost of an evaluation, decomposition and solution of the differential equa-
tion and the cost of computing the directional derivatives. In the first case we di-
vide as by the number of bodies while in the second case we additionally give the
cost divided by the number of bodies times the number of directions to compare.
Furthermore, we provide the relative effort to calculate one directional derivative
compared to the cost to evaluate the differential equation.



140 Numerical Properties of the Modelling and Sensitivity Generation

Simulation with Sensitivity
per Body complete p. Body & Dir

#Bodies #Dir cpu–time[ms] cpu–time[ms] cpu–time[ms] Rel. Effort
1 3 0.140 0.125 0.042 30%
3 7 0.119 0.891 0.042 36%
5 11 0.115 2.33 0.042 37%
7 15 0.118 4.48 0.043 36%
10 21 0.119 9.02 0.043 36%
12 25 0.120 13.3 0.044 37%
15 31 0.118 21.0 0.045 38%
20 41 0.119 37.1 0.045 38%
25 51 0.119 60.9 0.048 40%
30 61 0.119 96.4 0.053 44%
40 81 0.124 191 0.059 48%
50 101 0.136 308 0.061 45%
100 201 0.169 1325 0.066 39%

Furthermore, we present the results for the pendulum using spherical joints.

Simulation with Sensitivity
per Body complete p. Body & Dir

#Bodies #Dir cpu–time[ms] cpu–time[ms] cpu–time[ms] Rel. Effort
5 31 0.091 4.94 0.032 35%
10 61 0.091 20.7 0.034 37%
20 121 0.089 82.1 0.034 38%
30 181 0.090 193 0.036 40%
50 301 0.095 676 0.045 47%

As we see, the overall complexity of the evaluation of the right–hand side of
the variational differential equation is, as the solution of the Augmented system
of the mechanical DAE, approximately of linear complexity w.r.t. the number of
bodies and of linear complexity w.r.t. the number of directions. Furthermore, the
evaluation of one direction is approximately two to three times faster than one for
the main trajectory. A slight increase of the computational time is seen for an
increasing number of bodies, which may be caused by an increased memory usage
and the resulting worse cache and memory management. The same effect is seen in
the simulation case for a larger number of bodies in the case of the pendulum with
revolute joints. Thus, the relative effort has shows a maximum for approximately
40 bodies in this case.

12.2 Hexapod Machine Tool

After studying pendulums of different size, we now want to present a more com-
plex example: the hexapod machine tool, which includes a high number of closed
kinematic loops (see figure 12.5).
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Figure 12.5: Hexapod Machine Tool

The model has a body, also called the load, which is connected to the ground
by six hydraulic actuators. These actuators are placed in such a way that the load
can be controlled to move in all six degrees of freedom of the free rigid body.
Therefore, the model has a high number of closed kinematic loops. It is one of the
most prominent examples in the field of parallel kinematic machines.

The weight of the controlling elements is not negligible compared to the load
– in some cases it is even much bigger – and therefore, one has to model the ac-
tuators by using bodies. The model uses two bodies for each actuator, which are
connected by a translational joint allowing one degree of freedom, and some force
or control to drive the actuator. These actuators connect to the load by using spheri-
cal joints, and they connect to the ground by using cardan joints. This combination
provides all the moveability that is needed, while disallowing a rotation of the ac-
tuator around its own symmetry axis. Therefore, the complete system has only the
necessary six degrees of freedom and does not introduce any redundant constraints.

To study the behavior of our model within a simulation environment, we use
springs with different stiffness constants to provide simple driving forces of the
actuators. The initial velocity is zero and the initial position can be seen in figure
(12.5). The load is 1.0 m above and parallel to the ground.

The simulation is done in the same environment as the previous examples:
an Athlon 1.2GHz running Windows XP and using Microsoft Visual C++.Net as
compiler. We use MBSABM of MBSSIM as an integration scheme to solve the
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provided differential equation with a relative tolerance of 10−6 and an absolute
tolerance of 10−8. In this environment, we have simulated a model for 1.0 seconds,
which has been done in 0.95 seconds. More detailed information can be found in
[WK00].

Taking into account the number of evaluations of the right–hand side of the
differential equation, we get a computational effort which is approximately two
times higher than in the case of the linear chain. This is expected because of the
high number of closed kinematic loops, each of them spanning three bodies.

Comparing the cost of evaluating one directional derivative to the cost needed
in the simulation context, we need only 27%, i.e. are more than three times faster.

12.3 6–Bar–Mechanism

The 6–bar–mechanism is an example with ”only” one closed kinematic loop. Five
bodies and the ground are connected by revolute joints to form one big closed loop
without branches. The whole system has one kinematic degree of freedom, which
appears only if exactly this orientation of the rotational axes of the revolute joints
is chosen. A different orientation of the axes would lead to a rigid system with
no degree of freedom even when the same topology is used. Therefore, although
the model contains only one loop, classical formulations typically exhibit a high
nonlinearity, and it is challenging for all modelling tools to close the loop.

Figure 12.6: 6–Bar–Mechanism
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The model has five free bodies, each of them with the six degrees of freedom of
the rigid body. We include six revolute joints, each of them restricting five degrees
of freedom. Because the whole system is supposed to move in this (and only this)
configuration, one constraint must be redundant. In the case of modelling based on
coordinate partitioning, it is known that no chosen set of variables is valid in the
complete consistent space. This corresponds to the fact that in our case no global
set of non–redundant constraints exists. Depending on the exact state, a different
constraint is redundant. Therefore, the monitoring strategy introduced in section
5.2 has to be applied to detect the correct selection.

As theoretically expected and also seen in numerical tests, a change in the set
of used constraints does not require a restart of the integration scheme. This is the
case because a change only leads to discontinuous lagrange multipliers and not to a
discontinuous acceleration of the right–hand side of the differential equation. This
drastically increases the performance of the integration process.

We have used the same simulation environment as in the previous examples.
To achieve a better approximation of the consistent manifold, the accuracy of the
invariant projection was increased to 10−12. A consistent state is needed because
only the configuration of the rotational axes we choose leads to a non–rigid system.
In this sense, we need a consistent state to stay inside of a singularity of the model–
description. It is possible to choose a medium value of 10−3 for the rank analysis
to detect a change of the set of non–redundant constraints.

This example has been tested on a Athlon 1.2.GHz running the same software
and integration scheme as the previous tests. We choose two sets of relative and
absolute tolerances of the integration scheme to show the performance in the clas-
sical regimes, on the one hand, of low accuracy used for simulation and, on the
other hand, of high accuracy needed in the optimization context.

rel. tol. abs. tol. cpu–time [s]
10−3 10−4 1.3
10−6 10−8 3.8

We simulate a time–interval of 10 seconds. In both cases an integration in more
than real–time is easily possible. Figure (12.7) shows snapshots of the first of this
integration interval, which should give an impression of the resulting movement of
this model.

Again comparing the cost of evaluating one directional derivative to the cost
needed in the simulation context, we need only 31%, i.e. are more than three times
faster. Thus, the relative effort presented in section 12.1.3 is a conservative estima-
tion.
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Figure 12.7: Snapshots of 6–Bar Mechanism



Chapter 13

Comparison of Different Methods
to Achieve Optimal Performance
of a Parameter Identification Tool
applied to Mechanical Models

In the previous chapter, we have studied the efficiency of the evaluation of the
right–hand side of the differential equation and the sensitivity differential equation.
As a result, we are able to efficiently calculate one step of the generalized Gauß–
Newton method of the parameter estimation problem. This chapter is dedicated
to finding an optimal combination of options presented in part III to reduce the
number of steps of the iterative method. Keeping in mind the theoretical results of
this part, we now want to present several numerical comparisons.

For theoretical reasons, we choose to use an approach based on redundant co-
ordinates, i.e. we use relaxation to cope with inconsistent variables. Therefore, we
have to choose a relaxation method: standard relaxation (equations 8.3 and 8.4),
non–stiff Baumgarte relaxation (equations 8.5 and 8.6) or the limit form of non–
stiff Baumgarte relaxation (section 8.4). In the latter case, we have to choose a
projection method, which either fixes a selection of variables and calculate the oth-
ers according to the constraints (section 8.5.2), or which minimizes the change
w.r.t. Euclidean norm under the restriction of the constraints (section 8.5.3) or
which uses an projection method adapted to mechanical systems (section 8.5.4).
Moreover, we study an approach which corresponds to using minimal coordinates
in the optimization context. Hence, we are able to compare to more classical meth-
ods by modifying a relaxed method step by step until it is comparable to a method
based on a set of non–redundant optimization variables.

The use of redundant variables is always associated with constraints where
IVP–constraints of the mechanical DAE correspond to BVP–constraints of the pa-
rameter estimation problem. Furthermore, the initial values of the problem – or
at least parts of them – are typically fixed resulting in additional constraints. The
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next section studies different approaches which use these constraints to reduce the
number of directional derivatives needed to evaluate the linearized optimization
problem. The Fixfit approach (section 9.1) uses fixed initial values to eliminate the
need to calculate directional derivatives w.r.t. these directions. Another approach
(section 9.2.1) uses the BVP–constraints associated with the invariants at the start
of each multiple shooting interval to reduce the effort of derivative generation,
while a second variant (section 9.2.2) additionally uses these constraints to reduce
the effort needed during the condensing algorithm. We want to remark that only
the first two options are able to apply all versions of relaxation. Therefore, we use
the Fixfit–approach to compare the effect of different relaxation methods on the
convergence of the parameter estimation problem.

At last we compare different globalization strategies of the iterative method
(see section 1.3.2). Besides the possibility to apply a full–step method, there is
also the possibility of using the classical monotonicity test or the restrictive mono-
tonicity test (RMT), which are both based on natural level functions. For each
damped method, an additionally back projection can be applied. As the numerical
examples will show, these methods will have a strong influence on the convergence
properties of the optimization algorithm.

We expect that only an ideal combination of these options provide the most
efficient result. Moreover, we assume that one can find the optimal combination
by modifying each property more or less separately. This will be done in the next
sections. At last we want to remark that, especially because of the properties of
the reduction methods, the optimal approach still depends on the exact environ-
ment one has, and also on the type of parameter identification problem one solves.
Therefore, we give instructions for when to use which combination.

13.1 Description of the Test–Set

We study the properties of the different versions of our parameter identification
tool at two small problems in detail and additionally at the hexapod machine tool.

All of the examples use the same environment. We use Windows XP and Mi-
crosoft Visual Studio.Net and an Intel Xeon 2.4GHz processor. To solve the differ-
ential equation, we use an extension of MBSABM, an Adams–Bashforth method,
which integrates the sensitivity differential equation along the main trajectory us-
ing IND. To avoid problems due to discretization errors of the integration process,
we choose a relative tolerance of 10−8 and an absolute tolerance of 10−10 as the
integration tolerances.

The following examples are used with varying initial guesses for the parame-
ters. The initial guesses for dynamic variables at the intermediate multiple shooting
nodes are calculated by an initial integration, i.e. we start with a continuous initial
trajectory, which is far off the solution trajectory. As a result we might get an ini-
tial trajectory far of the solution trajectory. This situation is well suited to study
different approaches, which try to treat bad initial guesses for mechanical systems.
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Single Pendulum The first example is the previously defined single pendulum
with revolute joint and a gravitational force. As a parameter we have the constant
of the gravitation. Therefore, we have one kinematic degree of freedom accounting
to a two–dimensional consistent manifold and one parameter.

The time–interval is 0.5 seconds, and we measure the x– and z–coordinate of
the center of mass of the body at ten time–points. The model is tested at generated
data with a relative error of 1%, which are normally distributed.

We fix the initial dynamic variables according to the description in section
12.1. Furthermore, we use five equally distributed multiple shooting nodes. The
tolerance of the GGN is 1.0e-3.

Double Pendulum The second model is a pendulum of two bodies which are
connected by revolute joints. The bodies of this model have the same mass, center
of mass and moments of inertia as the single pendulum. In addition to the grav-
itational force, we introduce a spring damper element which connects the point(

1.5 0.0 1.0
)

of the inertial system and the center of mass of the second body.
The normal length of the element is 1.0m, the stiffness is 10.0N

m and the damping
coefficient is 10.0Ns

m . As in the last example we use the same initial positions and
velocities as in the examples of section 12.1.

Figure 13.1: Double Pendulum

As parameters we have the three constants of the force–element, which leads
to a four–dimensional consistent manifold and three parameters. The integration
interval is the same as in the single pendulum case, but this time with 20 mea-
surement points and a relative standard deviation of 1%. We measure the x– and
z–coordinate of the center of mass of the second body. We again have five equally
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distributed multiple shooting nodes and a GGN tolerance of 1.0e-3.

Hexapod Machine Tool At last we consider the hexapod machine tool as de-
scribed before. The hydraulic elements are simplified and modelled by springs of
different stiffness. These stiffness constants are the parameters we want to iden-
tify. Together with the six kinematic degrees of freedom of the model, we get a
12–dimensional manifold and 6 parameters.

In the case of this highly complex model, we first use exact data to compare the
different methods. Afterwards, we apply the best combination to a problem that
uses generated data with normally distributed errors and a deviation of 1%. For all
examples we study a time–interval of 0.5s and 20 measurement points. For this
example, we measure the complete translational position of the center of mass of
the load.

To solve this problem, we apply a multiple shooting discretization with 20
multiple shooting nodes, which are equally distributed. Additionally, we fix the
initial dynamic states to the values shown in section 12.2. Furthermore, we ask for
a GGN tolerance of 1.0e-3.

13.2 Comparison of Different Methods

The following subsections are used to study the effect of one set of variations of
the parameter estimation algorithm on the convergence properties. In detail we
examine:

1 different relaxation strategies

2 different reduction strategies

3 a comparison with consistent methods

4 different globalization strategies

5 initial state generation.

If not defined otherwise, we use

• the limit form of non–stiff Baumgarte relaxation with the projection adapted
to mechanical systems

• apply the Fixfit–approach based on fixed initial dynamic variables

• use RMT with backprojection

• and do not apply initial value projection.

We assume the previously stated integration tolerance of 10−8 respectively
10−10 and a GGN tolerance of 10−3.
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13.2.1 Relaxation Strategies

We first want to study different relaxation strategies. As shown above, there are
three principle options:

(1) standard relaxation (see equations (8.3,8.4))

(2) non–stiff Baumgarte relaxation with a relaxation factor of 0.01 (see equa-
tions (8.5,8.6),

(3) the limit form of non–stiff Baumgarte relaxation (see section 8.4).

In the latter case, we have to choose between three different projection methods:

(3a) fixing a subset of variables, and calculating the others by using the con-
straints1 (see section 8.5.2),

(3b) minimizing the difference between the original and the new variables w.r.t.
the Euclidean norm while fulfilling the constraints (see section 8.5.3),

(3c) first projecting the position variables using minimization in mass matrix
norm, and then projecting the velocity variables while fixing the position
variables (see section 8.5.4).

These five options are tested at both pendulums for different initial guesses of the
parameters. We want to stress that, on the one hand, we assume very low measure-
ment errors and, on the other hand, we choose initial parameters which are far from
the solution. This should provide us with good information about the influence of
the manifold and the corresponding closing of the matching conditions.

The following table shows the number of Gauß–Newton steps for different ini-
tial guesses of the parameters of the singular and double pendulum problem. If no
convergence is achieved, we write an ”x”. The correct parameter for the gravita-
tional constant is 9.81m

s2 in the case of the single pendulum, and 1m, 10N
m , 10Ns

m
for initial length, stiffness and damping factor of the double pendulum. In the lat-
ter case, we choose to change the initial guesses for the parameters proportionally,
and apply a common factor to all parameters. This factor is shown in the tabular.
All these tests have been done using the Fixfit–approach, Restrictive Monotonic-
ity Test with back projection and no initial value projection. The corresponding
comparisons are presented in the next subsections.

1To get a valid subset we apply a QR–decomposition with pivoting and use the first indices.
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Single Pendulum
Relaxation Strategy

Parameter 1 2 3a 3b 3c
-10 1 1 1 1 1
-30 2 2 3 3 2
-50 4 4 4 4 3
-70 5 5 4 4 3
-100 5 5 x x 4
-150 x x x 9 7
-200 x x x 8 6

Double Pendulum
Relaxation Strategy

Factor 1 2 3a 3b 3c
1.1 2 2 2 2 2
1.5 3 3 3 3 3
2 3 3 4 4 3

2.5 5 4 6 6 4
3 6 6 x x 5

3.5 x 5 x x 3
4 x 14 x x 4

Only the method using the limit form of non–stiff Baumgarte stabilization with
the projection adapted to mechanical systems converges for all initial guesses in
this broad region. Besides this, it needs a less or equal number of steps for initial
guesses than other methods, if they converge, too. This result holds true for both
examples.

13.2.2 Reduction Strategies

The same parameter estimation problem as above is solved for different reduction
strategies:

(1) Fixfit–approach (see section 9.1),

(2) Invariant based reduction method for derivative generation only (see section
9.2.1),

(3) Invariant based reduction method for derivative generation and condensing
(see section 9.2.2)

Due to the experiences from the previous section, we choose the limit form of the
non–stiff Baumgarte relaxation with the projection adapted to mechanical systems
(relaxation method 3c) for the Fixfit approach and the first invariant–based method
(method (2) of this study). Due to the structure of the projection, we have to choose
a different relaxation technique for the second invariant–based method (method (2)
of this study). We choose the limit form of the non–stiff Baumgarte with minimiza-
tion as projection (relaxation method (3b)). We use RMT with back projection and
again no initial value projection.

To compare the reduction methods, we give the results for two versions of the
Fixfit approach (see section 13.2.1):

(1a) Fixfit with limit form of relaxation and mechanically adapted projection
(previously method 3c),

(1b) Fixfit with limit form of relaxation and Euclidean projection (previously
method 3b).
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In contrast to the previous test, we will get a less distinct difference between
the methods. Therefore, we have documented a larger sample on the next page.

We first want to compare the results of method (1a) and (2) of this section,
i.e. Fixfit and the first invariant–based reduction method, each using the limit form
of Baumgarte stabilization and the mechanically adapted projection. The only the-
oretical difference of these two methods is the choice of the initial directions for
the VDE at the start of each multiple shooting interval (see 9.3. As the numerical
results show, this does not lead to an eminent difference of the methods.

Next, we compare Fixfit to the second invariant–based method (3). Both meth-
ods are based on the limit form of non–stiff Baumgarte with a minimization in
Euclidean norm. In this case, the invariant based methods achieve better results.
It is more robust for the single pendulum and typically needs a smaller number of
iterations. Here again we see the influence of the initial directions. Because we
apply the less adapted method to generate initial directions for each interval inde-
pendently in the case of second invariant based method, the performance is slightly
better than in the case of Fixfit. Unfortunately, this gain in robustness is less if we
compare it to the usage of the adapted version of the projection.

Single Pendulum
Reduction Method

Parameter 1a 1b 2 3
-10 1 1 1 1
-20 2 2 2 2
-30 2 3 2 3
-40 3 4 3 3
-50 3 4 3 3
-60 3 4 3 3
-70 3 4 4 4
-80 4 x 5 5
-90 4 5 4 4
-100 4 x 3 3
-110 4 7 4 4
-120 4 x 5 5
-130 4 x 6 6
-140 4 7 5 5
-150 7 9 6 6
-160 5 9 6 6
-170 6 6 5 5
-180 7 7 6 6
-190 7 8 6 6
-200 6 8 10 10

Double Pendulum
Reduction Method

Factor 1a 1b 2 3
1.1 2 2 1 2
1.3 2 2 2 2
1.5 3 3 3 3
1.8 3 4 3 4
2 3 4 3 4

2.3 4 5 4 4
2.5 4 6 4 5
2.8 5 6 5 5
3 5 x 3 6

3.3 3 8 3 x
3.5 3 x 3 x
3.8 3 x 4 x
4 4 x 4 x

As a result, we are able to state that using either the Fixfit–approach or an
invariant–based reduction method does almost not change the robustness or effi-
ciency of the optimization algorithm. The slight difference in the choice of the
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initial directions does not have a strong influence. Therefore, we propose to use
Fixfit for problems with fixed initial values. In the case of free initial values,
this advantage does not hold any more. A drawback of the Fixfit–approach on
parallel machines is that one is not able to use the structure originating from the
multiple shooting discretization for parallelization. Due to the limitations of the
reduction method II with respect to the projection method, we only suggest to use
this method for problems with a high number of bodies. In this case, the gain of
performance due to the faster condensing algorithm may offset the disadvantage
mentioned above.

13.2.3 Comparison to Consistent Methods

One of the differences between methods based on relaxation and methods which
are consistent is the fact that the state variables at each multiple shooting inter-
val are consistent during the complete optimization procedure. Even when using
the limit form of non–stiff Baumgarte stabilization, where the states are consis-
tent w.r.t. the original manifold during the integration, we have inconsistent initial
values, i.e. inconsistent optimization variables.

Therefore, we apply the following additional modifications to compare to con-
sistent methods:

• We use a nonlinear increment by projecting the calculated new state to the
manifold. Thus, we always have consistent optimization variables.

xk+1 = π(xk + αk∆xk)

π is the ideal projection to the manifold and αk the steplength. This projec-
tion is done for the test step of the globalization strategy, too.

• The part of the increment corresponding to projection π does not go into the
estimation of the nonlinearity ω which is used for the globalization strategy
of the GGN–method.

We compare this modification to all three projection types of the limit form of
non–stiff Baumgarte. Therefore, we have to use the following methods:

(1) We fix a subset of variables and calculate the others using the constraints.

(2) We minimize the difference between the original variables and the new ones
w.r.t. the Euclidean norm while fulfilling the constraints.

(3) First, we project the position variables using minimization w.r.t. the mass
matrix norm, and then we project the velocity variables using the same
method while fixing the position variables.

each either

(a) based on relaxation
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(b) or using the consistent version.

Based on Fixfit and the restrictive monotonicity test with back projection, we
get:

Single Pendulum
Method

Parameter 1a 1b 2a 2b 3a 3b
-10 1 1 1 1 1 1
-30 2 2 3 4 2 4
-50 3 3 4 4 3 4
-70 3 3 4 4 4 4

-100 4 4 x x 3 x
-150 7 x 9 x 6 x
-200 6 6 8 x 10 x

Double Pendulum
Method

Factor 1a 1b 2a 2b 3a 3b
1.1 2 1 2 1 2 1
1.5 3 3 3 3 3 3
2 4 3 4 4 3 x

2.5 6 x 6 x 4 x
3 x x x x 5 x

3.5 x x x x 3 x
4 x x x x 4 4

The consistent method is less robust and needs slightly more iterations to con-
verge, in case it converges in both examples. Therefore, we can say that it is
advisable to use inconsistent optimization variables, i.e. relaxation.

13.2.4 Globalization Strategies

At last we study the influence of the globalization strategy, as described in section
1.3.2, on parameter estimation problems based on mechanical DAE using Natural
Coordinates. Neglecting a full–step method, we have to choose between

(1) the Classical Monotonicity Test

(2) the Restrictive Monotonicity Test (RMT)

each

(a) without back projection

(b) with back projection
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Numerical tests based on Fixfit with the limit form of non–stiff Baumgarte
relaxation and the projection adapted to mechanical systems lead to the following
results:

Single Pendulum
Globalization Method

Parameter 1a 2a 1b 2b
-10 1 1 1 1
-30 3 3 2 2
-50 4 4 3 3
-70 5 4 3 3
-100 19 8 4 4
-150 x 10 11 7
-200 16 8 12 6

Double Pendulum
Globalization Method

Factor 1a 2a 1b 2b
1.1 3 2 2 2
1.5 4 5 3 3
2 5 5 4 3

2.5 6 6 4 4
3 x x 6 5

3.5 x x 5 3
4 x x 4 4

First comparing the classical monotonicity test to the restrictive monotonicity
test, we see that typically the RMT is better. The performance is further improved
by a back projection step. According to the theory of the RMT, the solution of
the parameter estimation problem is equivalent to the solution of the Davidenko
differential equation. If the initial values of this differential equation, i.e. the initial
values of the optimization problem, are consistent, using back projection better we
better follow this trajectory, i.e. stay consistent during the optimization. This seems
to drastically improve the performance of the algorithm. As in the cases before, this
is seen in a smaller or equal number of steps and a larger convergence radius. This
seems to emphasize the need for a good approximation of the consistent manifold
while still using inconsistent variables during the optimization process.

13.2.5 Initial State Generation

At last we study the effect generated by the use of the algorithm to generate good
initial guesses using measurement information as described in section (3.2), in con-
trast to initial guesses generated by pure integration. We study the major options:

(1) Fixfit with the limit form of non–stiff Baumgarte relaxation and projection
adapted to mechanical systems

(2) Fixfit with the limit form of non–stiff Baumgarte relaxation and Euclidean
projection

(3) First invariant–based method with the limit form of non–stiff Baumgarte re-
laxation and mechanically adapted projection

(4) Second invariant–based method with the limit form of non–stiff Baumgarte
relaxation and Euclidean projection

either

(a) without initial value projection
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(b) or with initial value projection.

Based on the same procedure as in the previous test, we get:

Single Pendulum
Method

Parameter 1a 1b 2a 2b 3a 3b 4a 4b
-10 1 1 1 1 1 1 1 1
-30 2 2 3 2 2 2 3 2
-50 3 3 4 3 3 3 3 3
-70 3 3 4 5 4 4 4 4
-100 4 4 x 6 3 x 3 x
-150 7 4 9 x 6 x 6 x
-200 6 6 8 9 10 6 10 6

Double Pendulum
Method

Factor 1a 1b 2a 2b 3a 3b 4a 4b
1.1 2 1 2 1 1 1 2 1
1.5 3 2 3 2 3 2 3 2
2 3 3 4 3 3 3 4 4

2.5 4 6 6 4 4 6 6 4
3 5 8 x 5 3 12 x 5

3.5 3 13 x 5 3 13 x 6
4 4 x x x 4 x x x

In contrast to the results shown in [Jac01], we are not able to see a generally
better performance of the methods based on initial value projection for these pa-
rameter estimation problems based on mechanical DAE. We recognize a slightly
better performance for good initial guesses of the parameters, as we would expect,
but some convergence difficulties or larger number of steps, if the initial guesses
are far of the solution. Therefore, we do favor one of the two methods.

13.3 Complex Example: Hexapod Machine Tool

The preliminary performance tests of the previous sections w.r.t. small models are
now approved for more complex model of the hexapod machine tool, which is
a model with a high number of closed kinematic loops. We focus on the most
promising approaches especially w.r.t. the reduction method. We choose Fixfit as
the best option in the serial case with fixed initial values.

We want to study the following options:

• the relaxation strategy

– standard relaxation
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– non–stiff Baumgarte relaxation

– limit form of non–stiff Baumgarte relaxation,

• the projection method

– projection using Euclidean norm

– mechanically adapted projection

• the reduction method

– Fixfit

– reduction method based on invariants (method I)

• the globalization strategy

– monotonicity test

– monotonicity test with back projection (BP) step

– Restrictive Monotonicity Test

– RMT with back projection

• the consistent optimization variables (∗1)

• the initial value projection (∗2)

No. Relaxation Projection Reduction Globalization Misc.
1 standard – Fixfit RMT with BP
2 Baumgarte – Fixfit RMT with BP
3 limit Baumgarte Euclidean Fixfit RMT with BP
4 limit Baumgarte Mechanic Fixfit RMT with BP
5 limit Baumgarte Mechanic Invariants RMT with BP
6 limit Baumgarte Mechanic Fixfit RMT
7 limit Baumgarte Mechanic Fixfit Monotonicity
8 limit Baumgarte Mechanic Fixfit Mono. with BP
9 limit Baumgarte Mechanic Fixfit RMT with BP ∗1

10 limit Baumgarte Euclidean Fixfit RMT with BP ∗1

11 limit Baumgarte Mechanic Fixfit RMT with BP ∗2

12 limit Baumgarte Euclidean Fixfit RMT with BP ∗2

We use the following set of initial guesses for the parameters:

Method Combination Number
1 2 3 4 5 6 7 8 9 10 11 12

+1 1 1 1 1 1 1 1 1 1 1 1 1
+20 1 1 2 1 1 2 1 1 1 1 1 1
+50 2 1 3 2 2 2 2 2 1 1 2 2
+100 x x 4 2 2 3 2 2 2 2 3 2
600 x x x 4 4 5 4 4 5 5 x 4
±5 x x x 4 4 6 6 6 5 6 x 8
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where we use abbreviations for the following sets of parameters.

p0 p1 p2 p3 p4 p5

Exact 400 500 600 700 800 900
+1 401 501 601 701 801 901
+20 420 520 620 720 820 920
+50 450 550 650 750 850 950
+100 500 600 700 800 900 1000
600 600 600 600 600 600 600
±5 590 595 600 605 610 615

The results from this more complex test show the following:

• It is best to use the limit form of non–stiff Baumgarte relaxation based on
the ideal projection adapted to mechanical systems.

• A comparison of the Fixfit–approach to the corresponding reduced method
based on invariants again shows that the methods are comparable providing
the same results in this example.

• The question of how to use relaxation is answered in favor to inconsistent
variables if the limit form of non–stiff Baumgarte with adapted projection is
used.

• A projection of the initial states due to measurement information is discour-
aged due to worse results for high deviations of the initial parameter values.

• Concerning the globalization strategy, we again suggest to use RMT with
back projection.

These results approve the conclusion we did based on the simple examples.
At last we want to present a parameter estimation based on the same model,

but with a relative measurement error of 1%. The measurement error has zero
mean and is normally distributed. We use the combination found to be best in the
previous example: the limit form of non–stiff Baumgarte relaxation based on the
projection which is adapted to mechanical systems, Fixfit–approach, RMT with
back projection step and no initial value projection.

After 10 iterations and using the stated initial guesses, we get the following
parameters including standard deviation.

Parameter Initial Guess Exact Value Estimated Value
p0 590 400 400.6 ±0.9
p1 595 500 500.7 ±0.7
p2 600 600 600.4 ±0.5
p3 605 700 700.4 ±0.9
p4 610 800 799.9 ±0.4
p5 615 900 900.0 ±0.7
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The result was calculated on a Athlon 1.2GHz with the same software environ-
ment and setting of the integration scheme as the previous results. The calculation
took 6.3 minutes.



Chapter 14

Parameter Estimation for a
Biomechanical Model of a Sitting
Human

We study a parameter estimation of a human modelled using MBSNAT. We are
interested in the influence of a vertical excitation on a human sitting on the seat
of a car. Therefore, we focus on a detailed modelling of the spinal column, using
five segments which are connected by bushings modelling intervertebral disks. Al-
though we focus on the spinal column, we do not want to model all the vertebras,
and we want to keep the other part of the model as simple as possible. In spite of
these simplifications, we get a complex three–dimensional model of high dimen-
sion. The efficient modelling and simulation of this model is the topic of the first
section of this chapter.

As we have to use a heavily idealized model of the biological system, it is
difficult to assess the validity of the data. The second section shows a parameter
estimation of this dynamic model which estimates the parameters of internal and
idealized force–elements. This is done based on measurements of the position of
markers stuck to the human – a usual method found in modern laboratories for
motion analysis.

14.1 Modelling and Simulation of a Human

First it is necessary to describe the idealized physical model. Because of the com-
plexity of this and the difficulty to get good initial guesses for states and parameters
describing the kinematic and dynamic properties of the model, we use Calcman3D
as described in section 6.1. This tool is able to generate a description based on
some simple input data like height, sex and body mass. We study a sitting hu-
man with a more detailed segmentation of the spinal column. This leads to the
modelling of the following segments as rigid bodies:

The segments of the spine are: head, neck, thorax, lumbus and pelvis. The left
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Figure 14.1: Model of a Human

and the right arm are modelled as upper and lower arms together with the hands,
and the legs are modelled as thighs, shanks and feet. Furthermore, we introduce
wobbling masses to model soft tissue which is connected to the skeletal system.
This leads to additional bodies connected to the thorax, lumbus and pelvis as well
as both thighs. Moreover, we model the technical part as a huge car, seat–chassis
and seatback–chassis which are connected to the corresponding cushion in form of
the seat and the seatback, and a neck–protection element. All in all, we get a model
using 22 bodies for the biomechanical part and 6 bodies to model the technical part.
An OpenGL–visualization of this model can be seen in figure 14.1.

While the main body is only connected by bushings, i.e. a special kind of ten-
sorial forces, the limbs are connected by joints. We use spherical joints for the
shoulder, hip and ankle joint, revolute joints for the elbow and knee–joint, and we
fix the hand to the lower arm. Additionally, we use revolute joints to connect the
seat–chassis, the seatback–chassis and the neck–protection, and translation joints
to connect the seat to the seat–chassis, the seatback to the seatback–chassis, and
the car to the ground in order to allow a vertical excitation. The seat–chassis is
fixed to the car. This definition of the joints leads to a free floating bio–mechanical
model with 77 kinematic degrees of freedom and a technical part with five degrees
of freedom. We want to stress that the most interesting part – the main body and
the wobbling masses – typically consists of bodies that still have all six degrees of
freedom. Therefore, a modelling approach based on local coordinate systems as
provided by Natural Coordinates is well suited.

To complete the modelling process, we have to add force–elements to this kine-
matic model. We passively control each revolute or translational joint using the
3D–variant of a spring–damper element. The five segments of the spinal column
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are connected using bushing elements as described in section 6.2.2 to model the
intervertebral disks. Furthermore, we connect the wobbling masses to the corre-
sponding bones by using a tensorial force as described in section 6.2.3. Especially
the bushing elements and the latter forces are characterized by high stiffness co-
efficients in order to provide a certain, small flexibility. This results in a high
mechanical stiffness of the differential equation leading to long integration times
despite the efficient numerical algorithms and modelling techniques. At last, we
connect the biomechanical model to the technical system using point–point Hertz
type force–elements as described in section 6.3. As it is possible to gain or loose
contact during the simulation, and because the force itself is only defined piecewise
constant, we have to provide additional elements which signal events to modify the
behavior of the forces accordingly and provide the necessary information for the
event–handling algorithms of the integration scheme. Additionally, we have to
provide the gravitational force, such that, altogether, we use 43 force–elements.

As a result, the model has 672 dynamic variables or 82 kinematic degrees of
freedom. It consists of 42 force–elements, some of which are tensorial forces,
some are characterized by high stiffness coefficients, and some are discontinuous.

We first study this model in a simulation context. We start with a configuar-
tion shown in picture (14.1) and zero velocity. We simulate a time–interval of 5.0
seconds, and apply a periodic vertical excitation to the car of 10 cm and with a
frequency of 20 Hz. The simulation takes 10 seconds on a machine with Athlon
1.2GHz processor running Windows XP and using Microsoft Visual C++.Net as
compiler. We use MBSABM of MBSSIM as an integration scheme to solve the
provided differential equation with a relative tolerance of 10−6 and an absolute
tolerance of 10−8. To get an idea of the movement, a set of snapshots is shown in
figure 14.2.

14.2 Parameter Estimation of Biomechanical Models

After studying the model in the simulation context, we consider a parameter esti-
mation problem based on this model.

Considering the huge amount of possible parameters, it is obviously not possi-
ble to identify all the parameters. Therefore, we focus on 10 internal parameters,
which correspond to force constants of heavily idealized elements or which are
delicate to measure. These are bushings, forces connecting the wobbling mass to
the skeleton, or 3D–forces representing passively acting muscles. A list of these
parameters is shown in table 14.2. The initial values of these parameters and the
values of the other parameters are provided by Calcman3D and as described in sec-
tion 6.1. Based on these values, we changed the initial guesses according to table
14.2.

We assume a measurement setting that conforms with a typical situation found
in modern laboratories, where several calibrated cameras are used to measure the
3D–position of 10 markers stuck to the test person, and we measure for 0.2 seconds.
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Figure 14.2: Snapshots of a human in a seat with a strong vertical excitation
(Please, look at the pictures line for line.)
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Table 14.1: List of Markers

Location Body Position
Breast Thorax 0.08 0.0 0.0
Right Shoulder Thorax 0.0 0.16 0.14
Left Shoulder Thorax 0.08 -0.16 0.14
Right Hand Right Hand 0.025 0.0 0.0
Left Hand Left Hand 0.025 0.0 0.0
Right Hip Pelvis 0.0 0.17 0.0
Left Hip Pelvis 0.0 -0.17 0.0
Right Thigh Right Thigh 0.0 0.0 0.25
Left Thigh Left Thigh 0.0 0.0 0.25
Forehead Head 0.08 0.06 0.08

The cameras typically have a measurement frequency of 120 Hz and the position
of the markers are measured with an accuracy of 1 mm. The error is mainly due to
the fact that the markers are stuck to the skin, which moves relative to the bones.
The position of the markers can be found in table 14.1. We use the z–position of
the markers at all measurement time–points.

First studies show that the information provided is not sufficient to accurately
estimate the desired parameters. One possibility would be to use a longer time–
interval and, therefore, more measurements. We want to study a different approach
based on multiple experiments. In this setting we combine the measurements of
eight independent experiments with the same set–up to increase the amount of
information available.

Using this information, we get a high–dimensional, dynamic parameter esti-
mation problem which consists of 26890 optimization variables, 26880 constraints
and 1920 least squares conditions.

To test our approach, we vary the exact parameters as shown in table 14.2, and
we apply the parameter estimation algorithm to our generated data. We choose
the method best suited for such a problem based on the knowledge of chapter 13.
Due to the fact that all initial dynamic states are fixed, we use Fixfit approach.
Furthermore, we apply the limit form of non–stiff Baumgarte relaxation using the
projection adapted to mechanical systems. We do no initial value projection and
apply the Restrictive Monotonicity Test with back projection as a globalization
strategy of the Generalized Gauß–Newton method. Furthermore, we use four mul-
tiple shooting intervals per experiment.

This problem has been calculated on a computer with a Pentium IV 2.4GHz
processor running Windows XP and using Visual C++.Net as compiler. After 7
iterations calculated with a relative integration tolerance of 10−8 and an absolute
tolerance of 10−10, which takes approximately 4.5 hours, we achieve the result
shown in table 14.2.
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Table 14.2: Selection of Internal Parameters

Parameter Exact Initial Solution
Bushing (stiff.) Pelvis–Lumbus 0.33 0.67 0.33 ±0.03

Lumbus–Thorax 1.0 2.5 1.15 ±0.20
Wobble (tr. stiff.) Pelvis 1.0E7 1.3E7 1.01E7 ±0.01E7

Lumbus 1.0E7 1.3E7 0.94E7 ±0.07E7

Thorax 1.0E7 1.3E7 1.04E7 ±0.05E7

Wobble (tr. damp.) Lumbus 100 150 98 ±12
Spring (rot. stiff.) Ellbow (left) 50 75 32 ±9

Ellbow (right) 50 75 49 ±5
Spring (rot. damp.) Ellbow (left) 4.0 6.5 6.6 ±1.3

Ellbow (right) 4.0 6.5 4.1 ±0.7

The original parameters are reproduced if we take into account the estimated
standard deviation of the solution. For additional reading see also [KMB04]



Chapter 15

Conclusion and Outlook

15.1 Conclusion

The aim of this work was to develop numerical methods to identify the parame-
ters of internal elements of a model of a human, which are difficult to estimate
otherwise. The alternative methods that are used up to now, comprise in vivo mea-
surements based on X–ray examinations, invasive surgery and corpse studies. Fur-
thermore, these methods are not able to determine the properties of models that
idealize the reality by reducing the number of bodies to a manageable level. In
contrast to that, our approach is based on measurement data like the position of
markers stuck to the body. These data are much easier to achieve and avoid inva-
sive measurements at the human body.

As we examine the effect of vibrations to the human body, we model the spine
in more detail (i.e. we use four segments) as well as the corresponding interverte-
bral disks and the soft tissue represented by wobbling masses. The resulting rigid
body model is of high dimension – 672 dynamic variables and 82 kinematic de-
grees of freedom – and includes force–elements with high stiffness coefficients.
Therefore, it is already challenging in the simulation context.

We present a parameter estimation based on such a complex biomechanical
model. Using the methods developed in this thesis, we have been able to identify a
selection of ten internal force–constants. To increase the accuracy of the estimated
parameters, we have combined the measurement information of eight independent
experiments. This results in a very high–dimensional nonlinear parameter esti-
mation problem with 26’890 optimization variables, 26’880 constraints and 1’920
least squares conditions.

The solution of this complex parameter estimation problem has only been pos-
sible by providing a tool that is flexible and simple to use, and which provides
the solution of the optimization problem in a fast and reliable way. This has been
achieved by optimizing each building block – modelling, integration and parameter
estimation – in this context independently and – what is even more important – by
adapting the components to each other. The most important of these modifications
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and developments are summarized in the following:

• We provide an efficient modelling of complex high–dimensional 3D rigid
body models in Natural Coordinates, which can be evaluated in linear com-
plexity w.r.t. the number of bodies.

• Natural Coordinates in our version lead to simple equations and additional
structure which we exploit.

• Using coordinate partitioning developed by us, we are able to easily model
arbitrary topologies.

• We provide a fully parameterized model evaluation, which allows for an
interactive assembly of a model. This includes the definition of parameters
without changing the previously defined model.

• The evaluation of directional derivatives is of linear complexity w.r.t. the
number of bodies and the number of directions, whereas the evaluation of
one direction is approximately two to three times faster than the evaluation
of the differential equation. This derivative information is provided automat-
ically.

• We have developed different reduced methods based on constraints of the
optimization problem corresponding to the invariants of the underlying DAE
to minimize the number of directional derivatives of the differential equation
we have to calculate explicitly.

• We have developed the limit form of non–stiff Baumgarte relaxation in com-
bination with a projection which is adapted to mechanical systems. Numeri-
cal results show the high performance of this approach compared to standard
methods either using relaxation or working with non–redundant optimization
variables.

One the other hand, it is not enough to only develop these numerical methods to
treat such a complex task. Of equal importance is an efficient and flexible software
that is easy to extend. Therefore, we have designed the object–oriented packages
MBSNAT and Parfit++, which implement these numerical algorithms, according
to up–to date software engineering approaches:

• three–tier model

• levelization

• interface–oriented programming.

The result is an object–oriented environment, which is able to efficiently treat the
complete framework of modelling, simulation and parameter estimation for biome-
chanical problems.
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15.2 Outlook

In this thesis, we have demonstrated the solution of a parameter estimation prob-
lem based on a large and complex biomechanical model. In order to better use
such methods in practice, and in order to improve the possibility of estimating the
parameters, we propose several future extensions and developments:

• Due to the high computational effort, we need parallelization in order to
better allow for an interactive work, and to study more detailed models. For-
tunately, the algorithm allows for the efficient use of a parallel computer for
different granularity. It is possible to parallelize the generation of derivatives
and the structure originating from multiple experiment problems. Due to
the invariant–based reduced methods, it is also possible to parallelize on the
level of the multiple shooting discretization.

• Based on the measurement setting shown here, it is not possible to estimate
all the parameters (approximately 1000) of the biomechanical model. There-
fore, the possibilities of the multiple experiment approach should be used
to introduce more and different measurement settings. The amount of ad-
ditional information provided by an additional measurement setting can be
estimated based on sensitivity analysis.

• Optimal experimental design can be applied to automatically choose suitable
experiments and optimize the experimental setting of them. With such an
optimization it is possible to find e.g. an optimal placement of the markers
or an optimal excitation, such that the statistical properties of the solution
are improved.

• The biomechanical model shown here is not controlled, i.e. it uses only pas-
sive muscles. If one wants to include the important class of experimental set-
tings, which are based on e.g. walking humans, this step is very important.
One possibility is to parameterize the controls and estimate them together
with the other parameters. This would introduce a huge amount of addi-
tional parameters. Another option is to include a model of how the move-
ment is controlled. In this case, a lower number of possible parameters are
introduced.
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Appendix A

Table of Symbols

Optimization

General
x all n optimization variables

r1,J1 n1 least squares conditions (and jacobian)
r2,J2 n2 equality constraints (and jacobian)
r3,J3 n3 inequality constraints (and jacobian)
rc,Jc nc equality and active inequality constraints (and jacobian)
r,J all nnbed conditions (and jacobian)

xi optimization variables of ith step
∆xi increment of optimization variables in ith step
αi damping factor of ith step

o observation function
η measurement data
σ standard deviation

Dynamic

t time
y dynamic variables
z algebraic variables
q parameter
f right–hand wide of ODE
g constraints
s switching function

For mechanical symbols and symbols concerning the variational differential
equation we refer to the following.

169



170 Appendix

Multiple Shooting

τi time–points of the multiple shooting discretization
si initial values for multiple shooting intervals
hi matching conditions
Di jacobian matrix–block
Hi derivative of hi(xe

i , si) w.r.t. xe
i

Mechanic

Full Descriptor Form

e variables of external (non–mechanical) dynamic
p position
v velocity
a acceleration
λ lagrange multiplier
M mass matrix
G constraint matrix
f3 forces
gpos kinematic or position constraints (invariants)
gvel velocity constraints (invariants)
γ acceleration independent part of acceleration constraint

Natural Coordinates

o origin of affine coordinate system
ei axis of affine coordinate system
Cr transformation matrix of natural coordinates

Constraint–Types

gRC ,GRC rigid body constraints and constraint matrix
gJ ,GJ joint constraints and constraint matrix
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Optimization of Mechanical Systems

Variational Differential Equation

W sensitivity of solution w.r.t. initial values
Wp position part of sensitivity matrix
Wv velocity part of sensitivity matrix
Wq parameter part of sensitivity matrix
D sensitivity matrix w.r.t. some direction
d one initial direction
dp position part of initial direction
dv velocity part of initial direction
dq parameter part of initial direction

Relaxation
g̃ relaxed constraint (standard relaxation)
g̃B relaxed constraint (non–stiff Baumgarte relaxation)
Gv derivative of velocity constraint w.r.t. position variables
Ĝ derivative of position and velocity constraints w.r.t. states
S basis of the tangent space of the manifold
B basis of the Euklidean space consisting of S and Ĝ
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Appendix B

Basic Interfaces

We show slightly simplified versions of interfaces which were referenced in this
work. The interfaces presented here are used to support the most basic communi-
cation between the components, which in combination are Parfit++.

Interface INewton is used to support the iterative solution of a nonlinear prob-
lem.

class INewton
{
public:

// initialize object
virtual void Initialize() =0;

// sets pointer to solver-component
virtual void Solver(ISolver* solver) =0;

// gets pointer to solver-component
virtual ISolver* Solver() =0;

// sets pointer to problem-component
virtual void Problem(IProblem* problem) =0;

// gets pointer to problem-component
virtual IProblem* Problem() =0;

// do optimization
virtual void Optimize() =0;

// access number of steps
virtual int nSteps() const =0;

// set number of miximal steps
virtual void MaximumSteps(int max) =0;

// access stop criteria
virtual double Accuracy() const =0;

// set tolerance
virtual void Accuracy(double tol) =0;

};
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Interface ISolver is used to provide the solution (and decomposition) of a linear
system.

class ISolver
{
public:

// initialize object
virtual void Initialize() =0;

// sets pointer to right--hand side
virtual void SetRightHandSide(ISolver_RHS *rhs) =0;

// decompose linear system
virtual void Decompose() =0;

// solve linear system
// using out also as input, if external_rhs is set

virtual void Solve(CVector<double> &out,
bool external_rhs) =0;

// forward solution step
virtual void Forward() =0;

// backward solution step with same options as Solve
virtual void Backward(CVector<double> &out,

bool external_rhs) =0;
};

Interface ISolver_RHS is used to supply a linearized system (typically used in
combination with components which inherit from ISOLVER).

class ISolver_RHS
{
public:

// initialize object
virtual void Initialize() =0;

// access right--hand side vector
virtual const CVector<double> &RightHandSide() const=0;

// set right--hand side vector
virtual void RightHandSide(const CVector<double>&rhs)=0;

// access jacobian matrix
virtual const FMatrix<double> &Jacobian() const = 0;

// sets jacobian matrix
virtual void Jacobian(const FMatrix<double>& J) =0;

};
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Interface IProblem is the interface to a nonlinear problem. This is a simplified
version of the interface.

class IProblem
{
public:

// initialize object
virtual void Initialize() =0;

// gets number of states
virtual int nState() const =0;

// gets number of equations
virtual int nEquation() const =0;

// access state
virtual const CVector<double> &State() const =0;

// update state
virtual void State(const CVector<double>& state) =0;

// do calculations
// if flag set, calculate the linearization, too

virtual void Calculate(bool withderivatives = true) =0;
};

Interface IProblem_Leastsquares is mixed to the basic interface IPROBLEM
such that a problem inheriting both interfaces is able to treat nonlinear constrained
least square problems.

class IProblem_LeastSquares
{
public:

// initialize object
virtual void Initialize() =0;

// gets number of constraints
virtual int nConstraints() const =0;

// gets number of least square conditions
virtual int nLeastSquares() const =0;

// gets norm of least square conditions
virtual double Residuum_Leastsquare() const =0;

// gets norm of constraints
virtual double Residuum_Constraint() const =0;

// gets an pattern-vector concerning the type
// 0: constraint
// 1: least square condition

virtual const CVector<int> &EquationTypePattern() const=0;
};
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Interface IIntegrator is used to access the basic functionality of the integration
schemes. This example is drastically modified and should only illustrate the inter-
face.
class IIntegrator
{
public:

// initialize object
virtual void Initialize() =0;

// sets pointer to model, i.e. the DE
virtual IModel* Model() =0;

// gets model--pointer
virtual void Model(IModel* model) =0;

// start integration of model
// in time-interval [begin, end]
// with sensitivities depending on withderiv

virtual void Integrate(double begin,double end,
bool withderiv) =0;

};

Interface IModel is used to access a general model consisting of some state.
class IModel
{
public:

// initialize object
virtual void Initialize() =0;

// access number of variables
virtual int nVariable() const =0;

// access variables
virtual const CVector<double>& Variable() const =0;

// update state
virtual void UpdateVariable(

const CVector<double> &Variables) =0;
};

Interface IModel_ODE extends the interface IMODEL, if the model is a differ-
ential equation, and supplies necessary functionality.
class IModel_ODE
{
public:

// access time
virtual double Time() const =0;

// access right-hand side
virtual const CVector<double>& RightHandSide() const =0;

// update time
virtual void UpdateTime(double Time) =0;

// calculate right-hand side
virtual void CalculateRightHandSide() =0;

};
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Interface IEquation is used for scalar functions. Several objects implementing
a nonlinear problem contain of several such conditions.

class IEquation
{
public:

// initialize object
virtual void Initialize() =0;

// access function evaluation
virtual double Value() const =0;

// access residuum r of f(x)-r (=0)
virtual double Residuum() const =0;

// set residuum r
virtual void Residuum(double value) =0;

// evaluate function
// if flag is set including the first derivative

virtual void Calculate(bool withderivatives = false) =0;
};

We want to stress that these interfaces are only used to illustrate this writing
and the basic concept of the components of Parfit++. Therefore, it is only a small
selection of more than 100 interfaces. A thorough and complete list of the inter-
faces can be found in the INTERFACE–directory of the sources.
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Appendix C

Implemented Elements

This appendix lists all mechanical elements implemented in MBSNAT together
with a very short description. All elements are grouped corresponding to their base
class. Therefore, we have constraints, joints that are defined by constraints and
forces. Because the base class NBODY treats arbitrary rigid bodies, there are no
special elements.

C.1 Constraints

In this section we use the expression b(.) to describe an affine point fixed to an rigid
body respectively the inertial system or the velocity of this point depending on the
argument. The argument is either the position–variables pi or velocity–variables
vi of the first or second body. We use the notation d(.) to define an translational
vector fixed to the body. In the following table we give the ID of the constraints
used for the XML–Input file together with the definition of the constraints using
the notation introduced above.

ID description
B0i [b1(p1)− b2(p2)]i − r = 0 iε{x, y, z}
DDX d1(p1)T d2(p2)− r = 0
BBDX [b1(p1)− b2(p2)]T d(p1)− r = 0
BBX 1

2 [‖b1(p1)− b2(p2)‖2 − r2] = 0
V 0 [b1(v1)− b2(v2)]i − r = 0
V V DX d(p1)T [b1(v1)− b2(v2)]− r = 0
V V X 1

2 [‖b1(v1)− b2(v2)‖2 − r2] = 0

C.2 Joints

The joints are defined by a set of constraints. As the constraints are defined
w.r.t. two markers, we give the axes of these markers which define the affine points
b and translational vector d used in the definition of the constraints. The first line of
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constraints restricts translational and the second line rotational relative movement.

ID Constraints
Spherical B0x, B0y, B0z

Revolute B0x, B0y, B0z ,
DDX(x1, z2), DDX(y1, z2)

Revolute_2 B0x, B0y, B0z ,
DDX(x2, z1), DDX(y2, z1)

Universal BBDX(p1, p2, x1), BBDX(p1, p2, y1)
DDX(x2, z1), DDX(y2, z1)

Prismatic BBDX(p1, p2, x1), BBDX(p1, p2, y1)
DDX(x2, z1), DDX(y2, z1), DDX(x1, y2)

FixedDistance BBX(p1, p2)
Free

C.3 Forces

All forces are specializations of the base class NFORCE. The forces are either
external forces which affect all bodies according to their position and velocity, or
force–elements which provide an interaction between two or more bodies. The
latter are characterized by how they connect the bodies and which force–law they
implement.

External Forces

In this category we only provide the implementation of the gravitation.
Force Constants

Gravitation gravitational constant

Force–Element

In case of forces interacting between two bodies, there are several possibilities
how this interaction is done. We first omit the exact force–law. We get a number
of specializations of the base class for force–elements: NFORCEELEMENT which
again is a specialization of the base class of all forces NFORCE.

Linear These elements apply a force depending on the difference of two points
b1(p1) and b2(p2) or the difference of velocity at these points b1(v1) and
b2(v2), which are defined w.r.t. different bodies. The resulting force is ap-
plied along the axis defined by the difference of these two points.

f(∆p, ∆v) = f(b1(p1)− b2(p2), b1(v1)− b2(v2))

This type of force is implemented in the base class NTRANSLATORIAL-
FORCE.
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Z In contrast to linear elements these forces only depend on the z–component
w.r.t. the reference frame of the difference (position and velocity level) and
only apply the force in this direction.

f(∆p, ∆v) = f([b1(p1)− b2(p2)]T z, [b1(v1)− b2(v2)]T z)

The base class is NZFORCE.

Direction Another possibility is to define a force w.r.t. a specific direction d(p1) , which
is formulated w.r.t. one body. This is a generalization of Z–Forces.

f(∆p, ∆v) = f([b1(p1)− b2(p2)]T d(p1), [b1(v1)− b2(v2)]T d(p1))

The base class is NDIRECTIONFORCE.

Rotational This type of force–elements are sensitiv to a relative rotation around an axis
d(p1).

f(α, α̇)

The corresponding base class is NROTATORIALFORCE.

Spherical These forces which consider all three translational and all three rotational
degrees of freedom are discussed in section (6.2.1)

Additionally, there are the following force–laws depending on a translation or
rotation on position and velocity level f(p, v).

Force Force–Law
<Type>_Spring c1(‖∆p‖ − c0)
<Type>_Damper c0‖∆v‖
<Type>_Spring_Damper c1(‖∆p‖ − c0) + c2‖∆v‖
<Type>_Actuator c0

General_<Type> (template for general force–law)

In this notation <Type> has to be set to the corresponding basic structure (like
”Z_Spring”) except for the linear forces where we omitted this information (e.g.
”Spring”).
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