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Zusammenfassung

Fur Untersuchungen des Gasaustausches zwischen Atmosphéareesmd erden Kenntnisse
Uber das Stromungsfeld in und unter der wasserseitigen viskosensGhaiz bendtigt. Hier-

fur wurde eine neuartige Messtechnik zur raumzeitlichen Analyse vom8trgen nah an der
Wasseroberflache entwickelt.

Ein Flussigkeitsvolumen wird von LEDs durchleuchtet. Kleine sphériscliienta werden
der Flussigkeit beigemengt und dienen als Tracerpartikel. Eine Kamierapd oben auf die
Wasseroberflache gerichtet ist, nimmt Bildsequenzen auf. Der Absiiagidkaigel zur Wasser-
oberflache wird durch einen Licht absorbierenden Farbstoff kodiedem man LEDs zweier
verschiedener Wellenlangen benutzt, wird es moglich, Tracerpartikethiedener Gréf3e zu
verwenden.

Die drei Geschwindigkeitskomponenten der Stromung erhalt man, indeminesi&reveiterung
der Methode des optischen Flusses verwendet, bei der die vertikalbv@edigkeitskomponente
aus der zeitlichen Helligkeitsdnderung bestimmt wird. Indem dreidimensioaséengtrische
Bewegungsmodelle verwendet werden, kann die Schubspannung, dilgo ohne vorherige
Berechnung der Geschwindigkeitsfelder, bestimmt werden.

Hardware und Algorithmik werden auf verschiedene Arten getestet. Hiniadae Rieselfilm-
stromung dient als Referenz. Das vorhergesagte parabolische dResiir stationdren Stro-
mung kann mit hoher Genauigkeit rekonstruiert werden. Konvektivbulenz dient als Beispiel
einer von Natur aus instationaren dreidimensionalen Stromung. Aus Seiatie aus der
Biofluidmechanik stammen, wird direkt die Wandscherrate bestimmt, wobei esentliche
Verbesserung gegeniiber konventionellen Methoden deutlich wird.

Abstract

In order to examine the air-water gas exchange, a detailed knowledgedsdabout the flow
field within and beneath the water-side viscous boundary layer. Thierafoovel measurement
technique is developed for the spatio-temporal analysis of flows closedavater surfaces.

A fluid volume is illuminated by LEDs. Small spherical particles are added to tit flunc-
tioning as a tracer. A camera pointing to the water surface from abovedsetite image se-
quences. The distance of the spheres to the surface is coded by nmeasispplemented dye,
which absorbs the light of the LEDs. By using LEDs flashing with two diffiémeavelengths, it
is possible to use particles variable in size.

The velocity vectors are obtained by using an extension of the method oflofdtiw. The
vertical velocity component is computed from the temporal change of baghtnUsing 3D
parametric motion models the shear stress at surfaces can be estimated diréactiyt previous
calculation of the vector fields.

Hardware and algorithmics are tested in several ways: A laminar falling filieseas refer-
ence flow. The predicted parabolic profile of this stationary flow can pedeiced very well.
Buoyant convective turbulence acts as an example for an instationasemtty 3D flow. The
direct estimation of the wall shear rate is applied to sequences recordeddarttext of bioflu-
idmechanics, revealing a substantial improvement compared to converéonaiques.
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1 Introduction

1.1 Motivation

During the last two centuries the atmospheric carbon dioxide concentra®imbreased by
100 ppm to the today’s value of 380 ppm. However, the carbon dioxide stegfroim the burn-
ing of fossil fuel exceeds this amount by about 100%. The resultsadiihe et a].2004 show,
that the oceans store a large fraction of the anthropogenic carboneligxidQuere et a).2003
guantifies the global ocean sinks for the last two decades using récerggaheric inversions and
ocean models (see Fify.1). For the 1990s the mean global oceanic sink is 1.9 Pg€ yout an
uncertainty on the mean value of the orderdd.7 PgCyr! remaind. The high variations in
the predictions of the models are partly caused by insufficient undenstpoicthe mechanics of
air-sea gas exchange.
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Figure 1.1: Top: Annual fossil fuel emissions (solid line) and annuaréase of atmospheric carbon
dioxide (dotted line). Bottom: Global oceanic €®ink computed using different models. The central
ocean model estimate was forced with atmospherig @fdcentration from ice cores before 1970 and from
direct measurements after 1970, where an error of 20% israeslu The coloured boxes represent estimates
by various researchers using differing methods (froRi{C, 2007] (top) and from [Le Quére et al.2003
(bottom))
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Figure 1.2: Air-sea interaction is governed by physical, chemical amaddgical mechanisms. Hydrody-
namical processes at or near the surface include momentmsport by wind stress, wave formation and
-breaking and Langmuir circulations (from SOLAS

The air-water interface is the “bottleneck” for the gas transfer betweears and atmosphere.
Many relevant gases (like carbon dioxide or methane) are of low solubilisater, so that their
transfer resistance resides in the water-side. The transfer resistariteinverse, the transfer
velocity characterises the rate of gas exchange. In order to model tllebwide annual gas flux
there has to be chosen a parametrisation, which relates the transfer velmcityeteorologically
accessible quantities like wind speed or slope of the water surface. Peereents of Jahneg
1987 yield as a suitable parameterisation:

k= p3"tu,Se™", (1.1)

where( is a nondimensional scaling factat, is the friction velocity, which is a measure for the
momentum transported by the wind into the water bulk, &ad= v/ D is the nondimensional
Schmidt-number, which quantifies a certain substance according to thefratioviscosityv to
its diffusivity D. The Schmidt-number exponemttharacterises the state of the water surface. It
turns out, that the presence of a smooth surface implies2 /3 whereas a wavy surface requires
n = 1/2. Waviness can be characterised by the mean square slope of the wktee gwhich
is accessible by radar backscattering methods on a global scale) muchhzeitby the average
wave speed.

In order to find out the physical processes for this interrelationshipe,hais to consider the
hydrodynamics of the water-side flow. Whereas in large scales madspre®wmmentum are

11 Pg are 16* kg
2Surface Ocean - Lower Atmosphere Study; http://www.uea.ac.uktdasg/s



1.2 Own Contribution

transported by turbulent eddies much more efficiently than by moleculasidiffuin the small
scale of the viscous boundary layer transport by diffusion is the dormpraness. One critical
parameter for this transport is the boundary layer thickness, which masrisble in space
and time. Some models propose, that this variability is affected by surfasergemces and
divergences, which in turn are induced by subsurface turbulemegaed by wind stress, (micro)
breaking waves or (micro) Langmuir circulations. In extreme cases, tlodeveurface may be
renewed. Today it is generally accepted, that all of these models yieldothect Schmidt-
number dependency in EdL.(), although they differ in the vertical profiles of concentration and
momentum.

During the last two decades image based velocity measurement methodebawekeloped,
which are capable to analyse the surface flow and parts of the intemnaitflocture of the viscous
boundary layer and of surface waves. Most of these methods arietexbsto a two-dimensional
plane, which typically is aligned into streamwise direction. Because both tmd®ylevaves and
Langmuir circulations are inherently three-dimensional phenomena, cledwp-dimensional
setup is insufficient. Furthermore, we are interested in the flow very cldke twoundary, which
may be embedded in a wavy surface. The presence of a phase infgofse a further great
challenge to flow measurement.

1.2 Own Contribution

In this thesis a novel method for the spatio-temporal analysis of flows cldke twater surface
is developed. Following new contributions are presented:

Measurement in 3D-space We adapt the idea ofjebaeng2009, which is suited for mea-
suring the wall-near flow in the context of biofluidmechanics, and generalisr the use of
polydisperse seeding particles. Thus we are able to locate the depth ofiepaaticle.

Measurement of 3C-velocities  Using extended optical-flow based methods, we are capable
to extract all three components of the Eulerian velocity vector field. Furthrerimpimple-
menting particle tracking (PTV), we obtain its Lagrangian representafioni§ and Jahpe
2006h].

Direct estimation of the wall shear rate The water-side wall shear rate, which together

with the viscosity characterises the stress at the interface, can be estirmatly avithout
previous computation of the velocity vector fieltefile and Jahn20064.

Both, measurement setup and algorithmics are tested in several wayspBingphe tech-
nigue to a well known laminar flow its accuracy could be evaluated. Adoptitaytite more
complicated case of heat-driven turbulence, its feasibility for the applicatiorsiationary in-
herently 3D flows could be demonstrated. The direct estimation of the wall slite was applied
to sequences recorded in the context of biofluidmechanics.

1.3 Thesis Outline

The thesis is structured into seven major chapters. Chapteiconcerned with summarizing
the physical foundations required for understanding the transpamas$ and momentum at the
air-water interface. Apart from classical fluid dynamics, some tramspodels are sketched
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and microscale wave breaking and Langmuir circulations are descrilbrediof’s attempts to
visualise these phenomena are reviewed.

Chapter3 presents the techniques to measure physical quantities in fluid. Special atisntio
drawn onto velocity measurement, such like thermoelectric, optical, acoustitrage-based
methods. PIV and PTV belong to the latter ones; they are explained in moike deta

Another method, which has become of interest in fluid flow measuremengdherast years
is the optical-flow based approach presented in chaptéptical-flow methods can be classi-
fied in differential, frequency-based and tensor-based technidNsgge application often leads
to difficulties. We will sketch some approaches to overcome them. The chadpsers with a
literature review concerning the application of optical-flow based techsiguieydromechanical
problems. This chapter is a shortened versionlefife et al.in preparatiol

Chapter5 describes the “heart” of the measurement technique, presented in thgs fhies
reconstruction of a fluid particle’s 3D-position exploiting Beer-Lambertg &nd illuminating
with light of two wavelengths. The errors of this technique are investigated.

The hardware components are characterised in detail in chépieproper selection of tracer
particles, dye and light emitting diodes is essential in particular for the measntenethod
presented here. Like in all quantitative fluid visualisation techniques, aiidg€ameras have to
be adjusted to the experiment.

We make extensive use of image processing techniques. Chagitptains the various steps,
the raw image sequences have to pass until the Eulerian or Lagrangidieftbrespectively the
wall shear rate can be extracted. The determination of both the three-nentp@locity vector
field and the wall shear rate relies on the tensor-based methods, whietb&aw introduced in
chapterd.

Experimental results are given in chap8erfwo methods of calibrating the determination of
a particle’s depth are investigated. Both, measurements in a falling film ancimvaation tank
were conducted. Moreover our method of direct determination of the Walirsrate is applied
to sequences recorded in the context of biofluidmechanics. To each ekgieriments a short
introduction to the theory and a summary of the experimental setup is given.



2 Transport of Mass and Momentum at the
Air-Water Interface

2.1 Kinematics of Fluids

In this section we will address some issues regarding the kinematics of fitniats) will be rele-
vant for our analysis. Kinematics is known as the branch of mechanicdehé with quantities
involving space and time only. In contrast to dynamics, kinemalissribesnotion, it does not
try to explainit (by forces for instance).

2.1.1 Lagrangian and Eulerian Perspective

There are two alternative representations of fluid motion: The Euleriasrigien gives infor-
mation about what happens at a fixed spatial point in space; the Lagnashescription follows
an individual fluid particle on its way through space.

The Eulerian perspective

A scalar-, vector- or tensor-valued quantfty like temperature, velocity or the diffusion tensor,
is measured (or calculated) at a fixed positioat a given time: F'(x,t).

The partial derivative

OF (z,t)
ot

yields the local rate of change of the quantity at a pairnd at a timg and givesnot the total
rate of change as seen by the fluid particle.

We define the quantityy = 0x/0t to be theEulerian velocity field The tangents to the
Eulerian vectors are callesfreamlines

(2.1)

The Lagrangian perspective

Here an individual fluid particle is followed, which is located at the posittgrat the timef = 0.
Thus the value of an arbitrary quantity can be specified’by, t) for t > 0. The timet can be
considered as the parameter of a trajectory, which formpakigineof the fluid particle.

We can calculate the total rate of change of the quantity along its way on thetdrgjby using
the chain rule: WPt OF(x.t) d

T, T, €T
o - o + EVF' (2.2)

Literally speaking, this total rate of change (material derivative, subiataterivative, particle

derivative) of a quantity?’ is composed of two parts:

e The local rate of change df at a given pointc and the
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e advectivederivative of the quantity as a result of its motiaiV F', which is a product of the
spatial gradient of the quantily 7' and the velocitys = da/d¢ of the fluid particle.

Thus, a quantity, say temperature, of a fluid particle can change, leetteus/hole temperature
field is changing, or it can change, because it is just moving around @mtytoves into a hotter

region). For the latter, Eq2(1) may be zero but Eq2(2) is different from zero, because both,
the gradient of the temperature and the fluid particle’s velocity are not zero

2.1.2 The Helmholtz Theorem

We can extend the infinitesimal velocity vector= (uy,us,u3)? of a fluid element, which is
located at the positiom = (x1, z2, z3), up to first order by expanding it into a Taylor series:

ou; ou;
ui(zj,t) =~ ui(zj0) + 67;%‘ + 8;

t with i,j=1...3.

Herew;(z;,0) is its translation(~;;) = du;/0x; is known as the velocity gradient tensor, and
Ju; /0t is its acceleration.

The velocity gradient tensor can be decomposed into a symme(isigabnd an antisymmet-
rical (a;;) part:

1 1
vij = 5 (g + i) + 5 (g — i) = sig + aig,

which reads in matrix-notation:

0 —ax a3 Ouy/0x1 512 513
(Vi) = a1 0 —azx |+ 812 Oug [0z 593 . (2.3)
—aiz a3 0 513 523 Ous/0xs

The different parts ofy;;) can be identified with different types of affine transformations:

Rotation The first matrix in Eqg. 2.3) is a rotation matrix - their components can be identified
with half of the rotation vector:

w=(Vxu)= (8/6%1,8/8332,0/6:63)T X U= 2(a32,a13,a21)T.

Dilation The trace of the second matrix in EQ.® represents the volume dilatidy, which
is the divergence of the vector field

Oy = Juy/0x1 + Jug /0y + Ous/dxs =V - .

Shear: The non-diagonal elements of the second matrix in E¢p) @re half of the shear strain
rates, which are defined by the rates of decrease of the angle fornted byutually perpen-
dicular lines on the element.

We have shown, that every infinitesimal motion of a fluid volume element caedmtposed
into a translation, a rotation and a deformation. The latter consists of dilatioshaading of the
element. This is know as théelmholtz theorenfHelmholtz 1859).



2.2 Dynamics of Fluids

2.2 Dynamics of Fluids

2.2.1 Forces in Fluid Dynamics

The forces acting on a fluid element can be divided into three classegfdrods, surface forces,
and line forces.

Body forces: Body forces result from the medium being placed in a force field. Exanapées
the gravitational or electric force. They have in common, that they areopiopal to the
mass of the body, they act on. An example is the gravitational fbr.ce

F =mg resp. f=pg,

with g being the gravitational constant. The introduction of a force derfiiye. force per
unit volume, is appropriate in continuum mechanics.

Surface forces: Surface forces are proportional to the area, they act on. Theyecessblved
into components normal and tangential to the area.:I¢@nponent of the surface force per
unit volume of an element is

aTij/a$j,
where(7;;) is the stress tensor. The first index of this symmetric tensodicates the di-
rection of the normal to the surface on which the stress is consideredheusécond index
j indicates the direction in which the stress acts. The diagonal elenients j) of the
stress tensor are the normal stresses, and the off-diagonal elenesthis tangential or shear
stresses.
The relation of the stress and the deformation in a continuum is called a comstégtiation.
In the case of a Newtonian, incompressible fluid, the stress is related toegsupgp and the
strains;; = 1/2(0u;/0x; + 0u;/0x;) according to

Tij = —POij + 244855, (2.4)
wherep is the dynamical viscosity.

Line forces: Line forces are proportional to the extent of the line they act along. Amgie
is the surface tension force. This kind of force does not appeartigiiache equations of
motion, but enters in the boundary conditions.

2.2.2 Basic Equations
All fluid mechanics is based on the conservation laws for mass, momentumargyeIn the
following, we will present these laws in differential form.

Conservation of mass - continuity equation

Conservation of mass is expressed by the continuity equation, whichiregéslgeneral form:

Ip
a5 + V- (pu) =0. (2.5)
For incompressible fluids (i. e. for liquids and gases with speeds coablgemaller than the

speed of sound), we can regards constant, so that the continuity equation becomes:
V.-u=0.
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Conservation of momentum - Navier-Stokes equation

Newton'’s law is applied to an infinitesimal fluid element:

dui 8Tij
By inserting the constitutive equation E®.4), we obtain the Navier-Stokes equation, which
reads in matrix-vector notation:

du Ou 2
pE—E—i—uVu_pg—Vp#—uV u. (2.6)
We can rewrite the Navier-Stokes equation by introducing non-dimensjonatitiesu = u/Vj,
z =x/Lo, t = tVy/Lo andp = p/(pVg) using a typical velocity scalg, and a typical length
scaleLg

du
dt
where we have introduced the Reynolds-number=R&,Lov !, which characterises the rela-
tive strength of inertial and viscous forces, and the Froude-number IPB(LOg)—W, which
quantifies the relative importance of inertia and gravity forces.
In the following two limits of the Navier-Stokes equation will be discussed:

| 1o,
—ﬁg/g—vp‘FR—eV u,

Viscous flow ( Re < 1): The inertia term in Eq.4.6) is negligible compared to the viscous
term. This results in the Stokes equation:
ou
Por
Inviscid flow ( Re>> 1): The viscous term can be neglected in E6(. This results in the
Euler equation:

= pg — Vp+ uVu.

du
Py =PI~ Vp.

We can derive a mechanical energy equation directly from the momentuati@y(seelfundy,
1990Q).

Conservation of thermal energy - Heat equation

Under several restrictions including that in which the flow speeds are swapared to the
speed of sound and in which the temperature differences in the flow alie thmdeat equation
becomes

with Dy being the thermal diffusion.

2.3 Transport in Fluids

In this section we will consider the transport of asybstantial additiorin fluids. Such an ad-
dition can bemass(for example a trace gas like carbon dioxidejpmentunor heat In the
following formulas we will denote the addition by the symlapivhich represents the concentra-
tion, the momentum (hereis vector-valued) or the heat.



2.3 Transport in Fluids

2.3.1 Molecular Transport: Diffusion

Diffusion in gases can be considered as a result of the Brownian motioletules. Mathe-
matically stationary diffusion can be describedHgk’s first law.

j =-DVe, 2.7)

wherej is the flux density and is the diffusion constant. In order to fulfill stationarity it is
assumed, that the concentration of mass, heat or momentum in the ressrsoffigiently large,
so that it stays constant over the regarded time interval.
For instationary processes, we have to take care, that we satisfy tireudtyrequatiordc/ ot +

V3 = 0. Combining this with Eq.4.7), we arrive afFick’s second law

Jc

— = DVZc 2.8
ot ¢ (2.8)
Here we assumed homogeneous, isotropic diffusion. In the geneealDcgsa tensor of second
order, so that Equatior2(8) has to be rewritten to:

dc
— = V(D .
T V(DVec)

Until now we didn’t specify the type of tracer, which is represented bysymebolc:

e The mass transport can be described by the flux-density
Im = —DVe,

herec is the concentration of the material inside the fluid, which can be specified infarol/|
instance.D is the diffusion constant (with units¥a!), a specific property of the considered
material.

e Heat transport can be described by the flux-density
du = —DuV(pcpT) = —AVT,

here the concentration is replaceddey T If we regard the density and the specific heap
as independent from position, we see, that the flux density is propdrtwtie temperature
gradient. The proportionality constant is the diffusion constant for heaitth depends on
the coefficient of thermal conductivity in the wayDy = A(pcp)~!. Again this diffusion
constant has units f8~!.

e Momentum transport can be described by the flux-density
jp = —VV(U),

where the flux-density is related to the shear sttes& j = 7/p and the diffusion constant

for momentum is the kinematic viscosity Thus for incompressible media (with constaht

the shear stress is proportional to the velocity gradient. Here the kinemaiisitishas units
21
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2 Transport of Mass and Momentum at the Air-Water Interface

2.3.2 Turbulent Transport

Now we consider, that tracers can be transported both by diffusion@mection. In order to do
so, we have to regard the total differential of the concentration chérege é&gain “concentration”
stands for mass, heat and momentum):

= — +uVe= DV? (2.9)

Fick's second law Equatior2(8) becomes theeneral transport equatigrwhich is linear in

c if the diffusion constantD is not a function of concentration. The only unknown in Equa-
tion (2.9 is the velocity vector fieldu, which can be obtained by solving the Navier-Stokes-
equation Eq.Z.6).

Reynolds decomposition

From now on we move over to turbulent flows, which are the norm, ratharttfeexception in
environmental fluid dynamics (consider the atmosphere or the oceansfanag). We perform
the Reynolds decomposition of the velocity and concentration fields into mppargase letters)
and fluctuating (primed lowercase letters) quantities:

u=U+4 and c=C+/.

We average the whole transport equation Ro)(

d/ot(C+ )+ (U+uw)V(C+)=DV(C+ ),
which becomes (using Einstein’s summation convention)

82

oc a(cw+9@):paga

54_6%

where we introduced thReynolds stressu/ which is essentially the covariance betweéand
u,. In the case of simple parallel shear flow with a positive mean velocity- andetration

gradientoU(z)/0z > 0 andoC(z)/0z > 0, the velocity fluctuations tend to balance the flow in
the way, that the concentration gradient is flattened, i.e. we Have< 0 in this case.

1D-case

We will consider the 1D-case of a homogeneous flow= U (z), where we have a mean velocity
field (U, 0,0) and a fluctuating velocity fiel¢h/, v’, w"). From the assumption of homogeneity it
follows, thatc/u/ = v/ = 0, so that the Reynolds-averaged transport equation becomes:

oc 0 d 0?

ov Ny 99— _ 9
5 + axi(C’U,)—&— 8ch D822C.

Because of homogeneity we can 8¢bz,(CU;) to zero, so that we arrive at

oc o Cc ——
= 92 (D cw) (2.10)

10



2.3 Transport in Fluids

for concentration (general) and

ou 9 (oU —
ot 0z <V82 uw> @11)

for momentum (in particular). The latter is known as Reynolds-equation in thatlire.

Linear-logarithmic velocity profile

Now we will consider a stationary 1D solution. The transport term in EdL1j becomes a
constant flux density for momentum:

o= vk~ = 9 4 ) = an + (2.12)
Here the first termvOU/0z is due to the molecular transport and may be described using a
(molecular) diffusive flux density and the second tera’ is due to turbulence and may be de-
scribed using a turbulent flux density, which can be expressed usiniguent diffusion constant
for momentumis’;.
There have to be fulfilled two assumptions for the turbulent diffusion cahaigproach:

1. The size of the eddies has to be small compared to the dimensions of the,ste
2. turbulence has to be homogeneous and isotropic.

Clearly the first assumption is not fulfilled, because the eddy-size (whiahmgasure for the
mean free path in turbulence) can reach the dimensions of the system. Nbig tpeestion is:
Which eddys are relevant to the process, great ones, or small ones?

To find an expression for the velocity profil& =), we have to rearrange Equatich12), and
integrate:

ou Jp T /Z dz’
— = =U(z)=—— ——— where U(0) =0. 2.13

0z p(v+ Ki(2)) (2) pJo v+ Ki(2) (0) ( )
Based on intuition we have (unlike the case of molecular diffusion) a cledrasplependency
of K;. Using the definition of the friction velocity = pu?, we can split the integral into two
parts: one outside the boundary layer (wh&ke> v) and one inside the boundary layer (where
v > K3). The integral outside the boundary layer reads:

Z1 dZ/

UGe) = Ulo) =2 | s

(2.14)

20

A guess for spatial dependency of the turbulent diffusion constastdeof the viscous boundary
layer would be
Ki(2) = Kuxz, (2.15)

with the von Karman constart= 0.41. Here the turbulent diffusion constant is directly propor-
tional to the distance to the wall By plugging this into Equatior?(14) we get

us [F1dZ w,
U(z1) —Ul(z) = —/ — = ;(lnzl —In zp).

/
K 0 z

11



2 Transport of Mass and Momentum at the Air-Water Interface

This is the logarithmic profile, which can be made nondimensional in the depeadé inde-
pendent variables by applying the transformations

ug — U(2)/uxe and zy «— uez/v,

so that we arrive at
uy = (Inzy)/k + const (2.16)

To obtain an expression for the profile near the wall, we use the definiticisear stress (near

the wall) and friction velocity:
oU T u? B uz
0z |, ,

= — = Uy = Z4. (217)
pv v

We see, that the profile in the viscous sublayer (where the viscosity is dargpared to the

turbulent diffusion) becomes linear. The universal law of the wall is platid=ig. 2.1

Implications on gas transfer

Until now we have addressed the transport of momentum. What are the impigdtiothe
transport of mass, for example? We have (similar to Equafidf() an expression for the mean
mass-concentratiofi depending on the wall-distanee

z dZ/
Clz)=j | — 1, 2.18
©=i | 5o+ (218)

where we used the turbulent diffusion for concentratign which depends on, too. Here we
introduce the transfer velocity = j/Ac, which is known as the “piston velocity”: Visually;
specifies the velocity, concentration is pushed through the boundanyitdgehe under- resp.
overlying bulk region.

2.4 Transport Models

2.4.1 Film Models

Film models (e. g. inlliss and Slaterl974]) are based on the assumption, that there is no turbu-
lence in the viscous boundary layer. Contrary to that, outside of the aoytader there is high
mixing, so that there is no concentration gradient.

We can define a typical thickness for the boundary laydry intersecting the linear velocity
profile Eq. €.17) and the logarithmic velocity profile Eq2(16. We findz; ~ 11, 1. e. z, =~
11v/u. By plugging this into Fick’s first law Eq.2(7), we get an expression for the mass flux
density, which depends on the concentration difference and on thel&aguayer thickness:

In order to get an expression for the transfer velocity, we divide thed@nsity by the concen-

tration difference:
D B Du,

_ Jm _ g
b= Ac  z, 1y 115C e (2.19)

12



2.4 Transport Models

0 e inner region ———-I

viscous buffer logarithmic
sublayer layer layer
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Figure 2.1: Universal law of the wall. The non-dimensional veloaity = U/u. is plotted semiloga-
rithmically relative to the non-dimensional wall distance = w..z/v. For small distancesz(. < O(5)),
there is a linear, for larger distances( > O(30)) there is a logarithmic dependence. Fromiundy
199q

Recapulitating: If the concentration profile is known, so the boundary tajekness is known,
so the transfer velocity is known (with known diffusion constant).

In the last step of Eq.2(19 we used the definition of the nondimensional Schmidt-Number
for gases, which is viscosity of the fluid divided by molecular diffusionstant: S¢ = v/D.
For most gases$c is in the range of 200 to 3000. Experiments show, that the film model is
totally unreal, because the measured transfer velocities exceed theitaigrderived by orders
of magnitude.

2.4.2 Surface Renewal Models

A completely different approach is made in the surface renewal model${seckweris 1957
Higbie, 1939). Here the basic idea is, that large eddies rebuild the boundary layesta-a
tistical sense. We can incorporate that by assuming the divergence Bethmlds stress for
concentration®)/dz(c'w’) in Eq. .10 to be directly proportional to the concentration itself.
Dimensional reasoning shows, that the proportionality constant has toibeease time, which
is called renewal rate—!. Then the stationary transport equation reads

2
D% —rle=o, (2.20)
y4

which is a second order ordinary differential equation, and can beddly the ansatz =
co exp(—z/z4). We get for the boundary layer thickness= v Dr.

13



2 Transport of Mass and Momentum at the Air-Water Interface

molecular boundary layer
(air-side)

viscous boundary layer
(air-side)
u

molecular boundary layer
(water-side)

viscous boundary layer

Figure2.2: Schematical illustration of boundary layers at the waterface. Left: Because the solubility
of a gas in water is not equal to unity, there exists a discurity of the concentration profile. Right: The
velocity profile is continuous. The thickness of the moddobundary layer is O(10Qm), the thickness
of the viscous boundary layer is O(1 mm) (fronefjrei, 2009).

Because- merely can depend on the viscosity and on the friction velocity, we have byndime
sional reasoning:

v
7(us, v) = ﬁQu_;{’

where we have introduced the proportionality consténtWe can plug that into the nondimen-
sional form of Eq. 2.20:

Pcu?  cu? 0%c  Sc

02202 (v - @ 32

c =0,

where we have used the nondimensional wall distance- zu,/v. By fitting the solution of
this equatiorc = ¢y exp(—Sczy /) to the universal velocity profile, we gét~ 16, so that we
can determine expression for the transfer velocity:

k_z*_\/T_ﬂVV_l(ﬁSC U

Considering Schmidt numbers of order 1000 we see, that the surfameakmodel yields much
higher transfer velocities than the film model, because the Schmidt numberesxps only 1/2,
in contrast to the film model, where it is unity.

2.4.3 Turbulent Diffusion Models

In contrast to the previous models, where heuristic assumptions were tudmnident diffusion
models and surface divergence models are hydrodynamically moredduriére we will sketch
the derivation of Coantic 1984.

14



2.4 Transport Models

Starting point of the turbulent diffusion models is the solution of the 1D-statyoRaynolds-
averaged transport equation E8.19). To integrate this equation, we have to find an expression
for the turbulent diffusion constant containingThe turbulent diffusion constant is by definition
(Eqg. (2.12) proportional to the Reynolds stre&s « v/w’, where the proportionality constant is
—(0U/0z)~L.

Now we expand the Reynolds stress into a Taylor series for small distafices the surface:

—— 0 —— 9?
ww' ~ 0+ {—u’w’] z+ [—2u’w’} 22,
0z o 0z 2=0

For the first derivative of the Reynolds stress at the surface we have

0 —— o, 0w

Becauseuv’ = 0 the first term vanishes. The second term vanishes at a rigid surfacegimause
thereu' is zero, also. At a free surface, we have# 0 andw’ # 0 in general, but we may have
ow'/dz = 0. This is exactly the case, if the 2D-continuity’ /02 + 9v’ /0y = 0 holds. If we
calculate the second derivative of the Reynolds stress:

[ 9?2 —] ~ou' ow' /82w’
z=0

Y g
920" _ 0z 0z T 0227

we find, that both, first and second term vanishes in the rigid surfaegbacause, thefav’' /0= =
u' = 0), but surely this not happens in the free surface case, becausdotitr’ andd?w’ /92>
are definitely not zero.

Recapitulating, in the rigid surface case we require, that the seconatileriof the Reynolds
stress has to vanish, so that we have for the turbulent diffusion canstan

Ki(2) = az2® + O(z*) for arigid surface.
In the free-surface-case the second derivative does not deagpene can apply:
Ki(2) = anz® + O(2%) for afree surface.

Because the resistance for gas transfer resides mainly in the boungaryve letz go to
infinity, so that the transfer velocity becomes

f— dm /°° d \7
C—Co \Jy D+ayz? ’

where we plugged in the expressions for the turbulent diffusion caisstanthe free-surface-
case p = 2), and the solid-surface-case £ 3). After nondimensionalising and some simple

manipulations, we get
-1
Uy 0 dzl,
]C —_ — —/p 5
Sc\Jo 1+ayz{/D
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2 Transport of Mass and Momentum at the Air-Water Interface

which can be integrated to
1
k= ﬁp 1Sew lu*

which holds exactly folS¢ — oo. In particular we find

k= By Sc 2y,  forafree surfacey = 2), and
k= pB31Sc3u,  for asolid surfacey = 3)

The free-surface case is reproduced by the surface renewal m@dé/165c—1/2u*, whereas
the Schmidt number exponent forecasted by the film médel 1/11S¢~1u, is even to low to
match with the turbulent-diffusion model for a solid surface.

[Deacon 1977 integrated Eq.%.18 numerically using an analytical expression f&f(z.)
(given by [Reichardf 1957]) to obtain more exact expressions for the transfer velocity, which
depend on the magnitude of the Schmidt number.

2.4.4 Surface Divergence Models

Surface divergence models relate hydrodynamical quantities (i. eacgudivergence) to the
boundary layer thickness and to the transfer velocity. Their attractiomata&s from the fact,
that surface divergences can be measured directly or can be relateehtomena like microscale
wave breaking.

From the continuity equation it follows at the surface:

ou n ov
w=—z\—+-—1,
dr Oy
where we have assumedandv being constant in the thin mass boundary layer. Where the
horizontal flow is divergent, the vertical velocity is upward, so that thesnbasindary layer is
squeezed by advection. In the region of surface convergenceettieal velocity is downward,

and the mass boundary layer is pulled down. Thus the thickness of the mass$ay layer, and
thus the transfer velocity is controlled by the surface divergences.

Free surface stagnation point flow

In the following we will discuss the model for a simple free-surface stagmgibint flow, which
can be described by
u=ar, V= -—ar,

wherea is the divergence of the horizontal velocity field. The stationary transgmuition
(Eq. 2.9) reads (for simplicity, we consider only one horizontal dimension)

Oc Oc D <620 820> ‘

Yor TWo: =P\ a2 T a2

There is no horizontal concentration gradient at the suda¢éx = 0, and the horizontal diffu-
sion is negligibled?c/02% = 0, so that the concentration profile is determined by

c(z) = eperfc (z\/%> .
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2.5 Microscale Wave Breaking and Langmuir Circulations

The transfer velocity at the surface is given by

[61

. —1/2

b - Jo _ 0z],_g _ 2aD — 0.623u. Sc 7
Co Co T v Re

with the Reynolds number Re u?2/av.

Rigid surface stagnation point flow

Having the boundary condition of a rigid surface, the 2D-flow field beme

ou  Ow
= == — = = (1)
“Tor T Bz 0, w=wpL®(),
with wpr, = /nua. Here®(n) is a function describing the “Hiemez flow”, the flow field around
s stagnation point in the rigid-surface caszljlichting 196Q. In the case of large Schmidt-
numbers, we can solve the transport equation, yielding the transfeityedbthe surface:
Se—2/3
k = 0.66u,——.
vV Re
Evidently, these very idealised assumptions lead to the correct Schmidt-nrergmnents.

[Csanady199( elaborated an extension to this model, applying results of measurementstin sho
wind waves (see sectidh5.2).

2.5 Microscale Wave Breaking and Langmuir Circulations

Unless now we only considered extremely simplified models of transport of amesmomentum
through a free surface. The major difficulty is the presence of a fiflaee boundary condition.
In interaction with the wind stress this can lead to the formation of shear floeaKimg) waves
and Langmuir circulations. All of these nonlinear phenomena generatelénde, which is
responsible for creating surface divergences, and thus for thimmirgnewing the mass bound-
ary layer, which affects the resistance for the gas transfer. While tii@csuof the waves is
measurable relatively easy (see for examplelfchbach et 312001, Jahne et a/.2009), it is
considerable more difficult to obtain quantitative information about their iatdtow field. In
this section we will recapitulate some facts about linear and nonlinear waws/thave a closer
look to microscale wave breaking and Langmuir circulations and have a tawrgth historical
and current attempts to obtain knowledge about the near-surface flegaréing the dynamics
of surface waves we suggest readifg|lips, 1969; for an overview over the basic mechanisms
of the interaction of atmosphere and ocean 8eelfs and Businggi994.

2.5.1 Definition and Theory
Linearised wave theory

Thelinearised wave theorgissumes a sine-shaped boundary condition at the air-water interface:

n = acos(kxr — wt),
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2 Transport of Mass and Momentum at the Air-Water Interface

with a functional interrelation between the wave frequeacgnd the wave numbek, called

dispersion relation, which reads
w = y/gktanh(kH),

depending on the water depfli. In its deep-water approximation the linearised wave theory
predicts particle orbits describing circles, whose size is damped expdhewniih increasing
distance from the surface. The applicability of linear wave theory regjuirg. H andka < 1.

The latter implies, that the slope of the sea-surface is small.

Stokes theory

In a dispersive system, like in deep water, an accumulation of linear wapesvisnted, because
the different Fourier components propagate at different speedsemnmine separated from each
other. Nonlinearsteepening could cancel out the dispersive spreading, resulting ingmjpé-
tude waves of constant form.

[Stokes 1847 showed, that periodic waves of finite amplitude are possible in deep water.
The surface elevation of irrotational waves in deep water is given byvapseries of the small
parameternk, the wave steepness:

1 3
n=a <cos k(x —ct) + §k3a cos 2k(x — ct) + g(k‘a)2 cos3k(x —ct) + .. ) ,

with the dispersion relation

w = /gk(1l + (ka)?).
Unlike in the linear approximation, in the Stokes solution the fluid elements don¢inasircles
exactly but move in orbits, whose average motion is slowly in the direction of #vesv This is

due to the fact, that the particles move faster forward (when they are tglod the trajectory)
than backward (when they are at the bottom of the orbit). This Stokesslrift

ug = a’wk exp 2kzo,

wherez is the particle’s initial vertical position.
It turns out, that these waves become instable, if the maximum amplitude exté&dsmes
the wavelength, so that the crest becomes a sharp 120°angle. Thislasiieat Stokes criterion.

Wave breaking

There is no generally accepted definition of wave breaking. One wayfittedtis phenomenon
would be to demand air entrainment as necessary concomitant to wavengrgakiele; 1977.
The resulting characteristic “whitecaps” are easily detectable. Due to tieenpanying bubble
formation, the rate of gas transfer is further increased.

Air entrainment and bubble formation may not be the only criteria for wavakimg; several
researchers have found a characteristic change of the internaltflostuse of breaking waves
like break-down of the subsurface flow and the generation of turbelaitt enhanced diffusion
and dissipation, possibly accompanied by flow separaticgranifer and Phillips1974 define
breaking waves as those, in which certain fluid elements at the free s(niear the wave crest)
are moving forward at a speed greater than the propagation speedndvbgrofile as a whole.
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2.5 Microscale Wave Breaking and Langmuir Circulations

In deep water the fluid elements slide down the leading slope. This results mti@inenent at
large scales of breaking, but not necessarily at smaller scales. Tétsrthmicroscale wave
breakingwas created to distinguish this behaviour from the bubbles-producingamisch. One
characteristic of such a breaking wave is the existence of a stagnatianirptire mean flow,
because the mean flow reverses near the crest.

Parasitic capillaries

Moderately short gravity waves exhibit “parasitic capillaries” on the leeviace. These capil-
lary waves have the same phase speed like the gravity waves, which lzegosséle due to the
different dispersion relationsLpnguet-Higging 1997 conjectures, that the parasitic capillaries
are the source of vorticity, because their orbital frequency is muchegrdean the orbital fre-
quency of the gravity waves. Thus the mean vorticity, which is a measurerfaience, depends
both on the wave slopek of the gravity waves and on the orbital frequency of the capillaries.
The two kinds of waves constitute a symbiotic system, a “capillary roller” - tregggnof the
gravity waves is pumped into the capillary waves, which would otherwise fped away. To-
gether with microscale wave breaking due to wind-induced shear stressrtitity production
by parasitic capillaries may be the major reason for the rapid increase oasheamsfer rate,
once waves have formated (i. e. the transition of the Schmidt number exdoorm -2/3 to -1/2,
which was reported byJphne et a/1987).

Small-scale Langmuir circulations

Langmuir circulations are streamwise vortices near the surface accompgmiegions of surface
convergence and divergence (R2g3). [Melville et al, 199 presented laboratory measurements
of the generation and evolution of micro-Langmuir circulations as an instabilgywend-driven
surface shear layer using the 2D-PIV-techniquézrpn and Melvillg 2007 found that the heat
and gas transfer velocities are increased by a factor of 1.7 to 2 by thesrabdlLangmuir cir-
culations using the controlled flux technique. As opposed to micro-brgakiich renew only
a fraction of the surface layer, these circulations rapidly renew the vguoface. Observations
show, that length and time scales associated with the generation of sudaes and micro-
Langmuir circulations are comparable. This suggests a clear couplingtioé afangmuir cells
with the surface waves and the subsequent cross-wind 3D-modulatiba wave field. Accord-
ing to the results of the experiments and field-measurement&ofif and Melvillg 2001] even
the early stages of wind-wave evolution cannot be completely understitiooluivthe inclusion
of the small-scale Langmuir circulations and wave-current interactions.

2.5.2 Experiments

Visualisation via bubble-lines and polysterene beads

[Okudg 1987 used a specially designed hydrogene bubble-line technique to visuadigbth
velocity vector field(u(x, z), w(z, 2))T in short wind waves. The bubble lines were produced
intermittently by the electrolysis of water. Flow measurement was feasible texctiqe highly
turbulent flow a little leeward of the crest to a short distance on the windgided A vorticity
field was calculated via = dv/0z — dw/0z. It was found, that the surface vorticity layer is
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2 Transport of Mass and Momentum at the Air-Water Interface

Figure 2.3: Flow visualisation of the surface by seeding with smalltgligbuoyant glass hollow spheres.
The images are taken at time 21.58,(22.5s ), 23.5s €), 24.5s () after turning on the wind. The
waves travel in the direction of the wind from left to rightdeaippear as crosswind (vertical) structures in
the images. At the beginning, the Langmuir circulationsespas streamwise streaks, but soon undergo
bifurcations, so that the flow becomes 3D and turbulent (frotalville et al, 1999).

greatly thickened at the crest especially in steep waves. It may happethehsurface velocity
exceeds the phase speed (“excess flow”), which leads to a dowmtrarsion of water elements
characterising microscale wave breaking. From the bubble lines it waibfm$o deduce the
water-side tangential stress, whose magnitude is in a small region at thelooes five times

higher than the mean wind stress. These stress peaks were madeildsgonthe occurrence
of the excess flow and the development of turbulence.

Using floating polysterene beads of different sizes, whose centagsawoity are located at
different distances from the surface, it was possible to measure trectéréstics of the flow just
below the water surface near the crest. These investigations confirmetbenpe of the excess
flow even there, where no downward intrusion occurs.

[Csanady199( constructs a model of a “roller”, which is based on the experimentaltsesi
[Okudg 1987. The roller may be envisaged as a two-dimensional flow structure, whtesese
internal vorticity originates from the viscous boundary layer on the upwidd of a wavelet,
where a shear-stress spike is exerted by the wind. From this model tieetcBchmidt-number
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dependence
k=B "u.Sc1/?

at a free surface can be derived. Unlike in the case discussed inms2etid herek, = k/u.
exhibits no Reynolds number-dependency, which is approveddiyf et a). 1987 experimen-
tally.

PIV measurements

Both, PIV- and PTV-techniques were applied to measurements in a windedasvy shear flow
[Dieter and Jahnd 994 Hering et al, 1995H. Here we will restrict ourselves to the experiments
of [Banner and Peirsoii998 Peirson and BanngP003.

[Banner 199( concluded from aerodynamic measurements, thafdha drag(i. e. the mo-
mentum flux from the wind to the waves resulting from normal stress cohesigmthe wave
slope) and not the tangential stress is the major contribution to the total wisd.stre

[Banner and Peirsea99g criticise the measurements affudag 1987 in several ways: Their
method is intrusive due the presence of the hydrogene wire and thethatics of the bubbles
(size, rise velocity, impact on the water surface).

The surface tangential stress is measuredfay per and Peirsgi99g using a 2D-PIV tech-
nique, recording particles located in a laser-light-sheet aligned in flowtiire In order to obtain
the shear stress, the difference of the in-stream-velocities of two pahesas be divided by the
vertical particle separationiang = pAu/Ay. The measured tangential stress levels on the water
side are significantly lower, than those obtained byjdg 1987 and are in correspondence to
the total wind stress measurements and form drag measuremgij&iotal = O(0.3).

[Peirson and Banngz00d found using a similar 2D-PIV setup, that the spilling region down-
ward of the crest generally remains locally compact, with a strong conveegef surface fluid
at the toe and relatively weak divergence near the crest and the ufaci@df the wave. This
observation is in contrast to the suggestions@fijdg 1987 that the viscous sublayer on the
windward face of microscale breaking waves flows over the crestesukfinto the spilling re-
gion (see also Fig2.4).

Combined PIV and thermographic measurements

Using infrared thermography one can detect turbulent wakes of malsbeeaking waves.
[Zappa et a].2004 applied the active controlled flux technique (developedliynfie et /1989
and [Haussecker et g11995) to measure the local transfer velocities in and outside of these
wakes and found that on average the transfer velocity was enhagcadalstor of 3.5 inside
of the wakes. They also estimated that up to 75% of the transfer across-tiater interface
was contributed by microscale wave breaking. They concluded, thatimlaberatory exper-
iments microscale wave breaking was the dominant process controlling theagsfer rate at
low to moderate wind speeds. They also noted that at low windspeeddrapathe microscale
breaking waves a secondary mechanism may be of importance in determimingter trans-
fer velocities. A promising candidate is the occurence of small-scale Langintidations (see
section2.5.7).

[Siddiqui et al, 2007 used PIV to observe the velocity field beneath the microscale breaking
waves, which were detected by infrared thermography. Because tiseirageents were relatively
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2 Transport of Mass and Momentum at the Air-Water Interface
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Figure 2.4: Kinematic behaviour of microscale breaking wavesAs proposed by(Qkudg 1987: In

a frame of reference moving with the wave, transport is readaexcept within the wave crest, where
the surface velocity excesses the phase speed. Strongestafagential stresses from the point of air-
flow reattachment induce transport up to the windward face awver the crest and are responsible for
the generation of vorticity to a large fraction. Furtherneothe PIV window sizes used for the inves-
tigation of [Peirson and Banngr2009 are indicated. b As proposed byHanner and Peirson199§
Peirson and Banng2003d: The contribution of the tangential stresses is compayatrhall. The spilling
region is compact with a strong convergence of surface fluti@toe and weak divergence near the crest
(figure from [Peirson and Banng2003).

large-scale (measurement area alsous cm? at a spatial resolution of aboRitx 2 mm?), it was
not possible to resolve the viscous boundary layer, but to quantify theudiace vorticity and
thus the turbulence produced by the microbreakers. They found thatrtthater heat transfer
velocity was correlated with the magnitude of the near-surface vorticity,hwhias responsible
for enhancing the air-water heat transfer rateSiddliqui et al, 2004 quantified the coherent
structures generated beneath laboratory wind waves.
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3 Fluid Flow Analysis

As this thesis is concerned with developing a novel fluid flow measuremdmiitee, here an
overview is presented over the various approaches which have lismtuiced and partly are still
in progress of being developed.

In this chapter we will go through the subject in a coarse-to-fine-maruténed in Fig.3.1:
We will start with an overview over the relevant quantities and technologies, e will be
concerned about the measurement of velocity in particular. During th2dastars image based
techniques have become common in velocity field measurement. Optical-flow beleeity
analysis has become recently of interest for the experimental fluid meshamiemunity, al-
though it was introduced in the context of computer vision much earlier. t€héjs devoted to
optical flow methods in fluid flow analysis.

flow measurement

pressure |
temperature _..." velocity measurement
\_(\_/_all--s_he?l_.r_.gt__r,gs,s """"""""""" hot wire anenometry

accustic doppler current velocimetry

T laser doppler anenometry
limage based methods | ™.

image based methods
particle image velocimetry

optical flow based methods
differential techniques
tensor-based techniques
frequency-based techniques

Figure 3.1: Overview over the task of fluid flow analysis like it is presdnn this chapter. Gradually we
will dive deeper into the subject.
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3 Fluid Flow Analysis

3.1 Measurement Technology for Quantities Related to Flows

There are various possibilities to categorise flow measurement techniffaesn classify them
regarding the way, how they work (e. g. mechanical, electronic, optical-dike this was done
in [Eckelmann1997), or we can sort them according to the measured quantities (e. gupgess
wall friction, temperature, velocity, etc. — like ifl[ischg 1994 Tropea et al.in preparatiol).

In this section we will use the first categorisation; in the following we will gineogierview over
important quantities related to flows and how to measure them.

Pressure From the pressure distribution around a body, we can compute both, itsuddaits
lift, which play an important role in aerodynamics. Moreover, we can getindtion about
the flow field itself, like mean flow velocities or local wall shear stresses.

According to Bernoulli's equation the total pressure splits into static presdynamic pres-
sure and hydrostatic pressure:

Dtot = Pstatic T gu2 + pgh = const. 3.1

Directly only the static pressure at the wall is measurable, for example binglamall
boreholes into the wall and connecting them to a pressure transmitter vieeacbosec-
tion. Examples for pressure transmitters are manometers or electromeckiasicss like
strain gauges or piezo elements. Because of their compact size, the dppaopriate for
the measurement of fluctuations of the static pressure [sge et al. 2004). In order to
measure spatial distributions of surface pressure non-intrusivelgspre (oxygen) sensitive
paints have become availabld{Lachlan and Bell1993.

In order to measure the total pressure, it is common to use pitot tubes EED-dde concept
of a pitot-tube can be generalised to three dimensions by using sensors wighboras at
once.

The dynamic pressure can be measured by exploiting Ed) &nd subtracting the static
pressure from the total pressure. For this task there exist apparafrékeltl’s pitot tube.

Temperature and heat flux Because most of the flow-properties are temperature-dependent,
often simultaneous measurement of temperature and other quantities isamgcess
Liquid crystals allow a simultaneous measurement of both the temperaturelacitwields
[Hiller et al, 1993. The visualization of temperature using thermochromic liquid crystals is
based on their temperature-dependent refractivity at the wavelerfgtisstde light.
Thermography can be used to measure spatially distributed and time resotveeraéure
fields and heat fluxesfarbe et a}.2004.
Especially for the investigation of temperature fields in combustion procéssess meth-
ods are appropriate. If the pressure remains constant during a temmperhfunge the ab-
sorber density will be modified by the temperature, which can be detectedgmctrometer
[Wolfrum et al, 200Q.

Wall shear stress Because the wall friction is responsible for the viscosity-dependent flow
resistance, it might be important to measure this quantity globally. On the othey &éocal
analysis of the wall shear stress gives insight into the boundary layerAlo overview over
some of the methods is given bydrnholz et a}.1994.

Primarily in the high speed- (and thus high shear stress-) section, meghacitniques like
balances are used.
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3.1 Measurement Technology for Quantities Related to Flows

Space§ ¥
X
Time JL t
DGV - Doppler global velocimetry LTV - Laser transit velocimetry
GPD - Global phase Doppler PD - Phase Doppler
LDV - Laser Doppler velocimetry PIV - Particle image velocimetry
LFT - Laser Flow Tagging PTV - Particletracking velocimetry

Figure 3.2: Classification of velocity measurement methods accordinige number of measured compo-
nents and dimensionality of the underlying spatial dorhain

Thermoelectric methods to measure the wall friction are techniques usingnhtrinomen-
tum wires and hot wires at the surface. These methods have in commothahatal wall
shear stress is measured by forced convection in a thermoelectric heditedngor (hot film)
or using the measured near-wall velocity (momentum wires and hot wirespuBe none of
these techniques measures the wall shear stress directly, calibratiorsigeara#ly important
issue.

Pressure sensors also can be used to measure the wall shear stresanfiple a pitot tube
can slighty be modified to measure wall friction. Another technique is usingfacseufence,
where the pressure difference up- and downstream of an edge isine@asAll of these
sensor-based methods are more or less invasive.

Because Laser Doppler anemometry (see se&idrd) is capable to measure velocities very
precisely and high resolved, it can be used to measure the velocity pedil@nvall and thus
the wall shear stress. Like the previous methods, LDA is only a point measumt method.
Examples of spatial measurements methods are oil film interferométrydon et al.1993
and infrared thermography/[ayer et al, 1999.

Velocity Again pressure sensors can be used to measure velocity using Besnegllation
Eq. 3.1). Predominantly point measurement methods are thermoelectric techniguies (h
wire-anemometry, momentum-wire-anemometry), acoustic techniques (adoapfpiter ve-
locimetry) and optical techniques (laser Doppler anemometry). Spatial nsetredthe
image-based techniques. In the next section we will have a closer lookrte ebthese
methods.

Figure from http://www.sla.tu-darmstadt.de/lehre/smt.ger.htm/lectisesdkperiment_b.pdf (Tropea et al.).
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3 Fluid Flow Analysis

3.2 Measurement of Velocity

The velocity field is one of the most basic quantities in continuum mechanicst Kitleenatical
quantities (like vorticity or strain rate) can be derived by the velocity field ismdpatial and
temporal derivatives. The Navier-Stokes-Equation or the continuitgteaquy are formulated in
terms of velocity as unknown parameter.

This section is concerned about measuring the velocity, which can bergtenims a spatio-
temporal vector field, i.e. at every point in the fluid (which is embedded etdimensional
space, and may be instationary (3+1D)) there exists a three-comp8@ntdlocity-vector:

2y, 2t — (u(@,y, 2:t),0(z,y, 23 t), w(z,y, 251)" ie. R xR — R

Some methods are restricted to time-resolved velocity measurements at poitiy,(bva
line (1+1D) or on a plane (2+1D), or they yield only one or two componentheflow vector
(1C/2C). If we deal witrstationaryflows, i. e. the velocity field does not depend on time, we can
extend any lower-dimensional method to a 3D method by traversing the sersgp@ce.

In this section we will have a closer look to some common non-image-basedtyeiwa-
surement methods, like hot wire anemometry, representing thermoelectmigiees, acoustic
Doppler current velocimetry and laser Doppler anemometry, standingddaser-based optical
methods.

3.2.1 Thermoelectric Techniques - Hot-Wire Anemometry

Hot-wire anemometry permits the temporally high-resolved measurement of bathvelecities
and fluctuations, so that for the first time it was possible, to capture theleatdeehaviour of
flows quantitatively.

Its principle is as follows: A thin metal wire is heated on a constant temperathieh lies
significantly above the temperature of the surrounding flow. The requakageU is used as a
measure for the flow’s velocity:

U? = A+ Bu", (3.2)

where A and B are calibration constants and the velocity exponenan be set approximately
to 0.5. Equationd.2) serves as a simple calibration rule for hot-wires. Calibration is commonly
performed with a pitot-tube as reference.

The time constant of the temperature adaption of a hot-wire depends on itsabscKypically
these wires are very thin (some microns), so that fast sampling is achiéuplite50 kHz). The
precision of hot-wire anemometers is 1% under well-posed conditionsngeraents of two or
more wires in a sensor allow for measuring two or three components of theityedmd other
guantities like velocity gradientsipnkan and Andreopoulp&997.

Apart from the fact, that hot-wire anemometry is a 0D and intrusive meamuremethod, its
accuracy depends very strongly on correct calibration. Furtherrtfieemethod is suitable to
only a limited extend for measurements in water, because the fine sensonéstprdeposits,
which may disturb the measurements. For further information seefs 1989 or [Perry
1983.
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3.2 Measurement of Velocity
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Figure 3.3: Principle of a dual-beam laser Doppler system. A particleesv,) passes through a region
of crossing wave fronts (wave lengith crossing anglé), which form a stationary wave (distance of the
wave fronts:Az). Light of frequencyf is emitted (from plbrecht et al, 2003).

3.2.2 Optical Methods - Laser Doppler Anemometry

Laser-Doppler anemometry (or Laser-Doppler velocimetry) is based asurement of the scat-
tered light at particles, advected with the fluid. A moving particle causegjadrey shift of the
scattered laser beam, according to the Doppler-effect for light. Ftreiureading we refer to
[Durst et al, 1976 Tropeg 1999.

Figure 3.3, left shows the principle of a simple dual-beam laser Doppler system. The ligh
beam, emitted from the laser is divided into two rays and focused in the mesurarea. The
light, which is being scattered by a traversing particle, is projected ontota-oletector, which
is connected to a signal processing unit.

We can visualise the development of the Doppler signal by a small partickngasrough
a region of crossing wave fronts, which form a stationary wave. Tiécfgscatters the light,
which has a frequency proportional to the velocity,, of the particle and antiproportional to the
distanceAxr of the wave fronts:

Up fA

T=as 7 W lRT=55

By using more than one LDA component, i.e. one or two further beam pahigh are
arranged orthogonally to the first beam pair, it is possible to measure 2C eelocity vectors.
For the sizing of particles, we have to bear in mind, that the smaller a particlesibetter it
follows the fluid, but the worse light is scattered. Beyond a particle sizéafita0 x A resp.
1 x A, we are in the Mie- resp. Rayleigh-range, where we have a diffecaittiesing behaviour
than in the range of geometrical optics.

3.2.3 Acoustic Methods - ADV and ADCP

Acoustic Doppler velocimetry (ADV) makes use of the acoustic Dopplercetfe measure a
three-component velocity vector at a single point in liquids (0D3C). Thideends out a beam
of acoustic waves at a fixed frequency from the transmitter probe. eTlages bounce off of
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3 Fluid Flow Analysis

moving particles in the liquid and three receiving probes detect the charigegirency of the
returned waves. Using this information, the velocity vector of the liquid carebenstructed
[Woodward and Appell1984.

An acoustic Doppler current profiler (ADCP) measures how fast liquid igimgoacross an
entire liquid column (1D3C). In addition to the ADV it measures the time it takes ®atous-
tic waves to bounce back, so that it is able to locate the position of the particig aldine
[Voulgaris and Trowbridgel999.

3.3 Image Based Methods

Image based methods allow the calculation of 2D2C, 2D3C, 3D2C or 3D3Graide-resolved
velocity vector fields. They all have in common, that they try to findaptcal flow; which is the
displacement vector field in the image plane, by determining the displacementgyeffiezdures
in a number of successive frames.

All image based methods have in common, that some kitidoéris added to the fluid, which
should have two principal qualities: Firstly the tracer’s motion should beesgmtative for the
motion of the fluid. Secondly the optical properties of the tracer have to bécim & way, that
their motion can be detected by the camera and processed by the algorithiérs. afe two
kinds of tracer, which are commonly used: Small particles suspended iwith@fld continuous
tracer, like heat or concentration.

The methods presented in this and in the next section differ in the kind ofésathich are
used to estimate the optical flow:

Discrete features Here single particles are segmented and tracked. Thus the corregpondin
technique is callegarticle tracking velocimetrysee sectio3.3.2.

Patterns of discrete features  Using patterns of particles one can reduce the ambiguity, which
one has by tracking single particles. The algorithms generally are basgdssicorrelation.
This method is known ggarticle image velocimetrisee sectior.3.J).

Continuous features  Continuous features, like grey values or intensity gradients, can be used
to extract the optical flow. Generally this is done by applying a model liketaaog of gray
value, as in theptical-flow based methodqsee chaptef).

We note, that there are further methods like least squares matching, vasidts lorigin in the
field of photogrammetry (bruen 1989), or that there emerged hybrid methods by combining
established techniques.

3.3.1 Particle Image Velocimetry

Particle imaging velocimetry (PIV) has become a standard tool in experimenithdffnamics
since the early ninetiesA[irian, 1991]). The books by Raffel et al, 1998 Westerweg|1993
are detailed descriptions of this technique and provide further refesgndhe literature of PIV.
In conventional 2D2C-PIV two subsequent images of the flow, whichasiged with small
particles, are recorded using a laser-light section and a high-spePec@@era (see Fid3.4,
left). The recordings are fractioned in small subareas, called “inteticmgareas”, typically of
size16 x 16 or 32 x 32 pixels’. The local displacement vectopz, Ay)? from one image to the
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Figure 3.4: Left: Typical setup of a 2D2C-PIV-systénRight: The images are partitioned into regular
interrogation areas. Via cross correlation a displacemeattor (\x, Ay)T is estimated.

next is determined by means of computing the 2D-cross-correlation function

K L
— Z Z 91(4,7)g2(i + x, 5 + ), (3.3)

=—Kj=—L

for all possible(z,y)”, and afterwards finding its maximum, whefer .max ¥r—max)’ =
(Az, Ay)T. Here the interrogation windows are of sig&k + 1) x (2L + 1) pixels’. Be-
cause Eq.3.3) is aconvolutionof the interrogation windowg; and g», we can use Fourier’s
theorem to reduce the expression to a pointvastiplication of its Fourier-transformg; and
go: .

R(z,y) =g1+xg92 o—* R(z,y) = g1 g2
Unfortunately Eq. 8.3) will yield different maximum correlation values for the same degree of
matching, because the function is not normalised: Samples with brighter panades will pro-
duce higher correlation peaks than windows with weaker particle images ahormalization
procedure is applied as follows:

Yo ol (i 3) = pallga (i + 2,5 + y) — pala, y)] .
\/Z Lolgr(iy3) — ]2 3200 S olg2 (i ) — pa(a, y))?

Herey; is the average of the template and is computed only once, while y) is the average
of g» coincident to the templatg, at position(z,y) and has to be computed at every position
(x,y). Equation 8.4) cannot be solved in frequency domain easily, so that nowadays noeghalis
cross-correlation is done in spatial domain rather than ordinary carsslation is performed in
frequency-domain, though it is computational more expensivef(f! et al, 1999).

(3.4)

Problems of PIV

The simple cross correlation scheme, naively implemented, leads to somdt@fionhich one
tries to overcome:
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3 Fluid Flow Analysis

Spurious vectors Due to the statistical nature of PIV, there may be “false” maxima in the
cross correlation function. Using a confidence measure, like the raticedftlest to the
second tallest correlation peak, one can detect these outliers and réraove

Velocity gradients  Using cross-correlation for motion analysis we assume, that all particles
within one interrogation area have moved homogeneously from one frame tahhr. If
velocity gradients are present in the flow, this is obviously not the casevdiome this
problem iterativewindow-deformatiormethods have been developed. In each iteration the
image area within the interrogation window is deformed according to the dispétdield
calculated in the previous iterationlang et al. 19935h].

Out-of-plane loss-of-pairs  Applying a 2D-laser laser light section to a 3D flow, particles
may enter or leave the light sheet. This is a principle problem of 2D-PIV andoaly be
overcome by thickening the light sheet or using a 3D-technique.

In-plane loss-of-pairs  Due to the fractioning in interrogation windows, there arise imaged
particles, which are missing in one of the recordings. By applyimgralow shiftingtech-
nigue, we are able to reduce the resulting bias{terweel et a/1997).

Peak locking When the imaged particles become too small, the displacements tend to be bi-
ased toward integer values. Window shifting helps to reduce the effépieak locking”
[Gui and Wereley2003.

We have summarised some “design rules” in table

PIV beyond 2D2C

There have been proposed many approaches to overcome the 2D@&ioasof the upper
scheme. In the following we will discuss the most important of them:

Time resolved PIV In TR-PIV the analysis does not restrict itself on evaluating an image pair,
but by continuously recording images at a high frame rate, evaluation t@attiorsary pro-
cesses becomes possible. Moreover, by using temporal informationex higturacy can be
achieved Hain and Kahler2004.

Stereoscopic PIV  Here two cameras record the same area in a single laser light section, so that
for each interrogation windows two 2C vectors can be calculated. Usinmforsnation, we
can calculate all three components of the velocity vector, if we have adgkivewledge
about the system geometry by calibration.

Multiplane stereoscopic PIV  Additionally to the 3C vectors, by subsequently scanning the
target volume in different depths, a voluminous recording can be achieve
[Kahler and Kompenhan200d.

Photogrammetric PIV A voluminously illuminated region is recorded by at least three cam-
eras from different directions. This allows for reconstructing the dagi@D positions. Ve-
locity estimation is performed by cross-correlation of “interrogation volurfieshimpf et al,
2003.

Holographic PIV  Coherent light stemming from a laser illuminates a 3D target volume. The
holograms are recorded on photographic film, which can be read out wfitbrent light
beams [Hinsch 2007. Due to its high demands of hardware, the application of holographic
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3.3 Image Based Methods

Table 3.1: Design rules for 2D2C-PI¥

Particle diameter 2 to 3 pixel

Particle density greater than 6 per interrogation window
Maximum displacement in-plane  1/4 of the width of an interrogation window
Maximum displacement out-of-planel/4 of thickness of the laser light sheet

P1V is limited to relatively simple flow configurations, so far.

PIV with color-coded light-sheets By using two or more color-coded light-sheeisicker,
1996 Ruck 2003, we can illuminate the whole 3D field at once instead of subsequently
scanning the volume. This has the advantage, that a higher frame rate aahiéved. Dis-
advantages are artifacts, which occur at overlappings of particlewavetlength dependent
scatter behaviour of particles (Mie-effects). The latter can be avoigladibg a non-coherent
light-source.

3.3.2 Particle Tracking Velocimetry

In contrast to PIV, particle tracking velocimetry (PTV) does not establigshetations between
patterns, but tries to find correspondences between segmented pa@ielssical PTV consists
of following three tasks:

Segmentation of the particles  Generally the particles have to be separated from the back-
ground and from each other. The segmentation procedure is adilressetion7.2in more
detail.

Feature extraction Relevant features are the particle position, which can be estimated by cal-
culating the weighted mean of the coordinates of a segmented particle (“oénass”), the
particle’s maximum or mean gray value, the particle’s velocity, which can loaleted using
the method of optical flow for instance, or shape descriptors like higher misme

Temporal correspondence analysis  Goal is, to establish a unique correspondence between
a particle in the first frame and one and the same particle in the next frame.
This can be done using the features of the particles. The simplest thinkaleaah is
the “nearest neighbour searchidring 1996 Perkins and Hupt1989 use the feature of
position only, but by incorporating other characteristics it is possible to lim$élaech range
for the corresponding particlé[ar, 2005.
Many algorithms make use of the history of the particle. Some of them implicitly assume
smoothness of motion and make use of statistics like the Kalman filteich and Bishop
1999 or its generalization, the particle filteR[stic et al, 2004.
A method based on global optimization is variational PTV, proposeé&hbyifiau et a] 20054.
Here a data term, which incorporates the local information of the neariggthmair-solution,
is supplemented by a smoothness term, similar to differential global optical fahwitpies
in section4.2.1

2Figure and rules from http://www.sla.tu-darmstadt.de/lehre/smt.ger.lctonepiv.pdf (Tropea et al.)
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3 Fluid Flow Analysis

Three dimensional PTV

Most of the 3D-PTV approaches work photogrammetrically, i.e. a flowmelis recorded by
two, three or more cameras from different viewpoints. One exception im#ikod proposed
by [Willert and Gharih) 1997, where the third spatial dimension is estimated by applying depth
from focus in a voluminously illuminated region.

In three dimensions, the problem of correspondence analysis carkiedtactwo ways:

e The stereo-correspondence problem (i. e. to identify one and the satiwepin the record-
ings of the various cameras) can be solved making use of the epipolar iggoBerause of
the similarity of the imaged particles, classical stereo won’t work, so thatst teree cam-
eras are needed. Once the 3D-coordinates of the particles are ekttantporal correspon-
dence analysis is performed using the techniques from above, geeétali3D [Viaas et al.
1993 Mallik et al.,, 1993.

e Standard 2D-PTV is performed to obtain trajectories for each of the elifferiews. In a
second step, these trajectories are matched using epipolar geometrjiwbl@@meras are
sufficient, because generally the trajectories contain enough “stricsaréhat they can be
matched unambiguoushzhgelmann200G Klar, 20045.

3.3.3 PIV versus PTV

PIV and PTV are two fundamental different approaches. Sevefareéiift algorithms, both from
the PIV and from the PTV type, have been compared to each other in thegeational “chal-
lenges”, so fat[Stanislas et 812003 2009. [McKenna and McGillig200] compared PTV and
various PIV techniques regarding efficiency and accuracy.

One of the results was, that PTV is clearly complementary to PIV in sevgrates

e To achieve good precision, PIV needs a certain minimum seeding denstiafde3.1). This
fact is in contrast to the requirements of PTV, where the probability for midmatncreases
with the seeding density.

e PTVyields Lagrangian trajectories, whereas PIV provides an Eulegetorfield. It depends
on the application, which output is better suited. Moreover, PTV can defsigpwer, when
whole image-sequences are present; most PIV-algorithms are design@adde-pairs.

e Generally PTV yields a higher resolution, because a vector is assignadtigarticle. Un-
fortunately, data lies on an irregularly spaced grid, so that interpolatingettier field to a
regular grid this advantage is attenuated to a certain extent.

e PTV has clear advantages at locations, where high velocity-gradienggesent (for exam-
ples at boundary layers). Simple PIV relies on the assumption of a honmgedesplace-
ment of the particles inside the interrogation-window from one image to the Tilexs it can-
not resolve these kinds of flows accurately. Sophisticated PIV-algoritbrgs containing it-
erative window-deformation) alleviate but cannot negate this point ofismtifStanislas et a/.
2009.

Attempts have been made to combine the advantages of PIV with the advantd@€¥ o

3The results of the third Int. PIV Challenge in Pasadena, USA, haveait pablished, so far (2006). For further
information, see http://www.pivchallenge.org
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3.3 Image Based Methods

[Bastiaans et g1200Z, Cowen and Monismithl 997 Keane et al.1999. These hybrid methods
use PIV as an initialization step for a subsequent PTV analysis. The pgenmipcedure of
“superresolution PIV” is similar to our approach in sectioh.
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4 Optical-Flow Methods in Fluid Flow

Analysis

4.1 Introduction

Optical flow can be considered as the distribution of apparent velocitieweément of bright-
ness patterns in an imagedrn and Schunkl981]. More precisely the optical flow is an approx-
imation to thetwo-dimensionamotion field of an image sequence. We obtain this motion field
by projecting the three-dimensional velocities of object points in three-dimmgisspace onto
the two-dimensional image-plangdrron et al, 1994.

In estimating the optical flow and in determining motion fields from the estimated ofitical

there arise a number of peculiarities and difficulties, which have to be tat@adnount:

There may be regions in the images, where no motion can be determined (Wa#gob-
lem”) or where only the normal velocity component can be determined (tajegoroblem”).
Figure4.lillustrates these situations. In order to obtain a dense flow field an interpelation
or a regularization-technique has to be applied. This is an intrinsic problemptical-flow
computation, and it is addressed throughout the chapter.

Brightness changes have to be taken into account. lllumination change® laadisinter-
pretation of the optical flow field. This can be nicely demonstrated by camsida rigid
sphere with homogeneous surface reflectance, spinning aroundsahraxigh the center of
the sphere (Figd.2). If the surface is not textured and the illumination stays constant, the
optical flow field would be zero over the entire sphere. If a directional lgglurce moves
around the same sphere the illumination changes would be falsely attributed to wifdtie
sphere surface. In many situations we can apply physical models otrgghvariations to
deal with brightness changes. We address this problem in sec8oh

There may be regions in the image, where the motion is non-translational. i&kpéar
applications in fluid dynamics the non-rigid behaviour of fluids has to be taeraccount.
For these situations appropriate models have been developed, explaseetion.3.1

In the presence of motion discontinuities, reflexes or corrupted pixenrised flow field
models fail. Using a robust approach described in sectiBrBwe can determine a correct
motion field even in these situations.

For large displacements the temporal sampling theorem may be violated. -Goéirsetech-
niques applied on bandpass-filtered image-sequences help to cope wiotileam. A sim-
ple coarse-to-fine algorithm is presented in sectich?2

Optical flow methods can be classified as belonging to one of these groups:

Differential techniques  These methods compute image velocity from spatio-temporal inten-

sity derivatives.
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a

Figure4.1: Black wall and aperture problem. At the corners of the mowqgare, a unique velocity can
be estimated. On the edges of the squares only the normaloc@npof the velocity is determinable. In
the center the motion is completely unconstrained (frémmpncellj 1993).

Frequency-based techniques  These methods use energy/phase information in the output of
velocity tuned filters.

Tensor-based techniques The local image brightness distribution can be represented as a
structure-tensor, from which we are able to deduce the motion field.

Though the attempts to estimate optical flow look very different at first glast®f these
approaches are closely relategirfioncell; 1993 showed, that differential techniques are equiv-
alent to frequency-based techniques, provided that the derivatiekfilters are chosen appropri-
ately. The structure-tensor can be constructed based on operatioaspatio-temporal domain
[Jahng2007, but it can also be obtained by linear combinations of outputs of filters quérecy-
domain [Granlund and H.1999. [Jahne et a).1999 and [Barron et al, 199 provide a well-
founded overview on the field of optical flow estimation, and give a quangétabmparison of
the results. Though the method of optical flow is quite common in computer visioaxteet of
application in experimental fluid dynamics is relatively small, so far.

In the following we will provide a review of the optical flow methods classifiedva) and
we will show, how to cope with the difficulties listed above. We conclude thiptehavith a
literature review.

4.2 Optical Flow Methods

4.2.1 Differential Techniques

The general task is to determine the optical flow figld= (f1, f2)T = (dz/dt,dy/dt)T from
the gray values of an image sequence. In the simplest case it is assuniete theay value
g(x,t) along a pathe(t) remains constant for all times:

g(x(t),t) = c. (4.1)
By taking the temporal derivative on both sides and applying the chairweilget:

dg _dgde  Dgdy Do _

dt*%dﬁa_ydfrat*o'
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3-D scene

3-D scene ‘

optical flow field
optical flow field

Figure4.2: lllumination changes and optical flow. Left: Spinning sghesith fixed illumination leads to
zero optical flow. Right: Moving illumination source causgsparent optical flow field without motion of
the sphere (fromJahne et al.1999).

Writing down in vector notation usin§’g = (9g/0x,9g/0y)T this yields thebrightness
constancy constraint equation (BCCE)

(Vo) ' f+g =0. (4.2)

Because the partial derivatives = 0g/0x, g, = 0g/0y andg; = d0g/0t are accessible by
application of a derivative filter, we obtain one constraint for the two-camept flow-field. Deal-
ing with two unknowns in one equation we have an ill-posed problem. Grdphgpmken the
solution of Eq. £.2) determines dine, containing all vectors, which are possible candidates for
the true optical flow vector (Figt.3). Without further assumptions only the flow perpendicular to
the constraint line can be estimated. This problem is commonly referred apehere problem
of motion estimation.

Solving Eq. ¢.2) for pointsxy in a sufficiently large neighbourhood aroumdwe may get
other constraint lines, so that we can determine the true optical flow vegtirehintersecting
point of the constraint lines. But we must not choose the neighbourtomoldrge, because we
can’t guarantee, that the motion is constant in a larger area. How lardeotse the neigh-
bourhood is referred as tlgeneralised aperture problenOne way to weaken the assumption
of constant motion is finding a local parametrization of the flow field, so thadlemand local
coherency instead of local constancy. This leads us to the secorndatoinsf differential optical
flow estimation, thespatial coherence constraint

The concept of optical flow originally comes from hydrodynamics. Gedyes “flow” over the
image plane, like volume elements flow in fluids. In hydrodynamics the princigderadervation
of mass is formulated by the continuity-equation, which reads in its differciotiad (compare
Eq. 2.9): 5 5
a—i +V(up) = a_f +uVp+ pVu =0. (4.3)

The three-dimensional velocity of a fluid element with density in three-dimensional space
is apparently analogous to the two-dimensional optical ffovf a gray valuey in two-dimensional
space. The BCCE Eqg4(2) corresponds to the continuity-equation E4.3, if we drop pVu.
Why do we have to drop the last term? Consider an object moving away frematinera. In

37



4 Optical-Flow Methods in Fluid Flow Analysis
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Figure 4.3: lllustration of the aperture problem: constraint line defthby Eq. 4.2). The normal flow
vector f | is pointing perpendicular to the line (fromlfihne et al.1999).

this case the total brightness chanye’dx of a gray value on a path(t) is zero, because the
irradiance in the image plane remains the same for an object moving pergdantticthe image
plane. Because botj) andVg are zero, we can apply Egt.Q). But we cannot apply Eq4(3),
because the additional ternVu resp. gV f is not zero, because the motion is not divergence
free.

However, under certain conditions the use of a two-dimensional continuigtien instead of
the BCCE can be motivated. This is the case, if we have to deal with 2D transteiftaages
of a 3D fluid flow, so that the 2D (imaged) flow is the density weighted aveog¢jee 3D flow
[Corpetti et al, 2002, Wildes et al, 200(. The constraint on the data becomes now

9z f1+ gyfo+9f1+9fo+ g =0. (4.4)

Local weighted least squares

Assuming the optical flow to be constant within a small neighbourhood;ds and Kanade
1987 proposed a local method to estimate the optical flow. Goal is to minimise the square
left-hand side of the BCCE Eg4 (9) in a local neighbourhood’ aroundz, which is given by the
weighting- (or window-) functionuv(xz — «’):

o0

f =arg m;n/ w(x—2') (Vo)  f + gt]2 dz’. (4.5)

The weighting function is given in the simplest case by a box-filter (all poirttsameighbour-
hood are weighted equally), but better results can be achieved usingraidirilter. Standard
least squares minimization (setting the partial derivatives of the functiatfat@spect tof; and
f2 to zero) yields the equation system

(9292)  (929y) fi] B (gugt)
[ (929y)  (9y99) ] [ f2 ] B [ (949¢) ] (4.6)
~——
A f Y

with the abbreviation

(a) = /OO w(x — x')adx’.
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4.2 Optical Flow Methods

The solution of Eq.4.6) is given by
f=A",
provided the inverse ofl exists, i. e. the determinant &f is unequal to zero:

det A = (g29z) <gygy> - <9mgy>2 # 0.

This is not the case, if all spatial derivatives in the local neighbourlamedero (“black wall
problem”), or if all gradients in the local neighbourhood point into the saimeetion (“aperture
problem”).

Global constraints

Instead of assuming local spatial constancy (and therefore colegiepnatroducing a window-
function we can demand global spatial coherence. One can determingtited ow by mini-
mizing the BCCE Eq.4.2) over the entire imag€. To make the problem well-posed an addi-
tional term, the regularizing spatial coherence constrgfdt|, is introduced:

~

f—argmin [ [(V9)"f + 0" da + 22 3. @.7)
o Ja

The parametek controls the influence of the spatial coherence teforf and Schunkl981]
propose global smoothness for the spatial coherence constraint:

I3l = [ I9A @ + 9 () ds @9
There are other suggestions ffr? ||, which may be better suited to special kinds of problems

(e.g. fluid flow analysis). To solve the minimization problem we use a varidtaypyroach.
Thus, the integral equation Edtl.{) can be solved by a system of Euler-Lagrange-Equations:

0 0

Lfl - %Lflac - 8_ny1y = 0
0 0

Lf2 - %Lf&v - a_nyQy = 0

The integrand of Eq4(7) can be identified with the Lagrange-function:

L(f1, fo, fra: frys fows foy) = (9o fr + gyfo + 90)° + N (fie + fiy + f2u + [3,)

L plugged into the Euler-Lagrange-Equations yields

(V9 f + 9090 = A2 ((J1)aw + (f1)yy)) = 0
((Vg)Tf + gt)gy - Az((h)m + (f2)yy)) = 0,
which can be combined to one vector-equation:
(V)" f +9)Vg = N2V f =0. (4.9)
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4 Optical-Flow Methods in Fluid Flow Analysis

For the case, that we have a high spatial gray value-variation (that riggisdarge), the first
summand dominates in the equation, and the optical flow is calculated using the. BOCif
we have the case, that we are suffering from a “black wall problem” piead flow is calculated
from the last summand, which states the Laplacian equ&tigf = 0.

The discretisation can be performed using finite differences or finite etsm@&mce guaran-
teed, that the problem is well-posed, there exist a number of minimisation sshigm&auss-
Jordan elimination or Gauss-Seidel iteration, which can be applied.

4.2.2 Frequency-Based Techniques

The concept of image sequences as spatio-temporal images allows omdyseanotion in the
corresponding spatio-temporal frequency domain (Fourier domain).g(ae t) be an image
sequence of any pattern moving with constant velocity, causing the optisaffat any point in
the image plane, the resulting spatio-temporal structure can be described by

g(w,t) = g(x — f1). (4.10)
The spatio-temporal Fourier transfogjtk, w) of equation Eq.4.10 is given by
gk, w) = g(k)o (k" —w), (4.11)

whereg(k) is the spatial Fourier transform of the pattern, @afd denotes Dirac’s delta dis-
tribution. This equation states, that the three-dimensional Fourier specfrarpattern moving
with constant velocity condenses to a plane in Fourier space. The plama¢ian in Fourier do-
main is given by the argument of the delta-distribution in Egl{) and can be considered as an
alternative formulation of the BCCE E¢.Q):

w(k, f) =k f. (4.12)

Taking the derivatives ob(k, f) with respect tok, andk, yields both components of the
optical flow:

.f = ka(k, f)

Quadrature-filter-techniques try to estimate the orientation of this plane by wsiocity tuned
filters in the Fourier-domain. A quadrature-filter-pair is a real frequesstective filter together
with its imaginary Hilbert-transform. Its transfer function can be written dowroimplex nota-
tion g(k).

The most common quadrature-filter-pair is the Gabor filter, which selectstaircepatio-
temporal frequency region with a Gaussian window centerd&@tvy). Its complex transfer
function is

Gk, w) = exp (—\/(k ~ko)2 + (w — wp)20 /2) . (4.13)
From this the spatio-temporal filter mask can be computed using the shift4tiveore
G(m, t) = W eXp[Z(kan + wot)} eXp |:— <T>:| . (414)

By applying this filter for different parameter sets (v) on the original spatio-temporal image
we get estimates of the spectral density (or energy) of the corresgppeliiodic image structure
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4.2 Optical Flow Methods

Figure 4.4: Left: A simple neighbourhood in 2D. The grey values dependnancoordinate in direction
of the unit vectorn only. Space-time diagram with one spatial component (cgntgth two spatial
components respectively (right) (fromdhng 1).

belonging to these parameter sets. Ideally, for a single translational mogaesiponses of these
filters are concentrated about a planekn)-space, so that we are able to get the optical flow
by a least squares fit to the data. Another way to calculate the optical floyvasristructing a
structure tensor composed of the filter outputs(Een; ).

4.2.3 Tensor-Based Techniques

Optical flow estimation can be formulated as orientation analysis in a three-donahspatio-
temporal image. The concept of orientation analysis of a pattern in 2D4Fideft and center)
can be generalised to three dimensions (FEid. right). Any moving grey value structure causes
inclined patterns. Goal of tensor-based optical flow estimation is to find teetation of these
patterns, provided that there exist any oriented patterns.

Letr = (r1,72,73)7 be the vector pointing into the direction of constant brightness within the
three-dimensionatt-domain. Once estimatadwe get for the optical flow:

F=(hfo)' = T—lam,m)T (4.15)

r is pointing orthogonal to the spatio-temporal gradient ve¥igyg = (gx,gy,gt)T. There-
fore the scalar product betweerandV ,; has to vanish:

(9o 9y 9¢) - (r1,72,73)" = garsfi + gyrafo+ girs =13 (V) f + ] =0

We arrive at the well-known BCCE Eg4.Q). Instead of the approach ofi] ]

], where we minimised the BCCE in a spatial neighbourhood here we minNhise-  in a

spatio-temporaheighbourhood/, which is characterised by the window-functiefz — «’, t —
t').

7 = arg min/ w(x—x' t 1) [Vag(a',t) - r]2 d'dt’. (4.16)

T —00
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Under the assumption of constant(that is, constany’) within U, we can reformulate the
minimisation problem to

7 = arg min <[thg : r]2> = arg min [rT <thg : thgT> r] =argminr? Jr, (4.17)
using the abbreviation

o
(a) = / w(x — 't —t)adx'dt’. (4.18)
—0o0
J with its componentd,, = (g,g,) is the three-dimensional symmetsitucture tensowhere
gp,p € {z,y,t}, denotes the partial derivative along the coordinate
The structure tensor can be transformed into diagonal shape by mesotatafn. Thus the
principal axes of the structure tensor can be found by solving the Eatieproblem

Jr = Ar. (4.19)

The Eigenvector to the correspondingnimal Eigenvalue denotes the direction of constant
brightness in thet-domain, from which the optical flow can be calculated according to£ 5.
From the rank of the structure tensor we can deduce the type of motiosta®obrightness resp.
“pblack wall problem” (rankJ) = 0), spatial orientation and constant motion resp. “aperture
problem” (ranKJ) = 1), distributed spatial structures and constant motion ([&nk= 2), dis-
tributed spatial structures but no coherent motion ((dnk= 3). The structure tensor technique
is not only able to give an estimate for the optical flow, but is also able to ipreseonfidence
measure which states something about the quality of the estimate. For theidisacusable4.1,
we order the Eigenvalues accordinghtp> A\, > A3 > 0. The corresponding Eigenvectors have
the form ofr; = (riz, riy, 7it) T -

A detailed analysis of the structure tensor technique and its practical ampili¢a optical
flow computation can be found infhne et a).1999. The structure tensor technique can be
formulated as a solution of the total least squares (TLS) problem in a moexajavay (see
appendixA).

Implementation of the structure tensor

The expression for the structure tensor in EQlQ) is written explicitly:

using the abbreviation Eg4(18).

The implementation of the structure tensor can be carried out very efficnsiandard image
processing operators. Identifying the convolution (E98)) with a smoothing operation (for
example the isotropic Binomial operatB), and the derivatives in theh resp.qth direction with
edge detectors (for example the optimised SobglandD, [Schary 200(]), we can construct a
structure tensor operator:

Tpq = B(Dp - Dy),
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4.3 Improvements of Optical Flow Determination

Table 4.1: Classification of the Eigenvalues of the structure-tens@ spatio-temporal neighbourhood

condition rankJ) comment and calculation of interesting quantities

AM=X=A3=0 0 There is no variation of the grey values. We are in a constant
neighbourhood, where we are not able to reconstruct anydfind
optical flow.

AM>0A=X=0 1 The grey values vary in one direction, which is characterisy

the only non-vanishing Eigenvector. Because we suffer fitzan
“aperture problem”, we can calculate only the normal optica
flow: £, = —ry/(r3, + r%y)(rlw,rly)T.

A1, A2 > 0,23 =0 2 The grey values vary in two directions, and are constant in a
third direction, which is characterised by the Eigenvedier
longing to the zero Eigenvalue. Thus the optical flow is here:
f=1/r3(rse, r3y)".

A1, A2, A3 >0 3 The grey values vary in all directions. The optical flow catnn
be calculated with this simple model.

where- signalises a pixel-wise multiplication.

Because smoothing in general results in a loss of information, the resultaaiiying the
structure tensor operator can be stored in a more compact sequendbelaiginal data. In
practice this can be handled by downsampling the resulting sequence byoadatwo, for
instance. In order to find a procedure to perform the principal axisfoamations efficiently,
we bear in mind, that we deal with very small, symmetric, matrices. These typetaican
be covered by using the numerical method of Jacobi transformations tthérieigenvalues and
EigenvectorsiPress et al1997.

4.3 Improvements of Optical Flow Determination

In this section improvements of determining optical flow will be presented.eTinggrovements
will help to solve the difficulties mentioned in the introduction. Each improvemenbeapplied
to more than one (but not necessarily to all) methods of determining optical flow

4.3.1 Parameterisation of 2D-Optical Flow fields

As mentioned in sectiod.1 the standard local optical flow methods assume, that the optical
flow f(x,t) is constant within the local neighbourhoédaroundz. The optical flow may be
expanded to a first order Taylor series in the vicinity®f, to) [Farneback200d:

Ou/dx  Ou/dy > ot ( O/ ot

F(x,t) = f(xo,t0) + ( v/ox  dv/dy ov /ot

> t=t+ Ax + at .
The BCCE supplemented by this parameterisation yieldextended brightness change con-
straint equation (EBCCE)

(Vo)r'(t+ Az +at) + g =0 . (4.20)

Geometric transformations of the local neighbourhood may be computedtfimeomponents
of the matrixA = (a;;), like

43



4 Optical-Flow Methods in Fluid Flow Analysis

Figure 4.5: Elementary affine transformations of a rectangular surfatement. From left to right:
rotation, dilation, shear, stretching (fromifihne et al.1999).

rotation:rot(f) = du/dy — Ov/0x = a1 — a2,

dilation: div(f) = 0u/0z 4+ 0v/dy = a1 + as,

shear: shf) = 0u/dy + dv/0x = a2 + as1,

stretching: stff) = du/dx — Ov/dy = a11 — azs.

For a graphical illustration of elementary affine transformations seetFgFor a more general

treatment of parametrization of 2D-optical flow fields in the context of the taeg of continu-
ous transformations, see appenBix.

4.3.2 Coarse-to-Fine Techniques

The temporal sampling theorem states a theoretical upper limit for the magnituiisptace-
ments, which are able to be analysed. Consider a moving sinusoidal pdtieavelength).
From Fig.4.6it is evident, that only displacements up to the magnitudg /@f are unambigu-
ously determinable. In this case the optical flow can be estimated by the minimal rinten
cated by the solid arrow in Fig..6. Analogue to the spatial sampling theorém < \/2 we can
formulate a temporal sampling theorem:

A<l _T_ T (4.21)
2 w ETf
w can be expressed in terms of wave-numbkeaind optical flowf via the plane equation
Eqg. @4.12. Apparently the maximum determinable displacements are limited by the magnitude
of the highest spatial wave-numbers, which are contained in the image.
Coarse-to-fine-techniques help to estimate large motions. By smoothing the \iveagjan-
inate the high frequency content of the images, so that we are able to estiowtesa motion
field. Then we “undo” the motion by transforming the image back by means cdstimated
coarse motion field. Now we can use the higher frequency content to estnfigier motion
field. Added to the previously coarse motion field the fine motion field provideera accurate
approximation to the real motion field.
This procedure can be improved in several ways:
If an estimation on a coarse level is incorrect, the fine-level estimate hdsanoe of correct-
ing the errors. To fix this, we must have knowledge of the error in thesedarel estimates.
That suggests working in a probabilistic framework. Indeed, a “statligeo equation” and a
“measurement equation” can be proposed similar to Kalman-filtegngdgncell; 1993.
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Figure4.6: lllustration of the temporal sampling theorem for a sinwsdipattern of wavelength (from
[Jahne et al.1999).

For more accurate computation additional filters can be introduced, whiehtlsdandwidth
in smaller pieces than these given by the dyadic pyramid structure. Thitsresa combined
multi-resolution and multi-scale approachi[hnau et a).20054.

The motion can be distributed very irregularly over the image plane. In thesdiens a
selective multi-resolution approach is suggested{en and Herlin1999.

4.3.3 Robust Estimation

There are situations, when parametrised flow field models fail to determingticaldlow cor-
rectly: These include the presence of multiple motions, like motion discontinuititiesiadaries
(occluded multiple motions) or different motions being overlaid (transpareitiiiple motions)
but also the presence of reflexes or corrupted pixels.

Least squares estimation tries to minimise a quadratic objective fungfien (compare
Eq. @.9):

[e.9]

f=arg m;n/ w(x —x')p [(Vg)Tf + g da’. with  p(z) = z? (4.22)

— 00

The influence function)(x) of the objective function is defined as the derivativepofvith
respect tar:

Y(z) = o (4.23)

In the least squares case the influence of data points increases linednyithout bound,
so that outliers, which do not fit to the model, like corrupted pixels, haveeatgnfluence and
distort the estimation of the correct optical flow dramatically. This is due to ttetfaat by using
a quadratic objective function we inherently assumed, that the residoat ere Gaussian and
independently distributed within the neighbourhdod

To achieve a more robust parameter estimation we have to replace thetiuatnjesctive func-
tion by a suitable other function, which is referred taM®stimatorin statistics. The influence
function of an M-estimator has to be redescending, i. e. it has to appzeaclior large residuals
after an initial increase for small values:¢man and McClure 984 proposed a commonly used
M-estimator (Fig4.7), which reads together with its influence function

x? 2xo

o+ 22 1/1(3370) = (0__1_1;2)27 (424)

plz,0) =

whereo is a scale parameter.
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p(x)
0.8

0.6 0.2

0\2

Figure 4.7: An example for an M-estimatora Geman and McClure-norm.b Its derivative (from
[Jahne et al.1999).

Given a robust formulation, there are numerous optimization techniquesathdie employed
to recover the motion estimates and the most appropriate technique will depéme garticular
formulation and choice of thg-function. For detailed information about robust estimation the
reader is referred taack and F.1994.

4.3.4 Dealing with Brightness Changes

In many situations the constraint of brightness constancyZ#). i€ violated. In some cases we
are able to find a physical model for the time-dependent brightness vari&towe can estimate
both the correct optical flow fielgd and the parameteks of the underlying physical process.
The approach offaussecker and Flggi001] constitutes an extension of the brightness change
constraint equation to parameterised models of brightness variation, @davidt these models
are linear ina or can be linearised by a Taylor series expansion.

In section4.2.1we have stated that for the case that the brightpésst) is constant along a
path(¢) for all times, we are able to derive a constraint on the optical flow. Nowllwesghat
the brightness along the path may change according to a time-dependenepaised function
h(go,t, a):

g($(t),t) = h(g()atva)v (425)
wheregy = g(x(to), to) denotes the image at tintg, anda is the Q-dimensional parameter

vector for the brightness change model. The total derivative on botk sfdeq. @.25) yields the
generalised brightness change constraint equation (GBCCE)

(V)" F + 0= Shigo.t,a) (4.26)

which reduces to the well-known BCCEI/ifis constant.
Assuming smoothness in the vicinity @f= 0, h can be expanded by a Taylor series:

on

: 4.27
Dar (4.27)

Q
h(go,t, @) = h(go, t,0) + > ax
h=1

Without loss of generality, we choose a parametrization suchatika produces the identity
transformation:h(go, t,0) = go. By differentiating Eq. 4.27), and assuming;, to be constant
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through time within local windows of temporal support, we get an expregsiothhe temporal
brightness variation:

Q

d d oh o dh
ahgo,ta Zakdtf)a kzl o dt = (Vadh/dt)Ta

As h is analytic ina, we could exchange the order of differentiation. We have reachexigiase
sion fordh/dt, which is basically a scalar product of data vec@ydh/dt and parameter vector
a, so that we can estimate the parameters by using a procedure such asastatjieres (see
appendixh).

In the following some models of brightness variation are presented:

Linear source terms  When sources are present, the brightness depends linearly orhtine:
qt, whereq denotes the source strength. The GBCCE becomes

(Vo)' f + g =q.

Exponential decay In relaxation processes the time-dependent brightness can be modeled by
an exponential decay: = gy exp(—«t), wherex denotes the relaxation constant. By differ-
entiatingh with respect ta the exponential function reproduces itself, so that we can write
for the GBCCE:

(Vo)' f + gt = —rg. (4.28)

Diffusion process: Fick's second law (see ER.Q)), which states, that for isotropic diffusion
the time rate of change of the gray value is proportional to its Laplacian tellwhes, the
GBCCE looks like in this case, where the diffusion constans the proportional constant:

(V)" f + g« = DV?g.

You can combine these physical models of brightness variation with all eliffied or tensor-
based techniques: You have to replace the BCCE by the GBCCE, and the ratiomisas to be
carried out over the optical floyf andover the parameteis simultaneously.

4.4 Literature Review

Each of the optical-flow methods (differential, frequency-based ootdmased) presented in sec-
tion4.2was adapted to evaluation in the field of fluid mechanics. The term “opticdl floggests
its application to image sequences dealing with continuous tracer, like heat@egrdration. In-
deed, most of the literature addresses continuous tracer. On the atideirhpractice fluid flow
analysis is performed to a great extent particle-based (see ct&@ptehich does not prevent
optical-flow based methods from being applied to. Examples can be foune litettature.

4.4.1 Differential Techniques

[Ruhnau et a).20051 applied the method offorn and Schunkl987] (see Eq. 4.7)) to images
recorded with the conventional PIV-technique, described@.t1l They used a coarse-to-fine
strategy, as in sectioh.3.2 The same authors replaced the global smoothness constraint by a
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prior, relying on the Stokes equatiorik(jhnau and Schngr200€q) and on the vorticity transport
equation (Ruhnau et a).20049).

Instead of using the BCCE, other authors used the 2D-continuity equaiiai.B as model.
This was justified by the special kind of recording technique (like transmétameagery in
[Wildes et al, 200() or data (like satellite imagery inJorpetti et al, 2007). The latter used a
second-order div-curl-regularisation scheme instead of just assigitibhgl smoothness. More-
over, they applied their scheme to PIV-sequencesi(petii et al, 2009).

4.4.2 Frequency-based Techniques

[Larsen 1999 applied the local energy distribution to satellite images using the frequesszdb
techniques presented H2.2 They used the optical-flow estimates together with confidence
measures as an input for a regularization method based on the Markargonn field approach.

4.4.3 Tensor-based Techniques

[Jehle et a].2004 analysed the motion of sand grains in a geotechnical application, retosde
ing rigid endoscopes. Under certain conditions, the grains can behave flilkid. [Garbe et a).
2009 estimated both velocity vector field and heat flux simultaneously in image seegien
recorded using infrared thermography. They expanded the struetser techniquei(2.3 by a
model including brightness changes3.4.
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5 Method of Two Wavelengths

In this section we will describe the basic concepts of our measuremenideehnit is based
on retrieving 3D information from 2D data — the intensity (grey value) beingsthace of the
depth (i. e. the coordinate perpendicular to the image plane). For illustragoig.5.1, left and
Fig. 5.2 left. In order to do this, we have to consider two tasks:

1. The intensity distribution provides a depth map, taking into account the mdmitween il-
lumination source, object and camera (spectral absorbance), therjiesf the illumination
(spectral characteristics), the attributes of the object (e.g. reflestabgect size), and the
camera characteristics (e.g. linearity of the camera sensor, pixel Sobematically we
write:

glz,y) — z(z,y) i.e. RExR—-R*xR

2. Once having obtained a depth map, we don’t have the whole 3D-informafins may be
because one part of the object may be occluded by another. Unlikeéio sision, we acquire
images of the object only from one perspective, so that we have n@eharreconstruct
occlusions directly. But in some appropriate cases, we can infer ther@Eige from using
spatio-temporal information. For example, we assume that the objects movéhmalde
write:

2(z,y) — (x,y,2) i.e. R®xR —R3

This chapter deals exclusively with the first task: The reconstructionddph map using
brightness data. How to incorporate higher level properties of the florgctanstruct the whole
3D-information, is addressed in sectiorb.

5.1 Method of One Wavelength

The precursor of our method originally was proposedibyijacng2009 in the context of bioflu-
idmechanics. To distinguish it by our method we will refer to it asrttethod of one wavelength
Her intention was, to estimate the wall shear rate, which influences the pespairthe fluid
(for the medical background we refer to sect#n.1). For the calculation of the wall shear stress,

3D information about the flow field near the wall must be at hand. Theredameasurement
technique, capable to acquire and process 3D-data has to be found.

Like in other tracer-based flow measurement methods, small, reflectiménfarticles are
supplemented to the fluid. The tracer particles have to be exactly spheridaheir size dis-
tribution has to be narrow for reasons explained later. Unlike in particle irgaggfocimetry
the fluid is illuminated voluminously by light of a specific spectrum. A dye is addddedluid,
which absorbs light of a certain wavelength. The particles are rectydadamera, which points
perpendicularly to the wall.
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Figure5.1: Method of one wavelength. Left: 3D positions in space araiobt by analysing the grey
values in a 2D image. Right: A monochromatic beam of lightepeates the dyed fluid with the intensity
Iy, and hits the particle with intensity, after covering the distance. After reflecting, it passes through
the dye again, and hits the camera sensor with the intersifjhe intensity decrease can be calculated
using Beer-Lambert's law.

The dye limits the penetration depth of the light into the flow according to Bembkst's law.
The intensityZ,, of the light approaching the particle is

I,(z) = loexp —z/Z,, (5.1)

wherel is the light’s intensity before penetrating into the fluids the distance of the particle’s
surface from the wall, andl, is the penetration depth (Fi§.1, right). The light is reflected by
the particle, and passes the distan@gain, before approaching the wall with the intensity

I(z) =Ipexp—z/Z, = Ipexp —2z/Z, = Ipexp —z/ 2, (5.2)

where an effective penetration depth = Z,/2 was introduced for convenience. Within the
illuminated layer the particles appear more or less bright, depending on theiahdistance to
the wall: Particles near the wall appear brighter, i. e. they have a higegwvglue than particles
farther away from the wall. The correlation between the recorded intef(sijyof a particle and
its distance to the wall, which is expressed in terms of the hypothetical intdpsifithe particle
at the wall anc:,., can be assessed experimentally.

The particle’s intensity (z) is mapped to a grey valug/(z)) by the procedure of imaging.
For simplicity, we assume, that the response curve of the camera is lineaveiage allowed to
write

9(2) = goexp —z/ 2. (5.3)
Eq. (6.3 can be solved for the depthas follows:

z=2z+(Ingp — Ing). (5.4)

In order to eliminate the depthin Eq. (5.3) we have to know:
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Figure 5.2 Method of two wavelengths. Left: 3D positions in space ataiobd by analyzing the grey
values in two 2D images (one for each wavelength). Right: Meoochromatic beams of light penetrate
the dyed fluid. Because their penetration depths differ; theensities progress differently.

e The grey value of the particle at the surfage= g(z = 0). Therefore we require, that the
particles are exactly spherical, and that they all have to be of the samd&kedatter can be
loosened by the requirement of a narrow size-distribution.

e The penetration depth, of light of a specific wavelength into a certain medium. We have
to choose a light source, whose light is as monochromatic as possibleisbaban we can
exclude any hardening effects.

5.2 Method of Two Wavelengths

It turns out, that the greatest restriction of thethod of one wavelengshthe tightness of the size
distribution of the tracer particles. In order to use particles variable inwéave to illuminate
with light of two distinct wavelengths (i. e. two different penetration depths:andz,2). We
write down Beer-Lambert’s law for each wavelength:

g1(2) = go1exp—z/z.aq and ga(z) = goz exp —z/z2.

We solve this equation system for the depth of the particle:

o) = 5 (1 () (22)). (55)
%1 — Zx2 g2 go1

Note, that here the depth of the particle merely depends oratieof the intensitiesyy1 /go2,
which is for all particles the same, and which can be calibrated.

Besides its applicability to systems with heterodisperse particles the method ofaves w
lengths has further benefits compared torttethod of one wavelength

e The patrticles can be imaged as streaks: The particle grey valuasl go can be multiplied
by a common attenuation factor (depending on the exposure time), whicblsaut while
calculating the depth according to E§.5).
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5 Method of Two Wavelengths

Table 5.1: Comparison of the two methods of depth reconstruction veisipect to their advantages and
disadvantages.

Method of one wavelength Method of two wavelengths
+ easy setup + applicable to heterodisperse particles
+ exploits full camera frame rate + applicable to higher exposure times
- very high requirements to particlgs- greater relative error in  depth-
(monodispersity, shape) determination

e We can loose the assumption of requiring exactly spherical particles. 8uitawe to take
care, that the particles don't rotate significantly from one frame to the.other

The advantages and disadvantages of the two methods of depth rectimsipuoposed in this
chapter are summarized in talilel. Figure6.9in section6.3.2illustrates the different coverage
of the emission spectra of the light sources by the absorption spectrum dy¢h

5.3 Error Analysis

In table5.1 we have noted, that compared to tinethod of one wavelengtthe method of two
wavelengthdias a greater relative error in depth-determination. In this chapter wedsiteas
this fact in more detail by applying error propagation to formulas &¢) @nd Eq. 5.5).

Method of one wavelength

First we will consider the more simple case of thethod of one wavelengfkee Eq.%.4)). We
find for the error in depti\ z according to error propagation:

2
Az(g) = <g—;> Ag? = %- (5.6)

In our model the error in the grey valdey consists of two parts:

1. Ag = ¢, wherec is a constant: This is the case, if we have a grey value independent noise o
the chip. As a first approximation we can model the chip noise in this way.

2. Ag = k(0)g, wherek is a function of the particle size, expressedobyEspecially for small
o in comparison to the pixel size the grey value of a particle depends on tit®pad its
centroid relative to the pixel grid. We will call this errgrid error. The relationk(o) is found
using simulations (see secti@r?.4).

Plugging this into Eq.X.6) we get for the grey value-dependent error of the depth determina-
tion using themethod of one wavelengtbllowing expression:

Az(g) = 2« (g + k:(a)) .
We define a relative error for the depth(g) by dividing the grey value dependent absolute error
by the grey value dependent absolute depth:
Az(g) _ c/g+ k(o)
€, = =
(9) z(g)  Ingo—Ing
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Figure5.3: Plotofz(g) resp.Az(g) (left) andAz(g)/z(g) (right) using the one-wavelength method with
the parameters, = 1 mm gy = 255,¢ = 1, k(o) = 0.1.

This means, that the overall error can be decomposed into two sums: @meisgefrom the
grey value-independent noise, decreasing with increagirand one stemming from the grey
value dependent grid error. From Fig3, right, we find, that the relative error for small grey
values is very large but approaches a minimum soon. (For demonstratiohavweesetc =
1,k(c) =0.1,2z, = 1, go = 255.)

Method of two wavelengths

Now we treat the more complicated case of thethod of two wavelengtlisee Eq.$.5)). Here
we find for the error in depthz:

9z \? 9z \° 21 242 Agi | Agj
A — J( 2} a2+ (22 age = | 21 Shs SN G
(91, 92) \/<691> e <892> N P T ' 9 o

After inserting the errors in the grey valukg,; o = ¢ + k(0)g12, and dividing by the grey
value dependent absolute depth we get for the grey value-depeethdivie error for the depth

ex(91, 92):

Az(g,92) _ V/A(1/gi +1/93) + 24
2(91, 92) In g1 — Ings + In(go2/go1)

The absolute errorAz(g1, g2) is influenced by the grey value-independent noisegfor: 0
(i.e. for deep particles). With; approachingy, (i. e. for particles at the surface), the absolute
overall error approximates the grid error. Due to error propagatiaieegor of k = 0.1 alone
causes an absolute error At ~ 0.14. In Figure5.4 the absolute errors are plotted foe= 1,
k = 0 (left), forc = 0, k = 0.1 (center) and for: = 1, k = 0.1 (right) usinggo1/g02 = 1 and
requiringgs > ¢1.

In Fig. 5.5we plotted theelative errorsfor the same parameters as in the absolute errors. We
find, that the grey value-independent noise contributes to the ovdediVeserror only forg; =~ 0
and forg; = go. In-between, the relative error is determined mainly by the grey valuendepé
grid error, giving acceptable results foh < g1 < 2/3¢s.

€z (91, 92)
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Figure 5.4: Plot of the absolute errof\z(g;, g2) using the two-wavelength method with the parameters
go1/g02 = 1,¢ = 1,k(c) = 0.1. On the left the absolute error stemming fraky = c is plotted; in

the middle, the absolute error usinyy = k(o)g is given; on the right both errors were combined. The
top row shows error maps, where the color map ranges from 03ptBe bottom row shows sections with
g1 =50, g1 = 125 andg; = 200.
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Figure 5.5: Plot of the relative errorAz(g1, g2)/2(g1, 92) using the two-wavelength method with the
parametersgo1/go2 = 1,¢ = 1,k(c) = 0.1. On the left the relative error stemming frothg = ¢

is plotted; in the middle, the relative error usinyy = k(o)g is given; on the right both errors were

combined. The top row shows error maps, where the color mages from 0 to 0.5; the bottom row

shows sections withy, = 50, g; = 125 andg; = 200.
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6 Hardware Components

In this chapter the various components of the data acquisition hardwategasecord image
sequences are explained. We will start with the objects of interest, in thessocaall particles,
which are suspended in the fluid (secti®ri). Then we will have a closer look to the medium,
the light has to pass on its way to the object (sectidl). In section6.3 the light sources are
explained, as well as the characteristics of the light itself. The last sectidevisted to the
optical system, to the CCD-cameras used in the experiments and to the trigifehadgndividual
components.

6.1 Particles as Tracer

Like PIV or PTV (see sectiof3.3), our method is based on determining position and velocity of
small particles, which are added to the fluid. These have to fulfill followingirements:

Flow representation The particles ideally have to be capable to follow the fluid, must not
affect the motion of the fluid and must not influence each other. Importmainpeters are:
particle size, specific weight of the particles, hygroscopicity of the pastahe particle den-
sity. This is a common property, which all particle-based fluid measuremenbdsltave to
satisfy.

Visibility The contrast between the particles and the surrounding has to be higihirfiaged
grey value has to be significantly over the noise level of the camera. fohetbe particles
have to be imaged as brightly as possible. The visibility depends on the refleatéthe
particles and on the particle size. Regarding patrticle size, we have to findieadffeof flow
representation and visibility, which depends on the observed flow andeoexiberimental
setup.

Scattering properties  Our method is based on relating the imaged brightness to the position
of the particle according to Beer-Lambert's law. A basic requirement tooddssthat we
operate in the geometric scattering range, which provides a requirennghefparticle size
in relation to the light frequency. Moreover the shape of the particleséstaffi, which has
to be spherical.

6.1.1 Scattering Properties

Light of a certain wavelength is scattered by a spherical particle of arceitaneter. We ask for
the differential scattering cross-section which is defined as the scaittéeedity per solid angle
element.

IMieplot: A computer program for scattering of light from a sphere usinig Meory and the Debye series;
http://philiplaven.com/MiePlot.htm
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Figure 6.1: Polar diagrams of the normalized intensities of perpenidicdark green) and parallel
(light green) polarised light, scattered at small, sphatiparticles according to Mie’s theory. The light
approaches the particle from the left. The particles hawe réfractive index of water surrounded by
vacuum ¢ = 1.3377). Left column: Linear representation for varioys Right column: Logarithmic
representation (plotted using Mieplbx
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6.1 Particles as Tracer

Optimage Potters

Figure 6.2: Microscopically taken pictures of the particles, we usedun experiments.

For solving this problem, we make use of classical electrodynamics, staritimdAaxwell’s
equations. We make the assumptions of a planar wave being scatterechad@eln@ous sphere.
The general solution was found bylfe, 190 for the first time, and is given invin de Hulst
1987 in detail. We find, that for a given index of refraction, the angle-dejeen scattered
intensity is solely a function of normalised diamegewhich is defined as

2ma

T7

whereq is the radius of the particle, andis the wavelength of the incoming light. In Fig.1we
printed polar diagrams of the scattered intensity for some selgct¢édan be seen, that there is
a strong dependence of the scattered light on the angle of observation.

For ¢ <« 1, Mie’s solution tends to Rayleigh’s approximation: The light scattered by 90°is
fully polarized into the direction orthogonal to the image plane, whereaswafdrand backward
direction (0°resp. 180°) both polarisation directions contribute equally.

With increasing; there are two trends, apparent from the polar diagrams @Fiy. Firstly, for-
ward scattering develops. Secondly, there are emerging further maximea.nimber increases
with rising normalized diameter approximately linearly. Exact measurements ahthdar dis-
tribution of intensity allow a determination of the size of the spheres.

For ¢ > 1, Mie’s solution tends to the geometric limit: We can abstract parts of the wave
(which are of width much larger thak and yet small compared to the radiu®f the sphere)
as light rays. The rays can be traced, considering reflection arattiefn according to Snell’s
law and Fresnel’s formulas. There are exceptions in or near a focgldirefocus), where the
intensity according geometric optics would tend to infinity. Examples are raimbow glories.

q:

6.1.2 Particle Characteristics

In table6.1 at the ending of this chapter we listed the types of particles, we used in periex
ments. Because the normalised diameter much greater than unity for all particles, we are in
the geometric range as a good approximation. That allows to neglect thsefféMie scattering.

In the introduction to this section we mentioned, that one important charactdoistising
particles as tracer is, that they have to follow the fluid optimally. Stokes lawsidteance tells us
the drag forceD, which is exhibited on a sphere of diametkin a fluid with dynamic viscosity
TR

D = 3mpdUs,
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Figure 6.3: Spectra of tartracine and new coccine. The absorption @laesp. the penetration depth
(red) is plotted against the wavelength (in nm). The petietnadepths are calculated from the measured
spectra using concentratiorgyracine = 200mg/l = 374pmol/l andenew coccine= 100mg/l = 165umol/l.

whereU; is the difference of the particle velocity and the fluid velocity, the velocity sliy. B
equating the drag force with the inertia foree= 1/67(p’ — p)d>a of a particle with density/’
and acceleration in a fluid with densityp, we have for the velocity slip:

/

p—p
U, = d? )
18ua

The velocity slip is influenced by the particle diameter in a much greater wag(@fically), than
by the difference in density (linear). Assuming an acceleration of 10 cne/bawe a velocity slip
for the Optimage particles of aboutuin/s, for the 3M particles of about 20n/s and for the
Potters particles of about 20n/s.

Onthe other hand, larger particles appear much brighter to the camerarthler ®nes. Again
the dependency is quadratic in diameter. This was the reason, why veerpcethe spheres by
Potters compared to the Optimage particles and spheres by 3M in the convaatoexperi-
ments, where we have only slow flows.

Figure6.2 shows magnified images of the particles. We see, that compared to thessppere
3M and by Potters, the Optimage particles appear very unshaped. ~h@ntional PIV this is
irrelevant, but for our application it might become a serious problem: Becae estimate depth
from the apparent intensity, and because intensity depends on thetgdogéze of the particle,
we get an error of estimation, if the particles rotate between two recordtagshat reason, we
used the 3M spheres in favour of the Optimage particles for the falling filrarexents.

6.2 Dye as an Absorber

A dye works as an absorber of light emitting a specific wavelength spectWardemand, that
the absorption follows Beer-Lambert’s law, which is explained in detail itiee6.2.1. Further
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Figure 6.4: Left: The luminous efficiency (in W/lumen) of LEDs has oditwared several other light
sources in the recent past. There exists hope for furtherdmgments. Right: The luminous flux per
package for LEDs has increased exponentially in the rec@ntears.

requirements are, that the dye is not toxic and is not harmful to the envirdanthat its dosage
is simple, that it is soluble in water and that it is inexpensive - at least, if we teamse it in
voluminous tanks.

6.2.1 Beer-Lambert's Law

Bougner (1729) and Lambert (1760) found, that the attenualioof light intensity, which tra-
verses a clear medium, is proportional to the particular interd$ity and to the traversed layer
thicknesslz:

dl = k(N)I(z)dz,

with the wavelength-dependent proportionality constany).
This holds for certain conditions only:
e The incoming light has to be monochromatic and collimated.
e The absorbing molecules have to be dispersed homogeneously in the thag.nTust not
scatter and must not exhibit any self-interaction.
e Scattering and reflexion on the surface of the probe result in a light atienuwhich masks
the effect of absorption, and therefore should be excluded.
Beer showed 1852, that for most solutions of absorbing substangesofietionality constant
k on its part is proportional to the concentratioof the particular substance. Beer-Lambert's law
follows:
dl = —a(N)eldz,

where the proportionality constantis known as the molar absorption-coefficient with dimen-
sions pJ=(mol/l)~'cm~!. We can integrate this to

I(z) = Iyexp(—a(Nez) = Iexp(—AN)),

wherel is the incoming intensity, and(\) is called absorbance. The latter is a nondimensional
quantity. We arrive at our familiar formulation of Beer-Lambert’s law Exql), if we introduce
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Figure 6.5: Left: Physical function of a LED. Right: Low power vs. highwaw LED.

the penetration depth,., defined as

1
2e(N) = oV

Visibly spoken, the penetration depth is the depth, where the intensity is gtdriad/e th of its
original value.

6.2.2 Example Spectra of Dyes

There are many dyes to choose from. A good overview is giversiregn 199(0. The most
important criterion for our decision was, that the spectrum of the dyeldinoatch to the spectra
of the light sources (sectiof.3). I.e., that the penetration depths with respect to the LED-
spectra differ about a factor 2-5, and that the dye exhibits a goodplwsoin the considered
spectral range. Further criteria were solubility, manageability and priteafye. We found two
dyes, which are broadly used in industry (for example to dye textiles ard):fdhe yellow dye
Tartracine, which has its peak of absorbance at 425 nm, and the rékdy€occine, which has
its peak of absorbance at 406 nm. An overview over the characteristiogeisin tablet.2; the
spectra are printed in Fi§.3together with their chemical structure formulas.

6.3 LEDs as Light Sources

In contrast to conventional P1V, in our experiments we cannot illuminateguaser light sections.
The reason is, that our measurement method is based on observing partaieolume, not just
in a slice. Light emitting diodes (LEDs) have established themselves as smab|egé#icient
and bright light sources during the last years.
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Figure 6.6: Left: Photopic (vision using the cone-receptors at higlemsities, red) and scotopic (vision
using the rod-receptors at low intensity, green) luminp8iinctions. The photopic curves include the CIE
1931 standard (solid), the Judd-Vos 1978 modified data (@d)shand the Sharpe, Stockman, Jagla &
Jagle 2005 data (dotted). Right: LEDs we used in our illurtiorasetups. Luxeon Il Emitter, C11A1,
Luxeon Star O (from left to right)

There were two developments in technology, which made LEDs feasibleufapplication:
Firstly, LEDs have become more and more powerful over the last decaldesuminous flux per
package has doubled every 18 to 24 months over the recent 30 yeac®idance with Moore’s
law. Moreover the luminous efficiency of LEDs has already outperforthatlof incandescents
and mercury vapor lamps, and is expected to exceed that of fluordacgps and electrical
discharge lamps, soon (Fig.4). Secondly in the mid-1990s green and blue LEDs became avail-
able, which made use of the wide band gap of the semiconductor indium gallitide tnGaN
[Nakamura et a).1994. Now lighting in the spectral range beyond 600 nm became possible.

6.3.1 Physical Function of High Power LEDs

Figure6.5, left, shows a simple sketch of the physical function of a LED. Like a noseali-
conductor diode, a light emitting diode consists of a chip of semiconductingiadateped with
impurities to create a structure called a p-n-junction. Current flows easitytine p-side (anode)
to the n-side (cathode), but not in the reverse direction. When an elauieets a hole, it falls
into a lower energy level, and releases energy in the form of a photoa.wékelength of the
emitted light depends on the band gap energy of the materials forming thenztioju

Because high power LEDs produce more heat, it was necessary tgectiair design. His-
torically, most LEDs have been constructed in a manner similar to the 5 mm typeailkdin
Fig. 6.5, top. The base pins serve as both electrical and thermal conduits, whichdwitnuch
light can be produced. Fig.5, bottom, represents a standard high power LED (like the Luxeon
[1l Emitter). The large metal slug dramatically improves heat transfer cteaistics. This in turn
allows for higher current, a larger light emitting surface and proportiorratiner light output.
The thermal resistance of the high power units is ten times lower than that n¥erdmnal 5 mm
LED.

63



6 Hardware Components

1.0

08 ROYAL \CB\'%.‘\/-\GFEEN n [V\ OEEE&%E
06 JE-E ’ \l ){ H vMBER{ ;JH
ool ALV NN I e

AV SN NS
XN u

400 450 500 550 600 650 700
Wavelength (nm)

o
(N

Relative Spectral Power
Distribution

®
48]

Figure 6.7 Spectra of the Luxeon Il Emitter-family as displayed in thiata-sheet
(http://www.lumileds/pdfs/DS45.PDF).
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Figure 6.8: Measured spectra of the LEDs we used for our illuminatiompet We grouped the LED-
spectra in each case in two major divisions (indicated witkekand red color). Top: Luxeon Il Emitter.
Bottom: Luxeon Star O. Left: royal blue (455nm). Right: b{&@0nm).

6.3.2 Selection of LEDS, Used in Our Experiments

The LEDs we used in our experiments are listed in tabiand displayed in Fig6.6, right.
The semiconductor material of all LEDs is gallium indium nitride (InGaN), ardchose four
wavelengths, which have arisen as compatible with the selected dyes. lhlthe¢especified the
energy flux (photom. luminous flux}, which can be derived by the radiation energy (photom.
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Figure 6.9: Measured Luxeon Il Emitter spectra (royal blue and blugjeiher with the absorption
spectrum of tartracine (yellow).

quantity of light)Q by:

_dQ

b —
det

[Q] = J(radiom.)/Ims(photom.) [®] = W(radiom.)/Im(photom.)

The transition of radiometric to photometric units is made by relating the chargicten$ the
energy units to their response of the human eye. The response furartotisplayed in Fig6.6.
With their help and the note, that at a wavelength of 555 nm the energy fli\bequals to
the luminous flux of 683 Im (specification for photopic vision), the radiometugngities can be
transformed into photometric quantities.

A rough description of the form of the spectra is given in the data-skegetd. 7, left). Having a
closer look to the spectra of the LEDs using a spectrometer of the type “QEB2manufactured
by Ocean Optics, one will see, that the spectra differ in a significantWaygrouped the spectra
of the Luxeon Il Emitter LEDs and of the Luxeon Star LEDs (each royakeland blue) in
such a way, that shape of the spectra resemble, and the maxima are rivegsdyne (Fig6.8).
We found, that LEDs of the same charge have similar spectra. The hetemgsness among
different charges may be explainable due to variations in manufacturinga Row on we have
taken care, that we ordered only LEDs of the same charge, so thatld woube necessary to
acquire the spectra of the LEDs and to group them.

Fig. 6.9 shows the absorption spectrum of the Tartracine dye (yellow) togethethetmea-
sured emission spectra of the Luxeon Il Emitter LEDs. The spectrum afoted blue LEDs
have a greater overlap with the dye-spectrum than the blue LEDs. Thasmbat the pen-
etration depthe, royal biue Of light stemming from the royal blue LEDs is shorter than the one
stemming from the blue LEDs; piue. EXploiting this property, it is possible to reconstruct the
depth of particles variable in size (see sectiol).
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Figure 6.10: Left: Profile of selected cooling units and diagram: thermedistance in dependence of
length of cooling units Right: Schematic diagram of thermal resistances occarimour (simplified)
system.

6.3.3 Cooling of the LEDs

Though the LEDs were designed for operation under high-curremditons, it is necessary to
attach heat sinks to keep the temperature of the p-n-junction constantly ilcnitical level.
To estimate a limit for the minimum length of the cooling units, it is instructive to calculate
the thermal resistance of the combined system: light emitting diodes (which cagdreled as
connected parallely) and heat sinks.

Generally for the overall thermal resistan@g 4 holds:

AT
RJA = 5
Pges
where AT = T; — Ty is the temperature drop between junction and ambiancePgads the
dissipated power. The overall thermal resistance can be calculatedhsisgme rules as for the
computation of an electrical resistance (see the schematic diagram BigQraght):

1
1 + Rca.

Z? Rjyc,i

Because all the thermal resistances in the LEDs are equal, Mg det = R;c. We get for the
thermal resistance in the heat sink:

Rja=

Ty—-Ta Ryc
P N’

Roa =

In the most powerful version of our illumination units (F&11, top) we maintain 20 LEDs, each
receiving a power of; = 0.6 Ax4V = 2.4W, so that the overall power to be dissipated becomes
approximatelyP,., = 45W, assuming a degree of efficiency of roughly 5%. With a junction
temperature of ; = 135°C, according to manufacturer information, and an ambient temperature
of Ty = 35°C, Rca becomes approximately 1.6 K/W, using the vendor’s specification of the
thermal resistance for each LER;;c = 13 K/W3. By having a closer look at diagram Fig}.10,
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6.3 LEDs as Light Sources

Figure 6.11: Technical drawings and photographs of the four differelniination-setups which were
designed for the experiments. From top to bottom: 1.) Lux#ddamitter-LEDs (20x royal blue, 20«
blue). 2.) Luxeon Star O-LEDs (¥8royal blue installed, space for 22blue). 3.) C11A1-LEDs (16
blue, 16< cyan). 4.) Luxeon Ill Emitter-LEDs with additional optids blue, 5< cyan).
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Figure 6.12: Sketch (left) and photograph (right) of the imaging setupdu®r the falling-film measure-
ments.

center, we can estimate the minimum length for the cooling units of about 120 mrongtude,
passive cooling is possible; but we have to take care, that we chooseahsinks properly.

6.3.4 Light Sources

Fig. 6.11shows the various designs of illumination units, that were built for our éxgets. We
will describe them from top to bottom:

1. The most powerful version containg 20 LEDs of type Luxeon Il Emitter each being main-

tained at 2.4 W (only 60% of the maximum possible power). Blue and royalllHs are
arranged alternately and circularly on the planar heatsinks. An aluminiurormsrused to
yield a flat illumination field, which covers a circular disc of 100 mm in diameters Tight
source provides a very homogeneous illumination over a relatively laege Hris used both
for the falling film experiment and for the convection tank experiment.

. In the next illumination unit we wanted to make use of the colliminator lens of tikedru

Star O LEDs. In order to attain high luminance, we had to incline the cooling unitsta
50°to the optical axis. The useable area is sufficient for 18 royal bk@sLand 12 blue
LEDs (each being maintained at 1 W). The lighting is very inhomogeneousoleneity
might be improved using a diffuser.

. The C11A1-LEDs are not radiating isotropically, but they emit their lighet cone of about

30°. We arranged these light sources in two annuli, each consisting®t EDs. Because
these LEDs were not available in royal blue, we chose the colour cyseaohsEach LED
consumed the power of 0.6 W. Because the area of tolerable homogeneigtigety small
(about2 x 2cm?), this light source is installed in the falling film experiment only. Its irradi-
ance is considerably higher (factor 2), than the one of source 1.

3For an exact calculation of the overall thermal resistance the therneg1geded for the attachment of the LEDs,
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Figure6.13: Setup of telecentric opticsumax denotes the maximum of the angles enclosing the horizontal
and the rays, which leave the object and pass the aperture.

4. In contrast to the three previous ones, constructing the last oneamtedvto keep a distance
of about 60 cm from the illumination setup to the object. This was possible usialyjiglanar-
convex lenses, which were attached in front of the Luxeon Il EmitterefiotHere we used
2x5 LEDs (royal blue and cyan) each being maintained at 2.4 W. This lightsasiused in
the convection tank. It provides a circular homogeneous area of &lwouin diameter.

6.4 Imaging Setup

In the previous chapters we dealt with the objects, the medium and the light ettvaidps the
medium. Here we will focus our interest onto the recording system, whichsoresible for
getting 2D image sequences from the 3D world. Like any other conventibigi¢ghl sequence
imaging system, our setup consists of optical components, a digital cameta iwlticnnected

to the computer hardware, and electronics, which is responsible fohisymizing the individual
processes. Figuig12shows the arrangement of the various components used for the falling-film
measurements: illumination, telecentric lens, aperture, camera optics andpleigti-camera.
The image acquisition unit employed in the convection-tank experiment is despiay-ig.8.13

in section8.3.2 Instead of a telecentric optics a conventional objective was used, wilash
designed for the combination with high resolving cameras.

6.4.1 Telecentric Optics

In the setup for the measurement in a falling film we used telecentric optics.h@ikithe ad-
vantage, that the imaged lateral dimensions of the measured object arepeoidént on their
distance from the camera sensor. The telecentric mapping is a paralletjpmoje
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Figure 6.14: Quantum efficiency curves of the Photonetics CamRecord-Co®@ra (left) and of the
Basler A641f-camera (right, yellow curve).

In anidealtelecentric system, the infinitesimal narrow aperture is located in the foca pfan
the large telecentric lens, so that only parallel principal rays can pasgpémure. The objective
lens is adjusted to an infinitesimal object distance, so that the camera sesgothiefocal plane
of the objective. Figuré.13shows the setup of the telecentric optics in our system.

In order to obtain an image, the radiusf the aperture is allowed to be finite. Given the focal
length of the telecentric lenf, we can calculate for the maximum inclination of the raysx

(see alsofRocholz 2009):
,

E.
Here we made use of the fact, that parallel rays are focused in thefflaceds, so that the two

triangles containingymax are congruent. By inserting the definition of the focal ratio of the
objective2k = f,/r, we can calculate the anglte,ax using well-known quantities:

o
2k f1

tan Omax —

tan amax =

It turns out, that becausf > f» andk = O(10) in our systemamax iS @ very small angle
(typically of order 1°), so that the conditions for telecentricity are met indgaproximation.
The focal length of the compound systgim is approximately the focal length of the telecen-

tric lens, because

I R AN R PR
E_fl—i_fQ fife f1+f2 flf2 A

where we assumed, that the aperture is close to the objective.

6.4.2 CCD- and CMOS-Cameras

Cameras with sensors based on CCD (charge coupled device)-teghnoldMOS (complemen-
tary metal oxide semiconductor) technologies have become a de factorgtamdaquisition of
spatio-temporal data. Both image sensors accumulate signal charge pixeagroportional to
the local illumination intensity. When exposure is complete, a CCD transfelnso@eal’s charge
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Figure 6.15: Pixelwise variance in the dark image of the Photonetics CawoRlI-chip (left) and of a
clipping of the Basler A641f-chip (right).

packet sequentially to a common output structure, which converts theeclweagroltage, buffers
it and sends it off-chip. In a CMOS imager, the charge-to-voltage esinretakes place in each
pixel. This difference in readout techniques has significant implicationsefiosor architecture,
capabilities and limitations.

We are mainly interested in an optimal solution regarding speed, resolutiantum effi-
ciency, fill factor, noise and dark current. In the following we will congtre characteristics of
CCD and CMOS regarding those topics:

Speed and resolution  Especially for highly turbulent flows it is important to record image
sequences using high resolution and high speed. Regarding speef-6&MmSors have an ad-
vantage over CCDs because all camera functions can be placed on tleesiemsgr. Further-
more, it is easily possible to adapt the resolution of a CMOS-chip to onediygedtitioning
the pixel-array almost arbitrarily. The product of frame rate and numbeixefs remains
constant. When you downscale a CCD-camera, you always haveeadeaf the product of
frame rate and number of pixels. For example the Basler 641f: 14 fpdi1@234 but only
30fps at 646480 (with CMOS-technology, 90 fps at the small resolution were possible!)
Moreover, using CCDs you are restricted to a couple of predefinedsnode

Quantum efficiency and fill factor Because of the small exposure times, which occur ac-
quiring high speed images, and the limited brightness of the light sourceemand a high
sensitivity (respectively a high quantum efficiency) of the camera sefsdhe interesting
spectral range. The quantum efficiency (QE) is a measure of the ratmlle€ted electrons
to incident photons. Here both sensor types are roughly on the samenbeetas the fluc-
tuations of QE among one type may be enormous. This is due to the fact, tratlndhe
base material (in both cases silicon and silicon oxide) is important for theeeffic of the
photoelectric effect and for carrier separation, but also the compositidrthickness of the
top layers are crucial for the QE. The fill factor, defined as the ratio bf4sgnsitive area to
total pixel size, also determines the maximum achievable sensitivity. For exaeupsistors
or a lateral anti-blooming drain reduces the photosensitive area of a pixslis overcome
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by illuminating the chip from behind, or by attaching microlenses on the chip.

Noise and dark current  Especially working under poor lighting conditions, noise contributes
to the acquired gray values seriously. Because our technique is bagedoessing the grey
values directly or indirectly, special care has to be taken to avoid camé&ea. nGMOS-
sensors generally suffer from fixed pattern noise, because thgect@mroltage conversion
takes place in each pixel there. CCD-sensors don't exhibit fixed paitase, at least, if the
whole sensor is maintained by the same gain. Other noise sources arenientiee and
dark current noise. Here CCDs are of advantage, too.

For our experiments we have chosen two cameras:

e In the falling film experiment, we deal with comparably high fluid velocities - thedthme
rate has to be sufficiently high, and the sensitivity of the camera has to figesuf The
Photonetics Cam-Record 2000 camera achieves frame rates up to 1@ pssolution of
512 x 512 pixels’). Its QE is about 60% in the interesting spectral range (Fify4 left),
and because the chip is backside illuminated the fill factor is virtually 100% (teohaical
data in table5.4). Though working according to the CCD-principle, the camera sensor is
divided into 16 individually controlled segments, which results in a kind ofetlixpattern
noise”. Moreover the boundaries of the segments exhibit a differdaé raharacteristic in
turn (Fig.6.15 left). The camera works with a proprietary framegrabber board, indtelle
an extra PC, which is capable to record 2000 images at full resolutionaddugred image
sequence can be transfered to mass storage using 100 MByte/s ethernet.

¢ In the convective tank experiment the fluid velocities are typically two ordersagnitude
smaller compared to those in the falling film experiment. Thus, we can chocamera
with an excellent, high resolving sensor, neglecting the high-speed eewgiit. We chose
the Basler A641f camera, because of the high resolutidis®f x 1234 pixels’ and the good
chip characteristics (see Fig.14 right and Fig6.15 right).

6.5 Triggering Electronics

The illumination setup has to be synchronised with the data acquisition. Botlcaiseatas allow
for external triggering via a TTL-signal. Figufel§ left, shows, how triggering works: Special
hardware, the Data Translation C4rttiggers the LED-arrays and the camera using one and the
same clock. In the upper left corner one possible triggering schemevismsitie camera-trigger
T1 forces the basic frequency. T2 and T3 alternatively trigger the twd-aEays, so that the
frequencies are in each case half of the basic frequency. The dilgs@re chosen to 25%. This
is just one example - we can realise every thinkable triggering scheme aadahg frequencies
are consistent with the clock frequency (100 MHz).

Figure6.16 right, shows a schematic circuit diagram, explaining the triggering of thesLED
The signal of the Data Translation Card is amplified by the op amp LT1211g asirexternal
power supply. Switching is performed by a MOSFET-transistor.

“Data Translation Inc., Marlboro, Massachusetts; http://www.datex.com

SOptimage Ltd., Edinburgh, Scotland, United Kingdom

63M Speciality Materials, Zwijndrecht, Belgium; http://www.3m.com

"PQ Potters Europe GmbH, Kirchheimbolanden, Germany; http://www.petigspe.org
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Figure 6.16: Left: Triggering of the illumination unit and of the camertn the upper left corner, one
possibility of timing is displayed. Right: Schematic citaiagram. The 5V-signal is amplified using a
LT1211 op amp, switching is performed by a MOSFET-transisto

8Philips Lumileds Lighting Company, San Jose, California; http://www.|lumitss.
Roithner Lasertechnik GmbH, Vienna, Austria; http://www.roithner-lasen.
19photonetics GmBH, Kehl, Germany; http://www.photonetics.com

H"Basler AG, Ahrensburg, Germany:; http://www.baslerweb.com
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Table 6.1: Different kinds of tracer particles we applied in our expeents. The normalized diameter

was calculated using a wavelength)of= 500m.

vendor material plolem®]  d[um] ¢ refr. index sphericity
Optimage®  polystyrene 1.020 306 200 1.602 highly aspherical
3Mm® hollow glass spheres  0.60 30 200 1.471 exactly spherical
Potters’ silver-coated hollow 0.9/1.1 100 500 opaque roughly spherical

ceramic spheres

Table 6.2: Two selected dyes: Tartracine (Acid Yellow 23) and New @ec(hcid Red 18 or Victoria

Scarlet 3R).
name chemical formula mol. weight appearance Amax sol. in water
Tartracine CooHgN4Na3Oy S, 534.37 orange powder  425nm 300 mg/ml

New Coccine C20H11N2Na3010$3 604.48

maroon powder

506 nm 80 mg/mi

Table 6.3: Different LEDs used for illumination.

name material peak wavelegths lum. flux  energy flux
Luxeon |11 Emitter® InGaN royal blue (455 nm) 20 Im 450 mW
(lambertian, operating at 1000 mA) blue (470 nm) 30Im 480 mw
cyan (520 nm) 80 Im 165 mW
L uxeon Star O InGaN  royal blue (455 nm) 10 1Im 220 mwW
(lambertian, with colliminator, 350 mA) blue (470 nm) 16Im  6@mW
C11A1° InGaN  HB-30 (470 nm) 4.5Im 70 mW
(viewing angle 30°, 350 mA) HC-30 (505 nm) 10 Im 35 mwW

Table 6.4: The two cameras, we used in our experiments.

Basler A641f!1

name Camrecord 2000%°
Sensor type
illuminated
Sensor optical size 9.2 mm (100% fill factor)
Pixel size 18 x 18um
Maximum resolution 512512 pixel

Maximum frame rate at full res- 1000 fps
olution

Video output type

Video output format
Maximum quantum efficiency
Dimensions

Weight

proprietary/Fast Ethernet
8 bits/pixel
70% 600 nm

90 x 120 x 140mm

1600 g

CCD frame transfer, backsid8ony ICX267 AL/AK, progres-

sive scan CCD
1/2 inch

4.4 x 4.4pm

16241234 pixel

14 fps

IEEE1394a
8 bits/pixel, 12 bits/pixe
50% 500 nm
75 X 44 x 29mm
110g
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7 Image Processing

Every quantitative image-based measurement technique includes somd kimage process-
ing, fulfilling the tasks of preprocessing, segmentation, feature extractiotion analysis and
postprocessing.

In this chapter we present the image processing in a chronological arderstarting with
preprocessing and ending with postprocessing. The input data are te s@guences obtained
from the hardware setup, which we already described in ch&pt®asically these consist of
a number of recorded images containing both objects and backgroumtheifoiore, the grey
values in the images do not represent necessarily the correspondihgntigisities, and the
lighting may be inhomogeneous. These topics, which include radiometric ¢alirélumina-
tion correction and background subtraction, are addressed in thedatsbn of this chapter. In
section7.2we will extract specific kinds of features, we will use in the further ariglysamely
the centers of gravity and the representative grey vadfiehe distinct particles. Another feature
is the grey value pattern itself. It has already been “extracted” in thequepsing procedure.
These features work as an input for the estimation of the particles’ 3Diye(section7.3) and
3D position (sectiory.4). Particle trajectories, which are generated using temporal information
(section7.5), work as an input to the task of postprocessing, described in sectipnvhich
consists of elongation and smoothing of the trajectories and of the calcul&ttodemse vector
field.

7.1 Preprocessing

The major intention of preprocessing is to prepare the image sequentles feature extraction
step, i.e. to condition the images in such a way, that the later analysis routinest depend
where they are applied in the imatgeally, but that we have to seflobal thresholds only, and
that the number of thresholds can be reduced to a minimum. Acquiring realdetgs accom-
panies with imperfections of the measurement setup, like non-linearities auddattern-noise
in the camera (section1.1), inhomogeneities in the illumination (secti@ri.2 or objects in the
background, which disturb the interesting features (sectitrd. We will have a closer look to
the problems occurring in our experiments and show approaches to dbpewm.

7.1.1 Simultaneous Radiometric Calibration and Illumination Correction

This section deals with the case of the Photonetics Camrecord 2000 higthespaera; the Basler
A641f camera sensor exhibits very good noise and linearity characteristichat we can apply
the simpler scheme, explained in sectibh.2

The term “representative grey value” stands for maximum grey véittex] grey value or integrated grey value. See
section7.2.2
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Figure 7.1: Results of the investigation of the Camrecord 2000-camens@. Ten images of the Lam-
bertian calibration standard were taken, gradually expengdthe duty cycles of the illuminating LEDs.
Top, left: Map of the slopes of the fits to the grey values. Nbt here the effects of variations in gain
and illumination inhomogeneity are mixed. Top, right: Mdptlee residua of the fits. Impressively the
irregularity among the sensor segments is demonstrated.bbiders of the segments exhibit completely
different slopes and residua in turn. Bottom: Samples of gmints taken inside the sensor elements (A
and B) and at the borders of the sensor elements (C and D).
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before after

200

Figure 7.2: Right: Result of calibration. The image quality has beenroued considerably.

There are two peculiarities of the Photonetics’ frame transfer camerarsesch have to be
corrected by means of a radiometric camera calibration:

Gain and noise The sensor is divided into 16 individually controlled segments. Becawse ea
segment is adressed by its own amplifier, each segment has its own gaih ¢&hibe seen
in Fig. 7.1, top, left). The noise, called “electronic noise”, can be expressedeagtiance
of the grey values in the dark image (i, j) and is composed of readout noise, amplifier
noise, thermal noise, dark current and quantisation noise. Each seglseras its own
noise characteristic, see Fig15 left.

Linearity Ideal linear camera sensors transform the incoming number of photaltsd(the
“intensity”) linearly into a charge, and further linearly into a voltage (callexd‘tirey value”).
Real cameras, so the Camrecord 2000, differ from this behaviourhviicomes evident
from looking at Fig.7.1, top, right.

The response of the camera chip to light of varying intensity was investightextder to do
this, a Lambertian calibration standard was imaged. Starting with a dark imagkityheycle of
the illuminating LEDs was gradually expanded and an image sequence wasraach case.
In order to suppress noise, the image sequences were averageithgy&ftbating point image
for a specific duty cycle. So the dependency of the grey value was ebt&iom the intensity
at each pixel; (i, ), where the intensities are not continuous, but sampled at ten points only.
By applying a linear ordinary least squares fit to the measured data, tai@ ebmeasure for the
gain (together with the effect of inhomogeneous illumination), which is the sffiee line of
best fit. The goodness of fit, which can be expressed by the residemoted the deviation from
linearity. Figure7.1shows the result of this procedure.

The approach for a combined radiometric calibration and illumination correistasfollows:
By acquiring a sequence of reference images, we have the grey wabresity dependency at
distinct intensities. The goal is now to obtain the true intensity, correspondiegeiy grey
value, which may differ from pixel to pixel. The algorithm consists of two stdfrst, the gaps
between the sampled intensities are filled continuously by piecewise linearalattop. Then

77



7 Image Processing

200 | 200 |

) [0} o
3150} = 150} o =2
g > =2 E
100 g 100} E 8
o o = g
50 | 50 | T ®

0 ' . s . s 0 , . s .

0 2 4 6 8 0 2 4 6

light intensity light intensity

Figure 7.3: Dependency grey value—intensityl) in one selected pixel. Left: Multi-point calibration.
Right: Two-point calibration.

the dependency is inverted, so, that it yields the true intensity, given dyevglue.
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We end up with a data cube of dimensi@3$ x n, x n,, wheren, andn, are the numbers of
pixels in both directions. This kind of “brute-force” calibration may havedisadvantage of high
memory-usage, especially using high-resolution sensors. We notesih@ispline interpolation,
we could eventually improve the efficiency of this approach.

7.1.2 lllumination Correction

As already mentioned, the Basler A641f camera, which is used in the danveéank experi-
ments, contains a high quality (low temporal noise, no fixed pattern noisd ligearity) sensor.
Thus the images, taken by this camera, need not to be corrected radiollyetridzonly an il-
lumination correction has to be performed. In order to do this, we a two-poiméction was
chosen.

Inhomogeneous illumination affeatsultiplicativelythe imaged objects. So we havedigide
by a reference image, if we want to correct the images with respect to illumin&tie have two
opportunities to acquire a reference image:

1. A reference image can be recorded using a Lambertian calibratiorastiaindm which can
be assured, that light is reflected homogeneously and isotropicallyvéverg in the field of
interest.

2. We assume, that our recorded objects, the particles, have - statisticaigad - Lamber-
tian reflection properties. Now we can construct an artificial referanege by calculating
an averaged image from the sequence. Note, that this method only wovks,héve no
background in the image.

Because we have a non-zero dark image, we have to subtract it frtimthe image to be
corrected, and the reference image. One can write down following fornmuéder to get the
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7.1 Preprocessing

Figure 7.4: Background subtraction. Left: Sample image from seque@egiter: Minimum image (i. e.
background). Right: Subtracted image.

corrected image’ (i, j) from the original image (i, j):

g(ivj) — d(lvj)
B(r(i,j)) — d(i,j)

Herer(i, j) is the reference image awldi, j) is the dark-image. Because the reference image
may have a inhomogeneous small-scale structure, it is smoothened with da@adtiss high
order. To normalise the resulting image, it is multiplied with a constant, which isschiiosequal
the spatially averaged reference image.

Note that this action is just a special case to the more general proce@sibed in the
previous section: The functiof(7, 4, j) displayed in Fig.7.3 left, now is reduced to a straight
line, with its endings being grey value in the dark-image and grey value in theenee image,
see Fig.7.3, right.

g'(i,3) = (r(i, 5))

7.1.3 Background Correction

The recorded image sequences always exhibit some kind of backiretirch interferes with
the feature extraction. In contrast to inhomogeneous illumination, the bagakgidoes not affect
the objects of interest multiplicatively. The background contributes raithditivelyto the overall
intensity, so that we have to subtract the background.

There are two ways to obtain a background image:

1. We can record an image, where no particles are added to the fluid jtbuhe same con-
ditions as in the experiment (same concentration of the absorbing fluid, szitiep, same
water gauge). Sometimes this is not possible.

2. Assuming, that all particles of interest are moving at least about themredéa while the
duration of the sequence, the minimum image should equal the backgrourel iDiag gets
the minimum image, if one sorts the grey values of the sequence pixel for indtake the
lowest grey value at each pixel:

gmin(i;j) = min(gl(iaj)ng(ivj)v s 79N(i7j))’

79



7 Image Processing

wheregy (i, j) denote the grey value at positidf) j) in frame k of an image sequence of
length V.

7.2 Segmentation

Segmentation in our context means the separation of the objects of interasacireparticles,
from the background and from each other. Segmentation can be eeégastne necessary step
to the extraction of features like center of gravity or representative\g@iexe of a particle. Input
object of the segmentation process is an eight-bit image, which has unddhgopreprocessing,
described in sectiofi.1. Output object will be a binary image, in which the object pixels are
marked with the value one and the background pixels are marked with thezaetwe Starting
from this binary image, the particles can be labeled and image features eatrdted.

According to Dahng2007 there are four different approaches for segmentation:

Pixel-based methods This simplest segmentation method is based on grey value threshold-
ing. Pixels with a grey value greater than a certain threshold are assigteddarticle class,
otherwise they are assigned to the background class. We will introduceshtid operator
T}, +»)» Which acts on the grey-valued image and yields a binary image:

o 1: t1<g(i7j)<t2
Tty 1) (9(i,4)) = { 0: otherwise

A lower respectively upper thresholtl, ¢2] can be determined by the user arbitrarily, or it
can be set by the machine basedageriori knowledge, like camera noise, or considering the
bimodality of the histogram. One problem of grey value thresholding is, thatndipg on
the choice of the threshold, objects may appear more or less large.

Edge-based methods Edges can be detected by first- or second-order derivative operator
like the Sobel- or Laplace-filter. Again, we have to apply a threshold to ts#decedges.
Then we have to connect the edges of an object in such a way, thatréneyigue and
closed. One can imagine, that such a contour-tracking algorithm may peeghisticated,
especially, when we have the case, that objects overlap each othess &efine the borders
of an object uniquely, so that we don'’t suffer from ambiguities coriogrthe object-size,
like using grey value thresholding.

Region-based methods These methods usepriori knowledge of the object in such a way,
that we demand connectivity of an object. Here connectivity means, thdettigion, if one
pixel belongs to the object class or to the background class depends daghkification of its
neighbours. Sectioii.2.2describes the region-growing algorithm, which is a region-based
method containing model-based elements in our implementation.

Model-based methods Here a priori information about the shape of an object is given. For
example, we assume, that particles have to look like Gaussians. Becansmlabfits per-
fectly to reality, we have to decide on the basis of the residual, a numbel dscribes the
goodness of fit, whether the candidate belongs to the object or to therbaokigclass. We
will investigate Gaussian fitting further in secti@r.3
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7.2 Segmentation

t=0 P t=1 J—— t=2

Figure 7.5: Watershed transformation: Flooding process at differemiet instants. At time = 1 the
lowest basins, marked with the level curve 1, are filled. et = 2 the water rises to level curve 2. To
prevent the lakes stemming from two basins from mergingpaidduilt. At time = 3 rising of the water
continues and more dams are built.

7.2.1 The Watershed Transformation

In both employed segmentation approaches, the model-based method aredjitrebased
method, we make use of the watershed transformation, a very valuableots#dmentation,
which has its origins in morphological image processing. So in our applicdtienyatershed
transformation is no segmentation procedure on its own, but forms a constituleoth of the
selected segmentation techniques, which are region growing (sé€ciidhand fit of gaussians
(section7.2.3.

We consider an imagg as a topographic surface and define the “catchment basins” and the
“watershed lines” by means of a flooding process. Imagine, that each minohthis surface
is filled up with a constant vertical speed, so that “lakes” arise. Duringtbeess of flooding,
two or more lakes coming from different minima may merge at a particular line. uglibg a
“dam” on this line, we prevent the lakes from merging. These dams defineateesheds of the
topographic surface, respectively of the image.

Figure7.5shows the flooding process at four different time instants{0, 1,2, 3}. The grey
value image is displayed in level curve representation.

The constant vertical speed is chosen in such a way, that every time stejatir level rises
about the height interval between two adjacent level curves.=Atl the regional minima at the
lowest level are filled. By further rising the water level, we have to buildra datween two of
the minima. This dam is the curve, which has exactly the same distance to thenadjauena.
With increasing water level, more and more dams are built.

We can formulate this process mathematically. H&jedenotes the area, which is already
flooded at a time instande

1. X1 = Tl(g)
2. X1 = Rt+1(g) @) ITt+1(g) (Xt) for 1<t<N

Here R,(g) are the regional minima qof at levelt, andIx(Y") are the influence zones of the
various setsX within the sety”. T; is a threshold operator, which yields a binary image consisting
of pixels with grey value.

Finally, the set of the watersheds is defined as the complementary Eegt,tavhere N is the
top level of the topographic surfage Before applying the watershed transformation to a particle
image, it has to be inverted. Results of the watershed transformation alaydidpn Fig.7.9,
center.
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10 Omax
8 Ag=Qgmax - max(gmin,o, gmin,u)
Ag
6 Ah:maX(gmin,o, gmin,u) + 05Ag
4 gmin,o
Ah ; ;
Ab=width at height Ah
2 -LLI-I — Qmin,u
0 - ’
5 10! 15 20
>A—b-<

Figure 7.6: Estimation of the width of a grey value peAk and of the grey value contragtg: Ab is the
difference between the maximum grey vdligsy), and the brightest of the adjacent minimal grey values
of the particle(max gmin.o, gminu))- Ab is the width of the particle at a heigkh, whereA# is defined

as the sum of M&¥,in 0; Gmin,u) @NAd1/2Ag.

7.2.2 Region Growing

The watershed transformation exhibits the disadvantage, that images temad\versegmented,
resulting in many false positives. This occurs mainly because of the peesémoise in the
image, which introduces many additional local minima in the topographic sugfatsotropic
presmoothing of the image may reduce the noise, but also it will blur the dapesiakly between
adjacent particles.

Region growing, in the form presented here introduced-®yjng et al, 19954, is a somehow
more heuristic approach to satisfy the characteristics of particle images:

1. We compute the regional maxima of the image using an 8-connected neigbbdul. e. all
pixels are selected, which appear maximal Ba3-shifted window. These pixels may serve
ascandidatedor the regions.

2. Using the minima in the neighbourhood of the candidate, a measure for ttreokitie grey
value peaksAb and for the contrast of the grey valdgg can be estimated (see Fig.6).
A candidate becomes seed if Ab is in a certain range, and ihg exceeds a predefined
threshold, which may depend on the noise of the image.

3. The seeds serve as markers for the watershed transformationc(je; 1991): Only the
basins become particles, which contain a seed, otherwise they are dikcard

Once we have segmented the particles from the background and frbnotbee, it is easy to
extract relevant parameters, like

e Representative grey value of a particle like

— maximum grey value,,,,

— fitted grey valuey, (see section.2.3 or

— integral grey valug, = ) _._p g, WhereP denotes the pixels in the segmented particle.
e Area of the particle)_,_p 1.
e Position of the particles, as a result from the(fit,, i,), or by calculating the particle’s
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7.2 Segmentation

Figure 7.7: Results of the segmentation process: Every circle indicatsegmented particle. Note, that
our algorithm is capable of separating clustered particles

centroid:

T
1
(Tes Ye) = - (ng,Zgiyi> :
ieP9i \icp i€P
e Second order moments of the particle:

poo = Y (wi—we)’gi po2 = Y (4 =Yg = Y (% — x)(yi — Ye)gi-
icP icP icP
The second order moments correspond to the inertia tensor in mechangadmelconsulted
in order to get a measure for the eccentricity of an object.

7.2.3 Fit of Gaussians

Tracer particles always exhibit the same shape on the image: small, cirmbantith the max-
imum grey value in the middle and decreasing intensity to the border. We cafitdesm this
characteristic by developing a physically motivated model, which has to be ffittidse imaged
particles. A similar fit function is applied by { , ] to segment particle streaks.
According to Babinet’s principle, the diffraction of light at a sphericakdighibits the same
pattern on a screen as the diffraction at a spherical aperture, whi@hAsrthfunction (assuming

Fraunhofer diffraction):
2J1 (kap) \ 2
I =———=) [
wherek is the wave number of the light, is the disk’s radius and; denotes Bessel’s function
of first order (for a plot see Fig..8, red curve). Because of its isotropicity, the two-dimensional
Airy function only depends on the radial coordinateand not on the azimutix: 1(p, ¢) = 1(p).
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Figure 7.8: Comparison of the one-dimensional Airy-function (alsownas slit-function), using a single
wavenumber (monochromatic), a spectrum of wavenumbelgcfpomatic), and its Gaussian approxi-
mation (from [eue et al, 1994).

Because the diffraction pattern of polychromatic light is a superpositioniigf finctions
(Fig. 7.8, blue curve), the secondary maxima of the Airy function become irrelevaiaylor
expansion ofn I(p) yields:

kap

2
InI(p) = In(Iy) - (7) 100,

which legitimates a Gaussian (Fig.8, green curve), as a good approximation of the diffraction

pattern of a tracer particle:
1 2
o= (-32)).

with o = v/2/(ka) being the standard deviation of the Gaussian.
Using Cartesian coordinates and after setting the particle’s origin to anaaybitrcation
(e, 11yy) the Gaussian becomes the final fit function, which reads

o) = o exp (g (@ = ) + (0= ) ). 1)

The segmentation process consists of following steps (se€ Bjg.

1. Abinary threshold operatdr; . .55 is applied to the grey value image. A low threshaigh
is chosen, to catch as many particles as possible.

2. To identify and separate overlapping particles, the watershed operafaplied to the grey
value image. The binary output of the watershed operator is constructieel iwway, that one
correspondends to basins, and zero correspondends to wagershisdmultiplied with the
result of the threshold operator. The result itself is multiplied with the originey galue
image, which serves as input for the optimisation.
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7.3 Velocity Estimation

Figure 7.9: Segmentation by using the model-based Gaussian fit mettedd. Binary image after grey
value thresholding. Center: We applied a watershed tramsébion to the original eight-bit image and
multiplied the watershed image with the binary image. Otsjdivided by watersheds are signalised by the
yellow arrows. Right: After applying Gaussian fits to thegagmented objects, we grouped the particle
candidates belonging to the particle class (green), or particle class (red) by means of the residual of
the fit.

3. The data is fitted to the model function E@.1). We choose a support 8fx 3, 5 x 5 or
7 x 7 pixel’ about the brightest pixel of each presegmented particle. Using theicatzsl
of the brightest pixel and= = 1 as starting parameters, the model function is optimised
according to the data. As optimisation routine, we apply the nonlinear Lexghberquardt-
fitting algorithm, described inq , ]. cis set to the integral of the presegmented
particle, and is held constant during the optimization:

flzs fly, 0 = min g,,,m,/Lgl,g(x,y).
HaHy,0

Besides of the optimised center of the partiglg, /i,) and a measure for the width of the par-
ticle o, the optimisation routine yields the residual. We use this criterion to distinguistebatw
particle-class (whose shape is assumed to be approximately Gaussianonapalrticle-class.

We also can estimate a maximum grey value of the particle from the fit paramgtevslb-
ating g(fiz, fly, 0) = g¢. However, the maximum grey value, estimated with this method, seems
to be unstable: We fitted a Gaussian to one and the same particle, varyingploetstom3 x 3
up to7 x 7pixel. While the optimised centeffi,, /i,) does not change a lot there are huge
discrepancies in the evaluated maximum grey valtéarf , ] proposes, that — for
center estimating — a support ®fx 3 pixels would be enough. Addressing the estimation of a
maximum grey value, this is definitely not correct, as illustrated in FigQ

7.3 Velocity Estimation

In the presented technique, correlation of particle patterns (like in PI\Otifeasible for velocity

estimation, because the image sequences typically consist of many layarsicdep, each one
moving with its own speed. Besides that, particles may move in direction orthidgdha image

plane, commonly referred to as “out-of-plane motion”. We make use of @mee&d optical-flow
based approach, in order to obtain the motion of individual particles.
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Figure 7.10: Influence of the support on the the fit-results. Left: Supjsditx 3 pixel$, maximum grey
value isg; = 32.09. Center: Support i$ x 5pixels’, gy = 60.35. Right: Support is7 x 7 pixels,
gy = 59.13.

In order to estimate a particle’s velocity here two cases are considerstiwEiassume that the
suspended particles move parallel to the wall, sotledn’t change. The grey value then remains
constant for all times, and we can apply the brightness change congmaiation (BCCE) to
obtain the optical flow:

dg T _
E—(VQ) f+9g=0.

The optical flow represents the components of the particle’s velocity pa@liee wall: f =
(u,v)T.

Secondly if the particles do not move parallel to the wall, i. e. withot constant, the grey
values will change with time in a Lagrangian frame of reference (see sefial), according to:

d 1 dz 1dz w
G g T exp(—2/z) = —— g =——g, (7.2)

dt 2y dt 2z dt Zs
We find, that, identifyinguv/z, with the relaxation constant, the brightness change in this spe-
cial case can be modeled by an exponential decay (seetE@)( Note that we expressed the
temporal change of the-coordinate by the out-of-plane velocity-componant We reformu-
late Eq. {.2) in such a way, that it resembles a three dimensional brightness changfeadat
equation:
UGy +vgy + WG/ 24 + gt = (Vo) lu+ g =0, (7.3)

whereV = (9/0z,0/dy,1/z,)7T is an augmented gradient and= (u,v,w)” is the three-
component flow vector to be estimated. means the partial derivative of the grey valpeith
respect tor.

This can be written as a product of data matfixand parameter vectar, which expresses
some kind of basic TLS-equation (see Ed.1)). The ith row of the data matrix
D = (di,ds,...,d,) contains the components:

di = (Gui> Gyis Gi» Gri/ %+ )-
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7.3 Velocity Estimation

We construct the structure tensor by applying the left- 863 and right- (seeA.4) handed
weighting matricesW ;, andW ) to D and computing the product with its transpose:

J = (W DWR)'(W_ DWp)

<nggac>11 <gx>gy>12 <gx7.g>13 /Z* <ga:agt>14

(9> Gy) 12 (Gys Gydon Gy 9oz /2« {9y, Gt)oy
(92,9013 /26 {9y»9)ag /2 (9:9)33 /72 {9: Gi)aa /2

<9x,gt>14 <9y79t>24 (g,gt>34 /2 (gt79t>44

using the abbreviation

)

o0

(a,b),; = / w(x — 't —t)a(x' )bz’ t)/(0i05)d’dt’. (7.4)
—00

Note, that here we included the multiplications with the entries of the right hamdéik Wz =

diag(1/0;) for the purpose of equilibration, as statedAmd. The reason for this is, that in

general the noise of the derivatives of the grey values is differemh fhe noise of the grey

values themselves.

After constructing the structure tensor and performing Eigenvalue asdhccording to sec-
tion 4.2.3, the parameter vector is given by the Eigenveetpbelonging to the smallest Eigen-
value\y: .

p = (u,v,w, 1) = —(r41,742,743). (7.5)
r44

Besides of the parameter vector containing the sought velocities, thafmeésechnique yields
confidence measures characterising the structure of the local spatiorempighbourhood,
which was used as an input to the structure tensor. There are vari@assdfponfidence mea-
sures, which can be applied. For a detailed overview $eerg 2002 Spies 2001. For our
purpose we use following two measures:

Measure of certainity As a measure of the overall changes of the grey values we select the
mean square of the spatial gradient, which is the uppe2lef2 part of the structure tensor,
derived in this section. According toghng 2007 this measure is invariant with respect of
the determined velocity:

Cec = <gacagx>11 + <gy7gy>22 .

Total coherence measure An additional measure enquires, whether our model fits to the

assumption, that there a local neighbourhood with constant velocity isrgreBecause for

such a motion we require the third Eigenvalue to be approximately zero, a ls@chtotal
coherence measure can be defined by

SR
“= <)\1 ¥ )\4> '

Due to the structure of the particles (which are circular and of width of ofdyvepixels), it is
guaranteed, that we do not suffer from the aperture problem, mentiode#l Thus we do not
need a coherence measure, which quantifies spatially oriented motionthé. presence of an
aperture problem), and we can rely on Eg.5 to be the correct solution for the flow. On the

other hand, there may be a motion discontinuity in our neighbourhood (stemromgpfrticle
overlappings), which can be detected by applying the total coherencireea
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7.4 3D-Position Estimation

The depth of the particles can be reconstructed according to5e4).f6r the method of one
wavelength

z = z:(Ingyp — Ing),

or according to Eq.5.5) for themethod of two wavelengths

Zsl %
2(g1,92) = S el (111 (£> +In <@)> .
Zs1l — Zx2 g2 go1

Hereg, g1 andg, are the representative grey values of the particle, which can be the maximum
grey value, the maximum of a Gaussian fit, or the integral grey value/(2e2.

7.5 Correspondence Analysis and Tracking

From the image sequence we obtain a dense 2D3C velocity vectordfieldy), v(z, y), w(z,y)),
but the reality is in such a way, that the motion vector field is 303Cr, v, 2), v(z, y, 2),
w(z,y, z)). Thus, we have to assign the motions to the particles in various depths.

This procedure ends in a list, where each particle is identified by a numiés atiributed by
center of mass, representative grey value and velocity. Imésthod of one wavelengtte can
deduce from the representative grey value to the true depth by meaakbo&tion. This is not
possible applying thenethod of two wavelengthilere we have to find the correspondence of one
and the same particle in two temporally neighboured frames. Our approattismon-trivial
task is explained in the next section.

7.5.1 Finding Correspondences

The simplest approach for finding correspondences is the neaigeboar method, which as-
signs a particlé in the first frame to the particlgin the second frame, whose Euclidian distance

dij:\/(xi—a:j)Q—&—(yi—yj)?, 1=1...Ny, j=1...N>

is minimised, whereN; and N, are the numbers of particles in the first, and in the second
frame respectively. In our simple implementation the complexity i© W, Ns), (i. e. roughly
guadratic in the mean number of particles) because for every particle imrgh&dime the dis-
tance to every particle in the second frame has to be calculated in order thdipdrticle pairs
with minimal d.

The nearest neighbour method works well in the case of the displacemamtsfie frame to
the next being small compared to the mean particle distance. Neverthelemssde general the
particles are distributed statistically, there may be misassignments: It may hépgteanparticle
in the second frame does not find any partner (1:0-correspondemndkat it finds more than one
partners (1:n-correspondence). To solve this problem, we discdrdadr 1:n-correspondences,
so that only 1:1-correspondences survive.

By reducing the average distance between the corresponding partittesfirst and second
frame, the number of the 1:1-correspondences relative to the misassigrooald be enlarged.
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original image pair image pair after backwarping operation

Q% ®
@%%
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t=t1 t=te>tt backwarping operation
9

Figure 7.11: Schematic illustration of the benefits of warping. Left: @inped image pair. The nearest
neighbour approach yields misalignments and 1:0- or 1:rmr@gpondences. Right: The second image
is warped towards the first image according to the plottegldisement vectors, which are obtained by
applying the optical-flow based method.

In order to do so, prior knowledge about the displacements from onefta the next could be
used, given by the optical-flow based velocity analysis.

Therefore, the particle positions in the second frgmey;) are warped towards the positions
in the first frame(x;, y;) by subtracting the displacemerts; (x;, y;), vj(x;, y;)) from (x;, y;):

(@},y3) = (x5, 95) — (uj,v5)-

Now the nearest neighbour method is applied, assigning a paitiolehe first frame to the
particlej in the warped second frame by minimising the Euclidean distance

diy = /(i = ) + (3 — v))?

between these particles. Additionally we impose an upper threshold tor inhibit unlikely
1:1-correspondences.

7.5.2 Particle Tracking

Correspondence analysis can be used for two types of tasks:

Depth estimation As already mentioned in sectioh3, using themethod of two wavelengths
particles in the first frame (which can be the image, recorded with a wavbleng55 nm,
and which will be denoted asframe) have to be assigned to the corresponding particles in
the next frame (for instance recorded with 470 nm-wavelength, and ¢h#édrame further
on). Because the velocity vector field is determined using the same typenwdrée. g.a-
frames), we have to subtract origlf of the displacements in order to warp back the particle
positions (see Figl.13 green).
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Figure 7.12: Warping applied to real data. Top left: First frame, with ¢emids of the particles marked
blue. Top right: Second frame, with centroids of the paesanarked green. Bottom: The centroids of the
first frame (blue) are warped towards the centroids of the@addrame (green), yielding the red markers.

Particle tracking Particle tracking is applied for several reasons: First, by extractingra pa
line of a moving fluid element (which is represented by a particle in good ajppation), we
get a Lagrangian representation of the flow. Secondly, we can usajbettries for postpro-
cessing: For example, we can connect two adjacent trajectories, whichenaterrupted by
missing frames, using the assumption of continuity of motion, or we can smootlajbetd-
ries. Here a patrticle in the first frame-frame) is assigned to a particle in the next frame but
one (agairu-frame). Now we have to subtract the full displacements for warping (e
Fig. 7.13 blue).

We note, that a similar approach is made by\ven and Monismitf1997, where information
gained by previous cross-correlation was used to obtain a bettermearioe for particle tracking.
7.6 Postprocessing

Once estimated the positions and velocities of the tracer particles, we havieedcagn irreg-
ularly spaced 3D3C motion vector field. For further analysis we make usigedfagrangian
representation of the flow and of the continuity of the flow field.
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Figure 7.13: Flow-diagram illustrating the extraction of velocity, démnd trajectories using optical flow
and correspondence analysis. In this example, the optioal fbrange) is calculated from theframes.
The depth (green) is computed from the representative giegs of corresponding particles in bathand
b-frames using the optical flow. The trajectories (blue) anéained by establishing the correspondences
between particles in the-frames with the help of optical flow.

7.6.1 Elongation of Trajectories

In the analysis, so far, we acquired information about the depth of a lgdbiicconverting grey
value into position by means of Beer-Lambert's law. In the introduction opeh® we have
already adressed the fact, that this procedure yields only a depth maghatevccluded objects
become not visible. In our image sequences, occlusions occur evengywhere particles overlap
each other. With increasing particle density overlappings are ratherléhthen the exception.

Detection of overlappings  We have investigated two methods of detection of overlappings.
The first one uses the coherence measure, we get by the motion anségssettior”.3).
Particle overlappings are closely related to discontinuities of motion occuritigeigpatio-
temporal window, from which the structure tensor is calculated. The semmmuses the fact,
that in order to do the particle tracking, 1:1-correspondences ar@edquf two particles
overlap in the second frame, one patrticle in the first frame cannot benadsig one single
particle in the second frame uniquely. Therefore, the trajectory habedais end.

Finding trajectory candidates  Possible candidates for the elongation of a trajeci@gryith
end-particle in frame are all trajectoried;,i = 1... N with start-particles betweehand
t + At, whereAt is a value for the maximum allowed length of time for a particle-crossing.

Trajectory matching We apply N ordinary least squares fits to the trajectory-p&ifs7; },
regarding the variables, y andz. The residuals of the fits are measures, how good the
trajectories match in the individual variables. By combining these measuresctorey, one
can give evidence if two trajectories belong to the same particle, or not.

Filling of the gap By adopting the fitted values in the temporal gap between a trajectory pair,
two trajectories are merged to a new, long trajectory.

Figure 7.14 shows the process of trajectory elongation. For the sake of simplicityy-the
coordinate has been dropped using 1D sections of the frames. In-theimage, the spatio-
temporal locations of the superpositions become clearly visible. By multiplyingtigénal
images with a mask generated from the coherence measure, the positiens,ovérlappings
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Figure7.14: Simple example, demonstrating our procedure to cope withappings and to elongate tra-
jectories. Top, left: Some frames of the considered imageesee. A bright and fast particle “overtakes”
two slow and dark particles. A horizontal line through thetes of the particles was picked as a basis for
a spatio-temporak — t-image (top, center). Then a confidence measure from vglacdlysis (here the
trace of the upper lef2 x 2-part of the structure tensor) was used to exclude non-emshotion (top,
right). Bottom: The sub-trajectories were matched both in ¢- and inz — t-space. From the residuals
of the fits, a score was calculated.

occur, can be excluded in the further analysis. Figuie, bottom, shows the fits to the particles’
z- andz- coordinates. By combining multiple features in a score, a greater stability @t tan
be reached.

Major disadvantage of this method is, that it imposes some thresholds, whielidhbe set
based on empirical knowledge: We have to define a maximitrand we have to specify, how
the different features are weighted against each other. Moreoeehawe to set a limit for the
score.

7.6.2 Smoothing of Trajectories

The accuracy of the determination of theoordinate suffers from the fact, that there is an error
in determining the grey values due to the limited pixel size and the camera noisewilllibe
investigated in more detail later in sectiBr2.4 Figure7.15 left, shows a typical example how
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Figure 7.15: Smoothing of a trajectory. Left: Grey values of one and theesé&rajectory recorded with
cyan and blue light. Right: Directly calculatedcoordinate of this trajectory and smoothed version

the grey values along a trajectory might look like. Smoothing is able to eliminate trdsokin
“noise” to a great extent. Therefore we applied a 1D Binomial-filter (&%.to the grey value-

time series of both wavelengths. The borders of both time series can bpatited; this cancels
out by division. An exemplary result of smoothing is shown in Fid.5 right.

7.6.3 Calculation of a Dense Vector Field

For some hydrodynamical quantities (like vorticity, shear rate ordissipatie), nee need an
equally spaced vector field. Moreover, this might be useful, when wé twarompare our algo-
rithms to other methods like classical PIV.

One has to interpolate in some manner to obtain a displacement vector in evgrypfpan
equally spaced grid. An overview over the classical methods is givemircpster and Salkauskas
1986. A common technique, which is applied in fluid flow analysis, is the adaptives&an
windowing method (AGW) presented ir\fjui and Jimengz1987, which is a special case of
the more general normalised convolution methody isson and Westjri993. The interpo-
lated vector fieldv;, i = {z,y, 2} at the equally spaced positioms can be calculated from the
irregularly sampled velocities; at positionse; by applying following procedure:

S0 (el exp (2550
Z;V:l C(CCj) exp (_%) s

v; (331) =

wherec(x;) denotes the confidence of the measurement at the posifiamhich is given by one
of the confidence measures obtained by motion analysis (see sé@jorUsing Monte-Carlo
simulations pgui and Jimenez1987 have shown, that the optimal width of the convolution
window, which is given by, is directly proportional to the mean spacing between partitles

resp.ds:
A 3/ V
o =a«ady = ay/ — forthe 2D, and o = ad3 = a4/ —— for the 3D case,
TN TN
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with the proportionality constant set to 1.24. HeréV is the particle number, contained in the
areaA or volumeV'. The results of fgui and Jimengz1987 for the 2D case could be approved
by [Hering 1999 for the 3D case.

7.7 Estimation of the Wall Shear Rate using 3D Parametric Motio  n Models

In this section we will generalise the well-known concept of estimating thenteas of amaffine
transformationof the optical flow (see chaptér3.]) to the case of 3D. The knowledge of some
of the components of the parametric motion model in 3D allows us to estimate the ealIrsle
directly, without a previous calculating of the vector fields.

7.7.1 Parameterization of 3D Physical Flow Fields

In the following we consider 3D physical flow fields. We apply the notatioa (uq, us, uz)? =
(u,v,w)"” for the 3D velocity vector at the 3D positian= (1, z2, 23)" = (z,v, 2)T. A flow
field u(x) can be extended to a first order Taylor series in the vicinitiuf ¢():

Ous .y O

- . t.
858]‘ i+ ot

ui(xj,t) =~ ui(xj,g,to) +

We made use of Einstein’s summation convention,@aamd; are defined from 1 to 3. In vector-
matrix-notation this reads:

u(x,t) = s+ Tz + b,

wheres is a 3D translation” = (v;;) = (Ju;/0z;) is the3 x 3-velocity gradient tensor which
is essentially the Jacobian, abds a 3D acceleration.
This 3D parametrization can be incorporated into the 3D-BCCE Eg): (

Vo)l - (s+Tx+bt)+g =0 (7.6)

From the components of the matiixmportant physical quantities of the local neighbourhood
in the flow field can be computed, like
e the vorticity vectorwy, = €;;17ij,
e the strain rate tensos;; = 1/2(vij + vji)»
o the dissipation rate: = —2v5;;5;; = —v(vij + Vi) Vij-
For the interpretation of the velocity gradient tensor, which describesitigniatics of fluid

motion up to first order, we also refer to the section concerning the Helmheltzem (sec-
tion 2.1.29.

If we assume that we have pure 2D-flaw= u(z,y), v = v(z,y) andw = 0, Eq. (7.6)
reduces to the optical flow-parametrization ca&().

Like in the case of 2D optical flow fields one can generalise the parametrizdt8D physical
flow fields in the context of the Lie group of continuous transformations ¢setiorB.2).
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Figure 7.16: Example images of the synthetic image sequences (lefts afape wall shear rates esti-
mated with our algorithm (center) and velocity profiles, ethdeliver the ground truth for the wall shear
rates (right). The distinct image sequences are describéld text.

7.7.2 Estimation of the Wall Shear Rate

In the previous section the parameter estimation of 2D image sequencelymgda3D affine
transformation was discussed. Now we will return to our applications: Bsdidowing the
velocity fields explicitly, it might be useful to know derived quantities, liketiwty, strain rate
or dissipation rate. In particular, the wall shear rate is vitally important to getvledge about
the flow behaviour — e. g. to locate critical points of the flow.

In the following the case of uniform wall parallel shear flow is addressed v = u(z),
v = v(z) andw = 0. The only non-vanishing components of the velocity gradient tensor
Yij = aul/alt] are

ou  Ouq ov  Ous
&:8_:%:%3 and %:8—1:3:723’
Therefore the 3D-EBCCE(20) can be rewritten to
0 0 73 x
Vo' - [0+ 0 0 73 || v | +0|+g=0, (7.7)
00 0 z

which can be transformed to a scalar product of the data vdaad the parameter vectprafter
some simple algebraic manupilations:

d-p" = (g:2.9y%,9¢) - (113,723, 1)7 =0 .

95
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Starting from this scalar product, one can construct an expandedus&densor, similar to the
way presented in sectioh3:

T <g:vz7givz>11 <g:vz7gyz>12 <9m2,9t>13
J= (W, DWg) (W, DWg) = <gg;z,gy2>12 <9yzvgyz>22 <9yz79t>23
<9z279t>13 <9y27gt>23 <gt,9t>33

using the abbreviation Eq7 4). Again here we used equilibration, in order to weight the entries
of the matrixD relative to their noise.

By performing an Eigenvalue decomposition we obtain an estimation for thenptgavector
to

1
b= (7137723) = —(7”31,7”32)7
733

whererjs is the Eigenvector belonging to the smallest Eigenvalye

7.7.3 Application to Synthetical Data

To illustrate the procedure of estimating the wall shear rate directly and to Higkligne of its
limits, we applied Eq.7.7) to synthetically generated data, where the ground truth is well known.

The following image sequences are generated by providing a uniformpasalliel 3D flow:
u(z) = 13z, v = w = 0. The flow is texturised using Gaussian intensity distributions of equal
maximum intensity and equal maximum variance, representing the particles:-fgdsition of
the particles is indicated by attenuating the maximum intensity of the Gaussiansliagcio
Beer-Lambert's law Eq.5(4).

The first synthetic image sequence contains particles, which are distribigach a way, that
they never will overlap each other: The particles are arranged in raedy particle in one row
having the same depth, and therefore the same brightness and the sadh@-&pee7.16 top,
left). Here the wall shear ratgs is exactly 0.6, which is indicated by the profil¢z) (Fig. 7.16
top, right), and the wall shear ratg; vanishes. Our algorithm yields wall shear rates, which are
displayed in Fig.7.16 top, center. The ground truth is reproduced very well. Slight deviations
occur, where there are several particle-rows adjacent, moving witbépgately the same speed.
The reason for these deviations is the fact that the spatio-temporal neigiald is of limited size
(in this case5 x 65 pixels).

In the second synthetic image sequence the particles are randomly distfiBigted 16 bot-
tom, left), moving so that they follows the wall shear raies = 1 and~.3 = 0. The estimated
wall shear rates are mapped in Figlg bottom, middle. As a result of the fact, that overlap-
pings may occur, there are regions, where our algorithm produceficaghdeviations from the
ground truth. This is evidence, that our model fails in the presence of mdismontinuities,
which are caused due to overlappings of particles.

7.8 Summary of the Algorithms

In this last section of the chapter we will see, how the distinct techniquebea@onnected in
order to obtain the desired quantities. Here we confine ourselves to thesfipps presented in
chapter8, namely the estimation of velocity vector fields in Eulerian and Lagrangiaesepr
tation using thenethod of two wavelengtlasd the computation of the wall shear rate using the
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raw data

wavelength 1 / \ wavelength 2

| illumination correction | | illumination correction |

l l vector list
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PTV: trajectories
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| Lagrangian field |<_ | trajectory smoothing | - | trajectory elongation Eulerian field

Figure 7.17: Flowchart of the algorithm to calculate the Eulerian and kaggian velocity fields, using
raw data generated with theethod of two wavelengthsThe analysis in sectio8.2 and sectiorB.3 is
performed in this way.

method of one wavelengthlowever, due to its modular setup, one can adapt the algorithmics to
one’s individual needs.

Estimation of the Velocity Vector Fields

Figure 7.17 shows a view over the different components of our algorithm, and how dhey
related to each other. The components are grouped in four modulese whowes refer to the
headlines of the first six sections in this chapter. In the preprocesspthsteaw data is separated
into two subsequences (one for the first wavelength, e. g. 455 nm,renfbothe second wave-
length, e. g. 470 nm). To each of these subsequences the varioaedpres of preprocessing and
segmentation (sectionl and sectior?.2) are applied. By performing correspondence-analysis
(section7.5.]) two grey values are assigned to one and the same physical particle; tbeptis
can be calculated (sectighd). Using one subsequence (e. g. of 470 nm wavelength), the optical
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raw data E— | illumination correction |

| background subtraction |\

optical flow using
| segmentation | 3D-parametric —> | Wall-Shear-Rate

l motion models

Figure 7.18: Flowchart of the algorithm to calculate the wall shear ratistdbution using themethod of
one wavelengthThe analysis in sectioB.4is performed in this way.

flow can be estimated according to sectibB. We have arrived at an unequally spaced 3D3C
Eulerian velocity vector field, which can be interpolated to a regularly spawce, using the tech-
nique described in sectioh6.3 On the other hand, the particles can be connected to trajectories
(section7.5.2), so that postprocessing (sectioi®.1and sectiory.6.2 can be applied.

For the quantification of the particles’ absolute depths and absolute velpeitzEsgibration
has to be performed. I.e. both, the penetration depths £.2) and the ratio of the intensities
go1/902 has to be extracted using a special calibration technique. In setfidhe calibration
procedure and its validation are explained.

Estimation of the Wall Shear Rate

Figure7.18visualises the various steps, which had to be carried out until the walt shteas
obtained. In this thesis, the wall shear rate was calculated for image seguescorded with the
method of one wavelengtihus after preprocessing and segmentation, correspondencsisinaly
is not necessary. Using the preprocessed sequence and a segiugeeth maps(x, y) as input,

the wall shear rate distribution directly can be computed, without previolgslation of the
velocity vector fields (section.7.2.
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8 Experimental Results

In the following some experiments applying our measurement technique aatjouthmics to

real flows and to real data will be presented. In sec8dnthe applicability of Beer-Lambert’s
law to depth estimation is demonstrated. Moreover, we will see, how our systsity can be
calibrated regarding the reconstruction of the particles’ depth. The matrilmation of this work

is the “proof-of-concept” of thenethod of two wavelengthgplied to real-world flows. A laminar
falling film (section8.2) provides a well-known velocity profile, so that the measurement method
can be tested. Convective turbulence (sec8d) represents a more complex flow. Finally, in
section8.4 the algorithmics is adapted to data, which was recorded usingng#tbod of one
wavelengthHere the focus is set to the direct estimation of the wall shear rate.

8.1 Calibration of Depth-Resolution

In this section procedure and results of the calibration of depth-resoliatidhe method of two
wavelengthsvill be discussed. A possible calibration procedure fomttethod of one wavelength
is given in [Debaeng2004.

In section5.2 we have found an expression for retrieving the lateral posiioih a particle,
given its apparent intensities while recording with two distinct wavelengtlad g-:

grg) = —22 ([ Z) 4 (22)).
Zxl T Zx2 92 go1

By introducing the abbreviations = In(g1/92), zred = (2«12+2)/(241 — 242) @andV =
In(go2/go1) the former can be rewritten to

z(n) = Zzredn + zredV. (8.1)

8.1.1 Calibration via Linear Positioner

Equation 8.1) proposes a linear — n dependency. We can check this, by acquirjpngt various
depthsz;, and subsequently fitting a straight line to the data. The slope turns outzggland
the intercept yieldseqV .

The particles were fixed in a 2 mm thick layer of agarose-gel. The settinfagaoose-gel is
described in $chlossgr2004. The gel with the particles was immersed into dyed fluid using a
linear positioner (see Fid.1, left). By moving the table the relative change of the width of the
covering layer can be controlled. Using thin rods, water-displacemenbeaeglected, so that
the movement of the table equals the relative change in depth.

This procedure is carried out automatically by centrally controlling the motidimeotable and
image acquisition. Images were taken at 80 measurement points, sep&%ted, Tovering a
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Figure 8.1: Calibration via linear positioner. Left: Sketch of the expgental setup. Right: Reprojection
of the data. The estimated depth using the fitted valuesdpandV is plotted against the true depth.

total distance of 10 mm. Preprocessing (secfidl) and segmentation (sectiadh?) were car-
ried out, and the correspondences between the particles acquirediran4and those acquired
at 470 nm were established (sectio®.2. Using the maximum gray values of thé distinct
particles at the two wavelengths the meampfn) = ny:l n;/N, is calculated in dependency
of z. By applying a linear ordinary least squares-fit to the data bgtfandV" can be extracted.

Figure8.1, right, shows the reprojection of the datgyoj z) using the fit-parameters according
to Eqg. 8.1). We see a broad variance in the individual data-points, which are ohatke, but the
mean values fit very well to the lingeproj = 2. Note, that with increasing depth the reprojected
data becomes less exact.

8.1.2 Calibration via a Target

From the previous section we see, that the linear dependency, pdojposg. 8.1), is in good
agreement to the experiment. Furthermore, we have found a method to oletaialittration
parameters. But this calibration technique has the disadvantage, thatitei®igborate. Cali-
bration has to be carried out at least once when using a new preparatiped fluid. Therefore
it would be reasonable to calibrate directly at the measurement place, usisgrtie camera
adjustments as in the experiments.

Once linearity is guaranteed it should be sufficient to take images at two reessut points,
which are at a defined distance away from each other. Because sinoulségndata from many
particles were acquired, the statistical measurement error can be dedilibe particles are
trapped in a thin cuvette, filled with water. Another cuvette of widtfilled with water (or
the dyed fluid) is put between particles and camera-optics, working absambéng medium.
Figure8.2, left, shows a sketch of the two-step calibration principle.

1. The first image is taken, while the cuvette is filled with water: The absorlistgrite is
0mm, so that Eq.§.1) becomes

0= Zred(77 + V)-
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455nm-wavelength 470nm-wavelength

1 calibration with water in the cuvette (z=0mm)

K

2 calibration with dye in the cuvette (z=d)

1 E

Figure8.2: Calibration via target. Left: Sketch of the calibration ¢gat (filled with (un)dyed fluid). Right:
Calibration using light of 455 nm and 470 nm wavelength.

In order to fulfill the equation, the second factor has to be zero, so thetessary condition
for Vis:

V= _[n]2=0 = [11192 - lngl]z=0~
2. The second image is taken, while the cuvette is filled with a probe of the dyddiied in
the experiment: The absorbing distancé,iso that Eq.§.1) becomes

d= Zred(TI + V)u

which can be transformed to

i d
V4+n |V+lng —Ing Yy

Zred =

Figure 8.3 shows the results of this technique. The calibration parametgysandV; for
each particle are scattered statistically about their mean values. Becagsmitet be outliers
(occurring due to swimming particles in the absorber fluid, for instancejnduian (instead the
mean) of the data is calculated. Reprojection uncovers these outliers.

8.1.3 Discussion: Calibration of Depth-Resolution

Using a linear positioner, on the one hand the applicability of Beer-Lambiant'so the present
setup can be tested, on the other hand, we have an instrument to recithstaalibration param-
eters occurring in the linear expression for retrieving the lateral posifiarparticle Eq. 8.1).

Analogous to radiometric camera-calibration, once being sure, that tteiegar dependency
at hand, a two-point-calibration should be sufficient. By employing a sihedisigned target the
calibration-procedure has become much simpler, so that the parametées egnacted directly
using the same adjustments as in the experiment. By retrieving the calibrationgbars for
0O(100) individual particles simultaneously and applying the median to find the best éstiwve
can be sure, that the error on the parameters is small.
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Figure 8.3: Example of a calibration performed using a target. On thé hefind side, results without
absorber, on the right hand side, results with dye as an dieoare shown. Top: Acquired images using
light of the two wavelengths. Center: Back-projected éeti. Except some outliers, their depths scatter
about the desired values. Bottom: Histogram of the calibraparameters.

8.2 Measurements in a Falling Film

One of the most basic laminar flows, which are achievable in the laborattng, flow in a falling
film on an inclined plane. Flow parameters like film depth, maximum velocity anch&ley
number can easily be varied by changing throughput, inclination angleiscakity.

Its simplicity and versatility qualifies this flow for a physical reference ouhrnéue can be
tested at. In this section the hydrodynamics of the flow, its realisation andierques are ad-
dressed.
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8.2 Measurements in a Falling Film

8.2.1 Laminar Falling Film - Theory

The velocity field results from a solution of the Naviar-Stokes equation&EjN&plying a certain
geometry and assuming small Reynolds numbers.
The equations of motion for a flow of a uniform density fluid read (see E&))(

(3—1; =g—Vp/p+vViu.

We consider the fully developed stage of a two-dimensional= 0 everywhere), steady
(Ou/0t = 0) flow running down an inclined plane (the angle to the horizontal)iswhich is
solely driven by gravityy. Because continuity holds, i. €u/dx + dv/9y = 0, and the flow
characteristics are invariant inrdirection (i. e. du/0x = 0), we havedv/dy = 0 everywhere.
Sincev = 0 aty = 0, it follows thatv = 0 everywhere, which reflects the fact that the flow is
parallel to the walls. Therefore the NSE reduce to one equation

0 ina+ 20
= —(gsin« V—-—>
g ay2 )
which can be integrated to
5 : .
_u:g51nay+A and uzwgf—kz‘ly—l—B.
oy v

Because of the boundary conditiopg,—o = 0 (no-slip condition) andou/dyl,—, = 0 (no
shear stress at surface), we have for the integration constants

bei
A=Y and B=o,
1%
so that the solution becomes ]
gsino , o
= — 2by).
uly) =~ y)

Using a coordinate system, which has its origin on the film-surface, with thiratedpointing
to the wall, we have to replageby § = b — y andu by —4, so that the velocity profile can be

written as .
_gsina

a(j) = S0 ), (8:2)

which is commonly referred as tidusselt solutionFrom now on, we omit the tilde ifi andy.
The velocity, averaged over the depth of the film, is

1 [P gsinab® 2
m = 7 d Zu(0),
u /0 u(y)dy = — ;u(0)

so that we get for the film depth in dependency from the exterior parasnetiich are throughput
@, width of the filmd, inclination anglex and viscosity of the fluid:

Q = by, = b= -2 — 8 3
dum, dg sin «
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Figure8.4: Diagrams, showing the film depthmaximum velocitymaxand Reynolds numbee¢xtrmRe,
given the throughput) and the viscosity. An inclination ofa=1°and a film width ofb=20cm are
assumed.

A Reynolds number can be defined to

which does not depend on the inclinatien

Figure 8.4 shows the interior parameters film degthmaximum velocityv(z = 0) and
Reynolds number in dependency of the exterior parameters throu@hgmd viscosity, where
the inclination anglex and the film widthb are held constant. Here a laminar flow is presumed.

According to Braun 1969 the flow in a falling film is laminar, as long as Re 3. In the
range3 < Re < 45, small disturbances because of the non-perfect geometry resultsisupee
fluctuations. In the NSE an additional pressure gradient appeard) wiaikes their solution very
complicated. Chang and Demekhjri2007 show, that depending on the type of perturbations
and on the Reynolds number, various kinds of waves develop, whige fabm periodic waves
to solitary waves.

Above Reynolds numbers of about 45 the flow in the falling film becomes embwbecause
now the inertia forces play a significant role. The wavy flow state becorsésbie, and the flow
transits to turbulence.
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loutflow

Figure 8.5: Sketch (left) and photograph (right) of the falling film tank

8.2.2 Laminar Falling Film - Setup

A falling film tank of 230 cm length and 20 cm width was constructed (see@igleft). Thread
rods are used to adjust the slope of the tardontinuously from 0 to 10°.

The tank was fully made of borosilicate glaswhich guarantees high resistivity against acids,
alkalies and organic substances. Moreover, choosing Pghéinopolymer polypropylene) as
piping material, a safe usability of the tank for the above mentioned substaasezssured.

The flow is driven by gravity, pouring from one container, which is lodabout 2 m above
the ground, to the other, residing at the ground. No active elements likespwene used to
avoid contamination of the fluid. By choosing a sophisticated design of thegpiging two ball
valves, one is able to alternate the positions of the containers without alteipgsitions of in-
and outlet of the tank (see Fif.6). The throughput) of the flow is measured using a variable
area flow meter, being located up-stream of the inlet.

Image acquisition was done using the Camrecord 2000 high-speed canaerasalution of
512 x 512 pixels’ and a frame rate of 125 Hz or 250 Hz. The light sources 1 (royal blilee} bnd
3 (blue — cyan) were installed (see Figll). In both cases, the absorption spectra of tartracine
acid yellow turned out to be well adapted to the emission spectra of the LEDs.sdtup of
the recording unit was like that shown in Fi§12 Figure8.5, right, shows the recording unit
mounted on a linear positioner table, which was used to perform measureniimtise camera
moving relative to the tank.

Both, the Optimage particles and the 3M glass hollow spheres were use®@Mr particles
tended to stay at the water surface, or to deposit at the bottom of the taisknight be explain-
able due to their hygroscopic properties. The Optimage particles mixed vengdeneously
with the fluid. The falling film was operated with both, pure deionized watewaater-glycerol-
mixtures. The viscosity of the mixtures was measured using a glass tubeivistars

'Borofloat 33 by Schott AG, Mainz, Germany; http://www.schott.com
2Georg Fischer GmbH, Albershausen, Germany; http://www.pipingodisoher.com
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o o

B B

Figure 8.6: Schematic drawing of the piping in the falling film tank. Thefis either from containeA

to B (left), or from containerBB to A (right), while in- and outlet of the tank stay the same. Tigkdviour

is driven by the two ball valve®; andV,. The throughput) is measured by a variable area flow meter
up-stream of the inlet.

8.2.3 Laminar Falling Film - Results

In

the following results of the measurements in the falling film tank will be shove. dapabili-

ties and the limits of the measurement technique and the algorithms will be demahstrate

1.

Generally the procedure is as follows:

The acquired image sequence undergoes a simultaneous radiometraticaliand illumi-
nation correction (section.1.1). Then the background, represented by the minimum image,
is subtracted (section1.3.

. The particles were segmented using the region growing procedet®(se.2.2 or a fit of

Gaussians (section.2.3. The brightness parameter was either the maximum gray value or
the fitted gray value. The performance of these segmentation appréadig=zussed later in
this section.

. The velocity vector fields are extracted using the optical flow-basedochégection7.3).

The depth coordinate of one particle was obtained using the brightneawgtars of two
subsequent images (sectiord). Correspondences between image pairs were found by using
the warping technique explained in sectibb.l

. Postprocessing was performed in several ways. Firstly particles withrkoy values and thus

low expected signal-to-noise-ratio are thrown rejected. Secondly partigee connected
to trajectories (sectiof.6.1). Afterwards the velocity- and depth-components of a moving
particle were smoothed along a trajectory (secidh?. This will be discussed later in this
section.

. Calibration is performed using the technique presented in se8tiprusing a calibration

target of widthd = 1 mm.
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8.2 Measurements in a Falling Film

Use of the linear positioner

The maximum achievable displacements are limited by the temporal sampling theohain. T
means, that an upper limit for the measurable velocity of a tracer particlees @iy its im-
aged spatial dimensions. An imaged pixel size of.&8pixel was chosen. Assuming a slight
presmoothing of the particle, this limit is about 4 pixels/frame. lllumination and camiéw
a maximum achievable frame rate of about 250 Hz, which has to be dividéxadyybecause
only every second recorded image can be consulted for motion analgsi§i@.7.13. Using
a higher frame rate (theoretically up to 1000 Hz), the dynamic range of #gyevalues cannot
be exploited, because the luminous flux is too low due to the shorter exgosese With these
specifications we have for the maximum velocity:

pixels ~ 28um  mm

= =14 —.
frame 8 ms S

One can improve this limit by mounting the imaging setup on a linear positioner, whighsno
with about half of the expected maximum flow velocity relative to the fluid. In Big, left,
averaged velocity profiles without (top) and with (bottom) the use of a linesitipner are shown.
Here exactly the same flow conditions (in this c&ge= 301/h, v = 4.845mm?/s, a = 1°)
are applied, so that we can compare the velocity profiles in terms of agcutsing a linear
positioner the precision of the depths of the deeper particles is much bdtisrreflects in the
fact, that the statistics for deeper particles becomes larger, and thgedes@ues even in the
deeper part of the profile do lie in line with the theoretical parabola (sed8Eg) very well.
Figure8.7, right, shows the acquired trajectories in this sequence.

Effects of a Gaussian fit applied to the segmented particles

In the previous experiments the brightest gray value is assumed to beaefatdve for the inten-
sity of a particle. One can also use the outcome of a Gaussian fit to the duag vha segmented
particles as an intensity measure. In the analysis ofg=&)oth kinds of intensity measures were
used for the calculation of the depth-coordinates. Every point in the ckurésents a measured
particle’s velocity assigned to a measured particle’s d¢pth.;). Moreover the averages and
the standard deviations of the particles’ velocities in bins ofis0width were calculated. After-
wards the average velocities were fitted to a polynomial of second orterGaussian fit does
not reduce the statistical errors significantly.

Effects of the trajectory-based postprocessing

The previous analysis has shown, that the theoretical parabolic veloofileps reproduced by
the averagedexperimental velocity profile in very good agreement. Here averagin@gstie,
because of the presence dftationaryflow. Provided the absence of systematical errors, one can
improve the accuracy of the measurement by elongating the time of the meastireimeever,

if an instationaryflow is at hand, averaging does not make sense, if one wants to exteact th
instantaneous velocity fields, at least, if the time scales of the advection obtididld are
shorter than the time of averaging. For this reason, we apply the postpiogeechniques,
described in section.6. Figure8.9illustrates these methods:
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Figure 8.7: Use of a linear positioner in a falling film experimei & 301/h, v = 4.845 mn?/s,a = 1°,
recorded at 250 Hz, Optimage particles), displayed by megirike velocity profile.(z) and by means
of a velocity-map:a, b No linear positioner usedc, d The recording hardware is mounted on a linear
positioner table, which moves at a speed of 7.5 mm/s respécabout 2 Pixels/frame.
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8.2 Measurements in a Falling Film

rieselfilm/glyopt/4g_133Hz_7 - no fit rieselfilm/glyopt/4g_133Hz_7 - Gaussian fit to particles

parabolic fit: y = 1.908x2 + 0.344x + 3.306 parabolic fit: y = 2.497x2 + 0.266x + 3.285
0 | residuum=0.116 | 0 | residuum =0.013

minimum at (0.090, 3.327) minimum at (0.053, 3.292)

u [pixel/frame]
u [pixel/frame]

z [mm] zImml

Figure 8.8: Effects of fitting demonstrated in a falling film experime@t € 151/h, v =4.845mn/s,
« = 1°, recorded at 133 Hz, Optimage particles), displayed bymses the velocity profile(z): a Max-
imum gray value taken as characteristic brightness paramfetr a particle. b Characteristic brightness
parameter is the maximum of a Gaussian fit applied 5o>a5-neighborhood of a particle.

o If we plot all vectors, our measurement gets erroneous. The sigmadise-ratio of the low-
intensity-particles is very poor. To prevent this, we applied a thresholthemminimum
allowed gray value of a particle.

e Smoothing of the:-coordinate or of the-component helps to reduce the errors significantly.

8.2.4 Simulation of a Laminar Falling Film

In the error analysis in sectioh 3 it was argued, that the relative error of the maximum gray
valuek = Ag/g is a function of the particle size. The oscillations in the gray value, that
appear, when a particle moves constantly in one direction (se€’ Hif. were conjectured to
stem from the effect, that it depends on the position of the particle’s ¢éeméiative to the pixel,
how much photons one pixel can catch. We quantified) using simulations (see Fi§.10).
Further a sequence was simulated, in which the particles move accordingrabeiic profile.
The particles were textured as Gaussian blobs, being advected with th&dltiis sequence the
same algorithms were applied as in the previous section. Fijlileshows impressively, that the

oscillations in the gray value are not given by the physics of the flow,dsutlr from the above
addressed error.

8.2.5 Discussion: Laminar Falling Film

The velocity profile in a laminar falling film is well known. Moreover, by tuningpigrameters
(inclination angle, viscosity and throughput) flows in a versatile range ofrman velocity and
maximum depth can be generated. Thus it serves well as a physicahthtauh” to test the
method of two wavelengths

The present measurements reproduce the predicted parabolic veladity g. 8.2) very
well, if one is allowed to average over “bins” in depth-direction. This pdoece is permitted in
the presence of a stationary flow or of a flow whose flow field is slowly taéeia time.
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Figure 8.9: Effects of smoothing demonstrated in a falling film expening@ = 151/h, v = 3.676 mn¥/s,
«a = 1°, recorded at 250 Hz, M3-glass hollow spheres), displayethbans of the velocity profitez): a
All vectors, no smoothindy Only particles with gray value 470 nm > 25 selected’he depth coordinate
z iIs smoothed in the trajectoriesd Depth coordinatez and velocity component is smoothed in the
trajectories.

By applying postprocessing-techniques the results could be improvedaarféor the appli-
cability to instationary flows. However, the individual (not the averagedasurement points
(which represent measured velocities at measured depths) exhibde@ide scattering.

The measurement setup had two limitations: Firstly, the Camrecord 2000 regld-spmera
was of rather poor quality regarding spatial homogeneity of the camesarsgee sectiofi.4.2
and sectiory.1.]). Secondly, due to the relatively fast moving flow, high frames rates bhod s
exposure times were required, which in turn requests a powerful illuminafioause of a linear
positioner, moving with about half of the flow's maximum velocity, helped to atentihe second
limitation.

Simulations show, that the measurement error depends strongly on théepsize; which in
turn affords a camera-sensor with a high resolution.
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k(c)=0.14
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k(c)=0.24
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Figure 8.10: Quantification of the relative error of the maximum gray eku= Ag/g in dependency
of 0. Top: Examples of three particles (having the wid#ty.71, 1 and 1.41) “flowing” over the pixel
lattice. Bottom: For eaclr a mean error is calculated and plotted, resulting in the fiimtk (o).

8.3 Measurements in a Convection Tank

The measurements in the falling film showed, that the technique is capabledduep the exact
flow fields (here in form of a 1D-profile), as long as the flow is stationkrgontrast, convective
turbulence represents a flow, which is intrinsically 3D and instationary.

Compared to a falling film, convection is a slow process, so we can use bajtychardware.
In this section, we will introduce to the theoretical aspects of turbulentemdion, address the
measurement setup and show results.

8.3.1 Turbulent Convection - Theory

We are concerned about convection which is driven by buoyanciaadaporation. For rigorous
mathematical treatment seelndy, 199( and [Koschmieder1993.

Buoyancy is realised by heating the fluid in a tank from beléwi{dy, 199(. Small dis-
turbances (which occur because of the inhomogeneity of the boundadjtions) may cause a
high-temperature fluid packet at the bottom to move upward. While raisingliffeesnce of its
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Figure 8.12: Left: Sketch of buoyant evaporative convection: The watdhé isolated tank is heated

from below. Evaporation at the upper surface causes a tearddflatent heat. The vapour is transported
by “dry air”. Right: Diagram showing the Rayleigh number forater in dependence of temperature
(d=4 cm,T5=20°C). For comparison Ra for glycerol is plotted also.

density to the density of the colder surrounding increases, which aateddghe upward motion
(positive feedback). Vice versa a low-temperature fluid packet fraridh may get in slighter
higher-temperature regions because of random fluctuations. Bewcawsi¢ is heavier than the
surrounding its downward-motion will accelerate. Originally hot and origyirezold fluid ele-
ments exchange their places; the final result is a continuous circulation.

[Rayleigh 1914 derived the theoretical requirement of buoyant convection in a lafyuid
with two free surfaces. He showed that the instability would occur wheretie r

ae buoyancy force  gad*AT
~ viscous force  Dpv

Y

which is known as Rayleigh number, exceeds a certain critical value. Thider depends on
the geometry of the fluid layer, which is expressed by its vertical dimensifts horizontal
dimension is assumed infinite), on the temperature difference from top to bstidateAT =
T, — T» and on material properties of the fluid: kinematic viscositthermal diffusivity Dz
and thermal expansion coefficiemt The critical Rayleigh number, which marks the onset of
buoyant convection for a free upper surface and a rigid bottom walbdstal100. Here the flow
forms regular patterns like regular polygons, depending on the bourdaditions. As Ra is
further increased, the cell structure becomes more chaotic, and thedtmmles turbulent when
Ra> 54000 [Kunduy, 1994.

The heat transfer from water to air occurs via two modes: Firstly the diffar in temperature
of air and water causes sensible heat transfer, secondly evaparatises latent heat transfer.
The cool and thus dense water parcels at the interface plunge into thevetss; the warm and
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inlet for 'dry air' honeycomp to sup- heating access for temperature
press air turbulence and humidity sensors

Figure 8.13: Left: Drawing of the convection tank. Right: Convectionkavith image acquisition unit.

light ones rise and penetrate into the cool air above. The transition of fn@tefiquid to gaseous
state requires a certain heat volume, which is known as the evaporation hea

Figure8.12 shows a schematical sketch of the conditions in our experiments. The Rayleig
numbers of water for different temperatures in the water-bulk were ledécl) where the tem-
perature of the top is set to air temperatufg=20°C. Both, thermal expansion coefficient and
viscosity depend strongly on temperature, whereas the thermal diffusiagsumed to be con-
stant: Dy water = 1.5 X 10~"m?/s. For water the Rayleigh numbers are in the highly turbulent
range. Due to the much greater viscosity, the Rayleigh number of glycesbbislers of mag-
nitude lower (Rgycero( AT = 10°C) = 27000. Because we use water-glycerol mixtures, we are
nevertheless in the turbulent range in our experiments.

8.3.2 Turbulent Convection - Setup

For the turbulent convection measurements a tank of dimen2ipn80 x 4 cm?® was constructed.
The tank was fully made out of acrylic glass, the walls being double-glazethé purpose of
insulation. It is equipped with sensors for the bulk- and air-temperatutdaarthe relative air
humidity. Two quartz glass windows allow measurements using UV-specppsEleating was
realized by warming an aluminum plate, which was located under the bottom ta#rtkeusing
attached heat foils.

The image sequences were acquired by a Basler 641f-camera, whiahrdgolution 0640 x
480 pixels® at 30 fps. 55:m were imaged to one pixel, so that the displayed window was about
3.5 x 2.6cn?. The distance between camera and object was about 60 cm, so that theeape
angle of the objective was only about 3°. Therefore lateral variatibsig@in the imaged volume
can be neglected, so that this experiment was done without telecentric. dptesight sources
1 and 4 (both royal blue — blue) were installed (see Big2. Using light source 4, one can
simultaneously apply a second camera (like an infrared camera). FgilBshows a drawing
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Figure 8.14: Clipping of an example image sequence. Left: depth map @cti@ies. Right: The
(smoothed) maximum gray values, (smoothed) depth anaaevielocity of a selected particle moving
along its trajectory are shown.

and a photograph of our tank.

Because an imaged particle should cover about 2 to 5 pixels and for sirgyetae reflected
intensity, we selected the Potters-particles (see seétibrd) to trace the fluid. Goal was to
illuminate a volume of about 1 cm depth, so that their mean size of.if0G/as appropriate. We
used pure deionized water and a water-glycerol-mixture (ratio abouad flyid.

8.3.3 Turbulent Convection - Results

Experimental results, obtained by measurements in our convection taneaeafed. Itis shown,
that the technique can be applied to highly complex, full 3D and instationawg.flo
Here is an overview of the overall procedure:

1. The acquired image sequence was corrected for illumination inhomogéseityon7.1.2
and background (sectionl.3.

2. The particles were segmented using the region growing procedat®(s&2.2. The bright-
ness parameter was the maximum gray value.

3. Like in the falling film experiments 3C-velocities and 3D-positions of the dagiwere ex-
tracted.

4. Postprocessing included connecting the particles to trajectories (igagnarepresentation),
and elongation and smoothing of them (see sectiép Moreover by applying the adaptive
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Table 8.1: Experiment 060831 performed while constantly heating. ideing was started at 6:02 pm.

Figure Time Twater Thir relative humidity
Figure8.16 6:06 pm  22.98°C 25.15°C 32%
Figure8.17 18:39 pm 26.50°C 25.37°C 62%
Figure8.18 19:07 pm 29.00°C 25.89°C 81%

Gaussian windowing scheme, regularly spaced Eulerian velocity vedts fiere obtained.

5. Calibration is performed using the technique presented in se&tipnow using a calibration
target with a cuvette af=10 mm width.

Motion perpendicular to the image plane

Figure8.14shows a clipping of an example image sequence. Most of the tracer pasticiasat
the surface, but some of them are transported in deeper fluid regidmsae in other directions.
The vertical velocities, obtained by the optical-flow based technique, fitetatbordinates, as
this is demonstrated by following the trajectory of a selected patrticle.

Turbulent convection varying the temperature difference

The image sequences outlined in taBlé are recorded under identical conditions; merely the

temperature difference was varied by heating constantly with a power.8M20The arising

vapour was transported by dry air, which streamed with constantly five isgrsinute through

the tank. Tartracine dye (about 25 mgl/liter) and tracer particles (Potteas) demsity 1.1 g/cr)

were added to the fluid, consisting of a water-glycerol-mixture. Lights®dr(blue—cyan) illu-

minated a fluid volume of about5 x 2.6 x 1.5cnm?, operating at a maximum power of 12 W.
The figures, referred to in tabte4, show:

e Top: The trajectories as seen by the camera, where the colour-informapogsents the
depthz and the horizontal velocity.

e Center: Velocity vector fields obtained by the adaptive Gaussian windaedaipique start-
ing from the deepest layer (distance from the surface 9.5 cm) moving upwards. The
colour code is the same as in the velocity-map of the particles (top, right)hbutirsg the
w-component of the velocity here.

e Bottom: Vertical profiles of the mean and rms velocities (redblue: v, blackw).

Figure 8.16 shows the situation four minutes after the heating was turned on. The seeding
particles in the deeper layers move with a maximum speed of about 1 pixel/fraingroim/s).
There is almost no motion in the upper layers. This behaviour is reflected rettieal profiles.

In Fig. 8.17, where we have heated 37 minutes, the convective motion has becomeuaster
to 2 pixels/frame, which is 3mm/s) and more chaotic. Looking at the interpolattdnieelds,
upward and downward moving cells can be identified. The vertical motionstéendutralize
themselves, i. ewmean€quals zero for all measurable depths, buts increases with increasing
depth.

After heating of 63 minutes (see Fig)18 we recognize, that turbulence has further developed,
which is evident looking at the velocity profiles. The fluctuations in horiZorgkocity u,ms and
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Figure 8.15: Vertical profiles of the rms turbulent velocities. Left: Hmmtal. Right: Vertical. The three
distinct profiles in each figure refer to different heat fluaeglied.

urms Start near zero at the surface and reach a maximum in a depth of abonindno then they
are damped. The fluctuations in vertical veloaity,s show a different behaviour: They rise with
increasingly depth almost monotonously.

Qualitative comparison with experiments done by other researchers

The phenomenon efatural convectionwas investigated by other researcherslifio and Smith
1999 simultaneously measured the surface temperature and two-dimensiosaifagb velocity
fields using infrared thermography and PIV (see se@iBrl). They found, that the water surface
is cooled by evaporation and the cooler water plunges into the warmer doik. & lack et al,
2007 measured the surface temperature of water undergoing evaporativeation using in-
frared imagery. The subsurface turbulence was measured usingotmmeoent LDA. They
conducted the experiments both with a clean surface (absence of ahdanith a surfactant
monolayer present. They observed fundamental differences of thdiélllls between the two
cases.

[Bukhari and Siddigyi2009 investigated the two-dimensional velocity field beneath the sur-
face in a plane perpendicular to the surface using 2D-PIV. They alssurezithe vertical profiles
of the velocity fluctuations (see Fi§.15. Though they used water instead of a water-glycerol-
mixture, and the dimensions of their tank was very different compared & auyualitatively
similar behaviour of the profiles can be observed. Thgig exhibits a maximum some millime-
ters below the surface and declines to greater depths. Thgiis ascending monotonously with
increasing depth.

8.3.4 Discussion: Turbulent Convection

The measurements in a convection tank differ in two ways from the measuiemehe falling
film: Firstly, the motions of the flow are slower, so that a camera with a highalitgeamera
sensor and a higher resolution can be employed. Secondly, the turfhoveid intrinsically 3D
and instationary.
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Figure 8.16: Experiment 060831AT = —2.17°C. For details see sectiof 3.3
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Figure 8.18: Experiment0608310\T = 3.11°C. For details see sectioh 3.3
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8.4 Application to Sequences acquired in Context of Biofluidmechanics

The drawback of this kind of flow is, that there is no analytic solution at hdndhis case
we are restricted to qualitative evaluation and to comparative measuremertebyesearchers.
Looking at the vertical profiles of the rms velocities, we indeed find a quakigtsimilar be-
haviour of our results and the results &f [<hari and Siddigyi2004.

Applying simultaneously an established technique (like thermography), atddshe able to
test our method quantitatively. This is under investigation.

8.4 Application to Sequences acquired in Context of Biofluidm echanics

In section5.1it was already mentioned, that theethod of one wavelengitas developed in the
field of biofluidmechanics byjebaeng2009. The biofluidmechanics I&ya department of the
Charité, a clinical center in Berlin, Germany, is concerned about the afiplicof engineering
methods to problems encountered in medicine, where the emphasis is on fluichinecha

After resuming the medical background of the analysed experiments, treuraggent setup
will be sketched. Finally some results of our analysis will be presentedjstorg of the deter-
mination both of the velocity and of the wall shear rate.

8.4.1 Medical Background and Motivation

The investigation of the flow near the wall of a blood vessel or an artificgdrois of great inter-
est, since a close relationship is known between the characteristics ofvihgufth as magnitude
and direction of the wall shear stress and biological phenomena sucloasbtls formation or
atherosclerotic events. The wall shear stress influences structuferation of endothelial cells
as well as the behaviour of platelets.

Blood is a non-Newtonian, shear-thinning fluid, i. e. the viscosity chamijesthe wall shear
rate in such a way, that the viscosity decreases with increasing wallrstteaReason for this is,
that at low shear rates the blood platelets join in aggregates, which forrh adsigtance against
the shear forces. While the shear forces increase, these strucisselvel and the viscosity
decreases. Moreover, the platelets change their orientation and timejnibile the shear forces
rise, which results in an additional loss of internal friction. At high shages (above 1003)
blood can be approximated by a Newtonian fluid with a viscosity sf3.5 x 1072 Pas.

Together with the non-Newtonian characteristics of blood, the flow in blas$els has an
impact on blood-clotting. Other factors for intravascular blood-clotting migghta damaged
endothelian layer or the contact with a foreign surface. Therefore56,18obert Virchow pos-
tulated the interaction of blood flow, vessel wall and blood propertiesytkaawn asVirchow's
Triad”, which is largely confirmed by clinical experience. A precise measureofehe wall
shear stress should help to quantify the complex interrelations.

8.4.2 Measurement Setup at the Charité

Ultimate goal for the Charité group is to develop a versatile method to measurgatied distri-
bution of the wall shear rate in models of blood vessels or artificial orgaosurring difficulties
include the instationary, pulsatile flow and curved and moving walls. Theit€rgnoup used
exactly spherical, monodisperse particles, which are ofi300n diameter. Thus it is sufficient

Shttp://www.charite.de/biofluidmechanik/
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Figure 8.19: a Linear glass tank with a rectangular cross-sectitnU-shaped channel with rectangular
step.c Computed path lines in a parallel cut to the- y-plane aty = D, /2 in the U-shaped channel with
step (from Pebaeng2009).

to illuminate using one wavelength, which improves accuracy and simplifies batburement
setup and analysis. The Berlin group chose a blue dye (patent blued\@raiiumination setup,
consisting of LEDs emitting in the red spectral range (peak wavelengthrigginebaeng2004
separated the near-wall flow in two layers by means of gray-value thitsh. For each layer,
which is characterized by a distinct distance from the wall, the motion of thelearwas de-
termined with a conventional P1V algorithm (for PIV see secttoB.1 This resulted in a vector
field u(x) for each layer.

We applied our algorithmics to two sequences, each one dealing with flow itirectigeeom-
etry.

Spatially homogeneous and stationary flow

A mixture of water and glycerol{ = 10.96 x 10~ m?s™!) flows through a linear glass tank
with a rectangular cross-section (see Bid.9, a). This results in following velocity profile in the
y — z-plane (for its derivation se@baeng2009):

z 22
U(Z) = 6Umean<L—t - L—%) )
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Figure 8.20: Velocity profile of an image sequence (marked as “STA3"lirljacng2005). Both, the
output of our optical-flow-based computation (black) anel fiV-analysis of the Charité-group (red) are
in line with the analytical profile (green) within their ststical errors.

with the mean vertical velocCitymean = 11.96 mm/s and the channel depfhh = 5mm. In
contrast, the flow field in the — y-plane is nearly homogeneous, which was verified conducting
a conventional PIV-measurement.

The experiment was conducted by illuminating the glass tank frontally usingsdifight. A
high speed camera recorded the scene running at 125 frames/saltitior®f512 x 480 pixel.

Stationary, complex flow in a U-shaped channel

A water-glycerol mixture # = 8.372 x 105 m?s~!) flows through a U-shaped channel with a
rectangular cross-section and a step (see&:if b). In combination with the bending, the step
in the cross-section generates a complex flow which detaches from thésealFigure3.19, c).
Figure8.23 left shows a sample image of the recorded sequence.

8.4.3 Results of our Analysis
Spatially homogeneous and stationary flow: velocity profile

First results concerning the flow in the linear glass tank are shown. Beaae deal with a
spatially homogeneous and stationary flow, we are mainly interested in thétygaifile. The
image sequence was already corrected for illumination and backgroutite i@harité-group.
The procedure of the image analysis was as follows:

1. The particles were segmented using a fit of Gaussians (s@ctiéh The characteristic bright-
ness parameter of a particle was its maximum gray value. Further we calcaldégdh map
assigning every patrticle to:acoordinate, which can be directly calculated from the maximum
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Figure8.21: Left: Velocity vector fields in various depths. Right: Distition of the wall shear rate using
the velocity data.

gray value via the inversion of Beer-Lambert's law (E§4)). The calibration parameteygg
andz, are provided by the Charité-group.

2. The velocity vector fields are extracted using the method of optical floecaise wall-
parallel motion is assumed, the simple optical flow-constraint without brightreegastions
was used (Eq4(2).

Figure8.20shows the results of this analysis. Each point in the cloud representdeaffimgvec-
tor in the sequence. Moreover the averages ovemi@vide bins were calculated and displayed
together with their error bars. The averaged values lie about 10 to 16%& altre analytical so-
lution, which is marked by a solid lineDbaeng2009 averaged spatially the vector fields they
obtained by applying PIV to the thresholded layers. These are indicated &srizontal bars.

Stationary, complex flow in a U-shaped channel: 3D2C velocity field

Using the same procedure as in the previous paragraph the velocity fieldtewere estimated,
given an image sequence recorded by the Charité-group. IrBEid.left, the velocity vector
fields of various depths were plotted.

Stationary, complex flow in a U-shaped channel: Wall shear rate

Using the vector fields, the field of the wall-shear raig(x, v), v, (x, y)) was estimated. There-
fore, ordinary least squares-fits to the local velocity vector profileewapplied, followed by
calculating the magnitude of the resulting wall shear rate-veetg(s, y):

OLS-fit
(.9, 2), 00,5, 2) T O™ (al, ), 3y (0 9) T — Am(,w) = 2 22
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Figure 8.22: Estimation of the wall shear rate: In the vicinity of the wile tangent to the velocity profile
(0u/0z) can be approximated by a line, which intersects the origio-¢lip-condition) and has a slope,
which equals the difference quotief¢/Az).

Here “local” means, that the input to the fit were block8®k 33 pixels’. We implicitly assumed,
that we can replace the differential quotients by the difference quotienite idefinition of the
wall shear rate (see Fi§.22. This is allowed, because the visible particles fall within a region,
where the velocity distribution is considered to be proportional to the wallrdista

( ) = Ou Ov ~ B
T2 W = 18, 82 o Az

In Section7.7.1the parametrization of three dimensional physical flow fields. was addtess
We already saw, that the wall shear rate can be regarded as compohé&mtsmore general
velocity gradient tensor(vy,,v,) = (713,723). Therefore Eq.{.6) could be applied to the
data. Since the diameter of the spheres is significantly larger than the pienetigpth, only
the particles close to the wall are imaged and no overlapping particles areedc Therefore,
the problem of multiple-motions does not occur in this situation. Though nabdauniform
flow, (7.7) could be applied since the components of the velocity gradient tensolirdagtthe
derivatives w. r. t.z are large compared to the components containing the derivatives want
Y.

The components;s andy3 of the wall shear rate are mapped in F&23 right. Since
the examined flow is stationary, the shear rate is averaged over 300 frarhesgaps in the
otherwise dense flow field indicate the spots, where the confidence rageasich is provided
by the structure-tensor-technique, was to low for providing a reliabldtres

Figure8.24displays the magnitude of the wall shear rate, obtained with different taodmiq
and compares the methods to each other. To establish some kind of “gratmid[frebaeng
2009 computed the flow numerically with the solver FLUEN[@vhich is shown in Fig8.24
top, left. The analysis of the flow using the PIV-technique and subsédeermation of the wall
shear rate, as carried out bydbaeng2009 is shown in Fig.8.24, top, center. Our result is
mapped in Fig8.24 top, right. In order to compare the techniques with each other, the gaps
were filled by means of interpolation, and the result was smoothed afterwardothed using a
2D-anisotropic diffusion.

“Fluent Inc., Lebanon, USA; http://www.fluent.com/

125



8 Experimental Results

Figure 8.23: Left: Example image of the recorded image sequence. Rigapshf the wall shear rates
estimated with our algorithm.

Our optical-flow-based method provides a dense, highly resolved viegltbof the wall shear
rate, which is capable of estimating this quantity at positions where the PIV-th&lis. The
flow-detachment in the lower left corner can, for instance, be repemtivery well. Both tech-
nigues, optical flow and PIV, show a deficit of the wall shear rate in thpeufeft corner, and a
surplus in the upper right corner, compared to the analysis providedropwtational fluid dy-
namics. These systematical deviations may occur as a result of the fathelpatrticles, which
are of a comparable large size, cannot follow the fluid ideally, or influémeduid. To provide
a measure of how much the results of the experimental methods are aparthgamumerical
solution, we added up the magnitudes of the differences on each pixel.alCfmig resulted in
about 10% better results, than PIV, when the CFD-solution was regasi#te “ground truth”.
Besides that, the optical flow analysis yielded a much better spatial resolnidthe area, where
a reliable estimate of the wall shear rate is possible, is about 30% greatearazhip the area,
obtained using the PIV analysis.

8.4.4 Discussion: Biofluidmechanics

Both, the reconstruction of the velocity fields and the direct estimation of thiestvear rates,
were applied to the image sequences providedI®ppeng200 and underwent a quantitative
evaluation. The stationary flow through a tank with a rectangular crasgsean be solved
analytically - our results lie 10 to 15% above the predictions. The Charitpdras computed
the more complex flow in a U-shaped channel with a rectangular croserseamerically, which
serves as reference in order to evaluate our reconstruction of thesheat rate. Compared to
the PIV-analysis, the method, proposed in this thesis, provides a higgedution and a greater
coverage, so that the essential features of the flow become clearly visible
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10 20 30 10 20 30 10 20 30

CFD-PIV

Figure 8.24: Top: Wall shear rates determined by computational fluid dyica (left), PIV-technique
(center) and our optical-flow-based method (right). Bott&ointwise Differences between CFD and PIV
(left), CFD and optical flow (center), optical flow and PIVdhit).
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9 Summary and Outlook

The aim of this thesis has been the development and testing of a technidjue $patio-temporal
analysis of flows close to free water surfaces. Knowledge about thigo@Cfields within and
beneath the water-side viscous boundary layer is vitally important for mderstanding of the
transport of momentum and mass. Previous methods applied to this question dgrmehoan
2D laser light sections followed by velocity reconstruction based on cwsslation. The new
method overcomes the restriction of planar dimensionality by both a sophistegiedmental
setup and data analysis based on contemporary image processing teshniqu

9.1 Summary

A fluid volume is illuminated by light emitting diodes. Small spherical particles arecdd
the fluid, functioning as a tracer. A camera pointing to the water surface &twove records
the image sequences. A dye is added to the fluid, which limits the penetration afegbid
light into the flow according to Beer-Lambert's law. Within the illuminated layer tagigles
appear more or less bright, depending on their normal distance to the weicldzanear the
wall appear brighter, i.e. have a higher gray value than particles faath@y from the wall.
llluminating the fluid alternatively with LEDs of two different emission spectrajol overlap
with the absorption spectrum of the dye unequally, the size of a particledtds be known,
so that the size distribution of the spheres is allowed to be broad. A pref@stisn of tracer
particles, dye and LEDs is essentially for the presented method. Like in atititptive flow
visualisation techniques, optics and camera have to be adjusted to the exyperime

Information about the 3D position of the particles in the fluid is retrieved by &y galue
data. Special care has to be taken concerning the preprocessingrodtiesequences and seg-
mentation of the particles. The three components of a particle’s velocity éamebd applying
an extended optical-flow based approach. The information gained Wippseoptical-flow com-
putation was used to obtain a better performance for particle tracking. Bdtbhsthe Eulerian
velocity field and the Lagrangian flow-representation can be extractstpf®cessing tackles the
problem of overlapping particles and enhances the length of the trajectbrierder to determine
the wall shear stress, the wall shear rate can be estimated directly witleoitdys computation
of the velocity vector field using parametric modeling of 3D affine flow fields.

Both, measurement setup and algorithmics are tested in several ways:

1. For correct depth-reconstruction an easy-to-handle two-pdiib-ation technique was em-
ployed. The applicability of Beer-Lambert's law was validated by measursmesing a
linear positioner.

2. A laminar falling film serves as reference flow. The theoretical pdi@pwofile of this sta-
tionary flow could be reproduced by measurements very well.
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3. Buoyant convective turbulence acts as an example for an instatiamtzayently three dimen-
sional flow. Qualitative investigations and comparisons with the appropriatatlite show,
that the results are physically plausible.

4. The direct estimation of the wall shear rate was applied to sequencedaddn the field of
biofluidmechanics. Our results are in good agreement with the “ground amthoutperform
the analysis based on PIV which is a standard method in experimental fluidmesh

9.2 Outlook

The technique described in this thesis constitutes the first part of a coemgired research project
embedded in the priority program 1147 of the German Research Foundaliimmate goal of the
project is the voluminetric analysis of flows close to moving and wave-digueved interfaces.
Further steps to achieve this ambitious aim are:

e By performing simultaneous measurements using other techniques, likeethfreermogra-
phy, we can test the applicability of the current setup and algorithmics to imsiagi®@D-
flows like turbulent convection quantitatively.

e Surface divergences and convergences are related to the triaospwmentum and mass.
Modeling of 3D affine flow fields can be used for a direct estimation of thegertant
gquantities. Testing can be accomplished using the convection tank desigtiedsicope of
this thesis.

e The measurement setup will be installed in a linear wind-wave tank. Using tilisyfave
can generate a shear flow. At flows with moderate speeds or applyfagtsunts, i. e. without
waves present, the velocity profile obeys the universal wall law dieduisssection?.3.2
This yields a method to validate the computation of the wall shear stress.

e The analysis of wavy flows is a great challenge, due to refraction ammegeical distortions
at the curved surface. In order to get knowledge of the geometry ongdoundary con-
ditions, flow measurement has to be supplemented by simultaneous recdrdiregveave
slope.
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A Total Least Squares

An excellent overview on the TLS-Problem is given by Huffel and Vandewall€l991]. The
term “total least squares” was introduced biyojub and van Loan C. F198(, though it was
known in statistical literature as orthogonal regression or errors+iahlas regression since the
19th century. [aya et al, 2004 give a critical overview on the errors of OLS (ordinary least
squares), TLS and equilibrated TLS, addressing the estimation of a 2D hayphyas a reference
problem.

For our purpose we will merely summarize the key aspects of data regressing an analysis
based on OLS, TLS, weighted TLS and equilibrated TLS. Fitting a straightdigfives as simple
example to illustrate the benefits of error-in-variables regression. Thedesson of this chapter
presents the TLS estimation from normal equations. We will see, that diégjogdhe structure
tensorJ = DT D is equivalent to a TLS fit to the data matd®.

A.1 Ordinary Least Squares

To introduce into the subject of TLS, we will treat the case of ordinanyt lE@sares (OLS) firstly.
A regression problem can be summarised in the matrix-vector-equation:

Am = b,

where A € R™*" js the data matrixym € R™ is the parameter vector artd € R” is the
observation vector. Fitting points in thexr —y-plane to a straight line for exampld, = (z;,1) is

a2 x n-matrix, containing the pointsn is the two-dimensional parameter vector, &wbntains

the corresponding-values. The task, to be performed, can be expressed as a minimisation
problem:

Hb — BH — min,
2
whereb denotes the optimised observation vector. In the example abaveyld be part of the

line, which can be expressed by the parameterd he optimal solution in an OLS-sense is given
by applying the Moore-Penrose Inversé” A)~' AT to the observation vector:

m=(ATA) AT,
[Gauss 1823 showed, that the estimat® has the smallest variance in the class of estimation
methods, which display no systematic error in the estimates and whose estirediesarfunc-

tions of b. One kind of differential optical flow technique is based on OLS: the laeaghted
least squares-method originally proposed bbydas and Kanaqée 981].

131



A Total Least Squares

A.2 Total Least Squares

Now we allow, that besides the data matdx the observation vectdralso contains errors. Here
it is assumed, that the noise is the same for the data matrix and for the obseweatior. Now
we arrive at a slightly different minimisation problem:

H(A, b) — (A, 5)”F — min, (A,b),(A,b) ¢ RmXn+D)

where||-||  denotes the Frobenius norm, thafjid[| = />, >, |ai;|*.

T'his can be transformed to
D 2 . min subjectto P =1
( p J p 9y

whereD = (AT —b)" € R™*("+1) js a matrix, composed of the data matekand the ob-
servation vectob, andp is a new parameter vector of dimensient+ 1. In order to avoid the
trivial solution, we require the norm of the parameter vector to be unity. fonmulation of
the TLS-problem is also known as the orthogohalapproximation problem. The sought model
parametersn can be estimated from the parameter vegtdny dividing the firstn components
by the(n 4 1)th component:

m; Zpi/pn_H for ¢ = 17...,77,— 1.
In the following we will address the equation
D'p=0 (A1)

as the basic TLS-equation. The minimization problem can be written in integralds follows:
/(DT(sc’,t’)p)2dac'dt’ — min subjectto p’p =1,
U

whered(x, t) are the rows of the data matri®, and the integration is performed over a neigh-
bourhoodU, to sufficiently constrain the problem.

A.3 Weighted Total Least Squares

In the formulation of the TLS problem from the previous section, the rowsdrdéta matrixD
were treated equal. But, because in optical-flow-based motion estimatioraimpée, it is the
case, that the observations are weighted differently depending onélagive location in a local
neighbourhood, we have to reformulate our minimisation problem to:

/ w(x —2',t —t') (DT (2',t')p)®de’dt’ — min subjectto p’p = 1. (A.2)

We have introduced a weighting functian which weighs the point in the spatio-temporal neigh-
bourhood differently, according to their relative significance. Wevarat another representation
of the WTLS-Problem by multiplying the data matd with a left hand weighting matri¥¥ ;.

(WrD)p — min
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A.4 Equilibrated Total Least Squares

In the previous section we have addressed the problem of weightinglatechoint individually.
Now we arrive at the question: What has to be done, if the errors ofghables haven’t to be
treated equally? Consider for example the OLS-case: Here we haveon®iarthe observations,
so it is not feasible to apply a TLS-solver to such a problem. This is an extasss but you can
imagine other situations, where for example the errors in the observatigiai€™) are half of
the errors in the data {~axis”). [Muhlich and Mestgr1999 have developed a framework, how
to incorporate this problem, and we will summarise it here shortly.

The key is introducing a diagonal right hand weighting ma¥kz = diag(1/0;), which
contains the errors in the parameters. Our minimisation problem reads now:

(W DW p)p — min

Applying diagonal equilbration matrices can be interpreted as row and caaalimgof the
data matrixD. This procedure is well known and is often used to obtain numerically stable
results [5olub and van Loar994.

A.5 Example: Fitting a Straight Line

In this section we will summarise the content presented in this section by ap8gTLS and
equilibrated TLS (E-TLS) to the simple problem of fitting a straight line to the ¢latay;). The
line can be described by the equation

y=mzx+b,

wherem is the slope, andl is the intercept.
Reformulating the problem in OLS-notation yields

Am=b, with A= (z;,1), m=(m,b)7T, b= (y;).

We get the optimal parameters of the line in OLS-sense by applying the MReotese-Inverse:
m = (AT A)~' AT tob. OLS is optimal, if we have Gaussian noise in theoordinates only.

We are better off using a TLS-solver, if we have the same degree of imoiseth z- and
y-coordinates. In TLS we use a slightly different notation:

Dp=0, with D= (AT7 —b)T = (zi,1,—y;), p= (m,b,1).

This normal equation can be solved by means of a Lagrange multiplier, wiilldbevexplained
in the next section.

Finally we will take advantage of the benefits of equilibration. Thereforassime, that for
instance the noise in the-coordinate is7,, = 1 and in they-coordinate it isr, = 0.5. Starting
from this, we can construct a right hand weighting matrix:

1o, 0 0 100
WR:diaQI/O'Z'): 0 1 0 = 01 0
0 0 1/, 00 2
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Figure A.1: Numerical example of fitting a straight line: The mode}is- 22 + 1. The noise iz, = 1
ando, = 0.5 The results of OLS, TLS and equilibrated TLS are displayedrie selected experiment. It
is evident, that E-TLS performs best, while TLS is slightlys& and OLS is the worst.

Our E-TLS-Problem now becomes:
(DW g)p = (zi,1, —2y;)(m, b, 1)1 = 0.

It is evident, that equilibration is nothing else, than column scaling of the dataxniatr A
numerical example of fitting a straight line is given in Figéré.

A.6 TLS Estimates from Normal Equations

In this section we will derive the structure tensor starting from the examirsatizade in the
previous chapters. Our starting point is E4.4): The weighted total least squares problem
together with the necessary requiremgpt| = 1, applied to spatio-temporal dati{x, t) in a
weighted spatio-temporal neighbourhood. We have to solve a minimisatioteprolit would

be a good idea, to incorporate this requirement into the functional to be minimibétlcan be
done by means of introducing a Lagrangian multiplier:

E= / w(x —x',t —t) [(dT(w’,t/)p)2 +A (1 - pr)] dz'dt’ — min
o i=1

The energy functionakll reaches a minimum, when the derivatives with respect to all variables
vanish. These derivatives are:

E: 00 :
g = 2/ w(x—a',t—t) [di(d"(z,t')p) — Ap;] d&’dt’ for i=1...n.
Pi —00

134



A.6 TLS Estimates from Normal Equations

If we require a constant parameter figldn our local neighbourhoodl, then thep; can be taken
out of the integral:

m / didid’dt + ...+ py, / didpda'dt = \p; for i=1...n,
U U

where we assumed the weight function to be normalised for the right hagd/siell«’dt’ = 1.
Thesen equations can be written in vector-matrix-form, introducinggtracture tensot/:

Jp=2\p with J= / w(x — 2’ t —t)d(x',t")d(z',t') da'd?’. (A.3)
It follows, that Eq. A.2) is minimized by the Eigenvectgs,, to the smallest Eigenvalug, of
J. We have arrived at an equation, which is similar to the Eigenvalue equatjiofd £9. The
difference is, that now thparameter vectop represents the Eigenvectors. So E4.3] is a
generalization of the former Eigenvalue problems. It can be transformgd.t¢.19, if we
consider a spatio-temporal problem, where- 3:
)T

p = (vapyapt =T3= (T3x,7“3y,7“3t)-

By deducing this TLS solution mathematically rigorously instead of inducing it irhiti we
have laid the foundations for solving more complicated TLS-problems.
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B The Lie Group of Continuous
Transformations

B.1 Generalization of the Affine Subgroup in 2D

The affine group is a subgroup of thé group of continuous transformation#An excellent
overview over the mathematical prerequisites is givenCiivgr, 1984. [Bluman and Kumei
1989 present this topic from the view of applied mathematicians. Marfatan; 1990 some
applications of the Lie group of continuous transformations to computer vésmpresented.

In section4.3.1we have taken a look at affine transformations of the kfnd ¢ + Ax + at.
Now we will replace the flow vectof by a generalised transformatien= S(r’, a), wherea
is a parameter vector(r’ € RY,a € RF). S forms a one-parameter Lie group of continuous
transformations if following properties hold (amongst others):

1. There exists an identity element of the group= S(r,0).

2. There exists the inverse transformatieh= S~ (r, a).

3. ais a continuous parameter in a given intervaRifi.

4. r = S(r', a) isinfinitely differentiable inr and analytical ira. A real function is analytical,
if it can be expressed by a power series locally.

From the last property, it follows, that we can expand the veciora Taylor series about = 0:

9S. /.’ P )
ir i for j—0...N. (B1)
a; da;

P
a
rj = Si(rj,a) & 8i(r5,0) + D ay—s L Y
=1 =1
Now we expand the brightness functigfr) aboutr’ with respect to the parameters
dg(r
gr) = g(r) + 3 0,207 ®.2)

using following expressions for the brightness function’s dependehte transformation pa-
rameters (together with EquatioB.()):

0g Orj < 9g 8S;(rj.a) _
Z « Orj da;  “—~or; Oa; Lig(r),
7=0

whereg,;,i € {1,..., P} is the infinitesimal generator of the Lie group. With the assumption of
brightness conservatiar(r) = g(r’) along the trajectory, EqB(2) becomes

p
Zz(‘?a

i=1

Zaz zg g) a=0, (B3)
i=1

7
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which is a more general version of the EBCCE (see EQQ).

Example: Translation. The corresponding coordinate transformation reads
r'=S(ra=t1") = (z,9)" +t

wheret = (t1,t,)” denotes the translation vector, and= (z,vy,t) denotes a point in the
2+1 dimensional space. The infinitesimal generators are calculated to:

a8, 0 08, & 985 0 0 )
Sl= it 2 T T 1T 1040, o= —

and £5 = ﬁ
day Or, | Oay Ore | Oay Ors Oz dy’ 57T ot

ot
so that the EBCCE EqB(3) becomes

3
;aiﬂig(r )= t1§g+t2§ g+ 1;9 =0,
which can be identified as the BCCE.
Example: Affine Transformation.  The corresponding coordinate transformation reads
v =8(ra=(t,A1)7T) = A(zx,y)T +t¢,
where A = (a;;) is a2 x 2 matrix, andt = (¢1,t2)” denotes the translation vector. Again

r = (z,y,t) is a pointin the 2+1 dimensional space. The infinitesimal generators are in this
case:

S 0 98S, & 0S3 9 9 9 9
= 5a1ar1+6a18r2+8a10r3_ 57 T0T0, Sz_yé?y’ Qg—xay
La=y Dy’ L5 97’ L6 T and £, = o

so that the EBCCE reads in this case

Za-)} (rY=a xa +a 0 +a 568 +a 0 +t 0 —|—t2 +g
A i~ g = a1l or g 22?/a g 12 y g 21ya g 1a g 28yg atg-

B.2 Generalization of the Affine Subgroup in 3D

Again, we loose the assumption of having an affine transformation, afatecihe vectow by
a generalised transformatien= S(r’, a), like we did in the previous section. Amongst others,
Eg. B.3) holds for the 3D-case, too.

Example: Rotation About the z-Axis. The rotation about the-axis, which is essentially
the first component of the vorticity vector, is given by

Ous  Oul

W1 = €ij17%ij = 723 — V32 = 8—333 T o2
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The corresponding coordinate transformation reads

v = S(r,a = (723,732, 1)) = (0,232, =732y, 0)",

wherer = (z,y,2,t)T denotes a point in the 3+1 dimensional space. The infinitesimal
generators are calculated to:

051 0 08 0 0S3 0 0S4 0 0 0
L 2 - 3—+—4—:0+z—+0+0, Lo=—y/ze, L3=—,

£1 = day Ory +8—a1 ory +6—a1 Ors  0Oay Ory oy ot

so, that the three dimensional extension of the EBCCEIE®) feads in this case

i@'ﬁg(r’) g — gL+ O
< 17 3 8y 3 2 8t'

Note, that for building the derivatives we used an extension of the augthegmadient:
d/or; = (V1,0/0t) = (0/0z,0/0y, 1]z, 0/0t).
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