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In biologischen Proben kann mit der Zwei-Photonen Mikroskopie sehr häufig nicht das 
beugungsbegrenzte Auflösungsvermögen erreicht werden, da Inhomogenitäten im 
Brechungsindex der Proben die Wellenfront verzerren. In dieser Doktorarbeit wird gezeigt, 
dass mit Hilfe der adaptiven Optik - in diesem Fall der auf „Coherence-Gated Wavefront 
Sensing“ (CGWS) basierenden Wellenfrontkorrektur - das Auflösungsvermögen und das 
Fluoreszenzsignal eines Zwei-Photonen Mikroskops in verschiedenen Proben, wie z.B. in 
lebenden Zebrafischen, erheblich gesteigert werden kann. Der Vorteil von CGWS ist, dass 
zurückgestreutes Licht an Stelle von Fluoreszenzlicht benutzt wird, um die 
Wellenfrontaberrationen zu bestimmen. So werden die Fluoreszenzfarbstoffe nicht 
geschädigt oder gebleicht und Aberrationen können bis zu einer Tiefe von mehreren 
Streulängen gemessen werden. Weiterhin kann die Wellenfront in weniger als 1 μs mit einer 
Genauigkeit von λ/50 korrigiert werden, sogar in stark streuenden Proben. 
Ein weiterer Teil der Arbeit beschäftigt sich mit der Abhängigkeit der Wellenfrontmessung 
mit CGWS von der Kohärenzlänge, Polarisation des Lichts, Streudichte und Position des 
Kohärenzvolumens. Ein realistisches Model für CGWS zeigt, dass für alle experimentell 
möglichen Parameter der Speckle-Kontrast beim CGWS voll entwickelt ist. Daher kann die 
über Speckle gemittelte Wellenfront als die inkohärente Überlagerung von sphärischen 
Wellen, die vom Kohärenzvolumen ausgehen und durch die Probe verzerrt werden, 
interpretiert werden. 
 

 

The focus of a two-photon microscope is often degraded by inhomogeneities in the 
refractive index within biological specimens. In this dissertation it is shown for various 
specimens, even for living zebrafish, that the resolution and the fluorescence signal of a 
two-photon microscope can be substantially improved by using adaptive optics, i.e. 
wavefront correction based on coherence-gated wavefront sensing (CGWS). The advantage 
of using CGWS relies on the fact that the wavefront distortions are sensed by backscattered 
instead of fluorescent light. Thus, neither photodamage nor photobleaching occurs and 
wavefront distortions can be sensed up to several scattering lengths deep within the 
specimen. Fast wavefront correction can be realized, allowing the measurement of a 
wavefront in less than 1 μs with an accuracy of λ/50, even in strongly scattering samples. 
Furthermore, CGWS is thoroughly investigated for all relevant parameters affecting the 
measurement process, such as coherence length, polarization of the light, density of 
scatterers, and coherence-gate position. A realistic model of CGWS shows that for all 
experimentally accessible parameters the speckle contrast is fully developed. Thus, the 
ensemble-averaged wavefront is the incoherent superposition of spherical wavelets that 
originate from scatterers located within the coherence volume and then propagate through 
specimen-induced distortions. 
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1 Introduction 
 

1.1 Motivation 

With the invention of the first compound microscopes and telescopes at the end of the 

16th century, the demand for aberration-corrected high-quality lenses arose. As it was 

not possible at this time to manufacture high-quality lenses, the compound 

microscopes were outperformed for a long time by the single-lens microscope 

manufactured by Antoni van Leeuwenhoek (1632-1723), who could produce lenses 

with an unparalleled grinding technique. Only in the mid-1800s the collaborative 

work of the optical technician Carl Zeiss (1816-1888) and the physicist Ernst Abbe 

(1840-1905) set new standards for optical equipment [Gerth, 2005]. Since Zeiss found 

his method of trial and error for the manufacture of high-quality microscopes 

unsatisfactory, Abbe made extensive calculations for the lens design and, thus, paved 

the way for microscopes with a minimum of chromatic and monochromatic 

aberrations. At the same time, Philipp Ludwig von Seidel (1821-1896) studied the 

theory of departures from Gaussian optics (first-order approximation to geometrical 

optics) and expanded the first-order monochromatic aberrations into five constituent 

aberrations (the so-called Seidel aberrations): spherical aberration, coma, 

astigmatism, field curvature, and distortion [Born et al., 1999].  

As the optical quality of telescopes improved, astronomers became aware of the 

limitations imposed on the resolution by the dynamically varying refractive-index 

inhomogeneities of the atmosphere. The first to perceive the importance of the 

atmospheric conditions on telescopic images was Christiaan Huygens (1629-1695). 

Some good advice on where to place telescopes was given by Isaac Newton (1642-

1727), who wrote: “The only Remedy is a most serene and quiet Air, such as may 

perhaps be found on the tops of the highest Mountains above the grosser Clouds” 

(cited from Opticks, 1704). The possibility of compensating atmospheric turbulence 

was not conceivable in Newton’s time [Hardy, 1998]. 

More than 200 years later Horace W. Babcock suggested the first method to 

neutralize aberrations due to the turbulent atmosphere by using a wavefront sensor in 

combination with a wavefront corrector (Fig. 1.1a, [Babcock, 1953; Born et al., 
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1999]).  Since fast and light-sensitive wavefront sensors were not available at this 

time the first experimental realization revealed the full potential of this type of 

adaptive optics as recently as 1978 [Hardy, 1978]. At the same time a different 

approach to adaptive optics was pursued, relying on the optimization of the image 

sharpness function by applying trial phase perturbations to the wavefront corrector 

(Fig. 1.1b, [Buffington et al., 1977]). 

 

Fig. 1.1. Basic closed-loop adaptive optics schemes. By using a wavefront 
sensor (a) the wavefront distortions of the incident light can be reconstructed. A 
wavefront corrector applies the phase conjugate of the reconstructed wavefront 
on the distorted wavefront and, thus, sharpens the image on the detector. 
Without wavefront sensing (b) a set of trial phase perturbation on the incident 
light is applied to estimate the gradient of a merit function. The merit function, 
relying on an intensity measurement, can be the image sharpness or the 
maximum intensity. The optimal correction is derived from this set of 
measurements depending on the chosen search algorithm. 
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Since then the potential of adaptive optics has been discovered for many other 

disciplines comprising, e.g. the compensation of thermal effects in high-power laser 

systems, such as PHELIX (Petawatt High Energy Laser for heavy Ion experiments 

[Oughstun, 1981; Kuehl et al., 2005]), the correction of the eye’s aberrations for 

supernormal vision and high-resolution retinal imaging [Dreher et al., 1989; Liang et 

al., 1994; Liang et al., 1997], compensation of the turbulent atmosphere for free-space 

laser communication [Primmerman et al., 1995], the correction of spherical aberration 

due to refractive-index mismatch between sample and cover glass for optical trapping 

[Ota et al., 2003] and the correction of the refractive-index mismatch present in 

writing and reading optical data storage devices [Booth et al., 2006].  

 

In a similar manner, refractive-index variations in biological specimens often degrade 

the resolution, signal and contrast of optical imaging, in particular, of multi-photon 

microscopy [Denk et al., 1990] and confocal microscopy [Minsky, 1961]. Confocal 

microscopy is strongly compromised by aberrations in the optical path since both the 

excitation light focused in the specimen and the fluorescence light focused on a 

pinhole are degraded by heterogeneities within the specimen. In multi-photon 

microscopy only aberrations imposed on the excitation light affect the resolution. 

However, due to its quadratic dependence on the excitation intensity, the resolution of 

a two-photon microscope suffers in a similar manner to a confocal microscope 

[Schwertner et al., 2004]. 

 

Just as the refractive-index variations of the atmosphere exhibit a broad spectrum 

[Tatarski, 1961], the refractive-index variations observed in biological tissue range 

from the size of macromolecules over the sizes of cells (2 - 50 μm) to the length of 

blood vessels [Schmitt et al., 1996]. Predominantly, refractive-index variations on a 

mesoscopic or macroscopic scale within the specimen and refractive-index 

transitions, e.g., due to a refractive-index mismatch between the immersion medium 

and the specimen [Gibson et al., 1991; Sheppard et al., 1991; Sheppard et al., 1997; 

Diaspro et al., 2002; Westphal et al., 2002] directly affect the quality of the focus. It is 

expected that imaging through specimens containing, e.g., blood vessels or clusters of 

cells can be enhanced by pre-compensation of wavefront distortions [Beuthan et al., 

1996; Helmchen et al., 2002; Helmchen et al., 2005]. Meanwhile, two techniques are 

often employed to circumvent inhomogeneities in the refractive index: either removal 

of the distorting tissue by surgery [Helmchen et al., 2002; Mizrahi et al., 2004] or 
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optical clearing with biocompatible agents [Cicchi et al., 2005; Tuchin, 2005] but 

both techniques constitute an encumbering encroachment for living animals. 

 

Therefore, several groups have already identified the usefulness of adaptive optics for 

confocal and multi-photon microscopy. However, so far only wavefront sensorless 

adaptive optics was successfully implemented based on either genetic learning 

algorithms [Sherman et al., 2002], hill-climbing algorithms [Marsh et al., 2003], 

adaptive random search algorithms [Wright et al., 2005], or on a modal wavefront 

sensor1 [Neil et al., 2000; Booth et al., 2002]. All these wavefront correction schemes 

rely on fluorescence excitation and are restricted to strongly and widely stained 

specimens. Finding the correction parameters in wavefront sensorless adaptive optics 

usually requires numerous iterations, during which fluorophores photo-bleach and the 

tissue is exposed to photodynamic damage.  

To circumvent these drawbacks wavefront correction based on coherence-gated 

wavefront sensing (CGWS, [Feierabend et al., 2004; Rueckel et al., 2006b]) has been 

developed. This technique is independent of fluorescence generation but is instead 

based on backscattered light and allows non-iterative wavefront correction. 

Backscattered light originates from different locations within the specimen but only 

light scattered in the peri-focal region carries the appropriate information about the 

distortions to restore a diffraction-limited focus (Fig. 1.2). To select only in-focus 

scattered light and, thus, to reject the remaining out-of focus scattered light, CGWS is 

based on coherence-gating by using a low-coherence interferometer, similar to optical 

coherence tomography [Huang et al., 1991]. In order to center the coherence-gate 

(CG) position at the focus, the optical path length of the reference light needs to 

match the optical path length of sample light backscattered at the focus. Using phase-

shifting interferometry (PSI) [Malacara, 1992], the phase of the in-focus scattered 

light is determined but needs to be unwrapped. However, speckle, a granular intensity 

pattern due to coherent effects [Goodman, 2000], are inevitable in CGWS and 

complicate the unwrapping process. As a robust and simple unwrapping method a 

virtual Shack-Hartmann sensor (vSHS, [Feierabend et al., 2004]) can be employed to 

reconstruct the least mean square error wavefront [Fried, 1998]. 

 

                                                 
1 Although it is called a wavefront sensor, it was not used to measure a wavefront [Booth; 
2006]. 
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Fig. 1.2. Principle of coherence-gated wavefront sensing. The lower part of the 
figure shows that backscattering originates from different locations within the 
focal cone but only in-focus scattered light (green) needs to be selected whereas 
light scattered above the focus (red) and below the focus (blue) needs to be 
rejected. A low-coherence interferometer (upper part) employs coherence-
gating to select only in-focus scattered light, i.e. only this light portion 
contributes to the interference with the reference light.    

 

 

This dissertation is subdivided into two main parts: In the first part a theoretical 

model is developed to thoroughly characterize CGWS in terms of light properties, 

such as polarization and coherence length, and sample properties, such as density of 

scatterers. The emphasis lies on the investigation under which conditions CGWS fails 

to correctly measure the distortions introduced by the specimen (Chapter 2). In the 

second part CGWS-based wavefront correction for two-photon microscopy is 

demonstrated experimentally using various samples, ranging from artificial scattering 

phantoms to living zebrafish (Chapter 3). A brief introduction of two-photon 

microscopy and the principle of the Shack-Hartmann sensor (SHS), in particular, the 

virtual Shack-Hartmann sensor (vSHS), is given in the following (Chapter 1). The 

dissertation closes with a summary and an outlook of what would be necessary to 



1 Introduction 
 
 

 
 
8 

 

advance CGWS-based wavefront correction to make it routinely applicable to a 

variety of biological specimens (Chapter 4).  
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1.2 Two-photon microscopy 

 
The invention of multi-photon microscopy by Denk et al. (1990) established a new 

access to optical fluorescence imaging, particularly in thick tissues and live animals 

[Denk et al., 1997]. In these specimens multi-photon microscopy is superior to 

confocal microscopy allowing high-resolution imaging deep within strongly 

scattering biological specimens [Svoboda et al., 1997]. While confocal microscopy is 

based on single-photon absorption to excite fluorescent molecules, in two-photon 

microscopy two photons interact nearly simultaneously ( 1610 s−≈ ) with the molecule, 

producing an excitation that is similar to the absorption of a single photon, possessing 

approximately twice the energy [Göppert-Mayer, 1931]. Two-photon absorption 

cross-sections of the fluorescence dyes commonly used are extremely small 

( -50 4 -50 41 10 cm s to 300 10 cm s⋅ ⋅ , [Zipfel et al., 2003]) and, thus, sufficient fluorescence 

generation requires spatial and temporal confinement of the excitation photons, 

accomplished by using high numerical aperture objectives and pulsed lasers. 

Typically, an average laser power of up to a few tens of mW illuminates the specimen 

while raster scanning a thin plane within the tissue [Theer et al., 2003]. 

Since two-photon excitation is a nonlinear process, depending quadratically on the 

intensity of the excitation light, fluorescence generation is restricted to the focus 

where the intensity is highest. This intrinsic optical sectioning ability leads to major 

advantages over single-photon techniques (Fig. 1.3): first, photodamage and 

photobleaching are confined to the focal region; second, even if the fluorescence light 

is scattered on the way back to the surface of the specimen it can contribute to the 

detected signal and, thus, allows a higher collection efficiency of useful signal light; 

third, near-infrared light is typically employed for two-photon absorption, which not 

only penetrates deeper into the scattering sample but also is less phototoxic 

[Helmchen et al., 2005]. 

Using regenerative amplifiers imaging depths up to 1 mm in neocortex can be 

achieved [Theer et al., 2003]. However, the deeper the light is focused within the 

specimen the more wavefront distortions are likely to occur, resulting in a blurred 

focus. By using adaptive optics a diffraction-limited focus can be restored and the 

maximum resolution should be attainable also very deep within the specimen [Marsh 

et al., 2003; Rueckel et al., 2006b]. Assuming a uniform illumination of the objective 

lens the maximum resolution of a two-photon microscope can be defined, for 
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example, as the full width at half maximum (FWHM) of a Gaussian fit to the intensity 

point-spread function [Zipfel et al., 2003]. Fitting the lateral and axial profile yields 
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where λ, NA and n are the wavelength of light, numerical aperture of the objective 

and the refractive index of the immersion medium, respectively.  

 

 

 
 

Fig. 1.3. Principle of two-photon microcopy. Near-infrared light (red lines) is 
reflected from a dichroic mirror and is focused by an objective to a diffraction-
limited spot within the sample. Due to scattering, only a fraction of the 
excitation light generates fluorescence at the focus (green spot) via two-photon 
absorption; however, scattered light is too diluted to cause two-photon 
excitation. Ballistic and scattered fluorescent light (green lines) can be detected 
if collected by the objective.  
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1.3 Shack-Hartmann sensor 

1.3.1 Real Shack-Hartmann sensor 
 
An important device for many adaptive optics schemes is the wavefront sensor. The 

most familiar types are the Shack-Hartmann sensor [Shack et al., 1971], the shearing 

interferometer [Wyant, 1974], the curvature sensor [Roddier, 1988], and the 

pyramidal wavefront sensor [Ragazzoni, 1996]. 

Due to its simplicity and robustness the Shack-Hartmann sensor (SHS) is probably 

the most popular one. The SHS is based on the local measurement of the wavefront 

gradient by inserting a phase mask into the light beam. Such a mask is commonly an 

array of contiguous sublenses covering the entire aperture (Fig. 1.4). Light passing 

these sublenses produces an array of foci in the focal plane. For a flat wavefront the 

array is regular, i.e. each focus is located on the optical axis of its corresponding 

sublens. An irregular pattern of foci arises, encoding the local wavefront tilts, if an 

aberrated wavefront passes the array of sublenses. 

The propagation of the electric field of the light through a sublens can be described as 

a Fourier transformation. It can, therefore, be shown that the displacement of the 

centroid ( , )x yg g  of the focal intensity distribution from the optical axis is [Primot et 

al., 1990; Barchers et al., 2002] 
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where f and A  are the focal length and the area of a single sublens, respectively; λ is 

the wavelength. The intensity and the phase distribution across the aperture are I(x,y) 

and ( , )x yφ , respectively.   

Only if the intensity distribution is nearly uniform, does the displacement of the 

centroid correspond directly to the wavefront tilt averaged over the area of a single 
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sublens; otherwise the wavefront measured by a SHS is complicated by intensity 

scintillation [Barchers et al., 2002]. 

  

 
 

Fig. 1.4. Principle of the Shack-Hartmann sensor. For a flat wavefront the focus 
for each sublens is located on the optical axis yielding a regular pattern of foci 
on the detector (red crosses). An irregular foci pattern encodes the information 
of the local wavefront tilt of an aberrated wavefront (green dots). 
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1.3.2 Virtual Shack-Hartmann sensor  
 

The virtual Shack-Hartmann sensor (vSHS) simulates numerically the individual 

steps in a real SHS [Feierabend et al., 2004; Rueckel et al., 2006a]. As an input the 

vSHS requires the measurement of the electric field across the entire aperture where 

the wavefront is to be sensed.  

The electric field can be measured by using PSI [Malacara, 1992]. Applying a four-

step algorithm with phase steps of 0,  / 2,  ,  3 / 2iδ π π π=  (i = 1, 2, 3, 4), introduced 

into the reference beam, four interferogram intensity patterns ( , )iI x y are recorded: 
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The average intensity of both reference and sample beams together is ' ( , )I x y ; the 

intensity modulation is '' ( , )I x y ; the wavefront of the sample light is denoted by 

( , )x yφ . It is assumed that the reference wavefront is flat. The electric field of the 

sample light is then 

 

 
( ) ( )1 3 4 2
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As in the real SHS the vSHS divides the entire aperture into a number of sublenses, 

each performing a discrete Fourier transformation of the electric field ( , )E r s over its 

aperture (x and y are discretized by pixel coordinates r and s, respectively). In order to 

get an accurate estimation of the centroid, a highly sampled diffraction pattern is 

produced. Therefore, the electric field of each sublens, sampled by V x V pixels, is 

zero-padded to a field of N x N pixels. The intensity distribution for the diffraction 

pattern of one sublens is   

 
21 1
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where m and n are the pixel coordinates of the diffraction pattern (0 <  m,n < N-1), 

which is, thus, sampled in steps of /( )f N xλ ⋅ ⋅ Δ  and /( )f N yλ ⋅ ⋅ Δ in x- and y-

direction; λ is the wavelength of the light and f the focal length of the sublens; xΔ and 

yΔ  are the sizes of the pixels in x- and y-direction in the aperture, respectively.  

Then, the average slope of the wavefront across one sublens is estimated using the 

centroid, which is evaluated across a window with a size of S by S pixels centered at 

the peak of the diffraction pattern. 

To expand the wavefront ( , )x yφ over the aperture (circular aperture with radius R) 

into a series of Zernike modes Zm ([Noll, 1976], see Appendix A) 

  

 ( , ) ( / , / )
m

m mx y c Z x R y Rφ = ⋅∑ , (1.6) 

 

the linear relationship between the wavefront gradients in x- and y-direction 
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The size of both matrices Dx and Dy is Q by M, where Q is the number of sublenses 

covering the entire aperture. Using the pseudo-inverse of D the wavefront with the 

least-squares error to the wavefront gradient is obtained by [Cubalchini, 1979] 
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−
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Fig. 1.5. Principle of the vSHS as described in the text. The images are all 
numerically calculated for a wavefront with a Zernike defocus (mode 4) of 0.5 
μm and take photon noise into account (2·105 sample arm photons, 4·107 
reference arm photons, 148 sublenses).  

 

 

Compared to the real SHS the vSHS has several advantages. First, saturation effects 

that occur in a real SHS due to focusing of light on the detector are avoided since the 

electric field for the vSHS is experimentally measured by interferometry where the 

intensity is rather uniform across the entire aperture. This allows a larger dynamic 
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range. Second, the number of sublenses can easily be adjusted to the number of 

expected Zernike modes. Furthermore, the “unwrapping” of the wavefront by the 

vSHS is very robust in terms of singularities [Nye et al., 1974] and can easily be used 

to extract the least mean square error phase from interferometric measured data 

[Fried, 1998].  
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2 Coherence-gated wavefront sensing 
 

In order to evaluate the performance of CGWS-based wavefront correction a 

thorough characterization of CGWS is needed, both experimentally and theoretically. 

Therefore, a comprehensive model for CGWS was developed based on geometrical 

optics and single-scattering events. To compare it to experimental data, a Monte-

Carlo simulation (MCS) was implemented, which provides the statistical predictions 

of the model. By investigating CGWS while varying parameters of the illumination 

light and of the tissue, such as polarization, coherence length, and density and sizes of 

scatterers, this chapter aims to verify that CGWS-measured wavefronts represent 

actual aberrations. Furthermore, the assumptions used for the model are discussed at 

the end.  

 

 

2.1 The principle of CGWS 
 

All parameters needed for wavefront correction are determined by sensing the 

wavefront of the coherence-gated backscattered light and, thus, the distortions in the 

optical path. In order to sense all distortions up to the focus, the CGWS needs to 

select light scattered back near the focus. With low-coherence interferometry such a 

differentiation between light scattered out-of-focus and in-focus can be accomplished 

by using the fact that the time travelled by light scattered at different locations within 

the sample is different and thus allows coherence-gating. 

In the following a comprehensive model is developed to derive the characteristic 

properties of CGWS. The concept of the model is similar to models of optical 

coherence tomography (OCT, [Huang et al., 1991]) but, of course, focuses on the 

phase of the backscattered light instead of the intensity [Schmitt, 1999; Fercher et al., 

2003; Karamata et al., 2005]. Based on ray-tracing, the model determines the optical 

distance travelled by scattered light and assumes a distribution of discrete scatterers 

within the geometrical focal cone. Only singly scattered light will be taken into 

account whereas multiply scattered light is neglected; the effect of multiple scattering 

will be discussed later (see section 2.7). An optical arrangement is assumed where the 
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backscattered sample light SE  interferes with the reference light RefE  on a detector, 

which is parameterized by the two coordinates u and v. The intensity of the 

interferogram ( , )I u v is  

 

 ( ) ( )( , ) ( , ) ( , ) 2 Re{ ( , , ) ( , , ( , ))}.k k
Ref S Ref S

k

I u v I u v I u v u v t u v t u vτ∗= + + ⋅ ⋅ +∑E E  (2.1) 

 

IRef and IS are the intensities for reference and backscattered sample light, 

respectively, the electric field in the sample arm is ( ) ( )( , , ( , ))k k
S S

k

u v t u vτ= +∑E E , 

where ( )kτ is the difference in time between light scattered at the scatterer k and light 

traveled in the reference arm. The sum is over all scatterers within the focal cone. 

Averaging over time t is denoted by the bar.  

The temporal correlation between electric fields is related to the complex degree of 

self coherence ( )γ τ  (normalized self coherence function, [Goodman, 2000]) of the 

scalar electric field E 

 

 ( ) ( )( ) ( ) exp( )
( ) ( )

E t E t i
E t E t

τγ τ γ τ ωτ
∗

∗

⋅ +
= = ⋅ −

⋅
. (2.2) 

 

Equation (2.1) can then be simplified to 

 

 ( ) ( ) ( ) ( )2 Re{ ( ) ( ) exp(  )}k k k k
Ref S Ref Ref S S

k

I I I A A iγ τ ω τ∗= + + ⋅ ⋅ ⋅ ⋅ ⋅ −∑ p p . (2.3)  

The amplitudes of the electric field of the reference and sample light are ARef and ( )k
SA , 

respectively, and the polarization of the reference light and backscattered sample light 

are Refp and Sp , respectively. For clarity, the dependence on u and v is omitted and in 

the following the scalar product ( )k
Ref S
∗ ⋅p p  is replaced by ( )k

PolW . 

The first two terms in Eq. (2.3) are the total intensities of the backscattered sample 

light and reference light, which include no coherence gating. Therefore, these terms 

need to be subtracted, which can be done by using phase shifting interferometry (PSI, 

see section 1.3.2). The third term, however, contains the self coherence function 
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( )( )kγ τ , whose finite width allows the selection of backscattered light that has 

traveled a certain time. 

In Fig. 2.1 the calculation of ( )kτ  for a scatterer at the location P(x,y,z) is illustrated 

using the propagation of plane waves. Since the analytical expression for ( )kτ  can be 

easily calculated, if the wavefront is determined in the back focal plane of the 

objective, it is assumed that backscattered sample light and reference light interfere 

on a detector located in a plane that is optically conjugated to the back focal plane. 

Further, it is assumed that the wavefront of the reference light is flat. If the coherence-

gate (CG) position is at the focus, i.e. the time traveled by the reference light matches 

the time traveled by the sample light scattered at the focus F, then the optical distance 

traveled by the reference light corresponds to sample light that has traveled twice the 

distance from the focus F to the point C on the back focal plane (C-F-C, Fig. 2.1). 

Thus, ( )kτ  is the difference in time for light propagating C-F-C and A-P-B (arbitrarily 

chosen sample light path): 

 

 ( ) ( ) ( )( , ( , )) [ sgn( ) ( , )]k k kSnu v z u v
c

τ = − ⋅ − ⋅r w r r w , (2.4) 

 

where ( )kr is the vector connecting the focus F to the location of the scatterer P(x,y,z), 

w indicates the direction of the scattered light (unit vector), c is the velocity of light in 

vacuum, and nS is the refractive index of the sample. The origin of the coordinate 

system x,y and z lies at the focus. If the length of the reference arm is changed by the 

distance L an additional term of /L c  has to be inserted in Eq. (2.4), i.e. the CG 

position is displaced by /(2 )SL n . The time ( )kτ  determines the contribution of each 

back-propagating planar wave scattered at the scatterer k to the interference term of 

Eq. (2.3) via the self coherence function ( )( )kγ τ .    
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Fig. 2.1. The calculation of ( )kτ for backscattered sample light based on the 
propagation of plane waves. The illumination wave passes the back focal plane 
at point A, is refracted by the objective lens towards the focus F, scattered at P 
(which has the coordinates x, y, and z) in the direction of the vector w (unit 
vector) and crosses the back focal plane at B on the way back (red marked 
path). For a CG position at the focus the reference light takes an equally long 
optical path as C-F-C (blue marked path). The optical path length A-F-B is 
equal to C-F-C. 

 

                           

The phase of the coherence-gated backscattered light ( , )u vΦ  (reference 

wavefront is flat) can now be directly obtained by taking the argument of the 

interference term in Eq. (2.3)  

 

 ( ) ( ) ( ) ( )( , ) arg{ ( , ) ( , ) ( ( , )) exp(  ( , ))}k k k k
Pol S

k

u v W u v A u v u v i u vγ τ ω τΦ = ⋅ ⋅ ⋅ −∑ ,  (2.5) 

 

but is only known modulo 2π (for example in the interval [0;2 [π ). Therefore, 

( , )u vΦ  needs to be unwrapped to reconstruct the actual wavefront. All available 

phase unwrapping methods are encumbered by path inconsistencies due to noise, 

singularities [Ghiglia et al., 1987], and discontinuities [Gens, 2003] and may not be 

solvable with the desired L0 norm in polynomial time [Chen et al., 2000]. However, 

singularities due to speckle noise, which is unavoidable with scattering samples, are 

intrinsic to CGWS (see section 2.4.2) and, thus, a method has to be used that is able to 

reconstruct reliably the wavefront in the presence of speckle. It will be shown that the 
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virtual Shack-Hartmann sensor (vSHS) fulfills this requirement (see section 1.3.2). 

The vSHS propagates the electric field exp( ( , ))i u vΦ  (here with uniform amplitude) 

numerically through a virtual lenslet array onto a virtual spatially resolved detector, 

where the wavefront is then reconstructed as in a real SHS. Since singularities due to 

speckle noise occur only at points of zero amplitude [Nye et al., 1974] and are, 

therefore, weighted by zero intensity, the propagation of the amplitude together with 

the complex phase exp( ( , ))i u vΦ  should have a lower distorting effect on the 

diffraction patterns of the vSHS. The complete coherence-gated electric field is 

 

 ( ) ( ) ( ) ( )( , ) ( , ) ( , ) ( ( , )) exp(  ( , ))k k k k
CGWS Pol S

k

E u v W u v A u v u v i u vγ τ ω τ∝ ⋅ ⋅ ⋅ −∑ . (2.6) 

 

The uniform amplitude of the reference light ARef (Eq. (2.3)) does not change the 

diffraction patterns and is replaced by 1. However, Monte-Carlo simulations (see 

section 2.2.2) showed that propagating exp( ( , ))i u vΦ  or ( , )CGWSE u v  led to almost the 

same reconstructed wavefront. Nevertheless, the propagation of the amplitude-

weighted coherence-gated electric field ( , )CGWSE u v  was used for the vSHS to 

determine the wavefront, both experimentally and numerically. 

The CGWS-measured electric field CGWSE  at the position (u,v) is the superposition of 

plane waves, scattered from all scatterers in the considered direction. The self 

coherence ( )( ( , ))k u vγ τ weights each scattered wave in such a way that almost only 

that light portion that is scattered close to the focus is weighted and selected (see 

section 2.4.1).  

For a sublens of the vSHS the diffraction pattern detected by a virtual detector 

(parameterized by r and q) is 

 

 

2
2

2( ) ( ) ( )

2( , ) ( , )exp[ ( )] ( , )

                                   ( , ) [ ( , )] ( , ),

CGWS CGWS
A

k m n
S S S

k m n m

I r q E u v i u r v q dudv r q
f

r q r q r q

π
λ

∗

≠

∝ − ⋅ + ⋅ =
⋅

= + ⋅

∫∫

∑ ∑∑

E

E E E

 (2.7) 
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where λ is the wavelength of the light, f  is the focal length of the sublenses, and A is 

the area of the sublens. The Fourier transformation of the CGWS-selected electric 

field is ( )( , ) ( , )k
CGWS S

k

r q r q= ∑E E . 

The first term in Eq. (2.7) represents the incoherent and the second term the coherent 

superposition of the individual electric fields, which together yield the total 

diffraction pattern. The properties of these two terms and their influence on the 

CGWS-measured wavefront will be discussed in section 2.4. 
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2.2 Implementation of CGWS 
 

CGWS was investigated and implemented both experimentally and numerically. The 

experimental setup consisted not only of a CGWS but also included CGWS-based 

wavefront correction using a deformable mirror and a two-photon microscope. 

Numerically, a Monte-Carlo simulation based on the model derived in section 2.1 was 

implemented to obtain predictions to be compared to experimental data. 

 

 

2.2.1 Experimental implementation 
 

Optical setup 

 

The optical setup was designed not only to determine the aberrations introduced in the 

optical path by CGWS but also to correct for these aberrations using a deformable 

mirror (DM, gold-coated electrostatically-deflected membrane, Oko Technologies, 

Fig. 2.2). For microscopic imaging it also contains a two-photon microscope. For 

CGWS a low-coherence interferometer consisting of sample arm and reference arm 

selects that portion of the backscattered sample light that was scattered in the 

peri-focal region. To select the proper time delay, the length of the reference arm has 

to be adjusted by displacing a right-angle prism mounted on a computer-controlled 

translation stage (for electronic control see Appendix B). The low coherent light is 

provided by a mode-locked Ti:Sapphire Laser (Coherent, Mira 900 pumped with 

Verdi V18) with a wavelength of 930 nm and a spectrum width of 15 nm (FWHM) 

corresponding to a coherence length of 51 μm.  

For CGWS the wavefront is measured at the back aperture of the objective (IR-

Achroplan, 63x/0.90 W, Zeiss) imaged by two telescopes (L3/L4 and L5/L6), which 

ensure that the CCD camera (Sony, XC-77, pixel size: 13 μm x 13 μm, standard 

monochrome video camera based on the RS-170 standard), the DM, and the back 

aperture of the objective are optically conjugated. A magnification of two for both 

telescopes was chosen to sample the back aperture with a sufficient number of pixels 

(see section 2.4.3) and to use only the well controllable center area of the deformable 

mirror with a diameter of 9.7 mm (total diameter of DM is 15 mm) for wavefront 
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correction [Paterson et al., 2000]. In order to overfill the back aperture of the 

objective, the beam entering the interferometer is expanded by a factor of 1.6 to 6.3 

mm (1/e2 width) horizontally and 5.6 mm (1/e2 width) vertically using two lenses 

(L1/L2). Thus, the fill factor is 1.25.  

 

 

 
 
Fig. 2.2. Experimental Setup. The components used are: Ti:Sapphire Laser 
(Coherent Mira,  center wavelength 930 nm, coherence length 51 μm), neutral 
density filters ND1 (Edmund Optics, filter wheel 0.04-3 D, NT54-081) and 
ND2 (1.7 D, Linos, 371144), near-infrared achromatic doublets L1 (focal length 
5 cm, Edmund Optics, NT45-803), L2 (focal length 8 cm, Linos, 322393), L3 
(focal length 7.5 cm, Thorlabs, AC254-075-B), L4 (focal length 15 cm, 
Thorlabs, AC254-150-B), L5 (focal length 20 cm, Thorlabs, AC254-200-B), L6 
(focal length 10 cm, Edmund Optics, NT45-806), silver-coated mirrors M1-7 
(Linos, 340525), λ/2 wave-plate (Newport Corp., 10RP42-3), polarizing 
beamsplitter cube pBSC (Linos, 335523), non-polarizing beamsplitter cube 
BSC1 (Thorlabs, BS011), deformable mirror DM (Oko Technologies, 37 ch), 
dichroic mirror MDichr. (designed to reflect infrared light (800 to 1050 nm) but 
to transmit the fluorescent light around 525 nm, Chroma), λ/4 wave-plate 
(Newport Corp.,10RP44-3), objective OBJ (IR-Achroplan 63x/0.90W, Zeiss), 
piezo-driven translation stage TS1a (Piezosystem Jena, Tritor 102 SG), 
motorized translation stage TS1b (MP 285, Sutter Instrument Company) blue-
green filter F (Linos, BG38, 370043), lens L7 (focal length 2.5 cm, Linos, 
063021), photomultiplier tube PMT (Hamamatsu, R3896), CCD chip (Sony, 
XC-77), group velocity-dispersion compensation prisms GVD-P (BK7, Linos, 
336615), right-angle prism RP (Thorlabs, PS908), piezo-driven translation stage 
TS2 (Piezosystem Jena, PX 400), and tissue sample T. For the calibration arm 
are used: non polarizing beamsplitter cube BSC2 (Thorlabs, BS011) and silver-
coated mirrors M8-10 (Linos, 340525). The light-propagation directions are 
indicated by arrows. 
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The intensities for both interferometer arms are adjusted by a polarizing beamsplitter 

cube in combination with a λ/2-waveplate. Neutral density filters in the reference arm 

reduce the intensity further so that backscattered sample light and reference light have 

approximately the same intensities, which results in a proper use of the dynamic 

range of the CCD camera. 

The λ/4-waveplate in the sample arm has two functions: first, it changes the linear 

polarization of the illumination light into circular polarization, which is essential to 

avoid spurious aberrations sensed by CGWS (see section 2.6), second, it rotates the 

polarization of the returning sample light by 90  and, therefore, allows a polarizing 

beamsplitter to redirect the backscattered sample light into the CGWS, resulting in a 

highly efficient use of the backscattered light.  

Since several cm of glass in the sample arm (due to four achromats and the objective) 

lead to group-velocity dispersion and, thus, to a broadening of the coherence gate, 

BK7 glass prisms were inserted into the reference arm to minimize the coherence gate 

length. For almost all measurements 6 cm of glass were used, which is much less than 

needed for optimal compensation and resulted in a coherence-gate length of 32 μm 

(measured as the FWHM width of the interference contrast vs. CG position using a 

mirror sample, [Feierabend, 2004]) within an aqueous sample. Nearly full 

compensation (gate length of 22 μm) was achieved with 20 cm of BK7 glass and was 

used for imaging in zebrafish (see section 3.5).  

To reconstruct the electric field of the CGWS-selected backscattered light and to 

subtract the intensities of the reference and sample light (see Eq.(2.3)), a four-step 

algorithm is employed to implement PSI (see section 1.3.2). The necessary phase 

steps of λ/4 are introduced by the mirror M6 glued to a piezo element. The motion of 

the piezo element is synchronized to the frame rate of the video camera (see 

Feierabend (2004) for a detailed description).  

For two-photon microscopy a dichroic mirror in the sample arm separates the infrared 

illumination light used for two-photon excitation from the fluorescence light, which is 

focused onto a photomultiplier tube. While CGWS, as it is implemented here, needs 

only a light power of some tens of nW, for two-photon absorption, typically, a few 

mW [Denk et al., 1990] are needed at the focus. Therefore, the intensity of the laser 

light was adjusted between CGWS-based wavefront correction and two-photon 

imaging, which was done using a filter wheel. Images were recorded with a digital 

resolution of 128x128 pixels. The specimen was mounted on the piezo-driven 
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translation stage that is used for scanning and which, in turn, is mounted on a 

motorized stage for coarse displacements. For scanning in x- and y-directions 

sinusoidal and saw-tooth signals with periods of 30 ms and 3.8 s, respectively, were 

applied to the translation stage. The drive voltages were controlled by a program 

called CFNT (see Appendix B). 

 

 

Reconstruction of the wavefront 

 

In this section the prevalent parameters used experimentally for the wavefront 

reconstruction are discussed. Since the reconstruction is based on the vSHS, the 

processing steps closely follow those given in section 1.3.2.  

To reduce the effect of speckle, interferograms were recorded for 20 slightly different 

focus positions (using the motorized translation stage TS1b to change positions, Fig. 

2.2), placed on a lateral grid with 1 μm spacing. For each position 5 of the 

quadruplets needed for four-step PSI were recorded in order to reduce photon shot 

noise. Then, the interferograms were averaged over the 5 quadruplets for each focus 

position and the electric field of the coherence-gated sample light was reconstructed 

using the PSI algorithm. For the vSHS the circular aperture was subdivided into 441 

sublenses (15 sublenses across the diameter), each sublens contained 15 by 15 pixels 

of the reconstructed electric field with a pixel size in x- and y-direction of 13.0 μm 

and 13.17 μm, respectively. While the manufacturer specifies the pixel size of the 

CCD camera as 13 μm by 17 μm (incorrect specification, [Feierabend, 2004]), the 

sizes used here are those for which focus-dependent spurious astigmatism (Zernike 

mode 6) was minimal. 

For an accurate estimation of the centroid a highly-sampled diffraction pattern was 

produced. Therefore, the measured electric field was zero-padded to a size of 65 by 

65 pixels before Fourier transformation and, then, the centroid was determined inside 

a window with a size of 15 by 15 pixels centered on the peak intensity. The 

wavefront, described in terms of the first 28 Zernike modes (up to the 6th radial order, 

[Noll, 1976]), was reconstructed by least-squares fitting to the wavefront gradients 

and, then, averaged over the 20 different focus positions.  
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Sample preparation 

 

Only sample preparations are described that were used for experiments presented in 

this chapter.  

 

Scattering samples 

The scattering samples contained polysterene beads of 110 nm (15 beads/μm3, 

Polysciences, 00876) and had a mean free path of ≈550 μm. The beads were 

immobilized in an aqueous agarose gel (1% low-melting point A9414, Sigma). The 

samples contained either 100 μM fluorescein (fluorescein-sodium salt 46960, Fluka) 

or, alternatively, fluorescent beads (93 nm, 0.2 beads/μm3, yellow-green 

FluorSpheres, Invitrogen, F8803). Fluorophores were added since these samples were 

also used to test CGWS-based wavefront correction (see section 3.3). 

Further scattering samples were prepared to investigate polarization effects of CGWS 

and contained polysterene beads comparable in size with the wavelength (1 μm 

diameter, 0.005 beads/μm3, Polysciences, 07310) and fluorescent beads (93 nm, 0.2 

beads/μm3, yellow-green FluorSpheres, Invitrogen, F8803) embedded again in 1% 

agarose gel. These samples had a mean free path of ≈100 μm. 

 

Hippocampus-slice sample 

Rat hippocampal organotypic slice cultures [Zhu et al., 2000] were fixed with 4% 

PFA (paraformaldehyde) in PBS (phosphate buffered saline).  

  

 

2.2.2 Monte-Carlo Simulation 
 

The Monte-Carlo simulation (MCS) is based on a randomly sampled distribution of 

discrete scatterers. It closely mimics the experimentally applied steps using the model 

derived in section 2.1 and follows a similar approach of Lu et al. (2004) that followed 

to analyze optical coherence tomography (OCT). 

Since the time delay τ depends only on the location of the scatterer r  and on the 

direction of scattering w  (see Eq. (2.4)), the sum in Eq. (2.6) was calculated 

separately for each pixel on the detector for one ensemble of scatterers, which were 

distributed uniformly over the focal cone assuming a certain density (of scatterers).  
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By tracing the propagation of the polarization in the sample arm, taking into account 

the polarization of the illumination light and the change of polarization due to a 

generic objective and due to Mie scattering [Bohren, 1983], the weight function ( )k
PolW  

was calculated for each scattering event (implemented as a Matlab code, The 

MathWorks, Inc., for a detailed description see Appendix C). Since it is 

computationally very expensive to trace the polarization for all light rays, a simplified 

version of the MCS was also implemented that assumed that the weight function 
( )k

PolW  can be approximated by 1, i.e. the polarization of light was neglected. Also, the 

characteristic Mie-scattering phase functions were replaced by an isotropic scattering 

function. It will be demonstrated in the sections 2.4 and 2.5 that this simplified 

version of the MCS (implemented as a C-code) yields results that are consistent with 

experimental data as long as circularly polarized light is used (section 2.6). Therefore, 

this MCS was always employed unless the polarization dependence of CGWS was 

investigated. 

No phase-shifting algorithm is required for the MCS to subtract the first two intensity 

terms in Eq. (2.3), since CGWSE  (see Eq. (2.6)) can be calculated directly. For the 

calculation of CGWSE  some further simplifications were made. First, in the 

geometrical optics limit the amplitude of the backscattered light depends only on the 

axial location z (the origin of the coordinate system is at the focus) of the scatterer 

and is 1/ z∝ . Second, the lateral intensity profile was assumed to be uniform across 

the focus cone. Although a Gaussian profile with a fill factor of 1.25 (over the back 

aperture of the objective) was used experimentally (see section 2.2.1), MCSs showed 

the same results both for a uniform profile and the Gaussian profile experimentally 

used. Further, for the self coherence a Gaussian distribution was assumed: 

 

 ( )2( ) exp( 4ln(2) / )cc lγ τ τ= − ⋅ ⋅  (2.8) 

 

The coherence length is cl (FWHM) and the velocity of light in vacuum is c. Usually 

the autocorrelation function of passively mode-locked laser is described by the 

squared hyperbolic secant function [Siegman, 1986], to which a Gaussian function is 

a good approximation (secant function has stronger wings).   
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For all MCSs narrowband light ( ν νΔ ) was assumed. Thus, all electric fields 

associated with all incoming light rays had the mean frequency ν . However, this is 

not strictly fulfilled for MCSs implemented for short coherence lengths, where the 

relative bandwidth can be as much as 10 %, even close to 100%. Therefore, MCSs 

where the incoming light rays had frequencies distributed over the complete width of 

the spectrum νΔ  were implemented to determine deviations from the use of 

narrowband light. These simulations showed that the CGWS-measured wavefronts 

were the same whether narrowband light or broadband light was used, even for 

coherence lengths comparable to the wavelength. 

To save computational time, some other deviations from the experimental parameters 

were used. Whereas the detector used experimentally samples the aperture by 375 

pixels over the diameter, only 105 pixels were used for the MCS. As long as the 

speckle size is larger than 2 pixels, this assumption will not lead to significant 

deviations (see section 2.4.3). Furthermore, scatterers were distributed uniformly but 

only within 4 Cl±  from the center of the CG position in axial direction. Due to the 

Gaussian profile of the self coherence function with a finite width of lc, scatterers 

outside of this selected volume would have a weight very close to zero anyway. 

After the coherence-gated electric field of the backscattered light was calculated, the 

wavefront was reconstructed using the vSHS. The same steps, as described in section 

2.2.1 and 1.3.2, were used, except for the division of the aperture into 37 sublenses 

(instead of 441 sublenses), each comprising 15 by 15 pixels. In addition to the 

centroid estimation, the peak of the diffraction patterns was also estimated by least-

squares fitting a Gaussian distribution to the central part of each diffraction pattern. In 

general, only the centroid estimation was used to reconstruct the wavefronts (see 

section 2.4.2). 
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2.3 Characterization of vSHS 

 

2.3.1 Noise-free characterization 
 

The performance of the vSHS for noise-free wavefronts was investigated numerically 

to determine implementation-dependent systematic errors in the wavefront sensing. 

Therefore, the average reconstruction error (RMS), calculated both for all 28 Zernike 

modes (piston excluded) and for all Zernike modes from 5 to 28, was determined for 

15 random wavefronts with a certain, known deviation. Up to a deviation of 0.3 μm 

the reconstruction error increased almost linearly and then reached a plateau of 5 nm 

(all Zernike modes) and of 3.5 nm (Zernike modes 5-28), respectively (Fig. 2.3). 

 

 
Fig. 2.3. Implementation-dependent reconstruction error for a vSHS using the 
centroid estimation as a function of wavefront deviation (RMS). The deviation 
was distributed uniformly over all Zernike modes. 

 

 

The increase of the error for small wavefront deviations is due to the finite 

sampling of the diffraction pattern. Since the window (inside which the 

centroid is estimated) is centered on the pixel with the largest intensity in the 

diffraction pattern, it remains at the same position for a small (sub-pixel) 

change of the average wavefront tilt, while at the same time the diffraction 

pattern is slightly displaced. This causes an (sub-pixel) error for the centroid 
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estimation. Furthermore, since the derivates of the Zernike modes, which were 

fitted to the wavefront gradients (see section 2.2.1), are not orthogonal, cross-

talk between Zernike modes can occur, resulting in a systematic reconstruction 

error. The maximum error of about 5 nm ( / 200λ≈ ) is, however, all but 

irrelevant in most situations, e.g. in the presence of photon or speckle noise 

(see below and section 2.4.3). 

 

 

2.3.2 Photon-noise 
 

Often the wavefront needs to be reconstructed when only a small number of 

backscattered photons is available. Then, photon shot noise is expected to be 

dominant since camera dark noise can be neglected if the reference beam is 

sufficiently intense (see below). In this section, speckle noise is neglected also and the 

effect of photon noise is considered in isolation.  

Lauterbach et al. (2006) give as a lower boundary of the wavefront reconstruction 

error ϕΔ  (in μm, RMS) for electric fields calculated by the four-step PSI-algorithm 
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where rn  and sn are the total photon numbers in the reference and sample arm for a 

quadruplet of interferograms, respectively, cn  is the camera dark noise, modeled as a 

Poisson process, and M is the number of (Zernike) modes used for the reconstruction. 

The error approaches an asymptotic lower (quantum) limit 

( ( )/ 2 2 sM nϕ λ π∞Δ = ) for large numbers of reference arm photons, which 

depends on neither the reference arm intensity nor the camera dark noise. 

The error in the local wavefront-tilt estimate of the SHS or the vSHS is proportional 

to the uncertainty of the centroid estimation, which scales as [Welsh et al., 1989] 
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where nsublens is the number of photons passing through one sublens of diameter d. 

Note, that the width of the diffraction pattern and, thus, the uncertainty of the centroid 

estimation does not depend on the size of the aberration if the wavefront is 

sufficiently sampled by the sublenses. Even though the wavefront gradient for each 

sublens can be measured at the quantum limit, if the optimal centroid estimator is 

chosen [Thomas, 2004], the wavefront reconstruction error for the complete 

wavefront is not quantum limited and depends on the number of sublenses. For 

example, if the number of sublenses covering the aperture is increased by L2, the 

width of the diffraction pattern for each sublens increases by L and the number of 

photons decreases by a factor of 1/L2, together resulting in an increase in the centroid 

uncertainty for each sublens by a factor of L2; averaging all sublens tilts reduces the 

error by 2L L= , resulting in an increase in the total wavefront error by a factor L. 

This suggests the use of fewer sublenses, but then high-order aberrations might not be 

sufficiently sampled anymore and a systematic error is introduced.   

By numerically simulating the four-step PSI algorithm, the reconstruction error of the 

vSHS due to photon noise was calculated. Two configurations for the vSHS were 

investigated: one with 148 sublenses (each 25 pixels wide) and the other with 441 

sublenses (each 15 pixels wide), in both cases tiling the complete circular aperture. 

For each sublens the electric field was zero-padded to a field of 128x128 pixels 

before Fourier transforming. The window sizes for the centroid estimation were 

20x20 and 35x35 pixels for the 148 and 441 sublens configurations, respectively. 

To determine the reconstruction error 10 random wavefronts with a RMS deviation of 

0.1 μm, distributed uniformly over all 28 Zernike modes, were generated. For each 

wavefront 10 quadruplets of interferograms with independent photon-noise 

distributions were calculated for a varying number of photons from the sample. The 

number of photons in the reference arm was 200 times higher than the number of 

photons from the sample to eliminate the dependence on the camera noise (see 

above). 

It was found that down to photon numbers of about 104 the dependence of the 

reconstruction error on the number of photons is proportional to 1/ sn  (Fig. 2.4). 

For lower photon numbers wavefront reconstruction fails since the centroid 

estimation becomes erroneous for a fixed window size, which contains then not only 

the diffraction peak but also emerging side maxima due to photon noise. However, for 
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the lower number of sublenses measurement is still possible for a smaller number of 

photons. For photon numbers above 104 the ratios between the numerical calculated 

data and the quantum limit were 12.7±1.8 and 24.2±2.7 for the 148 and 441 

sublenses, respectively, close to the expected values of 12.2 and 21.0. Thus, for these 

numbers of sublenses possible systematic errors due to sparse sampling of high-order 

aberrations can be neglected. 

Further, it can be concluded that the described centroid estimation is close to the 

optimal estimator. For 28 Zernike modes 148 sublenses are sufficient for an accurate 

wavefront reconstruction. 

 

 
Fig. 2.4. Reconstruction error of the vSHS in the presence of photon noise for 
two different numbers of sublenses within a circular aperture. 28 Zernike modes 
were sensed and the generated wavefronts had a deviation of 0.1 μm (RMS). 

 

 

The experimental investigation of the vSHS in terms of photon noise yields also 

information about other relevant noise sources that influence the wavefront 

measurement. Using the interference between light from the calibration and reference 

arms, the interference contrast  

 

 with cos( )I I I I
I

φ
′′

′ ′′Γ = = +
′

 (2.11) 

 

varies as the length of the reference arm is changed (I is the intensity of the 

interferogram per pixel and φ the phase to be measured). The quantum limit in 



2 Coherence-gated wavefront sensing 
 
 

 
 
34 

 

dependence on the interference contrast can be obtained by a transformation of ϕΔ  

(Eq. (2.9)) into  

 1
( )2 2 r s

M
n nγ

λϕ
π

Δ =
+ Γ

. (2.12) 

 

Since the total energy detected for one interferogram was about 0.2 nJ 

( 910r Sn n+ ≈ ), the quantum limit was about 52 10  μm /−⋅ Γ  (RMS).  

The average reconstruction error for various interference contrasts was measured 

(Fig. 2.5) and the linear fit to the data confirmed the 1/ Γ  behavior (measured: 
1.03−Γ ). The proportionality factor was 46 10−⋅ , which was about 30 times higher than 

the quantum limit. This is roughly consistent to the factor of 21, which is theoretically 

expected due to photon noise for 441 sublenses used for the vSHS (see above). Thus, 

it can be concluded that experimentally the wavefront measurement is limited by 

photon noise and other noise sources like vibration of the interferometer can be 

neglected.  

 

 
Fig. 2.5. The reconstruction error of the vSHS in relation to the interference 
contrast Γ using the calibration arm. For each data point the wavefront was 
measured 12 times using only one quadruplet for each wavefront measurement. 
From the variation between these, the reconstruction error was determined. A 
linear fit was used to obtain the slope and the proportionality factor of the 
reconstruction error, which was compared to the quantum limit (Eq. (2.12)). 
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As seen in Fig. 2.5, the measured interference contrast does not reach 100 %. In the 

ideal case when the lengths of the reference and the calibration arms are the same and 

all light contributes to the interference, the maximum interference contrast of 100 % 

is expected. However, since several back reflections from optical elements occur, the 

highest measured interference contrast was at about 60 %. For scattering phantoms 

(110 nm beads) the typical interference contrast was at about 20 % in a depth of 200 

μm. 
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2.4 Characterization of the CGWS 
 

Using theoretical investigations together with MCSs, the properties of the CGWS 

were comprehensively explored with respect to first-order and second-order speckle 

statistics. This section is restricted to situations where no aberrations in the optical 

path were considered. In a succeeding section the influence of aberrations on the 

CGWS will be investigated (see section 2.5). 

 

 

2.4.1 Coherence volume 
 

The main distinguishing characteristic of CGWS is its light-selection property. 

Mainly light scattered within a certain region of the focal cone, defined as the 

coherence volume (CV), is sensed by the CGWS. The CV depends on the width of 

the self coherence function and can, for example, be defined as the region where the 

self coherence weight of a scatterer's contribution is: ( ( , )) 0.5γ τ >r w . Since ( , )τ r w  

depends on the direction w of the scattered light, the CV is differently shaped for 

different detection points (Fig. 2.6). 

 

 
Fig. 2.6. The coherence volume, determined by the self coherence function 

( )γ τ , shown as a cross-section through the focal cone along the optical axis. 
The detection points are at the center (a) and at the edge (b) of the back aperture 
of the objective. The black lines delineate the coherence volume ( ( ) 0.5γ τ > , 
see text). The coherence length used was 50 μm (FWHM), which corresponds 
to a CG length of 18.8 μm and the coherence-gate position was +5 μm. 
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2.4.2 Speckle characterization 
 

Due to the temporal coherence of the coherence-gated backscattered light, the 

associated electric field is affected by speckle noise. Characterization of the first-

order and second-order properties of speckle for CGWS-measured electric fields 

allows also the characterization of the measured wavefronts. At first, speckles are 

investigated analytically for special cases and, then, MCSs are employed to verify the 

analytical approach and, further, to characterize speckles and wavefronts of CGWS-

measured electric fields for different coherence lengths, densities of scatterers, and 

coherence-gate positions. In the following it is assumed that the scatterers are 

uniformly distributed over the focal cone. Deviations from a uniform distribution will 

be discussed later (see section 2.7). 

 

 

First-order statistical properties 

 

For first-order statistics the contrast C is often used to characterize speckle 

[Goodman, 1976]. Two extreme cases can be distinguished: first, the speckles at each 

detection point are fully developed and show a contrast 1C = and, second, no speckle 

occur at all and the contrast is 0C = . Whether the speckles are fully or partially 

developed is determined mainly by two parameters: the phase distribution ( )kφ ω τ= ⋅  

over all scatterers within the CV and the number of scatterers N (see below).  

The speckle contrast, observed at the CGWS, can be analytically described if two 

assumptions for the scattering events are made: first, the amplitude of the 

backscattered light As
(k) does not vary over the CV and, second, the phase distribution 

φ  is a zero mean Gaussian distribution with standard deviation 

/( 2log 2) / 0.85 /c cl lφσ π λ π λ= ⋅ ≈ ⋅  over the interval ] ; ]π π− . Although these 

simplifications are approximately fulfilled only for short coherence lengths cl , the 

principle of speckle formation does not depend significantly on the exact function 

describing the phase distribution or the amplitude distribution [Goodman, 2005] and, 

thus, should be also valid for longer coherence lengths (see also MCSs in this 

section). For the given assumptions the contrast C in dependence of the number of 

scatterers N is [Goodman, 2005]  
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where the standard deviation and the mean of the intensity of the speckle is Iσ  and 

I , respectively. With an increasing number of scatterers N, the speckle contrast 

becomes fully developed, although the phase distribution for a certain φσ  is not 

uniform (Fig. 2.7). If the second term for I  begins to dominate ( 2N∝ ), which is 

the case for a sufficiently large number of scatterers (e.g., 410  for 2φσ π> = , Fig. 

2.7), the speckle contrast begins to fall again and converges towards zero, 

independently of φσ . This surprising dependence of the speckle contrast on the 

standard deviation and on the number of scatterers has been thoroughly studied in the 

literature [Fujii et al., 1974; Goodman, 1975; Uozumi et al., 1981; Apostol et al., 

2005]. 

 

 
Fig. 2.7. Speckle contrast C vs. number of scatterers N, calculated by Eq. (2.13), 
for different widths φσ  of a Gaussian phase distribution. 

 

Applied to the speckle statistics for the CGWS, it can be concluded that for coherence 

lengths much larger than the wavelength ( 2φσ π ), the speckles are fully developed 

up to extremely high numbers of scatterers within the CV. Only for small coherence 

lengths, e.g. 2  ( 1.7 )cl φλ σ π= ≈ , partially developed speckle can be observed already 
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for numbers of scatterers at about 103. Of course, an exception exists for very small 

numbers of scatterers (< 100), where the speckles are still partially developed, even 

for large coherence lengths (Fig. 2.7). 

 

 

Second-order statistical properties 

 

An investigation of the second-order statistics of the coherence-gated electric field 

with respect to the speckle contrast is required to determine the actual influence of 

speckle on the wavefront measurement. A common measure to characterize the 

second-order statistics is the ensemble-averaged complex degree of mutual coherence 

μ12 (spatial coherence, [Goodman, 2000]):  

 

 1 2
12

2 2
1 2

tot tot

tot tot

E E

E E
μ

∗

= , (2.14) 

 

where the total electric fields 1
totE and 2

totE  are measured at two different points, 1 and 

2, respectively; the ensemble average is denoted by . The width of the ensemble-

averaged mutual coherence μ12, also called spatial coherence length, is a measure for 

the characteristic grain size observed for an intensity speckle pattern [Klinger et al., 

2001].  

Since the coherence-gated electric field does not change with time, the time-averaged 

coherence γ12 (equal to the time-averaged complex degree of (self) coherence as 

described in section 2.1, but for two different points) is not reduced by the 

superposition of the backscattered light. However, the ensemble-averaged coherence 

μ12 is, in general, not equal to 1 (see below), indicating a lack of ergodicity.  

The numerator 12ϑ  of Eq. (2.14) can be modified to:  
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where iE (i=1,2) is the electric field due to a single scattering event at the detection 

point 1 or 2, respectively, and N is number of scatterers within the CV; α and β are 

parameters that depend on the coherence length, on the coherence gate, and on the 

two detection points. The second term of Eq. (2.15) begins to dominate if the number 

of scatterers is sufficiently high and, simultaneously, the speckle contrast falls 

towards zero (see above).   

For the denominator 12η of Eq. (2.14) similar calculation steps yield 

 

 12 1 1 1 1 2 2 2 2( 1) ( 1)N E E N N E E N E E N N E Eη ∗ ∗ ∗ ∗= ⋅ + − ⋅ ⋅ + − ⋅ . (2.16) 

 

For a sufficiently large number of scatterers N so that the speckle contrast is close to 

zero, both 12ϑ  and 12η scale as 2N  and the mutual coherence μ12 becomes 

 

 12 1 2exp( ) exp( ) 1i iμ ϕ ϕ≈ ⋅ − ≈ , (2.17) 

 

where arg( )i iEϕ = for i=1,2. Therefore, the modulus of μ12 is 1 and the phase 

should be approximately zero, since the phase distribution ( )kφ ω τ= ⋅  (see above) at 

two different detection points is very similar (see also MCSs in this section) and, thus, 

also 1ϕ  and 2ϕ . 

If 12ϑ and 12η  scale as N, N > 100 (see above), and the width of the phase distribution 

φσ  is higher than π (Fig. 2.7), the speckles are fully developed. Then, by using Eq. 

(2.15) and (2.16) the mutual coherence μ12 is 
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Using the Cauchy-Schwarz inequality, the mutual coherence is 12 1μ ≤  and 

approaches zero with increasing distance between the two detection points. The width 

of  the mutual coherence μ12 depends only on the lateral extent of the CV (see spatial 

coherence, e.g., in [Goodman, 2000]). The larger the lateral size of the CV is the 

shorter is the width of the mutual coherence μ12. 

 

The intensity of the diffraction patterns ( , )I r q  of the vSHS (Eq. (2.7)) is given by  

 

 ( , ) ( , ; , ) d dI r q u vϑ ε η ε η ε η
+∞ +∞

−∞ −∞

⎧ ⎫⎪ ⎪= − −⎨ ⎬
⎪ ⎪⎩ ⎭
∫ ∫F� , (2.19) 

 

where F  denotes the Fourier transformation (from the back focal plane of the 

objective, parameterized by u and v, to the detection plane of the sublenses, 

parameterized by r and q); ( , ; , )u vϑ ε η ε η− −  is equal to 12ϑ  for detection point 1 at 

( , )ε η  and point 2 at ( , )u vε η− − in the back aperture. The aperture function for a 

sublens is included in 12ϑ . 

Using Eq. (2.15) the contribution of the incoherent and coherent terms to the 

diffraction patterns of the vSHS (Eq. (2.7)), the CGWS-measured wavefront can be 

quantified as follows. The first term in Eq. (2.7) is determined by the Fourier 

transformation of the first term of Eq. (2.15) and accordingly for the second term. 

Therefore, the ensemble average of the intensity of the incoherent and coherent 

superposition for the diffraction patterns scales as N and 2N , respectively. Thus, for 

fully developed speckle the coherent superposition can be neglected and the 

incoherent superposition determines the shape of the CGWS-measured wavefront. If 

the number of scatterers is sufficiently large so that the speckle contrast decreases, the 

intensity of the coherent superposition increases with 2N and exceeds that of the 

incoherent superposition. In the limit of zero speckle contrast, the intensity of the 

coherent superposition determines completely the wavefront. In this case, the CGWS-
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measured wavefront will be almost flat, since the mutual coherence μ12 across the 

complete aperture becomes 1≈ . 

In the limit of a very small number of scatterers (<100, see Fig. 2.7), the speckles are 

far from fully developed irrespective of the coherence length. However, the 

diffraction patterns are dominated by the intensity of the incoherent superposition 

since the second term of Eq. (2.15) is still very small. 

 

  

Monte-Carlo simulation (MCS) 

 

Although the speckle statistics could be derived analytically for special cases of the 

speckle contrast, a MCS allows the investigation of the CGWS-measured wavefronts 

for an almost complete parameter space, e.g. for the coherence length and for the 

density (number) of scatterers within the CV. Since the effects due to speckle can be 

studied if only the Zernike defocus c4 of the wavefronts is investigated (see below), 

here, the MCSs are restricted to cases where the optical path is aberration-free.  

First, the influence of the coherent superposition of the backscattered light on the 

wavefront is demonstrated. Therefore, MCSs were implemented where fully 

developed speckle became partially developed when the number of scatterers was 

increased. However, it is computationally very expensive to use long coherence 

lengths ( λ ), since then an extremely high number of scatterers would be needed to 

show this effect (see first-order speckle statistics). Instead, coherence lengths 

comparable to the wavelength were studied although coherence lengths smaller than 

the wavelength are physically not realizable. However, from a mathematical point of 

view these simulations can verify the analytical approach (see above) that is not 

restricted only to long coherence lengths. Further, the results for coherence lengths 

comparable to the wavelength should be transferable to longer coherence lengths as 

the analytical approach predicts. 

For the physically impossible case of an infinitesimal short coherence length, at finite 

wavelength, the phase distribution is equal to a delta distribution and so is the same 

for all detection points, i.e. the CGWS-measured wavefront is flat, independent of the  

density of scatterers. 

The MCSs, investigated in relation to the speckle contrast, showed the expected 

behavior: with increasing coherence lengths the density of scatterers needed to 
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observe the transition to partially developed speckle increased also (Fig. 2.8a). For a 

coherence length of 1.5 μm up to a density of scatterers of 1000 μm-3 the speckle 

contrast remains 1. However, this is true only for a Gaussian shape of the self 

coherence function. For a different shape, such as a rectangular function, the 

transition in speckle contrast can be observed for a lower density of scatterers (data 

not shown). 

 

 
 

Fig. 2.8. Coherent effects on the CGWS-measured wavefront due to the 
transition of the speckle contrast towards zero. MCSs investigated the speckle 
contrast (a), the Zernike defocus c4 (b), and the number of singularities (c) in 
dependence on the density of scatterers for 5 short coherence lengths (0.4 μm to 
1.5 μm) and a CG position of +5 μm. The mean relative error for c4 and for the 
speckle contrast was about 3% and 1%, respectively. The wavelength of the 
light was 1 μm. 

 

 

As predicted by the analytical approach, if the speckles become partially developed, 

the wavefront converges towards a flat wavefront, i.e. the Zernike defocus c4 tends to 

zero (Fig. 2.8b). To quantify also the degree of spatial coherence of the CGWS-

measured electric field, the number of phase singularities [Fried, 1998] for the 

intensity of the coherence-gated electric field was determined. The number of 



2 Coherence-gated wavefront sensing 
 
 

 
 
44 

 

singularities scales inversely with the speckle size [Shvartsman et al., 1994], which is 

proportional to the width of the mutual coherence (see above). Therefore, a low (high) 

number of singularities indicate a long (short) spatial coherence length. The MCSs 

showed that if the Zernike defocus converges to zero, simultaneously, the number of 

singularities converge to zero (Fig. 2.8c), otherwise not. Thus, if the speckles are fully 

developed, the number of singularities remains constant with an increasing number of 

scatterers (see below). At the transition to partially developed speckle the number of 

singularities starts to decrease and the spatial coherence raises. 

For longer coherence lengths ( λ ) the transition to partially developed speckle was 

not observable. For coherence lengths of about 50 μm, as they are typical for our 

experiments, MCSs showed that coherent effects are undetectable, even for as much 

as 60000 scatterers per μm3. In conclusion, the MCSs for short coherence lengths 

confirmed the analytical approach and demonstrated the coherent effects as predicted. 

 

For a coherence length of 30 μm the CGWS-measured wavefronts were investigated 

by MCSs in terms of CG position and density of scatterers. Furthermore, MCSs were 

implemented for different coherence lengths varied from 2 μm to 30 μm (Fig. 2.9). 

For the investigated parameter space the speckles were always fully developed (data 

not shown). For fully developed speckle the number of singularities depends on the 

solid angle under which the scatterers within the CV are seen from the detector (see 

above). Thus, the lateral size of the CV, which is determined by the coherence length 

and the CG position but not by the number of scatterers, affect the number of 

singularities (Figs. 2.9a,c,e). Therefore, when the CG position approaches the focus or 

when the coherence length is shortened, the lateral extent of the CV reduces and the 

number of singularities decreases.  

The wavefront was determined either by the peak or by the centroid estimation 

applied to the diffraction patterns [Larichev et al., 2001]. The Zernike defocus c4 

determined by centroid estimation remained constant if the coherence length or the 

density of scatterers were altered (Fig. 2.9d,f). Interestingly, the defocus determined 

by the peak estimation was always smaller than that of the centroid estimation. This is 

due to the fact that the speckle-averaged diffraction patterns, in particular for outer 

sublenses, are asymmetric (Fig. 2.10), presumably due to broadened point-spread 

functions for scatterers far away from the focus. Therefore, the centroid and the peak 

of the diffraction pattern diverge more for higher CG positions and longer coherence 
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lengths (Fig. 2.9b,d). However, if the density of scatterers is varied, the difference in 

Zernike defocus for both estimations remained constant. 

 

 

 
 
Fig. 2.9. CGWS-measured Zernike defocus c4 and the number of singularities 
on the wavefront for different parameters. The number of singularities (a, c, e) 
and the Zernike defocus c4 (b, d, f) is depicted in dependence on CG position, 
coherence length, and density of scatterers. The Zernike defocus c4 was 
determined either by estimating the centroid or by fitting the peak by a 
Gaussian distribution. When not varied, the CG position, the density of 
scatterers, and the coherence length were +5 μm, 100 μm-3, and 30 μm 
(FWHM), respectively. 
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Fig. 2.10. Asymmetric diffraction pattern for a sublens of the vSHS located off 
the optical axis. The ray originating from the centroid CCV of the coherence 
volume (delineated by the black lines) determines the centroid of the diffraction 
pattern. Peak (P) and centroid (C) estimation of the diffraction pattern differ. On 
the right hand side a typical asymmetric diffraction pattern, numerically 
calculated and already averaged over speckle noise, is shown. Note that the 
coherence volume is oversized compared to the focal cone. 

 

 

For the centroid estimation the change of Zernike defocus per 1 μm displacement of 

the CG position was -0.119±0.002 μm/μm, whereas the slope of defocus was 

-0.078±0.003 μm/μm if the peak was estimated. The defocus slope calculated for a 

single scatterer located at the CG position on the optical axis is -0.102 μm/μm and 

lies between the measured slopes for centroid and peak estimation. The higher value 

for the centroid estimation is due to the fact that the centroid of the CV, weighted by 

the intensity distribution 21/ z , is displaced laterally compared to the CG position for 

sublenses located off the optical axis (Fig. 2.11). For a sublens of the vSHS close to 

the optical axis the displacement is small, whereas sublenses near the edge of the 

aperture see a significant displacement, leading to a higher Zernike defocus for a 

collection of scatterers within the CV.   
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Fig. 2.11. Average wavefront tilt for a single scatterer at the center of the CG 
position (on the optical axis, green point) and for a collection of scatterers 
uniformly distributed across the CV for sublenses close to the optical axis (a) 
and near the edge of the aperture (b). The average wavefront tilt for a collection 
of particles can be represented by the ray coming from the centroid of the CV 
(black cross). Note that the CV is oversized compared to the focal cone. 

 

The defocus slope for the centroid estimation (obtained by MCS) is in good 

agreement to experimental measurements, which were -0.117±0.001 μm/μm and 

-0.101±0.001 μm/μm for a scattering phantom containing 110 nm scattering beads 

and for a fixed hippocampus slice, respectively (Fig. 2.12). In conclusion, the centroid 

estimation is independent on the degree of asymmetry of the diffraction patterns, in 

contrast to the peak estimation (Fig. 2.9d). Therefore centroid estimation was 

generally used. 

 
Fig. 2.12. Experimentally measured change of the Zernike defocus c4 as a 
function of the CG position for a scattering sample with 110 nm scattering 
beads (black) and for a fixed organotypic hippocampus slice (red). Since no 
absolute CG position was measured, the two data series are displaced. 
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2.4.3 Speckle averaging 
 

When the speckle contrast for the CGWS is fully developed, then, the measured 

wavefront for a single ensemble of scatterers is significantly degraded by speckle 

noise, caused by the coherent superposition of the backscattered light (see Eq.(2.19)). 

Therefore, the wavefront needs to be averaged over a number M of independent 

ensembles of scatterers to obtain an accurate wavefront that is determined only by the 

incoherent superposition of the backscattered light. When the diffraction patterns of 

the vSHS are averaged over independent ensembles,  the speckle (noise) contrast 

scales as 1/ M [Goodman, 2005]. The wavefront error should, therefore, scale 

similarly as 0 / Mσ , where 0σ  is the proportionality constant, which depends on the 

speckle size (see below). To average speckle, almost uncorrelated speckle patterns are 

required. Experimentally, such uncorrelated speckle patterns can be obtained by 

displacing the focus within the sample, both axially and laterally. How large the 

correlation between speckle patterns of the coherence-gated electric field at different 

focus positions is, can be measured by cross-correlating the speckle patterns. For a 

lateral and an axial focus displacement the measured cross-correlations did not vanish 

for displacements of up to 2 μm and 3 μm, respectively, presumably since there was 

still substantial overlap of displaced CVs (Fig. 2.13).  

 

 
Fig. 2.13. Correlation coefficients for speckle patterns experimentally measured 
at different lateral (a) and axial (b) displacements of the focus within a 
scattering sample containing 110 nm beads.  

 

 

The dependence of the wavefront error on M was verified experimentally as well as 

numerically by the MCS (Fig. 2.14). The linear fits to the logarithmic plots yielded 
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slopes of -0.53 and -0.52 for the numerical and experimental data, respectively, which 

were in good agreement with the expected value of -0.50.  

Experimentally, the wavefront error after 20 averages was typically 

0.02  μm sσ ≈ and, therefore, 0 20 0.085 μmSσ σ= ⋅ =  (RMS, calculated including 

Zernike mode 5 to 28 with data from Fig. 2.14). The numerical value for 0σ was 

slightly higher ( 0.11 μm≈ ), since the speckle size was smaller for the chosen 

parameters (see caption of Fig. 2.14 and see below).  

 

 
Fig. 2.14. Speckle error after speckle averaging over a number of focus 
positions (experimentally) and a number of independent ensembles 
(numerically). For the MCS a CG position of +5 μm, a density of scatterers of 
100 μm-3, and a coherence length of 8 μm was chosen. For the experimental 
data the focus was laterally displaced on a grid with 1 μm spacing within a 
scattering sample containing 110 nm beads. 

 

 

To determine the dependence of the proportionality constant 0σ on the speckle size, 

speckled wavefronts were generated numerically by the superposition of spherical 

wavelets emitted from a random ensemble of point-sources confined to a certain 

volume. Due to the random locations of the point-sources, the detected intensity 

showed a typical speckle pattern with a characteristic grain size, which can be varied 

by changing the lateral size of the volume over which the point-sources are 

distributed. This variation of the grain size corresponds to a situation for CGWS 

where the coherence-gate position is displaced from the focal plane or where the 

coherence length is increased (see section 2.4.2). The volume of point-sources was 

chosen large enough to ensure that the speckles were fully developed. The average 
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speckle size was calculated by using the normalized auto-covariance function of the 

intensity speckle pattern [Piederriere et al., 2004]. The error due to speckle was 

determined using the RMS variation in the wavefront for different ensembles of 

point-sources. Photon noise was neglected. 

It was found that  0σ  increases as the speckle size decreases (Fig. 2.15). This is due 

to the fact that if the speckle size and, thus, the spatial coherence length of the 

coherence-gated electric field becomes shorter, side maxima in the diffraction 

patterns will occur (see Eq. (2.19)). Thus, the centroid estimation error increases. This 

is in agreement with Larichev et al. (2001), who found a similar dependence of the 

speckle error on the speckle size for a real SHS. 

If the sampling rate of the detector is less than two per speckle size (Nyquist rate), the 

wavefront can not be reconstructed anymore. However, since an imaging system is 

used for CGWS (not used for the numerical simulation here), the minimum 

achievable speckle size is given by the numerical aperture of this system and not by 

the lateral size of the CV. 

Experimentally, the ratio for speckle size vs. size of sublens was about 0.8 for CG 

positions close to the focus, leading to a numerical value for 0σ  of about 0.08 μm 

(Fig. 2.15), which is in agreement to the experimentally measured value (see above).  

 

 
Fig. 2.15. The proportionality constant 0σ as a function of the ratio between 
speckle size Lspeckle and the size of a sublens D. The wavefront error was 
calculated over the Zernike modes 5 to 28 (corresponding to aberrations).  
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2.5 CGWS-measured wavefront aberrations 
 

2.5.1 Influence of the speckle contrast on the measurement of 
aberrations 

 

After having estimated the wavefront reconstruction error due to photon and speckle 

noise, now the question will be addressed whether aberrations are correctly sensed or 

whether, for example, a bias exists that depends on aberration size. This is 

particularly important when CGWS is to be used as the sensor in an adaptive 

wavefront correcting system. Such systematic bias might occur, for example, because 

the light encounters the aberrations in the sample arm twice, on the way to the focus 

and on the way back. For the preemptive correction of wavefront distortions the 

information about aberrations on the way to the focus is needed. The behavior of the 

CGWS depends strongly on the sample properties: if the sample acts like a mirror, 

aberrations with an even symmetry, such as astigmatism or defocus appear twice as 

large in double pass than single pass, whereas odd aberrations, such as coma cancel 

and cannot be detected at all; if the sample contains only a single scatterer, from 

which a spherical wavelet emanates, the aberrations of the illumination light are lost 

completely and only inhomogeneities encountered during back-propagation are seen. 

As a result, the single pass aberrations are correctly detected and due to the optical 

reciprocity theorem [Born et al., 1999] they are equal to the aberrations distorting the 

incoming light on the way to the focus. Therefore, CGWS needs to be investigated 

under which prerequisites single pass aberrations are correctly sensed if the 

illumination light is scattered back from multiple randomly distributed scatterers.  

Distortions can be described in terms of how much they add to the time needed for 

the light to travel to the CGWS: 

 

 . . .( , ) ( , ) ( ) ( , )aberr illum scattτ τ τ τ= + +r w r w r r w , (2.20) 

 

where ( , )τ r w is the time calculated by Eq. (2.4), . ( )illumτ r and . ( , )scattτ r w  are the 

times added to the incoming and back-propagating light, respectively, due to 

aberrations. Note that the shape of the CV will be distorted, albeit only little for 

typically aberrations, because it depends on the traveling time (Fig. 2.16a). 
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Again, attention needs to be paid to the degree to which speckles are developed, 

because (see preceding section) if the density of scatterers is sufficiently large and 

speckles become partially developed, the CGWS-measured wavefronts converges 

towards a flat wavefront. Although this fact was derived for the case where no 

aberrations are present, this is even true if aberrations affect the measured wavefront, 

since phases added by aberrations change only slightly the phase distribution φ  (see 

section 2.4.2) of the coherence-gated backscattered light for a certain detection point. 

This fact is also easily apparent when the coherence length approaches zero: then only 

scattered light with exactly the same time traveled contributes to the CGWS-

measured wavefront, i.e. the phase of the CGWS-selected light is invariant over the 

detector. Thus, the measured wavefront is flat. The shrunken CV is deformed in such 

a way that it compensates for the additional time introduced by the distortions.  

 

This was verified by MCSs, where aberrations in the optical path (astigmatism: 

c6=-0.3 μm and coma: c8=-0.5 μm) were inserted at the back focal plane of the 

objective (Fig. 2.16b). Below a coherence length of 2 μm the measured Zernike 

coefficients tended all towards zero and became indistinguishable from zero below a 

coherence length of 0.6 μm. For coherence lengths higher than 2 μm the single-pass 

aberrations were correctly measured (with an accuracy limited by speckle noise). This 

can be explained by the fact that for these coherence lengths the speckles are fully 

developed and, thus, only the incoherent superposition of the backscattered light 

contributes to the wavefront (of course, after speckle averaging, see section 2.4.2). 

Therefore, all spherical wavelets emanating from the scatterers (Huygen’s principle) 

can be assumed to be independent from each other and information about aberrations 

of the illumination light is lost. Of course, the intensity distribution near the focus is 

changed by aberrations, which might have a marginal effect on the backscattered light 

(this effect was not included in the MCS). However, experiments, which include this 

effect, confirmed that information about aberrations in the incoming light is 

completely lost (see below). In conclusion, only if the speckles are not fully 

developed, the measurement of aberrations can become biased.  

To put it on a firm footing, also a MCS was performed where only the incoming light 

was distorted by aberrations (same distortions as above) and the path of the scattered 

light was aberration-free (Fig. 2.16c). Although this situation is experimentally not 

realizable, the simulation showed that aberrations of the incoming light were lost 
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completely, both if the speckles were partially and fully developed (accuracy limited 

by speckle noise). This confirms the argument from above that the CGWS-measured 

wavefronts are independent of the incoming wave-shape. However, the assumption of 

randomly distributed scatterers is essential, since, for example, the backscattered light 

from a sufficiently large number of scatterers in a single plane (as for a mirror) would 

not be insensitive to aberrations in the incoming light path. 

 

 
Fig. 2.16. Monte-Carlo simulations showing the influence of aberrations on the 
CGWS-measurement process. Illustration (a) of how the coherence volume is 
deformed by aberrations. The measured aberrations (and Zernike defocus) in 
dependence on the coherence length were sensed by both the incoming and the 
backscattered light (b). To verify that aberrations of the illumination light are 
lost, MCSs was generated for a physically not possible situation where only the 
illumination light passes through the distortions (c). The blue and green dotted 
lines in (b) show the expected aberrations due to a single pass of a phaseplate 
with Zernike modes 6 (c6 -0.5 μm= ) and 8 (c8 -0.3 μm= ), located in the back 
focal plane of the objective. The legend in (c) is valid also for (b). The density 
of scatterers was 100 μm-3 (homogeneous distribution) and the CG was placed 
at +5 μm. To reduce speckle noise up to 5 ensembles were generated for each 
coherence length. 
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The influence of aberrations on CGWS was also tested experimentally where only the 

regime of fully developed speckle was experimentally accessible (coherence length of 

51 μm, see section 2.2.1). Using a scattering sample (containing 110 nm beads) the 

incoming wavefronts were varied (by at most 0.35 μm, RMS) using the deformable 

mirror. The variation in the CGWS-measured wavefronts (after, of course, correcting 

for the influence of the deformable mirror on the back-propagating wavefront) was 

0.017 μm, as large as the error expected from speckle noise, thus, indicating this to be 

the only significant error source. 

 

So far, only actual aberrations (Zernike modes higher than 5) were considered, but 

can the remaining Zernike modes like tip, tilt, and defocus also be measured? In 

contrast to the other Zernike modes, tip/tilt and defocus produce only a displacement 

of the focus within the specimen without changing the shape of it. However, a 

varying displacement within the specimen can cause unwanted geometric distortions 

in the acquired images. To correct also for these distortions, information about the 

focus displacement is required. However, in an episcopic illumination scheme focus 

displacements due to tip/tilt can not be sensed [Booth et al., 2005], since a conjugate 

displacement is introduced on the way back to the objective. A special case occurs if 

only a single scatterer is present in the focal cone. Then, tip/tilt changes can be 

measured since the light is scattered back always from the same point. In general, an 

axial displacement of the focus due to an introduced defocus in the optical path can 

also not be detected for an episcopic arrangement [Booth et al., 2005]. However, 

since CGWS is sensitive to the time needed for the scattered light to travel to the 

detector, an axial focus displacement should be measurable. 

 

 

2.5.2 Aberrations due to a tilted glass-plate 
 

A further verification that CGWS provides the true distortions is based on the 

measurement of aberrations due to a tilted glass-plate (thickness 145μm, 10° tilt 

angle, BK7) inserted between scattering sample and objective. To model this situation 

realistically, the additional time delays for the illumination and the scattered light due 
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to refraction at the glass interfaces need to be taken into account (Fig. 2.17). The time 

delay for the illumination light is  
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where c is the velocity of light in vacuum, nG and nW are the refractive indices of 

glass (BK7, nG=1.51) and water, respectively, and D is the thickness of the glass-

plate. The length LG and LW are indicated in Fig. 2.17. Snell’s law relates the angle of 

refraction β  to the incident angle α (angle between v and n). 

The displacement p (Fig. 2.17) of the incident light ray after it has been refracted 

twice at the glass interface is 

 

 sin( ) sin( ) cos( )
cos( )sin( ) cos( ) sin( )
D Dα β β α β

β α β α
⎛ ⎞−

= − + − + −⎜ ⎟
⎝ ⎠

p n v , (2.22) 

 

using straightforward geometrical considerations. Note, that p  lies in the plane 

defined by the vector n  that is normal to the glass-plate and the vector v  pointing 

along the incident light ray. 

Since the refraction of a transmitted light ray by the plate does not depend on the 

position of the plate, the time delay for the scattered light .scattτ  depends only on w 

(Fig. 2.17) and can be calculated as .illumτ in Eq. (2.21) by replacing the incident angle 

α by the angle between w and n. This also means that a displacement of the CG 

position will not change the measured aberrations. Exceptions are all rotationally 

symmetric aberrations like Zernike mode 4 (defocus) or Zernike mode 11 (spherical 

aberration 1th order), which vary with CG position also when no aberrations are 

present. This can be easily seen when a spherical wavefront, sent out by a point-

source located on the optical axis in a distance d to the focus, is traced through the 

objective lens to the back focal plane. Using the sine condition [Born et al., 1999] for 

a generic objective lens, it can be shown with straightforward geometrical 

considerations that the wavefront gradient at the back focal plane is 
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 2 tan(arcsin( ))dW d r
dr f nf

∝ , (2.23) 

 

where r is the radial coordinate parameterizing the back focal plane, f is the focal 

length, and n is the refractive index of the immersion medium. Since the wavefront 

gradient does not only depend on the lowest order of r if the term in Eq. (2.23) is 

expanded in a Taylor series, also spherical aberration changes with an axial 

displacement of the focus or with a change of the CG position. 

 

 
Fig. 2.17. Time delays caused by a tilted glass-plate (tilt angle γ, thickness D, 
normal vector n) in the incoming and the scattered light, whose directions are 
denoted by v and w, respectively. The angles of incident and refracted rays 
are described by α and β, respectively. The displacement of the incoming light 
by the glass-plate is denoted by p. 

 

 

The additional time delays due to the glass-plate were incorporated in the MCS. The 

aberrations found were mainly Zernike mode c6 (astigmatism), c8 (coma), and c11 

(spherical aberration). As expected, astigmatism and coma remains constant when the 

CG position was varied (Fig. 2.18a). Deviations are due to speckle noise, which was 

at about 0.01 μm. If averaged over all shown CG positions, Zernike mode c6 and c8 

were 0.10±0.02 μm and 0.22±0.01 μm. The Zernike mode for spherical aberration c11 

changed linearly with a slope of -0.006 μm/μm for each 1 μm change in CG position 
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(see above) as did the Zernike defocus c4 (slope of -0.11 μm /μm); the value for c11 if 

the CG is at the focus was 0.167±0.005 μm. No other aberrations (except for tip/tilt) 

were seen, with modes up to c11 tested. 

Using a scattering sample with 110 nm beads (see section 2.2.1), the experimentally 

measured aberrations for a tilted glass-plate averaged over all measured CG positions 

were (Fig. 2.18b): c6=0.09±0.02 μm and c8=0.23±0.01 μm. The spherical aberration 

at a CG position near the focus was c11=0.12±0.01 μm. The slope of the Zernike 

defocus c4 was -0.12 μm /μm and that for spherical aberration (c11) -0.004 μm /μm. 

These sloped are in good agreement with those found with the MCS; only for the 

value of spherical aberration the deviation is higher, probably due to additional 

spherical aberration caused by the interface between scattering sample and water 

(immersion medium). Experimentally, astigmatism changed slightly with CG 

position, possibly due to deviations from the circular polarization of the illumination 

light (see section 2.6). 

 

 
Fig. 2.18. Aberrations due to a tilted glass-plate (10°-tilted, 145 μm thick) 
measured by a MCS (a) for a coherence length of 6 μm and a density of 
scatterers of 1 μm-3. Experimentally measured aberrations (b) for the tilted 
glass-plate with the same parameters. The differently gray-scaled bars indicate 
different CG positions, which were varied in steps of 2 μm and 1 μm for the 
MCS and the experiment, respectively. 
 
 
 
 
 
 
 
 
 
 



2 Coherence-gated wavefront sensing 
 
 

 
 
58 

 

2.5.3 Aberrations close to focus 
 

At the beginning of section 2.5 the influence of aberrations, introduced at the back 

focal plane of the objective, on the CGWS-measured wavefront was investigated by 

MCSs. Here, the influence of distortion layers close to the focus will be explored, 

which might introduce a bias on the measured wavefront. 

 

 
 

Fig. 2.19. Dependence of the CGWS-measured aberrations on the location of 
the distortion layer using MCSs. Illustration (a) of how, due to the lateral extent 
of the coherence volume, aberrations are averaged when located close to the 
focus. Measured Zernike modes (b) for a phaseplate with c6 -0.5 μm= and 
c8 -0.3 μm=  located at various distances to the focus (indicated by the gray 
scale). The CG position was at +5 μm and the coherence length was 6 μm 
(FWHM). The measured Zernike modes were averaged over different densities 
of scatterers of 1, 10, 50, 100, 500 μm-3 since no variations were observed (for 
all fully developed speckle). Other Zernike modes were not detected. The red 
and green dotted lines indicate the expected single-pass aberrations for the 
Zernike mode 6 and 8, respectively.  

 

 

Due to the lateral extent of the CV, light scattered in the same direction but at 

different locations senses different parts of the distortions, resulting in spatial 

averaging of the aberrations (Fig. 2.19a). Therefore, MCSs with a phaseplate (c6=-0.5 

μm and c8=-0.3 μm) located at various distances above the focus were implemented. 

The phaseplates were confined only to within the focal cone with the same Zernike 

coefficients, thus, phaseplates close to the focus contained aberrations with higher 

frequencies than phaseplates further away. Such phaseplates were chosen since a 

single scatterer at the focus would measure always the same aberrations independent 
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of the location of the phaseplate. However, this is unlike the situation encountered in 

a real specimen where aberrations do not get confined when they come closer to the 

focus but also in this situation a spatial averaging effect is expected.  

The MCSs showed that the correct aberrations were measured only when the 

phaseplate was located in the back focal plane, but as the aberrations came closer to 

the focus the measured values declined (Fig. 2.19b). This is due to the fact that the 

averaging effect due to the lateral extent of the CV is enhanced if the aberrations 

come closer to the focus, since then the aberrations get more confined.  

However, the bias of the measured wavefronts should be reducible if the wavefront is 

measured not in a conjugate plane to the back focal plane of the objective but in a 

conjugate plane to the distortion layer within the sample. Further, if several distortion 

layers are present the principle of multi-conjugated adaptive optics can be applied 

[Beckers, 1988].  
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2.6 Polarization effects on CGWS 
 

The phase and the amplitude of coherence-gated backscattered light is not only 

affected by the self coherence function ( )( ( , ))k u vγ τ  and the intensity distribution 

across the focal cone ( ) ( , )k
SA u v  but also by the polarization-dependent scattering of 

the incoming light ( ) ( , )k
PolW u v  (see Eq. (2.6)). The rigorous theory of Mie scattering 

[Mie, 1908], which is valid for all spherical scatterers, provides polarization resolved 

amplitudes and phase delays for all scattering angles. Here, the dependence of the 

CGWS-measured wavefronts on the polarization of the incoming and the reference 

light is investigated [Rueckel et al., 2005]. 

The first optical setup for CGWS [Feierabend et al., 2004] was based on linearly 

polarized light to illuminate the sample. Two different scattering phantoms (beads 

with either 110 nm or 1 μm diameter, see section 2.2.1) with distinct polarization-

dependent scattering properties (see below) were used to measure wavefronts by 

CGWS. By changing the CG position, it was observed for the 1 μm diameter beads 

that not only the Zernike defocus but also astigmatism (Zernike mode 6) changed 

linearly (Fig. 2.20b). The slope for c6 was measured as +0.037 0.003  μm/μm± . 

Since no aberrations were introduced, the measured astigmatism was spurious. For 

the smaller beads of 110 nm diameter also spurious astigmatism occurred but with a 

lower slope of +0.008 0.003 μm/μm± (Fig. 2.20a). Other varying Zernike modes, 

such as mode 11 (spherical aberration), could not be detected. 

 

The occurrence of spurious astigmatism can be illustrated by using the model derived 

in section 2.4.2 for fully developed speckle. Thereby, independent spherical wavelets 

emanate from the CV and the incoherent superposition forms the speckle-averaged 

wavefront. Due to scattering, different phase delays for different scattering angles can 

cause aberrated spherical wavelets (Fig. 2.21a,b). As MCSs showed (see below), 

these aberrations can be neglected and are not responsible for the occurrence of 

spurious astigmatism. In particular, this is obvious for scatterers small compared to 

the wavelength (Rayleigh scatterers). In this case the phase delays are almost constant 

for the relevant scattering angles, which are determined by the acceptance cone of the 
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Fig. 2.20. CGWS-measured wavefronts for linearly polarized light. 
Experimentally measured wavefronts using a scattering sample with 110 nm 
sized beads (a) and 1 μm sized beads (b). The CG position was varied in steps 
of 2 μm and 3 μm, respectively. No absolute CG position was determined. For 
comparison, wavefronts were determined by MCSs using 110 nm sized beads 
(c) and 1 μm sized beads (d). To save computational time, a density of 
scatterers of 1 μm-3 and a coherence length of 2 μm were used for the 
calculation. The CG position was varied from -8 μm to 8 μm in steps of 4 μm. 
Only relevant Zernike modes are shown: mode 4 (defocus), mode 6 
(astigmatism), mode 11 (spherical aberration), and mode 12; all others did not 
vary with CG position. By linear fitting, the slopes of Zernike modes 4, 6, and 
12 (only for (d)) were determined. The legend in (a) is valid for all figures. 

 

 

objective (Fig. 2.21a). However, the amplitude variation of the scattered light for 

different scattering angles (Fig. 2.21c,d) and, in addition, the change of the 

polarization due to both Mie scattering and objective weight the contribution of each 

emanating spherical wavelet to the incoherent superposition at a certain detection 

point. The weight is expressed by ( ) ( , )k
PolW u v , which can be written also as  

( / ( ), / ( ); , )PolW x F z y F z u v , where x, y and z are the coordinates of the scatterer k and 

F(z) is the radius of the focal cone in a distance z to the focus. For a simultaneous 
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rotation of the position of the scatterer (x,y) and the detection point (u,v) around the 

optical axis, the angles of refraction due to the objective and the scattering angles 

remain the same but the linear polarization of the incoming light does not rotate 

simultaneously (Fig. 2.22a). Therefore, ( / ( ), / ( ); , )PolW x F z y F z u v  is not rotational 

invariant if the incoming light is linearly polarized and the amplitude of the Mie-

scattering functions is different. If such a rotation by an arbitrary angle α is described 

by the operator Rα , then this fact can be expressed by 

 

 ( [ / ( ), / ( )]; [ , ]) ( / ( ), / ( ); , ).Pol PolW R x F z y F z R u v W x F z y F z u vα α ≠  (2.24) 

 

In contrast, ( ) ( , ) ( , , ; , )k u v x y z u vτ τ=  is rotationally invariant independent from the 

polarization of the light used: 

 

 ( [ , ], ; [ , ]) ( , , ; , ).R x y z R u v x y z u vα ατ τ=  (2.25) 

 
 
Therefore, in the case of linearly polarized illumination light the rotational symmetry 

is broken by PolW  and rotationally symmetric wavefronts are not expected. However, 

PolW  shows two axial symmetries: one is along the direction of the linear polarization 

and the other is perpendicular to that. Assuming that the linear polarization is either 

along the x- or the y-axis, the axial symmetries are (Fig. 2.22b): 

 

 
( / ( ), / ( ); , ) ( / ( ), / ( ); , )

( / ( ), / ( ); , ) ( / ( ), / ( ); , ),
Pol Pol

Pol Pol

W x F z y F z u v W x F z y F z u v

W x F z y F z u v W x F z y F z u v

− − =

− − =
 (2.26) 

 

where the u-axis is along the x-axis. Therefore, the CGWS-measured wavefronts 

should also have these two axial symmetries, since the other quantities that determine 

the CGWS-measured wavefront are all rotationally invariant (see Eqs. (2.6) and 

(2.25)) Aberrations that have such axial symmetries are Zernike mode 6 

(astigmatism) and higher-order Zernike modes, such as 12 and 14 (see Appendix A).  
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Fig. 2.21. The phase (a), (b) and the squared amplitude (c), (d) of the Mie 
scattering functions for polystyrene particles (refractive index: 1.6) with 
diameters of 110 nm and 1 μm, respectively, surrounded by water (refractive 
index: 1.33) for a wavelength of 0.93 μm. The distribution of the accessible 
scattering angles for the objective (63x/0.9W) used, indicated by the gray 
histogram, was calculated numerically assuming isotropic scattering.  

 

 

A MCS was implemented to verify the observed spurious astigmatism. Both 

illumination and reference light were linearly polarized. To model the properties of a 

generic objective lens in terms of polarization, the refraction by a prism was used, 

which happens to be the simplest diffraction grating [Mansuripur, 1986]. Further, Mie 

scattering was implemented assuming spherical scatterers of a certain size. The exact 

steps performed to trace the polarization state are given in Appendix C. Since the 

tracing of the polarization for each scattered light ray is computationally very 

expensive, a coherence length of 2 μm and a density of scatterers of -31 μm were 

chosen to keep the number of scatterers small. As was shown in section 2.4.2, for 

theses two parameters the speckles are already fully developed and the results of these 

MCSs should not be different from other coherence lengths or densities of scatterers 

as long as the speckles remain fully developed. For example, MCSs with a coherence 

length of 8 μm yielded similar results (data not shown).  
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Fig. 2.22. Symmetry properties of WPol (see text) for a polarized plane wave 
scattered back to the back focal plane of the objective. The light path for a 
single scattering event is projected onto the back focal plane. For linearly 
polarized incoming light the rotational symmetry around the optical axis is 
violated (a), but two symmetry axes exist (b), which are determined by the 
direction of the linear polarization. If circularly polarized light is used, the 
rotational symmetry of WPol is maintained (c).   

 

 

The MCSs for 110 nm and 1 μm diameter scatterers showed a linear change of 

astigmatism (Zernike mode 6) when the CG position was also linearly changed (Fig. 

2.20c,d). However, the determined slopes of +0.024 0.004 μm/μm± and 
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+0.050 0.005 μm/μm±  for the 110 nm and 1 μm beads, respectively, were 

significantly larger compared to the experimental values.  

Two reasons can be asserted to explain the discrepancy. First, since a spatial filter 

(inserted at the focus between the two imaging lenses, not indicated in [Feierabend et 

al., 2004]) was used experimentally to reject back-reflections from the objective, also 

some fraction of otherwise useful backscattered light from the sample was rejected. 

Therefore, the wavefront was slightly spatially filtered [Medecki et al., 1996] and the 

measured slopes for Zernike mode 4 and 6 were reduced (slopes for c4 

were +0.083 0.003 μm/μm± (100 nm beads) and 0.062 0.003 μm/μm+ ± (1 μm beads) 

compared to the slopes determined by MCS of 0.10 0.01 μm/μm+ ±  (100nm beads) 

and 0.11 0.01 μm/μm+ ±  (1 μm beads)). Furthermore, the simple model of an 

objective lens does presumably not apply correctly to the objective experimentally 

used, which contains not only one single lens but several optical elements that are 

cemented together. In spite of these facts, qualitatively similar results for MCS and 

experiment were found. 

Besides spurious astigmatism also spurious Zernike mode 12 was measured for 1 μm 

beads by MCS with a slope of -0.006 0.001 μm/μm± . Experimentally, no varying 

spurious Zernike mode 12 could be detected for these beads. Both experimentally and 

numerically, the expected slope for Zernike mode 11 (see section 2.5.2) was too small 

and limited by speckle noise. 

 

Spurious aberrations can be avoided if circularly polarized illumination and reference 

light is used instead, since then also ( / ( ), / ( ); , )PolW x F z y F z u v  exhibits rotational 

symmetry (Fig. 2.22c): 

 

 ( [ / ( ), / ( )]; [ , ]) ( / ( ), / ( ); , ).Pol PolW R x F z y F z R u v W x F z y F z u vα α =  (2.27) 

 

Experimentally, the optical setup described in section 2.2.1 was used where the 

illumination sample light was changed into circular polarization by a λ/4 wave-plate 

but the reference light remained linearly polarized. However, since the backscattered 

light passes again the λ/4 wave-plate (Fig. 2.2) on the way back to the CGWS, this 

experimental situation is the same as if the reference light is circularly polarized and 
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the backscattered light does not pass the λ/4 wave-plate. The latter situation is used 

for the MCSs. 

For this setup, the measured slopes for spurious astigmatism were very low. For 

scattering samples containing either 110 nm or 1 μm beads, the slopes found were 

0.002 0.003 μm/μm+ ± and 0.006 0.003 μm/μm+ ± , respectively. For the MCS with 

circularly polarized light the determined slopes were +0.001 0.003 μm/μm± (100 nm 

beads) and -0.002 0.003 μm/μm± (1 μm beads). Other spurious aberrations were not 

found. 

 

 
 
Fig. 2.23. CGWS-measured wavefronts for circularly polarized light. 
Experimentally measured wavefronts using a scattering sample with 110 nm 
sized beads (a) and 1 μm sized beads (b). The CG position was varied in steps 
of 1 μm. No absolute CG position was determined. For comparison, wavefronts 
were determined by MCSs using 110 nm sized beads (c) and 1 μm sized beads 
(d). To save computational time, a density of scatterers of 1 μm-3 and a 
coherence length of 2 μm were used. The CG position was varied from -8 μm to 
8 μm in steps of 4 μm. Only relevant Zernike modes are shown: mode 4 
(defocus), mode 6 (astigmatism), mode 11 (spherical aberration), and mode 12; 
all others did not vary with CG position. By linear fitting, the slopes of Zernike 
mode 4 and 6 were determined. The legend in (a) is valid for all figures. 
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The MCSs based on circularly polarized light were comparable to the MCSs where 

polarization effects were neglected and point-like scatterers were assumed (see 

section 2.2.2). Although the slopes for the Zernike defocus of +0.099 0.004 μm/μm±  

(100nm beads) and +0.104 0.004 μm/μm± (1 μm beads) were slightly smaller than 

+0.12 μm/μm for the MCS without polarization effects, significantly different results 

in terms of the accurate measurement of aberrations are not expected. The model of 

independent spherical wavelets emanating from the CV is valid even if polarization 

effects are included as long as the speckles are fully developed (see section 2.4.2). 
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2.7 Discussion 
 

Experimentally measured wavefronts using CGWS were compared to wavefronts 

obtained by Monte-Carlo simulations (MCS). All experimentally observed properties 

of CGWS-measured wavefronts, such as the change of the Zernike defocus with the 

variation of the CG position (see section 2.4.2), the independence of the measured 

wavefront on aberrations of the incoming light when the speckles are fully developed 

(see section 2.5.1), and the correct measurement of aberrations in the optical path (see 

sections 2.5.1 and 2.5.2), were consistent with the predictions of the MCSs. Only for 

the dependence of the CGWS-measured wavefronts on the polarization of the 

incoming light (see section 2.7), the discrepancy between experiment and MCS was 

higher. Presumably, the assumed simple model of an objective led only to qualitative 

agreements (see section 2.7). However, some further assumptions were made for the 

model of CGWS (see section 2.1), which needs to be discussed and should reveal 

some new interesting facts. 

First, the attenuation of the illumination intensity with depth due to scattering was 

ignored. Such attenuation, in particular if the attenuation length is comparable to the 

coherence-gate length, will result in more weight being given to scatterers near the 

surface of the specimen and, thus, will result in a shift of the centroid of the 

coherence volumes towards the surface. However, this should significantly affect 

only the measured rotationally symmetric Zernike modes, such as defocus c4 and 

spherical aberration c11. 

Second, a major assumption of the CGWS-model is to consider only ballistic light 

while neglecting multiply scattered light within the coherence gate. In general, this 

assumption can be justified only for low probing depths in strongly scattering 

specimens. To quantify at which focus depth coherence-gated multiply scattered light 

will dominate over coherence-gated ballistic light, observations from optical 

coherence tomography (OCT) can be used. For OCT the maximum probing depth is 

restricted to several (5-8) mean free path lengths, depending on the scattering 

properties of the tissue [Schmitt, 1999; Lu et al., 2004]. Since confocal detection is 

predominately used for OCT [Fercher et al., 2003; Karamata et al., 2005], CGWS 

should achieve about the same probing depth if a pinhole is inserted in the sample 

arm in order to reject some part of the coherence-gated multiply scattered light. 
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However, the pinhole can also act as a spatial filter and should lead to an 

underestimation of aberrations present. In the case of a sub-resolution pinhole size, 

the measured wavefront would even be aberration-free [Medecki et al., 1996]. 

Therefore, the size of the pinhole has to be adjusted to the expected strength of 

aberrations. 

Since the coherence-gated portion of the multiply scattered light is predominantly 

scattered above the coherence volume (CV of the single-scattered light) and 

originates from a laterally more extended volume, three effects on CGWS-measured 

wavefronts can be expected. First, the spatial coherence of the CGWS-selected 

backscattered light will be reduced (see section 2.4.3). Therefore, the proportionality 

constant 0σ  (see section 2.4.3) will rise, but by averaging over more ensembles of 

scatterers the speckle error can be reduced to the required level. Second, the measured 

defocus will not be zero anymore if the CG position is at the focus. This means that to 

correct for all aberrations in the optical path to the focus, the correction to zero 

defocus might lead to an erroneous detection of the relevant aberrations. Third, the 

effect of lateral averaging of aberrations located within the specimen will be 

enhanced (see section 2.5.3).  

A third assumption of the model was the use of discrete, randomly located particles to 

describe the scattering of light within tissue. This assumption is funded on 

investigations of scattering properties that revealed that the refractive index variations 

within biological specimens can be realistically modeled as discrete, differently sized 

particles [Schmitt et al., 1998; Mourant et al., 2002; Wilson et al., 2005]. It was found 

that the particle distribution responsible for the scattering extinction peaks at sizes of 

about 2-4λ [Schmitt et al., 1998; Mourant et al., 2002; Wilson et al., 2005], whereas 

high-angle scattering is mainly due to particles with sizes in the range 

from / 4 / 2λ λ−  [Mourant et al., 1998; Schmitt et al., 1998]. Cellular organelles, in 

particular mitochondria (0.5-1.5 μm), lysosomes (0.5 μm), and structures within the 

nucleus (3-10 μm), contribute most to backscattering [Dunn, 1997; Mourant et al., 

1998; Drezek et al., 1999]. Depending on the type of tissue collagen and elastin fibers 

enhance the backscattering efficiency [Drezek et al., 1999]. Under the assumption 

that particles with sizes of / 4 / 2λ λ−  dominate the backscattering, the density of 

scatterers can be maximally about -3100 μm . Therefore, the coherent effects observed 

due to the transition of fully developed speckle into partially developed (see Fig. 2.7 
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and 2.8) will likely not occur for biological specimens, independent of which 

coherence length is experimentally chosen.  

A further assumption of the MCS concerns the homogenous distribution of scatterers 

inside the focal cone, which is, in general, not homogenous in real tissues. An 

inhomogeneous distribution, however, will hardly alter the CGWS-measured 

wavefront since each scatterer contributes independently to CGWS (see section 2.4.2) 

unless abnormal distributions, such as scatterers located only in a thin layer, are 

present (see section 2.5.1).  

 

In conclusion, it was shown that the ensemble-averaged CGWS-measured wavefronts 

correspond to the actual aberrations in the optical path as long as the speckles are 

fully developed, which should be the case for all experimentally accessible coherence 

lengths (larger than 4 μm, [Drexler, 2004]) and realistic densities of scatterers (see 

above). In this regime the CGWS-measured wavefront corresponds to the incoherent 

superposition of originally spherical wavelets emanating from each of the individual 

scatterers and then altered by the aberrations while propagating back through the 

sample and the optical system. Polarization-induced spurious aberrations, which 

depend on the coherence-gate position, can be avoided by using circularly polarized 

light. However, the circular polarization of the light can not be strictly maintained, 

since most tissues are to some extent birefringent. For strongly birefringent tissues, 

such as cartilage and connective tissue fibers, the CG position-dependence of 

spurious aberrations and the fact that they vanish when the CG position is at the focus 

can be used to discriminate against spurious aberrations.  
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3 Wavefront correction using CGWS 
 

Closed-loop CGWS-based wavefront correction will be demonstrated on several 

samples, even on living biological organisms. Wavefront correction was combined 

with two-photon microscopy to verify and demonstrate the improvement in image 

quality. As a measure of image quality the point-spread function, the fluorescence 

signal for uniformly stained specimens, and the peak fluorescence for point-like 

structures within a specimen were investigated before and after wavefront correction. 

 

 

3.1 Characterization of the deformable mirror (DM) 
 

As a wavefront correction element an electrostatically-deflected membrane mirror 

(DM, Oko Technologies, [Vdovin et al., 1995]) was employed (Fig. 3.1a). By means 

of bulk micromachining the gold-coated membrane (diameter 15 mm) was mounted 

approximately 45 μm above 37 actuators arranged in a hexagonal shape driving the 

membrane shape (Fig. 3.1b). The maximum achievable deflection of the membrane 

is, typically, about 7 μm for the maximum voltage of 300 V applied to all actuators. 

Only the well-controllable region of the membrane with a diameter of 9.7 mm was 

used for wavefront  correction [Paterson et al., 2000]. 

 

 
Fig. 3.1. Photograph (a) and schematic drawing of a cross section (b) of the 
gold-coated deformable mirror (from OKO Technologies).  
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The optical setup contains a calibration arm that extracts a portion of the reference 

light by means of a beamsplitter cube in order to characterize the DM (Fig. 2.2). 

Therefore, the length of the reference arm was adjusted so that the optical path 

lengths for light travelling in the calibration and in the reference arms were the same.  

 

The shape of the DM, described in terms of 28 Zernike polynomials using a set of 

coefficients sc , depends roughly quadratically on the set of voltages (the deflection 

due to the voltage distribution can be described by the Poisson equation, [Fernandez 

et al., 2003]). Therefore, a set of variables ( ) ( )2 2
1 37 1 37,..., ,...,s s v v= =s  is used, 

whereby for each voltage max0 iv v< < , and the deflection of the DM can be described 

by     

 max( )
2S iniM≈ ⋅ − +

sc s c , (3.1)

   

where M is the "characteristic" matrix describing the response of the DM [Zhu et al., 

1999b] and inic  the initial deviation from a flat wavefront. In order to allow 

deflections for the DM in both directions, all actuator voltages are initially set to 

max 2v , i.e. max 2is s= , with the resulting defocus compensated by adjusting the 

position of a lens in the sample arm (L6, Fig. 2.2).  

The matrix M was determined by measuring the difference in the response to a 

voltage of max3 / 2 v⋅  and max 2v  applied to each of the 37 actuators using the 

calibration arm.  

For the generation of different shapes of the membrane an iterative scheme was 

chosen, which is insensitive to nonlinearities of the DM and the vSHS (see below and 

section 2.3.1). Equation (3.1) would suggest that the voltage needed to generate the 

desired shape of the membrane desiredc  simply can be obtained by 

multiplying desired ini−c c with the (pseudo) inverse of M [Zhu et al., 1999a; Paterson et 

al., 2000]. Because this frequently would call for voltages outside the available range, 

quadratic programming (implemented using the Matlab function quadprog, [Gill, 

1995]) is applied, which, like the (pseudo) inverse, minimizes 

  

 ( )( 1) ( ) ( 1)( )n n n
desired Mβ − −⋅ − + ⋅ −c c s s , (3.2) 
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while, unlike the pseudo inverse, maintaining ( ) max0 iv v< < ; ( 1)n−c  is the measured 

wavefront with ( 1)n−s  applied to the DM for the n-th iteration step; indicates the 

L2 norm. The parameter β determines the convergence rate and was between 0.8 and 

1. Unless a reference wavefront was specified (see below) the wavefront correction 

was started from (0)
max / 2=s s .  

 

Besides its limited capability of changing the membrane shape with a maximum 

frequency of 500 Hz, a further technical limit of the DM concerns the correction of 

high-order aberrations. Therefore, the maximum amplitude for all Zernike modes 

from 4 to 28 was determined both for positive and negative deflections of the 

membrane. By using Eq. (3.2) wavefronts with a single Zernike mode, where the 

coefficients were changed in steps of ±0.02 μm, were tried to produce. To define a 

criterion when the maximum coefficient for a certain Zernike mode was reached, the 

RMS deviation to the desired wavefront (calculated over Zernike mode 4 to 28) had 

to be smaller than 0.02 μm after 3 iteration steps. The measured maximum coefficient 

for the Zernike defocus c4 in total (positive and negative deflection combined) was 

about 1.4 μm, corresponding to a maximum deflection at the center of the membrane 

of about 5 μm (Fig. 3.2). This is smaller than the expected 7 μm stated by the 

manufacturer, presumably due to an unspecified stress-induced displacement of the 

membrane. For high-order aberrations the maximum Zernike coefficient decreases 

rapidly but, in particular, the coefficients for astigmatism (mode 5 and 6) and coma 

(mode 7 and 8) were sufficiently large to demonstrate CGWS-based wavefront 

correction (see below). Note that the maximum Zernike coefficients for positive and 

negative deflections were slightly different for the low-order Zernike modes although 

the deflection of the DM was biased to half of its maximum deflection (see above, 

Fig. 3.2). 

Another important characteristic of the DM is its deviation from linear performance 

(see Eq. (3.1)). Since the deviation depends on the strength and on the type of 

aberration, only a rough estimation can be given. For the wavefront correction 

experiments presented in this chapter the deviation from linearity was not higher than 

0.01 μm (RMS) if the voltages applied to the actuators were not at the limit of their 

range. 
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Fig. 3.2. Deflection limit of DM for different Zernike modes. Maximum 
possible Zernike coefficients for positive (gray bars) and negative (black bars) 
deflections of the membrane.  
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3.2 Principle of wavefront correction 

 
Scattering at inhomogeneities in the refractive index within turbulent media, such as 

the atmosphere or biological specimens, corrupt the propagation of the light, resulting 

in speckle patterns (scintillation) and associated phase singularities [Fried et al., 1992; 

Roggemann et al., 2000]. Thus, the phase function of the distorted electric field is not 

continuous anymore but is instead composed of a vortex phase (also called hidden 

phase [Fried, 1998]) caused by the singularities and a potential phase that describes a 

continuous phase function [Aksenov et al., 1998]. The potential phase can be 

extracted from the phase function by least-squares fitting and is that part of the phase 

that is widely used for adaptive wavefront correction [Fried, 1998; Roggemann et al., 

2000]. However, wavefront correction of the potential phase part is complete only if 

the light propagation through the media can be described in the geometrical optics 

approximation [Hardy, 1998; Roggemann et al., 2000]. If the media is strongly 

turbulent, high-angle scattering can occur and the geometrical optics approximation is 

not valid anymore. In this case,  the performance of adaptive wavefront correction can 

be improved by using the complete phase function [Tyler, 2000]. 

Speckles and associated phase singularities are intrinsic for CGWS, even if the 

specimen is not turbulent at all. This is due to the fact that the coherence-gated light, 

which is scattered back from an extended CV, coherently superimpose at the CGWS 

(see section 2.4.2). A turbulent layer in the optical path can alter the speckle pattern 

and, thus, the vortex phase. Only that part of the vortex phase that is caused by the 

turbulent layer needs to be corrected [Vorontsov et al., 2002; Vorontsov et al., 2005]. 

However, no method exists so far to distinguish between these two contributions of 

the vortex phase [Vorontsov et al., 2005]. To make it clear: using the principle of 

optical reciprocity [Born et al., 1999], the focus would be as large as the CV if the 

complete vortex phase together with the potential phase of the CGWS-measured 

electric field is pre-compensated. 

To restore a diffraction-limited focus, the electric field sent out from a single 

Rayleigh-scatterer located at the focus needs to be sensed. In this case, the vortex 

phase is caused only by the turbulent layer and the time-reversed electric field would 

result in a diffraction-limited focus (optical reciprocity theorem). Since the speckle-

averaged CGWS-measured wavefronts are the incoherent superposition of spherical 

waves emanating from the CV, the aberrations of the potential phase of light scattered 
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from a single scatterer can be reconstructed by CGWS, except for tip/tilt and defocus 

(see section 2.5). By shaping the DM in such a way that it generates the phase-

conjugated potential phase of the speckle-averaged CGWS-measured wavefront, a 

diffraction-limited focus can be restored (Fig. 3.3). If it were possible to compensate 

also for the turbulence-induced vortex phase, the scattering within the turbulence 

would be compensated and more incoming light would be directed to the focus, 

allowing, e.g., a higher two-photon fluorescence excitation. However, this exceeds 

the scope of this thesis and needs be addressed in the future (see chapter 4). 

 

 
Fig. 3.3. Iterative wavefront correction to a flat speckle-averaged CGWS-
measured wavefront. A simplified setup (deformable mirror DM, objective Obj, 
distortion layer DL) was assumed to illustrate the principle of wavefront 
correction based on the optical reciprocity theorem. In the initial state, where 
the DM is flat (a), the potential phase is measured and, then, the DM applies the 
phase conjugation (b). Because of nonlinearities of DM and vSHS, the 
distortions are not yet completely cancelled. By correcting iteratively to a flat 
wavefront the final state (c) of a diffraction-limited focus is reached. Red and 
green wavefronts indicate the ingoing and returning potential phase functions, 
respectively. 

 

 

While an accurate shaping of the membrane is possible without iteration (open-loop), 

if the response properties of DM and vSHS are sufficiently well known, the more 

robust closed-loop operation (with iteration), which is insensitive to nonlinearities of 

DM and vSHS, was chosen instead. Therefore, not only the wavefront of the 

illumination light but also the wavefront of the backscattered light were deformed by 

the DM (Fig. 2.2).  
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Only Zernike modes 5 to 28 were corrected by the DM because these correspond to 

aberrations that change the focus shape; tip/tilt (modes 2 and 3) and defocus (mode 4) 

only shift the focus laterally or axially (see section 2.5.1). However, to sense all 

distortions in the path to the focus, CGWS needs to select backscattered light that 

originates from the focal region, i.e. the measured defocus should be zero. Although 

the DM can correct for defocus, the dynamic range would be then reduced. A better 

way is to iteratively adjust the length of the reference arm on which the defocus 

depends linearly (slope of about 0.12 μm/μm per 2.66 μm change of the arm length, 

which corresponds to 1 μm displacement of the CG position, see section 2.4.2).  

In most cases the deviation of the measured wavefront from the flat wavefront no 

longer decreased significantly beyond 3 iterations (Fig. 3.4). 

 

 
Fig. 3.4. Exemplary sequence of wavefronts during a 5 step iterative correction 
of the distortions introduced by a glass capillary (see section 3.4). The initial 
deviation (a) was 0.283 μm (RMS), which was measured as the mirror was set 
to its reference shape. With the subsequent steps the deviation was reduced to 
0.092 μm (b), 0.040 μm (c), 0.030 μm (d), 0.018 μm (e) and 0.017 μm (f). 
Some actuators of the DM reached their deflection limit already after the first 
iteration step. At the end of the sequence more than half of the actuators were at 
the limit. Contour lines are spaced by 0.1 μm. 
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3.3 Fluorescence measurements in uniformly 

fluorescent samples 
 

Since focus distortion leads to a reduction in the efficiency of two-photon excitation 

and hence fluorescence generation the total amount of fluorescence is sensitive to 

wavefront aberrations. Therefore, it was tested whether the experimentally 

determined dependence of the fluorescence signals on the strength and on the type of 

aberration matches what is theoretically expected. For the experiment and theory 

uniformly fluorescent samples were used and assumed, respectively. The expected 

two-photon excited fluorescence was calculated by numerically integrating the square 

of the intensity distribution (in the non-paraxial Debye approximation [Born et al., 

1999] over the focal region):  

 

 
( ) ( )2 2 2

422 1  /( , )    ( , )   
nn i x u y vi w x y fi x y f

A

F du dv dw dx dy E x y e e e
ππ

φ λλ
⋅⋅ ⋅ + ⋅⋅ ⋅ − + ⋅∝ ∫∫∫ ∫∫ , (3.3) 

 

with the origin of the u, v, and w coordinate system placed at the focus point and the 

optical axis oriented along w; x and y parametrize the back focal plane; λ denotes the 

wavelength of the light, f the focal length of the objective, and n the refractive index 

of water; Φ(x,y) is the wavefront and E(x,y) is the intensity profile of the illumination 

light across the aperture A located in the back focal plane; 1i = − . The integration 

volume (centered at the focus) was 16.1 μm x 16.1 μm x 20 μm and was sampled at 

intervals of 0.06 μm for u and v and 0.05 μm for w. All theory/experiment 

comparisons were between values normalized to those for a flat wavefront. The non-

paraxial Debye approximation is to a high degree of accuracy the solution to the 

Helmholtz equation [Wolf et al., 1981] and since the Fresnel number 2 /AN R fλ= is 

sufficiently larger than 1 for the objective used (see section 2.2.1), the vectorial aspect 

of the illumination light can be neglected [Hsu et al., 1994]. 

The numerical calculations for a uniform illumination of the aperture show that the 

efficiency in fluorescence generation decreases almost equally for different wavefront 

aberrations (Fig. 3.5). For example, for a deviation of 0.2 μm (RMS) the excitation 

efficiency is roughly a factor of 2 smaller than for an aberration-free system. 
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Experimentally, however, the intensity profile was Gaussian over the back focal plane 

(fill factor 1.25, see section 2.2.1), which reduces slightly the effect of aberrations on 

the excitation efficiency (Fig. 3.6). 

 

 
Fig. 3.5. Numerically calculated fluorescence intensity (normalized to 
maximum intensity) vs. Zernike coefficients for a uniformly illuminated 
aperture (Eq. (3.3)). The investigated aberrations were astigmatism (Zernike 
mode 5 or 6), coma (Zernike mode 7 or 8), spherical aberration (Zernike mode 
11), and a randomly aberrated wavefront. For the latter the deviation was 
distributed uniformly over Zernike modes 5 to 28.  

 

 

The experimental measurements were performed as follows. First, a diffraction-

limited focus, having the highest excitation efficiency, was generated as described by 

Eq. (3.2) using the scattering sample (correction to a flat CGWS-measured wavefront 

desired =c 0 ). Then foci with known aberrations were generated using only the DM by 

correcting to a CGWS-measured wavefront with the desired aberrations. In this case, 

by reciprocity the ingoing wavefront converges to the desired aberrations. After 3 

iterations a deviation of typically 0.01 μm (RMS) was reached. Different sets of 

aberrated foci, each containing only a single Zernike mode (5, 6, 7 or 8) but of 

different strength (±0.1 μm, ±0.14 μm and ±0.18 μm) were thus generated. 

For each aberrated focus and also for the non-aberrated focus the fluorescence excited 

by two-photon absorption within a “uniformly” fluorescent sample (see below) was 

recorded by averaging the fluorescence signal while scanning the sample laterally 

over an area of 3 μm x 3 μm. For an aberration of -0.140±0.006 μm in c5, for 

example, the values varied by 3.5 % between repeated correction cycles (Fig. 3.6). 
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This fluctuation is probably not only due to speckle, which should cause only a 

variation of about 2 %. Theoretical and experimental data agree within the error limits 

(Fig. 3.6). This also shows that neither significant astigmatism nor coma was present 

in the reference arm, because such an aberration would lead to a laterally shifted 

fluorescence vs. aberration curve.  

 

 
Fig. 3.6. Experimentally measured fluorescence intensities (normalized to 
maximum intensity) in a “uniformly” stained specimen as a function of 
astigmatism (a) and coma (b). The solid curves are spline fits to numerical 
calculations of the Debye Integral (Eq. (3.3)) with a Gaussian intensity profile. 

 

 

Sample preparation 

 

The scattering sample (mean free path ≈550 μm) used for these experiments 

contained polysterene beads (110 nm diameter, 15 beads/μm3, Polysciences, 00876) 

embedded in an aqueous agarose gel (1% low-melting point A9414, Sigma) and also 

contained 100 μM fluorescein (fluorescein-sodium salt 46960, Fluka). 
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3.4 Correction of glass-capillary induced distortions 
 

In order to test CGWS-based wavefront correction on a sample that contains a known, 

well quantifiable distortion a cylindrical glass capillary was used, which was filled 

with a scattering sample containing fluorescent beads (see below and Fig. 3.7a). 

Before introducing the capillary sample, first a reference shape for the DM was 

established by correcting (using 5 iterations) all aberrations introduced by the optical 

elements of the microscope (of which are due to DM with all max / 2iv v= : 

5 -0.03 μm,c =  6 7 80.06 μm,  -0.02 μm,  -0.01  μmc c c= = = ; and due the objective: 

11 -0.025 μm,c =  22 0.025 μmc = ) using a scattering sample (same as used for the 

experiments in section 3.3) without capillary. Then, the capillary sample was 

introduced and images without correction were taken (Fig. 3.7b), which show a 

strongly astigmatic point spread function (see below). 

 

 
Fig. 3.7. CGWS-based correction of glass-capillary induced wavefront 
distortion. Rays (a) in the planes orthogonal and parallel to the capillary axis 
form foci in different depths leading to an astigmatic distortion. Scattering and 
fluorescence beads are depicted as black and green dots, respectively. Single 
focal plane images of fluorescent beads before (b) and after (c) wavefront 
correction show line foci typical for strong astigmatism. Background was 
subtracted and the sinusoidal scan geometry was linearized. The gray scale of 
the images is proportional to the measured fluorescence intensity (arbitrary 
units). 
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The measured aberrations confirmed that mainly astigmatism (c6: -0.276±0.006 μm, 

in agreement to the expected astigmatism of -0.280 μm calculated for the capillary 

geometry used, see Appendix D) affected the focus, whereas higher-order aberrations 

(the largest was c12 with 0.034−  μm) were barely detectable. 

Typically for astigmatic point-spread functions is that the intensity distribution in a 

xy-plane above the Gaussian focus is elongated along one direction, for a plane below 

the Gaussian focus, however, along the perpendicular direction (Figs. 3.8a-c). Also 

striking is that the fluorescence at the Gaussian focus is lower than in a distance apart 

from focus (Fig. 3.8b), showing that two foci are evolved. For the measured 

astigmatism an inter-foci distance of 3.6 μm was numerically calculated. This is 

consistent with the inter-foci distance of 3.4 ± 0.2 μm measured for one bead using an 

image stack (Fig. 3.8c). 

 

 
Fig. 3.8. Images (a) of an astigmatic point-spread function ( 6c -0.28 μm= ) in 3 
planes (section: 7.5 μm x 7.5 μm), perpendicular to the optical axis, in a 
distance of -3 μm, 0 μm, and 3 μm to the Gaussian focus, calculated 
numerically with the Debye integral (Eq. (3.3)). The two-photon excited 
fluorescence intensity is on a logarithmic scale. The peak fluorescence 
(normalized to the maximum value) for a sequence of planes vs. axial distance 
was numerically calculated (b) and experimentally measured (c). For the 
experimental data an image stack with 40 images, spaced by 0.3 μm was taken. 
The axial distance in (c) starts with the first image of the stack.  
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When wavefront correction was started, stabilizing (to within 0.02 μm) after 5 

iterations (Fig. 3.4), the corrected image showed a 6-fold improvement in the peak 

fluorescence and a clear increase in resolution (Figs. 3.7b,c).  

In image stacks taken with the corrected wavefront the lateral widths (full width at 

half maximum) of bead images (using the brightest beads) were 0.66±0.05 μm and 

0.57±0.05 μm for y- and x-directions, respectively, not significantly different from 

values from samples without distorting elements (0.62±0.05 μm and 0.53±0.05 μm). 

The discrepancy to the theoretical values for the lateral focus size (numerically 

calculated for Gaussian profile: 0.40 μm and 0.39 μm; see also Eq. (1.1): 

0.39 μmxyΔ =  for uniform illumination) is likely due to residual Brownian motion of 

the fluorescent beads. 

 

For a similar sample where the capillary was filled with a “uniformly” fluorescent 

sample (see below), the fluorescence (Eq. (3.3)) was 2 times higher after wavefront 

correction was applied. This is roughly consistent with the numerically calculated 

value of a factor of 2.5 for the fluorescence increase, taking into account the 

measured astigmatism (c6: -0.332±0.006 μm, slightly lower than the theoretical 

expectation of -0.35 μm for the capillary geometry used).  

 

 

Sample preparation 

 

The capillary with fluorescent beads (270 μm outer diameter, 24 μm wall thickness, 

measured under a stereomicroscope) was produced from a larger capillary (1 mm 

outer diameter with 100 μm wall thickness, Hilgenberg) on a micropipette puller (P-

2000, Sutter Instrument Company). The capillary was filled with scattering beads 

(110 nm diameter, 6 per μm3, Polysciences, 00876) and fluorescent beads (93 nm, 0.2 

per μm3, yellow-green FluorSpheres, Invitrogen, F8803) immobilized in agarose (1% 

low-melting point A9414, Sigma). The illumination focus was located in the center of 

the capillary. 

The capillary surrounding a “uniformly” fluorescent scattering sample had an outer 

diameter of 300 μm and a wall thickness of 30 μm. The sample contained scattering 

beads (110 nm diameter, 6 per μm3, Polysciences, 00876) embedded in agarose (1% 
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low-melting point A9414, Sigma) and also contained 100 μM fluorescein 

(fluorescein-sodium salt 46960, Fluka). The illumination focus was located in a depth 

of about 200 μm. 
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3.5 Correction of zebrafish-induced distortions 
 

As a final demonstration the feasibility of CGWS-based wavefront correction in a 

living biological specimen is presented. To this end, the developing olfactory bulb in 

transgenic dlx4/6::GFP zebrafish larvae (Danio rerio, Fig. 3.9a, [Zerucha et al., 2000; 

Ghanem et al., 2003]) was imaged. In this transgenic line GFP is expressed in a 

subset of GABAergic interneurons of the olfactory bulb, i.e. granule cells and 

periglomerular cells [Li et al., 2005]. Without correction the image resolution was 

severely compromised by distortions (Fig. 3.9c).  

When correcting the aberrations introduced by the live specimen (focus depth of 50 

μm) mainly astigmatism ( 5 6-0.082 μm; -0.306 μmc c= = ) and coma 

( 7 0.000 μm;c = 8 -0.079 μmc = ) were found (Fig. 3.9b). These values were corrected 

for the aberrations induced by optical elements alone. The residual aberration (0.065 

μm, after 5 iterations) was not limited by measurement error but by several of the DM 

drive voltages having reached their limits. Even though the correction was done for 

the center point of the image, almost uniform improvements in image resolution and 

signal size were found over the whole 34 μm x 34 μm field of view (Figs. 3.9c,d), 

indicating that most of the wavefront aberrations are due to refractive index 

inhomogeneities located substantially above the focal plane. This suggests skin and 

cartilage overlying the brain as culprits. Experiments carried out in a fixed zebrafish 

larva showed similar results (data not shown). 

To measure functional signals in a living wild-type zebrafish, the blood flow in the 

forebrain was imaged. At a focus depth of 200 μm again mainly astigmatism 

(c5=-0.024 μm, c6=0.254 μm, total 0.336 μm) was found. Again, correction (to a final 

error of 0.095 μm after 3 iterations) was limited by the deformable mirror. The 

fluorescence signal from the labelled blood plasma vs. time, measured at a single spot 

at the center of a blood vessel (extracted from line scans through a blood vessel, Fig. 

3.9e), was improved almost twofold by wavefront correction (Fig. 3.9f).    
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Fig. 3.9. Adaptive wavefront-correction in a living zebrafish. Orientation (a) of 
the zebrafish larva during imaging in the forebrain in 50 μm depth. The 
wavefront aberrations (contour lines are spaced by 0.1 μm) as measured by 
CGWS are introduced by upper tissue layers (b). Single focal plane images 
were recorded without (c) and with (d) correction (correction parameters 
determined while focussed on the center of the image). Background was 
subtracted and sinusoidal scan motion was linearized for display. Single focal-
plane images (e) of blood vessels in the forebrain (depth 200 μm) were recorded 
without (left) and with correction (right). Dark regions inside the blood vessel 
are blood cells. Blood flow measurements (f) using line scans (positions as 
indicated by arrows in (e)). Plotted are the center pixel intensities as a function 
of time (black: without correction, red: with correction). The scale bar in (c) 
applies to (d) and (e) also. The gray scale of the images is proportional to the 
measured fluorescence intensity (arbitrary units). 

 

 

Zebrafish preparation 

 

For imaging experiments, larvae (day 3-6 post fertilization) were anesthetized by 

immersion in 0.16 mg/ml MS-222 (A5040, Sigma-Aldrich) and embedded in 2% low-

gelling agarose (A0701, Sigma-Aldrich) with an inclination angle of the roll axis of 
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about 20° for better optical access [Spath et al., 1977; Li et al., 2005]. To suppress 

pigment formation, embryos were treated with 0.003% N-phenylthiourea (P7629, 

Sigma-Aldrich) starting at 10 - 20h after fertilization. Spawning and raising of 

zebrafish larvae was performed following standard procedures [Westerfield, 2000]. 

To visualize the blood plasma of zebrafish larvae 5 % (w/v) fluorescein-

isothiocyanate-labeled dextran (FITC-dextran, Mr: 40 000; FD-40S, Sigma-Aldrich) 

in zebrafish Ringer’s solution was administered to the cardiovascular system: 

anesthetized larvae were placed sidewise under a stereomicroscope; a glass pipette 

was inserted into either the heart ventricle or the yolk sac and 2-3 boluses of dye were 

ejected by an air pressure. Strong labelling of the cardiovascular system was observed 

in most animals shortly after injection under a fluorescence stereomicroscope. 

Individual fluorescing larvae were mounted in agarose for two-photon imaging and 

wavefront correction.  
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3.6 Discussion 
 

It was shown that closed-loop CGWS-based wavefront correction can be applied to 

two-photon microscopy and allows the restoration of an almost diffraction-limited 

focus and hence an increase in image resolution and fluorescence signal (see section 

3.3 and 3.4). Most importantly, imaging in a living biological specimen is 

substantially enhanced by adaptive wavefront correction (see section 3.5). It was 

shown that the fluorescence for “uniformly” stained samples and the more sensitive 

peak fluorescence can be improved significantly.  

In the current implementation the speed of correction is limited mainly by the time 

needed to reconstruct numerically the wavefront in the virtual Shack-Hartmann 

sensor. The ultimate physical speed limit depends on the number of sample arm 

photons within the coherence gate, assuming that the number of averages needed to 

overcome speckle noise can be acquired quickly enough. The number of photons 

available depends on the length of the coherence gate (CG), focus depth in the 

sample, tissue properties (in particular backscattering efficiency) and, of course, on 

the intensity of the illumination light. Ideally, wavefront measurement, correction, 

and fluorescence imaging would occur pixel by pixel, either simultaneously or tightly 

interleaved. Under typical two-photon in-vivo imaging conditions at least a few mW, 

i.e. ≈1016 photons/s, of average laser power at the focus are needed. Of those about 

10 % are scattered within the slice selected by the CG (22 μm for a coherence length 

of 58 μm at a mean free path (MFP) of 200 μm). However, of those 1015 photons/s 

only 1 % (calculated using the Henyey-Greenstein scattering function for an 

anisotropy factor of 0.95 [Henyey et al., 1941]) are scattered in a direction that falls 

into the objective's acceptance cone. Scattering on the way out, at a depth of, say, 5 

MFPs, leads to a further 100-fold reduction so that in the end roughly 1011 photons/s 

are left for the CGWS. Since 105 photons are sufficient to measure the wavefront to 

λ/50, even when using the inefficient vSHS, a single wavefront measurement can be 

performed in about 1 microsecond (see section 2.3, for 441 lenses of the vSHS). 

Thus, wavefront measurements are not limited by the available light, even at pixel 

rates as large as 1 MHz.  

While at least 16 measurements at different focus positions are needed to reduce 

speckle noise to below λ/50 (see section 2.4.3), the photons needed for a particular 
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precision can be spread out over different focus positions, sensibly in such a way that 

the shot-noise error exceeds the speckle error, which occurs when the number of 

photons in the sample arm for one interferogram is lower than about 103 (for a vSHS 

of our parameters, see section 2.2.1).  The need to average out the speckle error is 

thus not limiting in speed as long as changes of focus positions can occur fast enough 

(for example, by an electro-optical deflector [Khayim et al., 2001]) and camera frame 

rates are fast enough.   

For the photon-flux given above the appropriate frame rate would be about 60 MHz 

(16 positions times 4 images for each interferogram every microsecond), which is still 

above sustained camera readout rates currently available. However, since the number 

of parameters needed to set the DM is much smaller than the number of camera pixels 

on-chip processing [Monteiro et al., 2005] might ultimately provide correction 

parameters at MHz update-rates. Currently available deformable mirrors or spatial 

phase modulators are still considerably slower.  

While it may not be necessary, as imaging in zebrafish (Fig. 3.9) shows, to provide 

pixel-by-pixel correction, it would still be desirable to correct quickly enough to 

follow those physiological processes that significantly affect the refractive index (for 

example, pulsatile blood flow) and thus cause varying wavefront distortion. 

In conclusion, adaptive wavefront correction based on coherence-gated wavefront 

sensing should allow fast correction to study physiological processes in a variety of 

specimens with high spatial resolution and high contrast. 
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4 Summary and outlook 
 

The need for high-resolution and quantitative microscopy has led to the combination 

of adaptive optics and light microscopy, in particular, confocal and multi-photon 

microscopy. The methods used so far to implement adaptive optics have been based 

on the excitation of fluorescence light and, thus, are interrelated to tissue damage 

through photobleaching and phototoxicity.  

CGWS-based wavefront correction uses backscattered light instead and needs only a 

small number of photons to close the wavefront correction loop. It has been shown in 

this thesis, that CGWS measures the distortions, introduced by the specimen and 

optical elements, with high accuracy, only limited by photon and speckle noise. 

Although CGWS relies on the coherent property of light, the speckle-averaged 

wavefront of the coherence-gated backscattered light can be considered to be the 

incoherent superposition of spherical wavelets emitted from each scatterer within the 

coherence volume and then propagating back to the objective through distorting 

inhomogeneities of the tissue.  

For several distortion-containing samples, including a living zebrafish, wavefront 

correction, based on CGWS, has been demonstrated to improve the resolution, 

fluorescence signal and, thus, the contrast of a two-photon microscope substantially. 

It has been estimated that the physical limit of CGWS-based wavefront correction 

allows restoring a diffraction-limited focus within biological specimens while 

simultaneously imaging by 2-photon microscopy. Only the current technical limits of 

wavefront correction elements and cameras limit the maximum achievable speed of 

wavefront correction. 

Since aberrations have a particularly detrimental effect on the focus quality in 

high-resolution microscopy an important area of application of CGWS-based 

wavefront correction, besides two-photon and confocal microscopy, might be modern 

super-resolution techniques such as stimulated emission depletion (STED) 

fluorescence [Hell, 2003] and structured illumination [Neil et al., 1997] microscopy. 

Furthermore, the lateral focus size in high-resolution optical coherence tomography 

(OCT [Huang et al., 1991]) might be improved. 

 

CGWS-based wavefront correction, as described in this thesis, can still be improved, 

in particular, regarding the speed of wavefront correction with current technology. 
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In terms of the optical setup one major drawback of the current setup is the quite slow 

scanning of the specimen with a translation stage. Typically, for two-photon 

microscopy galvanometer-driven mirrors or acousto-optic deflectors are employed for 

fast imaging [Iyer et al., 2006]. Both types can, in principle, be implemented using a 

further telescope in the sample arm. 

For faster wavefront sensing the use of two cameras at both output ports of the beam 

splitter BSC1 (Fig. 2.2), which combines backscattered sample and reference light, in 

combination with a 2-step algorithm for phase shifting interferometry (PSI) might 

increase photon utilization and thus enhance the speed. Even the use of four cameras 

without temporal phase shifting is possible [Rhoadarmer, 2004]. 

In the current setup the interference contrast is still below what it should be, mainly 

due to back-reflections of lenses and objective. By using a pinhole at the focus of one 

of the telescopes in the sample arm these back-reflections can be partially filtered. 

Further, the pinhole can be utilized to reject multiply scattered light, which 

presumably allows deeper probing depth for CGWS. However, if the size of the 

pinhole is comparable to the focus size (see section 2.7), the wavefront would be 

spatially filtered, introducing a bias in the CGWS-measured wavefront.  

The choice of a laser source for CGWS is determined by the coherence length of the 

emitted light. While the coherence length for the current setup is 50 μm, a shorter 

coherence length would be preferable: first, the spatial coherence length of the 

coherence-gated backscattered light becomes longer and the absolute speckle error is 

less; second, aberrations close to the focus can be sensed more accurately since then 

the extent of the coherence volume is smaller. However, for a shorter coherence 

length the amount of coherence-gated backscattered light is lower and thus photon 

noise rises. Using a higher power for the illumination light, the photon noise for 

CGWS-measured wavefronts can be reduced again. 

Furthermore, the number of sublenses of the vSHS and the number of detector pixels 

have to be adjusted to match the expected wavefront aberrations and the speckle size, 

respectively. To minimize the wavefront error the number of sublenses is always a 

compromise between sufficient sampling of the wavefront and a sufficient reduction 

in photon noise (see section 2.3). The necessary pixel resolution of the camera for 

CGWS depends on the speckle size of the coherence-gated electric field. The speckle 

size should be sampled by at least 2 pixels in each dimension. With respect to photon 

noise the performance of the vSHS is not optimal and can be probably replaced by the 
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deterministic phase unwrapping of Volkov et al. (2003) or the virtual modal 

wavefront sensor [Lauterbach et al., 2006]. However the virtual modal wavefront 

sensor  may not be able to deal with speckle noise (unpublished data).  

 

At the end, two points on wavefront correction by CGWS in biological specimens 

shall be mentioned that need to be addressed in the future. First, for the described 

wavefront correction only the potential phase of the measured coherence-gated 

wavefront is reconstructed by the vSHS but not the vortex phase (see section 3.2). 

Therefore, investigations for various biological specimens should be carried on 

whether a correction of the vortex phase in addition can increase the performance of a 

two-photon microscope. If it is beneficial, a method needs to be developed to separate 

the turbulence-induced vortex phase and that part of the vortex phase that is due to the 

coherent superposition of coherence-gated backscattered light (see section 3.2).  

Second, the question of how large the aberrations in various biological tissues are has 

to be addressed also. Preliminary investigations in different types of tissue [Kam et 

al., 2001; Schwertner et al., 2004] have shown that focus quality can be enhanced 

substantially when adaptive wavefront correction is applied. Further, experiments in 

this thesis on zebrafish demonstrated the significant increase in resolution after 

CGWS-based wavefront correction was applied. 
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Appendix A Zernike polynomials 
 

Zernike polynomials up to the 6th radial order (nomenclature set out by Noll, 

1976): 
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Appendix B Computer-controlled setup 
 

All relevant parts of the optical setup for iterative wavefront correction and imaging 

by two-photon microscopy are automatically controlled by a desktop computer 

(Pentium 4, 2.8 GHz, Fig. B1). 

 

 
Fig. B1. Computer-controlled setup for automatic wavefront correction and 
imaging by two-photon microscopy. For the optical elements (TS1a, TS1b, 
TS2, PMT, CCD Camera and DM) used here see Fig. 2.2. 

 

For two-photon microscopy the fluorescence signal collected by the photo multiplier 

tube (PMT, mounted on a socket assembly providing the high voltage, C6270, 

Hamamatsu), whose sensitivity can be adjusted by the high-voltage (HV) control, is 

fed to a custom-designed external interface digitization electronics after it is pre-

amplified. The digital outputs from that system are processed via the XPG-1000 

Power Grabber board by a program called CFNT. The voltage signals as well as the 

necessary synchronization signals are generated on another plug-in board (Fulcrum 

DT3801-G). 
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Since CFNT was originally written to drive a fast galvanometer-driven scan mirror, 

some fixed parameters were changed to control the translation stage TS1a for 

scanning the specimen. For scanning in x-direction a sinusoidal signal with a period 

of 30 ms was applied, where only for half of the period fluorescence was recorded. A 

sawtooth signal with a period of 3.8 s was applied to the y-direction to record a two 

dimensional image. It was checked that the amplitude of the signals in x- and y-

direction are the same by detecting asymmetries among images, e.g. of fluorescent 

beads, recorded for an interchange of the voltage signals driving the translation stage. 

For an absolute calibration of the size of the recorded images the fact was used that 

the translation stage TS1a is mounted onto an already calibrated xyz-stage (TS1b, 

Sutter Instruments), which is used for coarse displacements of the specimen. The 

voltage amplitudes are controlled by the zoom factor (defined parameter for CFNT), 

for which a factor of 16 corresponds to an image size of 6 μm by 6 μm. An 

independent interferometric calibration with a controllable tip/tilt mirror, on which 

the deformable mirror was mounted, confirmed the former calibration. 

The iterative wavefront correction, comprising devices for CGWS and wavefront 

correction, are controlled by Matlab (The MathWorks, Inc.). Interferograms recorded 

with the video camera are read in via the Meteor II frame grabber board. The frame 

clock of 60 Hz is provided by a camera control box, which provides also the clock for 

the piezo stepper. This device generates the necessary phase steps of λ/4 for each full-

frame according to the RS-170 standard (for further details see [Feierabend, 2004]). 

To calibrate the fine adjustment of the piezo stepper several quadruplets of 

interferograms with a mirror sample were recorded and, thereby, the mean phase step 

for each pixel of the camera within the aperture was calculated (see Carré algorithm, 

[Malacara, 1992]). If the mean phase step was λ/4, the piezo stepper was correctly 

tuned. 

For CGWS the recorded interferograms were processed by the vSHS, implemented as 

a Matlab code, and then the drive voltages for the 37 electrodes of the DM were 

determined. Via two PCI cards (PROTO 3, both have nominally 20 channels, but one 

card is slightly changed to provide 4 further channels) and two amplifier boards 

(maximum output power 300 V) the drive voltages were applied to the DM. Since 4 

further channels were available that were not needed for the control of the DM further 

automatization was possible. Therefore, also the piezo-driven translation stage TS2, 
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which adjusts the length of the reference arm to correct for a measured defocus, was 

computer-controlled. 
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Appendix C Propagation of polarized 

light in the sample arm 
 

For CGWS the interference of reference and sample light in terms of polarization is 

considered by the function ( ) ( )k k
Pol Ref SW ∗= ⋅p p (see Eq. (2.6)), where Refp is the 

polarization of the reference light and ( )k
Sp the polarization of light backscattered at a 

scatterer k.  

In this appendix it will be shown how the polarization in the sample arm changes 

under refraction due to a generic objective and by Mie scattering within the sample. 

To keep it simple, the refraction by the objective is described by a prism [Mansuripur, 

1986; Rohrbach et al., 2002]. 

First, the light rays were traced through the sample arm and for each change of 

direction a new local basis ( , , rϑ ϕe e e ) was defined (Fig. C1) in relation to fixed 

global basis ( , ,x y ze e e ) with x y z× =e e e  . For each local basis was ( ) ( ) ( )i i i
rϑ ϕ× =e e e , 

where ( )i
ϑe  lay in the plane spanned up by two adjacent directions of propagating. An 

exception is basis 1, which is the connection from the local basis to the global one. 

 

 
Fig. C1. Propagation of the polarization through sample arm. For each step the 
local basis is depicted in red. The global basis is shown at the focus. The 
scattering angle isϑ . 
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Basis 1:   for the incoming light rays 
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Basis 2:  rotation of (1)
ϑe  into the plane of refraction (spanned up by (1) (3) and r re e ) 
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Basis 3:   after passing the objective (scatterer at P(x,y,z)) 
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Basis 4:  rotation of (3)
ϑe  into the scattering plane (spanned up by (3) (5)and r re e )  
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Basis 5:  after scattering in the direction w 
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Basis 6:  rotation of (5)
ϑe  into the plane of refraction (spanned up by (5) (7) and r re e )  
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Basis 7:  after passing the objective on the way back ( backf is the back focal length) 
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In the next step, the polarization, described by a two dimensional vector 
a
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

, is 

traced for each change of the local basis (Jones formalism, [Hecht, 1990]). The 

polarization of the incoming light, expressed in the global basis, is 

ini ini x ini ya  b= ⋅ + ⋅p e e , which is the same as the polarization of the reference light 

Refp . 

 

Global Basis  Basis 1:  Transformation into local basis 

 

1 (1) (1) (1)
ini ini x ini y k 1 1

1

1 0
  with a  b  and a  b

0 1
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aa
bb ϑ ϕ
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Basis 1  Basis 2:  Rotation into plane of refraction 

 

2 1 (2) (1) (2) (1)
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Basis 2  Basis 3:  Change due to objective [Mansuripur, 1986] 
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Basis 3  Basis 4:   Rotation into scattering plane 
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Basis 4  Basis 5:   Mie scattering functions 1 2( ) and ( )S Sϑ ϑ  [Bohren, 1983] 
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Basis 5  Basis 6:   Rotation into plane of refraction 
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Basis 6  Basis 7:   Change due to objective  [Mansuripur, 1986] 
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Basis 7   Global Basis 
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(7) (7)
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Since af and bf are related to aini and bini, the polarization weight ( ) ( )k k
Pol Ref SW ∗= ⋅p p  can 

be calculated for each scattered light ray. 
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Appendix D Glass capillary induced 

astigmatism 
 

If the focus is placed at the center of the capillary in a cross-section perpendicular to 

the capillary axis, no refraction occurs but in a cross section parallel to the axis, the 

light rays are refracted and the focus is displaced downwards (Fig. 3.7). The 

displacement V is  

 

sin( )
sin( )cos( )

V D α β
α β

−
= , 

 

where D is the wall thickness of the capillary, α the angle of incidence and β the 

angle of refraction. Using Snell’s law β can be replaced by 

 

arcsin( sin( ))W
G

n
nβ α= , 

 

where nW and nG are the refractive indices of water and glass, respectively. The focus 

displacement V corresponds to a shift in the measured Zernike defocus Δc4 of 

[Feierabend, 2004]   

 
2

4 24 3 W

Rc V
n f

Δ = . 

 

The radius of the aperture is denoted by R and the back focal length of the objective is 

f. Both cross sections along the x- and y-axis through an astigmatic wavefront with 

Zernike mode c6 show two equally but opposite curvatures, which correspond to a 

Zernike defocus  

 

4 6 ,
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Thus, the expected astigmatism due to a focus displacement V in one cross-section 

through the capillary but not in the other yields 

 
2

6 4 2

1 sin( )
sin( )cos( )2 4 6  W

Rc c D
n f

α β
α β

−
= Δ = . 

 

For an objective (63x, 0.9W) and a wall thickness of 24 μm (nG =1.51) the expected 

Zernike coefficient for astigmatism is c6 = 0.28 μm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 Literature 

 
105 

5 Literature 
 
Aksenov, V., Banakh, V., et al. (1998). "Potential and vortex features of optical speckle 

fields and visualization of wave-front singularities", Applied Optics 37(21): 4536-
4540. 

Apostol, A. and Dogariu, A. (2005). "Non-Gaussian statistics of optical near-fields", 
Physical Review E 72(2). 

Babcock, H. W. (1953). "The possibility of compensating astronomical seeing", 
Publications of the Astronomical Society of the Pacific 65: 229-236. 

Barchers, J. D., Fried, D. L., et al. (2002). "Evaluation of the performance of Hartmann 
sensors in strong scintillation", Applied Optics 41(6): 1012-1021. 

Beckers, J. M. (1988). Increasing the size of the isoplanatic patch with multiconjugate 
adaptive optics. Very Large Telescopes and their Instrumentation, ESO Conference 
and Workshop Proceedings, Garching, Germany. 

Beuthan, J., Minet, O., et al. (1996). "The spatial variation of the refractive index in 
biological cells", Physics in Medicine and Biology 41(3): 369-382. 

Bohren, C. F., Huffmann, D. R. (1983). Absorption and Scattering by Small Particles, John 
Wiley & Sons, Inc. 

Booth, M. J. (2006). "Wave front sensor-less adaptive optics: a model-based approach 
using sphere packings", Optics Express 14(4): 1339-1352. 

Booth, M. J., Neil, M. A. A., et al. (2002). "Adaptive aberration correction in a confocal 
microscope", Proceedings of the National Academy of Sciences of the United States 
of America 99(9): 5788-5792. 

Booth, M. J., Schwertner, M., et al. (2005). "Specimen-induced aberrations and adaptive 
optics for microscopy", Proceedings of SPIE - the International Society for Optical 
Engineering 5894 (Advanced Wavefront Control: Methods, Deviced and 
Applications III, edited by Mark T. Gruneisen, John D. Gonglewski, Michael K. 
Giles). 

Booth, M. J., Schwertner, M., et al. (2006). "Predictive aberration correction for multilayer 
optical data storage", Applied Physics Letters 88(3). 

Born, M. and Wolf, E. (1999). Principles of Optics. Cambridge, U.K., Cambridge University 
Press. 

Buffington, A., Crawford, F. S., et al. (1977). "1st Observatory Results with an Image-
Sharpening Telescope", Journal of the Optical Society of America 67(3): 304-305. 

Chen, C. W. and Zebker, H. A. (2000). "Network approaches to two-dimensional phase 
unwrapping: intractability and two new algorithms", Journal of the Optical 
Society of America A 17(3): 401-414. 

Cicchi, R., Pavone, F. S., et al. (2005). "Contrast and depth enhancement in two-photon 
microscopy of human skin ex vivo by use of optical clearing agents", Optics 
Express 13(7): 2337-2344. 



5 Literature 
 
 

 
 
106 

 

Cubalchini, R. (1979). "Modal Wavefront Estimation from Phase Derivative 
Measurements", Journal of the Optical Society of America 69(7): 973-977. 

Denk, W., Strickler, J. H., et al. (1990). "Two-Photon Laser Scanning Fluorescence 
Microscopy", Science 248(4951): 73-76. 

Denk, W. and Svoboda, K. (1997). "Photon upmanship: Why multiphoton imaging is more 
than a gimmick", Neuron 18(3): 351-357. 

Diaspro, A., Federici, F., et al. (2002). "Influence of refractive-index mismatch in high-
resolution three-dimensional confocal microscopy", Applied Optics 41(4): 685-
690. 

Dreher, A. W., Bille, J. F., et al. (1989). "Active Optical Depth Resolution Improvement of 
the Laser Tomographic Scanner", Applied Optics 28(4): 804-808. 

Drexler, W. (2004). "Ultrahigh-resolution optical coherence tomography", Journal of 
Biomedical Optics 9(1): 47-74. 

Drezek, R., Dunn, A., et al. (1999). "Light scattering from cells: finite-difference time-
domain simulations and goniometric measurements", Applied Optics 38(16): 
3651-3661. 

Dunn, A. (1997). "Light Scattering Properties of Cells", University of Texas, Austin. 

Feierabend, M. (2004). "Coherence-gated wave-front sensing in strongly scattering 
samples", University of Heidelberg. 

Feierabend, M., Rueckel, M., et al. (2004). "Coherence-gated wave-front sensing in 
strongly scattering samples", Optics Letters 29(19): 2255-2257. 

Fercher, A. F., Drexler, W., et al. (2003). "Optical coherence tomography - principles and 
applications", Reports on Progress in Physics 66(2): 239-303. 

Fernandez, E. J. and Artal, P. (2003). "Membrane deformable mirror for adaptive optics: 
performance limits in visual optics", Optics Express 11(9): 1056-1069. 

Fried, D. L. (1998). "Branch point problem in adaptive optics", Journal of the Optical 
Society of America A 15(10): 2759-2768. 

Fried, D. L. and Vaughn, J. L. (1992). "Branch Cuts in the Phase Function", Applied Optics 
31(15): 2865-2882. 

Fujii, H. and Asakura, T. (1974). "Effect of Surface-Roughness on Statistical Distribution 
of Image Speckle Intensity", Optics Communications 11(1): 35-38. 

Gens, R. (2003). "Two-dimensional phase unwrapping for radar interferometry: 
developments and new challenges", International Journal of Remote Sensing 24(4): 
703-710. 

Gerth, K. (2005). Ernst Abbe: Scientist, Entrepreneur, Social Reformer. Jena -  
Quedlinburg, Verlag Dr. Bussert & Stadeler. 

Ghanem, N., Jarinova, O., et al. (2003). "Regulatory roles of conserved intergenic domains 
in vertebrate Dlx bigene clusters", Genome Res 13(4): 533-43. 



5 Literature 

 
107 

Ghiglia, D. C., Mastin, G. A., et al. (1987). "Cellular-Automata Method for Phase 
Unwrapping", Journal of the Optical Society of America A 4(1): 267-280. 

Gibson, S. F. and Lanni, F. (1991). "Experimental Test of an Analytical Model of 
Aberration in an Oil-Immersion Objective Lens Used in 3-Dimensional Light-
Microscopy", Journal of the Optical Society of America A 8(10): 1601-1613. 

Gill, P. E., Murray, W., Wright, M.H. (1995). Practical optimization. San Diego, Acadamic 
Press, Inc. 

Goodman, J. W. (1975). "Dependence of Image Speckle Contrast on Surface-Roughness", 
Optics Communications 14(3): 324-327. 

Goodman, J. W. (1976). "Some Fundamental Properties of Speckle", Journal of the Optical 
Society of America 66(11): 1145-1150. 

Goodman, J. W. (2000). Statistical Optics. New York, John Wiley and Sons. 

Goodman, J. W. (2005). Speckle Phenomena in Optics: Theory and Applications Version 
5.0, preliminary version of published book. 

Göppert-Mayer, M. (1931). "Über Elementarakte mit zwei Quantensprüngen", Annalen 
der Physik 9: 273-294. 

Hardy, J. W. (1978). "Active Optics - New Technology for Control of Light", Proceedings 
of the IEEE 66(6): 651-697. 

Hardy, J. W. (1998). Adaptive Optics For Astronomical Telescopes. Oxford University 
Press. 

Hecht, E. (1990). Optics. Reading, Massachusetts, Addison-Wesley Publishing Company. 

Hell, S. W. (2003). "Toward fluorescence nanoscopy", Nature Biotechnology 21(11): 1347-
1355. 

Helmchen, F. and Denk, W. (2005). "Deep tissue two-photon microscopy", Nature Methods 
2(12): 932-940. 

Helmchen, F. and Waters, J. (2002). "Ca2+ imaging in the mammalian brain in vivo", 
European Journal of Pharmacology 447(2-3): 119-129. 

Henyey, L. G. and Greenstein, J. L. (1941). "Diffuse radiation in the galaxy", Astrophysical 
Journal 93(1): 70-83. 

Hsu, W. Y. and Barakat, R. (1994). "Stratton-Chu Vectorial Diffraction of 
Electromagnetic-Fields by Apertures with Application to Small-Fresnel-Number 
Systems", Journal of the Optical Society of America A 11(2): 623-629. 

Huang, D., Swanson, E. A., et al. (1991). "Optical Coherence Tomography", Science 
254(5035): 1178-1181. 

Iyer, V., Hoogland, T. M., et al. (2006). "Fast functional imaging of single neurons using 
random-access multiphoton (RAMP) microscopy", J Neurophysiol 95(1): 535-45. 



5 Literature 
 
 

 
 
108 

 

Kam, Z., Hanser, B., et al. (2001). "Computational adaptive optics for live three-
dimensional biological imaging", Proceedings of the National Academy of Sciences 
of the United States of America 98(7): 3790-3795. 

Karamata, B., Laubscher, M., et al. (2005). "Multiple scattering in optical coherence 
tomography. I. Investigation and modeling", Journal of the Optical Society of 
America A 22(7): 1369-1379. 

Khayim, T., Maruko, A., et al. (2001). "Ultrafast unidirectional beam deflection using an 
electrooptic traveling phase grating with periodic domain inversion", IEEE 
Journal of Quantum Electronics 37(8): 964-969. 

Klinger, J., Martin, H., et al. (2001). "Experiments on induced modulational instability of 
an incoherent optical beam", Optics Letters 26(5): 271-273. 

Kuehl, T. and Bock, R., et al. (2005). "PHELIX – Status and First Experiments", Hyperfine 
Interactions. 

Larichev, A. V., Ivanov, P. V., et al. (2001). "Measurement of eye aberrations in a speckle 
field", Quantum Electronics 31(12): 1108-1112. 

Lauterbach, M. A., Ruckel, M., et al. (2006). "Light-efficient, quantum-limited 
interferometric wavefront estimation by virtual mode sensing", Optics Express 
14(9): 3700-3714. 

Li, J., Mack, J. A., et al. (2005). "Early development of functional spatial maps in the 
zebrafish olfactory bulb", Journal of Neuroscience 25(24): 5784-5795. 

Liang, J. Z., Grimm, B., et al. (1994). "Objective Measurement of Wave Aberrations of the 
Human Eye with the Use of a Hartmann-Shack Wave-Front Sensor", Journal of 
the Optical Society of America A 11(7): 1949-1957. 

Liang, J. Z., Williams, D. R., et al. (1997). "Supernormal vision and high-resolution retinal 
imaging through adaptive optics", Journal of the Optical Society of America A 
14(11): 2884-2892. 

Lu, Q., Gan, X. S., et al. (2004). "Monte Carlo modeling of optical coherence tomography 
imaging through turbid media", Applied Optics 43(8): 1628-1637. 

Malacara, D. (1992). Optical Shop testing. New York, John Wiley & Sons, Inc. 

Mansuripur, M. (1986). "Distribution of Light at and near the Focus of High-Numerical-
Aperture Objectives", Journal of the Optical Society of America A 3(12): 2086-
2093. 

Marsh, P. N., Burns, D., et al. (2003). "Practical implementation of adaptive optics in 
multiphoton microscopy", Optics Express 11(10): 1123-1130. 

Medecki, H., Tejnil, E., et al. (1996). "Phase-shifting point diffraction interferometer", 
Optics Letters 21(19): 1526-1528. 

Mie, G. (1908). "Articles on the optical characteristics of turbid tubes, especially colloidal 
metal solutions." Annalen der Physik 25(3): 377-445. 

Minsky, M. (1961). "Microscopy Apparatus", U.S. Patent 3013467. 



5 Literature 

 
109 

Mizrahi, A., Crowley, J. C., et al. (2004). "High-resolution in vivo imaging of hippocampal 
dendrites and spines", Journal of Neuroscience 24(13): 3147-3151. 

Monteiro, D. W. L., Nirmaier, T., et al. (2005). "Fast Hartmann-Shack wavefront sensors 
manufactured in standard CMOS technology", Sensors Journal, IEEE 5(5): 976-
982. 

Mourant, J. R., Freyer, J. P., et al. (1998). "Mechanisms of light scattering from biological 
cells relevant to noninvasive optical-tissue diagnostics", Applied Optics 37(16): 
3586-3593. 

Mourant, J. R., Johnson, T. M., et al. (2002). "Polarized angular dependent spectroscopy of 
epithelial cells and epithelial cell nuclei to determine the size scale of scattering 
structures", Journal of Biomedical Optics 7(3): 378-387. 

Neil, M. A. A., Juskaitis, R., et al. (2000). "Adaptive aberration correction in a two-photon 
microscope", Journal of Microscopy 200: 105-108. 

Neil, M. A. A., Juskaitis, R., et al. (1997). "Method of obtaining optical sectioning by using 
structured light in a conventional microscope", Optics Letters 22(24): 1905-1907. 

Noll, R. J. (1976). "Zernike Polynomials and Atmospheric-Turbulence", Journal of the 
Optical Society of America 66(3): 207-211. 

Nye, J. F. and Berry, M. V. (1974). "Dislocations in Wave Trains", Proceedings of the Royal 
Society of London Series A 336(1605): 165-190. 

Ota, T., Sugiura, T., et al. (2003). "Enhancement of laser trapping force by spherical 
aberration correction using a deformable mirror", Japanese Journal of Applied 
Physics Part 2-Letters 42(6B): L701-L703. 

Oughstun, K. E. (1981). "Intracavity adaptive optic compensation of phase aberrations. I: 
Analysis", Journal of the Optical Society of America  71(7): 862 - 872. 

Paterson, C., Munro, I., et al. (2000). "A low cost adaptive optics system using a membrane 
mirror", Optics Express 6(9): 175-185. 

Piederriere, Y., Cariou, J., et al. (2004). "Scattering through fluids: speckle size 
measurement and Monte Carlo simulations close to and into the multiple 
scattering", Optics Express 12(1): 176-188. 

Primmerman, C. A., Price, T. R., et al. (1995). "Atmospheric-Compensation Experiments 
in Strong-Scintillation Conditions", Applied Optics 34(12): 2081-2088. 

Primot, J., Rousset, G., et al. (1990). "Deconvolution from Wave-Front Sensing - a New 
Technique for Compensating Turbulence-Degraded Images", Journal of the 
Optical Society of America A 7(9): 1598-1608. 

Ragazzoni, R. (1996). "Pupil plane wavefront sensing with an oscillating prism", Journal 
of Modern Optics 43(2): 289-293. 

Rhoadarmer, T. A. (2004). "Development of self-referencing interferometer wavefront 
sensor", Proceedings of SPIE - the International Society for Optical Engineering 
5553: 112. 



5 Literature 
 
 

 
 
110 

 

Roddier, F. (1988). "Curvature Sensing and Compensation - a New Concept in Adaptive 
Optics", Applied Optics 27(7): 1223-1225. 

Roggemann, M. C. and Koivunen, A. C. (2000). "Wave-front sensing and deformable-
mirror control in strong scintillation", Journal of the Optical Society of America A 
17(5): 911-919. 

Rohrbach, A. and Stelzer, E. H. K. (2002). "Three-dimensional position detection of 
optically trapped dielectric particles", Journal of Applied Physics 91(8): 5474-
5488. 

Rueckel, M. and Denk, W. (2005). Polarization Effects in Coherence-gated Wave-front 
Sensing. Adaptive Optics: Analysis and Methods/Computational Optical Sensing and 
Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on 
CD-ROM (The Optical Society of America, Washington, DC, 2005), AThC4. 

Rueckel, M. and Denk, W. (2006a). Coherence-gated wavefront sensing using a virtual 
Shack-Hartmann sensor. Advanced Wavefront Control: Methods, Devices, and 
Applications IV, San Diego, Proceedings of SPIE. 

Rueckel, M., Mack-Bucher, J., et al. (2006b). "Adaptive wavefront correction in two-
photon microscopy using coherence-gated  wavefront sensing", submitted. 

Schmitt, J. M. (1999). "Optical coherence tomography (OCT): A review", IEEE Journal of 
Selected Topics in Quantum Electronics 5(4): 1205-1215. 

Schmitt, J. M. and Kumar, G. (1996). "Turbulent nature of refractive-index variations in 
biological tissue", Optics Letters 21(16): 1310-1312. 

Schmitt, J. M. and Kumar, G. (1998). "Optical scattering properties of soft tissue: a 
discrete particle model", Applied Optics 37(13): 2788-2797. 

Schwertner, M., Booth, M. J., et al. (2004). "Characterizing specimen induced aberrations 
for high NA adaptive optical microscopy", Optics Express 12(26): 6540-6552. 

Shack, R. V. and Platt, B. C. (1971). "Lenticular Hartmann-screen", Optical Sciences 
Center Newsletter 5(1): 15-16. 

Sheppard, C. J. R. and Gu, M. (1991). "Aberration Compensation in Confocal 
Microscopy", Applied Optics 30(25): 3563-3568. 

Sheppard, C. J. R. and Torok, P. (1997). "Effects of specimen refractive index on confocal 
imaging", Journal of Microscopy 185: 366-374. 

Sherman, L., Ye, J. Y., et al. (2002). "Adaptive correction of depth-induced aberrations in 
multiphoton scanning microscopy using a deformable mirror", Journal of 
Microscopy 206: 65-71. 

Shvartsman, N. and Freund, I. (1994). "Vortices in Random Wave-Fields - Nearest-
Neighbor Anticorrelations", Physical Review Letters 72(7): 1008-1011. 

Siegman, A. E. (1986). Lasers. Mill Valley, California, University Science Books. 



5 Literature 

 
111 

Späth, M. and Schweickert, W. (1977). "Effect of Metacaine (Ms-222) on Activity of 
Efferent and Afferent Nerves in Teleost Lateral-Line System", Naunyn-
Schmiedebergs Archives of Pharmacology 297(1): 9-16. 

Svoboda, K., Denk, W., et al. (1997). "In vivo dendritic calcium dynamics in neocortical 
pyramidal neurons", Nature 385(6612): 161-165. 

Tatarski, V. I. (1961). Wave Propagation in a Turbulent Medium. New York, McGraw-Hill 
Books. 

Theer, P., Hasan, M. T., et al. (2003). "Two-photon imaging to a depth of 1000 μm in living 
brains by use of a Ti:Al2O3 regenerative amplifier", Optics Letters 28(12): 1022-
1024. 

Thomas, S. (2004). "Optimized centroid computing in a Shack-Hartmann sensor", 
Proceedings of SPIE - the International Society for Optical Engineering 5490 
(Advancements in Adaptive Optics; Domenico Bonaccini Calia, Brent L. Ellerbroek, 
Roberto Ragazzoni; Eds.): p. 1238-1246. 

Tuchin, V. V. (2005). "Optical clearing of tissues and blood using the immersion method", 
Journal of Physics D-Applied Physics 38(15): 2497-2518. 

Tyler, G. A. (2000). "Reconstruction and assessment of the least-squares and slope 
discrepancy components of the phase", Journal of the Optical Society of America 
A 17(10): 1828-1839. 

Uozumi, J. and Asakura, T. (1981). "The 1st-Order Statistics of Partially Developed Non-
Gaussian Speckle Patterns", Journal of Optics-Nouvelle Revue D Optique 12(3): 
177-186. 

Vdovin, G. and Sarro, P. M. (1995). "Flexible Mirror Micromachined in Silicon", Applied 
Optics 34(16): 2968-2972. 

Volkov, V. V. and Zhu, Y. M. (2003). "Deterministic phase unwrapping in the presence of 
noise", Optics Letters 28(22): 2156-2158. 

Vorontsov, M. A. and Carhart, G. W. (2002). "Adaptive phase distortion correction in 
strong speckle-modulation conditions", Optics Letters 27(24): 2155-2157. 

Vorontsov, M. A. and Kolosov, V. (2005). "Target-in-the-loop beam control: basic 
considerations for analysis and wave-front sensing", Journal of the Optical Society 
of America A 22(1): 126-141. 

Welsh, B. M. and Gardner, C. S. (1989). "Performance Analysis of Adaptive-Optics 
Systems Using Laser Guide Stars and Slope Sensors", Journal of the Optical 
Society of America A 6(12): 1913-1923. 

Westerfield, M. (2000). The zebrafish book. A guide for the laboratory use of zebrafish 
(Danio rerio). Eugene, 4th ed. Edition: Univ. of Oregon Press. 

Westphal, V., Rollins, A. M., et al. (2002). "Correction of geometric and refractive image 
distortions in optical coherence tomography applying Fermat's principle", 
Optics Express 10(9): 397-404. 

Wilson, J. D. and Foster, T. H. (2005). "Mie theory interpretations of light scattering from 
intact cells", Optics Letters 30(18): 2442-2444. 



5 Literature 
 
 

 
 
112 

 

Wolf, E. and Li, Y. (1981). "Conditions for the Validity of the Debye Integral-
Representation of Focused Fields", Optics Communications 39(4): 205-210. 

Wright, A. J., Burns, D., et al. (2005). "Exploration of the optimisation algorithms used in 
the implementation of adaptive optics in confocal and multiphoton microscopy", 
Microscopy Research and Technique 67(1): 36-44. 

Wyant, J. C. (1974). "White-Light Extended Source Shearing Interferometer", Applied 
Optics 13(1): 200-202. 

Zerucha, T., Stuhmer, T., et al. (2000). "A highly conserved enhancer in the Dlx5/Dlx6 
intergenic region is the site of cross-regulatory interactions between Dlx genes in 
the embryonic forebrain", Journal of Neuroscience 20(2): 709-721. 

Zhu, J. J., Esteban, J. A., et al. (2000). "Postnatal synaptic potentiation: Delivery of GluR4-
containing AMPA receptors by spontaneous activity", Nature Neuroscience 3(11): 
1098-1106. 

Zhu, L. J., Sun, P. C., et al. (1999a). "Adaptive control of a micromachined continuous-
membrane deformable mirror for aberration compensation", Applied Optics 
38(1): 168-176. 

Zhu, L. J., Sun, P. C., et al. (1999b). "Aberration-free dynamic focusing with a 
multichannel micromachined membrane deformable mirror", Applied Optics 
38(25): 5350-5354. 

Zipfel, W. R., Williams, R. M., et al. (2003). "Nonlinear magic: multiphoton microscopy in 
the biosciences", Nature Biotechnology 21(11): 1368-1376. 

 

 
 
 
 
 
 

 
 
 
 



 

 
113 

Acknowledgement 
 
 
I want to express my gratitude to all people who shared the time with me during my 

time at the Max Planck Institute for medical research. A special thanks goes to 

Prof. Winfried Denk who guided me through my work with excellent advice. In 

particular, the discussions about physics were always a pleasure and opened very 

often a new way of thinking.  

I appreciate it very much that Prof. Josef Bille agreed to act as a referee for my 

dissertation and disputation and I am also grateful to Prof. Andreas Wolf and 

Prof. Iring Bender for appraising the disputation. 

Whenever I had to organize something Christa Hörner-Ehm and the people from 

the administration could help me and saved much of my time. 

During my time as a PhD student I received very much help from Marcus 

Feierabend and Marcel Lauterbach. Marcus explained to me all relevant things to 

get started with my work and Marcus & Marcel were an enrichment not only in 

discussions about physics but also in social aspects.  

Since I was not very skilled in biological preparations I want to thank all who helped 

me with my biological experiments: Andy Migala, Monika Reichert, Maz Hasan, 

Stephan Meyer, Annemarie Scherbarth and Guenter Giese. In particular, Julia 

Mack-Bucher helped me with her excellent experience with zebrafish by solving my 

open questions related to biology.   

For questions regarding computer, electronic or mechanical problems Michael 

Müller, Jürgen Tritthart and Manfred Hauswirth (and his colleagues) had 

always open ears for me.  

To all my lab mates Dorine Keusters, Bernd Kuhn, Patrick Theer, Ingo Janke, 

Jens Dübel, Juergen Sawinski, Horatiu Fantana, Thomas Euler, Xavier Castell, 

Kevin Briggman and Philipp Hennig, thank you for sharing the time with me. 

 

Only one I have forgotten: my girlfriend Susanne Hausselt. She always supported 

me in hard times as a PhD student. Thanks to her cannot be expressed adequately. 

 


	Dissertation_Deckblaetter3.pdf
	Rueckel_phd_final3c.pdf

