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ABSTRACT

Subject of this work is the numerical simulation of the motion of rigid particles in an in-
compressible viscous or viscoelastic fluid. What makes this task especially challenging is
the fact that two different physical models are coupled: The fluid motion is described by a
system of partial differential equations (‘Navier-Stokes equations’), while the dynamics of
the rigid particles is determined as the solution of a system of ordinary differential equations
(Newton’s laws of motion).

In this work, numerical methods for some prototypical situations are developed, analyzed
and validated; all of them are based on the finite element method (FEM). In this context,
special emphasis is given to local grid adaptation. The goal is to obtain a high accuracy
and, at the same time, to keep the computational effort as low as possible.

ZUSAMMENFASSUNG

Gegenstand dieser Arbeit ist die numerische Simulation der Bewegung starrer Teilchen in
einer inkompressiblen viskosen bzw. viskoelastischen Fliissigkeit. Die besondere Schwierigkeit
ergibt sich hierbei daraus, dafl zwei verschiedene physikalische Modelle miteinander gekoppelt
sind: Die Bewegung der Fliissigkeit wird durch ein System partieller Differentialgleichungen
beschrieben (‘Navier-Stokes Gleichungen’), wogegen die Dynamik der starren Teilchen als Lo-
sung eines Systems gewohnlicher Differentialgleichungen gegeben ist (Newtonsche Gesetze).

Basierend auf der Methode der Finiten Elemente (FEM), werden in dieser Arbeit numerische
Losungsansatze fiir verschiedene prototypische Falle entwickelt, analysiert und durch Beispiel-
rechnungen validiert. Ein besonderer Schwerpunkt liegt dabei auf der Verwendung lokal
adaptierter Gitter, um mit einem Minimum an Rechenaufwand eine grofitmogliche Genauig-
keit zu erzielen.
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1 Introduction

The subject of this work is the numerical simulation of the motion of rigid particles in
viscous liquids (‘particulate flows’) by means of the adaptive finite element method. The
presence of the particles affects the flow of the liquid, and this, in turn, affects the motion
of the particles. Particulate flows hence belong to the (much broader) class of so-called
fluid-structure interaction problems. It is currently one of the major focal points of applied
research to design numerical algorithms for simulating such problems in an accurate and
efficient way. However, this is a very challenging task due to the fact that the combined
motion of fluid and structure is described by highly coupled systems of differential equations.

In this first chapter we would like to motivate our study by introducing some selected prob-
lems of practical interest where particulate flows play a major role. Furthermore, we wish
to describe the structure and the main results of this work.

As a matter of fact, the prediction of particle motion in liquids of different nature is a key
issue in many fields of research, such as process (or chemical) engineering, medical sciences
and biology /bionics. Let us collect some important examples (cf. Galdi [Gal0l] and refer-
ences cited therein):

® Composite materials

The addition of fiber-like particles to a polymer

D(_? o
i cc:: / matrix (see picture on the left) is well-known to
) /W enhance the mechanical properties of the com-
; ﬁ posite material: The matrix accepts the load
2 gf over a large surface area and transfers it to the
5 7 reinforcement which is stiffer and increases the
strength of the overall material. Typical sizes

of a fiber are a hundred micrometers in diam-
eter and a centimeter in length. The degree of
enhancement depends strongly on the orienta-
tion of the fibers and the fiber orientation is in
turn caused by the flow occurring in the mold.
Therefore, a better knowledge of the motion of
fibers in polymer (viscoelastic) liquids is im-

Figure 1.1: portant for the design of molding equipment
Schematic view of some typical compos- and determining the optimal processing condi-
ite materials. tions, see e.g. Lee et al. [LYHT97].
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@ Proppant transport in hydraulic fracturing applications

Hydraulic fracturing is often used to increase
the productivity of a hydrocarbon well (see Hydraulically Fractured Well
picture on the right). A slurry of sand in a
highly viscous fluid is pumped into the well
and exceeds, at sufficient pressure, the hor-

. . . Cemented
izontal stresses in the rock. This opens a steel casing
fracture, penetrating from the well bore far Drinking

. . water aquifer inpetyious
into the pay zone. When the pumping pres- b e

sure is removed, the sand acts to prop the
fracture open. Productivity is enhanced be-
cause the sand-filled fracture offers a higher-
conductivity path for fluids to enter the well
than through the bulk rock. For a success-
ful stimulation job there must be a continuous :
sand-filled path. Furthermore, the sand must Fracture with
be placed within productive formations. Con- PEEPRAM! FeROSng
trolling and exploiting the proppant migration
requires an understanding of the relationship
between fluid properties and particle migration
(see Joseph [Jos00] for more details).

Figure 1.2:
Schematic view of a hydraulically
fractured well.

® Separation of macro-molecules by electrophoresis

Electrophoresis is a powerful separation technique in the biological sciences whose appli-
cations include weight determination of proteins, DNA sequencing and diagnosis of genetic
diseases (see e.g. Trainor [Tra90]). Electrophoresis involves the motion of charged particles in

56 solution, under the action of an electric field. Certain
o ] types of macromolecules are nearly perfectly symmet-
ric and rod-shaped, like e.g. the Tobacco Mosaic Virus
. (TMV). The orientation of such molecules during elec-
s - trophoresis plays an important role since it is responsible
for the loss of separability. An interesting observation
in this direction was made by Grossman/Soane [GS90]:

o
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L * i They found that the electrophoretic mobility (particle
S T 350300305 500 Velocity divided by field strength) increases with increas-
E (Viem) ing strength of the electric field, see Figure It turns

out that this characteristic behavior can be explained by

Figure 1.3: an orientation effect: With increasing field strength the

Electrophoretic mobility of the TM  Vvirus becomes more and more aligned with the direction
virus vs. electrical field strength ~ of motion. As a consequence, the drag is reduced and
(see [GS90)). the virus is moving faster.

Other significant examples include the modeling of blood flow (see e.g. Schmid-Schénbein/Wells
[SW69]), the understanding of locomotion of macroscopic objects (birds, fishes, airplanes



etc.) by self-propulsion (see e.g. Gray |Gra68]), as well as applications in meteorology and
sedimentology (see e.g. Kajikawa [Kaj82] and Allen [AII84], respectively).

There are several fundamental aspects related to particulate flows and it is important to
notice that not all of them are equally relevant for each application. For example, if one
is only interested in the orientation of rigid particles in fluid flows (see applications @ and
® above), it is reasonable to restrict the attention to a single particle. If, in addition, wall
effects are expected to play no role, the problem can be further simplified by assuming that
the fluid is filling up the whole space. Such considerations naturally lead to the following
classification of particulate flow configurations, giving rise to a hierarchy of models with
increasing complexity:

¢ Single rigid body in a fluid filling the whole space. This is certainly the right
model to study ‘pure’ particle-liquid interaction, in absence of particle collisions or
wall effects. An important example of high practical relevance is, as we have seen, the
examination of the orientation of a rigid body in a liquid.

¢ Single rigid body in a bounded fluid. This model is appropriate when one is
mainly interested in the impact of rigid walls on the motion of particles. For example,
this is the case when one wants to understand the relationship between fluid properties
and particle migration in a fluid-filled channel (see @ above).

e Multiple particles. In many situations it is possible to generalize conclusions from
single-particle studies in order to predict the behavior of a group of particles. Some-
times this is not possible, however, because the (flow-induced) interactions between
different particles may lead to microstructures which are relevant for the global be-
havior of the liquid-particle mixture. Examples include the design of sedimentation
columns, see e.g. Wigle et al. [WESK3].

The importance of such a classification lies not only in the fact that it allows for a conceptual
separation of the different phenomena related to particulate flows. It is also crucial when it
comes to designing numerical algorithms: only a method which exploits the special structure
of the considered problem can be efficient.

The organization of this work reflects the classification introduced above:

In Chapter [2| we propose a method for simulating the motion of a single rigid body which is
moving, under the action of gravity, through an incompressible viscous fluid filling the whole
space. Our numerical method is based on the solution of the incompressible Navier-Stokes
equations in body-fixed coordinates and uses a finite element discretization with mesh adap-
tation based on the DWR (Dual Weighted Residual) concept described in Becker /Rannacher
[BeRO1], see also Bomisch et al. [BHRO5, BDRO6]. It works for two- as well as three-
dimensional configurations. The performance of the current implementation of this method
will be illustrated by the results of some two-dimensional (stationary and non-stationary)
simulations. We investigate the existence of quasi-stationary states for symmetric bodies
and the dynamic stability of these solutions. Severe difficulties arise from the fact that the
unbounded domain has to be truncated for numerical purposes. This introduces ‘artificial’
boundaries; it turns out that the ‘right’ choice of the boundary conditions on these artificial
boundaries is crucial for the whole solution process.
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For this reason, Chapter |[3|is devoted to the issue of finding appropriate artificial boundary
conditions for numerically solving exterior flow problems. This topic is of general interest,
not only in the context of particulate flow simulations. It has only recently been treated
in the mathematics literature (see for example Nazarov/Specovius-Neugebauer [NS03]), but
has not led to explicit enough prescriptions to be used in numerical work. Following Wittwer
[Wit02l, Wit03] and Bonisch et al. [BHWO05, BHWO0G6] we provide a vector field describing
the leading asymptotic behavior of the solution. This vector field is given in the form of
an explicit expression depending on a real parameter. We show that this parameter can
be determined from the total drag exerted on the body. Using this fact we set up a novel
self-consistent numerical scheme that determines the parameter, and hence the boundary
conditions and the drag, as part of the solution process. We compare the results obtained
using the traditional homogeneous Dirichlet boundary conditions with those obtained from
using our adaptive scheme. The difference is impressive: for a given precision the adaptive
boundary conditions allow us to take the domain approximately ten times smaller which
results in computation times that are more than a factor of hundred shorter.

In Chapter |4 we go one step further in the ‘model hierarchy’ introduced above and treat
the motion of a single symmetric particle in a viscoelastic fluid bounded by two parallel
walls. More specifically, we consider a cylinder which is moving under the action of gravity
in a vertical channel through a Poiseuille flow which may be directed either in the same or in
opposite direction of the gravitational force. Our main goal is to find ‘steady’ solutions to the
fluid-particle system and to determine all possible equilibrium positions of the particle with
respect to the walls. We use a method recently introduced by Galdi (see Galdi/Heuveline
[GHOG] and Bénisch/Galdi [BG06]) to investigate these equilibrium positions, at first order
in Re and We, as well as at at third order in Re, where Re is a suitable Reynolds number and
We is the Weissenberg number. Comprehensive numerical experiments show the potential
of the method.

Chapter [5]| is then devoted to the general case: We discuss possibilities to simulate the
motion of an arbitrary number of rigid particles in a fluid filling a domain with arbitrary
geometry. We give an overview of different numerical approaches proposed for this problem
during the past years. We then present an adaptive fictitious-domain method to simulate
rigid particulate flow problems. Our algorithm is based on the stress-DLM approach orig-
inally proposed by Patankar et al. [PSJT00]. However, the consequent use of adaptivity
(adapted meshes, selective quadrature) makes our method much more accurate and efficient,
see also Bonisch et al. [BDRO6] [Boe06]. To show the potential of our approach we first solve
a well-known benchmark problem; huge savings in terms of the number of needed mesh cells
are achieved. Then, different configurations involving the motion of multiple particles, also
with non-smooth boundaries, are simulated.



2 Motion of a single particle in a fluid filling
the whole space

The motion of a single rigid body in a viscous fluid filling the whole space is the most
fundamental example of a particulate flow. Particularly for rotationally symmetric bodies
several theoretical results concerning the existence of quasi-stationary states and their stabil-
ity are available; see e.g. Weinberger [Wei73|, Hu et al. [Hu96, HJC92], Unverdi/Tryggvason
[UT92], Desjardin/Esteban [DE99], Glowinski et al. [GPHT01], Burger et al. [BLW0I], and
Conca et al. [CMTO00], Hoffmann/Starovoitov [HS00], Gunzburger et al. [GLS00], Galdi
[Gal99, [Gal01], Galdi/Vaidya [GV01], and the references cited therein. For general non-
symmetric and non-convex bodies these questions seem to be largely open. Here, numerical
experiments may be able to guide theoretical analysis. Despite its simplicity the numeri-
cal solution of the underlying model equations poses severe difficulties. The conceptually
unbounded domain has to be truncated and appropriate artificial boundary conditions are
needed. The dynamic behavior of the orientation of the body and the speed and direction of
fall is determined by the quantities drag, lift, and torque, the accurate computation of which
is rather delicate. The coupling of the relevant quantities in the model is highly nonlinear.
The reliable computation of drag, lift, and torque requires a sufficiently large computational
domain as well as local mesh refinement along the body’s surface.

This chapter is organized as follows: In Section we state the equations describing the
coupled motion of a single rigid body and a fluid filling the whole space. By choosing a
coordinate frame attached to the mass center of the body, we get rid of the time-dependence
of the fluid domain. In Section we present a finite element scheme for the detailed simu-
lation of the free fall of a single rigid body in a viscous fluid. Numerical results are presented
for two-dimensional configurations which allow for stable and unstable quasi-stationary as
well as non-stationary solutions. By residual-controlled adaptation of the mesh and the size
of the computational domain the method achieves a high degree of flexibility and accuracy.

2.1 Problem formulation

We consider the free fall of a solid body S ¢ R? (d = 2,3) in an incompressible liquid
L filling the whole space R? \ S. The solid body S is assumed to be a bounded domain
and the velocity of its mass center C' (resp. its angular velocity) is denoted by Vo (resp.
£2) in the inertial frame F. The region occupied by S at time ¢ is denoted by S(t)
and the corresponding attached frame is R(t). The fluid-body coupling occurs through
Dirichlet boundary conditions. In the inertial frame F the equations of conservation of
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momentum and mass of the fluid as well as of linear and angular momentum of the body in
their non-conservative form together with their natural boundary conditions are given by

pOv +p(v-V)v=pg+V - 0o(v,p),
V.v=0, for(z,t)€ oSt x{t},

Fluid ‘ (2.1.1)
v(z,0) =0, limy_qs v(z,t) =0,
v(z,t) =Ve(t) + 2(t) x (x —xc(t), forx € S(t).
di(Js() - 2) = = Jos( (@ —xc) x [o(v,p) - N] do.

Here, p is the constant density of £, v and p are the FEulerian velocity field and pressure
associated with £, o is the Cauchy stress tensor and pg is the force of gravity which is
assumed to be the only external force. In the case of a Navier-Stokes liquid model, the
Cauchy stress tensor is given by o(v,p) = —pl + u(Vv + (Vv)T), where p is the shear
viscosity. Further, mg is the mass of the body, N is the unit normal to 9S5(¢) oriented
toward the body and Jg the inertia tensor with respect to the mass center C'. We assume
Ve(0) =0 and £2(0) =0.

The straightforward formulation has the disadvantage that the region S(t) oc-
cupied by the liquid is time-dependent. This can be avoided by reformulating these equations
in the body-attached frame R(t). If y denotes the position of a point P in the frame R(t)
and x is the position of the same point in F, we have

r=QM)y+uzc(t), QO)=1I, zc(0)=0, (2.1.3)

with @) an orthogonal linear transformation. In addition, we introduce the following trans-
formed fields:

v(y,t) == QTV(Qy +zco,t), py,t) :=p(Qy+zc,t), G:= Q'y, (2.1.4)
V(y7t) = QT(VC + 2 x Qy)v O'(U,p) = QTU(QV,p)Q, w = QTQ7 (215)

and
Ver=Q Vo, n:=QT-N, Is:=QT -Js-Q, S:=5(0). (2.1.6)

Using the transformations (2.1.342.1.6[), we can reformulate the system of equations (2.1.1]
2.1.2)) in the following form:

PO + p((v=V)-V)v+ pw x v =V "-0(v,p) + pG(1),
V-v=0, for(y,t)e S x(0,00),

Fluid (2.1.7)
U(y, 0) =0, hm\y|—>oo ’U(y, t) =0,
v(y,t) =Ve(t) + w(t) xy, fory e as.
msVe + mg(w x Vo) =mgG(t) — fas o(v,p) - ndo,

Body Is-w+wx (Is-w)=— [44y X [0(v,p) - n]do, (2.1.8)

G—Gxw=0.



2.1 Problem formulation

In order to keep compatible notations for both the two and three-dimensional case, we assume
for d =2 that w:= (0,0,w) and similarly y x [o-n] = (0,0, —y2(0 -n)1 +yi1(c - n)2). For
d = 2, the second equation in ([2.1.8)) reduces to a scalar equation. The additional term w xv
in the momentum equation in corresponds to the Coriolis force induced by the frame
transformation (2.1.3). In the body frame R(t) the direction of the gravitational force G
depends on time ¢ and therefore becomes an unknown to be computed. The third additional
equation of provides the equation needed for describing its variation. Its derivation
relies on simple calculus related to the transformation (2.1.3). For more details regarding
the derivation of these equations, we refer to Galdi [Gal0I] or Bonisch et al. [BHRO5].

The solid body S is said to undergo a free steady fall if the translational and angular velocity
Ve and w are constant and if the motion of the liquid £ is stationary in the frame R(t).
The study of such a configuration is of great interest since it corresponds to so called terminal
state motions of sedimenting particles for which many questions still remain open, e.g. the
number of possible terminal states for a given body geometry, the orientation of the solid
body, the stability of the corresponding solution (see Galdi [Gal01] and references therein).

The free steady fall equations are obtained by requiring that v, p, Vo, w, and G are
time independent. Comparing with (2.1.742.1.8)), this leads us to the following system of

equations:

p((v=V) - V)v+pwxv=V-o(v,p)+ pG,
v = f RY
Fluid V-v=0,fory eRT\S, (2.1.9)
v(y,0) =0, limp,|_v(y) =0,
v(y) =V(y) =Vo+wxy for yeds.
mg(w x Vo) = mgG — [y50(v,p) - ndo,
Body wx (Is-w) == [44y % [o(v,p) - n] do, (2.1.10)
G xw=0.

For the most general setup, we assume w # 0. Due to the third equation in (2.1.10)), this
configuration can be attained only for d = 3. Further it imposes G parallel to w. The free
steady fall problem can then be stated as follows:

Problem 2.1 (Stationary fall in 3D). Assume d = 3. Given p, o = o(v,p), |G| = |g|, Is,
and myg, find v, p, Vo, w, and G, where G = |g||lw|™'w if w # 0 (see Table , such that

equations ([2.1.942.1.10) hold.

An important subclass of free steady fall problems is given by the case w = 0 describing a
solid body & which undergoes a purely translational motion. The problem formulation for
this case is subtle since it depends not only on the dimension d of the problem but also on
the geometrical properties of the solid.

At first, we assume that the equation G xw = 0 has to be enforced and cannot be eliminated
by means of any special geometrical properties of the solid & or on the flow configuration.
For d = 3 such a translational problem is overdetermined and will therefore not be further
considered (see Table . For d = 2, however, this problem is well formulated in the sense
that it involves six unknowns associated to six scalar equations. It can be stated as follows:
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Problem 2.2 (Stationary fall in 2D). Assume d = 2. Given p, 0 = o(v,p), |G| =
mg, and w := 0, find v, p, V¢, and the direction G of G :

E192L10) hold

The system of equations ([2.1.942.1.10) describe different classes of free-fall regimes and con-
figurations which are outlined in Table

|g|7 ISa
= |g|G, such that equations

Table 2.1: Number of physical unknowns in the fluid-rigid body interaction problem depend-
ing on the setup. The body/fluid setup is said to be ‘general’ if no additional
a-priori assumption on the body geometry is made which eliminates the third

equation in ([2.1.10]) directly.

Number of
Dimension ‘ w ‘ Body-fluid setup ‘ Formulation unknowns | scalar equations
3 #0 general Problem 10 10
2 #0 general not possible - -
3 =0 general overdetermined 9 10
2 =0 general Problem 2.2 6 6
3 =0 symmetric Problem [2.3 5 5
2 = symmetric Problem [2.3 4 4

From the physical point of view, the overdetermination of the translational free steady fall for
d = 3 can be interpreted by the fact that additional geometric properties of the solid body &
have to prevent it from rotating (see Galdi/Vaidya [GV01]). Following Galdi [Gal01], we con-
sider now translational free steady fall problems for solid bodies with symmetry properties.
Let {e1,ea,e3} be the canonical basis of R3. Assume that the solid body is homogeneous
and symmetric with respect to the axis es. Likewise, the velocity field v and the pressure
p describing the terminal state of the fluid £ are assumed to be symmetric with respect to
the axis es. Under these assumptions, one can show (see Galdi/Vaidya [GV01]) that every
sufficiently smooth pair {v,p} satisfies the following equations:

/U(v,p)-n:neg, n € R, (2.1.11)
oS
/y X [o(v,p) -n] =0, (2.1.12)
oS

V =ayes, ay € R. (2.1.13)

Therefore, for the symmetric case equations (2.1.10)) reduce to the following scalar equation:

{/J(v,p)-nds}2 + mslgl =0,

oS

(2.1.14)



2.2 Numerical approximation

since comparing the first equation of (2.1.10]) with (2.1.11) implies G = £|g|e2. We choose
the orientation G = —|g|e2 for the force of gravity. Under these assumptions of symmetry,

the steady free fall problem can be formulated as follows:

Problem 2.3 (Symmetric steady fall in 2D/3D). Given p, 0 = o(v,p), G = —|gle2, Ig, mg,
and w := 0, find v, p, and the scalar quantity oy defining V := ayes, such that equations

(2.1.9) and (2.1.14) hold.

Problem is well formulated for both two- and three-dimensional problems.

2.2 Numerical approximation

Our numerical method is based on the solution of the incompressible Navier-Stokes equa-
tions in body-fixed coordinates and uses a finite element discretization with mesh adapta-
tion based on the DWR (Dual Weighted Residual) concept described in Becker/Rannacher
[BeRO1]. By systematic mesh refinement the quantities of interest, such as the free fall
velocity, the orientation of the body and the acting hydrodynamic force and torque, can
be computed to any prescribed accuracy. This works for two- as well as three-dimensional
configurations. An additional feature is the monitoring of the stability of quasi-stationary
solutions by computing critical eigenvalues. The performance of the current implementation
of this method will be illustrated by the results of some simulations for two-dimensional con-
figurations with stationary as well as non-stationary solutions. We investigate the existence
of quasi-stationary states for symmetric bodies and the dynamic stability of these solutions.
More details on the numerical methodology and the computational examples can be found in
Bonisch/Heuveline [BHO4a] and Bonisch et al. [BHRO5]. These ‘experimental’ observations
may serve as stimulus for further theoretical analysis.

2.2.1 The general non-stationary case

We first consider the setting of formulation for the solution of the general free-
fall problem. The unbounded domain R%\ S filled by the liquid £ is replaced by a bounded
domain D C R?\S which is chosen to be large enough in order that the liquid may be
assumed to be at rest on I" which denotes the boundary of D without 95. In the remainder
of this paper, D is chosen such that the impact of this simplification on the quantities of
interest is smaller than the discretization error. We refer to Section and to Chapter
for a detailed discussion of this issue, see also Bonisch et al. [BHWO05, BHW06].

We begin with some standard notation. For a domain 2 C R? let L?(£2) denote the
Lebesgue space of square-integrable functions on (2 equipped with the inner product and
norm

o= [ fode, flo= (7.0
2
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Analogously, L?(042) denotes the space of square integrable functions defined on the bound-
ary 0f2. The L? functions with generalized (in the sense of distributions) first-order deriva-
tives in L?(£2) form the Sobolev space H'(£2), while Hj(£2) = {v € H'(£2),v/90 =0} and
L3(0) = {q cL*(2): (¢, 1) = 0} .

The key ingredient for the derivation of a weak form of the equations is an adequate choice
of the velocity space allowing to eliminate the explicit formulation of the hydrodynamic
force and torque on the solid body needed for the kinematic equations ([2.1.10f). This can be
obtained by including the no-slip Dirichlet condition in the velocity space:

H1(D) == {(U,V,w) cve [HY(D)]Y, V,w e RY, vjgs =V +w X y}.

The pressure p, defined only modulo constants, is assumed to lie in the space L%(D) . For
U :={(v,Vo,w),p,G}, ® := {(p,1,92),q,7} € Hi(D) x L3(D) x R?, we define the semi-

linear form

AU)(@) = p(((v = (Ve +w xy)) - V)v,9)p + plw X v,9)D
—(»,V-9)p +2u(D(v),D(¢))p — (pG, ) D
— 1 [ms(G—wx Vo) + 2 [wx (Is-w)] = (V-v,q)p,

which is obtained by testing the equations (2.1.912.1.10) with & € Hy(D) x L3(D) x R?
and by integration by parts of the diffusive terms and the pressure gradient. Here, D(v) :=

(Vo + (Vv)T) is the deformation tensor. The equations modeling the balance of
the linear and angular momentum can obviously be recovered by testing A(U)(®) with the
functions @ = {(0,¥1,0),0,0} and @ = {(0,0,p2),0,0}), respectively. Further, we will use
the bilinear form

m(atUa @) = (patv7 SD) + (mSV07 901) + (IS : CZJ, @2) + (G77)

Then, the variational formulation of the general non-stationary problem reads as follows:

Problem 2.4. Find a time-differentiable field U(t) = {(v(t), Vo(t),w(t)),p(t), G(t)}
€ H1(D) x LE(D) x R%, such that

m(OU, ®) + A(U)(P) =0 VP € Hy(D) x L3(D) x RY, (2.2.1)

Remark 2.2.1. The advantages of the formulation (2.2.1]) rely on the fact that the force and
torque on the solid body do not need to be computed explicitly. Numerical instabilities

arising for the computation of these lower dimensional integrals can therefore be avoided
(see Hu et al. [HIC92)).

Problem is discretized in time by the so-called Fractional-Step-0 scheme described, e.g.
in Rannacher [Ran00] and Turek [Tur99]. The fluid-body interaction is handled by operator
splitting leading to the following time-stepping process:

(1) Extrapolate Vg_l,wnfl, G™ 1 to Vg,@”, G™ (explicit).

(2) For A(v) := —pdv+ p((v— Vg —&" x y) - V)v + p &" x v, compute v",p" from the
Navier-Stokes system (2.1.7)) by solving the following three substeps using the Newton
method with geometric multigrid solution of the linear subsystems (implicit):

10



2.2 Numerical approximation

(2a)

pu 1) kAo 4 kv = (D) — B AV 4 pokG™,

Vom0 —

(2b)

v 1 80" kAW 4 0 kP = po( IO _ 0 kAW 1 p kG

Vo9 =,
(2¢)
pv'™ + afk A(w™) + 0kVp™ = po "0 — oK A=) + pOKG™,
Vo™ = 0.

In order to ensure second-order accuracy and strong A-stability we choose § = 1 — @,

2
0'=1-20,a="'"2 and B =1—a (see e.g. Turek [Tur99]).
(3) Compute the hydrodynamic forces acting on the body.

(4) Update VZ,w"™ G™ by applying one step of a higher-order explicit scheme to the
corresponding ODEs (explicit).

Remark 2.5. A few comments on the proposed splitting scheme are in order. It employs an
explicit treatment of the fluid-body coupling. An intrinsic difficulty of this approach is related
to the fact that the ‘data’ V%, &™ G™ occurring in the substep problems (2a),(2b),(2¢c) are
generally non-smooth with regard to the time variable due to the explicit update. It is well
known that non-smooth data may drastically reduce the accuracy of a discretization scheme
or even lead to divergence unless certain precautions are taken (see e.g. Luskin/Rannacher
[LR81] and Rannacher [Ran84]). More precisely, the time-stepping scheme should be strongly
A-stable and have the full smoothing property (for these notions we refer the reader to Ran-
nacher [Ran00] and Turek [Tur99]). The importance of this property is illustrated in Figure
[2.1] where the values of the drag, lift and torque acting on a falling body in a fluid are
plotted. It shows a comparison between the Fractional-Step-6 scheme (which is strongly
A- stable) and the popular Crank-Nicolson method (which is not strongly A-stable). From
Figure [2.1] it becomes clear that the strong A-stability of the time stepping scheme is a key
issue in our context. In fact, the use of the Crank-Nicolson method leads to the divergence
of the overall algorithm. Following the idea of Rannacher [Ran84], an alternative to using
the Fractional-Step-0 scheme is to use a damped Crank-Nicolson method which combines
adequately two implicit (smoothing) Euler steps with one Crank-Nicolson step. The result-
ing scheme possesses all needed smoothing properties and performs excellently well in our
context, see Figure [2.1]

The stationary subproblems within this scheme are discretized in space by the finite element
method on a triangulation of the domain D = U{K € T}}, using the Q2/Q1 Taylor-Hood
element on a quadrilateral mesh with hanging nodes for local mesh refinement (see e.g.
Girault/Raviart [GR86]). The finite element spaces are given by

Wi = {((v,V,w),p) € ([C(D)]* x R x RY) x C(D),
vl € [Q2), pli € Q1,v]as =V +w x y},

11
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Plots of the drag (upper row), lift (middle row) and torque (lower row)
acting on a falling rectangle in a fluid. Left: Comparison of the ‘Fractional-
Step-6 scheme’ [Tur99] and the ‘damped Crank-Nicolson’ method [Ran84]. Both
methods possess the smoothing property needed in order to handle correctly non-
smooth data which occur due to the explicit update strategy used in our splitting
scheme. Right: Comparison of the Fractional-Step-6 scheme and the popular
Crank-Nicolson method. The lack of smoothing property of the Crank-Nicolson
method leads to the divergence of the solution process.



2.2 Numerical approximation

in which the no-slip Dirichlet condition is included, in order to avoid the explicit formulation
of the hydrodynamic force and torque on the solid body needed for the kinematic equations.
This approximation is consistent with third-order, i.e., there holds ||v — Iv| = O(h3) for
the nodal interpolant Inv of a sufficiently smooth velocity field. The implementation of the
algorithm was carried out within the HiFlow framework (see [Heu06]).

To show the potential of our approach we would like to report on some computational
results obtained by the numerical method described above. In a two-dimensional setting,
we simulate the free fall of a (symmetric) rigid rod in a viscous liquid. We are interested
in the different types of steady and unsteady fall patterns for varying Reynolds numbers.
This question has been extensively studied in the experimental literature, see e.g. Field et
al. [FKM™97| and Belmonte et al. [BEMO98]. The observations of Field et al. lead to the
classification in four distinct types of motion for such a setup, see also Bonisch/Heuveline
[BHO4a:

¢ Quasi-steady falling, observed at low Reynolds numbers; a rod, dropped with any
initial orientation, quickly settles down to a steady fall with horizontal orientation (cf.
also Galdi and Galdi/Vaidya [Gal01l [GVO01]).

¢ Periodic oscillating motion, observed at higher Reynolds numbers and low moment
of inertia. Such rods oscillate with a well-defined period after initial transients have
died down.

¢ ‘Chaotic’ motion, found when both, the Reynolds number and the moment of inertia,
are moderately large.

¢ Tumbling motion, found at very large moments of inertia. Here, the disk turns
continuously end-over-end while drifting in one direction.

As shown in Figure 2.2 all four types of motion could be reproduced by the numerical
simulation. On the one hand, this can be seen as a validation of our numerical method. On
the other hand, it gives an impression how numerical simulation can be successfully used to
replace ‘real” experiments by computations and maybe to lead beyond classical experiments.

2.2.2 The special stationary problems

The particular features of the various formulations of the stationary free-fall problem result
in correspondingly simplified approximate problems. We first consider the most general

setup of Problem i. e, w # 0 and the related equations (2.1.942.1.10). For U :=

{(v, Vo,w), p}, @ := {(¢, ¢1,92),q} € H1(D) x LE(D), we define the semi-linear form

AL U)(®) := p(((v = (Ve +w xy)) - V)v,0)p + plw X v,9)D
= (V- @)p +2u(D(v), D(9))p — (plgllw|~'w, ¥)p
— 1 [ms(lgllw/™w —w x Vo)l + 92 [w x (Is - w)] = (V- v,9)p.

A weak form of Problem [2.1] reads as follows:
Problem 2.6. Find U := {(v,Vg,w),p} € H1(D) x LE(D), such that

A1 (U) (@) =0 V& € Hi(D) x LE(D). (2.2.2)

13
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Figure 2.2: ‘Free-fall’ patterns of symmetric bodies (from left to right): quasi-steady, oscil-
latory, ‘chaotic’ and tumbling motion. See also Figure [2.3] below.
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Figure 2.3: Periodic oscillating motion. Left: The two components of the translational
velocity Vi (t) are plotted vs. time. Right: The velocity components (Vo (t))1
and (V(t))2 are plotted against each other.
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2.2 Numerical approximation

For the weak formulation of Problem and Problem the formulation simplifies
greatly since the free steady fall is then assumed to be translational. For the velocity field
we define

Ho(D) = {(U,V) cve [HY(D), VeRY, v=V on as} :

For U := {(v,Vc),p,0} € Ha(D)xL3(D)xR and & := {(¢,¢1),q, 2} € Ha(D)x L3(D) xR,
we define the semi-linear form

Ax(U) (D) == p(((v = Ve

—(V-v,q

+ (~y2 {o

V)v,o)p — (0, V- ¢)p + 2u(D(v), D(¢)) p
p = p(G,p) —msG - ¢y
p)-n}y +yi{o(v,p) - n}a, p2)as,

) -
)

(v,
where G is assumed to be G := |g| (2‘1’53) The weak formulation of Problem . may then
be stated as follows:

Problem 2.7. Find U := {(v,V¢),p,0} € Ha(D) x LE(D) x R, such that
Ay(U)(®) =0 VP € Ho(D) x L(D) x R. (2.2.3)
For Problem [2.3] the direction of the gravitation force G is not a variable anymore. Further-

more, due to equation (2.1.13) the direction of Vi is known to be collinear to es. For this
configuration, we therefore define the following space

Hs(D) := {(v,av) v e [HY (D) ay €R, v =ayes on 85} , (2.2.4)

for the velocity field. For U := {(v,av),p}, ® := {(p,1),q} € H3(D) x L3(D), we define

the semi-linear form

A3(U)(®) := p(((v — avez) - V)v,0)p — (p, V- ¢)p + 2u(D(v), D(¥))p
—(V-v,q)p — (pG, 0)p — mspies - G.

The weak formulation for Problem may then be stated as follows:
Problem 2.8. Find U := {(v,av),p} € H3(D) x L3(D), such that

A3(U)(®) =0 V& € H3(D) x LE(D). (2.2.5)

Using the finite element spaces W{* defined above, the discrete counterpart of Problem
reads as follows:

Problem 2.9. Find U, € W}, such that
A (Up) (@) =0 VP, € W (2.2.6)

Analogously, we define for Problem [2.7] and Problem 2.8 respectively, the following finite
element spaces

Wy = {(%V,P, 0) € [C(D)]"xRxC(D) xR, v € [Q2]",pjxc € Q1,vj95 = V},

Wi = {(U,GV,P) € [C(D)*xRxC(D), vk € [Qa]%, P € Q1,095 = av62}-

The discrete counterpart of Problem reads

15



2 Motion of a single particle in a fluid filling the whole space

Py

Figure 2.4: All possible orientations corresponding to a steady free fall of a trapezoidal
body. The red arrow shows the direction of the translational velocity. Only
configurations C and D are physically meaningful; the ‘symmetry solutions’ A
and B are unstable under small perturbations.

Problem 2.10. Find Uy € W, such that

Aa(Up)(®p) =0 V&, € W (2.2.7)

Analogously, the discrete counterpart of Problem [2.8] reads
Problem 2.11. Find Uy, € Wéﬁ such that

A3(Up)(®p) =0 Vo, € W (2.2.8)

We close this section by showing a two-dimensional computational result obtained by the
numerical method presented above. We ask for all possible steady solutions of the free
fall problem for a trapezoidal body. We found that there are four different orientations
corresponding to a steady translational fall which are depicted in Figure Note that only
two of these are physically meaningful, i.e. attainable as limit solutions of the unsteady
problem; to test the stability of a steady solution we simply ran the non-stationary version
of our solver (cf. Section with a slightly perturbed initial orientation of the body.
Figure clearly shows the (dynamical) instability of one of the steady solutions. (For
another possibility to check the stability of solutions, please refer to Section M) The two
components of the velocity of one of the (stable) solutions are depicted in Figure

2.2.3 The issue of domain truncation

The truncation of the unbounded exterior domain to a bounded computational domain
with artificial (homogeneous) ‘outflow’ boundary conditions creates errors which may be
of significant size. To illustrate this point, we consider the particular situation with the
parameters body length | = 6, body width w = 1, shear viscosity p = 0.1, and density
p = 1. Figure [2.6] shows the dependence of the free-fall velocity on the diameter dp of the
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2.2 Numerical approximation

HIVEion 2.0 Hivision 2.0

Figure 2.5: Left: The non-stationary solver is applied with
an initial orientation of the trapezoidal body cor-
responding to orientation A in Fig. but slightly
perturbed. Rapidly the body turns towards a steady
orientation corresponding to case D in Fig. 2.4 which
‘proves’ the dynamical instability of solution A.
Right: visualization of the two components of the
fluid velocity.
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Figure 2.6: Effect of the domain truncation (right) on the free-fall velocity of a steady,
translational motion (left).
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2 Motion of a single particle in a fluid filling the whole space

truncated computational domain when homogeneous Dirichlet conditions are prescribed on
the artificial boundaries. We see that satisfactory accuracy is achieved only for dp > 400
units.

Asymptotic analysis shows that a ‘parabolic wake’ develops upstream and in the crosswind
direction the flow behaves like potential flow. Hence for modeling the far field behavior of
the flow, one may use ‘outflow’ boundary conditions governed by the Gaussian (heat) kernel,

1 _ _ UCL’% . _ Um% T U
v~ <7C'x1x2 82 ¢~ ey ,Cxy Y2 e 4”2) , Ci=— Q\F,
2 2y/mv

and by the derivative of the Green’s function,

Q

~ — .
47 |x|?

v(z)

On this basis, improved non-homogeneous artificial boundary conditions can be derived
for the truncated computational domain which allow for a significant reduction of its size
without sacrificing accuracy. For a detailed discussion of this subject, we refer to Chapter
and to Wittwer [Wit02, Wit03] and Boénisch et al. [BHWO05, BHWO06]. Other approaches
for treating unbounded domains are discussed in Tsynkov [Tsy98| [Tsy99].

2.2.4 Towards economical meshes: a weighted a-posteriori error estimator

Our goal in this section is to derive an a posteriori error estimator to control the accuracy
of the most important output quantities in the free-fall problem, namely the velocity and
the orientation of the falling body. At the same time this gives us strategies for an adequate
mesh adaptation in order to obtain economical meshes. The derivation of a posteriori error
estimates for the approximation of the continuous equation by means of equation
(2.2.6) relies on their interpretation as an optimal control problem and their embedding into
the framework described in Becker/Rannacher [BeRO1].

At first we recall from Becker/Rannacher [BeR01] an abstract framework for the a posteriori
error analysis of Galerkin approximation of general nonlinear variational equations; see also
Becker et al. [BeHR02] and Bangerth/Rannacher [BaR03]. Let A(-)(-) be a differentiable
semi-linear form defined on a function space W. The derivatives of A(-)(-) at a point w in
direction 0u,dv,dw are denoted by A’(u)(du,-), A”(u)(du,dv,-), and A" (u)(du,dv,dw,-),
e.g.,

A)(Fu,9) = lim {Alu+ 6u)(e) —~ AW)(g)}, @ €W

Here, we use the convention that the dependence on the variables in the second round
brackets is always linear while that with respect to the variable in the first brackets may be
nonlinear. We assume that the variational equation

Alu)(p) =0 Vo eW, (2.2.9)

has a solution u € W. Suppose that the goal is to compute a certain physical quantity
related to w by a differentiable functional J(-) with derivatives denoted by J'(u)(du),
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2.2 Numerical approximation

J"(u)(du, dv), and J"(u)(du, dv, dw). Problem (2.2.9)) is thought to be approximated by a
Galerkin method using finite dimensional subspaces W C W parametrized by h € R,. We
assume that the associated discrete problems

Alup)(pn) =0 Vep € Wh, (2.2.10)
also possess solutions uy, € Wy, with J(up) being the approximation to the target quantity
J(u).

The aim is now to derive a posteriori estimates for the error J(u) — J(up). To this end, we
employ the Euler-Lagrange approach of optimal control theory. The problem of computing
J(u) from the solution of can be equivalently formulated as computing stationary
points {u,z} € W x W of the Lagrangian functional

L(u)(z) := J(u) — A(u)(2), (2.2.11)

with the adjoint variable z € W. Hence we seek solutions {u,z} € W x W to the Euler-
Lagrange system

Au)(p) =0 Vo e W, (2.2.12)

A(u)(p,2) = J'(u)(p) Y eW. (2.2.13)

Notice that the first equation of this system is just the considered variational equation ([2.2.9)).

The Galerkin approximation of system ([2.2.1212.2.13)) in the subspace Wj C W seeks pairs
{up, zp} € Wy, x W), satisfying

A(up)(en) =0 Yon € Wh, (2.2.14)

A’(uh)(goh, Zh) = J'(uh)(aph) Vgoh e W, (2.2.15)

To the approximate solutions u, € W}, we associate the residual

p(up)(-) == —A(un)(-), (2.2.16)

which is defined on all of W.

Proposition 2.2.2. For the Galerkin approximation ([2.2.1442.2.15)) of the Euler-Lagrange
system ([2.2.1242.2.13)), we have the a posteriori error representation

J(u) — J(up) = plup)(z — ¢p) + Ry, (2.2.17)

for arbitrary elements ¢, € Wy. The remainder Ry is quadratic in the error e := u — up

and given by
1

Ry, = / {A" (up, + se)(e, e, 2) — J" (up, + se)(e, €) }sds. (2.2.18)
0

Proof. The proof which relies on standard differential calculus can be found in Becker /Rannacher
[BeRO1]. O
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2 Motion of a single particle in a fluid filling the whole space

This general approach will now be applied to the (steady) free-fall problem. We recall the
governing semi-linear form

A (U) (@) = p(((v = (Vo +w xy)) - V)v,0)p + p(w X v,90)p
— (0. V-9)p +2u(D(v),D(¢))p — (plgllw| 'w, ¢)p
— 1 - Ims(|gllw| " 'w —w x Vo) + @2 - [w x (Is - w)] = (V- v,¢)p,

for arguments U = {(v, Vo,w),p} and @ = {(p, ¢1,¥2),q}. The corresponding derivative
which occurs in the dual problem has the form

AU, @) := p(( = (Y1 + b2 x y)) - V), 9))
+p(((v = (Vo +w xy)) - V)Y, 0) + plw x 1, 0) + p(2 X v, ¢)
—(r, V) +2u(D(), D()) + 1 (b2 x Vo +w x 1)
+ @2 (Y2 x (Is - w) +w x (Is - 12)) = (V- 1,q),

for arguments U = {(v, Vo,w),p}, @ = {(p,p1,92),q}, and ¥ = {(¢,Y1,2),r}. At first,
in order to avoid an overload of technicalities for the derivation, we consider the setup of the

simplest Problem with the governing semi-linear form
Az(U)(@) := p(((v — aves) - V)v,0)p = (0, V - ¢)p + 2u(D(v), D(¢)) D
= (V-v,9)p — (pG,¢)p — msprez - G.

For U = {(v,ay),p} € H3(D) x LE(D), the target functional for the control of the fall
velocity of the body &S is chosen as

J(U) :=ay, U € Hz(D)x L(D). (2.2.19)
The associated dual problem is given by
AL(UN(P, Z) = JR(U)(P) VP € Hz(D) x L3(D), (2.2.20)
with the discrete analogue
A5(Un) (@, Z1) = J5(Un)(P1) VP, € W3 (2.2.21)
To the approximate solution Uy, € W of the discrete Problem we associate the residual

p3(Un)(+) :== —A3(Up) (). (2.2.22)

Then, Proposition [2.2.2] gives us the following result:

Proposition 2.2.3. Let U := {(v,ay),p} € Hs(D) x L3(D) and Z := {(2",2%),2P} €
Hs(D) x L3(D) be the solutions of (2.2.5)) and (2.2.20)), respectively. Further, let U, and

Zy, be their discrete counterparts, i.e., the solutions of (2.2.8) and (2.2.21]), respectively.
Then, there holds the error representation

ay — al{L/ = pg(Uh)(Z - Zh) + Rs, (2.2.23)
where the remainder Rj3 is quadratic in the errors e := v — v and e® := ay — a’{/,

Ry := p((e” - V)e",2")p — pe”((e2 - V)", 2*)p.
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2.2 Numerical approximation

Proof. The identity (2.2.23) is a direct consequence of the general error representation
(2.2.17)) of Proposition 2.2.2L To identify the remainder Rj3, we note that

AUy + sE)(E,E,Z) =2p(((e” — %) - V)e’, 2")p
JY(Un + sE)(E, E) = 0.

This completes the proof. ]

Remark 2.2.4. The dual problem associated to equation (2.2.20]) possesses, despite its linear
character, a structure similar to the primal Problem [2.8] The natural boundary condition

of is indeed
/[a(z”,zp) ‘n]-ey do=1. (2.2.24)
oS

which should be compared to (2.1.14)).

For the more complex setup of Problem one can derive an error representation similar
to . In that context, however, due to the existence of additional nonlinear terms
for the description of the gravitation force G' := |g||w| !w, the remainder becomes much
more complicated. In order to control the fall velocity of the solid body S, we choose the
functional

Ji(U) = 3|Ve|?, U :={(v,Ve,w),p} € H1(D) x L§(D).
The associated dual problem is defined as
AVUYD, Z) = J{(U)(®) V& € Hi(D) x Li(D), (2.2.25)
with its discrete analogue
AL (Un)(Pr; Zn) = J{(Un)(®n) Vb, € WY (2.2.26)
To the approximate solution wuy € Wlh of the discrete Problem we associate the residual

p1(Un)(-) := = A1 (Un)(")-

Analogously to Proposition [2.2.3] we obtain the following result.

Proposition 2.2.5. Let U := {(v,Vo,w),p}, Z := {(2¥,2Y0,2¥), 2P} € H1(D) x LE(D) be
the solutions of (2.2.2) and ([2.2.25)), respectively. Further, let U;, and Zj be their discrete
counterparts in Wlh, i.e., the solutions of (]2.2.6[) and (]2.2.26[), respectively. Then, we have
the error representation

J1(U) = J1(Un) = p1(Up)(Z — Zp) + Ry, (2.2.27)
with a remainder R; quadratic in the errors e¥ :=v—uvy, €0 = VC—V(?, and e :=w—uwy,

Ry =p((e” - V)e",2")p — pl(("® - V)e', 2%)p — p(((e” x y) - V)e*, 2")p
+ (¥ x e, 2%)p —2YC - [e¥ x VO] + 2% - [e¥ x (Ig - e¥)]
— 5le" P+ 0(|e*]?).

The term O(|e¥|?) is due to the unknown direction of the gravitational force.
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2 Motion of a single particle in a fluid filling the whole space

Proof. The error representation ([2.2.27)) is derived in the same way as that of Proposition
It follows from the error representation derived in Proposition The expression
of the remainder R; follows from

AUy + sE)(E, E, Z) = p(([e” = (" + e x y)] - V)e', 2")p
—22Y0 e x VO] 4 227 - [e¥ x (Ig - )] + O(|e*]?),
J/(Uy + sE)(E,E) = |eVe |2

This completes the proof. O

Notice that Proposition can be trivially extended to the configuration of Problem [2.7
In that context however, especially for stability analysis of the terminal state, the error
control of the orientation of the solid body may be of great interest. Our proposed approach
allows indeed to control the orientation of the solid body by means of the functional

J(U) =0, U:={(v,Ve),p,0} € Ha(D) x LE(D) x R.

The associated dual problem is defined as

ALUNP, Z) = Jy(U)(P) VP € Ha(D) x L3(D) x R, (2.2.28)

as well as its discrete analogue
AY(Up)(Prs Zn) = J5(Un)(P) Yy, € Wy, (2.2.29)
To the approximate solution U}, € W2h of the discrete problem we associate the residual
p2(Un) () := —A2(Up)("). (2.2.30)

The discretization error on the orientation of the solid body S can be estimated by means
of the following proposition:

Proposition 2.2.6. Let U := {(v,Ve),p,0}, Z = {(2°,2"¢), 2P, 2%} € Ho(D) x LE(D) xR be
the solutions of and , respectively. Further, let U; and Z; be their discrete
counterparts, i.e., the solutions of (2.2.7)) and ({2.2.29)), respectively. Then, there holds

0 — 0 = p2(Un)(Z — Z1) + Ra, (2.2.31)

with a remainder Ry quadratic in the errors e’ :=v—up, €' := Vo — V(’}, and e’ := 60— 0,

Ry = p(((e" — ") V)e' 2")p
e d{ol((Gng)- =)+ ms(Gg) ) He

Proof. The error representation (2.2.31)) is a direct consequence of Proposition m To
identify the remainder Ry, we note that

AU + sE)E,E, Z) =2p(((e” —€e") - V)e’, 2%)p

cosf\ 1 cos 6 Vc} 012
+p[g]{(<sin9),Z>D+p s (sin@) 2Ol
Jy (U + sE)(E,E) =0.
This completes the proof. ]
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2.2 Numerical approximation

/ \
/ \

Figure 2.7: Adapted meshes - horizontal fall (left: D=800, right: D=100 (zoom)).

Remark 2.2.7. We note that by the same approach as used above, goal-oriented a posteriori
error estimates can also be derived for the hydrodynamical force and torque acting on the

solid body &,

T (U) = / 0(,p) - n]-pdo,  Tyyry(U) == / y % [o(v,p) - 1] - do.

a8 as

This allows for a control of any weighted combination of both quantities. This can be done
by an adequate definition of the weights v¢; and 9 of the trace ¥ = ¥ + 12 X y, which
determines the Dirichlet boundary condition for the corresponding dual solution, z%|ss = .

Figure shows some typical adapted meshes obtained by using the DWR approach in the
simulation of the ‘steady fall problem’.

2.2.5 Hydrodynamic (linear) stability

The stability of solutions U= {0,p} of the steady free fall problem can be investigated by
the linearized stability theory, i.e., by checking the eigenvalues of the corresponding linearized
stability eigenvalue problem,

AVNO)U, @) = MU, ®) V& € Hi(D) x LE(D). (2.2.32)

If one eigenvalue has real part ReA < 0, then the steady-state solution is (dynamically)
unstable, i.e., it will not persist under arbitrarily small perturbations. Otherwise, if all
eigenvalues have real parts Re A > 0, then the steady-state solution is called ‘linearly stable’;
see Heuveline/Rannacher [HRO6]. The results for the ‘free-fall problem’ are shown in Table
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2 Motion of a single particle in a fluid filling the whole space

Table 2.2: Results of the stability analysis of the steady-free fall problem for a symmetric

rigid rod.
2D case: p=0.1 Real part of the critical eigenvalue
domain diameter || vertical orientation | horizontal orientation
200 -0.82 0.81
800 -1.91 0.61
1000 -1.94 0.84

We see that in the 2D symmetric case for moderate Reynolds number (u = 0.1), there
is one stable (horizontal body orientation) and one unstable (vertical body orientation)
solution. For very small Reynolds number, i.e., for g > 105 all orientations correspond to
(numerically) stable solutions. These findings are in perfect agreement with experimental
as well as with theoretical results (see e.g. Galdi [Gal0l] and Galdi/Vaidya |[GV0I] and
references cited therein).
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3 Artificial boundary conditions for exterior
flow problems

The simulation of the motion of a rigid body in a fluid filling the whole space basically
requires the solution of the incompressible Navier-Stokes equations in an exterior domain
(see Chapter . As pointed out in Section the necessity to truncate for numerical
purposes the infinite exterior domain to a finite computational domain leads to the need for
artificial boundary conditions on the surface of the truncated domain. Since this problem
is of general interest (not only in the context of particulate flow simulations), we devote
this chapter to the issue of finding appropriate artificial boundary conditions for exterior
flow problems. Following Wittwer [Wit02, Wit03] and Bénisch et al. [BHWO05, BHW06] we
provide a vector field describing the leading asymptotic behavior of the solution. This vector
field is given in the form of an explicit expression depending on a real parameter. We show
that this parameter can be determined from the total drag exerted on the body. Using this
fact we set up a novel self-consistent numerical scheme that determines the parameter, and
hence the boundary conditions and the drag, as part of the solution process.

The chapter is organized as follows: In Section [3.1] we state the (two-dimensional, symmetric)
exterior flow problem. In Section |3.2| we show how the results from Wittwer [Wit02, (Wit03]
can be used to construct an explicit vector field on the artificial boundary and relate the oc-
curring unknown multiplicative constant to the total drag exerted on the body. In Section[3.3]
we describe the numerical algorithm that has been used in Bonisch et al. [BHWO05, BHWO0G]
to determine the artificial boundary conditions and to solve the exterior flow problem in a
consistent way. In Section we compare the results obtained using the traditional homo-
geneous Dirichlet boundary conditions with those obtained from using our adaptive scheme.
The difference is impressive: for a given precision the adaptive boundary conditions allow us
to take the domain approximately ten times smaller which results in computation times that
are more than a factor of hundred shorter. We then use the adaptive boundary conditions
to compute the drag for several values of the viscosity, solving in particular also cases which
require ridiculously large domains when treated using homogeneous Dirichlet boundary con-
ditions. Section briefly discusses how the techniques presented in the previous sections
can be extended to the general situation of non-symmetric flows, see also Bonisch et al.
[BHWOG].

25



3 Artificial boundary conditions for exterior flow problems
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Figure 3.1: Description and notations of the considered exterior flow problem.

3.1 Problem formulation

Consider first a rigid body that is placed into a uniform stream of a homogeneous incom-
pressible fluid, filling all of R?. This situation is modeled by the Navier-Stokes equations

plu-Vu—pAu+Vp=0, (3.1.1)
V-u=0,

in 2 = R?\S, with S a compact domain (the body), subject to the boundary conditions
ulps = 0 and limp, o u(z) = us. Here, u is the velocity field, p is the pressure and uq, is
some constant non-zero vector field which we choose without restriction of generality to be
parallel to the zq-axis, i.e., Uss = (Uso,1,0) and us1 > 0. The density p and the dynamic
viscosity p are arbitrary positive constants. For simplicity, we restrict ourselves here to
domains and flows that are symmetric with respect to the xj-axis. The asymmetric case
(case with lift) is more complicated (see Section and Bonisch et al. [BHWO0G]).

When solving problem numerically one is confronted with the necessity to truncate the
exterior infinite domain (2 to a finite domain D C {2 (see Figure . This means, however,
that appropriate boundary conditions have to be found on the surface I' = 9D \ S of the
truncated domain. The problem of choosing these so called artificial boundary conditions has
only recently been treated in the mathematics literature (see for example Nazarov/Specovius-
Neugebauer [NS03]), but has not led to explicit enough prescriptions to be used in numerical
work.

Here, using recent results in Wittwer [Wit02, [Wit03] we construct an explicit vector field
which we use on the boundary of the truncated domain. This vector field involves an
unknown multiplicative constant; to fix this constant we use a ‘fact’ that is well known
in the engineering literature, see e.g. Batchelor [Bat67]. Namely, we show that the unknown
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3.1 Problem formulation

Figure 3.2: Streamlines, upper half: the typical non-physical backflow in the velocity field
when imposing homogeneous Dirichlet boundary conditions. Streamlines, lower
half: no backflow is created with adaptive boundary conditions. In the back-
ground the horizontal component of the flow field is shown.

multiplicative constant is in appropriate units equal to the total drag exerted on the body
and can therefore be computed along with the vector field using a self-consistency condition
between the imposed boundary condition and the resulting drag. It is this idea that is put
into practice below.

The connection of formulation (3.1.1) with particulate flow problems can be readily estab-
lished as follows: We define V := —uq, and v := u+ V. Then (3.1.1)) is obviously equivalent
to

p((v=V)-V)v—pAv+Vp=0,

3.1.2
V-v=0, ( )

subject to the boundary conditions v|ys = V' = (—uc0,1,0) and limj, . v(z) = 0. Hence,
(3.1.2) models the purely translational motion of a rigid body in negative xi-direction
through an otherwise quiescent fluid. In the following we will always refer to formulation
B12).

We would like to motivate the study we are going to present in the subsequent sections
by showing what happens when homogenous Dirichlet conditions are used for simulating
problem on the truncated computational domain D C {2, see Figure An artificial
backflow (of small amplitude) has to be created on a big portion of the domain D in order
to accommodate for the zero flux condition enforced by homogeneous Dirichlet boundary
conditions (see upper half of Figure . With our adaptive boundary conditions (to be
defined later on) the flux through D is ‘exactly right’, and no portion of the volume D
is lost for the computation of a non-physical backflow: the fluid is transported within the
wake towards the body, and this fluid is then ‘radiated away’ from the body by a source-like
contribution in the velocity field (see lower half of Figure [3.2), cf. also Batchelor [Bat67).
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3 Artificial boundary conditions for exterior flow problems

3.2 Boundary conditions

Let A be a ‘typical’ length scale of the domain S (its maximal diameter for example). For
bodies § with smooth boundary 0§, and for small enough Reynolds number

Re = Apuso /1t (3.2.1)

equation is known to have a (strong) solution v = (v1,v2),p, see e.g. Galdi [Gal98b].
If S is symmetric with respect to the z1-axis this solution is symmetric, i.e., v1 and p are even
functions of xs for fixed z1, and vs is an odd function of x5 for fixed x1. For large Reynolds
numbers there is still no complete answer to the existence problem. Solutions still exist in
these cases in a weak sense. These solutions can be constructed by considering equation
on a nested sequence of finite domains D with homogeneous Dirichlet boundary con-
ditions on I" (see Figure , see also Nazarov/Specovius-Neugebauer [NS03]. By choosing
a convergent subsequence one obtains a limit that satisfies equation in a weak sense,
but not necessarily the boundary condition at infinity.

In Section we will numerically solve for a rectangular body on a nested sequence
of square domains with homogeneous Dirichlet boundary conditions. The sequence of these
numerical solutions is then compared with solutions obtained using the adaptive boundary
conditions that we are going to construct next.

3.2.1 Asymptotic behavior of the solution

Let v be the vector field and p the pressure introduced in (3.1.2). We then scale to dimen-

sionless coordinates & = x /¢, with
i

Uoo, 1P
the viscous length scale of the problem, and introduce the dimensionless vector field v and
a dimensionless pressure p by defining v(z) = ueo,10(Z) and p(x) = (pugql) p(z). In dimen-
sionless variables equation (3.1.2]) becomes

(= (3.2.2)

G4e) V)o—AG+Vi=0,

(@+e)-V) P (3.2.3)
V-o=0,

with the Cartesian unit vector e; = (1,0)7. (Derivatives are now taken with respect to the

variable Z.) In Wittwer [Wit02, Wit03] these equations have been studied in the half-space

2% = {(#1,%2) € R?| #; > 1} (see Figure[3.1)). Under certain smallness assumptions on the

vector field © on X (which we expect in particular to be valid for small enough Reynolds
(0) ~(0)
1

numbers), it has been proved that there are numbers ¢ and d and functions v, ’, 0/,
~2 ~

~(0)/~  ~ c 1 _2 d n

vy (T1,T2) = —=—=¢€ 1 + —— — 3.2.4
1 (@1, 7) 27T \T1 it + 72 ( )

~ ~2 ~

- - . C [ " d X9

Uy (21, T2) = —= e ¥4 ——— 3.2.5
2 (21, 72) 4\/77373/2 T I? + 73 ( )
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3.2 Boundary conditions

such that
lim 7/ <sup (51 — @50))(921,:22)0 =0, (3.2.6)
x1—>oo jQER
lim & <Sup (B — a§0>><g1,@>|) -0. (3.2.7)
I1—00 F2€R
Moreover,
/@1 (%1, d9) di = /@&0) (%1,42) dia =c+d , (3.2.8)

R R
independently of 1 > 1. Equations (3.2.6) and (3.2.7)) express the fact that asymptotically,
for large values of %1, the vector field © = (0;1,02) is to leading order given by the vector
field 70 = (17%0),1750)), and 1) shows that the flux through vertical lines is constant and

entirely described by the dominant term féo). The vector field 7(?) therefore gives an explicit
description of the asymptotic flow downstream of the body as the sum of two divergence-
free contributions: a parabolic wake term (multiplied by ¢), and a compensating source term
(multiplied by d). Note that the asymptotic behavior () is universal in the sense that this
asymptotic is independent of the geometry of the body, except for the amplitudes ¢ and d.
In original coordinates x we get

22
(0) 2 d =z
vy (21, 22) = (uool\[) e A 4 (U, 16) — (3.2.9)
2\/m \/x 2+ 23
23 d 13: :
véo)(xl,xg) = (uoo 1\[) 4\737/2@ S 4 (uonl) — ﬁ . (3.2.10)
T T X3

Remark 3.1. The expressions , for UEO) and véo) are not yet applicable for
practical numerical computations since the two constants ¢ and d are still unknown. In the
next section we will show that asymptotically, d = —¢/2 and that the constant ¢ can be
related to the total drag exerted on the body.

3.2.2 Adaptive boundary conditions

We now define the vector field vA8¢ = (vf!BC v BC) that we use on the boundary I' =
Uy I'x (see Figure . Namely, for (z1,z2) € D, x; > 0 (and therefore in particular on
I'p and on I'y, and I'g ) we set

vt (g, 29) = Ugo)(fﬁl,@) ) (3.2.11)

’U?Bc(xl’xQ) - Ué )(1'1,.’1}2) ) (3212)

with vgo) and véo) as defined in 1' 3.2.107 while for (z1,z9) € D, 1 < 0 (and therefore
in particular on Iy and on I'y and I'y) we set

d =
v PO (21, 22) = (Uoo,1f) Wﬁ , (3.2.13)
171723
d =
U§4BC($17 T2) = (Uco,1¢) Wﬁ . (3.2.14)
1717723
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3 Artificial boundary conditions for exterior flow problems

This definition of the artificial boundary conditions is well motivated by , on
I'y and on those parts of the boundary I" ; and I ; where 1 > 1. For large enough domains
D, the contribution of the wake-term (term multiplied by ¢) on I'y; and Fg is negligible with
respect to the source term (term multiplied by d), so that asymptotically v45¢ is given by
(]3.2.13[)7 (]3.2.14[) on all of I'\ I'y. The wake term on F]J\F and F; interpolates smoothly
between the asymptotic behavior for large values of 21 and the boundary conditions on I'y
and Iy .

We now determine the unknown multiplicative constants occurring in ,. To
this end we consider as in Figure [3.1] an arbitrary rectangle [, ] x [ L, L] with surface S =
S(l, L) containing the body S. Since the total flux of the constant vector field v|;5 = —uUoo
through 98§ is zero and since the vector field v is divergence-free, it follows using Gaufl’s
theorem that the total flux through S has to be zero as well. For the vector field v45¢
(which is divergence-free, too) we must therefore impose that [ S(LL vABC . do = 0 for all
[, L. Keeping [ fixed while letting L tend to infinity, we find using , that

ABC

0= lim v -n do
L—oo
S(,L)
L
= Jim ([ 50 02) — 50,2
—L

l
+ / (08B (1, L) — vABC (a0, L) diry

-l
L

(vf‘BC(l, x9) — vf‘BC(—l, x9)) dxo

(3.2.15)

= lim
L—oo
—L

= (Uoo,10) (¢ +2d).

We obtain from (3.2.15)) that the two constants ¢ and d in (3.2.9)),(3.2.10) are connected by

the relation

d=— (3.2.16)

¢
5

To get an expression for ¢ we integrate the Navier-Stokes equation over S (see Batchelor
[Bat67]). We assume that v — v4BC satisfies a bound similar to , not only
in the wake region but everywhere on S, and thatﬂp ~ pABC = —1 (v{1BO)? 4 (v41BC)2),
asymptotically as S converges to infinity. For the total drag F' on the body we get that

! The following expression for p*£ is a consequence of Bernoulli’s theorem for inviscid irrotational flows.

It is applicable in the region outside the wake because the flow there is close to potential flow.
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3.3 Solution process

(terms that vanish as [ — oo are omitted)

L
F = LIEI;O—/ (PP (1, @2) + p 0P (1, 22))
L

_ (pABC(—l,fL'Q) + p UfBC(—l,ZUQ)Q)] dZEQ
=-2 (pugo’lﬁ) (c+d)
= - (pugo,lg) c,

in other words:

1

- F. (3.2.17)
pluZe,

CcC =

This completes the definition of the adaptive boundary conditions.

3.3 Solution process

The specificity of our approach to solve exterior flow problems like is to prescribe
artificial boundary conditions which depend on the drag, cf. the previous section. The
drag however, and therefore the adequate boundary conditions, are clearly not known at
the beginning of the solution process. Therefore we embed the solution of the Navier-Stokes
equations in an additional fixed-point iteration which determines the drag through successive
updates of the boundary conditions based on the previously computed drag. This adaptive
procedure yields a consistent approximation of the boundary conditions and the flow field.

In the following we describe the two main components of this algorithm. The solution of
the Navier-Stokes problem on a truncated computational domain by means of the
Galerkin finite element method is explained in Section [3.3.1] The accurate computation of
the drag exerted by the fluid on the body (which is clearly a crucial issue in our scheme) is
treated in Section [3.3.21

3.3.1 Galerkin finite element discretization

We begin with some standard notation. For a domain 2 C R?, let L?(2) denote the Lebesgue
space of square-integrable functions on {2 equipped with the inner product and norm

(o= [Fgde.  Iflla =0
9]

The pressure is assumed to lie in the space L3({2) := {q € L*(02): Jora =0, for all bounded
2" C 2}, which defines it uniquely. The L?(§2) functions with generalized (in the sense of
distributions) first-order derivatives in L?({2) form the Sobolev space H!(£2), while H}(£2) =
{ve H'(2),v|pn = 0}.
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3 Artificial boundary conditions for exterior flow problems

The Galerkin finite element discretization of problem (3.1.2)) starts from a variational for-
mulation. Let W = [H} (£2)]? x L3(£2). For U = {v,p} € W and & = {¢,q} € W, we define

the semi-linear form
AU)D) = p(((v=V) - V)v,0)0 = (0. V- @) + 2u(D(v) : D(p))2 — (V- v,0)2, (3.3.1)

where D denotes the deformation tensor, i.e. D(v) = $(Vv + (Vv)T). A weak form of the
equations (3.1.2)) then reads as follows:

Find U = {v,p} € W, such that
AU)(®) =0, VPeW. (3.3.2)

In order to solve (3.3.2) numerically by a Galerkin finite element method, the unbounded
domain {2 is replaced by a bounded domain D C (2. The discretization uses a conforming
finite element space W), C W defined on quasi-uniform triangulations Tj, = {K} consisting
of quadrilateral (or hexahedral in 3D) cells K covering the domain D (see Figure [3.3)). For
the trial and test spaces W), C [H}(D)]? x L&(D) we consider the standard ‘Hood-Taylor’
finite element, see Hood/Taylor [HT73], i.e., we define

Wy, == {(v,p) € [CD)]*; v|k € [Q2)*,plx € Q1},

where @, describes the space of isoparametric tensor-product polynomials of degree r (for
a detailed description of this standard construction process see for example Brenner/Scott
[BS94]). This choice for the trial and test functions has the advantage that it guarantees a
stable approximation of the pressure since the Babuska-Brezzi (‘inf-sup’) stability condition is
satisfied uniformly in h (see e.g. Brezzi/Falk [BF91] and references therein). The advantage,
when compared to equal order function spaces for the pressure and the velocity is that no
additional stabilization terms are needed. The discrete counterpart of problem then
reads:

Find Uy, = {vp,pr} € [v§ + H}(D)?] x L3(D), such that
A(Uh)(@h) =0, Vo, W, (3.3.3)

Here vg denotes the prescribed Dirichlet data on the boundary I'U dS of the domain D. It
has been the goal of the discussion in Section to formulate adequate non-homogeneous
Dirichlet boundary conditions on I" which correspond to the asymptotic behavior of v. As
already mentioned, these boundary conditions are independent of the details of the geometry
of the body, but depend on the drag. The accurate computation of this quantity is therefore
an important issue, cf. the next section.

The nonlinear algebraic system is solved implicitly in a fully coupled manner by
means of a damped Newton method. Denoting the derivative of A(-)(+) at a discrete function
Up, € Wy, in direction w by A'(Up,)(w, -), the linear system arising at the Newton step number
k has the following form,

AU Wy, ) = (), @), 9B, € Wi, (3.3.4)
(k)

where ;" is the equation residual of the preceding approximation U, (k)

k
, and wé ) corresponds
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3.3 Solution process

to the correction. The updates U,Ek—i_l) = U}(lk) + a(k’)wgk) with a relaxation parameter ()
chosen by means of Armijo’s rule are carried out until convergence. It is well known that
the ability of the Newton iteration to converge quadratically greatly depends on the quality
of the initial approximation. In order to find such an initial approximation, we consider a
mesh hierarchy {Ty,}, with Ty, C Ty, ,, and the corresponding system of equations
is successively solved by taking advantage of the previously computed solution, i.e., the
nonlinear Newton steps are embedded in a nested iteration process (see e.g. Wesseling
[Wes92], Chapter 8).

The linear subproblems are solved by the Generalized Minimal Residual Method
(GMRES) (see Saad [Saa96]) preconditioned by means of multigrid iteration (see Wesseling
[Wes92| and references therein for the description of the different multigrid techniques for
flow simulations). For further algorithmic details we refer the reader to Bonisch et al.
[BHWO5, BHWO06]. The implementation was done with HiFlow, see [Heu(6].

3.3.2 Accurate computation of the drag

Let o(v,p) = —pI 4+ 2uD(v) denote the stress tensor. The force acting on the rigid body S
in direction % on 9S is given by

N(©) = [(o(w.p) ) o (3.35)
oS
where U = (v,p), ¥ € [HY/?(0S)]? and n is the unit outward normal to 8S. If ¢ is a unit

vector parallel (resp. perpendicular) to the flow direction, then Ny (U) is referred to as the
drag (resp. lift). Let 1 € H'(D) be defined such that

Y =1 on S, =0 on I. (3.3.6)
Applying Green’s identity to the integral (3.3.5) leads to the equality
Ny (U) = A(U)(®). (3.3.7)

Expression D holds for any smooth U and for any choice of 1/; fulfilling the condition

.3.6)). We impose ¢ € Wj. Motivated by formula (3.3.7) we define the discrete counterpart
N} of Ny by
N (Un) := A(UR) (). (3.3.8)
Again, under assumption , the right-hand side of is independent of the choice
of ¢ € Wy, and N&f is therefore well-defined. It is important to note that, in general,

N}(Un) # Ny(Un).
Based on the Babuska-Miller trick [BM84al, BM84D, BM84c], Giles et al. proved in |[GLLT97]
that NZ;(U;Z) is indeed the adequate formulation for the computation of the drag. Assuming
boundaries which are sufficiently smooth, they show that the order of convergence of NZ;(U;Z)
to Ny(U) is O(h*) which is to be compared to an order of convergence of typically O(h?)
for the direct approximation of Ny. A typical example is shown in Table @ which makes

clear that the evaluation of the drag via formulation (3.3.8)) is essential in order to attain
the desired high accuracy at reasonable computational costs.
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3 Artificial boundary conditions for exterior flow problems

Level | # Unknowns | drag computed by means of
Np(Un) | Ny(Un)
18,592 0.0504563 0.0522906
74,048 0.0503341 0.0516217
295,552 0.0503143 0.0512033
1,180,928 0.0503102 0.0509204

DY UL W

Table 3.1: Convergence records of the drag computed using formulations Nf;(Uh) and
Ny(Up,), resp. We refer to Section for the description of the considered config-
uration. The computational domain has a diameter that is eight hundred times
bigger than that of the rigid body.

3.4 Numerical experiments

The goal of this section is twofold. On one hand we compare, for a given configuration of the
flow, the solution obtained by means of the newly proposed boundary conditions (see Section
3.2) with the solution obtained by means of homogeneous Dirichlet boundary conditions.
This first step confirms the theoretical results in Wittwer [Wit02, Wit03] and gives numerical
evidence of the validity of our approach. On the other hand, quantitative results depicted
for different Reynolds numbers clearly show the generally drastic improvements in numerical
efficiency when using the proposed boundary conditions.

As a model problem we consider a rectangle [—0.1,0.1] x [-0.5,0.5] which is moving through

a homogeneous incompressible fluid with density p = 1 and dynamic viscosity u = 0.1.

Further we impose a translational velocity V' = (—0.1,0), i.e. ux,1 = 0.1. With A =1 being

the length of the rectangle, we find from for the Reynolds number corresponding to

this configuration,

o A P Uoo,1
I

Concerning the computational domain D we restrict ourselves to square-shaped domains.
Due to limitations inherent to the solver, the aspect ratio 7 of the considered meshes does
not exceed 7 = 30. Typical meshes corresponding to this setup are depicted in Figure 3.3

Re = 1. (3.4.1)

We now discuss various ways of comparing the numerical solutions v = (v1,v2) of
(obtained with Dirichlet and adaptive boundary conditions) with the theoretical predictions.
We start by considering the wake region, where we have the most precise results (see Wittwer
[Wit03]). A quantity which has been intensively studied (see for example Stewartson [Ste57])
is the so called centerline velocity v(z1,0) (see Figure for the definition of the cut-lines
‘cut I, ‘cut II’, and ‘cut IIT"). Since v; is even and vy is odd in z9 we have that ve(x1,0) =0
for all 1, and we therefore only need to consider vy (z1,0). The theoretical prediction ,
(3.2.17), (3.2.16)) is that, to leading order for large z1,

vi(z1,0) ~ (uoo,lx/é) ¢ (3.4.2)

1
2\/77'1/131 ’
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Figure 3.3: Left: Triangulation of the computational domain D after three refinement steps.
The diameter of D is equal to d = 50. Right: Zoom on the mesh around the
rigid body S.

with
1

c=——F—
2
pguoo,l

F. (3.4.3)
In Figure we have plotted the quantity —2/7/z1v1(z1,0) as a function of 21, where v;
has been computed, once using homogeneous Dirichlet boundary conditions and once using
our adaptive scheme. Numerically we find that F' = 0.05031. We therefore expect using

3.4.2)) that —2/m\/x1v1(21,0) ~ — (uwl\/Z) ¢ = 0.5031 for large values of z1. As Figure

[3.4] shows, the solution with Dirichlet boundary conditions indeed appears to converge to
this value, but most of the computational domain is lost for the interpolation between this
correct asymptotic value and the value zero imposed by the boundary conditions. With
the adaptive boundary conditions only minor (higher order) corrections are necessary when
arriving to the boundary, the plot being close to the asymptotic value on most of the domain.

On cut II, perpendicular to the body, both components of v are non-zero, but the wvo-
component is asymptotically dominant. The theory (3.2.14)), (3.2.16)), (3.2.17) predicts that,
asymptotically, for large values of xo,

02(0, 22) ~ — (o1 ;i , (3.4.4)

™2
with ¢ again given by (3.4.3). In Figure we have plotted the quantity 2mxovs(0,x2) as
a function of x9, and v9 has been computed using Dirichlet boundary conditions and using
the adaptive scheme. From we expect that 2mxov2(0,22) & — (Us,1¢) ¢ = 0.5031 for
large values of 5. Indeed, for values of xo that are large compared to the size of S, but small
compared to the size of the computational domain (i.e., zo ~ 100) the graphs in Figure
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3 Artificial boundary conditions for exterior flow problems
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Figure 3.4: Scaled vi-component along ‘cut I’; considering homogeneous Dirichlet boundary
conditions (left) and the proposed adaptive boundary conditions (right). For
the homogeneous Dirichlet (resp. adaptive) boundary conditions the size of the
diameter of the computational domain D varies in the range d € [1000;8000]
(resp. d € [100;800]). The velocity profile on ‘cut I’ (which is defined in Figure
reveals the asymptotics in the wake.

appear to level off at a value compatible with the theoretical prediction, but then rapidly
go to zero, in a domain-dependent way, as required by the Dirichlet boundary conditions.
In the adaptive scheme the asymptotic value is enforced at the boundary, and we get, with
increasing computational domains, a sequence of graphs that appear to converge to some
limiting graph that is consistent with the asymptotic prediction .

On cut III, finally, the vo-component is again zero and for v; we have the prediction that,
asymptotically, for large negative values of x1,

v1(21,0) & — (Uoo1¥) =—— (3.4.5)

with ¢ as above. In Figure we have plotted the quantity 27z1vi(x1,0) as a function of x;.
For this cut the results are even more drastic. For the adaptive boundary conditions we get
a sequence of graphs that converge quite clearly to some limiting graph which is moreover
compatible with the asymptotic prediction (3.4.5)). The sequence of graphs for Dirichlet
boundary conditions does not converge at all for this case, but depends on the whole range
of volumes very strongly on the boundary condition.

We conclude that, as expected, physically interesting quantities (in particular the drag)
can a priori be computed using Dirichlet boundary conditions, but only by choosing the
computational domain ridiculously large in order to leave ‘sufficient room’ to accommodate
for the non-physical backflow. The computation times are accordingly exceedingly large, so
that some of these computations are in practice unfeasible.

This issue which is essential for the numerical simulation is depicted, quantitatively, in Fig-
ure On this plot the relative error of the drag as a function of the domain diameter is
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Figure 3.5: Scaled vs-component along ‘cut II’ considering homogeneous Dirichlet boundary
conditions (left) and the proposed adaptive boundary conditions (right). For
homogeneous Dirichlet (resp. adaptive) boundary conditions the size of the
diameter of the computational domain D varies in the range d € [1000;8000]
(resp. d € [100;800]). ‘Cut II’ is defined in Figure
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Figure 3.7: Plot of the relative error of the drag as a function of the domain diameter, com-
paring homogeneous Dirichlet boundary conditions and the proposed adaptive
boundary conditions. The plotted configurations correspond to = 0.1 (Re = 1,
top left), u =1 (Re = 0.1, top right) and = 10 (Re = 0.01, bottom).

shown considering homogeneous Dirichlet boundary conditions and the proposed adaptive
boundary conditions for ¢ = 0.1 (Re = 1), p = 1 (Re = 0.1) and p = 10 (Re = 0.01).
For p = 0.1 (Re = 1), a relative error of the drag equal to 0.5 - 10~2 can be obtained using
adaptive boundary conditions on a domain of diameter equal to d4pc = 100 which has to be
compared to a domain diameter equal to dp;- = 1000 needed for the homogeneous Dirichlet
case. For p =1 (Re = 0.1), the same relative error can be attained for d4apc = 450 which
has to be compared to dp; = 4500. For pn = 10 (Re = 0.01), the discrepancy is even bigger
since the relative error obtained for d4gc = 700 could not be obtained on domains with di-
ameter less than 8000 for the homogeneous Dirichlet case. These results clearly illustrate the
considerable increase of numerical efficiency associated with the proposed adaptive scheme.

Having established the validity of the adaptive scheme, we now present some additional re-
sults that illustrate in some more detail the basic ideas of our approach. All numerical results
for this section have been established with our standard configuration and = 0.1 (Re = 1).
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3.4 Numerical experiments
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Figure 3.8: Streamlines (left) and pressure (right) around the body for the configuration
described in the text.

First, in Figure the streamlines of the vector field u = v — V, (the solution of (3.1.1]))
are shown. In contrast to streamlines computed with homogeneous Dirichlet boundary
conditions, which are forced to be perpendicular to the wall when entering and leaving
the domain, no such non-physical deformations occur with the adaptive scheme. The same
is true for the pressure isobars (see Figure right).

We next discuss Figurewhich shows the vorticity w(z1, x2) = —02v1 (21, x2)+01v2(21, T2).
The lines of constant vorticity join the right boundary perfectly natural. No deformation
can be observed near the border. One also clearly sees that the vorticity is basically zero
outside a rather small region around the object and outside the wake. In Figure [3.10] we
have plotted the vorticity on vertical lines just before, after and somewhat more downstream
of the object. As can be clearly seen the vorticity decays extremely rapidly in the directions
transverse to the flow.

This illustrates quite nicely the theorems and arguments of Section [3.2]
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3 Artificial boundary conditions for exterior flow problems

Figure 3.9: Vorticity (left), zoom on the vorticity (right) for the configuration described in
the text.
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Figure 3.10: Vorticity on vertical lines for x = —0.5 (solid line), z = 0.5 (dashed line) and
x =5 (dotted line), as sketched in the small picture included in the plot.
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3.5 Further results

3.5 Further results

In this chapter we have discussed the problem of solving numerically the stationary incom-
pressible Navier-Stokes equations in a domain exterior to a body in two dimensions. A
novel self-consistent scheme for choosing artificial boundary conditions has been introduced
which incorporates in particular the computation of the total drag exerted on a body as
part of the solution process. When compared with the results obtained using traditional
constant boundary conditions computational times are typically reduced by several orders
of magnitude.

Although we restricted ourselves to the case of symmetric bodies aligned with the fluid
flow, the proposed method is not intrinsically limited to this case. A generalization to the
two-dimensional non-symmetric case has been proposed in Boénisch et al. [BHWO06] (see
also Wittwer/Haldi [WHO5]). There, a vector field is constructed in the form of an explicit
expression depending on two real parameters which can be determined from the drag and
the lift exerted on the body. Like in the symmetric case, this vector field is used to prescribe
artificial boundary conditions on the boundary of the truncated computational domain. The
simultaneous determination of the two parameters and the boundary condition is achieved by
a self-consistent scheme similar to that discussed above. Another improvement in [BHWO06]
is the inclusion of higher-order asymptotic terms. Due to the increased accuracy of the
resulting artificial boundary conditions the size of the truncated domains (and hence the
computational effort) can be further reduced - typically by yet another order of magnitude
- as compared with the ‘first-order’ boundary conditions derived above.

The construction of the ‘second-order’ adaptive boundary conditions as performed in [BHW06]
is quite technical and leads to formulee of considerable complexity. Therefore, in the follow-
ing we would like to show only a few of the most important results and refer the interested
reader to [BHWO6] for all further details.

Figure [3.11] corresponds to Figure above: Again, we look at the centerline velocity
v1(21,0) on ‘cut I’ (see Figure for the definition of the cut-lines), and plot the quantity
—2y/m\/z1v1(21,0) as a function of x1, where v; has been computed once using first-order
boundary conditions (the ones discussed in Section and once using the improved second-
order boundary conditions. With second-order boundary conditions the plot is closer to
the asymptotic value on most of the domain. The impact of the second-order terms is
however much more evident when considering the gain with regard to the relative error of
the drag. In the plots of Figure the relative error of the drag as a function of the
domain diameter is plotted considering homogeneous Dirichlet boundary conditions, first-
order boundary conditions and second-order boundary conditions. Clearly, the addition of
the second-order terms allows to again substantially reduce the size of the computational
domain when compared to the first-order approach. This is especially true if a high accuracy
is needed for the drag. The additional computational time needed for the evaluation of the
second-order boundary terms is negligible. Therefore, the reduction of the diameter of the
computational domain induced by the second-order terms leads to direct and drastic benefits
with regard to the overall computational time.
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Figure 3.11: The scaled centerline velocity to first and second order (left) and zoom on the
same quantities (right). These plots correspond to Figure above.

Figure 3.12: Flow around the NACA profile 64-015 at Reynolds number Re = 1000, com-
puted using second-order adaptive boundary conditions.

Finally, Figure shows the flow around the NACA profile 64-915, inclined by 5°, at
Reynolds number Re = 1000 (see (3.2.1))), with A the chord length of the profile (distance
from tip to tail), see Ladson et al. [LBH¥96]. Using our second-order artificial boundary
conditions, it was possible to carry out this simulation on a very small computational domain.
The (qualitative) comparison with the flow pattern obtained in a corresponding experiment
is very satisfying and can be found in [BHWOG].
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Figure 3.13: Plot of the relative error of the drag as a function of the domain diameter con-
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4 Sedimentation of a single particle in a
channel flow: Galdi's method

In the previous two chapters we considered, as a model problem, a single rigid body moving in
a viscous, Newtonian fluid filling the whole space. The objective of this chapter is to describe
some recent contributions to a problem which is considerably more complex, namely we treat
the motion of a single symmetric particle in a viscoelastic fluid bounded by two parallel walls.
More specifically, we consider a cylinder which is moving under the action of gravity in a
vertical channel through a Poiseuille low which may be directed either in the same or in
opposite direction of the gravitational force. Furthermore, the viscoelastic liquid is taken
to be a so-called ‘second-order’ liquid model, see e.g. Joseph [Jos90]. However, the method
we are going to employ is also applicable to several other situations (e.g. horizontal channel
flow, different liquid model, different particle geometry). Our main goal is to find ‘steady’
solutions to the fluid-particle system and to determine all possible equilibrium positions of
the cylinder with respect to the walls.

This chapter is organized as follows: In order to better describe our methods and results,
in Section we give the main motivation behind the considered problem, as well as a
short review of the relevant literature. In Section we present a method to investigate
the equilibrium positions of the sedimenting cylinder; this method is due to Galdi, see
Galdi/Heuveline [GHO6] and Bonisch/Galdi [BG06]. We derive a system of equations from
which we can extract information about possible equilibria, at first order in Re and We,
where Re is a suitable Reynolds number and We is the Weissenberg number. In the case of a
purely Newtonian liquid, we can get more precise information by evaluating the equilibrium
equations at third order in Re. The method relies on the evaluation of certain integrals which
depend on the solutions of a number of auxiliary problems of Stokes-type. This can only
be done numerically; the details of the numerical solution process are described in Section
Section contains a number of numerical results[l] The findings are discussed and

compared to experimental observations.

4.1 Introduction

The study of a sedimenting cylinder in an infinite channel filled with liquid, possibly in the
presence of a Poiseuille flow, concerns some of the fundamental aspects of particle sedimen-

! Most of the numerical work presented in this chapter was done while the author was visiting Prof. G.P. Galdi
at the University of Pittsburgh, Pittsburgh (PA), USA. The author would like to express his gratitude
to Prof. Galdi for the kind invitation to Pittsburgh, as well as for the stimulating collaboration. The
financial support of the DFG through ‘International Graduiertenkolleg 710’ is acknowledged.
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4 Sedimentation of a single particle in a channel flow: Galdi’s method

tation in the presence of walls, see e.g. [GHO06, BG06]. Understanding the motion of particles
settling near walls in a liquid is of fundamental theoretical interest. Moreover, it is also a
key issue in many industrial processes involving particle-laden materials, see e.g. Chhabra
[Chh93]. Important examples include falling-ball viscometry, flow of slurries and coating
processes for thin films (see e.g. Joseph [Jos00] and Ruschak [Rus85]). Let us consider first
the case of a stagnant fluid (i.e. no Poiseuille flow). The following is known from experiments
(cf. Joseph [Jos00]). When a homogeneous sphere sediments near a rigid wall, its terminal
state depends on the physical properties of the fluid: If the liquid is Newtonian and viscous
enough, the sphere will move away from the wall and reach a steady state characterized by
the parameters U (translational velocity), w (angular velocity) and heqyi (distance from the
wall). However, for a viscoelastic liquid the same sphere will move towards the wall! Theo-
retical studies on the motion of spheres in presence of walls, under different flow conditions,
have been the object of many papers; see, e.g., Becker et al. [BKS96], Cox/Brenner [CB6S],
Vasseur/Cox [VC76, [VCT7], Ho/Leal [HL74, HL76] and references cited therein.

These studies represent a significant attempt towards an understanding of the impact of the
walls on a sedimenting sphere. However, most of the theoretical contributions are partially
incomplete, for the following reasons: Firstly, all of them prescribe either the (translational
and angular) velocity of the sphere (see e.g. Vasseur/Cox [VCT76]) or the distance of the
sphere from the wall (see e.g. Becker et al. [BKS96]). Consequently, they are only focused
on certain aspects of the physical phenomena, like the evaluation of the lateral lift force on the
sphere or its terminal velocity. Secondly, in the case of a viscoelastic fluid, they are obtained
by assuming that there is only one wall (see Becker et al. [BKS96]). A third limitation
is that they are all based on formal (matched) asymptotic expansions of the velocity and
pressure fields (like ‘inner-outer expansions’) that lack a rigorous mathematical justification.

The motion of rigid spherical particles suspended in a Newtonian viscous liquid flowing
under steady laminar conditions in a vertical tube or channel has been investigated in, e.g.,
Jeffrey /Pearson [JP65] and Asmolov [Asm99], see also Eichhorn/Small [ES64] and references
cited therein.

W W At small Reynolds number they found (see pic-
‘ T ‘ T ture on the left) that particles that are slightly

1 1 denser that the fluid migrate towards the wall
for downward fluid flow and to the axis of the
tube for upward fluid flow. Consequently, in
the case of upward flow it should be possible
to bring the particle to rest in the middle of
the channel or tube by adjusting the flow rate.
In fact, this procedure is described in Eich-
horn/Small [ES64]: In this experimental pa-
per the authors describe how they introduce a
particle in a vertical tube filled with fluid and

| adjust the Poiseuille flow in such a way that
W W the particle comes to rest.
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4.2 Determination of equilibrium positions

In this chapter we shall address the aforementioned issues and present results which are
valid for small enough (channel) Reynolds number Re and Weissenberg number We. In
particular, we improve upon the weak points of some of the papers mentioned above. The
strategy we are going to adopt to reach this goal is the following, see Galdi/Heuveline [GHOG]
and Bonisch/Galdi [BGO6]: We first fiz the distance h of the center of the sphere from one of
the walls and ask for a solution {v, p, U,w} of the corresponding steady system sphere-liquid.
Due to the fact that we keep h fixed, the translational velocity U of the sphere need not be
directed parallel to the wall of the channel and may have, in principle, a non-zero component
Us, perpendicular to the wall. By using the Lorentz reciprocal theorem (see e.g. Pozrikidis
[Poz97]) we show that Us = F(v, Re, We, Fr, h, ), where F' is an appropriate function of the
velocity field v, of the Reynolds, Weissenberg and Froude numbers Re, We, Fr, of h and
of the buoyancy «. The equilibrium position h = hegyi Will be the one that makes ' = 0.
Using a theorem by Galdi, we expand the unknown solution {v,p, U,w} around the solution
{vs, ps, Us,ws } corresponding to Re = We = 0 (Stokes approximation) and show that

Uy =Re (1 + E)UY + O(Re? + We?),

and that )
F=Re —" _[G(h:@) + EGy (h: @)] + O(Re? + We?).
T>(h)

Here, 73(h) > 0 is a function of h only, while G(h; @) and Gy (h; @) are functions of h and

@ := «a/Fr, and F = % is the elasticity number. Therefore, at first order in Re and We,
we have
Fr?

(1 _
N S S AL

G(h;@) + EGy (h;@)].

The equilibrium position heqy; is obtained by imposing U2(1) = 0, and it is found to be
a function of @ and E. The study of possible equilibrium positions and their stability is
performed in Section In the case of a purely Newtonian liquid (We = 0), we can obtain

further results by expanding all quantities around the Stokes solution up to third order in
Re.

4.2 Determination of equilibrium positions

The exposition in this section follows closely the lines of the papers Galdi/Heuveline [GHOG|
and Bonisch/Galdi [BG06].

4.2.1 Problem formulation and analytical preliminaries

We want to investigate equilibrium positions of a cylinder (disk in 2D) sedimenting through
a vertical channel Poiseuille flow, see Figure We are only interested in steady motions
of the system liquid-disk. Here, the ‘steadiness’ has to be understood in the following sense:
We introduce a coordinate frame attached to the disk center and moving with velocity U
and require that the motion of the fluid as seen from this body frame is independent of
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Figure 4.1: Description of the flow problem.

time. Moreover, the translational (angular, resp.) velocity U (w, resp.) of the disk has to be
constant in time, too. It is clear that such a steady motion can only occur if the (unknown)
velocity U of the disk is directed along the channel walls which we will assume to be parallel
to the xj-axis of the body frame. We also assume, without loss of generality, that the origin
of the body frame coincides with the disk center. We take d as a measure of the thickness
of the channel. It is convenient to define as scaling velocity V = y/gd, with g acceleration of
gravity.

With these notations we find that the Poiseuille flow (vg, po), as seen from the body frame
assumes the following dimensionless form:

vo(a; h) = —6sgn(®) Fr [h* + h(2z5 — 1) + 22(z3 — 1)]er = Fr f(wa, h)ey,

P 4.2.1
Po = —12Wx17 ( )

where Fr := % is the Froude number, @ is the given flow rat w is the shear viscosity and
—h (resp. 1 — h) is the xs-coordinate of the wall Iy (resp. I3) of the channel (see Figure
. The channel flow problem we are interested in can then be formulated as follows.

2 We shall use the following convention: If the fluid is flowing in the positive (negative, resp.) zi-direction,
we assume @ > 0 (@ < 0, resp.).
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4.2 Determination of equilibrium positions

Find {v, P,U,w, h} satisfying the dimensionless equations:

V-o(v,P)=Re(v-V)v, |
{ Vou—0. in (2,
Vps = WE3 X T, V| =V, =-U,
lim (v(x1,x2) —vo(z2;h) +U) =0,
1'31%0 (4.2.2)
/ vi(x1,22) drg =sgn(P) Fr — U - ey,
—h
/J(U,P)-nzG, /azx[a(v,P)-n}:().
S aS

Here, {2 is the region occupied by the fluid and o = o (v, P) is the Cauchy stress tensor. We
assume a ‘second-order’ liquid model, see e.g. Joseph [Jos90]. In such a case, o is given by

o(v,P) =on(v,P) — WeS(v), (4.2.3)
where
on(v,P)=—PI+2D(v), D=D():=(L+L")/2, L=L(v):=Vu, (4.2.4)
S(v)=2w-V)D+2D-LT +2L-D +4eD - D. o
Moreover, P = p— x1 is the modified pressure, Re := pTVd is the (channel) Reynolds number,
p is the fluid density, We := % is the Weissenberg number, € := s /a1 where a; < 0 and

ao are the so-called ‘quadratic constants’. In accordance with classical experimental results
on viscoelastic liquids (see e.g. Liu/Joseph [L.J93]) we have fixed the constant ¢ to be —1.8.
Furthermore, o := 7(R/d)?(ps/p— 1) where R, ps are the radius and the density of the disk,
respectively, and G = «e;.

The first important step is to prove the existence and uniqueness of a solution to problem
for any given h € (a,1 — a), where a := R/d < 1/2. In the following formulation of
the main analytical result we denote by (W"™4(£2), - [|mq), m > 0,q > 1 the usual Sobolev
space of functions in {2 having all derivatives up to the order m inclusive that are summable
to the g-th power.

Theorem 4.1. Let h € (a,1 — a) be given and let Fr > 0, > 0. Then, there exists Reg > 0
and Weg > 0 such that if Re < Rep and We < Weg problem (4.2.2]) admits one and only one
solution {v, P,U,w} such that

(v—wo+U) e W?3(2), (P—py) e WH(0).
Moreover, let {vg, Ps, Us,ws } be the solution of corresponding to Re = We = 0. Then
v =vs + (Re + We)o) + (Re? + We?)o® | P = P, + (Re + We)PY) + (Re? + We?) PP,
U=Us,+ Re + We)UY + (Re? + W) UP) | w = w, + (Re + We)wV + (Re? + We?)w®,

S (100 + @] + V@1 + PO
=1

1,2) <C,
(4.2.5)
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4 Sedimentation of a single particle in a channel flow: Galdi’s method

with C' depending only on (2, Fr, Rep and Wey. Finally, if We = 0 (purely Newtonian
liquid), then v, p, U and w are real-analytic in Re and their series are absolutely convergent
in W22(02), Wh2(£2), R? and R, respectively.

This theorem which is due to Galdi can be proved by following exactly the methods used in
Galdi et al. [GVPT02], see also Galdi/Heuveline [GHOG].

Remark 4.2. The translational velocity U of the solutions given in Theorem need not be
directed along the walls I, I, that is, these solutions may have Uy # 0. The objective of
the next section is therefore to find conditions under which Us = 0. Such conditions will
give precisely the possible values for h.

4.2.2 Derivation of the equilibrium equations

Our goal is to rewrite the last two equations in in such a way that we get explicit
expressions for the body variables U and w as functions of the velocity field v. To this end,
we introduce auzxiliary fields {w(i),ﬂ(i)} defined as solutions of the following linear Stokes
problems (i = 1,2, 3):

V- on(w®, 70) = 0,
. in {2,
V-w® =0,
w® =5, w® = =0, (4.2.6)

= w =
los Iy Iy

| lilm w(i)(xl,xg) =0,
x1|—00

where §; = e; for ¢ = 1,2, and 83 = e3 X . Notice that all fields w® 7@ depend only on h.

Remark 4.3. The field w™ (w@), resp.) corresponds to the motion of a disk translating at
unit velocity parallel (perpendicular, resp.) to the wall, while w® represents the rotation
of the disk with unit angular velocity. The idea in the following is to relate the unknown
solution v to the Stokes fields w(®, i = 1,2, 3, by exploiting the mutual structure of velocity
and stress of two different flow fields (‘Lorentz reciprocal theorem’). The special choice for
the boundary conditions of the auxiliary problems will lead to three scalar equations
for the three unknown body variables Uy, Uy and w, see equation .

In view of the symmetry z; < —z; of problems (4.2.6)), it can be easily shown that the
following relations hold:

/UN(w@),w(?)) ‘n = To(h)es, /a: < o (W@, 7@ . n] = 0,

oS oS
/GN(w@)J(:”)) ‘n = Ty(h)ey, /JN(w(l),ﬂ'(l)) ‘n=Ti(h)er,
05 05 (4.2.7)
/vo con(wM, 7MY n = Fr Fy(h), /vo con(w® 7). n =0,
oS aS
/vo con(w®, 7®)) 0 = Fr F3(h),
aS

50



4.2 Determination of equilibrium positions

where 7;(h),i =1,2,3, and F;(h),i = 1,2,3, depend only on h. Moreover,

/x x [on (w®, 7Y n] = Ry(h)es, /x X [on (w®, 7)) . n] = Ry(h)es,  (4.2.8)
oS oS

where, again, R;(h),7 = 1,3, depend only on h.
Later on, we will need the following technical lemma:

Lemma 4.4. The following inequalities hold for all h € (a,1 — a):

Ti(h) >0, T2(h) >0, Rs(h) >0

T1(h)R3(h) — R1(h)T3(h) > 0 (4.2.9)

Proof. First, we show that
T3(h) = R1(h), Vhe€ (a,1—a). (4.2.10)

To this end, we multiply the first equation in 1' with 4 = 3 by w)) and integrate by
parts. Taking into account (4.2.7)), we obtain

h) = 2/D(w(1)) - D(w®). (4.2.11)
9]

Likewise, if we multiply the first equation in 1’ with ¢ = 1 by w®, integrate by parts
and take into account (4.2.7), we obtain

h) = 2/D(w<3>) . D(wW), (4.2.12)
(9}

and (4.2.10)) follows.

Now we prove (4.2.9). To this end, we define w := Zg’zl Nw® | IT = Z?:1 A for
arbitrary \; € R, i = 1,2,3. From (4.2.6)) we find

{ V- on(w,II) =0,

in £2,
V-w=0,

(4.2.13)
Wiys = Z)‘Zﬁ“ Wi = w\FQ_ )

hm w(zy,x2) = 0.
|z1|—00

Multiplying the first equation in (4.2.13)) by w, integrating by parts over {2 and taking into
account (4.2.7)) and ( we get

MT 4+ X275 + N2R3 4+ 20 \3T3 = 2/ |D(w)]|?

Since the right-hand side of this equation is always positive, unless A\ = Ay = A3 = 0, and
the \;, i = 1,2, 3 are arbitrary, (4.2.9) follows and the lemma is proved. O
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4 Sedimentation of a single particle in a channel flow: Galdi’s method

We now multiply the first equation in 1) by w®, integrate by parts over {2 and use the
asymptotic properties of w® to obtain (i = 1,2, 3)

/@ o (v, P)n = Re /((v Vo We/S <i>)+2/D<v);D(w<i>). (4.2.14)
2

n

Likewise, if we multiply the first equation in (4.2.6) by v — v9 + U and integrate by parts
over {2, we find (i = 1,2,3)

/(U—|—w€3XZE—U0)' N 7 n—2/D @. (4.2.15)

oS

From (4.2.7)),(4.2.8)),(4.2.14)),(4.2.15]), one deduces that the last two equations in (4.2.2) are
equivalent to the following ones:

WR(R) + Uy Ti(h) = Fr Fi(h) + Gy — Re /((v Vo) +we/s oN

UsTa(h) = —Re /((u Vo) +We/S oN

wR3(h) + U1 T3(h) = Fr F3(h) — Re / v V)v) - w® + We /S(’U) - D(w®).
9

(4.2.16)
Remark 4.5. Equation (4.2.16]) represent a linear system for the body variables {U;, Uy, w}
which is uniquely solvable for any right-hand side in virtue of (4.2.9). The right-hand side still
depends on the unknown solution v. In the following we will plug the asymptotic expansion
(4.2.5)) into formula (4.2.16)) and obtain information about the solutions of the particle-liquid

system at first order in Re and We, as well as at first, second and third order in Re.

4.2.3 Evaluation of the equilibrium equations
The Stokes approximation

We start by evaluating equation (4.2.16)) at ‘zero-th order’ in Re and We, in other words: we
determine the solution {vs, Us,ws} of the particle-liquid systenE for the case Re = We = 0.
Recalling that 73(h) > 0, we get from the second equation in (4.2.16) that Ugy = 0. The
first and third equation in determine Uy and wy:

wsRl(h) + UslTl(h) = Fr]-"l(h) +

wSR?)(h) +UaT3(h) = Fr.7:3(h) (4.2.17)

Set
U5 = vs/Fr, Wy =ws/Fr, Ug = Uy /Fr, a=a/Fr. (4.2.18)

3 The subscript ‘s’ stands for ‘Stokes’. The pressure P; is not needed in the following.
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4.2 Determination of equilibrium positions

Then (4.2.17) becomes B
WsRi(h) + U1 Ti(h) = Fi(h) + @,

wng(h) + Usﬂg(h) = fg(h)
In view of (4.2.9)), system (4.2.19)) has one and only one solution that depends only on h. The
Stokes field T4 then can be written as U5 = Usl(w(l) —e1) +w,w® +w®, where w®, i =1,3

denote the auxiliary fields introduced in |D and {w(4), 77(4)} is defined as the solution of
the following problem:

(4.2.19)

) (4) 4y =
{ V-on(w'® 7)) =0, n 0,
V-w® =0,
w® = 0, w® = @ = 0, (4.2.20)
los |y |1y
| l}m (w® (21, 25) — f(a2;h)er) = 0.
T1|—00

Evaluation at first order in Re and We

To evaluate equation (4.2.16)) at first order in Re and We, we write (see (4.2.5))):

v =5 + (Re + We)oV) + (Re? + We?)v?),
U =Us+ (Re + We)UD + (Re? + We?)U?), (4.2.21)
w = ws + (Re + We)wV) + (Re? 4+ We?)w ),

and employ the second equation in (4.2.16]) to obtain (recall that Usy = 0)

(Re + We) UV To(h) = Fr?Re G(h; @) + Fr2We Gy (h; @) + 4, (4.2.22)
where
G(h;a) == — / (@ - V)vs) - w®, Gy(hi@) = / S(@s) : D(w®), (4.2.23)
(9} 9}
and
|A] < C(Re + We)?, C = C(2,Fr) > 0. (4.2.24)

Thus, at first order in Re and We, it follows that UQ(I) is given by

Fr?

(1) _
V=i e nm

G(h;a) + EGy (h;@)], (4.2.25)

with the elasticity number E := We /Re.

Since the equilibrium positions heqy; are those at which Us = 0, from (4.2.25) we deduce
that, at first order in Re and We, hegy; is the solution to the equation

G(h;a) + EGy(h;a) = 0. (4.2.26)
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4 Sedimentation of a single particle in a channel flow: Galdi’s method

Solutions of equation (4.2.26)) will be computed numerically and discussed in Section
The first-order contributions to U; and w can be computed in a similar manner from the

first and third equation in (4.2.16):

wORy(h) + UV T () = (1FfE) —/((vs-V)vs)-w(l)—f—E/S(vs):D(w(l)) :
2

L

DRy (h) + UV T (h) = (1P:2E) —/((US-V)vS)-w(g)—i-E/S(vs):D(w(g))
L 2 (0]

(4.2.27)

Interestingly, we found that the integrals appearing on the right hand side of (4.2.27)) are
effectively zero, from a numerical point of view. In other words, there is no correction at
first order of the quantities U; and w with respect to their Stokes approximations Ug; and

ws (see also Remark [£.7)).

Evaluation at third order in Re

For a purely Newtonian liquid (We = 0) we know from Theorem that v, p, U and w are
real-analytic functions in Re. In such a case we can extend the results above and evaluate
equation (4.2.16) at any arbitrary order. In the following we perform this expansion up to
third order.

We write f
v = vs + RevW + Re?v® + O(Re?),

P = P, +Re PY 4 Re?P?) + O(Re?),
U=Us+ReUY +Re?UP + RU®) + O(Re?),
w = ws + Rew® + Re?w® + Re®w® + O(Re?) .

(4.2.28)

Exploiting (4.2.16)) and repeating the argument used above with £ = 0 we find that the
first-order contributions to U;, Uz, w are the solutions of the following linear system:

wOR,(h) + UV T (h) = —Fr? / (0 - V)0, - wD,

(7
2
(n_ __Ir 5. V)5 - w®
0f) =~ [ (@ v -, (42.29)
%
() Oy = -2 [ (@ V5. - w®
WwRs(h) + U ' T3(h) = —Fr* | (U5 - V)Ts) - w'.
(p]

We next determine v") in (4.2.28). Recall that (v, P) and (vs, Ps) are solutions to the
following two problems:
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4.2 Determination of equilibrium positions

V-on(v,P) =Re(v-V)v, n 0, V- on(vs, P5) =0, in 2,
V-v=0, V-vs =0,
and
Vjps = WE3 X T, V|, =V, = -U, Uslgs = Ws€3 X T,  Vsp = Ug|p, = —Us,
‘ 1'1‘m (v(z1,22) — vo(x2;h) +U) =0, | l}m (vs(z1,22) — vo(x2; h) + Us) = 0.
x1|—00 x1|—o00
The difference (v — vg, P — P;) is therefore a solution to the problem
V-on(v—wvs, P—Ps) =Re(v-V)v, in Q.
V- (v—uvs) =0,
4.2.30
(0= va)los = (@ —wsles x 7, W—vln = (@—v ), = - ~U),  H*
| li|m (v —vs)(z1,22) + (U = Us)) = 0.
x1|—00
We now expand the quantities v, P, U, and w in (4.2.30) according to (4.2.28]), neglect
higher-order terms in Re and obtain that (1) := v /Fr? is a solution to the following
problem:
{ V- on@D, P = 3, - V)., -
—(1) _ ?
vl =0, (4.2.31)
@%) =wWes x z, Ufg = —U(l), lim (U(l) —i—U(l)) =0,

|1]—o00
where T\ .= UM /Fr? and o = M /Fr?,

The second-order contributions U1(2), U2(2)7 w® can now be obtained by using (4.2.16)),
(4.2.28), (4.2.29) and by neglecting higher-order terms in Re:

W®Rﬂm+Uﬁﬂaw:—Hiﬂ@vam+@ﬂ%vmgwﬂh

2
Fr?
T>(h)

U =~ [(@ 900+ @0 Dm0l g

(9}
M%QW+UP%wprﬁﬁﬂ@vaU+wﬂvmgw@.
2

To get information at third order in Re the same procedure has to be performed once more:
derivation of an equation for v(2) and evaluation of the general equilibrium equations (4.2.16)
at third order in Re. In the following we omit the details and directly present the result.

We set @) 1= w2 /Fr3, 7® = U® /Fr® and 7 := v(? /Fr3. With these notations 7 is
found to solve the following problem:

{vmmwﬂ%quwumww%

v =0, (4.2.33)

@ _ _g®

=(2) _ —(2
v —w()egxa:, n = ,

Is =
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4 Sedimentation of a single particle in a channel flow: Galdi’s method

The third-order contributions U1(3), 2(3), w(®) can now be obtained by using (4.2.16]),(4.2.28)),
(14.2.29)),(4.2.32)) and by neglecting higher-order terms in Re:

wORy(h) + UP T (h) = —Fr? / (W5 - V)@ + (@@ - V)5, + (@D - V)oh) . w®,

4

Fr
T(h

2
Uy =~ (@ + @ v+ 6V )l (4.2.34)
2
w®Rs(h) + UPT3(h) = —Fr? / (W5 - V)PP + @@ . W)z, + @D - V)o@,

2

To have consistent notations, we finally set @) := w® /Fr? % .= y® /Frt and 70 .=
v3) /Frd,

Remark 4.6. The algorithmic realization of the procedure described above is straightforward,
albeit somewhat involved. We begin by solving the auxiliary Stokes problems for
1 = 1,2,3 and . Then we compute the surface integrals 7;, ¢ = 1,2,3, and F;,
Ri, i = 1,3 as defined in ,. Solving the linear system (4.2.17)) yields the Stokes
approximations vs, Ps, Us, ws (‘zero-order approximation’). We are then in position to
evaluate the volume integrals occurring on the right-hand side of equations ,
or , respectively, which depend on v,. This gives us U and w™. Next, to get
v we solve problem |i which depends on the previously computed zero-th and first-
order terms vy, UM and w). To determine the second-order contributions U®) and w(®),
we compute the volume integrals in and solve the linear system. Finally, to get
v? we solve problem which depends on the previously computed zero-th, first and
second-order terms vs, vV, U@ and w®. The third-order contributions U®) and w®) are

then obtained by solving (4.2.34)).

Remark 4.7. In anticipation of the presentation of numerical results in Section 4.4 we would
like to mention an interesting phenomenon that was brought to light by the simulations.
We found that, for any h € (a,1 — a), the terms Ul(l), w®), Ul(g) 3)
UQ(O) := Ugy and UQ(Q) are practically zero, from a computational point of view. This suggests
that Uy and w (Us, resp.) allow for an expansion in even (odd, resp.) powers of Re,

, w® as well as the terms

w o= ws +Re?w®@ +Retw® +...,
Uy = Ug +Re2U?) +ReiU +..., (4.2.35)
U, = Re UV +ReAUL +RSUS) 4.

4.3 Solution process

The main numerical task needed to put the ideas described above into practice is the solution
of a number of auxiliary Stokes problems. To get information at first order in Re and We,
the three problems (4.2.6]), for ¢ = 1,2,3, have to be solved, as well as problem (4.2.20)).
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4.3 Solution process

For a simulation up to third order in Re, we need to solve for : = 1,2,3, and
in addition (4.2.20)),(4.2.31),(4.2.33). In order to obtain accurate information about the
possible equilibrium positions of the particle these Stokes problems have to be solved for
a large number (typically 50-100) of particle positions h. So a typical simulation up to
third order in Re for one set of parameters {Fr,Re,a} requires the solution of 300-600
Stokes problems! One should also keep in mind that the unbounded channel geometry of
the continuous formulation has to be replaced by a truncated finite channel. In order to
keep the impact of the artifical boundaries on the quantities of interest low, one has to take
quite long channels for the simulations, cf. the discussion in Chapter [3] The computational
effort to implement the method presented above is therefore very high. In order to reduce it
we use, once more, the technique of local grid refinement in the context of a Galerkin finite
element method. A typical computational grid is shown in Figure [£.2]

The finite element discretization of the (homogeneous, for simplicity) Stokes problem on a
bounded domain D with Dirichlet boundary conditions,

—Av+Vp=0, V-v=0 inD, =9, (4.3.1)

Y0op

starts from a variational formulation. Let W = [H}(D))? x L(D). For U = {v,p} €
[v? + H}(D)?] x LE(D) and & = {i,q} € W, we define the bilinear form

AU)(®) == (Vu,Ve)p — (p,V-9)p — (V- v,9)p. (4.3.2)
A weak form of equation then reads as follows:
Find U = {v,p} € [v? + H}(D)?] x L3(D), such that
AU)(@®) =0, VPeW. (4.3.3)

Equation (4.3.3) is now discretized by means of the finite element method on locally refined
meshes consisting of quadrilateral cells. As elements for velocity and pressure we take ‘equal-
order’ 1 elements, i.e. we define

Wy, :={(v,p) € [C(D)*; v|k € [Q1]* plk € Q1},

where Q1 describes the space of bilinear tensor-product polynomials. This spatial dis-
cretization needs stabilization in order to compensate for the lacking ‘inf-sup stability’, see
e.g. Rannacher [Ran00]. As an alternative to the usual SDLS (Streamline Diffusion Least-
Squares) or SUPG (Streamline Upwinded Petrov Galerkin) stabilization of Hughes et al.
[HBR2, [HEBR&6|, we suggest the LPS (Local Projection Stabilization) method proposed in
Becker/Braack [BB01] and Braack/Burman [BrB06] which has several advantages over the
other stabilization methods.

The discrete counterpart of problem then reads: Find Uy, = {vp,pr} € {v,‘?, O} + Wh,
such that

A(Uh)(@h) + S(;(Uh)<@h) =0, Vo, €W, (4.3.4)
Here, S5(Up)(®p,) denotes the additional stabilization form. This system is solved in a
fully-coupled manner by the Generalized Minimal Residual Method (GMRES) with precon-
ditioning by a geometric multigrid method with block-ILU smoothing. All simulations were
done using the finite element simulation package Gascoigne3D (see Becker et al. [BBT05]).
The visualization of the results was done with HiVision (see Bonisch/Heuveline [BHOG]).
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4 Sedimentation of a single particle in a channel flow: Galdi’s method

Figure 4.2: A typical, locally refined mesh employed in our computations. Top-left: the
whole channel, Bottom-left and Right: zoom on the particle.

4.4 Numerical results

In this section we present comprehensive numerical results obtained by using the method
described above. We consider a disk of radius R = 0.05 sedimenting in an infinite vertical
channel of width W = 1. The length of the truncated channel used for the numerical
computations is Lo = 5. (A comparison with a channel of length Lo = 10 showed no
significant differences. Therefore we can conclude that Lo = 5 is enough.)

The material is organized as follows: In Section we treat the case of a sedimenting
cylinder when the fluid flow is in the same direction as the gravity (downward-directed
Poiseuille flow). Section then is devoted to the case of upward-directed Poiseuille flow.
In any case, we shall start with a purely Newtonian liquid (F = 0) and determine - at
first order - the equilibrium positions in dependence of the (scaled) buoyancy @ = «/Fr,
beginning with @ = 0 (neutrally buoyant particle). We then increase the elasticity number
FE and examine how the position and stability of equilibria is affected. In the last part of
each of the Sections we present third-order results for a purely Newtonian liquid.
The number and the stability of equilibrium positions strongly depends on the choice of the

parameters a, Fr and Re.
Remark 4.8. In the numerical simulations we always determine the barred quantities U(i),
@, The actual quantities of interest, U and w, are related to those by

U=FTU,+F?[Re + We)TV + ...,

(4.4.1)
w=Fro, + Fr? (Re + We)oV + ...,
in the case of the first-order expansion in Re and We, and by
U=FT,+ 2 ReT" + F¥Re2UP + Bt Re3T® 1. (42

w = Frw;, + Fr? Rew") + Fr’ Re 2w® + Fr* Re*w® + ... ,

in the case of the third-order expansion in Re. So, in principle one has to track the depen-
dence of U and w on Fr as well as on Re. This ambivalence could easily lead to confusion.
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4.4 Numerical results

Therefore we normalize the quantities in the following way:

U/Fr :US—FFrRe(l—i-E)U(l)—i---'Eﬁ; (4.4.3)
w/Fr =@, + FrRe(1+ B)oV) + .- = &, o
and . ) B
U/Fr =Ty + FrReTY 4+ (FrRe)2T? 4+ (FrRe)PT® 4 ... = 1, (444

w/Fr =05 + FrRewW) + (FrRe )?c® + (FrRe)’a® + ... = @.

Then everything depends on the single parameter Fr Re. It is clear that neither the position
nor the stability of equilibria is affected by this scaling.

Remark 4.9. For a better understanding of the particle dynamics we will extensively plot
‘pseudo-trajectories’. So, if U = (01, 02) denotes the normalized translational velocity of
the particle introduced above, we plot curves {(z1(t),x2(t)), ¢ > 0} which are defined as
solutions of the initial-value problems

i1 =U;, x1(0)=0,

e (4.4.5)
&g = U, x2(0) = ho,

for different initial heights ho. Of course, the resulting curves are not identical with the
‘real’; i.e. instationary particle trajectories, since for each h the velocity U = U(h) is the
result of solving the stationary fluid-particle equations.

4.4.1 Downward-directed Poiseuille flow
Results at first order in Re and We

We recall from Section that the equilibrium heights hegqy; are given, at first order in Re
and We, by the solutions to equation (4.2.26), that is,

G(h;a)+ EGy (h;a) = 0. (4.4.6)

First we will describe the results for the purely Newtonian case, F = 0. (These results are
summarized in Table ) Equilibria are then characterized as zeros of the function G(-; @).
In the following, we subsequently increase @, starting with @ = 0 (neutrally buoyant case).
With a view to Figure (top left), we find threeﬁ possible solutions,

(1)
hequi

—05, A% ~1-0.26=0.74

equi

~0.26, h%

equi

(2)

S is unstable. This can be estab-

Notice that h(l) and h(s)

equi cqui AT€ stable equilibria, while h

lished as follows: Consider a small variation dh at the equilibrium position hgl)w-. If 6h <0,

we get that G(h + dh; @) is positive. U2(1)(h + 0h) is hence positive, too, in view of equation

4 All plots in this section refer to the range h € (0,0.5], i.e. only the lower half of the channel is shown. This
is sufficient, because the problem is symmetric with respect to the center line {h = 0.5}. However, when
it comes to counting the number of equilibria we will always refer to the whole channel!
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4 Sedimentation of a single particle in a channel flow: Galdi’s method

(4.2.25)). This means that the fluid will exert a force in the upward direction that will bring

the particle back to hgzu-. Analogously, if 6h > 0 then G(h + 0h; @) is negative and the
fluid will exert a force in the downward direction that will bring the particle back to h(ezzu-,

too. Repeating exactly the same argument, we find that hS;Li is stable and h(ez)m- is unstable.
(The trajectories shown in Figure illustrate this fact.) For later considerations, we may
summarize this result by saying that a given equilibrium position heqy; is stable if the slope

of G(h; @) is negative at h = hegui, and that it is unstable if the slope is positive.

Our findings for the case @ = 0 are in very good agreement with the classical experimental
observations by Segreé and Silberberg [SS61, [SS62]. These authors studied the migration of
neutrally buoyant spheres in pipe flows at Reynolds numbers between 2 and 700, and found
that the spheres migrate away from the wall and centerline and cluster at about 0.6 of a
pipe radius (‘Segre-Silberberg effect’.)

We now discuss the case @ > 0. Figures [£.4] and [£.0] correspond to @ = 0.5, @ = 1
and @ = 1.5, respectively. What we found is the following: The two stable equilibrium
positions Y and B

equi equi both move towards the walls as @ increases. Furthermore, there

is a critical (scaled) buoyancy @, such that if @ < @,, the equilibria hgzzu- and hgﬂ are the
(2

only stable equilibria. If, however, @ > @., the center position heqm- = 0.5 becomes a third
stable equilibrium position. A physical interpretation of this phenomenon is the following. If
the particle is ‘heavy enough’, it falls so rapidly that it completely ‘leads’ the flow, in other
words: it does not really ‘feel’ the Poiseuille inflow. The fluid, as seen from the particle,
therefore behaves essentially stagnant. For a sedimenting disk in a stagnant fluid, however,
we know from previous computations that the center position is in fact a stable equilibrium,
cf. Galdi/Heuveline [GHO6].

Concerning the viscoelastic case (EF > 0) we found the following, see Figure
For relatively small values of @&, as we increase the elasticity number, the stable off-center
equilibrium positions move toward the center of the channel. Eventually, for E large enough,
the center becomes the only stable position.

However, for large values of @ the situation approaches the limit case of a stagnant fluid
(no ‘effective’ Poiseuille flow). For such a case we know from Galdi/Heuveline [GHO6] that
elasticity acts to push the particle towards the walls. In Figure 4.7 we show the variation
of Gy (h) when @ = 100. In fact, we see that elasticity acts to destroy the stability of the
center equilibrium and to push the particle toward the walls.
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Figure 4.3: Results at first order in Re and We for the case of a downward Poiseuille flow,
where @ = 0 and FrRe = 10. G(h) and Gy (h) vs. h (first row) and trajectories
for E =0, £ =0.002 (second row) and £ = 0.005, £ = 0.01 (third row).
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Figure 4.4: Results at first order in Re and We for the case of a downward Poiseuille flow,
where @ = 0.5 and Fr Re = 10. G(h) and Gy (h) vs. h (first row) and trajectories
for E =0, £ =0.001 (second row) and E = 0.002 (third row).
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Figure 4.5: Results at first order in Re and We for the case of a downward Poiseuille flow,
where @ = 1 and FrRe = 10. G(h) and Gy (h) vs. h (first row) and trajectories
for E =0, £ =0.0005 (second row) and E = 0.001 (third row).
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Figure 4.6: Results at first order in Re and We for the case of a downward Poiseuille flow,
where @ = 1.5 and Fr Re = 10. G(h) and Gy (h) vs. h (first row) and trajectories
for E =0, £ =0.0004 (second row) and E = 0.0006 (third row).
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4.4 Numerical results

Table 4.1: Number, position and stability of equilibrium positions for different values of @.
The Poiseuille flow is directed downwards. The fluid is purely Newtonian (E = 0)
and Fr Re = 10. Equilibria are computed at first order in Re.

| |

a
0 | neutrally buoyant case; two stable equilibrium positions, symmetric with respect
to the center line (‘Segre-Silberberg effect’). The equilibrium in the middle of the
channel is unstable (Figure [4.3)).
0.5 | The equilibrium positions are shifted towards the walls (Figure .

1 | The equilibrium positions move further towards the walls. The center equilibrium
is still unstable (Figure [4.5)).
1.5 | The off-center equilibrium positions move further towards the walls. The center
has become another stable equilibrium (Figure |RD
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Figure 4.7: Results at first order in Re and We for the case of a downward Poiseuille flow, & =
100. The viscoelastic contribution Gy (h) to the lift is plotted vs. h. Compare
this curve to the corresponding one for smaller values of @, Figures 4.6]).
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4 Sedimentation of a single particle in a channel flow: Galdi’s method

Results at third order in Re

The equilibrium heights hegy; are given, at third order in Re, by the solutions to

Re USY (h) + Re2US? (h) + ReAUSY (h) = 0.

We recall (see the second equation in (4.2.29), (4.2.32) and (4.2.34)), respectively) that the
(scaled) first, second and third-order contributions to Uy are given by

gw___1 5 V) w® = L O
7y = 7-2<h>([<<”s V)0 = g i),
T¥ = _ ! /((v Vo + @ Vg, - w® = 1 G (h;a)
2 E(h) S s —,2—2(]1) ) )
0
g»___1 5. 5@ + (1@ . . + @D . VD). w® = L O (ha
Uy’ = %(h)/((vs Vo' + (39 - V)os + (7 - V)o') - w _%(h)g (h;@).
2
(4.4.7)

The integral defining G (h) was numerically found to be zero for any h (see Remark .
Hence the equilibrium positions hegyi are characterized as solutions to the equation

Ua(h) = FrReUS (h) + (FrRe)3T S (h) = 0. (4.4.8)

In Figures we present numerical results for @ € {0,0.5,1,1.5}. For each value of @
we plot the following characteristic quantities:

o the first and third-order contributions G and G to the lift (see (4.4.7)),
o U as in (4.4.8)), for different values of Fr Re,

o the particle ‘trajectories’ {(x(t),x2(t)), ¢ > 0} computed according to (4.4.5)), for
different values of Fr Re.

Let us begin with @ = 0. With a view to Figure (first row), we see that the ‘first-order
equilibria’
)

equi

—-05, &Y

equi

~0.26, h?

equi

~ (.74,

see above, are also zeros of the function G®)(h). However, the slope of G(h) and G©®)(h)
has opposite sign at hgq)ui, 1 = 1,2,3. That means that there is a competition between the
first and third-order contributions concerning the stability of equilibria. For small values of
Fr Re, the first-order term dominates and the two off-center equilibria hgzzu‘ and hS}Li are
stable. For Fr Re large enough, however, third-order effects become more important and
the off-center equilibria lose their stability while the center equilibrium becomes stable. For
certain intermediate values of Fr Re, two additional unstable equilibria hgzn and hgn occur.
The (rather complex) dependency of the number and stability of equilibrium positions on

the parameter Fr Re is also summarized in Table [1.2]

Let us turn now to the case of a non-neutrally buoyant particle (@ > 0). Figures
show the results corresponding to @ = 0.5, @ = 1 and @ = 1.5, respectively.
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4.4 Numerical results

Table 4.2: Number and stability of equilibrium positions for @ = 0 (left), @ = 1 (middle)
and @ = 1.5 (right). The Poiseuille flow is directed downwards. The fluid is
purely Newtonian (F = 0) and equilibria are computed at third order in Re.

a=0 a=1 | a=15
FrRe 10 30 70| 10 50 5 50
#equilibria 3 5 3| 3 1 5 3
#stable eq. 2 2 1 2 0 3 2
center stable | no no yes | no no | yes no

Like in the case @ = 0 we found different trajectory patterns and a different number of
equilibrium positions, depending on @ and FrRe. (The number and stability of equilibria
are also summarized in Table [4.2]) The overall trend that we can extract from the data
is the following: Increasing FrRe for fixed @ effectuates a shift of the off-center equilibria
towards the walls. The same happens if we fix Fr Re and increase @.
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Figure 4.8: Results at third order in Re for the case of a downward Poiseuille flow, & = 0.
G (h) and GO (h) vs. h (first row), Uy vs. h for different values of FrRe
(second row), and trajectories for Fr Re € {10, 50,70} (third & fourth row).
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Figure 4.9: Results at third order in Re for the case of a downward Poiseuille flow, @ = 0.5.

GW(h) and GO (h) vs. h (first row), Uy vs. h for different values of FrRe
(second row), and trajectories for Fr Re € {10, 30,50} (third & fourth row).
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Figure 4.10: Results at third order in Re for the case of a downward Poiseuille flow, & = 1.

G (h) and GB)(h) vs. h (first row), Uy vs. h for different values of FrRe
(second row), and trajectories for Fr Re € {10,30} (third row).

70



4.4 Numerical results

4 i i
0.1 0.15 02 0.25 03 0.35 0.4 0.45 05 0.1 0.15 02 025 03 035 04 0.45 05
-
10
o5t 01 ;
emm Tl ——FrR=20)
o . tes - --FrR=30)
° - / L “oFrR=40] |
B L7 ; 0.05 -~ FrR=50
051 - . i
v i !
/
b » i
\ N - !
\ - i
-L5E S
\ ;
/
-2 i q /
v ’
v / -0.1f R
-2.5F \ H g ;
N 7
; :
-3r : v ] -0.15 . ! R
\ ’ - N
\
-3.5¢ . —FrR=1
---FrR=5 -0.2F i 1
_ab FrR = 10|
N - Tl , - - FrR =15
4. i P | i ik Ik i T 0. i i i i i i i
0.1 0.15 02 0.25 03 0.35 0.4 0.45 05 0.1 0.15 02 025 03 035 0.4 0.45 05

0.

0.45| 1
0.4 1
0.35| 1
03 4 0.3fF 1
0.25| 4 0.25| 8
02 4 0.2 1
0.15| : : : : 4 0.15| 1

0.1 . . . . . . 0.1 .

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 500

1500

Figure 4.11: Results at third order in Re for the case of a downward Poiseuille flow, &@ = 1.5.

GW(h) and GB)(h) vs. h (first row), Uy vs. h for different values of FrRe
(second row), and trajectories for Fr Re € {1,10} (third row).
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4 Sedimentation of a single particle in a channel flow: Galdi’s method

4.4.2 Upward-directed Poiseuille flow

We now turn to the situation when the channel Poiseuille flow is in opposite direction than
the gravitational force. It is clear that in such a case, the particle will sediment only if it
is heavy enough; if it is too light, it will be blown upwards by the fluid flow. Moreover it
is known (see Section that if the liquid is Newtonian and viscous enough, a (spherical)
particle settling through an upward Poiseuille flow always goes to the center of the channel.
Consequently, in such a case one can bring the particle to rest in the middle of the channel by
adjusting the flow rate @ (or, equivalently, the Froude number Fr or the maximum velocity
of the parabolic inflow profile). It is clear that for a given buoyancy « there is one and
only one such ‘fluidization flow rate’, see also Joseph [Jos00], Chapter VI. Using as decisive
parameter the scaled buoyancy @ = «/Fr, the ‘stabilization problem’ reads as follows: Find
a@* such that the resulting translational velocity U; = Uj(h; @) vanishes at h = 0.5,

U1(0.5;a*) =0.

In the following we will compute @*. Since we only want to show the basic principle we will
restrict ourselves to satisfying the condition U; = 0 at first order in Re, cf. Remark

Stabilization of the particle at first order

We recall from Theorem the asymptotic expansion for Uy,
_ (1) 2
Ui = Us1 + Re U’ 4+ O(Re?).

Numerically, we found (see Remark that Ul(l) = 0. This means that in order to satisfy
the condition Uy = 0 at first order in Re it is enough to enforce it at zeroth order. So we
consider the Stokes field vs = vs(h) and require that Us1(0.5;@) = 0. Then (4.2.19) shrinks

to
55(0.5)7?,1 (0.5) =F (0.5) + a,

_ (4.4.9)
ws(0.5)R3(0.5) = F3(0.5).
From (4.4.9) we can compute the value of @ for equilibrium,
F3(0.5)R1(0.5
g+ = T3(05R(05) F1(0.5). (4.4.10)

R3(0.5)

In other words, for a given buoyancy a the Froude number yielding equilibrium is, at first

order in Re, given by

Fr*(a) = —. (4.4.11)

In the following we shall present numerical results for the cases @ < a*, @ = @* and a > a*,
at first order in Re and We, as well as at third order in Re.
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4.4 Numerical results

Remark 4.10. Before presenting our numerical results, we would like to make two comments
concerning the above computation of the equilibrium value @*: Firstly, it is based on a
first-order approximation of U; only. As a consequence, when we proceed to higher order we
cannot expect the particle to stay at rest unless we also adjust @*. Secondly, in the above
computation we assume that the equilibrium distance from the wall is heqyi = 0.5, i.e. the
channel center is a (stable) equilibrium. We will see that for F = 0 (purely Newtonian
liquid) this is indeed the case provided the particle is heavy enough (at least at first order
in Re). For a viscoelastic liquid (F > 0) however, this is not true in general. As we will see,
elasticity acts to push the particle to the walls. Consequently, in such a case the choice of
a = a* does not guarantee that the particle comes to rest, even at first order in Re and We!

Results at first order in Re and We

We recall, once more, from Section 4.2.3] that the equilibrium heights hequ; are given, at first
order in Re and We, by the solutions to equation (4.2.26|), that is,

G(h;a)+ EGy (h;a) = 0. (4.4.12)

The equilibrium value @* in (4.4.10) was found to be

a* = 13.3591. (4.4.13)

First we will describe the results for the purely Newtonian case, £ = 0. (These results are
summarized in Table [4.3]) Equilibria are then characterized as zeros of the function G(-;@).
In the following, we subsequently increase @&. The results for @ = 0 do not need to be
discussed again since they are identical with the respective results for downward Poiseuille
flow (see Section m Figure , the only difference being that the particle is now going

up. The same two stable ‘Segre-Silberberg equilibria’ hgzm- ~ (.26 and hgz”. ~ 0.74 are
2

equi

We now discuss the case &@ > 0. Figures [A.12] [£.13] [.14] [.15], [£.16] and [£.17] correspond

toa =05, a=1 a=5 a=10, @ = @ and @ = 15, respectively. What we found is

found. The center equilibrium A~ . = 0.5 is unstable.

the following: The two stable equilibrium positions hiﬁn and hS;LZ- both move towards the
center as « increases. Eventually, when @& reaches a critical value a@., they will both collapse
in the middle of the channel that will then become the only (stable) equilibrium. Note that
@, is well below the equilibrium value @*. Hence, in the parameter range @, < @ < @* the

particle approaches the channel center and, eventually, goes up.

We come now to the case @ = @*, see Figure All particle trajectories go to the channel
center. There the particle comes to rest, as expected.

The case @ > a* corresponds to a particle which is ‘too heavy’ to be balanced by the inflow.
It falls down while approaching the center which is the only (stable) equilibrium.

Concerning the viscoelastic case (E > 0) we found the following, cf. Figures [4.124.17
For all values of @ in the considered parameter range, elasticity acts to push the particle to
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Table 4.3: Number, position and stability of equilibrium positions for different values of @.
The Poiseuille flow is directed upwards. The fluid is purely Newtonian (E = 0)
and Fr Re = 10. Equilibria are computed at first order in Re.

| |

o)

0 | neutrally buoyant case; two stable equilibrium positions, symmetric with respect
to the centerline (‘Segre-Silberberg effect’). The equilibrium in the middle of the
channel is unstable.

0.5 | The equilibrium positions are shifted towards the center line (Figure |4.12D.

1 | The center line is now the only (stable) equilibrium position (Figure [4.13).

10 | When starting near the walls, the particle first go down a little bit while moving
to the center line. Eventually, of course, it must go up, since still @ < @* (Figure

4.15)).

The equilibrium case: All trajectories go to the centerline. There the particle comes

to rest (Figure [4.16)).
15 | The particle is too heavy. It falls down while approaching the center line (Figure

4.1'7)).

the walls of the channel. Special attention deserves the case @ = a*, see Figure For
elasticity numbers E less than a certain critical elasticity number E., the trajectories still
go to the center. For such a case, the analysis carried out above to determine a* is valid.
Consequently, the particle comes to rest in the middle of the channel. However, if £ > E,
the center equilibrium becomes unstable. In this case, the particle approaches one of the two
off-center equilibrium positions and goes down since the parabolic inflow is strong enough for
fluidization only in the middle of the channel. The critical elasticity number was computed
to F. = 0.0122.
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4.12: Results at first order in Re and We for the case of an upward Poiseuille flow,
where @ = 0.5 and FrRe = 10. G(h) and Gy (h) vs. h (first row) and trajec-
tories for E =0, E = 0.005 (second row) and E = 0.01,0.02 (third row).
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Figure 4.13: Results at first order in Re and We for the case of an upward Poiseuille flow,
where @ = 1 and FrRe = 10. G(h) and Gy (h) vs. h (first row) and trajectories
for E =0, E =0.005 (second row) and E = 0.007 (third row).
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Figure 4.14: Results at first order in Re and We for the case of an upward Poiseuille flow,
where @ = 5 and FrRe = 10. G(h) and Gy (h) vs. h (first row) and trajectories
for E =0, £ =0.006 (second row) and E = 0.0065 (third row).
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Figure 4.15: Results at first order in Re and We for the case of an upward Poiseuille flow,
where @ = 10 and FrRe = 10. G(h) and Gy (h) vs. h (first row) and trajecto-
ries for E =0, E = 0.01 (second row) and F = 0.011,0.02 (third row).

78



4.4 Numerical results

07 T

0.6f

05F

0.4f

0.2

0.1

L
0.15

oo
a

T
o 0.05

03

0.25

0.2

0.1 L
0

Figure 4.16

T T T T T T T T T T T T T
. . ; . ; . " . ; . . . ; .
0.2 0.25 0.3 0.35 0.4 0.45 0.5 01 0.15 0.2 0.25 03 0.35 0.4 0.45 05
; . ; . . 1
01 015 02 025 03 035 04 045 05 1 15 2 25 3 35
0.
— 0.45
1 04
8 035
B 0.3]
1 0.25
8 02|
B 0.15
; ; . . . . , 01 , . ; . . ; . .
2 3 4 5 6 7 8 9 2 4 6 8 10 12 14 16 18 20
0. T T T T T T
0.45 1
0.4 4
0.35 B
03 1
0.25 8
0.2 4
0.5 1
0.1 : . . L . L
5 10 15 20 30 35 40 45

: Results at first order in Re and We for the case of an upward Poiseuille flow,
where @ = @* and FrRe = 10. G(h) and Gy (h) vs. h (first row) and trajecto-
ries for £ =0, E = 0.012 (second row), E = 0.0125, £ = 0.013 (third row)

and E = 0.015 (fourth row).

79



4 Sedimentation of a single particle in a channel flow: Galdi’s method

o 1
07F 4
06k ; : : ]
05l 1
04 1
03f 1
02F 4
01f 1
o ; ; ; ; ; ; ; ;
01 0.15 02 0.25 0.3 0.35 0.4 0.45 05 0.1 015 02 0.25 03 0.35 04 0.45 05
o 05
0.55F 1 1
05 1
0.45 1
04 | ]
035 1 1
03l 1 1
0.25 1
02 4
015 1 1
o1 ; ; ; ; ; ; ; | ; ; ; ;
0 0.2 0.4 0.6 0.8 1 12 14 16 8 10 12 14 16 18
0.
0.45}) 4
04 1
035 1
03 1
0.25) 1
02 4
015 1
o1l ; ; ; ; ; ; ; ; ;
0 05 1 15 2 25 3 35 4 15 5

Figure 4.17: Results at first order in Re and We for the case of an upward Poiseuille flow,
where @ = 15 and FrRe = 10. G(h) and Gy (h) vs. h (first row) and trajecto-
ries for E =0, E = 0.015 (second row) and E = 0.02 (third row).
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Results at third order in Re

The equilibrium heights hegy; are given, at third order in Re, by the solutions to
Re UV (h) + Re2US? (h) + Re3USY (h) = 0.

Since UQ(Q)(h) = 0 (see Remark j the equilibrium positions heq.; are again characterized
as solutions to the equation

Uo(h) = FrReUS + (FrRe)TS) = 0. (4.4.14)

In Figures 4.19H4.24] we present numerical results for @ € {0.5,1,5,10,a@*,15}. As in Section
(downward flow), we plot the following characteristic quantities for each value of @:

e the first and third-order contributions G and ¢®) to the lift (see (4.4.7)),
o Uy as in (4.4.8), for different values of Fr Re,

o the particle ‘trajectories’ {(x1(t),z2(t)), t > 0} computed according to (4.4.5)), for
different values of Fr Re.

The results for @ = 0 do not need to be discussed again since they are identical with
the respective results for downward Poiseuille flow (see Section m Figure , the only
difference being that the particle is now going up instead of going down. In particular, the
number and stability of equilibrium positions are the same. They are summarized in Table

E4

Concerning @ > 0 the following information can be extracted from the simulations (see Fig-
ures 4.19 and Table {4.4)): For small values of FrRe, first-order effects are dominant
and hence the particle will go to the center, provided @ > @, (see above). For @ and FrRe
both large enough, the particle will always go to the walls. For intermediate values of @
and/or Fr Re, however, the particle trajectories show a rather complex transient structure;
small variations in the parameters can lead to dramatic changes of the global particle be-
havior. As an example, we consider the case @ = @*, where a@* is the value of @ introduced
in , in order to stabilize the particle at first-order in Re. Figure shows
the trajectories corresponding to FrRe = 5, FrRe = 7 and FrRe = 10, respectively. (The
plots are identical with the corresponding ones contained in Figure but we repeat them
here for the readers’ convenience). As expected, the ‘first-order equilibrium value’ @ = @* is
not appropriate in order to stabilize the particle at third order (see also Remark . For
FrRe = 5 the trajectories still go to the centerline, but the particle does not come to rest
there but goes up instead. In contrast, for Fr Re = 10 the particle first goes up for most
initial positions and approaches an off-center equilibrium position near the channel wall.
There it falls down. Finally, for FrRe = 7, a ‘mixture’ of the two aforementioned results is
observed: The half-channel {h < 0.5} is divided in two sections by an unstable equilibrium
at ho ~ 0.28. A particle starting in the lower section (h < hg) eventually will fall down while
approaching a stable equilibrium at h =~ 0.18. In contrast, a particle released in the upper
section (h > hg) approaches the channel centerline while rising. We can conclude that at
higher order much more intricate trajectory patterns emerge than at first order.
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Table 4.4: Number and stability of equilibrium positions. The upper table refers to @ = 0
(left), @ = 0.5 (middle) and @ = 1 (right). The lower table refers to @ = 5
(left), @ = 10 (middle) and @ = @* (right). The Poiseuille flow is directed
upwards. The fluid is purely Newtonian (E = 0) and equilibria are computed at
third order in Re.

a=0 a=0.5 a=1
FrRe 10 30 70|10 30| 10
#equilibria 3 5 3| 3 3 1 3
#stable eq. 2 2 1 2 1 1
center stable | no no yes | no yes | yes yes

a=>5 a=10 a=a*
FrRe 10 20 30 5 10 20 4 8 12
#equilibria 1 3 1 1 5 1 1 5 1
#stable eq. 1 1 0 1 3 0 1 3 0
center stable | yes yes mno | yes yes mno | yes yes no

0.1

Figure 4.18: Results at third order in Re for the case of an upward Poiseuille flow, @ = &*.
The particle trajectories are plotted for Fr Re = 5 (top left), FrRe = 7 (top
right), and FrRe = 10 (bottom).
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Figure 4.19: Results at third order in Re for the case of an upward Poiseuille flow, @ = 0.5.

GW(h) and GB)(h) vs. h (first row), Uy vs. h for different values of FrRe
(second row), and trajectories for Fr Re € {20,50} (third row).
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Figure 4.20: Results at third order in Re for the case of an upward Poiseuille flow, @ = 1.

G (h) and GB)(h) vs. h (first row), Uy vs. h for different values of FrRe
(second row), and trajectories for Fr Re € {20, 50} (third row).
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Figure 4.21: Results at third order in Re for the case of an upward Poiseuille flow, @ = 5.

GW(h) and GB)(h) vs. h (first row), Uy vs. h for different values of FrRe
(second row), and trajectories for Fr Re € {20, 25,30} (third & fourth row).
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Figure 4.22: Results at third order in Re for the case of an upward Poiseuille flow, @ = 10.
G (h) and GB)(h) vs. h (first row), Uy vs. h for different values of FrRe
(second row), and trajectories for Fr Re € {5,8,9,10} (third & fourth row).
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Figure 4.23: Results at third order in Re for the case of an upward Poiseuille flow, @ = a@*.
G (h) and GB)(h) vs. h (first row), Uy vs. h for different values of FrRe
(second row), and trajectories for Fr Re € {5,6,7,10} (third & fourth row).
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Figure 4.24: Results at third order in Re for the case of an upward Poiseuille flow, @ = 15.

G (h) and GB)(h) vs. h (first row), Uy vs. h for different values of FrRe

(second row), and trajectories for Fr Re € {5,6, 7,8} (third & fourth row).
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We now turn to the general case and discuss possibilities to simulate the motion of an
arbitrary number of rigid particles in a fluid filling a domain with arbitrary geometry. Unlike
in the special cases considered in the previous chapters, there is no possibility any more to get
rid of the time-dependence of the fluid domain by means of a simple frame transformation.
Moreover, since the particles are advected by the fluid and exert forces on the fluid, the
need for an accurate resolution of the body-liquid interfaces gives further complexity to
the problem with increasing number of particles. This makes Direct Numerical Simulation
(DNS) of the general particulate flow problem a very challenging task.

This chapter is organized as follows: In Section we give an overview of the different
numerical methods proposed for this problem during the past years. In Section we
present an adaptive fictitious-domain method to simulate rigid particulate flow problems.
Our algorithm is based on the stress-DLM approach originally proposed by Patankar et al.
[PSJT00]. However, the consequent use of adaptivity (adapted meshes, selective quadrature)
makes our method much more accurate and efficient, see also Bonisch et al. [BDRO6l Boe06].
In Section we present numerical experiments. We validate our method by solving a well-
known benchmark problem. The savings achieved by adaptivity are huge. The simulation
of different configurations involving multiple particles show the potential of our approach.
The issue of non-smooth particle geometries is addressed.

5.1 Overview of existing numerical approaches

There are essentially two conceptually distinct approaches which have been developed for
DNS of particulate flow problems, see e.g. Wan/Turek [WT06] and Patankar et al. [PSJT00].

The first approach is based on the arbitrary-Lagrangian-Eulerian (ALE) idea and was intro-
duced by Hu and coworkers [Hu96l [HJC92, [HPZ01]. They use a combined weak fluid-particle
formulation, where the mutual hydrodynamic forces acting on the particles and on the fluid
cancel out. For the computations an unstructured, body-fitted moving mesh is employed
and the arbitrary-Lagrangian-Eulerian technique is adopted to deal with the motion of the
particles. The mesh points located on the particle boundary move with the particle, while
the mesh points associated to the fluid domain are computed using Laplace’s equation in
order to guarantee a smoothly varying node distribution. At each time step, the mesh is
updated according to the motion of the particles. Care has to be taken of possible degen-
eration of mesh cells. If the mesh distortion becomes too large, a new finite element grid is
generated and the flow field is projected from the old grid to the new one. In this scheme,
the positions of the particles and grid nodes are updated explicitly, while the velocities of the

89



5 Motion of multiple particles

fluid and the solid particles are determined implicitly. Another numerical scheme based on
the moving-mesh technique was developed by Johnson and Tezduyar [JT96]. These authors
used a space-time finite element formulation and a fully explicit scheme in which the forces
acting on the particles were calculated explicitly in order to solve Newton’s equations of
motion for the rigid particles.

The second approach is ‘Eulerian’ and is based on the principle of embedded or ‘fictitious’
domains. The idea is to embed an irregular computational domain into a larger domain of
simpler shape and to discretize this simple, ‘fictitious’ domain. The presence of the ‘real’
boundaries is then simulated by adding appropriate forcing terms to the equation to be
solved. In the context of particulate flows this means that the fluid flow is computed as if
the space occupied by the particles were filled with fluid, too. The no-slip boundary condition
on the particle boundaries is then enforced by an extra constraint. This allows for the use of
a fixed grid, eliminating the need for re-meshing which is a definite advantage especially in
parallel implementations. There are several ways to apply this general principle to solve fluid-
particle interaction problems. Glowinski et al. [GPHT 01| proposed a distributed Lagrange-
multiplier /fictitious-domain (DLM) method for the direct numerical simulation of the motion
of many rigid particles in Newtonian fluids. Their formulation permits the use of a fixed
structured grid which allows for the use of fast and efficient solvers. In the DLM method,
the flow in the particle domain is restricted to rigid-body motions by employing a rigidity
constraint giving rise to a Lagrange multiplier field in the particle domain. The fluid-particle
motion is treated implicitly using a combined weak formulation in which the mutual forces
cancel. A variant of the DLM approach for particulate flow simulations was later presented
by Patankar et al. [PSJT00] and is known as the ‘stress-DLM formulation’. The idea is
to impose the rigid motion by constraining the deformation-rate tensor within the particle
domain to zero. This eliminates the translational and angular velocities of the particles
as variables from the coupled system of equations. The stress-DLM formulation recognizes
that the rigidity constraint results in a stress field inside a rigid solid just as there is a
pressure in an incompressible fluid. The DLM variants of Glowinski et al. [GPHT01] and
Patankar et al. [PSJT00] were both implemented by using a Marchuk-Yanenko operator-
splitting scheme for time discretization and a finite element spatial discretization. Although
the DLM methodology has been successfully used for computations with up to 1204 spheres
in three dimensions, see Pan et al. [PJBT02], further speed-up of the solution procedure
was desirable. Therefore, Patankar [Pat01l [SP05|] presented an adapted version of his earlier
DLM-based formulation for the fast computation of rigid particulate flows. The key issue
addressed in this DLM variant is the fast implementation of the rigidity constraint. The
formulation eliminates the need for an iterative procedure to solve the rigid body projection
step thereby allowing for faster computations.

Recently, a more ‘explicit’ variant of the fictitious-domain method, the so-called ‘fictitious-
boundary’ method, has been introduced by Turek et al. [TWRO03], [WT06], see also Duchanoy
and Jongen [DJO03]. In contrast to the classical, ‘implicit’ fictitious-domain approach, the
fictitious-boundary method solves the fluid equations and the solid equations separately.
The forces exerted on the particles are calculated in an efficient way by means of an explicit
volume formula. Turek et al. [TWRO3| proposed a multigrid-FEM-based explicit fictitious
boundary method which is based on an unstructured FEM background grid. The flow is
computed using a multigrid finite element method and the solid particles are allowed to move
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freely through the computational mesh which can be chosen independently of the particles.
The motion of the solid particles is represented by prescribing the respective velocities at
the nodes covered by the particles. The new positions and the new velocities of the particles
are updated using Newton’s law so that there is no need to re-mesh the domain.

Recent computational approaches to solid-liquid flows, possibly inspired by molecular dy-
namics, are based on the lattice-Boltzmann method (LBM), see Ladd [Lad94al, [Lad94b
[LVO01]. In LBM, simplified kinetic models are constructed which incorporate the essential
physics of the microscopic and mesoscopic equations. These models can handle huge num-
bers of particles. One should keep in mind, however, that they replace the well-justified
hydrodynamic equations of motion by pointwise collision rules. Therefore, many interesting
results obtained using these methods are not yet sufficiently reliable to be used in engineering
practice.

5.2 An adaptive fictitious-domain method

In this section we present a numerical scheme for rigid particulate flows which can be seen,
to some extent, as a combination of FKulerian and Lagrangian methods: On one hand, we
borrow from Eulerian methods the idea of solving the fluid equations on a fixed, simple-
shaped ‘fictitious’ domain. On the other hand, we let the mesh refinement follow the particle
boundaries. This seems to be a new aspect in particulate flow simulations. The resulting
method is highly accurate and, at the same time, very economic (see also Bonisch et al.
[BDROG, Boe0f]).

Our method is based on the so-called ‘stress-DLM formulation’ introduced by Patankar et
al. [PSJT00] which we are going to describe first.

5.2.1 The stress-DLM formulation

Let {2 be the (bounded) computational domain which includes both the fluid and the particle
domain and let S = S(t) be the particle domain. In order to facilitate notations, we assume
that there is only one moving particle in a Newtonian fluid. The formulation can be easily
generalized beyond these assumptions.

The governing equations for fluid motion are given by:
pr (O + (v-V)v) + Vp — plv = ppg, in 2\ S(t),

V-v=0 in2\S(@)

v=12(t) ondNR(t), v=1v' on AS(t

v‘tzozvo in 2\ 5(0),

9

)
);

5.2.1
) (5.2.1)
)

where p; is the fluid density, U = {v,p} is the fluid velocity and pressure pair, v’ is the
velocity of the fluid-particle interface 9S(t), and v is the initial velocity. In the stress-DLM
formulation the particles are treated as a fluid with an additional constraint to impose the
rigidity. Accordingly, the governing equations for particle motion are:
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ps (0w + (v-V)v) + Vp — pAv = pgg in S(t),

V-v=0 in S(t),

V-D(w)=0 inS(t), n-D(v)=0 ondS(t), (5.2.2)

v=1v' ondS(t),

Vj—o = v? in S(0),

where p, is the particle density. The third equation in (5.2.2)) represents the rigidity con-
straint that sets the deformation tensor, D(v) := (Vv+VovT)/2, in the particle domain equal
to zero. Then, a combined weak formulation of the fluid-particle equations (5.2.155.2.2)) can
be derived by introducing a distributed Lagrange multiplier (DLM) A. Variational analysis

shows (see e.g. Sharma/Patankar [SP05]) that D(A) can be interpreted as an extra-stress
field required inside the particle domain to maintain the rigid-body motion. With the spaces

Vo :=Hy(R2)?,  Lo:={q€ L*), (¢,1)0 =0},

the combined weak formulation of (5.2.1) and (5.2.2)) reads as follows:
Problem 5.1. For t > 0, find v € v? + Vj, p € Ly, A€ H'(S(t))? satisfying

(pr@w+ (v-VIv—g),0)a— B, V-9),+ (V- -v)a+u(Vo, Vo)
+((,05 - pf)(atv + (U : V)v - g), ‘10)5(25) (5.2.3)
+(D(A)a D(@))S(t) + (D(¢)a D(U))S(t) =0,

for all ¢ € Vo, x € Lo(£2),v € HY(S(t))?.

Remark 5.2. The fluid-particle interface condition is internal to the combined system .
Hence there are no explicit interface force or velocity terms in the combined form. We also
note that the particle translational and angular velocities are not present unlike in the original
DLM formulation of Glowinski et al. |[GPHT01].

5.2.2 Numerical scheme

Patankar et al. [PatO1) [SP05] proposed a fast projection scheme to solve without
the need for an additional saddle-point iteration to determine the Lagrange multiplier A.
For the reader’s convenience we shall briefly recall this scheme. Further details concerning
the solution of the individual substeps and the incorporation of adaptivity are presented in

Section [5.2.3]

The starting point is the strong formulation of ([5.2.3)). The momentum and continuity
equations applicable in the entire domain can be written as:

p(Ow + (v-V)v) + Vp — pAv=pg+ f in £,

. (5.2.4)
Vev=0 in {2,
where -
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and f is the additional term due to the rigidity constraint in the particle domain. More
specifically, f =V - D(A).

The fast projection scheme for solving ([5.2.4])) now consists of two fractional steps:

(I) Determine intermediate velocity and pressure fields © and p by solving the following
equations in the entire domain {2:

p (352 + (8- V)0) + VP — pdid=pg in 02,
V-o=0 in 2.

(5.2.6)

n+1

Set v"t! = % and p"t! = p in the fluid domain.

(IT1) Determine v™*! in the particle domain by projecting © onto a rigid body motion, i.e.
solve

Un—‘rl — 9 '

To solve equation , one needs knowledge of f. Following Sharma/Patankar
[SP05], an equation for f can be obtained by imposing as an additional condition that
the total linear and angular momenta in the particle domain should be conserved. To
this end, we first split ¢ as © = v, + v’, where

v =Vo+wx(z—2x0),

mgVe = /ps@ dr and Isw = /(gg —z¢0) X psvda. (5.2.8)
o s
Here, mg (Ig, resp.) denotes the mass (moment of inertia, resp.) of the particle. Since

the total linear and angular momenta should be conserved in the projection step, set
v"+1 = 0, in the particle domain. This corresponds to

f=—(psv)/At. (5.2.9)
Remark 5.3. The algorithmic realization of the projection step is very cheap. However,
the accuracy of the integrations in can be argued since the particle boundaries and
the underlying grid do not match in general. We address this point in Section [5.2.3]
Remark 5.4. In the actual implementation of the second fractional step , instead of
using we compute f according to

f=—(dpsv)/At. (5.2.10)

Here, ¢ is the ‘particle volume fraction’ associated with a given grid point. By doing so we
ensure that the velocity correction is properly smeared on the length scale of the grid size,
cf. Patankar [PatOI]. Detailed information about the computation of ¢ is given in Section

B.2.3

5.2.3 Algorithmic details

In this section we wish to give more detailed information about the algorithmic realization
of the splitting scheme described in Section In particular, we are going to comment
on how we incorporate the concept of adaptivity into the scheme.
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Mesh adaptation

In its original form the stress-DLM method has been described on uniform meshes in order
to facilitate the use of special fast solution algorithms and to keep the cost of the solution
process low. However, this may either lead to an insufficient resolution of the flow near
the particle boundary and therefore to an inaccurate representation of the fluid-particle
interaction or to enormous costs when handling many particles on a very fine mesh. As
an alternative we propose to use locally adapted meshes which still have a good degree of
regularity. The refinement zones of the mesh are attached to the particles following purely
geometrical criteria and are moved according to the movement of the particles. In the case
of particulate flows at moderate Reynolds numbers, we expect the error to be much larger
near the particle boundaries than in the far-field region. Based on this heuristic criterion,
we refine the grid around the particle boundaries in several stages, see Figure It is clear
that huge savings in terms of the number of needed grid cells are possible in comparison to
uniform grid refinement. Whether further savings are possible by employing a systematic
mesh refinement strategy based on a posteriori error estimation (cf. Section still has
to be examined.

71 Summed rule
1 Gauss(4) rule

\ Particle boundary

Figure 5.1: Left: A typical computational grid for the simulation of a single moving par-
ticle of circular shape (see also Section [5.3.1). Several refinement stages lead
to a discretization which is both, economic and accurate. Right: A ‘selec-
tive’ quadrature rule is used to integrate functions over the particle domain. A
summed Newton-Cotes rule is employed for boundary cells, while for all other
cells a standard Gauss formula of high order is used.
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5.2 An adaptive fictitious-domain method

Boundary approximation

As mentioned in Remark the projection step is very cheap. On the other hand,
the accuracy of the integrations in cannot be expected to be high since the particle
boundaries and the underlying grid do not match. Of course, our local refinement strategy
increases the accuracy. Another significant improvement can be achieved by using a ‘selective
quadrature rule’: By a ‘boundary cell’ we wish to understand a cell which has non-empty
intersection with the boundary of a particle. We want to integrate numerically [ g f(r) dx =
> le Xs(x)f(x) dx, where {K;} denotes the mesh cells of a triangulation. Since xg(x)f(x)
is, in general, a non-smooth function on boundary cells, it makes no sense to use a quadrature
rule of high order for these cells. So while standard Gauss formulae of high order are well-
suited for non-boundary cells, it is better to employ a summed Newton-Cotes formula for
boundary cells. This idea is also depicted in Figure and validated quantitatively in Table
b1l

Table 5.1: This table shows the discrete volume of a disk S with diameter d = 0.25. The
exact value is (d/2)%m =~ 0.0490874. The result of the numerical integration of
Js1 dx with two different quadrature rules is shown: vol’(8) refers to the use
of a standard Gauss rule of order 4 for all cells. vol’(S) refers to the use of a
summed tensor midpoint formula for boundary cells, cf. Fig. [5.1]

h vol’(S) rel. error  vol’s(S) rel. error

274 0.0498047 1.4613e-02 0.0491562 1.4016e-03
27° 0.0493164 4.6651e-03  0.0490866 1.6297¢-05

Computation of the particle volume fraction ¢

In the second fractional step the fluid velocity is corrected in the particle domain. The
straightforward implementation of this correction step would be to update the velocity at a
grid point z if and only if € S(¢). However, numerical evidence suggests (see e.g. Patankar
[Pat01]) that the accuracy of the projection step can be increased by weighting the velocity
updates in the following way: We associate with each grid point z a value 0 < ¢(z) < 1, the
so-called ‘particle volume fraction’. For vertices x which are ‘properly’ outside the particle
domain, ¢(z) should be equal to zero, while for vertices 2 which are ‘properly’ inside the
particle domain, ¢(z) should be equal to one. For vertices x which are located in the
‘boundary layer’ (i.e. which belong to ‘boundary cells’, see above), ¢(z) should take a value
between zero and one, depending on how close they are to the boundary.

The volume fraction ¢(z) of a vertex x is computed as follows (see Figure : First, we
determine all boundary cells { K} and compute the particle volume fraction ¢(K?) for these
cells, p(K?) := pu(K?)~! [ o Xs(x)dr. The integral is approximated numerically by using
a summed Newton-Cotes quadrature rule, see above. As the ‘particle volume fraction’ ¢(z)
of a vertex z we then simply take the mean value ¢(z) = SN | o(K;)/N, where {K;}N,
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5 Motion of multiple particles

denotes all cells to which the vertex x belongs. This procedure is also illustrated in Figure

6.2

/

cell iscompletely
0 outside the particle
v /04
/ ’ ,
0.15 / 0.95 1 boundary cell
W,
cell iscompletely
1 1 inside the particle
Particle boundary ve W, Vertices

0.95 particle volume fraction

Figure 5.2: Computation of the ‘particle volume fraction’ ¢. The first step consists in com-

puting ¢(K?) for all boundary cells. The mean value of ¢ taken over the cells
surrounding a vertex = determines ¢(z). In the shown example, the fractions of
the vertices v and w would be: ¢(v) = (0 + 0.15 + 0.4 + 0.95)/4 = 0.375 and
dp(w)=(095+1+1+1)/4=0.9875.

Space discretization and solver details

Until now we have not yet specified how we discretize and solve the PDE (5.2.6). The key
ingredients of our solver technology shall be listed now. (For more details see also Section
and Bonisch et al. [BDRO06].)
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We use the Galerkin finite element method (FEM) on locally refined meshes consisting
of quadrilateral cells. As elements for velocity and pressure we take ‘equal-order’ ()1
elements. This spatial discretization needs stabilization in order to compensate for
the lacking ‘inf-sup stability’. As an alternative to the usual SDLS (Streamline Dif-
fusion Least-Squares) or SUPG (Streamline Upwinded Petrov Galerkin) stabilization
of Hughes et al. [HB82, [HEBS&6], we suggest the LPS (Local Projection Stabilization)
method proposed in Becker/Braack [BB01] and Braack/Burman [BrB06] which has
several advantages over the other stabilization methods.

The nonlinear convective term is linearized by Newton’s method.

The system is solved in a fully-coupled manner; the resulting saddle-point problems are
solved by the Generalized Minimal Residual Method (GMRES) with preconditioning
by a geometric multigrid method with block-ILU smoothing.

All simulations were done using the finite element simulation package Gascoigne3D
(see [BBT05]). The visualization of the results was done with HiVision (see [BH06]).



5.2 An adaptive fictitious-domain method

Collision modeling

For simulating the motion of more than one particle, a collision model is needed to prevent
the particles from penetrating each other or rigid walls. There is theoretical evidence that
particle-particle or particle-wall collisions cannot take place in finite time in the continuous
system since there are lubrication forces which prevent these collisions in the case of viscous
fluids. However, particles can contact each other in numerical simulations. If the distance
becomes smaller than the spatial resolution scale of the numerical method, truncation errors
may (and do) lead to collisions or even to overlapping of particles unless special precautions
are taken. Particle collisions pose severe difficulties in direct simulations of particulate
flows. Even near-collisions can significantly increase the cost of a simulation, because the
flow in the narrow region between the approaching particles must be accurately resolved.
As a consequence, one has to employ extremely small mesh cells which corresponds to a
significantly increased number of unknowns.

To handle this problem numerically, several collision models have been proposed in the
literature. For simplicity, most of them assume that the collisions are ‘smooth’. This means
that if two rigid bodies collide under the effect of gravity and hydrodynamical forces, the
velocities of the particles in question coincide at the points of contact. Glowinski, Joseph
and coauthors [GPHT01] proposed a collision strategy which relies on the introduction of
an artificial short-range repulsive force between the particles. The purpose of this force is
to ensure that different particles always keep a positive distance. In this model, overlapping
of the regions occupied by the rigid bodies is forbidden. However, in numerical calculations
slight overlapping of particles can easily happen. Therefore, Joseph and coworkers [SHJ03]
suggested a modified collision model in which the particles are allowed to come arbitrarily
close and even to slightly overlap. Both models employ a short-range repulsion force between
particles which are in near contact; the formulee for these forces involve unknown scaling and
stiffness parameters, the adequate choice of which is very important. Therefore, the models
introduced by Glowinski, Joseph and coworkers |[GPH™01, [SHJ03] are commonly referred to
as parametric models. In general, there is no rigorous theory to determine the ideal values for
these parameters. In order to circumvent the delicate task of adjusting parameters, Minev
et al. [DMNO3] proposed another, nonparametric collision treatment. In Minev’s model, the
first step is to check if the distance between the particles is larger than a given threshold
which correlates with the size of the particles and with the mesh width. If the distance is less
than this threshold, then a repulsive force is calculated iteratively such that both particles
move along the line that passes through the respective centers of mass and such that the
minimum distance is still maintained. In the spirit of Minev’s nonparametric model, Turek
et al. [WT06] proposed another collision model which cannot only prevent the particles from
getting too close, it can also deal with the case of slightly overlapping particles.

For our simulations we adopted the collision model of Turek et al. [WTO06], but without
allowing for particle overlapping. For particle-particle collisions of circular particles, the
repulsive force is calculated as
0, for d;; > r; j )
=7 , g eTEiTe (5.2.11)
(2 —wg)(ri+rj+p—diy)*  for ri+r; <dij <ritrj+p,

€

97



5 Motion of multiple particles

.
| Fyj |

I
|
|
|
|
|
|
|
|
1
7"1‘4“7”]‘ T+ +p dz‘j

Figure 5.3: Left: Illustration of the definitions needed for the description of the repulsive
force Fj;. Right: Sketch of the qualitative behavior of the repulsive force Fj;.

where r; and r; are the radii of the ith and jth particle. a:ZC and a:JC are the respective
coordinates of the centers of mass and d;; := |z}, — x]C| p is the range of the repulsive force
and is usually taken as p =~ 0.5h with h the local mesh width. ¢ ~ h? is a small positive
stiffness parameter. Figure [5.3] illustrates these definitions. For particle-wall collisions, we
define for each particle S a ‘virtual’ or ‘mirror’ particle S as the particle of the same size as
S which is nearest to S and touches the respective wall from outside. Let us denote by QEZC
the mass center of the ‘mirror’ particle of the ith particle and define d; := |z, — Z(;|. Then
the repulsive force reads as follows:

for d; > 2r; + p,
P = {0’ or & > 2Aritp (5.2.12)

' 2(al, — @) (2ri+ p—d;)?  for 2r; <d; < 2r;+p.

€

The total repulsive forces exerted on the ith particle by the other particles and the walls are
thus given by:

Fy:=) FP 4P, (5.2.13)
i#i

Explicit update of the particle position and orientation

The final task in each timestep is, of course, the update of the position and the orientation
of the particles. This is done explicitly. In two-dimensional simulations, the orientation of
a particle is simply given by an angle o and the new orientation is obtained by integrating
the (scalar) angular velocity, "1 = " + Atw.

The update of the position z¢ of the center of mass of a particle is achieved by the following
sub-cycling procedure, cf. e.g. Patankar et al. [PSJT00]:
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Set azgﬂ’o =ap. For k=1,...,K:
xcn+1,k _ l‘g+1’k 1 + ﬁ(VC@ + Vg—l),
A2 1 (5.2.14)
+lk _ sntlk +1,k—1 snt1k
Set apit! = :rgrLK, and
2 At
1 1 -1
At = 5 (agt —at — (V).

Here, F' denotes the repulsive force introduced above, cf. . A, is the accel-
eration of the particle due to collision. This term provides an additional body force acting
on the particle and is included in the combined momentum equation to be solved in
the subsequent step.

Remark 5.5. The role of the sub-cycling procedure described above is that of a predictor-
corrector method with the local time step size At/K to determine the new particle positions.
It is used in an almost identical way in all major variants of fictitious-domain methods for
particulate flow problems, cf. |[GPHT01, [Pat01] [PSJT00, [SPO5, WT06].

5.3 Numerical experiments

In this section we present computational results using our adaptive fictitious-domain algo-
rithm. We start with solving a well-known benchmark problem for a single moving particle
(Section [5.3.1)). Then we proceed to multiple particles (Section [5.3.2] and [5.3.3). The issue
of non-smooth particle geometries is addressed in Section

5.3.1 A benchmark problem

To validate our adaptive scheme, we first consider a benchmark problem which has been used
by several authors to test their computational techniques (see e.g. Patankar et al. [PSJT00],
Wan/Turek [WT06]). We want to simulate the fall of a rigid disk in a bounded, rectangular
cavity {2 filled with an incompressible Newtonian fluid. The setup of this problem is as
follows:

e 2=1(0,2) x(0,6)
e The diameter of the disk is d = 0.25.
o At time t = 0 the disk is located at (1,4).

e The fluid as well as the disk are at rest initially; the fluid is at rest at the boundary of
the cavity.

o The fluid density is py = 1, the disk density is p, = 1.25.
e The fluid viscosity is p = 0.1.
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-5.50 -1.93 1.65 -5.89 -2.09

HiVElon 2.0

Figure 5.4: Left: vertical component of the velocity field at ¢t = 0.2s; Middle: vertical com-
ponent of the velocity field at ¢ = 0.5s with isolines of the horizontal component;
Right: horizontal component of the velocity field and isolines at ¢ = 0.77s, just
before ‘contact’.

The results of the numerical simulation are shown in Figure see also Figure 5.1} Figure
[-5]shows the temporal evolution of the y-component of the mass center of the disk and of the
vertical component of the particle velocity. The disk starts from rest and accelerates until it
reaches its maximum velocity. At ¢ = 0.77s, it hits the bottom of the cavity. (More precisely,
it reaches a terminal distance from the wall which is of the order of the local mesh width, cf.
the discussion in Section [5.2.3] A quantitative comparison of our findings with the results
described in Glowinski et al. [GPHT01] is given in Table We obtain a maximum value
of the Reynolds number of the particle which is very close to the reference value provided
by Glowinski et al. ﬂm However, due to the use of adaptive mesh refinement, we
achieve huge savings in terms of the number of needed grid cells.
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0 01 nz2 0.3 0.4 05 08 0.7 0.8

Figure 5.5: Top: y-component of the mass center of the disk vs. time; Bottom: vertical
velocity component v vs. time.

Table 5.2: Left: Maximum Reynolds number obtained by Glowinski et al. [GPH™01].

Reggx and Ref{ﬁx refer to two different numerical schemes, both employing glob-
ally refined meshes. Right: Maximum Reynolds number obtained with our
adaptive method. The agreement with the reference value provided by Glowinski
et al. [GPH™01] is very good; only a fraction of mesh cells is needed.

# cells Rer(nlgx Reggx # cells Repax
~ 440,000 17.27 17.44 ~ 12,000 17.62
~ 780,000 17.31 17.51 ~ 18,000 17.71
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5 Motion of multiple particles

Figure 5.6: The typical ‘draftingkissing,tumbling’ phenomenon can be observed (cf.
[GPHTO01]): The lagging particle falls faster than the leading one because it
experiences less drag (‘drafting’). The two particles touch (‘kiss’). But since
this is an unstable configuration in a Newtonian fluid, they separate and ‘tum-
ble’ apart.

5.3.2 Interaction of two circular particles

We now consider the simplest situation involving more than one particle. We simulate the
fall of two rigid circular particles in a bounded, rectangular cavity 2. The setup of this
problem is as follows (cf. Wan/Turek [WT0G]):

o« 2=(0,2) x(0,8)

e The diameter of the disks is d = 0.2.

o At time t = 0 the disks are located at (1,7.2) and (1,6.8), resp.
o The fluid density is py = 1, the disk density is p; = 1.01.

e The fluid viscosity is g = 0.01.

Figure[5.6] shows the result of the simulation. The well-known phenomenon of ‘drafting, kiss-
ing and tumbling’ is clearly reproduced (cf. e.g. Glowinksi et al. [GPHT01]). A quantitative
comparison with Wan/Turek [WT06] is also very promising (see Figure and compare

with Figure 19 in [WT06]).

5.3.3 Configurations with many particles

Now we proceed to configurations with more than two particles. Unfortunately, to date
there is no commonly accepted benchmark problem for this case. We therefore defined and
simulated two model configurations without being able to compare our results with the
literature.
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X position of mass center

Figure 5.7:

leading particle
lagging particle
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vertical velocity
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leading particle
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First row: horizontal (left) and vertical (right) component of the translational
velocity. Second row: z-position (left) and y-position (right) of the mass

centers.
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Figure 5.8: Specification of the ‘sand glass’-geometry for Problem B.
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Problem A: free fall of 41 circular particles through a constriction

Figures [5.9]and show the 2D motion of a number of circular particles subject to gravity
in a vertical channel with a constriction. The geometry of the domain (2 and the initial
positions of the particles as well as the other relevant parameters are as follows (see also

Figure :
o 2=1(0,2) x (0,6)\ {[(0,2) x (4,42)] U [(4,2) x (4,42)]}
e The diameter of the disks is d = 0.1.
o The fluid density is py = 1, the disk density is p, = 1.25.
e The fluid viscosity is u = 0.1.

The initial ‘pyramid-like’ positioning of the particles is depicted on the left-hand side of
Figure The setup is slightly asymmetric (One particle on the right is missing.) in order
to avoid that the symmetry-breaking is triggered by numerical instabilities. The simulation
was done on dynamically adapted meshes with about 20,000 — 40,000 cells and minimal
mesh width Ay, &~ 0.005. The finest mesh was obtained by 4 global and 3 additional local
refinement steps. This finest mesh would correspond to a globally refined mesh with about
440,000 cells. The (uniform) time step was At = 0.005, i.e., 2000 time steps were needed
for the computation over the relevant time interval [0,10]. The whole simulation took about
1 day on an AMD Athlon64 3500+ computer. This time could be significantly reduced by
optimizing the components of the multigrid solver used within each time step.

Problem B: free fall of 64 circular particles through a ‘sand glass’

We want to simulate the 2D motion of 64 circular particles through a domain with a ‘sand
glass’ geometry, see Figure Initially, the particles are closely packed in a regular array
of 8 x 8 particles; the center of the array is the point (1,5). Besides the geometry and the
particle positions, the setup is identical with that of Problem A (same fluid and particle
densities, particle diameter, viscosity). The result of the simulation is shown in Figure

5.3.4 Non-smooth particle geometry

We wish to conclude this section by pointing out that the use of locally refined meshes is even
more crucial when simulating the motion of particles with non-smooth boundaries. In the
context of fictitious-domain methods it is inevitable that sharp corners are smeared out on
the length scale of the local mesh size. Therefore it is advisable to refine very strongly around
such corners. In Figure [5.12] a snapshot of a simulation of a moving triangle is shown. The
resolution of the particle geometry is excellent. It would have been practically impossible to
get a similar result with uniform grid refinement.
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Figure 5.9: Free fall of multiple particles in a viscous Newtonian liquid (Problem A). Sketch
of the initial positions of the particles (top left), temporal evolution of the flow
field and particle positions (upper row) and corresponding adapted meshes
(lower row). The pictures correspond to the following points in time: 0.01,
0.25, 1.0, 2.55, 4.0, 8.5.

Figure 5.10: Temporal evolution of the y-component of the mass centers for Problem A.
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$60 04455008

F o

Figure 5.11: Temporal evolution of the flow field and particle positions for Problem B. The
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pictures correspond to the following points in time: 0.01, 0.05, 0.1, 0.15, 0.2,
0.25 (upper row), 0.4, 0.6, 0.8, 1, 1.2, 1.4 (middle row) and 1.5, 3, 7, 10, 15,
20 (lower row).



5.3 Numerical experiments

HVElon 2.0

i
FH

Figure 5.12: Top: The flow around a moving triangular particle is shown (left). A zoom
on one of the sharp corners shows that the resolution of the highly non-smooth
particle geometry is very satisfying (right). Bottom: Corresponding finite
element grids. Local mesh refinement is crucial for the accurate resolution of
the sharp corners.
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