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Summary 
 

The cell-cell and cell-matrix adhesion molecule CD44 and its numerous splice 

variants are involved in a multitude of physiological and pathological processes, including 

tumour progression. Especially variant CD44 has been implicated in metastasis formation.  

For long term in vivo experiments on metastasis formation, a plasmid based RNAi 

technique was applied to generate stable splice variant ‘v7’-specific CD44 knock-down 

clones of a highly metastatic rat pancreatic adenocarcinoma cell line (BSp73ASML). The 

resulting phenotype was characterized with an emphasis on interactions of CD44v with the 

tumour surrounding during the course of metastasis formation. Loss of CD44v is 

accompanied in vivo by a marked reduction in metastatic growth in the lymph nodes and 

particularly in the lung, which could be reverted by restoring CD44v expression in the knock-

down cells. The impaired metastatic growth was not due to a lower proliferative activity or a 

reduced anchorage-independence of these cells in vitro. Instead, they display several defects, 

which can be attributed to perturbed interactions of CD44v with the microenvironment. 

Compared to ASMLwt cells CD44vk.d. cells do not form cell aggregates in stromal 

surroundings, such as lymph nodes and the lung, due to lost cell-cell adhesion, mediated by 

interactions of CD44v and hyaluronic acid (HA). Furthermore, CD44vk.d. cells exhibit an 

impaired matrix production, as CD44v is most likely involved in the assembly of matrix 

components, containing HA, collagen and laminin. The matrix supports rapid adhesion of 

ASML cells through β1 integrin and in addition contributes to survival. Finally, the loss of 

CD44v is accompanied by a marked decrease in apoptosis resistance. Impaired PI3K-Akt 

survival signalling, activated by CD44v was identified as the cause of this defect.  

In conclusion, CD44v contributes to the metastatic phenotype of ASML cells as a 

multifunctional player interacting with the surrounding in several ways. First, as cell-cell 

adhesion molecule by mediating cell aggregation, second, as cell-matrix adhesion molecule 

by organizing matrix generation and last, as signalling molecule supporting survival. This 

highlights the role of variant CD44 in the metastatic spread of tumour cells through complex 

interactions with the tumour microenvironment and underlines the important role of a highly 

regulated interplay between tumour cells and their surrounding for metastasis formation.  
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Zusammenfassung 
 

 Das Zell-Zell und Zell-Matrix Adhäsionsmolekül CD44, sowie seine zahlreichen 

Spleißvarianten sind an einer Vielzahl physiologischer und pathologischer Prozesse beteiligt, 

zu denen auch die Tumorprogression zählt. Besonders variante CD44 Formen wurden mit 

Metastasierung in Verbindung gebracht.  

 Um langwierige in vivo Experimente zur Untersuchung von Metastasenausbildung zu 

ermöglichen, wurden stabile CD44-‘knock-down’-Klone einer stark metastasierenden 

Pankreas-Adenokarzinomlinie der Ratte (BSp73ASML) generiert. Über plasmidbasierte 

‘RNA interference’ (RNAi) wurde die CD44-Expression spleißvarianten-‘v7’-spezifisch 

reguliert. Der resultierende Phänotyp wurde besonders im Hinblick auf Interaktionen 

zwischen CD44v und der Mikroumgebung im Verlauf der Metastasierung charakterisiert. In 

vivo führt der Verlust von CD44v zu deutlich reduzierter Metastasenbildung in den 

Lymphknoten und besonders in der Lunge, und dieser Effekt war durch wiederhergestellte 

CD44v-Expression in den ‘knock-down’-Zellen wieder umkehrbar. In vitro zeigen die 

CD44v-k.d.-Zellen unveränderte Proliferationsaktivität und das gleiche 

verankerungsunabhängige Wachstumsvermögen wie der Wiltyp. Demgegenüber weisen sie 

mehrere Defekte auf, die auf Interaktionsverlust von CD44v mit der Mikroumgebung 

beruhen. In stromaler Umgebung, wie in den Lymphknoten und der Lunge, bilden CD44v-

k.d.-Zellen im Gegensatz zu ASMLwt-Zellen keine Zellaggregate aus, was auf den Verlust 

von CD44 und Hyaluronsäure vermittelten Zell-Zell-Kontakten zurückgeführt werden 

konnte. Zusätzlich ist die Matrixproduktion dieser Zellen beeinträchtigt, da CD44v höchst 

wahrscheinlich eine Rolle bei der ‘Matrixmontage’ zukommt. Als Bestandteile der Matrix 

konnten Hyaluronsäure, sowie Laminin und Kollagen identifiziert werden. Die Matrix 

ermöglicht ASML-Zellen eine rasche über β1-Integrin vermittelte Adhäsion und trägt 

darüberhinaus zum Überleben der Zellen bei. Schließlich geht der Verlust von CD44v mit 

einer deutlichen Abnahme der Apoptoseresistenz einher. Als Ursache für diesen Defekt 

konnte eine beeinträchtigte PI3K-Akt-Signaltransduktion identifiziert werden, die durch 

CD44v aktiviert wird.  

 Zusammenfassend konnte gezeigt werden, daß variantes CD44 maßgeblich zum 

metastasierenden Phänotyp von ASML Zellen als multifunktionales Molekül beiträgt, indem 

es mit der Mikroumgebung auf verschiedene Art und Weise interagiert. Zunächst als Zell-

Zell Adhäsionsmolekül, das Zellaggregation vermittelt, dann als Zell-Matrix 
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Adhäsionsmolekül, das die Bildung der Matrix organisiert, und schließlich als 

Signaltransduktionsmolekül, das zum Überleben der Zelle beiträgt. Diese Ergebnisse heben 

die Rolle von variantem CD44 für die Metastasenbildung von Krebszellen durch komplexe 

Interaktionen mit der Tumor-Mikroumgebung hervor und unterstreichen die entscheidende 

Bedeutung von komplex regulierten Wechselwirkungen zwischen Tumorzellen und ihrer 

direkten Umgebung für die Metastasierung.  
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1.  Introduction 

 

 
30 years of intensive research in the field of tumour biology produced a huge body of 

knowledge and the basic mechanisms underlying the onset and progression of cancer have 

been identified. Nonetheless, after cardiovascular diseases cancer is still the 2nd leading cause 

of death in the western world (WHO, 2003).   

Cancer arises from a single cell that underwent genomic alterations leading to gain-

of-function of so called oncogenes or loss-of-function of tumour suppressor genes enabling 

uncontrolled growth and evading the bodies defence system to eliminate cells with 

dysfunctions. Our understanding of the mechanisms underlying early tumour progression is 

steadily growing, concomitantly with remarkable advances in the diagnosis and treatment of 

early tumours. However, there is still little understanding of the late steps in tumour 

progression leading to metastasis formation, which causes 90% of human cancer deaths 

(Storm, 1996). Although there is a growing number of genes being identified to take part, the 

underlying mechanisms that enable cancer cells to disseminate from the primary tumour mass 

and settle at distant sites in the body to form metastases is still poorly understood and deeper 

insights are needed for future therapeutic strategies to treat metastatic cancers.  

 

1.1  Cancer evolves as a multistep process 

 
During tumourigenesis the transformation of a normal cell into a malignant cancer 

follows a multistep process, which can be understood as an evolutionary event following the 

Darwinian concept. In order to develop into a life threatening invasive tumour a cell has to 

acquire certain characteristics, reflecting genetic alterations, which confer a growth 

advantage and drive the progressive transformation of the cell (Foulds, 1954; Nowell, 1976). 

Hanahan and Weinberg proposed six essential capabilities required for metastatic cancer 

formation (Hanahan and Weinberg, 2000), namely self sufficiency in growth signals, 

insensitivity to antigrowth signals, evasion of programmed cell death (apoptosis), limitless 

replicative potential, sustained angiogenesis and tissue invasion and metastasis.  
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Self sufficiency in growth signals 
Normal cells need growth stimuli in order to proliferate. These signals can be 

diffusible growth factors, extracellular matrix components or cell-cell stimulations. Usually 

secreted by other cell types (heterotypic signalling) these signals are sensed mainly by 

transmembrane receptors (binding to diffusible growth factors) and integrins (binding to 

components of the ECM), which translate the outside stimulus into an inside signal. Many 

cancer cell lines are independent on such exogenous growth stimulation because the activity 

of oncogenes mimics these growth signals by modulating the underlying stimulatory 

machinery at different levels. Tumour cells can either secrete their own growth factors 

(autocrine stimulation) or modify the corresponding signals within the cell, by modulating the 

receptors itself or the downstream signalling circuits. Alteration of growth factor receptor 

signalling can be achieved at the expression level leading to hyper-responsiveness to a given 

extracellular signal or by modulation of the signalling ability of the receptor, like expressing 

constitutively active versions of the receptor. A prominent example for this is the truncated 

version of the EGF-receptor (Fedi, 1997). Alternatively, the underlying growth signalling 

circuits itself can be modulated. The Ras-Raf-MAP kinase pathway for example is altered in 

25% of human tumours leading to mitogenic signals without ongoing upstream stimulation 

(Medema and Bos, 1993). Cells are also dependent on growth stimuli from the underlying 

ECM. Many cell-matrix interactions are regulated by integrins, which are heterodimeric cell 

surface adhesion molecules composed of one α and one β subunit. To date, 18 different α 

and 8 different β subunits have been identified, which form at least 24 heterodimers with 

different characteristics (Hynes, 2002; Shimaoka and Springer, 2003). Cancer cells can 

change their integrin repertoire by varying the combination of α and β subunits, for instance 

to favour expression to integrins eliciting progrowth signals at the expense of integrins with 

antiproliferative effects. In addition to this enhanced autonomy from their surrounding, 

tumour cells are able to modulate the behaviour of their neighbourhood for their own benefit. 

For example cancer cells can induce excess release of growth factors by neighbouring cells 

(Skobe and Fusenig, 1998) or stimulate inflammatory cells that should rather eliminate 

tumour cells, to promote their growth instead (Cordon-Cardo and Prives, 1999; Coussens et 

al., 1999; Hudson et al., 1999).  
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Insensitivity to antigrowth signals 
Just as normal cells display dependence on progrowth signals they are sensitive to 

antigrowth signals. This ensures tissue homeostasis and cellular quiescence. Antiproliferative 

signals can, like their positively acting counterparts, be soluble growth inhibitors and 

immobilized inhibitors present in the ECM or on neighbouring cells that are sensed by 

transmembrane receptors. Such inhibitory stimuli may lead to cell cycle arrest or induce a 

permanent mitotic stop by driving the differentiation of the cell. Most antiproliferative signals 

are relayed via the ‘retinoblastoma protein’ (pRb) pathway. PRb is a classical tumour 

suppressor gene, which controls progression from G1 to S phase of the cell cycle (Weinberg, 

1995). Cancer cells often fail to respond properly to antigrowth signals due to disruption of 

this pathway. Inactivation of the pRb protein leads to cell cycle arrest, either by mutation of 

the gene itself or by interfering with ‘transforming growth factor β’ (TGFβ) signalling, which 

normally blocks phosphorylation and thereby inactivation of pRb (Hannon and Beach, 1994; 

Datto et al., 1997). Blocking TGFβ signalling is achieved by cancer cells through down-

regulation of the corresponding receptor, by expression of dysfunctional receptors (Fynan 

and Reiss, 1993; Markowitz et al., 1995) or by modulating downstream signalling events 

(Schutte et al., 1996; Chin et al., 1998). Integrins can elicit antigrowth signals as well, and 

their expression pattern exerting proliferative or antiproliferative effects can be modulated as 

described above. Another way to avoid growth arrest is to circumvent differentiation. For 

example, antagonizing c-Myc function can lead to cellular differentiation (Dang et al., 1999) 

and recently a role for pRb in this context was shown as well (Goodrich, 2006).   

 

Evading apoptosis  
The third aspect limiting the expansion of a cell population is controlled by cross talk 

between the cell and the environment, deciding if a cell should live or die. Programmed cell 

death or apoptosis is the major event regulating this subject and it is evident that resistance to 

apoptosis is a key feature of cancer cells and for metastasis formation. Programmed cell death 

is a mechanism common in virtually all cell types and follows the same routes once it is 

induced by a variety of different triggers. Cell membranes are disrupted, the cytoskeleton and 

chromosomes are degraded and the cell usually dies within 24 hours (Wyllie et al., 1980). 

Apoptosis can be induced via two distinct routes, depending on the source of the apoptotic 

stimulus. The extrinsic or death receptor pathway is induced by surface receptors like Fas and 

‘tumour necrosis factor receptor’ (TNFR) that bind their corresponding ligands and induce a 
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cellular signalling cascade eventually leading to apoptosis. On the other hand there are 

several intracellular sensors detecting abnormalities within the cell, such as DNA damage, 

survival factor insufficiency or other stress signals like hypoxia (Evan and Littlewood, 1998). 

Such triggers induce the intrinsic or mitochondrial pathway, usually by activating pro- or 

inhibiting antiapoptotic members of the Bcl-2 protein family. These signals lead to 

breakdown of the mitochondrial membrane potential, release of cytochrome c and finally to 

apoptosis (Green and Reed, 1998). The p53 tumour suppressor gene for example, which is 

inactivated in more than 50% of human cancers, exerts its apoptotic effects via the intrinsic 

pathway. In response to DNA damage p53 upregulates the proapoptotic Bcl-2 protein Bax, 

which leads to cytochrome c release from the mitochondria (Harris, 1996). Both the external 

and intrinsic pathway finally converge on the ultimate effectors of apoptosis, intracellular 

proteases called caspases (Thornberry and Lazebnik, 1998). Two initiator caspases 8 and 9 

are activated either by death receptor signalling or by cytochrome c release, which then in 

turn activate several effector caspases, executing downstream steps of the apoptotic program 

and eventually leading to degradation of cellular structures, organelles and the genomic 

material (Fig. 1).  

 

Fig.1: The two main death pathways of apoptosis 
Death receptors on the surface of the cell bind their cognate ligands, leading to engagement of the 
‘death inducing signalling complex’ (DISC) and to activation of caspase 8. Internal stimuli, such as 
genotoxic stress induce apoptotic molecules, finally leading to inhibition of antiapoptotic molecules 
of the Bcl-2 family, subsequent cytochrome c release from the mitochondria and caspase 9 activation. 
Ultimately, both routes lead to activation of effector caspases and cell death. IAP inhibitor of 
apoptosis proteins. Adapted by permission from Macmillan Publishers Ltd: Nature Reviews Cancer 
(Mehlen and Puisieux., 2006).  
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Cancer cells escape from apoptosis either by deregulating the expression of death 

receptors on their surface or by survival signals, counteracting apoptotic stimuli through 

induction of antiapoptotic molecules. One of the best-studied pathways in this regard is the 

PI3kinase-Akt pathway. PI3K-Akt can be influenced by external stimuli, for example IGF or 

IL-3 (Evan and Littlewood, 1998), or by intracellular signals, e.g. the ras oncogene pathway 

(Downward, 1998) or the loss of the tumour suppressor pTEN, which normally attenuates 

Akt survival signals (Cantley and Neel, 1999). Likewise, cell-cell and cell-matrix interactions 

are necessary for cell survival. Apoptosis due to loss of adhesion to the substratum is called 

anoikis and provides another important mechanism to control cellular behaviour.  

In summary, apoptosis is regulated by an extremely complex machinery of pro- and 

antiapoptotic signals, which are balanced in a healthy cell and shifted out of this equilibrium 

in cancer cells.  

 

Limitless replicative potential 
In addition to signals regulating the growth properties of a cell in response to its 

environment, the life span of a normal cell underlies an intrinsic program limiting its 

replicative potential. Non-transformed cells in culture have the capacity to divide only about 

60-70 times. With increasing cell divisions they undergo a process termed senescence and 

stop growing. This process can be circumvented for example by blockage of the pRb and the 

p53 tumour suppressor genes, enabling the cell to further multiply until a second state called 

crisis, is reached.  This state is characterized by massive cell death and increased karyotypic 

rearrangements, like chromosome fusions, and eventually enables a cell to replicate without 

limit (Wright et al., 1989). Most isolated tumour cells demonstrate this immortalization in 

culture, arguing for immortalization as a prerequisite for cancer to evolve. However, 

theoretically 60-70 doublings are more than enough for a cell to expand to a life-threatening 

tumour mass. On the other hand, the apoptotic rate within tumours is high and the actual cell 

number of a tumour greatly under represents the cell generations required to produce it. As a 

result of this, limitless replicative potential would be a prerequisite for cancerous 

transformation.  

The molecular mechanism underlying senescence is based on the replication of the 

genomic material. During each cell cycle the whole genome is replicated but the ends of the 

chromosomes, called telomers are shortened through each round of replication, due to the 

inability of the appropriate polymerase to replicate the chromosome completely. Telomers do 
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not carry any genomic information, but protect the ends of the chromosomal DNA. They 

prevent end to end fusions and karyotypic misarrangements, which are associated with crisis 

and result in the death of the cell (Counter et al., 1992). Telomer stability is observed in 

nearly all types of cancer and cancer cells maintain the integrity of their telomers by over-

expressing an enzyme called telomerase, which elongates the telomeric DNA and 

compensates for the shortening during replication (Bryan and Cech, 1999). To a lesser extent, 

telomer maintenance in cancer cells can also be achieved by recombination-based 

interchromosomal exchanges of sequences termed ‘alternative lengthening of telomers’ 

(ALT) (Bryan et al., 1995).  

 

Sustained angiogenesis 
Every growing tissue is dependent on supply with nutrition and oxygen, which is 

guaranteed in healthy tissue by a dense network of blood vessels. Tumours also depend on 

the vasculature to be able to grow beyond a certain size. During tissue development the 

formation of blood vessels from pre-existing vessels (angiogenesis) and the de novo 

formation of new blood vessels (neovascularization) is regulated by complex interactions 

between the tissue and the endothelial cells of the vasculature. Positive and negative 

regulators of angiogenesis are tightly balanced and transiently regulated in order to induce 

blood vessel outgrowth. Mainly soluble factors, like ‘vascular endothelial growth factors’ 

(VEGFs) and ‘fibroblast growth factors’ (FGFs), which attract endothelial cells expressing 

the cognate surface receptors (Veikkola and Alitalo, 1999) or inhibitors of angiogenesis like 

thrombospondin (Bull et al., 1994) regulate the process of neovascularization. In order to 

grow out into a macroscopic tumour, cancer cells have to interfere with this programme by 

shifting the balance to the angiogenic inducers and counteracting the inhibitors (Hanahan and 

Folkman, 1996). Indeed many tumours reveal enhanced expression of VEGFs and FGFs and 

impaired expression of thrombospondin (Singh et al., 1995; Volpert et al., 1997). Activators 

or inhibitors of angiogenesis can also be stored in the ECM and released by proteases, that 

are expressed by tumour cells (Whitelock et al., 1996). The importance of sustained 

angiogenesis for tumour growth has been shown in several studies (Bouck et al., 1996; 

Hanahan and Folkman, 1996; Folkman, 1997) and is a target for therapeutic intervention.  
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Tissue invasion and metastasis 
90% of human cancer deaths are due to the formation of secondary tumours (Sporn, 

1996) arising from cells, that moved out of the primary tumour mass and settled at distant 

sites in the body. The metastatic spread of tumour cells can be understood as a multistep 

process itself. In order to settle at a secondary site and to form a new tumour, a cancer cell 

has to acquire the ability to break down cell-cell and cell-matrix connections, invade adjacent 

tissues by overcoming tissue borders and acquire a migratory phenotype. Then, metastatic 

cells have to enter the blood circulation or the lymphatic system to be transported to distant 

sites, where they have to exit the circulation again in order to form secondary tumours 

(Fig.2).  

 

Fig. 2: Two routes of metastasis formation 
Tumour cells disseminate from the primary tumour and invade adjacent tissues. After intravasation 
they use the blood or the lymphatic system for transportation. Via lymphatic dissemination the cells 
are transported to lymph nodes, where metastases are formed. Subsequently, tumour cells can enter 
the blood system through this route as well. Circulating tumour cells in the blood have to attach to the 
endothelial vessel wall, extravasate and settle at a secondary site to form distant metastases. Adapted 
by permission from Macmillan Publishers Ltd: Nature Reviews Cancer (Pantel and Brakenhoff, 
2004).  
 
 

The first step during the metastatic process is the dissemination from the primary 

tumour mass. Adhesion to neighbouring cells and to the ECM is lowered by metastasising 

cells through modulating the functions of cell adhesion molecules (CAMs) of the 

immunoglobulin, cadherin and integrin families and other CAMs. For example, the function 
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of E-cadherin, a homotypic cell-cell interaction molecule ubiquitously expressed on all 

epithelial cells, is altered in many carcinomas during progression towards malignancy 

(Christofori and Semb, 1999). The loss of E-cadherin mediated cell-cell adhesion has been 

proposed to be a prerequisite for tumour cell invasion and metastasis (Birchmeier and 

Behrens, 1994). Indeed re-establishing functional E-cadherin expression could reverse the 

invasive phenotype of cultured tumour cells (Vleminckx et al., 1991; Birchmeier and 

Behrens, 1994). The loss of E-cadherin expression often is accompanied by de novo 

expression of motility promoting cadherins, like N-cadherin (Li and Herlyn, 2000; Tomita et 

al., 2000). Such a ‘cadherin switch’ occurs during normal embryonic development, when 

epithelial cells acquire a migratory phenotype (Hatta and Takeichi, 1986; Bendel-Stenzel et 

al., 2000). Another prominent example is N-CAM, the expression of which is switched from 

a highly to a poorly adhesive isoform in certain cancers (Johnson, 1991; Kaiser et al., 1996) 

or is generally downregulated in others (Fogar et al., 1997). Finally, cancer cells are able to 

adapt to a new environment and to modulate their interaction with matrix components, such 

as collagen, laminin etc., e.g. by changing their integrin repertoire. It has been reported that 

tumour cells can switch integrins in a way that attachment to proteolytically degraded ECM 

components and migration is favoured over tight adhesion to normal epithelial matrix. 

(Varner and Cheresh, 1996; Lukashev and Werb, 1998).  

In order to invade adjacent tissues, tumour cells may express extracellular proteases 

by themselves or induce their expression in neighbouring stromal cells (Werb, 1997). 

Degradation of matrix components by proteases enables tumour cells to overcome restrictions 

due to cell-cell contacts and to invade neighbouring tissues. Prominent examples are the 

‘matrix metalloproteases’ (MMPs), a family of secreted or transmembrane proteases capable 

of degrading various matrix components. Cancer cells can also deregulate MMP function by 

modulating the expression of specific inhibitors (TIMPs) or of molecules that activate MMPs 

through enzymatic cleavage.  

Cancer cells use the blood circulation or the lymphatic system for transportation to 

secondary sites. To enter a blood vessel a cancer cell has to pass the endothelial cell layer, a 

process called intravasation. The majority of cells entering the blood stream will die due to 

mechanical stress or elimination by the immune system, a process called immune 

surveillance (Jakobisiak et al., 2003). Because lymphatic vessels consist of more loosely 

associated cells the lymphatic system is easier to enter (Alitalo and Carmeliet, 2002). 

Although vascular and lymphatic spread of tumour cells share the basic features, the 

molecular mechanisms might differ. Once transported to a secondary site, a cancer cell has to 
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rest and extravasate out of the circulation, which means that the cell has to build up adhesive 

properties again to be able to settle. In order to grow out and form a new tumour mass a 

cancer cell has to adapt to the new environment, build up cell-cell and cell-matrix contacts 

again and fulfil all the described capabilities to form a massive tumour.  

In conclusion, the process of metastatic outgrowth above all requires dynamic 

adhesive properties of cancer cells, switching between a sessile and a motile state when 

needed. Recent evidence highlights that the crosstalk of a cancer cell and the 

microenvironment at both the primary and the secondary site plays a key role for the 

metastatic success of cancer cells (reviewed by Schedin and Elias, 2004).  

 

 

1.2  The BSp73 cell system 

 

In order to study late steps in tumour progression cell systems have been established, 

comprising two related cell lines, which exhibit differences in their metastatic potential. 

These cell lines may originate from the primary tumour and a metastatic lesion or may 

present two subclones derived from the same primary tumour. The BSp73 tumour cell system 

represents such a model. A stable cell line BSp73 was established from a spontaneous 

pancreatic adenocarcinoma of a BDX rat (Zoller et al., 1978). Several in vivo passages after 

subcutaneous application gave rise to tumours with different metastatic potential and finally 

led to the establishment of two subclones of BSp73. One clone, BSp73AS (AS), displaying 

only weak metastatic growth, whereas the other, BSp73ASML (ASML), exhibits a very high 

metastatic potential (Matzku et al., 1983). When injected into the footpad of syngenic rats, 

AS cells show strong local tumour growth but only reach the draining lymph nodes. In 

contrast, ASML cells display only very limited local tumour growth, rapidly spread through 

the lymphatic system and form miliary metastases in the lung, which will finally kill the 

animal. Different to AS cells which show a spread out epithelial morphology with long 

filopodia, ASML cells display a rounded cell shape without any visible spreading on 

substrate and a very limited ability to bind to matrix components, such as laminin, fibronectin 

and collagen. Moreover, these cells do not form a closed monolayer but rather detach from 

the substrate before reaching full confluency. (Matzku et al., 1985; Ben-Ze’ev et al., 1986; 

Raz et al., 1986).  
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Generation of monoclonal antibodies against membrane preparations of the two cell 

lines (Matzku et al., 1989) led to the identification of 5 differentially expressed surface 

molecules, namely a variant isoform of the cell adhesion molecule CD44 (Gunthert et al., 

1991), the α6β4 integrin (Herlevsen et al., 2003), C4.4A, a molecule showing high homology 

to the uPA receptor (Rosel et al., 1998), the ephithelial cell adhesion molecule EpCAM 

(Wuerfel et al., 1999) and the tetraspanin D6.1A (Claas et al., 1998). Subsequent expression 

profiling of two sublines revealed several hundred differentially expressed genes (Nestl et a., 

2001; Tarbe et al., 2002).  

 

 

1.3  The cell-cell and cell-matrix adhesion molecule CD44  
 

One of the first molecules being described to be involved in metastasis formation is 

CD44. The described BSp73 cell system was used to show that a single CD44 splice variant 

conferred metastatic potential to the otherwise locally growing BSp73AS tumour (Gunthert et 

al., 1991). CD44, first assigned as ‘lymphocyte homing receptor’ (Gallatin et al., 1983), is a 

broadly distributed single pass transmembrane glycoprotein involved in several physiological 

and pathological processes including development, wound healing, inflammation, 

haematopoiesis, immune response and tumour progression (Herrlich et al., 1998; Naor et al., 

1997; Ponta et al, 2003). Posttranslational modification and excessive alternative splicing 

give rise to a diverse pool of proteins ranging between 80 and 200 kDa in size. 

 

1.3.1  Structural properties of CD44 

 

The CD44 gene locus spans about 50 kb of genomic DNA and is highly conserved 

among vertebrates (Naor et al., 1997). The corresponding pre mRNA consists of 20 exons, 12 

of which can be regulated by alternative splicing (Gunthert et al., 1991; Screaton et al., 1992; 

Tolg et al., 1993; reviewed by Naor et al., 1997; Lesley et al., 1998). Theoretically, about 

1000 putative different splice products can be generated in this way, but apparently not all 

combinations are expressed (Naor et al., 1997). The shortest CD44 isoform, called standard 

isoform (CD44s), with all variant exons excised, is expressed in nearly all vertebrate cells 

(Naor et al., 1997), while variant isoforms, named after the variant exons contained, show a 
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highly restricted expression pattern during embryonic development, in pathological 

backgrounds or in a cell type specific manner. Alternative splicing can be dynamically 

regulated depending on the activation state of the cell (Arch et al., 1992). Examples for cell 

type specific variants are CD44v8-v10, which is present on epithelial cells, while CD44v3-

v10 is expressed by keratinocytes (Fig. 3).   

 

Fig. 3: Exon map of CD44 and examples for variant isoforms  
A.  Exon map of CD44 B. Examples for variant isoforms, named by the variant exons they contain. 
EC extracellular domain, TM transmembrane domain, CP cytoplasmic domain.  

 

 

The CD44 protein consists of a large extracellular domain, made up of the amino-

terminal part and a short membrane proximal stem structure, the transmembrane region and a 

cytoplasmic tail. Up to ten variant exon products can be inserted in the stem structure. In 

addition to this, a short version carrying a short cytoplasmic tail exists, which is only very 

rarely expressed (Goldstein and Butcher, 1990) (Fig. 4).  

The extracellular domain of CD44 can be modified by N- and O-linked glycosylation 

and contains binding sites for hyaluronic acid (HA) and other glycosaminoglycans (GAGs) 

(Naor et al., 1997). Insertion of variant exons can lead to additional modifications. For 

example, variant exon 3 (v3) carries a site for heparan sulfate (HS) or chondroitin sulfate 

(CS) modifications (Bennett et al., 1995). Through its GAG binding sites CD44 can bind to 

GAG modified proteolycans such as versican (Kawashima et al., 2000), aggrecan (Fujimoto 
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et al., 2001) and serglycin (Toyama-Sorimachi et al., 1995). However, the functional 

relevance of this property is unclear. The extracellular domain of CD44 can be shed from the 

surface by proteolytic cleavage within the stem structure (Okamoto et al., 1999).  

 

Fig. 4: Structure of the CD44 molecule 
CD44 is a single pass transmembrane protein. The large extracellular domain carries binding sites for 
glycosaminoglycans, such as hyaluronic acid and sites for posttranslational modifications. 10 variable 
exons can be inserted into the stalk domain by alternative splicing. The short cytoplasmic tail can be 
linked to the cytoskeleton via ERM proteins and Ankyrin.  
  

 

The transmembrane domain, encoded by exon 18 is supposed to be involved in CD44 

oligomerization and localization in raft like membrane microdomains (Liu and Sy, 1997; 

Neame et al., 1995; Perschl et al., 1995), which are known to serve as signalling platforms. 

The cytoplasmic domain was shown to interact with a multitude of molecules and is 

important for linking CD44 to the cytoskeleton. The cytoplasmic tail of CD44 can be 

phosphorylated by protein kinase C (PKC), which influences its ability to interact with other 

proteins, as shown for ezrin (Legg et al., 2002). Upon shedding of the extracellular domain, 

the cytoplasmic part is cleaved and translocates to the nucleus where an effect on 

transcriptional regulation was demonstrated (Okamoto et al., 2001; reviewed by Nagano et 

al., 2004).   
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1.3.2  Different modes of interactions for CD44 

 

A multitude of functions has been attributed to CD44 and its variants in different 

functional contexts, such as morphogenesis and organogenesis (reviewed by Knudson and 

Knudson, 1993), haematopoiesis (Ghaffari et al., 1999) and various immune functions, 

including homing and migration of lymphocytes and leukocyte activation and effector 

functions (reviewed in Naor et al., 1997; Pure and Cuff, 2001). The diversity of cellular 

processes influenced by CD44, e.g. growth regulation, survival, differentiation, adhesion and 

motility, raises the question how this can be achieved by a single molecule. Of course, one 

reason lies in the heterogeneity of the CD44 protein family with different variants each 

having unique characteristics. A second explanation might be the ability of CD44 to function 

in different ways. First as a ligand binding surface receptor, mainly by interacting with its 

principle ligand hyaluronic acid, second as a co-receptor for other surface molecules, 

modulating for example the signalling of associated growth factor receptors, and third 

through interactions with cytoplasmic molecules and as organizer of the actin cytoskeleton.  

 

CD44 as a cell surface receptor 

CD44 functions as the main hyaluronic acid receptor (Culty et al., 1990) but binding 

was also demonstrated for other components of the ECM, namely fibronectin, laminins and 

collagens (Turley and Moore, 1984) and also for cytokines like osteopontin and RANTES 

(Weber et al., 1996; Wolff et al., 1999). The corresponding binding site for HA is located in 

the standard part of the protein, but the affinity might be influenced by insertion of variant 

exons (Sleeman et al., 1996b) or by the state of glycosylation (Skelton et al., 1998). 

Moreover, binding to HA is not a constitutive ability of CD44 expressing cells but can be 

regulated from within the cell.  

Hyaluronic acid belongs to the family of glycosaminoglycans, but different from all 

other GAGs, HA does not possess a protein component. Instead it displays a simple structure 

as a large polysaccharide, exclusively composed of repeating disaccharides of glucoronic 

acid and N-acetylglucosamine. Under physiological conditions HA consists of 2000 to 2500 

disaccharides, corresponding to a molecular mass of 106-107 Da and a polymer length of 2-

25µm. HA is a major component of the extracellular  and pericellular matrix (Lee and Spicer, 

2000) and due to its hygroscopic characteristic it plays an important role in tissue 

homeostasis and biomechanical integrity. The role of CD44 in many physiological and 
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pathological processes is based on its interaction with HA. By binding to its ligand, CD44 

can mediate adhesion to and migration on HA rich matrices and these processes can be 

regulated by modulation of the binding affinity or by enzymatic cleavage of the extracellular 

portion of CD44 (Okamoto et al., 1999-2). Moreover, CD44 expression can influence the 

synthesis and endocytosis of HA (Culty et al., 1992; Hua et al., 1993).  

CD44 was shown to recruit and regulate the activity of proteases on the cell surface. 

For example, MMP9 (Bourguignon et al., 1998) and MMP7 (Yu et al., 2002) were 

demonstrated to associate with CD44 and their function was dependent on this co-

localization. In addition, growth factors and cytokines are captured by CD44, which can be 

variant specific as it is discussed for osteopontin (Katagiri et al., 1999). Growth factors 

described to bind to CD44 are ‘hepatocyte growth factor’/‘scatter factor’ (HGF/SF), ‘basic 

fibroblast growth factor’ (bFGF) and ‘heparin-binding factor’ (Sherman et al., 1998; van der 

Voort et al., 1999; Jones et al., 2000). The enrichment of soluble molecules on the surface by 

CD44 can influence outside in signalling either directly via binding to CD44 or indirectly by 

regulating the binding to other receptors.  

 

CD44 as a ‘co-receptor’ for other transmembrane proteins 

Lacking a catalytic domain itself, CD44 can act as a co-receptor for protein tyrosine 

kinases (PTKs) like growth factor receptors. For example, CD44v6 has been demonstrated in 

several cell lines to be essential for proper binding of HGF to its cognate receptor c-

Met/HGF-R through complex formation (Orian-Rousseau et al., 2002). A second prominent 

example is the ErbB family of receptor tyrosine kinases, with some members showing 

dependence on complex formation with CD44 for proper activation (Bourguignon et al., 

1997; Sherman et al., 2000). The nature of this co-receptor function might be due to 

clustering of receptor subunits and stabilisation of receptor dimers or, as in the case of ErbB4, 

by supporting activation of the ligand via proteolytic cleavage through associated MMPs as 

mentioned above (Yu et al., 2002). Given the heterogeneity of the CD44 protein family, 

functioning as a co-receptor could explain the ability of CD44 to modulate several different 

signalling circuits, without any direct signal transfer through CD44 itself ever being 

demonstrated. CD44 also associates with other transmembrane proteins without catalytic 

activity, for instance tetraspanins and other adhesion molecules such as integrins or EpCAM 

(Schmidt et al., 2004; Ladwein et al., 2005).  
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CD44 as an associating molecule with cytoplasmic proteins and as organizer of the actin 

cytoskeleton 

Several intracellular molecules were shown to associate with the cytoplasmic tail of 

CD44. Importantly, CD44 can be crosslinked to the actin cytoskeleton via binding to ankyrin 

and members of the ERM proteins (for ezrin, radixin and moesin) (Tsukita et al., 1994; 

Bourguignon and Jin 1995). ERM proteins are involved in the regulation of cell shape, cell 

migration and protein resorting in the plasma membrane (Bretscher et al., 2002; Gautreau et 

al., 2002) and CD44 was demonstrated to influence these processes through interaction with 

ERM proteins. Even though, the precise mechanism, e.g. if this leads to actin contraction, 

polymerization or depolymerization is not clear. The binding affinity for ERM proteins is 

tightly regulated and seems to be higher for variant CD44 than for the standard isoform 

(Tsukita et al, 1994). Other associated molecules include cytoplasmic kinases like Src, PKC, 

LCK and Fyn and the guanine nucleotide exchange factors TIAM1 and VAV2 (reviewed by 

Naor et al., 1997; Bourguignon et al., 2000; Bourguignon et al., 2001a+b). 

 

 

1.3.3  Physiological and pathological functions ascribed to CD44 
 

As mentioned above, the physiological roles of CD44 are surprisingly diverse. The 

fact that CD44 knock-out (k.o.) mice are viable and show only a very mild phenotype with 

regard to haematopoiesis as well as lymphocyte activation and migration (Schmits et al., 

1997; Protin et al., 1999) argues for other molecules being able to compensate for the loss of 

CD44 during embryonic development. However, antibody blockade led to a retardation of 

development (Zoller et al., 1997). This corresponds to the observation that the k.o. phenotype 

became more obvious, when CD44-/- animals were challenged, for example by infection with 

pathogens or by artificial induction of autoimmune diseases and proved a role for CD44 in 

the immune system. The same holds true in variant specific k.o. mice (Wittig et al., 2000).  

 

CD44 in development 

Expression of CD44 during embryonic development has been investigated in several 

studies. However a defined role for CD44 was demonstrated only in a few cases, for example 

in axon guidance during the formation of the optic chiasm (Stretavan et al., 1994, 1995), 

during limb bud development (Sherman et al., 1998), and in uteric bud and mammary gland 
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development (Pohl et al., 2000). Expression of variant CD44 during embryogenesis is seen 

on most epithelial and haematopoietic cells (Wirth et al., 1993; Terpe et al, 1994; Weber et 

al., 1996), while the expression in adult animals is mainly restricted to the skin, the 

epithelium of the gut, some glands and subpopulations of the haematopoietic cells (Kennel et 

al., 1993; Wirth et al., 1993; Fox et al., 1994; Hirano et al., 1994). Several studies 

demonstrated an important function of CD44 for differentiation and proliferation of 

haematopoietic progenitor cells (Ghaffari et al., 1999).  

 

CD44 in inflammation and leukocyte extravasation  

Physiological functions of CD44 are best explored in haematopoietic cells and 

important roles for CD44 and HA were shown in inflammatory processes (Pure et al., 2001). 

The physiological importance of CD44 in this context was shown for example in autoimmune 

diseases like rheumatoid arthritis and many others (Brennan et al., 1997; Seiter et al., 1999; 

Stoop et al., 2001). During inflammation, leukocytes exit the circulation to enter into 

different tissues. The first step of this process, a loose attachment of the leukocytes to the 

vessel wall, termed ‘rolling’, is mediated by selectins on leukocytes binding to carbohydrate 

ligands on the endothelium. This primary interaction is followed by a secondary ‘firm 

adhesion’, mediated by integrins and subsequent extravasation (Albelda et al., 1994). There is 

increasing evidence that CD44 contributes to both, rolling and firm adhesion. CD44 on the 

surface of leukocytes was shown to mediate rolling on the vessel wall via interaction with 

endothelial HA (De Grendele et al., 1996/1997).  

 

CD44 in pericellular matrix assembly 

HA is a key player in the assembly of pericellular matrices through interactions with 

proteoglycans and other extracellular macromolecules. CD44 was shown to be the main HA 

anchoring molecule for these processes in chondrocytes, the main cartilage cell type 

(Knudson et al. 1996). Thereby, the presence of CD44 has implications for organizing the 

structure of the cartilage. Other cell types like fibroblasts are also able to form such a 

pericellular matrix (Hedman et al., 1979), which may be important for their locomotion 

(Turley et al., 1989). Although tumour cells usually do not synthesize their own pericellular 

matrix, they often have the ability to assemble one in the presence of exogenously added HA 

and aggregating proteoglycans (Knudson and Knudson, 1991). 

 

 



Introduction 

 20 

1.3.4  CD44 in tumour progression 
 

A role of CD44 for tumour progression is well documented (reviewed by Ponta et al., 

1998; Naor et al., 2002; Marhaba and Zoller, 2004). The observation that variant CD44 is 

overexpressed in several metastatic tumours (Matsumura et al., 1992) raised the question 

whether CD44 might be predictive for metastasis formation. Several studies tried to define 

CD44 as prognostic marker, but correlations vary between different kinds of cancer, states of 

disease and the CD44 isoform being examined (Wielenga et al., 1993; Pals et al., 1997; Dall 

et al., 1994). However numerous studies have demonstrated that CD44s and especially 

variant CD44 is implicated in different aspects of tumour progression and particularly in 

metastatic spread. A direct evidence for this was demonstrated in a CD44 k.o. mouse model, 

showing unaltered primary tumour growth but inhibited sarcoma metastasis formation 

(Weber et al., 2002). Recently, CD44 could be identified as a key regulator for leukemic stem 

cell fate by blocking homing to the bone marrow (Jin et al., 2006). However, it has to be 

mentioned, that in prostate cancer cells overexpression of CD44s suppressed their metastatic 

capacity (Gao et al., 1998).  

Deregulation of variant CD44 in several cancers is not surprising, taken into account, 

that aberrant alternative splicing is frequently seen in cancer cells (reviewed by Kalnina et al., 

2005) and CD44 being most profoundly subjected to alternative splicing. This and the 

remarkable functional diversity of CD44 provide an explanation as to how one molecule can 

fulfil several different tasks of tumour progression. In fact, CD44 is described to influence 

most of the proposed acquired capabilities needed for successful tumour progression.  

The interaction between CD44 and HA has been described to trigger proliferation of 

several tumour cell lines, such as melanoma cells (Ahrens et al., 2001), mammary carcinoma 

(Peterson et al., 2000), glioma (Akiyama et al., 2001) and malignant mesothelioma cells 

(Nasreen et al., 2002). On a molecular level CD44 was also demonstrated to promote tumour 

cell proliferation through its co-receptor function as mentioned above, by activating members 

of the ErbB receptor family (Bourguignon et al, 2001, Ghatak et al., 2005) and c-Met (Orian-

Rousseau et al., 2002, Recio et al., 2003). In addition CD44v6 is able to directly induce 

proliferation by activating the MAP kinase pathway (Marhaba et al., 2005). In contrast, CD44 

was also found to act as a tumour suppressor. Binding of CD44 to HA has been reported to 

inhibit cell growth during contact inhibition (Morrison et al., 2001) and induce terminal 

differentiation of myeloid leukemia cell lines (Charrad et al., 2002).  
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The influence of CD44 on apoptosis is even more controversial than on proliferation. 

In lymphoma and thymocytes CD44 engagement was shown to induce apoptosis through up-

regulation of the proapoptotic molecule Bax and down-regulation of the antiapoptotic 

molecule Bcl-XL (Guy et al., 2002). Proapoptotic effects of CD44 were also shown for 

dendritic cells and neutrophils (Yang et al., 2002; Takazoe et al., 2000). On the other hand, 

there are several examples for CD44 induced survival by suppressing the induction of 

apoptosis (Bates et al., 1998; Allouche et al., 2000). Survival-promoting functions of CD44 

can be mediated by the PI3K-Akt pathway (Bates et al., 2001; Ghatak et al., 2002), or 

through upregulation of antiapoptotic molecules like Bcl-2 and Bcl-XL (Khan et al., 2002; 

Marhaba et al., 2003). Moreover CD44 can also downregulate Fas expression, thereby 

inhibiting apoptosis in lung cancer cells (Yasuda et al., 2001), or inhibit Fas signalling 

through interaction with the receptor (Mielgo et al., 2006). Notably, these prosurvival effects 

are often attributed to variant CD44, like CD44v6 in colon carcinoma cells (Bates et al., 

1998) or CD44v7 in lymphocytes (Wittig et al., 2000; Marhaba et al., 2003).  

Factors known to stimulate vascularization are ‘basic fibroblast growth factor’ 

(bFGF), ‘vascular endothelial growth factor’ (VEGF) and cytokines such as ‘transforming 

growth factor β (TGFβ) (Pepper, 1997). MMP2 and MMP9 associated with CD44 were 

demonstrated to cleave the pro-form of TGFβ, thereby releasing the active cytokine and 

inducing angiogenesis (Yu and Stamenkovic, 1999, 2000). Other described angiogenic 

effects of CD44 are mainly due to its expression on endothelial cells rather than on tumour 

cells (Griffioen et al., 1997).  

Finally, CD44 might influence the formation of metastatic lesions in several different 

ways. CD44-HA binding can influence the adhesive properties of tumour cells to the ECM. 

Modulation of this interaction can enhance the mobility of cancer cells during the metastatic 

process. For example HA-CD44 binding was shown to be important for glioma cell invasion 

and migration (Okada et al., 1996). Additionally, the loss of ECM contacts by cleavage of 

CD44 has been demonstrated (Okamoto et al., 1999). The loss of cell-matrix adhesion 

usually leads to growth arrest and cell death and CD44 was shown to be able to promote 

anchorage-independent growth, a prerequisite for invasion (Peterson et al., 2000; Ghatak et 

al., 2002).  

The activation of cell surface MMPs by CD44 favours invasiveness of tumour cells, 

enabling them to migrate into adjacent tissues as demonstrated for MMP9 (Yu and 

Stamenkovic 1999, 2000). Migration of cells requires reorganization of the actin 
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cytoskeleton, which is under the control of Rho GTPases, like RhoA, Rac1 and Cdc42. HA 

binding to CD44 can activate Rac1 and induce lamellipodia formation and migration 

enabling invasive behaviour (Oliferenko et al., 2000; Bourguignon et al., 2000).  

As already described in the context of inflammation, CD44v was shown to facilitate 

attachment of lymphoma cells to vessel walls through interaction with endothelial surface 

HA (Wallach-Dayan et al., 2001), facilitating subsequent firm adhesion and transmigration 

into the underlying tissue and favouring settlement of tumour cells at a secondary site. 

Indeed, a soluble form of CD44 competing with cell surface CD44 for HA binding reduced 

metastasis formation in vivo (Yu et al., 1997; Peterson et al., 2000).  

In summary, published data clearly show that CD44 and especially variant CD44 play 

a crucial role in the course of tumour progression and metastasis formation. 

 

 

1.4  RNA interference as a tool to study isoform specific gene 

 functions 

 

RNA interference (RNAi) depicts an evolutionary conserved mechanism, occurring in 

most eukaryotic organisms (Hannon, 2002), which may have evolved as defense system 

against viral and genetic parasites. Double stranded (ds) RNA molecules are processed into 

short RNA duplexes, directing sequence specific cleavage or translational repression of 

complementary messenger RNAs (reviewed by Meister and Tuschl, 2004) and are implicated 

in chromatin remodeling and transcriptional regulation (reviewed by Lippman and 

Martienssen, 2004). In addition to the growing importance of RNAi as a tool for 

manipulating gene expression, the endogenous triggers of the RNAi pathway, called 

microRNAs (miRNAs) recently attracted great interest and were shown to play a role during 

embryonic development and to be implicated in tumourigenesis as well (reviewed by 

O’Rourke et al., 2006; Esquela-Kerscher and Slack, 2006).  

 Upon the original observation that ds RNA triggers are far more efficient in gene 

silencing than single stranded (ss) antisense RNA molecules (Fire et al., 1998), RNAi became 

a popular tool for modulating gene expression in model systems like C.elegans and 

Drosophila. However the subsequent adaptation of the RNAi technique to the mammalian 

system (Elbashir et al., 2001) made RNAi one of the most profound discoveries of the last 



Introduction 

 23 

decade and one of the most powerful techniques for studying gene function in a cell culture 

based system and probably even as therapeutic tool in vivo. Compared to other techniques, 

such as antisense technology or morpholino oligos, only RNAi enables splice variant specific 

down regulation of gene products even on a stable basis. Isoform specificity can be achieved 

by choosing exon specific target sequences and stable downregulation of the gene of interest 

can be realized through integration of expression cassettes, driving transcription of self 

complementary short hairpinRNAs (shRNAs), that are processed by the endogenous RNAi 

machinery into active small interfering RNAs (siRNAs) (Paddison et al., 2002; 

Brummelkamp et al., 2002). Thus, RNAi allows stable and isoform-specific loss-of-function 

studies, which were rarely practical by conventional k.o., due to the hyperploidity of many 

tumour cells. 

 

1.5  Aims of the thesis 
 

 The aim of this work was to investigate the contribution of CD44v on the metastatic 

behaviour of ASML cells and to gain a better understanding of the role of variant CD44 

during the lymphatic spread of tumour cells in general.  

 Due to its remarkable structural and functional heterogeneity, CD44 plays a pivotal 

role in several steps of tumour progression. First evidence for the importance of CD44 

variants in metastasis formation was obtained in the rat pancreatic adenocarcinoma model 

BSp73, where two major splice variants expressed only by the highly metastatic ASML 

subline were identified as v4-v7 and v6/v7. Introduction of these isoforms conferred a 

metastatic phenotype to the otherwise only locally growing AS subline, exclusively 

expressing the standard CD44 isoform (Gunthert et al., 1991; Rudy et al., 1993). Moreover, 

application of antibodies targeting variant exon 6 retarded metastasis formation of ASML 

cells, providing a hint, that CD44v also plays a crucial role in the metastatic spread of these 

cells (Seiter et al., 1993). On the other hand, compared to ASML cells, AS cells display 

entirely different adhesion and migration characteristics. In addition to this, expression 

profiling revealed several hundred differentially expressed genes between these two sublines 

(Tarbe et al., 2002), including molecules known to play a role in cancer progression, such as 

c-Met and c-Myc.  

In order to investigate specific functions of CD44v and the underlying molecular 

mechanisms in metastasis formation, a plasmid based RNAi system was used for creating 
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stable and variant specific CD44 knock-down cells of the highly metastatic carcinoma cell 

line BSp73ASML. The resulting phenotype was studied in vitro and in vivo, particularly 

emphasising interactions of CD44v with the microenvironment and the stimuli the tumour 

cell may receive by this crosstalk.  
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2.  Results 
 

A plasmid-based RNAi system (pSuper) was used to create stable and variant 

specific knock-down cells of the highly metastatic tumour cell line BSp73ASML 

(ASML), known to express CD44 variants at high levels. The plasmid drives expression 

of small hairpin RNAs, which are processed into functional siRNAs and eventually lead 

to sequence-specific down-regulation of the gene of interest. In addition, it carries a 

GFP reporter and a neomycin resistance for detection of transfected cells and selection 

of stable clones (Fig. 5). Constructs were designed on the premise to target the two 

most abundant CD44 variants expressed by ASML, namely CD44v4-v7 (meta1 isoform) 

and CD44v6/v7 (meta2 isoform), previously described to confer metastatic potential to 

the otherwise weakly metastatic sister subline BSp73AS (Rudy et al., 1993). Target 

sequences therefore lie within the variant exons contained in both isoforms. Construct 

‘v6’ targets variant exon 6, ‘v7’ targets variant exon 7 and ‘v6/v7’ targets the border of 

exon v6 and v7. Constructs were cloned and verified by sequencing.  

 

Fig. 5: Expression cassettes of ‘pSuperGFPneo’ carrying construct ‘v7’ 
The self-complementary sequence of the transcript folds into a hairpin structure, which is processed 
by the endogenous RNAi machinery into an active siRNA. A GFP-reporter and a neomycin resistance 
are included in a second expression cassette.  
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2.1  Establishment of stable CD44vk.d. cell lines and rescue clones 

2.1.1  RNAi construct evaluation by FACS and fluorescence microscopy  

 

Efficiency in down-regulation of variant CD44 was monitored by FACS staining after 

transient transfection of ASML cells with three different pSuper-constructs and the empty 

vector (mock). Three days after transfection, cells were analyzed for CD44v expression by 

FACS staining using an antibody specific to variant exon 6 (A2.6). The mean intensity of 

GFP positive (transfected) cells was compared to GFP negative cells of the same pool and 

revealed functionality of the ‘v7’ and the ‘v6/v7’ constructs in down-regulating CD44variant 

expression on ASML cells. Table 1 shows the relative mean values of three experiments. 

While ‘mock’ transfection did not change CD44v expression and pSuper-v6 showed only 

weak down-regulation, transfection with pSuper-v7 reduced the mean intensity of CD44v by 

55% and transfection with pSuper-v6/v7 resulted in a mean intensity reduced by 51%.  

 

Tab. 1: Evaluation of pSuper constructs by FACS staining 
construct relative mean intensity for CD44v 

pSuper-mock 108 ± 6% 
pSuper-v6 86 ± 5% 
pSuper-v7 45 ± 4% 

pSuper-v6/7 49 ± 6% 
FACS staining for CD44v6 (A2.6) after transient transfection with different pSuper constructs and the 
empty vector. Mean intensities of transfected (GFP positive) relative to untransfected cells are shown 
in percent.  
 
 

Results were confirmed by immunofluorescence microscopy. ASML cells grown on 

coverslips were transfected with the three pSuper constructs and the empty vector and stained 

after three days for variant CD44 expression. GFP positive cells in pSuper-v7 and pSuper-

v6/v7 transfections show reduced CD44 expression, while expression of other surface 

molecules like EpCAM is not affected (shown for pSuper-v7 in Fig. 6A). PSuper-v6 or mock 

transfected cells did not show a difference in CD44 expression (Fig. 6A, pSuper-v6 is not 

shown).  
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2.1.2  Establishment of stable CD44vk.d. clones by selection and recloning 

 

By selection with G418 and two rounds of recloning three stable clones of pSuper-v7 

transfected ASML cells were established that revealed strong down-regulation of variant 

CD44 on the protein level as shown by western blotting (Fig. 6B). CD44v levels are hardly 

detectable in the CD44v ‘knock-down’ (k.d.) clones, but unaffected in a stable ‘mock’ clone. 

EpCAM was used as an internal loading control. For unknown reasons no stable clones could 

be obtained with the pSuper-v6/7 construct.  

 

Fig. 6: CD44v expression of ASML cells is reduced after transfection with pSuper-v7 or 
the empty vector 
A. Immunofluorescence staining for CD44v6 with A2.6 (upper panels) or EpCAM with D5.7 (lower 
panel). GFP positive cells display reduced CD44v expression only in the pSuper-v7 transfections 
(middle panel), while mock transfection has no influence on the expression level (upper panel). 
EpCAM staining is not affected (lower panel). B. Western blot analysis of stable clones. Upper panel: 
the two major CD44 variants are down-regulated in the three knock-down clones, but unaffected in 
the mock clone. EpCAM is used as an internal loading control (lower panel).  

 

A      B 
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2.1.3  Restoring CD44 expression by introduction of mutated cDNAs 

 

In order to control specificity of any phenotype arising in the k.d cells, ‘rescue’ clones 

with restored expression of one of the dominant CD44 variants were established. This was 

achieved by introduction of cDNAs coding for either CD44v4-v7 or CD44v6/v7, carrying 

four silent point mutations in the v7 target sequence, which should protect them from 

degradation (Fig.7A). Indeed co-transfecting ‘HEK 293T’ cells with the ‘rescue’ cDNAs 

together with the pSuper-v7 construct showed high CD44 expression, while expression of a 

wt CD44 cDNA was significantly affected by pSuper-v7 co-transfection (data not shown). 

One of the k.d. clones, ASMLv71-14, was used for transfections with the ‘rescue’ cDNAs 

and after selection and two rounds of recloning stable ‘rescue’ clones were established. 

Western blot analysis for CD44variant expression shows successful restoration of either 

CD44v4-v7 or CD44v6/v7 in the knock-down clone, although CD44v4-v7 expression was 

not restored to levels comparable to the wt situation. One mock clone is shown as control.  

EpCAM serves as a loading control (Fig. 7B).  

 

Fig. 7: Restoring CD44 expression by transfection with mutated cDNAs 
Four silent mutations were introduced in the v7 target site of CD44v4-v7 and CD44v6/v7 cDNAs by 
PCR. The v71-14 clone was transfected with the mutated cDNAs and stable clones were established. 
A. v7 target and rescue sequence. Silent mutations are highlighted in red. B. Western blot analysis of 
stable clones, showing restored CD44v expression by A2.6 staining (upper panel). EpCAM is used as 
an internal loading control by D5.7 staining (lower panel).  

 
A  v7 target sequence AGAATGACAACACAGAGTCAAGAGGATG 
  v7 rescue sequence AGAATGACTACTCAGTCTCAAGAGGATG 
 
B 
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2.2  Characterization of the knock-down cell lines in vivo 

2.2.1  CD44vk.d. cells exhibit a reduced metastatic capacity in vivo 

 

Intra-footpad injections (ifp) of BDX rats with ASMLwt, one mock and three k.d. 

clones were performed and the metastatic spread was monitored. The metastatic growth of 

ASML cells has been studied before (Matzku et al., 1983) and displays only little local 

tumour growth, but rapid spread through the whole lymphatic system with massive tumour 

burden in the proximal lymph nodes and miliar outgrowth of micro metastases in the lung, 

which eventually lead to the death of the animal. Animals were injected ifp with 106 cells and 

sacrificed after 50 days. Diameters of the primary tumour and lymph node metastases were 

measured and lungs were photographed and weighed. In addition, lung samples were 

analyzed by immunohistological staining. ASMLwt cells as well as the mock clone 

resembled the expected metastatic behavior, but the CD44vk.d. clones showed clearly less 

metastatic growth. Two k.d. clones (v71-14 and v72-1-17) displayed a greatly reduced over 

all tumour burden in vivo, while one clone (v71-16) grew as fast as the wt and the mock 

controls in the lymph nodes, while the metastatic settlement in the lung was clearly 

diminished in all three clones, with most animals revealing tumour free lungs and some only 

few metastatic nodules. In comparison, the wt- and mock-injected animals all displayed 

entirely metastatic lungs.  

The metastatic burden of each lung was examined macroscopically (Fig. 8). The 

immense tumour burden in the lung of wt and mock treated animals is obvious by the size of 

the lungs that do not collapse, but are completely filled with tumour cells. Compared to this, 

the lungs of the CD44vk.d. clones appear normal or in the case of an v71-16-injected animal 

only moderately enlarged.  The weight of the lungs gives a good indication for tumour 

burden (Tab. 2). Two animals injected with ASMLwt died before the end of the experiment, 

obviously due to the tumour burden of the lung. In addition, immunohistochemical analyses 

of sectioned lung samples were performed. C4.4A was used as a tumour marker in this case 

and again demonstrates the immense tumour burden in the lungs of wt and mock injected 

rats, while lungs of the k.d.-treated animals were tumour free or exhibited only few nodules 

as shown for a v71-16 lung. In this case also the stability of the RNAi effect throughout the in 

vivo experiment is demonstrated, as the v71-16 lung was unstained for CD44v6, while wt and 

mock tumour tissue is strongly stained (Fig. 8).  
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Tab. 2: CD44k.d. clones exhibit a reduced metastatic growth in vivo 

In vivo metastasis assay #1. Ifp injections of BDX rats with ASMLwt, mock and CD44vk.d. clones. 
Animals were sacrificed and dissected after 50 days. The tumour burden is given as sum of primary 
tumour and lymph nodes. The mean for each group is shown. Lungs were macroscopically examined 
and the weight is given as an indication for tumour burden of the lung. Two ASMLwt animals marked 
with asterisks (*) died within the course of the experiment.  
 

The experiment was repeated with the rescue clones, displaying restored CD44v 

expression. One mock clone, one knock-down clone (v7 1-14) and one clone of each rescue 

construct were injected as before and animals were killed after 60 days and analyzed as 

described above. Again the mock-treated animals displayed massive tumour burden with 

miliary lungs, while the k.d. clone showed less metastasis formation without any tumour 

growth in the lungs. For unknown reasons the v4-v7 rescue clone did not grow in vivo, but 

four out of six animals injected with the CD44v6/v7 rescue clone displayed enhanced 

metastatic growth in the lymph nodes and five of six animals revealed also settlement in the 

lung, without reaching the massive tumour burden of the wt (Tab. 3). Immunohistology on 

tumour burden 
prim. tumour + lymph nodes  lung  

 
injected construct-

(animal#) tumour mass in 
cm3 

average morphology weight 
in g 

average 

untreated control-(1-1) - none 1.2 
untreated control-(1-2) - 

- 
none 1.3 

1.3±0.1 

ASMLwt-(1-1)* †day38 5.5 miliary, confluent 5.3 
ASMLwt-(1-2)* †day45 5.5 miliary, confluent 4.9 
ASMLwt-(2) 5.8 miliary, confluent 4.1 
ASMLwt-(3) 7.1 miliary, confluent 4.4 
ASMLwt-(4) 10.1 

6.9±2.1 

miliary, confluent 6.9 

5.1±1.1 

mock9-(5-1) 6.6 miliary, confluent 6.7 
mock9-(5-2) 3.7 miliary, confluent 2.4 
mock9-(6-1) 7.2 miliary, confluent 6.6 
mock9-(6-2) 8.0 miliary, confluent 5.5 
mock9-(7-1) 4.7 miliary, confluent 2.8 
mock-(7-2) 11.2 

6.9±2.6 

miliary, confluent 4.8 

4.8±1.8 

v71-14-(11) 2.7 none 1.2 
v71-14-(12-1) 3.2 none 1.1 
v71-14-(12-2) 3.5 none 1.3 
v71-14-(13-1) 4.2 none 1.3 
v71-14-(13-2) 5.0 none 1.9 
v71-14-(14-2) 2.1 

3.5±1.0 

none 0.9 

1.3±0.4 

v72-1-17-(15-1) 1.0 miliary, few 1.6 
v72-1-17-(15-2) 2.2 none 1.3 
v72-1-17-(16-1) 1.0 none 1.4 
v72-1-17-(16-2) 2.0 none 1.4 
v72-1-17-(17) 2.7 none 1.5 
v72-1-17-(18) 4.7 

2.3±1.4 

none 1.5 

1.5±0.1 

v71-16-(8-1) 6.5 miliary, few 2.3 
v71-16-(8-2) 8.6 miliary, few 2.2 
v71-16-(9-1) 10.0 miliary, multiple 3.8 
v71-16-(9-2) 7.5 none 1.8 
v71-16-(10-1) 3.5 none 1.2 
v71-16-(10-2) 4.5 

6.8±2.5 

none 1.7 

2.2±0.9 
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lung samples were carried out as before and confirmed the macroscopical examination (Fig. 

8). 

 

Fig. 8: CD44vk.d. cells exhibit a reduced settlement in the lung   
Ifp injections of BDX rats. Animals were killed, dissected and lungs were analyzed. Macroscopic 
photographs of whole lungs and imunohistological analysis of sectioned lung samples, stained for 
CD44v6 (A2.6) and C4.4A (C4.4) as a tumour marker are shown. A. In vivo metastasis assay #1, 
showing ASMLwt, mock and CD44vk.d. clones. B. In vivo metastasis assay #2, showing one rescue 
clone (v71-14rescv6/7).  
 

The stability of the k.d. and the restored CD44v expression was reconfirmed by re-

cultivation of tumour cells from the lungs or lymph nodes of the injected clones. After lysis, 

SDS-PAGE and western blotting, blots were stained for CD44v6 (A2.6) and EpCAM (D5.7) 

as loading control. This assay clearly demonstrates the stable down-regulation of variant 

CD44 in the established clones and the restored CD44v6/v7 expression in the rescue clone 

(Fig. 9).  

       A  

                      
             
 

B 
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Tab. 3: Restored CD44variant expression is able to rescue the metastatic capacity of 
ASML in part 

tumour burden 
prim. tumour + lymph nodes  lung  

 
injected construct-(animal) 

tumour mass in 
cm3 

average morphology weight 
in g 

average 

mock9-(1-1) 9.0 miliary, confluent 8.7 
mock9-(1-2) 5.7 miliary, confluent 6.2 
mock9-(2-1) 4.5 miliary, confluent 4.4 
mock9-(13) 6.3 miliary, confluent 4.8 
mock9-(15-1) 8.7 miliary, confluent 5.2 
mock9-(14-2) 7.2 

7.0±1.9 

miliary, confluent 6.5 

6.0±1.6 

v71-14-(4-1) 4.5 none 1.5 
v71-14-(4-2) 2.3 none 1.3 
v71-14-(3-1) 3.7 none 1.4 
v71-14-(3-2) 4.1 none 1.2 
v71-14-(5) 2.0 none 1.3 
v71-14-(14) 3.4 

3.3±1.0 

none 0.9 

1.3±0.2 

v71-14rescv6/v7#12-(10-1) 10.3 miliary, confluent 3.0 
v71-14rescv6/v7#12-(11-1) 11.2 miliary, multiple 2.5 
v71-14rescv6/v7#12-(11-2) 6.3 miliary, few 2.1 
v71-14rescv6/v7#12-(12-1) 1 none 1.5 
v71-14rescv6/v7#12-(12-2) 2.2 miliary, few 1.8 
v71-14rescv6/v7#12-(17-1) 7.3 

6.2±4.0 

miliary, few 1.6 

2.1±0.6 

In vivo metastasis assay #2. Ifp injections of BDX rats with mock, one CD44vk.d. clone (v71-14) and 
two v71-14 rescue clones. Animals were killed and dissected after 60 days and tumour burden is 
given as sum of primary tumour and lymph nodes. The mean value for each group is shown. Lungs 
were macroscopically examined and the weight is given as an indication for tumour burden of the 
lung. The second rescue clone (v71-14rescv4-v7#8) did not grow in vivo and is not included in the 
table.  
 

 

Fig. 9: Knocked down and restored expression of CD44v remained stable during the 
animal experiments 
Western blot analysis on re-cultivated tumour cells from injected animals stained for CD44v6 (A2.6) 
and EpCAM (D5.7) as loading control. A. All tested k.d. tumour samples still show the same level of 
down-regulated CD44v. Cultured k.d. (v71-16) and mock cells are shown as control. B. All tested 
tumour samples of the rescue clones still show restored CD44v6/v7 expression. LN lymph node.  

A        B 

 
 
 
 

 
 



Results 

 33 

2.3  Characterization of knock-down cell lines in vitro 

2.3.1  CD44vk.d. cells show no phenotypic changes 

 

Cells were grown for 24 hours in 6-well plates. Microscopic analysis revealed no changes in 

cell shape or growth behavior. All clones display the same rounded cell shape without visible 

spreading. ASMLwt and CD44vk.d. cells do not form a dense monolayer with tight cell-cell 

contacts, but rather detach from the ground before reaching complete confluency (Fig. 10). 

The same accounts for the rescue clones. One rescue clone is shown as representative 

example.  

 

Fig. 10: The phenotype of CD44vk.d. clones is not changed 
Microscopic analysis of wt ASML, mock, CD44vk.d. clones and one rescue clone, cultured for 24 
hours.  

 

2.3.2  CD44vk.d. cells show no altered growth behaviour 

 

As the k.d. clones revealed different growth in vivo, the proliferative capacity was compared 

in vitro. Proliferation of wt and knock-down cells was monitored for three days, using either 
3H thymidine incorporation (data not shown) or staining with crystal violet. Both assays 

revealed no significant changes in proliferation rates between the wt and knock-down cells, 

irrespective of cells being grown in the presence of 10% FCS or under low serum conditions 

(0.5% FCS) (Fig. 11). Moreover, colony formation in soft agar, reflecting the ability of 

anchorage-independent growth, a hallmark of metastatic cells, did not show any significant 

changes. All clones revealed a high colony-forming efficacy of 90-95% (Tab. 4).  
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Fig. 11: Proliferation of CD44vk.d. clones is not altered 
Proliferation was monitored for 48h and quantified by crystal violet staining. A. Proliferation in 
medium supplemented with 10% FCS. B. Proliferation in medium supplemented with 0.5% FCS.  
 

 

Tab. 4: Soft agar colony formation of wt ASML, mock and CD44vk.d. clones 
clone colony forming efficacy 

ASML wt 91% +/- 4% 
mock #9 93% +/- 3% 
v7 1-14 90% +/- 5% 
v7 1-16 95% +/- 4% 

v7 2-1-17 89% +/- 6% 
100 and 1000 cells of ASMLwt, mock and CD44vk.d. clones were seeded in RPMI/10%FCS 
containing 0.5% agar. Colonies were counted after 4 weeks. The mean colony-forming efficacy is 
shown.   

 

2.3.3  CD44vk.d. cells do not differ in MMP2 and MMP9 expression 

 

In order to invade adjacent tissues, tumour cells have to degrade extracellular matrix barriers, 

which is often achieved by up-regulation of degrading enzymes like MMPs. To test if down-

regulation of CD44 variants is accompanied by decreased MMP expression, MMP2 and 

MMP9 secretion into the supernatant was tested by a Gelatinease assay. Ten times 

concentrated conditioned cell culture supernatant of wt, mock and k.d. cells was subjected to 

SDS-PAGE, containing Gelatine as a substrate. After completion of the run gels were stained 

with Coomassie (Fig. 12). Enzymatic activity was visualized as unstained bands that reflect 

           A          B 
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the pro-forms of MMP2 and MMP9. No significant differences were observed between the 

clones.  

 

Fig. 12: MMP2 and MMP9 expression of wt ASML, mock and CD44vk.d. clones  
Gelatine zymography of concentrated cell culture supernatants. Unstained bands correspond to Pro-
MMP2 and Pro-MMP9 expression.  
 

 

2.3.4  ASMLwt cells but not CD44vk.d. cells aggregate in stromal cell culture 

 supernatant 

 

As lymph nodal spread is significantly reduced in CD44vk.d. cells, it was tested, if ASML 

cells interact with lymph node stromal cells and if this interaction is impaired in the k.d. cells. 

Adhesion to monolayers of the lymph node stromal cell lines ‘ST-A4’ and ‘ST-B12’ or an 

immortalized lung fibroblast cell line did not reveal any affinity of ASML (data not shown). 

Instead it was noticed that ASML cells clumped and formed cell agglomerates when added to 

the stromal cells. This observation was tested subsequently with conditioned cell culture 

supernatant of the three mentioned stromal cell lines. Only wt and mock cells formed huge 

agglomerates in the supernatant within minutes, while CD44vk.d. cells did not clump at all or 

formed only very small cell clusters. The ability to form agglomerates was completely 

reestablished by the restored CD44v expression in the rescue clones (Fig. 13).  
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Fig. 13: Agglomerate formation in conditioned cell culture supernatant of stromal cells 
Microscopic analysis of agglomeration of ASMLwt, mock, k.d. and rescue clones in conditioned cell 
culture supernatant of immortalized lung fibroblasts (A) and the lymph node stromal cell line ST-A4 
(B). ASMLwt cells in RPMI medium are shown as control.  
 

As hyaluronic acid (HA) is known to crosslink CD44 on the surface of cells and stromal cells 

are known to produce HA in large amounts, it was tested if the cell clumping was due to 

CD44 cross-bridging by HA in the supernatant. Supernatant was treated with hyaluronidase 

(1mg/ml) for 2 or 5 hours and agglomeration was monitored as before, heat-inactivated 

hyaluronidase served as a control. Indeed cell clumping was abrogated by hyaluronidase 

treatment in a time dependent manner (Fig. 14B). Likewise, addition of 1mg/ml HA to 

normal RPMI medium was able to induce agglomerate formation of ASML cells (Fig. 14A), 

demonstrating that the observed clustering is likely due to bridging of cell surface CD44 by 

HA.  

 

 

 

 

 

 

    
    A 

 
    B 
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Fig. 14: Influence of hyaluronic acid on agglomeration of ASML cells  
A. Addition of HA to normal RPMI medium is able to induce agglomeration of ASMLwt cells. B. 
Stromal cell culture supernatant was treated with hyaluronidase for 2 or 5 hours, which abrogates 
aggregation. Heat inactivated hyaluronidase was used as a control.  

 

2.3.5  ASMLwt cells produce an adhesive matrix, which is impaired in the 

 CD44vk.d.  

 

ASML cells show a very limited ability to bind to matrix components, like 

fibronectin, laminin or collagen, while cultivated cells strongly attach to the plastic flasks. 

This feature is reduced in CD44vk.d. cells as noted by different sensitivities to trypsin 

treatment. To test for differences in adhesion, conditioned cell culture supernatant of 

ASMLwt cells was coated to plastic and used for adhesion assays. ASMLwt and CD44vk.d. 

cells show rapid adhesion to the coated supernatant, indicating that adhesion is not impaired 

in the k.d. (data  not shown).  

The supernatant of the knock-down cells was tested for adhesive properties after 

coating. Interestingly, a dramatic reduction was observed. Figure 15A shows reciprocal 

crisscross adhesion to matrices of wt cells, a mock clone and the three knock-down clones. 

All 5 clones adhere rapidly to the wt and mock derived matrix, while adhesion to the matrices 

produced by either of the knock-down clones is strongly impaired for all cells. To test if 

adhesion is induced by a soluble or deposited factor, cells were cultured in 24-well plates for 

24 hours and detached by either trypsin or EDTA treatment. The plates were used for 

adhesion assays as described above. Only EDTA treated plates were able to promote 

adhesion (data not shown). Using this approach wt and knock-down cells were compared for 

their ability to deposit an adhesion promoting matrix. Indeed, the knock-down matrix was 

          
          A           B 
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clearly less capable of promoting adhesion than the wt matrix. However, the difference was 

less pronounced than for the conditioned supernatant (Fig. 15B). These results show that the 

loss of variant CD44 in ASML cells leads to an impaired ability to produce an adhesive 

matrix.  

 

Fig. 15: Adhesion to coated supernatant and deposited matrix of wt ASML and k.d. 
cells 
A. Adhesion assay on coated supernatant of wt ASML and k.d. clones. Relative adhesion of each line 
to the different matrices is shown. Adhesion of wt ASML to wt matrix was set to 100%. B. Adhesion 
of ASMLwt to deposited matrices of the different clones. Deposited matrix was prepared by removal 
of cells through EDTA treatment.  
 

 

In order to investigate, whether this matrix defect is indeed due to the loss of CD44, 

the rescue clones displaying restored expression of CD44v4-v7 or CD44v6/v7 were used for 

matrix production and compared to the parental knock-down clone. As expected, restoration 

of either CD44 isoform was able to restore the matrix production significantly, but without 

reproducing the full adhesive properties of the wt matrix (Fig. 16). In summary, loss of 

variant CD44 in ASML cells leads to an impaired ability to generate an adhesion-promoting 

matrix, which is deposited on the plastic and secreted into the supernatant. Restoring 

CD44variant expression is able to restore this matrix production in part.  

 

       A                  B 
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Fig. 16: Restoring CD44v expression rescues matrix production 
Adhesion assay of ASMLwt cells to coated supernatant of ASMLwt, v71-14 and v71-14rescue 
clones. Adhesion of ASMLwt cells to wt matrix is set to 100%.  

 

2.3.5.1 Adhesion promoting components are secreted 

 

To verify that the components mediating adhesion are secreted factors, and not present on 

membrane particles, like exosomes or membrane fragments, ultracentrifugation (100000g) 

was performed, which should precipitate all membrane particles present in the supernatant. 

The resuspended pellet and the supernatant were tested for adhesive properties after coating 

to plastic. Only the supernatant was able to promote adhesion of ASML cells (Fig. 17A). The 

tetraspanin D6.1A was used as exosomal marker (Wubbods et al., 2003) and was completely 

removed from the supernatant by centrifugation, while shed CD44 was present in the 

supernatant, demonstrating that the separation procedure was successful (Fig. 17B).  
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Fig. 17: Ultracentrifugation of cell culture supernatant 
100000g centrifugation from concentrated supernatant of wt ASML A. Adhesion assay on coated  
supernatant and the resuspended pellet. B. Western blot control for shed CD44v6 (A2.6) and for 
D6.1A (D6.1) as an exosomal marker. 

 

2.3.5.2 The secreted matrix contains HA, collagen and laminin 

 

As CD44 is known to be involved in the assembly of pericellular matrices through 

anchoring hyaluronic acid, the matrix was tested for sensitivity to hyaluronidase treatment as 

well as for collagenase treatment. Conditioned supernatant was treated with different 

concentrations of hyaluronidase or collagenase either before or after coating to plastic and 

adhesion assays were performed as described. Heat-inactivated enzymes were used as 

controls (Fig. 18). While hyaluronidase treatment after coating did not alter the adhesive 

properties, it did destroy the ability to promote adhesion, when the supernatant was treated 

prior to coating (Fig. 18B). This indicates that HA is used as a scaffold for other matrix 

components rather than as adhesive substrate and implicates that adhesion itself is not 

mediated by CD44, which goes along with the finding that the k.d. clones do not display an 

impaired adhesion to the wt matrix. In contrast, collagenase treatment did abrogate the 

adhesive properties of the matrix irrespective if the supernatant was treated before or after 

coating (Fig. 18A). In summary, these results indicate that HA is needed for the assembly of 

other matrix components and that the rapid adhesion of ASML cells is mediated via binding 

to collagen.  

 

 

     A       B 
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Fig. 18: Hyaluronidase and collagenase treatment disrupts the adhesive properties of 
the supernatant 
Supernatant of wt ASML was treated with different concentrations of collagenase after coating (A) 
and hyaluronidase before or after coating (B). Adhesion assays were performed with ASMLwt cells 
as described earlier.  
 

 

The adhesive portion of the secreted matrix is between 600 and 4000kDa in size  

 

To further characterize the composition of the secreted matrix, conditioned 

supernatant was collected and concentrated 40 times through a ‘vivaspin’ column. The 

concentrate was size separated by gelfiltration using different pore sizes. Fractions were 

collected and used for coating to 24-well plates. The void volume of the column was defined 

by blue dextrane. Adhesion assays were performed and revealed that the fractions promoting 

adhesion were still within the void volume, when ‘Superdex200’ beads were used (Fig. 19A), 

but were within the separation range of ‘CL6B’ beads (Fig. 19B). This indicates that the 

components promoting adhesion are larger in size than roughly 600 kDa, (size exclusion of 

Superdex200) but smaller than 4000 kDa (size exclusion of CL6B). The adhesive fractions of 

wt cells after chromatography were compared to the corresponding fractions of the knock-

down cells using silver staining. However, protein content was low in general and no visible 

differences could be observed (data not shown).  

 

A      B 
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Fig. 19: Size exclusion chromatography of wt and k.d. supernatant 
Concentrated supernatants of wt ASML and v71-16 k.d. cells were size fractionated by 
chromatography on Superdex200 (A) and CL6B (B) sepharose columns.  Fractions were coated to 
plastic and used for adhesion assays. The void volume was defined by blue dextrane.  
 

 

In order to identify components of the matrix mediating adhesion, CL6B fractions 

were subjected to SDS-PAGE and western blotting and probed with different antibodies. 

Shed CD44 was not present in the fractions promoting adhesion. In contrast, laminin was 

present, although not exclusively in the adhesive fractions and no difference in the laminin 

distribution was observed between the wt and the knock-down fractions (Fig. 20).  

 

 

 

 

A 

 
 
 
B 
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Fig. 20: Western blot analysis for CL6B-fractionated conditioned supernatant 
Western blot analysis of fractionated supernatants. Concentrated supernatants of wt ASML and a 
CD44vk.d. clone (v71-16) were size fractionated by chromatography on CL6B sepharose columns. 
Fractions including the adhesive fractions (see Fig. 19) were subjected to SDS-PAGE and stained for 
CD44v6 (A2.6) and laminin (polyclonal serum recognizing several laminins).  

 

2.3.5.3 Adhesion to the matrix is mediated by β1 integrin 

 

The observation that trypsin treatment destroyed the deposited matrix but EDTA 

treatment left the matrix unaltered, together with the finding that collagen and not HA seems 

to be involved in the adhesion process suggests that adhesion of ASML to their own matrix 

could be mediated by integrins. In line with this, addition of EDTA during adhesion 

abrogated attachment of the cells, arguing for Ca2+ dependent adhesion (data not shown). To 

further test this hypothesis different antibodies were tested for their ability to block adhesion. 

For this purpose cells were pre-incubated with different integrin antibodies and adhesion was 

performed as before. Figure 21 shows that only a β1 integrin antibody blocked adhesion in a 

concentration dependent manner, while all other antibodies, including anti CD44, had no 

influence on adhesion. Anti α6β1 induced cell aggregation and could therefore not be used 

for blocking experiments. ASML cells do not express α1, α4 and α5 integrin chains (data not 

shown). Pre-incubation of the coated matrix with an anti laminin polyclonal serum (reacting 

with several laminins) did not interfere with adhesion. Therefore it seems likely that initial 

adhesion of ASML cells to their own matrix is mediated by a β1 integrin binding to matrix 

bound collagen, even though the specific type of collagen and the integrin α chain could not 

be identified.  

  

    



Results 

 44 

Fig. 21: Interfering with β1-integrin blocks adhesion to the secreted matrix 
ASMLwt cells were pre-incubated with different antibodies and used for adhesion assays to wt ASML 
matrix. For laminin blocking, the coated matrix was pre-incubated with anti laminin polyclonal serum 
instead.  
 
 

2.3.6  CD44vk.d. cells lack a secreted 180 kDa protein 

 

To identify components present in the supernatant that might be responsible for the 

matrix defect, silver staining of concentrated conditioned supernatant from wt and k.d. cells 

was performed and revealed a 180 kDa protein, which was greatly reduced in all three k.d. 

clones (Fig. 22A). The protein was subjected to mass spectrometric analysis and was 

identified as ‘complement component 3’ (C3), an element of the innate immune system. The 

mass spectrometry result was verified using a specific antibody and confirmed, that wt and 

mock ASML cells secrete complement component 3 and that this is greatly reduced in the 

k.d. cells. Concentrated conditioned supernatant was subjected to SDS-PAGE under reducing 

conditions, which leads to separation of C3 into two subunits C3α and C3β (Fig. 22B). 

However, the restored CD44 expression in the rescue clones failed to restore the secretion of 

complement component 3, therefore, it can not be ruled out that this is an unspecific off-

target effect of the RNAi approach.  

 



Results 

 45 

Fig. 22: Differential protein expression of wt and k.d. clones  
A. Silver staining of concentrated supernatant of wt and k.d. clones reveals a differentially expressed 
180 kDa protein, marked by an arrow. B. Western blot analysis after SDS-PAGE under reducing 
conditions confirms differential expression of complement component 3, which is not restored in the 
v71-14 rescue clones.  
 

 

2.3.7  CD44vk.d. cells exhibit a reduced resistance to apoptotic triggers 

 

Apoptosis resistance is a hallmark of metastatic tumour cells and ASML cells are 

highly resistant to induction of apoptosis (Matzku et al., 1985). In order to compare 

susceptibility to apoptosis of wt and CD44vk.d. cells, resistance to the chemotherapeutic drug 

cisplatin and to γ-irradiation was evaluated. Cells were treated with different concentrations 

of cisplatin for three days and survival was monitored by MTT staining. For γ-irradiation 

adherent cells were irradiated with different doses. ASML cells display high drug and 

radiation resistance and mock transfectants showed comparable levels, while all three 

CD44vk.d. clones displayed significantly higher susceptibility to both kinds of apoptotic 

triggers (Fig. 23). The IC50 for cisplatin was about 45µg/ml for wt and mock and about 5-

10µg for all three CD44v k.d clones. For γ-irradiation the IC50 for the k.d. clones was at 250 

Gy, while 600Gy killed only about 40% of wt and mock cells. The restored CD44 expression 

in the rescue clones was not able to reestablish apoptosis resistance (Fig. 24).  
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Fig. 23: CD44vk.d. clones are more susceptible to apoptotic triggers  
Wt ASML and k.d. clones were treated with different concentrations of cisplatin (A) or subjected to 
different doses of γ-irradiation (B). Survival was monitored after three days by MTT staining.  
 

 

Fig. 24: Restoring CD44 expression does not rescue the apoptosis resistance of 
CD44vk.d. clones 
Mock, k.d. and rescue clones were treated with different concentrations of cisplatin (A) or subjected 
to different doses of γ-irradiation B). Survival was monitored after three days by MTT staining.  
 
 

2.3.7.1 Apoptosis resistance is increased by elongated pre-cultivation prior to irradiation 

 

In order to test an influence of the matrix produced by ASML cells on apoptosis 

resistance, cells were seeded and pre-incubated for either 15 or 48 h before irradiation. The 

longer cultivation clearly leads to an enhanced resistance. Although the k.d. cells also display 

higher resistance, they do not reach the level of the wt cells (Fig. 25).  

 A        B 

    
 

 A        B 
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Fig. 25: Influence of cultivation period on resistance to radiation 
Cells were cultivated for 15 (A) or 48 hours (B) prior to γ-irradiation. Survival was monitored after 
three days by MTT staining.  
 

 

Higher susceptibility to apoptosis of CD44vk.d. cells is not reversible by wt matrix 

To test a contribution of the produced matrix to apoptosis resistance, wt, k.d. and 

rescue cells were seeded onto wt matrix, which had been prepared by EDTA removal of wt 

cells. Only the wt cells showed a slight increase in resistance, while neither the k.d. clones 

nor the rescue clones were able to make use of the wt matrix in terms of enhanced apoptosis 

resistance (Fig. 26).  

 

Fig. 26: Wt matrix does not rescue apoptosis resistance of CD44vk.d. cells 
ASMLwt, k.d. and rescue clones were seeded on wt matrix and subjected to different doses of γ-
irradiation. Survival was monitored after three days by MTT staining.  
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2.3.7.2 PI3K-Akt, rather than MAPK signalling is involved in apoptosis resistance of  

 ASML cells 

 

The two main pathways influencing apoptosis resistance described to be influenced 

by CD44 are the MAPK pathway and the PI3K-Akt pathway. Therefore, the influence of 

specific inhibitors to these pathways was tested for γ-irradiation-induced apoptosis. ASMLwt 

and CD44vk.d. cells revealed a marked increase in susceptibility to γ-irradiation when treated 

with the PI3K specific inhibitor LY294002, while an inhibitor of the MAPK pathway (MEK 

1/2 inhibitor) had no influence at the applied dose (Fig. 27A, Fig. 28A).  

 

PI3k-Akt signalling is impaired in CD44vk.d. cells 
 

PI3K and Akt inhibitors are known to induce apoptosis in some cancer cells on their 

own, this was also apparent in the LY294002 treated, but not irradiated controls (Fig. 28A). 

Therefore, ASMLwt and CD44vk.d. cells were tested for their tolerance for these inhibitors 

at high concentrations. Using the same survival assay as for cisplatin treatment, adherent cells 

were treated with different concentrations of either LY294002 or Akt II inhibitor and tested 

for survival after three days. Wt and k.d. cells display high tolerance for both inhibitors. 

However, the IC50 for wt and mock cells is 125µM for the PI3K inhibitor and 40µM for the 

AKT II inhibitor, while k.d. cells show the same degree of apoptosis induction already at 

50µM and 15-20µM respectively (Fig. 28B+C). This clearly demonstrates an impaired PI3K-

Akt signalling in the CD44vk.d. clones compared to wt cells. However, the rescue clones 

displayed the same reduced tolerance as the k.d. clones. One rescue clone is shown as 

representative example. The MEK1/2 inhibitor did not induce apoptosis even at very high 

doses in none of the clones, which excludes a CD44 mediated involvement in MAPK 

signalling (Fig. 27B).  
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Fig. 27: Interfering with MAPK signalling has no influence on apoptosis resistance of 
ASML cells 
A. ASMLwt (left panel) and CD44vk.d. cells v72-1-17 (right panel) were treated with a MEK1/2 
inhibitor at 10µM and irradiated with 300 Gy. Survival was monitored after 3 days by MTT staining. 
B. ASMLwt, mock and CD44vk.d. cells were treated with different concentrations of the MEK1/2 
inhibitor. Survival was monitored after three days by MTT staining.  
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Fig. 28: Interfering with the PI3k-Akt pathway leads to decreased apoptosis resistance 
and PI3kinase-Akt signalling is impaired in CD44vk.d. cells 
A. ASMLwt and CD44vk.d. cells (v71-14) were treated with the PI3K specific inhibitor LY294002 at 
50µM and irradiated with 300 Gy. Survival was monitored after 3 days by MTT staining. B. + C. 
ASMLwt, mock, CD44vk.d. and rescue cells were treated with different concentrations of LY294002 
(B) or an Akt II specific inhibitor (C). Survival was monitored after three days by MTT staining.  
 

 

In order to identify differences in downstream signalling between wt and CD44vk.d. 

cells, several anti- and proapoptotic molecules were evaluated. Upon cisplatin treatment with 

10µg/ml for 24h, cells were lysed, subjected to SDS-PAGE, blotted and tested for expression 

levels. Phosphorylation of Akt is lowered in the k.d. cells upon drug treatment, while levels 

stay unaltered in the wt and mock cells. The same was observed for the antiapoptotic 

molecule Bcl-2, which is only down-regulated in the CD44vk.d. clones after treatment. In 

correlation with the inhibitor data, phosphoERK levels stay unchanged upon cisplatin 

treatment in all clones (Fig. 29A+B).  
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CD44v are able to trigger activation of Akt 
 

Restoring CD44v expression in the rescue clones did not compensate for the impaired PI3K-

Akt signalling of CD44vk.d. cells. Therefore, the influence of CD44v on the activation of this 

pathway was tested by crosslinking surface CD44v on ASMLwt cells. Cells were seeded on 

plates, coated with anti CD44v6 (A2.6) or BSA as control and lysed after 2h of incubation. 

After SDS-PAGE and western blotting, phosphorylation of Akt was evaluated. An increase 

upon crosslinking of CD44v was observed (Fig. 29C). This demonstrates that CD44v can 

trigger activation of Akt in ASML cells and promote survival in this way.  

 

Fig. 29: Reduced survival signalling in CD44vk.d. cells and activation of Akt by 
crosslinking CD44v 
A.+ B. Western blot analysis for untreated and cisplatin (10mg/ml) treated wt and k.d. cells. Cells 
were lysed 24h after treatment. A. Akt becomes dephosphorylated in the CD44vk.d., but not in the wt 
cells after drug treatment. Total Akt is used as loading control. Bcl-2 becomes down-regulated only in 
the CD44vk.d. clones, but remains unaltered in ASMLwt and mock cells upon cisplatin treatment. 
EpCAM (D5.7) is used as loading control. B. pERK staining does not change upon drug treatment. 
EpCAM staining (D5.7) is used as loading control. C. Phosphorylation of Akt can be induced by 
CD44v crosslinking. ASMLwt cells were seeded on plates coated with anti CD44v6 (A2.6) or BSA as 
control and lysed after 2h. Total Akt is used as control.  
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3.  Discussion 
 

The formation of metastases is the final stage of tumour progression and treatment is 

still inefficient. Only very recently new therapeutic approaches gained access into clinical 

application. For example monoclonal antibody therapies, such as ‘Herceptin’ targeting the 

HER2 receptor in order to prevent breast cancer metastasis. The basis of these new strategies 

is a molecular understanding of the mechanisms underlying the process of tumour 

progression. However, many aspects of metastasis formation remain poorly understood.  

The involvement of CD44 in tumour progression and particularly in the development 

of metastases has been studied for many years, and multiple functions for CD44 and its 

variant isoforms have been identified (Naor et al., 1997; Marhaba and Zoller, 2004). In this 

work the role of variant CD44 in different aspects of the metastatic process was investigated 

in ASML cells, a highly metastatic pancreatic adenocarcinoma. The pSuper RNAi system 

was used to create stable and variant specific CD44 k.d. cells, which were characterized for 

their metastatic capacities in vivo and in vitro. The contribution of CD44v as a cell-cell and 

cell-matrix adhesion molecule was studied during the multistep process of metastasis 

formation with special emphasis on interactions with the surrounding. In this respect, several 

CD44v-mediated features supporting the settlement and survival of tumour cells during 

lymphatic spread were identified. This highlights the role of CD44 as a multi functional 

player during the course of metastasis formation through interactions with neighbouring cells 

and the microenvironment, but also by actively organizing the ECM and finally functioning 

as signalling molecule, supporting cell survival as well.  

 

Loss of CD44 by stable and variant specific knock-down results in reduced metastatic 

capacity of ASML cells 

The BSp73 cell system comprises of two sublines of the same primary tumour, which 

display different metastatatic potential. The two most abundant CD44 variants expressed by 

the highly metastatic ASML cells are v4-v7 and v6/v7, and these isoforms were demonstrated 

to confer metastatic capacity to otherwise only locally growing AS cells. In order to confirm 

an essential contribution of these isoforms on the metastatic growth of ASML cells, RNAi 

constructs were designed to target both isoforms. Two out of three constructs proved to be 

efficient in down-regulating CD44v expression on ASML cells. Selection and recloning 

yielded stable clones displaying only hardly detectable residual CD44v expression. Three 
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clones were established with ‘pSuper-v7’ (subsequently denoted ‘knock-down’ or ‘k.d.’ 

cells), while no stable clones could be raised with the ‘pSuper-v6/v7’ construct, which would 

have allowed to easily control construct-specific off-target effects. To confirm any 

phenotype, arising in the knock-down cells, clones with restored expression of one of the 

dominant CD44v isoforms were successfully established from one of the k.d. clones (denoted 

rescue cells). However, the expression level of the CD44v4-v7 rescue did not achieve the wt 

level.  

Upon intra-footpad application, ASML cells spread exclusively through the 

lymphatics. They display only little local tumour growth, but readily settle in the lymph 

nodes and the lung, where they form miliary metastastic lesions (Matzku et al., 1983). All 

three CD44v knock-down clones displayed reduced metastatic growth in vivo with severely 

impaired settlement in the lung. For unknown reasons the injected CD44v4-v7 rescue clone 

did not grow in vivo, probably due to a defect, acquired during in vitro culture, which might 

have allowed the immune system to eliminate the tumour cells. However, five out of six 

animals, injected with the CD44v6/v7 rescue clone displayed enhanced metastasis formation. 

Especially when compared to the parental k.d. clone ‘v71-14’, this clearly demonstrates a 

restored metastatic activity, although the massive tumour burden of the wt was not achieved. 

The knock-down and the rescued CD44v expression remained stable throughout the in vivo 

experiment, as confirmed by western blotting on re-cultivated tumour cells and by 

immunohistology on lung sections. In summary, stable and variant-specific loss of CD44 

expression in ASML does interfere with the lymphatic spread and lung settlement of these 

cells. However, more rescue clones will be required to ensure statistical significance of the 

restored metastatic capacity. It has to be mentioned in this respect, that complement 

component 3 (C3) was found to be differentially expressed between ASMLwt and CD44vk.d. 

cells, but could not be restored in the rescue clones, which might argue for an unspecific off-

target effect. As C3 is an important molecule of the innate immune system, it cannot be ruled 

out that this might have affected the in vivo experiment. On the other hand, this does not 

seem very likely, taken into account that the described rescue clone did restore the metastatic 

capacity of the k.d., irrespective of the unrestored C3 expression.  

 

CD44v knock-down cells display no phenotypic differences or altered growth characteristics 

In order to identify defects, which could be causally related to the reduced metastatic 

growth of ASML CD44vk.d. cells in vivo, the cells were studied in vitro. The impaired in 

vivo growth is not due to a generally reduced proliferation rate, which was demonstrated by 
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proliferation assays under high and low serum conditions, nor to a reduced anchorage-

independent growth, as shown in soft agar assays. Both, ASMLwt and CD44vk.d. cells are 

not significantly affected by low serum conditions, as the proliferation rate was only very 

slightly reduced. Both revealed a very high colony-forming efficacy of 90-95% in soft agar, 

demonstrating high anchorage-independence. Another way, how CD44 could promote 

metastasis formation is by up-regulating matrix degrading enzymes to promote invasion. 

MMP2 and MMP9 are capable of degrading collagen IV, the major collagen of basement 

membranes, and several studies link hyaluronic acid (HA) and CD44 to MMP2 and MMP9 

secretion or activation (Zhang et al., 2002; Isnard et al., 2003; Murray et al., 2004). CD44 can 

recruit MMP9 to the cell surface, leading to collagen IV degradation and invasion (Yu et al., 

1999). Gelatine zymography demonstrated low amounts of secreted MMP2 and MMP9 by 

ASML, as enzymatic activity was only detectable after concentration of the supernatant. This 

is in line with the relatively low ‘aggressive’ growth of ASML cells in vivo, which rather 

grow by displacement than by destruction of host tissue (Matzku et al., 1983, 1985; Raz et 

al., 1986). No significant differences in MMP2 and MMP9 secretion could be observed 

between wt and CD44vk.d. cells. It can’t be ruled out though, that other MMPs are 

deregulated in the k.d. cells, which might favour invasive growth. However, the lymphatic 

spread of tumour cells might require different features and degrading basement membranes 

might be less mandatory for entrance to the lymphatic vasculature than into blood vessels. 

The lymphatic spread of tumour cells is still incompletely understood, but an interesting 

aspect is the involvement of members of the VEGF growth factor family and chemokines in 

this process. Tumour cells express chemokine receptors on their surface, enabling them to 

migrate in a chemotactic manner to lymphatic vessels expressing the appropriate ligands. For 

example, the chemokine receptors CXCR4 and CCR7 are involved in metastasis formation of 

breast cancer (Muller et al., 2001) and melanoma cells (Wiley et al., 2001). A possible role 

for chemokine receptors in the lymphatic spread of ASML cells was tested by RT-PCR for 

CXCR4 and CCR7 expression. However, neither ASML nor AS cells express CXCR4 or 

CCR7 (data not shown). Therefore, an implication of chemokine receptor expression on the 

metastatic spread of ASML cells seems rather unlikely.  

 

Agglomeration in HA-rich medium is abrogated in CD44vk.d. cells 

ASML cells metastasize via the lymphatics to the lung. As the proliferative capacities 

of CD44vk.d. cells are unaltered in vitro, the stromal surrounding of the lymph nodes or the 

lung might promote tumour growth. When potential influences of stromal cell lines on 
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ASML cells were evaluated, it was noted, that conditioned cell culture supernatant of lymph 

node stromal cells or of lung fibroblasts was able to induce agglomeration of wt, but not of 

k.d. cells. This feature was completely rescued by restoring CD44v expression. Cell 

clumping was due to HA-mediated cross-bridging of CD44 molecules on the cells, because it 

could be induced by high concentrations of HA and was abrogated by hyaluronidase 

treatment. CD44vk.d. cells are therefore unable to aggregate in stromal supernatant due to the 

lack of receptor expression. CD44-mediated cell aggregation has been shown to enhance lung 

metastasis after i.v. injection (Birch et al., 1991, Weber at al., 1996). Thus, it is interesting to 

note that stromal cells, present at places of major tumour growth of ASML, are capable of 

producing HA in amounts suitable to induce cell clumping, which could lead to reduced 

motility and enhanced settlement and thereby promote tumour cell growth. Tumour cell 

agglomeration has been described to facilitate settlement of tumour cells (Mansury et al., 

2002; Glinsky et al., 2003) and the lack of cell aggregation of CD44vk.d. cells may account 

for reduced metastatic growth.  

 

Impaired matrix production by CD44vk.d. cells 

ASML cells adhere very slowly to plastic or matrix components and do not spread, 

irrespective of the substrate (BenZe’ev et al., 1986). Instead, they display a rounded cell 

shape, attach very tightly during cultivation and can only be detached by harsh trypsin 

treatment or very long EDTA exposure. This attachment was reduced in the k.d. cells. When 

conditioned supernatant of wt and k.d. cells was coated to plastic, both, wt and k.d. cells 

adhered rapidly to the wt and mock matrix, while the k.d. matrix was clearly less adhesive. 

Thus it seems likely, that matrixproduction is impaired in the CD44vk.d. cells. This was true 

for matrix components secreted into the supernatant and for matrix deposited onto the plastic. 

The rescue clones showed a partially restored matrix production, but could not fully 

reproduce the adhesive properties of the wt matrix. The components of the matrix are 

secreted, which could be demonstrated by ultracentrifugation. Hyaluronic acid is most likely 

needed for proper assembly of the matrix, as hyaluronidase treatment prior to coating disrupts 

the adhesive properties, but treatment after coating had no influence. This indicates that 

adhesion of ASML cells is not mediated through CD44-HA interactions, which is confirmed 

by the finding that CD44vk.d. clones do not display impaired adhesion to the wt-matrix. 

Instead, collagenase treatment disrupts the adhesive properties of the matrix in a 

concentration dependent manner, indicating that collagens function as ligands for adhesion. 

When cells were removed by trypsin or EDTA treatment and the deposited matrix was used 
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for adhesion, only EDTA detachment of the cells left the matrix intact, while trypsin 

treatment destroyed the adhesive properties. Adhesion could also be blocked by addition of 

EDTA during the adhesion assay (data not shown), arguing for Ca2+-dependent adhesion. 

Antibody blockade demonstrated that β1 integrins are involved, as pre-incubating the cells 

with anti β1 antibody completely blocked adhesion in a concentration dependent manner. 

ASML cells express different α chains complementing to β1 at high levels, but anti α2 and 

anti α3 were not inhibiting adhesion. Anti α6β1 could not be used for antibody blocking, as 

it induced cell clumping and hindered adhesion in this way (data not shown). Integrins 

usually do not show high ligand specificity, but α2β1 and α3β1 are known to bind collagen 

and other matrix components, while α6β1 shows a higher affinity to laminin. However, 

additional α subunits that were not tested, such as α10β1 and α11β1 were shown to bind 

collagens as well and might be involved in matrix binding of ASML cells.  

Size chromatography under neutral conditions revealed, that the adhesion-mediating 

components of the matrix are between 600 and 4000kDa in size. This corresponds to a 

collagen ligand, when organized as multimer or with other matrix components, or present 

within a HA-lattice. Altered matrix assembly in the k.d. cells may result in a differential 

distribution of matrix components after size fractionation. The fractions were analysed by 

western blotting revealing laminin as a component of the adhesive fractions. However, the 

distribution did not differ in the k.d. matrix. It is possible though, that the resolution of the 

applied chromatography was not sufficient for detecting differences in size distribution, or 

that only the order of matrix components is affected, which does not necessarily alter the size 

of matrix aggregates. However, antibody blocking with a polyclonal serum against laminin 

did not affect adhesion. Therefore, laminin does not seem to mediate the rapid adhesion, but 

is present in the matrix. Shed CD44 is not present within the adhesion-promoting fractions, 

which excludes a mechanism of shedding CD44 to release assembled matrix components. 

The specific collagen involved in adhesion could not be identified, as the available antibodies 

did not function in western blotting. Tumour-stroma interactions are important for the 

pathogenesis of pancreatic cancer, although the matrix production is usually attributed to 

fibroblastic deposition of ECM (Gress et al., 1995), pancreatic cancer cells have also been 

described to produce matrix components including collagens (Lohr et al., 1994). CD44 is 

known to be important for pericellular matrix assembly in chondrocytes, where it functions as 

a HA-anchor (Knudson et al., 2003; Jiang et al., 2002). Particle exclusion assays with 

erythrocytes did not reveal any pericellular accumulation of matrix material by ASML cells 
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grown in vitro (data not shown). It might be possible however, that these cells are capable to 

form a pericellular matrix, when aggregating proteoglycans are added in addition, as shown 

for other cancer cells (Knudson and Knudson, 1991). The matrix of ASML cells is also 

deposited on the culture dish and was even more adhesive when prepared in this way than the 

coated supernatant. Whether the matrix material is actively deposited on the culture dish or 

just passively bound to the plastic remains open. In conclusion, it seems that cell surface 

CD44v is needed for proper assembly of matrix components in ASML cells, which most 

likely is mediated through formation of a HA scaffold. In addition to a HA-anchoring 

function of CD44, collagens might integrate into the matrix directly via binding to CD44, as 

CD44-mediated adhesion to collagen containing matrices was described before (Knutson et 

al., 1996). In chondrocytes, interfering with CD44 cell-matrix interactions results in a ‘matrix 

remodelling’ response, which leads to chondrolysis via up-regulation of proteases and 

enhanced biosynthesis of proteoglycans and HA (Knudson et al., 2000). In this view, it is 

feasible, that also in ASML cells, CD44 interaction with matrix HA is not only important for 

assembly, but might also affect matrix biosynthesis.  

The ability of ASML cells to secrete their own adhesive matrix could promote 

metastatic growth at a secondary site in two ways. First, adhesion is supported, enhancing 

settlement of tumour cells in the lymph nodes and the lung, and second, the matrix could 

support growth or survival. As metastases have to adapt to the new surrounding at a 

secondary site, establishing their own matrix should be supportive. Metastasis formation of 

CD44vk.d. cells may thus be reduced through an impaired ability to generate an adhesive 

matrix.  

 

Impaired apoptosis resistance of CD44vk.d. cells 

Pancreatic adenocarcinomas are aggressive cancers, characterized by invasiveness, 

rapid progression and high resistance to chemo- and radiation therapy (reviewed by Bardeesy 

and DePinho, 2002). Similarly, ASML cells exhibit low susceptibility to apoptotic triggers. 

CD44 is described to be involved in apoptosis resistance and some reports link this feature to 

variant isoform expression (Bates et al., 1998; Wittig et al., 2000; Marhaba et al., 2003). 

Metastasis formation and resistance to apoptosis is closely related to the ECM and the 

microenvironment, known to trigger survival signals. Susceptibility to apoptotic triggers was 

greatly enhanced in ASML CD44vk.d. cells, using the chemotherapeutic drug cisplatin and γ-

irradiation. Because CD44-HA interaction has been described to be involved in apoptosis 

resistance (Toole, 2004) an impact of the secreted ASML-matrix was tested by enabling 
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matrix formation for different periods of time prior to irradiation. Indeed, prolonged 

cultivation increased the apoptosis resistance of both, wt and k.d. cells significantly. 

Moreover, wt cells could gain further protection by seeding on a preformed matrix, 

confirming survival supporting functions of the matrix. However, CD44vk.d. cells did not 

display enhanced resistance on a preformed wt-matrix, arguing for a direct influence of CD44 

on survival signalling upon ECM mediated triggers. Yet, the rescue cells were not able to 

compensate for this, which could have several reasons that will be discussed later. 

 Cells often react to the substrate by changing the expression of adhesion molecules 

and alteration of the expressed integrin repertoire may contribute to tumour progression and 

metastasis formation (Schwartz et al., 1993, Maschler et al., 2005). In pancreatic cancer for 

example, α6β1 was described to influence metastatic behaviour (Vogelmann et al., 1999). 

Integrin signalling is also known to affect survival (Lewis et al., 2002). For example, β1 

integrin binding to ECM components promotes survival by activating PI3K in small-cell lung 

cancer cells (Hodkinson et al., 2006). Islets of Langerhans cells are protected from anoikis 

through β1 ligation with antibodies or by cultivation on collagen IV, which is accompanied 

by an increase of Akt phosphorylation (Pinkse et al., 2006). However, evaluation of 

expression levels of α6β1, α6β4 and the subunits α2, α3 and β1 in ASML cells revealed no 

significant differences, neither between wt and k.d. cells nor upon prolonged cultivation (data 

not shown). However, not all integrin dimers could be tested due to a lack of suitable 

antibodies. Besides integrins, also other molecules involved in cell-matrix interactions and 

contributing to survival could be affected by the matrix defect.  

Irrespective of the protective feature of the produced matrix, CD44 is described to 

interfere with apoptosis in different ways. As ASML CD44vk.d. cells display a reduced 

resistance to drug treatment and irradiation, it seems unlikely that receptor-mediated 

apoptosis is the reason. An involvement of multidrugresistance (MDR) cannot account for the 

observed resistance to radiation as well. Nevertheless, CD44 was shown to influence the 

expression of MDR genes (Misra et al., 2005; Tsujimura et al., 2006), prompting the analysis 

of MDR genes in ASML cells. MRP2 and MRP5 are described to be involved in cisplatin 

transport (Suzuki et al., 2001; Nomura et al., 2005; Oguri et al., 2000), but ASML cells were 

tested negative for both transporters (data not shown). Instead, CD44v may promote 

resistance to apoptosis by inducing survival signals. CD44 can signal through the PI3K-Akt 

and the MAPK pathway to support survival. For example, CD44v6 crosslinking was shown 

to protect from apoptosis in a thymoma cell line and this was accompanied by persisting 
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activation of MAPK signalling (Marhaba et al., 2005). In addition, in ASML cells CD44v6 is 

necessary for c-Met activation by mediating ligand binding through complex formation, 

resulting in phosphorylation of ERK (Orian-Rousseau et al., 2002). However, activation of 

MAPK-ERK signalling upon apoptotic triggers was not observed in ASML cells and does not 

seem to be influenced by CD44v expression, as wt and k.d. cells display comparable pERK 

levels. In addition, a MEK1/2 specific inhibitor failed to interfere with apoptosis resistance 

even at concentrations above MEK1/2 specificity inhibiting other members of the MAPK 

pathway, like ERK1 and MKK3/p38 as well. Instead, inhibition of PI3K enhanced 

susceptibility to apoptosis in wt and k.d. cells significantly. As inhibitors of PI3K-Akt are 

known to induce apoptosis at high concentrations on their own, the resistance to this 

treatment was tested without any additional apoptotic trigger.  Indeed, CD44vk.d. cells 

displayed reduced tolerance to high doses of PI3K and Akt inhibition compared to wt cells, 

demonstrating impaired PI3K-Akt signalling in CD44vk.d. cells. Accordingly, 

phosphorylation of Akt is reduced in the k.d. cells but not in wt cells upon ciplatin treatment 

and the anti-apoptotic molecule Bcl-2 is down-regulated only in the k.d. cells as well. In 

addition, antibody-crosslinking of surface CD44v induced phosphorylation of Akt in ASML 

cells. These findings clearly demonstrate that in CD44vk.d. cells one of the major survival 

pathways is impaired, and that PI3K-Akt signalling contributes, probably in conjunction with 

other triggers, to the high apoptosis resistance observed in ASMLwt cells. Although the 

rescue clones could not reverse this defect, an involvement of CD44 was confirmed by 

CD44v-mediated activation of survival signals through crosslinking.  

Activation of PI3K leads to phosphorylation and activation of Akt. Active Akt 

interferes with the apoptotic machinery by phosphorylating and inactivating the proapoptotic 

molecule BAD and by inhibiting transcription of pro- and inducing transcription of 

antiapoptotic molecules. In the active conformation BAD inhibits antiapoptotic members of 

the Bcl-2 family, which stabilize the mitochondrial membrane and support survival (Igney 

and Krammer, 2002). Because differences in pAkt levels become apparent after apoptotic 

triggering, PI3K signalling is not constitutively altered in CD44vk.d. cells, which is observed 

in many tumour cells through over-expression of PI3K subunits and Akt or lost expression or 

mutation of the PI3K antagonist PTEN (Igney and Krammer, 2002). Instead, impaired 

activation of PI3K by CD44 upon apoptotic triggering seems to account for the observed 

lowered tolerance of CD44vk.d. cells to cisplatin and γ-irradiation. Soluble HA oligomers, 

competing for HA binding to CD44 can inhibit anchorage-independent growth by 

suppressing PI3K-Akt (Ghatak et al., 2002). Ligation of CD44 could enhance resistance to 



Discussion 

 60 

drug treatment by activating the protein tyrosine kinase FAK leading to PI3K association and 

activation of downstream targets of FAK, such as MAPKs (Fujita et al., 2002). Only 

interfering with PI3K signalling, but not with the MAPK pathway decreased resistance to 

apoptosis in this study as well. How CD44v induces PI3K activation remains to be explored 

in detail, but it seems likely, that CD44v associated protein kinases are involved. However, 

no associations with FAK or PI3K could be demonstrated by immunoprecipitations in ASML 

cells (data not shown). Another possibility might be an inhibiting activity of CD44v on PI3K 

antagonists, as soluble HA oligomers were demonstrated to be capable to stimulate the 

expression of the PI3K antagonist PTEN (Ghatak et al., 2002). An involvement of the 

described matrix production in apoptosis resistance seems likely as well. Activation of Akt 

upon crosslinking of CD44v argues for CD44 acting directly as receptor for matrix 

components, but, because crosslinking induces clustering as well, CD44v could also 

cooperate with other molecules, such as integrins to activate survival signalling in ASML 

cells. As β1 integrin was identified to mediate adhesion of ASML cells and ligation of β1 

integrins is known to support survival, both possibilities seem feasible and might even act 

synergistically.  

 

CD44v-mediated apoptosis resistance and adhesiveness as crucial contributions during the 

lymphatic spread of ASML cells 

The importance of apoptosis resistance for metastatic cancer cells and especially 

survival induced by the microenvironment is becoming more and more apparent. As 

reviewed by Mehlen and Puisieux (Mehlen and Piusieux, 2006), one way to explain the very 

rare incidence of metastatic outgrowth (Liotta et al., 1978; Varani et al., 1980) is to look at 

apoptosis acting as a multistep barrier to metastasis at three crucial steps. During the initial 

step of metastasis, cells detach from the underlying ECM and the actin cytoskeleton is 

disrupted leading to cell rounding.  These early events usually induce apoptotic processes 

called anoikis and amorphosis (Streuli et al., 1999, Martin et al., 2004) and cancer cells must 

become resistant to these apoptotic stimuli. The second step during which apoptosis can be 

induced is the process of intravasation and during residence in the circulation. Cell death may 

be induced by mechanical stress associated with entrance into the blood stream (Weiss et al., 

1993; Ziegler et al., 1998) or be mediated by the immune system, known as immune 

surveillance (Jakobisiak et al., 2003). Indeed, cancer cells display a high frequency of 

apoptosis when injected into the circulation, while over-expression of antiapoptotic 

molecules like Bcl-2 can increase the number of metastatic lesions at secondary sites (Wong 
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et al., 2001). Moreover, the tumour suppressor p53 was shown to facilitate experimental 

metastasis by promoting the survival of tumour cells in the circulation (Nikiforov et al., 

1996). Finally, after settlement cancer cells have to survive at the secondary site to form 

metastases, the third phase, when cancer cells display high frequency of apoptosis. Enhanced 

antiapoptotic signalling is supporting metastasis formation at this step as well (Wong et al., 

2001; Luzzi et al., 1998).  

 

Fig. 30: Apoptosis at three crucial steps during the metastatic spread of tumour cells 
a. Detachment from the primary tumour mass induces anoikis. b. Cell death in the circulation through 
immune surveillance or mechanical stress. c. Apoptosis after extravasation during micrometastasis 
formation at the secondary site. ECM extracellular matrix, NK natural killer cell. Adapted by 
permission from Macmillan Publishers Ltd: Nature Reviews Cancer (Mehlen and Puisieux., 2006).  

 

The observed CD44-mediated apoptosis resistance could protect ASML cells at 

different points in the metastatic process. ASML cells do not form tight cell-cell contacts 

under in vitro culture conditions and display only little local tumour growth in vivo. 

CD44vk.d. cells do not display reduced anchorage-independence. Thus, the initial step of 

dissemination from the primary tumour is probably not limiting for ASML metastasis 

formation. ASML cells spread exclusively via the lymphatics, therefore they do not need to 

invade blood vessels, and because lymphatics lack the tight inter-endothelial junctions of 

blood vessels (Alitalo and Carmeliet, 2002), intravasation should be less stressful for tumour 

cells and probably even allow small cell aggregates to enter. The growth in the draining 

lymph nodes was already reduced in CD44vk.d. cells, which argues for a growth and/or 

survival advantage in this environment, but the settlement in the lung seems to be most 

severely impaired in the CD44vk.d. clones. While cells from connective tissue tumours, like 

fibrosarcomas usually migrate individually, carcinomas were described to often migrate 
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collectively as small aggregates (Friedl and Wolf, 2003). It seems likely that ASML cells 

start to migrate as individual cells, enter the lymphatics and aggregate only once they reach 

the draining lymph node and are confronted with a HA-rich environment. This might be 

favouring growth and survival within the lymph node and the lymphatic vessels and probably 

facilitate further travel within the lymphatic system. The physiology of lymph nodes and the 

relatively low shear flow of lymphatic fluid was discussed in this context to favour the 

concentration of tumour cell aggregates in the lymph nodes, which then may support the 

growth of local metastases that could serve as ‘bridgeheads’ for further dissemination 

(Sleeman, 2000). In comparison, the metastatic progression in the lung is highly inefficient, 

which could be explained in this respect by the large capillary bed, leading to dispersal of 

individual tumour cells (Chambers et al., 2002). In addition, the lung seems to be harder to 

colonize than the lymph nodes also for ASML cells, as even the rapidly growing ‘v71-16’ 

clone exhibited impaired settlement in the lung. This could be due to the lack of CD44v-

mediated aggregation or adhesion or again to increased apoptosis. Aggregation may facilitate 

arrest in the capillary bed, which in turn would enable matrix deposition and subsequent firm 

adhesion. Adhesion to matrix possibly then promotes survival at the secondary site.  

Strong CD44-HA interaction can promote certain steps of the metastatic process, 

while weak CD44-HA interaction might favour others. For example, release of cells from the 

primary tumour is accompanied by reduced expression of CD44 in endometrial carcinoma 

(Fujita et al., 1994). CD44 was shown to mediate attachment of circulating cancer cells to the 

endothelial vessel wall through interaction with HA (De Grendele et al., 1996/1997). 

Moreover, survival during micrometastasis formation can be mediated by CD44-HA binding. 

This was shown in a mammary carcinoma cell line transfected with a soluble form of CD44, 

which competed for HA-binding. The cells were able to infiltrate lung tissue but underwent 

apoptosis thereafter and failed to form lung tumours (Yu et al., 1997). In addition, an 

influence of CD44 glycosylation on HA binding was demonstrated (Skelton et al., 1998; 

English et al., 1998). Because it is well known that glycosylation patterns are changed in 

cancers and that changes can increase with tumour progression (Alhadeff, 1989), it seems 

likely that changes in the HA binding ability of CD44 can by this means support the 

metastatic process at different steps. The loss of CD44v may therefore not only suppress 

metastasis formation by the inability to bind HA, but probably also because of the lost ability 

to modify this interaction in a dynamic manner. This could still be the case in the rescue 

clones and might be a reason for the limited ability of these cells to restore all observed 

phenotypes of the k.d. cells. For instance the untranslated regions (UTRs) of the CD44 



Discussion 

 63 

transcript could be functionally involved, as the rescue cDNAs did not contain the 

endogenous UTRs. Recently the 3’ UTR of CD44 was described to be involved in 

translational control by stabilizing the transcript through bound IMPs, a family of 

ribonucleoproteins (RNPs). In addition, different CD44 variants exhibited differences in their 

3’UTR sequence and regulation by IMPs was isoform specific. Moreover, interfering with 

IMP function led to abrogation of invadopodia formation, which was attributed to the 

deregulation of CD44 (Vikesaa et al., 2006). IMPs are described to be involved in mRNA 

localization, with implications on coordinated spatio-temporal protein expression and 

overexpression of IMPs is implicated in cancer progression (Ioannidis et al, 2001; Tessier at 

al., 2004). This mechanism provides an additional level of complexity to CD44 regulation 

and it cannot be ruled out that similar mechanisms are responsible for the failure of the 

restored CD44 expression to rescue all observed phenotypes. The fact that the rescue clones 

restored the metastatic ability as well as the matrix production in part, but failed to restore 

apoptosis resistance is most easily explained by the lower overall CD44 expression level 

compared to the wt situation. Specifically, the initiation of signal transduction might depend 

on the expression level. It is also possible, that ASML cells require both isoforms, which 

were affected by the knock-down or that additional isoforms were targeted, but not restored.  

 

Future perspectives and conclusions 

Differential contributions of untranslated sequences during the course of metastasis 

formation seem very interesting with respect to CD44 regulation. Rescue constructs, carrying 

endogenous UTRs could be applied to the established k.d. cell system, to study influences on 

the metastatic growth in detail. As CD44 is reported to take part in the regulation of gene 

expression, it might be worthy to look for deregulated gene or protein expression in the k.d. 

cells, for example by microarray and CHIP analysis. With respect to the described matrix 

production, changes in the expression of matrix components or molecules involved in matrix 

remodelling, such as proteases could be addressed. In addition, the role of CD44v in matrix 

organization could be analysed by studying morphological differences by electron or 

fluorescence microscopy on deposited matrix material.  

As the rescue clones did not revert all CD44vk.d. phenotypes, e.g. the reduced 

expression of ‘complement component 3’, the CD44 specificity of these observations has to 

be critically judged. The only alternative way to control any phenotype arising by RNAi is to 

reproduce the same phenotype using a second construct. However, no stable clones could be 

established with the second functional construct. Due to a low transfection efficiency of 
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ASML cells, transient transfection is not practical either. However, the use of an inducible 

RNAi system could solve this problem, as generation of stable clones should be less 

problematic.  

This work demonstrates an essential contribution of CD44v to the metastatic capacity 

of ASML cells. However, considering the differences of AS and ASML cells, CD44v seems 

to support metastasis formation in different ways depending on the cellular background. AS 

cells adhere to and spread on different matrices, while ASML cells hardly adhere to any 

substrate except their own matrix. Therefore matrix generation might be a crucial feature of 

ASML cells but not for AS. Abrogation of HA binding had no influence on the metastatic 

capacity of AS cells transfected with CD44v (Sleeman et al., 1996) and hence, CD44v-

mediated aggregation in lymph nodes or the lung might not be limiting for AS cells, as these 

cells tend to build up tight cell-cell contacts anyhow. Still, the induction of agglomeration 

might be an essential contribution of CD44v on metastasis formation of ASML cells. In 

addition, upon transfection with CD44v, AS cells did not gain apoptosis resistance (data not 

shown). Accordingly, the multitude of differentially expressed genes between AS and ASML 

seems to influence the way CD44v contributes to metastatic progression of these cells. This 

strengthens the idea that actions of CD44v depend on the cellular background, which is not 

surprising given the heterogenous nature of CD44 functions and interactions.  

In summary, variant-specific down-regulation of CD44 in a highly metastatic 

pancreatic adenocarcinoma is accompanied by a markedly reduced metastatic capacity and 

settlement in the lung. Defects in proliferative or anchorage-independent growth were ruled 

out. Likewise, a change in the level of MMP2 and MMP9 secretion was not observed, which 

would have argued for differences in invasive capacities. On the other hand, several 

differences were examined and characterized, that could account for the observed metastatic 

defect. First, CD44vk.d. cells lost the ability to aggregate in a stromal surrounding due to 

their inability to crosslink surface CD44 through hyaluronic acid. Second, ASML cells 

secrete a highly adhesive matrix, containing HA, collagen and laminin, to which they adhere 

rapidly via β1 integrins and which might contribute to apoptosis resistance. CD44v are most 

likely involved in matrix production by assembly of a HA-rich scaffold and therefore 

CD44vk.d. cells display an impaired matrix generation. Finally, CD44vk.d. cells are clearly 

less resistant to apoptotic triggers, as demonstrated for drug resistance and γ-irradiation, 

which seems to be the cause of impaired PI3K-Akt signalling due to the loss of CD44v-

mediated activation.  
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These results support the idea of CD44 as a molecule with multiple features that, due 

to its compositional and functional heterogeneity influences tumour progression and 

metastasis formation at several different steps. Even in the studied cell system, which reflects 

only the advanced steps of tumour progression, CD44v contributes to the process of 

metastasis formation in several ways: as a cell-cell adhesion molecule, as organizer of 

extracellular matrix components and as signalling molecule influencing survival. Importantly, 

all the described mechanisms are based on complex interactions of CD44v on the tumour cell 

with its surrounding in diverse ways. This underlines the importance of communication 

between cancer cells and their microenvironment for the metastatic cascade, which is a major 

subject of recent investigation and possesses growing importance for future therapeutic 

strategies.   
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4.  Materials and Methods 

4.1  Materials 

4.1.1  Chemicals 

 
Agar  Fluka, Buchs, Schweiz 
Agarose Sigma, Seelze 
3-Amino-9-ethyl-carbazol (AEC) Sigma, Seelze 
Ammoniumpersulfate (APS) Sigma, Seelze 
Ampicillinsulfate  Sigma, Seelze 
Biotin-X-NHS Calbiochem, Darmstadt 
Brij98 Fluka, Buchs, Schweiz 
Brilliant Blue G-Colloidal Concentrate Sigma, Seelze 
Bromphenolblue Merck, Darmstadt 
Cisplatin (cis-diammineplatimun(II)dichloride) Sigma, Seelze 
Ethidiumbromide Merck, Darmstadt 
Ethylendiamintetraessigsäure (EDTA) Sigma, Seelze 
Fetal calf serum (FCS)  Sigma, Seelze 
Formaldehyde 37% Merck, Darmstadt 
Glucose Merck, Darmstadt 
Glutamine Life Technologies, Karlsruhe 
Glycerine Roth, Karlsruhe 
Glycine Roth, Karlsruhe 
Yeast extract  Gibco BRL, Eggenstein 
HEPES  Sigma, Seelze 
Hyaluronic acid (from rooster comb) Sigma, Seelze 
Kanamycinsulfate Calbiochem, Darmstadt 
Lubrol WX (17A17)  Serva, Heidelberg 
Milk powder Roth, Karlsruhe 
Mayer’s Hämalaun AppliChem, Darmstadt 
β -Mercaptoethanol  Sigma, Seelze 
Mowiol (4-88)  Calbiochem, Darmstadt 
Natriumorthovanadat  Sigma, Seelze 
Paraformaldehyde  Sigma, Seelze 
Penicillin Sigma, Seelze 
Pepton 140  Gibco BRL, Eggenstein 
Phenylmethylsulfonylfluorid (PMSF) Sigma, Seelze 
Protease Inhibitor Cocktail  Roche Diagnostics, Mannheim 
Protein G Sepharose 4 Fast Flow Amersham Pharmacia, Freiburg 
Rotiphorese Gel 30  (Acrylamid-Mix) Roth, Karlsruhe 
Sepharose CL-6B Amersham Biosc., Freiburg 
Sepharose Superdex 200 Amersham Biosc., Freiburg 
Streptomycinsulfate Sigma, Seelze 
TEMED Sigma, Seelze 
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3H-Thymidine  Amersham Biosc., Freiburg 
Triton X-100  Sigma, Seelze 
Trypsin  Sigma, Seelze 
Tween 20  Serva, Heidelberg 

 
All other chemicals, not listed were analytical grade and purchased from Sigma (Seelze), 

Calbiochem (Darmstadt), Serva (Heidelberg) or Applichem (Darmstadt).  

 

4.1.2  Enzymes 

resctriction enzymes MBI Fermentas, St. Leon Rot 
Taq-polymerase MBI Fermentas, St. Leon Rot 
PWO-polymerase Promega, Mannheim 
T4-Ligase Promega, Mannheim 
T4-Polynucleotidkinase (T4-PNK) Promega, Mannheim 
Klenow fragment Promega, Mannheim 
ImProm II reverse transcriptase Promega, Mannheim 
calf intestinal alkaline phosphatase (CIAP) Promega, Mannheim 
hyaluronidase type IV-S from bovine testis Sigma, Seelze 
collagenase, type 2 PAA, Coelbe 

 
 

4.1.3  Chemical inhibitors 

LY294002(PI3-K-inhibitor) Calbiochem, Darmstadt 
Akt II inhibitor Calbiochem, Darmstadt 
MEK1/2-inhibitor Calbiochem, Darmstadt 

 

4.1.4  Nucleotide and protein standards 

100bp Gene Ruler MBI Fermentas, St. Leon Rot 
1 kb Gene Ruler MBI Fermentas, St. Leon Rot 
Prestained Protein ladder MBI Fermentas, St. Leon Rot 

 

4.1.5  Kits 

Qiaprep Spin miniprep kit QIAGEN, Hilden 
Qiaquick Gel Extraction Kit QIAGEN, Hilden 
Qiaquick midi prep kit QIAGEN, Hilden 
ECL Western Blotting Detection Reagents Amersham Biosc., Freiburg 
Vectastain ABC kit Vector Laboratories, Burlingame, USA 
TRI Reagent Sigma, Seelze 
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4.1.6  Vectors 

vector description company 
pSuper.gfp/neo eukaryotic expression vector for 

RNAi 
Oligoengine, Seattle, 
USA 

pcDNA3.1(+)Neo eukaryotic expression vector Invitrogen, Karlsruhe 
pcDNA3.1(+)Hygro eukaryotic expression vector Invitrogen, Karlsruhe 

 

4.1.7  Primers and oligos 

Oligonucleotides were purchased from Operon Biotechnologies (Koeln) 
 

oligo sequence 
v6RNAi-sense 5’−TCGAGGCACAACAGAAGAAGCAGCTACCCAGAACTTCCTGT

CATTCTGGGTAGCTGCTTCTTCTGTTGTGCTTTTT−3’ 
v6RNAi-
antisense 

5’−CTAGAAAAAGCACAACAGAAGAAGCAGCTACCCAGAATGA
CAGGAAGTTCTGGGTAGCTGCTTCTTCTGTTGTGCC−3’ 

v7RNAi-sense 5’−TCGAGAGAATGACAACACAGAGTCAAGAGGATGCTTCCTGT
CACATCCTCTTGACTCTGTGTTGTCATTCTTTTTT−3’ 

v7RNAi-
antisense 

5’−CTAGAAAAAAGAATGACAACACAGAGTCAAGAGGATGTGA
CAGGAAGCATCCTCTTGACTCTGTGTTGTCATTCTC−3’ 

v6/v7RNAi-
sense 

5’−TCGAGCAACTGCCTCAGCCCACAACTTCAAGAGAGTTGTGG
GCTGAGGCAGTTGTTTTT−3’ 

v6/v7RNAi-
antisense 

5’−CTAGAAAAACAACTGCCTCAGCCCACAACTCTCTTGAAGTT
GTGGGCTGAGGCAGTTGC−3’ 

T7-BglII-R 5’−GAGCTAGATCTAATACGACTCACTATAGGG−3’ 
EcoRI-CD44-F 5’−GCAGTGAATTCCCACCATGGACAAGGTTTGGTGGCAC−3’ 
CD44-XhoI-
Stop-R 

5’−CGACGCTCGAGGCACTACACCCCAATCTTC−3’ 

v7resc-F 5’−TACTCAGTCTCAAGAGGATG−3’ 
v6/v7resc-F 5’-CAACTGCCAGCGCGCACAACAAC−3’ 
CXCR4-F 5’−CCCTCCTCCTGACTATCCCT−3’ 
CXCR4-R 5’−TGACTCTGTGGAGACGGAAGA−3’ 
CCR7-F 5’−GGCGAGAACACCACCGTGGAC−3’ 
CCR7-R 5’−TTCTGGAGGCCGCTGTAGA−3’ 
SDF1-F 5’−GCCAAGGTCGTCGCTGTGCT−3’ 
SDF1-R 5’−TTGGATCCACTTTAATTTCGG−3’ 
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4.1.8  cDNAs and constructs 

 
CD44v4-v7 cDNA and CD44v6/v7 cDNA (Gunthert et al., 1991; Rudy et al., 1993) were 

used as template for PCR amplification. All constructs were verified by sequencing.  

 

construct vector insert cloning sites 
pSuper-v6 pSuper.gfp/neo CD44v6RNAi-hairpin BglII-HindIII 
pSuper-v7 pSuper.gfp/neo CD44v7RNAi-hairpin BglII-HindIII 
pSuper-v6/v7 pSuper.gfp/neo CD44v6/7RNAi-hairpin BglII-HindIII 
meta1-rescv7 pcDNA3.1Hygro CD44v4-v7-rescuev7-cDNA EcoRI-XhoI 
meta2-rescv7 pcDNA3.1Hygro CD44v6/v7-rescuev7-cDNA EcoRI-XhoI 
meta1-rescv6/v7 pcDNA3.1Hygro CD44v4-v7-rescuev6/v7-cDNA EcoRI-XhoI 
meta2-rescv6/v7 pcDNA3.1Hygro CD44v6/v7-rescuev6/v7-cDNA EcoRI-XhoI 
CD44meta1 pcDNA3.1Hygro CD44v4-v7-cDNA EcoRI-XhoI 
CD44meta2 pcDNA3.1Hygro CD44v6/v7-cDNA EcoRI-XhoI 

 

4.1.9  Antibodies 

4.1.9.1 Primary antibodies 

antibody (clone) application company/reference 
mouse anti rat CD44pan (Ox50) FACS, IP, blocking exp. Paterson et al. 1987 
mouse anti ratCD44v6 (A2.6) FACS, IP, blocking exp., 

immunohistology, WB,  
Matzku et al. 1989 

mouse anti rat EpCAM (D5.7) FACS, IP, WB Wurfel et al., 1999 
mouse anti rat D6.1A (D6.1) FACS, IP, WB Claas et al., 1998 
mouse anti rat C4.4A (C4.4) FACS, immunohistology Rosel et al., 1998 
mouse anti rat transferrin 
receptor (Ox26) 

FACS, IP, WB European Collection of 
Animal Cell Culture  

mouse anti rat α3β1  integrin 
(Ralph3.1) 

FACS, IP, blocking exp. Developmental Studies, 
Hybvridoma Bank  

mouse anti rat α6β4 integrin 
(B5.5) 

FACS, blocking exp. Herlevsen et al., 2003 

mouse anti rat β1 integrin 
(Ha2/5) 

FACS, IP, blocking exp. BD Biosciences, 
Heidelberg 

rabbit anti human α3 integrin 
(polyclon.#AB1920) 

WB Chemicon, Temecula, 
Canada 

hamster anti rat α2 integrin 
(Ha1/29) 

FACS, blocking exp. BD Biosciences, 
Heidelberg 

mouse anti rat α6β1 integrin 
(MAB1410) 

FACS Chemicon, Temecula, 
Canada 

mouse anti rat α4 integrin 
(MRα4-1) 

FACS BD Biosciences, 
Heidelberg 
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hamster anti rat α1 integrin 
(Ha31/8) 

FACS BD Biosciences, 
Heidelberg 

hamster anti mouse α5 integrin 
(HMα5-1) 

FACS BD Biosciences, 
Heidelberg 

mouse anti rat β2 integrin 
(WT.3) 

FACS BD Biosciences, 
Heidelberg 

mouse anti rat β3 integrin (F11) FACS BD Biosciences, 
Heidelberg 

mouse anti human ERK (16) WB BD Biosciences, 
Heidelberg 

mouse anti human pERK1/2 
(20A) 

WB BD Biosciences, 
Heidelberg 

mouse anti human Akt (2) WB BD Biosciences, 
Heidelberg 

mouse anti human pAkt 
(104A282) 

WB BD Biosciences, 
Heidelberg 

mouse anti human Bcl-2(7) WB BD Biosciences, 
Heidelberg 

rabbit anti human laminin 
(polyclon. #600-401-116-05) 

WB, blocking exp. Rockland, Gilbertsville, 
USA 

goat anti rat complement C3 
(polyclon.#5571304564) 

WB MP Biomedicals, Aurora, 
Ohio, USA 

 

4.1.9.2 Secondary antibodies/ reagents 

antibody application company 
anti mouse-IgG-TxRed immunofluorescence dianova, Hamburg 
anti mouse-IgG-biotin immunohistology dianova, Hamburg 
anti mouse-IgG-HRP WB Rockland, Gilbertsville, USA 
anti goat-IgG-HRP WB Rockland, Gilbertsville, USA 
anti rabbit-IgG-HRP WB Rockland, Gilbertsville, USA 
Extravidin-Peroxidase WB  Sigma, Seelze 
anti mouse-IgG-PE FACS dianova, Hamburg 
anti mouse-IgG-APC FACS BD Biosciences, Heidelberg 
anti mouse-IgG-FITC FACS dianova, Hamburg 
anti rabbit-IgG-PE FACS dianova, Hamburg 
anti hamster-IgM-FITC FACS dianova, Hamburg 
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4.1.10  Cell lines 

Cell line source reference 
BSp73ASML Rattus norvegicus, pancreas 

adenocarcinoma 
Matzku et al., 1983 

BSp73AS Rattus norvegicus, pancreas 
adenocarcinoma 

Matzku et al., 1983 

BSp73AS-14 Rattus norvegicus, pancreas 
adenocarcinoma BSp73AS, transfected 
with cDNA for CD44v4-v7 

Gunthert et al., 1991 

HEK 293T Homo sapiens, renal cell carcinoma Graham et al., 1977 
Fibroblasts Rattus norvegicus, immortalized lung 

fibroblasts 
Weth, 2000 

ST-A4 Rattus norvegicus, immortalized 
lymph node stromal cell 

LeBedis et al., 2002 

ST-B12 Rattus norvegicus, immortalized 
lymph node stromal cell 

LeBedis et al., 2002 

 
 

4.1.11 Animals 

BDX rats were bred at the animal facilities of the German Cancer Research Center (DKFZ), 

kept under pathogen free conditions and fed with sterilized food and water.  

 

 

4.2  Methods 

4.2.1  Molecular biology 

4.2.1.1 Bacteria 

For all bacterial work DH5α were used. DH5α were cultured in liquid Luria Bertani 

(LB) medium (10g peptone, 5g yeast extract, 10g NaCl per l) or on plates containing 1% 

(w/v) bacto agar and either 60µg/ml ampicillin or 50µg/ml kanamycin for selection. 

Transformations were carried out with an ‘EasyJect’ electroporator (Eurogentec, Seraing, 

Belgium) using standard protocols for electro-transformation.  

 

DH5α genotype:  Φ80dlacZΔM15, recA1, endA1, gyrA96, thi-1, hsdR17(rK
-, mK

+), supE44,  

relA1, deoR, Δ(lacZYA-argF)U169; 
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4.2.1.2 Plasmid preparation 

All plasmid preparations were carried out using either the ‘QIAprep spin Miniprep 

kit’ or ‘plasmid midi prep kit’ (both QIAGEN, Hilden) according to manufacturer’s 

instructions.  

 

4.2.1.3 RNAinterference (RNAi) construct design and cloning 

In order to create stable CD44 knock-down clones the pSuper plasmid based RNAi 

system (oligoengine, Seattle, USA) was used. The pSuper plamids facilitate expression of 

‘small hairpin RNAs’ (shRNAs) under the control of the human RNA polymerase III 

promoter H1, which were shown to enter the endogenous RNAi pathway and induce 

degradation of the target mRNA. A GFP reporter and a neomycin resistance are included in 

the vector for detection and selection of transfected cells.  

 

Fig. 31: pSuper.gfp/neo inserts and predicted haipin structure  
A. ds inserts for cloning into pSuper.gfp/neo. The target sequences lie within exon v6, v7 or span the 
border of exon v6/v7. Due to the self-complementary sequence, transcripts fold into a 
hairpinstructure, which is processed by the endogenous RNAi machinery to a functional siRNA 
leading to target mRNA degradation. B. Predicted hairpin structure for construct ‘v7’.  

 

The target sites were chosen on the premise to target the two most abundant CD44 

variant isoforms, expressed by ASML, which are v4-v7(meta1) and v6/v7(meta2). Target 

sites for constructs ‘v6’ and ‘v7’ were chosen randomly, except that stretches of more than 3 

A-residues were avoided. Homologies to other genes were excluded by ‘BLAST’ search. For 

A               B 
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the ‘v6/v7’ construct, which spans the border of the v6-v7 exons, the RNAi target site 

validation program ‘Sfold’ was used, which is provided on the homepage of Wadsworth 

Center-NYS, Department Of Health (http://sfold.wadsworth.org; Ding et al., 2004; Ding and 

Lawrence, 2001/2003) and includes several parameters like internal stability of the siRNA-

dublex and target site accessibility. The constructs consist of a self complementary sequence 

stretch comprising the 21-28 bp target sequence and the corresponding reverse complement, 

separated by a 10 bp loop and followed by a stretch of 5 T-residues leading to termination of 

transcription. Sense and antisense oligos were designed to elicit sticky ends upon annealing. 

200pmol of each ss oligo were diluted in ligation buffer (Promega, Mannheim), boiled for 

2min and slowly cooled down to room temperature to ensure proper annealing. Because 

oligos were initially designed for XhoI-XbaI cloning, the ds inserts were partially filled up 

and ligated into the, as well partially filled up, Bgl II/Hind III sites of the pSuper.gfp/neo 

plasmid. Positive clones were verified by sequencing and used for transfections.  

 

4.2.1.4 PCR-based mutagenesis for rescue constructs 

In order to be able to control specificity of any phenotype arising in the knock-down 

cells, ‘rescue’ clones were established, in which expression of one of the dominant variants 

was restored. This was achieved by transfection of cDNAs for either CD44v4-v7 or 

CD44v6/v7, protected from degradation by four silent point mutations (highlighted in red) in 

the v7 target sequence, which were introduced by PCR.  

 

v7 target site:  AGAATGACAACACAGAGTCAAGAGGATG   

v7 rescue site:   AGAATGACTACTCAGTCTCAAGAGGATG  

 

The amplificates were cloned into pCDNA3.1Hygro (Invitrogen, Karlsruhe) and 

positive clones were varified by sequencing. One of the stable knock-down clones, 

ASMLv71-14 was used for transfections with the ‘rescue’ constructs.  

 

4.1.2.5 RNA-isolation and reverse transcription-PCR (RT-PCR) 

 RNA preparations were carried out with ‘TRI Reagent’ (Sigma, Seelze). About 5x106 

cells were lysed directly into 1ml of TRI Reagent by scraping. After addition of 0.2ml 

chloroform and centrifugation (12000g, 15min, 4°C) the aqueous phase was transferred and 
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RNA was precipitated with isopropanol. After centrifugation the pellet was washed with 

ethanol, air-dried and resuspended in DEPC treated H2Od. Integrity of the isolated RNA was 

controlled by gelelecrophoresis.  

cDNA was generated using the ‘ImProm II’ system (Promega, Mannheim) with oligo 

(dT) primers following the manufacturer’s instructions. 2µl of the reverse transcription 

reaction was used as template for the PCR.  

 

4.2.2  Cell biology 

4.2.2.1 Cell culture 

Eukaryotic cells were kept in RPMI 1640-medium, containing 10% heat inactivated 

fetal calf serum (FCS), 100U/ml penicillin, 100µg/ml streptomycin and cultured at 37°C, 

95% humidity, 5% CO2. For passaging, cells were trypsinized with 0.25% trypsin (w/v)/5mM 

EDTA in PBS (137mM NaCl, 8,1mM Na2HPO4, 2,7mM KCl, 1,5mM KH2PO4, pH 7.4). 

 

4.2.2.2 Cryo-conservation of eukaryotic cells 

1x107 cells were trypsinized, washed once with fresh medium and resuspended in ice-

cold FCS/10% DMSO. Cells were kept over night at -80°C and transferred to liquid nitrogen.  

 

4.2.2.3 Transfection of eukaryotic cells 

ASML cells were seeded the day before transfection to 70% confluency. Transfection 

was carried out with the ‘ExGene 500’ reagent (MBI Fermentas, St.Leon Rot) following the 

instructions of the manufacturer. HEK293T cells were transfected with ‘PolyFect 

Transfection reagent’ (QIAGEN, Hilden) at 50% confluency according to the manufacturer’s 

instructions.  

 

4.2.2.4 Recloning of transfected cells by limiting dilution 

Transfected cells were selected for drug resistance and checked by FACS for 

expression of the transgene. Limiting dilutions of 1 or 5 cells per well were carried out in 24-

well plates. Cells were grown in the presence of 1x106 freshly prepared rat thymocytes as 
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growth support. Clones were checked by FACS and used for a second round of dilution to 

ensure clonality.  

 

4.2.2.5 Collection of conditioned cell culture supernatant  

90% confluent cells were grown in serum free medium for 24h, the supernatant was 

harvested and centrifuged to remove cells (300g, 10min). Cell free supernatant was filtered 

through a 0.2µm filter and either coated to 24-well plates for adhesion assays, or concentrated 

through a ‘Vivaspin 6 column’ (50.000 MWCO) (Sartorius, Goettingen) and used for SDS-

PAGE or gel filtration.  

Deposited matrix was prepared by cultivating confluent cells for 24 hours and 

removing cells by EDTA treatment (5mM in PBS, pH8.0), followed by intensive washing 

with PBS.  

 

4.2.2.6 Coating of plastic surfaces 

Proteins bind under alkaline conditions to plastic surfaces. 50mM Tris (pH 9.5) was 

used as a binding buffer for matrix components, which were coated at a concentration of 

10µg/ml. Collagens were pre-incubated at 37°C for 4h prior to coating. Hyaluronic acid was 

coated at very high concentrations (1mg/ml) under neutral pH in PBS. Conditioned cell 

culture supernatant was coated at pH 7.4. All coatings were carried out over night at 4°C, 

wells were washed once with PBS, followed by blocking with BSA (3mg/ml in PBS) for 2h 

at RT and three washes with PBS. Coated plates were used for adhesion assays.  

Where indicated, conditioned cell culture supernatant was treated with hyaluronidase 

(Sigma, Seelze) or collagenase (Sigma, Seelze) for 4 h at 37°C prior to or after coating. Heat 

inactivated enzymes were used as controls.  

 

4.2.2.7 Adhesion assay 

Cells were trypsinized and recovered for 1-2h in RPMI/10% FCS. Adhesion assays 

were carried out in 24-well plates. Cells were washed with PBS, counted and 1x106 cells 

were resuspended in serum free medium or PBS with or without additives. Cells were seeded 

and incubated at 37°C for 15min. Adherent cells were stained with crystal violet (see section 

4.2.2.14). 
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4.2.2.8 Agglomeration assay 

Cells were trypsinized and recovered for 1-2h and resuspended in conditioned cell 

culture supernatant of different origin. Where indicated, cell culture supernatant was treated 

with hyaluronidase (1mg/ml) at 37°C for 2 or 5h before use, or cells were seeded in RPMI 

medium, supplemented with 1mg/ml hyaluronic acid. Agglomeration was monitored with a 

Leica ‘DM-IL’ inverse microscope (Leica, Solms) and documented with a SPOT CCD 

camera using the SPOT 2.1.2 software.  

 

4.2.2.9 Proliferation assay 

5x104 cells were seeded in 96-well plates in RPMI supplemented with 10% or 0.5% 

FCS. 3H-thymidin was added for 24h at different time points. Cells were harvested and H3 

incorporation was counted in a liquid scintillation counter. Alternatively 5x104 cells were 

seeded as before and quantified by crystal violet staining after different time intervals (see 

section 4.2.2.14).  

 

4.2.2.10 Soft agar assay 

Tumour cells were suspended in RPMI/0.5% agar and either 100 or 1000 cells were 

seeded on a pre-poured RPMI/3% agar layer in the presence of 10% FCS. Colonies were 

counted after 4 weeks.  

 

4.2.2.11 Drug treatment 

1x105 cells per well were seeded in 96-well plates and grown overnight. Serial 

dilutions of a 50µg/ml starting concentration of cisplatin in RPMI medium were carried out 

in 1:2 steps.  For chemical inhibitors starting concentrations were 100mM for the MEK1/2 

and Akt II inhibitor and 200mM for the PI3K specific inhibitor LY294002 (Calbiochem, 

Darmstadt). Cells were treated for 3 days and surviving cells were stained either by MTT 

staining or crystal violet staining.  
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4.2.2.12 γ-irradiation of adherent cells 

1x106 cells were seeded in 35mm petridishes, grown for 15, 24 or 48h, fresh medium 

was added and monolayers were subjected to different doses of γ-irradiation in a 

‘GAMMACELL 1000D’ unit (AECL, Ontario, Canada). Survival was monitored by MTT 

staining after 72h. Where indicated, chemical inhibitors were added 30min prior to 

irradiation.  

 

4.2.2.13 MTT staining of respiratory active cells 

A 5mg/ml stock solution of MTT in PBS was diluted 1:10 directly in the growth 

medium of the cells and incubated for 30-40min at 37°C. Non-adherent cells were 

precipitated by centrifugation, the supernatant was aspirated and cells were resuspended in 

DMSO and measured at 550nm in an ELISA reader.  

 

4.2.2.14 Crystal violet staining of adherent cells 

Adherent cells were washed and fixed with 4% formalin in PBS for 4min at RT. The 

solution was changed to 1% crystal violet (in 10% EtOH) and incubated for 4min at RT. The 

plates were washed extensively with H2Od, dried and cells were resuspended in 10% acetic 

acid. Absorbance was measured at 595nm in an ELISA reader.  

 

4.2.2.15 FACS analysis 

For FACS staining, cells were trypsinized and recovered in complete medium for 1-

2h. Staining was performed in U-shaped 96-well plates with 106 cells per well. Incubation 

with primary and secondary antibodies in PBS was carried out at 4°C for 30min in the dark. 

After each step cells were washed three times with PBS by centrifugation at 300g for 4min. 

FACS analysis was performed using a ‘FACSCalibur’ (Becton Dickinson, Heidelberg) and 

analyzed with the ‘CellQuest Pro’ software.  

 

4.2.2.16 Immunofluorescence staining of cells grown on coverslips 

Cells were grown on coverslips for 1-2 days. Adherent cells were washed three times 

with PBS and fixed with 4% paraformaldehyde (PFA) in PBS for 25min on ice, followed by 
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three washes with PBS/200mM glycine and three washes with PBG (PBS, 0.2% (v/v) 

gelatine, 0.5% (w/v) BSA). Primary antibody incubation was carried out for 1h at 4°C in 

PBG, followed by three washes with PBG. After incubation with Texas-Red conjugated 

secondary antibody for another hour at 4°C and three more washes with PBG, cells were 

rinsed with H2Od, air-dried and mounted in Elvanol (20% (w/v) Mowiol in 2/3 PBS, pH 8.0 

and 1/3 glycerine). Fluorescence microscopy was done using a Leica DMRBE microscope, 

equipped with a SPOT CCD camera using the SPOT 2.1.2 software for documentation.  

 

4.2.2.17 Cryo-sectioning of tumour tissue 

Tissues were embedded in frozen section medium ‘Neg-50’ (Richard-Allan Scientific, 

Kalamazoo, USA) and frozen in liquid nitrogen. Cryo-sectioning was carried out with a 

Reichert Jung ‘2800-FRIGOCUT E’ to sections of 5µm thickness and transferred to 

chromalaune-gelatine coated glass slides for staining.  

 

4.2.2.18 Immunohistological staining of cryo-sections 

Sections were blocked with PBS/2% FCS for 30min, fixed with acetone/methanol 

(1:1) for 4min and washed with PBS. All incubation steps were carried out at 37°C in a 

humidity chamber. Sections were stained with primary antibodies or mouse IgG for 1h, after 

washing and incubation with biotinylated secondary antibody, detection was carried out using 

the ‘Vectastain ABC kit’ according to the manufacturer’s instructions. Briefly, Vectastain 

AB-complex (containing avidin and biotinylated-peroxidase) was added for 30min, followed 

by incubation for 5-20min at RT with freshly prepared AEC mix [AEC-solution-1 (2.1ml 

acetic acid (0.1M), 7.9ml sodiumacetate (0.1M)) + AEC-solution-2 (4mg 3-amino-9-ethyl-

carbazole (AEC) in dimethylformamide (DMF)) + 5µl H2O2 (30%)]. After washing with 

PBS, sections were counterstained with Mayer’s Haemalaun and mounted in ‘Kaisers 

glycerine-gelatine’. Microscopy was done using a Leica DMRBE microscope, equipped with 

a SPOT CCD camera using the SPOT 2.1.2 software for documentation.  
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4.2.3  Animal experiments 

4.2.3.1 In vivo metastasis assay 

1x106 tumour cells were suspended in PBS and injected into the footpad of 10-14 

week old female BDX rats. Animals were sacrificed on day 50 in experiment 1 and on day 60 

in experiment 2. Rats were dissected and diameters of primary and lymph node tumours were 

measured. Lungs were photographed and weighed. Samples of infiltrated tissues were 

embedded for cryo-sectioning and immunohistology or recultivated. For recultivation, 

tumour tissue was meshed through a sterile gauze and seeded in RPMI-medium.  

 

 

4.2.4  Protein biochemistry 

4.2.4.1 Surface biotinylation of molecules 

Adherent cells were washed twice in PBS and incubated 30min at RT with 100-

500µg/ml Biotin-X-NHS (Calbiochem, Darmstadt) in 25mM HEPES/150mM NaCl/5mM 

MgCl2 on a shaking platform. Cells were washed three times with ice-cold PBS/200mM 

glycine and suspended in lysis buffer by scraping.   

 

4.2.4.2 Immunoprecipitation (IP) 

6x gel loading buffer:  300mM Tris pH6.8, 12% (w/v) SDS, 0.6% (w/v), bromophenolblue, 

20% (v/v) glycerine 

 

Lysis of cells was performed on ice or at 4°C and lysates were kept cold during the 

whole procedure. Cells were washed twice with PBS and scraped into ice-cold lysis buffer 

(25mM HEPES, 150mM NaCl, 5mM MgCl2, 2mM PMSF, 1x proteinase inhibitor mix 

(Roche, Mannheim), 1% (v/v) detergent). Lysis was performed on a rotating platform for 1h. 

Unsolubilized material and cell nuclei were pelleted by centrifugation (15min, 15000g) and 

the cleared lysate was used for IP. Either 5µg purified antibody or 200µl hybridoma 

supernatant was used per 1ml cell lysate. Antibody binding was carried out for 1h on a 

rotating platform. For precipitations, 0.1 volumes protein G Sepharose was added to the 

antibody complexes and samples were rotated for another hour. Complexes were washed 4 
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times with lysis buffer. After the last washing step all liquid was removed through a 35g-

needle attached to a vacuum line to ensure minimal background. Complexes were 

resuspended in gel loading buffer and boiled for 5min at 95°C. Sepharose beads were 

pelleted by short centrifugation and the supernatant was subjecetd to SDS-PAGE. For Re-IPs, 

the sepharose complexes were resuspended in lysis buffer containing a detergent of higher 

stringency (usually TX-100) and extracted for 1h at 37°C on a shaker. After removal of the 

sepharose, the supernatant containing the extracted antigens was subjected to another round 

of IP as described above.  

 

4.2.4.3 Lysis of intact cells for SDS-PAGE 

For western blotting of cell lysates from complete cells, cells were washed twice with 

PBS and scraped directly into gel loading buffer. Cell lysates were sonicated (5 impulses, 

5sec each). Lysates were boiled for 4min and used for western blot analysis.  

 

4.2.4.4 SDS-polyacrylamide gel electrophoreses (SDS-PAGE) 

For electrophoretic separation of protein samples the ‘Mini-Protean II’ system from 

Biorad (Munich) was used for discontinuous SDS-PAGE. 5ml of separating gel (375mM Tris 

pH 8.8, 0.1% (w/v) SDS, 6-12% acrylamid-bisacrylamid, 0.1% (v/v) TEMED, 0.1% (w/v) 

ammoniumpersulphate) were overlaid with 2ml of stacking gel (375mM Tris pH 6.8, 0.1% 

(w/v) SDS, 5% acrylamid-bisacrylamid, 0.1% (v/v) TEMED, 0.1% (w/v) ammonium-

persulphate). After complete polymerization, gels were loaded and run in gel running buffer 

(25mM Tris, 192mM glycine, 0.1% (w/v) SDS) at a constant voltage of 200V. Gels were 

either stained with Colloidal Coomassie or silver or subjected to western blot analysis.  

 

4.2.4.5 Western blotting (modified after Towbin et al., 1979) 

After SDS-PAGE, protein gels were equilibrated for 10min in transfer buffer (25mM 

Tris, 192mM glycine, 0.02% (w/v) SDS, 20% (v/v) methanol). Nitrocellulose membranes 

(Amersham, Braunschweig) and 3MM whatman paper were equilibrated as well. For protein 

transfer, the gel was placed on whatman paper, followed by nitrocellulose and another 

whatman paper. The wet transfer was carried out in transfer buffer at a constant voltage of 

30V over night at 4°C.  
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After transfer had been completed, the membranes were blocked for 1h at room 

temperature with 5% (w/v) fat free milk in PBST (PBS/0.1% (v/v) TWEEN 20) or, for 

detection with phosphospecific-antibodies, with 5% (w/v) BSA in TBST (TBS/0.1% (v/v) 

TWEEN 20). Antibody incubations were carried out for 1h at RT with hybridoma 

supernatant or purified antibody in PBST or TBST, respectively. Membranes were washed 

three times for 5min in PBST or TBST and incubated with secondary antibody conjugated to 

horseradish peroxidase (HRP) (diluted 1:5000 in PBST or TBST) for 1 h at RT, followed by 

additional three washing steps.  

Biotinylated proteins were detected with ExtrAvidin-peroxidase (Sigma, Seelze). 

Detection was done by chemiluminescence using the ‘ECL Western blotting detection 

reagents’ and ‘ECL radiography films’ (both Amersham, Braunschweig).  

 

4.2.4.6 Colloidal Coomassie staining of protein gels 

After electrophoretic separation, proteins were fixed for 1h in 7% acetic acid/40% 

(v/v) methanol. Gels were stained over night in staining solution (4 volumes Colloidal 

Coomassie staining solution (Sigma, Seelze) + 1 volume methanol). Gels were destained for 

30s in 10% acetic acid/25% (v/v) methanol and kept in 25% (v/v) methanol.  

 

4.2.4.7 Silver staining of protein gels  

After separation of proteins by SDS-PAGE, gels were fixed over night in 30% 

ethanol/10% acetic acid and sensitized for 45min (in 0.3% potassium tetrathionate, 0.5M 

potassium acetate, 30% ethanol), followed by 6 washes a 10min with H2Od. Gels were 

stained with 0.2% silver nitrate for 1-2 h, rinsed with H2Od and developed for up to 40min in 

developer (3% potassium carbonate, 31µl Na2S2O3-5H2O (10%), 75µl formalin (37%) per 

250ml). The reaction was stopped by adding 330mM TRIS/2% acetic acid and gels were kept 

in H2Od.  

 

4.2.4.8 Gelatine zymography for detection of MMP activity 

Conditioned cell culture supernatant was collected as described and concentrated 10 

times through a ‘Vivaspin’ column (50.000 MWCO) (Sartorius, Goettingen). The supernatant 

was mixed with Laemmli buffer, incubated for 15min at 37°C and subjected to SDS-PAGE 
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in an 8% acrylamide gel containing 1mg/ml gelatine as substrate. After electrophoresis the 

gel was incubated three times for 40min in 2.5% (v/v) TX-100, washed in developing 

solution (50mM Tris pH 7.4, 10mM CaCl2, 150mM NaCl2) and incubated for 24h in 

developing solution at 37°C and subsequently subjected to Coomassie staining.  

 

4.2.4.9 Gel-filtration 

Superdex 200/CL6B sepharose beads were washed in PBS/0.1% NaN3, degased and 

packed into a column of 1.5cm diameter and 60cm length. The column material was 

equilibrated with PBS/0.1% NaN3 over night. The void volume was calculated by blue 

dextrane. 30x concentrated cell culture supernatant was mixed with glycerine (900µl 

supernatant + 100µl glycerine) and loaded onto the column. Fractions of 3ml each were 

collected, of which 2ml were used for adhesion assays and 1ml was concentrated by TCA-

precipitation and subjected to SDS-PAGE analysis.  

 

4.2.4.10 Ultracentrifugation of cell culture supernatant  

 Cell culture supernatants were centrifuged at 100000g over night at 4°C in a Beckman 

Coulter ‘Optima LE-80K’ ultracentrifuge using a SW-41 rotor. The supernatant was 

transferred and precipitated material was washed with RPMI, centrifuged again for 1h and 

resuspended in RPMI medium. Supernatant and resuspended pellet was used for coating 24-

well plates or subjected to SDS-PAGE.  

 

4.2.4.11 TCA-precipitation of proteins 

To concentrate protein in solution, proteins were precipitated with trichloric acid 

(TCA) at a final concentration of 5% (w/v) for 5min at 65°C and cooled on ice. After 

centrifugation (12000g, 30min, 4°C) the pellet was resuspended in gel loading buffer and 

subjected to SDS-PAGE.  

 

4.2.4.12 Analysis of proteins by mass spectrometry  

Protein gels were stained with Colloidal Coomassie as described. Proteins of interest 

were cut out with a scalpel. Subsequent preparations and mass spectrometrical analysis was 
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carried out at the central service of the DKFZ by MALDI-analysis (matrix assisted laser 

desorption/ionisation) using a ‘Reflex II time-of-flight’ mass spectrometer (Bruker-Daltonics 

GmbH, Bremen).  
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 Abbreviations 
 
APC   allophycocyanin 
APS   ammoniumpersulfate 
AS   BSp73AS, rat pancreatic adenocarcinoma 
ASML   BSp73ASML, rat pancreatic adenocarcinoma 
bFGF   basic fibroblast growth factor 
bp   base pair 
BSA   bovine serum albumin 
CAM   cell adhesion molecule 
CD44s   CD44- standard isoform  
CD44v   CD44- variant isoform 
cDNA   complementary DNA 
Da   Dalton 
DEPC   diethylpyrocarbonate 
DISC   death inducing signaling complex 
DKFZ   ‚Deutsches Krebsforschungszentrum’ 
DMSO   dimethylsulfoxide 
DNA   desoxyribonucleic acid 
DTT   dithiothreitole 
E. coli   Escherichia coli 
ECL   enhanced chemiluminescence 
EDTA   ethylendiamintetra acetic acid 
EGF   epidermal growth factor 
EGFR   epidermal growth factor receptor 
EpCAM   epithelial cell adhesion molecule 
ECM   extra cellular matrix 
ERK   extracellular regulated kinase 
pERK   phosphorylated ERK 
FACS   fluorescence-activated cell sorter 
FCS    fetal calve serum 
Fig.   Figure 
FITC   fluorescein isothiocyanate 
g    gram 
g    gravitational acceleration 
G418   geneticine 
GFP   green fluorescence protein 
Gy   Gray 
h   hour 
H20d   distilled water 
HA    hyaluronic acid 
HEPES   N-2-hydroxyethylpiperazine-N´-2-ethanesulfonic acid  
HGF   hepatocyte growth factor 
HGFR   hepatocyte growth factor receptor (c-met) 
HRP   horseradish peroxidase 
hygro   hygromycine 
ifp   intra-footpad 
Ig    immune globulin 
IP    immuno precipitation 
i.v.   intra-venous 
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l   litre 
k.d.   knock down 
LB-medium  Luria-Bertani-medium 
m   milli 
µ   mikro 
M   molar 
MAPK   mitogen activated protein kinase 
min   minute 
MMP   matrixmetalloprotease 
N-CAM  neural cell adhesion molecule 
neo   neomycine 
PBS   phosphate buffered saline  
PCR    polymerase chain reaction 
PE   phycoerythrine 
PFA   paraformaldehyde 
PI3K   phosphatidylinositol 3-kinase 
PKC    protein kinase C 
PMSF   phenylmethylsulfonylfluoride 
POD    peroxidase 
PVDF    polyvinylidenfluoride 
Rb   retinoblastome 
RNA   ribonucleic acid 
RT   room temperature 
s   second 
ss   single stranded 
ds   double stranded 
SDS   sodium dodecyl sulfate 
SDS-PAGE   SDS-poly-acrylamid-gelelectrophorese 
siRNA   small interfering RNA 
shRNA  short hairpin RNA 
Tab.   Table 
TCA   trichloric acid 
TEMED  N,N,N`,N´,-tetramethylethylendiamine 
TGF-β   transforming growth factor-β 
TIMP   tissue inhibitor of metalloproteases 
TRIS   Tris(hydroxymethyl)aminoethane 
TX-100  TritonX-100 
TxRed   Texas Red 
uPA   urokinase-type plasminogen activator  
UTR   untranslated region 
V    Volt 
VEGF   vascular endothelial growth factor 
v/v    volume/volume 
WB   western blot 
wt   wildtype 
w/v    weight/vol


