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Abstract 

Nonsense-mediated mRNA decay (NMD) is a molecular pathway of mRNA 

surveillance that ensures the rapid degradation of mRNAs containing premature translation 

termination codons in all studied eukaryotes. Originally, NMD was thought of as a quality 

control pathway that targets non-functional mRNAs arising from mutations and splicing 

errors. More recently, NMD has been shown to also regulate normal gene expression and 

NMD thus emerged as one of the key post-transcriptional mechanisms of gene regulation. 

Despite the progress in the understanding of the role and mechanism of this pathway, the 

physiological impact of NMD on humans is not yet fully uncovered. To explore the functions 

of NMD in humans, I combined RNAi against the essential NMD factor UPF1 with genome-

wide microarray analysis. My research indicate that NMD affects the expression of a large 

number of genes implicated in a wide diversity of functions although a majority seems to be 

affected indirectly and – consequently – do not represent legitimate NMD targets.  

The validation of five bona fide NMD transcripts allowed me to develop an assay to 

quantitate differences in NMD efficiency. Using three different strains of HeLa cells as a 

simple model, I have systematically analysed the molecular mechanism underlying 

quantitative differences in NMD efficiency. The results of this analysis show that the 

quantitative differences in NMD efficiency represent a stable characteristic of the investigated 

strains. Low NMD efficiency is shown to be functionally related to the reduced abundance of 

the exon junction component RNPS1 in one of the analysed HeLa strains. Furthermore, 

restoration of functional RNPS1 expression, but not of NMD-inactive mutant proteins, also 

restores efficient NMD in the RNPS1 deficient cell line. I conclude that cellular 

concentrations of RNPS1 can modify NMD efficiency and propose that the cell type specific 

co-factor availability represents a novel principle that quantitatively controls NMD. 

I also tested the hypothesis of NMD as a genetic modifier in the phenotypic expression 

of disease. A specific β-thalassemia – common in Mediterranean Asia – was assayed as a 

model. My results do not support a role of NMD for the variable severity of this specific 

mutation leading to anemia.  
 

 

 



 

Zusammenfassung  

Der Nonsens-vermittelte mRNA Abbau (Nonsense-mediated mRNA decay; NMD) ist 

ein Bestandteil der zellulären Qualitätskontrolle aller Eukaryonten durch den mRNAs mit 

einem vorzeitigen Translationsterminationskodon beschleunigt abgebaut werden. 

Ursprünglich dachte man, dass NMD nur nicht-funktionelle mRNAs zerstört, die z.B. durch 

Mutationen oder Spleißfehler entstehen. Kürzlich konnte gezeigt werden, dass NMD auch die 

normale Genexpression reguliert. Daher wird NMD heutzutage als einer der zentralen 

Mechanismen der post-transkriptionellen Regulation der Genexpression angesehen. Obwohl 

der molekulare Mechanismus des NMD zunehmend besser verstanden wird, ist noch wenig 

über die physiologische Bedeutung dieses Abbauwegs für den Menschen bekannt. 

In der vorliegenden Arbeit habe ich die transkriptionellen Auswirkungen von RNAi 

gegen den essentiellen NMD-Faktor UPF1 mittels einer genomweiten Microarray-Analyse 

untersucht, um die Funktion von NMD im Menschen besser zu verstehen. Meine 

Untersuchungen zeigen, dass NMD die Expression einer großen Zahl von Genen beeinflusst, 

welche an einer Vielzahl unterschiedlicher zellulärer Prozesse beteiligt sind. 

Höchstwahrscheinlich wird die Mehrzahl der identifizierten mRNAs jedoch durch indirekte 

Effekte in ihrer Expression verändert und stellt somit keine legitimen (d.h. direkten) NMD-

regulierten Transkripte dar. Die Identifizierung von fünf validierten direkten NMD-

regulierten mRNAs ermöglichte mir, ein experimentelles System zur Quantifizierung von 

Unterschieden der NMD-Effizienz zu etablieren. Auf der Basis von drei verschiedenen HeLa-

Zelllinien als Modellsystem konnte ich systematisch den molekularen Mechanismus 

unterschiedlicher NMD-Effizienzen untersuchen. Ich konnte zeigen, dass die unterschiedliche 

NMD-Effizienz eine unveränderliche Eigenschaft jeder dieser Zelllinien darstellt. Die relativ 

schlechte NMD-Effizienz einer der Zelllinien wird durch eine verringerte Expression des 

Proteins RNPS1 verursacht. Eine Erhöhung der RNPS1 Expression bewirkt eine deutliche 

Steigerung der NMD-Effizienz bis auf ein normales Niveau. NMD-inaktive Mutanten von 

RNPS1 zeigen jedoch nicht denselben Effekt. Die Konzentration von RNPS1 in der Zelle 

stellt also eine der Determinanten der NMD-Effizienz dar. Die Zelltyp-spezifische 

Verfügbarkeit von NMD-Faktoren ist somit ein neuartiger molekularer Mechanismus, der 

quantitativ die Wirklung von NMD durch seine Effizienz kontrolliert. Weiterhin habe ich 

untersucht, ob NMD generell die phenotypische Ausprägung von Erkrankungen als ein 

modifizierender genetischer Faktor verändern kann. Eine bestimmte Form der b-Thalassämie, 

die insbesondere im Nahen Osten verbreitet ist, wurde als experimentelles Modellsystem 

untersucht. Meine Ergebnisse zeigen jedoch, dass die unterschiedliche Schwere der 



 

Erkrankung in den untersuchten Fällen wahrscheinlich nicht durch unterschiedliche NMD-

Effizenz verursacht wird. 
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1. Introduction 

1.1 Messenger RNA turnover in eukaryotes 

 

The control of messenger RNA (mRNA) degradation is an important component of the 

regulation of gene expression since the steady-state concentration of mRNA is determined 

both by the rates of synthesis and of decay. A high rate of turnover is actually one of the 

distinguishing features of mRNA. Equally rapid synthesis and degradation were proposed 

early on as key characteristic of a “messenger” carrying information from genes to proteins, 

based on the observation that both gene induction and repression ocurred within minutes 

(Jacob and Monod, 1961). The fast turnover of mRNA underlines the biological significance 

of the molecule’s instability which allows a cell to adapt to changing physiological conditions 

(Ross, 1995). 

In eukaryotes, there are several ways in which an mRNA can be degraded. Yet, the 

bulk of the transcripts are degraded by two general pathways that are constitutively active (see 

1.1.1). Furthermore, pathways limited to subsets of mRNAs exist in which specific sequences 

trigger decay (see 1.1.2 and subsequent sections). The multiplicity of decay pathways is not 

redundant as it makes possible a differential regulation of individual mRNAs (reviewed by 

Beelman and Parker, 1995).    

 

 

1.1.1 General pathways of mRNA turnover: the 5´and 3´decay pathways 

 

The bulk of mRNAs decay appears to be catalyzed almost exclusively by exonucleases 

in eukaryotes (reviewed by Meyer et al., 2004). Probably for this reason mechanisms have 

evolved to chemically modify the ends of eukaryotic mRNAs and thus, to protect the 

transcripts. A m7GpppN cap at the 5´end and a poly(A) tail at the 3´end assure mRNA 

stability.  

Based on work primarily done in yeast and mammals, two general pathways of mRNA 

decay have been identified in eukaryotic cells (Tucker and Parker, 2000; Mitchell and 

Tollervey, 2001) (see Fig. 1).   

Both pathways begin with the processive shortening of the poly(A) tail of the mRNA 

by a variety of deadenylases. So far, three different complexes have been identified as mRNA 

deadenylases and many of the proteins involved in these complexes have conserved 
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homologues among eukaryotes. In yeast, the so-called PAN complex consists of the proteins 

Pan2p and Pan3p. This complex is involved in an early step in poly(A) metabolism in which 

an initially long poly(A) tail is shortened to a length of 55-75 nucleotides (Brown and Sachs, 

1998). Human homologues of Pan2p and Pan3p have been identified (Uchida et al., 2004), 

but their function has yet to be elucidated. The second and predominant deadenylase complex 

in yeast is constituted by two nucleases – Ccr4p and Pop2p – and several accessory proteins 

(Tucker et al., 2001; Denis and Chen, 2003). Several Ccr4p homologues have been identified 

in mammals. However, in vertebrates, the enzyme called PARN (poly(A) ribonuclease) seems 

to have the major deadenylase activity in the general pathways (Gao et al., 2000). In addition, 

PARN seems to be required for the rapid deadenylation induced by AU-rich elements (see 

1.1.3) and can also affect the process of nonsense-mediated decay (see 1.1.4) (Lai et al., 2003; 

Lejeune et al., 2003). The various deadenylases described here differ in their substrate 

preference, biochemical properties and the way they are recruited. Even though the precise 

regulation of these enzymes is still poorly understood, the diversity of deadenylases would 

allow a tight control of the initial rate-limiting step of the mRNA turnover (reviewed by 

Parker and Song, 2004).   

 After deadenylation, the transcript is further degraded following one of two possible 

pathways. It is either degraded in the 3’-5’ direction or from the 5’ end by removal of the 

m7GpppN cap and subsequent 5’-3’ degradation (Anderson and Parker, 1998; Decker and 

Parker, 1993).  

 The 3´-5´ decay pathway might be the principal one in mammalian cells as suggested 

by in vitro experiments (Brewer, 1998; Mukherjee et al., 2002). A complex of conserved 

3´exonucleases and associated polypeptides, together known as the exosome, is responsible 

for this pathway. Nine subunits are integrated into the exosome core forming a ring-like 

structure: six subunits share sequence similarity with bacterial 3´ to 5´exoribonucleases 

(Rrp41, Rrp42, Rrp46, PM/Scl-75, Mtr3, Oip2/Rrp43)  and the other three (Rrp4, Rrp40 and 

Csl4) contain RNA-binding domains (Aloy et al., 2002; Symmons et al., 2002; Lehner and 

Sanderson, 2004; Liu et al., 2006). The exosome exists and has a role both in the nucleus and 

the cytoplasm; the complexes located in the two different compartments are distinguished by 

specific subunits and associated proteins (Butler, 2002) which regulate exosome activity. In 

the cytoplasm, this core structure interacts with Ski7 which, in turn, recruits the Ski2-3-8 

complex (Araki et al., 2001). The whole extended complex is required to degrade cytoplasmic 

mRNA. 
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 The 5´-3´ decay pathway (both in yeast and humans) is initiated after deadenylation 

with decapping by the heterodimer Dcp1/Dcp2. Dcp2 is the catalytic subunit while Dcp1 

seems to be a co-activator (van Dijk et al., 2002; She et al., 2004). In yeast there is only one 

version of Dcp1 and Dcp2; in humans, there is only one known version of Dcp2 but two of 

Dcp1 (DCP1a and DCP1b) which might have different functional properties, thereby 

increasing the diversity of decapping activities (Lykke-Andersen, 2002). Moreover, it is 

increasingly evident that – apart from Dcp1 – a conserved group of proteins enhances 

decapping. The proteins in this group, which includes EDC3, Ge-1, the heptameric LSm1-7 

complex, Dhh1 and Pat1, are collectively called decapping co-activators although the precise 

molecular function of most of them is unclear (reviewed by Eulalio et al., 2007).      

 Hydrolysis of the cap structure releases m7GDP and leaves the transcript with a 

5´monophosphate. This is the preferred substrate for the exonuclease Xrnp1 which is involved 

in the rapid 5´-3´ degradation of mRNAs in the cytoplasm, and this function is conserved 

between yeast and mammals (Bashkirov et al., 1997). Originally, the 5’-3’ decay pathway was 

considered the major route of mRNA degradation in yeast (Muhlrad et al., 1995); however, 

more recently, a genome-wide survey of mRNA abundance showed that mutations affecting 

the 5´pathway changed the abundance of less than 20% of all yeast mRNAs, indicating that 

the 3´pathway might actually be more important (He et al., 2003). 

In both pathways, the remaining cap structure is further broken down by the scavenger 

decapping enzyme DcpS (Wang and Kiledjian, 2001; van Dijk et al., 2003). DcpS decaps 

short cap oligonucleotides to release m7GMP. It has also a second function in hydrolyzing the 

m7GDP produced by Dcp1/Dcp2 to m7GMP and phosphate (Liu et al., 2002). 

 
 
1.1.2 mRNA decay via endonucleolytic cleavage 
 

 Certain eukaryotic mRNAs can be degraded via endonucleolytic cleavage prior to 

deadenylation (Fig. 2). The two fragments produced can then be degraded by the classical 5´ 

and 3´pathways. Evidence for the endonucleolytic mechanism comes from the analysis of 

transcripts such as mammalian IGF2, 9E3, the transferrin receptor (TfR) and Xenopus 

Xlhbox2B (Stoeckle and Hanafusa, 1989; Nielsen and Christiansen, 1992; Brown et al., 1993; 

Binder et al., 1994) where the selective degradation of the specific transcript is triggered in 

response to extracellular stimuli. 
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Figure 1. General mRNA decay pathways in eukaryotes.  The constitutive turnover of most mRNAs is 
initiated by deadenylation, followed by either 5´ to 3´ or 3´ to 5´decay.  Three different complexes are known for 
deadenylation. PAN2/3 may start the process followed by PARN (in higher eukaryotes) or CCR4/NOT (in 
yeast). The decapping complex involves DCP1 and DCP2 (which contains the enzymatic activity) plus other 
proteins which stimulate DCP2 (not shown). The exosome is responsible for the 3´ to 5´decay. The core 
exosome subunits form a barrel-like structure that interacts with the Ski complex (not shown). XRN1 degrades 
the uncapped transcript in the 5´ to 3 direction.  DCPS has two related activities. In the 5´ decay pathway, it 
hydrolyzes the m7GDP produced by DCP2 to m7GMP. In the 3´decay pathway, it decaps short cap 
oligonucleotides (the final product of the exosome) to release m7GMP. Adapted from (Parker and Song, 2004). 
 
 
Some common mechanistic aspects have emerged from the examples of regulated 

endonucleolytic cleavage that have been characterised to some extent. Vertebrate 

endonucleases appear to act specifically at certain sites that are defined by their sequence or 

secondary-structure. However, there does not appear to be any similarity between the 

cleavage sites in these mRNAs. Consequently, it is possible that a wide variety of 

endonucleases with different cleavage specificities allows the control of the decay of limited 
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mRNAs or classes of mRNA (reviewed by Tourriere et al., 2002). Additionally, the presence 

of protective factors that bind at or near the cleavage site (thus, competing with the enzyme) 

further modulate the endonucleolytic activity. For instance, the binding of the iron response 

element-binding protein in the TfR 3´UTR in response to low intracellular iron concentrations 

inhibits the endonucleolytic degradation of this mRNA (Binder et al., 1994).  

Decay via endonucleolytic cleavage has a more general role in D. melanogaster in a 

surveillance process known as nonsense-mediated decay, which is explained in the next 

chapter (see 1.2). 

In the last ten years, a complete new chapter in endonucleolytic mRNA degradation 

has arisen with a specialised decay pathway that involves RNA interference (RNAi) (Meister 

and Tuschl, 2004; Mello and Conte, 2004). Two types of small RNAs can trigger RNAi: short 

interfering RNAs (siRNA) and fully-complementary micro-RNAs (miRNAs). Once 

processed, both types of RNAs are biochemically indistinguishable but they differ in their 

biogenesis (Carthew, 2006). In the case of siRNA, an initially longer dsRNA is cleaved into 

21-23 nts double-stranded small interfering RNAs (siRNAs) by the RNase III-related enzyme 

Dicer (Bernstein et al., 2001; Elbashir et al., 2001). One strand of the siRNA is then 

incorporated into the RNA-induced silencing complex (RISC) where it serves as a guide for 

the selection of target mRNAs. Transcripts with complementary sequence to the siRNA are 

targeted and cleaved by an endonuclease, most likely the RISC-component Argonaute 2 

(Ago2), in the middle of the recognised sequence (Pham et al., 2004; Liu et al., 2004; Song et 

al., 2004). This endonucleolytic cleavage is followed by the degradation of the mRNA 

fragments by the general exonucleolytic pathways (Montgomery, 2004). 

MicroRNAs are generated by RNA polymerase II transcription which gives rise to a 

precursor that is subsequently processed by Drosha RNase III. The digested RNA has 

complementary sequences and, consequently, the molecule is folded in a hairpin-loop 

secondary structure. Although the exact silencing mechanism is not known, it is clear that this 

precursor undergoes a mode of silencing that is related to that employed by siRNAs (reviewed 

by Carthew, 2006). 

RNA silencing has received an exceptional amount of attention due to its value for 

loss-of function studies. Importantly, siRNA transfection is used extensively in this study. 

However, the role of RNA silencing in the regulation of gene expression is only starting to 

emerge.  
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Figure 2. Endonucleolytic mRNA decay pathways.  Some mRNAs are degraded by endonucleolytic cleavage 
as a first step. A generalisation of this pathway is illustrated here. A decay factor or complex (depicted in blue) 
recognises and binds to a sequence in the mRNA (generally but not exclusively in the 3´UTR). This 
factor/complex recruits – in turn – the endonuclease (interaction shown with an arrow). Examples of such a 
decay factor/complex are some ARE-binding proteins, IGFII-binding protein or, in fly, the NMD surveillance 
complex. It is also possible that a sequence in the transcript is recognised directly by the endonuclease (for 
instance, in RNAi where the RISC complex interacts with the mRNA through the siRNA) (not shown). 
Subsequently to this cleavage, the transcript can be further degraded by the 5´or 3´decay pathways showed in 
Fig. 1. 
 
 
 
1.1.3 Regulated mRNA decay: AU-rich elements 
 

In 1.1.2 some examples of transcripts bearing certain cis-acting sequences that serve to 

regulate their decay (through endonucleolytic attack) were shown. The cis-acting elements in 

those cases are specific for each mRNA. However, there also exits another type of elements 

that appears to be more general and that also modulates mRNA decay. 

AU-rich elements (AREs) are sequence elements of 50-150 nts that are rich in 

adenosine and uridine bases (reviewed in Barreau et al., 2005). AREs are among the 

predominant cis-acting sequences that exist mainly in the 3'-UTR of mRNAs, regulating their 

stability. These elements usually contain AUUUA pentamers as the sequence motif. Based on 

the number and the distribution of these pentamers, AREs have been grouped into three 

classes (Bakheet et al., 2003). Class I AREs contain several dispersed copies of the AUUUA 

motif within U-rich regions. Class II AREs possess at least two overlapping 

UUAUUUA(U/A)(U/A) nonamers. Class III AREs are more loosely defined; they are U-rich 

regions but contain no AUUUA motif. 

m7Gppp AAAAAAAAAAAAAAAAA

Binding of decay
factor/complex

m7Gppp AAAAAAAAAAAAAAAAA

Endonucleolytic
cleavage

m7Gppp AAAAAAAAAAAAAAAAA

ENDONUCLEASE

m7Gppp AAAAAAAAAAAAAAAAAm7Gppp AAAAAAAAAAAAAAAAA

Binding of decay
factor/complex

m7Gppp AAAAAAAAAAAAAAAAAm7Gppp AAAAAAAAAAAAAAAAA

Endonucleolytic
cleavage

m7Gppp AAAAAAAAAAAAAAAAAm7Gppp AAAAAAAAAAAAAAAAA

ENDONUCLEASE



Introduction 9

Originally, AREs were believed to be restricted to relatively few mRNAs, including 

those of interferons and cytokines, growth factors, and proto-oncogenes. More recent analysis, 

however, showed that ARE mRNAs represent as much as 8% of mRNAs transcribed from 

human genes that encode functionally diverse proteins important in many transient biologic 

processes (reviewed in Khabar, 2005). Among those processes are cell growth and 

differentiation, immune responses, transcriptional and translational control, hematopoiesis, 

apoptosis, signal transduction and nutrient transport.  

Most of the ARE-containing transcripts are unstable (Frevel et al., 2003) and are 

degraded via the 3’-5’ decay pathway, after deadenylation (Chen et al., 2001; Mukherjee et 

al., 2002). Nevertheless, degradation via endonucleolytic cleavage or the 5’-3’ mRNA decay 

pathway also seem to contribute to the ARE-containing mRNA decay in some particular cases 

(Zhao et al., 2000; Gao et al., 2001). Many factors have been characterised to bind and 

regulate the stability of the ARE-containing mRNAs (reviewed by Barreau et al., 2005). 

Examples of these proteins are AUF1, TTP and KSRP which accelerate the turnover by 

recruiting deadenylases and the exosome to the transcript (Chen et al., 2001; Mukherjee et al., 

2002; Tran et al., 2004). However, not all the ARE-binding factors have a destabilising effect. 

For instance, HuR and YB-1 are stabilising ARE-binding proteins that either compete with 

the destabilising factors for access to binding sites or protect the mRNA from decay by 

masking cleavage sites (Fan and Steitz, 1998; Capowski et al., 2001). Several of these trans-

acting factors have been found to be targeted by signalling cascades. Growth factors and 

cytokines can affect the expression, post-translational modification and localisation of ARE-

binding factors (reviewed by Shim and Karin, 2002). Thus, the abundance of ARE-containing 

transcripts can be rapidly adjusted in response to the extracellular stimuli.  

Interestingly, recent studies also implicate a role of miRNAs in the regulation of 

mRNA stability by AREs. The human miRNA miR16 has been shown to contain an AU-rich 

sequence that is complementary to the ARE in the TNF-α transcript (Jing et al., 2005). This 

miRNA co-operates with the ARE-binding factor TTP in the destabilisation of the transcript. 

In contrast to this example, it has been shown that miR-122 induced translation repression of 

CAT-1 transcript is reversible and that HuR binding is required to overcome this inhibition 

(Bhattacharyya et al., 2006). These novel functions of miRNA and ARE elements (or ARE 

binding proteins) indicate that we are only starting to understand the complex molecular 

mechanisms involved in the regulation of mRNA turnover.  
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1.1.4 mRNA surveillance pathways 

 

The flow of information from a gene to the protein it encodes is full of intermediate 

steps that allow a tight control of the gene expression at multiple levels. Splicing of pre-

mRNA and other maturation processes, mRNA export and translation operate cooperatively 

and concurrently to maintain the fidelity of the genetic information. However, each of these 

levels is prone to errors and hence, quality control mechanisms are needed.  

For instance, the processes of transcription, capping, splicing and nuclear export of 

mRNA are all closely connected by the use of common factors (reviewed by Reed, 2003; 

Kornblihtt et al., 2004; Proudfoot, 2004). In addition, the link between consecutive steps in 

the mRNA maturation limits the production of partially processed transcripts. Still, faulty 

processed transcripts are retained in the nucleus and degraded by the nuclear exosome 

(Bousquet-Antonelli et al., 2000; Burkard and Butler, 2000; Olesen et al., 2005).  

In the cytoplasm, at least three surveillance mechanisms verify the translatability of 

the mRNAs. Transcripts that have no translation termination codons in their ORFs are the 

targets of the nonstop decay (NSD) pathway (Frischmeyer et al., 2002). During nonstop 

decay, ribosomes that stall at the 3’ end of the mRNA without terminating properly cause the 

recruitment of factors involved in 3’-5’ decay pathway, including the Ski complex and the 

exosome which ultimately degrades the transcript (van Hoof et al., 2002).  

A different surveillance mechanism – termed no-go decay (NGD) – has been defined 

in yeast. In this case, messengers carrying a stable stem-loop structure which stall translation 

are degraded by an endonucleolytic cleavage (Doma and Parker, 2006). This pathway also 

depends on translation as a stop codon located upstream of the stem-loop inhibits degradation. 

Interesting, Hbs1 and Dom34 (interacting proteins with similarity to translation termination 

factors) are indispensable for NGD (Doma and Parker, 2006). 

A third surveillance mechanism – nonsense-mediated mRNA decay (NMD) – targets 

transcripts that possess a premature translation termination codon (PTC) (for a review, see for 

instance Hentze and Kulozik, 1999; Conti and Izaurralde, 2005; Weischenfeldt et al., 2005). 

In mammals, the definition of stop codons as either ‘normal’ or ‘premature’ depends on their 

position relative to the last intron. Once a PTC has been recognised, the mRNA is rapidly 

degraded from either end. As this surveillance pathway is the subject of the present thesis, 

NMD is described in detail in the following chapter (see 1.2).  
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1.1.5 Localisation of decay factors 
 

It has long been recognised that the different mRNA decay pathways are functionally 

interlinked. However, the notion that these processes are also physically connected has also 

recently emerged. Proteins that are involved in mRNA degradation, mRNA surveillance, 

translational repression and RNA-mediated gene silencing, along with their mRNA targets, 

co-localise within discrete cytoplasmic granular structures known as processing-bodies or P-

bodies (see Fig. 3) (reviewed by Bruno and Wilkinson, 2006). 

The first proteins shown to be present in P-bodies were those that function in the 

general 5´decay pathway such as DCP1/2, XRN1 and the Lsm proteins. (Cougot et al., 2004). 

Later on, the UPF proteins, SMG5 and SMG7 – all factors implied in mRNA surveillance 

(see 1.2) – were also found in these structures (Sheth and Parker, 2006). Moreover, Argonaute 

proteins and GW182, which are essential for miRNA-mediated silencing, also co-localise in 

P-bodies (Eystathioy et al., 2002; Liu et al., 2005; Behm-Ansmant et al., 2006). Interestingly, 

factors that integrate the exosome and Ski-complex are not detected in these granules (Sheth 

and Parker, 2003; Brengues et al., 2005).   

In principle, P-bodies could simply represent storage sites for decay enzymes. 

However, there is increasing evidence that supports the hypothesis that P-bodies are actually 

sites of mRNA degradation.  For instance, when cells are treated with ribonuclease A or with 

actinomycin D, P-bodies are lost, indicating that P-body assembly is dependent on RNA. If 

mRNA degradation is blocked at an early stage – for example, by preventing deadenylation in 

cells that lack the deadenylase CCR4 – P-bodies disappear. However, if the degradation is 

blocked at a later stage (for instance by depletion of XRN1 or DCP1) the P-bodies increase in 

size and number which suggests that transcripts in the P-bodies are undergoing decapping. At 

the same time, mRNA-decay intermediates are detected in P-bodies when XRN1 is depleted. 

Similarly, transcript-decay intermediates are detected when the progression of XRN1 along an 

mRNA is blocked by the insertion of specific RNA sequences (Sheth and Parker, 2003; 

Cougot et al., 2004; Andrei et al., 2005; Teixeira et al., 2005). Taken together, these 

observations definitively establish that P-bodies are storage-sites for mRNAs that are 

committed to degradation. Yet, it remains unclear whether the mRNA is responsible for 

recruiting the decay factors or there exist unknown interactions between the enzymes in the 

different pathways that bring these factors together in the P-bodies.  In any case, the 

simultaneous presence of decay factors would make the mRNA degradation process more 

efficient and controlled. 
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More recently, additional experimental evidence suggests that P-bodies could have a 

broader role in the regulation of mRNA turnover. The translation of CAT-1 mRNA is 

regulated by the microRNA miR-122 in hepatic cells. A study demonstrated that this 

transcript is present in the P-bodies while is repressed by miR-122. However, under stress 

conditions the repression is relieved (in a process that also involves the ARE-binding protein 

HuR), releasing CAT-1 mRNA from the P-bodies and allowing active translation 

(Bhattacharyya et al., 2006). Thus, P-bodies do not only represent sites of mRNA decay but 

also reservoirs of reversible pools of translationally inactive mRNAs. 

 

  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 
 
Figure 3. P-bodies. The P-bodies are granular structures that contain transcripts undergoing decay or 
translation-repression and factors involved in several decay pathways. Specifically, factors involved in NMD, 
deadenylation and the 5´-3´general decay pathways have been identified. In addition, proteins essential for 
miRNA silencing have also been found. Besides mRNA decay, it has been postulated that also reversible 
translation-repression occurs in P-bodies translation (Bhattacharyya et al., 2006; Bruno and Wilkinson, 2006). 
Not all the known components of P-bodies are represented in the scheme. 
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1.2 Nonsense-mediated mRNA decay 

 

Nonsense-mediated mRNA decay (NMD) is an mRNA surveillance pathway that 

detects and degrades transcripts containing premature termination codons (PTCs) thus, 

preventing the synthesis of truncated proteins. Despite differences at the mechanistic level, 

NMD is functionally conserved in all studied eukaryotes including yeast (Leeds et al., 1991; 

Leeds et al., 1992), vertebrates (Maquat, 1995; Perlick et al., 1996), C. elegans (Pulak and 

Anderson, 1993; Cali and Anderson, 1998), D. melanogaster (Gatfield et al., 2003) and plants 

(Abler and Green, 1996).  

NMD is always characterised by rapid mRNA decay, and  three key trans-acting NMD 

factors – UPF1, UPF2 and UPF3 – are conserved from yeast to mammals (see for instance 

Culbertson and Leeds, 2003); however, the cis-acting elements and details in the pathway 

vary among the different species. For instance, mammals have a particular mechanism of 

recognition of premature nonsense codons that diverges from other organisms. For this 

reason, I will discuss NMD in mammals separately. 

  

1.2.1 NMD in mammals 

 

 The history of NMD in mammals was opened with a pioneering study (Chang and 

Kan, 1979) where it was observed that the transcript steady-state levels of a mutated PTC-

containing β-globin gene were lower than the wild type counterpart.  From that moment 

intensive research has unravelled many details in the mechanism of NMD, although there are 

still several open questions. 

In mammals, the definition of a PTC depends on the location of the termination codon 

in relation to the introns of the pre-mRNA. A translation termination codon is generally 

interpreted as “normal” if no intron follows more than 50-55 nucleotides downstream in the 

gene sequence (Nagy and Maquat, 1998). Thus, most normal stop codons are located in the 

last exon, while NMD-activating PTCs are usually situated further upstream (see Fig. 4). For 

this discrimination, both splicing and translation are critical. The requirement of splicing is 

demonstrated by the NMD insensitivity of intronless cDNA versions of PTC-containing genes 

normally subjected to NMD (Maquat and Li, 2001; Neu-Yilik et al., 2001). Additionally, the 

importance of translation has been demonstrated unequivocally since the pleiotropic (Carter et 

al., 1995) or specific (Thermann et al., 1998) inhibition of translation abrogates NMD of a 

PTC-mutated transcript. 
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 Figure 4. PTC definition in mammals. A nonsense codon is regarded as premature if it is in frame with the 
initial ATG and it is located at least 50-55 nt upstream of the 3´most intron. Depicted is an example of a gene 
with three exons. According to the “50 nt rule” a stop codon located in the green region would trigger NMD 
while a stop codon situated in the red region would be considered legitimate and would not trigger NMD. 

 

The combined requirement of splicing (which takes place in the nucleus) and of 

translation (which occurs in the cytoplasm) represented a puzzle for the understanding of the 

NMD mechanism. The explanation of how the introns in a pre-mRNA function in NMD came 

from the finding of a protein complex that is deposited ∼20-24 nucleotides upstream of each 

exon-exon junction (in a sequence-independent manner) after the intron is spliced out (Le Hir 

et al., 2000). This complex – called the “exon junction complex” (EJC) – provides a ´mark´ 

that communicates in the cytoplasm the position where an intron was previously located. 

The EJC is a stable structure that assembles during splicing, and is remodelled during 

the subsequent steps of mRNA processing, with some components dissociating before or 

while the mRNP is exported to the cytoplasm and others joining the complex at later stages 

(reviewed by Tange et al., 2004). It is believed that the EJCs are removed from the mRNA by 

the translating ribosome during a first round of translation (Dostie and Dreyfuss 2002; 

Lejeune et al. 2002). While the EJC is still bound to the mRNA, it affects a number of post-

transcriptional processes such as mRNA decay, localisation and translation (reviewed by 

Tange et al., 2004).  

The stable core of the EJC contains at least four proteins: MAGOH and Y14 (which 

form a heterodimer), eIF4A3, and Barentsz (also known as MLN51) (reviewed by Tange et 

al., 2004). Recently, the crystal structure of the core complex has been revealed. The protein 

eIF4A3 has two helicase domains joined by a short linker. The arrangement of these domains 

creates a cleft that is where the RNA binds. Barentsz wraps around eIF4A3 and along with the 

heterodimer Y14/MAGOH stabilises the binding of the RNA (Bono et al., 2006). To this core 

complex, other components associate more peripherally or transiently. Such factors include 

the splicing co-activators SRm160 and RNPS1, the mRNA export factors UAP56, REF/Aly 

and TAP-p15 and – more recently uncovered – SAP18 and Acinus (reviewed by Tange et al., 

2004 and Tange et al., 2005) (see Fig. 5).  
 

exon 1 exon 2 exon 3

NMD + no NMD (stable) 

50-55 nt.

exon 1 exon 2 exon 3

NMD + no NMD (stable) 

50-55 nt.
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Figure 5. The Exon Junction Complex (EJC). The minimal EJC core (in black background) likely consists of 
a tetrameric complex containing eIF4AIII, MLN51 (also called Barentz), MAGOH, and Y14. All factors in this 
core are shuttling proteins and most likely follow the mRNA to the cytoplasm. In dark grey, the factors that 
constitute the outer shell are depicted. RNPS1, Acinus, and SAP18 can stably associate and may bind the EJC 
core as a trimeric complex. However, RNPS1 may also bind alone, e.g., via interactions with Pinin. In the light 
grey sphere are depicted those factors that bind transiently or in latter steps (as the Upf proteins). Modified from 
Tange et al., 2005. 
 
 

The role of the EJC in identifying a stop codon as a PTC has been demonstrated by 

tethering EJC factors at least 50 nucleotides downstream of a stop codon to an otherwise 

normal mRNA. In this situation, a normal termination codon is redefined as premature and the 

transcript becomes unstable. RNPS1, Y14, MAGOH, Barentsz and eIF4AIII were shown to 

trigger NMD of a reporter construct in this system (Lykke-Andersen et al., 2001; Fribourg 

and Conti, 2003; Gehring et al., 2003; Palacios et al., 2004; Gehring et al., 2005). 

Additionally, depletion of Y14, Barentz and eIF4A3 by means of RNAi limits NMD in 

mammalian cells (Gehring et al., 2003; Ferraiuolo et al., 2004; Palacios et al., 2004; Shibuya 

et al., 2004).  

Central to the NMD pathway are the UPF proteins: UPF1, UPF2 and UPF3. These 

proteins were originally identified as suppressors of the his4-38 frameshift mutation 

(Culbertson et al. 1980) in yeast (UPF stands for “Up-Frameshift Suppressor”). Soon, 

homologues of these factors were identified in mammals (Sun et al., 1998; Serin et al., 2001).  

Unlike the EJC proteins which are essential for NMD only in mammals, the UPF family is 

crucial in all species where NMD is present (reviewed by Hentze and Kulozik, 1999; Maquat 

and Serin. 2001).  

For UPF3, two closely related genes have been identified in mammals: UPF3a and 

UPF3b (Lykke-Andersen et al., 2000). These are shuttling proteins that are integrated into the 

EJC in the nucleus.  Originally, it was thought that both isoforms played a role in NMD. More 
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recently, it was shown that only UPF3b participates in the surveillance pathway (Kunz et al., 

2006). The NMD-function of UPF3b was shown by its ability to phenocopy NMD in 

tethering assays (Lykke-Andersen et al., 2000; Gehring et al., 2003).  

UPF2 is preferentially located in the perinuclear region and it is also recruited by the 

EJC by interaction with UPF3 (Lykke-Andersen et al., 2000). The role of mammalian UPF2 

in NMD was demonstrated by RNAi (Mendell et al., 2000), antisense approaches (Wang et 

al., 2002) and also by tethering (Lykke-Andersen et al., 2000) .  

UPF1 is a predominantly cytoplasmic phospho-protein with ATPase and RNA 

helicase activity (Leeds et al., 1991; Czaplinski et al., 1995). It can interact directly with 

UPF2 (Lykke-Andersen et al., 2000) and has to be phosphorylated by the phosphatidyl-

inositol 3-kinase-related kinase SMG1 to be NMD-competent (Yamashita et al., 2001). When 

UPF1 is down-modulated by RNAi or when a dominant negative mutant of UPF1 is over-

expressed, NMD efficiency is markedly diminished (Sun et al., 1998; Mendell et al., 2002; 

Gehring et al., 2003). In addition, inhibition of UPF1 phosphorylation by wortmannin-

treatment also impairs NMD (Pal et al., 2001; Yamashita et al., 2001). 

Current NMD models postulate that during the first round of translation, the ribosome 

removes all the EJCs as it traverses the mRNA till it reaches the stop codon. If no EJC 

remains downstream of the ribosome position, a normal termination occurs (reviewed by 

Maquat 2004).  Otherwise, some investigators have hypothesised that a linear pathway takes 

place in which the EJC sequentially recruits UPF3b, UPF2, and UPF1 to trigger NMD (Kim 

et al., 2001; Lykke-Andersen et al., 2001) (see Fig. 6). Recently, it has been shown that UPF1 

forms a complex, named SURF, with SMG1 and the release factors eRF1 and eRF3. The 

interaction of this complex with the EJC is thought to be required for NMD (Kashima et al., 

2006). In this model, SURF interacts with UPF2, UPF3b and additional EJC proteins bound 

to a downstream exon-exon boundary. This interaction would result in the formation of a 

decay-inducing complex (DECID) that – in turn – triggers UPF1 phosphorylation and the 

dissociation of eRF1 and eRF3 (Kashima et al., 2006). Finally, phosphorylated UPF1 is 

directly recognized by SMG5, SMG6 and SMG7 via a conserved 14-3-3 like domain present 

in all three proteins (Fukuhara et al., 2005). These proteins are thought to serve as adaptors 

between phosphorylated UPF1 and protein phosphatase 2A (PP2A), thereby triggering UPF1 

dephosphorylation (Chiu et al., 2003; Ohnishi et al., 2003). However, the molecular 

mechanism of PP2A recruitment is still unknown. 

New findings have lately challenged the linear model discussed here. In our group, it 

was found that two distinct subcomplexes of the EJC serve as entry points for the formation 
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of distinguishable NMD-activating mRNPs. One of these subcomplexes includes Y14, 

MAGOH, and eIF4A3 and can activate NMD in an UPF2-independent manner. The second 

subcomplex that can trigger NMD comprises RNPS1 and UPF2. The two branches of these 

nonlinear NMD model converge at a common requirement of UPF1 (Gehring et al., 2005). 

How is the decay process triggered? Apparently, NMD in mammalian cells degrades 

mRNAs from both the 5' and 3' ends (Lejeune et al., 2003). Originally it was thought that this 

process was independent of prior deadenylation as it is the case in yeast (Hilleren and Parker, 

1999) . However, additional evidence supports a rapid deadenylation step as the first decay 

event in humans (Chen and Shyu, 2003). There is some evidence that the UPF factors interact 

and recruit components of the general decay pathways. In particular, UPF proteins co-

immunopurify with Dcp2, Xrn1, the exosomal components PM/Scl100, Rrp4, and Rrp41, and 

PARN (Lejeune et al., 2003). 

It is worth noticing that UPF1, SMG5 and SMG7 localise in the P-bodies; the 

proximal location of the decay enzymes could accelerate the degradation of the PTC-

containing transcript (reviewed by Eulalio et al. 2007). Moreover, it has recently been 

demonstrated that SMG6 has intrinsic nuclease activity in vivo (Glavan et al., 2006). This 

activity could constitute an alternative pathway that contributes to the rapid decay of 

transcripts that terminates translation prematurely. 

 

 

1.2.2 NMD in yeast, fly and worm  

 

Three genes (Upf1, Upf2 and Upf3) are essential for NMD in yeast. These genes are 

the orthologs of the respective mammalian factors (Gonzalez et al., 2001). In nematodes, 

seven genes named smg 1-7 (for suppressor with morphological effect on genitalia) are 

involved in this pathway (Pulak and Anderson, 1993). While smg 1,5, 6 and 7 are respectively 

homologous to SGM1, 5, 6 and 7 genes in mammals; Smg2, 3 and 4 are homologous to 

UPF1, 2 and 3. With the exception of smg7, D. melanogaster also has equivalent genes for all 

the sgm factors and, like in nematodes and mammals, sgm 1-6 are indispensable for NMD in 

fly (Gatfield et al., 2003).  
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Figure 6. A current model for NMD in mammalian cells. The EJC assembles after splicing in the nucleus. 
The NMD factor UPF3 associates to the EJC at this stage. During the transcript export, the EJC is remodelled. In 
the perinucleus, UPF2 joins the complex. The EJCs are removed from the transcript during a pioneer round of 
translation by the ribosome. If translation terminates before the last EJC is removed, then the EJC is able to 
interact with UPF1 and the termination factors. An active surveillance complex is formed with UPF1, UPF2 and 
UPF3 which targets the transcript for decay in a yet unknown way. (Adapted from Kim et al, 2001). 
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One common feature of NMD in these lower eukaryotes is that – unlike the 

mammalian case – it is splicing-independent; consequently, there should be an alternative 

mechanism to define a PTC, distinct from the EJC position.  

In yeast, this is not surprising since only 5% of yeast genes contain introns (Spingola 

et al., 1999) and none of the proteins found in the core of the mammalian EJC has an 

homologues in yeast (reviewed by Conti and Izaurralde, 2005). In S. cerevisiae, some 

mRNAs have been shown to harbour loosely defined downstream sequence elements (DSEs) 

with a function analogous to that of mammalian exon-exon junctions (Ruiz-Echevarria et al., 

1998). The protein Hrp1p has been shown to bind to this element and to interact with the 

UPFs factors, thus associating the NMD complex and the DSE (Gonzalez et al., 2000). 

According to this model, once a translating ribosome encounters a PTC, the translation 

release factors eRF1 and eRF3 recruit Upf1 to the ribosome to assemble a surveillance 

complex. Subsequently, this complex searches 3' of a nonsense-codon for a DSE associated 

with RNA-binding proteins (Gonzalez et al., 2000). A direct interaction between the release 

factors and Upf1 has been proven (Czaplinski et al., 1998). Also, Upf1 ATPase and helicase 

activities haven been verified biochemically (Weng et al., 1996). However, the experimental 

evidence indicates there is a lack of a strong consensus among yeast DSEs which would 

suggest that multiple cis-acting sequence elements and trans-acting binding factors may exist.  

Alternatively, it is possible that a generic feature of the mRNA, such as the poly(A)-

tail or a mark deposited during the cleavage and polyadenylation reaction, provides the 

positional information needed to discriminate premature from natural stop codons in yeast. 

One model that considers the stop codon in the context of the 3´UTR and has recently 

received strong support is the so called “faux 3´UTR” (Amrani et al., 2004). It was shown that 

translation termination is aberrant at premature stop codons and that prematurely terminating 

ribosomes fail to release efficiently. This effect is abolished in strains lacking Upf1 or if the 

nonsense codon is flanked with a normal 3′ UTR. Moreover, tethering the poly(A)-binding 

protein (Pab1p) downstream of the PTC, which mimics a normal 3′UTR, leads to efficient 

translation termination and abolishes NMD (Amrani et al., 2004). 

Although not experimentally proven, the faux 3´UTR model has also been proposed 

for nematodes and flies since NMD-sensitive transcripts do not possess any identifiable 

downstream sequence elements (Conti and Izaurralde, 2005).  

As in mammals, studies in yeast indicate that the degradation of the targeted 

transcripts involves both the 5´-3´ and 3´-5´general decay pathways (although previous 

deadenylation is not required) (Hagan et al., 1995; Cao and Parker, 2003; Mitchell and 
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Tollervey, 2003).  Which – if any – pathway is more relevant is still matter of debate (He et 

al., 2003).  

In contrast to these two organisms, in D. melanogaster the degradation is initiated 

endonucleolytically, with a cleavage in the vicinity of the PTC (Gatfield and Izaurralde, 

2004). The two generated fragments are further degraded by the general turnover mechanism.  

It will be interesting to see whether this pathway is an exception in fly or if it exemplifies a 

more general NMD decay pathway in other organisms. 
 

 

1.2.3 Physiological role of NMD  

 

NMD detects and degrades mRNAs containing PTCs; thus, avoiding the synthesis of 

C-terminally truncated proteins that might have a dominant-negative effect on the cell 

(reviewed by Hentze and Kulozik, 1999; Maquat, 2004). Originally, NMD was considered as 

a pathway that evolved to rid the cell of non-functional mRNAs arising from nonsense or 

frameshift mutations and splicing errors. As a matter of fact, NMD was first studied in cases 

of genes with nonsense mutations (Chang et al., 1979; Losson and Lacroute, 1979; Maquat et 

al., 1981). (In human, the role of NMD in controlling the expression of nonsense mutated 

genes is of particular interest because it might modulate the phenotypic expression of diseases 

caused by the genetic defect. For this reason, this aspect of NMD is treated separately in the 

next section (see 1.2.5)). 

However, it was soon recognised that it is unlikely that NMD has evolved and 

maintained only to control the expression of mutated genes since the mutation frequency is 

actually very low in eukaryotes (Sueoka, 1993).  Also, monitoring the expression of faulty 

spliced transcripts would not be expected to be a crucial function of this pathway as mRNAs 

containing introns are usually retained and degraded in the nucleus (reviewed by Vasudevan 

and Peltz, 2003). 

A first role of NMD in the normal cellular physiology was uncovered in 

immunoglobin genes´ rearrangements, such as those of immunoglobulin (Ig) genes in B 

lymphocytes or the T cell receptor (TCR). In these cases, an exon encoding the antigen-

binding domain is assembled by the joining of V (depending on the case also D) and J gene 

segments randomly selected from a large number of alternative sequences (Jung and Alt, 

2004). In addition, the recombination site is not precise and several nucleotides can be added 

or lost at this point. The advantage of this mechanism to generate diversity in the immune 
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repertoire is balanced by the risk of changing the reading frame. As a consequence, many of 

the recombination events generate TCR or Ig genes that possess PTCs. In order to prevent the 

accumulation of truncated proteins, PTC-containing Ig and TCR transcripts are efficiently 

degraded by NMD  (Carter et al., 1995; Li et al., 1997; Buhler et al., 2004; Delpy et al., 

2004).  

NMD of Ig or TCR transcripts is particularly efficient. The expression levels of the Ig 

or TCR mRNAs that possess a PTC are generally 30- to 100-fold lower than those of their 

wild-type counterparts (Buhler et al., 2004). In comparison, other PTC-containing transcripts 

are usually downregulated by a factor of 2 to 10 (Gudikote and Wilkinson, 2002). At least in 

the cases of the TCR and the Ig-µ gene, the high efficiency of NMD has been attributed to the 

presence of cis-acting sequence elements in the variable regions that function as enhancers of 

NMD upstream of a PTC (Gudikote and Wilkinson, 2002; Buhler et al., 2004). 

Further insight into the physiological role of NMD was gained with the study of the 

regulation of the expression of splicing factors such as SC35 and the polypyrimidine tract 

binding protein (PTB). Transcription of both SC35 and PTB genes give rise to multiple 

isoforms by alternative splicing; some of these mRNAs have a PTC and are subjected to 

NMD. Notably, when these splicing factors are highly abundant, they can bind to their own 

pre-mRNAs and direct the splicing event toward the generation of NMD-sensitive isoforms. 

In this way, these factors can auto-regulate their own expression by means of the NMD 

machinery (Sureau et al., 2001; Wollerton et al., 2004). 

Recently, a computer analysis of EST sequences resulted in the estimate that ∼30% of 

the mRNAs that derive from alternative splicing contain a nonsense codon that can elicit 

NMD in humans (Lewis et al., 2003). This would indicate that NMD exerts significant 

regulation of gene expression through degradation of splice forms containing PTCs. 

 Several transcripts that encode selenoproteins constitute another group regulated by 

NMD. In this case, the mRNA contains a premature termination codon (UGA) that is not 

interpreted as such by the ribosome but as a codon encoding the rare amino acid 

selenocysteine. The incorporation of this amino acid depends on  the secondary structure of 

the 3’UTR (reviewed by Namy et al., 2004) and on adequate levels of selenium. In a situation 

of low selenium concentration, a deficiency of selenocysteine-tRNA will make the translating 

ribosome stall at the premature UGA codon. In that case, NMD will eliminate a transcript that 

cannot be properly translated (Sun et al., 2000; Sun and Maquat, 2002).  

An additional group of transcripts that are potential NMD substrates is made up of 

mRNAs that contain upstream open reading frames (uORFs). uORFs are short open reading 
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frames in the 5’ leader sequence of a transcript, which often regulate the translation of the 

downstream major ORF (reviewed by Meijer and Thomas, 2002). uORFs can potentially 

affect the mRNA stability because the stop codon of an uORF can be regarded as a PTC 

(Ruiz-Echevarria et al., 1996; Linz et al., 1997). Experimentally, the NMD-sensitivity of 

uORF-containing transcripts has been verified in yeast (Ruiz-Echevarria and Peltz, 2000; He 

et al., 2003), worm (Lee and Schedl, 2004), fly (Rehwinkel et al., 2005) and mammals 

(Mendell et al., 2004). On the other hand, it has also been documented that the seventh uORF 

of the thrombopoietin (TPO) – a theoretical NMD target – is insensitive to NMD 

(Stockklausner et al., 2006). Moreover, reporter mRNAs bearing this TPO uORF escape 

NMD as well. This implies that mRNAs bearing uORFs cannot always be considered to 

represent NMD targets. 

The increasing number of discovered physiological NMD targets stimulated a 

genome-wide analysis of the set of transcripts regulated by NMD. This has been successfully 

achieved in yeast (Lelivelt and Culbertson, 1999; He et al., 2003) and fly (Rehwinkel et al., 

2005). To this end, a microarray-based expression profile analysis was done in both cases. In 

yeast, mutated strains lacking Upf1, Upf2 or Upf3 compared to a wild type strain were 

assessed; while for fly, NMD factors (Upf1, Upf2 and Upf3, Smg1, Smg5 and Smg6) were 

depleted by RNAi. 

Several conclusions were drawn from these experiments. Firstly, about 5-10% of the 

transcriptome of these species were affected by NMD abrogation, confirming the significant 

role of this pathway. Secondly, the set of up-regulated transcripts was approximately the same 

regardless of which factor was defective. This result supports the idea that the NMD factors 

act principally in the surveillance complex and that their role in mRNA decay has not 

diverged substantially. Approximately 30% of the affected transcripts contain structural 

features that explain their NMD-sensitivity. These include mRNAs encoded by genes 

harbouring nonsense mutations; pre-mRNAs that retain their introns in the cytoplasm, 

mRNAs with uORFs, mRNAs subject to leaky scanning, mRNAs using frameshift in their 

translation, bicistronic mRNAs and mRNAs encoded by pseudogenes or transposable 

elements. Both in yeast and fly, the affected genes were associated with diverse functions 

including metabolism, cell cycle, DNA processing, protein synthesis and cellular transport 

(He et al., 2003; Rehwinkel et al., 2005). However, the specific genes involved in each 

functional group are not homologous in these species. This would indicate that there was not 

evolutionary pressure to conserve the identity of the set of regulated genes. 
 
 



Introduction 23

1.2.5 Role of NMD in disease  

 

 In humans, the study of NMD is of particular interest in relation to the clinic. An 

estimated 30% of inherited disorders and many forms of cancer are caused by frameshift or 

nonsense mutations which result in the generation of PTCs and hence, are potentially targeted 

by NMD (Frischmeyer and Dietz, 1999). 

 The role of NMD in disease was first appreciated in certain types of β-thalassemia 

where NMD has a protective role. Adult haemoglobin is composed of two α- and two β-

globin subunits that form a quaternary complex necessary for oxygen transport. When the β-

globin gene contains NMD-sensitive PTC mutations, aberrant β-globin mRNA is degraded by 

NMD. Thus the synthesis of truncated β-globin is restricted and these mutations cause a 

recessive form of β-thalassemia (Hall and Thein, 1994). Contrary to homozygotes, 

heterozygotes carrying these mutations generally synthesise enough β-globin from the 

remaining normal allele to support near-normal haemoglobin levels and consequently do not 

suffer from thalassemia. In contrast, rare nonsense mutations in the last exon of β-globin 

(which are NMD-insensitive) give rise to large amounts of truncated, non-functional β-globin 

that cannot be eliminated by the cell’s proteolytic system and causes toxic precipitation of 

insoluble globin chains (Thein et al., 1990). The remarkably contrast between asymptomatic 

heterozygotes with NMD-competent mutations and affected heterozygotes with NMD-

insensitive mutations indicates the protective effect of NMD in this disorder (Kugler et al., 

1995). 

NMD also seems to play an important role in certain types of cancer. Mutations in 

tumor-suppressor genes are common steps in the development and progression of this disease. 

NMD has been reported to reduce the abundance of PTC-containing transcripts of the BRCA1 

(Perrin-Vidoz et al., 2002), p53 (Williams et al., 1998) and Wilms tumor (WT) genes (King-

Underwood and Pritchard-Jones, 1998). In support of a protective effect of NMD in cancer, 

intronless cDNA versions of these mutated genes, that are NMD-insensitive, were expressed 

in cell lines or animal models. The uncontrolled synthesised of C-terminally truncated 

proteins exerted dominant negative effects, such as increased chemoresistance, increased 

tumorigenicity (Fan et al., 2001; Sylvain et al., 2002) or interference with transcription-

activating ability and subcellular localization (Englert et al., 1995; Reddy et al., 1995). These 

studies underline the importance of NMD in the control of recessive oncoproteins. NMD may 

thus have a protective effect in heterozygous carriers of tumor-suppressor genes containing 

NMD-sensitive nonsense mutations from developing cancer. 
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Similar modulating effects of NMD can explain genotype-phenotype correlations in an 

increasing number of human disorders such as Robinow syndrome (Patton and Afzal, 2002),  

Willebrand disease (Schneppenheim et al., 2001), factor X deficiency (Millar et al., 2000) and 

retinal degeneration (Sung et al., 1991; Rosenfeld et al., 1992). In all of these examples, 

nonsense mutations located in the last exon of the gene of interest give rise to a dominant 

disorder while mutations at least 50 bp upstream of the last intron result in a recessive 

phenotype (reviewed by Holbrook et al., 2004). 

However, it has to be noticed that NMD does not always exert a beneficial effect. In 

some instances, PTCs triggering NMD may result in more severe disease by abrogating the 

partial function of a mutant protein. A classical example of this type of diseases is represented 

by Duchenne muscular dystrophy (DMD). Dystrophin is a high-molecular-weight cytoskeletal 

protein that links the muscular fibres with the connective tissue (Worton, 1992). It is encoded 

by a gene containing 79 exons and spanning 2.4 megabases in the genome. As a consequence, 

more than 98% of DMD nonsense mutations result in a PTC capable of triggering NMD (Kerr 

et al., 2001).  These mutations are associated with the most severe phenotype of DMD due to 

the absence of dystrophin. However, many of the truncated proteins that could be synthesised 

from the degraded mRNA retain partial or almost complete function as verified by frameshift 

mutations in similar positions that produce a change in the ORF but not a nonsense codon. In 

the latter case, patients carrying these mutations show a less severe phenotype called Becker 

muscular dystrophy (Kerr et al., 2001). 

DMD is not the only case where NMD has a negative impact. Further examples are 

given by nonsense mutations in the CFTR and HEXA genes causing, respectively, Cystic 

Fibrosis and Tay-Sachs disease with a more severe phenotype when the nonsense mutations 

can trigger NMD (reviewed by Khajavi et al., 2006; Kuzmiak and Maquat 2006). The 

increasing understanding of the role of NMD in the clinic has allowed the development of 

therapies for nonsense-associated diseases. General antibiotics like aminoglycosides or newly 

and more specific ones like PTC124 promote the incorporation of an amino acid at a nonsense 

codon by a near-cognate aminoacylated tRNA, thus suppressing NMD. The effectiveness of 

these drugs is currently investigated although preliminary studies have shown variable results 

in patients´response (reviewed by Kuzmiak and Maquat, 2006). 
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1.2.6 Variable NMD as a disease modifier – The need of an assay system to 

quantify NMD efficiency  
 

 It is clear from the previous examples that NMD adds a layer of complexity to the 

genotype-phenotype relationship; the occurrence of both dominant and recessive mutant 

alleles in a single gene is made possible by this surveillance system. Yet, there is some 

evidence that points towards an even more complex role of NMD in disease. Theoretically, 

the efficiency of the NMD process could be variable. This variability could be thought of at 

the whole organism, tissue, cellular or even transcript level (Frischmeyer and Dietz, 1999). 

Experimentally, quantitative differences in NMD efficiency have been verified only in yeast 

(Kebaara et al., 2003). In that study, it was demonstrated that different strains of S. cereviseae 

degrades the pre-mRNA of CYH2 (an endogenous NMD target) to different extents 

attributing this phenomenon to differences in NMD efficiency in the tested strains. 

Furthermore, phenotype analysis of the progeny derived from crossing those strains suggested 

that the NMD efficiency is controlled pleiotropically in this species.  

 In humans, NMD variability has not been proved although it has been suggested by 

some clinical reports. Patients with diverse disease severity carrying identical nonsense 

mutations but expressing different levels of the resulting truncated protein have been reported 

for dystrophin and Jarid1c genes (Kerr et al., 2001; Jensen et al., 2005). In another study, it 

was verified that the nonsense mutated collagen X mRNA is not detectable in cartilage cells 

from two patients suffering from Schmid metaphyseal chondrodysplasia due to NMD 

degradation. However, the transcript was detected in lymphoblast and bone cells from the 

same patients suggesting that NMD efficiency could be tissue-specific (Bateman et al., 2003). 

In the same direction, when cells from foetuses diagnosed with Roberts syndrome were 

treated with an inhibitor of translation, the variable levels of nonsense mutant ESCO2 mRNA 

(responsible for the disorder) suggested the presence of inter-tissue and inter-individual 

differences in NMD efficiency (Resta et al., 2006). 

However, the studies mentioned in the previous paragraph only describe casual 

correlations between the levels of a theoretical NMD-targeted transcript and the severity of a 

disease. As NMD is not the only mRNA decay pathway in the cells, pleiotropic effects could 

account for the reported results. The common limitation of these studies is the lack of a 

reliable assay to compare quantitative aspects of NMD. Such an assay would help to advance 

in the study of NMD efficiency variability. 

From the clinical perspective, the study of NMD efficiency is important because 

variable NMD capacity would likely modulate the phenotypic manifestation of disease. In 
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concrete, it might explain why patients carrying identical nonsense mutations suffer from 

different degrees of disease severity. Additionaly, differences in NMD efficiency could 

provide a possible explanation for the variable response observed in human trials of 

aminoglycoside therapy. 
  
 
1.2.6.1 A case study for NMD variability: β-thalassemia (IVS1+6 T→C) 

 

In the previous paragraphs, several reasons were given that explain the need of an 

assay to quantify differences in NMD efficiency. Such an assay system would allow a better 

understanding of the relation of NMD and NMD-affected diseases. The study of β-

thalassemia (IVS1+6 T→C) arises as a further and particular example of the importance of 

estimating variable NMD efficiency. 

 β-thalassemia is caused by mutations of the β-globin gene and represents the most 

common inherited disorder worldwide. In most families, is inherited as a simple monogenic 

autosomal recessive trait. In these cases, heterozygotes are phenotypically healthy and display 

minor abnormalities of red cell morphology (thalassemia minor). In contrast, homozygotes 

usually become symptomatic during the second half of their first year of life and are affected 

by a most severe transfusion dependent anemia (thalassemia major). However, in about 10-

20% of homozygous patients the clinical phenotype is less severe and the anemia does not 

require (regular) transfusion treatment (thalassemia intermedia). In many of these cases, the 

clinical variability can be explained either by a high residual activity of the β-globin gene 

itself (Rosatelli et al., 1989), by the influence of identified genetic modifiers such as co-

inherited  α-thalassemia (Kulozik et al., 1993), or by co-existing point mutations or deletions 

that increase the activity of the γ-globin genes (Gilman et al.,1985). However, in many 

patients, the clinical variability cannot be explained by any of the known genetic modifiers. 

 A well defined group of such patients is affected by a mutation in position 6 of the 

splice consensus sequence of intron 1 of the β-globin gene (IVS1+6 T→C). This mutation 

(particularly common in the Eastern Mediterranean) impairs the efficiency of correct splicing 

and, as a result, four alternative variants can be produced (Treisman et al., 1983) (Fig. 7). 
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Figure 7. Splicing variants of β-globin (IVS1+6). Four alternative splicing variants have been described as a 
consequence of the mutation in position 6 of the splice consensus sequence of intron 1 and the use of alternative 
donor splicing sites (in position -38 and -16 of the end of the first exon, and in position +12 of the first intron). 
Two of these isoforms (exon1(-38) and exon1(-16)) are theoretical NMD targets due to the presence of a PTC as 
indicated. The exon1(+12) variant should not be affected by NMD. 

 
The splicing variants arise from the use of 3 alternative splicing donor sites at 

positions -38 and -16 from the exon/intron boundary and at position +12 of the intron. The 

exon1(-38) and exon1(-16) variants contain a PTC due to a frameshift. Exon1(+12) maintains 

the normal ORF and hence, possesses the stop codon in the last exon (Fig. 7). NMD would be 

expected to down-regulate the exon1(-38) and exon1(-16) isoforms. A previous study from 

our laboratory (Danckwardt et al., 2002) demonstrated the NMD-sensitivity of the exon1(-16) 

transcript in HeLa cells; however, in the same study, the exon1(-38) was reported to be 

resistant to NMD, possibly due to the presence of a putative cis-acting element. 

Due to the presence of PTC-containing transcripts, it is reasonable to investigate 

whether NMD may play a role in the phenotypic expression of this thalassemia. The 

hypothesis is that NMD efficiency displays differences within individuals and that these 

differences could account for the diverse severity of the disease. It would then be expected 

that patients carrying the IVS1+6 mutation and suffering from thalassemia major would have 

poor NMD activity. As a consequence, the β-globin NMD-sensitive isoform/s would not be 

down-modulated and truncated β-globin may exert a detrimental effect in the red cells. 

Conversely, those patients who suffer from thalassemia intermedia would exhibit more robust 

NMD efficiency. In that situation, truncated polypeptides will not be synthesized due to 
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degradation of the aberrant NMD-sensitive transcripts, and patients will have a milder 

phenotype.  

 It is likely that the characterization of the responsible mechanism for this anemia will 

not only be relevant for the understanding of the pathophysiology of β-thalassemia but could 

also have implications for the role of varying  NMD capacity in other disorders caused by 

abnormalities of RNA processing in general or splicing in particular. 

 

 

1.3 Aim of the project  
 
 The main purpose of this study was to test the hypothesis that there exist inter-cell and 

inter-individual stable differences in human NMD efficiency. To this end, three consecutive 

goals were persued: 

 Firstly, I aimed at identifying physiological bona fide NMD transcripts in human 

cells. This was achieved by abrogating the cellular NMD function by means of RNAi against 

the essential NMD factor UPF1 and analysing the impact of this depletion on gene expression 

by genome-wide microarray analysis. Complementary validations were made in order to 

confirm potential targets as genuine NMD-sensitive transcripts. 

Secondly, I aimed at developing an assay system to quantify differences in NMD 

efficiency among cells and tissues. This assay was based on the relative quantification of the 

steady-state levels of a group of validated NMD mRNAs, characterised in the previous step. 

Moreover, I also intended to gain insight into the mechanisms that potentially control variable 

NMD capacity in the cell. 

 Finally, I intended to verify the hypothesis that variations in NMD efficiency may 

account for the phenotypic expression of disease. I investigated a particular β-thalassemia as a 

case study to test this hypothesis. 
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2. Materials and Methods 
 

2.1 Materials 

 

2.1.1 Chemicals 

 

 All the salts and standard chemicals were purchased from Roth (Karlsruhe, Germany) 

or Sigma (Steinheim, Germany). Cell culture media were purchased from Gibco (Invitrogen). 

Exceptions to this statement or particular chemicals are the following:  

  
Agarose Biozym Scientific (Oldendorf, Germany) 

Bacto-agar Becton, Dickinson and Co. (Sparks, USA) 

Bromophenolblue Serva (Heidelberg. Germany) 

CaCl2 (calcium chloride) ICN Biomedicals (Ohio, USA)) 

Complete EDTA-free protease inhibitor Roche (Mannheim, Germany) 

DTT (dithiothreitol) Promega (Madison, USA) 

Formaldehyde Merck (Darmstadt, Germany) 

Immersion oil Leica (Bensheim, Germany) 

NaAc (sodium acetate) Merck (Darmstadt, Germany) 

Nucleotides (NTPs) and deoxy-nucleotides 

(dNTPs) 

MBI Fermentas (Burlington, Canada) or 

Promega (Madison , USA) 

Trizol (TriReagent) MRC (Cincinnati, USA) 

Tris-base Merck (Darmstadt, Germany) 

 

 

2.1.2 Standard used buffers and media 

 

All solutions were prepared with milli-Q water. 

 

Anode buffer I (Western Blot) 25 mM Tris 
pH 10.4 

Anode buffer II (Western Blot) 25 mM Tris 
20% methanol 
pH 10.4 

BBS 2x 50mM N,N-bis(Hydroxyethyl)-2-Aminoethansulfonat 
280mM NaCl  
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1.5mM Na2HPO4  
pH 6.96  

Blotting buffer 1x 20mM Tris-Cl  
150 mM glycin 
0.02% (w/v) SDS 

Cathode buffer I (Western Blot) 25 mM Tris 
40 mM 6-amino-n-hexanoic acid 
0.01% SDS 

Cathode buffer II (Western Blot) 25 mM Tris 
40 mM 6-amino-n-hexanoic acid 
0.01% SDS 
20% Methanol 

Church Buffer 0.5M Na2HPO4 
1mM EDTA  
7% (w/v) SDS 
pH  7.2 

LB agar (autoclaved) 1.8% (w/v) Bacto agar in LB medium 
LB medium (autoclaved) 
 

1% (w/v) Bacto tryptone 
0.5% (w/v) Bacto yeast extract 
170 mM NaCl 
pH 7.6 

Lysis buffer for cytoplasmic 
protein and RNA isolation 

50 mM Tris-HCl, ph 7.2 
150 mM NaCl 
0.5 % (v/v) NP-40 
0.1 % Deoxycholate 
5 mM Vanadyl-Ribosyl-complex 
1 mM Dithiothreitol 
0.5 mM PMSF 
1x Complete protease inhibitor (Roche) 

MOPS 1x 20 mM 3-(Nmopholino) propanesulfonic acid (MOPS) 
8 mM NaAc 
1mM EDTA 
 pH  7.0 

Total cell lysis buffer (for protein 
isolation) 

50 mM Tris-HCl, ph 7.5 
150 mM NaCl 
1 mM EDTA 
1 % Triton X-100 
0.5 % Deoxycholate 
0.1% SDS 
1x Complete protease inhibitor (Roche) 

Resolving gel (8% to 12%) 
solution 
 

375 mM Tris-Cl, pH 8.8 
8 to 12 % (w/v) acrylamide/bisacrylamide 
0.1% (w/v) SDS 

RNA denaturating buffer 50 % formamide 
17.5 % formaldehyde (ph>4.0) 
1 x MOPS 

RNA loading buffer 50% (v/v) glycerol 
1 mM EDTA 
0.25% (w/v) BromoPhenol Blue  

SDS Sample Buffer 6x 
 

350 mM Tris-Cl, pH 6.8 
600 mM DTT 
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30 % (v/v) glycerol  
10 % (w/v) SDS 
0.012 % (w/v) Bromophenolblue 

SDS Running Buffer (Laemmli 
buffer) 5x 

1.5 % (w/v) Tris  
7.2% (w/v) Glycine 
0.5% (w/v) SDS 

SSC buffer 20x 3 M NaCl 
0.3 M Tri-sodium Citrate 
pH 7.0 

Stacking gel (5%) solution 125 mM Tris-Cl, pH 6.8 
5 % (w/v) acrylamide/bisacrylamide 
0.1 % (w/v) SDS 

TBE  1 M Tris-base 
1 M Boric acid  
20 mM EDTA 

TBS 10 mM Tris-Cl pH 8.0  
150 mM NaCl 

TBS-T 10 mM Tris-Cl pH 7.6  
150 mM NaCl  
0.05% (v/v) Tween 20 

Total cell lysis buffer (for protein 
isolation) 

50 mM Tris-HCl, ph 7.5 
150 mM NaCl 
1 mM EDTA 
1 % Triton X-100 
0.5 % Deoxycholate 
0.1% SDS 
1x Complete protease inhibitor (Roche) 

TE buffer 10 mM Tris-Cl 
1 mM EDTA 
 pH 7.5 

TSS  85% LB medium 
10% PEG (w/v, mw 8000) 
5% DMSO 
50 mM MgCl2 
pH 6.5 

 
 

2.1.3 Enzymes 

 

Here are only described the enzymes that do not belong to any commercial kit. TAQ 

polymerase ThermoPol and restriction enzymes were purchased from New England Biolabs 

(Ipswich, USA) along with their respective buffers.  SP6 RNA polymerase and DNase I 

(RNase free) were purchased from Roche (Mannheim, Germany). RNasin® was purchased 

from Promega (Madison, USA). The reverse transcriptase (RevertAid H minus M-MuLV) 

was purchased from MBI Fermentas.    
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2.1.4 Plasmids 

 

pCI-neo, pGEM (Promega) and pBlueskriptSK II+ (Stratagene) are the basic plasmids 

used to clone all the constructs used in the present study. Each construct was originated 

according to the table below. All PCR amplified inserts were validated by sequencing (ABI 

prism 377 DNA sequencer, Applied Biosystems). The following plasmids were used in the 

present thesis: 

Name Features 
p(β-globin WT) A 4.4 kb human -globin gene with a linked 

SV40 enhancer inserted as a NotI fragment 
into pBlueskriptSK II+. (Thermann et al., 
1998). 

p(β-globin NS39) Constructed in the same way as the WT 
isoforms but containing a nonsense mutation 
at position 39 of the second exon. This gene 
was derived from a patient with homozygous 

-thalassemia. (Thermann et al., 1998). 
p(β-globin exonIII) Template for generation of radiolabeled 

probes for detection of β-globin mRNA in 
Northern Blots (Thermann et al., 1998). 

pCIneo-βglobin WT A 1423 bp β-globin gene fragment extending 
from the physiological translation initiation 
codon to the translation termination codon, 
was subcloned from p(β-globin WT)  into the 
pCIneo vector at the XhoI–XbaI sites of the 
polylinker. 

pCIneo-βglobin NS39 Idem pCIneo-βglobin WT but derived from 
the p(β-globin NS39). 

pCIneo-βglobin(wt+300+e3) An elongated human β-globin gene 
(wt+300+e3) that served as a control for 
transfection efficiency in all experiments. 
This was created by the insertion of β-globin 
exon 3 sequences into the SalI restriction site 
of β-globin wt+300 (Neu-Yilik et al., 2001). 

pGEM(miniβ-globin) Template for generation of radiolabeled 
probes for detection of β-globin mRNA in 
RNase protection assays. Created by 
subcloning of a ApaI-BamHI fragment from 
pCIneo-βglobin WT 

pCIneo(βglobin-IVS1+6) Created by site mutagenesis from a 
pCIneo(βglobin-IVS1+5)  construct 
(Danckwardt et al. 2002) 

pCIneo( 38 IVS1) Used for expression of exon1(-38) β-globin 
variant (Danckwardt et al. 2002) 

pCIneo( 16 IVS1) Used for expression of exon1(-16) β-globin 
variant (Danckwardt et al. 2002) 

pCIneo-Flag Created by inserting the Flag-sequence into 
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the NheI/XhoI sites of pCI-neo vector 
(Gehring et al., 2003). 

pCIneo-FlagY14 The sequence of Y14 was subcloned from a 
pCI-λN-Y14 construct into the XhoI site of 
pCIneo-Flag (Gehring et al., 2003).  

pCIneo-FlagRNPS1 RNPS1 sequence was amplified from HeLa 
cDNA and cloned like Y14 (Gehring et al., 
2003). 

pCIneo-FlagRNPS1Δ69–121 The truncated version of RNPS1 was 
generated by mutagenesis using overlapping 
PCR products. (Gehring et al., 2005). 

 
2.1.5 Antibodies 

 

The antibodies and corresponding dilutions that were used in this study are the following: 

 

Antibody Origin Provided by Working dilution 
αBARENTZ rabbit (polyclonal) Tomasetto lab. 1:2000 
αFlag mouse (monoclonal) Sigma-Aldrich 1:10000 
αMAGOH rabbit (polyclonal) Izaurralde lab. 1:1000 
α mouse IgG 
peroxidase coupled 

goat (polyclonal) Sigma-Aldrich 1:10000 

α rabbit IgG 
peroxidase coupled 

goat (polyclonal) Sigma-Aldrich 1:10000 

αRNPS1 rabbit (polyclonal) Krainer lab. 1:4000 
αTUBULIN mouse (monoclonal)  Sigma-Aldrich 1:10000 
αUPF1 rabbit (polyclonal) EMBL Core facilities 1:5000 
αUPF2 rabbit (polyclonal) Lykke-Andersen lab. 1:5000 
αUPF3b rabbit (polyclonal) Lykke-Andersen lab. 1:5000 
αY14 rabbit (polyclonal) Izaurralde lab. 1:1000 
 

2.1.6 Bacterial strains 

 

 For the propagation of plasmid DNA, the E. coli strain XL1-Blue was used. The 

genotype of this strain is the following: hsdR17, supE44, recA1, endA1, gyrA96, thi, relA1, 

lac/F´[proAB+ lacIa, lacZΔM15::Tn10(TetR)]. 

 

2.1.7 Eukaryotic cell lines 

In the present study, three strains of HeLa cells (which originate from a human 

cervical carcinoma) were used. I called them strain A, B and C. Strain A has been used by our 

laboratory for many years (Enssle et al., 1993; Thermann et al., 1998). Strain B (ACC 57) was 
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purchased at the German Repository of Cell lines (DSMZ). Strain C was kindly provided by 

Dr. Elisa Izaurralde (EMBL, Heidelberg). 

 The EBV-transformed B-cell lines used in the present study were purchased from the 

Coriell Institute for Medical Research (Camden,USA). The repository numbers corresponding 

to the tested lines are: GM07734, GM07852, GM07902, GM07904, GM14381, GM14382, 

GM14405, GM14406, GM14408 and GM14409. 

  

2.1.8 Sequences of oligonucleotides used in PCR reactions 

 

DNA oligonucleotides were ordered from Qiagen (Hilden, Germany) or Biomers 

(Ulm, Germany). PCR primers were obtained in desalted, lyophilised form and were 

dissolved in water. In addition, those primers used to amplify pre-mRNA were HPLC-

purified. All primers were designed using OLIGO software with a Tm= 60ºC and a product 

size ranging from 180 to 300 bp, for optimal use in real-time PCR.  

 

Code Name  Sequence 
1 gapdh-up AAA CCT GCC AAA TAT GAT G 
2 gapdh-lo TAC CAG GAA ATG AGC TTG AC 
3 sc35upper GTG TCC AAG AGG GAA TCC AA 
4 sc35lower CTA CAC AAC TGC GCC TTT TC 
5 Sepwupper CCG AGT CGT TTA TTG TGG 
6 Sepwlower CCA CCA ACT TCA GAA ACT TG 
7 phlda1upper TTC TCC AAC ATG AAG ACC GTG 
8 phlda1lower TGC CGC GTG GAT TTGA C 
9 itga6upper GAT GGG TGG CAA GAT ATA GTT 
10 itga6lower TGC AAT GCC AAA CAT AGA A 
11 Glrxupper ATC AAG CCC ACC TGC CCG T 
12 Glrxlower CGC CTA TAC AAT CTT TAC CAA 
13 gfpt2upper CTC TGT GTC CAG GCT TGC T 
14 gfpt2lower TGG ACT TAT AGG AGG CAT AGG 
15 il6upper CCT CCA GAA CAG ATT TGA GA 
16 il6lower CGC AGA ATG AGA TGA GTT G 
17 kcnj12upper ATG TGG CGT GTG GGT AAC C 
18 kcnj12lower GCT GGC CTC GTC AAT CTC A 
19 tnfrsf12aupper ACA GAA AGG GAG CCT CAC G 
20 tnfrsf12alower CCC GTG GTG GAA TTT CA 
21 rai3upper CCT TCT TGC CTG GGT AGG AG 
22 rai3lower AAC CGG GCT TGT GCT AGT G 
23 akr1c1upper GTC CTG GCC AAG AGC TAC AA 
24 akr1c1lower GCA ATG CCC TCC ATG TTA AT 
25 tbl2upper GCA GTC ATT TAC CAC ATG C 
26 tbl2lower TAT TGT TTC TGC TTC TTG GAT 
27 gadd45bupper GAG TGA GAC TGA CTG CAA GC 
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28 gadd45blower TCT TAT TAA TTC GCA AAC TGG 
29 Tgfaupper TTA ATG ACT GCC CAG ATT CCC 
30 Tgfalower CCT GGC AGC AGT GTA TCA GC 
31 cdh19upper GAA GAG GAT GAT TCG CAA ACA 
32 cdh19lower CAG ACA CCA CGC CTA CAA ATG 
33 nat9upper ATT GTG CTG GAT GCC GAG A 
34 nat9lower ACC TAG CGT GGT CAC TCC GTA 
35 bcar3upper ACC CAA ACT GCC ATT CTC TAT G 
36 bcar3lower CTC TCA GCA TTC ATC CGG TA 
37 slc16a6upper  CAT ATG TAC GTC GCC ATC G 
38 slc16a6lower CGC TGG TCC TCT GAT AAT GAT 
39 tbl2nmd-upper GCC CGC CTG CCA AAA AG 
40 tbl2nmd-lower GGA GGC GGT GGG TGA AGT TG 
41 sc35nmd-upper GCC TGA AAC TGA AAC CAT 
42 sc35nmd-lower GGC AAA GCT TAA ACA AGT A 
43 pre-sepwupper CCA GAA GGT TCG AGA ATG T 
44 pre-sepwlower ATA CCC TTC CTG AGA CTT GC 
45 pre-phlda1upper CAT CAC GAC CGT CCT TGT 
46 pre-phlda1lower TGG AAA GAA ATG ACA CCG A 
47 pre-itga6upper GCT GAG GTG GTT GGT TGT 
48 pre-itga6lower ACC ATC CTA CCG AAA GAG TT 
49 pre-glrxupper GTT ATC TGC CCC TTG TTC TA 
50 pre-glrxlower CTA TTC GTA GCA AAT GGG AC 
51 pre-gfpt2upper TGA GCC TCA GTT GTC TTA CC 
52 pre-gfpt2lower GAA ACC GCA TCA CTT AGC 
53 pre-il6upper CAT CCT GGG AAA GGT ACT CTC 
54 pre-il6lower GAT GTT CTT CCT GCA CTC TTG 
55 pre-kcnj12upper GAC CAC CCA CCT GTT GAT 
56 pre-kcnj12lower CCA CCT TGT GTG AGA GTT GA 
57 pre-tnfrsf12aupper GGG CAG ACT TGA CAC TAG G 
58 pre-tnfrsf12alower CCT CCC CTC CAA ACT CTC 
59 pre-rai3upper TCT GGG AAG GAC TGC GTA 
60 pre-rai3lower GAC ATG GCC TTG ACT GAC A 
61 pre-akr1c1upper CAC CTT TCC CAG TAA CTT ACA 
62 pre-akr1c1lower GGT AAC ATG GGT CTC CAG TA 
63 pre-glrxupper GTT ATC TGC CCC TTG TTC TA 
64 pre-glrxlower CTA TTC GTA GCA AAT GGG AC 
65 pre-tbl2upper CAT GTC CTT AGT CGC TAT TTC 
66 pre-tbl2lower ATT AGC TGA GTA CAG TGG CA 
67 pre-gadd45bupper GAT GAA TGT GTG AGT CAG ACC 
68 pre-gadd45blower GCA GAC GAT ACA TCA GGA TAC 
69 pre-tgfaupper GAG ACC CGG ACT AGG TAG AA 
70 pre-tgfalower AAG ACA GAG GAG TGA ACG CT 
71 pre-cdh19upper TGT TCC CCT GAT ATG ATA GC 
72 pre-cdh19lower TAG TCT CCT CCA CGA TTC C 
73 pre-nat9upper GAC CCG AGA CAG GAT AGG A 
74 pre-nat9lower AGG CAT ACG TCT GAC ACC TT 
75 pre-bcar3upper ATG TGA CGA AGG CAG TAG TG 
76 pre-bcar3lower AGG GCT GGC TCG AAT AC 
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77 pre-slc16a6upper  CAG GAG TCT GAC AAA TCG TG 
78 pre-slc16a6lower CAG AGA TGG GAG GAT TGT T 
79 pre-sc35upper GAG CCG CAG GTA AAC G 
80 pre-sc35lower GGT CGC AGA CGG CGG AA 
81 fos-upper GCT GAC TGA TAC ACT CCA AGC G 
82 fos-lower TGA CAG GTT CCA CTG AGG GC 
83 rpl32upper TTG ACA ACA GGG TTC GTA G 
84 rpl32lower TTC TTG GAG GAA ACA TTG TG 
85 cbfbupper GCC CAT CTT TAC ATA CAC A 
86 cbfblower ACT TCA AAT TAT TAC TGG CTA C 
87 hprt1upper GAC CAG TCA ACA GGG GAC AT 
88 hprt1lower AAC ACT TCG TGG GGT CCT TTT C 
 

 

2.1.9 Sequences of siRNA used in knock-down experiments 

 

 The siRNAs were purchased from Qiagen and obtained as dry annealed dsRNA 

duplexes which were redissolved in water. 

   
Code Name  Sequence 
A upf1-1 AAGAUGCAGUUCCGCUCCA-UU 
B upf1-2 CAGUCCUGGAGUGCUACAA-UU 
C upf2-1 CAACAGCCCUUCCAGAAUC-UU 
D upf2-2 UUACGUCUUUGACCAAACA-UU 
E Luciferase CGUACGCGGAAUACUUCGA-UU 
 

 

2.1.10 Kits 

 

The following kits were purchased from Qiagen: 

 

DNA preparation from E.coli QIAprep (mini, midi and maxi) Kit 
DNA extraction from agarose QIAquick Gel Extraction Kit  
RNA purification RNeasy® Midi Kit 
PCR purification QIAquick® PCR Purification Kit 
 

 

2.1.11 Instrumental material 

 

 
Bioanalyzer (2100 Agilent) Agilent (Waldbronn, Germany) 
Agarose gel electrophoresis equipment Peqlab Biotechnologie (Erlangen, Germany) 
Acrylamide gel (SDS-PAGE) electrophoresis Whatman-Biometra (Goettingen, Germany) 
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equipment 
Acrylamide gel (with urea) electrophoresis 
equipment 

Owl Separation Systems (Portsmouth,uSA) 

Blotting (Trans-Blot SD semi-dry transfer 
cell) 

Bio-Rad (Hercules, USA) 

Photometer (Biophotometer) Eppendorf (Hamburg, Germany) 
Real-time thermocycler (LightCycler) Roche (Freiburg, Germany) 
Thermocycler (T3000) Whatman-Biometra (Goettingen, Germany) 
PhospoImager FLA-3000 FujiFilm-LifeScience (Düsseldorf, Germany) 
 

 

2.2  Methods 

 

2.2.1 Standard methods 

 

All standard methods of molecular biology that are not described in detail in this 

chapter such as e.g. gel electrophoresis of DNA were performed according to Sambrook et al., 

1989.  

 

2.2.2 Bacterial techniques 

 

2.2.2.1 Preparation of competent E.coli for transformation 

 

For the preparation of competent E.coli XL1-Blue, bacteria from a frozen stock were 

streaked onto LB agar and incubated at 37°C over night. A single colony was inoculated into 

5 ml LB medium and allowed to proliferate over night at 37°C. One milliliter of the bacterial 

suspension was transferred to 100 ml LB medium and incubated at 37°C until the suspension 

reached an OD600 of 0.6. The culture was cooled on ice, and the bacterial cells were pelleted 

by centrifugation at 1200 g for 5 min in a pre-cooled rotor. The bacterial pellet was 

resuspended in 10 ml of ice-cold TSS, aliquoted in pre-cooled reaction tubes and stored at -

80°C. Aliquots were tested by transformation with serial dilutions of plasmid DNA for 

transformation efficiency of at least 106 colonies per µg of plasmid DNA.  

 

2.2.2.2 Transformation of  competent bacteria 

 

Fifty nanograms of plasmid DNA were mixed with 100 μl of competent E.coli XL1-

blue, incubated on ice for 30 min and heat-shocked for 90 s at 42°C. The suspension was 
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chilled on ice, 500 μl of LB medium was added after 3 minutes and incubated for 30 min at 

37°C with rotation. The transformed bacteria were then plated on LB agar plates containing 

100 μg/ml ampicillin and incubated at 37°C over night.  

 

2.2.2.3 Isolation of plasmid DNA from bacteria 

 

Plasmids were propagated in E.coli XL1-blue. Single colonies were picked from an 

Agar plate and incubated in 3 ml LB medium containing 100 μg/ml ampicillin for mini-

preparation or 100 ml LB medium for maxi-preparation of plasmids. Plasmid DNA was 

isolated using Qiagen plasmid purification kits according to the manufacturer’s instructions. 

The DNA concentration was spectrophotometrically measured at 260 nm (A260) in TE buffer. 

An A260 value of 1 corresponds to a double-stranded DNA concentration of 50 µg/ml. The 

plasmids were also visualised by a BrEt-stained agarose gel.  

 

2.2.3 DNA techniques 

 

2.2.3.1 Restriction digests 

 

Plasmids and DNA fragments generated by PCR were digested with appropriate 

enzymes (supplied by NEB Biolabs). Optimal reaction buffers, as recommended in the NEB 

catalogue, were used. Reactions were typically carried out in a total volume of 50 µl, using 1 

U of each enzyme per µg DNA. BSA was also added where required. The reaction was 

allowed to proceed for 3 to 5 hours in an incubator at 37ºC. Restriction fragments were 

visualised by agarose gel electrophoresis and purified using the QIAGEN Gel Extraction kit 

(see section 2.2.3.3 below). 
 
2.2.3.2 Ligations 

 

A linearised vector and a gene fragment with compatible ends were ligated using T4 

DNA ligase (NEB Biolabs). Generally, 50 ng of linearised plasmid were ligated with different 

molar rations of insert. Ligations were performed in a 20 µl reaction containing 1 µl T4 DNA 

ligase (400 U/ml), and 2 µl 10x T4 DNA ligase buffer (100 mM MgCl2, 100 mM DTT, 10 

mM ATP, 300 mM Tris-Cl, pH 7.8). Ligation reactions were performed for 2 hours at room 

temperature.  
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2.2.3.3 DNA Extraction from Agarose Gels  

 

DNA fragments generated by PCR or by restriction digestion were purified depending 

on their sizes on 0.8% to 1.5% agarose gels. Subsequently, excised DNA fragments were 

extracted using the QIAquick Gel Extraction Kit (Qiagen) according to the manufacturer’s 

instructions. DNA was eluted from the silica-based purification column with 30 µl water and 

stored at -20°C.  
 

2.2.3.4 Standard Polymerase Chain Reaction (PCR) 
 

PCRs were carried out to verify gene expression using cDNA (see 2.2.3.6) as 

template. A typical reaction contained 2 µl of cDNA, 0.5 µM of the forward and reverse 

primers, dNTPs (Roth) at a final concentration of 200 µM each, as well as 1.5 units of 

ThermoPol TAQ  Polymerase  in a final volume of 50 µl. A usual PCR thermocycle protocol 

was as follows:  

5 min - 95º C - denaturation 
30 sec - 95º C - denaturation 
45 sec - 57-60º C - annealing (depending on primers´ Tm) 
x sec - 72º C - extension (depending on template’s length, 1 kb/min)  
5 min - 72º C - extension  
 

2.2.3.5 Real-time PCR 

 

Real-time PCR was used to quantify gene expression levels. Purified cDNA (see 

2.2.3.6) was used as template. A typical reaction contained 2 µl of cDNA, 4 mM MgCl2, 1µM 

of each primer and 1X LightCycler® Fast-Start DNA Master SYBR green I (Roche) in a final 

volume of 20 µl. The real-time PCRs were performed in a LightCycler® machine using 

capillars provided by the same manufacturer. All the primers listed in 2.1.8 were used for 

quantification. A typical LightCycler protocol was as follows:  

10 min - 95º C - denaturation 
1 sec - 95º C - denaturation 
7 sec - 60º C - annealing 
14 sec - 72º C - extension 
10 sec - 40º C - cooling 

30 cycles 

40 cycles for mRNA and 50 cycles for pre-
mRNA analysis  
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After each run, crossing points (CPs) and melting curves were analysed as indicated by the 

manufacturer to assess both, sample abundance and quality of the PCR. Amplified fragments 

were visualised in a BrEt-stained agarose gel to further control the PCR products. 

 

2.2.3.6 Reverse Transcription 

 

Total RNA (see 2.2.4.1 and 2.2.4.2 for extraction protocol) was used as a substrate for 

first strand cDNA synthesis. For pre-mRNA analysis, the RNA was further purified from 

DNA contamination (as explained in 2.2.4.3). Reverse transcription reactions were performed 

with 1-5 μg of total RNA and oligo(dT)  primer or random hexamers (NEB Biolabs).  The 

RNA was preincubated at 75°C for 10 min with 0.5 μg oligo(dT) primer or random hexamers, 

then chilled on ice. Reverse transcription was carried out with 200 U Revert AidTM H Minus 

M-MuLV Reverse Transcriptase and 1 μM dNTPs in 1x reaction buffer (Fermentas). The 

reaction mixture was incubated at 42°C for 1 hour. The reaction was stopped by heating at 

70°C for 10 min. Following reverse transcription, the cDNA was purified with the Qiagen 

PCR purification kit according to the manufacturer’s instructions. 

 

2.2.3.7 DNA Sequencing 

 

DNA sequencing was performed at the University of Heidelberg with the ABI Prism 

377 DNA sequencer (Applied Biosystems). The raw data was analysed with Chromas 

(Griffith University, Australia). Sequencing reactions were performed with the BigDye 

Terminator v3.1 Sequencing Kit (Applied Biosystems). The protocol provided by the 

manufacturer was proportionally scaled-down to a final reaction volume of 10 µl.  

The following primers were used for sequencing: 

 

Name Sequence 
SP6 CATACATTTAGGTGACACTATAG 

T7 TAATACGACATCACTATAGGGC 

T3 CTTATCATGTCTGCTCGAAGC 
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2.2.3.7 DNA mutagenesis 

 

A modified version of the Invitrogen Gene Tailor Kit was used to mutagenesise a 

pCIneo(βglobin-IVS1+5) into the pCIneo(βglobin-IVS1+6). 100 ng of the original plasmid 

was methylated with 4 U DNA methylase (Invitrogen) and 1X SAM  (NEB) for 1 hour at 

37°C in a final 16 μl reaction volume. 2μl of this reaction were subsequently used for a PCR 

set as follows: 

 

10X High Fidelity PCR buffer 5 μl 
10 mM dNTP    1.5 μl 
10 mM MgSO4   1 mM  
Primers (10 μM each)   1.5 μl 
Methylated DNA   2 μl 
Platinum® Taq High Fidelity  0.5 μl (2.5 units) 
Water      up to 50 μl 
 

The cycling parameters were specified as follows: 

 

2 min  94 °C 
30 sec  94 °C 
30 sec  55°C 
8 min  68°C 
10 min  68°C 
 

The primers were designed following the instructions of the Invitrogen Gene Tailor Kit.  

Upper_primer: GTG AGG CCC TGG GCA GGT TGG CAT CAA GGT TAC 

Lower_primer: CAA CCT GCC CAG GGC CTC ACC ACC AAC TTC 

 

Finally, 2 μl of the PCR reaction were used to transform 100 μl of competent XL1-blue E.coli 

bacteria. Mini-preparations were done from single colonies to obtain plasmid DNA that was 

sequenced to confirm the mutagenesis. 

 

 

2.2.4 RNA techniques 

 

2.2.4.1 RNA extraction of cultured cells 

Cells growing in six-well plates were washed twice with PBS. For whole cell RNA 

isolation, 1ml TriReagent (MRC, Cincinnati, USA) was applied per well. For cytoplasmic 

20 cycles 
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RNA isolation, cells were scraped in 300 µl lysis buffer for cytoplasmic protein and RNA 

isolation (see 2.1.2 for composition). Nuclei and membranes were pelleted at 10000 g for 10 

min. Total cytoplasmic RNA was isolated from the supernatant of homogenized cells with 

750 µl TriReagent LS (MRC, Cincinnati, OH, USA). For both, whole cell and cytoplasmic 

RNA isolation, 200 µl of chloroform were mixed with the TriReagent by vigorous shaking. 

The aqueous and organic phases were separated by centrifugation for 15 min at 4°C, 12000 g. 

The upper aqueous phase was transferred to a new tube containing 40 µg of glycogen and the 

RNA was precipitated with 500 µl of isopropanol. After incubation at room temperature for 

10 min, the RNA was pelleted by centrifugation at 12000 g for 12 min at 4°C. Subsequently, 

the pellet was washed with 70% ethanol and the pelleted RNA was resuspended in 11 µl 

RNase-free water. The concentration of the RNA was measured by determining the optical 

density of a 1:100 dilution at a wavelength of 260 nm (A260). An A260 value of 1 corresponds 

to an RNA concentration of 40 µg/ml. The RNA was stored at -80°C until further analysis.  

 

2.2.4.2 RNA extraction of blood samples 

 

Pelleted total white cells or buffy coat from 10 ml. blood (see 2.2.5.1)  were washed 

with 2ml pre-chilled PBS and centrifuged at 2500 g for 1 min, at 4 °C. The pellets were 

homogenised in 500-600 µl TriReagent, incubated at room temperature for 5 min and stored 

at  –80°C O.N. Afterwards, 100 µl chloroform were mixed with the samples. From that point, 

the same steps used for RNA extraction of cultured cells (2.2.4.1) were followed. 

  

2.2.4.3 DNase treatment of purified RNA 

 

To remove remnants of genomic DNA from the isolated RNA (specially, for 

quantification  of pre-mRNA), 4-10 µg of RNA were treated with 10 U DNaseI RNase-free 

(Roche) in 1x transcription buffer (40 mM Tris-Cl (pH 7.9), 6 mM MgCl2, 10 mM NaCl, 

2mM spermidine) in 40 µl total volume for 30 min, at 37 ºC. Subsequently, the samples were 

purified using the RNeasy® Midi Kit (Qiagen) following the manufacturer´s instructions. The 

RNA was recovered in 30 µl RNase-free water and stored at -80 ºC until use. 

 

2.2.4.4 Northern Blotting 

 

2.2.4.4.1 RNA Gel Electrophoresis  
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2-4 µg total cytoplasmic RNA were dissolved in 16 µl RNA denaturating buffer (see 

2.1.2). Samples were denatured for 15 min at 65˚C and immediately chilled on ice. After 

adding RNA loading buffer, samples were loaded on an agarose/formaldehyde gel (1.3% 

(w/v) agarose, 10% (v/v) formaldehyde, 1x MOPS). The gels were run O.N at 52 V using a 

Biorad power supplier. 

 

 2.2.4.4.2 Transfer of RNA to nylon membranes 

 

After electrophoresis, the agarose gel was rinsed twice with distilled water for 7 min. 

The RNA was blotted onto a positively charged nylon membrane (Nytran N) (Whatman 

Schleicher & Schuell) by upward capillary transfer in 20x SSC buffer (see 2.1.2). The transfer 

was assembled as shown below  (Fig.8). 

 

 

 
Figure 8. Transfer assembly for Northern-blots.  Schematic representation of the assembly for the transfer of 
RNA to nylon membranes. 

  
After at least 4 hours the RNA was cross-linked to the membrane in a UV Stratalinker 

apparatus (Stratagene) applying 120 mJ. Afterwards, the membranes were immediately used 

in Northern hybridisation. 

 

2.2.4.4.3 Riboprobe synthesis 

 

Riboprobes were obtained by in vitro transcription from 1µg of linearized p(β-globin 

exonIII) plasmid in a 22µl reaction containing 24 U of  SP6 RNA-polymerase, 30 U of RNase 

 
 
weight (≅ 500g) 
 
 
glass plate 
 
5-8 cm paper towel 
5-8 cm paper filter, dry 
filter paper, dry 
membrane, soaked in water 

gel 
filter paper, soaked in 20x SSCl 
glass plate 
container, filled with 20x SSC 
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inhibitor RNasin, 50 µCi [α32-P]GTP (800 mCi/mmol; NEN), 600 µM of ATP, CTP and UTP 

and 1x transcription buffer (Biolabs). The transcription was carried out at 40°C for 45 min. 

Subsequently, the DNA was digested with 10 U DNase I RNase-free (Roche) for 20 min at 

37°C. The riboprobe was purified using G-25 Sephadex Quick Spin Columns for radiolabeled 

RNA purification (Roche) according to the manufacturer’s recommendations. The ratio of 

radiolabelled RNA (flow-though) and non-incorporated nucleotides (column matrix) was 

estimated with a Geiger-Müller counter. 
 

2.2.4.4.3 Northern Blot hybridisation 

 

Membranes were pre-hybridised in Church buffer at 65°C for 2 hours. The 32P-

labelled β-globin riboprobe was added to 15 ml fresh Church buffer and the hybridisation 

took place O.N. at 65°C in a Biometra OV5 oven, with rotation. Unspecific hybridisation was 

removed by washing twice with 2x SSC, 0.1% SDS and twice with 0.2x SSC, 0.1% SDS at 

65°C (15 min/wash). Radioactive signals were quantified by phosphoimaging in a FLA-3000 

fluorescent image analyzer (Raytest, Fujifilm). In this study, the indicated expression levels 

were calculated after correction for transfection efficiency.  For registration purposes, the 

membranes were then exposed to a Hyperfilm MP (Amersham) for 4 to 16 hours in a cassette 

with amplifying screen (Amersham) at -80°C. 

 

2.2.4.5 RNase protection assay 

The complementary probe for the β-globin mRNA was generated by in vitro SP6-driven 

transcription of pGEM(miniβ-globin) construct previously linearised with BamHI. The 

ribonuclease protection assay (RPA) was carried out using the RNase Protection Kit (Roche) 

according to manufacturer´s protocol. In brief, for the RPA, 4µg of total RNA was analysed 

by hibridisation with 500000 cpm radioactively labelled β-globin riboprobe. Hybridisation 

was carried out at 60°C over night. Next morning, samples were cooled to room temperature 

and mixed with ribonuclease T1 (2.5 U) and ribonuclease A (3.5 µg) in RNase digestion 

buffer. Ribonuclease treatment was carried out for 30 minutes at 30°C. Subsequently, RNases 

were digested by the addition of proteinase K (50 µg) and 10 µl of 20% SDS (15 min at 

37°C). The RNA was isolated by phenol-chloroform extraction. The supernatant was 

precipitated with ethanol in the presence of 40 µg glycogen for 30 min at -20°C and pelleted 

by centrifugation at 13,200 rpm for 15 min at 4°C. The pellet was resuspended in 7 µl RNA 

loading buffer and denatured for 5 min at 95°C. The protected fragments were analysed on a 
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8% denaturing polyacrylamide urea sequencing gel. The gel was dried on Whatman 2MM 

paper (Whatman Biometra) and the radioactive bands were quantified by phosphoimaging in 

a FLA-3000 fluorescent image analyzer (Raytest, Fujifilm) and exposed to an autoradiograph 

film. 

 

2.2.5 Protein techniques 

 

2.2.5.1 Protein extraction 

 

Cells growing in six-well plates were washed twice with PBS. For whole cell protein 

isolation, 250 µl of total cell lysis buffer were applied per well; for cytoplasmic protein 

isolation, 300 µl lysis buffer for cytoplasmic protein and RNA isolation were used (see 2.1.2). 

Cells were scraped on ice. Subsequently, the samples were centrifuged at 10000 g for 10 min 

(4 ºC) to pellet the undissolved material. Samples were stored at -80 ºC until use. Protein 

concentration was determined spectrophotometrically using the Bio-Rad protein assay 

(Biorad, Germany) and a BSA standard curve as indicated by the manufacturer.  

 

2.2.5.2 Polyacrylamide gel electrophoresis 

 

 15-20 μg of proteins were separated according to size by SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) using a minigel system (BioRad). The samples were mixed with 

SDS sample buffer (1x final concentration) and heated for 3 min. at 95 ºC before loading. 

Polyacrylamide gels contained an upper stacking gel of fixed concentration (see 2.1.2) to 

ensure that all proteins in the sample enter the lower separating gel simultaneously. In the 

lower separating gel, proteins were resolved according to size. The concentration of 

acrylamide used was 8-12% resolving depending on the size of the proteins. The composition 

of the separating gel contains 0.375 M Tris, 0.1% SDS, 0.1% ammonium peroxodisulfate 

(APS), 0.04% TEMED and the desired concentration of acrylamide using as a stock an 

acrylamide:bisacrylamide (37.5:1) solution. Electrophoresis was carried out in 1x Laemmli 

buffer at constant current of 25 mA until the desired resolution was reached as judged by the 

separation of molecular weight markers (NEB and Fermentas).  
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2.2.5.3 Western blotting 

 

To transfer proteins from a polyacrylamide gel onto a polyvinylidene fluoride (PVDF) 

membrane (Westran S, Whatman, Schleicher-Schuell), a minigel wet transfer system 

(BioRad) was used. The gel was placed on top of the membrane and 3 pieces of Whatman 

filter paper were soaked in cathode transfer buffer and other 3 pieces were soaked in anode 

transfer buffer and these pieces were cast with the gel and membrane as show in the following 

scheme:  

 

 
 

Figure 9. Transfer assembly for Western-blots.  Schematic representation of the assembly for the transfer of 
proteins to a PVDF membrane. See text for details 

 
For Y14 and MAGOH proteins, cathode and anode transfer buffers II (containing 

methanol; see 2.1.2) were used. For the other proteins, cathode and anode transfer buffers I 

were used. The blotting was carried out at constant current running at 1 mA per cm2 for 1 

hour. 

After the transfer, the membrane was washed in TBS-T and blocked 1 hour in TBS containing 

0.1 % Tween-20 and 5 % powder milk. Immunoblotting was performed according to 

instructions in the Western-Star chemiluminescent immunoblot detection system (Tropix, PE 

Biosystems). The system makes use of secondary antibodies coupled to alkaline phosphatase 

(AP). The immobilised AP enzyme dephosphorylates a substrate, which then decomposes, 

producing a prolonged emission of light that is imaged using photographic film.  

For the immunoblot, the membrane was incubated  with the primary antibody diluted 

in TBS containing 0.1 % Tween-20 and 5 % powder milk, on a shaking platform at room 

temperature for 1 hour or at 4 ºC, ON. The antibodies and dilutions used are listed in 2.1.5. 

+ 

_ 
Cathode

Anode

Soaked in cathode buffer 

+ 

_ 

Anode

Soaked in anode buffer  

Gel
PVDF membrane 
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The membrane was then washed 3 times 10 min in TBS-T and subsequently incubated for 30 

to 60 min with a secondary antibody coupled to alkaline phosphatase (Tropix) diluted in the 

same buffer as the first antibody. After 3 more washing steps with PBS-T, the membrane was 

developed with ECL Western Blotting Detection Reagent (Amersham Pharmacia Biotech) 

according to manufacturer´s instructions. Signals were visualized on autoradiograph ECL film 

(Amersham Pharmacia Biotech).  
 
2.2.6 Cell culture techniques 

2.2.6.1 Propagation of human cell lines 

 

HeLa cells (strains A, B and C) were maintained in monolayer in 175 cm² tissue 

culture flasks (Sarsted, Germany) at 37°C and 5% CO2 in Dulbecco's modified Eagle's 

medium (DMEM) (Gibco BRL) supplemented with 10% fetal bovine serum (Biochrom, 

Berlin, Germany), 100 U/ml penicillin and 100 µg/ml streptomycin (PAA laboratories,  

Austria). For subculturing, the cells were washed once with 20 ml of PBS and 5 ml Trypsin 

were added and the cells were allowed to detach at 37°C. 10 ml of cell culture medium was 

added and the cells were diluted 1:5 – 1:10 with fresh culture medium every 2-3 days.   

 All the EBV-transformed B-cell lines were maintained in suspension in 75 cm² tissue 

culture flasks (Sarsted, Germany) in upright position, at 37°C and 5% CO2 in  RPMI 1640 

medium supplemented with 2mM L-glutamine and 10% fetal bovine serum. Cells were 

subcultured diluting the cells 1:3 – 1:4 with fresh medium, keeping the cell concentration at 

approx. 2*105 cells/ml. The number of viable cells was counted before each passage dying the 

cells with Trypan Blue (Sigma) in a 1:1 dilution 

 

2.2.6.2 Plasmid Transfection of Eukaryotic Cells 

 

All the transfections carried out in this study were transient. Two different methods 

have been applied to transfect eukaryotic cell lines with plasmid DNA: the 

BBS/calciumphosphate method and the lipofectamine method. These methods are described 

separately. 

 

2.2.6.2.1 Transfection using BBS/calciumphosphate 

 

The 3 strains of HeLa cells used in the present thesis were transfected with this 
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method, except when they were transfected along with the other cell lines. Cells were 

subcultured 16 hours before transfection to a density of 2.4*105 cells/ well in a 6 well plate. 

For each transfection, the DNA mix was supplemented with water to 90 µl and mixed with 10 

µl of 2.5 M CaCl2. 100 µl of 2x BBS were added and mixed, and the samples were incubated 

at room temperature for 15 min to allow formation of the complexes. The mixtures were 

applied dropwise to the cells. The cells were incubated with the DNA precipitate for 16hs 

under at 37 ºC and 3% CO2. After removal of the precipitate, fresh medium was added to the 

cells and the cells were incubated for another 24h. Subsequently, the cells were harvested as 

described in 2.2.5.1. 

For Northern Blot analysis, a typical transfection would contain 2 μg of β-globin 

reporter, 0.6 μg control plasmid (pCIneo-βglobin(wt+300+e3)), 0.2 μg GFP-expression vector 

for visual estimation of transfection efficiency and any expression vector required for the 

experiments.  
 

2.2.6.2.2 Transfection using Lipofectamine 

 

To compare NMD efficiency in the different cell lines used in this study, the cells 

were transfected with plasmid DNA using LipofectamineTM (Invitrogen), a cationic lipid-

based transfection reagent. The transfections were performed in 6-well plates (Nunc). 2.5-

3*105 cells per well were seeded one day before transfection, and were transfected when they 

reached a confluence of 80-90%. For transfection in 6-well plates, a total amount of 5 µg 

plasmid DNA diluted in 250 µl of serum-free OPTIMEM (Invitrogen). In a separate tube, 10 

µl Lipofectamine was diluted in 250 µl serum-free OPTIMEM. The two mixtures were 

incubated for 5 min at room temperature. Then they were combined, and incubated for 

another 20 min. During the incubation of the transfection complexes, the cells were washed 

twice with serum-free DMEM, and 2 ml DMEM (with serum) were added to the cell 

monolayer. Finally, the transfection mixture was added drop-wise to the cells, resulting in a 

final transfection volume of 2.5 ml. The cells were incubated for 16-20 hs at 37ºC, 5% CO2. 

 

2.2.6.3 RNAi Transfection of Eukaryotic Cells 

 

Depletion of endogenous proteins by RNAi was carried out using siRNAs supplied by 

Dharmacon or Operon as listed in 2.1.9. Transient transfection of siRNAs was carried out 

using Oligofectamine reagent (Invitrogen) in Opti-MEM I reduced medium (Invitrogen) 
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without serum and antibiotics. Luciferase  siRNAs was used as a negative control. HeLa cells 

were seeded in six-well plates at a density of 1.4*105 cells per well. After O.N. incubation, the 

cell culture medium was replaced with 800 μl Opti-MEM I, and siRNA transfection was 

performed according to the manufacturer’s recommendations using 10 µl of siRNAs (20 µM 

stock) and 3 µl Oligofectamine reagent. After 4 h, the medium was supplemented with 1 ml of 

DMEM containing 20% FCS. If subsequent plasmid transfection was required, the cells were 

transfected the following day with plasmid DNA using calciumphosphate precipitation as 

described in 2.2.6.2. Otherwise, the cells were harvested 72hs after the RNAi transfection.  

 

2.2.6.4 Actinomycin D treatment and mRNA half-life estimation 

 

The growth medium of HeLa cells (strain A) treated with Luciferase or UPF1 siRNA 

as described in the previous section was replaced 48 hs after the transfection for fresh medium 

containing 5 μg/ml actinomycin D (Sigma) to stop translation. Cells were harvested and the 

RNA was collected every hour. Transcript abundance was quantified by quantitative RT-PCR 

as described in 2.2.3. The log values of RNA concentration were plotted against time (in 

hours) and interpolation curves were calculated using Microsoft Excel software. The half-life 

of the FOS transcript was used to monitor efficient inhibition of transcription. 

 
2.2.7 Blood samples  
 

2.2.7.1 Whole blood 

 

10 ml of blood were collected in a collection cartridge (S-Monovette, Sarstedt) 

containing 14 mg EDTA as anticoagulant and processed within 20 minutes. For total blood 

analysis, the blood was transferred to a Falcon tube containing 40 ml of pre-chilled lysis 

buffer (155 mM NH4Cl, 10 mM NH4HCO3, 0.1 mM EDTA pH 8). The samples were mixed 

and incubated on ice for 10 min until the erythrocytes were lysated. The white cells were 

pelleted at 400 g, 10 min at 4ºC.  Afterwards, the pellet was resuspended in 2 ml of lysis 

buffer, pelleted again at 2300g (1 min, at 4ºC) and washed with 2 ml pre-chilled PBS (PAA). 

After a new centrifugation step (1min, 2300g, at 4ºC), RNA was purified from the pellet as 

described in 2.2.4.2. 
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2.2.7.2 Blood mononuclear cell purification (“buffy coat”) 

  

10 ml of blood were collected as in 2.2.5.1 and diluted with 10 ml of PBS (PAA) in a 

Falcon tube. The sample was overlaid with an equal volume (20 ml) of Biocoll separating 

solution (Biochrom AG) and centrifuged at 800 x g for 20 minutes at room temperature in a 

swinging-bucket rotor (without brake). After the centrifugation, the different cells are 

separated according to their density. An interface enriched in lymphocytes and monocytes 

(the “buffy coat”) appears as depicted in the following scheme. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 10. Schematic representation of a biocoll gradient after centrifugation.  The layer called buffy coat 
contains the mononuclear blood cells (lymphocytes and monocytes). 
  

The buffy coat was carefully separated and washed with 30 ml of PBS. The cells were 

pelleted by centrifugation at 500 x g for 10 minutes at room temperature (with brake). The 

pelleted cells were washed a second time with 2 ml PBS and centrifuged at 2300 g, 1min, at 

4ºC.  RNA was purified from the pellet as described in 2.2.4.2. 

 

2.2.8 Microarray techniques 

 

2.2.8.1 Complementary RNA preparation and microarray hybridization  

 

The preparation and processing of labelled and fragmented cRNA targets for 

microarray hybridization has been performed according to the manufacturer’s protocols 

(Affymetrix Inc.). Briefly, total RNAs were prepared from UPF1 or Luciferase-siRNA 

transfected HeLa cells (strain A) using the protocol explained in 2.2.4.1 for cytoplasmic RNA. 

Quality of the RNA was assessed using the Agilent 2100 Bioanalyzer (Agilent Technologies 
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GmbH,Waldbronn,Germany). First and second strand cDNAs were synthesized from 20μg of 

total RNA using the SuperScriptII double-stranded cDNA synthesis kit (Invitrogen) and 

oligo-dT24-T7primer. cRNA was synthesized and labelled with biotinylated UTP and CTP by 

in vitro transcription, starting with 0.5 μg of the T7 promoter coupled double stranded cDNA 

as template and the T7 RNA Transcript Labeling Kit (ENZO Diagnostics 

Inc.,Farmingdale,NY). 

The labelled cRNA was separated from unincorporated ribonucleotides by passing 

through CHROMASPIN-100 columns (Clontech,PaloAlto,CA),precipitated, and fragmented 

by a brief alkaline treatment. The fragmented cRNA was hybridized for 16 hs at 45°C to 

HG_U133A GeneChipsTM (Affymetrix, Inc.). Arrays were washed at 25°C and stained with 

phycoerythrin-conjugated streptavidin (Molecular Probes, Eugene, OR). Arrays were scanned 

using a laser confocal scanner (Gene Array
TM

; Hewlett Packard, Palo Alto, CA).  

 

2.2.8.2 Statistical microarray data analysis  

 

Expression values for each gene were calculated using the Affymetrix microarray suite 

(MAS4.0) software. The signal intensity for each gene was calculated as the average intensity 

difference (AID), represented by Σ(PM-MM) / (number of probe pairs). PM and MM denote 

perfect match and mismatch probes, respectively. All probe sets that continuously resulted in 

absent calls were excluded from analyses. The GeneSpring4.2.1 software package 

(SiliconGenetics, RedwoodCity, CA) was used for normalization, background subtraction and 

scaling of all genes and arrays. Using the 50% percentile of each chip’s intensity range, 

expression values were normalized across the sample set by scaling the average of the 

intensities of all genes to a constant target intensity. Relative expression data for each probe 

set was generated by normalization to itself over the median of the whole experiment set (per 

gene normalization). Using an initial simple statistical approach without multiple testing 

conditions (standard Student’s t-test, p<0.05), I identified a group of genes that are 

differentially expressed by a factor of >2-fold between Luciferase and UPF1-siRNA 

transfected cells. The normalized data set was also analysed using the GeneCluster2 software 

package (White-head Institute, MIT, Boston, MA) for graphical purposes.  

A comparative functional analysis of altered gene expression based on gene ontology 

was done using EASE 2.1 software (NIH, USA) described in (Hosack et al. 2003). 
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3. Results 

 

3.1 Physiological role of NMD in human cells 
 

In recent years, an emerging view of NMD as a key regulator of physiological gene 

expression has evolved. In yeast, NMD affects directly or indirectly ∼10% of the 

transcriptome (He et al., 2003). The finding that transcripts encoding the splicing factors 

SC35 and PTB or the ribosomal proteins RPL3 and RPL12 are also regulated by NMD 

provided evidence for a role of this pathway in normal cellular function in humans, too 

(Sureau et al., 2001; Wollerton et al., 2004; Cuccurese et al., 2005). 

At the starting point of this project, a transcriptome-wide analysis of NMD in humans 

was still lacking. Such a study would uncover new mRNAs controled by NMD and would 

also advance our understanding of the role of NMD at a global scale. 

 The microarray technology provides a way to approach such a comprehensive 

analysis. In fact, microarray analysis  has been successfully applied to study NMD functions 

in yeast (He et al., 2003) and fly (Rehwinkel et al., 2005). 

HeLa cells were treated in three independent experiments with siRNAs against UPF1 

(a central factor in the NMD pathway) or Luciferase as a negative control (siRNA B and E, 

respectively; see Materials and Methods). To positively control for the effect of RNAi the 

efficient depletion of UPF1 was ascertained by immunoblotting (Fig. 11a). Furthermore, a 

classical NMD substrate (Gehring et al., 2003), the nonsense mutated β-globin mRNA (NS39) 

transfected into the siRNA-treated cells is stabilised more than 4 fold (Fig. 11b). Analogously, 

two NMD-sensitive splice variants of SC35 (referred to as SC35A and B) that represent two 

endogenous NMD targets (Sureau et al., 2001) were increased after UPF1 depletion (Fig. 11c 

and d). 

 RNA isolated from these cells was analysed on Affymetrix HG_U133A 

GeneChips™. Of 22,283 probe sets, representing approximately 14,500 human genes, 9,336 

transcripts were expressed at a level of more than two standard deviations above background 

(as defined by the GeneSpring™ 4.2.1 software, Silicon Genetics) and were thus included in 

the analysis. 265 probe sets (2.8%) representing 227 genes were up-modulated more than 2-

fold (the first 50 up-modulated transcripts are shown in Table 1), while 248 probe sets (2.6%) 

representing 202 genes were down-modulated more than 2-fold. These data indicate that a 

substantial number of genes are affected directly or indirectly by UPF1 activity. While 

transcripts that increase in abundance following UPF1 depletion are candidate NMD 
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substrates, endogenous transcripts with decreased expression possibly represent secondary 

effects. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. UPF1 depletion up-modulates the abundance of transfected and endogenous NMD reporters. a, 
Immunoblot analysis of protein lysates from HeLa cells transfected with siRNAs against luciferase as a negative 
control or UPF1 using a UPF1 specific antibody. Serial dilutions corresponding to 100%, 50%, 20% or 10% 
(lanes 1-4) of the initial protein amount from luciferase-siRNA transfected cells were loaded to assess the 
efficiency of the UPF1 siRNA knock-down (lane 5). Reprobing with a tubulin specific antibody was performed 
as a loading control. b, HeLa cells were transfected with siRNAs against luciferase or UPF1. 30 hours later the 
cells were co-transfected with the β-globin WT or NS39 reporter constructs and the control plasmid. The 
indicated percentages correspond to the expression levels of NS39 mRNAs compared to WT mRNAs after 
normalisation for transfection efficiency (ctrl.). The fold up-regulation represents the ratio of NS39 expression 
levels between UPF1 and Luc siRNA transfected cells. Values and standard errors were calculated from three 
independent experiments. c, Gene structure of SC35 (SFRS2). Intron 1 is constitutively spliced, whereas exons 3 
to 8 are subject to extensive alternative splicing. The position of the ATG and the stop codon are indicated. The 
exon-composition of the two SC35 splice-variants, SC35 A and SC35 B that are subjected to NMD are shown 
below. Positions of RT-PCR primer pairs for both species of SC35 are indicated. d, Quantitative RT-PCR 
analysis of the NMD-sensitive SC35 (SFRS2) variants in cells transfected  with either UPF1 or luciferase 
siRNAs and normalised against GAPDH expression. The bars indicate the integrated fold up-modulation of the 
isoforms A and B of SC35. The mean and the standard errors were calculated from 5 independent experiments. 
The amplified products are shown in a non-quantitative agarose gel.  
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Gene Symbol 
Folds up-

modulation Description Probe Set ID Genbank 
Putative NMD-inducing 

feature 
SAT 14.14 spermidine/spermine N1-acetyltransferase 210592_s_at M55580 unknown 

PTGS2 12.08 
prostaglandin-endoperoxide synthase 2 (prostaglandin G/H 
synthase and cyclooxygenase)  204748_at NM_000963 unknown 

AMIGO2 10.78 amphoterin induced gene 2 222108_at AC004010 uORF 
PHLDA1 9.571 pleckstrin homology-like domain, family A, member 1 217996_at AA576961 stop codon < 50 bases 
TNFRSF12A 7.093 tumor necrosis factor receptor superfamily, member 12A  218368_s_at NM_016639 unknown 
DKK1 6.502 dickkopf homolog 1 (Xenopus laevis)  204602_at NM_012242 unknown 
CDKN1A 6.317 cyclin-dependent kinase inhibitor 1A (p21, Cip1)  202284_s_at NM_000389 uORF 
PEA15 6.258 phosphoprotein enriched in astrocytes 15  200788_s_at NM_003768 uORF 

SLC16A6 5.77 
solute carrier family 16 (monocarboxylic acid transporters), 
member 6 207038_at NM_004694 uORF 

GLRX 5.494 glutaredoxin (thioltransferase)  206662_at NM_002064 stop codon < 50 bases 
FN1 5.428 fibronectin 1 212464_s_at X02761 unknown 
ABCA1 5.183 ATP-binding cassette, sub-family A (ABC1), member 1 203505_at AF285167 unknown 
GFPT2 5.152 glutamine-fructose-6-phosphate transaminase 2 (GFPT2) 205100_at NM_005110 unknown 
GADD45A 5.105 growth arrest and DNA-damage-inducible, alpha  203725_at NM_001924 unknown 
ARHE 5.084 ras homolog gene family, member E 212724_at BG054844 unknown 

SERPINE2 4.927 
serine (or cysteine) proteinase inhibitor, clade E (nexin, 
plasminogen activator inhibitor type 1), member 2 212190_at AL541302 unknown 

GABARAPL1 4.887 GABA(A) receptor-associated protein like 1 211458_s_at AF180519 unknown 

AKR1C1 4.877 

aldo-keto reductase family 1, member C1 (dihydrodiol 
dehydrogenase 1; 20-alpha (3-alpha)-hydroxysteroid 
dehydrogenase)  211653_x_at M33376 uORF 

BCAR3 4.797 breast cancer anti-estrogen resistance 3  204032_at NM_003567 uORF 
RAI3 4.794 retinoic acid induced 3 212444_at AA156240 uORF 

KCNJ12 4.782 
potassium inwardly-rectifying channel, subfamily J, member 
12 207110_at NM_021012 unknown 

TFPI2 4.599 tissue factor pathway inhibitor 2 209277_at AL574096 unknown 
ITGA6 4.485 integrin, alpha 6  201656_at NM_000210 stop codon < 50 bases 

RIOK3 4.144 RIO kinase 3 (yeast) 202131_s_at NM_003831 
alternative splicing creates 
PTC 

PLAU 4.135 plasminogen activator, urokinase  211668_s_at K03226 unknown 
Table 1. List of up-modulated transcripts in UPF1-depleted cells according to microarray data. The 50 transcripts showing the highest up-modulation levels are shown 
in this table. The Gene Symbol corresponds to the Hugo name when it has been assigned. The probe set ID corresponds to the identification numbers for the Affymetrix 
HG_U133A. Putative features that may explain the NMD-sensitivity of the transcripts are described. Because some bona fide NMD transcripts do no obey the “50bp rule”, 
transcripts with stop codons at a shorter distance than 50 bases are also indicated. 
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Gene Symbol 
Folds up-

modulation Description Probe Set ID Genbank 
Putative NMD-inducing 

feature 
DNAJB9 4.109 DnaJ (Hsp40) homolog, subfamily B, member 9  202842_s_at AL080081 unknown 

ATF3 4.098 activating transcription factor 3  202672_s_at NM_001674 
alternative splicing creates 
PTC 

SLC20A1 3.998 solute carrier family 20 (phosphate transporter), member 1  201920_at NM_005415 uORF 
OSMR 3.954 oncostatin M receptor  205729_at NM_003999 unknown 

C1QDC1 3.884 C1q domain containing 1 218456_at NM_023925 
alternative splicing creates 
PTC 

IL6 3.85 interleukin 6 (interferon, beta 2)  205207_at NM_000600 unknown 
NAT9 3.764 N-acetyltransferase 9 204382_at NM_015654 uORF 
JAG1 3.639 jagged 1 (Alagille syndrome)  216268_s_at U77914 unknown 
EPAS1 3.577 endothelial PAS domain protein 1  200878_at AF052094 uORF 
TNFSF9 3.472 tumor necrosis factor (ligand) superfamily, member 9  206907_at NM_003811 unknown 
STC2 3.414 stanniocalcin 2  203439_s_at BC000658 uORF 
LRRC17 3.392 leucine rich repeat containing 17  205381_at NM_005824 stop codon < 50 bases 
ARHGEF2 3.359 rho/rac guanine nucleotide exchange factor (GEF) 2  207629_s_at NM_004723 unknown 
KIAA1245 3.323 chomosome one amplified sequence 1 cyclophilin 214693_x_at BE732345 unknown 

ATF4 3.266 
activating transcription factor 4 (tax-responsive enhancer 
element B67)  200779_at NM_001675 uORF 

C1orf27 3.203 chromosome 1 open reading frame 27 218721_s_at NM_017847 uORF 
AIM1 3.186 absent in melanoma 1 212543_at U83115 unknown 
CARS 3.156 cysteinyl-tRNA synthetase 212971_at AI769685 unknown 
TGFA 3.143 transforming growth factor, alpha 205016_at NM_003236 unknown 

TIMP1 3.119 
tissue inhibitor of metalloproteinase 1 (erythroid potentiating 
activity, collagenase inhibitor)  201666_at NM_003254 uORF 

Table 1 (cont.). List of up-modulated transcripts in UPF1-depleted cells according to microarray data.  
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Structural analysis of the up-modulated targets revealed that approximately 40% of 

these transcripts possesses a stop codon regarded as a PTC due to the presence of an intron in 

the 3´UTR, alternative splicing or an uORF (Table 1). One additional transcript encoding a 

selenoprotein was also up-regulated, consistent with the alternative recognition of the UGA 

selenocysteine codon as a signal for translation termination. The remaining ∼60% of the 

transcripts have no classical NMD feature according to database information. 

The chromosomal position of genes encoding the putative NMD transcripts was also 

examined. The results show that the number of targeted genes per chromosome is 

approximately proportional to the total number of genes per chromosome as would be 

expected by a random distribution (Table 2). A χ2-test comparing the expected versus the 

actual distribution of these genes confirms that there is not significant bias toward the 

regulation of genes in any specific chromosome (P-value>0.05). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Distribution of targeted genes in the chromosomes. Per each chromosome the number of hits and the 
total number of genes (according to NCBI database) are indicated.  
 

  To understand the cellular functions affected by NMD, a comparative functional 

analysis of altered gene expression based on gene ontology (Ashburner et al., 2000) 

demonstrated that genes which are functionally involved in amino acid metabolism, amino 

acid transport, organic transport, apoptosis and cell adhesion are significantly overrepresented 

Chromosome
Number of 

hits 
Total number of 

genes 
1 25 2782 
2 18 1888 
3 9 1469 
4 6 1154 
5 12 1268 
6 12 1505 
7 21 1452 
8 1 984 
9 7 1148 

10 11 1106 
11 11 1848 
12 16 1370 
13 5 551 
14 6 1275 
15 6 945 
16 10 1109 
17 18 1469 
18 4 432 
19 10 1695 
20 8 737 
21 1 352 
22 4 742 
X 6 1336 
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amongst the up-modulated genes (Fig. 12). However, transcripts involved in a wide variety of 

functions were also affected including (but not limited to) enzymes with oxidoreductase 

activity and kinases, interleukin biosynthesis, DNA repair, Golgi to plasma membrane 

transport and carbohydrate metabolism. NMD thus emerges as a posttranscriptional 

mechanism that, in addition to its proofreading function, likely contributes to the regulation of 

physiological transcripts and important pathways in man.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12. List of significantly over-represented gene ontology categories for the up-modulated transcripts 
(p<0.05). The number of transcripts found in each category (blue bars) and the percentage this number 
represents in the total number of genes in the category (white bars) are indicated.  

 

In yeast, a similar analysis showed over-representation of only two functional 

categories: cell rescue and defense and transport facilitation by NMD-regulated mRNAs (He 

et al., 2003). In addition, genes involved in telomere maintenance, thiamine biosynthesis, pre-

mRNA splicing, peroxisomal function, nitrogen metabolism, and in DNA repair were found 

in the same study. A comparison of the GO categories found in yeast and humans reveals that 

while there are some common regulated functions to both organisms (such as transport 

facilitation or DNA repair), most of the functions affected by NMD are different.   

Taken these results together, NMD affects directly or indirectly the expression of 

genes involved in a wide spectrum of functions. This regulation is not tightened to 

chromosomal location and is not – in general – conserved between yeast and man. 
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3.2 Characterisation of bona fide endogenous NMD targets – A key step towards a 

quantitation human NMD assay 

 

The main goal of the present study is to develop an assay to estimate differences in 

NMD efficiency among cells and organisms. Such assay would be based on the quantitation 

of the steady-state levels of endogenous bona fide NMD transcripts. Relatively high 

abundance of NMD target mRNAs likely correlates with comparatively poor NMD 

efficiency, provided that this correlation holds for several mRNAs involved in distinct 

metabolic pathways. The use of unrelated NMD target transcripts makes improbable a 

common expression control of these targets by an alternative mechanism to NMD. 

Consequently, the following step in the present study was to define and characterise a group 

of bona fide NMD transcripts that would integrate the before mentioned assay and woud be 

used to estimate NMD efficiency in HeLa cells and human blood (see 3.3 and 3.4). For this 

reason, I selected an initial set of 16 mRNAs that were up-modulated by UPF1 RNAi in the 

microarrays and that are expressed in both HeLa cells and blood. Many of the selected targets 

presented a strong differential expression in the microarray analysis; however, some other 

targets that showed lower levels of up-modulation were also randomly chosen. Interestingly, 

half of the targets do not contain any classical feature that explains their NMD-sensitivity 

(Fig. 13). 

Two considerations have to be addressed when interpreting the microarray results. The 

first issue is the potential problem of off-target effects. This effect is due to unexpected 

complementarity of the UPF1-siRNA to other transcripts. Thus, some of the affected mRNAs 

in the microarray data may not be regulated by UPF1 but by off-targets. To validate my set of 

up-modulated transcripts, HeLa cells were treated with one of two sequence-unrelated 

siRNAs against UPF1 (siRNAs A or B, see Materials and Methods) or against Luciferase as a 

negative control. Again, the depletion of UPF1 was determined by immunoblotting (Fig. 14a). 

In two independent experiments, the siRNAs B showed a stronger effect than siRNAs A in 

the reduction of UPF1 protein (∼10% vs. less than 5% remaining protein, respectively). This 

result has been consistently reproduced in our laboratory and is possibly attributed to a 

different intrinsic efficiency of these siRNAs. I determined the up-modulation levels for the 

16 chosen transcripts by quantitative RT-PCR in RNA isolated from these cells (Fig. 14b). 
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Figure 13. Differential expression analysis of 16 selected transcripts that were up-regulated by UPF1 
RNAi. TreeView program was used to illustrate the normalized expression levels of 16 selected transcripts in 3 
independent experiments where cells were treated with UPF1-siRNA (KD1,KD2 and KD3) or luciferase-siRNA 
(LUC1, LUC2 and LUC3). The color bar indicates relative values for normalized expression intensity in the 
samples (red= high expression, black= low expression). In horizontal labelling, the HUGO gene symbol, average 
up-modulation level and structural NMD features are given for each transcript.  
 

It was possible to verify that for many transcripts the up-modulation levels tended to 

be higher in cells treated with siRNA B, consistent with the lower remaining UPF1 levels 

observed using these siRNAs. Nevertheless, taken a threshold level of 2 fold (see Fig. 14) as a 

limit of significant up-modulation, the results indicate that the 16 transcripts were up-

modulated when cells were treated with siRNA B (the same oligo used for the microarray 

analysis) and 15 out of these 16 mRNAs were also affected using siRNA A. Because the 

sequences of the two siRNAs against UPF1 are completely unrelated, these results indicate 

that only TGFA is a possible off-target in the initial panel of 16 transcripts. As a fraction of 

the panel was randomly chosen (with the only restriction of confirmed expression in HeLa 

cells and blood cells) an extrapolation of these results would suggest that most of these targets 

in the microarray are not due to off-target effects.  
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The second consideration is the potential presence of indirect targets in the microarray 

analysis. Abrogation of NMD by UPF1-depletion likely affects legitimate NMD transcripts 

that -in turn- affect other non-NMD mRNAs. In fact, the microarray data showed that the 

numbers of down-regulated and up-modulated transcripts were comparable. Indirect effects 

are a plausible explanation for this observation. 

 NMD only affects spliced, translated mRNA. Thus, the pre-mRNA levels of direct 

targets are expected to remain constant when comparing Upf1- and Luciferase-siRNA 

transfected cells. I used this strategy in order to exclude transcripts that are indirectly affected 

by UPF1 depletion. In several independent experiments performed on UPF1-depleted HeLa 

cells that showed efficiently inhibited NMD function (see Fig. 11), pre-mRNA and mRNA 

levels for the selected 16 transcripts were quantified by RT-PCR (Fig. 15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14. Analysis of potential off-target effects in 16 selected transcripts from the microarray analysis. a, 
Representative immunoblot analysis of protein lysates from HeLa cells transfected with siRNAs against 
luciferase as a negative control or UPF1 using a UPF1 specific antibody.  Serial dilutions corresponding to 50%, 
20% or 10% (lanes 1-3) of the initial protein amount from luciferase-siRNA transfected cells were loaded to 
assess the efficiency of the UPF1 depletion in cells treated with either siRNA A (lane 4) or siRNA B (lane 5). 
Reprobing with a tubulin specific antibody was performed as a loading control. b, Quantitative RT-PCR analysis 
of the 16 selected transcripts  in cells transfected  with either siRNAs A, B  or luciferase and normalised against 
GAPDH expression. The bars indicate the mean fold up-modulation values for siRNA A- or siRNA B-treated 
cells as indicated in the figure. A 2-fold up-modulation value (indicate by a horizontal line) is considered the 
threshold of significance due to reproducibility of the PCR method (this value also coincides with the microarray 
threshold). The mean and the standard errors were calculated from 2 independent experiments.  
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While up-modulation of all 16 transcripts was confirmed, only in the case of TBL2 the 

abundance of the pre-mRNA remained unchanged while the abundance of the mRNA was up-

modulated approximately 8-fold. In the case of NAT9 these differences were marginal. In all 

other 14 mRNAs, the abundance of the pre-mRNA and the mRNA did not differ significantly, 

although in two (KCNJ12, SEPW1) the pre-mRNA remained below the threshold of 2-fold 

up-regulation, whereas the mRNA was up-regulated to a level of > 2-fold. These data strongly 

suggest that most of these mRNAs are likely up-modulated transcriptionally and do not 

represent bona fide NMD targets. By implication, these data also suggest that a substantial 

fraction, likely most of the almost 230 transcripts that are up-modulated by UPF1 depletion in 

the microarray data represent indirect targets. 

 

 

 

 

 

 

 

 

 

 
Figure 15. Pre-mRNA and mRNA analysis distinguishes potentially direct from indirect NMD targets in 
UPF1-depleted cells. Quantitative RT-PCR for 16 UPF1-sensitive transcripts from cells transfected with 
luciferase (negative control) or UPF1 siRNAs. The abundance of GAPDH was used for normalization. The fold 
up-modulation of pre-mRNAs and mRNAs by UPF1 depletion (mean +/- SE) were calculated from 5-7 
independent GAPDH normalized and luciferase controlled experiments. Potential direct NMD targets (arrows) 
were defined as those mRNAs with a mean up-modulation > 2-fold and with a mean pre-mRNA up-modulation 
< 2-fold.  
 

Transcripts that are targeted by NMD are expected to be stabilised by an inhibition of 

this pathway. I thus analysed the decay rates of the KCNJ12, NAT9, SEPW1 and TBL2 

mRNAs. At this point,  the GADD45B transcript was also included, which had previously 

been suggested to represent an endogenous NMD target by in-silico analysis (Hillman et al., 

2004) and is experimentally shown to be upmodulated by UPF1-depletion here (see below). 

Actinomycin D was added to cells pre-treated with siRNA against UPF1 or Luciferase. The 

short-lived FOS transcript was used as a positive control to assess the block of transcription 

(Fig. 16a). Prolonged half-lives in UPF1-depleted cells were detected for GADD45B, TBL2 

and NAT9 confirming that UPF1 depletion increases the abundance of these transcripts by 
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reducing degradation (Fig. 16b-d). The stability of SEPW1 and KCNJ12 did not show any 

effect on UPF1 depletion (Fig. 16e-f). These transcripts were thus excluded from further 

analysis.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. UPF1 depletion prolongs the half-lives of endogenous NMD targets. Decay rates of endogenous 
transcripts were measured in HeLa cells that were transfected with Upf1 siRNA (solid line) or Luciferase siRNA 
(dashed line) as control. 48 hours later, the cells were treated with actinomycin D (5ug/ml). Samples were taken 
every hour. mRNA levels were determined by RT-PCR quantification. The results represent the mean and 
standard deviation of three independent experiments. a: The positive control FOS mRNA is stable in the absence 
of actinomycin D (- act.D) but it decays rapidly following a block of transcription (+act.D). b-f: mRNA decay of 
the selected transcripts. The increase of the transcript´s half-life is indicated below the corresponding plot.            
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The role of NMD in directly modulating the abundance of the TBL2, NAT9 and 

GADD45B transcripts was further analysed by depleting UPF2, which interacts with UPF1 in 

the NMD pathway (Singh and Lykke-Andersen, 2003; Maquat, 2004; Kashima et al., 2006). 

The efficient depletion of UPF2 to less than 10% was confirmed by immunoblotting (Fig. 

17a) and, as a functional control, I assessed the abundance of SC35(A) and SC35(B) 

isoforms. The degree of up-modulation of the SC35 and TBL2 transcripts was stronger in 

UPF1-depleted than in UPF2-depleted cells while the effects were similar for NAT9 and 

GADD45B (Fig. 17b). Taken together, these results indicate that SC35 (A + B isoforms) 

TBL2, NAT9 and GADD45B are bona fide NMD targets that depend on both, UPF1 and 

UPF2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. UPF1 and UPF2 depletion cause similar degrees of up-modulation of NMD substrates. a: 
Immunoblot analysis of protein lysates from HeLa cells transfected with siRNAs against luciferase as a negative 
control or UPF2 using a UPF2 specific antibody. Serial dilutions corresponding to 100%, 50%, 20% or 10% 
(lanes 1-4) of the initial protein amount from luciferase-siRNA transfected cells were loaded to assess the 
efficiency of the UPF2 siRNA depletion (lane 5). Reprobing with a tubulin specific antibody was performed as a 
loading control. b: Quantitative RT-PCR analysis of SC35 NMD-sensitive variants, TBL2, GADD45B and 
NAT9 in cells transfected with UPF1 or UPF2 siRNAs. The UPF1 and UPF2 siRNA treatments were controlled 
by luciferase siRNA and normalized against GAPDH. Mean and standard errors were calculated from 3 
independent experiments. 
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Analysis of the structure of these validated transcripts using sequence databases show 

that TBL2 and GADD45B possess a premature termination codon located more than 55 bases 

from the last exon-exon junction, while NAT9 contains an upstream open reading frame (Fig. 

18). These structural features are typical for cellular NMD targets (Nagy and Maquat, 1998; 

Mendell et al., 2004), which may explain the sensitivity of these endogenous mRNAs to 

cellular NMD activity. 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 18. Structure of the NMD sensitive isoforms for TBL2, GADD45B and NAT9. The scheme shows 
the coding regions in red and the untranslated regions in blue according to the NCBI and ENSEMBL databases. 
NAT9 does not contain a PTC in the 3´UTR but has an uORF in the first exon which sequence is shown. The 
transcripts were not depicted in the same scale. 

 
 
 

3.3 Quantitative differences in human NMD: a HeLa cell model 
 
 

3.3.1 Different HeLa strains display variations in NMD efficiency 
 

 I next analysed if a panel of the five validated endogenous NMD transcripts consisting 

of SC35 (A+B isoforms), TBL2, NAT9 and GADD45B can be used to estimate differences of 

NMD efficiency between cells in a simple model. Unpublished observations in our laboratory 

have previously suggested that different human cell lines may differ in their NMD capacity.  

 To estimate NMD efficiency in different cell lines I developed an assay based on the 

quantification of the 5 transcripts that had been validated to be controlled by NMD against 

appropriate standard controls. To avoid the potential bias of quantification against one single 

housekeeping gene in different cell lines, 4 different transcripts (HPRT1, CBFB, GAPDH and 

RPL32) were selected for normalisation purposes (Jin et al., 2004; Zhang et al., 2005). This 

group of control transcripts was selected because (1) they showed less than 10% variability in 

all of my microarray experiments; (2) they were expressed at different steady-state levels, and 
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(3) they belong to different metabolic pathways and are thus unlikely to be co-regulated. The 

comparison of the degree of up-modulation following UPF1 depletion showed similar results 

for all transcripts that were used for normalization (Fig. 19), which indicated that all of these 

housekeeping genes can be used as standards. 
 

  

 

 

 

 

 

 

 

 

Figure19. Up-regulation of direct NMD substrates in UPF1-depleted cells measured according to distinct 
non-NMD transcritps. NMD endogenous mRNAs levels were quantified in normal and Upf1-depleted cells 
from HeLa cells (strain A) using  GAPDH, CBFB, RPL32 and HPRT1 transcripts as normalisation controls. The 
values represent fold up-modulated levels. Mean and standard errors were calculated from 3 independent 
experiments. 
 

Three different strains of HeLa cells (referred to as A, B and C) were chosen to 

systematically analyse the NMD efficiency. These cells were transfected with the β-globin 

(NS39) reporter in 3 independent experiments and the abundance of this NMD-sensitive 

transcript was compared in the 3 strains (Fig. 20a and b). The down-modulation of the NS39 

reporter was approximately 3-fold stronger in the HeLa strain A than in the strains B and C, 

while C tended to be approximately 1.5 fold stronger than B (Fig. 20a). I next analysed 

whether these differences in NMD efficiency of transfected β-globin (NS39) between the 

HeLa strains were reflected by differences in abundance of the panel of cellular NMD targets. 

 The quantification of these cellular NMD reporters demonstrated that the differences 

of NMD efficiency between strains A, B and C, as estimated by the transfected NS39 

reporter, were also reflected by the abundance of the endogenous reporter panel (Fig. 20c). 

Moreover, when the data of the five NMD transcripts were combined together, the estimation 

of NMD efficiency by the endogenous targets gave very similar results to that based on the 

tranfected  β-globin (NS39) reporter (Fig. 20d). 
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 These data demonstrate that differences in NMD efficiency between human cell lines 

can be estimated by measuring the abundance of a carefully validated panel of cellular NMD 

targeted transcripts.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 20. The abundance of cellular NMD targets reflects the variability of NMD efficiency in HeLa cell 
strains. a: Representative Northern-blot of RNA from 3 strains of HeLa cells that were transfected with β-globin 
WT or β-globin NS39. b: Quantification of the NS39/WT ratio for the Northern-blots analysis. The bar diagram 
expresses the mean and standard deviation for 3 independent experiments. c: Quantification of the 5 endogenous 
NMD transcritps (SC35 A and B are combined) by real-time PCR in untransfected cells. The values plotted 
represent the average of the quantification obtained using each of the non-NMD targets for normalization plus 
standard deviation. d: Average and standard deviation of the integrated data for the 4 NMD reporters (as shown 
in c) combined together. Significant differences (p<0.05) are indicated with a star. 
 

 

3.3.2 RNPS1 is as a potential modulator of NMD efficiency 

 

 Subsequently, I aimed at understanding why these HeLa strains display differing 

NMD efficiencies. As a starting point, I analysed by immunoblotting the abundance of the 

key NMD proteins UPF1, UPF2 and UPF3b (Fig. 21, upper row) and of the functionally 
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critical exon junction complex components Y14, MAGOH, and RNPS1 (Fig. 21, lower row). 

The abundance of the UPF proteins, Y14 and MAGOH did not differ between the three 

strains. In contrast, RNPS1 is much less abundant in cells of the strain B (Fig. 21), which 

correlates with the poor NMD efficiency of this strain. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 21. RNPS1 is less abundant in HeLa strain B.  Representative Western-blots of cytoplasmic lysates 
following staining with specific antibodies against UPF proteins (upper row), Y14, MAGOH and RNPS1 (lower 
row) in HeLa strains A,B and C. Reprobing with a tubulin specific antibody was performed as a loading control. 

 

I next functionally analysed if RNPS1 might be the limiting factor for NMD in these cells and 

over-expressed functional RNPS1 (Gehring et al., 2005) in cells that were transfected with β-

globin reporter genes. Increasing amounts of RNPS1 increased the degradation of the β-

globin NS39 reporter up to 4 times in cells of strain B but had no effect in cells of strains A or 

C (Fig. 22a). 
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Figure 22. Over-expression of RNPS1 increases the degradation of a transfected NMD reporter in strain B 
cells. a: Left: Representative Northern-blot of RNA from the 3 strains of HeLa cells that were transfected with 
β-globin WT (W) or β-globin NS39 (N) and 0, 0.5 or 1 μg of pCI-NEO-FlagRNPS1. Right: The diagram shows 
the quantification of the Northern-blots. The bars indicate the mean and s.d. of 3 independent experiments. b: 
Western-blots for the transfected HeLa cells used in these experiments. The same extracts were run in two gels. 
After blotting, the upper membrane was probed using anti-flag antibody and the lower one was probed using 
anti-RNPS1 antibody. Both membranes were reprobed with anti-tubulin antibody to control the load.   
 
 This effect is specific for RNPS1, because over-expression of RNPS1Δ69-121 (a truncated 

version of RNPS1 known to be non-functional in NMD (Gehring et al., 2005)) does not affect 

the down-modulation of the NS39 reporter (Fig. 23a and c). Furthermore, the over-expression 

of Y14 – another protein of the EJC which is present in equal levels in the 3 strains – does not 

have any significant effect in the reporter’s stability (Fig. 23b and c). I confirmed that the 

transfection of pCI-NEO-Flag has no effect on the abundance of endogenous RNPS1 in any 

strain (Fig. 22b, lower Western-blot) and that the plasmid is expressed at similar levels in the 

three cell lines (Fig. 22b, upper Western-blot). 

These results demonstrate that the abundance of RNPS1 is limiting for NMD efficiency in 

strain B. The results also show that in strain C the low NMD efficiency is caused by an 

apparently different mechanism. 
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Figure 23. The increased NMD efficiency of strain B cells is RNPS1-specific. a: Left: Representative 
Northern-blot of RNA from strain B cells that were transfected with β-globin WT or β-globin NS39 and 0, 0.5 or 
1 μg of pCI-NEO-FlagRNPS1 or pCI-NEO-FlagRNPS1Δ69-121 as a negative control. Right: The diagram 
shows the quantification of Northern-blots. The bars indicate the mean and s.d. of 3 independent experiments. b:  
idem b) but transfecting pCI-NEO-FlagY14 as a negative control. c: Western-blot for the transfected strain B 
HeLa cells. Left: An anti-flag antibody was used to verify the expression of flag-RNPS1Δ69-121. As a further 
control, an extract of cells transfected with the full length RNPS1 was also loaded. Right: An anti-flag antibody 
was used to verify the expression of flag-Y14. The blots were reprobed with anti-tubulin to control the load.  
 

 
3.4 Quantitative differences in NMD in human blood: A step towards the clinic 
 
3.4.1 Estimation of NMD efficiency in blood samples 
 

The results presented in 3.3 support the hypothesis of distinct NMD efficiency at the 

cellular level. As a step forward, I then asked whether it is also possible to characterise NMD 

efficiency at a tissue or even whole organism level. To this end, NMD efficiency was 

estimated in human blood samples by applying the assay already established in the HeLa 

model.  

The analysis in HeLa cells demonstrated that NMD efficiency is a relatively stable 

parameter in the different strains (Fig. 20). To address the question of whether NMD 
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efficiency also represents a constant parameter in blood, I analysed samples from five healthy 

volunteers who donated blood four times on a weekly basis. Total RNA was extracted either 

from whole blood or mononuclear cells (mainly lymphocytes and some monocytes) after a 

Ficoll gradient.  The gene expression values of donor 1 on day 1 were arbitrarly set to 100% 

and the other values were normalised against this reference.  For each NMD transcript, its 

abundance was calculated against each standard gene and the mean and standard deviation 

were plotted for comparison. 

 Several observations can be drawn from the outcome of this analysis (Fig. 24). In 

general, it has to be noted that: 1) for each donor, there are considerable variations in the 

abundance of each individual NMD transcript in different samples. The fluctuations seem to 

move in a wider range in the case of RNA extracted from whole blood than for the RNA 

extracted from the purified mononuclear cells. 2) There is no correlation between the 

abundance of different NMD targets in a single sample. For example, in the quantification of 

mononuclear cell fractions, donor 4 presents the highest levels of SC35 and GADD45B on the 

fourth day; however, this donor presents the lowest value for Nat9 in the same sample 

(Fig.24b). 3) Finally, although the standard deviation represents only 20% of the transcript 

mean abundance, the difference in abundance of each NMD transcript per donor is relatively 

low (30-40%) and consequently it is not possible to distinguish whether these donors have a  

characteristic baseline NMD efficiency. 

These results constrast with those obtained in the HeLa model and they could be 

attributed to the higher complexity of blood, composed of many different cell types that might 

have a distinct NMD capacity. The observation that the range of fluctuation in the abundance 

of the NMD targets tends to be narrower after a purification step in Ficoll (where the 

granulocytes are removed from the samples) might support this idea.  

 To test whether the variability in the transcript abundance is due to working with crude 

samples, I applied the same assay to lymphoblastoid cell lines obtained from the Coriell Cell 

Repositories. These lines were established by Epstein-Barr virus transformation of peripheral 

B lymphocytes from donors. Eight different lines originating from four pairs of identical twin 

siblings were tested.  The abundance of the set of NMD transcripts was assessed in three 

different passages of each line. The analysis indicates that the NMD transcripts´ levels are 

relatively stable in the lymphoblasts (Fig. 25). 
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Figure 24.  NMD transcripts abundance in blood of healthy donors. RNA extracted from whole blood (panel 
a) or from the mononuclear fraction after a Ficoll grandient (panel b) was used to quantifiy the abundance of a 
panel of NMD transcripts. The values plotted represent the average and standard deviation of the values obtained 
upon normalisation against each of the reference genes. Each donor donated blood on 4 different days as 
indicated. 
  

For SC35, TBL2 and NAT9 the mRNA abundance varies in a ± 20% range. For GADD45B, 

the range of variability is higher but limited to a maximum of  ± 50% (Fig. 25, lower left). 
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 Nevertheless, the abundance of these transcripts is very similar in the eight 

lymphoblastoid cell lines. None of the mean values is significantly different fron the others, as 

assessed by the magnitude of their standard deviations (for example, GADD45B level of line 

L2-2 in the second passage; Fig. 24). This lack of diversity in the transcript levels prevents me 

from verifying any correlation in the NMD efficiency of genetically homogeneous cell lines. 

According to this assay, there is no distinction in NMD capacity between genetically related 

or unrelated cell lines.  

 Taken together, these analyses do not support the idea of quantitative differences of 

NMD efficiency in blood from healthy donors, as least as assessed by this assay system. 

Alternatively, it is possible that my set of NMD/standard transcripts is not suitable to estimate 

NMD efficiency in these systems. For instance, a potentially strong expression control at the 

transcriptional level could mask the NMD effect in these cells.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25.  NMD transcripts abundance in lymphoblastoid cell lines. RNA extracted from EBV-transformed 
B lymphocytes was used to quantify the abundance of my panel of NMD transcripts. The values plotted 
represent the average and standard deviation of the values obtained upon normalisation against each of the 4 
reference genes. 8 different lines were analyses coming from 4 pair of twin siblings: L1-1 and L1-2, L2-1 and 
L2-2, L3-1 and L3-2, L4-1 and L4-2. 
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 3.4.2 A case study: β-thalassemia caused by mutation in IVS1+6 of the β-globin gene 
 

As commented in the introduction, a mutation in the position 6 of the first intron of the 

β-globin gene impairs the efficiency of correct splicing of the β-globin transcript (Treisman et 

al., 1983). Consequently, three alternative isoforms are produced in addition to the wild type 

as a result of the recognition of cryptic 5´splicing donor sequences. I will refer to these 

alternative spliced variants as exon1(+12), exon1(-16) and exon1(-38). While exon1(+12) 

does not contain any PTC, exon1(-16) and exon1(-38) are theoretically NMD targets.  Studies 

done in transfected HeLa cells have confirmed the NMD-sensitivity of the exon1(-16) variant; 

however, in the same studies, the exon1(-38) isoform proved to be resistant to NMD, 

presumably due to an unknown  cis-acting determinant that influences the surveillance 

pathway. 

 As part of an on-going collaboration with one group in Palestine (Dr.Kanaan, 

Bethlehem University) and one group in Israel (Dr. Filon, Hadassah University Hospital), I 

examined the expression of β-globin transcript variants in a group of patients from  Eastern 

Mediterranean homozygous for the IVS1+6 (T→C) mutation in the β-globin gene. While all 

the patients carry the same mutation and consequently suffer from β-thalassemia, the 

phenotypic expression of the disease is highly variable within the group. Our collaborators 

have classified the patients into two categories according to disease severity: those who suffer 

from thalassemia major and those who suffer from thalassemia intermedia. Several 

parameters were taken into account for the classification. In general, patients were considered 

to suffer from thalassemia major when were transfused for the first time at an early age (< 2 

years old), required regular transfusions (every 1-3 months) and have significantly low MCV 

(< 60 fL).  

 All well-studied genetic modifiers that could potentially explain the clinical 

variability have been explored (concomitant α-thalassemia, α-globin gene triplication and Gγ-

globin -158 (C→T) mutation). Despite these efforts, the reason of variable severity in these 

patients remains elusive. Therefore, the analysis of the β-globin splicing variants could shed 

some light on a potential role of NMD in the clinical manifestation of this thalassemia.  

RNA extracted from mononuclear cells (previously purified by Ficoll gradient) from 

these patients´ blood was analysed by RNase protection assay (RPA). For this purpose, a 

riboprobe containing most of exon1 and intron1 (carrying the IVS1+6 (T→C) mutation) was 

used to detect the four expected splice variants (Fig. 26a).  
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 In addition, four constructs: -38ΔIVS1, -16ΔIVS1, β-globin WT and β-globin IVS1+6 

(T→C) were transfected separately into HeLa cells. The -38ΔIVS1 and -16ΔIVS1 constructs 

express the exon1(-38) and exon1(-16) isoforms, respectively. The β-globin WT construct 

encodes the normally spliced β-globin mRNA and the β-globin IVS1+6 (T→C) gives rise to 

the same 4 transcripts expected in the patients´ samples (see Materials and Methods).  Total 

RNA of these transfected cells and RNA extracted from blood of healthy volunteers were 

used to control the position of the expected bands in the RPAs. 

 In these assays, the four β-globin transcripts could be detected although the normal 

isoform alone accounts for 95-98% of the total expression of the β-globin gene in this group 

of patients (see Fig. 25b for a representative RPA). On the other hand, the exon1(-16) variant 

represents the least abundant isoform in all the samples, accounting for ∼0.5% of the total β-

globin  mRNA.  

A total of 24 patients (14 suffering from thalassemia major and 10 from thalassemia 

intermedia) was analysed by this assay and the relative abundance of each abnormal splicing 

variant was quantified against the wild type isoform (Fig. 26).  

This analysis indicates that the aberrant isoforms are expressed at very variable levels 

in the different individuals and that there is no significant difference in the expression levels 

between the two groups of patients (thalassemia major vs. thalassemia intermedia). For 

example, the exon1(-16) isoform represents 0.52 ± 0.5 % of the wild type β-globin in the 

“thalassemia major” group and 0.31 ± 0.14 % of the same isoform in the “thalassemia 

intermedia” group (Fig. 27). 

The levels of the exon1(-16) variant are extremely low in comparison to those of the 

wild type. As this may produce unreliable quantifications, the abundance of the exon1(-16) 

isoform was also compared against the exon1(+12)  – which is not an NMD target – and 

against exon1(-38) – that is NMD resistant in HeLa cells. All the aberrant isoforms are 

expressed at similar levels; however, these additional comparisons confirmed that both groups 

are indistinguishable (Fig. 27). 
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Figure 26. Detection of β-globin transcripts in patients´ samples by RPA. a: Scheme showing the sequence 
of the riboprobe used which consist of the last 146 bases of exon1 and intron 1; the position 6 of 
intron1(represented by a cross) has been mutated to a T to match the sequence in the patients. The different 
expected isoforms are aligned with the riboprobe and the predicted protected size is indicated. b: Representative 
RPA for the patients samples. Line 1: full riboprobe; lines 2 and 19: 50 bp marker. To control the position of the 
expected bands, RNA of HeLa cells transfected with the -16ΔIVS1 (line 3), -38ΔIVS1 (line 4), β-globin WT 
(line 5) and β-globin  IVS1+6 (T→C) (line 6) was also loaded. Patients´ samples were grouped according to the 
severity of their anemia: lanes 7-13: thalassemia major; lanes 14-17: thalassemia intermedia. Lane 18: sample 
from a healthy donor.  The position of the transcripts is indicated by arrows. Exon1(+12), β-globin  WT, exon1(-
16) and exon1(-38) are described as +12, WT, -16 and -38, respectively. Two unidentified bands –indicated by 
stars– appear in the samples but they also appear in the β-globin  WT control. The exon1(+12) variant is also 
present in the normal blood sample although at lower levels.  The parts enclosed in squares have a longer 
exposition due to the difference in intensity between the β-globin WT and the aberrant variants. 
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Although the variability in the quantifications prevents me from stating any 

statistically proven conclusions, it is interesting to observe that the average abundance of all 

the three aberrant isoforms is higher in the “thalassemia major” group. If this observation 

could be validated in a larger number of samples, then a difference in splicing could be 

responsible for the phenotypic variability of this thalassemia rather than variable NMD 

efficiency. A consequence of this hypothesis is that – under equal transcription rates – the β-

globin wild type mRNA would be less abundant in the more severe group due to the synthesis 

of a higher proportion of the alternative isoforms. Unfortunately, the abundance of β-globin 

wild type mRNA has not been assessed yet and it remains an important experiment to define a 

modifier of the severity of this disease. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 27. Quantification of the β-globin transcripts in patients´ samples in the RPAs. The values are given 
in percentage and indicate the mean and standard deviation of the abundance of one isoform compared to a 
second one. Exon1(-16), exon1(-38), exon1(+12) and β-globin WT are indicated by -16, -38, +12 and wt, 
respectively. 

 
 

Taken together, my results so far do not support a general role of NMD in the 

phenotypic expression of β-thalassemia IVS1+6 (T→C). This conclusion is based on the 

observation that there is no significant difference in the abundance of an NMD-targeted β-
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globin transcript in patients suffering from mild or severe anemia. A larger number of patients 

should be studied to obtain statistically significant conclusions. Additionally, quantification of 

wild type β-globin transcript should be carried out in order to test possible alternative 

explanations for the disease variability.  
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4. Discussion 

 

4.1 Identification of bona fide NMD targets 

Messenger RNA stability represents a parameter targeted by post-transcriptional  

mechanisms that ensure quality control over gene expression: mRNAs that contain PTCs and 

thus encode C-terminally truncated polypeptides are generally degraded by NMD, a system 

that is conserved from yeast to humans (Gonzalez et al., 2001; Mango, 2001; Gatfield et al., 

2003; Maquat, 2004).  

In humans, NMD involves splicing-dependent marking of the exon junctions by the 

EJC (Kataoka et al., 2000; Le Hir et al., 2000). According to the current mechanistic 

understanding of NMD, the position of the translation stop codon relative to the position of 

the EJCs is sensed by the ribosome and factors that associate with the ribosome during 

translation termination. Transcripts with an exon-exon junction following more than ~50 

nucleotides downstream from the stop codon are generally interpreted as improper and 

subjected to degradation (Nagy and Maquat, 1998; Thermann et al., 1998). NMD also 

requires UPF1, UPF2 and UPF3b factors (Gonzalez et al., 2001). According to a current 

model, the latter binds UPF2, which in turn interacts with UPF1 in a linear pathway. Binding 

of the translation release factors eRF1 and eRF3 to Upf1 biochemically connects these NMD 

factors to translation termination (Kashima et al., 2006).  

Originally, NMD was thought to be a surveillance mechanism that detects and 

degrades aberrant mRNA derived from the expression of nonsense or frameshift mutations in 

genes or from faulty splicing. The down-modulation of immunoglobulin PTC-containing 

transcripts that result from programmed V(D)J rearrangements foreshadowed a role for NMD 

also in normal cellular function (Baumann et al., 1985; Li and Wilkinson, 1998). Moreover, 

NMD is implicated in the auto-regulation of the expression of some genes subjected to 

alternative splicing (Sureau et al., 2001; Wollerton et al., 2004; Cuccurese et al., 2005). A 

wider physiological role of NMD was uncovered in yeast and fly where genome-wide 

analyses revealed that 5-10% of the transcriptomes of these organisms are affected by NMD 

(He et al., 2003; Rehwinkel et al., 2005). 

In the present study, a first goal to achieve was the identification of physiological bona 

fide NMD transcripts. A genome-wide microarray analysis of UPF1-depleted HeLa cells 

indicated that this central NMD factor seems to be implicated in the control of the levels of a 

wide variety of transcripts in humans. Around 230 genes representing 2.8% of the total 

number of tested mRNAs were up-modulated according to this microarray data. UPF1 
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depletion impairs NMD activity, thus stabilising NMD targets (Lelivelt and Culbertson, 1999; 

Page et al., 1999; Mendell et al., 2002; Gehring et al., 2003). Thus, it is assumed that most of 

the up-modulated transcripts likely represent direct or indirect NMD targets. Under this 

assumption, the data suggest that NMD particularly affects certain functions including amino 

acid metabolism and transport, apoptotic activity, signal transduction and cell adhesion (Fig. 

12). However, the diversity of functional classes rather than the number of over-represented 

gene ontology categories is the most striking. Transcripts encoding for enzymes with 

oxidoreductase activity and kinases, interleukin biosynthesis, DNA repair, Golgi to plasma 

membrane transport and carbohydrate metabolism are other examples of the wide spectrum of 

activities regulated by NMD. 

Parallel to my analysis, a similar study was published by another group that also 

reported multiple effects of NMD in normal cellular function (Mendell et al., 2004). 

Approximately 40% of the up-regulated transcripts found in this second study were also up-

regulated in my investigation. I attribute the differences in the remaining 60% to the use of 

different microarray platforms and strains of HeLa cells. In Mendell et al. (2004) only genes 

involved in amino acid transport were found to be significantly over-represented. This 

apparent discrepancy, however, is likely explained by the fact that a larger microarray 

containing more than 10000 extra probe-sets was used in my study. Consistently, a larger 

number of affected transcripts was found in my investigation.  

 Interestingly, there is no evident overlap in the functions affected by NMD between 

humans and yeast. Recently, this observation has also been reported and expanded to D. 

melanogaster (Rehwinkel et al., 2005). The conclusion is that although NMD regulates a 

large number of cellular activities, these functions are not conserved from yeast to human. 

As it was already mentioned, these conclusions are based on the assumption of UPF1 

having an (almost) exclusive role in NMD. Nevertheless, it is possible that a fraction of the 

transcripts described in this study is actually targeted by unknown NMD-independent 

functions of UPF1. Indeed, a role of UPF1 in non-NMD functions has been demonstrated in 

the last two years. UPF1 is involved in a novel mRNA decay mechanism called Staufen-

mediated mRNA decay (SMD). For this pathway, translation and the interaction of UPF1 

with the RNA binding protein Staufen (Stau1) are essential. In contrast, pre-mRNA splicing 

and the NMD factors UPF2 and UPF3 are dispensable, features that distinguish SMD from 

NMD (Kim et al., 2005).   

In addition, UPF1 (but not UPF2) is required for DNA replication and S phase 

progression (Azzalin and Lingner, 2006a) and is implicated in the regulated degradation of 
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histone mRNAs at the end of the S phase (Kaygun and Marzluff, 2005). Consistent with these 

functions, UPF1 interacts with DNA polymerase delta (Azzalin and Lingner, 2006a) and with 

the histone-binding stem-loop binding protein (SLBP) (Kaygun and Marzluff, 2005). Hence, 

UPF1 is emerging as a key player in different cellular processes that exerts multiple functions 

depending on the complexes to which it associates (Azzalin and Lingner, 2006b). 

Consequently, caution is requiered when interpreting the physiological role of NMD on the 

basis of microarray analysis. Functions that are attributed to NMD might be related to UPF1 

NMD-independent activities. For instance, although not experimentally proven, it is tempting 

to associate the up-regulation of transcripts involved in apoptotic activity in UPF1-depleted 

cells with the requirement of UPF1 for S phase progression. 

More recently, a genome-wide microarray analysis in UPF2-depleted HeLa cells has 

also been accomplished (Wittmann et al., 2006). That study revealed that while there are a 

number of transcripts regulated by both UPF1 and UPF2, there are also mRNAs affected 

exclusively by either UPF1 or UPF2, suggesting the possibility of UPF1- and UPF2-specific  

NMD complexes (or non-NMD functions) with only a partial target overlap. Indeed, a study 

from our laboratory showed biochemical evidence of a UPF2-independent NMD pathway (see 

below). 

Nevertheless, a common limitation of all the discussed studies is the lack of an 

estimation of the number of bona fide NMD targets in the microarray datasets. Non-

discrimination between direct versus indirect effects is always a limitation in large-scale 

expression analysis. Consequently, validation of microarray data has to be done in order to 

advance in the understanding of both, the impact and the mechanism of NMD. The present 

study is the first one to attempt a discrimination of secondary effects in a group of putative 

NMD-targeted mRNAs. As NMD is a posttranslational mechanism, it only acts on spliced 

mRNAs. Thus, pre-mRNA abundance of a bona fide NMD transcript should not be affected 

by this pathway. I made use of this reasoning as a basis for distinguishing non-legitimate from 

genuine NMD substrates. My analysis revealed that 12 out of 16 selected transcripts from the 

microarray data were affected at the transcriptional level and consequently, likely represent 

indirect targets (Fig. 15). If we extrapolate these results to the entire dataset, this would imply 

that around 75% of the up-modulated mRNAs found in my analysis are not primary targets 

for NMD. 

Indirect effects could be a reason for the large number of down-modulated transcripts 

found in my microarray data. The large proportion of indirect targets might also explain why 

approximately 60% of the transcripts I found to be up-modulated in UPF1-depleted cells have 
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no classical NMD feature that could account for their putative NMD sensitivity (Table 1). 

Interestingly, the published studies in humans (Mendell et al., 2004; Wittmann et al., 2006), 

yeast (He et al., 2003) and fly (Rehwinkel et al., 2005) all show a significant proportion of 

putative NMD-regulated transcripts that also lack such structural features. Hence, the 

significant contribution of secondary effects imposes a limitation in the interpretation and 

comparison of these microarray datasets.  

Nevertheless, valuable information can be gained from the microarray analysis when it 

is complemented with further assays such as quantification of pre-mRNA/mRNA abundance 

and mRNA stability. Through this carefully validated process I characterised two new bona 

fide NMD targets, namely TBL2 and NAT9 (Fig.15 and 16). This procedure allowed me also 

to confirm another target (GADD45B) predicted by in-silico analysis (Hillman et al., 2004). 

To conclude, the microarray technique is a powerful tool that permits the identification 

(on a global scale) of transcripts affected by depletion of an NMD factor. However, this tool 

has innate limitations represented by the indiscrimination of bona fide from indirect or off-

target effects (Alonso, 2005). These limitations can be overcome by complementing the 

microarray analysis with suitable assays that allow validation of the results. I applied this 

procedure to a small subset of transcripts of my microarray dataset. A comprehensive 

validation of all the microarray dataset should be carried out to uncover the set of legitimate 

NMD transcripts. A similar task should be accomplished with the datasets found in the 

literature, including those that deal with NMD in other organisms. Comparison of such 

revised sets exclusively composed by genuine NMD transcripts will, in turn, shed light on the 

mechanism, the physiological role and the conservation of NMD in eukaryotes. 
 

4.2 Quantitative differences in cellular NMD efficiency 

 

It has long been observed that NMD does not reduce to zero levels of transcripts 

containing PTCs. Moreover, the efficiency of the transcript down-regulation seems to be 

particular for each mRNA. For instance, aberrant isoforms of TPI (triose phosphate 

isomerase) and β-globin are usually down-regulated 2 to 5-fold whereas DHFR (dihydrofolate 

reductase) and APRT (adenine phosphoribosyl transferase) NMD-sensitive variants are 

reduced 5-10 fold (Gudikote and Wilkinson, 2002). Likewise, different mutant mRNAs were 

found to be degraded due to NMD to variable levels in a colorectal cancer cell line (El-Bchiri 

et al., 2005).  In agreement with these observations, I found disparate up-modulation levels in 

the endogenous NMD transcripts used in this study. While SC35 and TBL2 were up-
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modulated 10-12 fold in cells lacking UPF1, GADD45B and NAT9 were up-modulated only 

three fold under the same conditions (Fig 19). This transcript-dependent NMD efficiency 

might be explained in terms of differences in the transcriptional or translational rates in some 

cases. Alternatively, the presence of cis-acting sequences may modulate the NMD activity on 

a particular mRNA. In support of the latter idea, it has been demonstrated that the Ig μ and 

TCR-β transcripts possess a sequence that is required for their highly efficient degradation. In 

both cases, the introduction of the corresponding sequence element enhances degradation of 

an otherwise poor NMD reporter (Gudikote and Wilkinson, 2002; Buhler et al., 2004).  

It has also been suggested that innate NMD capacity may vary among different cells, 

tissues or even entire multicellular organisms (Frischmeyer and Dietz, 1999). NMD 

variability has been demonstrated in yeast, in which different strains of S. cerevisiae  possess 

distinct  NMD efficiencies (Kebaara et al., 2003). The mechanism responsible for the variable 

strain-dependent NMD efficiency has not been unravelled. However, phenotype analysis of 

spore clones from a cross of cells with differing NMD capacities suggested that at least two 

genes, and probably more, are implicated in the variability of the pathway.  

To my knowledge, no systematic analysis on NMD efficiency has been done in 

humans or higher eukaryotes so far. This is surprising since NMD can regulate the phenotypic 

expression of disease (see introduction). However, some clinical reports suggest that there 

might exist differences in NMD efficiency. Patients with diverse disease severity carrying 

identical nonsense mutations but expressing different levels of the resulting truncated protein 

have been reported for dystrophin and Jarid1c genes (Kerr et al., 2001; Jensen et al., 2005). 

Furthermore, tissue-specific NMD has been suggested in a case of Schmid metaphyseal 

chondrodysplasia (Bateman et al., 2003). Yet, direct experimental proof of quantitative 

differences in NMD efficiency is absent.   

The present study is the first one that provides evidence of stable differences in NMD 

efficiency in human cells. Five endogenous NMD-sensitive transcripts (SC35 A, SC35 B, 

TBL2, NAT9 and GADD45B) encoded by four different genes showed differences in their 

steady-state levels in three different strains of HeLa cells. In particular, the abundance of 

these NMD targets was reproducibly and significantly lower in cells of strain A than in cells 

of strain B or C (Fig. 20c and d). Consistent with these results, the steady-state levels of 

ectopically expressed β-globin NS39 were significantly lower in cells of strain A (Fig. 20a 

and b). The four endogenous gene reporters are expressed at different levels and apparently 

perform different roles in the cell: SC35 is a splicing factor that regulates alternative splicing 

(Fu, 1995); GADD45B is thought to function in co-operation with other genes in cell growth 
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inhibition (Takekawa and Saito, 1998). The functions of TBL2 and NAT9 are not known yet; 

however, sequence similarity analysis predicts that TBL2 could function as a small G protein 

(Perez Jurado et al., 1999) and NAT9 could be an N-acetyltransferase (Strausberg et al., 

2002). It is therefore likely that these genes are involved in different metabolic pathways and 

are most probably subjected to different regulatory controls, being NMD the only known 

pathway that controls all of them. Still, I observed a strict correlation in the abundance of 

these transcripts in a strain-dependent manner which was also independently reflected by a 

transfected NMD reporter assay. Consequently, I interpret these findings as an indication of 

distinct NMD efficiency in the tested strains. Other potential explanations (such as variations 

in transcription, mRNA exportation, etc) seem unlikely in this context. 

 To gain insight into the mechanism of NMD variability, I analysed the abundance of 

key NMD factors in the HeLa strains. Surprisingly, I found that cells of strain B, which have 

the lowest NMD efficiency, display a lower abundance of the factor RNPS1 (Fig. 21). I 

confirmed that a deficiency of RNPS1 is at least partially responsible for the low NMD 

activity in these cells because over-expression of RNPS1 enhances the degradation of an 

NMD reporter in cells of strain B but it has no effect in cells of the other strains (Fig 22). 

RNPS1 is an EJC component initially identified as a general activator of splicing 

(Mayeda et al., 1999). Y14 is another EJC component which is stably associated to the 

complex both in the nucleus and in the cytoplasm (Kim et al., 2001; Le Hir et al., 2001). 

Unlike RNPS1, Y14 was shown to be equally abundant in the three cell strains (Fig. 21). To 

verify that the effect of RNPS1 over-expression is specific to this protein and not related to 

overexpression of EJC proteins in general, Y14 was also over-expressed. Contrary to the 

results obtained with RNPS1, the over-expression of Y14 did not have any effect on the 

reporter levels in strain B cells (Fig. 23b). Moreover, the over-expression of a truncated 

NMD-defective RNPS1 protein (Gehring et al., 2005) could not reproduce the effects of the 

wild type protein (Fig. 23a). 

RNPS1 contains an RNA-recognition motif (RRM) and an arginine/serine/proline rich 

domain (RS/P) that resembles the RS domain of the so called SR protein family of splicing 

factors (Mayeda et al., 1999; Sakashita et al., 2004). Interestingly, over-expression of one of 

these factors –SF2/ASF (SFRS1) – was also reported to enhance NMD activity in HeLa cells 

(Zhang and Krainer, 2004). However, while RNPS1 shuttles between the nucleus and the 

cytoplasm, SF2/ASF appears to be exclusively located in the nucleus, making it difficult to 

explain how this factor can affect NMD. Nevertheless, it will be interesting to address a 

general potential role of SR proteins in NMD. However, preliminary results of our laboratory 
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suggest that over-expression of SFRS4 and SFRS7 splicing factors do not have any effect in 

strain B cells which would favour a particular role of RNPS1 as an NMD-modulator. 

Recently, the model that suggests the stepwise interaction of the UPF factors in a 

linear pathway necessary for NMD has been challenged (Gehring et al., 2005). It has been 

demonstrated that different EJC subcomplexes can trigger NMD. In a tethering assay, Y14, 

MAGOH and eIF4A3 were shown to activate NMD in an UPF2-independent manner, 

whereas UPF2-induced NMD required RNPS1. The two proposed pathways meet in a 

common requirement for UPF1. 

The NMD-sensitive transcripts used in my assays are all UPF1- and UPF2-sensitive 

(Fig. 17). Consistent with the branched NMD model, this set of mRNAs was affected by a 

deficiency in RNPS1 in one of the strains of HeLa cells. In addition, these findings might help 

to test the new model further. If the deficiency of RNPS1 were the only significant factor 

responsible for the low efficiency of NMD in strain B compared to A, a prediction would be 

that the abundance of UPF2-independent NMD-sensitive mRNAs should be the same for both 

of these strains. In any case, the absolute requirement of RNPS1 for the UPF2-dependent 

NMD pathway and the role of RNPS1 uncovered in the present study suggest that relative 

changes in RNPS1 levels may act as a genetic modifier in NMD. 

As stated above, in yeast the NMD phenotype is pleiotropic. Given the increased 

complexity of NMD in higher eukaryotes, it is surprising that the product of a single gene 

appears to account –at least to a significant extent– for the low NMD capacity of a human cell 

line. However, such a simple explanation of variable NMD efficiency is not general to all 

human cells because RNPS1 seems not to be involved in the low efficiency of strain C cells 

(Fig. 21). As a matter of fact, the reasons for the low NMD efficiency of this strain remain 

unknown.  

These findings let us hypothesise that the availability of single or combined NMD 

factors may account for the efficiency of this pathway.  The proteins involved might belong to 

the surveillance complex directly or could be part of the degradation machinery.  For instance, 

it has been proposed that Vps16 – a protein that enhances decapping but that it is not essential 

– might be a candidate to regulate NMD in yeast (Zhang et al., 1999; Kebaara et al., 2003). 

Also in humans, dispensable factors that enhance mRNA turnover could play this role.  

In conclusion, I have provided evidence that NMD varies in its efficiency in different 

human cell lines. In one particular case, a cause of a poor NMD phenotype was shown to be 

associated with the low abundance of an NMD factor (RNPS1) which is also involved in the 

UPF2-dependent NMD pathway.  This finding provides a conceptual frame to understand 
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phenotypic variations in NMD-modulated diseases. It also suggests that NMD can be 

physiologically regulated by the accessibility of one or more NMD factors. 

 

4.3 Variations in NMD efficiency – A potential new genetic modifier of disease 
 

Different cell lines display differences in NMD efficiency. It is not surprising then to 

find important variations in the abundance of the five NMD reporter transcripts in blood 

samples (Fig. 24). Even for a single donor, the quantified variability may be attributed to the 

differences in cellular composition in each sample. In fact, it has long been known that many 

analytes such as uric acid, sugar and triglycerides vary greatly from one blood sample to 

another (Marnini and Zulian, 1976). For this reason, I decided to estimate NMD in 

lymphoblastoid cell lines, as this system allows a tighter control. Despite a lower variability 

and stronger correlation in the expression of the NMD targets, the assay did not demonstrate 

differences in NMD efficiency in these lymphocytic lines (Fig. 25). 

One possible hypothesis to explain the variability of transcripts levels in the latter case 

would be that the chosen NMD-affected genes are not suitable for quantification in B-

lymphocytes, possibly due to transcriptional regulation of the chosen genes.  At present, no 

report confirms this hypothesis; however, GADD45B is known to be regulated in T-cells 

where it is critical for T-cell lineage development as well as for perpetuating cognate and 

inflammatory signals in these lymphocytes (Lu et al., 2004; Schwartz et al., 2006). 

Alternatively, the selected housekeeping genes could be suitable for HeLa but not for blood 

cells. Although some studies support my selection (Jin et al., 2004; Zhang et al., 2005), a 

more recent publication states that particularly GAPDH is not an appropriate housekeeping 

gene in EBV-transformed B-cells due to the variable quantification results obtained in 

microarray chips (de Brouwer et al., 2006). It remains for future work to assess the levels of 

the NMD transcripts using other genes for normalisation. 

On the other hand, it is interesting to notice the similar mean quantified values for the 

different lymphocytic cell lines regardless of the aforementioned variability in the data (Fig. 

24). From this point, an alternative potential reason for the failure to measure differences in 

NMD capacity would be that they simply do not exist in the tested lines. It has already been 

noticed that aberrant immunoglobulin transcripts are down-regulated very efficiently in 

lymphocytes. It has been estimated that two-thirds of immunoglobulin rearrangements are 

unproductive and generate PTCs (Li and Wilkinson, 1998).  In this context, it is possible that 

lymphocytes have evolved under the selective pressure of conserving a strong NMD 
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efficiency. It has been also mentioned before that the effective down-modulation of 

immunoglobulin mRNAs is due to the presence of cis-acting elements. This observation is 

compatible with my hypothesis because an “NMD-enhancer” would be likely futile in cells 

with intrinsically low NMD efficiency. At the moment this hypothesis is mere speculation. 

However, it has been reported that while variable up-modulation levels of an NMD-sensitive 

transcript were quantified in different cells of two sibling foetus diagnosed with Roberts 

syndrome after treatment with puromycin, lymphocytic cell lines generated from their parents 

(who are genetically unrelated) showed similar levels in the same treatment (Resta et al., 

2006). A comparison of NMD efficiency in different cell lines (probably by transfection of a 

common NMD reporter) would help to advance in the understanding of this issue. 

 

4.3.1 NMD in β-thalassemia  

 

β-thalassemia is caused by diverse mutations in the β-globin gene. One particular 

mutation, β-thalassemia (IVS1+6 T→C) was the focus of my study. A group of Palestinean 

and Israeli patients affected by β-thalassemia and who are all homozygous for this mutation 

was included in the present study. Interestingly, despite carrying the same mutation in the β-

globin gene, these patients display a striking variability in anemia severity.  

Two genetic modifiers of β-thalassemia, α-globin and γ-globin have been identified 

years ago. High fetal (α2γ2) haemoglobin production can compensate for the lack of β-globin, 

thus ameliorating the disease (Rund et al., 1997). Aberrations in α-globin may modify the 

severity of β-thalassemia in both directions. Reduction in the number of functional α-globin 

genes usually causes a milder condition (Kulozik, 1992; Rund et al., 1997). On the other 

hand, additional functional α-globin genes in a  β-thalassemia carrier may cause severe 

thalassemia intermedia (Kulozik et al., 1987; Oron et al., 1994).  The presence of these 

modifiers was assayed in the selected group of patients by our collaborators. Their results 

indicated that the clinical variability of the anemia in these patients cannot be explained by 

these genetic modifiers and the causes of the phenotypic variability of the disease remain 

unknown. 

  The mutation that produces this anemia impairs the correct splicing of the first intron 

of the β-globin gene. As a consequence, 4 splice isoforms can be produced: β-globin wild 

type and 3 aberrant variants (Treisman et al., 1983). One such spliced variants was 

demonstrated to be NMD-sensitive (Danckwardt et al., 2002) and a second one is also a 

potential NMD target. As a consequence, it was envisioned that inter-interindividual 
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differences in NMD efficiency could account for the phenotypic variability of this particular 

thalassemia, with a more efficient NMD expected to lead to milder disease. 

 As the assay based in the quantification of NMD targets did not allowed estimation of 

varying NMD efficiency in normal blood samples, I had to rely exclusively in the correlation 

between the relative abundance of the β-globin variants and the severity of the anemia in each 

patient to determine whether NMD could be a potential modifier in this disease. The four 

expected isoforms were detected in patients´ blood samples by RPA analysis. The first 

observation was that the normal β-globin isoform accounted for 95-98% of the total β-globin 

mRNA while both exon1(-16) and exon1(-38) variants represented less than 1% and 1.5%, 

respectively. In principle, such minor proportions of aberrant isoforms could be considered 

irrelevant for the pathology of the disease. However, a recent study describes a PTC-

containing transcript of the high-affinity immunoglobulin E (IgE) receptor (FcεRIβ) arising 

from alternative splicing which is expressed at very low levels compared to the full-length 

transcript, as would be expected for an NMD target. Nonetheless, the truncated protein is not 

only detectable but also it competes effectively with the full-length protein to control FcεRIβ 

expression on the cell surface (Donnadieu et al., 2003). Thus, even low endogenous 

expression levels of NMD targets can suffice to generate a product with a dominant negative 

function. In addition, the detected β-globin transcripts derived from anucleated red cells 

(mainly reticulocytes) present in blood. As there is no transcription in these cells and as 

NMD-sensitive β-globin isoforms decay faster than the normal transcript, the quantified 

proportions of β-globin variants may not correspond to those present in the nucleated red cell 

precursors at earlier stages. 

 This analysis also showed that the aberrant β-globin isoforms are expressed at highly 

variable levels in different patients regardless of the severity of their anemia (Fig. 26 and 27). 

Moreover, there was no evident correlation between the levels of these isoforms in individual 

patients either. Consequently, these results do not grant a general role of NMD in the 

phenotypic expression of β-thalassemia IVS1+6 (T→C). However, as my analysis is 

restricted to peripheral blood cells, it is not possible to exclude a potential role of NMD in 

normoblasts where transcription of the β-globin gene takes place. It is possible that the 

circulating reticulocytes represent a surviving fraction of the total original population due to 

their relatively low levels of aberrant transcripts. To test this hypothesis, bone marrow 

samples should be analysed; however, the invasiveness of the procedure of bone marrow 

sampling imposes a limit to the investigation.  
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As the causes of variable severity in the thalassemia remain elusive, alternative 

hypotheses should also be tested. For instance, a new possible genetic modifier has lately 

been described. The alpha-hemoglobin stabilising protein (AHSP) is a chaperone that binds 

and stabilises free α-globin, preventing its precipitation in the cell (Viprakasit et al., 2004). 

AHSP appears to modulate the clinical outcome of β-thalassemia in a murine model (Kong et 

al., 2004) and to be also a relevant contributory factor in some patients (Lai et al., 2006). 

However, AHSP expression in this set of patients has not been assayed. 

My results also indicate that patients with severe thalassemia tend to express higher 

levels of all the aberrant isoforms (Fig. 26), albeit a larger number of cases should be studied 

to confirm this observation. In the context of this hypothesis, a change in the production of 

different β-globin splicing variants could account for differying abundances of normal and 

aberrant β-globin protein regardless of (or in addition to) differences in NMD activity. 

Unfortunately, abundance of mRNA (against a reference gene) and protein for each isoform 

has not been quantified yet. 

In summary, postulating a broad role of NMD in the phenotypic outcome of β-

thalassemia (IVS1+6) is unwarranted according to our studies. However, a larger number of 

cases should be analysed to obtain firm conclusions on the potential function of NMD in this 

disease. A more robust assay to estimate NMD activity, such as the one developed in this 

thesis, was not applied since it could not detect quantitative differences in NMD efficiency in 

normal blood samples. Nevertheless, since the application of this assay to immortalized B-

lymphocytes gave reproducible results (although no difference in NMD efficiency was 

detected in the analysed lines), it could be used to assess NMD variability in EBV-

transformed lymphocytes of these patients, as a complement to the RPAs. 

Additionally, alternative factors that might act as novel genetic modifiers of β-

thalassemia severity should be explored. Tentatively among these factors, AHSP and splicing 

factors could result promising candidates. 

 

 

4.4 Concluding remarks 

 

 In the present study I aimed at developing an assay system to estimate quantitative 

differences in human NMD efficiency. Such a system was based in the quatification of the 

abundance of bona fide NMD transcripts. To this end, I undertook a combined 

RNAi/genome-wide microarray approach to identify human genes with increased expression 
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following depletion of the essential NMD factor UPF1. The outcome of this analysis suggests 

that NMD affects an ample number of activities in normal cellular function, although a large 

proportion of the genes identified is likely indirectly affected or is controlled by non-NMD 

UPF1-related novel functions 

 A careful validation of the microarray data allowed me to uncover and confirm novel 

bona fide NMD mRNAs. These transcripts were used to establish the before mentioned assay 

system. Using this assay, I demonstrate that diverged HeLa cell strains display large and 

stable differences in NMD efficiency. Moreover, one molecular mechanism that 

quantitatively affects NMD was uncovered, which represents a first example to explain 

variations in mammalian NMD efficiency. 

A similar analysis in blood did not result in clearly interpretable data, possibly due to 

the higher complexity of this system. In addition, quantitative analysis of NMD-sensitive β-

globin transcripts was performed in blood samples of patients suffering from β-thalassemia 

(IVS1+6). The results obtained so far do not support a role of NMD as a potential genetic 

modifier of this disease.  
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