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Summary  

The microtubule (MT) cytoskeleton is important for establishing polar growth in 
the rod-shaped fission yeast (Schizosaccharomyces pombe). In these cells, MTs form an 
architectural scaffold of the cell by positioning organelles such as the nucleus and 
mitochondria.  

Interphase MTs are arranged in bundles along the cell’s long axis. The filaments 
start growing in the cell’s middle in a zone of anti-parallel overlap, from which the more 
dynamic plus ends of MTs extend towards both cell ends.  

After cell division the cell grows exclusively from the old end (away from the 
septum), where the growth machinery is still present from the mother cell. New end take 
off (NETO) occurs after about a third of the way through the cell cycle, when F-actin has 
moved into the new end. From this point onwards maintenance of polar growth is MT 
independent and occurs at both cell ends.  

Guidance of the microtubules to the cell ends is performed by plus end tracking 
proteins (+TIPs), such as Tea1 and Tip1 (Clip-170). Tea1 is a landmark protein localizing 
to the cell ends. Tip1 is an anti-catastrophe factor that prevents MT depolymerization 
before the filament has reached the cell end. The delivery of Tip1 to MT ends is motors 
dependent and another +TIP, Mal3, anchors it at the MT end. Mal3 (EB1) stabilizes MTs, 
possibly by fortify its seem.  

Here we describe a large-scale, electron tomography investigation of wild-type 
(WT) S. pombe cells, including the first 3D reconstruction of a complete eukaryotic cell 
volume. Sufficient resolution to show both how many MTs there are in a bundle and their 
detailed architecture was achieved. Most cytoplasmic MTs are open at one end and 
capped at the other, providing evidence about their polarity. Electron-dense bridges 
between the MTs themselves and between MTs and the nuclear envelope were frequently 
observed. Finally, we have investigated structure/function relationships between MTs and 
both mitochondria and vesicles.  

Using the same approach, we then analyzed the bundle architechture in tip1Δ and 
mal3Δ mutants. MTs were half the length of WT in mal3Δ and a quarter the length of WT 
in tip1Δ. Further, there were less than half as many MTs in a bundle in tip1Δ then in WT. 
In contrast, mal3Δ bundles no difference in the amount of filaments in a bundle. 
However, structural differences of the MT lattice were observed in both mutants. The 
interaction between MTs and the spindle pole body was altered in both strains.  

Our analysis shows that electron tomography of well-preserved cells is ideally 
suited for describing fine ultrastructural details that were not visible with previous 
techniques.  
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Zusammenfassung 
 

Die Mikrotubuli üben bei der Etablierung des polaren Wachstums der 
stäbchenförmigen Spalthefe (Schizosaccharmomyces pombe) eine wichtige Funktion aus. 
Durch die Positionierung der Organellen wie Zellkern und Mitochondrien bilden sie 
außerdem ein architektonisches Gerüst für die innere Organisation der Zelle.  

Sie wachsen durch Polymerisierung von Tubulinuntereinheiten an ihren 
Plusenden in Richtung beider Zellpole. Die Minus-Enden der Filamente befinden sich im 
Zentrum der Zelle in einer Zone antiparalleler Űberlappung. 

Nach der Mitose wächst die neue Zelle ausschließlich an dem bereits 
existierenden Ende (gegenüber des Septums), an dem die Wachstumsmaschinerie der 
Mutterzelle noch vorhanden ist. Nach ungefähr einem Drittel des Zellzyklusses, nachdem 
das neue Ende durch Rekrutierung von F-Aktin stabilisiert worden ist, findet der 
sogenannte ’New End Take Off’ (NETO) statt. Ab diesem Zeitpunkt ist die 
Aufrechterhaltung des polaren Wachstums unabhängig von den MT und tritt an beiden 
Zellenden auf. 

Die Dirigierung der MT zu den Zellenden wird von den ’plus end tracking 
proteins’  (+TIPs), wie zum Beispiel Tea1 and Tip1 (Clip-170), ausgeführt. Tea1 ist ein 
Markierungsprotein, welches an beiden Zellenden lokalisiert ist. Tip1 verhindert 
Depolymerisierung der MT bis diese das Zellende erreicht haben. Diese Faktor wird von 
Motormolekülen zu MT-Enden transportiert und dort von einem anderen +TIP Protein, 
Mal3, verankert. Mal3 (EB1) stabiliziert die MT, warscheinlich durch Verstärkung des 
Saums.   

Hier beschreiben wir die Untersuchung von Wildtyp (WT) S. pombe Zellen 
mittels Elektronentomographie in grossem Maßstab einschließlich der ersten 3D 
Rekonstruktion eines vollständigen eukaryotischen Zellvolumens. Aufgrund der hohen 
Auflösung konnten sowohl die Anzahl der MT pro Bündel als auch ihre detaillierte 
Architektur gezeigt werden. Die meisten zytoplasmischen MT lagen an einem Ende offen 
und am anderen geschlossen vor, was Rückschlüsse auf ihre Polarität zuließ. Ausserdem 
wurden häufig elektronendichte Brücken zwischen den MT selbst sowie zwischen MT 
und der Hülle des Zellkerns beobachtet. Schließlich konnten Einblicke in die Struktur- 
und Funktionsbeziehungen von MT zu Mitochondrien und Vesikeln gewonnen werden. 

Im nächsten Schritt haben wir in derselben Vorgehensweise die Bündelarchitektur 
von tip1Δ und mal3Δ Mutanten analysiert. Die MT waren im Vergleich zum WT in 
mal3Δ Zellen um die Hälfte, in tip1Δ sogar um drei Viertel verkürzt. Ausserdem bestand 
in tip1Δ ein Bündel aus weniger als halb so vielen MT als im WT. Im Gegensatz hierzu 
wurde in mal3Δ kein Unterschied bezüglich der Zahl an Filamenten pro Bündel 
festgestellt. Allerdings wurden in beiden Mutanten strukturelle Veränderungen des MT 
Gitters beobachtet. Auch die Interaktion zwischen MT und dem Spindelpolkörper war in 
beiden Hefestämmen gestört. 

Unsere Ergebnisse zeigen, dass die Elektronentomographie von gut erhaltenen 
Zellen eine ideale Methode darstellt, um ultrastrukturelle Details zu erforschen, welche 
mittels früherer Techniken nicht sichtbar waren. 
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Chapter 1 
 
 

Introduction 
To keep different cellular components correctly positioned to each other is 

important for the proper function and division of all cells. Here, we are using the rod-

shaped fission yeast (Schizosaccharomyces pombe) as a model organism for cell polarity 

and polar growth. Fission yeast grows in the cell ends, where actin and proteins important 

for maintenance of polar growth are found. The deposition of these proteins and the 

establishment of the growth axis is performed by bundles of microtubules (MTs). Thus, 

linear growth is MT dependent in these cells (Hayles and Nurse 2001; La Carbona et al. 

2006; Sawin and Tran 2006).  

The MT cytoskeleton organization and dynamics have been extensively studied 

using fluorescence microscopy. However, due to the limitation in resolution of light 

microscopy, important fine architectural details of these bundles are still unknown. 

Therefore we undertook a high resolution investigation of the interphase MT 

cytoskeleton using electron tomography.  

The concept of electron tomography (ET) has existed since the 1970’s, but has 

only recently been widely applied, mostly due to computers becoming capable to handle 

the huge data sets and complex calculations this process entails.  In general, ET is a 

method to generate high resolution 3D reconstructions of a small sample (McIntosh et al. 

2005). Here, we extended the limits of this technique, so that reconstruction of the first 

complete eukaryotic cell volume was possible.   

At this high resolution, MT bundle architecture and MT importance in organelle 

positioning was readily seen. Even fine structures such as MT end morphologies and 

electron dense bridges between MTs could be visualized. Advantages of 3D 

reconstructions 
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were particularly obvious when intra-organellar measurements could be done. Our 

analysis shows that the combination of native cell preservation and electron tomography 

is ideally suited for describing fine ultrastructural details that were not visible with 

previous techniques. 

We also applied this new methodology to two microtubule associated protein 

(MAP) deletion mutants, to further reveal these proteins’ functions in MT arrangement. 

Finally, we imaged cells treated with a MT depolymerizing drug to expand our analysis 

of MT structure and function as well as organellear positioning in the fission yeast.   

The fission yeast is a free living single-celled archiascomycete fungus that 

diverged from budding yeast (Saccharomyces cerevisiae), another commonly used model 

organism, over one billion years ago 

(Heckman et al. 2001). When its 

genome was sequenced in 2002 it was 

the sixth completed genome and the 

eukaryote with the fewest protein coding 

genes, (containing 4824 open reading 

frames) (Wood et al. 2002).  

We use this yeast as a model organism for microtubule (MT) dependent cell 

polarity because of its easily recognizable rod-shaped form and genetic tractability. Like 

budding yeast, the small genome ensures little overlap in protein function. Thus, deletion 

mutants often display clear phenotypes. However, fission yeast seems closer to 

mammalian cells than budding yeast in many ways. For example, many of the cellular 

organelles in fission yeast and mammalian cells are dependent on MTs for their 

intracellular distribution. In budding yeast, which is almost constantly in mitosis, the 

majority of MTs are intranuclear and cytoplasmic organelle distribution is often actin 

dependent.  

Fission yeast is also a model organism for the cell cycle, and these studies, lead 

by Sir Paul Nurse, culminated in a shared Nobel Prize in physiology or medicine 2001.  

Kingdom:  Fungi 
Phylum:    Ascomycota 
Class:      Schizosaccharomycetes 
Order:      Schizosaccharomycetales 
Family: Schizosaccharomycetacetae 
Genus:  Schizosaccharomyces 
Species:  S. pombe 
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Morphogenesis and Cell Polarity in Eukaryotes 

1. Cellular Polarization and Cell Shape 

A drop of oil in water forms a micelle. Similarly, a lipid cell membrane in 

aqueous media should create a micelle structure. However, cells commonly have 

different shapes, the typical examples being neurons and epithelial cells (Wilson 1997; 

Goldstein and Yang 2000).  

Even round cells may be polarized when regions of membrane or cytoplasm are 

populated with a different set of, or proportions of, cellular constituents. This polarization 

is often vital for that cell’s function and future divisions. A good example of this is the 

budding yeast. Although the mother cell has an approximately round cell shape, the 

previous division, in which a daughter cell budded off, has left membrane bound polarity 

markers. These will determine where the next bud will appear (Drubin and Nelson 1996).  

 

2. General Principles of Polarization 

Cell polarization is often a response to extracellular cues such as hormones, 

nutrients, attractants, repellants or pheromones. Cells also carry internal landmarks 

inherited from their parents that guide polarization without environmental input (Drubin 

and Nelson 1996).  

In general, establishment of cell polarity can be conceptualized in four steps. 

First, determination of a site on the cell surface according to internal or external cues 

occurs. Second, this site is marked by a landmark protein. Third, small GTPases close to 

the site establish cell polarity. Fourth and finally, reorganization of the cytoskeleton and 

other polarized components leads to polarized cell growth (Drubin 1991; Pringle et al. 

1995).  

One well studied example, reviewed in (Chang and Peter 2003; Irazoqui and Lew 

2004; Pruyne et al. 2004), is the previously mentioned asymmetrically growing budding 

yeast. Growth in these cells is largely restricted to the daughter bud. During G1 phase of  
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the cell cycle, the round unbudded cell establishes the site of bud formation.  In haploid 

cells the bud forms adjacent to the site of the previous cell division, the bud scar. This 

creates an axial budding pattern in both the mother and daughter cell. In diploid cells the 

new bud emerges opposite to the last bud scar in a bipolar budding pattern (figure 1). I 

give a short introduction to the mechanism of cell polarization in haploid budding yeast 

cells. 

At the bud site, a large number of proteins get concentrated into a patch, 

approximately 0.5 μm in diameter. The size of this patch is thought to be regulated by the 

assembly of septin, a filament-forming GTPase, into a ring. Thus, the septin ring may be 

the first intracellular cue determining the site of polarization. Second, the septin ring 

Figure 1 Budding patterns in S. cerevisiae. Haploid cells form new 
buds next to the old bud scar. Diploid cells bud at the opposing side of
the last bud site. 
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recruits the landmark proteins Bud3p, Bud4p and Bud10p to the bud site, which in turn 

recruit Bud5p. Bud5 then activates Rsr1p GTPase by phosphorylation. This triggers a 

cascade that establishes the axis of polarity through activation of the GTPase Cdc42p and 

its GEF Cdc24p.  Finally, GTP-Cdc42 is thought to induce nucleation of actin cables in 

its vicinity, which then deliver secretory vesicles to the nucleation site, creating a cell 

wall distortion and the initiation of the bud (Li et al. 1995).   

It is common that the cytoskeleton or parts of the cytoskeleton are involved in the 

establishment and maintenance of polar growth. Before describing polarity in fission 

yeast, I will give a short introduction to the cytoskeleton in general and to MTs in 

particular.   
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The Cytoskeleton 

 

 
Figure 2 The cytoskeleton A) Negative stain of an actin filament (Steinmetz et al. 1997) B) 
Negatively stained vimentin intermediate filaments with a dimater of ca 12 nm (O'Toole et al. 
2003; Goldie et al. 2006) C) Cryo-electron micrograph of an in vitro assembled microtubule. 
(Krebs et al. 2004) 

 
 
 
 

The eukaryotic cytoskeleton has three filamentous components: actin, 

intermediate filaments (IFs) and MTs (figure 2).  

In general, actin is found at the cell periphery and in the actin-myosin ring during 

cell division. Amongst other roles, actin is involved in endocytosis, intracellular transport 

and cell motility. IFs are usually found in the cytoplasm and the nuclear lamina, where 

they give physical support to the cell and the nucleus.  

The last component, the MT network, is of particular interest to us, ad these 

polymers are important to support cell shape. During interphase, MTs are long filaments 

commonly radiating out from a point close to the nucleus toward the cell periphery. Some 

of MTs functions are intracellular trafficking and distribution of molecules and 
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organelles, and providing a mechanical support for the cell against stress and shear 

forces. During mitosis, MTs reorganize to a bipolar spindle responsible for segregation of 

the chromosomes into the daughter cells. 

 

1. Actin 

In polar cells, actin is localized in the growth zone, where it forms protrusions of 

the plasma membrane by pushing forces created when filaments in the network 

polymerize in the plus end and simultaneously depolymerize at the minus end. This 

process is called treadmilling and is also a behavior displayed by MTs.  

Monomeric globular actin protein (G-actin) can form flexible filaments, 5-9 nm in 

diameter. The high resolution structure of the filamentous form (F-actin) is still unknown. 

However, lower resolution models have been suggested from actin fiber diffraction 

experiments, where actin is shown to be a right handed two stranded helix (Holmes et al. 

1990). The polymer has an internal polarity, due to the head-to-tail assembly of the actin 

subunits, where the plus (barbed) end is more dynamic than its minus (pointed) end 

(Kabsch and Vandekerckhove 1992; Steinmetz et al. 1997).  

However, G-actin structure is determined and shows a protein with two large 

domains connected by a hinge and a nucleotide binding site located in a cleft between the 

domains (Klenchin et al. 2006). The nucleotide, ATP, is hydrolyzed into ADP following 

polymerization into F-actin, probably inducing a structural change to the actin molecule 

(Page et al. 1998).      

The dynamic assembly and disassembly of filaments and the formation of larger 

scale filament structures are crucial aspects of actin’s function. Therefore, nucleation, 

capping, stabilizing, severing, depolymerizing, cross-linking, bundling, sequestering or 

delivering of monomers or promoting nucleotide exchange are processes tightly regulated 

by numerous actin binding proteins (ARPs) (Ayscough and Winder 2004).  

The first stage in de novo filament formation is nucleation. So far, three different 

groups of nucleators have been identified - the arp2/3 complex, the formins and the 

spires, as reviewed in (Zigmond 2004; Kerkhoff 2006). In budding yeast it is thought that 

the formins nucleate the long actin cables required for cell polarity, and that arp2/3 
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complex initiates the branched actin patches found for example at sites of endocytosis 

(McCollum et al. 1996; Feierbach and Chang 2001). 

 

2. Intermediate Filaments 

In contrast to actin and tubulin, which are found in all eukaryotes, IFs are mostly 

found in metazoans. However, a budding yeast protein important in organelle positioning 

has been shown to form IFs in vitro (McConnell and Yaffe 1993), and long coiled coil 

proteins are commonly found both in yeast and plants (Rose et al. 2004). Thus, these 

proteins may be present in more organisms and important in multiple processes within 

these cells.  

The best understood function of IFs is to provide a scaffold that maintains cell and 

tissue integrity (Omary et al. 2004). They are composed of different coiled coil proteins 

(~60 diverse proteins in humans only), that are expressed tissue-specifically. Common 

IFs are keratins, the main component in hairs and nails, neurofilaments, which are 

deposited during axon growth and which determine the thickness of axons, and vimentin, 

which is expressed in endothelial cells and fibroblasts.  

This group of coiled coil proteins share a tripartite domain structure; an N-

terminal head, a central rod consisting of mostly α-helices, and a C-terminal tail 

(reviewed in (Herrmann and Aebi 2004). The sequence identity is low but there are two 

conserved IF consensus motifs, one in each of the N- and C-terminal domains.  

The rod forms a dimer with a parallel molecule, which in turn associates with an 

anti-parallel dimer, creating the basic tetramer. These proteins are insoluble in buffers of 

physiological pH and ionic strength. It is thought that this insolubility causes the 

formation of rope like filaments, where 6-10 tetramers are gathered in each cross section. 

This fluctuation of filament thickness is also seen within a filament built of the same 

protein, therefore the filament width varies from 8-12 nm.  

IFs also differ from tubulin and actin by being non-polar and currently no 

molecular motors are known to travel along this cytoskeletal element. Nevertheless, these 

fibers are thought to be highly dynamic structures within the cell and several reports have 

shown transport of IFs along MTs, as reviewed in (Helfand et al. 2004).  
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Interest in IFs is increasing rapidly as more and more diseases caused by 

mutations in the polymerizing proteins are found (reviewed in (Magin et al. 2004; Omary 

et al. 2004) and new model systems emerge as in the hag fish slime, consisting of micron 

thick IFs (Fudge and Gosline 2004). 

 

3. Microtubules 

A. The Structure and Polarity of Eukaryotic Tubulin and MTs 

MTs are vital for the establishment of cell polarity, motility, vesicle trafficking 

and formation of the mitotic/meiotic spindles. Tubulin, the protein forming MTs, is one 

of the most conserved eukaryotic proteins and is essential in all eukaryotic cells. Even 

though prokaryotes do not have a tubulin homologue, a conserved prokaryotic protein, 

FtsZ, of a remarkably similar structure that also creates filaments has been discovered 

(Lowe and Amos 1998).  

MTs are hollow cylinders with a diameter of 25 nm. These cylinders consist of 

tubulin α-,β-dimers that connect in a head-to-tail fashion to form protofilaments, which in 

turn associate laterally into MTs. Most MTs in vivo consist of 13 laterally associated 

protofilaments (Tilney et al. 1973). In vitro the number of protofilaments in a MT can 

fluctuate between 10 and 16, thus the cylinder diameter may vary between filaments 

(Desai and Mitchison 1997). The head-to-tail arrangement of the tubulin heterodimers 

creates a polarized filament where the α-tubulin subunit is exposed at the MT minus end 

and the β-tubulin subunit at the opposing plus end.  

The α- and β-tubulin encoding genes share 40% sequence identity and, as 

expected, their structures are very similar (Nogales and Wang 2006b; Tuszynski et al. 

2006).  Both tubulins are 4 nm long and have a nucleotide interaction site, which binds a 

GTP molecule when in the unpolymerized state.  

Even though the MT lattice has been shown to have some flexibility as it changes 

confirmation upon kinesin binding (Krebs et al. 2004), most changes in MT structure 

occur at the filament ends, in a process called dynamic instability (Mitchison and 

Kirschner 1984).  

 

 

Formatted: Bullets and Numbering
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B. The MT Dynamic Instability Model  

MTs undergo cycles of rapid growth and disassembly in a process known as 

dynamic instability. This has been extensively studied both in vitro and in vivo 

(Mitchison and Kirschner 1984).  

The GTP molecule bound to the β-tubulin in the α,β-dimer is hydrolyzed to GDP 

after MT polymerization. Dimers still bound to a GTP molecule have a straight structure 

which forms a GTP cap on the growing end of the MT (Chretien et al. 1995; Nogales et 

al. 1998; Chretien et al. 1999; Lowe et al. 2001; Nogales and Wang 2006a). Upon 

hydrolyzation, the tubulin conformation changes to a curved state that destabilizes the 

lattice (Howard and Timasheff 1986; Melki et al. 1989; Mandelkow et al. 1991; Hyman 

et al. 1995; Muller-Reichert et al. 1998).  

The straight conformation of the GTP tubulin in growing MT ends enables the 

formation of tubulin sheets in vitro. These sheets are thought to close up into a cylinder 

that is then zippered up into a MT (figure 3) (Erickson 1974; Kirschner et al. 1975; 

Simon and Salmon 1990; Chretien et al. 1995). Studies in Xenopus extract showed that 

these MT end structures also exist in a physiologically more relevant environment (Arnal 

et al. 2000). However, it is still not known how a growing MT end looks like in situ.  

Figure 3 Dynamic instability Microtubule assembly: A) The straight GTP-tubulin 
dimer B) GTP tubulin self assembly into sheets or ribbons C) Closing of the sheet
into a cylinder D) zipping of the sheet into a microtubule. 
Microtubule disassembly E) Loss of GTP cap F) Protofilament peeling G) ring
disassembly intermediate H)  GDP dimer in the relaxed curved state (the lines
indicate the axis of the two monomers within the dimer) (Nogales and Wang 
2006a). 
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Similarly, studies of depolymerizing MTs in vitro have shown curling ‘rams-

horn’ structures created by individual protofilaments curling back from the MTs due to 

the loss of the GTP cap (Mandelkow et al. 1991; Muller-Reichert et al. 1998). MT growth 

is regulated by many factors, such as the concentrations of free tubulin and microtubule 

associated proteins. A decrease or increase of one or more of these factors can cause an 

environmental change more favorable for MT shrinkage or growth. A transition from MT 

growth to shrinkage is called ‘catastrophe’. ‘Rescue’ occurs when the MT returns to 

growth after a shrinking phase. The dynamic instability model enables a thorough 

description of the MT dynamics based on four key parameters: growth and shrinkage 

speed, catastrophe and rescue frequency (Walker et al. 1988).   

Most of this dynamic instability occurs on the MT plus end in vivo, since the 

minus end is often capped by the nucleating γ-tubulin ring complex normally found near 

centrosomes.  

 

C. MT Nucleation by Centrosomes and other MTOCs 

Most cells contain a site that controls the organization of MTs. This is commonly 

referred to as the MT organizing center (MTOC). In the majority of animal cells, MTs 

grow with their minus ends anchored at a perinuclear positioned centrosome, with their 

plus ends radiating out towards the cell periphery (Ou and Rattner 2004).  

A centrosome is composed of a pair of centrioles and a surrounding fibrous 

matrix, the pericentriolar material. Five further members of the tubulin protein 

superfamily – γ-, δ-, ε-, η- and ζ can be found on the centrosome or basal bodies 

(Tuszynski et al. 2006). Sequence identity of the γ-, δ-, ε-, ζ- and η-tubulin are well 

conserved between species, although yeasts and plants do not appear to have clear 

homologues of all tubulin variants.  

The γ-tubulin protein is the best characterized of the centrosomal tubulins (Wiese 

and Zheng 2006). It is part of the 2.2 MDa γ-tubulin ring complex (γ-TURC) that 

nucleates new MTs around the centrosomes and other MTOCs by acting as a ring 

template (Keating and Borisy 2000; Moritz et al. 2000; Wiese and Zheng 2000). This 

makes MT nucleation possible at the low concentrations of free tubulin that are found in 

cells (figure 4).   
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However, the cellular 

function of the centrosome is 

debated. Previously it was 

believed to be essential in the 

mitotic spindle, where it 

gathers the MTs minus ends 

at the poles. Supporting this, 

cancer cells often show 

multiple centrosomes, 

causing chromosome 

missegregation (Fukasawa 

2005). However, studies in 

Xenopus extract have shown 

that mitotic spindles can 

form in the absence of 

centrosomes (Heald et al. 

1997). Furthermore, whole flies can develop into adults without centrosomes, showing 

that the centrosome can be dispensable during cell division (Basto et al. 2006). Plants and 

yeast have also no conventional centrosomes, but still have highly organized MT arrays 

(Murata et al. 2005). 

 

D. Structure of Centrosomes and SPBs 

The basic structure of a centrosome has been described as two centrioles (the 

mother and an orthogonally growing daughter), and the pericentriolar material (PCM). 

The PCM is a fibrous matrix in which one can find the γ-TURCs. Centrioles are 100-150 

nm wide and 100-400 nm long barrel structures with nine fold symmetry of singlet, 

doublet or triplet MTs (Pelletier et al. 2006).  

As previously mentioned, plants and fungi have no conventional centrosomes. 

However, in fungi there is a centrosome equivalent called a spindle pole body (SPB), the 

structure of which varies between species (figure 5). The layered SPB of S. cerevisiae has  

Figure 4 Tomography of the gamma tubulin ring complex
A) γ-TURC in complex with MT B) Slice from a capped MT in a
C. elegans mitotic centrosome C) Model of MT nucleation by
the template action of the γ-TURC (Moritz et al. 2000; O'Toole
et al. 2003) 
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Figure 5 Centrosomes and SPBs A) Centriole pair in C. elegans, that has nine singlet 
MTs (Pelletier et al. 2006).B)  Schematic diagram of the layered S. cerevisiae SPB shows the 
proteins and the layers where they are located (Muller et al. 2005).C) Thin section of S. 
cerevisiae SPB, which is embedded inside the nuclear envelope (arrowheads) and nucleates 
MTs both towards the cytoplasm and nucleoplasm (N). The halfbridge (HB) has an associated 
satellite (S) (Jaspersen and Winey 2004). D) The MTOC in the slime mold Polysphondylium 
violaceum has a layered structure (Roos 1975). E) S. pombe SPB located outside the nuclear 
envelope, with the central plaque (thin arrows), the central bridge (arrowhead) electron dense 
material inside the nuclear envelope (open arrow) (McIntosh and O'Toole 1999). F) A duplicated 
SPB (large arrow) including the connecting central bridge (small arrow), sitting on the nuclear 
envelope in the pathogenic yeast. * marks electron dense material below the NE (Yamaguchi et 
al. 2002). G) A duplicated S. pombe SPB with cytoplasmic MTs.  
 

 

the most thoroughly described structure.  It is duplicated in G1 phase and sits inserted 

into the nuclear envelope, where it nucleates MTs from both the cytosolic and 

nucleoplasmic face (O'Toole et al. 1999). It has six layers, including a central layer 

containing the coiled coil protein Spc42 that forms the crystalline core of the SPB 

(Donaldson and Kilmartin 1996; Bullitt et al. 1997; O'Toole et al. 1999). Recently a 

complete map of protein organization within the SPB has been suggested by 
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mathematical modeling and fluorescence resonance energy transfer experiments (Muller 

et al. 2005).  

Other layered MTOCs exist in the cellular slime molds Polysphondylium 

violaceum and Dictyostelium discoideum (Roos 1975; Daunderer et al. 1999). However, 

most SPBs have a less distinct structure, like the ones found in S. pombe and the 

pathogenic yeast Exophiala dermatitidis. These yeasts have a disk-shaped electron dense 

structure with an even more dense central plaque in the middle sitting on the outside of 

the nuclear envelope during interphase. The disk has a small appendix called the central 

bridge, from which the daughter SPB derives in a yet unknown process before mitosis 

occurs (Ding et al. 1997; Yamaguchi et al. 2002; Uzawa et al. 2004). 

 

 

E. Local Regulation of MT Dynamics in the Cell  

The cell has many ways with which it can regulate MT dynamics to enable the 

different cellular roles of MTs. Local changes of tubulin concentration can be a limiting 

factor for MT growth in small cellular compartments such as a neuronal growth cone 

(Janulevicius et al. 2006). However, as with actin, a whole range of MT associated 

proteins (MAPs) regulate the dynamics of MTs as well (Maccioni and Cambiazo 1995). 

A combination of these factors can cause the MT cytoskeleton to behave differently in 

different regions of the cell or during the cell cycle.  

For example, MTs have been shown to be much more dynamic during mitosis 

(Rusan et al. 2001). During mitosis, MTs should connect to the kinetochores of the 

centrosomes and separate the two sisters into individual daughter cells. The increased 

dynamism of the MTs during this time might increase the chances of encountering a 

kinetochore where it would then be stabilized.  

Similarly, increased catastrophe and rescue events at the cell periphery keep MTs 

growing and shrinking in this region, indicating another form of local MT regulation 

(Komarova et al. 2002). This combination of dynamic instability and local stabilization of 

MTs, where and when necessary, is called the ‘search and capture model’ (Holy and 

Leibler 1994). 
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Figure 6 The fission yeast cell cycle. The different stages of the cell cycle are shown in 
clockwise order. After division cells grow monopolar at the ‘old end’. ‘NETO’ initiates bipolar
growth which lasts until the cell has doubled its length, when mitosis is started. G1 and S phases
occur during cytokinesis. Courtesy of Damian Brunner. 
 

 

Polarity and Morphogenesis in the Fission yeast 

 

 

 

 

1. The Fission Yeast Growth Cycle 

Fission yeast is an excellent model organism for cell polarity because of its 

symmetrical cylinder shape that allows for easy recognition of morphology mutants 

(Snell and Nurse 1994; Verde et al. 1995). This yeast grows in a linear manner with 

growth zones at the cell ends and in optimal growth conditions, cells divide every three 

hours. Directly after division, cells are around 7-8 μm long (1.11x the length of the 
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mother cell divided by two; figure 6) 

(Mitchison and Walker 1959).  Initially, 

growth only occurs at the old end (away 

from the septum), where actin and 

growth markers are already present since 

the last cell cycle. Bipolar growth is 

initiated with the new end take off 

(NETO). NETO occurs during G2 and is 

cell length dependent (it occurs at 

around 9.5 μm cell length) (Mitchison and Nurse 1985).  Subsequently, the cell grows 

linearly at both ends until it is 13-15 μm long, when it undergoes mitosis.   

Mitosis is initiated with a rearrangement of MTs into the nucleus (figure 7) and 

consists of three phases: phase I - spindle formation, phase II - constant spindle length 

and phase III - spindle elongation (Nabeshima et al. 1998). Again, division by medial 

fission produces two equally long daughter cells.  

 

2. The Growth Zones 

Yeast cells grow by incorporating new material into their plasma membranes and 

cell wall. The cell wall in fission yeast is formed by a meshwork of glucans. Excretion of 

new cell wall and membrane occurs at the cell ends and is actin dependent (Marks et al. 

1986; Konomi et al. 2000; Takagi et al. 2003; Kamasaki et al. 2005).  

If the cell wall is removed, the cells form a round protoplast. The protoplast will 

not regain its form before the cell wall has reformed, which makes the cell wall an 

essential component of cell polarity (Osumi et al. 1989). The cell ends are also the region 

of endocytosis (Gachet and Hyams 2005). Here, the plasma membrane around the growth 

sites contains ergosterol-rich domains (Wachtler et al. 2003). These domains are held in 

place by the fission yeasts myosin 1 homologue, myo1 (Takeda and Chang 2005). Myo1 

also stimulates actin nucleation at the cell ends (Lee et al. 2000).  

This kind of polarized growth resembles the growth of hyphae in filamentous 

fungi (Harris 2006) and that of root hairs in plants (Sieberer et al. 2005).  

 

Figure 7 Phases of closed mitosis in S. pombe
(Vogel et al. 2007) 
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3. The Establishment of Growth Zones 

The cellular growth machinery has to be targeted to the correct location, which in 

interphase fission yeast is the cell ends. The landmark protein Tea1 (tip elongation 

aberrant 1) is carried on the plus ends of MTs 

to the cell cortex, where it is deposited (figure 

8) (Snell and Nurse 1994; Verde et al. 1995; 

Mata and Nurse 1997; Behrens and Nurse 

2002). Tea1 is then anchored at the cortex by 

Mod5, a protein containing a prenylation site 

suggesting a membrane attachment (Snaith 

and Sawin 2003; Snaith et al. 2005). However, 

Tea1 is in turn essential for Mod5’s well-

defined localization to the cell ends. 

Therefore, the two proteins seem to be 

dependent on each other for their targeting and attachment to the correct part of the 

plasma membrane (Snaith and Sawin 2003).  

Tea1 is thought to guide the MTs to grow parallel to the long axis of the cell by 

depolymerizing them when they reach the cell end (Mata and Nurse 1997). It is also 

required for targeting other polarity factors, such as the kinase Pom1, Bud6 and the 

formin For3 to the cell end (Bahler and Nurse 2001; Glynn et al. 2001; Feierbach et al. 

2004). Bud6 and For3 are actin binding proteins, which establish a link between the MT 

delivered polarity markers and the actin cytoskeleton as reviewed in (La Carbona et al. 

2006).   

In fission yeast, actin is encoded by the act1 gene. F-actin assembles into patches 

at the sites of cell growth, as well as into actin cables that run along the cell’s long axis 

(figure 9) (Marks et al. 1986; Arai et al. 1998). The filament’s plus ends point towards 

the membrane at the cell end (Kamasaki et al. 2005). The patches are nucleated in the cell 

ends, then transported along actin filaments away from the cell ends and the septum 

(Pelham and Chang 2001).  

The organization of MTs by the polarity proteins will be introduced thoroughly in 

‘The Fission Yeast Microtubule Cytoskeleton’ section. 

Figure 8 Polarity markers are delivered to
the cell end by the cytoskeleton
(Lansbergen and Akhmanova 2006) 
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The Fission Yeast Microtubule Cytoskeleton 

 

 
Figure 9 Fission yeast microtubule cytoskeleton Microtubules are mostly aligned with the long 
axis of the cell. Proteins important for polar growth are carried on microtubule plus ends to the 
cell ends where they get deposited. The proteins shown are just some examples of the many 
proteins being carried on MT plus ends.  
 
 
1. The Interphase MT Cytoskeleton is involved in Cellular Morphogenesis 

Establishment of linear growth in fission yeast is dependent on MTs, in contrast to 

budding yeast where polar growth is actin dependent. If the MTs are too short, as in the 

absence of stabilizing proteins, these polarity factors will be delivered to the wrong 

position on the plasma membrane. Subsequently, the growth machinery is misplaced 

causing cells to grow bent or T-shaped (figure 10) (Toda et al. 1983; Radcliffe et al. 

1998; Sawin and Nurse 1998; Nakayama et al. 2003). Thus, MTs play an essential role in 

positioning the growth sites in a manner that ensures rod-shaped growth. However, once 

polarity is established, polarity maintenance is MT independent (Sawin and Snaith 2004).    

A MT that starts growing in an axis other than the cell’s long axis will be oriented 

when reaching the plasma membrane, as it will continue to grow until it reaches the cell 

end. This is a process dependent on the presence of the anti-catastrophe factor Tip1 

(Brunner and Nurse 2000). This guidance is important for growth site positioning of 
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MTs, because the polarity proteins such as Tea1 travel on MT plus ends and deposited at 

the cell ends (figure 9) (Mata and Nurse 1997; Behrens and Nurse 2002; Snaith and 

Sawin 2003; Feierbach et al. 2004; Snaith et al. 2005).  

 

 

 
Figure 10 Fission yeast morphology mutants A) Wild type B) mal3Δ branched cell C) of bent 
cells of tip1Δ D) orbital mutants of orb6 (Verde et al. 1995; Beinhauer et al. 1997; Brunner and 
Nurse 2000) 

  

2. Interphase MTs Extend From the Nucleus Toward Both Cell Ends 

During interphase MTs in fission yeast are organized as cytoplasmic bundles 

oriented along the cellular log axis (Hagan 1998). The number of MT bundles in a cell 

varies with time, but is commonly between two and six (Carazo-Salas et al. 2005). 

Fluorescence studies have shown that the MT minus ends are gathered in the middle of 

the cell and their more dynamic plus ends point towards the cell ends (Drummond and 

Cross 2000). MTs nucleated away from the nuclear region get pulled there by a 

molecular motor (Carazo-Salas et al. 2005; Janson et al. 2007). An antiparallel bundle 

with a middle region of MT minus end overlap is established in this way. Only one of 

these bundles is associated with the SPB. The others originate in the central overlap 

region, which therefore is called the interphase MTOC (iMTOC). The iMTOCs are 

attached to the nuclear envelope, which enables MTs to position the nucleus in the 

middle of the cell (Tran et al. 2000; Tran et al. 2001). However, MTs bundles are able to 

form without such connections to the nucleus and the SPB (Carazo-Salas and Nurse 

2006; Daga et al. 2006b).  

From fluorescence intensity it has been suggested that only one MT extends the 

full length of the bundle to the cell end (Sagolla et al. 2003). Here, the MT is growing 

slowly for about one minute before it undergoes catastrophe (D. Foethke personal 
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communication). In wild type cells, catastrophe almost exclusively occurs at the cell end 

(Brunner and Nurse 2000; Drummond and Cross 2000; Busch and Brunner 2004). 

Furthermore, almost no rescue occurs before the MT has depolymerized all the way back 

to the iMTOC region (Busch and Brunner 2004). Thus, MT interphase bundle dynamics 

in S. pombe consist of growth, slower growth (or stalling) at the plasma membrane 

followed by catastrophe.  

 

3. Fission Yeast MT Organizing Centers 

The yeast equivalent of the centrosome is the spindle pole body (SPB). In fission 

yeast this is an electron dense oblate ellipsoid 90-180 nm long, positioned on the 

cytoplasmic side of the nuclear envelope during interphase (figure 5) (Ding et al. 1997). 

In contrast to the layered appearance of the budding yeast SPB, fission yeast SPB is an 

amorphous structure layered by a single electron dense central plaque (Ding et al. 1997; 

McIntosh and O'Toole 1999; Muller et al. 2005). However, over 200 proteins localize to 

the fission yeast SPB, indicating a complex network of protein interactions within this 

structure (Matsuyama et al. 2006). Furthermore, it takes at least one and a half cell cycle 

for the SPB to fully mature, as shown by the delay in ability to bind the NIMA kinase 

Fin1 (Grallert et al. 2004).  

There is some controversy as to when the SPB duplicates in preparation for 

mitosis. Originally, duplication was shown to occur in late G2 (Ding et al. 1997). More 

recently, it was claimed that duplication occurs during the G1/S transition, hence before 

cytokinesis is complete (Uzawa et al. 2004). At the onset of mitosis, these SPBs enter the 

nuclear envelope and nucleate MTs into the nucleoplasm, where they form the mitotic 

spindle (Ding et al. 1993; Ding et al. 1997). Another MTOC is found at the division site 

where the equatorial MT organizing center (eMTOC) nucleates a ring of MTs (Hagan 

and Hyams 1988; Heitz et al. 2001; Zimmerman et al. 2004).  

MT nucleation sites in interphasic fission yeast are not restricted to the SPB but 

are also found at the nuclear envelope and on MTs themselves (Sawin et al. 2004; 

Zimmerman et al. 2004; Janson et al. 2005; Zimmerman and Chang 2005). The γ-tubulin 

protein (Gtb1), and the γ-tubulin complex components Alp4 and Alp6 are essential for 

MT nucleation and thus, cell viability (Horio et al. 1991; Vardy and Toda 2000). Three 



Introduction 

 29 

more proteins, Gfh1, Alp16 and Mod21 have been found to belong to the γ-tubulin 

complex. These proteins are not essential for nucleating MTs but deletion of their genes 

cause aberrant interphase MT cytoskeletons (Fujita et al. 2002; Sawin et al. 2004; 

Venkatram et al. 2005; Anders et al. 2006).  

 

4. MT Organization During Closed Mitosis  

As in budding yeast, chromosome segregation occurs inside a closed nuclear 

envelope in fission yeast. The kinetochores of the three chromosomes lie in the direct 

vicinity of the SPB during interphase but lose this association in beginning of mitosis 

(Funabiki et al. 1993).  

During metaphase, the spindle consists of pole-to-pole MTs and shorter MTs, 

including three pairs of kinetochore MTs. As mitosis proceeds, the amount of MTs from 

each pole decreases and the pole-to-pole MTs disappear completely. However, the length 

of the spindle almost yields a duplication in the total amount of polymerized tubulin 

during mitosis (Ding et al. 1993). The chromosomes are separated upon MT 

depolymerization (Grishchuk and McIntosh 2006). 
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MT’s Role in Organelle Positioning 

1. Positioning of the Nucleus and the Site of Cytokinesis by MTs 

Fission yeast cells have a nucleus positioned in the geometric centre of the cell. 

There, the nucleus determines the site of the septum formation by emitting the protein 

Mid1 that forms a band around the middle of the cell (Tran et al. 2000; Daga and Chang 

2005; Tolic-Norrelykke et al. 2005). Mid1 is thought to be excluded from the cell ends by 

the kinesin Pom1 in the non growing half of the cell and an unidentified protein is likely 

to have the same function in the growing end (Celton-Morizur et al. 2006; Padte et al. 

2006). The importance of proper nuclear positioning is demonstrated when its location is 

shifted (centrifugation after MT depolymerization or pushing using optical tweezers). 

The septum is then misplaced, causing unequal division of the cellular material during 

cytokinesis (Daga and Chang 2005; Tolic-Norrelykke et al. 2005).  

This central position of the nucleus is maintained by asymmetric pushing forces 

exerted by MTs (Hagan and Yanagida 1997; Tran et al. 2000; Daga et al. 2006a).  

Although several MAP deletion mutants (i.e. tip1Δ and mal3Δ) fail in centering the 

nucleus, this is most likely an indirect effect of short MTs. It has been shown that the 

force applied on MTs reaching the cell end, and the subsequently induced 

depolymerization, are sufficient to correctly position the nucleus (D. Föthke personal 

communication).  

 

2. Golgi and Mitochondria Morphology is MT Dependent 

In S. cerevisiae the Golgi apparatus and mitochondria 

distribution is dependent on actin. The Golgi is found as individual 

cisternae in the cytoplasm (Rossanese et al. 2001). In contrast, 

fission yeast resembles mammalian cells, with the stacked Golgi 

cisternae and mitochondria’s distribution dependent on MTs. This 

makes the fission yeast a more suitable model organism to 

elucidate the positioning mechanism of these organelles. 

Figure 11 Fission 
yeast mitochondria 
(Yaffe et al. 2003) 
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However, fission yeast Golgi have a dispersed cytoplasmic distribution, whereas 

the mammalian Golgi is close to the MTOC. In mammalian cells, the Golgi apparatus is 

dispersed in the cytoplasm upon MT depolymerization (Robbins and Gonatas 1964; 

Wehland et al. 1983; Rogalski and Singer 1984). Similarly, fission yeast Golgi was found 

to unstack into single cisternae when MTs were depolymerized using the drug TBZ 

(Ayscough et al. 1993). Therefore, it has been concluded that Golgi stacking in fission 

yeast as well as in mammals needs intact MTs.  

Fission yeast mitochondria have an elongated and tubular shape and have been 

seen in close proximity to MTs (figure 11) (Kanbe et al. 1989). Fluorescence microscopy 

confirmed this intimate association when mutations in the atb2 (α-tubulin 2) gene lead to 

aggregated and unevenly distributed mitochondria (Yaffe et al. 1996). When fluorescence 

live imaging became feasible, it was shown that mitochondria grow and shrink with MTs, 

and that this movement requires a previously unknown linker protein named Mmd1 

(Yaffe et al. 2003; Weir and Yaffe 2004).  

 

3. Most Intracellular Vesicle Trafficking is Performed by 

Actin 

Endocytosis, exocytosis and intracellular trafficking 

between membrane bound organelles inside the cell involve 

functionally distinct trafficking vesicles adapted to dock and 

fuse with defined target membranes. These vesicles are 

commonly transported along MTs, and mediate the regulated 

delivery of vesicle content and membrane components 

(Lippincott-Schwartz 1998; Bonifacino and Glick 2004; 

Takamori et al. 2006). However, during yeast endocytosis 

actin patches are formed at the sites of internalization and 

have been seen around vesicles in EM studies (Kanbe et al. 

1989; Takagi et al. 2003; Gachet and Hyams 2005; Kaksonen 

et al. 2005). These actin patches and late secretory vesicles 

are transported within the cell along actin cables (figure 12) (Feierbach and Chang 2001; 

Pelham and Chang 2001; Huckaba et al. 2004).  In fission yeast, MTs might play a role in 

Figure 12 F-Actin in pombe, 
in patches and cables 
(Pelham and Chang 2001). 
Bar 5 μm. 
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Golgi to endoplasmic reticulum (ER) membrane recycling through the kinesin-like 

protein Klp3, as well as in stacking Golgi cisternae (Ayscough et al. 1993; Brazer et al. 

2000). However, secretion is not affected by the loss of MTs (Ayscough et al. 1993).  
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MT-Associated Proteins in the Fission Yeast 

1. MT Plus-End Tracking MAPs Regulate MT Dynamics 

Plus end tracking proteins, or +TIPs are a highly diverse group of MAPs, 

including both MT dependent motors and non-motor proteins. These proteins accumulate 

at the dynamic plus end of MTs in one or a combination of several of the following ways: 

i. Specific binding affinity for a structure of the polymerizing MT end, i.e. tubulin 

sheets or the GTP cap.  

ii. Actively transported by plus end directed motors to the growing MT end.  

iii. By binding to other +TIP proteins already localized at the plus end.  

iv. By co-assembly with tubulin dimers and subsequent release.  

v. Preferential dissociation from the older part of the MT. 

+TIPs can regulate MT dynamics though influencing their structure or 

accessibility to other proteins. Many +TIPs ( e.g. Clip-170 and EB1) stabilize the MTs by 

decreasing catastrophe rates, increasing the number of rescues or by promoting MT 

elongation in other ways (Brunner and Nurse 2000; Busch and Brunner 2004). 

The plus ends of MTs are highly populated in fission yeast, and almost all of these 

MAPs play an important role in the establishment of polar growth (figure 8) (Lansbergen 

and Akhmanova 2006). Two of the klps, Klp2 and Tea2, belong to the +TIPs  (Browning 

et al. 2000; Browning et al. 2003; Busch et al. 2004; Janson et al. 2007). Tea2 transports 

Tip1 (the fission yeast CLIP-170 homologue) to the MT plus end. Once at the end, Tip is 

retained there by Mal3 (the EB1 homologue) (Busch et al. 2004). Mal3 also recruits the 

kinesin Tea2 to the MT (Browning and Hackney 2005).  

 
Figure 13 Mal3 localizes to microtubule ends and stabilizes microtubules A) 
Immunofluorescence staining of methanol fixed cells. Anti- tubulin staining is in red, anti-mal3p 
staining in green. B) Movie sequence of full projects of GFP-tubulin in mal3Δ. (Busch and 
Brunner 2004) 
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A. The EB1 Protein Family and Mal3 

End binding protein 1 (EB1) is a small conserved protein that is usually found as 

a dimer (MW ~60kDa). It was first described in a screen identifying adenomatous 

polyposis coli (APC) interactors (Su et al. 1995). It has subsequently been found to 

interact with almost every +TIP protein described, and has been shown to recruit some of 

them to the growing MT ends (reviewed in (Morrison 2007)). 

The protein consists of three domains. The N-terminal part is basic and contains a 

calponin homology domain, which is thought to mediate MT binding (Hayashi and Ikura 

2003). The second domain is a flexible linker region that joins the N- and C-termini. The 

last domain is the C-terminus, which contains the EB1-like sequence motif, specific to 

the EB1 family of proteins. This motif is part of coiled-coil region which enables protein 

dimerization and interaction with other +TIP proteins. The C-terminal also has a 

sequence of acidic amino acid residues (Bu and Su 2003; Honnappa et al. 2005). 

EB1 is thought to be autoinhibitory, with the C-terminus preventing effective MT 

binding. EB1 interacting proteins release this inhibition and increase EB1’s MT affinity 

(Hayashi et al. 2005).  

In fission yeast, Mal3 (EB1) was identified in a screen for minichromosome loss. 

mal3Δ cells are sometimes bent and branched. When the MT bundles were studied, they 

were found to be half the length of WT bundles (Beinhauer et al. 1997; Busch and 

Brunner 2004). Mal3, like its human counter part, localizes preferentially to MT plus 

ends (figure 13). The GFP tagged Mal3 left the MT ends before catastrophe (Busch and 

Brunner 2004). Therefore, it has been concluded that Mal3 is important for stability of 

growing MTs.  

Recent in vitro electron microscopy studies revealed a preferential binding of 

Mal3 to the MT seam. It was suggested that Mal3 works as a molecular zipper of the MT 

lattice, stabilizing the MTs by strengthening their weakest point (Sandblad et al. 2006).  
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Figure 14 Tip1 localizes to microtubule plus ends in a Mal3 dependent manner and tip1 
deletion cause short microtubules. Immunofluorescence staining of fixed cells using the anti-
tip1p antibody (green) and the anti-tubulin antibody (red) (Brunner and Nurse 2000; Busch and 
Brunner 2004) 
 

 

B. The Clip-170 Family and Tip1 

Cytoplasmic linker protein 170 (Clip-170) is the prototype +TIP protein (Rickard 

and Kreis 1990). It has been shown to mediate the interaction between MT ends and 

kinetochores, endocytotic vesicles and the leading edge of migrating cells (Pierre et al. 

1992; Schuyler and Pellman 2001; Tanenbaum et al. 2006).  

The protein consists of two CAP-gly domains in the N-terminal part, followed by 

a long coiled-coil region which ends in two zinc fingers in the C-terminal part (Pierre et 

al. 1994). The protein is auto-inhibited by a head-to-tail fold where the N-terminus and 

the first zinc finger of the C-terminus interact (Lansbergen et al. 2004).  

Mammalian Clip-170 treadmills on the MT ends by binding tubulin heterodimers 

and copolymerizes with tubulin into the MT (Diamantopoulos et al. 1999; Perez et al. 

1999; Folker et al. 2005). It has been shown that phosphorylation of the serine residues in 

Clip-170 inhibits MT binding (Rickard and Kreis 1991). Therefore, phosphorylation may 

be the mechanism by which the Clip-170 disassociates from the MT lattice.  

However, both Bik1 (Clip-170 in budding yeast) and Tip1 (in fission yeast) are 

delivered to the plus ends of MTs by the kinesins Kip2 and Tea2 respectively (Busch et 

al. 2004; Carvalho et al. 2004). This gives these kinesins a new mechanism to influence 
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MT stability and an alternative mechanism of Clip-170 plus end association. Once at the 

MT plus end, Tip1 is anchored there by Mal3 (figure 14).  

In fission yeast, MT bundles continue growing when they contact a cell wall. 

Consequentially, bundles align with the cell’s long axis. MTs then continue to grow until 

they reach the cell ends where they deliver the polarity markers and undergo catastrophe 

(Brunner and Nurse 2000).  

In cells where Tip1 is deleted, MT catastrophe is no longer restricted to the cell 

ends, but also occurs in the middle of the cell. Therefore, MTs are short and cells grow 

bent or T-shaped. This local influence of MT dynamics performed by Tip1 guides the 

MTs to deliver the polarity markers at the cell end (Brunner and Nurse 2000).  However, 

much still remains to be elucidated about the function of +TIPs at MT plus ends. 

 

C. +TIPs as Centrosomal Proteins 

Recently, more and more evidence shows that EB1 and other +TIPs such as 

XMAP215 and dynein are also centrosomal components (Wang and Huffaker 1997; 

Popov et al. 2001; Ma and Chisholm 2002; Rehberg and Graf 2002; Cassimeris and 

Morabito 2004). EB1 has been implicated in MT anchoring at the centrosome (Askham et 

al. 2002; Yan et al. 2006).  

Bim1 (EB1) and Kar9 (APC-related protein) localize to the SPB in S. cerevisiae. 

This localization is necessary for the correct alignment of the spindle (Liakopoulos et al. 

2003). Interestingly, in budding yeast as well as in human cells, EB1 localizes to the old 

centrosome/SPB (Hwang et al. 2003; Liakopoulos et al. 2003; Maekawa et al. 2003).  

 

2. Molecular Motors 

Kinesins are molecular motors that move along MTs in an ATP dependent 

manner. There are 14 different families of kinesins described today (Lawrence et al. 

2004; Miki et al. 2005). Kinesins are important for MT organization and the transport of 

cargo along MTs. They can also actively stabilize or depolymerize MTs (Howard and 

Hyman 2007). The genome of S. pombe encodes nine kinesin-related genes and one 

cytoplasmic dynein (Wood et al. 2002).  
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The dynein is cortically anchored and necessary for nuclear oscillation during 

meiosis (Yamamoto et al. 1999; Niccoli et al. 2004; Yamashita and Yamamoto 2006).  

Of the nine kinesin like proteins (KLPs), seven proteins have been characterized and only 

one, Cut7, was found to be essential. All seven characterized proteins have an impact on 

MT organization in fission yeast (table 1).  

 

 
Table 1 The kinesin like proteins in fission yeast (Hagan and Yanagida 1990; Brazer et al. 
2000; Browning et al. 2000; Troxell et al. 2001; Jeong et al. 2002; Busch et al. 2004; Browning 
and Hackney 2005; Carazo-Salas et al. 2005; Rhee et al. 2005; Janson et al. 2007) 
 
Protein Kinesin family Interphase function Mitosis function 
Pkl1 (Klp1) 14 Not known Stabilizing 

interdigitating MTs 
Klp2 14 Minus end directed 

sliding of MTs 
+TIP tracking 

Shortening MTs at 
the kinetochores 

Klp3 1 Recycling of Golgi 
cisternae Not known 

Tea2 7 Transporting Tip1 
to MT plus ends; 
recruiting Mal3 to 

MTs 

Not known 

Cut7 5 Not known Stabilizing 
interdigitating MTs 

Klp5 & 6 8 Not known Depolymerize MTs 
 
 

3. MT Bundlers 

Since MTs in fission yeast are bundled, it is likely that some molecular linkers are 

holding the filaments together. The yeast PRC1 homologue, Ase1, bundles MT minus 

ends to form a midzone of crosslinked antiparallel MTs close to the nucleus where Ase1 

is localized (Loiodice et al. 2005; Yamashita et al. 2005). However, a small amount of 

bundling can also occur in the absence of Ase1 (Daga et al. 2006b). 
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MT nucleation outside the nuclear region occurs at the satellite MTOCs (Janson et 

al. 2005). The plus end tracking motor Klp2 slides the MTs so that their minus ends can 

be found in the overlap region. Here, Ase1 acts as a molecular break to prevent further 

sliding and is thereby it focuses MT minus ends in the iMTOC (figure 15) (Janson et al. 

2007). 

Figure 15 Model of microtubule bundling in fission yeast Microtubule plus ends are 
indicated by arrow heads, minus ends by spheres. MT nucleation along interphase bundles
occurs from MT-bound nucleation complexes (blue). After nucleation, MTs are stabilized in the
antiparallel configuration by polarity-specific Ase1 (green). The minus-end-directed kinesin-14 
Klp2 (red) subsequently transports MTs to the bundle midzone. As the new MT grows,
additional Ase1 binds, increasing the friction against a length-independent number of motors at 
MT plus ends. Consequently, the speed of transport decreases and finally becomes zero when
motors lose contact with antiparallel MTs. (Janson et al. 2007) 
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Tomography 

 
 

 
Figure 16 The principle of electron tomography A) A series of 2D pictures of the sample is 
acquired from different angles B) The resulting series of 2D images is back-projected to a digital 
3D reconstruction of the original sample. (McIntosh et al. 2005) 
 
 
1. 3D Reconstruction of Cells Using Electron Tomography 

Electron microscopy studies of cells and of macromolecular complexes within 

cells are currently undergoing a huge transformation. The recent improvements of both 

the methods and the instrumentation for electron microscopy are now allowing 

subcellular structures and organelles to be characterized in 3D with unprecedented detail 

and reliability (O'Toole et al. 1999; McIntosh et al. 2005). This is the contribution of 

cellular electron tomography (ET), a method which can produce 3D reconstructions of 

fixed and plastic embedded cells or frozen hydrated samples (Frank 1992; Baumeister et 

al. 1999).  

In principle of electron tomography consists in taking many 2D images of one 

object from varying angles. These pictures are then combined into a 3D volume in silico 

by a method called weighted backprojection (figure 16) (McIntosh et al. 2005). The 

resolution one can achieve depends on many factors, but viewing a sample in vitreous ice 

by cryo-tomography can yield up to 20 Å resolution, enough to study individual protein 
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structures (Sandin et al. 2004). However, in a sample embedded in resin and stained with 

heavy metals, the resolution could never reach higher than 50 Å. This is due to the metal 

coat applied on the sample’s proteins (McIntosh et al. 2005).  

 

2. MT End Structure can show MT Polarity and Dynamics 

Microtubule bundles have traditionally been studied by thin serial section 

reconstructions of pictures taken from MTs imaged in cross sections. This method 

provided us with an unreliable picture of interphase MTs in S. pombe since these 

cytoplasmic fibers, in contrast to mitotic spindles, are not arranged in parallel bundles 

(Ding et al. 1993). The interphase MT arrays of fission yeast bend and diverge; 

consequentially they are very hard to track by the serial section reconstruction method. 

We have found that electron tomography gives a more accurate picture of the cytoskeletal 

arrangement when one is working 

with such irregular structures.  

Additionally, electron 

tomography provides more detailed 

information than serial thin sections, 

since its 3D resolution is essentially 

isotropic, while that of serial thin 

sections is limited along the 

dimension perpendicular to the 

image by the section thickness 

(usually > 40 nm). 

 

As described in “The MT Dynamic Instability Model” chapter, the MT end 

morphology changes when it undergoes catastrophe or rescue. MTs that depolymerize 

have protofilaments curling backwards from their ends, growing MTs have a ‘sheet’ and 

metastable MTs have a blunt end. Furthermore, the γ-TURC complex is thought to 

nucleate MTs, and is then left as a ‘cap’ on the minus ends (figure 17).  

These morphological differences can be seen with tomography and have been 

used to determine the polymer’s polarity (capped versus open end), as well as its dynamic 

Figure 17 Microtubule end structures in 
Caenorhabditis elegans A) capped end B) blunt end 
C) flared end (O'Toole et al. 2003) 
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state at the time of freezing inside cells (O'Toole et al. 1999; O'Toole et al. 2003). 

Furthermore, the MT lattice structure can also be studied in the cellular context using 

resin embedded and heavy metal stained samples for tomography (Srayko et al. 2006). 

Finally, interactions between MTs and other organelles, or indeed any ultrastructural 

feature, can be studied in the resulting tomograms (Marsh et al. 2001). Thus, the labor 

spent, though significant, yields a lot of valuable information about the entire cell 

architecture. 
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Table 1 Steps in producing a large tomogram reconstruction (white 
boxes) and the software needed (black boxes) 

Chapter 2 

Materials and 

methods 
 

Summary 

The various steps of the 

complete procedure to reconstruct and 

model large cell volumes by electron 

tomography can be divided into three 

main parts (see also table 1): 

1. Sample preparation: The 

first step involves handling cell cultures and performing cryo-immobilization of cells 

using a high pressure freezer. This is followed by freeze substitution in acetone and 

plastic infiltration to generate blocks of embedded samples. From these, thick sections 

collected in ordered series are cut, contrasted and fiducial gold particles are added to later 

facilitate a precise alignment of the projections in the tilt series. 

2. Electron microscopy: The second step requires a transmission electron 

microscope (200-300 kV) equipped with a CCD camera and controlled by appropriate 

acquisition software. This is used to acquire a series of 2D projections at various 

orientations (tilt series). Montaged images in the x/y plane can be made in order to cover 

the full area of interest at each angle during acquisition.  

3. Computation: The final reconstruction includes alignment of all images from 

the tilt series with high precision helped by the fiducial markers. Lastly, all tomograms in 

the series are calculated and joined in the z-axis to create a large volume. A 3D model is 

then created from contours of features of interest.  These can be painted in the tomogram 

using the slicer tool. Quantitative measurements can then be performed on these models 

using various IMOD programs. 
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Methods 

 

Sample preparation 

 
1. Cell culture   

 Fission yeast strains are best maintained by well-established methods that have 

been already described (Moreno et al. 1991). Briefly, yeast cells can be stored in a 

glycerol-containing medium at –80oC for years, then awakened by cultivation on a plate 

of rich medium and incubated at 25-32ºC for 1-4 days. A liquid pre-culture (10 ml) of a 

standard rich medium (YE5S) is then inoculated with a small amount of cells from the 

initial plate. This pre-culture is placed at 25-32ºC in an incubator with constant agitation. 

The pre-culture is then used to inoculate a larger culture, taking into account the 

generation time of the strain that will be studied (usually about 3h). The optical density 

(OD) is checked (at 595 nm) and should be between 0.25 and 0.75 for cells to be in log-

phase growth. Cell cryo-immobilization is best performed when the culture has an OD 

between 0.5 and 0.75, since this higher density gives better performance during the 

harvesting of cells for rapid freezing, thus optimizing freezing quality (see below). Cells 

can also be cultivated in the defined Edinburgh Minimum Medium. However, cells 

usually grow more slowly in defined media, and they often show some morphological 

alterations, e.g., more vacuolar structures within the cells. 

  

2. High Pressure Freezing (HPF) 

As ET of subcellular organization is a multi step procedure (i.e., expensive and 

time-consuming, see table 1), it is of great importance that specimens are initially 

preserved as well as possible. Thus, cryo-immobilization by HPF is highly recommended 

when possible. HPF freezes biological specimens up to several hundred microns thick 

under a pressure of over 2000 bar. This instrument works well for the preservation of 

fission yeast when employed as described below and for us it was the method of choice.  

At the time of freezing, 15 ml of cell culture at OD ~0.5 (at 595 nm) is filtered to a paste 



Method 
 

 45 

using a Millipore 15 ml filtration set-up with 25 mm polycarbonate circular filter (0.4 µm 

pore size). Cells are then gently scraped from the filter using a toothpick and the paste is 

loaded into a specimen carrier for the HPF that is available (Baltec 200 µm deep carriers 

or Leica slot carriers). A syringe needle bent at 45 degrees is used to flatten the cell paste 

contained within the carrier. The carriers are then closed and mounted on the specific 

specimen holder of the HPF machine and frozen. 

 

3. Freeze substitution 

Freeze substitution (FS) is a valuable and common way to process biological 

samples following HPF cryo-immobilization (Steinbrecht 1987). During FS the water is 

slowly substituted for an organic solvent at low temperature (around –90ºC) for a long 

time (2-3 days). This method performs cell dehydration with minimal cellular damage 

(Steinbrecht 1987; Steinbrecht 1993; Giddings et al. 2001). Shrinkage or collapse of cell 

structures would inevitably occur at room temperature. Yeast cells are best freeze 

substituted in acetone supplemented with some fixatives (McDonald and Morphew 

1993). The water content of the cells is extracted in the FS solution at -90ºC for 48-72 h 

in a Leica AFS device (see Material section).  

The advantage of FS is that the fixatives can diffuse into the cryo-immobilized 

cells at a very low temperature (–90ºC) and are therefore already present in all subcellular 

compartments when the temperature rise brings them over the efficacy threshold for the 

fixatives. Thus, following cryo-immobilization the carriers containing the frozen fission 

yeast are placed into a dehydrated acetone FS solution supplemented with 0.1% 

dehydrated glutaraldehyde (GA), 0.25% uranyl acetate (UA) and 0.01% osmium 

tetroxide (OsO4). This mixture gave good results for visualizing MT arrays in yeast cells 

(Muller-Reichert et al. 2003), however, the composition of the FS solution can be varied 

to some extent as we also obtained very good SPBs and MTs preservation in fission yeast 

using a FS solution made of 0.5% dehydrated GA, 0.5% UA and 1% OsO4. Surprisingly 

membrane contrast can be well improved by adding 1% water, or more, to the freeze 

substitution solution (Walther and Ziegler 2002).  

After the dehydration step the temperature is progressively raised to –45ºC with 

an increment of 5-10ºC/h. The carriers are then rinsed at this temperature with pure 
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dehydrated acetone and then placed together with their container within the chamber of a 

cryo-ultramicrotome set at –45ºC in order to proceed at the separation of the pellets from 

the carriers with a needle from a syringe. Using a cryo-ultramicrotome for this operation 

makes this step more comfortable, as one can benefit from the microscope on the cryo-

attachment. The free pellets are then placed back into the plastic tubes which are 

transferred back into the AFS machine and further processed by progressive infiltration 

with resins. In the case of lowicryl (HM20) embedding, several steps are required to start 

the infiltration at –45ºC: acetone/lowicryl 3:1 for 60 min, 1:1 for 2-3h, 1:3 for 2-3h, pure 

lowicryl 2 times for 60 min, then overnight. Finally, a last resin change is made before 

starting polymerization by the action of UV light. For the preparation of epon blocks, the 

resin is infiltrated in the same way after rinsing with pure acetone, but this is done around 

–30ºC or even at RT.  

Lowicryl polymerization is started at –45ºC for 48h and is continued during the 

rise of temperature (10ºC/h) up to room temperature, where the blocks are left for another 

12h under the UV lamp. For epon blocks the polymerization is made over night in an 

oven set at 60ºC. 

 

4. Choice of FS resin 

Advantages of acrylic resins, like lowicryl (HM20), include their low freezing 

point as well as their low viscosity, even at low temperature. HM20 has a water-like 

viscosity even at -35ºC. Therefore, embedding can be started at very low temperatures 

when the proteins are best stabilized and the samples are optimally preserved (Griffiths 

1993). The resulting blocks have very good sectioning properties when one uses a 

diamond knife with a 35º included angle. Epon  shrinks with around 30% when  exposed 

to the electron beam (Braunfeld et al. 1994). In our study we found the shrinkage of 

lowicryl to be around 10% in the z-axis, and as such, more stable than epon (see also 

Carlemalm, 1982). Further, we have found lowicryl to be slightly less electron dense and, 

as such, permit thicker sections for ET. It was therefore our resin of choise. However, 

epon is the standard embedding medium in most labs. This resin gives very good contrast 

and is much less harmful for the health of the microscopist, compared with lowicryl 

resins. 
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5. Serial sectioning 

Serial sections 200-250 nm thick are ideal for tomography when using a 

microscope that operates at 200 or 300kV. A plastic block is trimmed to make the block 

face a trapezoid with a low height (base= ~300μm and h= ~100μm). Serial sections are 

cut from the plastic block on an ultramicrotome using a 35º diamond knife. In case the 

consecutive sections do not attach to each other to form a consistent ribbon, a solution 

made from a droplet of rubber cement dissolved in xylene (circa 1:20 dilution) may be 

applied to the block face. After this adhesive is dry, newly made sections should attach to 

each other better. Chloroform vapors (from a small ball of cotton moved over the 

sections) help the sections to flatten if they have wrinkles.  

As the large volume approach requires serial sections, slot grids with a large 

central hole (1x2 mm) are preferable. These grids will be coated with a rather thick film 

of formvar (90-100 nm thick, which shows a golden interference color); this provides 

adequate section stability over the entire hole in the grid. Fresh formvar coated grids 

should be made and should not be carbon-coated, as the films are more fragile when old 

and carbon coated.  

Preparing the grid and finding the right cell are the largest hurdles when wanting 

to reconstruct a full cell volume. A perfect grid has 25 or more serial sections straight 

down the middle of the slot.  To fit many serial sections in the 2 mm slot one has to trim 

the block to a very small surface. The grid edges will appear in the picture at high tilt and 

make tomogram acquisition impossible if the cell of interest is far from the center of the 

formvar film. Therefore, centering the serial section ribbon is crucial.  

To align the sections to the middle of the grid we recommend attaching a long 

hair diagonally across the knife boat. One end of the hair is attached with tape to the 

knife’s external wall; the other end is attached at the middle of the back edge of the pool. 

As ribbons of sections come off the knife’s edge, they can be parked along the hair, 

gently aligned with the axis of the slot grid, and therefore easily picked up from 

underneath. This allows the microtomist to place the ribbon in a precise and controlled 

way on the grid. 
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6. Contrasting and application of fiducial markers for tilt alignment 

Lowicyl sections are contrasted by staining grids with 2% UA in 70% methanol 

for four minutes, followed by a lead citrate stain (Reynolds solution) for one minute. 

Longer staining darkens the cells within the sections without an increase in their contrast. 

For epon sections methanolic or aqueous UA contrasting solutions are suitable, and these 

can be applied to the sections for a longer time (up to 15 min). Lead citrate contrasting is 

again required, as with lowicryl sections.  

To make a tomogram one needs a series of images of the same area of the 

specimen, taken over a wide range of tilts, typically +60o in increments of 1o. These 

images must then be accurately aligned. To facilitate this process, gold particles are 

applied to both sides of the grid after contrasting; these can act as fiducial points to bring 

the multiple tilted views into alignment. Depending on which magnification is used for 

acquiring the images (14,500 – 25,000X), the colloidal gold particles should be 10-15nm 

in diameter. The issue is to have the image of the gold particle large enough on the CCD 

camera used for image recording that there are ~10 pixels across the diameter of each 

particle.  To put the particles onto the sample, grids are floated on 5 μl droplets of a 

solution of colloidal gold (15 nm in diameter, OD=4) for 3 minutes on each side. The 

grids are then quickly rinsed on water droplets and dried by blotting. 

 

Tomogram acquisition 

 

1. Large scale adaptations 

In yeast cells the cytoplasm is filled with electron dense ribosomes that obscure 

the MTs in a semi-thick section, like ones used for tomography (figure 1a). Thus, the 

selection of cell sections to image must occur “blind”. The importance of choosing the 

right cell must be stressed, since the time spent acquiring and aligning the images and in 

calculating the tomogram is so considerable that the number of cells studied is usually 

very low. We developed two methods to tackle this problem. First, a quick screen to 
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Figure 1: Microtubules are not visible in the dense cytoplasm of yeast
semi-thick sections  A) A zero angle projection of a 250 nm section B) a 
section of the tomographic reconstruction of the same cell with a MT clearly
visible (white arrowhead; picture has been rotated horizontally to create a
mirror image). 
 

examine the content of a section was designed; second we developed a large volume 

approach that should include MTs, regardless of their position in the cell. In both cases 

image resolution was compromised to achieve the largest possible volume, but our 

compromises leave MTs still clearly visible (figure 1b).  

 

The alignment of interphase MTs almost parallel to the axis of the fission yeast 

cell (see figure 2a) made it possible to choose cells that would be favourable for whole-

cell MT reconstruction using images from only a single axis of tilt. We chose to image 

cells that were oriented with their long axis parallel to the tilt axis, with the results that 

we had good resolution and contrast of MT walls, even with single axis tomography 

(figure 2b). Though dual axis tomograms provide the more isotropic resolution and 

contrast (Mastronarde 1997), our strategy provided reconstructions with adequate quality, 
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even though they were based on only half the data, a serious issue when large volume 

reconstructions are considered.  

Our first approach to picking favourable cells is based on producing a 

preliminary, or “screening” tomogram by acquiring pictures in which the pixels are  

 

binned to ~ 2 nm and images are collected at 4o increments over ± 60˚. These data are  

used to build a tomogram using cross-correlation to align the tilted views without fiducial 

alignments. The resulting tomogram provides a low-resolution 3D image of the contents 

in the section studied. When these reconstructions revealed MTs lying flat within the 

section, we collected the data necessary for a serious reconstruction (1.5o increments over 

± 60-65˚ tilt, 1.526 nm pixel). The MT bundles could then be followed through the serial 

sections. 

The second approach was made possible by the ease with which one can acquire 

montaged images, using the SerialEM acquisition software (see http://bio3d.colorado.edu 

for details). Short cells (7-9μm) in the right orientation were found and tracked through 

serial sections (see figure 3a). To find a cell that is present in all sections and preferable 

do not have dust covering any sections is difficult. By initiating the search for a cell that 

looks cut through the middle in the mid-section of the ribbon, one increase chances to 

find all serial sections within the sections on that grid.  

Figure 2 Linear arrangement of microtubule interphase arrays in
fission yeast enables single axis tomograms to give the resolution
required A) fluorescence picture with GFP-tubulin. (Courtesy of Dr. 
Damian Brunner). B) A suitable, well embedded, short cell (black
square) aligned along tilt axis (black line) in low magnification. In this
orientation IMAs should have ideal resolution in single axis tomograms.
Cell not suitable for single axis tilt series is shown in grey square.  
 

http://bio3d.colorado.edu/
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Searching for the right cell was simplified by the newly developed Navigator 

software, which works within SerialEM. Navigator makes a low magnification montage 

of the whole EM grid. The resulting map can be used to identify promising areas and to 

zoom up in magnification, seeking a cell that looks well preserved, then zoom out and 

make sure one can follow the cell through the serial sections. Each cell that is suitable can 

then be marked with a colored point (figure 3b) and can be relocalized automatically by 

the computer-controlled stage, even after the grid has been removed from the microscope, 

thanks to the use of four registration points. Only when a cell was traceable through many 

sections (5-16) did we go on to acquire montaged image from each section, covering the 

whole cell length at a resolution appropriate for reconstruction (figure 3c and 3d; 1x3 

montage, 1.5o increment, ± 60-65˚, 1.526 nm pixel). Serial sections were then joined in z 

to reconstruct a S. pombe cell that is around 4 μm in diameter. Thus, reconstruction of 

large parts or even whole cells was achieved and the MT bundles could be partially or 

even completely reconstructed (figure 3e). 

 

2. Image Acquisition 

Tomograms are 3D reconstructions of samples that have been imaged from many 

directions. The more directions of view included and the higher the total range of the 

angles of view, the better resolved are the internal content of the section. Therefore, 

special high-tilt holders have been developed to allow for angles of tilt to up to ±75˚. For 

the optimal usage of these holders the specimen must be placed centrally on the EM grid.  

When the electrons hit the plastic-embedded sample, shrinkage is induced (Luther 

et al. 1988). This shrinkage causes problems during the subsequent image alignment so it 

is important to minimize the shrinkage during acquisition of a tilt series. If a pre-

illumination step is added, most shrinkage has occurred before the first picture is taken. 

During this “pre-burn” the electron beam is spread to include a large area around the 

sample, to have a uniformity of the shrinkage in the whole area, and left there for around 

five minutes.  

Several programs are available to facilitate the collection of data for tomography; 

the choice of which to use is determined by the application and which hardware is 

available. Some examples are TOM, TVIPS and SerialEM. We used SerialEM, which is 
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specially adapted to the FEI Tecnai series and has proven very useful for MT studies, 

especially when large volumes and montaging are necessary (Mastronarde 2005). 

Tilt increment and angular range desired are entered into the software which then 

undertakes a repeated macro of tilting the specimen holder, tracking the sample, focusing, 

final exposure, and saving the image to file. For work with stained, plastic embedded 

samples that seeks about 5 nm resolution, pictures are usually taken with about 0.2 μm 

defocus for optimal result.  

 

Tomogram calculation and 3D model reconstruction 

 

1. eTomo and tomogram calculation 

 After a series of tilted 2D projections of the specimen has been taken it must 

undergo a set of processes to generate the final tomogram. Also here there are several 

software packages available, depending on the application and nature of your data. IMOD 

is the only software, to our knowledge, with integrated ability to calculate montaged 

tomograms (Mastronarde 1997; Sandberg et al. 2003). Further, it has a graphical user 

interface, eTomo, and a large set of programs designed specially for dealing with 

microtubules once the tomogram has been generated. For an in-depth introduction and a 

tutorial to this software see the webpage (http://bio3d.colorado.edu/). 

The first step towards a high quality tomogram is to remove camera defects as 

well as extremely bright pixels that were created during image acquisition by x-rays. This 

can best be done by replacing any markedly deviating pixels with the average values 

from surrounding pixels in a sort of interpellation process.  The IMOD package includes 

a program called ccderaser to do this job.  

Tomograms are generally calculated by a weighted backprojection of the 2D 

projections acquired, though other methods are available (Frank, 1992). For the best 

possible resolution in the final tomogram all the projections must be carefully aligned to 

one another. If one uses the IMOD program suite, the images are first aligned coarsely, 

using cross-correlation (programs: xcorr, prenewst). Large deviations in this alignment 

can be fixed in the manual alignment program, Midas. Then a selection of fiducial 

http://bio3d.colorado.edu/
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particles (the colloidal gold from both sides of the sample) is used to refine the alignment.  

This is most easily accomplished if the particles are evenly spread over the specimen. 

These gold particles are then tracked through all of the projections and a model that 

represents all of these points is visually scrutinized to identify points that are out of place.  

It is important to ensure the best possible alignment of the tilted views. Fiducial 

alignment is a time consuming process because corrections are made in cycles with 

increasing accuracy.  On montaged tomograms around 40 fiducials per frame are chosen 

and local alignment is used. Local alignments separate the image stack into smaller  

regions by choosing areas that include a certain amount of fiducials on each side of the 

section (default is 8 on one side and 3 on the other but this is flexible). These region’s 

distortions are then separately considered by the algorithms that estimate the position of 

the gold fiducial, which greatly improves the estimates.  Hence, one has to consider that 

the larger the imaged area the higher the distortions, therefore local alignments matter 

even more with large areas such as image montages.  

Once the alignment is as good as possible, three quick tomograms corresponding 

to the top, middle, and bottom of the volume are created (sample) and viewed along an 

axis parallel to the plane of the section, e.g., the y-axis. By doing this, the section 

thickness, the angle around the x- and y-axes, and z position of the section within the 

tomogram become obvious. Then, by drawing boundary lines at the bottom, and top of 

the three tomograms a small model is created which gives numerical values for these 

parameters. In IMOD, the program tomopitch assures that the image stack is finally 

aligned and positioned so that the 3D volume created is as small as possible.  In the final 

alignment step it is recommendable to use linear interpolation or the 2D image filtering 

option for optimal reconstruction quality. 

The next step is the actual calculation of the tomogram, which is followed only by 

a final trimming of the volume, the conversion of pixels to bytes, and adjustment of 

contrast. 

 

2. Joining of serial tomograms 

To create reconstructions of large volumes, it is essential to join tomograms of 

serial sections. While one might imagine that a greater volume could be reconstructed 
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simply by imaging a thicker section, in our hands this leads to poorer image resolution 

and a reduction in the visibility of cellular detail, so objects like yeast MTs, which are 

surrounded by a dense distribution of darkly staining ribosomes, become invisible.  

Recently the procedure for joining serial tomograms with IMOD has been greatly 

simplified by a new function in the eTomo graphical user interface. The joining consists 

of three steps: set up, alignment, and join.  

Set up includes defining the slices from each tomographic reconstruction that 

should be used for the visual alignment of the serial sections. These slices should be 

chosen so that organelles and the cell’s plasma membrane are clearly visible, but they 

should still be as close to the top or bottom of the reconstructed volume as possible 

(figure 4 b and c). Furthermore, the sections that will be used as the first and last in the 

actual joining must be chosen. These should normally be the first and last section of the 

tomographic stack, so as not to lose any of the biological information available (figure 4 a 

and d).  

The alignment step is crucial for the generation of a large serial tomogram from 

which it will be possible to generate a precise 3D model. Using eTomo there is an initial 

automatic alignment, which then can be manually improved, if necessary, with Midas. 

The transforms that will bring about proper alignment are saved in a text file that is then  

utilized in the final join step. Here the serial section tomogram reconstructions are 

stitched together into one large image file. To ensure the best possible result, a test join 

option is available in the software. This option creates an image stack with every nth 

picture (so the file is not too big for rapid calculation and display); this can easily be 

opened and scrutinized before the final join is submitted. It is often necessary to do 

iterative steps of trial joins and alignments for the best final joined tomogram possible. 

 

3. Taking a snapshot from the tomogram             

It is often useful to prepare 2D images that are slices from the tomogram.  To 

create snapshots in IMOD, there are simple key commands that will save either the full 

screen or a selected part of it as either a “tif” or an “rgb” file.  Since these forms of the 

data are useful for presentation, one must make sure that the contrast is ideal before 
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storing such an image. If the image is to be used for publication, one has to acquire a 

montaged snapshot, which can provide the resolution appropriate for such a use.  

 

 
 

Figure 4 Principle of choosing sections for tomogram joining A) and D) are 
sections that are used for the actual join. Ideally, they are the top and bottom
sections of the tomogram (red lines in E). B) and C) are used for alignment since 
intracellular detail is clearer (green lines in E). E) Tomogram flipped around the x-
axis, so that we see the depth of the section. F) Unaligned sections from top 
(green) and bottom (magenta) of adjacent serial sections, G) sections in F) have 
now been aligned, H) side view of an image file containing nine joined serial
tomographic reconstructions. 
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A snapshot from a tomogram is often the image data from a single tomographic slice, 

which is usually only 1-2 nm thick. Often one can make a more useful and pleasing 

image by averaging the 2D information in several adjacent tomographic slices.  In IMOD 

this can be accomplished with the slicer tool.  Slicer can also be used to change the 

orientation of the sample that is cut from the tomogram, so it will best display a feature of 

interest, like a cytoskeletal fiber.  

 

4. Construction of a 3D model   

A. Tracking MTs and other filaments using 3dmod 

Segmentation of the image data in 3D reconstructions is sometimes necessary to 

clearly visualize and display the organization of a feature of interest, like the MT bundles. 

Segmentation can create graphic objects that represent features of interest without the 

complexity that is caused by tomographic imaging of well-fixed cytoplasm.  A model can 

then be built from these graphic objects, which simplify structure interpretation and can 

be used for measuring distances between organelles. Still, one must remember that 

making a model is an interpretation of the data. Thus, it should not be used instead of 

snapshots of the real tomogram unless such simplification is necessary. The program 

suite called IMOD includes the program 3dmod, which allows a choice of closed or open 

contours to represent objects on each plane in the tomogram.  These contours can 

subsequently be used to define a graphic object that accurately represents the cellular 

structure of interest.    

A major advantage of having a computerized 3D reconstruction to study is that 

modeling is greatly facilitated.  For example, if one is studying MTs in the bundle, one 

can cut the reconstructed volume at any angle. In 3dmod one can use the slicer option to 

extract from the tomogram a slice that contains a MT’s axis.  This greatly facilitates 

tracking the MT because one can follow the polymer through the reconstructed volume 

by placing the cursor in its lumen (figure 5a) and adjusting the orientation of the slice 

until the MT is laying flat in the field of view. One can step through tomographic slices to 

find the middle of the MT (when it looks the widest) and then draw a line (an open 

contour) down the middle of the fiber (figure 5b). Since MTs are flexible, the line that 

represents their axis will often curve, and realignment along the way is almost always 
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necessary. Once the end of the MT is reached, one can represent the end structure with a 

simple label, such as a point that is color-coded to represent a feature of interest, such as 

whether the end is open/closed or skirted/blunt/sheet/closed, etc. (figure 6). By keeping 

track of MT end morphology, we have learned that cytoplasmic MTs in S. pombe are 

often open at one end and capped at the other.  This manifestation of structural polarity is 

likely to be of physiological significance, so we have represented it in all our models of 

fission yeast MTs. As one works, one should make a new contour for each new MT. 

When drawing a contour to represent each MT, it is important to make sure that 

each fiber is represented in the model once and only once.  In IMOD we have found it 

easy to do this if each point is highlighted with a circle (choose circle in the edit, object, 

type menu). The MTs being tracked is then represented fully by using the computer to 

place a circle on each tomographic slice. This is accomplished by the function “fill in Z” 

in the edit menu (figure 5c).  

When a MT bundle passes through serial plastic sections it is sometimes not 

immediately clear how the contours on one section connect with contours on the next. 

The process of making these connections accurately can be simplified by modeling each 

of the MT fragments individually (separate contours), filling them in z, and then studying 

both the model and the model superimposed upon the tomogram to decide which two 

contours to connect. Once these determinations have been made one can join the two 

contours together.  In IMOD this employs the “join” function in the edit contour menu. 

Equally, if two contours have been falsely connected they can be broken again by the 

“break” function in the same menu. It is also possible to go back to a contour already 

created and add more modeling points. One must simply start by highlighting the last 

point created. If one wishes to add at the end that was first digitized, it is easiest to invert 

the contour before adding more points or toggle the modelling direction.  

The contours are shown in the model as lines, which are not very similar to real 

MTs. To provide a more realistic 3D image the contour can be meshed to form a tube 

whose diameter represents that of an actual MT. In IMOD this uses the program 

imodmesh and –t option for making a tube. If the MT appears kinked at the site of a join 

between sections, the program mtsmooth can help to take that out. Note that the MTs 

need to be remeshed before the smoothing is apparent. However, use of mtsmooth should 
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be conservative; since you change the original trajectory of the MT. it is therefore not 

advisable before measuring distances between the fibre and a second object such as the 

mitochondria.  

 

 
Figure 5 Modeling of MTs A) Zap window with a green modeling point in the lumen of a MT B) 
same MT properly oriented and modeled in the slicer window C) the MT has been ‘filled in Z’ 
which simplifies tracking and modeling of MT bundles in the Zap and slicer windows.  
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B.  Modeling nucleus, PM and other membrane-bound organelles in 3dmod 

Membrane bound organelles should be modeled as surfaces that display the 

position and shape of the membrane in space. 3dmod allows a choice of closed contours, 

which will always connect the last point digitized with the first.  This is ideal for 

representing membrane-bounded structures where in general there are no free edges.  If 

one is using 3dmod, the digitization of membranes is conveniently done directly in the 

Zap-window. To outline membrane-bound organelles in the tomogram, e.g., to show the 

cell’s shape, it is not necessary to place a line around the structure of interest in every 

tomographic slice.  Every third, fifth, or even tenth section is usually sufficient as long as 

there is not a significant change in the shape of the organelle. If there is, smaller 

increments between contours are required. The ghost function (under the edit, contour, 

type menu) simplifies drawing a smooth surface by showing the last contour you painted 

as a shadow on the sections near it.  

If the surface still needs some smoothing after careful drawing this can be 

performed using the smoothsurf program. To skin the objects use the imodmesh program.  

 

5. Analysis of 3D data 

A. Measuring within a model  

When a plastic embedded sample is in the electron microscope the beam 

vaporizes some of the plastic material, causing the sample to shrink anisotropically 

(Luther et al., 1988). This shrinkage is mostly in the axis perpendicular to the section 

plane, so the resulting distortions must be accounted for when making measurements in 

the volume. In 3dmod this may be done in an approximate manner by changing the z-

scale in the edit model header menu to a number found by following formula: 

z-axis = a/(n*p) where 

a = Thickness of section(s) at sectioning (as defined by the microtome setting or 

better by the interference color of the section, or better still by interference microscopy) 

n = number of tomographic slices in reconstruction 

p = pixel size in nm 
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If the image file consists of many serial tomograms, this formula can sometimes 

overestimate the shrinkage, and after its application the organelles look stretched along 

the z-axis. An alternative is to find the z-scale factor by trial and error until the nucleus or 

appropriate small vesicles appears round.  The error in using the equation is probably a 

result of the a-term, which is dependent on the precision with which one could measure 

section thickness before putting it into the EM. 

Once the tomogram has been made isotropic, all volumes, lengths and areas can 

be measured readily.  In IMOD this is accomplished with the imodinfo program. If the 

pixel size has been entered in the header menu, the imodinfo file will give the 

measurements in the unit entered, otherwise the output is in pixels.  

 

B. Quantifying feature proximity in IMOD 

There are existing programs within the IMOD suite that allow the analysis of 3D 

models of cellular structure.  Our study of MT bundles in interphase of S. pombe is 

greatly facilitated by these programs. For example, the average distance of MTs from one 

another can be determined using nda (neighbour density analysis). This distance can then 

be used in mtpairing to see which MTs are placed relative to one another by this 

characteristic distance, or something close to it.  This can help in deciding when a MT is 

in a bundle and how long the actual bundle is. Clearly, such decisions are to some extent 

matters of definition, but with proper quantification, one can be explicit about how such 

decisions were made. 

Preferred distances between 3D objects (i.e. membrane-bound organelles) and 

MTs can be determined using mtk (MT “kissing” program) (Marsh et al. 2001). It defines 

the distances of closest approach between MTs and any chosen surface. The program 

displays the frequencies of such distances as the number of objects per cubic micrometer 

at the given distance. Thus, one can examine whether a given organelle is positioned 

relative to MTs in a way that departs from randomness. The departure from random can, 

in turn, be taken as evidence for some level of interaction between the two objects. For 

more MT analysis and processing programs see Materials.  
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Light microscopy  

Cells expressing different fluorescently labeled SPB proteins (table 2) were grown 

in EMM media (see ‘Cell Culture’ section) and attached with 1 μl of 2 mg/ml lectin to 

glass bottom microwell dish. Unattached cells were removed with a medium wash after 

10 minutes of sedimentation. Cells were imaged in 2 ml of EMM medium.   

Stack of eight slices (0.5 μm distance between planes) was maximum projected 

and the amount of fluorescent particles was quantified manually.   
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Materials 

 

1. Cells and media  

S. pombe strains  (see table 2) was grown in suspension culture at 32ºC on yeast 

extract with five amino acid supplements (YE5S; i.e. adenine, histidine, leucine, uracyl 

and lysine, for details, see Moreno et al., 1991) until they reached midlog-phase growth. 

Alternatively, cells were grown in the defined Edinburgh minimal medium (EMM).  
Table 2 Strains used in this study 
Strain Genotype Source 
Tomography:   
PN972 h- P Nurse 
DB518 h-  mal3Δ::his3 ura4-D18 leu1-32 his3-D1 ade6-M210 I Hagan 
DB 392 h+ tip1Δ::KanR ade6-M210 leu1-32 ura4-D18 D Brunner 
   
LM:   
DB1219 h-  cut12-GFP::ura-4 leu-1-32 ura4-D18 I Hagan 
DB1037 h-  cut12-GFP::ura mal3Δ::his3 ura4-D18 leu1-32 ade6-

M210 
This study 

   
DB1222 h-  pcp1-GFP::KanR ade6-M210 leu1-32 ura4-D18 his- T Davis 
DB1234 h+ pcp1-GFP::KanR mal3Δ::his3 his- ade6-M210 This study 
   
DB1326 h- cdc11-GFP::KanR ura4-D18 leu1-32 ade6-M210 K Gould 
DB1376 h- cdc11-GFP::KanR mal3Δ::his3 his3-D1 This study 
   
DB1324 h-  sid4-GFP::KanR ura4-D18 ade6-M210 leu1-32 K Gould  
DB1374 h+ sid4-GFP::KanR mal3Δ::his3 his3-D1 This study 
   
DB1325 h+ spg1-GFP::KanR ura4-D18 ade6-210 leu1-32  K Gould 
DB1382 h+ spg1-GFP::KanR mal3Δ::his3 ura4-D18 ade6-210 

leu1-32 his3-D1 
This study 

   
DB1203 h+ tip1Δ::KanR lys1+::nmt1-GFP- α-2tub D Brunner 
DB1405 h- ura4-d18 lys1+::nmt1-GFP- α-2tub D Brunner 
   
DB1591 h- nmt1-mcherry-α-tubulin KanR cut12-GFP:: ura4 ura4-

D18 or ura4-06 
This study 

DB1610 h- or h+ tip1Δ::KanR nmt1-mcherry-α-2tub KanR cut12-
GFP:: ura4 leu-1-32 ura4-D18 

This study 
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2. High pressure freezer, freeze substitution, resins 

Both the BAL-TEC HPM 010 high pressure freezer (Bal-Tec, Balzers, 

Lichtenstein) and the Leica EMPACT-1 (Leica-Microsystems, Vienna, Austria) were 

used to freeze yeast cells (McDonald 2006). The advantage of the BAL-TEC machine is 

that a rather large volume can be loaded in the carrier (2 mm in diameter and 200 µm in 

depth). Therefore, one can process a large pellet of cells, which, once embedded in 

plastic, can be cut in several smaller blocks using a fine saw. With the Leica EMPACT-1 

device  (Studer et al. 2001) we mostly used home-made  carriers (2 mm of diameter and 

1mm thick containing a sample cavity 200 μm in depth and 1.2 mm in diameter). 

The slot carriers (Leica) were advantageous as they provide a larger pellet, which 

was easier to handle than the flat carriers (Leica). With the latter, pellets do not easily 

come off as a single object upon rinsing the carriers with acetone at the end of the FS 

run. Moreover, we had variable quality of freezing using these carriers. 

Freeze substitution was always performed in a Leica EM AFS device (Leica 

Microsystems, Vienna, Austria) using the special perforated plastic tubes, which greatly 

facilitate the solvent and resin exchange. 

Lowicryl HM20 (Polysciences, Warrington, PA, USA) was mixed in dehydrated 

acetone during the progressive infiltration steps. 

 

3. Microscope hardware 

Tilt series were taken on the FEI Tecnai TF20 transmission electron microscope 

(TEM), operating at 200 kV. The images were collected on a Gatan Ultrascan 890 digital 

camera as well as on a Gatan Ultrascan 895 digital camera (4 port readout, 15 μm/pixel). 

The latter camera was about three times faster in acquiring tomograms;  therefore it was 

particularly profitable when montaging of many serial sections was required upon tilt 

series acquisition. 

A FEI Tecnai TF30, operating at 300 keV was used when thicker sections were 

employed. A Gatan Megascan 795 camera was mounted on this TEM.  
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The tilt series were acquired over ± 65˚, using a Gatan 670 high tilt holder, a 

Fischione 2020 high tilt holder, or a Gatan 650 high tilt-rotate holder. The preferred 

holder was the Fischione holder which had the best range where high tilts could be 

achieved so that larger area of the grid could be used. Thus, it was easier to find many 

serial sections of the cell to image. The Gatan 650 high-tilt rotate holder had a complex 

grid attachment system, which made the slot grids more prone to break during specimen 

changes. Further, the area on the grid where high tilts were possible was comparatively 

small.  However, this holder had the advantage that a well-preserved cell could be turned 

into the right orientation for optimal resolution with single axis tomography without the 

removal of the grid.   

 

4. Microtome 

The plastic semi-thin sections were cut at a thickness between 210-250 nm using a 

Leica-Reichert Ultramicrotome (Leica Microsystems, Vienna, Austria). We used 

diamond knives with a 35º included angle (Diatome, Biel, Switzerland). The sections 

were collected on copper palladium slot grids (2x1 mm) freshly coated with Formvar (1% 

polyvinyl formal in chloroform). We used cationic gold particles (15 nm) (British BioCell 

International, UK) as fiducial markers. 

 

5. Computers  

Sun opteron computers running the Fedora operating system and the IMOD 

software package were used to calculate tomograms. The IMOD software works only 

with upper-end Nvidia graphic cards. The large file sizes produced demands of 4-16 GB 

of RAM. All data were stored on a 2 TB network server, therefore only standard size 

local hard drives were necessary. Further, a three-buttoned mouse is essential. 

 

6. Software package IMOD ©  

IMOD is a software package containing around 140 different programs for image 

processing, tomographic reconstruction, modeling and display (Kremer et al. 1996). As 

described above, it includes features that facilitate 3D reconstruction of EM serial 

sections, and it can be used for optical sections as well. Most commonly the display 
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programs 3dmod and 3dmodv are used. 3dmod displays pictures stored in the mrc or tif 

format; they can then be modeled and displayed in 3D using 3dmodv. 

In addition to all the programs required for tomogram reconstruction there are 

several programs developed specially for research on MTs. Here is a short list of the MT 

related programs that are the most important when working with tomograms: 

mtoverlap – this program is used to display and measure overlaps of 

microtubules coming from two distinct foci, like the poles of a mitotic spindle.  

mtpairing – this program determines when MTs are paired and the length 

of this region of pairing. Further, this program can recolor MTs depending on 

their polarity (based on the positions of their end points in z).  

mtk – MT kissing is a program to analyze the distance in 3D between 

microtubules and other objects, such as mitochondria or the nuclear envelope 

(Marsh et al. 2001).  

nda – neighbour density analysis is a program to measure the preferred 

distance between MTs in a bundle. To use this program, a model must first be 

converted using resamplemod (Mastronarde et al. 1993).   

mtsmooth – this program smooths the trajectory of open contours, such as 

MTs, to improve their presentation. It should not be applied to models that will 

subsequently be analyzed by nda or mtk.  

resamplemod - some of these programs were developed for serial section 

3D reconstruction. This program was developed to convert a 3D model built from 

a tomogram into a model by turning it 90o about the y-axis and resectioning it.  

For more information on these and other programs, visit the website 

http://bio3d.colorado.edu/ (here, there is a listing of all programs available in the IMOD 

software package, which is downloadable at no cost).  

 

7. Light Microscopy Hardware 

To image live cells, images were taken on a Coolsnap HQ digital camera (Roper 

Scientific, Tuscon, AZ) on an Axiovert 200 M microscope (Carl Zeiss, Göttingen, 

Germany) with a Plan_Apochromat 100x NA objective (Zeiss). We used glass bottom 

dishes (MatTek, Ashland, MA) coated with lectin from Sigma, St. Louis, MO).  

http://bio3d.colorado.edu/
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8. Light Microscopy Software 

We used Metamorph 6.2r6 to acquire pictures that were processed using ImageJ 

1.37v. A plug in package created by Kota Miura, EMBL, was used for particle tracking.  
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Chapter 3 
 

Organization of interphase microtubules in fission 

yeast analyzed by electron tomography 
 

Introduction 

Cells are seldom round or symmetric. Classic examples of cells with 

differentiated shapes include neurons and epithelial cells, but small cells, like yeasts and 

bacteria, also show growth polarity (Drubin and Nelson 1996). In such polarized cells the 

MT cytoskeleton and its associated proteins (MAPs) are fundamental elements that 

support cell shape generation and maintenance. Thus, it is not surprising that fission yeast 

has become an important model organism for studies on the role of MTs in cell 

morphogenesis (Hayles and Nurse 2001; La Carbona et al. 2006; Sawin and Tran 2006).   

Cytoplasmic MTs in fission yeast have been extensively analyzed by light 

microscopy (LM) and in a few studies by conventional EM techniques, but knowledge of 

the precise structural arrangement of these MTs has been lacking. LM analysis has 

described the fission yeast interphase MT cytoskeleton as three to six MT bundles 

arranged along the long axis of the cell. These bundles appear to meet as pairs in the 

middle of the cell, forming a narrow zone of antiparallel overlap between MTs, whose 

plus ends extend towards opposite ends of the cell (Drummond and Cross 2000; Tran et 

al. 2001; Sagolla et al. 2003). MT growth has been seen to slow down for some time at 

the cell ends before the MTs undergo rapid depolymerization (Drummond and Cross 

2000; Tran et al. 2001; Grallert et al. 2006).  During this period, tea1p and tip1p are 

deposited at the cell tip. If production, delivery or anchoring of these proteins is inhibited, 

the cells show abnormal growth patterns, creating branched or bent cells (Mata and Nurse 

1997; Brunner and Nurse 2000; Behrens and Nurse 2002; Snaith and Sawin 2003; 

Feierbach et al. 2004).  
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The minus ends of MTs are less dynamic than their plus ends (Mitchison and 

Kirschner 1984). In fission yeast these are localized in the nuclear area of MT overlap, 

also called the interphase MT organizing center (iMTOC). Until now iMTOCs have not 

been defined as discrete structures in fission yeast. MT minus ends are thought to be 

stabilized with a γ-tubulin ring complex (γ-TURC) that caps the MT tip (Keating and 

Borisy 2000; Moritz et al. 2000; Wiese and Zheng 2000).  γ-tubulin and other 

components of the γ-tubulin ring complex (γ-TURC) localize to the SPB (Ding et al. 

1997) and to moving particles, referred to as satellite MTOCs (Sawin et al. 2004; 

Zimmerman et al. 2004; Janson et al. 2005; Zimmerman and Chang 2005).  Some of 

these satellite MTOCs are thought to actively nucleate MTs whilst moving bidirectionally 

along existing MTs (Janson et al. 2005) but most are concentrated in the iMTOC region 

(Sawin and Snaith 2004; Zimmerman et al. 2004). iMTOCs also appear to attach to the 

nuclear envelope, although the mechanism of this attachment is still not known (Tran et 

al. 2001). 

Electron microscopic (EM) serial section studies have shown that a variable 

number of MTs are laterally bound to each interphase SPB (Ding et al. 1997; Uzawa et 

al. 2004). Since it is not possible to identify the polarity of MTs in such conventional EM 

analysis, Ding and co-workers suggested that the variability of MT number could be due 

to MT nucleation, or possibly MTs nucleated elsewhere and ending in this region. Recent 

evidence suggests that the S. pombe ASE1/PRC1/MAP65 homologue, ase1p, bundles 

interphase MTs and also facilitates the maintenance of MT minus ends at the overlap 

region. A model in which ase1p forms bridges between antiparallel bundles has been 

proposed (Loiodice et al. 2005; Yamashita et al. 2005), but ase1p is probably not the sole 

MT bundler in fission yeast (Carazo-Salas and Nurse 2006; Daga et al. 2006b). It has 

been shown that klp2, a minus directed kinesin-like motor protein, slides MTs of opposite 

polarity (minus ends out) away from the cell periphery and towards the iMTOC (Carazo-

Salas et al. 2005).  

Correct positioning of organelles is essential for cell division and often depends 

on MTs. Here, we analyzed the function of MTs in organelle positioning by measuring 

the 3D association between MTs and mitochondria or vesicles respectively. Mitochondria 

in fission yeast are organized as large, branched networks that shrink and grow together 
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with MT (de)polymerization (Yaffe et al. 1996; Yaffe et al. 2003). We present here the 

first high resolution study confirming this interaction.  

Endocytosis, exocytosis and intracellular trafficking between membrane bound 

organelles inside the cell involve functionally distinct trafficking vesicles adapted to dock 

and fuse with defined target membranes. These vesicles are commonly transported along 

MTs, and mediate the regulated delivery of membrane components, as well as vesicular 

content in multi-step transport (Lippincott-Schwartz 1998; Bonifacino and Glick 2004; 

Takamori et al. 2006). However, during yeast endocytosis actin patches are formed at the 

sites of internalization and have been seen around vesicles in EM studies (Kanbe et al. 

1989; Takagi et al. 2003; Gachet and Hyams 2005; Kaksonen et al. 2005). These actin 

patches and late secretory vesicles are transported within the cell along actin cables 

(Feierbach and Chang 2001; Pelham and Chang 2001; Huckaba et al. 2004).  In fission 

yeast, MTs might play a role in Golgi to endoplasmic reticulum (ER) membrane 

recycling through the kinesin like protein klp3p, as well as in stacking Golgi cisternae 

(Ayscough et al. 1993; Brazer et al. 2000). However, secretion is not affected by the loss 

of MTs (Ayscough et al. 1993). In this study we examine the role of fission yeast MTs in 

vesicular trafficking based on an ultrastructural analysis by electron tomography.   

Moreover, we illustrate the three dimensional bundle architecture and distribution 

of cytoplasmic interphase MTs. For this purpose we have developed a large-scale ET 

approach that yields reconstructions of significant parts of cells and even whole cell 

volumes at a resolution where MTs and their end structures are clearly visible (Höög and 

Antony in press). The number of MTs in a bundle has been quantified and MT polarity 

identified; we also describe links between MTs and bridges between MTs and other 

cytoplasmic components. This work opens a new window on the study of cellular 

architecture at high resolution. 
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Figure 1 3D model of interphase MT bundles 
MT end structures are indicated by colored caps: red (capped end), turquoise (flared end), blue 
(blunt end) and white (ambiguous end). The NE is shown in transparent pink. A) A reconstruction 
of a complete cell volume that contains three interphase bundles (green) and a total of 16 MTs. 
Splaying of MT bundles is marked with red arrowheads. B) A typical example of a larger MT 
bundle. Short MTs detached from the nuclear region are marked with white arrowheads. 
Turquoise arrowheads mark MTs where both ends are open. C) SPB (yellow) bundle with a 
typical MT arrangement. D) A single MT not associated with the NE. E) One MT (pink arrowhead) 
attached to the NE and crossing an SPB-associated MT bundle. F) An unusual example where 
the bundle is not attached to the NE and the overlap region is shifted closer to the cell’s tip. White 
bar = 1 μm. 
 
 

Results 

Spatial organization of microtubule bundles and quantification of 
tubulin polymer  

We cryoimmobilized cells in log phase growth by high pressure freezing, then 

fixed them by freeze-substitution, and embedded them in acrylic resin. Plastic embedded 

cells were sectioned into 250 nm thick slices from which tilt series were acquired (±60-

65˚, 1.5˚ increment). Large volumes were reconstructed by tomography on 17 different 

wild type cells; one of these was reconstructed completely. Using the 3D imaging 

capabilities of ET, we tracked the MTs through serial sections and measured their 

lengths. Short interphase cells (7-9 μm; pre-“new end take-off”) were chosen to exclude 

the cells that could have been preparing for mitosis.  

In the whole cell volume, reconstructed from 15 montaged serial tomograms, we 

found 16 MTs arranged in three bundles (figure 1A; supplementary movie 1). The 

cumulative length of polymerized tubulin in this cell was 34.5 μm. Due to the exact 

measurements of MTs and cell volume in this full cell reconstruction, we could calculate 

the concentration of polymerized tubulin. Assuming 13 protofilament MTs, since the 

diameter of S. pombe MTs is 25 nm (Schwartz et al. 2003), the total concentration of 

polymerized tubulin was 2.78 μM in this cell (total volume 33.5 μm3 of which nucleus 

was 3.16 μm3, mitochondria 1.23 μm3 and vacuoles 2.21 μm3). 

We selected 4 cells (all pre-new end take-off) for further analysis and found that 

most MTs are short, with an average length of 1.64±1.43 μm (n=70; figure 2). (N.B. the 

high SD is due to the large variation in MT length; the longest MT was almost 6 μm and 
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the shortest only 70 nm). No single MT extended the length of the whole cell. From the 

exponential fit (figure 2F), we found that the average MT length was 22% of the cell 

length.  

Average length of a MT bundle was 4.97±1.39 μm (supplementary table 1). In the 

region around the nucleus, bundles contained several MTs, consistent with this region 

being the iMTOC region. However, only a few single MTs extended from this region 

towards the cell ends. This organization was characteristic of larger bundles (figure 1B-

C; supplementary movie 2). The average numbers of MTs in a bundle was 4.4±2.6 (n=28 

bundles), but MTs were often found singly or in pairs (6 of 28 bundles).  Most of the 

single MTs were lying by themselves in the cytoplasm (figure 1D), and in this analysis 

only two out of six showed a connection to the nuclear envelope (figure 1E). We suggest 

that these single MTs might arise through separation from other bundles, from 

cytoplasmic nucleation or de-attachment from the nucleus, as described in live cells 

(Carazo-Salas et al. 2005; Carazo-Salas and Nurse 2006; Daga et al. 2006b).   

The shortest cell we studied showed a distinctive organization with two bundles 

not connected to the nucleus and very long MTs that connected to the cell’s tips (figure 

1F and 2A). It is possible that this cell had not yet completely established its interphase 

array after cytokinesis.  

 

Microtubule polarity can be determined by polymer end structure 

In previous tomography studies, based on specimen preparation techniques like those 

used here, MT end structures that correlate with polymer polarity could be identified 

(O'Toole et al. 1999; O'Toole et al. 2003). Five representative end structures and simplified 

representations of them are shown in figure 3A-F. In O’Toole et al’s studies, capped or 

closed MT ends, were adjacent to the SPB or centrosome, where the minus end resides. Open 

end structures are commonly found at the MT plus ends, although some have also been found 

at MT minus ends near the centrosome (O'Toole et al. 2003). We also found MTs with two 

open ends, confirming this finding (turquoise arrows in figure 1) and implying that there is a 

sub-population of MTs with dynamic minus ends.  
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Figure 2 MT lengths  
A-D) Bundles of MTs from four different cells are depicted as groups of black and grey bars, 
where each bar represent one MT. The bundle associated with the SPB is marked with a star.
Cells that are: A) 6.7 μm, B) 7.4 μm, C) 7.7 μm (full cell volume), and D) 7.9 μm in length.  E)
Histogram of MT lengths (all MTs in A-D pooled) showing that most MT are 0-1 μm long. F) The 
line shows an exponential fit to the cumulative number of MTs per length interval, where each 
interval (bar) represents 4% of the cell length. Each bar contains all MTs that are longer than the
x-value of that bar. The sum of square errors of the fit was 0.011.
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Figure 3 MT end structures and interactions 
A) A capped MT end with attached filaments (white arrowhead). B-E) open MT ends; B) Blunt C) 
Flared D) Curled E) Sheet. F) Cartoon of MT end structures. G) Tomographic slice with the 3D 
model projected on top. The highlighted squares show the regions studied in H-L, where MTs are 
in close association with nuclear envelope (green), have bridges between themselves (blue), or
touch the plasma membrane (red). H) MTs with interconnecting electron-dense bridges (white 
arrow). A forked bridge is indicated by a black arrow.  MT polarities are indicated with a red 
(capped end), turquoise (flared end), blue (blunt end), or white circle (ambiguous end). I) Nuclear 
envelope with bridges (white arrows) connecting from the outer bilayer to the MT. J) Tomographic 
snapshot of a flared MT tip in direct contact with the PM. K) 3D model of protofilament structure 
at one MT end (each ~2 nm thick) L) An occasion where a capped MT end is connected to
another MT by a strong electron dense bridge (white arrow). All MT snapshots are at the same
scale: bar = 100 nm. White bar = 50 nm. 
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In fission yeast, the majority of capped (minus) MT ends (red spheres, figure 1A-

F) were in close proximity to the nucleus. There was, however, no apparent object to 

serve as a point of MT nucleation; this made it difficult to fit this high resolution MT 

organization into the two anti-parallel bundles suggested by LM studies.  

Interestingly, in some instances (n=10 of 70) MTs were completely disconnected 

from the nuclear region. These were typically short polymers and were oriented along 

other MTs. On these short polymers, clearly capped (minus) ends (n=3) were found 

oriented towards the cell center in two cases, but we also found one MT of opposite 

polarity (figure 1B-C and F; white arrowheads). However, the MT of opposite polarity 

was still within an iMTOC region that had shifted away from the nucleus (figure 1F).  

 

Microtubules touch the plasma membrane  

Microtubules are necessary for the correct positioning of the nucleus, as well as 

other organelles in the cell (Ayscough et al. 1993; Yaffe et al. 1996; Tran et al. 2001; 

Daga and Chang 2005). To push against cytoplasmic organelles, like the nucleus, the 

MTs must interact mechanically with the cell cortex. Additionally, polar growth of 

fission yeast cells depends on the cytoskeleton and a few gene products, like tea1 and 

tip1, that are delivered to the cell tip by the MTs (La Carbona et al. 2006; Sawin and Tran 

2006). It was therefore of great interest to examine the exact subcellular location and 

structure of MTs as they made contact with the plasma membrane at the cell tips. We 

found six MTs in direct physical contact with the plasma membrane, each of which had a 

flared end (figure 3J). A 3D model of the MT tip was made on each computational slice 

of the tomogram (ca 2 nm thick) to exclude the possibility that the flared MT end was 

simply electron-dense noise (figure 3K). The presence of the density in each section 

confirmed the flared structure as a true MT end structure. 

The flared structure has been associated with depolymerizing MT ends 

(Mandelkow et al. 1991). However, MT ends at the plasma membrane commonly 

continue to grow for ~1 min (D. Foetkhe, pers. communication). To correlate MT end 

morphology with the polymer’s dynamic state at the time of freezing, we determined the 

fraction of total MT ends (n=88, figure 3M) that showed particular structures. Further, we 
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quantified the end types of the longest MT in each bundle separately (n=14; figure 3N), 

since this is the MT dynamic measured using fluorescence microscopy.  We found that 

79% of the longest MT’s ends were flared. Since MT growth is slower than shrinkage, at 

steady state there should be more polymers growing than shrinking, so growing MTs in S. 

pombe may be flared (see discussion).  

 

Microtubules are cross-bridged with each other and with the nuclear 
envelope 

In order for MTs to push the 

nucleus to the center of the cell there 

must also be a physical connection 

between MTs and the nucleus. Studying 

the nuclear region in our tomograms 

(figure 3G) we found electron-dense 

filamentous bridges 25-30 nm long 

between the outer lipid bilayer of the 

NE and MTs (figure 3I; white arrows). 

Putative connecting bridges between 

MTs and the NE were found only on 

MTs that were closest to the nucleus. 

We suggest these structures might be 

physical links enabling the MTs to 

position the nucleus.  

We saw no electron-dense 

area around the capped MT ends, but 

on one occasion a thick, electron-

dense bridge was seen connecting the 

middle of one MT with the minus 

end of a parallel MT (white arrow in 

Figure 4 Neighbor density analysis shows the preferred 
distances between MTs  
A) A schematic cell (green) containing a representative MT 
bundle, which is shown in transverse orientation (B) from
the locations marked with green lines on (A). Nucleus is in 
pink. B) Frames from supplemental movie 3 indicating 
cross-sections through the cell schematized in A). Frames 
from the nuclear region are under the pink bar. C) Data 
from three similar models of individual bundles, preferred
MT spacing is ~25 nm, surface to surface. 
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figure 3L). In other cases filamentous structures were associated with the capped MT 

ends (white arrowhead in figure 3A and H). Some of the MTs in a bundle have similar 

electron-dense structures connecting them (figure 3H). These bridges are about one MT 

diameter long, and they are oriented at diverse angles relative to the MTs. Additionally, 

forked structures were seen (black arrow in figure 3H). Finally, bridges could be seen 

between both parallel and antiparallel MTs. 

We hypothesized that the electron dense bridges might act as either spacers or 

bundlers of MTs. If so, one could predict the distance between the MTs to be constant. 

To examine whether the length of the filamentous bridges corresponds to the preferred 

minimum distance between MTs we performed a neighbor density analysis (nda). 3D 

models of bundles were used to determine the relative distances between MTs in regions 

with three or more MTs. Figure 4A shows a schematic representation of one such bundle 

that was analyzed (figure 4B; supplementary movie 3). The preferred minimum distance 

was 25-30 nm, surface to surface, with an additional small peak at around 50-60 nm 

(figure 4C).   

Bundles associated with SPBs contain more MTs 

We reconstructed 12 SPBs in their entirety, including all the attached MTs, which 

confirmed the lateral association of MT with both single and duplicated SPBs (figure 5A 

and E).  In 11 cases, only one of the MTs in a bundle seemed in direct contact with the 

SPB (with no visible bridges), and this MT usually had no end close to this structure 

(figure 5B; supplementary movie 4). The other MTs in each bundle appeared to be 

stacked around this anchoring MT. Bundles were never in contact with both SPB and NE.  

In one case out of 12, MTs radiated from the SPB with their minus ends towards 

that structure (figure 5C). Interestingly, almost all these MTs showed parallel polarity. 

This dissimilar cell’s length was ~7μm. In all cases, SPB associated MTs were further 

from the NE than when not associated with the SPB (figure 5D). 

In fluorescence images of cells expressing tubulin-GFP there is frequently one 

bundle that is brighter than the others; this is the one commonly assumed to be associated 

with the SPB. We examined the number of MTs in bundles associated with SPBs and 

found them to have a greater average number of MTs (5.7±1.5, n=12) than the bundles 
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that were not SPB-associated (3.25±2.5, n=16; figure 5F). However, there was no 

difference in the length of MTs in these two classes of bundles.  

 

 
Figure 5 MT bundles associated with the SPB  
A) Lateral association between the SPB, which is on the cytoplasmic side of the nuclear envelope 
(NE), and its closest MT. B) 3D model of a typical SPB (yellow) associated a MT bundle (green); 
the closest MT lies like a bar across the SPB (white arrowheads). MT capped minus ends (red) 
are not invariably directed towards the SPB; a few flared ends (turquoise) are near the 
centrosome equivalent. C) The sole example in which short MTs radiated from the SPB; their 
capped minus ends and a majority of the flared ends point to one side. (White caps = ambiguous 
end) D) Lateral MT association with a duplicated SPB (courtesy of Mary Morphew) E) 
Comparison of numbers of MTs in a SPB-associated bundle and in a non-associated bundle. 
White bar = 200 nm. Black bar = 100 nm. 
 

Interaction of MT bundles and mitochondria 

Connections between MTs and mitochondria have previously been described by 

fluorescence microscopy (Yaffe et al. 1996; Yaffe et al. 2003).  These associations were, 

however, particularly clear in tomograms. We therefore examined these connections in 

more detail. Mitochondria and MTs co-cluster, with the mitochondria appearing to be 

stretched along the MTs (figure 6A-C). Further, mitochondria were often located between 

the MTs of a splayed bundle (figure 1A; red arrowheads; supplementary movie 5). In 

general, extensively branched mitochondrial networks were always associated with MTs 

(volume 0.23±0.16 μm3, n=9; figure 6D-F and H), whereas non-MT-associated 



Wild type 

 79 

mitochondria were smaller and unbranched (volume 0.02±0.03 μm3, n=9). MTs were 

often bent around or towards mitochondria (figure 6I), suggesting a connection between 

them; however we did not detect any bridges like those found between MTs and the NE. 

If MTs bind mitochondria one would expect there to be a preferred distance 

between the two (assuming one mechanism). In agreement with this hypothesis we found 

a peak of preferred minimal distance between MTs and mitochondria to be ~20 nm 

(figure 6J), comparable to the MT-MT distances described above (figure 4C).  

In the full cell volume reconstruction we found 12 separate mitochondria of 

various sizes; these encompassed a total membrane area of 22 μm2 and occupied 4% of 

the total cell volume. Comparatively, the nucleus occupied 9% of the cytoplasmic 

volume. Based on this evidence, we suggest that the MT bundles are connected to and 

shape this multicompartment organelle, which in turn, might influence the bundle 

architecture.  

 

Most vesicles are not associated with MTs 

Vesicle trafficking in mammalian cells is commonly dependent on MTs 

(Lippincott-Schwartz 1998). In yeast, however,  there has been some indication of vesicle 

transport inside actin patches, which in turn are transported on actin cables (Marks et al. 

1986; Kanbe et al. 1989; Motegi et al. 2001; Pelham and Chang 2001; Takagi et al. 2003; 

Gachet and Hyams 2005). We have analyzed the spatial relationships between vesicles 

and MTs in fission yeast to see if vesicle trafficking is likely to depend on them.  

S. pombe contains three distinguishable vesicle morphologies that we treated as 

separate populations (figure 7). Interestingly, these categories of vesicles included the 

same fraction of the total vesicle population in each of the three (partial) cells examined. 

Circa 80% of all vesicles were small and electron dense (diameter 37±5.7 nm; n=197; 

figure 7A-C). This group also contained a structure that has been previously described as 

filasomes (figure 7C), a secretory vesicle surrounded by a thick ring of actin meshwork 

(Kanbe et al. 1989; Takagi et al. 2003). The two remaining types of vesicles included 

large, electron-dense vesicles (diameter 90±21.7 nm; n=28; figure 7D-F) and electron 

transparent vesicles (diameter 52±18.2 nm; n=25 figure 7G-I) each type comprised ~10% 
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of the total population. However, the average vesicle size within these categories varied 

significantly in different cells (p <0.001; figure 7J). Vesicle sizes and numbers mentioned 

here were measured in the full cell volume.  

Vesicles were modeled as spheres of representative diameters, and all three 

categories showed a clear preference for the cell ends (figure 7K; supplementary movie 

6). To study the densely packed cytoplasm at a cell’s end, we modeled a dual axis 

tomogram of a cell end with all its organelles (figure 7L). Here, small dense vesicles 

appeared to be more clustered around the Golgi apparatus, and large dark vesicles were 

found mostly in close approximation to the plasma membrane and the ER (figure 7M; 

supplementary movie 7).  In this tip, only 1.6% of the vesicles were within 25 nm of a 

MT (n=128 vesicles; figure 7N; supplementary movie 8). Hence, we found no evidence 

for association with MTs. Furthermore, there was no apparent association between the 

MTs and other organelles such as vacuoles, Golgi and ER.  
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Figure 6 MT bundles are intertwined with mitochondria  
A) 3D model of a full cell volume with MTs (green bundles) splaying around mitochondria (blue). 
B) Mitochondria that stretch along MTs are long and branched. C) Half the cell volume of a short 
cell (6.7 μm) with mitochondria (gold) arranged along MTs. D-F) Mitochondria associated with 
MTs are usually more branched and stretched than non-associated ones, e.g., the one shown in 
G). H) Fractions of mitochondrial volume that are MT-associated or not. I) A tomographic slice 
where a MT (white arrow) is bending along a mitochondria (M). J) Spatial density analysis 
showing the preferred distances between MTs and mitochondria in the full cell volume (black 
line). The red line is a control where MTs were repeatedly shifted by random displacements, and 
the favored distances were recalculated (Marsh et al. 2001). The smoothness of the red line 
confirms that the black line’s peak, achieved from measurements in the real model, is not likely to 
occur randomly. White bar = 1 μm. Black bar = 200 nm 
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Figure 7 Vesicle trafficking in fission yeast appears to be MT independent 
Vesicles were divided into three different populations: A-C small electron dense vesicles, D-F 
large electron dense vesicles, and electron transparent vesicles G-I.  J) Vesicle sizes within the 
populations differ between cells. K) Small dark vesicles (orange), large dark vesicles (blue) and 
light vesicles (pink) localize to cell ends. L) Mitochondria (dark blue), Golgi (yellow), electron 
dense vacuoles (grey), light vacuoles (white), membrane clusters (red), endoplasmic reticulum 
(dark yellow), vesicles and MTs show a dense packing just below the plasma membrane (dark 
green) in a cell end. M) Small dark vesicles cluster slightly around the Golgi and large dark 
vesicles cluster below the PM. N) Vesicles show no preference for regions around MTs. White 
bar = 1 μm. Black bar = 100 nm. 
 

Discussion 

Microtubule bundle structure 

A precise knowledge of MT length, polarity, and distribution in cells is essential 

for understanding how these filaments carry out their various functions. While a number 

of LM studies in conjunction with the use of GFP and other fluorescent protein tags 

provided good dynamic descriptions of MT arrays, sufficient spatial resolution has been 

lacking to identify several key parameters: 1. the number of MTs in a bundle; 2. MT 

polarity; 3. MT connections with each other and with other organelles. Drummond and 
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Cross (2000) presented evidence for an antiparallel arrangement of MT bundles, based on  

images of GFP-tubulin in live cells; dynamic MT ends (assumed plus ends) grew towards 

both cell ends.  Here, we have used MT structure to determine polymer polarity.  MT 

ends at or near the cell tip were generally flared, a characteristic usually associated with 

depolymerizing plus ends (Mandelkow et al. 1991; O'Toole et al. 2003). Capped (minus) 

ends were seldom found near the cell ends, confirming the MT polarities seen in previous 

work. 

We also suggest that the flared end is a growing MT end morphology due to the 

following reasons: a) our cells are ~7 μm long. Thus, it should take the MTs ~1 min to 

grow half the cell’s length but only about 30 s to depolymerize back to the cell’s 

midplane (growth speed ~3 μm/min, shrinkage speed 8.5 μm/min, from Busch and 

Brunner, 2004). Therefore, about twice as many MTs should be growing as shrinking at 

steady state. b) Microtubules grow more slowly at the cell end for ~1 min, before they 

begin rapid shortening (Foetkhe, pers. communication). Hence, one would roughly expect 

80% of the longest MTs in a bundle (since the dynamics of only these are measured in 

fluorescence microscopy) to be growing and the remaining 20% to be shrinking. We 

found only 7% sheets (usually assumed to be growing (Chretien et al. 1995)) and 79% 

flared MT ends in these bundles, indicating that this structure belongs to the growing 

population. This is in agreement with O’Toole et al. 1999 and 2003, who saw >70% 

flared end morphology at the MT plus ends in Saccharomyces cerevisiae and 

Caenorhabditis elegans. On the contrary, studies in Arabidopisis showed that only 1-2% 

of the phragmoplast MT plus ends were flared (Austin et al. 2005), illustrating possible 

differences in MT physiology between different cellular machines. Moreover, it is 

plausible that MTs visualized in vitro show morphologically distinct end structures from 

the equivalents captured in situ, due to the many proteins that associate with that part of 

the polymer (Carvalho et al. 2003).  

Sagolla et al., (2005) provided arguments that the fluorescence seen at the tip of 

the cell was likely to correspond to only a single MT. Previous EM studies using serial 

sectioning in S. pombe cells had revealed some finer details about MT organization, but 

were not suitable to track MT bundles through the cytoplasm towards the cell end (Ding 

et al. 1997; Uzawa et al. 2004). In this study, we traced individual MTs through the 
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cytoplasm and found only single MTs in direct contact with the PM at the cell tip. Thus, 

deposition of proteins important for cell growth could occur directly at the PM. 

Our approach based on large scale ET of plastic embedded sections (Höög and 

Antony, in press) provides an unprecedented way to visualize interphase MT arrays in 

full detail.  From such data we have been able to provide the first 3D reconstruction of a 

full eukaryotic cell.  Consequently, this is also the first study where a whole MT 

cytoskeleton has been described with precise length measurements (34.5 μm total 

polymer) on individual MTs of identified polarity. In the mitotic spindle this number 

varies between ~47 μm in the short spindle to over 70 μm in the long spindle (Ding et al. 

1993). We also found that most MTs in an interphase bundle were short. In fact, 6% are 

below the resolution of conventional fluorescence microscopy (200 nm), and only few 

extended outside the nuclear overlap area in our ‘snap-shot’ view of the overall 

organization.  

 

A new model of bundle architecture and nucleation 

In the current view of interphase MTs in fission yeast two antiparallel bundles 

overlap near the cell’s midplane, but our electron tomography data are not fully 

consistent with this model. In agreement with fluorescence studies we find capped MT 

ends (presumably minus) around the nucleus and along existing MTs further away from 

the iMTOC (Sawin et al. 2004; Janson et al. 2005; Zimmerman and Chang 2005). 

However, the minus ends show no spatial preference for two loci within the perinuclear 

area, as one would expect from the two anti-parallel bundles model; the overlap region 

does not show a discrete bipolarity. We suggest a novel model in which MT origins are 

scattered in the perinuclear region and along existing MTs. After a nucleation event the 

new MT would self-orient into a parallel or anti-parallel fashion and bundle with the 

existing MTs. The fast growing plus end would then naturally grow towards the cell end 

it faces, creating ONE linear bundle with scattered minus ends in the middle region and 

with plus ends more commonly at the cell tip.  

Recently, it was found that MTs slide and nucleate along other MTs within the 

bundles (Carazo-Salas et al. 2005; Janson et al. 2005; Zimmerman and Chang 2005). We 
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found ten occasions where a short MT with a capped end (probably a γ-TURC complex) 

was present outside the nuclear area. Only one of these corresponded to a MT with its 

minus end pointing towards the nearer cell end. This single MT of opposite polarity was 

in an iMTOC region, away from the nucleus (figure 1D). From live-cell imaging, one 

would expect these short MTs to be transported back to the iMTOC region by the kinesin 

klp2 (Carazo-Salas et al. 2005).  

 

Bundling of microtubules 

We observed ~25 nm long, electron dense cross-bridges between MTs themselves 

and between MTs and the NE. Since this is similar to the preferred minimal distance 

between MTs (found by neighbour density analysis), we suggest that these visible cross-

bridges are responsible for MT bundling. The components of these cross-bridges remain 

unknown, however ase1p has been shown to mediate antiparallel MT bundling in fission 

yeast (Loiodice et al. 2005; Yamashita et al. 2005). Further, the ase1 plant homologue, 

MAP65, bundles MTs by forming 25-30 nm long cross-bridges in vitro (Chan et al. 1999; 

Smertenko et al. 2004). Ase1p is therefore a likely candidate to form these electron dense 

bridges. However, a recent study has shown that ase1Δ mutant’s ability to form bundles 

is decreased but not absent (Daga et al. 2006b), indicating the existence of more bundling 

factors. In a previous study proteins like tau and MAP2C were also shown to bundle MTs 

with longitudinal distances around 25-30 nm (Chen et al. 1992).  Our nda analysis 

showed a second, smaller peak at around 55-60 nm distance. This could come from either 

a) MTs at twice the minimal preferred distance or b) a second MT bundler. Consistent 

with the theory of a second bundling protein, MAP2, bundles MTs at ~60 nm in neuronal 

dendrites (Chen et al. 1992).  

 

SPB bundles differ from non-SPB bundles  

When interphase MTs in fission yeast were de-polymerized and then allowed to 

regrow, they were initiated by 3-6 iMTOCs (Tran et al. 2001; Loiodice et al. 2005). Our 

data suggest that the cytoplasmic face of the SPB is one of these iMTOCs, since there 

was always a MT bundle attached to it. However, most MTs were laterally associated 
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with the SPB, so it is uncertain weather the SPB actively nucleates MTs in interphase 

(Masuda et al. 1992). Nonetheless, the SPB appears to provide a favorable environment 

for MT nucleation or stabilization during interphase, since we found an average of twice 

as many MTs in the bundles associated to it as in non-SPB bundles. 

 

MT interactions with mitochondria and transport vesicles 

It is known that large organelles such as the nucleus, mitochondria and the Golgi 

complex interact with cytoplasmic MTs (Ayscough et al. 1993; Yaffe et al. 1996; Tran et 

al. 2001). We often observed that MT bundles splayed apart, and almost invariably there 

was a mitochondrion at the site where the MTs diverged. Hence, mitochondria seem to 

influence MT bundle morphology. On the other hand, MTs appear to influence the shape 

of mitochondria, since mitochondria attached to MTs appear as more reticulated and 

stretched than those that are not attached. Moreover, non-attached mitochondria were 

smaller, and in general were positioned closer to the cell tips. It has previously been 

shown that the distribution of mitochondria in fission yeast is MT dependent (Yaffe et al. 

1996; Yaffe et al. 2003). This attachment depended on the protein mmd1p (Weir and 

Yaffe 2004). However no electron-dense bridges between MTs and mitochondria, which 

could correspond to the mmd1p, could be identified in our tomograms. Still, a preferred 

minimum distance of around 20 nm, similar to the MT to MT distances, was found 

between MTs and mitochondria.  

On the contrary, vesicles do not seem to be transported along MTs in fission yeast 

but are rather found in ribosome free areas, some of which contains a fuzzy structure that 

could be patches of actin, which have previously been suggested to transport vesicles 

(Takagi et al. 2003; Gachet and Hyams 2005). Secretion is not influenced by the loss of 

MTs in fission yeast (Ayscough et al. 1993). Similarly, in budding yeast secretion 

appears to be independent of cytoplasmic MTs (Huffaker et al. 1988). Here, vesicles were 

found in three different populations, the diameter of which changed between samples. 

This could possibly reflect the nutritional status of the culture at the time of freezing. The 

small electron dense vesicles had a diameter of only 26 nm in one cell. This is half of the 

diameter measured in mammalian cells (Marsh et al. 2001). However, small vesicles 20-
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30 nm have also been found in budding yeast, that are thought to be part of the endocytic 

pathway (Mulholland et al. 1999).  Therefore, we suggest these small vesicles to be 

possible yeast specific transport intermediates.  

In summary the large volume ET approach developed here has unraveled several 

novel features of ultrastructural organization in the context of a whole eukaryotic cell. 
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Chapter 4 
 

Mal3 Stabilizes Microtubule Growth and Might be 

Involved in SPB Maturation 
 

Introduction 

The end binding protein 1 (EB1) family is a group of conserved proteins, with 

homologues in yeasts, plant and humans. EB1 has been shown to be a regulator of MT 

stability, localizing to the MT plus ends during phases of growth and dissociating before 

MTs undergo catastrophe (Akhmanova and Hoogenraad 2005; Morrison 2007). It also 

recruits other proteins to the plus ends of MTs that are important for MT integrity and 

search and capture of the cytoplasm (Busch and Brunner 2004).  

EB1 was first discovered as a protein that interacts with adenomatous polyposis 

coli (APC), a tumor suppressor protein that is mutated in most colon cancers (Su et al. 

1995). Both proteins localize to the mitotic spindle, and their suppression cause defects in 

metaphase chromosomal alignment and anaphase segregation (Green et al. 2005; 

Draviam et al. 2006) . However, as a MT growth regulator, EB1 has been shown to be 

involved in many cellular interphase processes such as cell migration, formation of tight 

junctions and establishment of cell polarity (Akhmanova and Hoogenraad 2005; Shaw et 

al. 2007).  

In fission yeast the EB1 homologue, Mal3, was found in a screen for mini-

chromosome loss. If the mal3 gene is removed, the cells grows bent since the MT 

bundles only grow to half the length of their WT equivalents (Beinhauer et al. 1997) 

Short microtubule bundles establish the growth site to the wrong position (Sawin and 

Snaith 2004). However, it is not known whether the short bundles in mal3Δ are due to a 

general decrease in MT filament length or change in bundle architecture. Moreover, it 

takes twice as long for MTs to perform rescue after a catastrophe (Busch and Brunner 

2004). This could be due to both difficulties in MT nucleation or elongation.  
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Mal3 has also been shown to localize along MTs in fission yeast. A recent in vitro 

study showed a mechanism with which mal3 may stabilize MTs by binding to the MT 

seem (Sandblad et al. 2006). The seem is occurring on all 13 protofilament MTs, which is 

the most common MT structure found in vivo (Tilney et al. 1973). By stabilizing this 

interaction, Mal3 may alleviate the internal forces in the MT GDP-lattice and as such 

counter act catastrophe initiation.  

EB1 homologues also has a less discussed localization to the centrosomes in 

Dictyostelium, human cells and to the SPB in budding yeast (Hestermann et al. 2002). It 

has been reported to preferentially localize to around the maternal centriole (Louie et al. 

2004) and the old SPB in budding yeast (Hwang et al. 2003; Liakopoulos et al. 2003; 

Maekawa et al. 2003). EB1 is involved in MT anchoring to the centrosome (Askham et 

al. 2002) but the exact mechanism of action is unclear, and no ultra-structure localization 

of EB1 at the centrosome has been performed.  

In this study, we have examined the role of Mal3 on interphase MT organization 

in fission yeast, visualizing mal3Δ cells using cellular electron tomography, conventional 

thin section EM and fluorescence microscopy. We show that mal3 is important for MT 

elongation but not nucleation. Further, we show an unforeseen phenotype of the SPB, the 

yeast centrosome equivalent.  

 

MT bundle architecture in mal3Δ 

To investigate the effects of Mal3p on the cytoplasmic microtubules we examined 

variable volumes of eight different cells where this protein had been deleted. A 

combination of single-axis montaged tomograms and single frame dual-axis tomograms 

were acquired. Most of the data was extracted from the four largest montaged volumes.  

As previously shown, microtubule bundles in mal3Δ are about half the length of 

the WT bundles. These short MT bundles were less aligned along the cell’s length axis 

than WT cells (figure 1A-B). Additionally, MT alignment within the bundle was often 

disturbed too. Short microtubules were often at an angle to the longer microtubules in 

that bundle (figure 1C). However, bundles with more linear MT arrangements are also 

found both in associations with the SPB and other iMTOCs (figure 1D).  
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Figure 1 Architecture of the short MT bundles in mal3Δ   
Microtubules (green) are short, only slightly extending outside the nuclear envelope (pink). 
Microtubule end structures are shown with colored caps, where red (capped end), turquoise 
(flared end), yellow (sheet), blue (blunt end) and white (ambiguous end).  The plasma membrane 
is shown in transparent green. A-B) 3D reconstruction models of 2.25 μm thick volumes of two 
cells. C) A MT bundle where the MTs are at an angle to each other. D) A SPB associated bundle. 
E) A more linear MT bundle.    

 

Microtubule lengths and numbers in a bundle 

We measured individual microtubule lengths and found them ranging between 

0.07 and 2.4 μm, with an average of 0.65 ± 0.55 μm (n=55) (figure 2A-E). Most 

microtubules measured were under 0.5 μm (figure 2E). Only microtubules with both ends 

inside the reconstructed volume were measured. Since Mal3Δ MTs are less well aligned 

to the cell’s long axis, more of the longer MTs left the volume than in WT. This could 

cause a slight skew in the data towards more measured shorter MTs. However, if we 

include all the MTs in the volumes we found the average MT length to be almost 

identical; 0.66 ± 0.62 μm (n=107). 

 Since we were not able to reconstruct a complete cell volume of this mutant we 

can not compare total polymerized tubulin concentrations to that shown in WT.  

Further, we show that there is on average 4.8 ± 4.1 MTs in a bundle (figure 2F). 

That is not significantly different from WT bundles, where each bundle had 4.4 ± 2.6 

MTs. However, the bundles in this mutant showed an amount of MTs widely spreading 

from only one to a large bundle containing fifteen MTs. 

We conclude that Mal3 is important for MT elongation, whereas it does not 

appear to affect MT nucleation. 

 

Microtubules lacking Mal3 show kinks along the lattice 

Fluorescence microscopy shows mal3-GFP localization to growing MT plus ends 

as well as faint staining along MT lattices. Further, in vitro data has shown that Mal3 

seals the seam of the MT lattice (Sandblad et al. 2006). Therefore, deletion of mal3Δ 

could have an effect of MTs in situ. 
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Figure 2 mal3Δ cell microtubules are shorter but there is the same amount of filaments in a 
bundle as in WT  
Bundles of microtubules from four different cells are depicted as groups of black and grey bars. 
Cells are A) 7.0 μm B) 7.6 μm C) 7.6 μm and D) 6.6 μm in length. The * indicates SPB bundles. 
E) Histogram of MT lengths (all MTs in [A]-[D] pooled) showing that most bundles are shorten 
than 0.5 μm and none are longer than 2.5 μm. F) There is 1-15 MTs in a bundle, with an average 
of 4.8 MTs per bundle. The last bar in the histogram (striped) shows a bundle where the SPBs 
had separated.  
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Figure 3 Microtubules lacking Mal3 have ‘kinks’ A) Interphase microtubules with ‘kinked’ 
lattice B) model of a kinked microtubule C) six different ‘kinked’ microtubules from a mitotic 
spindle. 
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The total of 120 MTs studied in mal3Δ cells, sums up to 78 μm polymer length. 

Four of these MTs contained a ‘kink’ in the lattice (figure 3).  Hence, we had one kink 

per 19.5 μm polymer. In WT cells no such kinks were found, when studying a total 

polymer length of 121 μm spread over 87 filaments. We also observed adjacent MT ends 

facing each other as if they had been the same MT but broken in two parts in mal3Δ.  

We have also reconstructed a mal3Δ metaphase spindle. In this spindle we saw 

kinks on almost all MTs in a particular region where many MT ends were found. 

Unfortunately, we can not see the kinetochores in fission yeast, but it would be probable 

that their presence is causing the MTs to end here. The ‘kinks’ of the mitotic MTs appear 

more pleomorphic than during interphase (figure 3C).  

 

SPBs appear displaced, abnormal and only one binds to MTs 

In WT, SPBs are normally closely fitted between a mitochondrion on one side and 

the face of the nuclear envelope closest to the PM on the other side. In mal3Δ cells SPBs 

were more difficult to detect than in WT and other mutants. We found a SPB-resembling 

electron dense structure sitting on the ‘north pole’ of the nucleus in one cell. The density 

was banana-shaped and had only one end attached to the nuclear envelope. The other end 

was extended out towards a bundle of MTs that passed the SPB at an angle (figure 4A-

C).  

We wanted to know if SPBs in mal3Δ bind to MTs in a normal way. For this, we 

studied two further SPBs that were duplicated and with apparently normal morphology. 

In both cases MTs were only in contact with one of the two SPBs, indicating one SPB to 

be functionally immature. 

Therefore, SPB size was also measured by randomly measuring 35 SPBs in thin sections. 

This initial study showed that the SPBs, although appearing abnormal, were rather similar 

to what has been measured in WT previously (Ding et al. 1997; Hoog et al. 2007).  
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However, we will redo this experiment with synchronized cells to enable easy 

measurements of large amounts of SPBs. The SPB size could then be correlated with the 

cell length and a delay in maturation, if any, would become obvious.  

To ensure that every cell had a SPB we performed serial section reconstruction of 

12 complete nucleus volumes in mal3Δ cells. We found SPBs in 9 cells, in two cells there 

were ambiguous structures that could possibly be SPBs but in the final cell we found 

Figure 4 SPBs in Mal3Δ cells have a different morphology and MT interaction 
A) A duplicated SPB with abnormal ‘banana shape’, sat on the cell’s ‘north pole’ (arrowhead).
Cross-sections of microtubules are indicated with the white arrow. B) The 3D model of the 
abnormal SPB with the attached MT bundle. Note that only one SPB is in contact with the MTs.
C) Zoom in on the SPB in A) that sits outside the nuclear envelope. No intranuclear MTs were 
seen. D) Another duplicated SPB (arrowhead) where only one SPB is in contact with the MTs. E)
The 3D model of the SPB in D).  
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nothing resembling a SPB (figure 5). To get statistically more valid numbers we turned to 

fluorescence microscopy.  

 

Fragmented SPBs during interphase in mal3Δ cells? 

Nine different SPB proteins tagged with fluorescent proteins (GFP, CFP or YFP) 

were crossed into mal3Δ background. The brightest marker was Pcp1-GFP, which 

showed a 30% increase in cells containing more than one ‘SPB’ dot in mal3Δ cells (11% 

WT and 41% mal3Δ; n= 280 WT, 215 mal3Δ). Pcp1-GFP localized to two loci in most 

multi-dotted mutant cells, but up to four loci was observed (figure 6A-C).  

10% of these dots seemed localized away from the nucleus (seen as a circle of 

less background fluorescence). We tracked three fluorescent dots in one cell and found 

one moving at a faster speed than the others (figure D), a further indication that this 

particle was free in the cytoplasm.   

However, the same experiment counting cytoplasmic dots in cells expressing 

cut12-GFP showed no difference between SPB numbers in mal3Δ and WT (figure 6E). 

The other markers (cdc11-GFP, sid4-GFP and spg1-GFP) were only examined visually, 

and they appeared similar to cut12-GFP. 

The extra dots in the pcp1-GFP cells were almost always less intense than the 

clear dot we assume to be the normal SPB. Therefore, we now want to study all the 

strains under a confocal microscope where possibly fainter extra dots could be visualized. 

 

Are immature SPBs responsible for delay of mitosis onset in mal3Δ 
cells? 

mal3Δ cells has a delay of entry into mitosis (Beinhauer et al. 1997; Asakawa and 

Toda 2006). Even though our study foremost involved interphase cells, an even stronger 

phenotype was noticed in mitotic pcp1-GFP mal3Δ cells. Here, we found up to six 

cytoplasmic dots instead of the normal two SPBs during mitosis (figure 7A-A’; n= 4 WT 

and 54 mal3Δ).   
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Figure  5 Serial sections from a whole nuclear volume in a mal3Δ cell lacking an SPB. Each 
section is 60 nm thick, which means an SPB should appear in 1-3 serial sections.  
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Could the delay of mitotic onset be due to immature SPBs? A tomogram 

reconstruction of two newly separated SPBs in mal3Δ cells was made. The SPB 

separation characterizes the G2/M transition of the cell cycle. At this phase, the SPBs 

appeared normal in size and both were in contact with large bundle containing 15 MTs 

(figure 8 A-C).  

However, when we reconstructed SPBs in a metaphase spindle, they appeared to 

have divided unequally. One SPB had an electron dense ellipsoid without the central 

plaque and the other appeared to only have a wide central plaque (figure 8D-E). Here, we 

also hope that thin plastic sections of synchronized cells will provide more illustrations, 

to enable better understanding of the mutant SPB morphology.  

Figure 6 Fragmented SPBs during interphase in mal3Δ cells. A) WT cells with pcp1-GFP 
showing the SPB. B) Pcp1-GFP in time-lapse of Mal3Δ cells show multiple SPB dots of which 
some are not associated with the nuclear envelope (arrow). B') lines from particle tracking. C)
The amount of discrete pcp1-GFP signals seen in Mal3Δ and WT cells. D) The speed with which 
the fluorescence signals in B) move are slightly different, probably due to disassociation from the
nuclear envelope by the speckle color-coded in red. E) The amount of discrete cut12-GFP signals 
in Mal3Δ and WT cells. 
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Immunolocalization of Mal3 in WT cells 

We are currently trying to localize Mal3 to the SPB using immunocytochemsistry. 

Antigens are localized on thin lowicryl sections using antibodies and then visualized 

using protein A coated gold particles. However, only the antigens exposed on the surface 

of the section can be detected. Therefore, this experiment is better performed using a 

polyclonal antibody that can detect many epitopes. To enhance the signal a secondary 

antibody is used before the gold is applied. The outcome of this experiment will be 

crucial to confirm if Mal3 is a true SPB component, which might be necessary for SPB 

maturation.   

 

 

 

Figure 7 Fragmented SPBs during mitosis in mal3Δ cells. A) Frames from a time-lapse movie 
of mal3Δ cells expressing Pcp1-GFP. A') the same frames as in A) but with background
subtracted (rolling ball radius: 5 pixel), to enhance visualization of the fragmented SPBs.  
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Discussion 

The role of Mal3 in MT structure and bundle architecture 

Light microscopy studies showed that MT bundles in mal3Δ cells are half as long 

as WT bundles (Busch and Brunner 2004), but due to the limited resolution individual 

MT can not be detected. Therefore, it could not be known weather this change in bundle 

length was due to a different organization within the bundle, because the MTs were just 

shorter or both. 

Figure 8 G2/M transition and mitotic SPBs in mal3Δ A) The microtubule bundle associated 
with the separated SPBs contains 15 microtubules. The SPBs are both outside the nuclear 
envelope. B) A tomographic slice of the separated SPBs, the central bridge remains associated 
with only one SPB. C) Microtubules are now associated with both SPBs. D-E) The SPBs of a 
metaphase spindle seems unevenly duplicated. One SPB appear reduced to only the central 
plaque and the other SPB merely has the electron dense material and no visible central plaque. 
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Using electron tomography we could reconstruct the short bundles in 3D and see 

individual MT lengths and polarity.  WT MTs were 1.64 ± 1.43 μm long, in contrast to 

mal3Δ that only had 0.65 ± 0.55 μm long MTs. This correlates well with the bundle 

lengths measured in light microscopy studies. mal3Δ bundles do not appear to a have 

different organization compared to WT. To confirm that the bundles do not show a 

difference in organization we should measure the spread of capped ends around the 

nuclear envelope and compare with WT.  This would give an indication if closed 

(assumed minus) ends would be more or less spread in the mutant.  

MT bundles in mal3Δ contained similar amounts of MTs as a WT bundle. Hence, 

we suggest that MT nucleation is normal without Mal3 present. Further, the delay in 

regrowth after catastrophe, shown by (Busch and Brunner 2004), is probably due to 

difficulties in elongation rather than nucleation. An alternative explanation would be that 

nucleation within an existing bundle is not affected but de novo bundle formation is made 

more difficult by the lack of Mal3. 

 We also describe a novel and rare ‘kinked’ MT morphology in the mal3Δ cells. 

Notably, such ‘kinks’ were generally not seen in WT cells, neither in tip1Δ cells that 

were cryoimmobilized alongside the mal3Δ mutants. These kinks could result from MTs 

having a less stable seem when lacking Mal3 (Sandblad et al. 2006). We assume that 

such ‘kinks’ could cause a lot of strain and possible breakage on the microtubule lattice 

and therefore be transient features. This observation could be a partial explanation of the 

short microtubules seen in mal3Δ cells.   

Altered SPB location, morphology and function 

This study has shown aberrant SPB structure in the absence of Mal3. SPBs were 

displaced, malformed and had an altered affinity to MTs. The displacement could be an 

indirect effect from having short cytoplasmic MTs, since long MTs would automatically 

align to the long axis of the cell and position the SPB at the side of the NE. The shorter 

MTs in mal3Δ will Accordingly, MTs have been shown to position the SPB during entry 

into mitosis (Vogel et al. 2007).  

On the contrary, the malformation of SPBs is not easily explained. However, we 

give three hypotheses on how this may have occurred. Firstly, mal3 could be a structural 
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SPB component, which itself or through recruiting other proteins to the SPB, is important 

for its morphology. Secondly, MTs may usually be delivering components back to the 

SPB and this delivery is impaired in the absence of a normal interphase MT array. 

Thirdly, EB1 can be involved in the connecting the SPB to the nuclear envelope. By 

removing Mal3 the SPB would then be less well attached and what we observe as altered 

SPB morphology may be a result from other cytoplasmic components pulling on MTs 

and the SPB.  

Is mal3 a structural SPB component? 

Fluorescence microscopy studies have localized +TIPs such as EB1 and 

XMAP215 to the centrosome (Berrueta et al. 1998; Graf et al. 1998; Morrison et al. 1998; 

Askham et al. 2002). However, since this is the site of new MT outgrowth and 

accordingly one of high concentration of MT plus ends, this localization may be 

considered inevitable. More convincing evidence that EB1 is a centrosome component 

comes from studies using molecular truncations of EB1 and siRNA silencing of the gene 

product.  When disrupting EB1 the focused interphase array dissolves, showing that EB1 

plays a role in anchoring the MTs to this region (Askham et al. 2002; Yan et al. 2006). In 

agreement with this, EB1 has been shown to localize to the mother centrioles that is 

anchoring of MTs to the centrosome (Piel et al. 2000; Louie et al. 2004).  

In fission yeast, both SPBs have been shown to bind the MTs during late 

interphase. In mal3Δ, MTs did not bind to one of the duplicated SPBs. This suggests a 

maturation problem with that SPB. We have no means to distinguish the old and new 

SPBs in the tomogram reconstructions once duplication is complete. However, previous 

studies in budding yeast have localized its EB1 homologue, Bim1, to the old SPB that is 

directed to the daughter bud during mitosis (Hwang et al. 2003; Liakopoulos et al. 2003; 

Maekawa et al. 2003). Localization of EB1 to the mother centriole has also been shown 

using fluorescence microscopy of mammalian cells (Louie et al. 2004).  

With this knowledge one could make two hypotheses; firstly, the non-binding 

SPB is the mother SPB that has lost EB1 or EB1 interacting proteins responsible for the 

MT binding of this structure. This would assume that the daughter SPB has an alternative 
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mechanism for MT attachment. Alternatively, the non-binding SPB is the daughter SPB 

that has a delay in maturation due to the lack of EB1.  

Our studies of late G2 and mitotic SPBs do not show conclusive evidence of such 

a maturation defect. Therefore, we will carry out fluorescence microscopy of different 

SPB components available in mal3Δ cells. A maturation defect could be seen by lower 

fluorescence intensity in one of the separating SPBs. If this was the case, a mother SPB 

specific marker could be used to determine which one of the SPBs lacks these proteins. 

Further, thin section electron microscopy of synchronized cells may shed more light on 

the SPB ultrastructure both in interphase and mitosis.  
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Chapter 5 
 

Tip1 is a microtubule stabilizer involved in 

nucleation and attachment to the nuclear 

envelope 
 

Introduction 

Clip-170 (Cytoplasmic linker protein of 170 kDa molecular weight) was the first 

MT plus end tracking protein described (Rickard and Kreis 1990). Clip-170 binds 

directly to MTs by its two N-terminal CAP-Gly domains (Pierre et al. 1994). However, 

this binding is auto-inhibited by the C-terminal end which is folded back on to the N-

terminus (Lansbergen et al. 2004). This autoinhibition is thought to compromise MT end 

binding and may provide a mechanism for local regulation of Clip-170 activity. 

Clip-170 has been shown to regulate MT dynamics and link MTs to intracellular 

sites, such as endocytic vesicles (Pierre et al. 1992). Live cell imaging in HeLa cells 

showed localization of Clip-170 to comet like structures at all growing MT ends (Perez et 

al. 1999). Before depolymerization this comet disappears and reoccurs again upon rescue.  

In fission yeast, the Clip-170 homologue Tip1 is involved in spatial organization 

of the MT cytoskeleton (Brunner and Nurse 2000). It is localized along the MT lattice 

and in particular at MT plus ends where it is transported by the kinesin Tea2. In this 

location Mal3 (EB1) is responsible for anchoring Tip1 (Busch et al. 2004).  

 In WT, over 90% of the MT bundles reach the cell ends before undergoing 

catastrophe. Tip1 is unloaded at the cell ends, and its localization to this region is 

dependent on the Tea1 landmark protein. However, in tip1Δ cells MTs depolymerize 

when touching the cell cortex anywhere along the length of the cell. Therefore, Tip1 is 
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thought to be an anti-catastrophe factor that locally regulates the MT dynamics, guiding 

them to the cell ends. Consequently, the MT bundles in tip1Δ are shorter and the cells 

grow bent and branched (Brunner and Nurse 2000).  

It is not known how Tip1 stabilizes the MTs or what happens to the MT when it is 

unloaded before depolymerization. As in Mal3, the influence on the bundle ultrastructure 

of tip1Δ is not known. In this chapter, I describe a strong reduction of polymerized 

tubulin in tip1Δ, depending on both short MTs and fewer MTs in a bundle. This indicates 

a role for Tip1 in MT nucleation. Further, we found the MT attachment to NE and SPB 

weakened.  

Figure 1 Architecture of the short MT bundles in tip1Δ   
Microtubules (green) are very short and seldom extending outside the nuclear region. Thin
filaments are shown in turquoise. The nuclear envelope is shown in pink. Microtubule end
structures are shown with colored caps, where red (capped end), turquoise (flared end), yellow 
(sheet), blue (blunt end) and white (ambiguous end).  The plasma membrane is shown in
transparent green. A) 3D reconstruction model of a full cell volume. B) Reconstruction of 2 μm 
and C) 4.25 μm thick cell volumes.   
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tip1Δ causes an increase in thin filament prevalence 

We have reconstructed tomograms from five different cells. Four of these were 

single axis montages and one was a whole nuclear volume reconstructed from dual axis 

tomograms. These cells contained bundles of short MTs. Mostly MTs were found alone 

in the cytoplasm (figure 1). Notably, the nuclear volume did not contain any MTs at all.  

We have seen thin filaments that appear more flexible than normal MTs since 

they bend and fold on themselves, in both WT and mal3Δ. However, in tip1Δ these 

filaments became noticeably more abundant (turquoise filaments in figure 1 and 2). In 

WT these filaments were often inside MT bundles (63% n= 5 out of 8) and aligned to a 

MT (figure 2A-B). Their partial hollow structure, ability to fray into filaments and their 

association with other MTs made us consider them as a form of MTs (see discussion). 

The thin filaments are 40 nm to 1.3 μm long, with an average length of 0.60 ± 

0.35 μm (n = 24 from all three strains; figure 2C). They are often hollow tubes for a part 

of the length and then change to be just a filament or a couple of filaments. This makes 

their diameter variable. However, when measured on the widest point we found diameters 

from ~3 nm (single filament) to ~18 nm (the diameter of most MTs in our sections; figure 

2D). The average thin filament diameter was 10.8 ± 4.1 nm (n=17). 

In tip1Δ these thin ‘MTs’ represent 24% of the polymerized tubulin, whereas in 

mal3Δ and WT the same number was 1% and 4% respectively (figure 2E). This 

proportional increase of thin filaments could be due to a stabilizing function of Tip1 that 

causes filaments to assume this conformation when it is removed. Alternatively, it could 

be an indirect effect of a large decrease of ‘normal’ MTs in tip1Δ whilst these structures 

are left unaffected.  

 
Figure 2 tip1Δ has an increased proportion of thin filaments A) A wild type MT bundle 
(green), containing two thin filaments (turquoise). The white arrowhead points indicates the 
filament shown in B. B) Slices from the tomogram (every 3 nm) showing a thin hollow filament 
next to a normal MT. The insert is a snapshot of the marked position (turquoise arrowhead) 
rotated 90 degrees in the x-axis, so that the filaments are visible in cross-section. This clearly 
shows that both filaments are hollow as well as they display different diameters. C-D) The lengths 
and widths of individual thin filaments E) The proportion of the total polymerized tubulin that 
represents thin filaments in WT, mal3Δ and tip1Δ clearly shows an increase in these filaments in 
tip1Δ. 
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tip1Δ shows a strong reduction of polymerized tubulin  

Removing Tip1 causes a reduction both in the number of MTs and in their length. 

Using live cell imaging of GFP-tubulin, we measured the MT bundles to be 7.9 ± 1.4 μm 

long in WT and 2.4 ± 0.9 μm in tip1Δ cells (n= 220 WT, 198 tip1Δ). This corresponds to 

a bundle length reduction of 70% in tip1Δ cells.  

Using tomography, individual MT polymer lengths were measured to be between 

40 nm and 2.40 μm, with an average of 0.68 ± 0.57 μm (n=33, including nine thin 

filaments; figure 3A-E). If the thin filaments are excluded, the average length of MT 

polymer was 0.71 ± 0.63 μm. Interestingly, the average amount of fibers in a bundle 

decreases from 4.4 ± 2.6 in WT to 1.7 ± 1.6 in tip1Δ cells (including thin filaments; 

figure 3F).  

In this mutant we were able to reconstruct a second full cell volume. This cell 

contained 9 MTs (of which 4 were thin filaments). The total length of polymerized 

tubulin was 2.81 μm, which is a 91% reduction from the reconstructed full cell volume of 

a WT cell.  

Individual MT length can not be measured by light microscopy, however the 

length of large numbers of MT bundles can be determined easily. To exclude that this 

massive reduction of polymerized tubulin was caused by sample preparation, we 

compared bundle lengths measured by tomography and light microscopy of GFP-tubulin 

in WT and tip1Δ cells (figure 3G). Since we select for short cells when doing 

tomography, we used the bundle length as a ratio of the cell length to compare the two 

techniques.  

In WT cells, bundles were 71 ±13 % (n=220) of the cell length when measured 

with light microscopy. The corresponding MT bundle lengths measured by tomography 

was 68 ± 20 % (n=14).  In tip1Δ examined using light microscopy bundles measured an 

average of 24 ± 11%, whereas tomographically reconstructed bundles measured 14 ± 

11% (n= 19).  

The lengths of MT bundles as measured by the two methods are the same within 

the range of the errors. This implies that the observed reduction of MT length between 

WT and tip1Δ using tomography is not an artifact.  
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Figure 3 tip1Δ microtubules are shorter and bundles have fewer MTs
Bundles of microtubules from four different cells are depicted as groups of black and grey bars.
Cells are A) 6.5 μm B) 6.9 μm C) 7.5 μm and D) 7.0 μm in length. The * indicates SPB bundles.
E) Histogram of MT lengths (all MTs in [A]-[D] pooled) showing that most MTs are shorter than 1 
μm and none are longer than 2.5 μm. F) Most MTs are single filaments and bundles contain in 
general only two to three MTs. Average in tip1Δ of MTs per bundle was 1.7 ± 1.6 MTs, less than 
half of WT. G) A control experiment where bundle length in WT and tip1Δ was measured using 
both light microscopy and tomography. Like this we could confirm that the measured decrease in
tip1Δ is not a sample preparation artifact.  
 
 



Tip1Δ 

 111 

Microtubule attachment to the NE and SPB is weakened 

In general, MTs were found close to the nucleus but we noticed weakened 

attachment to the NE. Eleven of the nineteen (58%) single MTs and bundles that we 

studied were apart from the NE in tip1Δ (figure 1). This is in comparison to WT where 

only two out of fourteen bundles (14%) were NE-disassociated. Of these disassociated 

fibers, six were thin filaments. Therefore, the loosening of the MT and NE connection is 

apparent in tip1Δ. 

In the reconstructed tip1Δ cell volumes, four SPBs were reconstructed. Their 

morphology appears normal but only two had attached MTs (figure 4A-B). The third SPB 

had a MT at approximately 25 nm distance and the final SPB had no MTs attached at all 

(figure 4C-D). However, this was the cell where we found no MTs at all, so was this a 

real phenotype of tip1Δ? 

We decided to examine MT-SPB association by live cell imaging. Cells 

expressing cherry-fused α-tubulin and cut12-GFP (SPB marker protein) were used to see 

if SPBs sometimes have no MTs associated with them in WT and tip1Δ. We found some 

evidence for SPBs without associated MTs in tip1Δ (figure 4E). However, the MTs in 

WT appeared short (figure 4F). This could be because cherry-tubulin is not bright enough 

to show single MTs extending towards the tip or because the cherry-tubulin molecules 

have altered polymerization properties. Therefore, we are not certain that single short 

MTs, like most tip1Δ MTs, would be visible. A change to GFP-tubulin with another SPB 

marker would solve this problem. This will be the next step in this investigation. 

 



Tip1Δ 

 112

 
Figure 4 MT attachment to SPB is weakened in tip1Δ cells A-B) SPBs with attached MT 
bundles. C) A SPB with a MT adjacent but not touching D) A SPB without any MTs at all. E) tip1Δ 
cells expressing cherry-tubulin and cut12-GFP show some SPBs without a connecting MT 
bundle. However, WT bundles F) are appear shorter than when using GFP-tubulin, maybe single 
MTs are not visible.  
 
 

Discussion 

Tip1 affects MT stability, nucleation and NE attachment 

We describe more severe MT defects in tip1Δ than those found in mal3Δ. Microtubules in 

tip1Δ are only half as long and MT bundles contain half as many MTs as in WT. A 

previous study measuring tip1Δ MT bundles using immunofluorescence showed a 30-
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60% reduction in bundle length (Brunner and Nurse 2000). Tomography showed an 82% 

decrease in bundle length.   

Therefore, a comparative measurement of WT and tip1Δ MT bundles was carried 

out using GFP-tubulin to visualize the bundles. The results showed a 70% reduction in 

MT bundle length, a number in between the published original measurement and the 

tomography data. Considering the small number of measurements feasible when using 

tomography, and the fact that the measurements from light microscopy and tomography 

are within each other’s standard deviations we conclude that the tomography 

measurements are correct.  

Tip1 prevents MTs to undergo catastrophe when they reach the cell cortex away 

from the cell ends (Brunner and Nurse 2000). That MTs are shorter when this protein is 

absent is therefore not surprising. However, we also show that there are fewer MTs in a 

bundle and that these are not connected to the NE to the same extent as in WT cells. This 

indicates functions of Tip1 in MT nucleation in addition to attachment of MTs to the 

nucleus. 

Since most nucleation events occur in the nuclear area (Drummond and Cross 

2000), it is possible that these two new functions of Tip1, MT nucleation and NE 

attachment, are related. For instance, proteins binding γ-TURCs might be contained in 

the NE. MTs detaching from the NE would then be less likely to find such a γ-TURC that 

would nucleate one further MT. This model would suggest that Tip1 may be involved in 

MT anchoring to the NE and that the observed nucleation defect was indirect.  

 

The nature of the thin filaments 

Thin filaments which appear more flexible than normal MTs were observed in all 

three strains that we worked with. We have considered them as MTs because of the 

following reasons: 

1. They are often, but not exclusively, found in MT bundles and are then aligned 

with another MT. 

2. They are hollow.  



Tip1Δ 

 114

3. Some filaments have regions as thick as a normal MT but then transform into 

thinner filaments. 

4. They frequently appear to be fraying into smaller filaments that could be 

protofilaments. 

5. They are up to 1.3 μm long, making them very unlikely to be a random 

occurrence of electron dense material.  

6. Deletion of a microtubule associated protein (Tip1) changes their prevalence. 

 

The thin filaments are unlikely to be actin cables because these have been 

described to be ~ 60 nm thick in fission yeast (Kamasaki et al. 2005). Further, the long 

stretches of two parallel walls are unlike any known actin structure. Moreover, fission 

yeast has no described IFs and neither actin nor IF proteins form hollow filaments.  

The thin filaments are therefore most likely a form of MT polymer. We speculate 

that they could be a sheet of polymerized tubulin protofilaments that did not form a 

proper MT cylinder. A reason for this defect could be the absence of a γ-TURC template. 

Alternatively, the thin filaments could be the remains of MTs that have depolymerized 

incompletely. A third  hypothesis is that these are simply MTs composed of fewer 

protofilaments as has commonly been observed in vitro (Desai and Mitchison 1997). 

It could also be possible that our cryoimmobilization method using high pressure 

freezing caused the already destabilized MTs in tip1Δ to form these structures. There is 

contradicting data as to whether pressure can depolymerize MTs, but at least two studies 

show that this is possible (O'Connor et al. 1974; Salmon 1975; Salmon et al. 1976). What 

contradicts this theory is the time frame (~25 ms) in which this cryoimmobilization is 

achieved. It is unlikely that a major structural reorganization can occur within this time, 

which is indeed the benefit of using this fixation method (Studer et al. 2001; Osumi et al. 

2006).  

Since these structures are difficult to visualize using tomography, it is impossible 

to observe them in thin sections. The only technique, to our knowledge, which could give 

final proof of the existence of this form of fiber, is cryotomography of frozen hydrated 

sections. The tomograms prepared of these samples have a resolution of around 2-3 nm, 

enough to see individual tubulin subunits (Lucic et al. 2005). A second approach to test if 
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these are real and conserved MT structure intermediates would be to acquire tomograms 

of for example S. cerevisiae and search for similar filaments.  
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Chapter 6 
 

Discussion and Outlook 
 
 
Many research groups which are striving to understand cell polarity and polar 

growth focus on the fission yeast interphase MTs. MT arrays are central in supporting 

these processes and readily imaged using light microscopy. Our knowledge about MT 

dynamics and the proteins involved in its regulation is consequentially increasing steadily 

(La Carbona et al. 2006; Sawin and Tran 2006). However, the detailed MT bundle 

architecture has remained elusive, since individual MTs can not be resolved using light 

microscopy. Attempts to reconstruct the MT bundles by electron microscopy have failed 

because of the long distances over which they extend. Additionally, tracking of MTs 

through serial sections is made difficult by MTs splaying apart since only parallel MTs 

can be followed.  

A large part of this project was to establish a method to reconstruct and analyze 

the ultrastructural architecture of the MT cytoskeleton in WT, enabling both quantitative 

and qualitative description of the MT bundles. Our large-scale electron tomography 

approach proved to be efficient to describe a number of factors including bundle 

architecture, the polarity of MTs, the amount of filaments in a bundle, the contact of MTs 

at the cell end and MT interactions with the NE, SPB, mitochondria and vesicles. Having 

a large bank of reconstructions of WT was crucial to establish a reference for further 

tomographical investigations performed on +TIP mutants. This was particularly 

important since the MT organization is already so pleomorphic in WT cells.  

I will first comment on the advantages and disadvantages of the technical and 

methodological aspects of this study, before discussing the main biological findings and 

future projects. 
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The benefits of using electron tomography 

Electron tomography has been able to provide information that would not have 

been available from conventional serial thin section 3D reconstruction. This conventional 

method combines images of thin sections (60-80nm), which allows an investigator to 

follow microtubules through their characteristic cross-sectional appearance (Ding et al. 

1993).  It is limited in 3D resolution by the thickness of the sections and cannot give 

isotropic 3D information. In electron tomography, a semi-thick section is reconstructed in 

3D and a model is built by digitally slicing the tomogram in any direction and drawing 

around the objects of interest. Using this method, microtubules that diverge from a bundle 

or bundles that change direction are not lost from the reconstruction. Furthermore, 

tomography provides a resolution of around 5-12 nm in computerized sections of about 1-

2 nm thickness. This resolution is comparable with the resolution in images of thin 

sections, and almost the same resolution is obtained in the dimension perpendicular to the 

section’s plane. Thus, a model created from a tomogram is of much higher accuracy than 

one made from serial sections. In addition, using the serial section method, bundles are 

very difficult and time-consuming to track, even using a goniometer and a rotation holder 

to tilt the sections so that the MTs of a given bundle are parallel to the electron beam axis. 

On the contrary, in a tomogram all bundles in the volume can be tracked through their 

entire length and eventually modelled. Thus, not only information about the bundles 

themselves but also their interactions can be described.  

 

Plastic shrinkage can induce measurement errors 

When a tilt series is being acquired in the electron microscope, the plastic that 

embeds the sample is being evaporated by the electrons. The resulting shrinkage occurs 

mostly along the axis perpendicular to the section, and it can be as dramatic as 30-50%. 

The process of fiducial alignment helps to correct most shrinkage effects in the other 

axes, and after calculation, an approximate correction of the major shrinkage distortions 

can be applied.  However, the tomograms do not shrink uniformly. The higher the density 

of material that binds heavy metal stain, the lesser the shrinkage. Thus, joining 

tomograms of two adjacent sections so that cellular structures fit perfectly between the 
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sections is very difficult. This means that microtubules stretching over serial tomograms 

may appear kinked in the model. Consequentially, measurements made from a model 

include errors that may be considerable and are very hard to estimate.  

This problem can be minimized by choosing a cell whose MTs lie as flat as 

possible, using the prescreen method described in the materials and methods chapter. 

MTs that lie approximately parallel to the plane of section should not stretch between 

many serial sections.  

An alternative technique would be the use of frozen hydrated sections visualized 

using cryo-electron tomography. This is where the sample is first frozen at high pressure 

then sectioned directly at very low temperature. Ice does not evaporate under the electron 

beam, so the whole problem of shrinkage would be avoided. However, the ice-embedded 

sample heats up and may form crystals when hit by the electrons. Therefore, upon 

tomogram acquisition under these conditions the electron dose needs to be optimized to 

get high signal-to-noise ratio whilst avoiding beam damage. This makes montaging of 

tomograms impractical, since the overlapping regions used to ‘glue’ the frames together 

would get a double electron dose. Furthermore, serial sectioning of such frozen hydrated 

samples can only be carried out by rare experts. Therefore, reconstructions of large 

samples like our fission yeast cells using cryo-tomography would be very challenging.  

 

Joining microtubules over serial section may introduce errors 

Even larger errors might arise in the modelling process when it is not possible to 

determine which MTs should be joined at a boundary between sections. For this there is 

no cure except for careful examination of the model, using tools in 3dmod like slicer.  

For this study it was crucial to reconstruct large fractions of cell volumes. To 

accomplish this in a reasonable period of time, we compromised on image resolution. 

Dual axis tomograms were avoided by choosing cells whose orientation provided optimal 

resolution of the MTs under study, i.e., both the long axis of the cells and the MTs were 

parallel to the tilt axis. Furthermore, we combined a slightly lower magnification and 

higher tilt increments than commonly used in cellular tomography. Nonetheless, the MTs 

were still clearly visible and, sometimes, beautiful MT end structures were seen. These 
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enabled determination of MT polarity. Of course, such a compromise in resolution may 

lead to mistakes, such as incorrect classification of the MT ends or even missed MTs. 

Based on the quality of the obtained images, however, we believe that the likelihood of 

the latter problem is minute. Moreover, errors made as a consequence of lower-than-

optimal resolution should be compensated by the larger sample size we have achieved by 

studying large volumes and looking at quite a few cells. For further verification we used 

complementary dual-axis tomograms of small areas for comparison with the single axis 

tomograms. For example, fine details visible in our single axis reconstructions, such as 

electron dense bridges between the nuclear envelope and MTs and between the MTs of a 

bundle, were seen in dual axis tomograms as well. These bridges have also been observed 

when imaging hydrated sections of the fission yeast mitotic spindle using cryo-electron 

tomography (D. Nicastro, personal communication). This suggests that the resolution in 

the single axis tomograms maintained an acceptable quality for our purposes.   

 

The advantage of full cell volume reconstructions  

From the studies of WT cells we could give the first complete view of MT bundle 

architecture and some of the intracellular interactions they make. By joining 15-17 serial 

tomograms we were able to reconstruct a full cell volume of one WT cell and one tip1Δ 

cell. These cells enabled us to give a snapshot view of a complete MT cytoskeleton. We 

showed the total length of MT polymer in the cell, number of MTs as well as other 

organelles, such as mitochondria and vesicles. Furthermore, the proportion of the total 

cell volume occupied by membrane-bound organelles such as the nucleus, mitochondria 

and vacuoles was reported. Naturally, additional full cell volumes would further validate 

our results. However, these were the first two full eukaryotic cell volumes reconstructed 

using electron tomography, and achieving this was a time-consuming effort. Therefore, 

the combination of large partial volumes of cells that are easy to acquire and the full cell 

volumes were the most effective way of describing fission yeast’s large internal 

structures.  
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Microtubule structures visualized in situ 

Numerous in vitro cryo electron microscopy studies have shown that growing, 

metastable and shrinking MT ends have different morphology (Mandelkow et al. 1991; 

Hyman et al. 1995; Muller-Reichert et al. 1998; Arnal et al. 2000). These studies have 

provided us with detailed models of how MTs grow and shrink. However, in vitro 

conditions do not necessary correspond to the situation in the cytoplasm where a number 

of different MAPs might affect the structure of MT ends.   

Using plastic section tomography, we image MTs in physiological conditions 

inside the cell. From the parameters of MT dynamics measured by live cell imaging 

(Busch and Brunner 2004), we could estimate the proportion of MTs that are growing 

and shrinking at any one time in the cell. This was compared with the morphology of the 

longest MT in a bundle (this would have been measured using light microscopy) in our 

tomography reconstructions. The low number of MT end morphologies extracted from 

the tomograms was surprisingly close to the estimated proportions of MT dynamics, if 

both flared and sheeted MT ends were considered growing. Based on these results, we 

propose that growing ends are likely to be seen as both polymer sheets and flared ends in 

situ. However, we can not be sure that our suggestion is correct, since it is based on an 

indirect way of evaluating the MT dynamic state at the time of cryoimmobilization.  

To more conclusively show the morphology of growing MT ends in situ, we 

performed an experiment where MTs were depolymerized using a MT depolymerizing 

drug and then cryoimmobilized during regrowth after wash out. After drug release, most 

MTs should be growing and their morphology can be readily identified using electron 

tomography. Regrettably, these data could not be completely processed and analyzed yet.  

Additionally, we could show structural alterations of the MT lattice in both tip1Δ 

(thin filaments) and mal3Δ (‘kinked’ MTs) mutants. Yet, we know that MTs can grow 

without these proteins with no difficulty in vitro (Lee et al. 1974). This leads us to 

hypothesize that these alterations might be explained by the presence of organelles and 

macromolecular complexes in the cytoplasm. In the case of the ‘kinked’ MTs in mal3Δ, 

the MTs may be weakened by the lack of this protein or proteins interacting with it. A 

collision or interaction with cytoplasmic structures could then cause the shown lattice 

deformation.  
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We speculated that the thin filaments found in higher rates in tip1Δ could be 

incompletely depolymerized MTs, leaving sheets of protofilaments behind. If this was the 

case, the increase of thin filaments in tip1Δ would correspond well to the increased 

catastrophe rates observed in these cells (Brunner and Nurse 2000). We also suggested 

that they might be MTs with fewer protofilaments. This could be associated with the 

nucleation defect discussed in the next section. However, the nature of these thin 

filaments remains to be elucidated. Possibly, we could get clues about their formation 

when analyzing the tomograms of cells treated with a MT depolymerizing drug.  

 Our results prompt us to conclude that studying MTs in situ can give a more 

multi-facetted picture of MT structure than in vitro studies.  

 

Electron tomography revealed new functions of the +TIP proteins 
Tip1 and Mal3 

We followed the study of interphase MT organization by analyzing tip1 and mal3 

deletion mutants. These genes encode proteins that localize to the plus ends of MTs. 

Mal3 has a general stabilizing effect on MTs, whereas Tip1 stabilizes MTs by locally 

inhibiting catastrophe at the central cell cortex (Brunner and Nurse 2000; Busch and 

Brunner 2004).  

In both cases, we could confirm the previously described MT stabilizing 

functions, by measuring MT lengths about half of that seen in WT, as well as additional 

functions of these proteins. Firstly, we found structural changes in the MT lattice as 

mentioned above. Secondly, we found alterations in the association to the SPB in both 

mutants.  

EB1 has been shown to be a centrosome component that anchors MTs to, most 

likely, the mother centriole (Askham et al. 2002; Louie et al. 2004; Yan et al. 2006). In 

our 3D snapshot view of the mal3Δ cells, we could see that MTs are in close association 

with only one of the SPBs. It is therefore important to ascertain whether this is the old or 

new SPB, and also if this is due to a maturation defect caused by the lack of Mal3. This 

will be examined using both light and electron microscopy approaches.  
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Firstly, we want to use fluorescently tagged SPB markers and compare the fluorescent 

intensity of just separated SPBs in mal3Δ. If we find unequal intensity fluorescence in 

mal3Δ cells, we will proceed to identify which SPB is concerned. For this we could, for 

example, use a SPB protein fused with the red fluorescent protein DsRed that takes 

several hours to fold into an actively fluorescing molecule. This property has been 

exploited previously to differentiate the new from the old SPB (Pereira et al. 2001; 

Tanaka et al. 2002; Grallert et al. 2004).  

Since we showed that the brightest SPB marker Pcp1-GFP had a higher number of 

SPB dots in mal3Δ cells (see results in Chapter 3), more SPB markers will be imaged in 

mal3Δ cells using the spinning disk confocal microscope. The improved signal-to-noise 

ratio gained by the confocal sectioning of the sample could expose multiple dots using 

other less bright markers. Such a SPB fractionation would explain the abnormal SPB 

morphology we see in these mutants.  

Secondly, localization of EB1 to the centrosome in vertebrate cells has been 

performed using light microscopy (Berrueta et al. 1998; Morrison et al. 1998; Askham et 

al. 2002). From these data it is not clear if EB1 labels a concentration of MT plus ends or 

the actual centrosomal structure itself. Therefore, we are trying to localize Mal3 to the 

SPB using Mal3 directed antibodies and on-section immunogold labelling. A specific 

gold localization to the SPB would be the final proof that Mal3 is actually a SPB 

component.  

For the Clip-170 protein family, on the other hand, there are no previous 

indications that they might be centrosome components. However, we found tip1Δ to have 

a nucleation defect. It has been shown that satellite MTOCs nucleate MTs along the 

length of pre-existing MTs (Sawin et al. 2004; Zimmerman et al. 2004; Janson et al. 

2005; Zimmerman and Chang 2005). It could therefore be predicted that shorter MTs 

could lessen the probability for new nucleations. If true, mal3Δ would also show a 

nucleation defect, which we did not observe. Therefore, this nucleation defect in tip1Δ is 

Tip1 specific.  

Furthermore, we show that MTs in tip1Δ were predominantly found in the nuclear 

region distant from the NE and SPB. This suggests that Tip1 is important in anchoring 

the MT lattice or minus ends to the NE and also the SPB, which could be related with the 
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observed nucleation defect. The localization away from the NE would, in most cases, not 

be detectable using light microscopy, since MTs are still relatively close. However, the 

absence of MTs from the SPB can and will be addressed using this technique. Therefore, 

both +TIPs studied have shown important functions at or near the MT minus end.   

 

Tip1 and Mal3 may localize to the growing plus end of MTs to provide 
a pool of ‘building blocks’ for new MT lattice formation 

Tip1 localizes to the lattice of MTs and is transported by Tea2 to the end of MTs. 

Here, larger particles of Tip1 are anchored by Mal3 (Busch et al. 2004). Therefore, in 

mal3Δ, Tip1 is absent from MT plus ends but still present along the lattice. This provides 

a tool to dissect the function of Tip1 along the lattice from its role at the MT plus ends.  

Due to the additional role of Mal3 in anchoring Tip1 to MT ends, one would 

expect the mal3Δ to cause a more severe MT phenotype than tip1Δ. However, we see a 

more severe reduction of polymerized tubulin in tip1Δ. This could be due to impaired 

nucleation in tip1Δ or interactions unknown to date. However, it could also be an 

indication that the major function of Tip1 is exerted along the MT lattice. Furthermore, 

the increased amount of thin flexible filaments in tip1Δ could also be an indication of 

Tip1 being a MT lattice stabilizer.  

Additionally, the description of Mal3 as a molecular zipper along the MT lattice 

seam (Sandblad et al. 2006) as well as the MT lattice ‘kinks’ shown in this study, 

suggests that Mal3 have an important structural function along the lattice. We therefore 

hypothesise that these two +TIP proteins, and maybe others, localize to growing MT ends 

to provide a large pool of ‘building blocks’ necessary for stable MT growth. This large 

quantity of proteins at the growing MT end would increase the chance of proper MT 

sheet closure and stabilization of the seam.  

 

In conclusion, tomography proved to be a powerful tool to show important new 

functions of proteins that can then be further examined using light microscopy to enlarge 

the sample size and provide the dynamic picture. This confirms that new insights in the 
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architecture of the fission yeast interphase cytoskeleton in particular, but also cellular 

architecture in general, is best achieved using a combination of methods.  
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Supplementary table: Length of major bundles in 

wild type fission yeast 
 
 

Cell Major bundle length (μm) Major bundle length 
(% of cell length) 

Cell 1 (6,7 μm) 5.62 84 
 6.05 90 
 5.03 75 
 2.38 35 
   
Cell 2 (7,7 μm)  5.16 67 
 7.03 91 
 4.75 62 
   
Cell 3 (7,9 μm)  5.27 67 
 4.46 56 
 2.31 29 
   
Cell 4 (7,4 μm)  5,68 77 
 5,86 79 
   
Average  4.97 68 
Standard deviation 1.39 20 
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