INAUGURAL - DISSERTATION

zur

Erlangung der Doktorwürde

der Naturwissenschaftlich- Mathematischen Gesamtfakultät

der

Ruprecht Karls - Universität

Heidelberg

Vorgelegt von

Diplom-Biologe Florian Hauger

aus: Karlsruhe

Tag der mündlichen Prüfung:_______
Thema

Fluoreszenzspektroskopische Untersuchungen nukleosomaler Struktur und Dynamik

Gutachter:

Prof. Dr. Jörg Langowski

Priv. Doz. Dr. rer. nat. Dirk-Henner Lankenau

Science is an endless search for truth. Any representation of reality we develop can be only partial. There is no finality, sometimes no single best representation. There is only deeper understanding, more revealing and enveloping representations. Scientific advance, then, is a succession of newer representations superseding older ones, either because an older one has run its course and is no longer a reliable guide for a field or because the newer one is more powerful, encompassing, and productive than its predecessor(s).

C. R. Woese [133]
Inhaltsverzeichnis

Zusammenfassung ... 9
Abstract .. 11
Kapitel 1. Einleitung ... 13

Allgemeiner Teil

1.1. Historisches .. 16
1.2. Das Nukleosom ... 17
1.3. Die Rolle des Nukleosoms im Chromatin .. 21
1.4. Dynamische Prozesse auf Nukleosomebene ... 23
 Remodellierung und Dynamik von Nukleosomen .. 23
 ATP-abhängige Remodellierung und Histonchaperone ... 27
1.5. Ziele der Arbeit .. 30

spezieller Teil

1.6. Fluoreszenz ... 32
1.7. Fluoreszenzresonanzenenergie-Transfer ... 34
1.8. Das in vitro Nukleosom-System .. 36
1.9. Strategie für die Beobachtung dynamischer Prozesse ... 38
1.10. Detektionsmethoden für den Fluoreszenzenergie Transfer 43
1.11. FRET-Ensemblemessungen .. 43
1.12. Einzelmolekülspektroskopie ... 44

Kapitel 2. Material und Methoden .. 51

Material

2.1. Liste der verwendeten Chemikalien ... 54
2.2. Verwendete Geräte ... 54
2.3. DNS Sequenzen und Nukleosomenkonstrukte
- Oligonukleotide
- Fluoreszenzfarbstoffe
- Weitere DNS Modifikationen
- Plasmide

2.4. Proteine
- Weitere Enzyme

2.5. Standards
- Protein und DNS Standards

2.6. Kulturmedien:
- Standard Puffer
- Gelelektrophoresepuffer

2.7. Chromatographie

METHODEN

2.8. Molekularbiologische Methoden
- Native Polyacrylamidgelektrophorese
- Polyacrylamidelektrophorese unter denaturierenden Bedingungen
- SDS Gelelektrophorese
- Agarose Gelelektrophorese
- TAU - Gel
- Bestimmung von freier DNS und Quantifizieren von Gelbanden
- Ethidiumbromidfärbung
- Coomassie Färbung
- Silberfärbung
- PAGE Aufreinigung von DNS
- HPLC Aufreinigung von DNS
- Mnase Verdau von Nukleosomen
- Restriktonsverdau von Nukleosomen
- Thermische Mobilisierung von Nukleosomen
- Enzymatische Mobilisierung von Nukleosomen
- Fluoreszenzmarkierung von DNS Oligonukleotiden
- Hybridisierung von Einzelstrang-DNS
- Phosphorylierung der DNS 5´Enden mit Polynukleotidkinase
- Ligation
Polymerase-Ketten-Reaktion (PCR) ... 79
Isopropanol Fällung ... 79
PCR Aufreinigungssystem ... 79

2.9. Mikrobiologische Methoden ... 80
Bakterienkulturtechniken ... 80
Transformation von BL21 oder XL10 Bakterien ... 80
Plasmidexpression ... 80
Lagerung von Bakterienstämmen ... 80

2.10. Biochemische Methoden ... 81
Aufreinigung von Histonproteinen ... 81
Rekonstitution von rekombinanten Nukleosomen ... 83

2.11. Spektroskopie ... 84
Absorptions- und Fluoreszenzmessungen ... 84
Absorptionspektrometrie von Nukleosomen ... 84
Analyse der Markierungseffizienz ... 85
Berechnung des Energietransfers für Ensemble Messungen ... 86

2.12. Einzelmolekülspetenskopie ... 90
Fluorophoranpassung für Einzelmolekülspektroskopie ... 90
Messungen bei freier Diffusion der Probe ... 90
Messbedingungen, Verdünnung und Stabilisation der Farbstoffe und Proben ... 90
Verdünnung der Proben für Einzelmolekülspektroskopie ... 91
Stabilisierung der Farbstoffe ... 92
Einzelmolekülaufbau ... 92
Signalauswertung ... 93
Silicagel Probeneinbettung ... 93
Verwendete Software ... 94

Kapitel 3. Ergebnisse ... 95

3.1. Etablierung und Charakterisierung des Nukleosommodellsystems ... 95
3.1.1. Untersuchung und Vergleich verschiedener Fluoreszenzmarkierungsmethoden ... 95
3.1.2. Histone und DNS Sequenzen ... 99
3.1.3. Charakterisierung der Nukleosomenpositionierung verschiedener DNS Sequenzen ... 100
3.1.4. Untersuchung dynamischer Aspekte der Positionierung von Nukleosomen ... 103
3.2. Fluoreszenzmessungen 107
 3.2.1. Messung der Mobilisierung mit Fluoreszenzenergietransfer 107
 3.2.2. Vergleich des Mobilisierungsverhaltens verschiedener DNS Sequenzen mit FRET 108
 3.2.3. Einzel molekülanalyse der Mobilisierung ... 109
 3.2.4. Wie verändert die Natriumchloridkonzentration die Struktur nukleosomaler DNS und das Mobilisierungsverhalten? ... 110
 3.2.5. Verändert die Bindung von H1 das FRET-Signal und die dynamischen Eigenschaften? ... 111
3.3. Nukleosomen mit intern markierter DNS 114
 3.3.1. Charakterisierung intern markierter Nukleosomen 114
 3.3.2. Einzel molekülmessungen von Nukleosomen unter Einwirkung von Remodellierungsfaktoren ... 120
 3.3.3. Untersuchungen mit BRG1 ... 120
 3.3.4. Untersuchungen mit ISWI ... 123
 3.3.5. Untersuchungen mit yNAP1 ... 128

Kapitel 4. Ausblick: ... 131
 4.1. Messung von nukleosomaler Dynamik im Millisekundenbereich 131

Kapitel 5. Diskussion ... 137
 Diskussion der einzelnen Abschnitte ... 138
 Etablierung des Fluoreszenzmarkierungssystems: ... 138
 Vergleich der DNS-Sequenzen: ... 139
 Charakterisieren der unterschiedlich markierten Nukleosomenkonstrukte: ... 139
 Untersuchung der Remodellierungsfaktoren und Histonchaperone: ... 140
 BRG1 und ISWI: ... 140
 yNAP1: ... 142
 Ausblick ... 142
 Untersuchung dynamischer Strukturveränderungen im Nukleosom: ... 142
 Perspektive für die Zukunft ... 143

Kapitel 6. Anhang ... 145
 6.1. Plasmidkarten und Sequenzen ... 145
 6.2. Abkürzungsverzeichnis: ... 148
 6.3. Tabellen- u. Abbildungsverzeichnis ... 150
 6.4. Danksagung ... 150
Zusammenfassung

Um diese Remodellierung im Detail zu untersuchen wurden in dieser Arbeit dynamische und strukturelle Eigenschaften des Nukleosoms mit Hilfe von fluoreszenzspektroskopischen sowie biochemischen Methoden untersucht. Es wurde ein \textit{in vitro} Modellsystem verwendet, bei dem Nukleosomen aus rekombinant gewonnenen Histonoktameren und verschiedenen natürlichen sowie synthetischen DNS Abschnitten durch Salzschrittdialyse rekonstituiert wurden. Die DNS wurde an verschiedenen Stellen mit fluoreszierenden Farbstoffen versehen, die Fluoreszenzenergietransfermessungen ermöglichten und so Rückschlüsse über strukturelle und dynamische Eigenschaften des Nukleosoms erlaubten. So konnte Komplexbildung der Nukleosomen mit H1 gemessen werden, die Bewegung des Komplexes während thermischer Mobilisierung an das Ende der DNS konnte verfolgt werden, sowie die Einflüsse veränderter Ionenstärken oder Einbringung von H1 in den Komplex auf die thermische Mobilisierung ließ sich beobachten. Mit Einzelmolekülanalysen wurde die Wirkung von Chromatinremodellierungskomplexen und Histonchaperonen, bzw. Enzymen wie ISWI und BRG1 auf das Nukleosom untersucht. Es konnte so auch gezeigt werden, daß Bindung von ISWI oder BRG1 eine Strukturveränderung im Nukleosom hervorruft.
Abstract

The nucleosome is the elemental unit of chromatin. The chromatin not only compacts the DNA into the cell nucleus, but it is also crucial for the organisation of the DNA. An important property of the nucleosome in this aspect is its ability to change position on the DNA. This change of position may render certain parts of DNA accessible or inaccessible for protein factors and thus DNA regulation. Catalysed as well as intrinsic repositioning is known to occur, but the underlying mechanisms are not completely resolved. Different models have been proposed to account for the remodeling process: diffusion of DNA bulges along the histone octamer, formation and migration of large DNA loops or bulges inside the DNA-histone complex, and diffusion of DNA twist defects. This remodeling is also dependant on the DNA sequence and histone modifications.

To elucidate the process of remodeling, dynamical and structural properties of the nucleosome were studied with fluorescence spectroscopy and biochemical methods in this work. An in vitro system was used, where recombinant histone octamers were reconstituted with a set of natural and synthetic nucleosome positioning sequences using salt step dialysis. The DNA was labeled fluorescently to allow the measurement of structural and dynamic properties of the nucleosome. Using this approach it was possible to measure incorporation of H1 into the nucleosome complex, the movement of the complex to the edge of the DNA during thermal mobilisation and also the influence of changes in ionic strength or H1 on this movement. Finally, applying newly developed single molecule techniques it was demonstrated that binding of chromatin remodeling complexes, or components of these such as ISWI or BRG1, resulted in structural changes of the nucleosomal structure.
Kapitel 1

Einleitung
Allgemeiner Teil
1.1. Historisches

Lange Zeit wurde davon ausgegangen, daß die Funktion des Nukleosoms schlichtweg darin besteht die DNS möglichst effektiv zu verpacken bzw. zu komprimieren, damit diese in den Zellkern passt. Oft wird dafür folgendes Argument gebraucht: Die DNS, wäre sie nicht in einzelne Chromosomen unterteilt, würde als zusammenhängender DNS Faden z.B. bei Menschen mit seinen ca. 2 x 3 Milliarden Basenpaaren in 46 Chromosomen bis zu 2 m lang sein. Diese könne nicht in eine Zelle mit einem Zellkern von nur ca 5-10 μm Durchmesser passen. Diese Art von Rechnung ist etwas vereinfacht. Das eigentliche Problem ist, daß

1.2. Das Nukleosom

Nukleosomen bzw. histonähnliche Proteine kommen in Eukaryoten und teilweise in Archaea vor. In Bacteria binden Proteine wie beispielsweise das HU Protein [115], IHF (Host Integration Factor) [104] und andere die DNS und haben eine vergleichbare Funktion wie die Histone. In Archaea wurden histonähnliche Proteine erst vor wenigen Jahren entdeckt und beschrieben [109]. Anders als eukaryotische Histone weisen diese aber keine N- und C-terminalen Regionen auf, die bei Eukaryoten vielfach posttranslational modifiziert werden können, und die Grundlage der epigenetischen Regulation darstellen.
Abbildung 1.1. Histone und histonähnliche Proteine: A: Monomer von IHF; B: Kristallstruktur von rekombinantem HMfA Histonen aus dem Archaeon *Methanothermus fervidus* [27]; C: das eukaryotische Histon H4 mit Teilen der N- und C-terminalen Abschnitte [82].

Abbildung 1.2. Dimere von Histonen und histonähnlichen Proteinen: A: IHF Dimer (Bacteria); B: HMfA/HMfB Dimer (Archaea); C: H4 Dimer (Eucaryota)

som core particles“ (NCP) ist mittlerweile bis auf 1.9 Å genau bestimmt worden [25]. In Abbildung 1.3 ist die Kristallstruktur 1KX5 des Nukleosoms abgebildet. Die farbliche Abstufung in der Abbildung korrespondiert zum B-Faktor, d.h je rötlicher desto variabler sind die Strukturdaten an dieser Stelle.

Die DNS wird durch die Bindung an die Proteinkomponente des Komplexes stark gekrümmt. Die Krümmung ist so stark, daß die DNS auf einer Länge von nur 146-147 Basenpaaren 1,65 bzw. 1,67 mal um den Proteinbestandteil gebogen wird und diesen in der annähernd gleichen Richtung wieder verlässt. Die Persistenzlänge der DNS in freier Lösung aber, also die Länge, auf der das Molekül annähernd gerade bleibt, liegt bei ca. 150 bp [6, 130]. Der Begriff Persistenzlänge stammt aus der Polymerphysik und ist ein
Maß für die Flexibilität einer Polymerkette, bzw. beschreibt bei welcher Länge eine Polymerkette vereinfacht ausgedrückt annähernd gerade bleibt. Die DNS verhält sich also im Nukleosomkomplex anders als in freier Lösung. Es gibt auch vermehrt Hinweise auf plötzliche Biege- oder Knickereignisse in DNS Strängen [32, 22, 51]. Das bedeutet, daß DNS möglicherweise auch flexibler ist als üblicherweise angenommen wird.

In der Kristallstruktur sind auch die Ansätze der Histon-Schwänze zu sehen. Aufgrund ihrer Flexibilität sind sie nicht vollständig geordnet und daher nicht komplett abgebildet. Ihre genaue Orientierung ist deshalb nicht eindeutig festzulegen. Doch gerade die Histon-Schwänze sind besonders interessant. Diese N-terminalen Regionen sind überwiegend basisch, bedingt durch den hohen Anteil an Argininen und Lysinen und weisen viele spezifische Modifikationen auf, die für die Regulation des Chromatins mitentscheidend sind (siehe dazu Abbildung 1.4).

Abbildung 1.4. Histoncode: Einige der bekannten Histonmodifikationen und der beteiligten Enzyme, und eine Darstellung des Phosphorylierungsmusters von H1 (von [26]).

Eukaryotische Histongene Die Histongene liegen ähnlich wie die ribosomale rDNS wiederholt in Clustern vor. Wie auch bei der rDNS schwankt die Zahl der Cluster je
nach Organismus erheblich. Histongene besitzen weder Introns noch weisen sie nach der Transkription einen poly(A) Schwanz auf. Dies sind Hinweise auf einen entwicklungsge-

schichtlichen frühen Ursprung dieser Gene. Von Organismus zu Organismus schwankt die
Anzahl der Histongene teils stark. So sind in Hefe nur zwei Kopien von H2A und H2B

vorhanden [58], im Huhn 10 [24], in der Maus 10-20 [62] und in Drosophila melanogaster

110 [78]. In Xenopus beträgt die Anzahl der Wiederholungen um die 45-50 [126].

Das Linker-Histon H1 Zusätzlich zu den beschriebenen Histonen gibt es noch das so-
genannte Linker Histon H1, das bei Verdauungsexperimenten von Chromatin entdeckt

wurde. Man erhielt nicht nur die “nucleosome core” Partikel aus Histonoktamer und ca. 146

bp DNS sondern auch Complexe mit ca. 166 bp, die offenbar durch das Linker Histon H1

vor dem Verdau geschützt wurden [12], das sogenannte Chromatosom. Die Sequenz dieses
Histons ist im Gegensatz zu den anderen sehr variabel, es gibt in Mammalia mindestens
sieben verschiedene. Außerdem weisen sie keinerlei Strukturähnlichkeit zu den anderen
Histonen auf. Üblicherweise bestehen sie aus einer zentralen globulären Domäne sowie der
unstrukturnierten kurzen N terminalen und einer basischen, bis 100 Aminosäuren langen,
C terminalen Region [7, 134, 135]. Die Vögel, Aves, weisen statt H1 ein H5 bezeichnetes

Histon auf. Es handelt sich dabei um ein überwiegend positiv geladenes Protein von ca.
80 Aminosäuren Länge. Bindung von H1 hemmt die Beweglichkeit von Histonoktameren
relativ zur DNS [99]. Die genaue Lage und Funktion von H1/H5 ist noch Gegenstand von
Untersuchungen [137, 63]. Anscheinend ist H1 auch wichtig für die Bildung einer 30nm
Fiber, dennoch gibt es Ergebnisse, daß z.B. Hefe mit sehr reduzierten Expressionsmengen
von H1 lebensfähig ist. In den elektronenmikroskopischen Bildern von Abbildung 1.5 sieht
man eine Chromatinfiber jeweils mit und ohne H1. Deutlich tritt mit H1 eine geordnetere
Struktur zutage, die sogenannte 10 nm Fiber, die wegen ihrer Ähnlichkeit mit einer Per-
lenkette auch “Beads on a string” Struktur genannt wird. Aus dieser wird die 30 nm Fiber
gebildet.

1.3. Die Rolle des Nukleosoms im Chromatin

Im Vergleich mit Prokaryoten weisen eukayrontische Zellen multizellulärer Organismen
mehr kodierende Regionen auf. Diese werden zeitweise nicht oder gar nicht exprimiert.
Solche Expressionsmuster legen auch den Charakter einer spezialisierten Zelle fest. Die
DNS so zu organisieren ist mit die Hauptaufgabe des Chromatins und damit auch der
Nukleosomen. So konnte 1986 und 1987 gezeigt werden, daß Nukleosomen als Repressor
fungieren [67, 79]. Das Gegenexperiment in Hefe zeigte, daß bei Hemmung der Histon-
synthese und anschließendem Nukleosomverlust vorher inaktive Gene nun aktiv waren
Abbildung 1.5. A: Schematische Darstellung von H1 und der Nukleosomkristallstruktur nach [124]. B und C: Elektronenmikroskopische Aufnahme von Chromatinfibern mit und ohne H1. Deutlich ist eine kompaktere, geordnetere Fiber mit H1 zu erkennen, die sogenannte 10 nm Fiber (aus [119]).

Ein interessanter Parameter der Fiber ist die Nukleosomenperiode (nucleosome repeat length), die je nach Organismus oder Zelltyp charakteristisch ist und zwischen 157 - 240 bp betragen kann. So beträgt diese z.B. bei Hühnererythrocyten 212 bp, in Rattenglia 201, bei Mausleberzellen 195, Rattenneuronen 162, bei S.cerevisiae 165 [137] und HeLa Zellen je 190 und 192 bp. Bedeutsam ist auch, daß nicht immer pro Histon ein H1 vorkommt, sondern das Verhältnis von H1 zu Nukleosom bei den eben genannten Beispielen zwischen 1,3 und 0,45 schwankt. Die Rolle von H1 liegt deshalb wohl auch in der Regulation bzw. Repression als nur bei der Strukturbildung der Chromatinfaser. Dagegen spricht nämlich
Abbildung 1.6. **A**: Chromatin und Kompaktierungsstufen: Die Stufen jenseits der 10 nm Fiber sind nicht direkt beobachtbar und deshalb noch nicht völlig aufgeklärt. Aus der dargestellten Chromatinfiber wird das Chromosom gebildet, das letztlich wieder mikroskopisch untersucht werden kann. **B**: Solenoid Modell für die 30 nm Fiber; **C und D**: “two start” bzw. “zigzag” Modelle der 30 nm Fiber [T.Richmond].

auch, daß auch in Abwesenheit von H1 Nukleosomenarrays kompakte Strukturen bilden können [137].

1.4. Dynamische Prozesse auf Nukleosomebene

Remodellierung und Dynamik von Nukleosomen

Vor einigen Jahren wurde experimentell gezeigt, daß einzelne Nukleosomen auf der DNS beweglich waren. Dies geschah offenbar, ohne daß während des Prozesses die Histonektamer abdissoziierten [9][98][87]. Möglich wurde diese Beobachtung dadurch, daß Nukleosomen die am Ende einer längeren DNS positioniert sind, in einem elektrophoretischem Gel schneller laufen als Nukleosomen die zentral in der Mitte der DNS sitzen. Es sind seitdem auch eine Vielzahl von Enzymen und Enzymkomplexen beschrieben worden, die diese Reaktion katalysieren bzw. auch ATP- und richtungsabhängig steuern können. Die physiologische Bedeutung dieser Remodellierung ist vielfach untersucht worden. Die Remo-

Ob einer dieser Mechanismen exklusiv vorkommt, oder je nach Situation eines der beiden Prinzipien vorliegt, lässt sich aber bisher nicht sagen. Es ist noch nicht gelungen, einen solchen Prozess im Detail zu untersuchen. Dies liegt auch in den bisher verwendeten Messmethoden begründet, die eben nicht über genügend Auflösung verfügen oder die Reaktion nicht im Einzelnen während ihres Ablaufes detektieren können. Nach den bisherigen Erfahrungen läuft Nukleosomen Repositionierung in vitro auf Zeitskalen im Minutenbereich ab. Die räumlichen, d. h. strukturellen Veränderungen liegen sehr wahrscheinlich im Bereich der Größe des Nukleosoms selbst, also um 10 nm. Um experimentell eine räumliche sowie zeitliche Auflösung dieser Prozesse zu erzielen sind daher spezielle Methoden notwendig.
ATP-abhängige Remodellierung und Histonchaperone

BRG1 Für diese Arbeit sind zwei Proteinkomplexe bzw. Untereinheiten besonders wichtig: das erste ist BRG1. Dieses Protein ist 1647 Aminosäuren groß und ein essentieller Bestandteil des SWI/SNF Komplexes [66]. Es wurden bisher viele Interaktionen mit Faktoren wie z.B. dem Tumor Suppressor Gen pRb [33], der Serin-Threonin Kinase LKB1 [84]...
und anderen Transkriptionsfaktoren beobachtet. Darüber hinaus wurden eine Vielzahl an anderen Beziehungen beschrieben [47, 15, 100, 136] und BRG1 allein hat in vitro nukleosomenremodellierende Wirkung was es für diese Arbeit besonders interessant macht.

ISWI Das andere Protein, das untersucht werden soll ist ISWI. Dieses Protein ist eine ATPase, die in *D. melanogaster* entdeckt wurde. Es ist Teil verschiedener Komplexe und kann auch unabhängig von diesen Nukleosomen remodellieren [23]. Es gibt auch hier Hinweise auf eine Art Schleifenbildung während des Remodellierungsprozesses [74]. ISWI ist mittlerweile biochemisch sehr gut untersucht, wie auch der Komplex ACF, dessen Bestandteil ISWI ist [60, 61]. Mittlerweile ist sogar eine Kristallstruktur von einem Teil von ISWI verfügbar [54]. Durch genaue Vergleiche wurden Hinweise gefunden, die vermuten lassen, daß zwischen mit SWI/SNF und ISWI gebildeten Komplexen unterschiedliche Wirkungsweisen auftreten [38, 91]. Durch die Analyse dieser beiden Remodellierungsfaktoren erhöhen sich also die Chancen auf eine erfolgreiche Beobachtung oder es entsteht vielleicht die Möglichkeit zum direkten Vergleich verschiedener Mechanismen. Eine andere Beobachtung ist auch von Bedeutung für die vorgestellte Arbeit: die kürzlich beobachtete Remodellierung auf relativ kurzen DNS Abschnitten von 170 bp mit dem Remodellierungskomplex RSC [107]. Es sind also nicht unbedingt lange und offen zugängliche Bereiche von Linker DNS für ATP-abhängiges Remodellieren notwendig.

NAP1 Eine weiter interessante Klasse von chromatinassoziierten Proteinen ist die der Histon Chaperone, zu denen z.B. NAP-1 gehört. NAP1 bedeutet “Nucleosome Assembly Protein” und ist ein Bestandteil des Chromatins und wurde 1983 zuerst beschrieben [59], als beobachtet wurde, wie es Nukleosomen in vitro assemblierte. NAP1 ist ähnlich den Histonen in Eukaryoten hochkonserviert. Anscheinend ist NAP1 bei sehr vielen unterschiedlichen Prozessen involviert wie z.B. auch beim Import von H2A und H2B in den Zellkern [89]. NAP1 hat auch wahrscheinlich selbst nukleosommobilisierende Wirkung [90, 92, 1]. NAP1 liegt wahrscheinlich als Dimer vor, kann aber wohl auch in verschiedenen oligomeren Formen vorliegen, bis hin zu oktameren Formen. Die Stöchiometrie gegenüber Histonen beträgt ein NAP Dimer gegenüber einem H2A, H2B, H3 oder H4 Dimer [123, 85], bzw. 2 NAP Proteine auf ein Linkerhiston [65]. Je nach ausgeführter Funktion schwanken diese Verhältnisse aber vermutlich. Es konnte auch gezeigt werden, daß yNAP1 regelmäßige Nukleosomanordnungen spontan organisieren kann [102, 116]. Diese Beobachtung konnte auch, nachdem Nukleosomanordnungen schon durch Salzdialyse unregelmäßig etabliert waren, und ohne die Zugabe weiterer Energie, also wie z.B. durch ATP-Hydrolyse, gemacht werden [86]. Deswegen wird NAP1 unter anderem auch zugeschrieben, Chromatin “flüider” zu machen, das bedeutet für Transkriptionsfaktoren zugänglich zu halten bzw. zu machen. In diesem Zusammenhang ist die Beobachtung interessant, daß NAP1 mit
Abbildung 1.9. Übersicht von ATP abhängigen Remodelierungskomplexen aus [34], Einteilung in verschiedene Proteinfamilien und Modelle für den Ablauf der Remodellierung in der Mitte der Abbildung.

dem Heterochromatinprotein 2 (HP2) und dem Remodelingkomplex NURF (ein ISWI abhängiger Remodelingkomplex, siehe auch in Abbildung 1.9) interagiert [114].
Da in diesem Feld oft in vitro Versuche gemacht werden, oft auch mit Proteinen unterschiedlicher Herkunft, kann es auch zu widersprüchlichen Ergebnissen kommen. So weisen humanes NAP1, also hNap1 und Hefe NAP1, also yNAP1, zumindest in vitro Unterschiede auf. So wurde beobachtet, daß yNAP1 Mononukleosomen auf der 5S rDNS Sequenz bewegen konnte, hNAP1 dies hingegen nicht in dieser Form tat [95], als die Stabilität von Nukleosomen, die aus verschiedener Histonvarianten bestanden, untersucht wurde. In dieser Arbeit wurde die Variante yNAP1 verwendet, die aus der Hefe s.cerevisiae stammt.
1.5. Ziele der Arbeit

Das Histon Chaperon NAP1 soll ebenfalls untersucht werden, da auch hier strukturelle Veränderungen und Effekte erwartet werden.

Darüber hinaus gibt es auch Hinweise von Fluktuationen der Struktur der Nukleosomen in Abwesenheit von anderen Proteinkomplexen, die mit besonderen Einzelmolekületechniken untersucht werden sollen.
spezieller Teil

1.6. Fluoreszenz

Als Licht wird üblicherweise der für das menschliche Auge wahrnehmbare Teil der elektromagnetischen Strahlung von etwa 380 bis 780 nm Wellenlänge bezeichnet. Der Zusammenhang zwischen Wellenlänge und der Frequenz des Lichts wird durch die folgende Gleichung beschrieben:
\[\text{Wellenlänge} \times \text{Frequenz} = \text{Lichtgeschwindigkeit}. \]
Die Energie des Lichts wird durch:
\[E = h \times \nu \]
beschrieben, wobei \(h \) für die Planck’sche Konstante steht und \(\nu \) für die Frequenz. Daraus lässt sich ableiten, daß je kürzer die Wellenlänge ist, desto stärker ist die resultierende Energie.

Bei der Fluoreszenz geht Energie durch Vibration verloren, daher ist die Wellenlänge des emittierten Lichts länger als die des absorbierten Lichts. Dieses Phänomen wird als Stokes...

![Jablonski Diagramm, Fluoreszenz - Erläuterung im Text.](image-url)
1.7. Fluoreszenzresonanzernergieübertagung

$$R = \left(\frac{1-E}{E} \right)^{1/6} \cdot R_o$$

Um FRET Experimente erfolgreich durchzuführen, müssen folgende Bedingungen erfüllt sein:

2. Das Absorptionsspektrum des Akzeptors muß mit dem Emissionsspektrum des Donorfarbstoffes überlappen.

3. Die Orientierung der Farbstoffe zueinander muss annähernd parallel sein.

Abbildung 1.13. Schematische Darstellung des Fluoreszenzenergietransfers (FRET). Links im Schema wird die Probe mit einer bestimmten Wellenlänge illuminiert. Diese regt den Donor Farbstoff zur Fluoreszenzemission an, nicht aber oder nur sehr geringfügig den Akzeptor Farbstoff. In Fall A ist der Akzeptor Farbstoff zu weit weg für einen Energietransfer, was üblicherweise mehr als 10 nm Abstand entspreche. In B ist der Fall anders: Donor und Akzeptor sind nahe genug beeinander, und die Energie wird proportional der Entfernung vom Donor strahlungsfrei auf den Akzeptor übertragen, so daß dieser Fluoreszenz emittiert.

Abbildung 1.14. Jablonski Diagramm, Fluoreszenz Energie Transfer

Für einen Energietransfer ist es notwendig, daß das Emissionsspektrum des Donorfluorophors mit dem Absorptionspektrum des Akzeptorfluorophors überlappt. Die Schwingungsebenen der beteiligten Moleküle müssen parallel sein, was in der Regel bei freier Beweglichkeit der Farbstoffe, z.B. bei Verbindung mit der Probe über einen Kohlenstofflinker, erreicht wird. Der messbare Entfernungsbereich wird durch den Försterradius bestimmt. In der Regel sind Messungen zwischen 2-10 nm möglich, d.h. genau im Bereich der Dimension des Nukleosoms. Der FRET stellt deshalb ein ideales Werkzeug zur Untersuchung dieses Systems dar. Abbildung 1.15 zeigt die spektralen Überlappung zwischen Donor Fluores-
zent Emission und Akzeptor Absorption von Alexa 488 und RoX. Die Berechnung der spektralen Überlappung \(J \) wird durch folgende Gleichung beschrieben:

\[
J(\lambda) = \int \varepsilon(\lambda) \cdot F_D(\lambda) \cdot \lambda^4 d\lambda cm^3 M^{-1}
\]

\(\varepsilon_A \) steht hier für den Extinktionskoeffizient des Akceptors und \(F_D \) für die Fluoreszenzmissionsintensität des Donorfarbstoffes als Fraktion der Gesamtintensität. Bei Kenntnis der spektralen Überlappung zweier Fluorophore, sowie des Orientierungsfaktors und des Refraktionsindexes des umgebenden Mediums kann \(R_0 \) zweier Fluorophore wie folgt bestimmt werden:

\[
R_o = [8,8 \cdot 10^{23} \kappa^2 \eta^{-4} QY_D \cdot J(\lambda)]^{1/6} \AA
\]

wobei \(\kappa^2 \) für den Orientierungsfaktor steht, der bei freier Beweglichkeit mit 2/3 angegeben wird, \(\eta \) steht für den Refraktionsindex des Mediums, \(QY_D \) steht für die Quanteneffizienz des Donorfarbstoffes, in Abwesenheit eines Akzeptors.

Abbildung 1.15. spektrale Überlappung (J) von Donor und Akzeptor (hier Alexa 488 und RoX)

1.8. Das *in vitro* Nukleosomsystem

Modifikationen bestehen. So ist es möglich einzelne Histone zu acetylieren oder auch mit Farbstoffen zu markieren und erst dann mit den anderen Histonen zusammenzubringen.

<table>
<thead>
<tr>
<th>Klone</th>
<th>$\Delta \triangle G^\circ (\text{kcal} \times \text{mol}^{-1})$ relativ zu 5S DNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>601</td>
<td>-2,9±0,33 (n = 7)</td>
</tr>
<tr>
<td>603</td>
<td>-2,7±0,31 (n = 6)</td>
</tr>
<tr>
<td>607</td>
<td>-2,5±0,32 (n = 5)</td>
</tr>
<tr>
<td>611</td>
<td>-2,5±0,32 (n = 5)</td>
</tr>
<tr>
<td>612</td>
<td>-2,1±0,48 (n = 5)</td>
</tr>
<tr>
<td>613</td>
<td>-2,3±0,31 (n = 5)</td>
</tr>
<tr>
<td>618</td>
<td>-2,3±0,31 (n = 5)</td>
</tr>
<tr>
<td>623</td>
<td>-2,6±0,31 (n = 6)</td>
</tr>
<tr>
<td>626</td>
<td>-2,8±0,31 (n = 6)</td>
</tr>
</tbody>
</table>

Tabelle 1.1. Bindefrequenzen verschiedener DNS Sequenzen, die wegen ihrer Affinität zum Histon-oktamer selektiert wurden, übernommen aus Lowary[81].
1.9. Strategie für die Beobachtung dynamischer Prozesse

Abbildung 1.17. Die Markierung innerhalb der Linker-DNS ist besonders nützlich um Strukturveränderungen und Kompaktionen, z.B. durch H1 zu detektieren. Die hier gezeigte schematische Darstellung von H1 im Nukleosomkomplex ist Abbildung 1.5 nachempfunden. (A) ohne H1; (B) mit H1.

Abbildung 1.16. Markierung an den Enden der Linker DNS. Von links nach rechts: symmetrisch (A) und asymmetrisch (B), bzw terminal und zentral positioniertes Nukleosom, sowie (annähernd) parallele (C) und gekreuzte (D) Linker-DNS-Konfiguration.
Abbildung 1.18. Modell für die “Loop”-Mechanismus Detektion mit intern markierten Nukleosomen. Während der Diffusion der DNS Schleife um das Nukleosom herum würde sich dynamisch der Abstand der Farbstoffe zueinander ändern. Während der Ausbildung einer DNS Schleife (B) und deren anschließender, versetzter Wiederanlagerung (C) an das Histonoktamer würde der Abstand verringert, bis die Schleife einmal um das Histonoktamer herum diffundieren würde (D und E). Danach wäre der Ausgangsabstand wiederhergestellt und die Position der DNS relativ zum Histonoktamer eine andere (E).

<table>
<thead>
<tr>
<th>Versatz [in bp]</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstand bei Twist [Å]</td>
<td>44,8</td>
<td>42,2</td>
<td>40,8</td>
<td>41,3</td>
<td>40,5</td>
<td>37,4</td>
<td>33,5</td>
<td>30,2</td>
<td>25,6</td>
<td>22,0</td>
</tr>
<tr>
<td>Abstand bei Loop [Å]</td>
<td>44,8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>22,0</td>
</tr>
</tbody>
</table>
1.10. Detektionsmethoden für den Fluoreszenzenergietransfer

1.11. FRET-Ensemblemessungen

Abbildung 1.20. Fluorimeter und dessen schematische Darstellung

Der große Vorteil der Ensemble FRET Methode liegt in der Möglichkeit, sehr niedrige Energietransferintensitäten um 10% oder weniger zuverlässig zu messen. Der große Nachteil ist die fehlende Möglichkeit heterogene Populationen zu separieren. Das Signal wird über die gesamte Probe gemittelt. Wenn also zwei Populationen, z.B. eine mit hohem und eine mit niedrigem Energietransfer vorliegen, würde man ein gemitteltes Signal mit mittlerem Energietransfer aus diesen beiden Populationen erhalten. Die Heterogenität der Probe würde so verborgen.

1.12. Einzelmolekülspktroskopie

ein fokussierter Laserstrahl ein Volumenelement in der Größenordnung von weniger als einem Femtoliter. Dies wird üblicherweise durch Verwendung eines konfokalen Mikroskops erreicht. Der Fokus hat bei dem von uns verwendeten Gerät üblicherweise Aussmaße von $0,4 \times 0,4 \times 1,5 \mu m^3$, was 0,1 fl entspräche. Bei Probenkonzentrationen von weniger als 1 nM sind deshalb durchschnittlich weniger als ein Teilchen im Fokus. Das reine Hintergrundsignal wechselt daher mit Signalen, die durch Diffusion der Teilchen in bzw. durch den Fokus entstehen. Die Intensität und die Wellenlänge der Emission sowie die Dauer des Ereignisses hängt von der Probe ab. So lassen sich Eigenschaften der Teilchen sowie deren Diffusionszeit messen. Die Teilchen der Probe diffundieren bei diesem Aufbau allein durch die Brownsche Molekularbewegung. Durch die Anregung mit dem Laser geben die Fluorophore Fluoreszenzlicht ab. Das Fluorszenzsignal der Probe wird konfokal gesammelt und in zwei Photodioden, jeweils für Donor und Akzeptor, detektiert. Dies erlaubt die Messung in zwei verschiedenen Kanälen, die durch Filter definiert werden können. Das Schema ist in Abbildung 1.22 dargestellt.

Abbildung 1.22. Aufbau eines Einzelmolekülspektrometers.

Die Signalprozessierung wird folgendermaßen durchgeführt. Um das Hintergrundsignal zu reduzieren wird ein Schwellenwert definiert. Die Ereignisse die diesen Schwellenwert übersteigen werden zusätzlich anhand ihrer Dauer und Intensität nach Einzelmolekül bzw.
Aggregat oder Multipartikelereignis unterschieden. Einzelne Messereignisse werden in so-

\[
\text{proximity ratio} = \frac{I_a}{I_a + I_d}
\]

Je nach Farbstoffen und Filterkombination, bzw. der Detektionsempfindlichkeit der De-
tektoren, müssen Korrekturfaktoren eingesetzt werden um den eigentlichen Energietrans-

Verschiedene Messmethoden der Einzelmolekülspektroskopie Einzelmolekülmes-
sungen können darüberhinaus auf verschiedene Arten durchgeführt werden. Zur Auswahl stehen Methoden zur Messung von frei diffundierenden Probe wie oben beschrieben und Messungen unter immobilisierten Bedingungen. Auch sind Kombinationen der beiden Prin-
zipien denkbar, so könnte die Probe künstlich bei der Diffusion gebremst werde, um so längere Aufenthaltszeiten im Detektionsbereich zu erreichen. Dies wird z. B. durch Bin-
dung an “Beads” erreicht oder der Ummantelung durch Lipide, so daß größere Liposomen entstehen, die langsamer durch den Fokus diffundieren und die Messzeit dadurch verlän-
gern [31]. Hinzu kommt die Möglichkeit Proben in Gelmatrizen einzuschliessen, wie z.B. in Agarose, Acrylamid oder auch Silica Gele [20].

Multiparameter Fluoreszenzdetektion (MFD) Ein Kooperationspartner, die AG Seidel in Düsseldorf, verfügt über ein eigens entwickeltes Einzelmolekülspektrometer mit vielfältigen Analysemethoden. Mit diesem Aufbau können auf besondere Art und Weise die Daten verarbeitet werden [36]. Diese Multiparameter Fluoreszenzdetektion (MFD) nutzt einen gepulsten Laser zur Anregung und zeitkorrelierte Einzelphotonregistrierung (time-correlated single-photon counting = tcspc) um 4-dimensionale Fluoreszenzinformationen über die Intensität, Lebensdauer, Anisotropie, und das Spektrum zu gewinnen. Da-
durch ist es möglich die Fluoreszenzereignisse so zu klassifizieren, daß störende Datensätze

Eine Ursache für Hintergrundstörung bei einer Einzelmolekulmessung ist die relativ geringe Anzahl an Photonen, die bei einzelnen Messereignissen, z.B. dem Durchgang eines Nukleosoms durch den Messbereich detektiert werden. Durch statistische Fluktuationen

dieser Photonenzahlen, auch bei gleichem Energietransfer der Probe, verbreitert sich das Signal. Dies ist in der Abbildung 1.25 schematisch dargestellt. Mit der PDA lässt sich das eigentliche Signal F_G/F_R, das die physikalischen Informationen über den Energietransfer beeinhaltet aus dem gemessenen Signal S_G/S_R extrahieren [3]. Die Abstandsberechnung erfolgt folgendermaßen:

$$R_{DA} = R_{0e} \left(\phi_{FA} \frac{g_R F_G}{g_G F_R} \right)^{1/6}$$

Bedingung für diese Berechnung ist die Kenntnis über das Hintergrundsignal und der spektralen Überlappung der Kanäle (Die Emission des Donorfarbstoffes wird auch im geringen Ausmaß im Detektionskanal des Akzeptors gemessen und umgekehrt). Ebenso ist die Quanteneffizienz des Akzeptorfarbstoffes ϕ_{FA}, der Försterradius des Farbstoffpaares und das Verhältnis der Sensitivität der Kanäle (Gamma Faktor) g_R/g_G für die Bestimmung des Energietransfers notwendig. Diese Methode ermöglicht die Separation von Subpopulationen von Nukleosomen, die einen ähnlichen FRET aufweisen und die bei herkömmlicher Analyse so nicht möglich wäre.
Kapitel 2

Material und Methoden
Material
2.1. Liste der verwendeten Chemikalien

2.2. Verwendete Geräte

Spektrometer:
Fluoreszenzspektrometer SLM-Aminco 8100, SLM, Urbana, IL, USA
Absorptionspektrometer Cary-4E, Varian, Mulgrave, Australien
Pharmacia Ultrospec 3000 und 2000

Mikroskope:
Olympus IX70
FCS Modul Eigenentwicklung DKFZ
FCCS Modul
spFRET Modul
Nunc und Ibidi Kammern

Zentrifugen:
Kühlzentrifugen - Eppendorf: Centrifuge 5417 R / 5403
Tischzentrifuge - Eppendorf: Centrifuge 5415 C
Großzentrifuge: Sorvall RC-5B
Rotoren:
SSW 34 und GSA

Elektrophorese:
Spannungsquellen:
Consort E431, E455, E734, E865
Biorad Powerpac 300
Kammern:
EC Minicell EC 370 M - Agarose
PAGE - CTI Minicell
UV Fotodokumentationsstation BioDocAnalyze von Biometra
<table>
<thead>
<tr>
<th>Name</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylamid/Bisacrylamid</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Adenosintriphosphat ATP</td>
<td>Sigma/Roche</td>
</tr>
<tr>
<td>hochreine Agarose</td>
<td>SeaKem</td>
</tr>
<tr>
<td>Bacto Agar</td>
<td>Difco</td>
</tr>
<tr>
<td>Bacto Hefe Extrakt</td>
<td>Difco</td>
</tr>
<tr>
<td>Bacto Trypton</td>
<td>Difco</td>
</tr>
<tr>
<td>Bisacrylamid</td>
<td>Roth</td>
</tr>
<tr>
<td>Borsäure</td>
<td>Fluka</td>
</tr>
<tr>
<td>Bromphenolblau</td>
<td>Serva</td>
</tr>
<tr>
<td>Coomassie</td>
<td>Serva</td>
</tr>
<tr>
<td>Dimethylsulfoxid (DMSO)</td>
<td>Sigma</td>
</tr>
<tr>
<td>Dithiothreitol (DTT)</td>
<td>Sigma</td>
</tr>
<tr>
<td>EDTA</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Ethanol- EtOH</td>
<td>Riedel-de-Haen</td>
</tr>
<tr>
<td>Ethidiumbromid</td>
<td>Sigma</td>
</tr>
<tr>
<td>Formaldehyd</td>
<td>Euroclone</td>
</tr>
<tr>
<td>Glycin</td>
<td>Gerbu</td>
</tr>
<tr>
<td>Glycerin</td>
<td>Fluka</td>
</tr>
<tr>
<td>Harnstoff</td>
<td>Fluka</td>
</tr>
<tr>
<td>Salzsäure -HCl</td>
<td>J.T.Baker</td>
</tr>
<tr>
<td>Hapes</td>
<td>Roth</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>Riedel-de-Haen</td>
</tr>
<tr>
<td>Kaliumchlorid (KCl)</td>
<td>Merck</td>
</tr>
<tr>
<td>Kaliumphosphat -KH2PO4</td>
<td>Merck</td>
</tr>
<tr>
<td>Methanol - MeOH</td>
<td>Fluka</td>
</tr>
<tr>
<td>Magnesiumchlorid -MgCl2</td>
<td>Merck</td>
</tr>
<tr>
<td>β-Mercaptoethanol</td>
<td>Fluka</td>
</tr>
<tr>
<td>Natronlauge - NaOH</td>
<td>J.T.Baker</td>
</tr>
<tr>
<td>Natriumchlorid (NaCl)</td>
<td>Merck</td>
</tr>
<tr>
<td>Natriumacetat (Na-Ac)</td>
<td>Merck</td>
</tr>
<tr>
<td>NP40</td>
<td>Boehringer Ingelheim</td>
</tr>
<tr>
<td>Di-Natriumphosphat- Na2HPO4</td>
<td>Merck</td>
</tr>
<tr>
<td>Natriumphosphat- NaH2PO4</td>
<td>Merck</td>
</tr>
<tr>
<td>PMSF</td>
<td>CM Biochem</td>
</tr>
<tr>
<td>Natriumdodecylsulfat (SDS)</td>
<td>Applichem</td>
</tr>
<tr>
<td>Silbernitrat</td>
<td>Fluka</td>
</tr>
<tr>
<td>Tris</td>
<td>Sigma</td>
</tr>
<tr>
<td>Tris X</td>
<td>Gerbu</td>
</tr>
<tr>
<td>Triton X-100</td>
<td>Aldrich</td>
</tr>
<tr>
<td>TEMED</td>
<td>Biorad</td>
</tr>
</tbody>
</table>

Tabelle 2.1. Chemikalien
Antibiotika

<table>
<thead>
<tr>
<th>Antibiotika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
</tr>
<tr>
<td>Kanamycin</td>
</tr>
<tr>
<td>Chloramphenicol</td>
</tr>
</tbody>
</table>

Tabelle 2.2. Antibiotika

PCR Gerät T3-Thermocycler, Biometra, Göttingen

PH Meter:
Knick pH Meter 765 CalimaticX

HPLC:
Waters 994 Array Detector
Crystal 200 High Pressure System

FPLC:
Pharmacia /Amersham GP250
2x P-500 Pumpen

Pipetten:
Gilson + Eppendorf
Pipetteboy

Präzisionswagen:
Mettler PM 480 Delta Range
Mettler PB 3002 Toledo

Schüttler:
HT Infors Aqua

Sonstiges Verbrauchsmaterial:
Filter:
0,22 und 0,45 μm Filter von Millex; 0,02 und 0,2 μm Filter von Whatman

Spritzen:
1,2,5 und 10 ml Spritzen von BD

Pipettenspitzen:
Steinbrenner, Gilson
Reaktionsgefäße:
Elkay, Eppendorf

Dialysemembranen und Gefäße:

Konzentratorgefäße:
Vivascience Vivaspin 20, 6 und 0,5 ml Concentrator, 5000 MWCO

Bakterienstämme für Expression:
Alle Stämme wurden von Stratagene bezogen.
XL10
BL21 DE3
BL21 DE3 Gold
BL21 DE3 Gold plysS
Rosetta BL21 DE3 Gold
Rosetta BL21 DE3 Gold plysS

2.3. DNS Sequenzen und Nukleosomenkonstrukte

Anmerkung zur 601 Sequenz: Im Vergleich mit der Literatur kann es sein, daß die hier beschriebene Sequenz reverskomplement ist. Da die ursprüngliche Sequenz von J.Widom in eine HincII Site integriert wurde, konnte die Orientierung relativ zum Plasmid nicht bestimmt werden. Daher wurde die Sequenz im DKFZ sequenziert. Hier zeigte sich, daß die Sequenz gegen die Leserichtung des Plasmids eingebaut wurde. Da aber an den Rändern kurze Bereiche des Plasmids verwendet wurden, musste hier die Orientierung des Plasmids verwendet werden. Zur Auswahl des Sequenzbereiches für die Experimente wurde
Abbildung 2.2. 5S rDNS: Analyse mit der DNS Analysesoftware Bendit [110]. Gezeigt ist die lokale Kurvatur der DNS (links oben), der GC Gehalt der Sequenz nach Position (rechts oben) sowie zwei Modelldarstellungen (unten links Bolshoy Darstellung; und rechts Darstellung nach Koo). Die Modelldarstellungen beruhen auf verschiedenen Annahmen für die Biegung der DNS nach bestimmten Basenfolgen (Bolshoy [13] und Koo [68]).

Abbildung 2.1 herangezogen. Im folgenden eine tabellarische Auflistung der verwendeten DNS-Sequenzen; Markierungen sind Fett hervorgehoben, die Markierungen die auf dem Komplementärstrang liegen, sind an ihrer Position hier auf diesem Strang unterstrichen.

5S rDNS Sequenzen Die 5S 160 bp Endmarkiert

<table>
<thead>
<tr>
<th>5S 160 bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>001 ATTACGAAATT CCAGCTCGCC CCGGGATCG GCTGGGCCCC CCCCAGAAGG</td>
</tr>
<tr>
<td>051 CAGCACAAGG GGAGGAAAAG TCAGCCTTGT GCTCGCCTAC GGCCATACCA</td>
</tr>
<tr>
<td>101 CCCCTGAAGT GCCCGATATC GTCTGATCTC GGAAGCAAG CAGGGTCGGG</td>
</tr>
<tr>
<td>151 CCTGATTATG ACTTGGAGCC</td>
</tr>
</tbody>
</table>

Die 5S 160 bp Intern
Abbildung 2.3. 601 DNS: Analyse mit der DNS Analysesoftware Bendit. Gezeigt ist die lokale Kurvatur der DNS (links oben), der GC Gehalt der Sequenz nach Position (rechts oben) sowie zwei Modelldarstellungen (unten links Bolshoy Darstellung; und rechts Darstellung nach Koo). Im Vergleich mit der 5S rDNS fällt auf, daß die Kurvatur stärker ausfällt.

5S 160 bp
001 ATTACGAATT CCAGCTCGCC CCGGGATCCG GCTGGGCCCC CCCCAAGAAGG
051 CAGCACAAGG GAGAGAAAG TCAGCCTTGT GCTGCGCTAC GGCATACCA
101 CCCTGAAAGT GCCCGATATC GTCTGATCTC GGAAGCCAG CAGGGTCGGG
151 CCGGTATAGT ACGTGATGG

Die 5S 220 bp Endmarkiert

5S 220 bp
001 TCACACAGGA AACAGCTATG ACCATGATTA CGAATTCCAG CTCGGCCCCG
051 GATCCGCGCTG GCCGCCGCCCG AGAAGGGCAG ACAAGGGGAG GAAAAGTCAG
101 CTTGTGCTGCT GCTAGGGCCC ATACCCACCT GAAGTGGCC GCCATCGCTCT
151 GATCTCGGAG GCCAAGCAGG GTCGGGCTCTG GTTATGACTG GGATGGGAGA
201 CCGCTGGAGA ATACCCAGTQ

601 DNS Sequenzen Die 601 170 bp Endmarkiert
Die 601 170 bp Intern Medium FRET

```
601 170bp
001 TGCACAGGAT GTATATATCT GACACGTGCC TGGAGACTAG GGAAGTAATCC
051 CCTTGGCGGT TAAAACGCGG GGGACAGCGC GTACGTGCGT TTAAGCGGTG
101 CTAGAGCTGT CTACGACCAA TTGAGCGGCC TCGGCACCGG GATTCTCCAG
151 GGCGGCCGCG TATAGGGTCC
```

Die 601 170 bp Intern Hoher FRET

```
601 170bp
001 CATGCACAGG ATGTATATAT CTGACACGTG CCTGGAGACT AGGAAGTAAT
051 CCCCTTGGCG GTTAAAACGCG GGGACAGCGC GTACGTGCGT TTAAGCGGTG
101 TGCTAGAGCT GTCTACGACC AATGGAGGGG CTCGCGCACG GGGATTCTCC
151 AGGGCGGCCG CGTATAGGGT
```

Die 601 220 bp Intern Linker

```
601 220bp
001 GCACCGGCAA GGTCGCTGTT CAATACATGC ACAGGATGTA TATATCTGAC
051 ACGTGCGCTGG AGACTAGGGAA TATATCCCT TGGCGGTATGA ACGGCGGGGGG
101 ACAGCGCGTGA CTCGCGTGATA ACGCAGTGCTA GAGCTCGTCA CGACCAATTTG
151 AGCGGCGTCCG GCACCGGGAT CGCCCGCCTGCG ATGGTGCCATCG
201 ACATAAGGGA TCGAATCGGTT
```

Die 601 220 bp Endmarkiert

```
601 220bp
001 GCACCGGCAA GGTCGCTGTT CAATACATGC ACAGGATGTA TATATCTGAC
051 ACGTGCGCTGG AGACTAGGGAA TATATCCCT TGGCGGTATGA ACGGCGGGGGG
101 ACAGCGCGTGA CTCGCGTGATA ACGCAGTGCTA GAGCTCGTCA CGACCAATTTG
151 AGCGGCGTCCG GCACCGGGAT CGCCCGCCTGCG ATGGTGCCATCG
201 ACATAAGGGA TCGAATCGGTT
```

612 DNS Sequenzen Die 612 160 bp Endmarkiert
Abbildung 2.4. 612 DNS: Analyse mit der DNS Analysesoftware Bendit. Gezeigt ist die lokale Kurvatur der DNS (links oben), der GC Gehalt der Sequenz nach Position (rechts oben) sowie zwei Modelldarstellungen (unten links Bolshoy Darstellung; und rechts Darstellung nach Koo).

Die 612 160 bp Intern Medium FRET

Die 612 160 bp Intern Hoher FRET
Oligonukleotide

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Sequenz</th>
<th>Farbstoffposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>5S 220</td>
<td>tcacacaggaaacagctat</td>
<td>Alexa 488 5´</td>
</tr>
<tr>
<td>5S 220 int</td>
<td>cacctggtattcccag</td>
<td>RoX 5´</td>
</tr>
<tr>
<td>5S 170 int</td>
<td>attaagatttacgctcggcagccgctcggcTggeccc</td>
<td>Alexa 488 intern an 33</td>
</tr>
<tr>
<td>5S 170 int</td>
<td>ccaccaaatctaacccagccccagcccttgacctggtcagagcagagc</td>
<td>RoX intern an 45</td>
</tr>
</tbody>
</table>

Tabelle 2.3. Oligonukleotide 5S rDNS Sequenz
Bezeichnung	Sequenz	Farbstoffposition
601 220 fwd | ACCGAGTTCACTCCCTATATGTGAT | 5´
601 220 rev | GGACCAGGAAGTTCATCCCTTATGTGAT | 5´
601 220 int568 | GCACCGGCAAAGGTCGCT | Alexa 568 intern an 28
601 220 int594 | GCACCGGCAAAGGTCGCTGTTCAATACATGCACAG | Alexa 594 intern an 28
601 220 int488 | ACCGAGTTCACTCCCTATATGTGATGGACCCTATACGC | Alexa 488 intern an 30
601 190 fwd | GAGTTCATCCCTTATATGTGAT | Alexa 488 5´
601 190 rev | ACAGGATGTATATATCTGACACGT | RoX 5´
601 170 fwd | GGACCCTATACCGCGCC | Alexa 488 5´
601 170 rev | TGCACAGGATGTATATATCTGAC | RoX 5´
601 170 int | CATGCACAGGATGTATATATCTGACACGTGCCTGGAGAC | RoX intern an 33
601 170 int | CATGCACAGGATGTATATATCTGACACGTGCCTGGAGACTAGGGAG | RoX intern an 40
601 170 int | ACCCTATACCGCGCCCGCCCTGGAGATCCCGGTGCCGAGGCCGCTCAATTG | Alexa 488 intern an 45

Tabelle 2.4. Oligonukleotide 601 DNS Sequenz

Bezeichnung	Sequenz	Farbstoffposition
612 220 | ATGGAGCTGAAAAACTGCTCCC | Alexa 488 5´
612 220 | GCGACTGGCACCATTCCAAAT | RoX 5´
612 160 | ATAATCTGCCCGCGTAAGAAGGTGCCGACTATGTCCGCGGAAATT | Alexa 488 intern an 32
612 160 | CAGTTCGGGCGTGAACCCAATTGATTGAGGCCAAACTACCGAGCT | RoX intern an 36
612 160 | ATACTGCCCGCGтаAGAAGGTGCCGACTATGTCCGCGGAAATT | Alexa 488 intern an 42

Tabelle 2.5. Oligonukleotide 612 DNS Sequenz

Fluoreszenzfarbstoffe

Die verwendeten Fluoreszenzfarbstoffe sind in der folgenden Tabelle 2.6 Fluoreszenzfarbstoffe zusammengefasst.

<table>
<thead>
<tr>
<th>Fluoreszenzfarbstoff</th>
<th>Abs max [nm]</th>
<th>Em max [nm]</th>
<th>e max [M·cm⁻¹]</th>
<th>MW [g/mol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexa 488 NHS</td>
<td>494</td>
<td>517</td>
<td>78000</td>
<td>643,45</td>
</tr>
<tr>
<td>Alexa 568 NHS</td>
<td>578</td>
<td>602</td>
<td>88000</td>
<td>791,87</td>
</tr>
<tr>
<td>Alexa 594 NHS</td>
<td>590</td>
<td>617</td>
<td>92000</td>
<td>819,93</td>
</tr>
<tr>
<td>ATTO 647 N</td>
<td>644</td>
<td>669</td>
<td>150000</td>
<td>843</td>
</tr>
<tr>
<td>ROX X NHS, 5/6-Gemisch</td>
<td>576</td>
<td>601</td>
<td>80000</td>
<td>631,73</td>
</tr>
<tr>
<td>ROX, 5-isomer</td>
<td>574</td>
<td>602</td>
<td>78000</td>
<td>631,73</td>
</tr>
<tr>
<td>ROX, 6-isomer</td>
<td>575</td>
<td>602</td>
<td>82000</td>
<td>631,73</td>
</tr>
</tbody>
</table>

Tabelle 2.6. Tabelle Fluoreszenzfarbstoffe
Abbildung 2.5. Die Farbstoffe Alexa 488 (A) und ROX 5 bzw. 6-Isomer (B) sowie die Basenmodifi-
kation 5-C6-Amino-2’-deoxythymidine (C)

<table>
<thead>
<tr>
<th>Donor\Akzeptor</th>
<th>Rox</th>
<th>Alexa Fluor 568</th>
<th>Alexa Fluor 594</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexa Fluor 488</td>
<td>55</td>
<td>62</td>
<td>60</td>
</tr>
</tbody>
</table>

Tabelle 2.7. Förster Radien der verwendeten Farbstoffe - R0

Weitere DNA Modifikationen

Plasmide

pxp10 mit 5SrDNS Sequenz (keine vollständige Karte erhalten/vorhanden), von S.Dimitrov, Grenoble
pGEM3Z3z 601 - 626 (601 und 612 wurden im DKFZ sequenziert, Karte im Anhang), von J.Widom
puc18 (Karte im Anhang)
pET-28a-c(+) Vektor mit yNAP1His-tag (keine vollständige Karte erhalten/vorhanden)
Histonplasmide (keine vollständige Karte erhalten/vorhanden) von S.Dimitrov, Grenoble
Pmyb-ISWI von P.Becker/A.Eberhardter (keine vollständige Karte erhalten/vorhanden)
Karten und Sequenzen soweit vorhanden im Anhang.

2.4. Proteine

Histon H1 wurde von Roche Diagnostics (Mannheim, Deutschland) bezogen und zusätz-
lich auf Sepharose und NAP-5 Säulen aufgereinigt. Die Histone H2A, H2B, H3 und H4,
codiert auf Expressionplasmiden mit der 5 S rDNS Sequenz aus Xenopus laevis, wurden
rekombinant aus *E. coli* gewonnen (s. Aufreinigung von Histon Proteinen in Methoden).

HMGB1 wurde freundlicherweise von Malte Bussiek zur Verfügung gestellt.
Hsp90 wurde von Calbiochem bezogen (Cat.No. 385898)
ISWI wurde freundlicherweise von Anton Eberhardter, LMU, zur Verfügung gestellt.
BRG1 wurde von Jena Bioscience bezogen (Cat.No. PR-740)
BSA wurde von New England Biolabs bezogen
yNAP1 wurde nach beschriebenem Protokoll von Nathalie Brun aufgereinigt

Weitere Enzyme

Restriktionsenzyme wurden wenn nicht anders gekennzeichnet von New England Biolabs bezogen.
Hinf I, Pml I, AflIII, EcoR I, RsaI, Apa I,
Mnase
Dnase wurde von Qiagen bezogen
Rnase wurde von Qiagen bezogen
T4 DNA Ligase wurde von Promega bezogen (Nr. M1801)
Lysozym
T4 Polynukleotidkinase PNK wurde von New England Biolabs bezogen (Nr. M201S)
Taq Polymerase wurde mit dem PCR Master Kit / Go Taq Green Master Mix von Promega verwendet (Nr. M7502 bzw. M7112)

2.5. Standards

Protein und DNS Standards

Protein und DNS Standards:
Biorad BenchMark Pre-stained,
Fermentas GeneRuler DNA Ladder,
Low Range new 25 bp, 100 bp, 1 kb,
BioRad Molecular Ruler,
BIORON 1kb Ladder
<table>
<thead>
<tr>
<th>Antibiotika</th>
<th>Konzentration in Medium</th>
<th>Konzentration in Platte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>100µg/ml</td>
<td>100µg/ml</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>50µg/ml</td>
<td>34µg/ml</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>30µg/ml</td>
<td>30µg/ml</td>
</tr>
</tbody>
</table>

Tabelle 2.8. Antibiotika Konzentrationen für Flüssig- und Festmedien.

2.6. Kulturmedien:

Luria-Bertani-Medium (LB Medium)
10 g/l Trypton, 5 g/l Hefeextrakt, 10 g/l NaC, mit 1 M NaOH auf pH 7,5 eingestellt.

SOB Medium
20 g/l Trypton, 5g/l Hefeextrakt, 0,5 g/l NaCl, 2,5 mM KCl, pH 7,5.
Vor Gebrauch wurden 5ml einer sterilen 2 M MgCl₂ Lösung hinzugegeben.

SOC Medium
Zu SOB-Medium wird auf 20 mM sterilfiltrierte Glucose hinzugegeben, sobald die Lösung genügend abgekühlt ist.

LB Agarplatten
LB Agarplatten wurden wie LB Medium angesetzt, mit dem Zusatz von 1-2 % Agarose.

Selektiv- Agarplatten
Nach autoklavieren der LB Agarlösung wurde zu dieser, kurz bevor die Platten gegossen wurden, je nach Antibiotika folgende Menge hinzugegeben:

Standard Puffer

TE Puffer:
0,1 mM EDTA
10 mM Tris HCl pH 7,5

TE Puffer mit 5mM NaCl:
0,1 mM EDTA
10 mM Tris HCl pH 7,5
5 mM NaCl

Dialysepuffer für Nukleosom Rekonstitution:

TE Puffer mit folgenden NaCl Konzentrationen:
4 M; 1,8 M; 1,4 M; 1 M; 0,8 M; 0,6 M; 0,4 M; 0,2 M; 0,1 M

Histone-Aufreinigungspuffer

Lysepuffer 50 mM Tris-HCL, pH 7,5:
100 mM KCL
1 mM Na-EDTA
1 mM Pefabloc
0,1% (v/v) NP-40
Waschpuffer 50 mM Tris-HCL, pH 7,5:
100 mM KCL
1 mM Na-EDTA
1 mM Pefabloc
Entfaltungspuffer 7 M Guanidinium Hydrochlorid:
20 mM Tris-HCL, pH 7,5
10 mM Dithiothreitol
SAU-50 Puffer 7 M deionisierter Harnstoff:
20 mM Natriumacetat pH 5,2
1 mM EDTA
50 mM KCl
5 mM 2-Mercaptoethanol
SAU-1000 Puffer 7 M deionisierter Harnstoff:
20 mM Natriumacetat
1 mM EDTA
1 M KCl
5 mM 2-Mercaptoethanol
Refoldingbuffer 2 M NaCl:
10 mM Tris-HCL, pH 7,5
0,1 mM EDTA
5 mM 2-Mercaptoethanol

Gelelektrophoresepuffer
1 x TBE
89 mM Tris
89 mM Borsäure
2 mM EDTA
1 x TAE
2 mM Eissessig
4 mM Tris
1 mM EDTA
10 x SDS
25 mM Tris
19 mM Glycin
10 g/l SDS
Ladepuffer für SDS Gele:
25 mM Tris-HCl pH 6.8,
20% Glycerin,
2% SDS,
0.1% Bromphenolblau
Phosphatpuffer
BSA
Silicagelpuffer
Vitamin C
Puffer für PAGE Extraktion
Maxam Gilbert Puffer

ATP Puffer
1 mM ATP
1,5 mM MgCl2
400 µg/ml BSA
1 mM DTT

2.7. Chromatographie

Chromatographiematrizen
5*60cm Sephacryl S-200 high resolution gel filtration column (Pharmacia, Bettvolumen ca. 1100 ml)
Mono S HR 5/5 FPLC column
Mono S HR 10/10 FPLC column
Superdex 200 HR 10/30 (Pharmacia), 20 ml bed volume, 2 ml
Gen-Pak-FAX
DEAE, Sephacryl, MonoQ, Chitin, Nap 5, 20
METHODEN
2.8. Molekularbiologische Methoden

Gelelektrophorese

Native Polyacrylamidgelelektrophorese

Die PCR Produkte sowie Primer und Nukleosomen wurden auf Polyacrylamidgelen analysiert. Es wurde dafür ein durchgehendes Gel ohne ein anders beschaffenes Sammelgel verwendet. Die verwendete 40%-ige Acrylamidlösung von Roth hatte ein Acrylamid zu Bisacrylamidverhältnis von 29:1 bzw. 60:1. Für Primer wurden Gele mit 18% bis 20% verwendet, für DNS um 200 bp und Nukleosomen 8% oder 6%.

<table>
<thead>
<tr>
<th></th>
<th>6%</th>
<th>8%</th>
<th>12%</th>
<th>18%</th>
<th>20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>40% Acrylamid (29:1) (Roth)</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>H2O</td>
<td>73</td>
<td>68</td>
<td>58</td>
<td>43</td>
<td>38</td>
</tr>
<tr>
<td>10x TBE</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>APS</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Für die verwendeten Glasplatten waren 6 ml dieser Lösung ausreichend. Vor dem Gießen wurden noch ca. 15 µl TEMED hinzugegeben, um die Polymerisation zu starten. Nach ca. 30 Minuten waren die Gele üblicherweise ausreichend polymerisiert, um den Kamm zu ziehen. Nach ziehen des Kamms wurden die Gele eingespannt, mit Puffer überschichtet und die Taschen sauber gespült. Bei 1 x TBE wurden die Gele bei 100 V und 25 mA für 1,6 - 2 Stunden gefahren, was einer Feldstärke von ca. 16 V/cm entspricht.

Polyacrylamidelektrophorese unter denaturierenden Bedingungen

Diese Technik diente hier der Charakterisierung von Primern für Fluoreszenzlabeling. Durch die denaturierenden Bedingungen können geringe Massenunterschiede von Primern mit Farbstoffen und evtl vorhandene verkürzte Primer, die bei der Kettenverlängerungsreaktion abgebrochen sind und daher kein Farbstoff tragen, getrennt werden.

Dafür wird 20% Acrylamid (19:1) gegossen, daß 48 gv % Harnstoff enthält. Die Elektrophorese wird in 1 x TBE Puffer durchgeführt. Als Ladepuffer muss ein Puffer verwendet werden, der aus 1 ml Formamid, 0,2 ml Bromphenolblau und 0,1 ml 10 x TBE besteht verwendet werden. Es ist außerdem nötig, das Gel 30-40 Minuten bei 400 V vorlaufen zu lassen. Die Proben sollten 2 Minuten bei 80-90°C gekocht werden. Der Lauf selber findet bei 400 V statt.
SDS Gelelektrophorese

Die Zusammensetzung der Gele setzt sich wie folgt zusammen:

Für das 12%-ige Trenngel:
3 ml 40% Acrylamid/Bisacrylamid (29:1)
2,5 ml 1M Tris pH 9.0
0,1 ml 10% APS
0,1 ml 10% SDS
4,3 ml H₂O
15 µl TEMED

Für das 5% Sammelgel:
1,7 ml 30% Acrylamid/Bisacrylamid (29:1)
1,3 ml 1M Tris-HCl pH 6.8
0,1 ml 10% APS
0,1 ml 10% SDS
6,8 ml H₂O
15 µl TEMED

Ladepuffer:
25 mM Tris-HCl pH 6.8, 20% Glycerin, 2% SDS, 0,1% Bromphenolblau

Agarose Gelelektrophorese

Das Verhältnis Nukleosomen zu freie DNS wurde mittels 2%igen Agarose Gelen analysiert. Die Gele hatten Dimensionen von 6,5x10 cm und die Elektrophorese wurde in Flachbettgelkammern durchgeführt und bei folgenden Pufferbedingungen durchgeführt: 0,5 TBE Puffer, bei 130V, 50 mA und für 1 h. Anschließend wurde eine Ethidiumbromid Färbung durchgeführt.
TAU - Gel

Das Triton-Acetat-Harnstoff(Urea) - Gel dient der Analyse von Acetylierungsmustern der Histone. Durch den niedrigen pH sind Proteine positiv geladen und wandern deshalb zum Minuspol.

10 ml des Trenngels bestanden aus 5 ml einer 30% Acrylamid- 0,8% Bisacrylamid Lösung gemischt mit 0,54 µl Eisessig, 4,84 g Harnstoff, 240 µl 0,3 M Triton (MG 600), 100 µl Thiodiglycol, 60 µl TEMED und 1 ml einer 0,005%-igen Riboflavinlösung (in 0,1 M NaOH).

Das Sammelgel von 5 ml bestanden aus 1,25 ml einer 30% Acrylamid- 0,8% Bisacrylamid Lösung gemischt mit 625 µl einer 3M Kaliumacetatlösung, 2,4 g Harnstoff, 120 µl 0,3 M Triton (MG 600), 50 µl Thiodiglycol, 50 µl TEMED und 500 µl einer 0,005%igen Riboflavinlösung (in 0,1 M NaOH) und H2O auf 5 ml).

Diese Lösungen wurden bei 37°C gelöst und nach Zugabe von Riboflavin sofort gegossen.

10 ml TAU Probenpuffer bestehen aus 4,84 g Harnstoff, 500 µl 100%igem Eisessig und 0,1% Pyronin Y.

Der Laufpuffer bestand aus 5% Eisessig in H2O.

Die Färbelösung bestand aus 25% Isopropanol, 10% Eisessig und 0,2% Coomassie R255 in H2O.

Die Entfärbelösung bestand aus 15% Eisessig und 10% Isopropanol in H2O.

Der Gellauf wurde für Histone bei 15 mA für ca. 17 Stunden durchgeführt. Es wurde nach dem Gellauf 45 Minuten gefärbt und anschließend 3 Stunden entfärbt. Alternativ kann eine Silberfärbung durchgeführt werden.

Bestimmung von freier DNS und Quantifizieren von Gelbanden

Abbildung 2.6. Beispiel für die Bestimmung des freien DNS Anteils mit ImageJ. Nach Definition der Bandenbereiche (im Bild links, 1-3) wird die Intensität über die Spur angezeigt (Diagramme rechts im Bild). Daraus kann das Verhältnis von freier DNS zu nukleosomaler DNS abgelesen werden. Üblicherweise wird nachher ein Korrekturfactor von 0,7 verwendet, da die DNS die im Nukleosom gebunden ist, schwächer gefärbt wird. Mit dieser Methode können auch die Verhältnisse verschiedener Banden und damit Positionen der Nukleosomen auf der DNS analysiert werden.
Ethidiumbromidfärbung

Coomassie Färbung

SDS Acrylamidgele wurden auf folgende Art mit Coomassie gefärbt. Zuerst wurde das Gel mehrfach mit H2O gespült um Pufferreste zu entfernen, anschließend 2 x 5 Minuten in H2O gewaschen. Anschließend wurde Coomassie Lösung auf das Gel gegeben und ca. 30 Minuten gefärbt. Mit der Entfärbelösung wurde danach so lange entfärbt, bis das Gel gut zu dokumentieren war. Dieses wurde dann ebenfalls mit dem BioDocAnalyzer von Biometra aufgenommen und gespeichert.

Silberfärbung

Zuerst wurde das zu färbende Gel in 50% Methanol für 2-3 Stunden gewaschen. Dann wurde eine Lösung mit 0,2 g/ml Silbernitrat, 19 mM NaOH und 200 mM NH4OH angesetzt. In dieser wurde für 15 Minuten gefärbt. Anschließend wurde 5 Minuten in H2O gewaschen. Anschließend wurde mit einer Lösung von 1% Citric Acid und 3,7% Formaldehyd in H2O entwickelt. Nach Eintreten der Färbung wurde mit einer Stoplösung, bestehend aus 50% Methanol und 10% Acetat in H2O, die Reaktion gestoppt und das Gel fixiert.

PAGE Aufreinigung von DNS

DNS wurde auf Acrylamidgelen aufgetrennt, anschließend wurden die Banden mit einem Skalpell unter schwachem UV-Licht schnellstmöglich ausgeschnitten, um Schäden an der DNS zu vermeiden und in Puffer aufgelöst um die DNS zurückzugewinnen. Die ausgeschnittenen Banden wurden in sehr kleine Stückchen geschnitten und über Nacht in Eppendorf 1,5 ml Reaktionsgefäßen mit TE Puffer im Kühlschrank bei 4°C belassen. Zur Verbesserung der Ausbeute kann auch ein Puffer mit 500 mM NH4OAc, 0,1% SDS und 0,1 mM EDTA verwendet werden.

HPLC Aufreinigung von DNS

Primer:
Säule: Gen-Pak-FAX
Gradientenpuffer A: 25 mM Tris, 0,1 mM EDTA
Gradientenpuffer B: 25 mM Tris, 0,1 mM EDTA und 1 M NaCl
Fluss: 0,5 ml/min
Gradient: 5 Minuten 100% Puffer A; 10 Minuten 20% Puffer B; 90 Minuten 20-50% B
Der Durchfluss wurde in 2 ml Fraktionen gesammelt und nach Salzentfernung mittels NAP 25 und anschließender NAP 5 Säulen in einer Speedvac auf ein Volumen von 0,1 ml in TE Puffer konzentriert.

Mnase Verdau von Nukleosomen

Nukleosomen
30 mM CaCl2
50 mM NaPhosphat
1 µl Mnase 1:100
Gesamtvolumen um 50 µl TE

Die Reaktion wurde bei Raumtemperatur (25°C) durchgeführt. Aus den Ansätzen wurden nach 30 Sekunden, 1 Minute und 2 Minuten jeweils Proben von je 10-15 µl entnommen und durch Überführen in eine Lösung mit 10 mM EDTA und Phenol gestoppt. Bei Zusatz von NaCl im Bereich von 100 mM verlangsamte sich die Reaktion, so daß die 5-fache Menge an Enzym verwendet werden musste und die Proben bei 1, 2, 4, 6 und 10 Minuten genommen wurden. Die Reaktion wurde nach dem Entnehmen des Überstandes aus dem Phenol auf einem 8% Polyacrylamidgel analysiert. Bei Rückständen von Phenol in der Gelelektrophorese entwickeln sich die Banden sehr verschwommen, dies sollte daher vermieden werden.

Restriktionsverdau von Nukleosomen

Eine Menge von ca. 2 pmol Nukleosomenprobe in einem Volumen von 4 µl wurde mit 4 µl H2O, 1 µl des jeweiligen 10 X Enzympuffers und 1 µl Enzym gemischt und bei der für das verwendete Enzym angegebene Temperatur in einem 200 µl Reaktionsgefäß typischerweise für 3 Stunden bei der für das Enzym optimalen Temperatur inkubiert.
Nukleosomen sind bei Temperaturen bis ca. 60°C stabil und es können daher auch Enzyme, die hohe Temperaturen benötigen, verwendet werden. Anschließend wurde die gesamte Probe auf einem Polyacrylamidgel analysiert und dokumentiert. Die Restriktionsenzyme wurden wenn nicht anders angegeben von New England Biolabs und mit den jeweilig empfohlenen Puffern verwendet. Es wurde auch je nach Angabe BSA hinzugegeben. Durch
geeignete Kontrollen ist dabei zu gewährleisten, daß Mobilisierungseignisse während der Restriktion das Ergebnis nicht verfälschen.

Thermische Mobilisierung von Nukleosomen

Enzymatische Mobilisierung von Nukleosomen

ISWI

Die Stocklösung von ISWI (rISWI aus *D. melanogaster* mit N-terminalem FLAG-tag, Ursprüngliches ISWI: UniprotKB Q24368) hatte eine Konzentration von 200 ng/µl (Masse von ISWI ist ca. 120 kDa), dies entspricht 1,67 pmol Enzym pro µl, bzw. einer Konzentration von 1,67 µM. Für einzelne Versuche wurden von Remodelern wie ISWI in Referenzen wie z.B. [74] 2-120 fmol oder auch zwischen 45-450 fmol in [14] eingesetzt, bei 50-100 fmol Nukleosomen.

Da unsere Bedingungen bzw. Detektionsmethoden anders waren, wurden für Gelektrophoreseeexperimente 0,12- 1,2 pmol pro Versuch verwendet, bei 2 pmol Nukleosomen in einem Volumen von 10 µl (12-120 nM ISWI und 200 nM Nukleosomen). Die Versuche wurden mit frisch angesetztem 1x ATP Puffer in TE Puffer mit 5 -100 mM NaCl bzw. einer Kontrollprobe ohne ATP bei 37°C durchgeführt.

Für Einzelmolekülmessungen, bei denen die Konzentration der Nukleosomen nur 50-100 pM und weniger ist, wurden teilweise bis zu 5 nM von ISWI eingesetzt, damit auftretende Reaktionen nicht so leicht im Hintergrund verloren gehen würden (Versuchsweise auch
mehr als das 10-fache, also 50 nM und mehr). Dennoch wären wahrscheinlich nur Teile der Nukleosomenpopulation in einer direkten Reaktion zu beobachten, da die Gesamtkonzentration sehr niedrig ist.

BRG1

Die Angabe des Herstellers (Jena Bioscience) ging von 50-100 ng pro Ansatz für eine Remodellierung aus (Masse von BRG1 ca. 185 kDa, UniprotKB P51532, *H. sapiens*). Es wurden hier üblicherweise 100-200 ng pro Ansatz verwendet (100 ng/µl Stocklösung, entspricht 0,55 pmol/µl bzw. 0,55 µM), also ca. 0,5-1 pmol BRG1 und ca. 2 pmol Nukleosomen in 10 µl (entspricht 50 nM - 100 nM BRG1 und 200 nM Nukleosomen). Die Versuche wurden mit frisch angesetztem 1x ATP Puffer (0,1 mM ATP) / TE Puffer 5-100 mM NaCl bzw. einer Kontrollprobe ohne ATP bei 37°C durchgeführt. Für Einzelmolekülmessungen waren die Konzentrationen wie bei ISWI im 10-fachen Bereich und mehr gegenüber den Nukleosomen, da bei diesen niedrigen Konzentrationen sonst kein Effekt zu beobachten war. Also für 50-100 pM Nukleosomen zwischen ca. 1,5 nM und versuchsweise bis zu 15 nM in Volumina um 30-50 µl.

yNAP1

yNAP1 (ca. 48 kDa, nach UniProtKB Entry P25293, *S. cerevisiae*) wurde üblicherweise in einem 0,5:1 bis 8:1 Verhältnis zum Histonoktamer eingesetzt (Stocklösung 0,65 µg/µl, entspricht 13,5 pmol NAP1 Monomer/µl, bzw. eine Konzentration von 13,5 µM). Da unklar ist, ob NAP1 als Dimer oder Oktamer arbeitet, ist die Stöchiometrie aber unklar. Die Konzentrationen gelten hier für die Monomere Form. In 5 mM NaCl TE Puffer pH 7,5 wurden die Ansätze bei 37°C inkubiert, um eine Veränderung der Positionen oder Verringerung der freien DNS zu untersuchen. Normalerweise war 1 h Inkubation ausreichend, um einen Effekt zu erzielen. Für Gelexperimente war das Volumen der einzelnen Ansätze um 10 µl, bei 200 nM Nukleosomen und zwischen 100 nM und 1,5 µM NAP1. Die Einzelmolekülexperimente hatten Volumen zwischen 200 und 30 µl. Bei ca. 50-100 pM Nukleosomen wurden im Einzelmolekülversuch wurden ähnlich wie bei ISWI und BRG1, yNAP1 im Überschuss von 6,75 nM bis 67,5 nM hinzugegeben.

Die enzymatischen Versuche unter Einzelmolekülbedingungen sind problematisch, da keine Kontrolle auf einem Gel erfolgen kann. Die Konzentrationen sind dafür zu niedrig. Würde man unmarkierte Nukleosomen hinzugeben, um eine ausreichende Konzentration an Nukleosomen für Gelkontrollen zu erreichen, würden Remodellierungsreaktionen schwieriger zu detektieren, da der Anteil an markierten und mobilisierten Nukleosomen sehr niedrig wäre (bis zu 1:4000; entpräche der Verdünnung der Nukleosomen von 200 nM auf 50 pM). Auch und das wäre der Hauptgrund, ist es nicht vorstellbar, so große Mengen an Enzym zu erlangen, wie für solche Versuche notwendig wäre. Bei den hier verwendeten
nichtradioaktiven Versuchen wurde schon erheblich mehr Enzym als bei der sonst üblichen Herangehensweise verwendet.

Fluoreszenzmarkierung von DNS Oligonukleotiden

DNS die an einer oder mehreren Basen eine Aminolinker Gruppe aufweist kann mit Fluoreszenzfarbstoffen gekoppelt werden. Die zu markierende DNS wurde mit folgendem Puffer für 2 Stunden gemischt:

10 µl Alexa 488 (8 µg/µl)

75 µl 0,1 M Bicarbonat pH 8,3

100-150 µg zu markierende DNS auf 100 µl H2O

Hybridisierung von Einzelstrang-DNS

Komplementäre DNS Einzelstrangmoleküle wurden in stöchiometrischen Konzentrationen in 100 mM NaCl TE Puffer auf 90°C erhitzt und langsam bei 0.02 °C pro Sekunde auf 20°C abgekühlt.

Phosphorylierung der DNS 5´Enden mit Polynukleotidkinase

Ligation

Zur Ligation einzelner hybridisierter DNS Abschnitte wurde die T4 DNS Ligase verwendet, die freie 3´-OH Gruppen mit den 5´-Phosphatenden doppelsträngiger DNS kovalent
verbindet. Die Reaktionen wurde gemäß der Beschreibung und unter Verwendung der mitgelieferten Reagenzien durchgeführt.

Polymerase-Ketten-Reaktion (PCR)

Zuerst wurden die Primer Konzentrationen genau bestimmt um ein Mischverhältnis von 1:1 zu gewährleisten. Für eine 200 µl Reaktion wurden jeweils 40 pmol je Primer eingesetzt, sowie 4-8 ng Template DNS. Der verwendete PCR Mix war der “PCR Master Kit” der Firma Promega. Der Ablauf des PCR Programmes ist in der Tabelle dargestellt.

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Dauer [sec]</th>
<th>Temperatur [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>180</td>
<td>96</td>
</tr>
<tr>
<td>2-30</td>
<td>30</td>
<td>96</td>
</tr>
<tr>
<td>60</td>
<td>45-55 je nach Primer</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>600</td>
<td>72</td>
</tr>
</tbody>
</table>

Isopropanol Fällung

Die 10 Ansätze zu 200 µl wurden gesammelt und Isopropanol gefällt. Dazu wurden zu den 2 ml PCR Produkt 2ml Isopropanol gegeben. Diese wurden in zwei 2 ml Gefäßen aufgeteilt. Zu diesen jeweils 2 ml wurden 15 µl 1M MgCl2 hinzugegeben, durch invertieren gemischt und bei 15000 Upm für 15 Minuten bei Raumtemperatur zentrifugiert.

Nach diesem Schritt konnte der Erfolg der PCR Reaktion schon anhand der Größe des Pellets abgeschätzt werden (freie Primer sollten unter diesen Bedingungen nicht mitgefällt werden). Die Pellets wurden zusammen in 100 µl TE Puffer aufgenommen und anschließend mit dem NucleoSpin Extract II Kit von Macherey-Nagel aufgereinigt.

PCR Aufreinigungssystem

Nach der PCR und der Isopropanolfällung wurde das PCR Produkt von möglicherweise noch vorhandenen überschüssigen Primern und Resten der dNTPS sowie vom Puffer mittels eines Reinigungskits von Macherey Nagel (NucleoSpin Extract II) getrennt.
2.9. Mikrobiologische Methoden

Bakterienkulturtechniken

Transformation von BL21 oder XL10 Bakterien

Die Transformation wurde so durchgeführt: Auf Eis wurden 25 µl BL21 oder XL10 Kultur mit 100 ng des gewünschten Plasmides gemischt. Die Bakterien wurden 1 h auf 4°C inkubiert. Anschließend folgte ein Hitzeschock für 45 sec bei 42°C. Darauf 2 Minuten auf 4°C und es wurden 180 µl SOC Medium hinzugegeben und bei 37°C 1 h inkubiert (zwischendurch invertieren oder auf Schüttler inkubiert). Verschiedene Mengen (50 µl und 150 µl) wurden dann auf LB Agar mit den jeweiligen Antibiotika ausplattiert und bei 37°C über Nacht kultiviert.

Plasmidexpression

Lagerung von Bakterienstämmen

0,15 ml Kultur + 0,85 steriles Glycerin in flüssigem Stickstoff einfrieren und bei -80°C lagern.
2.10. Biochemische Methoden

Aufreinigung von Histonproteinen

Kultur ansetzen und Histonexpression 10 ml LB Medium mit den jeweiligen Antibiotika (100 µg/ml Ampicillin und bei Verwendung von BL21 plysS Stämmen auch 50 µg/ml Chloramphenicol) wurden angesetzt und mit Bakterien von Platten inokuliert. Diese wurden bei 37°C UNG inkubierte. Nach Abzentrifugieren bei 4000 Upm für 5 min in Falcon 15 ml Röhrchen wurden die in 10 ml frischen LB + Antibiotika Medium aufgenommen. Dann wurden 11 LB Kulturen mit 100 µg/ml Ampicillin und bei Verwendung von BL21 plysS Stämmen auch 50 µg/ml Chloramphenicol mit den 10 ml resuspendiertem Vorkultur Pellet inokuliert. Bei 200 rpm und 37°C inkubierte. Regelmäßig wurde die OD gemessen und eine Wachstumskurve erstellt. Proben wurden für das SDS Gel aufgehen (je 1 ml Kultur Zentrifugieren und Pellet in 50 µl H2O und 30 µl SDS Probenpuffer). Bei einer OD von ca. 0,5 wurde mit IPTG induziert (Kultur auf 1mM IPTG). Danach weiter OD gemessen und Proben genommen (z.B. alle 30 min). Dann wurde 3 h inkubierte und anschließend bei 5000 Upm je 15 min zentrifugierte. Überstand wurde verworfen und Pellets bei -80°C UNG eingefroren. Anschließend wurde ein SDS Gel mit den vorher gesammelten Proben (8%) gefahren um Expression zu überprüfen.

Histonaufreinigung Das Pellet wurde in 40 ml Lysepuffer resuspendiert. Nach Lyse mit Ultraschall (Branson Sonifier 250, output level 5, duty cycle 50% auf Eis 4x 15 Sekunden mit je 1 Minute Pause dazwischen) für 20 min bei 4°C und 12000 Upm zentrifugiert (Sorvall RC 5B Plus, Rotor SS34). Das Pellet wurde in 40 ml Lysepuffer resuspendiert. Dann 10 min bei 4°C und 12000 upm zentrifugiert. Dieser Schritt wurde mit Lysepuffer und 2 x mit Waschpuffer wiederholt. Das Pellet wurde getrocknet und bei -20°C aufbewahrt. Eine Sephacryl S-200 Säule wurde mit 2 Liter gefiltertem und ent gasten SAU-1000 Puffer equilibriert. Das Pellet wurde in ein 50 ml Falcon Röhrchen überführt und 250 µl DMSO hinzugegeben. Nach 30 Minuten bei Roomtemperature, wurde es mit einem Spatel durchmischt. Langsam wurden 10 ml Entfaltungspuffer mit 100 µl 1m DTT dazugegeben und
1 h bei Raumtemperatur gerührt. Mehrfach wurde dies durch eine Glaspipette pipettiert und 10 min bei 20°C und 12000 Upm zentrifugiert. Der Überstand wurde behalten und die Schritte mit dem Pellet wiederholt, die Überstände gesammelt und 0,45 μm filtriert. Der Überstand wurde auf die Gelfiltrationssäule gegeben bei einer Flussrate von 3 ml/min. Das Elutionsprofil wurde bei 280 nm aufgezeichnet und alle Fraktionen gesammelt. Die Peakfraktionen wurden auf 18% SDS Gel analysiert (je 10 µl der Fraktion). Die ersten Histon enthaltenden Fraktionen auf DNS Kontaminationen überprüft (hohes OD260 zu OD280 Verhältnis) und kontaminierte Fraktionen verweigert. Mit Vivaspin 20 (10000 MWCO) wurde konzentriert bis das Volumen kleiner 10 ml war. Die Fraktionen wurden gesammelt und bei 4°C gegen destilliertes Wasser mit 2 mM 2-Mercaptoethanol dialysiert. Das Wasser wurde 3x gewechselt.

Konzentrationen nach Tabelle bestimmt:

<table>
<thead>
<tr>
<th></th>
<th>MW</th>
<th>E</th>
<th>AA</th>
<th>MW</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2A</td>
<td>13960</td>
<td>4050</td>
<td>19-118</td>
<td>11862</td>
<td>4050</td>
</tr>
<tr>
<td>H2B</td>
<td>13774</td>
<td>6070</td>
<td>27-122</td>
<td>11288</td>
<td>6070</td>
</tr>
<tr>
<td>H3</td>
<td>15273</td>
<td>4040</td>
<td>27-135</td>
<td>12653</td>
<td>4040</td>
</tr>
<tr>
<td>H4</td>
<td>11236</td>
<td>5040</td>
<td>20-102</td>
<td>9521</td>
<td>5040</td>
</tr>
</tbody>
</table>

Dies wurde gegen 800 ml SAU 50 Puffer dialysiert und bei -20°C aufgehoben bis zum nächsten Schritt. Zuerst wurde aufgetaut indem die Probe bei Raumtemperatur 1 h stehen gelassen wurde. Die unlösenden Komponenten wurden durch Zentrifugation entfernt, max. 5 min 5000 upm. Der Überstand wurde 0,45 μm filtriert.

Eine Mono S HR 10/10 FPLC Säule wurde mit SAU 50 und SAU 1000 Puffer equilibriert. Es wurde max. 100mg Protein injiziert (bzw. 15mg bei Mono S HR 5/5) Dann wurde mit einem Gradient eluiert: 110 ml bis 50% SAU 1000; 120 ml bis 100% SAU 1000; 140 ml bis 100% SAU 50; 1-1,5 ml/min Flussrate und 1 ml. Peak Fraktionen wurden auch hier wieder mit SDS Page analysiert. Die Fraktionen mit Histon gesammelt und mit Vivaspin 20 konzentriert auf weniger als 10 ml. Dies wurde gegen destilliertes Wasser dialysiert wie zuvor. Dann wurde die Konzentration nach Tabelle bestimmt, Aliquots lyophylisiert und bei -80°C gelagert.

Oktamer Refolding Die Mengenbestimmung von H4 wird anscheinend durch Kontaminationen gestört und führt zu ca. 1,5 x zu hohen Ergebnissen. Um diese zu korrigieren wird 1,5 x mehr H4 benötigt. Jedes Histon wurde in 500 µl Entfaltungspuffer gelöst und bei Raumtemperatur 1 h inkubiert. Die Konzentration der Histone wurde dann gemessen und alle Histone im equimolarem Verhältnis für eine Konzentration von 1 mg/ml gemischt. 3-12 ml Volumen wurden dann bei 4°C in Slide-A-Lyzer MWCO dialysiert, dies 3 x je 2 h und
ÜN gegen 1-2 l Refoldingbuffer. Das Precipitat wurde mit Zentrifugation entfernt (5 min 5000 upm). Nach Konzentrieren auf weniger als 1 ml in Vivaspin 20 PES, 10000 MWCO wurde eine Superdex 200 HR 10/10 Säule mit 50 ml gefiltertem (0,2 µm) Refolding buffer equilibriert. Auf diese wurde die Probe geladen und Fraktionen gesammelt. Die Flussrate betrug 0,5 ml/min, die Fraktionen wurden zu je 0,5 ml gesammelt. Die Stöchiometrie wurde dann auf 18% SDS PAGE analysiert. Die Fraktionen mit equimolarem Verhältnis der Histone wurden gesammelt und deren Konzentration gemessen (A276 = 0,45 für 1 mg/ml). Diese Aliquots konnten dann bei -80°C in TE und 2 M NaCl gelagert werden.

Rekonstitution von rekombinannten Nukleosomen

Mengenverhältnis von DNS zu Histonoktamer:

Je nach verwendeter DNS Sequenz und deren Länge variierte das Verhältnis von DNS zu Histonoktamer. Üblicherweise wurden 2,6 µg DNS eingesetzt, mit je nach DNS Länge angepasster Oktamermenge. Bei 220 bp wurden 2,6 µg DNS und 3,5 µg Histonoktamer eingesetzt, bei 190 3,4 µg Histonoktamer und bei 170 und 160 bp DNS 3,3 µg Histonoktamer.

(Masse des Histonoktamer: ca. 108600 Da)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>145200</td>
<td>1,8:1</td>
</tr>
<tr>
<td>190</td>
<td>125400</td>
<td>1,5:1</td>
</tr>
<tr>
<td>170</td>
<td>112200</td>
<td>1,35:1</td>
</tr>
<tr>
<td>160</td>
<td>105600</td>
<td>1,2:1</td>
</tr>
</tbody>
</table>

Das molare Verhältnis von DNS zu Histonoktamer beträgt daher: Bei 220 bp DNS 1:1,8; bei 190 bp 1:1,5; bei 170 bp 1:1,35 und bei 160 bp 1:1,2.

Rekonstitution:

In einem Volumen von 50 µl wurden 2 M NaCl in TE Puffer mit pH 7,5 mit den berechneten Mengen an Histonoktamer und DNS gemischt. Zuerst wurde der Puffer vorgelegt (filtriert und entgast), dann die DNS hinzugegeben und schließlich das Histonoktamer. Diese Mischung wurde mit der Pipette vorsichtig vermischt. Dann wurde der Ansatz in Dialysiergefäßen überführt. Diese wurden mit 50 µl gefüllt und in einem 500 ml Becherglas der jeweiligen Pufferlösung für 1 Stunde im Kühlraum bei 4°C und durchgehendem Rühren dialysiert. Die Pufferschritte waren wie folgt (alle in TE Puffer pH 7,5): 1,8 M NaCl; 1,4 M NaCl; 1 M NaCl; 0,8 M NaCl; 0,6 M NaCl; 0,4 M NaCl; 0,2 M NaCl; 0,1 M NaCl und evtl bis 5 mM NaCl. Nach der Rekonstitution wurden die Nukleosomen in 500 µl Reaktionsgefäße überführt und bei 4°C gelagert. Anschließend wurden die Nukleosomen
absorptionspektroskopisch auf Aggregate kontrolliert und es wurde mittels Agarosegelelektrophorese das Verhältnis von gebundener zu freier DNS bestimmt.

2.11. Spektroskopie

Absorption und Fluoreszenzspektrometrie Alle Messungen wurden bei definierten Temperaturen in einem SLM-AMINCO 8100 Fluorimeter und einem Cary 4E von Varian Absorptionspektrometer in Quartz Kuvetten mit 3 mm Lichtweg gemessen. Üblicherweise waren die Konzentrationen von Donor oder Akzeptor Farbstoffmolekülen bzw. Nukleosomen oder DNS unter 400 nM. Dies ist auch wichtig um Filtereffekte durch Übersättigung der Lösung mit Fluorophoren zu vermeiden.

Absorptions- und Fluoreszenzmessungen

Absorptionspektrometrie von Nukleosomen

Um Aggregationen zu vermeiden, die ein Experiment beeinflussen könnten, wird jede Probe in einem Absorptionsspektrophotometer gemessen.

Analyse der Markierungseffizienz

Berechnung des Energietransfers für Ensemble Messungen

Bedingungen für eine genaue Messung ist hier eine Markierung mit Donor und Akzeptor im Verhältnis 1:1. Außerdem muss der Anteil an freier DNS zur Zeit der Messung bekannt sein. da diese das Ergebnis verfälscht.

Es wurden im Fluorimeter jeweils die Donoremission mit dem Energietransfer im Bereich von 500-750 nm gemessen, sowie die direkte Akzeptoremission im selben Bereich (siehe Abbildung). Der Energietransfer für Ensemble Messungen wird dann nach folgender Formel berechnet:

\[
ET = \frac{(S2 - S1(D2/D1) - S4(A3/A4))/a}{S4(A3/A4)/b}
\]

wobei \(S1\) für die Fluoreszenzemission bei 510-530 nm der **doppelt markierten Probe** bei Anregung von 495 nm steht, \(S2\) für die Emission bei 600-620 nm und \(S4\) für die Fluoreszenzemission des Akzeptors bei 600-620 nm. \(D1\) steht für die Emission des Donors allein zwischen 510-530 nm bei 495 nm Anregungswellenlänge, \(D2\) für die Emission im Akzeptorbereich von 600-620 nm. \(A3\) und \(A4\) stehen für die Emission des Akzeptors zwischen 600-620 nm bei Anregung mit 495 und 585 nm. Die Bestimmung von \(a\) und \(b\) erfolgt mittels Absorptionsspektrometrie und bezeichnet die Absorption von Donor und Akzeptor nach Abzug der jeweils anderen Farbstoffkonzentration (s. Abb 2.10). Der Abstand wird dann

mittels folgender Gleichung berechnet:

\[R = R_0(1/ET - 1)^{1/6} \]

Die Werte für \(R_0 \) siehe Tabelle 2.7. Beispiel: Berechnung von Energie Transfer bei einem Nukleosom, assembliert auf 220 bp DNS, mit Markierungen an den DNS Linker Enden, mit Alexa 488 und RoX.

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{S1} & \text{S2} & \text{S4} & \text{freie DNS} & \text{ET} & \text{Abstand(A)} \\
\hline
4.09 & 0.33 & 2.17 & 5\% & 0.15 & 73.6 \\
\hline
\end{array}
\]

Die Temperatur hat auch einen Einfluß auf die Parameter. Außerdem muss beachtet werden, daß manche Puffersysteme wie zB. TE mit pH Wert Änderungen auf Temperaturänderungen reagieren können. Hier wurde über eine Korrektur des Försterradius für die Farbstockpaare korrigiert, da die Quantenausbeute temperaturabhängigen Änderungen unterworfen ist. Die Absorptionspektren waren bei verschiedenen Temperaturen nicht verändert, und das Überlappungsintegral daher nicht verändert. Die Quantenausbeuten der Farbstoffe wurden je nach Temperatur im TE Puffersystem untersucht. Unter der Annahme, daß \(R_0 \) bei 20°C und \(n=1.33 \) für Alexa 488 und RoX 55 ist, wurden folgende Werte berechnet:
<table>
<thead>
<tr>
<th>Temperatur [°C]</th>
<th>rel. Quantenausbeute</th>
<th>n 404.41 nm</th>
<th>Förster R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>1</td>
<td>1.3432</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>0.98650</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>0.98646</td>
<td>1.3420</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>0.98053</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>0.96487</td>
<td>1.3406</td>
</tr>
<tr>
<td>5</td>
<td>45</td>
<td>0.94649</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>0.92337</td>
<td>1.3390</td>
</tr>
<tr>
<td>7</td>
<td>55</td>
<td>0.89202</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>60</td>
<td>0.88945</td>
<td>1.3371</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperatur [°C]</th>
<th>rel. Quantenausbeute</th>
<th>n 589.00 nm</th>
<th>Förster R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>1</td>
<td>1.334</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>0.98650</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>0.98646</td>
<td>1.3323</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>0.98053</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>0.96487</td>
<td>1.3310</td>
</tr>
<tr>
<td>5</td>
<td>45</td>
<td>0.94649</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>0.92337</td>
<td>1.3294</td>
</tr>
<tr>
<td>7</td>
<td>55</td>
<td>0.89202</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>60</td>
<td>0.88945</td>
<td>1.3276</td>
</tr>
</tbody>
</table>

Temperatureinfluß auf S1, S2 und S4

Abbildung 2.11. Einfluß der Temperatur auf S1, S2 und S4. Reversibler Effekt auf die Verhältnisse, die Ursache ist eine reversible und temperaturabhängige Veränderung der Quantenausbeute der Farbstoffe.
2.12. Einzelmolekülspektroskopie

Das hauptsächlich verwendete Gerät wurde von Alexander Gansen im Rahmen seiner Doktorarbeit gebaut [49]. Ebenso wie das Programm FRETtchen, die Software zum Betrieb des Gerätes [48].

Fluorophoranpassung für Einzelmolekülspektroskopie

Messungen bei freier Diffusion der Probe

Messbedingungen, Verdünnung und Stabilisation der Farbstoffe und Proben

Nukleosomen dissoziieren bei zu starker Verdünnung. Ohne spezielle Maßnahmen reduzierte sich das FRET Signal wahrscheinlich Aufgrund der Dissoziation der DNS vom Histonoktamer oder Oberflächenbindungseffekten. Dieser Effekt ist in Abbildung 2.12 zu sehen.

Eine Lösung dieser Problematik besteht in der Zugabe von inertem Protein, wie BSA. Dies stabilisierte das Signal und ermöglichte Messungen unter diesen Bedingungen.

Verdünnung der Proben für Einzelmolekülspektroskopie

Abbildung 2.13. Stabilisierung der Farbstoffe unter Einzelmolekülbefindingen [50]. A ist eine Probe mit mittlerem FRET um 50%, B ist eine Probe mit FRET um 80%. A1 und B1: ohne Additive; A2 und B2: 1 mM Vitamin C; A3 und B3: 1 mM Mercaptoethylamin; A4 und B4: 1 mM Vitamin C und 1 mM Mercaptoethylamin. Je nach Zugabe der Additive verbessert sich das Signal / Rauschen Verhältnis.

Stabilisierung der Farbstoffe

Einzelmolekülaufbau

Der hier verwendete optische Aufbau basiert auf einem konfokalen Laserscanningmikroskop [129, 131]. Ein Argon/Krypton Gaslaser (Melles Griot, Darmstadt) wird über eine optische Fiber in ein an das Olympus IX70 Mikroskop gekoppelte Gehäuse geleitet. In
diesem sind alle notwendigen Teile untergebracht. Das Laserlicht wird mit dichroiden Spiegeln (485DF22, Omega Optical, USA) in die Objektivlinse (60x 1.2W, Uplanapo Olympus, Hamburg) geleitet. Die Fluoreszenz der Probe wird auf zwei spektal getrennten Avalanchephotodioden abgebildet (SPCM_AQ_14, Perkin Elmer). Die Donoremission wird von der Akzeptoremission über einen dichroiden Spiegel (580DRLP, Omega Optical) und Bandpass Emissionsfiltern (535AF45 und OG590+700CFSP, Omega Optical) separiert. Durch die Verwendung eines 50 µm Pinhole wird der Einfall von Licht ausserhalb des Fokus vermieden. Das resultierende konfokale Volumen liegt bei ca. 0.4 fl (mit FCS ermittelt). Die Laserintensität wurde normalerweise auf 60 kW/cm² eingestellt (s. auch [50]).

Signalauswertung

Silicagel Probeneinbettung

Objektträger oder Nunc Kammer wurden vorbereitet und in Kühlschrank gestellt. Folgende Lösung wurde unter einem Abzug in einem 5 ml Gläschen zusammenpipettiert: 750 µl TMOS (tetramethylorthosilicate) SIGMA #341436; 169 µl H₂O; 11 µl 40mM HCl (Achtung, TMOS ist sehr toxisch!) Alle folgenden Arbeiten wurden bei 4°C durchgeführt. Die Probe wurde sonifiziert bei ca. 5-10% Leistung des Gerätes für jeweils 5 min Pulse, danach je 1 min Pause. Das Ganze wurde 4 X wiederholt. Dann wurde das Sol mit folgendem Puffer 1:1 gemischt: 10 mM KH₂PO₄; 1 mM EDTA; pH 6.0. Anschließend wurde auf Eis mit N₂ begast - 40 min lang und nicht zu stark ebenfalls unter dem Abzug. Anschließend wurde die Probe im Kühlschrank mit der Lösung gemischt. Die Probe sollte einen passenden pH aufweisen, der TE 7.5pH Puffer der Nukleosomen war hierfür kompatibel und erzeugte ein festes Silicagel. Dann wurden je 9 µl Sol + 6 µl Probe gemischt. Davon wurden dann 2 µl auf Objektträger oder Nunc Kammer gegeben. Nach ca. 5-10 min war dieses fest, es wurde dann mit Puffer überschichtet (TE pH 7.5 oder 25mM Na₂HPO₄ NaH₂PO₄ pH 7.0).
Verwendete Software

<table>
<thead>
<tr>
<th>Betriebssysteme</th>
<th>Ubuntu Linux 5.1, 7.04; Windows 3.1, 95, 98, 2000, NT, XP; Mac OS 9, OS X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textverarbeitung und Tabellenkalkulation</td>
<td>MS Office, Origin, Kaleidagraph, IxX, JabRef, IGOR, Open Office</td>
</tr>
<tr>
<td>Bildbearbeitung</td>
<td>Adobe Photoshop, Adobe Illustrator, Blender,</td>
</tr>
<tr>
<td>Quantifizierung (Gelelektrophorese)</td>
<td>Biometra BioDoc, BioQ, Image J</td>
</tr>
<tr>
<td>DNS Modelierungs und Sequenzsoftware</td>
<td>Bandit, DNA Strider, pdraw32</td>
</tr>
<tr>
<td>Moleküldarstellung</td>
<td>Pymol[28]</td>
</tr>
<tr>
<td>Spektrometrie</td>
<td>Cary, Olis, FRETtchen [48],</td>
</tr>
</tbody>
</table>
Kapitel 3

Ergebnisse

In dieser Arbeit wurden zunächst Fluoreszenzmarkierungstechniken verglichen, um eine geeignete Methode für die Versuche auszuwählen. Zusätzlich werden verschiedene Nukleosompositionierungssequenzen und ihr Positionierungsverhalten im Nukleosomkomplex untersucht.

Im darauf folgenden Abschnitt werden Fluoreszenzmessungen durchgeführt, und die Stärken und Schwächen verschieden markierter Nukleosomen für die Analyse von Remodellierungsereignissen und anderen Strukturveränderungen untersucht.

Der anschließende Abschnitt zeigt die Charakterisierung von intern markierten Nukleosomen mit Kontrollmessungen und Messungen von Nukleosomen unter Einfluß von den in der Einleitung besprochenen Proteinen NAP1, ISWI und BRG1.

Zum Abschluß folgen Messungen innerhalb einer Kooperation, bei denen dynamische Ereignisse in Nukleosomen in Abwesenheit anderer Proteine untersucht wurde.

3.1. Etablierung und Charakterisierung des Nukleosommodellsystems

Für die Etablierung des in der Einleitung dargestellten Nukleosommodellsystems müssen Histonoktamere und DNS hergestellt werden und auf eine geeignete Art und Weise markiert werden. Verschiedene Techniken für die Einbringung von Fluoreszenzfarbstoffen in die DNS wurden deshalb verglichen um die dazu geeignetere Methode zu ermitteln.

3.1.1. Untersuchung und Vergleich verschiedener Fluoreszenzmarkierungsmethoden

Es wurden zwei Techniken, um die fluoreszierenden Markierungen in der nukleosomalen DNS anzubringen, auf deren Vor- und Nachteile untersucht: Das Ziel war die Etablierung einer verlässlichen Technik zur Herstellung fluoreszenzmarkierter Nukleosomen für die späteren Experimente.

Eine Möglichkeit ist, markierte Oligonukleotide an größere Fragmente zu hybridisieren.

Bei Einsatz stringenterer Reinigungsmethoden könnte diese Methode aber anwendbar sein, allerdings mit viel mehr Aufwand als der nachfolgend beschriebenen PCR-Technik. Nach der PCR und der anschließenden Aufreinigung wurde die Qualität der DNS mittels einer PAGE überprüft, um Primerkontaminationen auszuschließen und unmarkierte DNS sichtbar zu machen. Abbildung 3.3 zeigt DNS, die mit der PCR-Technik hergestellt wurde (das Gel ist überladen, um evtl. minimale Verunreinigungen durch freie Primer sichtbar zu machen) und daneben Primer in verschiedenen Mengen zum Vergleich und zum Ausschließen von Pri-
merkontamination im fertigen Produkt. Der Vergleich der beiden Methoden in Banden C und D zeigt, daß die PCR DNS eine höhere Reinheit und Qualität hat als die durch Hybridisierung von Einzelsträngen erhaltenen DNS. Deshalb wird die PCR-Technik weiterverwendet.

Mögliche Markierungen mit der gewählten Technik: Die Positionen der Markierungen können bei der PCR Technik sehr verschieden gewählt werden. Für die folgenden Experimente wurden hier drei verschiedene Markierungsstrategien genutzt. Einmal wurden Farbstoffe am Ende der Linker DNS, dann innerhalb der Linker DNS und intern in der nukleosomalen DNS angebracht (Abbildung 3.4). Eine Mischung der verschiedenen
Abbildung 3.3. Gelelektrophorese auf einem 8% Polyacrylamidgel; A: Page von fluoreszenzmarkierten Primern nach Ethidiumbromidfärbung: 1, 2: jeweils verschiedene Mengen (hier als Beispiel mit unvollständig markierten Primern, zu erkennen an der Doppelbande); B: fertiges PCR Produkt im Vergleich mit den Primern (um Kontamination durch Primer nachzuweisen). M: DNS Leiter; K: PCR Produkt; 1-6 verschiedene Mengen an Primern: von links nach rechts K: 0,6 pmol an DNS, dann B1: 0,01 pmol; B2: 0,02 pmol; B3: 1 pmol; B4: 2 pmol; B5: 4 pmol und B6: 8 pmol and Primer-DNS. Es sind keine Primer in dem PCR Produkt zu sehen (0,02 pmol wäre hier noch nachweisbar). In einer (nicht gezeigten) Überbelichtung dieses Gels konnte auch eine Kontamination unter 0,01 pmol ausgeschlossen werden. Das bedeutet, falls freie Primer noch vorhanden wären, würde ihr Anteil unter 1-2% liegen. C: Aufgereinigtes DNS Produkt aus Hybridisierungstechnik (s. auch Abb. 3.2). D: Aufgereinigte DNS aus PCR Technik (Spur K aus B vergrößert).

Markierungspositionen ist auch möglich. Für die Markierung in der DNS wurde die modifizierte Base 5-C6-Amino-2’-deoxythymidine verwendet. Bei Markierung der 5’Enden der DNS wurde ebenfalls ein C6 Linker genutzt.

3.1.2. Histone und DNS Sequenzen

Um die Dynamik und Struktur der Nukleosomen zu untersuchen, wurde das in der Einleitung beschriebene in vitro System verwendet. Alle verwendeten Nukleosomen wurden aus rekombinannten Histonen, die aus E.coli gewonnen wurden hergestellt. Diese wurden mit kurzen durch präparativer PCR Technik gewonnenen DNS Fragmenten von 146 bis zu 223 bp Länge rekonstituiert. Die Sequenz der Histone stammt aus Xenopus laevis. Die 5S rDNS stammt aus Xenopus borealis. Die anderen verwendeten DNS Nukleosompositionierungssequenzen 601 und 612 sind synthetischen Ursprungs (s. oben). Die Histone wurden jeweils einzeln in E.coli exprimiert und anschließend aufgereinigt. Durch die Verwendung von rekombinannten Histonen werden posttranslationale Modifikationen vermieden, die bei aus Zellextrakten gewonnenen Histonoktameren auftreten können. Außerdem besteht so auch die Möglichkeit einzelne Histone mit Farbstoffen zu markieren. Mit der Salzschriftdialyse

(siehe Methodenteil Seite 81) wurden aus Histonoktameren und der DNS Nukleosomen rekonstituiert.

3.1.3. Charakterisierung der Nukleosomenpositionierung verschiedener DNS Sequenzen

Abbildung 3.5. Vergleich verschiedener Nukleosomenpositionierungssequenzen: Gezeigt sind Nukleosomen verschiedener Sequenzen von 220-223 bp Länge (601 und 612 mit 220 bp; 5S rDNS mit 223 bp) auf einem 8% Polyacrylamidigel mit jeweils der 0,2 µg an DNS entsprechenden Menge von Nukleosomen. Die langsam diffundierenden Banden sind verschiedene Konformationen der Nukleosomen, mit unterschiedlich positionierter DNS, die schnelle Bande ist freie DNS. Zu sehen sind Unterschiede zwischen den verschiedenen Sequenzen: die 601 und 612 Sequenzen bilden bei dieser DNS Länge zwei verschiedene Hauptbanden, die 5 S rDNS 3-4 Banden.

Bei der 5S rDNS Sequenz gibt es viele verschiedene Positionen, die das Nukleosom auf der DNS einnehmen kann, was an den vielen Banden zu erkennen ist (Abbildung 3.6, Spur K). Es hat sich gezeigt, daß die am langsamsten diffundierende Bande symmetrisch positionierte Nukleosomen enthält, und asymmetrisch auf der DNS positionierte Nukleosomen schneller elektrophoretisch im Gel wandern. Um die Banden genauer zu charakterisieren, wurden Restriktionsspaltungen der DNS mit Restriktionsenzymen durchgeführt. Diese können DNS Abschnitte, die im Nukleosom liegen, in der Regel nicht oder nur viel langsamer hydrolysieren. Daher läßt sich aufgrund des nach einer Restriktionsspaltung entstandenen Bandenmusters eine Aussage über die Positionierung des Nukleosoms auf der DNS treffen (Abbildung 3.6, Banden 1-3).

In Abbildung 3.7 kann man sehen, daß Nukleosomen, die auf der 601 Sequenz von 220

3.1.4. Untersuchung dynamischer Aspekte der Positionierung von Nukleosomen

Das Ziel der Versuche ist die Analyse der Vorgänge bei der Nukleosomenremodellierung. Daher wurden die verschiedenen DNS Sequenzen auf ihr Mobilisierungsverhalten hin untersucht. Um die Remodellierung beobachten zu können, ist es wichtig diese einfach und reproduzierbar auslösen zu können. Inwiefern dies mit den verwendeten DNS Sequenzen machbar ist, zeigen die folgenden Experimente.

Nukleosomen auf einer 220 bp 601 Sequenz werden durch Wärmebehandlung teilweise an ein Ende der DNS verschoben, wie eine Restriktionsanalyse in Abbildung 3.10 zeigt. Vor

3.2. Fluoreszenzmessungen

Nach der biochemischen Charakterisierung werden in den folgenden Versuchen die Fluoreszenzeigenschaften der markierten Nukleosomen untersucht. Die Frage, inwiefern die verschiedenen Markierungen detektiert werden können und wie deutlich Veränderungen der Strukturen messbar sind stellt sich hier. Weitergehend wird auch untersucht, wie relevante Parameter (wie DNS Sequenz, DNS Länge, Salzkonzentration und Markierungsposition) auf die Mobilisierung und Struktur der Nukleosomen einwirken.

3.2.1. Messung der Mobilisierung mit Fluoreszenzenergientransfer

Linker DNS verändert. Der Versuch zeigt aber, daß es möglich ist mit FRET-Messungen Nukleosomremodellierung zu beobachten.

3.2.2. Vergleich des Mobilisierungsverhaltens verschiedener DNS Sequenzen mit FRET

Der Schwerpunkt der Positionsverteilung verändert sich nach Mobilisierung in Richtung der asymmetrischen Positionierung mit höheren DNS Linker Abständen. Aufgetragen ist die “Proximity Ratio” (die Proximitätsrate, also das Verhältnis der im roten Kanal detektierten Emission zur Gesamtemission im roten und im grünen Kanal) gegen die Frequenz der Einzelmoleküleignisse. Für eine genaue Bestimmung des Energietransfers sind noch weitere Parameter notwendig. Zum relativen Vergleich von Proben eignet sich dieses Verhältnis aber bereits und dient hier daher als relatives Maß für die Entfernung der Farbstoffe. Der Schwerpunkt der Verteilung geht um 17% von einem Wert von 0.35 auf 0.30 zurück. Das Hintergrundsignal ist nach der Mobilisierung verstärkt, möglicherweise aufgrund der Dissoziation von Teilen der Probe.

3.2.3. Einzelmolekülanalyse der Mobilisierung

Da bei der Ensemblemessung über die Gesamtpopulation gemittelt wird, können Informationen verloren gehen. Mit der Einzelmolekültechnik wird daher überprüft, ob sich weitere Informationen über den Mechanismus gewinnen lassen, die in der Ensemblemessung nicht sichtbar sind.

In einer typischen Einzelmolekülanalyse zeigt sich ein ähnliches Bild wie in der Ensemblefluorimetrie (s. Abbildung 3.12). In der Abbildung ist jeweils eine Messung des Anfangs und des Endes der Mobilisierung dargestellt. Nach der thermischen Mobilisierung ist der Energietransfer niedriger und daher müssen die Abstände größer sein.

Die verschiedenen Populationen, welche man von der Gelelektrophorese her erwarten würde, lassen sich aber in diesem FRET Bereich nicht effektiv separieren, da die relativen Unterschiede zu klein bzw. im Signalrauschen verborgen sind. Falls es verschiedene Unter-
Untersuchung weiterer relevanter Parameter

3.2.4. Wie verändert die Natriumchloridkonzentration die Struktur nukleosomaler DNS und das Mobilisierungsverhalten?

Es stellt sich die Frage, ob diese asymmetrische Positionierung nun in einem einzigen Remodellierungsschritt erreicht wird, oder ob eine stabile Akkumulationsstufe für viele verschiedene, im Gel z.B. nicht klar differenzierbare Einzelschritte darstellt, z.B. teilweise ungebundene oder abgelöste Zustände der DNS auf dem Histonoktamer. Da solche Subpopulationen mit Ensemble FRET nicht aufgelöst werden können, müssen zur Klärung dieser Frage Einzelmolekületechniken herangezogen werden. Wie bereits gesehen, eignet sich der Bereich niedriger Energieleittransferintensitäten aber nur bedingt für diese Fragestellung. Daher wurden hierfür intern markierte Nukleosomen eingesetzt. Eine Zwischenstufe sind die Nukleosomenproben mit intern markierter Linker DNS, die im Folgenden für die Analyse von H1 Bindung verwendet wurden.

3.2.5. Verändert die Bindung von H1 das FRET-Signal und die dynamischen Eigenschaften?

Die Kompaktierung durch H1 wurde mit innerhalb der Linker DNS markierter Nukleosomen analysiert. Besonderes Interesse galt dem Einfluss dieses Komplexes auf die Mobilisierung der DNS unter thermischen Bedingungen. Dies wurde mit Gelelektrophorese, Ensemblefluorimetrie und Einzelmolekülexperimenten untersucht. Im Prinzip dienen die-
se Versuche auch der Kontrolle des Systems, da bekannt ist, daß H1 die Nukleosomen kompaktiert und der Mobilisierung entgegenwirkt.

Abbildung 3.14. 601 Nukleosomen mit 220 bp DNS mit und ohne H1. A: Polyacrylamidgel (8%); M: DNS Leiter; a1: Nicht mobilisierte Nukleosomen ohne H1; a2: Nicht mobilisierte Nukleosomen mit H1; a3: Mobilisierte Nukleosomen ohne H1; a4: Mobilisierte Nukleosomen mit H1; B: Agarose Gel; M: DNS Leiter; b1: Nicht mobilisierte Nukleosomen ohne H1; b2: Nicht mobilisierte Nukleosomen mit H1; b3: Mobilisierte Nukleosomen ohne H1; b4: Mobilisierte Nukleosomen mit H1; Der Gelretardierungseffekt ist nur im Agarose Gel sichtbar. Jeweils 0,2 µg DNS für das Polyacrylamidgel und 0,4 µg DNS Äquivalent für das Agarosegel. Die Mobilisierung fand bei 200-300 nM in Volumen von 50 µl in 5 mM NaCl TE pH 7,5 Puffer statt.

In Abbildung 3.14 ist der Retardierungseffekt (Bandshift) zu sehen, der durch die zusätzliche Masse von H1 (22,5 kDa) verursacht wird. Es fällt auf, daß bei PAGE der in der Agarose-Gelelektrophorese durch H1 bedingte Gelretardierungseffekt nicht zu sehen ist. Möglicherweise wird die Bindung von H1 durch den Elektrophoresepuffer gestört oder H1 wird durch die engmaschigere Gelmatrix abgestreift. H1 hat auch einen Einfluß auf die Mobilisierung der Nukleosomen: So hemmt es deutlich die Bildung der nach einer Mobilisierung typischerweise auftretenden Bande. Die neu entstehende Bande ist bei der H1 freien Probe nach gleicher Zeit viel deutlicher zu erkennen.

Das Ensemble FRET Experiment, dargestellt in Abbildung 3.15 A, ergibt zusätzliche Erkenntnisse: So ist eine kompaktere Ausgangsstruktur der Nukleosomen mit H1 im Vergleich zu Nukleosomen ohne H1 zu erkennen. Der Abstand der Farbstoffe, die wie in Schema 3.15 B dargestellt sind innerhalb der Linker-DNS liegen, wird durch die Kompaktierung verringert. Bei Durchführung der thermischen Mobilisierung ist der Effekt auf die durchschnittlich gemessene Abstandsveränderung der Probe mit H1 viel geringer.
Abbildung 3.15. Nukleosomen mit 220 bp der 601 DNS und Farbstoffen jeweils 30 bp innerhalb der DNS A: Ensemble FRET Messung, Vergleich von Nukleosomen mit und ohne H1 bei thermischer Mobilisierung. Die Mobilisierung der Probe mit H1 erscheint gehemmt, dennoch ändert sich auch hier der gemessene durchschnittliche Abstand etwas. B: Schema der Markierung (links) und erwartete Konformationsänderung durch die Bindung von H1 (rechts); C: Einzelmolekülanalyse der Proben, links: freie DNS ergibt das typische Hintergrundsignal einer Einzelmolekülmessung, aber keinen Energietausfer; mitte: Nukleosomen ohne H1 und rechts: Nukleosomen mit H1, bei denen ein deutlich stärkerer Energietausfer auftritt. Die Proximitätsrate verstärkt sich bei der H1 enthaltenden Probe um ungefähr 35 %. Das Verhältnis von Oktamer zu H1 beträgt 1:1. Die Mobilisierung wurde bei einer Konzentration von 200-300 nM Nukleosomen in 5 mM NaCl und TE pH 7,5 durchgeführt. Für die Einzelmolekülspektroskopie wurden jeweils Verdünnungen gemacht, die dann durch 0,2 µg/µl BSA sowie 1 mM Vitamin C und 1 mM Mercaptoethylamin stabilisiert wurden. Bei der freien DNS Probe und auch im geringeren Maße bei den anderen Proben, fallen einige Signale im Bereich sehr hohen Energietausfers auf. Ob es sich hierbei um Knickereignisse der freien DNS handelt, die so einen hohen Energietausfer erklären könnten oder um Hintergrundrauschen und andere Störungen, konnte bisher nicht schlüssig geklärt werden.

3.3. Nukleosomen mit intern markierter DNS

3.3.1. Charakterisierung intern markierter Nukleosomen

Die vorhergehenden Versuche haben gezeigt, daß für detailliertere Analysen der nukleosomalen Dynamik eine andere Art von Probe nötig ist. Um Subpopulationen zu trennen, wie sie für Remodelierungsereignisse erwartet werden, sind größere messbare Unterschiede im Energietransfer notwendig, um Rückschlüsse auf die Art des Mechanismus zu bekommen. Mit internen Markierungen in der nukleosomalen DNS können die Abstände der Farbstoffe im Vergleich zu den vorhergehend verwendeten Nukleosomen verringert werden und damit der Energietransfer deutlich verstärkt werden.

Nicht vergessen werden darf hier, daß nur die Ansatzpunkte der Basen vermessen wurden. Die tatsächlichen Abstände der Farbstoffe variieren zusätzlich wegen der C6 Linker, mit denen die Fluorophore an den Basen angekoppelt sind. Die Farbstoffe mitsamt Linker sind frei um die Ansatzstelle herum beweglich, solange keine sterischen Behinderungen auftreten. Auch ist die DNS Sequenz dieser Kristallstruktur eine andere als hier, was selbst zu leichten Variationen führt. Abbildung 3.17 zeigt die Abstände der Markierungen, in Abhängigkeit der genauen Position auf dem Nukleosom, falls dieses asymmetrisch positioniert wären.

Der nächste Versuch zeigt, wie mit Hilfe dieses Systems “Loop”-Diffusion detektiert werden
Abbildung 3.18. A und B: Vergleich der 612 160 bp (A) und 601 170 bp (B) Nukleosomen (beide intern markiert) im Polyacrylamidgel; C: Einzelmolekulanalyse von 601 und 612 intern markierten Nukleosomen [50]. Erläuterungen im Text.

Abbildung 3.20. Mischungen von 601 170 bp Nukleosomen mit interner Markierung und daraus resultierendem hohem oder mittlerem FRET. Messungen bei 50-100 pM Nukleosomen, in 5 mM NaCl TE pH 7,5 mit 0,2 µg/µl BSA, 1 mM Vitamin C und 1 mM Mercaptoethylamin. A: Histogramm von Nukleosomen mit hohem FRET; B: Nukleosomen mit mittlerem FRET; C, D und E: jeweils Mischungen der Nukleosomen im Verhältnis 3:1, 1:1 und 1:3. Um die Kurven quantitativ auswerten zu können, wurden Gausskurven an die Werte angepasst.
3.3.2. Einzelmolekülmessungen von Nukleosomen unter Einwirkung von Remodellierungsfaktoren

3.3.3. Untersuchungen mit BRG1

Analysiert man diese Remodellierung mit einer Einzelmolekülanalyse, wie in Abbildung 3.22, zeigt sich ein Effekt von BRG1 auf die Nukleosomen. Die Signalintensität erhöht sich, bei einem leicht verstärktem Energietransfer. Es ist aber schwer zu interpretieren was im Detail passiert, da deutliche Verschiebungen der Energietransferintensität nicht auftreten. Die leichte Verschiebung hin zu einem stärkeren Energietransfer, sowie eine Verbreiterung des Signals (s. Tabelle 3.22), könnte aber auf eine mögliche Verdrehung der DNS oder das Auftreten von Populationen mit höherem Energietransfer hinweisen, die sich nicht klar trennen lassen. BRG1 könnte aber an den Komplex binden und ihn stabilisieren, was auch mit dem Gelretardierungseffekt im Agarosegel kompatibel wäre.
Abbildung 3.22. Untersuchung von Nukleosomen (601 170 bp Nukleosomen mit erwartetem FRET um 50%) während BRG1 Inkubation. Messungen bei 50-100 pM Nukleosomen, in 5 mM NaCl TE pH 7,5 mit 0,2 µg/µl BSA, 1 mM Vitamin C und 1 mM Mercaptoethylamin und je nach Probe mit 0,1 mM ATP und/oder 1,5 nM BRG1. Es kommt zu einer Verstärkung oder Stabilisierung der signalgebenden Population. A: Nukleosom; B: Nukleosom mit BRG1 nach 15 min; C: Nukleosom mit BRG1 nach 30 min; D: Nukleosom mit ATP Puffer; E: Nukleosom mit BRG1 und ATP Puffer nach 15 min; F: Nukleosom mit BRG1 und ATP Puffer nach 30 min; Das Signal verändert sich in der Kontrolle (BRG1 ohne ATP) nur leicht um weniger als 6%, in der ATP enthaltenden Probe mit BRG1 verstärkt sich die relative Proximitätsrate um bis zu 17%. Außergewöhnlich ist die relative Verstärkung der Amplitude des Nukleosomsignals gegenüber dem Hintergrund.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>xc²</td>
<td>0,292±0,005</td>
<td>0,296±0,012</td>
<td>0,276±0,003</td>
<td>0,342±0,008</td>
<td>0,279±0,004</td>
<td>0,319±0,009</td>
</tr>
<tr>
<td>w²</td>
<td>0,217±0,012</td>
<td>0,234±0,025</td>
<td>0,209±0,009</td>
<td>0,289±0,018</td>
<td>0,206±0,009</td>
<td>0,291±0,021</td>
</tr>
</tbody>
</table>

BRG1 Inkubation. Proximitätsraten der Nukleosompopulation nach Anpassung an Gaußskurven. Der Fehler bezieht sich auf die Anpassung der Kurve, zusammengefasst aus Abbildung 3.22.
3.3.4. Untersuchungen mit ISWI

Abbildung 3.24. Acrylamidgelelektrophorese (in 8% Gel) von Nukleosomen, die mit ISWI inkubiert wurden und Auswertung der Bandenintensitäten mit der Software ImageJ. Ansatz: 2 pmol Nukleosomen in 10 µl (entspricht 200 nM Nukleosomen) in 5 mM NaCl, TE pH 7,5; 1 mM ATP, einmal ohne und einmal mit 1,2 pmol (entspricht hier 120 nM) ISWI; A1: Nukleosomen ohne ISWI; A2: Nukleosomen mit ISWI inkubiert. B: Rechts daneben Intensitätsauswertung mit ImageJ. Das Verhältnis von symmetrischer zu asymmetrischer Bande verändert sich hier um ca. 35 % in Richtung asymmetrischer Position. Im Gel ist die sichtbare freie DNS ebenfalls sehr deutlich reduziert, ähnlich wie bei BRG1.

Das Ergebnis des Einzelmolekülexperimentes fällt anders aus als bei yNAP1 oder BRG1.
Abbildung 3.23. Untersuchung des Effekts der BRG1 Konzentration auf die Änderung der signalgebenden Nukleosomenpopulation von A. Gansen [49]. A: In dieser Abbildung sind die Proxi-
mitätsraten der gemessenen Nukleosomen gegen die Versuchszeit aufgetragen. Mit BRG1 Inkubation nimmt die Population, die Energietransfer zeigt, mit der Zeit zu. Diese Darstellung ist die Grundla-
ge für die Auswertung in B. Die Signale in A wurden dafür in zwei Populationen eingeteilt: eine die FRET zeigt und eine die keinen FRET aufweist. Das Verhältnis der Veränderung dieser Populatio-
en zueinander ist in B dargestellt. In diesen Graphen ist die Signalentwicklung bei verschiedenen BRG1 Konzentrationen gegen die Versuchszeit aufgetragen. Je deutlicher die Population die FRET zeigt zunimmt, desto steiler ist die entsprechende Kurve in B. Die oberen beiden Kurven in B ents-
sprechen verschiedenen BRG1 Konzentrationen, in 10x Verdünnungsschritten (oben 10fache der normal eingesetzten BRG1 Konzentration, mitte 1fache Konzentration). Die untere Kurve zeigt den Effekt der Äquilibrierung, d.h. der Signaländerung in Abwesenheit anderer Faktoren, die bei Einzelmolekülmessungen in den ersten Minuten auftritt.
Abbildung 3.25. Einzelmolekülanalyse von Nukleosomen (601 170 bp, medium FRET Probe) nach 15 Minuten Inkubation mit und ohne ISWI, jeweils mit und ohne ATP. Messungen bei 50-100 pM Nukleosomen, in 5 mM NaCl TE pH 7,5 mit 0,2 µg/µl BSA, 1 mM Vitamin C und 1 mM Mercaptoethylamin und je nach Probe mit 0,1 mM ATP und mit 5 nM ISWI. Es werden weniger Nukleosomen mit mittlerem Energietransfer aufgezeichnet und es zeichnet sich auch eine Verschiebung des Signals um ca. 20% in Richtung niedrigerem Energietransfer ab. Diese Reduktion der signalgebenden Nukleosomenpopulation wäre mit einer Ablösung der DNS kompatibel, zusätzlich verbreitert sich das Signal.

Proximitätsraten der Nukleosompopulation nach Anpassung an Gausskurven. Die Fehler beziehen sich auf die Anpassung der Kurven.

<table>
<thead>
<tr>
<th></th>
<th>1A</th>
<th>1B</th>
<th>1C</th>
<th>1D</th>
</tr>
</thead>
<tbody>
<tr>
<td>x2</td>
<td>0.250±0.003</td>
<td>0.216±0.014</td>
<td>0.245±0.003</td>
<td>0.196±0.011</td>
</tr>
<tr>
<td>w2</td>
<td>0.232±0.007</td>
<td>0.349±0.02</td>
<td>0.232±0.007</td>
<td>0.346±0.019</td>
</tr>
</tbody>
</table>

Eine weitere Erklärung ist, daß nur wenige Nukleosomen während der Messung in einer intermediären Struktur der Remodellierungsreaktion vorliegen. Möglicherweise sind also mehrere Komponenten vorhanden. Hier wurde bei der Auswertung der einfachste Fall angenommen. Es sieht teilweise so aus, als wäre eine Komponente mit höherem Energietransfer nach ISWI Inkubation vorhanden. Generell ist aber auch ein gewisser Hintergrund zu sehen, was im Bereich niedriger Intensität die Interpretation erschwert. Die Beobachtung könnte auf eine lokalen Ablösung oder Verdrehung der DNS hinweisen.
Abbildung 3.26. Hier wurde eine ISWI Inkubation mit 601 Nukleosomen mit 170 bp DNS in Probenpuffer mit ATP unter den gleichen Bedingungen wie im vorherigen Versuch über längere Zeit gemessen; A: nach 10 min; B: 20 min; C: 30 min; D: 40 min; E: 50 min; und F: 60 min. Es kommt zu keiner weiteren deutlichen Veränderung.

<table>
<thead>
<tr>
<th></th>
<th>2A</th>
<th>2B</th>
<th>2C</th>
<th>2D</th>
<th>2E</th>
<th>2F</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^2</td>
<td>0.204±0.017</td>
<td>0.172±0.023</td>
<td>0.220±0.028</td>
<td>0.181±0.018</td>
<td>0.210±0.020</td>
<td>0.189±0.014</td>
</tr>
<tr>
<td>w^2</td>
<td>0.346±0.025</td>
<td>0.341±0.029</td>
<td>0.344±0.043</td>
<td>0.355±0.028</td>
<td>0.376±0.029</td>
<td>0.348±0.021</td>
</tr>
</tbody>
</table>

Proximitätsraten der Nukleosompopulation nach Anpassung an Gausskurven. Die Fehler beziehen sich auf die Anpassung der Kurven.
3.3.5. Untersuchungen mit yNAP1

Es gibt verschiedene Hinweise dafür, daß yNAP1 nicht nur bei der Assemblierung von Nukleosomen in vivo beteiligt ist, sondern auch Nukleosomen mobilisieren kann (s. Einleitung). Durch die Analyse der Gelelektrophoresexperimente, in Abbildung 3.27 und 3.28, können mehrere Beobachtungen gemacht werden: Einerseits verringert eine yNAP1-Inkubation das Verhältnis der freien DNS zu nukleosomaler gebundener DNS und die asymmetrische Position wird relativ verstärkt (Banden A3 und A5), andererseits werden in der nicht mobilisierten Probe durch yNAP1 keine Nukleosomen an Position N2 gebildet (A3). In der mobilisierten Probe wird diese aber durch yNAP1 relativ verstärkt (Position N2 in A4 zu A5). Diese Beobachtung führt zu der Schlussfolgerung, daß yNAP1 in diesem Versuch schon vorhandene Nukleosomen stabilisiert, die ansonsten während der Gelelektrophorese evtl. leichter dissoziierten wären. Denn sonst wäre zu erwarten, daß yNAP1 auch in Bande A3 Nukleosomen auf Position N2 neu bildet. Zwar ist ein leichter Schatten einer Bande zu erkennen, diese läuft aber etwas höher. Da aber keine Bande auf der Position N2 zu erkennen ist, kann man annehmen, daß yNAP1 Nukleosomen nicht nur neu bildet, sondern auch die symmetrischen Nukleosomen in die asymmetrischen überführt, um das Verhältnis wie beobachtet zu verändern.

Abbildung 3.27. Versuche mit yNAP1. Es wurden je 2 pmol Nukleosomen in 10 µl (entspricht 200 nM Nukleosomen) in 5 mM NaCl, TE pH 7,5 eingesetzt. Je nach Probe wurde vorher entweder für 3 Stunden bei 55°C mobilisiert und gegebenenfalls nach der Mobilisierung mit 1,5 µM yNAP1 für 3 Stunden bei 37°C inkubiert; A1: DNS Leiter; A2: Nukleosom auf 220 bp 601 Sequenz nach Inkubation für 3 Stunden bei 37°C ohne yNAP1; A3: Nukleosom nach Inkubation mit NAP1 für 3 h bei 37°C; A4: Nukleosom nach thermer Mobilisierung für 3 Stunden bei 55°C und anschließender Inkubation für 3 Stunden und 37°C ohne yNAP1; A5: Nukleosom nach Mobilisierung für 3 Stunden bei 55°C und anschließender Inkubation mit yNAP1 für 3 Stunden bei 37°C; Inkubation mit yNAP1 verringert den Anteil an freier DNS. Zusätzlich wird auch die asymmetrische Form relativ zur symmetrischen verstärkt. B: Auswertung von Banden A2 (oben) und A3 (unten) mit der Software ImageJ; C: Auswertung von Banden A4 (oben) und A5 (unten).

Der Mechanismus, wie yNAP1 Nukleosomen von der symmetrischen, zentralen Position, in die asymmetrische Form überführt, kann hier nicht geklärt werden, da eine Verlagerung der Population zu einem niedrigeren oder stärkeren Energieta uer nicht deutlich stattfindet.
Abbildung 3.29. spFRET Analyse von yNAP1 mit 601 170 bp Nukleosomen. Messbedingungen: 50-100 pM Nukleosomen, in 5 mM NaCl TE pH 7,5 mit 0,2 µg/µl BSA, 1 mM Vitamin C und 1 mM Mercaptoethylamin und jeweils mit oder ohne 67,5 nM yNAP1; A: Nukleosomen ohne yNAP1; B: Nukleosomen mit yNAP1 nach 30 min; C: Nukleosomen mit yNAP1 nach 60 min; Nukleosomen mit yNAP1 nach 90 min. Die Proximitätsrate schwankt nur um 6 % im Verlauf des Experimentes. Die Intensitäten nehmen zwar geringfügig zu, ebenso aber auch das Hintergrundsignal. Die Verteilung wird auch geringfügig schmaler.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>x²</td>
<td>0,454±0,012</td>
<td>0,436±0,019</td>
<td>0,456±0,009</td>
<td>0,450±0,014</td>
</tr>
<tr>
<td>w²</td>
<td>0,359±0,026</td>
<td>0,376±0,041</td>
<td>0,340±0,019</td>
<td>0,333±0,029</td>
</tr>
</tbody>
</table>

Proximitätsraten der Nukleosompopulation nach Anpassung an Gausskurven. Der Fehler bezieht sich auf die Anpassung der Kurve.
Kapitel 4

Ausblick:

4.1. Messung von nukleosomaler Dynamik im Millisekundenbereich

In einer Kooperation mit Prof. Dr. Claus Seidel, Dr. Suren Felekyan und Alexander Gansen im Rahmen des DFG SPP1128, wurden weitere Einzelmolekületechniken verwendet, um intrinsische dynamische Prozesse des Nukleosoms in Abwesenheit anderer Faktoren zu untersuchen.

Die gezielte Selektion der FRET Signale für die weitere Analyse erlaubt die Trennung des Signals von Hintergrund und dissoziierten Nukleosomen. Die Daten eines einzelnen Nukleo-
soms, d.h. die Signalverhältnisse von rotem und grünem Signal, können dann zeitaufgelöst betrachtet werden. Dies geschieht auf folgende, vereinfacht dargestellte Weise: Die Signale, die während des Transits eines Nukleosoms, also eines sogenannten ”Bursts”, durch den Fokus aufgenommen werden, werden in der bisher verwendeten Einzelmoleküalanalyse zu einem Energietransferwert zusammengerechnet. Würde man pro Ereignis, also pro Transit eines Nukleosoms durch den Fokus genau einen Wert definieren, gäbe es keine Dynamik. Teilt man den Transit aber in mehrere kürzere Abschnitte ein, als für die Dauer des Transit eines Nukleosoms nötig ist, kann man für diese getrennt Werte ermitteln. In Abwesenheit einer Dynamik sollten diese alle gleich sein, unterscheiden sich die gemessenen FRET Werte der Teilabschnitte für ein Nukleosom aber, ist das ein Hinweis auf Dynamik (s. Abb. 4.3). Je nach Definition der Teilabschnitte können verschiedene Zeitfenster untersucht werden. Eine solche zeitfensterabhängige Analyse ist die Grundlage der in Abbildung 4.2 dargestellten PDA Analyse.

Abbildung 4.2 A zeigt die Analyse von 3 verschiedenen Zeitfenstern im Bereich von 0,5 ms, 1 ms und 3 ms für eine 601 170 bp Nukleosomprobe bei 5 mM NaCl. Bei 3 ms ist eine geringe Abweichung der Kurven voneinander zu erkennen. Abbildung 4.2 B zeigt diese Analyse für Nukleosomen bei 50 mM NaCl. Hier ist eine deutlichere Abweichung des Signals im 3 ms Fenster von denen des 0,5 und 1 ms Zeitfensters zu sehen.

vorhandenen Nukleosomensubpopulation. Die Verlagerung der HF und MF Populationen in Abhängigkeit der Natriumchloridkonzentration kann aber mit dieser Technik genauer beobachtet werden. Unter diesen Umständen gibt es aber keinen Beweis für das Auftreten einer intermediären Struktur, die bei einem Übergang zwischen der HF und MF Nukleosomenpopulation auftreten könnte. Um solche möglichen Übergangszustände zu beobachten, sind also andere Proben oder Messbedingungen notwendig, die diese induzieren können.

Kapitel 5

Diskussion

es möglich, längere, in diesem Fall reversible, Konformationsänderungen des Nukleosoms zu beobachten. Eine andere Arbeit demonstrierte wie hier die Verwendung von intern markierter DNS für die Generierung von Nukleosomenproben mit hohem Energietransfer [80].

Die vorliegende Arbeit legt den Schwerpunkt auf die genauere Charakterisierung der Farbstoffpositionen und Messbedingungen als Basis für weitere Versuche. Es wurden verschiedene Markierungspositionen untersucht und insbesondere die Veränderungen der Farbstoffabstände, die bei intern markierter nukleosomaler DNS allein durch unterschiedliche Repositionierung auf dem Histonoktamer entstehen können, beschrieben. Diese Charakterisierung dient als Basis für die in dieser Studie auf Einzelmolekülebene untersuchte Wirkung von Remodellingfaktoren und Histonchaperone auf die nukleosomale Struktur und Dynamik.

Der Einsatz von Techniken wie der PDA Analyse mit zeitfensterabhängiger Datenanalyse erweiterte die Analysemethoden um die Möglichkeit schnelle dynamische Prozesse im Millisekundenbereich zu detektieren. Auch können Nukleosomenproben mit heterogenen Populationen damit genauer beschrieben werden.

Diskussion der einzelnen Abschnitte

Etablierung des Fluoreszenzmarkierungssystems:

In dieser Arbeit wird das bereits etablierte Nukleosomenmodellsystem (Markierungen an den 5´-Enden der DNS [121]) für Messungen von dynamischen Aspekten eingesetzt, sowie auch andere Markierungsstrategien untersucht und neue entwickelt. Hier zeigt sich, daß die PCR-Methode verlässlicher und reproduzierbarer ist, als die ebenfalls untersuchte Hybridisierungstechnik. Besonders die Qualität der erhaltenen DNS war mit der PCR-Technik wesentlich besser. Nachteilig bei der PCR-Technik hingegen ist, daß die Länge der markierten DNS, zumindest im Falle von interner Markierung, nicht beliebig gewählt werden kann. Je nach Länge des Oligonukleotids nimmt das Verhältnis an markierter DNS durch synthesebedingte Probleme, wie z.B. “trityl-off” Fehler (Kettenabbrüche bei der Synthese der DNS) ab. Falls die Farbstoffe im Nukleosom nahe beieinander liegen sollen, müssen die Farbstoffe innerhalb der DNS einen Abstand von 80-100 bp haben. Ab ca. 50-60 Basen Länge nimmt die Qualität der Markierung spürbar ab. Bei dieser Länge ist es auch schwierig, unmarkierte von markierten Oligonukleotiden zu trennen, da die Längen- und Massenunterschiede der Oligonukleotide prozentual geringer sind als bei kurzen Primern. Als Konsequenz sind intern markierte Nukleosomen mit hohem Energietransfer mit mehr als 180-200 bp zur Zeit schwierig zu realisieren. Hier wäre die Hybridisierungstechnik eine Alternative, wenn sie effektiver betrieben werden könnte. Die verwendeten Farbstoffe wie
Alexa 488/594 o. ä. sind für Einzelmolekülanalysen sehr gut geeignet. Eine weitere Möglichkeit ist die Markierung der Histone mit Alexa oder vergleichbaren Farbstoffen. Dafür müßten aber auch die Histone modifiziert werden, was einen weiteren Eingriff in deren Struktur darstellt.

Vergleich der DNS-Sequenzen:

Charakterisieren der unterschiedlich markierten Nukleosomenkonstrukte:

jedoch erheblich die spektralen Eigenschaften der Probe, so daß eine Fluorsezenzmessung sehr erschwert wird. Messungen mit verschiedenen NaCl-Konzentrationen zeigen, daß die Struktur der Linker DNS zwar kompakter wird, die relativen Änderungen der Abstände bei einer thermischen Mobilisierung aber ähnlich sind. Es wurde aber auch beobachtet, daß NaCl-Konzentrationen einen Einfluß auf die Positionierung der Nukleosomen auf der 601 DNS haben. Bei erhöhter NaCl-Konzentration liegen mehr asymmetrisch positionierte Nukleosomen vor, als bei niedrigerer NaCl-Konzentration.

Die Bindung von H1 kann mit Nukleosomen, die innerhalb der Linker DNS markiert waren, untersucht werden. Nukleosomen mit H1 hatten einen deutlich verstärkten Energietransfer im Vergleich mit den vorher verwendeten, nur an den 5´ Enden der DNS markierten Nukleosomen. Der Vergleich des Mobilisierungsverhaltens von Nukleosomen mit und ohne H1 zeigt auch, daß bei Bindung von H1 die thermische Mobilisierung weitestgehend gehemmt wird. Mit dieser Art von Markierung können auch andere Proteine untersucht werden, die die Linker-DNS Geometrie verändern könnten.

Untersuchung der Remodellierungsfaktoren und Histonchaperone:

BRG1 und ISWI:

Die Remodellierungsfaktoren ISWI und BRG1 verändern die Struktur der Nukleosomen. Die Messungen zeigen einen veränderten Energietransfer der Nukleosomen während und nach der Reaktion. Veränderungen der Farbstoffabstände von mehreren Nanometern wie bei einer “Loop”-Diffusion zu erwarten sind, wurden nicht beobachtet. Es besteht aller-
dings die Möglichkeit, das die Remodellierungereignisse zu selten auftreten und daher nicht deutlich genug abgebildet werden. Trotzdem ergeben sich Hinweise auf die Funktionsweisen. In der Einleitung wurde beschrieben, daß BRG1 und ISWI wahrscheinlich unterschiedliche Wirkungsweisen haben [38, 91].

yNAP1:

Das Histonchaperon yNAP1 verändert zwar den Energietransfer der Nukleosomen nicht deutlich, aber es zeigt sich ein deutlicher Effekt im Gel. Diese Beobachtung schliesst aber nicht aus, daß yNAP1 unter den Messbedingungen nicht aktiv ist. Es ist denkbar, daß die Reaktion sehr schnell stattfindet, bzw. auch das yNAP1 and die Nukleosomen bindet und sie so stabilisiert, ohne daß eine Veränderung der Struktur stattfindet. Damit könnten auch zum Teil die Gelexperimente erklärt werden. Es kann sein, daß der Effekt im Gel bei längerer DNS von 220 bp nur darauf beruht, daß yNAP1 die Nukleosomen stabilisiert, die sonst während der Elektrophorese dissozieren würden. Bei 170 bp DNS kommt es jedoch auch deutlich zu einer Veränderung der Verhältnisse zwischen asymmetrischer und symmetrischer Position. Diese Veränderung war mit der Einzelmolekülanalyse nicht zu beobachten.

Für nachfolgende Experimente ist es sinnvoll mehrere verschiedene DNS Sequenzen zu verwenden um Teile der angesprochenen Probleme zu umgehen. Wichtig sind auch weitere Versuche um die Enzymkinetik unter Einzelmolekülbedingungen genauer zu untersuchen.

Ausblick

Der Mechanismus der Nukleosomremodellierung ist immer noch weitgehend rätselhaft, Dank neuer Technologien und Anwendungen ist es aber vorstellbar, daß die Mechanismen dieses Prozesses in Zukunft aufgeklärt werden können. In dieser Arbeit wurden einige neue Methoden und Herangehensweisen mitentwickelt, die nicht nur für diese Frage sondern auch für eine Reihe anderer Probleme im Angström und Nanometerbereich wichtig sein werden.

Untersuchung dynamischer Strukturveränderungen im Nukleosom:

In diesem Projekt wurde demonstriert, wie heterogene Verteilungen genauer analysiert werden können. Es wird auch gezeigt, wie schnelle dynamische Prozesse untersucht werden können. Ein dynamisches Geschehen innerhalb der Diffusionszeit eines Nukleosoms durch den Fokus, bzw innerhalb von 3 ms kann aber bisher nicht aufgelöst werden. Hier stören Inhomogenitäten wie Pufferzusammensetzung und Dissoziation der Probe während
des Versuchs die Genauigkeit der Methode. Ein Plan für zukünftige Projekte mit dieser Methodik ist der Vergleich verschiedener DNS Sequenzen, sowie die Untersuchung verschiedener Markierungspositionen auf dem Nukleosom, um eine detaillierte topographische Beschreibung nukleosomaler Dynamik zu erhalten.

Perspektive für die Zukunft

Verlässt man die Ebene der Methodik und der Beschreibung der Nukleosomen auf Nanometerebene kommen wieder andere Fragen auf. Es steht ausser Frage, daß Nukleosomen *in vivo* einer komplexeren Umgebung ausgesetzt sind, man denke nur an die Vielzahl der denkbaren Modifikationen und der möglichen Komplexe mit Transkriptionsfaktoren und anderen Chromatinarchitekturproteinen. Allerdings kann man mit Verständnis für die Funktionsweise isolierter Einzelteile komplexere Zusammenhänge möglicherweise bes-

Die komplexen Zusammenhänge und das Ineinandergreifen verschiedener Proteine auf der Ebene der Nukleosomen sowie die Bildung von Strukturen in der Chromatinfaser, die die Genexpression mitorganisieren, lassen sich in vitro nicht nachstellen. Lineares Ursache-Wirkungsdenken kann oft ein Bild für die Ereignisse vermitteln, reicht aber nicht aus um komplexere Zusammenhänge zu verstehen. Dies muss man bei der Durchführung von in vitro Studien beachten - dennoch haben sie ihre Bedeutung. Das Ganze ist zwar mehr als die Summe seiner Teile aber das “Ganze” kann auch nicht ohne Verständnis für die kleinsten Bestandteile verstanden werden.
Kapitel 6

Anhang

6.1. Plasmidkarten und Sequenzen

Abbildung 6.1. pGEM3z

Abbildung 6.1. pGEM3z

pGEM3z mit 601 in hincII
1 GGGCGAATTCCAGCTCGGTATCCGGGGATCTCTAGAGTGGAGCTCGGA
51 ACACCTATCCGACTGCGACCGGCAAAGGCACGCCTCTCAATACATGCACAGGA
101 TGTATATGCTGCTGAGACTACGGGTAACTCCCTTGGCGG
151 TTAAACGGCGGGGACAGCGCGTACGTGCGTTTTAAGCGGTGCTAGAGCTG
201 TCTACGACCAATTGAGCGGCCTCGCCACCGGGATTCTCCGGCGGCCGC
251 GTATAGGGTCCATACACATAAGGGATGAACTCGGTGTGAAGAATCATGCTT
301 TCCTTGTCATTAGGATCCCAGACCTGAGACGGATGCAAGCTTGAGTATTC
351 TGATGTAATTTGTGCTGACTACATTCCAAGAGCCGGAAG
401 GTGTGAAATTGTATCCGCTACAATTCACACCATACGAGCCGGAAG
451 CATAAAAGTGTTAAAGGCGCTTGGG GTGCCTAATG AGTGAGCTAA CTCACATTAA
501 TTTGCGTTGCG CTCTCACTGCC CAGTTAAAAGG CTTAATACG GCTTATCCCA
551 CGATCGGAGG AGAAGGACTA ATACGCGGCG AAAGAAACGG GACGGAGAGA
601 CAGCGCTTACG GCTGAAGATT ATTTGAACTG GCTATATGCA GGTGTTCAGA
651 TCCAGGGGCAG TCTAGGAACT ATATATGCCG TGTATCTTCC GTATGGTTG
701 AAGGAGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
751 GCTGAGGTAC CGAGCGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
801 TCGAGGCGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
851 AAGGAGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
901 CGTGATGTGTG TCCGATGGTT ATATATTGCA GGTGTTCAGA
951 GCTGAGGTAC CGAGCGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
1001 AAGGAGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
1051 CGTGAGGTAC CGAGCGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
1101 CAGCGCTTACG GCTGAAGATT ATTTGAACTG GCTATATGCA GGTGTTCAGA
1151 TCCAGGGGCAG TCTAGGAACT ATATATGCCG TGTATCTTCC GTATGGTTG
1201 AAGGAGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
1251 GCTGAGGTAC CGAGCGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
1301 AAGGAGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
1351 TCCAGGGGCAG TCTAGGAACT ATATATGCCG TGTATCTTCC GTATGGTTG
1401 AAGGAGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
1451 AAGGAGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
1501 TCCAGGGGCAG TCTAGGAACT ATATATGCCG TGTATCTTCC GTATGGTTG
1551 AAGGAGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
1601 CAGCGCTTACG GCTGAAGATT ATTTGAACTG GCTATATGCA GGTGTTCAGA
1651 TCCAGGGGCAG TCTAGGAACT ATATATGCCG TGTATCTTCC GTATGGTTG
1701 AAGGAGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
1751 AAGGAGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
1801 CAGCGCTTACG GCTGAAGATT ATTTGAACTG GCTATATGCA GGTGTTCAGA
1851 TCCAGGGGCAG TCTAGGAACT ATATATGCCG TGTATCTTCC GTATGGTTG
1901 AAGGAGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
1951 TCCAGGGGCAG TCTAGGAACT ATATATGCCG TGTATCTTCC GTATGGTTG
2001 AAGGAGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
2051 TCCAGGGGCAG TCTAGGAACT ATATATGCCG TGTATCTTCC GTATGGTTG
2101 AAGGAGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
2151 AAGGAGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
2201 AAGGAGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
2251 AAGGAGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
2301 AAGGAGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
2351 AAGGAGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
2401 AAGGAGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
2451 AAGGAGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
2501 AAGGAGGAGA AGAAGGACTC CTGATATGCA GGTGTTCAGA
2551 CATTATTATC ATGACAITAA CCTATAAAAA TAGGCGTATC ACGAGGCCCT
2601 TTCGTCTCGC GCGTTTCGGT GATGACGGTG AAAACCTCTG ACACATGCAG
2651 CTCCGGAGA CGGTCACAGC TTGTCTGTAA GCGGATGCCG GGAGCAGACA
2701 AGCCCGTCAG GGCGCGTCAG CGGGTGTTGG CGGGTGTCGG GGCTGGCTTA
2751 ACTATGCCGC ATCCAGACAG ATTTGACTGA GAGTGCGGTCG CTGCTGCAAG GCGATTAAGT
2801 TGGTACAGCC ACGGGTTTTC CGGACGCAAG CGTTGGTAAAA CGACGGCCAG
2851 TGCAATTTCG AAGGGCAAAT CCGTATTCCC CGGAGCCAGC
1 GGGCGAATTC GAGCTCGGTA CCCGGGGATC CTCTAGAGTC GATCTATAGA
51 GCTCTAGAAT ATTTATGGAG CTGAAAACTG CTCCCCCACA CCCCCATCT
101 CCCGCGTAAG AAGGTGCCGA CTATGTCTGC GGAAATTAAG AGGTATTAAA
151 CGTGCAGCTG GAATGCTCTA GACCCCTTTA GGAGCCGCTA GAGGCCAAGG
201 TTAGCATATT AGCTCGGTAG TTTGGCCTCA GTCAATTGGG TTCACTCCGA
251 ACTGGACATA CCGATTTGGA ACGACCTGCA GGCATGCAAG CTTGAGTATT
301 CTAGATTGTC ACCTAAATAG CTTGGCGTAA TCATGGTCAT AGCTGTTTCC
351 TGTGTGAAAT TGTATTCCGC TGCAATTCC ACACAACATA CGAGGCGGAA
401 GCATAAAGTG TAAAAGCTTG GGGTCCTAAT GGTGAGCTA AACTCAATT
451 ATTTGCTGAC GCCTACTGGC CGCTTTCCAG TGGGGAAACC TGTGTTGCCA
501 GCTGCATAAGA TGAATCGGCC AACGCGCGGG GAGAGGCGGT TGGCGTATTG
551 GGCGCTCTCC CGCTTTCCAG TCGGGAAACC TGTCGTGCCA
601 GCTGCATTAA TGAATCGGCC AACGCGCGGG GAGAGGCGGT TGGCGTATTG
651 AGAATCCAGG GATAACGCAG GAAGAAACAT GTGAGCAAAA GGCCAGCAAA
701 AGGCGCAGAA CGTAAAAAGG GGCCTCAGTG GCCTTTTCTT CCAATAGGCTC
751 CGCTGGAGGC TCGCTGCTGG ACCCTGGCGC TTACCGGATA CCTGTCCGCC
801 TTGCGTTCTT ATGTCTGCTG ACTAGTCTAC CTATGCTTGCT
851 GCCTCGCTGC AAGCGCCAAA GCCGCCAGTC AGTGTTTCTG TGGCGGGTAT
901 GCCCTGGTGC TGGCTGCTCT TAGCTGCCCA TGTGCTGCTG
951 GCCCTGGTGC TGGCTGCTCT TAGCTGCCCA TGTGCTGCTG
1001 GGCTGGGACT TGGCCTTATT TCGGTTTCTT CCAAAAATCGA CGCTCTAAGAT
1051 GGTGGGACT TGGCCTTATT TCGGTTTCTT CCAAAAATCGA CGCTCTAAGAT
1101 GGTGGGACT TGGCCTTATT TCGGTTTCTT CCAAAAATCGA CGCTCTAAGAT
1151 GGTGGGACT TGGCCTTATT TCGGTTTCTT CCAAAAATCGA CGCTCTAAGAT
1201 GGTGGGACT TGGCCTTATT TCGGTTTCTT CCAAAAATCGA CGCTCTAAGAT
1251 GGTGGGACT TGGCCTTATT TCGGTTTCTT CCAAAAATCGA CGCTCTAAGAT
1301 GGTGGGACT TGGCCTTATT TCGGTTTCTT CCAAAAATCGA CGCTCTAAGAT
1351 GGTGGGACT TGGCCTTATT TCGGTTTCTT CCAAAAATCGA CGCTCTAAGAT
1401 GGTGGGACT TGGCCTTATT TCGGTTTCTT CCAAAAATCGA CGCTCTAAGAT
1451 GGTGGGACT TGGCCTTATT TCGGTTTCTT CCAAAAATCGA CGCTCTAAGAT
1501 CAATGCTTAA TCAGTGAGGC ACCTATCTCA GCGATCTGTC TATTTCGTTC
1551 ATCCATAGTT GCCTGACTCC CCGTCGTGTA GATAACTACG ATACGGGAGG
1601 GCTTACCATC TGGCCCCAGT GCTGCAATGA TACCGCGAGA CCCACGCTCA
1651 CCGGCTCCAC ATTTATCAGC AATAAACCAG CCAGCCGGAA GGGCCAGCG
1701 CAGAAGTGGT CCTGCAACTT TATCCGCCTC CATCCAGTCT ATTAATTGTT
1751 GCCGGGAAGC TAGAGTAAGT AGTTCGCCAG TTAATAGTTT GGGCAACGGT
1801 GTTGCCCATG TGACAGGGCGT GGTGGGTGTC ATGGTATGGC
1851 TCCGATCACG TCCGCTCCCC AAGGATCAAAG GCGAGTTACA TGATCCCCCA
1901 TGTTTGTGCAA AAAAAGGGGTG AGCTCTTTCG GTCTTCCGAT CGTGTTCAGA
1951 AGTGAAGTTAG CCGCAGTTTT ATCAGTCATG GATATGGCAG CAGTCGATAA
2001 TCTCTTTATG TCCATGGCCT CAAGGTAAGG TTTTCGGTCC ACCGCAACGG
2051 ACTCAACCAA GTCATTCTGA GAAATGTTGTA TCCGCGCACG CAGGTCCTCT
2101 TGCCCGGCGGT CAATACCCCC CCACATGACA GAACCTTTAAA
2151 AGTGGGAGAC GGGGGCGGTG GGGGGTGCTG GGGGGTGTTT GGGGTGGCTT
2201 TGGGACTGGT GAACATCGTT TCGATGTGAC CCAGCAGTCG ACCCAACTGA
2251 TCTCTCTCCTG CTCTTCTCCT CACAGCCGCT TCGATGGGAG CAAACACGG
2301 AAGGATCAAAG GCGGACACCG GAATTGTTCT GTCCGAACTAG
2351 TACCTATAAG CCGAGGCTA ATAGGCGGTA TCCGAGGTTA
2401 TGCTCAGACA GGGGATACAT ATTTGGAATG ATTTAGAAAA ATAAACAAAT
2451 AGGGGTTTCG CGCAGATTTT TCCAGGAAAG GCCACCTTGA GTCTAGAGAA
2501 CCATTATTAT CATGACATCA ACCCTAAAA ATAGGCGGAT CAGGAGGCC
2551 TTGCTGTGCA CGGTTATTGG TAGATGGCGG GAAAATCTCT GACACATGCA
2601 GCTCGCGGGC AGGGATCCAC AGGATCCTGTG AGGCGATGCG GGGGGAGAC
2651 AAGGACGGTCG GGGGGTTGTT GGCGGTCGCT GGGGGTGCTG GGGGGTGCTT
2701 TGGGACTGGT GAACATCGTT TCGATGTGAC CCAGCAGTCG ACCCAACTGA
2751 TGGGACTGGT GAACATCGTT TCGATGTGAC CCAGCAGTCG ACCCAACTGA
2801 CGCCATTACG CGCTGTCGTTA GCCGATGGCA GGGGATCCCG GTCTAGAGAA
2851 TGGGACTGGT GAACATCGTT TCGATGTGAC CCAGCAGTCG ACCCAACTGA
2901 TTGAGTACAG CGAGGTTTTT CCCAGATCAAC AGGTGTGAAA ACGACGCCCC
2951 GTAATGGATG ATACGACTCTA CTATA

6.2. Abkürzungsverzeichnis:

A Angström
Abb. Abbildung
ATP Adenosintriphosphat
bp Basenpaar
DMSO Dimethylsulfoxid
DNA - Desoxyribonucleicacid
DNS - Desoxyribonukleinsäure
DNAse Desoxyribonuklease
DTT 1,4-Dithiothreitol
E. coli Escherichia coli
EDTA Ethylendiamintetraacetat
FRET Fluoreszenzresonanzennergietransfer
HEPES 4-(2-Hydroxyethyl)-piprazin-1ethansulfonsäure
HPLC Hochleistungsfüggigkeitschromatographie
kD Kilodalton
M molar (g/mol)
mg Milligram
min Minuten
µ- mikro
nm Nanometer
NP-40 Nonidet-P 40 (Ethylphhenolpolyethylenglycolether)
OD optische Dichte
PAGE - Polyacrylamidgelelektrophorese
pH -log H+
pmol picomol
RT Raumtemperatur
RNA - Ribonucleicacid
RNS - Ribonukleinsäure
s Sekunden
spFRET single pair FRET -Einzelmolekül FRET
TAE Tris/Acetat/EDTA - Puffer
TBE Tris/Borat/EDTA - Puffer
TCSPC Time correlated single photon counting
TE Tris/EDTA - Puffer
TEMED N,N,N,N,-Tertramethylethyldiamin
üN über Nacht
% v/v Volumenprozent
% g/v Gewichtsvolumenprozent
% g/g Gewichtsprozent
z.B. - zum Beispiel
6.3. Tabellen- u. Abbildungsverzeichnis

6.4. Danksagung

Ich danke Prof. Dr. Jörg Langowski für die Möglichkeit diese Arbeit anzufertigen und seine Betreuung. Besonderer Dank gilt der Ermöglichung der erfolgreichen Kooperationen mit anderen Arbeitsgruppen und der ausgezeichneten Arbeitsatmosphäre.

Ich danke besonders Alexander Gansen für die vielen Meßstunden mit dem spFRET Aufbau, der Auswertung vieler Ergebnisse und die gute Zusammenarbeit bei den verschiedenen Projekten.

Besonderer dank gilt der VW-Stiftung sowie der DFG und dem SPP1128 für die Finanzierung dieser Arbeit.
Kapitel 7

Literatur
Literaturverzeichnis

Toth, K., Brun, N., and Langowski, J. Trajectory of nucleosomal linker DNA studied by fluorescence resonance energy transfer. *Biochemistry* 40, 23 (Jun 2001), 6921–6928.

