Inaugural-Dissertation

zur Erlangung der Doktorwirde
der
Naturwissenschaftlich-Mathematischen Gesamtfakultat
der
Ruprecht-Karls-Universitat
Heidelberg

vorgelegt von
Diplom-Mathematiker Thomas Dunne
aus Heidelberg

Tag der mundlichen Prifung:







Adaptive Finite Element Approximation of
Fluid-Structure Interaction Based on Eulerian
and Arbitrary Lagrangian-Eulerian Variational

Formulations

20. Juni 2007

1. Gutachter: Prof. Dr. Rolf Rannacher

2. Gutachter:







Abstract

Aim of this work is the examination of numerical methods for uid-structure interaction

(FSI) problems. We use two approaches for the modelling of FiSproblems. The well-known
“arbitrary Lagrangian-Eulerian' (ALE) approach as well as an unusual (to the authors knowl-
edge novel) fully Eulerian approach. For both frameworks wederive a general variational
framework for the adaptive nite element approximation of F S| problems.

The focal points of this thesis are the comparison of the ALE ad the novel Eulerian ap-
proaches and the application of the “dual weighted residual(DWR) method to FSI prob-
lems. The DWR method is the basis of two technigues, a posteori error estimation and
goal-oriented mesh adaptivity.

Based on the developed models of FSI we apply the DWR method foa posteriori error
estimation and goal-oriented mesh adaptation to FSI problens. Necessary aspects of DWR
method and implementation for the ALE and Eulerian approach are discussed.

Several stationary as well as nonstationary examples are psented using both the ALE as
well as the Eulerian framework. Results from both frameworls are in good agreement with
each other. Also for both frameworks the DWR method is succesfully applied.

Finally using benchmark results from the DFG joint research group FOR 493 (of which the
author is a participating member) the discussed methods areveri ed for both frameworks.

Zusammenfassung

Ziel dieser Arbeit ist die Untersuchung von numerischen Vefahren fur Probleme der Fluid-
Strukur Wechselwirkung (FSW). Wir benutzen zwei Verfahren zur Modellierung solcher
Probleme. Den bekannten “arbitrary Lagrange-Eulerschen'(ALE) Ansatz als auch den
ungewdhnlichen (und soweit dem Author bekannt, den neuen) gnz Eulerschen Ansatz. Fir
beide Ansatze leiten wir die allgemeine variationelle Forralierung her, welches wir fir die
adaptive nite-element Approximation von FSW-Probleme benutzen.

Die Schwerpunkte dieser Arbeit sind der Vergleich des ALE Amatzes mit dem neuen Eu-
lerschen Ansatz und die Anwendung der ‘dual gewichteten réduen' (DWR) Methode fiir
FSW-Probleme. Die DWR Methode dient als Grundlage zweier Vefahren, die der a poste-
riori Fehlerschatzung und ergebnisorientierte Gitteradaption.

Basierend auf den entwickelten FSW Modellen wenden wir die &R Methode bei FSW
Problemen an um einerseits eine a posteriori Fehlerschatzny zu erhalten als auch um einen
ergebnisorientierte Gitteradaption zu betreiben. Notwerdige Aspekte der DWR Methode
und der Implementation fir sowohl den ALE als auch den Eulershen Ansatz werden be-
sprochen.

Viele stationare als auch instationére Beispiele werden geigt fiur welches sowohl der ALE
Ansatz als auch der Eulersche Ansatz benutzt werden. Ergeliase von beiden Ansétzen



stimmen gut miteinander ein. Die DWR Methode wird auch bei beden Ansatzen erfol-
greich eingesetzt. Schlieylich werden die vorgetragenen &thoden anhand von Benchmark-

Ergebnisse der DFG Forschungsgruppe 493 (von der der Authoein teilnehmender Mitglied
ist) fir beide Ansatze bestatigt.
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Chapter 1
Introduction

Computational uid dynamics and computational structure m echanics are two major areas
of numerical simulation of physical systems. With the introduction of high performance
computing it has become possible to tackle systems with a cqling of uid and structure
dynamics. General examples of such uid-structure interation (FSI) problems are ow
transporting elastic particles (particulate ow), ow aro und elastic structures (airplanes,
submarines) and ow in elastic structures (haemodynamics,transport of uids in closed
containers). In all these settings the dilemma in modeling he coupled dynamics is that the
uid model is normally based on an Eulerian perspective in cotrast to the usual Lagrangian
approach for the solid model. This makes the setup of a commonwariational description
di cult. However, such a variational formulation of FSl is n eeded as the basis of a consistent
approach to residual-based a posteriori error estimation ad mesh adaptation as well as to
the solution of optimal control problems by the Euler-Lagrange method. This is the subject
of this thesis.

Combining the Eulerian and the Lagrangian setting for descibing FSI involves conceptional
di culties. On the one hand the uid domain itself is time-de pendent and depends on
the deformation of the structure domain. On the other hand, for the structure the uid
boundary values (velocity and the normal stress) are neededin both cases values from the
one problem are used for the other, which is costly and can lehto a drastic loss of accuracy.
A common approach to dealing with this problem is to separatethe two models, solve each
one after the other, and so converge iteratively to a solutim, which satis es both together
with the interface conditions (Figure 1.1). Solving the seprated problems serially multiple
times is referred to as a “partitioned approach'. For advaned examples of this approach see
[ViO6, TeSa+06, LoCe+06, ScHeYi06, WaGe+06, BrBu+06, GeTo+06] in [BuSc+06].

Fluid Fluid Fluid

i A R N I N M

Structure Structure Structure

t
tn n+1

tn+2

Figure 1.1: Partitioned approach, Lagrangian and Eulerianframeworks coupled.



Chapter 1, Introduction

A basic partitioned approach does not contain a variational equation for the uid-structure

interface. To achieve this, usually an auxiliary unknown cmrdinate transformation function

¢ is introduced for the uid domain. With its help the uid prob lem is rewritten as one
on the transformed domain, which is xed in time. Then, all computations are done on
the xed reference domain and as part of the computation the aixiliary transformation

function ¢ has to be determined at each time step. Figure 1.2 illustrate this approach
for the driven cavity problem considered in Chapter 9 below. Such, so-called “arbitrary
Lagrangian-Eulerian' (ALE) methods are used in this thesisas well as in [HronTurek206,
HuertaLiu, Wa99], and corresponding transformed space-the nite element formulations in

[TezBehLioul, TezBehLioull]. Multiple good examples and quantitative results can be found
in [BuSc+06], e.g. [HronTurek206, TuHr06].
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Figure 1.2: Transformation approach, both frameworks “Lagangian’

Both, the partitioned and the transformation approach overcome the Euler-Lagrange discrep-
ancy by explicitly tracking the uid-structure interface. This is done by mesh adjustment or
aligning the mesh to match the interface and is generally redrred to as “interface tracking'.

Both methods leave the structure problem in its natural Lagrangian setting.

In this thesis, we follow the alternative way of posing the uid as well as the structure
problem in a fully Eulerian framework. A similar approach has been used by Lui and
Walkington [LuWa01] in the context of the transport of visco-elastic bodies in a uid. In
the Eulerian setting a phase variable is employed on the xedmesh to distinguish between
the di erent phases, liquid and solid. This approach to idertifying the uid-structure in-
terface is generally referred to as ‘interface capturing’,a method commonly used in the
simulation of multiphase ows, [JoRe93a, JoRe93b]. Exampés for the use of such a phase
variable are the Volume of Fluid (VoF) method [HiNi81] and the Level Set (LS) method
[ChHOoMeOs, OsherSethian, Sethian99]. In the classical LSpgroach the distance function
has to continually be reinitialized, due to the smearing e ect by the convection velocity in
the uid domain. This makes the use of the LS method delicate br modeling FSI problems
particularly in the presence of cornered structures. To cop with this di culty, we introduce

a variant of the LS method that makes reinitialization unnecessary and which can easily
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cope with cornered structures.

The method we describe does not depend on the speci ¢ structe model. The key variable
in structure dynamics is the deformation, and since this degnds on the de ection, it is
understandable why structure dynamics is preferably desdbed in the Lagrangian frame.
To be able to describe the deformations in the Eulerian frame we introduce the “Initial
Positions set' (IP set) of all structure points. This set is then transported with the structure
velocity in each time step. Based on the IP set points and thai Eulerian coordinates the
displacement is now available in an Eulerian sense. Also itgradient has to be rewritten
appropriately, which will be explained later in Section 4.7. Since the uid-structure interface
will be crossing through cells, we will have to also transparthe IP set in the uid domain.

If we were to use the uid velocity for the convection of the IP set, this would lead to
entanglement of the respective displacements, which wouldwreak havoc' on the interface
cells. This is a known problem with LS approaches. A common wafor xing this problem

has been to occasionally x the LS eld between the time steps The problem with this

approach is that the variational formulation is no longer consistent. As an alternative, we
harmonically continue the structure velocity into the uid domain. In the uid domain we

then use this velocity for the convection of the IP set. Sincean IP set is available in both
domains, we can always at each point determine if it belongsd the uid or solid part of the

model.

Again, this approach is similar to the LS approach. Actually, it is possible to also develop
a model for FSI using the level set approach, [LeChBe04]. Butvhen developing a complete
variational formulation the two key characteristics of the LS approach also become the main
cause of concern: reinitialization and the signed distancéunction. Although the problem
of reinitialization here can also be avoided by using an harranically extended velocity, the
trouble concerning corner approximation persists. In contast to this, by using an initial
position set, we are deforming a virtual mesh of the structue, which is extended into the
whole domain.

The equations we use are based on the momentum and mass consdion equations for
the ow of an incompressible Newtonian uid and the deformation of a compressible St.
Venant-Kirchho or incompressible neo-Hookean solid. Thespatial discretization is by a
second-order nite element method with conforming equal-ader (bilinear) trial functions
using ‘local projection stabilization' as introduced by Becker and Braack [BeBrO1, BeBr03].
The time discretization uses the second-order “fractionastep- ' scheme originally proposed
by Bristeau, Glowinski, and Periaux [BrGI+87]. This method has the same complexity as the
Crank Nicolson scheme but better stability properties [Rannacher00], see also [Rannacher04]
and [GI03].

Based on the Eulerian variational formulation of the FSI sygem, we use the “dual weighted
residual' (DWR) method, described in [BeRa95, BeRa01, BaRAa3], to derive “goal-oriented'
a posteriori error estimates. The evaluation of these erroestimates requires the approximate
solution of a linear dual variational problem. The resulting a posteriori error indicators are
then used for automatic local mesh adaption. The full appli@ation of the DWR method to

FSI problems requires a Galerkin discretization in space asvell as in time. Due to the use of
a di erence scheme in time, in this thesis we are limited to "gal-oriented’ mesh adaptation in
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computing steady states or (somewhat heuristically) to quai-steady states within the time
stepping process.

As a validation of the Eulerian approach to structure mecharics we do a numerical study
based on a basic structure with a piecewise constant materiaelasticity parameter. All
calculations are done using both a conventional Lagrangiarapproach and the alternative
Eulerian approach. In the rst halve we show that for a given known solution the errors
have an equal rate of convergence using both approaches. Ihd second halve we apply the
DWR method to a similar problem. The material has a di erent e lasticity parameter in
the bottom and top halves of the domain. Here we demonstrate he e ciency of the DWR
method for estimating the error of a given goal functional.

The method for computing FSI described in this thesis is valdated at a stationary model
problem that is a lid-driven cavity involving the interacti on of an incompressible Stokes uid
with an incompressible neo-Hookean solid. Then, as a more allenging test the self-induced
oscillation of a thin elastic bar immersed in an incompresdile uid is treated (FLUSTRUK-A
benchmark described in [TuHr06] and [HronTurek206]). For this test problem, our method
is also compared against a standard “arbitrary Lagrangiarkulerian' (ALE) approach. The
possible potential of the fully Eulerian formulation of the FSI problem is indicated by its
good behavior for large structure deformations. All compugtions and visualizations are done
using the ow-solver package GASCOIGNE [Ga] and the graphic package VISUSIMPLE
[BeDu06, Vi].

The outline of this thesis is as follows.

In the Chapters 2 and 3 we introduce the basic notation for allmathematical formulations

that we later use. We explain the di erence between the Euleran and Lagrangian reference
frames and why the natural frames of reference for uids and slids are respectively Eulerian
and Lagrangian.

In Chapter 4 we consequently introduce the governing equatins for uids and solids. We
introduce the kinematic and dynamic interface conditions that have to be ful lled at the
common interface of the uid and solid. For uids we introduc e the ALE framework and for
structures we introduce the alternative Eulerian approach This approach is based on the
transport of the initial positions of the material points.

In Chapter 5 we write the complete variational uid-structu re interaction problem in a closed
variational form. We do this for both approaches, rst using the common ALE framework
and then using the (to the authors knowledge, new) fully Eulegian framework.

In Chapter 6 we introduce the discretization of the completevariational problem. We explain
the discretization of the mesh and the discretization of spae and time. Based on this
we explain the overall solution process. An important aspetis how we use the method
of "automatic di erentiation' for calculation the directi onal derivatives of the monolithic
problems.

In Chapter 7 we introduce the “dual weighted residual’ methal, which is used to estimate the
error of a given goal functional. This error estimator is usel as an indicator for “goal-oriented'
mesh adaptation. We also discuss various numerical aspecthat must be considered when
implementing the Eulerian framework for FSI problems.
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In Chapter 8 numeric tests are performed to compare and validte the Lagrangian and Eule-
rian approaches for elastic problems. In the rst test we denonstrate for a basic con guration

that the results of the Lagrangian and Eulerian approaches ee in good agreement. In the
second test we modify the structure to have a piecewise coretit material parameter and so
introduce a structure-structure interface problem. We do tests with two di erent interface

orientations. In all tests we compare the Eulerian and Lagragian frameworks in regards to
the calculation of a speci c goal functional. We apply the “dual weighted residual' method
for the approximation of the error of the goal functional. This is done initially for globally

re ned meshes as a validation of the error estimator for boththe Lagrangian and the Eule-
rian frameworks. Finally we use the error estimator of the gal functional as a indicator for
adaptively re ning the meshes. We do this for both Eulerian and Lagrangian frameworks,
and show that the results are in good agreement.

In Chapter 9 numeric tests are performed to compare and validte the Eulerian framework
with the ALE framework for a basic uid-structure interacti on problem. As in the previous
chapter the “dual weighted residual' method is used to estirate the error of the given goal
functional. This is rst done on globally re ned meshes. Later the estimator is used as an
indicator for adaptive mesh re nement for both frameworks. Again, all results are in good
agreement.

In Chapter 10 numeric tests are performed to compare and vaflate the fully Eulerian
approach for an advanced uid-structure interaction problem. The test is based on the
FLUSTRUK-A benchmark [TuHr06]. The tests are broken down into four parts: transient
tests of the structure in a resting uid, drag and lift tests f or the uid with a very rigid
structure, instationary tests displaying the periodic movement of the structure driven by
the uid ow, and nally transient tests for very large struc ture deformations in the resting
uid. These tests display two things. First, the capability of handling large deformations
with the Eulerian approach. Second, three di erent re nement methods we demonstrate the
advantage of using the DWR method.






Chapter 2

Mathematical notations and descriptions

In this chapter we introduce the basic notation for all mathematical formulations that we
later use. We explain the di erence between the Eulerian andLagrangian reference frames
and why the natural frames of reference for uids and solids & respectively Eulerian and
Lagrangian. Consequently we introduce the governing equabns for uids and solids. Finally
we introduce the kinematic and dynamic interface conditiors that have to be ful lled at the
common interface of the uid and solid.

2.1 Notation

We begin with introducing some notation which will be used throughout the thesis. By
RY (d = 2), we denote the domain of de nition of the FSI problem. The domain
is supposed to betime independentbut to consist of two time-dependent subdomains, the
uid domain ¢ (t) and the structure domain ¢(t), with t 2 1; :=[0;T]. Unless needed,
the explicit time dependency will be skipped in this notation. The boundaries of , ¢,
and ¢ are denoted by @, @ s, and @ s, respectively. The common interface between
¢ and g is (t), or simply ;.

The initial structure domain is denoted by b,. Spaces, domains, coordinates, values (such
as pressure, displacement, velocity) and operators ass@ted to b (or bf) will likewise be
indicated by a “hat'.

Given a subsetX (e.g. X = ¢(1);X = 4(t) or any other subset), by jX|, we denote
the volume of X. By [f ]x , we denote the jumpf; f¢ of a function f across the boundary
@X With f; and fy we assume thatf has a trace on@X as seen from the “inside’ and
“outside' of X :

f;(x)::li?of(x+ nNx) ; fx(x)::lirgjof(x nx) ;

whereny is always the unit normal vector pointing out of X at points on the boundary @ X
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2.2 Derivatives

Partial derivatives of a function f with respect to the i th coordinate are denoted by @f ,

and the partial and total time-qgrivatives by @f and . The divergences of vectors and
tensors are written as divf =, @, and (divF); = j @Fjj . The gradient of a vector

valued function v is the tensor (r v)j = @Vv;.

De nition 2.1.  Given a mappingf : ! Y with X and X;Y are both normed vector
spaces. The'directional derivative' of f at x 2  in the direction ' 2 X is de ned as

N JX R (X))

P00 ) = lim - :
provided the limit exists. If the limit exists for any direct ion' 2 X then f is simply called
directionally di erentiable at x. \
De nition 2.2.  In the context of De nition 2.1, if the mapping f is directionally di eren-
tiable at x and f {x)(" ) is continuous and linear for' , then f {x) 2 Hom(X;Y ) and f {x)
is referred to as the Géataux derivative' of f at x. \

2.3 Function spaces

For a set X , we denote by L?(X) the Lebesque space of square-integrable functions oK
equipped with the usual inner product and norm:
z

(f;9)x == fgdx; kiki =(f;f )x;
X

respectively, and correspondingly for scalar- and vectoxalued I_fynctions. For matrix-valued
[ynctions, (F;G)x is to be understood as the tensor product , F : G dx , with F : G :=

j Fi Gij . Mostly the domain X willbe , in which case we will skip the domain index in
products and norms. For ; and s, we similarly indicate the associated spaces, products,
and norms by a corresponding index f' or 's'.

De nition 2.3. A function f 2 L?(X) has the “(weak or distributional) derivative' v =
@f 2 L3(X) if .

Gv)x =( Y@ ;f)x 8 2C§(X)
is satis ed, with the multi-index =( 1;::55 n); i 2 Ng. Herej j== 1+ + n, and
@ = @=5(@*:::@"). C! (X) denotes the space of in nitely di erentiable functions and
Cd (X) denotes a subspace, whose elements are nonzero only on a silzg X . On this note

we also denex = [,X;', wherex = fxi; ;Xn0. \
Let Lyx := L%(X) and LY = L?(X)=R. The functions in Lx (with X = , X = ¢(t),
or X = 4(t)) with rst-order distributional derivatives in Ly make up the Sobolev space
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H(X). Further, Hg(X) = fv 2 HY(X) : vjgx = 0g, where @X% is that part of the
boundary @ X at which Dirichlet boundary conditions are imposed. Further, we will use the
function spacesVyx = H(X)d, V2 := H}(X)?, and for time-dependent functions

Lx = L?[0;T;Lx ] Vx = L[0T Ve ]\ HYO TV J;

LY = LA T;LYL VS = L0 T W\ HAO T iy [;
where V, is the dual of V,{ . Again, the X -index will be skipped in the case ofX = , and
for X =  and X = ¢ a corresponding index ‘f' or “s' will be used.






Chapter 3

Eulerian, Lagrangian and arbitrary
Lagrangian-Eulerian reference frames

When modelling the movement of a spatial continuum two appraches are commonly used.
The Lagrangian or material framework and the Eulerian or spatial framework. Both ap-
proaches have the simple goal of describing how a certain dea value of interestf : R2 [ !

R changes in space and with time.

Where the reference point of the valuef is, is what distinguishes the two frameworks. We
denotex 2 R? andt 2 |, as the spatial and temporal coordinates. The functionf is assumed
to be su ciently di erentiable in space and time.

3.1 Lagrangian framework

In the Lagrangian framework one observes the value on a prekseted point that is moving
(and possibly accelerating) steadily through space. The iiial position of the point at the
initial time tp we de ne as®. Thus the position (of the point) is a function of the initial
position ® and time t:

X = X(%1):

We de ne the velocity v of this point as the total time derivative of its position Xx:

v(X:t) = dix(&;t) = @x + PxdiR:
Since® is the position of the point at an initial time it follows that it does not change in
time, therefore di® =0 and v = @x.

To be more precise, in the Lagrangian framework we should ref to f (x;t) as f(&;t) :=
f (x(%;1);t). Visually one can imagine that we are observing the value on anaterial point
that was initially at the position 2R and is moving though space with the velocityv. The
total time derivative of f in the Lagrangian framework can thus be written:

dif (& t) @’ (&;t) + P& t) diR
@'(xt) :

Since the Lagrangian approach describes the movement and fdemation of individual par-
ticles and volumes it follows that this framework is the natural approach for modelling
structure dynamics.

11
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3.2 Eulerian framework

In the Eulerian framework one observes the value at a xed pant x in space, hence this
framework is also referred to as a spatial framework. Lookig back at the Lagrangian
framework one can imagine that at the point x at di erent times there will continuously be
di erent material points moving through. Each such material point will have a respective
initial position .

Thus the velocity v at this space-time position (x;t) is still to be understood as the velocity
of the material point with the initial position %:

v(x;t) = dix(%;t) :
In an Eulerian framework the value of interest is written as f (x;t), with t and x being

anywhere within the permitted space-time continuum. Taking the total time derivative of
the f leads to:

dif (x;t) @f (x;t)+ r f(x;t) dix

@ (x;t)+ (v r)f(xt):

The second term is referred to as thetransport' or “convection term'. This term is a char-
acteristic di erence between the Eulerian and Lagrangian fameworks. In the Lagrangian
framework when the total time-derivative is expanded into dl its partial derivatives, there is
no convective term due to the spatial parameter being constat in time. In contrast, in Eule-
rian frameworks convection can generally be expected in thexpanded total time-derivative.

The Eulerian approach presents itself as the natural approah for modelling uid ows. This
follows as a consequence that one is less interested in thedimidual behavior of particles and
more interested in ow properties at certain spatial points in the ow domain. In viscous
uids with behavior similar to soft materials, a Lagrangian approach would be plausible.
Generally though particle movement in uids is considerable and their initial positions in
relation to each other have e ectively nothing in common with their later relative positions.
Hence the Eulerian framework presents itself as the naturalapproach to modelling uid
ows.

3.3 Arbitrary Lagrangian-Eulerian reference frame

The Lagrangian and Eulerian frameworks introduced in the prvious sections arenatural
frameworks of reference. It is more common though that one Mli need a framework of
reference that is arbitrary and independent of the initial particle positions or the spatial
domain. A common example (one we will later also encounter ithe numeric tests) is a uid
ow in a domain that changes with time: ( t). Instead of modelling and simulating the ow
in ( t) one assumes the existence of an in space and time continuousda(for a xed time
t) C2-di eomorphic mapping T(%;t) : b1 ( t), with " as the reference (and usually
the initial) domain of ( t). The requirement of C2-di eomorphism means that the mapping
is (in addition to being di eomorphic) also two times contin uously partially di erentiable.
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Section 3.3.2, Arbitrary Lagrangian-Eulerian reference fame, Temporal derivatives

An approach that uses such an arbitrary framework of referene is called an arbitrary
Lagrangian-Eulerian approach' (ALE), see e.g. [HuLi+81]. We will also refer to an arbi-
trary framework as an "ALE framework'. For a good overview of the various methods of
application using an ALE-framework see [BuSc+06] e.g. [HraTurek206].

With the help of the mapping T functions and operators in ( t) can be rewritten as such in
the domain ". For this reason, as a preparatory measure, we introduce thenost commonly
needed transformation-identities in the following sectims.

By F and J', we denote the Jacobian matrix and determinant of ' respectively:
F=07T ; J:=detfF:

In the context of material deformations later the mapping T will also be referred to as
the “deformation’, henceF will be referred to as the “deformation gradient'. Since T is a
deformation, it must for each xed time preserve orientation and not annihilate volume.
This follows from the requirement, that it is continuous and di eomorphic. Thus 0< J.

Let f (x;t) and v(x;t) denote scalar- and vector-valued functions that are di erentiable in
time and space as in the previous sections (Section 3.1, 3.2)

with T we de ne f(&;t):

'(%;1)
(R 1)

f(f(&);t);
V(T t);t) :

3.3.1 Spacial derivatives

The respective reference based spatial derivatives df can be attained by chain rule:

X . .
&= @ (fK % :
j i

Thus we can write the gradient of f*:

o= BT rf : (3.1)

We apply equation (3.1) to v(x;t), in this case the velocity- eld, by applying it to its com-
ponents:

Po=rvE : (3.2)

13



Chapter 3, Eulerian, Lagrangian and arbitrary Lagrangian-Eulerian reference frames

3.3.2 Temporal derivatives

Later we will need the partial time-derivative of a scaler function f in ( t). To this means
we observe the partial time-derivative of ' (&;t) = f (T'(&;t);1).

Proposition 3.1. (Fundamental ALE equation) Let f (x;t) : I+ ! R be continuously
di erentiable scalar function in space and time. The mapping T(&;t) : b1 (t)is
continuous in space and time and (for a xed time t) a di eomorphic mapping " ! . We

express the values of in the reference frame” so that f’\(k;t) = f(T(&:t);t). Then the
partial and total time derivatives of f expressed in terms off* on the reference domain”
are,

@ = @ (Faf " (3.3)
df = @' +(F (¢ @f) b (3.4)
Proof.
) = Ii?I]Ol"\(5t;t+ tz fi(&:t)
_ ”{pof(f(x;u t);t+tt) f (&)1
_ im f(Tt+ t)t+ t) f(TEt+ o0+ f(TEt+ )t f(TEH;)
tl 0 t

= @ (Tt +rf(Ft)t) afkt)
= @ (xt)+rf(xt) @ (xt)
= @ +(@f r)f

Thus with equations (3.1) and (3.5) we can write the partial and total time-derivatives of f
in the " reference system:

@ = @ (F'ef P (3.6)
df = @ +rfv (3.7)
= @' +(v @f)r)f (3.8)
= @'+(F (v @f) o)y (3.9)

Lemma 3.1. For a mapping T as in Proposition 3.1 and a vector-valued functionv :
I ! R? whose components are aé in Proposition 3.1, the following holds,

@v

dtV

@ (F '@f Py (3.10)
@ +(F (v @f) Py (3.11)

Proof. Follows directly by applying (3.3) and (3.4) to the componerts of v.

14

(3.5)



Section 3.3.3, Arbitrary Lagrangian-Eulerian reference fame, Spacial integrals

3.3.3 Spacial integrals

Let V be an arbitrary volume in , and ¥ = T (V) the respective subset in”. With
&) = f(T®) = f(x) 2 L?() and dx = detT d® = J d® , we transform the volume
integral in V to an integral in ¥

z z
f(x)dx= f@&) Fdg : (3.12)

v Y
Theorem 3.1 (Divergence of the Piola transform). LetT : " ! be a C?-di eomorphism
and the vector-valued functionv : | R? be dierentiable in . The Piola transform of v

is JF 1¢. For the divergence of the Piola transform it holds,
Fdivv = @iv(IF o) 8x=T&) 2 (3.13)

Proof. For convenience we writeJF 1:

!
L 1+, @0,
1= @02 s @01 : (3.14)
We expand div(JF 10) :
Gv(JE W)= B+ o) +(  B0),) (3.15)

+@8(( @00+ 1+ @01)):

In (3.15) we apply the partial derivatives only to the left factors of all sums. Due to the
regularity of T, the partial derivatives may be switched,

(@1L+ &) 0+ & &0y 0)
@ @) u+ B @) %)= (8O B0 8 &) 5
& &)+ @+ @oy))v

=0
With (3.16) we write (3.15) as:

Gv(JF W)= (Q+ @o)@o +(  @&o)@0,)

+(( @0)@0 + 1+ &0y)80,) 317
=tr( S POE )= Ftr(r v) '
= Jdivv :

15



Chapter 3, Eulerian, Lagrangian and arbitrary Lagrangian-Eulerian reference frames

Remark 3.1. A byproduct of the rst equality of (3.17) will later be usefu | for Reynold's
transport theorem. We recall that ¢(%) = d;0(%). For &v(JF 1¢) we then obtain:

Gv(JF 0= (1+ @o)@e+(  @&o.)ee,)
+H( @080+ 1+ &0,)80,)

= @ivy + dt(@oz@ﬂl) dt(@01@02)

(3.18)
= @iv(di0) + di(B0.80, &0, 80,)
= di(Givo + B0,80;, B0 80,)
= dtj\:
\
Lemma 3.2. Letv2 HY() and the mappingT is as previously de ned. LetV be an
arbitrary volume in , andV = T (V) the respective subset in™. Then,
Z Z
divv dx = . Gv(3F o) dr: (3.19)
\%

Proof. Follows directly with (3.12) and Proposition 3.1.

Lemma 3.3. Letv2 HY() and the mappingT is as previously de ned. LetV be an
arbitrary volume in , and V¥ = T (V) the respective subset in™. Then,

z z
vndx=  (JF 20) ndR: (3.20)
@V a
Proof. We apply Gauss' theorem to the left and right boundary integrals in (3.20):
z z
vndx = divv dx ; (3.22)
7z @V ZV

(FF 20) ndg Gv(IF 10) dr: (3.22)
@ ¥

With Lemma 3.2 it follows that (3.21) and (3.22) are equal.
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Chapter 4
Equations

In the next two sections we introduce the equations that are $ed to model uid ows
and material deformations. Both are based on the assumptiorof conservation of certain
properties. For uid ows in the most general case one assume in the model that mass,
momentum, angular momentum and energy are conserved. In tlsi thesis we will only be
observing incompressible uids, thus it is su cient to use a model that only assumes the
conservation of mass and momentum. For material deformatias one only assumes the
conservation of momentum and optionally also incompressittity.

An essential state variable in the momentum conservation egations is the Cauchy stress
tensor. The tensor is used to model internal and surface foes of a body. The tensor has
di erent constitutive laws depending on if it is in a uid or s olid, compressible or incom-
pressible body. We brie y elucidate the Cauchy stress tensn

4.1 Cauchy stress tensor

The tensor is a measure for the internal stress in a body. The &sic principle, rst proposed
by Cauchy, is that within a body the forces an enclosed volumeexerts outward towards the
rest of the body are equal to the forces being exercised upon from the outside inwards
toward it.

The stress tensor eld is a matrix-valued eld. Provided a stress tensor eld is known,
the total force F on a ‘small' area A can be calculated by applying to its normal n:

F=nj Aj:

To be more precise n at the point x is the force-density on an area A with the normal
n. To calculate the total force F on an enclosed volumev we apply this to the complete
surface @V Z

F = ndx:
@V

By applying Gauss' theorem the surface integral on@ Vcan be replaced by a volume integral
inV: Z z

F = ndx = div dx: 4.2
@V %

17



Chapter 4, Equations

The reference framework we have used so far is spatially basehence Eulerian. We will
Hgough need the integrals in (4.1) in an arbitrary referenceframe ¥. We note that (div ); =
i @ . We use the mapping T and notations described in Section 3.3 and apply the
Lemmas 3.3 and 3.2 to (4.1):
z z
F= (JF Dadr= &I F T)dg: (4.2)
v ¥

The “transformed' stress tensory F T is also referred to as the rst Piola-Kirchho stress
tensor'.

4.2 Reynold's transport theorem

For the conservation of mass and momentum we will need the ftdwing theorem.

Theorem 4.1 (Reynold's transport). Let T: " 1! be a C2-di eomorphism and the
scalar function f (x;t) : I; ! R be dierentiable in l;. Then for any subset® "
the following holds, 7 7
(o fdx = @f +div(fv) dx; (4.3)
V(1) V(t)

with V()= fx2 jT (xt)2Vg.
Proof. We transform the left integral of (4.3) into an integral on th e reference domain. Since
the integration domain is time invariant, integration and t he total time derivative can then

be switched: Z Z Z
o fax =d¢ fFdr = df S+ fdSdgr: (4.4)
V(t) \Y Y
With Remark 3.1 we know diJ' = @v(SF 10) :
z z
o fdx =  df 3+ @vIF 20) dr: (4.5)
V(t) \Y
With (3.12) and Lemma 3.2 we transform the reference integrhback to V:
z z
o fdx = dif + f divv dx

V(t) Y

@ +r fv +f divvdx
p4

@f +div(fv) dx:

Mass conservation follows immediately, by using forf the density

18



Section 4.3, Conservation of momentum

Theorem 4.2 (Mass conservation). LetT : " 1! be a C2-di eomorphism. Let the
Lagrangian material density be (%) be di erentiable and the respective Eulerian density be
dened by (x;t):= ~(T %(x;t)). Then for any subset? " the following holds

z

@ +div( v)dx =0; (4.6)
V()

with V()= fx2 jT Yxt)2Vg.

Proof. We transform the integral of (4.6) into an integral on the reference domain. The total
massM (¥) on the reference domain is constant, thusdiM (¥) = 0. With Theorem 4.1 it
follows: Z Z Z

0=d ~FdR = d dx = @ +div( v) dx: 4.7)
Y V(t) V(t)

Lemma 4.1. (Continuity equation) Since is continuous and (4.6) is valid for anyV
It follows for any (x;t) 2 Iy :

@ +div(v)=0": (4.8)

4.3 Conservation of momentum

Both the uid and structure models have the momentum consenation law in common. The
model is based on Newton's second law, which states that theetmporal change of momentum
in a body with the volume V is equal to the surface and volume forces acting upon this
body. The law is set in an Eulerian framework.

z z z
o v dx = ndx + f dx
v @v v 4.9
|—{z—) |z} |—{z—) (4.9)
change of momentum surface force volume force

We apply Reynold's Theorem 4.1 to the left integral and Gauss theorem to the surface
integral:
Z Z

@ v)+div( v v) div dx = fdx; (4.10)
Vv v
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Chapter 4, Equations

with the outer product v v= w ' = (ViVj)%j -, - Of (4.10) we expand just@v) +
div(v v) as:

@v) +div( v V)

@v+ @v +vdv(v)+ (vr)v
Qv+ (vr)v+vf@ +?Ziv(v)i
=0 (Lemma 4.1)
= @v+ (vr)v: (4.112)

We apply (4.11) to (4.10). With the additional assumption th at the integrands are steady
in V and since the equation (4.10) holds for arbitraryV, we conclude:

@v+ (vr)v div = f: (4.12)

We will also need equation (4.12) in an ALE framework with the respective reference frame
V'. We use the mappingT and notations described in Section 3.3 and apply the "ALE
equations' (3.11) and (4.2) to (4.10):
Z Z
\I)’\J\@0+"J'\(If o @) by &vl F Tydr = OJ’"‘f’\dk: (4.13)

Steadiness of the integrands here follows from the mappingding continuously di erentiable
and the steadiness of the original integrands in the Euleria framework. Based on this and
since the equation (4.13) holds for arbitraryV (and respectiveV), we conclude:

ae+~rJE v @) Py &vwd ET) = I (4.14)

4.4 Fluid ows

Fluid ows (liquid and gas) in the most general sense are modéed based on the assumption
that mass, momentum, angular momentum and energy are conseed.

In this thesis we will only be observing “incompressible Netnian uid ows'. From the
incompressibility it follows that the density is constant. The constitutive relation for the
Cauchy stress tensor in the case of an incompressible Newtiam uid is:

= pl+ (rv+rv'); (4.15)

with the kinematic viscosity , the pressurep and the velocity v. Hence is symmetric. An-
gular momentum is automatically ful lled for incompressib le Newtonian uid ows. Based

on this the conservation equations for momentum and mass deuple from the energy con-
servation equation. We will not need the temperature or the eci ¢ internal energy-density
state variables, hence we omit the energy conservation eqtian. Thus we only consider the
conservation equations for momentum and mass (respectivg):

@v+ (vr)v+div
divv

f in ¢

0 in bl (4.16)
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Section 4.4.1, Fluid ows, Boundary conditions

The momentum equations (4.16) with the Cauchy stress tensoras de ned in (4.15) are
referred to as the “Navier-Stokes equations'.

Remark 4.1. The Navier-Stokes equations for incompressible uids are sually not writ-
ten with the full stress tensor (4.15), but instead with a reduced version of the tensor
~:= pl+ rv. This stems from the feature that divr vI = 0 (provided v is two times
continuously partially di erentiable):

@Qv. @, _ @@vi+@Q@v; _ @dvyv _0-
@vi @v2 @@v: + @@V- @divv '

We refrain from using the reduced tensor~, since this would lead to an incorrect representa-
tion of the boundary forces. The proper calculation of theseforces is most important, since
uid-structure interaction is essentially driven by just t hese forces at the interface. \

divr v’ =div

Common notations for the stress tensor and various constitents are:

“deformation rate tensor', (v):=(r v+r v)=2,

“dynamic viscosity', , the product of the density and kinematic viscosity: = ,
“isotropic or hydrostatic stress tensor, pl ,

‘viscous or deviatoric stress tensor’ =2 ( étr ) (in d-dimensions),

if nally the uid is incompressible, we obtain the constitu tive relation = pl +
(4.15), sincetr =div v.

Remark 4.2. The motivation for splitting the stress tensor into the two p arts, hydrostatic
and deviatoric stress, is to express it in a part that exerts he same force in all directions
outwards and is independent of the velocity, hence hydrostic, and a part that only depends
on the velocity and doesnot exert the same force, hence deviatoric. \
Remark 4.3. We have omitted writing a super uous 'f' index on all variabl es such as the
density, velocity and pressure since in this context there$ no mention of any structure vari-
ables. \

4.4.1 Boundary conditions

Generally when modelling ows using an Eulerian framework he boundaries are xed and
not moving. As a boundary condition in time an initial value vg for v at the initial time tg
is prescribed. Spacially the boundary@ ¢ can be split in four non-overlapping parts

@¢+= wl[ n[ wI[ i

with each part relating to a di erent boundary condition. Th e rst three parts are the
well-known conditions:

Dirichlet : V = Vip on p ;
Neumann : Ng = O on N ,
Robin : v+ ny = 0 on g ; 2R:
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Chapter 4, Equations

In the uid-structure interaction problems there is a movin g interface boundary j, that is
the common boundary to the structure. We assume that on this lundary momentum is
conserved and that the velocity of the uid and material particles just at the boundary are
equal. This leads to the FSI boundary conditions on ; that must be ful lled simultaneously:

continuity of velocity and the continuity of the force-density acting onto the interface, hence:

Vi = Vg on j;
fNf = sNg on j:

To di erentiate the uid and structure values we have added a respective 'f' or 's' su x.

4.4.2 Variational formulation

The variational form of the Navier-Stokes equations (4.16)is now obtained by multiplying

them with suitable test functions from the trail space Vf0 for the momentum equations and
L for the mass conservation equation. In the momentum equatins we integrate by parts.
The equations are written in an Eulerian framework in the time-dependent domain ¢ (t).
The physical unknowns are the scalar pressure eldps 2 L; and the vector velocity eld

vi 2 VfD + V.

Problem 4.1 (Variational uid problem, Eulerian framework). Find fvs;prg 2fvfD + Vfog
L¢, such that v¢ (0) = v?, and

(s(@+vs r)ve; e+ esr V=0 Y) o +Cenes V) +( efes Ve

4.17
(divve; P)s =0; (4.17)
forall f v; Pg2V?% L¢, where
£= Pl 2 1 (W) (V)= 3(rvEr V)
\

Here, va is a suitable extension of the prescribed Dirichlet data on he boundaries (both
moving or stationary) of ¢, and g is the Neumann boundary condition on ¢y . We have
hiddenthe uid-structure interface condition of steadiness of vdocity in part of the boundary
condition va. The uid-structure interface condition of steadiness of ; ny we have let stand.
The FSI boundary conditions will be treated in Section 5.2.

4.5 Fluid ows in an ALE framework

In uid-structure interaction problems that we will later b e observing the FSI domain
is time independent, but it is composed of the uid domain f and the structure domain
s» Which will be changing with time. An approach to modelling a uid ow in a dynamic
domain is assuming that a reference domain"; and piecewise continuously di erentiable

invertible mapping T exist so that T(%;t): ¢ 1! (t).
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Section 4.5.2, Fluid ows in an ALE framework, Variational f ormulation

Based on this assumption we rewrite the Navier-Stokes equains in an ALE framework with
the reference frame”;. We use the mappingT and notations described in Section 3.3. We
apply the equations (3.2), (3.13) and (4.14) to (4.16) and (415):

Jae+ 3 # v @) Py &I"F T) = £ in";
Gv(JF ) = 0 in "¢
with A= pl+ (P0F 1+ TheT) 2= bT ;S=detf:
(4.18)

4.5.1 Boundary conditions

Similarly the boundary conditions must be set in the ALE framework. As a boundary
condition in time the same initial value is prescribed 0g(%; 0) = vo(T'(&; 0)) = v for ¢, now
set in the ALE framework, at the initial time to. The uid boundary “; can be split into
four non-overlapping parts:

with each part relating to a di erent boundary condition. Th e rst three parts are the
well-known conditions:

Dirichlet ¢ Ap on"p ;
Neumann : FAE Th 2y on" ;
Robin : ¢+ J2F TA = 0 on g :

The moving boundary ; is of course a xed boundary "; on the reference domain. In an
Eulerian framework the boundary conditions on the moving baundary ; are the same as in
uid ows case: continuity of velocity v and the normal- ux of the stress n . In the reference
con guration the velocity is not transformed. The stress though is transformed, since not
the Cauchy stress tensor is used in the momentum conservatioequations, but instead the
rst Piola-Kirchho stress tensor. This leads to the bounda ry conditions:

O = Wq on”;
vj\fl\f Faf Tﬁf = J,\SASFQS Tﬁf on Ai .

To di erentiate the uid and material values we have added a respective 'f' or 's' su x.

4.5.2 Variational formulation

The variational form of the Navier-Stokes equations in an ALE framework (4.18) is obtained
by multiplying them with suitable test functions from the tr ail space\'7f° for the momentum

equations and (s for the mass conservation equation. In the momentum equatins we
integrate by parts. The equations are written in an ALE framework in the domain " . For
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Chapter 4, Equations

later purposes we take care to write all uid speci c variables with a respective 'f' su x,
this includes the domain mapping, now referred to asf;. The physical unknowns are the

scalar pressure eldpy 2 Iy and the vector velocity eld 0 2 OfD + V.

Problem 4.2 (Variational uid problem, ALE framework). Find f9¢;p;g 2 f va + Ofog s,
such that ¢ (0) = ~¢, and

Jr r@0 +Ji ((F M @T) D)o ™+ (Ji P TP M)
= ™ H T F TG Y (B ) (429)
(@v(Ji F %), ") =0

forall f™V;"Pg2Y¥° C(¢, where

Neo= o el + ff(lb0f|£f1+|£leb0]:l—);
B o= OF ;= detF :

\
Here, OfD is a suitable extension of the prescribed Dirichlet data on he boundaries OfAf,

and ¢ is the Neumann boundary condition on "¢y . We have “hidden’ the uid-structure
interface condition of steadiness of velocity in part of the boundary condition va. The

uid-structure interface condition of steadiness of Ji 7 I‘—“f T As we have let stand for later
purposes. The FSI boundary conditions will be treated in Setion 5.1.

4.6 Material deformations

Materials deformations are modelled based on the assumptioof conservation of momentum
and optionally volume. The main value of interest is the vecbr eld describing the displace-
ment of the body from its initial state. Consequently the Lagrangian approach is the natural
frame of reference.

In this thesis we will be observing elastic materials, that is to say the observed material
returns to its initial state once all applied forces are remaed. We refer to the domain of
the initial state as " and use the mappingT and notations described in Section 3.3. The
reference domain is also referred to as th&eference con guration'.

The displacement and mapping T, also referred to as deformation’, su ce the following
equation:
TRt = X+ UK L) :

The gradient of T is the deformation gradient £ = PT. The used state variable elds are
the density ~ in the initial state, the velocity ¢, the displacement(, the Cauchy stress tensor
A, which is a function of & and optionally a pressurep. The external force eld we denote
asf", an example forf" would be a gravitational force eld.
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Section 4.6.2, Material deformations, Incompressible nedlookean material

The material elasticity is usually described by a set of two @mrameters, the Poisson ratio
s and the Young modulus Eg, or alternatively, the Lamé coecients s and 5. These
parameters satisfy the following relations:

- s . E - 3 S+2 S =
S At ) TR St s (4.20)
s T3+ ST @Il 29

where = 3 for incompressible and s < 3 for compressible material. Common notations
for the stress tensor and various constituents are:

1stand 29 Piola-Kirchho stress tensors: P=J"F T:s:=F 1p;
Green-Lagrange strain tensor: E:=1iFTF 1I);
left and right Cauchy-Green deformation tensors: FET: FTF:

(4.21)

We encountered the rst Piola-Kirchho stress tensor as the “transformed' stress tensor on
the reference domain” in Section 4.1.

Principally the momentum conservation equations here are he same as with uid ows,
the only dierences are that they are commonly set in a Lagrargian framework and the
constitutive equation for the Cauchy stress tensor is basean the displacement eld and not
the velocity eld. The equations for the elastic materials below di er slightly due to the
di erent constitutive laws for the stress tensor.

Remark 4.4. As with the uid equations, to keep things terse, we will omitted writing a 's’
index on many variables such as the density, velocity and presure since in this context there
is no mention of any uid variables. \

4.6.1 Compressible St. Venant-Kirchho material

The St. Venant-Kirchho model is a classical nonlinear modd for compressible elastic ma-
terials. It is well suited for large displacements with the limitation of small strains E. The
sought unknowns are the displacementt and velocity ¢.

N GvINE T) = A in "s;
&a ¢ =0 in"s; (4.22)
with 2 = 3 1F( trE)l +2 (E)FT .

4.6.2 Incompressible neo-Hookean material

Numerous materials can be subjected to strains without a noiceable change of volume.
Typical examples of such materials are plastics and rubbelike substances. A common ide-
alization in continuum and computational mechanics is to regard such materials as generally
incompressible that only permit so-called “isochoric' deformations. The incompressibility
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of the material is ensured by demanding that the deformationconserve volume, hence the
additional constraint J' = 1. The sought unknowns are the displacementy, the velocity ¢
and p, which is referred to as the (hydrostatic) pressure.

N GvE Ty =A7 in
da ¢ =0 in’g:
S =1 in"g; (4.23)

with A= pl+ (FFT I):

As a consequence of the incompressibility (the Poisson ratiis s = 0:5) it follows that only
one material constant is needed to describe the material bedvior. Usually this will either
be the Young modulusEg or the Lamé coe cient .

4.6.3 Boundary conditions

Generally when modelling materials the boundaries will be noving in time, in an Eulerian
approach a moving boundary leads to complications when poeg or enforcing boundary
conditions. Thus a Lagrangian framework is the preferred aproach, leading to "no-hassle'
boundary conditions in the reference con guration. As a bowndary condition in time initial
values 0g; % for ;¢ at the initial time tgo are prescribed. Similar to the uid boundary
conditions, the material boundary s can be split into four non-overlapping parts:

@\S:ASD[ AsN[ AsR[ Ai;

with each part relating to a dierent boundary condition. Th e rst three parts are the
well-known conditions:

Dirichlet 0=4%p:¢ = 4 onsyp;
Neumann : A Ta = o on "\ ;
Robin : ¢+ J2F Th = 0 on":

The moving boundary ; is of course a xed boundary "; on the reference domain. We
assume that an appropriate mapping of initial uid domain "¢ on the present domain ; is
provided. With this in mind, we can rewrite the uid values v and in an ALE framework.
In an Eulerian framework the boundary conditions on the moving boundary ; are the same
as in uid ows case (Section 4.7.1) : continuity of velocity v and the normal- ux of the
stress n . In the reference con guration the velocity is not transformed. The stress though
is transformed, since not the Cauchy stress tensor is used ithe momentum conservation
equations, but instead the rst Piola-Kirchho stress tens or. This leads to the boundary
conditions:
O =N on Ai ;
J'\s’\slfs Tﬁs = J,} N Iff Tﬁs on Ai :

To di erentiate the uid and material values we have added a respective 'f' or 's' su x.
Similar to the structure variables the uid variables are also denoted with a 'hat', this
indicates that they are set in an ALE framework.
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Section 4.6.4, Material deformations, Variational formulation

4.6.4 Variational formulation

For later purposes we take care to write all structure specic variables with a respective 's'
su X, this includes the domain mapping, now referred to as Ts.

For the sake of simplicity, we assume that the only boundary dsplacements that take place
areon ", i.e.,
02 =42 =0 on@sn":

St. Venant-Kirchho material

The variational form of the structure equations for compressible St. Venant-Kirchho ma-
terials in a Lagrangian framework (4.22) is obtained by multiplying them with suitable test
functions from the trail space \’750 for the momentum conservation and velocity equations. In
the momentum equations we integrate by parts.

Problem 4.3 (Variational structure problem, St. Venant-Kirchho, Lagrangian framework).
Find fos;0sg2fal + 09 f 02 + ¥0g, such that 05(0) = 12, 05(0) = A2, and

(NsOi 0s; AV)S +(J\s Ns |‘_“s T;|b Av)é
= (i ™)ny, +(JsnsF T s ™)n + (Msfsi Vs (4.24)
(dOs 0s; ")g =0 ;

forall f"U;™Vg2¥9 V2, where
Fo:= | +Pog; Js:=detFs; Es:= L(FJFs 1);
Ns = ‘],\s lr‘as( s(tr I‘:As)l +2 sés)lfsT:

Incompressible neo-Hookean material

Just as with the St. Venant-Kirchho material, the variatio nal form of the structure equa-
tions for incompressible neo-Hookean materials in a Lagragian framework (4.23) is obtained
by multiplying them with suitable test functions from the tr ail spaces\’?so; (s for the momen-
tum conservation, velocity and incompressibility equations. In the momentum equations we
integrate by parts.

Problem 4.4 (Variational structure problem, incompressible neo-Hbokean, Lagrangian frame-
work). Find fos;%;psg 2 0P + V9% £ 00 + V00 I, such that 05(0) = 12, 05(0) = A2,
and
("sC ¥s; AV)S +(" sr‘As T P AV)S
= (1 )y, (NP TS M+ (Nsfs Vs
(di0s  ¥s; Au)s =0,;
(detFs 1;,"P)g =0;

(4.25)
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Chapter 4, Equations

forall f"u; V:"Pg2¥0 VO [, where

Fsi= 1 +00g; ~gi= psl + s(FsFd 1)

In both the St. Venant-Kirchho Problem 4.3 and the incompre ssible neo-Hookean Problem
4.4,00 and 92 are suitable extensions of the prescribed Dirichlet data orthe boundaries of
", and @ is the Neumann boundary condition on” sy . Similarly as for the uid problems
(Problems 4.1, 4.2) we have “hidden' the uid-structure interface condition of steadiness of
velocity in part of the boundary condition ¢2. The uid-structure interface condition of
steadiness otj\s’\slfS T Ag we have let stand. The FSI boundary conditions will be treated in
Section 5.1.

4.7 Material deformations in an Eulerian framework

In uid-structure interaction problems that we will later b e observing the FSI domain is
time independent, but it is composed of the uid domain ; and the structure domain g,
which will be changing with time. We have already mentioned that one approach to treating
this problem is to introduce a mapping T(%;t) : ¢ 1. ! ( t). With this mapping the
uid problem is rewritten in an ALE framework.

As an alternative we propose changing the reference frame tfie structure equations.

All material stress values (4.21), (4.22), (4.23) are basedn the Lagrangian deformation
gradient F := (I + IbO). In an Eulerian framework we will still have the deformation since
this is simply a value being speci ed in another reference fame: u(x) = u(%). What is not
immediately available though is the “hat gradient' of @, sinceP0 6 r u.

This though is easily xed by introducing the “inverse deformation'

N

TGt o os(t) el sy
T(x;t) =%=x u(xt):
Together with the deformation T'(%;t) this leads to the identity
T(F&1):1) =%
Di erentiating this spatially leads to
( r uw(+oa)=|

Thus
Gg+0oy=(1 r uw?t, Pa=@ r uw?t I: (4.26)
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Thus the gradients and Jakobi determinants of the deformaton and inverse deformation
relate to each other in the following manner

F:=1r u=F ';J:=detF =detF 1= J1:

The total time dierentials of the velocity and displacement are expanded in the usual
manner:

dv = @v+(vr)v; (4.27)
du = @u+(vr)u: (4.28)

Based on the equations (4.26) - (4.28) we rewrite the structte equations for St. Venant-
Kirchho materials (4.22) and incompressible neo-Hookeanmaterials (4.23).

For terseness we combine both models for both the compres$#hSt. Venant-Kirchho ma-
terials (STVK) and the incompressible neo-Hookean materigs (INH).

The sought unknowns are the displacemenu, the velocity v and in the INH case p, which
is referred to as the (hydrostatic) pressure.

N@v+”rd (vr)v div =7Jf in g;
@u+(vriu v =0 in s;

1 J =0 in s ;(INH material) (4.29)

with
JF Y s(rE)I +2 sE)F T (STVK material) ;
pl+ s(FF T 1); (INH material) ; (4.30)
IFTF Y 1);Fi=1r u;J:=detF:

m
1

4.7.1 Boundary conditions

Similarly the boundary conditions must be set in the Eulerian framework. As a boundary
condition in time the same initial value is used, now in the Ederian framework, vq for v at the
initial time to are prescribed. The uid boundary ¢ can be split into four non-overlapping
parts:

@s= sl sn[ srRI i

with each part relating to a di erent boundary condition. Th e rst three parts are the
well-known conditions:

Dirichlet : V = Vp on sp;
Neumann : n = g9 on sn ;
Robin : v+ n =0 on sr:
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Chapter 4, Equations

The xed boundary “; on the reference domain is now the moving boundary i, just as in
uid ow case. The boundary conditions on ; are similar to the uid ows case: continuity
of velocity v and the normal- ux of the stress n , hence

Vs = Vj on j;
sNs= fNs ON ;!

To di erentiate the uid and material values we have added a respective 'f' or 's' su x.

4.7.2 Variational formulation

The variational form of the structure equations in an Eulerian framework (4.29) is obtained
by multiplying them with suitable test functions from the tr ail spaceV? for the momentum

equations andL s for velocity/displacement and the optional incompressiblity equations. In

the momentum equations we integrate by parts. The equationsare written in an Eulerian

framework in the domain . For later purposes we take care to write all structure specc

variables with a respective 's' sux. The physical unknowns are the vector displacement
eld ug 2 uE + Vg, vector velocity eld vg 2 VE + Vs and the optional scalar pressure eld
ps 2 Ls.

Problem 4.5 (Variational structure problem, STVK, Eulerian framew ork). Find fus;vsg 2

ful + Vig f vP + Vg, such thatus(0) = ug, vs(0) = v¢, and

("sJds @vs; V)s+(MsIs (Vs T )vs; V)s+( sir YV)s
=(0s; V) o T sns; V), +("sIsfs; Vs (4.31)
(@us+(vsr)us vs; Y)s =0

forall f Y; Vg2Vv0o V2, where

s = JsF M srE)I +2 (E)Fg T
E 5(Fs TR 1)
Fs =1 r ug; Js:=detFs:

Problem 4.6 (Variational structure problem, INH, Eulerian framework). Find fus;Vs; psg 2
fu2 + V2 f vD+ VI L g such thatus(0) = u?, vs(0) = v?, and

(Ms@vs; V)s+(Ms(vs T )vs; V)s+( osir V)s

=(0s; ) o +( sns; V) +(Nsfs; Vs
(@Qus+(vsr)us Vs, Ys =0 (4.32)
(l deth, p)s =0 :

forall f Y; v; Pg2VY VO Lg, where

S pSI + S(Fs 1Fs T I) ;
E = 3R TR 1)
Fs =1 r us; Js:=detFs:
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Section 4.7.2, Material deformations in an Eulerian framewrk, Variational formulation

Just as in the Lagrangian framework, in both the St. Venant-Kirchho Problem 4.5 and the
incompressible neo-Hookean Problem 4.2 and v are suitable extensions of the prescribed
Dirichlet data on the boundaries of g, and gs is the Neumann boundary condition on gy .
Similarly as for the uid problems (Problems 4.1, 4.2) we haw "hidden' the uid-structure
interface condition of steadiness of velocity in part of theboundary condition v2. The uid-
structure interface condition of steadiness of sng we have let stand. The FSI boundary
conditions will be treated in Section 5.2.
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Chapter 5
Fluid-Structure interaction formulation

In this chapter, we introduce the "‘monolithic’ ALE and Eulerian variational formulations for
uid-structure interaction problems.

There are two general approaches to modelling uid-structue interaction, the “partitioned’
and “monolithic' approaches. In the partitioned approach each problem is swed separately.
Since the boundary conditions and the domain deformations e not directly coupled, it
becomes necessary that the results from the one problem areqressed and provided to the
other problem. Depending on how well one wants the uid-structure interaction boundary
conditions to be met, it may be necessary to solve the separatproblems multiple times. Thus
this approach is costly since it either implies multiple iterations or, when few iterations are
desired, a loss of accuracy.

Hence the desire to solve both problems in a uni ed monolithc framework that implicitly
demands that the natural uid-structure interaction bound ary conditions be ful lled. Both
the uid and the structure problems, which are essentially momentum conservation problems,
left in their natural framework, cannot be combined into one conservation equadn due to
the di erent reference frames.

The rst well-known approach to this discrepancy is to rewrite the uid problem in a
structure-appropriate framework. This leads to the “arbitrary Lagrangian-Eulerian' (ALE)
framework, which essentially introduces a domain deformabn function T(%;t): ¢ I !

¢ (t). Just as with the partitioned approach the structure problem is left in its natural
framework, the interaction interface is tracked in the uid domain by deforming the uid
mesh. Such approaches are generally referred to amterface tracking' methods. With this
function the uid problem is rewritten as one on the reference domain /\f , which is xed in
time. We explain this approach in Section 5.1.

In this thesis, we also follow the alternative (to our knowledge new) way of posing the uid
as well as the structure problem in a fully Eulerian framewok. Instead of changing the
reference frame of the uid problem to match the structure, we change the reference frame
of the structure to match the Eulerian uid frame. Since all structure state variables are
now in an Eulerian framework it is necessary to introduce a vaiable that either contains the
initial position or displacement of the material points.

We refer to this set of data as the “Initial Position set' (IP set). The set is convected
with an appropriate velocity- eld. It provides informatio n for discerning not only material
displacement but also for distinguishing between the di erent phases, uid and structure.
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Chapter 5, Fluid-Structure interaction formulation

Thus the IP set is also used for identifying the uid-structu re interface. Such an approach
is generally referred to as’interface capturing', a method commonly used in the simulation

of multiphase ows, [JoRe93a, JoRe93b]. Examples for the us of such a phase variable are
the Volume of Fluid (VoF) method [HiNi81] and the Level Set (LS) method [ChHoMeOs,

OsherSethian, Sethian99].

We explain this approach in Section 5.2.

5.1 ALE variational form

The variational ALE formulation of the uid problem 4.2 is ha ndled on the domain ;. The
variational Lagrangian formulation of the structure probl em 4.3 is handled on the domain
"s. By construction the uid-structure interaction interfac e “; of both problems match.
We combine both problems into one complete problem on the cobined domain = "=
"1 NI "s. Here, the steadiness of velocity across the uid-structue interface”; is strongly
enforced by requiring one common continuous eld for the vebcity on . This is akin to
saying that ¢ has at all times a trace on”'; which is akin to requiring that ¢ 2 9° + ¥°. The

stress interface condition
JiMF T = JonsFs TAe on™

is still present in the form of a jump of the rst Piola-Kirchh o normal stresses of both
systems
(Jt M B Tae ™)a + (J50sFs T sy ™) (5.1)

on the right hand side. By omitting the boundary integral jum p (5.1) the (weak) continuity
of the normal stress becomes an implicit condition of the cornined variational formulation.

The combined formulation though implies that a domain mapping functiong T; for the uid
domain be known. Such a mapping is obtained by adding an auxiry problem to the uid
and structure problems. The boundary conditions to the mappng are clear. There is no
deformation on all outer boundaries "; n”;, and the deformation on ”; should be equal
to 0s. Thus the global deformation & with @; | = s must have a trace on”;, which implies

that a 2 aP + Y0,

The deformation itself can be sought as the solution to varias deformation problems, the
simplest being the harmonic deformation. If it is necessarythat the deformation preserve
volume an incompressibility condition can be added in the fom of J; = det(1+ rbos) =1 or

in a simpli ed form d&v{s = 0. If the deformation should be as smooth as possible, then
as an alternative the biharmonic equations can be solved.

The remaining parts of the Neumann data@ and ¢s now form the Neumann boundary data
on "y = “in [ "sv and are combined to@. The right hand side functions f; and f are
combined to f". We write the Cauchy stress tensor for the whole domain as fédws:

N — N, N\ N N -
- ftsTs!

f
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Section 5.1, ALE variational form

Here, ~¢ and " are the characteristic functions of ¢ and ", respectively, which are deter-
mined by the domain:

1. r2 "

0, 22" [ "i; fsi=1 g (5.2)
) S I

N (R) =

In Problem 5.1 we rst state the complete variational form for uid-structure interaction

in an arbitrary Lagrangian-Eulerian framework. For terseness we combine both models for
both the compressible St. Venant-Kirchho materials (STVK ) and the incompressible neo-
Hookean materials (INH). The structure displacement g is continued harmonically into the
uid domain. In the thereafter following Problem 5.2 we stat e the complete variational form
with a biharmonically continued structure displacement.

Problem 5.1 (Variational uid-structure problem, ALE framework, h armonic continuation).
Find fo;¢;pg2faP + Vg f 0P + 0%y [, such that 0ji=g = 4°; 0ji=0 = AP, and

("shsdht; ™M)+ (M1 T (@ + (F Y0 @f) P)); )
HINE TR ) = (g M H (s DY)

(" @v(TF 10); P+ (A 2P PP =0 (STVK material) ;
(M EV(IF 1) MY+ (r (I 1);"P) =0 ; (INH material) ;

(Ms(dd 0); ")+ (N AP P ) =0
(5.3)
for all f"u; "V, g 290 Y% (| where ~p; 7, are small positive constants and” :=
AR+ A A With ( e
1 f’
f = 0 22" N s =1 (5.4)
’ S (]

N

and
A= P+ g (PO T+ P OTROT),
J IF( SWE) +2 E)FT; (STVK material) ;

_,,
|

s pl+ S(FFT I1); (INH material) ; g
F o=pf:f=detF:T:=1+Pa; (5:5)
(L g I Cg; (INH material) ;
' f\ V% 0\ V0 ; (STVK material) :
\

As a modi cation the next Problem 5.2 continues the structure displacement biharmonically
into the uid domain. Instead of requiring the biharmonic eq uation b2y = 0 be satis ed
in the uid domain, we introduced an auxiliary equation W = Bu on the whole domain and
then require the harmonic equation bw = 0 be satis ed in the uid domain. Details can

be found in [Ci78, BaOsPi80]

35



Chapter 5, Fluid-Structure interaction formulation

Problem 5.2 (Variational uid-structure problem, ALE framework, b iharmonic continuation).
Find fo;0;w;pg2faP + X% f 0P +X%g ¥ (7, such that ji=o = ¥°;0ji=o = A°, and

(st M)+ (M T (@ + (F Y @f) Py0) ™)
HINE TN =g M)a (s DY)
(" @v(TF 10); P+ (A 2P PP P) =0 (STVK material) ;
(" Gv(IF W) M)+ (2 s(d 1);"P) =0:; (INH material) ;

(f; "Wy + (PP W)y =0 ;
(Ps(dh 0); M)+ (Mg A PW P M) =0

(5.6)
forall f"u;"v, "W, g 290 ¢0 [ where”,; ", are small positive constants and
Nz NN+ Mg, with all other de nitions as in the equations in (5.4)-(5.5). \

For later purposes we also pose the stationary version of Plidem 5.1.

Problem 5.3 (Variational stationary uid-structure problem, ALE f ramework, harmonic con-
tinuation). Find fo;0;pg2faP + Vo f 0P + VO [, such that

(M d (B 20 0)0 N+ (P TR = (g Ya (s DY)

(" @v(JF 10); P+ (A AP P =0 (STVK material) ;

(" Gv(IF W) M)+ (2 s(d° 1);P) =0; (INH material) ; ©.7)

(A0 )+ (M AP0 =0 ;

for all f"u; ™V, "g 290 0 [, where ~p;~, are small positive constants and” :=
NN+ Mg, with all other de nitions as in the equations in (5.4)-(5.5). \

5.2 Eulerian variational form

The variational Eulerian formulation of the uid problem 4. 1 is handled on the domain .
The Eulerian framework for treating elastic material deformations was presented in Section
4.5.2. The variational Eulerian formulation of the structu re problem (4.5 in the St. Venant-
Kirchho case or 4.6 in the incompressible neo-Hookean ca$es handled on the domain

s(t).

By construction the uid-structure interaction interface ; of both problems match. We
combine both problems into one complete problem on the combied domain = ([ [ .

Again, exactly as in the ALE situation in the previous section, steadiness of velocity across
the uid-structure interface ; is strongly enforced by requiring one common continuous edl
for the velocity on . This is akin to the velocity having at all times a trace on ; , which
is akin to requiring v 2 vP + V0. The stress interface condition

fNg = sNf oNn

36



Section 5.2.1, Eulerian variational form, Initial position set

is still present in the form of a jump of the Cauchy normal stresses of both systems

(fne; V) +( sns; V), (5.8)

on the right hand side. By omitting the boundary integral jum p (5.8) the (weak) continuity
of the normal stress becomes an implicit condition of the cormined variational formulation.

The remaining parts of the Neumann datags and gs now form the Neumann boundary data
on n = ¢ [ s~ and are combined tog. The right hand side functions f; and fs are
combined to f . We write the Cauchy stress tensor for the whole domain as fddws:

= ot s st

Here, ¢ and g are the characteristic functions of ; and g, respectively, which are now
determined by x and u:
(

1, x u2 ¢
X) = =1 X 5.9
£ (x) 0 x u2 o i s f (5.9)
The requirement and de nition of the characteristic functi ons ¢; ¢ implies that the defor-
mation no longer be restricted to the structure domain, and that “'some kind' of deformation
u be provided on the uid domain.

We will want the Eulerian characteristic functions to have the same behavior as their La-
grangian counterparts in regards to theirs limits on ; depending on the “incoming' direction.
Thus for any sequence of (permissible) points with the Lagragian positions®; with the limit
R1 the Eulerian sequence of the spatial positions (of the same@nts) ®; = x; + u(x;) must
have the same limit®; = x1 + u(Xy ). This requires that u be smooth not only its restric-
tion to s or its (yet to be determined) restriction to ¢, but that it have a trace on .
Thus u 2 uP + VO,

5.2.1 Initial position set

We introduce the “Initial Position set' (IP set) ( ;t): I ! . If we look at a given
“material' point at the position x 2 and the time t 2 |, then the value (x;t) will tell us

what the initial position of this point was at time t = 0. This set of values is transported in
the full domain with a certain velocity w. The convection velocity in the structure will be

the structure velocity itself, w; | = vs. If the uid velocity were to be used for convection

in the uid domain, then the displacements there would eventually become very entangled.
For this reason we use an alternative velocity. We explain this in more detail below. With

this notation, the mapping is determined by the following variational problem:

Problem 5.4 (Initial position set). Find 2 o+ V°, such that
(@ +(wr); )=0 8 2V°; (5.10)
where ¢ is a suitable extension of the Dirichlet data along the bouraties,

x;00) =x; x2 ;
(x;t) x; fxtg2@ Iy
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Chapter 5, Fluid-Structure interaction formulation

SinceRr = (%0 = (x;t), 0(%;t) = u(x;t) and R + 2(%;t) = x it follows that
X= +u: (5.11)
Using this in the IP set equation (5.10) yields
Problem 5.5 (Reduced initial position set). Find u 2 ug+ V°, such that
(@u w+(w r)u )=0 8 2V°; (5.12)
where ug is a suitable extension of the Dirichlet data along the bouraties,

u(x;0) =0; x2 ;
u(x;t) =0; fxtg2@ (0;T]:

The value of u in the uid domain will be determined by the choice of the convection
velocity win . If we were to use the uid velocity this would eventually lead to increasing
entanglement, which would necessitate a continual reinitalization of the IP set. The method
of reinitialization is often used when using the Level Set m#éhod for example when modelling
multi-phase ows [JoRe93a, JoRe93b].

As an alternative, we use the harmonic continuation of the stucture velocity into the uid
domain ¢, which is denoted byw and satis es
(sw v); )+( ¢ wrwr )=0; 8 2V (5.13)

where , is a small positive parameter. By this construction, the digplacement us in the
uid domain becomes an arti cial quantity without any real p hysical meaning, i.e.,d;us = Vs,
but generally dius 6 vs.

Complete formulation

We combine the uid Problem (4.1), the structure Problem (4.5 in the St. Venant-Kirchho
case or 4.6 in the incompressible neo-Hookean case) and theduced Initial Position set
Problem (5.5), to obtain a complete variational formulatio n of the FSI problem in an Eulerian
framework. In the case of STVK material the (hon-physical) pressureps in the structure
subdomain is determined as harmonic continuation of the owpressureps .

Problem 5.6 (Variational uid-structure problem, Eulerian framew ork). Find elds fu;v;w;pg 2
fuPl + VOg f vP + VOg V O L | such that vji=g = V°, uji=o = u°, and
(s e+ SIN)@+(vr)v); +(sr )=(g ")+ ¢ ¢+ %5 V),
( tdivy; Py+( s prpsr P)=0; (STVK material) ;
( tdivy; P)+( (1 J); P)=0; (INH material) ;
(@ w+wru “)=0;
(sw v); M) +( ¢ wrwir ")=0;
(5.14)
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forall f Y; v; W; Pg2VvO VO VO |  where ,; , are small positive constants and
= f f+ s s With

(1 2"
, X u f
= =1 ; 5.15
f O; X u?2 As[ Ai;; S f ( )
and

£ = (Ph+2Z g (V)

pl+ (F IFF T 1) (INH material) ;

) JF Y sWE)l +2 E)F T (STVK material) ;

E =iF TF Y 1); ()=2¢ +r T); (5.16)

F =1 r u;J:=detF;

fl:iLg fL ;Lg; (INH material) ;

fL\V %L\ VOg; (STVK material) :

\
In this variational formulation the position of the uid str ucture interface ; is implicitly
given by the displacementu:

iW)=fx2 jx uxt)2 " g: (5.17)

Notice that the system (5.14) is nonlinear even if in a simpli ed form the two subproblems
are linear, e.g., for a Stokes uid interacting with a linear elastic structure.

5.2.2 Formulation of the “stationary' FSI problem

In some situations the solution of an FSI problem may tend to a'steady state' ast ! 1

For later purposes, we derive the set of equations determinig such a steady state solution
fu:v:w:;pg2fuP +Vvo f Vvl + VO VO L . The corresponding limits of the
characteristic functions and subdomains are denoted by ;; ¢ and ;; 4, respectively.
Further, the uid velocity becomes constant in time, v; :=lim Vi . and the structure
velocity vanishes, v 0, which in turn implies w 0.

The steady state structure displacement ug is likewise well de ned, but the correspond-
ing (‘non-physical’) uid displacement is merely de ned by u; = qu =limy v, and
therefore depends on the chosen construction ofy; , as harmonic extension ofw; . Alter-
natively, it could be de ned by any suitable continuation of ug to all of , e.g., by harmonic

continuation.

The steady state pressure is determined from the limiting equations. Then, with suitable
extensions uP and vP of the prescribed Dirichlet data on @ , the equations (5.14) of the
Eulerian FSI Problem 5.6 reduce to the following “stationay' form (dropping for simplicity
the stars):
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Chapter 5, Fluid-Structure interaction formulation

Problem 5.7 (Variational 'stationary' uid-structure problem, Eu lerian framework). Find
fu;vipg2fuP + vog f vP + VOg L , such that

(tevrve D+Csr =(g ")+ 1+ $I%E )
( tdivy; P)+( s prp;r P)=0; (STVK material) ;
( fdivv; P)+( (1 J); P)=0; (INH material) ; (5.18)
(¢t uf™; Y+( sv; Y)=0; (static continuation of us);

(¢ orur Y+( sv; YY=0; (or harmonic continuation of ug);

forall f Y; V; Pg2Vv% VO L , where ,and optionally , are small positive constants
and = ¢+ ¢ g, with all other de nitions as in the equations in (5.15) and (5.16).
\

5.2.3 Theoretical results

Theoretical results for uid-structure interaction can be found for certain reduced systems.
Many results can be found in literature based on interactionof uid with xed rigid struc-
tures. In [DeEs99, DeEs00] the authors show that solutionsast for a a nite number of
rigid non-colliding structures embedded in the uid. The considered uids are incompressible
as well as compressible isentropic uids modelled by the Naer-Stokes equations. Previous
work in this direction can be found in [De99].

Using an approach similar to that in [DeEs99, DeEs00] the autors of [DeEs+01] prove
the existence of weak solutions for an instationary uid-elstic interaction model. This
is achieved with "Leray's method', i.e. by nding weak solutions that satisfy bounds of
the energy estimate of the complete system. The authors modehe elastic structure as a
compressible linearized neo-Hookean material with a nitenumber of elastic modes.

In [LeMa00] the authors investigate an instationary linearized uid-structure interaction
problem for a viscous uid and a thin elastic shell with small displacements. The authors
simplify the problem by neglecting changes to the geometry. Based on these premises by
using energy estimates they show that the problem is well pad, that a weak solution
exists and that the discrete approximation, based on their dscretization, converges to the
continuous solution.
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Chapter 6

Discretization

In this chapter, we detail methods used for discretizing andsolving the FSI Problems in
the ALE and Eulerian frameworks presented in the previous clapters. The method we use
is based on conforming nite elements (FE), for a general intoduction to the FE method
we refer to [Br97, BrSc94, Ci78]. First we provide the framewrk for the nite element
method. Then we describe the complete variational forms, with are the basis for the
Galerkin discretizations. We then describe the Galerkin dgcretization. Since we are using
an “equal-order' approach, the solutions to the discrete fomulations do not ful Il the “inf-sup'
condition (see [Br97, GiRa86]). To manage this instability we use the “local projection sta-
bilization' method introduced by Becker and Braack [BeBrO1, BeBr03]. We brie y mention
the overall solution process. The time discretization is baed on using a fractional-step- or
implicit Euler scheme [Rannacher00, Rannacher04, GI03, Bal+87, MU94].

At each time-step a nonlinear problem is solved using a Newto iteration. This relies on
solving the linear defect-correction problem, which in tum requires that the Jakobi matrix of
the complete FSI problem be known. Due to the nonlinear and lege nature of the complete
FSI problems in the ALE or Eulerian frameworks, calculating the Jakobi matrix can be
cumbersome. We explain how this can be done using using an apgach that is also used in
the method of “automatic di erentiation’.

6.1 Finite element triangulation and mesh notation

We will be using the known nite element method for discretizing and solving the problems.
This approach demands that the domain be fully partitioned into convex non-overlapping
guadrilateral cells K, with the partitioning referred to as the triangulation Ty, := fKg.

Such a triangulation is referred to as'regular', if any cell edge is either a subset of the domain
boundary @ or a compete edge of another cell.

The mesh parameterh is a scalar cell-wise constant function. On each celK, its value is
the cells diameterh;x = diam(K').

To ensure approximation properties of the nite element spaces which are constructed based
on the meshTy, we require that the uniform-shape and uniform-size conditons be ful lled.
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De nition 6.1. A mesh Ty, fullls the “uniform-shape condition, if there is a constant
Cush = Cush (Th), SO that

h
K Cun 8K 2 Th:
K

with ¢ being the inner diameter ofK . \
De nition 6.2. A mesh Ty ful lls the “uniform-size condition', if there is a constantC,g =

h
M Cusi 8K 2 Th;
hk
with hmax being the maximal cell diameterh := maxg 21, hjk - \

To increase the number of cells in a triangulation, we employre nement', which consists of
subdividing a cell into four subcells. Cell subdivision is @bne by connecting the midpoints of
opposing edges on each cell. A re nement is global if this is @ahe for each cell. An example
of a regular mesh and two global re nements is shown in Figures.1. Each of the resulting
meshes after re nement is also regular. "Coarsening' of four cells is possible if they were
generated by prior re nement of some parent cell'. A group of four such cells is referred to
as a patch'.

Figure 6.1: A regular mesh after two global re nement cycles

In addition to global re nement, we will also use local re nement. This consists of only

subdividing some cells in a given triangulation. Such re nenent leads to cells nodes that are
placed on the middle of the neighboring cells' edges. Such des are referred to ashanging

nodes No “hanging node re nement' will be done that leads to more han one hanging node
per edge. In Figure 6.2 local re nement is applied twice leathg to hanging nodes shown as
dots.
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Figure 6.2: A regular mesh and two local re nement cycles wih hanging nodes.

These “hanging nodes' do not carry degrees of freedom and tieerresponding function values
are determined by (linear) interpolation of neighboring ‘regular' nodal points. For more
details on this approach see [CaOd84] or [BaRa03].

The " nest level' of cells of a triangulation Ty, consists of all cells that can be removed by
coarsening in one sweep. The resulting coarsened trianguian is referred to as Top.

Sometimes we will require that a triangulation Ty, is organized in a patchwise manner. This
means that Ty, is the result of global re nement of the coarser triangulation T, , as shown
in Figure 6.3.

Figure 6.3: A triangulation Ty, with hanging nodes (left) is re ned globally once to obtain
a triangulation Ty with patch structure (right).

6.2 Finite element spaces

We discretize function spaces using the usual conforming ite element method as explained
in literature, e.g. [Br97, BrSc94, Ci78].

Given a function spaceV, the triangulation Ty and the cell-wise space of polynomial func-
tions Q(K ), we construct the nite element function spaceV, V by

Vhi= "2V ' 2Q(K) 8K 2 T

Each polynomial function spaceQ(K ) is actually de ned on a reference cellk := (0;1)? as
the reference function spac&)(K). The function space of polynomials of degre@ 0 on K
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we denote as
QP(K):=span R R=fRy;:::;Rg; 2f0;:::;pg®

where the multi-index and its use are as in De nition 2.3. In this thesis we will only be
using bilinear elements, thusp = 1 and we will omit the degree p (if not otherwise noted)

and simply refer to Q(K'). The reference function spacegd(K) is mapped to the respective
cell K with help of the mapping Tk : K ! K ,

n

0
QK)= '(x)="(Tk®) "2Q(K) :

The mapping Tk of K to K (Figure 6.4) is uniquely described by the eight coordinate @lues
of the corners of K. Since a normal one dimensional bilinear quadrilateral nite element
function on K can be uniquely determined by prescribing values on all foucorners, it follows
that Tk 2 Q(K)2. Thus the reference function space and the mapping functiorspace are
the same. Such nite elements are referred to asisoparametric'.

Figure 6.4: Mapping of K to K .

It is clear that the numbering of the nodes on the reference de K and actual cell K should
be in the same order and orientation. If this were not so, it wailld make a " ipping' of
the reference cell possible, which is equivalent to the mappg's Jakobi determinant being
negative and thus its area being counted as negative.

6.3 Complete variational formulations

6.3.1 ALE

We introduce the spaces

Wamo .= g0 go .
Wah =0 9o [*;
Wano = 7 2 \Wanhj =

Ay, M. Npy - N _ Ny _ .
LT 'ojt=0 T jt=o_og

We introduce the semilinear forms Fa"(0)(9 ; A2(0)() as the sums of the right- and
left-hand side equations (5.3) of Problem 5.1 (in the harmoit continuation case):
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Fan0)() = (*g ™, + (M s+ 2 o DY)

A (0)(§:= (M Ndd ™M)+ (M S @+ (F Y0 @f) Py ™)
_|_((J\/\|'_A T;[b ’\V)
(M @v(IF 20); ")+ (A AR PP ) (STVK material) ;
(M Gv(FE 20): P+ (A (F 1); *P)  (INH material) ;
(M s(dh 0); Y+ (A AP0 MYy
(6.1)
with O = f¢;0; pg.

With this notation, we can write the variational Problem 5.1 in compact form:

Problem 6.1 (FSI, ALE, harmonic continuation, Galerkin form). Find O 2 OP + {yah:0,
such that Oji—g = 0°, and,

Ay  FO))=0 8" 2 WaNo, (6.2)

where OP = £9P:0P;0g is an appropriate extension of the Dirichlet boundary condions.
The semilinear forms and all further notation are as de ned in the Equations (6.1) and the
Problem 5.1. \

For later purposes we summarize in this notation the statiorary FSI ALE Problem 5.3 and
de ne the semilinear form A2's(0)() as the sum of the left-hand side equations (5.7).

Problem 6.2 (Stationary FSI, ALE, harmonic continuation, Galerkin form). Find O 2 OP +
Wahi0 sych that

Ars(0)()  FE@O) (=0 87" 2 WO (6.3)

where OP = f¢P;0P; 0g is an appropriate extension of the Dirichlet boundary condions. \

6.3.2 Eulerian

We introduce the spaces
weo =vyo yo yo |
we =Vv0 vOo vo | .
Weo =f 2Wej = f v, 4 W Pgp = i, =0g:

jt

We introduce the semilinear form A¢(U)() as the sum of the equations (5.14) of Problem
5.6:
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A*(U)() = (C ¢ e+ NI)@+(vr)v); )+ Y) (g5 )y (st
( rdivv; P)+( s™r pir P) (STVK material)
( ¢divy; PY+( (1 J); P (INH material)
+(@u w+wru Y
+(os(woov); M)+ N wir )5
(6.4)
with U = fv;u;w;pg.

With this notation, we write the variational Problem 5.6 in ¢ ompact form:

Problem 6.3 (FSI, Eulerian, Galerkin form). Find U 2 UP + W®0 such that Uji-o = U°,
and,

A(U)()=0 8 2Wwseo; (6.5)

where UP = fvP;uP:0;0g is an appropriate extension of the Dirichlet boundary condions.
The semilinear form and all further notations are as de ned in the Equation (6.4) and the
Problem 5.6. \

For later purposes we summarize in this notation the statiorary FSI Eulerian Problem 5.7
and de ne the semilinear form A®S(U)() as the sum of the equations (5.18). The semilinear
form A°®S is essentially the de nition of A€ without the time di erentials.

Problem 6.4 (Stationary FSI, Eulerian, harmonic continuation, Galerkin form). Find U 2
UP + wesO such that

ASU)()=0 8 2 wesO; (6.6)
where U = fv;u;pg 2 Wes0 .= v0O yO | =~ = f V. u pg 2 Wes0 gnd UP =
fvP;uP;0g is an appropriate extension of the Dirichlet boundary condions. \

6.4 Spacial discretization

For discretizing the Problems 6.1 (ALE framework) or 6.3 (Eulerian framework) in space,
we use equal-ordeiQ; nite elements (as described above) for all unknowns, wheré¢he cor-
responding nite element spaces are denoted by., L, V, V, W, W, etc.. Within
the present abstract setting the discretization in time is likewise thought as by a Galerkin
method, such as the dG(r) (‘discontinuous' Galerkin) or the cG(r) (‘continuous' Galerkin)
method. Here, the dG(0) method is closely related to the baciward Euler scheme and the
dG(1) method to the Crank Nicolson scheme. However, in the st computations described
below, we have used a Galerkin method only in space but nite derence schemes in time.
The full space-time Galerkin framework is mainly introduced as basis for a systematic ap-
proach to residual-based a posteriori error estimation as escribed below.
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Section 6.5, Time discretization

The spatial discretization by “equal-order' nite elements for velocity and pressure needs
stabilization in order to compensate for the missing “inf-sip stability’. We use the so-called
“local projection stabilization' (LPS) introduced by Becker and Braack [BeBrO1l, BeBr03].
We use an analogous approach for the ALE and Eulerian framewds in all variations (in-
stationary, stationary, compressible St. Venant-Kirchho , incompressible neo-Hookean).

We detail the stabilization terms for the instationary FSI p roblem in the Eulerian incom-
pressible neo-Hookean case. We also use the approach forlstaing the convection as well
as in the transport equation for the displacementu. We de ne the mesh-dependent bilinear
form

. . 1 . . 1
fffRz T s szt IVhliikpe T IWhll K R

Further, we introduce the " uctuation operator' 1 :V,! Vo, on the nest mesh level Ty,
by n=1 Po,where Py : V! Vo, is the L2-projection. The operator |, measures
the uctuation of a function in 'V}, with respect to its projection into the next coarser space
Vo, . With this notation, we de ne the stabilization form

S¥ (U hy ) =(r n bt n B +(Va T n Ve T hop)
+(Wh T h Wh I h o)

where the rst term stabilizes the pressure, the second onehte transport in the ow model,
and the third one the transport of the displacement u,. Then, the stabilized Galerkin
approximation of problem (6.6) reads: Find Uy 2 UP + WE®, such that

z

.
A% (Up)( n)dt=0; 8 n2W°; 6.7)
0

with A% (Up)( n) = A%(Un)( n)+ S% (Un)(Un; 1) : (6.8)

The LPS has the important property that it acts only on the dia gonal terms of the coupled
system and that it does not contain any second-order derivawes. However, it is only “weakly'
consistent, as it does not vanish for the continuous solutia, but it tends to zero with the
right order as h! 0. The choice of the numbers ; ; in the stabilization parameter g
is, based on practical experience, in our computations =1=2,and = =1=6.

6.5 Time discretization

The discretization in time is by the so-called “fractionalstep- scheme' in which each time

step tp, 1! t, is splitinto three substepst, 1! t, 1+ ! t, ! t,. For brevity, we

formulate this time stepping method for an abstract di erential-algebraic equation (DAE)
M 0 v(t) . AWE) B v _ by 6.9)
0 0 p(t) BT C p(t)y —  ct) '
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which resembles the operator form of the spatially discretzed incomprBs_sible Navier-Stokes

equations with pressure stabilization. With the parameters =1 2=2 = 0:292893:;,
=1 2, 2(@1=21,and =1 |, the fractional-step- scheme reads:
M+ kA " * kB v _ M kA M " 1+ kpn 1t
BT C pn 1+ - o 1+
M+ %KAM %B i LY AN T+ v o4 G
BT C p" - ok
M+ kA " kB vie _ [M KA ™ VM + Kby .
BT C p" ok ’
where A" * = A(x" ), " 1:= Bty 1), etc.. This scheme is of second order and

has a similar work complexity as the well-known Crank Nicholson scheme (case = 1=2).
The fractional-step- scheme was originally proposed in form of an operator splithg scheme
separating the two complications “nonlinearity' and “incanpressibility' within each cycle
th 1! th 1+ ! tn ! t,. However, it has also very attractive features as a pure time
stepping method. Being strongly A-stable, for any choice of 2 (1=2;1], it possesses the
full smoothing property in the case of rough initial data, in contrast to the Crank Nicholson
scheme which is only conditionally smoothing (fork  h?). Furthermore, it is less dissipative
than most of the other second-order implicit schemes and theefore suitable for computing
oscillatory solutions; for more details, we refer to [Rannaher00], [Rannacher04], [GI03],
[BrGI+87] and [MU94].

For computing steady state solutions, we use a pseudo-timetepping techniques based on
the simple ( rst-order) backward Euler scheme, which in the notation from before reads

M + kA" kB Vi Myt Tk b
BT C p" ok ’

6.6 Solution of the algebraic systems

After time and space discretization, in each substep of therctional-step- scheme (or any
other fully implicit time-stepping scheme) a quasi-stationary nonlinear algebraic system has
to be solved. This is done by a standard Newton-type method wh adaptive step-length
selection, in which all nonlinear terms (i.e. the transport terms, the structure stress terms,
the ALE mapping terms) are correctly linearized. The linearization of theses terms is detailed
in the next sections. Only the stabilization terms and the terms involving the characteristic
function ¢, determining the position of the interface, are treated by asimple functional
iteration. In all cases the iteration starts from the values at the preceding time level. The
resulting linear subproblems are then solved by the Gener@ed Minimal Residual Method
(GMRES) method [Saad] with preconditioning by a geometric nmultigrid method with block-
ILU smoothing. In general solving the linear subproblems wih such an approach is rather
standard nowadays, we omit its details and refer to the releant literature, e.g., [Turek99],
[Rannacher00], or [HronTurek206]. For the implementatioral details of using the multigrid
on locally re ned meshes we refer to Becker and Braack [BeB1@).
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6.7 Directional derivatives

The rst step for solving the Problems 5.1 (in the ALE framework) and 5.6 (the Eulerian
framework) is using discrete spatial subspaces and using ame-stepping scheme to approx-
imate the time-di erentials.

At each time-step the discrete problems are nonethelessonlinear. To solve the nonlinear
problems we use a Newton iteration, the basis of which is solug a linear defect correction
problem. The linear operator of the problem is essentially if time-stepping parts and factors
stemming from the approximating of the temporal derivatives are neglected) the directional
derivative of A2"(0; % (in the ALE framework) or A®(U; ) (the Eulerian framework):

AR°(0o) (" )= AT 0o+ (Y o

A¥(Uo)( ;)= FA%(Uo+ )() i-=o:

For linear or almost-linear systems such as the Navier-Stols equations obtaining the direc-
tional derivative is a straight forward task without much di culty. For structure mechanical
systems (for example based on the St. Venant-Kirchho materal law) though, writing down
the explicit directional derivative can become a tenuous tak. For example in the Lagrangian
case the tensor product(J"F T;|b"\") is notably nonlinear regarding & since:

FAE T=F( strE)l +2 $E);
with  F=1+Pa;E=LFTF 1):

Using the alternative Eulerian framework the observed tensr productis (; r ' ). It does
not become any easier, since the Cauchy stress tensoris based on the inverse of the “reverse
deformation gradient' (I r u) since

=JF 1( s(rE)I +2 E)F T;
with F=(l r u); E=3F TF 1 1I):

6.7.1 Automatic di erentiation

To alleviate this problem we use a method that is the basis of automatic di erentiation’
[Gr89, Rall81]. The method is used to determine the derivatve of a function at a given posi-
tion. It is based on the technique of mechanically applying he basic rules of di erentiation
to the “serialized evaluation' of a function. This is achiewed by breaking down the evaluation
of the function for a given value into a sequence or chain of tsc elementary evaluations.
Consequently, since evaluation is done in sequence, the rdng values from one evaluation
are used in a later evaluation. To these elementary parts theules of di erentiation (i.e. the
chain rule, the sum rule and the product rule) are applied.

The method of automatic di erentiation lies between those o symbolic di erentiation and the
approximation of derivatives by divided di erences. It is similar to symbolic di erentiation
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in so far that the results are calculated by evaluating the sane sequence of functions. It
is thus just as accurate as symbolic di erentiation. The di erence is that, in contrast to
symbolic di erentiation, all “parsing' is done before comgplation of the program, when the
function evaluation is serialized and di erentiation is applied to all levels of the serialization.
This parsing before compilation is what gives the method a sght similarity to the method
of divided di erences. Due to the method of evaluation thoudh, it is by nature faster than
divided di erences.

The full theory of automatic di erentiation usually also in cludes implementing the method in
the form of a precompiler that completely relieves the user bapplying the method and liter-
ally generates the derivatives in an automatic and e cient fashion, e.g. ADIFOR [BiCa+92],
JAKEF [Hi85], GRESS [HoWo+88], PADRE?2 [IrKu87].

In this work we only use the method, dierentiation is done “manually’. We implement
the method of “reverse dierentiation'. In a rst step, the * forward sweep', the function
is broken down into a sequence or chain of basic elementary &wuations. Each of these
evaluations is stored in a variable. In the second step, thereverse sweep', the rules of
di erentiation are applied. As a basic example we calculatethe derivative of a given function

f (x) = sin( xtanh(x))log(x 1=x) at the position Xg.

forward sweep reverse sweep
z H { z H {
fq = 1=xo f = 1=x3
fo = log(xg fq) fg = (@ f](_)):(Xo fq1)
fa := tanh( xo) . 12 = 1 tanh?(xo)
fa = Xgfs ' f‘? = fa+ Xofg
fs = sin(fa) fo = flosf 4)
fe = fsf, fg = fgf2+f5fg
f(xo) = fs fAxo) = f¢

For reasons of brevity we will only demonstrate how the methal of automatic di eren-
tiation can be used to obtain the directional derivatives of the stationary incompressible
neo-Hookean FSI Problems in the ALE (Problem 5.3) and Euleran (Problem 5.7) frame-
works.

6.7.2 ALE framework

As a rst step towards serialized evaluation' of the semilnear form A2's(0)(§ (Problem
5.3) we de ne the following values.
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De nition 6.3.
B1 :=#;By:=P¢;B3:= Po;
Bs =1+ Bs; (=F )
Bs :=B,%; (=F1 )
Be :=B4Bs |I; ( =0 ) s
B; :=detBy; ( =3 )
Bg := B7BsB1; ( =JFF Y )
Bg = B2Bs; ( = PoF ! )
Bio = B4Bj ; ( =FFT ) (6.10)
Bir = Pl+ ¢ t(Bo+Bg); ( ="¢ )
Bio == Pl + s(Bwo 1); ( ="s )
Biz ="¢B11+"sB12; (=" )
Bis = B7B13B{ ; (=T )
Bis := B7BgBj ; ( =JF Wby );
Bis = @ivBg; ( = &v(JIF ) ):
\

We express the evaluation of the semilinear formA2"s in terms of the presented de nitions:
Rars@0)(§= (17N Bis; ")H( BisP ™)
+ MiBis "P)H(Ms(B7 1) P) (6.11)
H(MuMBaP (N By M)
De nition 6.4. The directional derivative of the value B; at the position O and only in
one state direction e.g. the velocity component will be denoted as

BRO)(™) = §Bi(0+ ™) =0;

with “V := f™V;0;0g 2 Wah0, The derivatives in the u- and p-directions will be referred
to in similar fashion. The derivative of B; in all components will be referred to asBiO(O)(’)\ A

Remark 6.1. The characteristic functions #; s although unsteady at the interface, only
depend on the reference positioR. They are independent of the state variabled ¢; &; pg and
consequently have no directional derivatives. Hence they &ive no assigned;-de nitions.

The reason we take note of this simple point is that this is notthe case later in the Eulerian
framework, since there the characteristic functions ¢; s are in part also determined by the
displacementu:

F(X)="e(x u); s(X)="s(x u):

Lemma 6.1. The directional derivative of B, at U in the direction M s

BAO) ™M)= (@)1 + &0y & &o,
+1+ Bo)(B™Y) Bo @™y :
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Proof. We apply the directional derivative in the rst and second components of the dis-
placement to B7 in equation (6.12).

B;=J =detF =det(1+ P0)

1+ @0, Bo,

= @02 14 @02 (6.12)
1+ B0+ @0y @080, :

Lemma 6.2. The directional derivative of Bs at 0 in the direction ™ is
BYO)(™) = BsBY0)(™)Bs;

provided the directional derivative of B4 at 0 in the direction ™! is known.
Proof. The directional derivative of Bs = F ! is obtained by observing its implicit de ning
equation. SinceB,4 and Bs are inverse to each other, the de nition of Bg is actually an

equation Bg = 0. We apply the chain rule to Bg = B4Bs 1. It follows:
BO)(™) = BYO)(™)Bs+ BsBYO)(")=0;
., BO)X™) = BsBYO)(™)Bs:
Lemma 6.3. The directional derivatives of Bj for i = 1;::::16 at O in the direction Mu
are:
8
B, =4:;B,=P0;B3z=Po S B =0;B3=0;By=mP"N
By, =1+Bj B = B3
Bs =B,! B = BsBYBs
Be =B4Bs | =0 B =0
Br =detBy B =(@")1+ B0, &,
1+ Bo)(@Y) @0.@"
Bs = B7BsBi 2 B = BYBsB1+ B7;B2B;
Bg = BzB5 ! Bg = Bz Bg
Bio = B4Bj BY% = BIBJ+B4BJT
Bir = Pl+ ¢ 1(Bo+ Bg) BY, = ¢ {(BJ+ BIT)
Biz = Pl+ s(Bw I) BY), = <BY
Biz ="tBu+ "B B =7¢BY +~:BY
Bia = B7B;|_3B-5r B:CL)4 = 8981382— + By B](_)3 Bg + B7B13 BgT
Bis = B7BgB; B:?S = B? BgB1 + B~ BSB]_
Big = (g:IVBg ' ’ BZ?G = &v Bg

(6.13)
For brevity all derivatives BYU)( ) have been abbreviated toB’

Proof. In two cases we use the Lemmas 6.1 and 6.2. Otherwise all deaies follow directly
when applying the rules of derivation to the sums and producs, and omitting zero-valued
sums.
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Lemma 6.4. The directional derivatives of Bj for i = 1::::;16 at 0 in the direction "V
are:
9 8

Bi =#%;By=P0;Bs= Pa B =";BY=P";BY=0

Bs =1+Bgs 82 =0

Bs =B,! B =0

Be = B4B5 I Bg =0

B; =detBy4 B? =0

Bg = B7B5Bl Bg = B7B5 B]c_)

Bg = BZBS - Bgo = Bng

Bio = B4B] ! BO, =0 (6.14)

Bin = Pl+ ¢ t(Bo+ Bg) B = ¢ ¢(B§+ BJT)

Bz = pl+ s(Bwo 1) B, =0

Biz ="¢Bu+"sBr2 BY) =7¢BY

Bl4 = B7Blng B](_)4 = B7 BJ(.)S Bg

Bis = ByBgB1 B](_)5 = By BgBl+ B7Bg B](_)

Big = d:IVBg ' ' B]O_G = &iv Bg

For brevity all derivatives BY0)( V) have been abbreviated toB?.

Proof. Analogous to Lemma 6.3.

all zero except for the following four:

8
Biu = pl+ ¢ ¢(Bo+ Bg) 2 5 B = "I
Bio = P+ s(Bwo 1) | ~ B = " (6.15)
Biz ="¢B11+"sBi 3 3 B, = "7 '
Bis = B7B13Bg - BY, = J7B]

For brevity all derivatives BYU)( P) have been abbreviated toB°.

Proof. Analogous to Lemma 6.3.

Lemma 6.6. The directional derivatives of A2 at 0 in the directions (respectively)
v, MU are

ASO)N™ Y= (i MBRON™; M+ BRUO)(™): ™)
+( " BBOY™): P .
+H o ~sBXOY M)
RsYO) (™= (o 195’5(0)(2“); 2“)+( 85’4(0)(2“); P 2“)
+H MBRO)N™M); TP+ BAVY(M); )
+( Ny f'bAu;'b Y) ;
Aahs®(Oy("P; § = ( j"\pBg;,b ey
Proof. Follows by deriving the Equation (6.11) in the respective drection and applying the
Lemmas 6.3, 6.4 and 6.5.
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6.7.3 Eulerian framework

We demonstrate the method of automatic di erentiation for t he semilinear formA®S(U)()
(Problem 5.7, in the case of harmonic continuation ofug). In essence we make the same
steps as in the ALE framework. There is one notable di culty, as already mentioned in
Remark 6.1. In the ALE framework the characteristic functions *; *s have no directional
derivatives, since they depend only on the reference posdn ®. This is not the case in the
Eulerian framework, since

F(x)="5(x u); s(x)="s(x o u):
This di culty is addressed (and resolved).

As a rst step towards “serialized evaluation' of the form we de ne the following values.

De nition 6.5.
Ci =v;C=rv;C3:=ru;
Cs =1 GCs; ( =F )
Cs :=C,l; (=F1'=F );
Ce =C4Cs |I; ( =0 )
C; =detCys; (=J3=31 );
Cs = CsCd; (=F T );
Co = pl+ ¢ (Co+CJ); (= ;¢ ) (6.16)
Cwo = pl+ s(Cg 1I); (= s )
Cu = ¢, ( ="¢(x u) );
Ci2 = s, ( ="s(x u) ),
Ciz = C11Co+ C12Cyp; (= )
Cius = CoCy; ( =(vr)v ),
Cis =divCy; ( =divv )
\

We express the evaluation of the semilinear formA®s in terms of the presented de nitions.
ASU))= ( $CuCua; Y)+(CuCo+ Cp2Cyo;r V)

+( CuCis;  P)+( C2(1 Cog); P) (6.17)
+( uCuCsir Y)+( C12C1y M)

De nition 6.6.  We de ne the following directional derivatives of the value C; at the position
U as (in similar fashion as in the De nition 6.4 in previous sedion)

CAU) V)= Ci(U+ V)0

with vV := f V;0;0g 2 W&O. The derivatives in the u- and p-directions will be referred to
in similar fashion. The derivative of C; in all components will be referred to asCiO(U)() A
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Lemma 6.7. The directional derivative of C; at U in the direction Y is

AU W= ( @NHL1 @u) @ Yau,
+1 @Qui)( @35 Qui@ 5:

Proof. The statement is similar to that of Lemma 6.1. The proof follows in analogous fashion.

Lemma 6.8. The directional derivative of Cs at U in the direction Y is
CoU) “) = CsCU)( “)Cs;

provided the directional derivative of C4 at U in the direction " exists.
Proof. The statement is equivalent to that of Lemma 6.2. The proof fdlows in analogous
fashion.

We will also need the derivatives ofCy1; = ;Ci2 = ¢ in the direction Y. since
()= (x u); s(X)="s(x u):

Obtaining these directional derivatives is not immediately clear due to the unsteadiness of
the otherwise constant characteristic functions. Since weare interested in the in uence of
¢ regarding the rest of the integral, we observe the situationwith an arbitrary function

g2 HY() in the integral:
R

R
(%) g (0 g dx. 619

lim

ro
The derivative in Equation (6.18) is an expression typically encountered in the eld of shape
and structural optimization, see for example [S0Z092, AGJD4]. It is referred to as the “di-
rectional shape derivative'of the domain ; in the direction Y. Such problems are some-
times also referred to as “shape sensitivity' or "boundary ariation problems' [Pironneau84].
The derivatives lead to integrals of the trace ofg on the interface. To be able to refer to
the derivatives in the same notational "C-framework' on  we de ne the following Dirac
functions.

De nition 6.7. We de ne the “interface Dirac functions' ; and ¢ with a function g 2
L() \ HY( ¢)\ HY( ) in the following manner:

R . R .
tgdx = o g dx;
sgdx = - Os dx:

The values g ;g5 are as de ned in Section 2.1. They are the traces ofj on the interface

i as seen fromfrom the ; or ¢ side of the interface. Ifg 2 H1() , then of course
g ,2H¥()andg , =g = 0. \

Lemma 6.9. The directional derivatives of C;1; C1» at U in the direction " in conjunction
with the rest of the integrand g2 L() \ HY( )\ H1( §), are

CLUY “g= nt Y fg;
CLU) Yg= ns Y sg:
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Proof. By the Hadamard structure theorem (see [Zol79] or any of the Bape citations above),
it is known that the derivative is carried only by the boundary of the shape { = ¢ in
the following manner

. R R R
Illmol( f(x+  Y)gdx t(x)gdy) = nf Yg dx:

Finally, the boundary integral on ; is written as an integral in  with the Dirac function ¢
as de ned in 6.7. We only consider theC11 case. TheC, follows in analogous fashion.

Lemma 6.10. The directional derivatives of C; for i = 1;:::;16 at U in the direction Y
are
9 8

Ci =v:Co=rv:;C3=ru cY =0;C2=0;Ccl=ru

Cs =1 Cj Cff = Cg

Cs =C,* Cc? = CsCJCs

Cs =C4Cs 1=0 cy =0

C; =detCy C? =( @Y1 @u») @ f@u

+H1 Qui)( @Y ©@u@ b

Cg = CsCd B | c§ = cCccl+csCT

Co = pl+ § ¢(Ca+CJ) ' C§ =0

Cio = pl+ 5(Cg 1) Cgo = s Cé)

Cii = ¢ CY = ng Y g

Ciz = s C;?z = ng Y g

Ciz = C11Co+ C12Cyp CYh = CP Co+ CP,Cio+ C12CY

C14 = C2C1 C]c_)4 =0

C15 =div C]_ ! ’ C](_)5 =0

(6.19)
For brevity all derivatives CYU)( Y) have been abbreviated toC?

Proof. For the Cs;Cy;C1; and C1o we apply the Lemmas 6.7, 6.8 and 6.9. Otherwise all
derivates follow directly when applying the rules of derivaion to the sums and products,
and omitting zero-valued sums.

Lemma 6.11. The directional derivatives of C; for i = 1;:::;16 at U in the direction Y
are 8

Ci =v;C=rv;Cg=ru c{ = Vv;Cc?=r v;cCcf{=0

Cs =1 Cjg c) =0

Cs =C,*t c? =0

Co =C4Cs | = cy =0

C; =detCy C? =0

Cg = C5CT = Cg =0

Co = pl+ ¢ (Ca+CJ) Co = ¢ ¢(C8+ COT) (6.20)

Cio = pl+ s(Cg 1) Cl =0

C11 = f C:?l =0

C12 = s CJ(.)Z =0

Ci1z = C11Cg + C12Cyp CY%h =0Cu1C

Cuu =CoCy C](_)4 = Cg Ci+0Cy C]?

Cis =divC, CJC_JS = div C](_)
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For brevity all derivatives C{U)( V) have been abbreviated toC’.

Proof. Analogous to Lemma 6.10.
Lemma 6.12. The directional derivatives of C; for i = 1;:::;16 at U in the direction P
are all zero except for the following three

9 8
Cg = pI + 5 f(C2+ Cér) = < Cg = P
Cio = pl+ s(Cg 1) b Ch o= (6.21)
Ciz = C11Cg+ C12Cqo ’ - Cc o= Pl

For brevity all derivatives C{U)( P) have been abbreviated toC’

Proof. Analogous to Lemma 6.10.

Lemma 6.13. The directional derivatives of A®S at U in the directions (respectively)
Vi U Pare
AS(UY Vi)= (o of CRU(Y) Y+ (s CU( Y)Yy oY)
(1 CHUY) P)
+( sCAV(Y) ")
AU %)= (e Y(Cua) V) SCRUY oY)

( ng YCo ;(r V) ),
( ns YCio ;(r Y)s ),

(  n YCus) ; Py ( sCXUYY) ; P)
+(  ns “Cp)s; P)
+ ( uw il Yo )
( unt YCai(r Y ) ( ns Y(Ci)s uy;
ASS(U)( P; ) = ( ChuU( ); r V)

Proof. Follows by deriving the semilinear form (6.17) in the respetive directions and apply-
ing the Lemmas 6.10, 6.11 and 6.12.

6.7.4 Similarities and di erences

An obvious di erence between the Eulerian directional derivative AeSO(U)( ;) and the
ALE directional derivative A2Msi°(0)(":% are the di erences of the directional derivatives
concerning the displacement Y; " In the Eulerian framework we obtain the ‘interface
Dirac functions', whereas in the ALE framework the transformation acting on uid equations
are “derived'. In fact, if we assumel) = fo;0;,pg and U = fv;u;pg to be strong solutions
of the Problems 5.3 and 5.7, then this di erence is actually tie only di erence, since the
directional derivatives for the velocity and pressure are hen equal

Lemma 6.14. Let 0 = f¢;0;pg9 and U = fv;u; pg to be strong solutions of the Problems
5.3 and 5.7, so thatO (&) = U(& + 4(®)) for all R 2 . For given test functions f *; " g and
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respectively f ; g = f{ T(&)); ( T(®))g, the directional derivatives for the velocity and
pressure are then equal:

ARSO0) NV Y= AU V) ATSYO) (P Y= ASS(U)( P)

Proof. We list and “expand' all considered ALE parts:

(e BBO)N™Y; ™) = (TR R+ boR 1Y) ) (6.22)
(M BLOYMBNY) = (hy g (FOVE THE VR T DYy (6.23)
(M B%OY)™), ) = (h@iv(TFE V) ) (6.24)
(ASB](_)(O)(AV); /\u) = (ASAV; /\u) - (/\ s\],\l\v; I\U) : (sinceJ — 1) : (625)
(BL(O)(P);07P) = ( FPE T b7y (6.26)

We list and “expand' all considered Eulerian parts:

(r tCHU( YY) = (¢ ¢(r “wrrv V) V), (6.27)
(fCYUYCYYir ™) = (gpe(r VHr YTy V), (6.28)
(tCHUN V) P) = ( ¢div(Y); P); (6.29)
(SCXUCY ™) = (s W) (6.30)
(CHRUY Pir P = ( PLr P): (6.31)

With (3.12), (3.2), (3.1) and (3.13) it follows that the equations (6.22)-(6.26) are (re-
spectively) equal to (6.27)-(6.31). We note that for the tensors A;B and C the identity
(AB;C)=(A;CBT) holds.

Thus for this special case the diagram commutes:

framework change

AahS(O)(/)\ 00 /AeS(U)()

derivative derivative (6.32)

framework change

A ()" ) oo IheSu) )

with “ViP = £ V. 0; "Pg 2 Wahi0 gnd VP = f V;0; Pg2 WeO

Remark 6.2. The directional derivatives play a direct role in the determination of the “dual
solution'. The dual solution is needed for a posteriori erro estimation and goal-oriented
mesh adaption, described in the next Chapter 7. Later in the (hapters 8 and 9 we display
for various examples all second derivatives of the componés of the dual solution for both
frameworks. In Chapter 8 we rst consider basic “structurestructure interaction' problems.
In this case no obvious di erences can be seen. In the later sa of stationary uid-structure
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interaction in Chapter 9 though there are visible e ects. In these results it can be seen that
in the velocity and pressure components the dual solutions fothe di erent frameworks are
similar. Whereas obvious di erences in displacement compiwent can be seen. \

Remark 6.3. In the Eulerian framework, we encounter in the directional derivative of the
displacement boundary integrals as a result of the “shape dwative'. This key di erence,
although it follows from the Eulerian framework, can also ocur in an ALE framework.

This can be achieved by switching the reference frame of theharacteristic functions. We
ignore the key function of the characteristic functions in the FSI problem, and just treat
them as “step functions'. If the characteristic functions ¢; ¢ are explicitly only known in
the spatial reference frame and no longer depend on’ ; s, then they have no directional
derivatives and there are no boundary integrals. Consequdly ¢ ; s must now be de ned
in terms of ; &:

MR)Y= (RN N(R) = (R +H )

Hence the functions have directional derivatives in the ALEframework. That means that by
switching the reference frames the boundary integrals nowmly occur in the ALE framework.

Changing the reference frames of the functions¢; s is “odd', since their natural reference
frames are ‘material. A more tting example of step functions in an Eulerian framework
are force-density functions, that have spatial cut-os. In the Eulerian framework such a
function, f (x), is independent of all state variables and has no directionladerivative. In
the ALE framework the function has to be evalued asf (& + 44) , and consequently has a
directional derivative. \

Remark 6.4. In the Eulerian framework such boundary integrals will occur when splitting
a domain at an interface ; with characteristic functions 1; . But if (in the context of
De nition 6.7) the left- and right-sided traces of the funct ion g on the interface ; are equal,
then the respective left and right-sided boundary integrak cancel each other out and can
thus be neglected. \
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Chapter 7
Adaptivity and error estimation

Now, we come to the main issues of this thesis, namely the autoatic mesh adaptation within
the nite element solution of the FSI problem. The computati ons shown in the Chapters 8,
9 and 10 below, have been done on three di erent types of meske

globally re ned meshes obtained using several steps of urdfm (edge) bisection of a
coarse initial mesh,

locally re ned meshes obtained using a purely geometry-basd criterion by marking all
cells for re nement, which have certain prescribed distanes from the uid-structure
interface,

locally re ned meshes obtained using a systematic residuabased criteria by marking
all cells for re nement, which have error indicators above acertain threshold.

The main goal of this thesis is to employ the “dual weighted reidual method' (DWR method)
for the adaptive solution of FSI problems. This method has ben developed in [BeRa95] (see
also [BeRa01] and [BaRa03]) as an extension of the duality tnique for a posteriori error
estimation described by Eriksson et al in [ErEs+95]. The DWR method provides a general
framework for the derivation of “goal-oriented' a posterigi error estimates together with
criteria of mesh adaptation for the Galerkin discretization of general linear and nonlinear
variational problems, including optimization problems. It is based on a complete variational
formulation of the problem, such as (6.6) for the FSI problem In fact, this was one of the
driving factors for deriving the Eulerian formulation unde rlying (6.6). In order to incorporate
also the time discretization into this framework, we have touse a fully space-time Galerkin
method, i.e., a standard nite element method in space comhied with the dG(r) or cG(r)
(‘discontinuous' Galerkin or “continuous' Galerkin) method in time. The following discussion
assumes such a space-time Galerkin discretization, thougin our test computations, we have
used the fractional-step- scheme, which is a di erence scheme. Accordingly, in this thsis
the DWR method is used only in its stationary form in computin g either steady states or
intermediate quasi-steady states within the time steppingprocess.

7.1 Dual weighted residual method

We consider as the basis for the description of the DWR methodany of the stationary FSI
problems.
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For notational purposes we will simply refer to the problemsand the function spaces in the
following manner. Find U 2 UP + X, such that

AU)()=0 8 2X: (7.1)
The corresponding Galerkin approximation reads:Find Uy 2 UhD + Xp, such that

A(Uh)( h) =0 8 h 2 XhZ (7.2)

The goal of the calculation is to use the resultUy, for calculating an approximation J (Uy) of
the goal-functional J(U). To estimate the respective ‘approximation error' J(U) J(U}),
we use the method of Euler-Lagrange. We introduce the “dualvariable Z 2 X and de ne
the Lagrangian functional:

L(U;Z):= J(U) AU)Z): (7.3)

For this we seek the stationary point, which leads to the folbwing nonlinear variational
Karush-Kuhn-Tucker (KKT) system:

0 0 .
Luizy )= W0 2&%?[8;52) =0 8f ; g2Xx X: (7.4)

The rst equation is referred to as the “dual problem), whereas the second equation of (7.4),
the “primal problem’, is equivalent to (7.1).
The respective Galerkin approximationsfUy;Zng 2 X, Xy, are obtained by solving the

system in the discrete subspaceXy Xhp:

0 0 :
LYUn;Zn)( n: n) = o)) ﬁkjlgtjﬂ)éh;hf;) =0 8f n; hg2Xn Xp:
(7.5)

As in the continuous system, the discrete “primal problem' é (7.5) is equivalent to (7.2). As
above, the rst equation is referred to as the discrete “dualproblem’.

For given solutions fU; Zg,f Up; Zhg of the systems (7.4) and (7.5) we obtain the following
identity for the approximation error:

J(U)  J(Un) = L(U;Z) L (Un;Zn): (7.6)

To approximate (7.6) we recall a general result from [BeRaO], which expresses the approx-
imation error of the goal functional in terms of residuals ofthe discrete system (7.5). Later
we use this as the basis of the a posteriori error estimation.

Proposition 7.1. Let the functional L() on the function spaceX be three times Gataux
di erentiable, with the stationary point x 2 X, thus

LY{x)(y)=0 8y2 X: (7.7)

We assume that on a nite dimensional subspaceX, X, the respective Galerkin approxi-
mation

LYxn)(Yh) =0 8yn 2 Xp ; (7.8)
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has the respective discrete solutionx;, 2 Xy. With this we obtain the following error
representation

L(X) Ln(Xn)= 3LAXn)(X  yn)+ Rn 8yn 2 Xp: (7.9)
The remainder Ry, is cubic in the errore:= X Xp :
Z 1
Rh:=2 L%+ se(e;e;as(s 1) ds: (7.10)
0
Proof. From the Fundamental Theorem of Calculus we have
z 1
L(x) L(xp)= LYxp + se)(e) ds: (7.11)
0
The integral in (7.11) is replaced with it's equal by the trap ezoidal rule:
z 1 z 1
f(s)ds= 2@+ f@)+ 3 %s)s(s 1)ds: (7.12)
0 0
Thus, it follows
L(x) L(xn)= 3LAxn)(e) + 3LYxn + €)(€) + Rp : (7.13)

From (7.7) it follows in (7.13) that LYx, + €)(e) = LYx)(e) = 0. From (7.8) we have
LY%n)(yn) =0 for all y, 2 Xy,. Hence for (7.13) it follows:

L(x) L(xn)= 3LAXn)(X yn)+ Rn 8yh 2 Xp: (7.14)

As a consequence we apply Proposition 7.1 to the Lagrangiarufictional L, with (7.6) this
leads to error estimation of the goal functionalJ (U).

Lemma 7.1. For given solutionsfU; Zg,f Uy; Zhg of the systems (7.4) and (7.5) we obtain
the following identity:

JU) J(Un)= 2 (UZ  m* 3 UnZaU )+ RY: (7.15)
foral f ; hg2 X, Xp and with the “primal' and “dual' residuals:

UnC) = AUD()
(Un: Zn)() QN AYUR(5Zn) (7.16)

The remaindeerf’) is cubic in the “primal' and “dual' errorse:= fE;E g:= fU Uy;Z Zhg:
Z 1
RO =1 i ROs(s 1)ds; (7.17)

with
R® = 30U, + SE)(E;E;E) AYE;E;E;Zp+ SE )

3A%U;, + SE)E;E:E ): (7.18)
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Proof. By de ning the spacesY = X X, Yy = X Xp Y, and the solution of
(7.4) asx := fU;Zg 2 Y we can de ne the Lagrangian functional L as the functional
L(x):= L(U;Z). Thus (7.6) can be written as

J(U) J(Up)= LX) L(xpn) (7.19)
To (7.19) we apply Proposition 7.1:
J(U) J(Un)= 3LAxn)(X  Yn)*+ Rn 8yn 2 Yp: (7.20)
In (7.20) we “expand'LYxn)(x yn) with yp = f n; ho:

LYXn)(X  Yn) L (Un; Zn)(Z h) + L3 (Un; Zn)(U h)

A(Un)(Z h)+ JAUN)U  h) AXUR(U nZn)  (7.2D)
(Un)(Z )+ (Un;Zn)(U h)

SinceL (U;Z) is only linear in Z we obtain for L%, + se)(e;e; @

L% + se)(e;e;§ = I%U, + SE)(E;E;E)  A%E;E;E;Zn+ SE) (7.22)
3ARU;, + SE)E;EE ): '
SinceL%%y, + se)(e;e; 8 = Rf’) equation (7.17) follows.

To obtain a usable version of the error identity as shown in (715) for FSI problems in the
ALE and Eulerian frameworks we make the following approximdions.

First we neglect the remaining termR E]S). Then the primal and dual problems are augmented
with the usual stabilization terms as described in Section . We note again that the local
projection scheme is only “weakly consistent', which meanghat when the strong solutions
U; Z are applied, it does not vanish, but creates an error, whichs of the same order of the
discretization.

Finally, we approximate the di erences U hand Z h respectively with Iéﬁ) Up Uy

andléﬁ)zh Zp:
JU)Y I L u0@zn zZ+ L Uz Un U= E(UnZR): (7.23)

Here Iéﬁ) represents a higher-order interpolation of the bilnear saltions. From Uy, and Z,

we generate improved approximations ofU and Z in a post-processing step by patchwise
higher-order interpolation. For this we require that the tr iangulation Ty, be organized in a
patch-wise manner as explained in Section 6.1. In two dimengns this is done on2 2-
patches of cells in Ty, the 9 nodal values of the piecewise bilinear functions are used to
construct patchwise biquadratic functions. [BeRa96, BaR®3].

The solvability of the primal and dual problems in the system (7.5) is not for granted. This
is a di cult task in view of the rather few existence results i n the literature for general FSI
problems. For the primal problem the Gataux derivative of the complete FSI problem does
not need to be exact, it only needs to be “good enough' for the &wton iteration to ensure
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convergence, leading to a reduction of the residuals of theanlinear system. Thus for the
primal problem the nonlinear system is used to measure the plity' of the solution.

For the dual problem though things may initially seem less ckar, since the dual problem is
simply a linear problem directly based on the Géataux derivative. Of course,an immediate
‘measure of quality’ of the discrete dual solution is the reglual of the linear system. But
there is no immediate measure for the quality of the discretedual solution in relation to the
continuous dual solution. This uncertainty stems from highly nonlinear (unusual) in uence
of the displacementu in the Gateaux derivative. For the ALE framework this is seenin the
transformed uid equations. For the Eulerian framework thi s is seen in additional boundary
Dirac integrals, which stem from the shape derivatives. Ths seemingly lack of clarity though
is not typical to uid-structure interaction problems. Iti s only more obvious in such problems
since everything visibly depends on the position of the interface. Generally though his
uncertainity concerning the discrete dual solution is pregnt in all nonlinear problems, since
in such problems the Gataux derivatives depend on the primalsolution and can only be
approximated by using the discrete primal solutions.

In the case of uid-structure interaction we assume that the interface obtained on the current
mesh is already in good agreement with the correct one, i, i, and set up the dual
problem formally with j, as a xed interface. This approach has proven very successfin
similar situations, e.g., for Hencky elasto-plasticity [RaSu02].

In all test calculations, we did not encounter di culties in obtaining the discrete solutions.
In fact the performance of the error-estimator for a given gal-functional was always good
for both the ALE and Eulerian frameworks. A common measure ofthe accuracy of the error
estimator is the “e ectivity index' de ned by

E(Un; Zn)

30) I(Up) (7.24)

letf =

which is the overestimation factor of the error estimator. It should desirably be close to one.

A second measure for the error-estimator is how e ective itsresults are as error indica-
tors, that are used for adaptive mesh re nement. The error indicators ¢ are the cell-wise
contributions of the error estimator:

X
E(Un; Zp) = K =0 (7.25)
K2T,

which one invariably obtains in the process of calculatingE(Un;Z). Again, in all test
calculations the error-estimator performed well for both the ALE and Eulerian frameworks.
This could be seen in the improved convergence of the goaldfigtionals.

Remark 7.1. The above assumption of di erentiability may cause concerrs in treating the
FSI problems in the Eulerian framework since the dependencef the characteristic func-
tion ¢(x u) on the deection u is generically not dierentiable (only Lipschitzian).
However, this non-di erentiability can be resolved by the "Hadamard structure theorem’,
on the assumption that the interface between uid and structure forms a lower dimen-
sional manifold and the di erentiation is done in context of an integral, see Lemma 6.9 and
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[Zol79, S0Z092, AGJTO04]. In essence this has the same e eckaliscretizing along the inter-
face and replacing the directional derivative by a mesh-sig dependent di erence quotient,
a pragmatic approach that has proven itself in similar situations, e.g., for Hencky elasto-
plasticity [RaSu02]. \

Remark 7.2. The actual computation of the directional derivatives can become quite in-
volved, especially when one considers the nonlinear exprasns encountered in structure
mechanics. To alleviate this problem we use an approach thais also used in the method of
“automatic di erentiation'. This is explained in Section 6 .7.1. \

7.2 Mesh adaptation algorithm.

The approach we use for the adaptive re nement of the spatialmesh is straightforward.
Particularly, for the re nement criteria there exist much m ore sophisticated versions, which
are not used in this thesis for sake of simplicity. Let an erro tolerance TOL be give. Then,
on the basis of the (approximate) a posteriori error estimae (7.25), the mesh adaptation
proceeds as follows:

1. Compute the primal solution U, from (7.2) on the current mesh, starting from some
initial state, e.g., that with zero deformation.

Compute the solution Z}, of the approximate discrete dual problem (7.5).

Evaluate the cell-error indicators .

If <TOL then accept U, and evaluate J(Uy), otherwise proceed to the next step.

a > wDn

Determine the 30% cells with largest and the 10% cell-patches with smallest values
of k. The cells of the rst group are re ned and those of the secondgroup coars-
ened. Then, continue with Step 1. (Coarsening usually meansanceling of an earlier
re nement. Further re nement may be necessary to prevent the occurrence of too
many hanging nodes. In two dimensions this strategy leads t@bout a doubling of the
number of cells in each re nement cycle. By a similar stratey it can be achieved that
the number of cells stays about constant during the adaptaton process within a time
stepping procedure.)

7.3 Numerical quadrature along the interface

As described at the beginning of this chapter we will be usinghree methods of mesh adap-
tation:

globally re ned meshes obtained using several steps of urifm (edge) bisection of a
coarse initial mesh,
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locally re ned meshes obtained using a purely geometry-basd criterion by marking all
cells for re nement, which have certain prescribed distanes from the uid-structure
interface,

locally re ned meshes obtained using a systematic residuabased criteria by marking
all cells for re nement, which have error indicators above acertain threshold.

In the Eulerian framework, in all three cases, regardless ofthe re nement technique, the
interface line will be intersecting element cells. In thesenterface cells equations, e.g. the
constitutive equations of the stress tensor, change. In twostructure-structure interaction
examples below only the material parameter of the structurechanges. In the uid-structure
examples the constitutive equation of the stress tensor chages entirely.

The primal approach for coping with the error at the interface is to increase the re ne-
ment. This is either done by employing zonal re nement alongthe whole interface or using
sensitivity analysis as a guide for local re nement.

Of course the rst reason for an error at the inteface cells iswhen the discrete variables do
not approximate the continuous values well enough. This eror can only be resolved with
cell re nement. If the error at the interface cells is in large parts only caused by quadrature
errors, then re nement along the inteface cellssolely on this basis is expensive, since this
increases the number of unknowns in the complete system. Adtionaly, even if the discrete
variables do approximate the continuous values well, the quadrature eror will still occur,
due to the change of equations. Consider for example in Probm 5.7 the incompressibility
condition for the uid:

Z X Z
0=( ¢ divpvh; )= ¢ divavy P dx = ¢ divvy, Pdx: (7.26)

Generally we will be using the Gauss rule of quadrature. Thisquadrature though is only
good for smooth functions. For cells that are either complegly in the uid domain or in
the structure domain the use of the Gauss quadrature is apprpriate. But for interface cells
(assumming that the characteristic function  is exact and not regularized bytanh( ),
see below), this will lead to the cell integrals being weightd wrong. In the context of
Equation (7.26) and Problem 5.7 it will lead to the incompressibility condition either having
a strong and unnecessary in uence on the structure velocityor on the other hand being
in uenced by the structure velocity. In Figure 7.1 some extremes are shown. In the cell
K 1 the incompressibility condition has an appropriate 50% pat of the quadrature, since the
uid occupies approximately 50% of the area. In the next cellK » though the structure has
a 50% part, although it only occupies approximately two sevaths of the cell. Alternatively
in K 3 the structure part occupies approximately the same area, btiis completely neglected
in the quadrature.
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Chapter 7, Adaptivity and error estimation

s Interface cells

. - e e left.  Ki
o f middle: K »
right: Kj

Figure 7.1: Interface ; crossing through di erent cells; in each cell the Gauss(4) gadrature
points are shown.

To reduce this error we use an adaptive quadrature. On cellsthat are not cut by the
interface, we continue to use the Gauss rule. On cells containg the interface we use a more
appropriate summed quadrature rule, which is based on the eimentary midpoint rule.

s Interface cells

/,,,Lfﬂﬂ ] left: K1
T f middle: K 2
right: Kg

Figure 7.2: Interface ; crossing through di erent interface cells; in each cell thea composite
quadrature rule is used.

Thus the immediate errors that stem from using an unsuitablequadrature rule on interface
cells are avoided.

An additional source of unsteady behavior is the exact evalation of the characteristic func-
tions. This stems from the way the basis functions on the cefi couple. As a coupling value
we consider the contribution of ; divv to the system matrix. Entries in the system matrix
are of the form ( ¢ div' ;" ;) for discrete Lagrangian bilinear node-based and -numbered
test functions ' ; 2 V. Since we are using bilinear nite element functions only nales, that
are on a common cell, couple. Due to the s factor, only cells contribute, that have at least
one " uid' node.

In the left diagram of Figure 7.3 the value of v, on node 5 (black) couples with (itself and)

the nodesf1; 2;4;7;8g (green). It does not couple with the nodesf 3; 6; 99 (red), regardless

of how closefrom the left the interface ; comes to the cell nodes. Only once the inteface
crosses one of the right cells' nodes does coupling with theght-hand side nodes occur. This

leads to a sudden on- and o -switching of the coupling betwer the nodes of interface cells
and their neighbors, which in turn leads to sudden unsteady lehavior of node values. An

e ect, that could (albeit rarely) be seen in the instationar y experiments in Chapter 10, when

using exact characteristic functions.
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Section 7.3, Numerical quadrature along the interface

Figure 7.3: Interface ; crossing through di erent cells; Nodes are numbered 1 to 9,dft to
right, top to bottom.

To alleviate this problem we regularize the characteristicfunctions ¢; s :

1 +tanh( (x)) .
5 ,

f.h = sh =1 f.h s

with the smoothing parameter  and the signed distance function (x) :=( ) dist(x; ;).
The smoothing parameter is chosen accordingly to the mesh z h. We only use as a pa-
rameter to the tanh function, thus it is only necessary, that it roughly approxi mate the
distance. In the examples below material deformations at tle interface were regular enough
to allow the Eulerian distance function (x) to be approximated with the reference domain
distance (x) '\(x u) with '\(k) = (N Ag)dist(X; "i). This approach has similarity to
the Volume-of-Fluid method [HiNi81] or Variable-Density m ethod, since both use a fraction
of equation variable similar to our approximation of ;.

In the driven cavity numerical tests (Chapter 9) the interface will be a smooth line, as
shown in Figure 7.5. There we seek the stationary solution toan FSI problem using a
pseudo time-stepping method. The uid and structure are both incompressible, thus as a
nal stationary result the structure will be deformed, but w ith the same volume (=1). Since
we are using an Eulerian framework, it is not immediately clar, due to the coupling with

the uid, how well (or badly) the mass of the structure is conserved. In Figure 7.4 we display
the general conservation of mass regardless of which quadtee rule is used. Additionally

the improvement of conservation of mass is shown when using @omposite quadrature rule
on the interface cells.

In later experiments (Chapter 10) the structure is surrounded by a uid and has corners as

shown in Figure 7.6. It is especially in the cells with the interface corners that the summed
rule improves accuracy.
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0.01 - -
Gauss rule —+—

Composite rule ==-x---

oot b o 1 |N Gauss quadrature | Composite rule
A S 81 7:813-3 6:348-3
289 3:906e-3 9:270e-4
g 1089 1:873-3 4:952%-4
10 | | 14225 9:441e-4 1:267e-4
16641 4:273-4 6:175-5

1le-05 L . L
100 1000 10000 100000

N

Figure 7.4: Based on which quadrature rule is used, we dispyathe mass errors of the nal
domain ¢ of the stationary FSI problem, when using a pseudo time-steping
scheme.

[ IComposite rule [ ] Gauss (4) rule

Figure 7.5: Summed quadrature along the interface ;.

-

[] composite rule [ causs (4) rule
Figure 7.6: Summed quadrature along the interface ;.
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Chapter 8
Numerical test: elastic materials

As a validation of the Eulerian approach to structure mecharics we do some numerical studies
based on a basic structure with a piecewise constant materiaelasticity parameter. All
calculations are done using both the conventional Lagrangin approach and the alternative
Eulerian approach. These tests are done using a model basea the St. Venant Kirchho
law for compressible materials.

In the rst part we show that for a given known solution both ap proaches display similar
errors and an equal rate of convergence.

In the second part the material elasticity parameter is pie@wise constant and assumes two
di erent values. The material and domain are split into two p arts connected by an interface
where the elasticity parameter jumps. This is done for two dierent geometries.

We show that both the Lagrangian and Eulerian approach convege to same functional values
and apply the “dual weighted residual' method to estimate the error of the functional values.
Based on this method we apply a mesh adaption scheme and comggathe resulting meshes.

Since we are only observing structure problems in this chamr we will for brevity usually
omit the 's' su x on the domains and variables. It will be used though on occasions, when
a problem or de nitions from previous chapters are used.

8.1 Convergence results for a known solution

We investigate a stationary problem on a two-by-two materia domain "= (0 ;2)2. We use
the St. Venant-Kirchho law for compressible materials (Section 4.6.1). For compressible
materials the Poisson ratio is s = 0:4. For the rst Lamé coe cient we use the value ¢=1.
For the second it follows from Equations (4.20) s =4 5. We set the densityto s=1.

As a boundary condition we prescribe a homogeneous Dirichievalue of zero on all of @ .
Thus = ". The Lagrangian and Eulerian problems are the stationary vesions of the
Problems 4.3 and 4.5

Problem 8.1 (Stationary variational structure problem, St. Venant -Kirchho, Lagrangian
framework). Find 05 2 V2, such that

(Js " Fs TP M) =(F ) (8.1)
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Chapter 8, Numerical test: elastic materials

for all "v 2 X2 where all de nition and notations as in Problem 4.3. \

Problem 8.2 (Stationary variational structure problem, St. Venant -Kirchho , Eulerian frame-
work). Find us 2 V2, such that

(st 9=03sfs; 1) (8.2)

for all " 2 Y2 where all de nition and notations as in Problem 4.5. \

In the “strong' form the Lagrangian and Eulerian problems ae (respectively):

Find 0, such that Find u, such that

Gv(IrF Ty = 1®): div = Jf (x) : (8.3)

We prescribe an explicit displacement®(®). In the Lagrangian case we can use this dis-
placement directly to calculate the respective right-handside (%) by explicitly calculating
the value &v(J~F T). This is done by using the method of automatic di erentiation (see
Section 6.7.1).

In the Eulerian case this is not immediately possible, sincahe framework is Eulerian, thus
the provided coordinate is the end pointx = % + & and not the starting point %, for which
we have the provided displacementi(%). For each evaluation of the right-hand side function
Jf (x), we solve the reverse problem of determining the start posibn ® using a Newton
iteration (Find R, such that x = % + (%)). Once the displacementu = % is known (to
a satisfactory tolerance), we use this to calculate the resgctive right-hand side Jf (x) by
explicitly calculating the value div . Again, this is done by using the method of automatic
di erentiation (see Section 6.7.1).

As a prescribed displacement we use

A1 sin(2 ! 15(‘1) Sin(2 ! 122)

a(R) = Ao sin(2! 2R1)sin(2! 2R)

(8.4)

with A = ( 0:02 0:2)T and! = (1=2;1=4)". This displacement was chosen, since it is
similar to the resulting displacement when applying a smallgravitational force.
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0.1 1000

T T T
euler, 12 error —— euler, time —+—
lagrange, 12 error —<— lagrange, time —<—
euler, energy error ——
lagrange, energy error —=— 3

0.01 ¢
100 ¢
0.001

error

le-04 ¢

time [s]

10 ¢

le-05

1le-06

1e-07 . . . . 0.1 . . . .
10 100 1000 10000 100000 le+06 10 100 1000 10000 100000 1le+06

N, degrees of freedom N, degrees of freedom

Figure 8.1: (left) Comparison of L2- and H -seminorm -Errors when using the Lagrangian
or Eulerian approaches for a given known displacement. (riigt) Comparison of
the run-times.

The convergence results are shown in the left chart of Figure8.1. Both approaches have
the same convergence behavior. Théd 1-seminorm-errors converge uniformly of the order
O(N ¥72) = O(h) whereas theL ?-errors converge with the orderO(N) = O(h?). In the right
chart of Figure 8.1 we can see that both approaches are of eguapeed (and that the time
consumption is of the order O(N)).

8.2 Convergence results for solid-solid interaction

In these tests the domain "= (0 ;2)? is split into two domains "1;”", with a common
interface ";.

"= M el N
A material parameter, the rst Lamé coe cient (%), is assigned a di erent constant value

i, depending on which domain”; it is in. Specically in the Lagrangian and Eulerian
frameworks:

MRY=NM1 1t M2 2 5 (X 11t 2 2,
with ”1 being the characteristic function of ([ i, *> thatof 5, and the Eulerian functions
de ned in reference ; := *i(x u). We use the St. Venant-Kirchho law for compressible

materials (Section 4.6.1). For compressible materials thd?oisson ratio is s =0:4. For the
second Lamé coe cient it follows from Equations (4.20) " = 47; (or respectively ; =4 ;).

The problems we observe are similar to those in the previousegtion, with the discontinuity
of ~ and being the only dierence. We used the problems in the previog section for
the Lagrangian framework (Problem 8.1) and the Eulerian franework (Problem 8.2). The
di erence is that the displacement is no longer explicitly provided. Instead an explicit force
density is used on the right-hand side.

For the distribution of the material constant in the reference con guration we use two dif-
ferent scenarios.
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Chapter 8, Numerical test: elastic materials

In the rst scenario (Fig. 8.2 left) the domain is split horiz ontally into two parts. In this
case the cell borders match with the change of the material awstant on the reference
grid. This setting suggests that the Lagrangian approach sbuld have an advantage,
since in the Eulerian approach the interface will always be iitersecting cells.

In the second scenario (Fig. 8.2 right) the domain is split dagonally into two equal
parts. This would lead one to assume that the Lagrangian and HElerian approaches
will more likely behave in similar fashion.

A A
top top

Figure 8.2: The two basic scenarios with a horizontal and digonal interface.

Based on these scenarios we compare the results of the Lagmgian and the Eulerian ap-
proaches. We use the results to calculate the goal functiona
Z Z
G(Cp)O)( )= JAF tntd = n'dx = G( wp)(U)(');  (85)

top top

with ' = (1;0)"T. This is the horizontal component of the force along the uppe boundary
of the domain. We denote the semilinear forms of the Problems$.1 (Lagrangian framework)
and 8.2 (Eulerian framework) as (respectively),

RO :=(I"F 50N o AU )=(;r ) ; (8.6)

wheref ? g2 Vs Vs . The functional values G and G can also be obtained using a so-
called “residual based method', which we explain in the fotlwing in the Eulerian framework
for G. For the Lagrangian framework this can be done in the same fadgon. The following
identity follows by integrating in A by parts (as in Section 4.7.2):

AU ) = ( div; ) +G(@( U)( ):
If U is a strong solution of the Problem 8.2 and 2fv 2 Vjv; ,, ="' g, then
G( wp)(U)( )= AMU)( ) Qf ): (8.7)

Based on this, we approximate the goal functional by evaluaing the residuals of the discrete
problems:

Gn( w0p)(Un)( n) = A(Un)( n)  (IF n); (8.8)
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Section 8.2.1, Convergence results for solid-solid intecéion, Horizontal interface

where  2fv2 Vs vy o = - This residual based method has been shown to have an
improved rate of convergence compared to the direct evaluaon of G and G, see [BrRiO5].

We compare the convergence results of both approaches. Aditinally we approximate the
error of the goal functional using the DWR method. We determine the e ciency of the error
estimator by comparing the approximation of the error with t he “actual' error. The actual
error is obtained by extrapolating the discrete goal functional values to the limit.

Based on the DWR method we adaptively re ne the grid with the aim of calculating the goal
functional to the same degree of precision as when re ning gbally, but with less degrees of
freedom and less CPU-time. We show that also here the Lagrarign and Eulerian approaches
have the same results and that the error estimator works equidy well.

To solve the primal and dual problems we will need the directonal derivatives of the semilin-
ear forms A(0)( );A(U)( ). In the Lagrangian and Eulerian frameworks these derivaties
for a given direction can be obtained by using the method of atomatic di erentiation as
explained in Section 6.7.1.

In the Eulerian framework we de ne the stress tensor in the two domains as,

JF Y(1(trE)I +2 4E)F T,
= JF 1( L(trE)I +2 LE)F T;

and use these to express the stress tensor as a composite sgdensor = 1 1+ 2 2.
From Section 6.7.3 we know that in the Eulerian framework thedirectional derivative of the
displacements will contain additional boundary integrals on the interface, e.g. for the stress
tensors:

(ana 5 (r )y)y Canz s (ro)y) (8.9)

We approximate the boundary integrals in the discrete form by expressing them as domain
integrals with a discrete regularized boundary Dirac funcion 4,

R
(N1 5 (r 1), R hMi h(l;h:(r h)y) dx;
(on2 ;5 (r )), hN2 nh( oni(F n)p)dX;

with p:=max(0;h dist(x u;”))=h?. In the discrete form we will either be using the
Gauss or summed quadrature formulas for the quadrature on ez cellK of the triangulation,

see Section 7.3. In both cases all quadrature points will benside each triangulation cellK .
Since we are using bilinear fem functions, it follows that atall such inner points, the left and
right traces of 1.; 2n andr 1 will be equal. The sum in (8.9) in the discrete form then
is approximated as a function of the jump of around the interface,

(h(1 22N nir n): (8.10)

8.2.1 Horizontal interface

The material interface is set as a horizontal line through the reference con guration with the
height 0:5. The material parameters are 1 =0:15; ,=0:30.
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btop top
b, 1
N
b.
[ .
w
b, 2
reference system deformed system

Figure 8.3: Con guration and deformation of the structure-structure interface test with a
horizontal reference-grid matching interface

As a driving force we supply a right-hand side, that is chosenso, that the left and right
halves of the material are “pulled' down and up leading to a dfermation as in Figure 8.3.
Since we are primarily interested in comparing the convergece behavior of the Lagrangian
and Eulerian frameworks, the force density is modi ed to improve overall convergence. To
this end, we multiply the right-hand side with the square of a “bubble function' b(x) =
x1X2(2  x1)(2 X2) . As a right-hand side we use the force densitf : ! R?2,

2 X1
2

X
£ () = )5 ( e)+ &)

Due to the square bubble function, the functionf and its normal gradient are zero on the
boundary: f;5 = @fj@ =0.

We extrapolate the goal functional values (G("p)(0)(e1) , G( wp)(U)(e1) ) for the La-
grangian and Eulerian frameworks below (Tables 8.1, 8.2) tahe limit and use a value that
ts both limits best. This we use as the reference goal functonal value and refer to asg; .
The calculated goal functional values we simply refer to agyy, with N being the number of
degrees of freedom. In the rst simulations we calculate thegoal functional errorsgy 1
in both approaches. The errors of both approaches are showmithe Tables 8.1, 8.2. The
convergence of the error in both frameworks is displayed in igure 8.6 (left).

For both approaches we also apply the “dual weighted residdéamethod to approximate the
error of the goal functional (column "Estimate’). The “e ciency index' of the estimator is
in the column “E ciency'. This value de ned by

E(Un; Zn)

JU) (U -

lett =

is the overestimation factor of the error estimator and senes as a measure of the accuracy
of the error estimator. It should desirably be close to one. A& can be seen in Figure 8.7 the
e ciency of the error estimator is good for both frameworks. As a means of visualizing and

comparing the sensitivity of the problem to the goal functional, we show the square norms of
second derivatives of the components of in the Figures 9.12 and 8.9 for both frameworks.

Since the valueskr 2z;k? vary greatly, we display the values on a logarithmic scale.
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Section 8.2.1, Convergence results for solid-solid intecdion, Horizontal interface

Based on these results we use the error estimator to adaptilg re ne the grid using the mesh
re nement method described in Section 7.1. We compare the @ors of both approaches in
the Tables 8.3, 8.4. The convergence of the error and the appkimation of the error for
both frameworks and re nement methods is shown in the Figures 8.10. The Figures 8.11
and 8.12 show the evolution of adaptive mesh re nement for bth frameworks. Finally in
Figure 8.13 the errors of the goal functional are compared ire chart for both frameworks
and global and local mesh re nement.

-0.0334 -0.0206 -0.00787  0.00489 00176 0.0304 0.0432

-0.0334 -0.0207 -0.00797  0.00476 00175 0.0302 0.0430

Figure 8.4: Comparison of the horizontal displacements = 16;641) for the Lagrangian
(left, displayed in the deformed system) and Eulerian (rigt) frameworks.

-0.0704 -00447 -0.0189 000679  0.0325 0.0583 0.0840

-0.0705 -00447 -0.0189 0006865  0.0326 0.0584 0.0842

Figure 8.5: Comparison of the vertical displacements | = 16;641) for the Lagrangian (left,
displayed in the deformed system) and Eulerian (right) frameworks.
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Chapter 8, Numerical test: elastic materials

N ON Error Estimate E ciency
81 2:1529%-2 | 7:76303-3 | 7:5622%-3 | 9:7413&-1
289 2:6061%-2 | 3:23056-3| 3:8720%-3 | 1:19856-0
1089 2:79782-2 | 1:31433-3| 1:7140%-3 | 1:30412-0
4225 2:8757%-2 | 5:34604-4 | 7:1638%-4 | 1:34002-0
16641 2:90743-2 | 2:1816%-4| 2:9438@-4 | 1:34934-0
66049 2:9203%-2 | 8:8973®-5| 1:20774-4 | 1:35743-0
263169 2:9256@-2 | 3:58874-5| 4:96606-5 | 1:3837%-0
1 2:9292%-2

global re nement.

Table 8.1: Lagrangian framework, convergence behavior ofreor

of goal functional, only

N ON Error Estimate E ciency
81 2:08546-2 | 8:43794-3| 7:54122-3 | 8:9372&-1
289 2:5606%-2 | 3:6859%-3| 4:0914%-3 | 1:1099%-0
1089 2:77214-2 | 1:5710%&-3| 1:8826&-3 | 1:19834-0
4225 2:86234-2 | 6:6912k-4| 8:0963@-4 | 1:2100@-0
16641 2:.9005%-2 | 2:8682k-4| 34171%k-4 | 1:1913%-0
66049 2:9168%-2 | 1:2356%-4 | 1:44373F-4 | 1:1683%-0
263169 2:92392-2| 5:3263@-5| 6:1413@&-5| 1:1530@&-0
1 2:9292%-2
Table 8.2: Eulerian framework, convergence behavior of ear of goal functional, only global
re nement.
Euler & Lagrange, horizontal interface, global refinement
0-1 ' ' Euler global —+——
Lagrange global -—-x--
0.01 b
S
o
< 0.001 | R 1
é le-04 - factor 100 -
1le-05 7
1e-06 ' : ' :

10 100 1000

DOFs

10000 100000 1le+06

Figure 8.6: Both frameworks,
re nement.

convergence behavior of erroof goal functional, only global
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0.1
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Figure 8.7: Both frameworks, comparison of error and approination of error, only global

re nement.
N ON Error Estimate E ciency
81 2:1529%-2 | 7:76303-3 | 7:5622%-3 | 9:7413&-1
239 2:5871%-2 | 3:4209%-3| 3:8619%-3| 1:12892-0
637 2:78243-2 | 1:4682%-3| 1:71114-3| 1:16543-0
1771 2:8682%-2 | 6:0962%-4 | 7:15764-4 | 1:11741G-0
4555 2:9031%-2 | 2:6099(-4 | 2:9424(-4 | 1:1274G-0
11415 2:9185%-2 | 1:0683&-4 | 1:2075%-4 | 1:13022-0
28259 2:92493-2 | 4:31882-5| 4:96563-5 | 1:1497%-0
66545 2:92743-2 | 1:8203%-5| 2:0463%-5| 1:1241%-0
151489| 2:9285%-2| 6:98734-6| 8:44616-6| 1.2087&-0
1 2:9292%-2
Table 8.3: Lagrangian framework, convergence behavior ofreor of goal functional, adaptive
re nement.

N ON Error Estimate E ciency
81 2:08546-2 | 843794-3| 7:54122-3| 8:9372&-1
239 2:53933-2 | 3:8991%-3| 4:0831&-3| 1:0471%-0
649 2:75412-2 | 1:7512%-3 | 1:87642-3 | 1:07148&-0
1853 2:8557%-2 | 7:3457k-4 | 8:0837&-4 | 1:1004%-0
5305 2:89823-2 | 3101834 | 3:4143&-4 | 1:10076&-0
13905 2:91563-2 | 1:36224-4 | 1:4433%-4 | 1:05954-0
34311 2:92324-2 | 6:01314-5| 6:1394&-5| 1:0210%-0
84419 2:9266%-2 | 2:5831%-5| 2:63232-5| 1:01903-0
196433| 2:92814-2| 1:1057%-5| 1:1373&-5| 1:.02862-0
1 2:9292%-2

Table 8.4: Eulerian framework, convergence behavior of ear of goal functional, adaptive

re nement.
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Chapter 8, Numerical test: elastic materials

Figure 8.8: Comparison oflogkr 2z:k? (N = 16;641) for the Lagrangian (left, displayed in
the reference system) and Eulerian (right) frameworks.

-0.590  0.946

Figure 8.9: Comparison oflogkr ?zok? (N = 16;641) for the Lagrangian (left, displayed in
the reference system) and Eulerian (right) frameworks.
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Figure 8.10: Both frameworks, comparison of error and appmimation of error, both local

and global re nement.
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N =4;555 N = 28,259

N =66;545 N =151;489

Figure 8.11: Lagrangian framework, adaptively re ned mesh displayed in the deformed sys-
tem.
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N =5,303 N =34;311

N =84;419 N =196;433

Figure 8.12: Eulerian framework, adaptively re ned mesh.

Euler & Lagrange, horizontal interface

0.1 . ' '
Euler global ——
Lagrange global ——-x--—
Euler dwr —
0.01 Lagrange dwr -8 4
S factor 100
e
2 S
< 0001 p : ]
S =
S
g :
5 g
2  le-04 g ]
©
5 factor 10
o
le-05 | . ]
ja
1e-06 I \ ) )
10 100 1000 10000 100000 1e+06
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Figure 8.13: Both frameworks, convergence behavior of errcof goal functional, both local
and global re nement.
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Chapter 8, Numerical test: elastic materials

8.2.2 Diagonal interface

The material interface is set as a diagonal line through the eference con guration. The
material parameters are ; =0:15; , =0:30.

Similar to the previous section, as a driving force we suppha right-hand side, that is chosen
so that the top-left and bottom-right halves of the material are “pulled’ to the lower-right
and upper-left leading to a deformation as shown in Figure 8l4. Again, the force density is
modi ed to improve overall convergence. To this end, we muliply the right-hand side with
the square of a’bubble function'b(x) ;= x1x2(2 x1)(2 X2) . As a right-hand side we use
the force densityf : | R?

X 2 X
F00:= bS5 ( e &)+ “5—(er+ &) ;
btop top
b, 1
bl /\
b, 2
reference system deformed system

Figure 8.14: Con guration of the structure tests.

Again, just as in the previous section, we extrapolate the gal functional values (G('\top)(lﬁ)(el),
G( top)(U)(e1) ) for the Lagrangian and Eulerian frameworks below (Tables 8, 8.6) to the
limit and use a value that ts both limits the best. This we use as the reference goal func-
tional value and refer to asg; . The calculated goal functional values we simply refer to as
oOn ., With N being the number of degrees of freedom. In the rst simulatims we calculate
the goal functional errorsgy 01 in both approaches. The convergence of the error in both
frameworks is displayed in the Tables 8.5, 8.6 and visually @mpared in Figure 8.17 (left).

For both approaches we also apply the "dual weighted residdamethod to approximate
the error of the goal functional (column “Estimate’). The e ciency of the estimator is in
the column "E ciency', which is jEstimate/Error j. As can be seen in the plots in Figure
8.18 the e ciency of the error estimator is good. As a means ofvisualizing and comparing
the sensitivity of the problem to the goal functional, we showv the square norms of second
derivatives of the components ofz in the Figures 9.12 and 8.9 for both frameworks. Since
the valueskr 2z k? vary greatly, we display the values on a logarithmic scale.

Based on these results we use the error estimator to adaptile re ne the grid using the
mesh re nement method described in Chapter 7. We compare therrors of both approaches
in the Tables 8.7, 8.8. The convergence of the error and the ggoximation of the error for
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Section 8.2.2, Convergence results for solid-solid intecdion, Diagonal interface

both frameworks and re nement methods is shown in the Figure 8.21. There we compare
these values with the values in the when using global re nemet. The Figures 8.22 and 8.23
show the evolution of adaptive mesh re nement for both framevorks. Finally in Figure 8.24

the errors of the goal functional are compared in a chart for loth frameworks and global and

local mesh re nement.

Figure 8.15: Comparison of the horizontal displacementsN = 16;641) for the Lagrangian
(left, displayed in the deformed system) and Eulerian (righ) frameworks.

Figure 8.16: Comparison of the vertical displacementsN = 16;641) for the Lagrangian (left,
displayed in the deformed system) and Eulerian (right) frameworks.
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Chapter 8, Numerical test: elastic materials

Table 8.5: Lagrangian framework, convergence
global re nement.

N ON Error Estimate | E ciency
81 1:4284%-2 | 6:66014-3 | 7:1575%-3 | 1:0746&-0
289 1:8091%-2 | 2:85306-3 | 3:7781%-3 | 1:32423-0
1089 | 1:97466-2 | 1:1984(-3 | 1:65076-3 | 1:3774%-0
4225 | 2:0445@-2 | 5:0001%-4 | 6:78556-4 | 1:35706-0
16641 | 2207334-2 | 2:11556-4 | 2:77842-4 | 1:31333%-0
66049 | 2:08567%&-2 | 8:83052-5 | 1:14336-4 | 1:2947%-0
263169| 2:0907%-2 | 3:7489@-5 | 4:7449%-5 | 1:2656%-0
1 2:0945@-2

behavior ofreor of goal

functional, only

N ON Error Estimate | E ciency
81 1:35624-2 | 7:3826%-3 | 6:7836@-3 | 9:18866-1
289 1:74914-2 | 3:4536%-3 | 4:0408%-3 | 1:17004-0
1089 | 1:9377&-2 | 1:5672(&-3 | 1:9662%-3 | 1:2546%-0
4225 | 2.0247@®-2 | 6:9795@-4 | 8:7527%-4 | 1:2540%-0
16641 | 2:0635@-2 | 3:0943%-4 | 3:81162-4 | 1:2318@&-0
66049 | 2:08076-2 | 1:37406-4 | 1:66544-4 | 1:2120%-0
263169| 2:0883&-2 | 6:12193-5 | 7:3443%-5 | 1:1996'2-0
1 2:0945@&-2
Table 8.6: Eulerian framework, convergence behavior of ear of goal functional, only global
re nement.
Euler & Lagrange, diagonal interface, global refinement
o1 ‘ ‘ Euler global ——
Lagrange global ----x---
0.01 1
% 0.001 i 1
é le-04 ) factor 100 k!

Figure 8.17: Both frameworks,
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Section 8.2.2, Convergence results for solid-solid intecdion, Diagonal interface
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Figure 8.18: Both frameworks, comparison of error and appmimation of error, only global

re nement.
N ON Error Estimate | E ciency
81 1:4284%-2 | 6:66014-3 | 7:1575%-3 | 1:0746&-0
239 1:79383%-2 | 3:00674-3 | 3:7695&-3 | 1:.2537%-0
687 1:96396-2 | 1:3053%-3 | 1:64584-3 | 1:26082-0
1989 | 2:0403@&-2 | 5:41418-4 | 6:78363-4 | 1:25294-0
5637 | 2071132 | 2:3372%-4 | 2:77422-4 | 1:18694-0
14241 | 2:08466-2 | 9:83783-5 | 1:14313-4 | 1:1619%-0
36633 | 2:09034-2 | 4:16487%-5 | 4:7430%-5 | 1:13882-0
89403 | 2.0926%-2 | 1:8108&-5 | 1:9764%-5 | 1:0914%-0
203191| 2:0937%-2 | 7:54264-6 | 8:2504%-6 | 1:0938%-0
1 2:0945@-2
Table 8.7: Lagrangian framework, convergence behavior ofreor of goal functional, adaptive
re nement.

N ON Error Estimate | E ciency
81 1:35624-2 | 7:3826%-3 | 6:78366-3 | 9:18866-1
239 1:73354-2 | 3:6096@-3 | 4:02342-3 | 1:11464-0
649 1:9133@-2 | 1:81204-3 | 1:95082-3 | 1:.0765%-0
1621 | 220138(-2 | 8:06958-4 | 8:7244%-4 | 1:0811%-0
4315 | 2:05892-2 | 3:5575%-4 | 3:8033%-4 | 1:0690&-0
11693 | 2207863-2 | 1:58742-4 | 1:6638(-4 | 1:04812-0
30677 | 2.0872%-2 | 7:2117%-5 | 7:34062-5 | 1:0178&-0
74707 | 2.0912%-2 | 3:23053-5 | 3:2685@-5 | 1:0117%-0
183233| 2:0930%-2 | 1:45488&-5 | 1:46824-5 | 1:00918-0
1 2:0945@-2

Table 8.8: Eulerian framework, convergence behavior of ear

re nement.

of goal functional, adaptive
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Chapter 8, Numerical test: elastic materials

Figure 8.19: Comparison oflogkr 2z:k? (N = 16:641) for the Lagrangian (left, displayed in
the reference system) and Eulerian (right) frameworks.

Figure 8.20: Comparison oflogkr ?zok? (N = 16;641) for the Lagrangian (left, displayed in
the reference system) and Eulerian (right) frameworks.
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Figure 8.21: Both frameworks, comparison of error and

Lagrange, diagonal interface
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Figure 8.22: Lagrangian framework, adaptively re ned mesh displayed in the deformed sys-

tem.
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Chapter 8, Numerical test: elastic materials

N =11,693 N =30;677

N =74;707 N =183;233
Figure 8.23: Eulerian framework, adaptively re ned mesh.
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Figure 8.24: Both frameworks, convergence behavior of errcof goal functional, both local
and global re nement.
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Section 8.3, In uence of the boundary integrals

8.3 In uence of the boundary integrals

From Section 6.7.3 we know that in the Eulerian framework thedirectional derivative of the
displacements will contain additional boundary integrals on the interface, e.g. for the stress
tensors:

(ama 5 (r o))y Canz s (v )y) (8.12)
The values nq;n, are to be understood as the normal- elds on the interface i, with n;
“pointing out of' 1 and n, = nj;. We explained at the beginning of Section 8.2 how the

expressions in (8.12) are then approximated by

(n(C1 22N nir n); (8.13)
with p:=max(0;h dist(x u;”"j)=h?.

The material parameters where selected so that the solutiorwould be sensitive to the ma-
terial discontinuity at the interface.

This led to adaptive re nement along the interface for both Eulerian cases (horizontal and
diagonal) and for the Lagrangian diagonal case (where the dieborders in the mesh did not
match the interface). This can been seen respectively in thenal meshes of the Figures 8.12,
8.23, and 8.22.

In Lagrangian diagonal case the re nement was similar to thd using the Eulerian framework.
This implies that for the Eulerian framework the directional derivatives of the characteristic
functions only play an e ectively minor role in the complete directional derivative, and that
the sensitivity is largely in uenced by the interface not matching the cell borders of the
mesh.

To substantiate the negligible role of the jump terms in the directional derivatives, we repeat
all calculations (horizontal and diagonal, global and adagive) in the Eulerian framework and
omit all mentioned boundary integrals.

We compare the convergence results in the following tables ih their respective counterparts

in the previous sections the tables 8.9 with 8.2 (horizontd, global), 8.10 with 8.4 (horizontal,

adaptive), 8.11 with 8.6 (diagonal, global), and 8.12 with 88 (diagonal, adaptive). It can

been seen that the functional errors of the globally re ned pimal problems are unchanged.
It can also be seen that the changes only lead to marginal di eences in error estimator and
the consequently adaptively re ned meshes.

Both results are as expected, since the jump terms (8.12) owl appear in the directional
derivatives. Thus the omission of the jump terms a ects reslts that directly depend on the
directional derivatives.

In the case of the globally re ned primal problems, the functional errors depend on the
discrete solution. By changing the directional derivatives, only the convergence behavoir of
the Newton iteration is changed. The change will not a ect the nal results (provided the
iteration still converges).
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Chapter 8, Numerical test: elastic materials

In the case of the error estimates, there are di erences, athwuld be expected, since the calcu-
lations of these estimates require the solutions of the liner dual problems, which themselves

require the directional derivatives.

8.3.1 Horizontal interface

Table 8.9: Eulerian framework, convergence behavior of ear of goal functional, only global

N ON Error Estimate E ciency
81 2:08546&-2 | 8:43794-3| 7:54123-3 | 8:9372%-1
289 2:5606%-2 | 3:6859%-3| 4:09142-3 | 1:1099%-0
1089 2:77214-2 | 1:5710%-3| 1:8826&-3 | 1:19834-0
4225 2:86234-2 | 6:6912%-4 | 8:0963%&-4 | 1:2100G-0
16641 2:9005%-2 | 2:8682%k-4| 34171%-4 | 1:1913&-0
66049 2:9168%-2 | 1:2356%-4 | 1:44373-4 | 1:1683%-0
263169 2:92392-2| 5:3263&-5| 6:1413%-5|1:1530@&-0
1 2:9292%-2

re nement, without boundary integrals.

N ON Error Estimate E ciency
81 2:0854@-2 | 8:43794-3| 7:54123-3 | 8:9372%-1
239 2:53933-2 | 3:8991%&-3| 4:08304-3 | 1:0471&-0
649 2:75412-2 | 1:7512%-3| 1:87642-3 | 1:.0714%&-0
1853 2:8557%-2 | 7:3457k-4 | 8:0837%-4 | 1:1004%&-0
5305 2:89823-2 | 3101834 | 3:4143%-4 | 1:10076-0
13955 2:91564-2 | 1:3613(-4 | 1:4433%-4 | 1:.0602%-0
34519 2:92324-2 | 6:0142%-5| 6:1395%-5 | 1:02082-0
84697 2:9266%&-2 | 2:5819%-5| 2:63232-5| 1:0195G-0
196903| 2:92814-2| 1:1052%-5| 1:1373&-5| 1:02902-0
1 2:9292%-2

Table 8.10: Eulerian framework, convergence behavior of eor of goal functional, adaptive
re nement, without boundary integrals.

92
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N =196;433

N =196;903

Figure 8.25: Eulerian framework, adaptively re ned mesh.

8.3.2 Diagonal interface

N ON Error Estimate | E ciency
81 1:35624-2 | 7:3826%-3 | 6:79054-3 | 9:1979&-1
289 1:74914-2 | 3:4536%-3 | 4:0412%-3 | 1:1701%-0
1089 | 1:9377&-2 | 1:5672(-3 | 1:96656-3 | 1:25482-0
4225 | 2.0247@-2 | 6:97956>-4 | 8:7533@-4 | 1:25413-0
16641 | 2:.06356-2 | 3:0943%-4 | 3:8117%-4 | 1:23184-0
66049 | 2:0807&-2 | 1:37406-4 | 1:6654&-4 | 1:2120&-0
263169| 2:0883&-2 | 6:12193-5 | 7:34442-5 | 1:1996%-0
1 2:0945@-2

Table 8.11: Eulerian framework, convergence behavior of eor of goal functional, only global
re nement, without boundary integrals.

N ON Error Estimate | E ciency
81 1:35624-2 | 7:3826%-3 | 6:79054-3 | 9:1979&-1
239 1:73354-2 | 3:6096@-3 | 4:0240%-3 | 1:11482-0
649 1:9133@-2 | 1:81204-3 | 1:95132-3 | 1.0768%-0
1621 | 2:0138(-2 | 8:06958&-4 | 8:7256%-4 | 1:0813@&-0
4279 | 2.05884-2 | 3:5655%-4 | 3:8032%-4 | 1:0666&-0
11477 | 2.0785G-2 | 1:60010-4 | 1:6638@-4 | 1:0398%-0
30005 | 2:0872%&-2 | 7:2260%-5 | 7:3405%-5 | 1:0158%-0
73487 | 2.0912%-2 | 3:23354-5 | 3:26852-5 | 1:01082-0
180277| 2:09304-2 | 1:4580%-5 | 1:46824-5 | 1:0069%-0
1 2:0945@-2

Table 8.12: Eulerian framework, convergence behavior of eor of goal functional, adaptive
re nement, without boundary integrals.
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N =183;233 N = 180;277

Figure 8.26: Eulerian framework, adaptively re ned mesh.
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Chapter 9
Numerical test: elastic ow cavity

As a starting test of the monolithic models described in Chaper 5 we use a simple stationary
test example, the lid-driven cavity with an elastic bottom wall, as shown in Figure 9.1. The
problems to be solved will be based on the Problems 5.3 and 5.For simplicity, for modeling
the uid the (linear) Stokes equations are used and the mateial of the bottom wall is assumed
to be neo-Hookean and incompressible. Since we are modedjiman incompressible uid and
structure, there will be a scalar pressure eld for the uid and structure domains. Since
we are using a bilinear equal order approach, the pressure ld on the cells at the interface
will be bilinear and steady, although this is not to be expeced. To enhance the accuracy
of the pressure eld at the interface, we decouple the uid ard structure pressure elds into
two separate elds, pr and ps. The uid pressure eld p; is used as a Lagrange-multiplier
in the uid domain, its value in the structure domain though i s determined by harmonic
continuation. The same approach is used for the structure pessure eld ps, only from the
other side. The structure material is taken as very soft suctthat a visible deformation of the
uid-structure interface can be expected. Then, the other material parameters are chosen
such that ow and solid deformation velocity are small enough to allow for a stationary
solution of the coupled systems. This solution is computed ¥ a pseudo-time stepping method
employing the implicit Euler scheme. A steady state is reackd once the kinetic energy of
the structure is below a prescribed small tolerance, herekvsk? 10 7.

Vo d1
d2 f d2
i
d3 S d3

d3

Figure 9.1: Con guration of the “elastic' lid-driven cavit y.
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Chapter 9, Numerical test: elastic ow cavity

The cavity has a size of2 2, and its elastic part has a height of 0:5. The material constants
are 1 = =1, =0:2,and ¢=2:0. Atthetop boundary 4; the regularized tangential
ow pro le

8

2 4x; X 2 [0:0;0:25];
Vo = 0:5> 1; x 2 (0:25;1:.75);

T 42 x); x2[17520]

is prescribed, in order to avoid problems due to pressure sgularities.

9.1 Computations on globally re ned meshes

The left halves of the Figures 9.3 (ALE) and 9.4 (Eulerian) show the development of kvgk?
during the pseudo-time stepping process depending on the miber of cells of the mesh. As
expected the kinetic energy tends to zero. The multiple “burps' occur due to the way the
elastic structure reaches its stationary state by “swingilg' back and forth a few times. At
the extreme point of each swing the kinetic energy has a locahinimum. Figures 9.5 (ALE)
and 9.6 (Eulerian) show the nal stationary states computed on globally uniform meshes.

In the Eulerian framework it is not immediately clear, due to the coupling with the uid,
how well (or bad) the mass of the structure is conserved. In Fjure 9.2, we display the mass
error of the structure at the stationary state. Additionall y we show the improvement by
using an adaptive quadrature rule, based on a simple rule. Tis consists of using a summed
quadrature rule on all cells that contain the interface. On dl other cells we use a Gauss
quadrature rule. When we only use the Gauss quadrature the mss error is approximately
of the order O(h). In contrast, when we use the adaptive quadrature, the orderof the mass
error is betweenO(h'®) and O(h?).

The right halves of the Figures 9.3 (ALE) and 9.4 (Eulerian) show the errors of the discrete
approximation of the goal functional value G("1p)(0)(" ) = G( 1p)(U)("' ) as de ned in
(8.5). The discrete values are calculated using the residudased method (8.8). Additionally
we also display the approximation of the error using the simfli ed stationary version of the

DWR method as described in Section 7.1.
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Section 9.1, Computations on globally re ned meshes

oo | N Gauss quadrature | Composite rule
81 7:813e-3 6:348e-3
289 3:906e-3 9:270e-4
g 1089 1:873-3 4:952e-4
eor | ] 4225 9:441e-4 1:267e-4
h 16641 4:273-4 6:175-5

L L L
10 100 1000 10000 100000
N

Figure 9.2: Based on which quadrature rule is used, we dispjathe mass errors of the nal
domain ¢ of the stationary FSI problem, when using a pseudo time-steping

scheme.
N ON Error Estimate | E ciency
81 6:6651et0 | 3:884%H0 | 2:2771eH0 | 5:8614-1

289 8:059%H0 | 2249010 | 2:8200=+0 | 1:132%+0
1089 9:036G2+0 | 1:514C+0 | 1:16282¢+0 | 7:6802&-1
4225 9:7051eH0 | 8:4486-1 | 4:6624-1 | 5:518%-1
16641| 1:0118+1 | 4:3174-1 | 2230961 | 5:349%-1

1 1:055+1
Table 9.1: Lagrangian framework, convergence behavior ofreor of goal functional, adaptive
re nement.
N ON Error Estimate | E ciency
81 8:286%H) | 2:2631et0 | 3:940%+0 | 1:741320

289 8:14632t0 | 2240370 | 1:6642+H0 | 6:923%-1
1089 9:0927%+0 | 1:457320 | 9:5076-1 | 6:5240C=-1
4225 9:7693+0 | 7:8071e-1 | 4952%-1 | 6:343%-1
16641| 1:0188*1 | 3:624%-1 | 2:.238%-1 | 6:11753-1

1 1:055%+1
Table 9.2: Eulerian framework, convergence behavior of ear of goal functional, adaptive
re nement.
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Chapter 9, Numerical test: elastic ow cavity

N=4225

N=16641

2
vl

10 10 100 1000 10000 100000
N

Figure 9.3: (left) Variation of kvsk? in time for di erent numbers N of mesh cells. (right)
The error of the goal functional G("0p)(On)(* ) and error estimate.

2
vl

01 1 10 10 100 1000 10000 100000
time (s) N

Figure 9.4: (left) Variation of kvsk? in time for di erent numbers N of mesh cells. (right)
The error of the goal functional G( p)(Un)(' ) and error estimate.

N =16;641 N =16;641

Figure 9.5: Globally re ned mesh (left) and vertical velocity eld (right) with the ALE ap-
proach, both displayed in the deformed system.
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Section 9.1, Computations on globally re ned meshes

N =16;641 N =16;641

Figure 9.6: Globally re ned mesh and vertical velocity with the Eulerian approach.

Figure 9.7: Comparison (N=16,641) oflogkr 2zk? for the Lagrangian (left, displayed in the
reference system) and Eulerian (right) frameworks.
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Chapter 9, Numerical test: elastic ow cavity

Figure 9.8: Comparison (N=16,641) oflogkr 2zYk? for the Lagrangian (left, displayed in the
reference system) and Eulerian (right) frameworks.

Figure 9.9: Comparison (N=16,641) oflogkr 2zyk? for the Lagrangian (left, displayed in the
reference system) and Eulerian (right) frameworks.

Figure 9.10: Comparison (N=16,641) oflogkr 2z{'k? for the Lagrangian (left, displayed in
the reference system) and Eulerian (right) frameworks.
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Section 9.2, Computations on locally adapted meshes

Figure 9.11: Comparison (N=16,641) oflogkr 2z§k? for the Lagrangian (left, displayed in
the reference system) and Eulerian (right) frameworks.

Figure 9.12: Comparison (N=16,641) oflogkr 2z5k? for the Lagrangian (left, displayed in
the reference system) and Eulerian (right) frameworks.

9.2 Computations on locally adapted meshes

We apply the stationary version of the DWR method as describel in Chapter 7 for local

mesh adaptation in the present test problem. For the a posteiori error estimation, we use
the same goal functional as when we were re ning the mesh glally. In Figure 9.13 the

resulting error is displayed as a function of the number of meh cells. The Figures 9.14
(ALE) and 9.15 (Eulerian) show sequences of adapted meshe#s expected two e ects can
be seen. There is local re nement around the area of interest o, and since the position
of the uid-structure interface is a decisive factor, local re nement also occurs along the
interface.
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Chapter 9, Numerical test: elastic ow cavity

N ON Error Estimate | E ciency

81 6:6652H) | 3:8848H0 | 2:2773H0 | 5:8620e-1
153 8:1077H0 | 244230 | 2:7836+0 | 1:1397+0
353 9:098(H0 | 1:452Cet0 | 1:1908+0 | 8:201%-1
991 9:7414e10 | 8:0857%-1 | 5:018%-1 | 6:2062-1
2613 1:0138+1 | 4:116%-1 | 1:928%-1 | 4:684%-1
6451 1:0367%+1 | 1:8292-1 | 7:3242-2 | 4:004C=-1
15203| 1:0494e+l | 5:637%-2 | 2:7436-2 | 4:8664-1

1 1:05%+1
Table 9.3: Lagrangian framework, convergence behavior ofreor of goal functional, adaptive
re nement.
N ON Error Estimate | E ciency
81 6:7473H0 | 3:8027H0 | 3:305%et0 | 8:6916-1

155 8:2217%0 | 2:3283210 | 3:76632+0 | 1:61760
349 9:19942t0 | 1:3506et0 | 1:43442+0 | 1:0620=+0
845 9:8437%t0 | 7:0626-1 | 6:5256-1 | 9:2396-1
2293 1:0212+ | 3:3808-1 | 2:9596=-1 | 8:7542-1
5915 1:0413H1 | 1:3743-1 | 1:025%-1 | 7146231
15069| 1:0488+1 | 6:1560(=-2 | 4:6671e-2 | 7:5814-1

1 1:05%+1
Table 9.4: Lagrangian framework, convergence behavior ofreor of goal functional, adaptive
re nement.

goal functional error
goal functional error

01fF 01fF

L L L 0.01 L L L
10 100 1000 10000 100000 10 100 1000 10000 100000

Figure 9.13: The error of the goal functional and respectiveerror estimates for the ALE (left)
and Eulerian (right) frameworks.
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N =81 N =153 N =353
N =991 N =2,;613 N =6,;451
N =15;203

Figure 9.14: Adaptively re ned meshes with the ALE approach, all meshes displayed in the
deformed system.
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Chapter 9, Numerical test: elastic ow cavity

N =81 N =155 N =349
N =845 N =2,;293 N =5;915
N =15;069

Figure 9.15: Adaptively re ned meshes with the Eulerian approach.
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Chapter 10

Numerical test: FSI benchmark
FLUSTRUK-A

The nal example is the FSI benchmark FLUSTRUK-A described in [TuHr06]. A thin elastic
bar immersed in an incompressible uid develops self-indued time-periodic oscillations of
di erent amplitude depending on the material properties assumed. This benchmark has
been de ned to validate and compare the di erent computational approaches and software
implementations for solving FSI problems. In order to have afair comparison of our Eulerian-
based method with the traditional arbitrary Eulerian-Lagr angian approach, we have also
implemented an ALE method for this benchmark problem.

The con guration of this benchmark shown in Figure 10.1 is based on the successful CFD
benchmark * ow around a cylinder', [TurSchae96].

Figure 10.1: Con guration of the FSI benchmark "FLUSTRUK-A .

Con guration: The computational domain has length L = 2:5, height H = 0:41, and left
bottom corner at (0;0). The center of the circle is positioned at C = (0:2;0:2) with radius
r = 0:05. The elastic bar has length | = 0:35 and height h = 0:02. Its right lower end is
positioned at (0:6;0:19) and its left end is clamped to the circle. Control points are A(t)
xed at the trailing edge of the structure with A(0) = (0 :6;0:20), and B = (0:15;0:2) xed
at the cylinder (stagnation point).

Boundary and initial conditions: The boundary conditions are as follows: Along the upper
and lower boundary the usual “no-slip' condition is used forthe velocity. At the (left) inlet
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Chapter 10, Numerical test: FSI benchmark FLUSTRUK-A

a constant parabolic in ow pro le,

dy(H ).

v(0y) = 1:5U 5=

is prescribed which drives the ow, and at the (right) outlet zero-stress n =0 is realized by
using the “do-nothing' approach in the variational formulation, [HeRaTu92, Rannacher00].
This implicitly forces the pressure to have zero meanvalue tthe outlet. The initial condition
is zero ow velocity and structure displacement.

Material properties: The uid is assumed as incompressible and Newtonian, the cyhder as
xed and rigid, and the structure as (compressible) St. Venant-Kirchho (STVK) type.

Discretization: The rst set of computations is done on globally re ned meshes for validating
the proposed method and its software implementation. Then,for the same con guration
adaptive meshes are used where the re nement criteria are #ier purely heuristic, i.e., based
on the cell distance from the interface, or are based on a sinlped stationary version of the
DWR approach (at every tenth time step) as already used befoe for the cavity example.
In all cases a uniform time-step size of0:005s is used. The curved cylinder boundary is
approximated to second order by polygonal mesh boundariessacan be seen in Figure 10.2.

The following four di erent test cases are considered:

Computational uid dynamics test (CFD Test): The structure is made very sti, to the
e ect that we can compare the computed drag and lift coe cients with those obtained
for a pure CFD test (with rigid structure).

Computational structure mechanics test (CSM Test): The uid is set to be initially in
rest around the bar. The deformation of the bar under a vertial gravitational force is
compared to the deformation of the same bar in a pure CSM test.

FSI tests: Three con gurations are treated corresponding to di erent in ow veloci-
ties and material sti ness parameters, and the Eulerian appoach is compared to the
standard ALE method.

FSI with large de ections: The uid is set to be initially in rest around the bar. The
gravitational force on the bar is very large, causing a largedeformation of the bar and
eventually it reaching and running up against the channel wdl. This case is di cult
for the ALE method but can easily be handled by the Eulerian agproach.

10.1 CFD test

Here, the structure is set to be very sti, to the e ect that we can compare derived drag and
lift values with those obtained with a pure CFD approach. The forces are calculated based
on the closed path S around the whole structure, cylinder and bar,

z

J(u;p) = . fNg dx: (10.1)
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The CFD test has been done with the parameters listed in Tablel0.1.

Table 10.1: Parameters for the CFD test.

Parameters CFD test
i [10°kgm 9] 1
£[10 3m?s 4 1
s 0.4
s[10°kgm 9] 1
s[10%kgm 1s 7] 1
Ulms 1] 1

For the chosen parameters there is a steady state solution. fie reference values for the drag
and lift forces are calculated using a pure CFD approach on ghbally re ned meshes (see
also [TuHr06]). The results are shown in Table 10.2. Using tle Eulerian FSI approach, we
calculate the same forces again. As a method of mesh adaptiome use a heuristic approach
as described above.

Table 10.2: CFD test: Results of CFD computation on uniform meshes (left), and by the
Eulerian FSI approach on heuristically adapted meshes (ript).

N dof drag lift N dof drag lift
1278 3834 14575 | 10:042 1300 9100 12266 | 12:68
4892 14676 | 13391 | 10239 2334 16338 || 12613 | 1171

19128 57384 || 13600 | 10:373 9204 64428 || 13177 | 1053
75632 | 226896 || 13654 | 10:366 36680 | 256760 || 13447 | 10:45
300768 | 902304 || 13667 | 10:369

1 1 13670 | 10530 1 1 13670 | 10530

10.2 CSM test

Here, the in ow velocity is set to zero and the uid is initial ly at rest. A vertical gravitational
force is applied, which causes the bar to slowly sink in the ud lled volume. Due to the
viscous e ect of the uid the bar will eventually come to rest. The value of nal displacement
can be compared to the results calculated with a pure CSM apprach in a Lagrangian
framework. The guantity of interest is the displacement of the point A at the middle of the
trailing tip. The corresponding reference values are takenfrom [TuHr06]. The CSM test
has been done with the parameters listed in Table 10.3. Usinghe Eulerian FSI approach,
we calculate the displacements with mesh adaption by the heustic approach described
above. The nal stationary positions and the heuristically adapted meshes can be seen in
Figure 10.2.
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Table 10.3: Parameters for the CSM test.

parameter CSM test
i [10°kgm J] 1
£[10 3m?s 4 1
s 0.4
s[10°%kgm 9] 1
s[10°kgm 1s ?] 0.5
Ulms 1] 0
gims ?] 2

Figure 10.2: CSM test: Stationary position of the control pant A on heuristically re ned
meshes with N =1952 and N =7604 cells.

Table 10.4: CSM test: Displacement of the control point A for three levels of heuristic mesh

adaption.
N dof ux(A) [10 3m] | uy(A) [10 3m]
1952 | 13664 5:57 593
3672 | 25704 6:53 634
7604 | 53228 6:74 64:6
1 1 7:187 66:10

Next, we apply the DWR method as described in Chapter 7 to the GGM test case. For the
dual problem, we construct the Jacobi matrix of the model as &plained in Section 6.7.1. In
the rst example the DWR method was always applied to the nal stationary state. The
results were used for mesh adaption. The generated mesh waken used with the initially

unperturbed problem to determine a new nal stationary state. In contrast to that approach,

we now apply the DWR method at periodic intervals without restarting. To control the

resulting mesh adaption at each interval we try to keep the number of nodesN below a
certain threshold N;. This is achieved by reducing re nement and/or increasing ®@arsening
at each interval. As an example we calculate the point-valueof the component sum ofu(A) at
the control point A . The position xa is determined from xa u(xa) = A(0) = (0 :6;0:2)T .
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As a error control functional, we use a regularized delta fustion at x5 applied to (e;+ )" u,
z
Ju=jKaj ' (et &) u(x)dx;

Ka

where K 5 is the cell in the Mesh T}, containing the point A.

Figure 10.3: CSM Test: Stationary position of the bar computed on locally re ned meshes
(DWR method) with N =2016 and N = 4368 cells.

Table 10.5: CSM Test: Displacements of the control pointA for three levels of locally re ned
meshes (DWR method).

N N dof Ux(A) [10 3m] | uy(A) [10 3m]
2000 | 2016 | 14112 573 59:8
3000 | 2614 | 18298 6:54 632
4500 | 4368 | 30576 6:88 64:6

1 1 7:187 66:10

10.3 FSI tests

Three test cases, FSI-2, FSI-3, and FSI-3*, are treated withdi erent in ow velocities and
material stiness values as stated in Table 10.6. The parameers are chosen such that a
visible transient behavior of the bar can be seen. To ensure dair' comparison of results, we
calculate the comparison values using the ALE method. Usinghe Eulerian FSI approach, we
calculate the displacements on three mesh levels, where theeuristic approach as described
above is used for mesh re nement.
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Table 10.6: Parameter settings for the FSI test cases.

parameter FSI-2 | FSI-2* | FSI-3 | FSI-3*
structure model STVK | STVK | STVK INH
¢ [10Pkgm 3] 1 1 1 1
¢[10 3m?s 1] 1 1 1 1
s 0.4 0.4 0.4 0.5
s[10°kgm 3] 10 20 1 1
s[10°kgm 1s 2 0.5 0.5 2 2
Ums 1] 1 0 2 2

We begin with the FSI-2 and FSI-3 test cases. Some snapshot$ the resulting deformations
of these simulations are shown in Figures 10.4 and 10.12. Th@me-dependent behavior of

the displacements for the tests are shown in Figures 10.5 an#i0.13.

Figure 10.4: FSI-2: Snapshots of results obtained by the ALE(top two, displayed in the
deformed system) and by the Eulerian (bottom two) approaches.
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0.1

T 0.1 T
level 1 level 1
0.08 - 1 0.08 -
0.06 1 0.06
0.04 - 0.04 -
< o002} < o002}
£ £
g 0 g 0
k] k]
> 002t > 002t
-0.04 + -0.04 +
-0.06 H -0.06
-0.08 q -0.08
01 . . . . 01 . . . .
0 2 4 6 8 10 0 2 4 6 8 10
time [s] time [s]

Figure 10.5: FSI-2: Vertical displacement of the control pant A, obtained by the Eulerian
approach (left, N = 2082 cells) with maximum amplitude 2:226 10 2 and
frequency 1:92s 1, and by the ALE approach (right, N = 2784 cells) with
maximum amplitude 2:68 10 2 and frequency 1:953s 1.

Figure 10.5 shows that both the Eulerian and ALE frameworks reach similar states of periodic
regular behavior after an initial starting phase. The Eulerian framework needs approximately
0:12s longer then the ALE framework to reach this periodic state. Once reached both
frameworks display similar periodic movement as shown in tie Figures 10.6-10.11.

Figure 10.6: FSI-2: Snapshots of Eulerian (left, t=7.8800s ) and ALE (ALE, t=8.0000s) results.

Figure 10.7: FSI-2: Snapshots of Eulerian (left, t=7.9406s ) and ALE (ALE, t=8.0600s) results.
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Chapter 10, Numerical test: FSI benchmark FLUSTRUK-A

Figure 10.8: FSI-2: Snapshots of Eulerian (left, t=8.0000s ) and ALE (ALE, t=8.1200s) results.
Figure 10.9: FSI-2: Snapshots of Eulerian (left, t=8.1800s ) and ALE (ALE, t=8.3000s) results.
Figure 10.10: FSI-2: Snapshots of Eulerian (left, t=8.2400 s) and ALE (ALE, t=8.3600s) results.
Figure 10.11: FSI-2: Snapshots of Eulerian (left, t=8.4200 s) and ALE (ALE, t=8.5400s) results.
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Figure 10.12: FSI-3 Test: Some snapshots of results obtaideby the ALE (top two) and the
Eulerian (bottom two) approaches.

0.04

T T 0.04 T T
level 2 level 1
0.03 - 1 0.03 -
0.02 - H 0.02 -
< 0.01 < 0.01
E E
3 0 2 0
S S
> >
= -0.01 | = -0.01 |
-0.02 + -0.02 +
-0.03 + A -0.03 +
0.04 . . . . . . . . 0.04

0 0.5 1 15 2 25 3 35 4 0 0.5 1 15 2 25 3 35 4
time [s] time [s]

Figure 10.13: FSI-3 Test: Vertical Displacement of the contol point A, obtained by the
Eulerian approach (left, N = 3876 cells) with maximum amplitude 6:01 10 2
and frequency 5:48s 1, and by the ALE approach (right, N = 2082 cells) with
maximum amplitude 6:37 10 2 and frequency 5:04s 1.

The FSI-3* test case is used to illustrate some special feates of the Eulerian solution
approach. Figure 10.14 illustrates the treatment of cornes in the structure by the IP set

approach compared to the LS approach. In the LS method the intrface is identi ed by all

points for which = 0, while in the IP set method the interface is identi ed by all p oints

which are on one of the respective isoline segments belongirio the edges of the bar. The
di erences are visible in the cells that contain the corners
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Figure 10.14: FSI-3*: Treatment of corners by the LS method (eft) and by the IP set method
(right).

Since in the Eulerian approach the structure deformations & not in a Lagrangian framework,
it is not immediately clear, due to the coupling with the uid , how well the mass of the
structure is conserved in an Eulerian approach, especiallyn the course of an instationary
simulation comprising hundreds of time steps. In Figure 1015, we display the bar's relative
mass error as a function of time. Except for certain initial jitters, the relative error is less
than 1%.

relative mass error [%)]
o

T T ] T T

. . . .

time [s]

Figure 10.15: FSI-3*: Relative mass error of the bar.

Finally, Figure 10.16 illustrates the time dynamics of the gructure and the adapted meshes
over the time interval [0;T]. More detailed properties of this dynamics is shown in Fig-
ure 10.16. For both approaches, we obtain a periodic oscilteon. For the Eulerian approach
we obtain an amplitude of 1:6e-2 with an oscillation frequency of 6:86s 1. In comparison
to that, based on the ALE approach, we obtain an amplitude of 1:51e-2 with an oscillation
frequency of 6:70s 1.
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0.02 0.02

' pointA,yy—Oéi pointA.Hy:y—O,Z‘i

0.015 4 0.015
0.01 + 4 0.01 +

0.005 4 0.005

-0.005 - -0.005 -
-0.01 - -0.01 +

-0.015 1 -0.015 +

-0.02 -0.02

o os 1 15 2 25 3 o os 1 15 2 25 3
time [s] time [s]

Figure 10.16: FSI-3*; Vertical displacement of the controlpoint A, obtained by the Eulerian

approach (left) with maximum amplitude 1:6 10 2 and frequency 6:86s I,

and by the ALE approach (right) with maximum amplitude 1:51 10 2 and

frequency 6:70s 1.

10.4 FSI test with large deformations

In the test case FSI-2* (see Table 10.6) the uid is initially in rest and the bar is subjected
to a vertical force. This causes the bar to bend downward unti it touches the bottom wall.
A sequence of snapshots of the transition to steady state olined by the Eulerian approach
for this problem is shown in the Figures 10.18 and 10.19.

The simulation was done for three re nement strategies. Fortwo simulations the heuristic
zonal re nement strategy was used, for the rst simulation only re ning zonally twice around
the interface and in the second simulation re ning four times, Figure 10.18.

In the third simulation we used the DWR method to adaptively r e ne (and coarsen) the mesh
at periodic intervals of the quasi-steady states within thetime stepping process, Figure 10.19.
The goal-functional in this case is as in the CSM cases:

4
JW=jKaj b (e1+ &) u(x)dx:

Ka

The position of the trailing-tip control point A for all thre e cases is show in Figure 10.17.
The resulting vertical position of the trailing-tip contro | point A is in all three cases in good

agreement. The advantage of adaptive re nement becomes vgrclear in this example, since

the rst two zonal re nement strategies need respectively 8and 30 CPU-hours, whereas the
adaptive strategy only requires 4 CPU-hours.
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Figure 10.17: FSI-2*: y-Position of the trailing-tip control point A during the deformation
of the bar.

Figure 10.18: A sequence of snap-shots of the bar's large defnation under gravitational
loading obtained by the Eulerian approach. Simulation with two heuristic
re nements (N 3;000, 8 CPU-hours) around the interface is shown in the
left column. In the right column some shapshots can be seen ia simulation
done based on four heuristic re nements N 12,300 30 CPU-hours) .
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Figure 10.19: A sequence of snap-shots of the bar's large defmation under gravitational
loading obtained by the Eulerian approach. Simulation with adaptive re ne-
ment (N 1;900, 4 CPU-hours) around the interface is shown, left to right,
top to bottom.
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Chapter 11

Summary and future development

In this thesis we presented a fully Eulerian variational formulation for ~ uid-structure in-
teraction' (FSI) problems. This approach uses the “Initial Position' set (IP set) method for
interface capturing, which is similar to the "Level Set' (LS) method, but preserves sharp
corners of the structure. The harmonic continuation of the dructure velocity avoids the
need of reinitialization of the IP set. This approach allows us to treat FSI problems with
free bodies and large deformations. This is the main advantge of this method compared to
interface tracking methods such as the “arbitrary Lagrangan-Eulerian' (ALE) method. At
several examples the Eulerian approach turns out to yield rsults, which are in good agree-
ment with those we obtained by the ALE approach. In order to have a “fair' comparison
both methods have been implemented using the same numericabmponents and software
library Gascoigne [Ga]. The method based on the Eulerian apmach is inherently more
expensive than the ALE method, by about a factor of two, but it allows to treat also large
deformations and topology changes.

The full variational formulation of the FSI problem provide s the basis for the application of
the “dual weighted residual' (DWR) method for “goal-oriented' a posteriori error estimation
and mesh adaptation. In this method inherent sensitivitiesof the FSI problem are utilized by
solving linear “dual’ problems, similar as in the Euler-Lagange approach to solving optimal
control problems. The feasibility of the DWR method for FSI problems for both the Eulerian
as well as the ALE framework has, in a rst step, been demonstated for the computation of
steady state solutions. For nonstationary problems it was $ed in a heuristical manner for
goal-oriented mesh adaption of the quasi-steady states wiiin the time stepping process.

Based on the thusfar reached goals we consider the followingext steps as promising future
developments:

(1) Application of the DWR method for nonstationary FSI problems:
Here the DWR method can be used for the simultaneous adaptatin of spatial mesh and
time step size. A promising additional development in this eld is the “check-pointing'
method, which alleviates the necessity of saving all primakolutions for the whole time
interval. This is achieved by only saving the primal solutions at designated “check-
points', and using these as starting points for later recalalations. This approach in
combination with the DWR method has been implemented succesfully in [BeMe+05].
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(2) Application of the developed methods for 3d cases:
Speci cally for a simple stationary model, e.g. the lid-driven cavity, as a way of demon-
strating the applicability of the fully Eulerian approach f or 3d FSI problems. The de-
veloped methods (the fully Eulerian framework, the IP-set method, the DWR method
for a posteriori error estimation and goal-oriented mesh adptation) are principally
also applicable in 3d.

(3) Application to FSI problems with large deformations and toplogy changes:

When using an ALE framework, large deformations are known tolead to a breakdown

of the solver. A well-known approach to circumventing this is either a ‘remeshing' of
the problem or a ~ xed grid' approach. In the " xed grid' appr oach a combination of

overlapping domain decomposition and chimera-like formudtions are used, [WaGe+06].

These approaches though entail an additional amount of datananagement, that would

otherwise not occur. For the Eulerian framework this is not the case, since the defor-
mation data is stored in the spatial Eulerian reference frane and thus no deformation

of the uid domain onto an arbitrary reference domain is neeced.

(4) Application to optimal control problems:
Ina rst step one could consider stationary con gurations. The goal of the optimization
would be the minimization or stabilization of certain values, e.g. the drag or the
suppression of vibrations of elastic structures. For the cae of minimization this is
achieved by solving the appropriate Karush-Kuhn-Tucker (KKT) system, thus the
necessary e ort is essentially identical to that of the DWR method. This has been
demonstrated in [BeKa+00, BeRa03, BeBr+05].
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