DISSERTATION

submitted to the
Combined Faculties for the Natural Sciences and for Mathematics
of the Ruperto-Carola University of Heidelberg, Germany
for the degree of
Doctor of Natural Sciences

presented by

Diplom-Biologe Roland Gromes
born in: Heidelberg
Oral examination:
Post-translational regulation and evolution of plant \(\gamma\)-glutamate cysteine ligase
Table of Contents

1 Introduction

1.1 Glutathione: A central component of cellular sulfur metabolism ... 3
1.2 The establishment of glutathione homeostasis .. 4

2 Results

3.1 The molecular mechanism for the redox regulation of *Brassica juncea* Glutamate cysteine ligase (BjGCL) .. 30
3.2 The BjGCL mutant analogous to rml1 shows normal oligomerization behaviour but is enzymatically inactive ... 40
3.3 Sequencing, Cloning and Characterization of *Nicotiana tabacum* GCL .. 41
3.4 Redox and GSH feedback regulation of plant GCL are mechanistically independent .. 46
3.5 Conservation of sequence motifs among plant and proteobacterial GCL proteins .. 49
3.6 Cloning and characterization of proteobacterial GCL homologues .. 58

3 Discussion

3.1 The molecular mechanism for the redox regulation of *Brassica juncea* Glutamate cysteine ligase (BjGCL) .. 30
3.2 The BjGCL mutant analogous to rml1 shows normal oligomerization behaviour but is enzymatically inactive ... 40
3.3 Sequencing, Cloning and Characterization of *Nicotiana tabacum* GCL .. 41
3.4 Redox and GSH feedback regulation of plant GCL are mechanistically independent .. 46
3.5 Conservation of sequence motifs among plant and proteobacterial GCL proteins .. 49
3.6 Cloning and characterization of proteobacterial GCL homologues .. 58

4 Conclusion

4.1 Summary (English) ... 1
4.2 Zusammenfassung (Deutsch) ... 2

2 Introduction

2.1 Glutathione: A central component of cellular sulfur metabolism ... 3
2.2 The establishment of glutathione homeostasis .. 4

1 Introduction

1.1 Summary (English) ... 1
1.2 Zusammenfassung (Deutsch) ... 2

2 Results

3.1 The molecular mechanism for the redox regulation of *Brassica juncea* Glutamate cysteine ligase (BjGCL) .. 30
3.2 The BjGCL mutant analogous to rml1 shows normal oligomerization behaviour but is enzymatically inactive ... 40
3.3 Sequencing, Cloning and Characterization of *Nicotiana tabacum* GCL .. 41
3.4 Redox and GSH feedback regulation of plant GCL are mechanistically independent .. 46
3.5 Conservation of sequence motifs among plant and proteobacterial GCL proteins .. 49
3.6 Cloning and characterization of proteobacterial GCL homologues .. 58

3 Discussion

3.1 The molecular mechanism for the redox regulation of *Brassica juncea* Glutamate cysteine ligase (BjGCL) .. 30
3.2 The BjGCL mutant analogous to rml1 shows normal oligomerization behaviour but is enzymatically inactive ... 40
3.3 Sequencing, Cloning and Characterization of *Nicotiana tabacum* GCL .. 41
3.4 Redox and GSH feedback regulation of plant GCL are mechanistically independent .. 46
3.5 Conservation of sequence motifs among plant and proteobacterial GCL proteins .. 49
3.6 Cloning and characterization of proteobacterial GCL homologues .. 58
3.7 The expression of plant GCL is affected by the availability of soluble thiols 67

4 Discussion ... 71
4.1 The Crystal Structure of Brassica juncea GCL reveals unique features compared to the Escherichia coli enzyme ... 72
4.2 The redox regulation of BjGCL is dependent on two disulfide bridges 75
 4.2.1 Several lines of evidence point to a role of GCL redox regulation in vivo 79
4.4 Cysteine and glutathione regulate the activity of plant GCL via multiple mechanisms ... 81
4.5 The combination of redox and metabolite regulation allows an efficient control of glutathione levels ... 83
4.6 Proteobacterial glutathione biosynthesis is not subject to redox control 86
4.7 The Evolution of Plant GCL can be traced by comparison of biochemical analysis and in silico data .. 88
 4.7.1 Plants acquired their GCL genes via endosymbiosis or lateral gene transfer 88
 4.7.2 Redox regulation of plant GCL evolved in green algae, possibly in parallel to the plastidic localization of the enzyme .. 90

5 Material and Methods ... 93
5.1 Plant and Bacterial Culture ... 93
 5.1.1 Plant material and Plant Cell Cultures ... 93
 5.1.2 Bacterial strains ... 93
 5.1.2.1 Bacterial culture media and growth conditions ... 94
 5.1.2.1.1 List of Antibiotics used .. 94
 5.1.2.1.2 Preparation of Glycerol Stocks ... 94
 5.1.2.2 Production of Competent Cells for Electroporation .. 95
 5.1.2.3 Transformation of bacteria .. 95
5.2 Nucleic Acid Methods .. 95
 5.2.1 List of Plasmids .. 95
 5.2.2 List of Oligonucleotides ... 96
 5.2.3 DNA Methods ... 97
 5.2.3.1 Extraction of Genomic DNA from Bacteria ... 97
 5.2.3.2 Extraction of Plasmid DNA from Bacterial Culture .. 97
 5.2.3.3 Determination of Nucleic Acid Concentrations ... 97
 5.2.3.4 Nucleic Acid Gel Electrophoresis ... 98
 5.2.3.4.1 Agarose Gel Electrophoresis ... 98
 5.2.3.4.2 Polyacrylamide Gel Electrophoresis ... 98
 5.2.3.5 Polymerase Chain Reaction .. 98
 5.2.3.5.1 PCR-based Site Directed Mutagenesis .. 99
 5.2.3.5.2 Purification of PCR or restriction digested DNA fragments 99
 5.2.3.6 Restriction digestion ... 99
 5.2.3.7 Ligation of DNA fragments .. 99
 5.2.3.8 Cloning of DNA fragments by GATEWAY® cloning .. 100
 5.2.3.9 DNA Sequencing .. 100
 5.2.3.10 Cloning of GSH1 Genes from different organisms .. 100
 5.2.3.10.1 Cloning and Mutagenesis of Brassica juncea GCL .. 100
 5.2.3.10.2 Cloning of Nicotiana tabacum GCL ... 100
 5.2.3.10.3 Cloning of proteobacterial GCL genes .. 100
5.2.4 RNA Methods .. 101
 5.2.4.1 Extraction of Total RNA from Plant Tissue .. 101
 5.2.4.2 Reverse Transcription for cDNA Production .. 101
5.2.4.3 Rapid Amplification of cDNA Ends (RACE) .. 101

5.3 Protein Methods .. 101
 5.3.1 Production of Recombinant Protein in E.coli ... 101
 5.3.1.1 Production of Seleno-methionine-labelled Protein .. 102
 5.3.2 Preparation of Soluble Protein from Plant Tissue ... 102
 5.3.2.1 Crude plastid preparation for protease assay ... 102
 5.3.3 Protein Extraction from Bacteria .. 102
 5.3.4 Determination of Protein Concentration ... 102
 5.3.5 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) .. 103
 5.3.6 Analysis of protein by Immunoblotting ... 103
 5.3.7 Enzymatic Characterization of GCL Protein ... 103
 5.3.8 Analysis of Protein Folding and Oligomerization State .. 103
 5.3.8.1 Size-exclusion chromatography .. 103
 5.3.8.2 Circular dichroism (CD) spectroscopy ... 104
 5.3.9 Protease stability assay ... 104

5.4 Other methods .. 104
 5.4.1 Extraction and analysis of thiols .. 104
 5.4.1.1 Thiol extraction from plant tissue ... 104
 5.4.1.2 Thiol extraction from bacteria ... 105
 5.4.1.3 HPLC analysis of derivatized thiols .. 105
 5.4.2 Statistical analysis ... 105
 5.4.3 Sequence analysis of plant and bacterial GCL .. 105

6 Abbreviation Index .. 107

7 Literature .. 110

8 Appendix .. 130
 8.1 Sequence data for NtGCL ... 130
 8.2 GCL sequences used for \textit{in silico} analysis ... 131
 8.3 Conservation matrices ... 133
 8.5 Alignment of BjGCL with non-angiosperm plant GCL proteins ... 146
 8.6 Predicted localization of plant GCL proteins ... 148

9 Danksagung (Acknowledgments) .. 149
1.1 Summary

Glutamate cysteine ligase (GCL) is catalyzing the rate-limiting step in glutathione (GSH) synthesis. A complex regulation of this enzyme is required to integrate various signals as GSH is fulfilling a plethora of functions in housekeeping metabolism, stress defence, and in the regulation of development. In this thesis the post-translational redox regulation of plant GCL and closely related proteobacterial enzymes was studied.

The crystal structure of *Brassica juncea* GCL (BjGCL) revealed the presence of two intramolecular disulfide bridges. Biochemical analyses of the wild-type enzyme and of mutants lacking cysteines required for the formation of either disulfide bridge showed that both bridges are involved in the *in vitro* redox regulation of BjGCL. One disulfide bridge (CC1) is apparently controlling access to the active site and knock-out results in a slower overall catalysis rate without changes in K_m-values. The second disulfide bridge (CC2) controls the formation of a GCL homo-dimer and reduction of this disulfide bridge leads to monomerization and almost complete deactivation of the enzyme. Sequence analysis showed that only CC2 is conserved in all higher plants while the occurrence of CC1 is restricted to the Rosids clade. Characterization of the redox regulation of GCL from the (non-Rosid) *Nicotiana tabacum* confirmed the presence of only the dimerization-dependent mechanism of redox regulation. Furthermore, it could be shown that feedback-inhibition of plant GCL by GSH is mechanistically independent from redox regulation. A model is presented on how these different mechanisms interact to control GSH synthesis *in vivo*.

Comparative sequence analysis of plant GCL and with related enzymes from proteobacteria revealed that the amino acid residues forming the dimer interface in BjGCL are conserved in higher plants only, while the catalytic residues are highly conserved among all sequences. The characterization of recombinantly produced GCL from *Agrobacterium tumefaciens* and *Xanthomonas campestris* confirmed that these enzymes show kinetics and susceptibility to inhibitors similar to the plant enzyme but completely lack redox regulation and are active as monomers.

In a second project, the influence of soluble thiols on the GSH metabolism of different types of cultured plant cells was studied, revealing a specific induction of GCL expression by cysteine. This observation may hint at a role of GSH synthesis in the control of the cellular concentrations of this amino acid, preventing an accumulation which might lead to oxidative stress.
1.2 Zusammenfassung

Vergleichende Sequenzanalyse zeigte eine Konservierung der Aminosäurereste, die bei BjGCL die Dimerisierung ermöglichen, nur in höheren Pflanzen, während die katalytischen Reste in allen Sequenzen hoch konserviert sind. Die Charakterisierung der GCL aus *Agrobacterium tumefaciens* und *Xanthomonas campestris* bestätigte, dass diese eine ähnliche Kinetik und Empfindlichkeit gegenüber Inhibitoren zeigen, wie die pflanzlichen Enzyme, aber keinerlei Redox-Regulation aufweisen und als Monomere aktiv sind.

In einem weiteren Projekt wurde der Einfluss löslicher Thiole auf den GSH-Stoffwechsel verschiedener kultivierter Pflanzenzellen untersucht und eine spezifische Induktion der GCL-Expression durch Cystein nachgewiesen. Dies weist auf eine Rolle der GSH-Synthese bei der Kontrolle derzellulären Konzentration dieser Aminosäure hin, deren Akkumulationen zu oxidativem Stress führen könnte.
The tripeptide glutathione (GSH, γ-glutamylcysteinylglycine) is the most abundant low molecular weight thiol in almost all eukaryotic cells as well as in proteo- and cyanobacteria (Fahey and Sundquist, 1991; Masip et al., 2006). The biological functions of glutathione all depend on the central cysteine, providing the chemical reactivity associated with a reduced sulfur atom. Compared to free cysteine, glutathione is less susceptible to autoxidation in the presence of heavy metals and H₂O₂ (Sundquist and Fahey, 1989). This is probably due to its higher thiol pKₐ caused by the vicinity of the SH group to glutamic acid (Spear and Aust, 1994). It has therefore been speculated that evolution of GSH synthesis may have been driven by the need for cells to maintain high intracellular concentrations of reduced sulfur in a form not subject to rapid oxidation (Fahey and Sundquist, 1991). This view is supported by the fact that GSH is the major storage and transport form of reduced sulfur in plants (Noctor and Foyer, 1998; Foyer et al., 2001) and animals (Higashi et al., 1977; Tateishi et al., 1977), making glutathione a central component of eukaryotic sulfur metabolism (see paragraph 2.1).

Besides its prominent role in sulfur metabolism, the reactivity of the glutathione SH group has led to a plethora of other functions, both in housekeeping and stress metabolism. Glutathione is a potent antioxidant and provides one of the three main redox buffers of the eukaryotic cell, acting as a protectant against oxidative stress and as a cofactor for redox active proteins (see paragraph 2.3.1). The nucleophilic properties of the SH group are the basis for glutathione’s involvement in the detoxification of xenobiotics and heavy metals (see paragraph 2.3.2). In addition to these metabolic functions glutathione has been found to be a regulator of protein activity, gene expression and development (see paragraph 2.3.3).

While glutathione is not essential for the growth of *Escherichia coli* (Greenberg and Demple, 1986) its multiple roles in eukaryotic metabolism makes it indispensable for the growth and development of plants (Cairns et al., 2006) and animals (Dalton et al., 2000) and reduced capability of glutathione synthesis results in reduced stress tolerance or complete abortion of development (Cobbett et al., 1998; Cairns et al., 2006).
2.1 Glutathione: A central component of cellular sulfur metabolism

Sulfur is taken up by plants primarily in the form of sulfate by the roots via a number of plasma membrane sulfate transporters. The *Arabidopsis thaliana* genome encodes for 12 sulfate transporters which can be divided into four different groups differing in substrate affinity, subcellular localization and expression patterns (The *Arabidopsis* Genome Initiative, 2000). Some of these genes are induced by sulfur starvation (Takahashi et al., 1997). After uptake, sulfur is reduced and integrated into cysteine moiety, the primary product of reductive sulfur assimilation (Figure 2.1). In a first step sulfate is activated by ATP-sulfurylase, producing 5’-adenylylsulfate (APS), which is reduced by APS-reductase to sulfite and AMP using GSH as a cofactor (Bick and Leustek, 1998). Flux analysis has shown that this reaction is limiting sulfur assimilation and therefore may play a key role in the regulation of this pathway (Kopriva et al., 1999; Vaucrare et al., 2002). Alternatively APS can be further activated by APS kinase to form 3’-phosphoadenylylphosphate (PAPS) which is required for various sulfatation reactions (Varin et al., 1997). Using reduced ferredoxin as electron donor, sulfite is further reduced by sulfite reductase to sulfide, which is than incorporated into cysteine by O-acetylserine (OAS) thiol lyase (OAS-TL). OAS is provided by serine acetyltransferase (SAT), which is generating OAS from acetyl-CoA and serine.

SAT and OAS-TL are forming a regulatory enzymatic complex, where SAT is active in the complex with OAS-TL while the latter, which is present in large excess, is only active in the free state (Bogdanova and Hell, 1997; Wirtz et al., 2001; Berkowitz et al., 2002). While the reduction of sulfate takes place exclusively in plastids (Hawksford and Wray, 2000; Leustek et al., 2000), the enzymes for cysteine synthesis are also found in the cytosol and mitochondria (Wirtz et al., 2004). Experiments, overexpressing inactive SAT in the cytosol of transgenic tobacco, surprisingly led to a stimulation of cysteine synthesis in other compartments, indicating a complex interplay between the different isoforms in the regulation of this reaction (Wirtz and Hell, 2007).

Cysteine is finally incorporated into proteins, GSH or other sulfur-containing molecules. The concentration of free cysteine in the plant cell is kept at a rather constant low level (< 10µM), while flux through the cysteine pool is high (Giovanelli et al., 1980).
Sulfate assimilation is regulated metabolically by OAS and soluble thiols. OAS, produced in excess by SAT when sulfide is lacking, acts as a signal of sulfur starvation and leads to an induction of the assimilatory pathway (Smith et al., 1997) and to dissociation of the OAS-TL/SAT-complex (Kredich et al., 1969), reducing its own production. Glutathione, on the other hand, was also shown to act as a signal for the availability of sulfur and as a regulator of sulfur assimilation (Lappartient and Touraine, 1996, 1997). The ratio of sulfate to glutathione in the phloem seems to control sulphate uptake and loading into the xylem (Herschbach et al., 2000).

Figure 2.1: Overview on the sulfur metabolism in plants (adapted from Rausch and Wachter (2005)). Sulfate assimilation (reactions 2, 3, 4 and 6) is localized in the plastids, whereas fixation and release of \(\text{H}_2\text{S} \) (reactions 8 and 9) occur in plastids, mitochondria and the cytosol. Sulfite oxidase (reaction 5) is confined to peroxisomes.
2.2 The establishment of glutathione homeostasis

In higher plants glutathione levels have been determined to be in the range of 0.1 to 1.5 mM, primarily in the reduced form (Mullineaux and Rausch, 2005). However, GSH concentrations seem to vary widely between different organs, cell types, developmental stages, and organelles. Recently, in vivo labelling of GSH using monochlorobimane (MCB) and microscopic analysis has allowed quantitative estimations of cytosolic GSH concentrations. In poplar, mesophyll and epidermal leaf cells both showed 0.2 to 0.3 mM GSH (Hartmann et al., 2003), whereas in Arabidopsis different leaf cell types also showed varying cytosolic GSH levels. While epidermal cells held 0.14 mM GSH and basement cells 0.08 mM, trichomes showed the highest amounts of up to 0.24 mM (Gutierrez-Alcala et al., 2000) and developing root hair and non root hair cells were estimated to hold 2.7 and 5.5 mM GSH, respectively, values similar to those found for Arabidopsis suspension culture cells (Meyer and Fricker, 2000; Meyer et al., 2001).

However, probably due to a lack of compatible glutathione-S-transferases, MCB does not allow labelling of organellar GSH pools. Fractionation experiments proposed GSH levels as high as 5 to 20 mM in chloroplasts (Foyer and Halliwell, 1976; Smith et al., 1985; Klapheck et al., 1987), emphasizing the importance of GSH in upholding the plastidic redox state.

Glutathione is involved in the defence of plants against many different forms of stress, which is also reflected by the observation that changes in GSH concentration accompany the adaptation of plants to a variety of unfavourable environmental conditions. Elevated levels of GSH have been found to play a role in the adaptation to such different stress factors as cold (Anderson et al., 1992; Wildli and Lütz, 1996), heat (Nieto-Sotelo and Ho, 1986; Kurganova et al., 1999), salt (Bor et al., 2003), heavy metals (Freeman et al., 2004), and iron deficiency (Zaharieva and Abadia, 2003).

The multiple roles of glutathione in plants require a complex control of glutathione homeostasis, integrating metabolic, developmental and environmental signals. Synthesis, transport, and degradation of glutathione all can contribute in varying proportions to the regulation of GSH levels (Noctor et al., 2002). The synthesis of glutathione has received most attention so far (Rausch et al., 2007), while the molecular characterization of GSH transport and degradation has only recently begun to make significant progress, making it hard to
estimate how strong the contributions of the latter two to the control over GSH concentration are.

Overexpression of the enzymes of GSH synthesis in tobacco provided evidence for the importance of a stringent control over the cellular GSH levels (Creissen et al., 1999). Here the resulting increase in GSH concentration resulted in oxidative stress, probably due to unbalancing of the cellular redox system, and led to light intensity-dependent chlorosis and necrosis. However, similar experiments in poplar, although showing a comparable increase in GSH concentration, did not result in phenotypic effects (Noctor et al., 1998b; Noctor et al., 1998a).

In addition to or instead of glutathione some plants also produce other thiols, where the glycine residue is substituted by different amino acids. In many Fabaceae homoglutathione (γ-glutamylcysteinylalanine) is found (Carnegie, 1963; Klapheck, 1988), while several Poaceae produce hydroxymethylglutathione (γ-glutamylcysteinylserine) or γ-glutamylcysteinylglutamic acid (Klapheck et al., 1992; Meuwly et al., 1993). While these homologs probably can fulfil the same functions as GSH, different ratios of GSH to hGSH in different legume tissues might also indicate specialised functions for either thiol under certain conditions (Matamoros et al., 1999).

2.2.1 Glutamate cysteine ligase is the regulatory step of glutathione synthesis

Glutathione is synthesized enzymatically from the free amino acids in two ATP- and Mg$^{2+}$-dependent steps. First glutamate cysteine ligase (GCL = GSH1 = γ-ECS, E.C. 6.3.2.2) establishes a peptide bond between the amino group of cysteine and the γ-carboxy group of glutamate, forming γ-glutamylcysteine (γ-EC). In the second step, glutathione synthetase (GSHS = GSH2, E.C. 6.3.2.3) adds a glycine residue to the carboxy-terminus of γ-EC, producing glutathione. While the GCL reaction takes place in plastids, GSHS is found in both plastids and cytosol (See paragraphs 2.2.2 and 2.2.3)

As glutathione synthesis combines precursors from the assimilatory pathways for carbon, nitrogen and sulfur in the form of the amino acids glutamate, cysteine and glycine, the supply of any of these could theoretically regulate the level of GSH. It has been found that primarily sulfur supply does limit the content of GSH in plants, so it can be assumed that the availability of cysteine for the reaction catalyzed by GCL is a strong regulator of GSH synthesis in vivo (Meyer and Fricker, 2002; Noctor et al., 2002; Kopriva and Rennenberg,
Furthermore, it has been found that glutathione synthesis may be limited by the photosynthetically active photon flux at low light intensities, possibly due to limitations in the supply of carbon backbones for amino acid synthesis or reduction equivalents necessary for the assimilation of nitrogen and sulfur (Ogawa et al., 2004). As poplar and maize leaves accumulate γ-EC in the dark which is depleted after onset of the photoperiod, it has also been suggested that glycine, produced during photorespiration, could limit GSH synthesis at the reaction catalyzed by glutathione synthetase (Noctor and Foyer, 1998; Masi et al., 2002). However, as light intensity might also influence the cellular redox state and ROS production rates, a more complex mode of light-dependent regulation of GSH synthesis, possibly involving gene expression or post-translational regulation, seems also plausible.

The analysis of transgenic plants strongly indicates that the reaction catalyzed by GCL is limiting glutathione synthesis in planta under most conditions. Overexpression of the glutathione synthesis proteins from E. coli in poplar resulted in an increase of glutathione content only when GCL was overexpressed (Arisi et al., 1997; Noctor et al., 1998b; Noctor et al., 1998a). No significant differences were observed regarding the overexpression of GCL in the cytosol or the plastids. In both cases glutathione levels were increased up to four fold. Similar results were achieved by overexpression of the E. coli genes of GSH synthesis in tobacco (Creissen et al., 1999), whereas overexpression of the endogenous GCL gene in Arabidopsis resulted only in an increase in GSH of up to 180 % of wild-type levels only (Xiang et al., 2001). Antisense expression of GCL resulted in a significant decrease of GSH levels, accompanied by higher cadmium sensitivity and diminished growth (Xiang et al., 2001).

The decisive role of GCL in glutathione synthesis is further emphasized by the characterization of several Arabidopsis mutants with decreased capability to synthesize GSH. The mutant rmll (root meristem less), which is unable to produce a root meristem (Cheng et al., 1995), shows an exchange of aspartate to asparagine in the position 259 of the GCL protein and has extremely low levels of glutathione (Vernoux et al., 2000). The mutants cad2-1 (cadmium hypersensitive), which has a 6 base pair deletion in GCL, and rax1-1 (regulator of ascorbate peroxidase2), showing an arginine to lysine exchange in position 229 of the protein, both show about 40 % of the GCL activity and GSH concentration found in the wild-type (Cobbett et al., 1998; Ball et al., 2004). These mutants showed increased susceptibility to cadmium and changed expression of stress related genes, but showed no phenotype different from the wild-type under non-stress conditions.
Recently the mutant *pad2-1* (*phytoalexin deficient*) could also be mapped to the GCL gene (Parisy et al., 2007). It has been described as being deficient in the phytoalexin camalexin and showing enhanced susceptibility to several pathogens which, however, was not dependent on camalexin deficiency. *pad2-1* was found to cause a serine to asparagine transition in position 298 of the GCL protein, resulting in GSH levels as low as 20 % of that found in the wild-type.

Interestingly, for all these mutants, except for *rax1-1*, increased levels of cysteine were reported, whereas in GCL overexpression experiments no decrease of cysteine concentrations was reported, indicating a complex feedback control of GSH synthesis on the regulation of sulfur assimilation and cysteine synthesis.

2.2.2 Plant glutamate cysteine ligase: Evolutionary relationship and subcellular localization

At the protein sequence level, plant GCL is clearly distinct from its counterparts in animals, fungi, and *E. coli*. Therefore it has been predicted to be structurally unrelated to these (May and Leaver, 1994). However, plant GCL proteins share extensive sequence similarity with those from alphaproteobacteria and some gammaproteobacteria (Copley and Dhillon, 2002). Together they define a group of *GCL* genes (= group 3), separated from animal and fungal *GCL* (= group 1) and most gammaproteobacterial genes (including *E. coli*; group 2), respectively (Figure 2.1). While group 3 also includes cyanobacterial *GCL* genes, these are forming a distinct subgroup and probably are not the predecessors of the plant enzyme (Ashida et al., 2005). Despite the low overall sequence homology between the three groups, Copley and Dhillon (2002) were able to identify three conserved blocks specific for all GCL proteins, indicating a common origin. Based on further similarity searches it has been proposed that GCL and glutamine synthetase proteins, which act as \(\gamma\)-glutamylammonia ligases, actually form a large superfamily of carboxylate-amine/ammonia ligases (Abbott et al., 2001).
Figure 2.1: Phylogenetic tree of GCL proteins, based on conserved blocks in the sequences (from Copley and Dhillon, 2002). Sequences from groups 1, 2 and 3 are colored red, green and blue, respectively. Question marks indicate genera for which the ability to synthesize glutathione has not been demonstrated. Numbers indicate bootstrap values greater than 50%.

In *Arabidopsis*, GCL is present as a single gene (May and Leaver, 1994; The Arabidopsis Genome Initiative, 2000), while other plant species like *Brassica juncea* can have several isoforms, possibly due to higher ploidy levels (Schäfer et al., 1998). In *A. thaliana* and *B. juncea* GCL is localized exclusively to the plastid, as was shown using in vivo localization studies, immunohistology, and cell fractionation techniques (Wachter et al., 2005). Exclusive plastidic localization of GCL has also been reported for nodules of *Glycine max* (Moran et al., 2000). Earlier cell fractionation experiments detected GCL activity also in cytosolic fractions of *Nicotiana tabacum* (Hell and Bergmann, 1990), *Zea mays* (Ruegsegger and Brunold, 1993) and *Vigna unguiculata* (Moran et al., 2000). However these findings have not been supported by analysis using further methods. While therefore at the moment a cytosolic subpopulation of GCL cannot be excluded for all cases, plastidic localization of plant GCL seems to be predominant or even exclusive in plants.
2.2.3 Regulation of glutamate cysteine ligase activity

The glutamate cysteine ligase reaction is under multiple control, involving expression of the enzyme, supply of its metabolites and feedback inhibition via the redox state and the cellular concentration of glutathione. Increased GCL transcript levels have been observed following several kinds of stress treatment like exposure to copper (Schäfer et al., 1997), cadmium, jasmonic acid (Xiang and Oliver, 1998) and chilling (Gomez et al., 2004). Notably, GCL protein amount and extractable activity did not always follow changes in transcript amounts. The observation that GCL protein amount in Arabidopsis was significantly enhanced after hydrogen peroxide treatment, while transcript amounts remained unchanged, led to the assumption that the cellular redox state does exert a translational control on GCL expression (May, 1998 #67). Such a regulation might be controlled by 5’-UTR binding proteins. Interestingly, in Arabidopsis and B. juncea the GCL genes give rise to two transcript populations, differing in the length of the 5’-UTR but not in the coding region and the ratio of transcript types is influenced by developmental and environmental cues (Wachter et al., 2005). As for both transcripts canonical TATA-boxes are positioned about 30 bp upstream of the transcript starts, it can be assumed that dual, overlapping promoters regulate the expression of different transcripts, potentially affecting the susceptibility to post-transcriptional expression control.

Plant GCL proteins have been characterized by using partially purified enzymes from wheat (Webster and Varner, 1954) and tobacco (Hell and Bergmann, 1990) and recently by using recombinant Arabidopsis and B. juncea enzymes (Jez et al., 2004). Plant GCL was found to show K_m values for the substrates ATP, cysteine and glutamate that were comparable to those found for animal or bacterial proteins (Table 2.1). As all of these enzymes are inhibited by buthionine sulfoximine, which has been shown to bind to the active site of rat GCL (Orlowski and Meister, 1971), a conserved catalytic mechanism has been proposed (May and Leaver, 1994). In the case of the rat enzyme that the reaction is involving enzyme bound γ-glutamylphosphate as a reaction intermediate (Orlowski and Meister, 1971). A difference between plant and animal GCL, however, is found in the dependence on monovalent cations, as plant GCL shows higher activity in the presence of potassium than in the presence of sodium (Webster and Varner, 1954).
Introduction

Table 2.1: K_m values of GCL proteins from various organisms (in mM)

<table>
<thead>
<tr>
<th></th>
<th>Arabidopsis</th>
<th>B. juncea</th>
<th>N. tabacum</th>
<th>R. norvegicus</th>
<th>C. boidinii</th>
<th>E. coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Cysteine</td>
<td>1.6</td>
<td>0.12</td>
<td>0.19</td>
<td>0.2</td>
<td>0.4</td>
<td>0.09</td>
</tr>
<tr>
<td>L-Glutamate</td>
<td>9.1</td>
<td>8.5</td>
<td>10.4</td>
<td>1.4</td>
<td>1.4</td>
<td>0.5</td>
</tr>
<tr>
<td>ATP</td>
<td>2.7</td>
<td>1.3</td>
<td>n.d.</td>
<td>0.2</td>
<td>0.2</td>
<td>0.01</td>
</tr>
</tbody>
</table>

K_m values in mM for the GCL enzymes from Arabidopsis thaliana (Jez et al., 2004), Brassica juncea, Nicotiana tabacum (Hell and Bergmann, 1990), Rattus norvegicus holoenzyme (Huang et al., 1993a; Huang et al., 1993b), Candida boidinii (Dennda and Kula, 1986) and Escherichia coli (Watanabe et al., 1986).

Besides a possible regulation of GCL activity by the availability of its substrates, especially cysteine, plant GCL also shows post-translational regulation via the redox state and glutathione concentration. Treatment of GCL protein purified from tobacco or of recombinantly produced Arabidopsis GCL, with the reductant dithiothreitol (DTT) led to a significant drop in activity and resulted in a decrease in apparent size of the protein in size exclusion chromatography (Hell and Bergmann, 1990; Jez et al., 2004). Considering the central role of GCL in providing the redox metabolite GSH, such a mechanism could provide an efficient feedback regulation. In case of the rat enzyme redox regulation depends on the association and dissociation of a catalytic and a regulatory subunit, facilitated by formation or reduction of an intermolecular disulfide bridge (Huang et al., 1993a; Huang et al., 1993b). In this case the holoenzyme shows an approximately six-fold lower K_m value for glutamate and lower sensitivity for GSH feedback inhibition.

GCL proteins from various organisms are also inhibited by the presence of GSH. For the recombinantly produced protein from Arabidopsis inhibition by GSH has been described as non-competitive, leading to the assumption that it is mechanistically equivalent to redox regulation (Jez et al., 2004). However, for the partially purified GCL protein from tobacco a competitive inhibition towards both glutamate and cysteine has been reported (Hell and Bergmann, 1990). Furthermore analysis of the B. juncea protein showed that oxidized GSH (GSSG) and S-methyl-GSH both act as inhibitors comparable in strength to reduced GSH, arguing against a strong contribution of the reductive properties of GSH to the inhibition of plant GCL.
2.2.3 Plant glutathione synthetase: Evolutionary relationship, subcellular localization and regulation

In contrast to GCL, plant glutathione synthetase is closely related to GSHS from other eukaryotes, forming a group distinct from prokaryotic GSHS enzymes (Copley and Dhillon, 2002). In addition to GSHS, in Fabaceae specific homoglutathione synthetases (hGSHS) are found which are derived from GSHS via gene duplication (Moran et al., 2000; Frendo et al., 2001). The concentrations of GSH and hGSH found in the tissues of different Fabaceae seems to be correlated to the expression of these GSHS and hGSHS genes (Matamoros et al., 1999). Whether the synthesis of other GSH homologs is also regulated by GSHS homologs is not yet known, as the formation of GSH homologs can also be facilitated by the action of GSHS proteins with a broad substrate specificity regarding the acyl acceptor (Skipsey et al., 2005) and at least for hmGSH it also seems possible via the substitution of glycine from GSH catalyzed by carboxypeptidase Y (Okumura et al., 2003).

In *Arabidopsis* GSHS is encoded by a single gene showing approximately 40 % identity and 60 % similarity to other eukaryotic GSHS proteins (Ullmann et al., 1996; Wang and Oliver, 1996; The *Arabidopsis* Genome Initiative, 2000). While this gene does encode for a predicted plastidic transit peptide, several transcription initiation sites lead to different transcript populations (Wachter et al., 2005). Most transcripts are lacking the region encoding the transit peptide and therefore result in protein being localized in the cytosol. The ratio of long transcripts, encoding for a plastidic protein, to short transcripts was found to be highest in source leaves and lowest in non-photosynthetic tissue like roots and stem, possibly indicating a tissue-dependence of the localization of GSH synthesis. Cell fractionation experiments confirmed predominant localization of GSHS (and hGSHS) protein in the cytosol with only a minor population in the plastids and possibly in mitochondria (Klapheck et al., 1987; Hell and Bergmann, 1988; Moran et al., 2000).

GSHS purified from tobacco and the recombinantly produced *Arabidopsis* protein have been characterized enzymatically, revealing similar kinetics as found for the animal enzyme (Hell and Bergmann, 1988; Jez and Cahoon, 2004). GSHS is active as a homodimer and studies concentrating on mutant variants of the *Arabidopsis* enzyme recently allowed a detailed characterization of the reaction mechanism of plant GSHS, involving the formation of an acylphosphate intermediate (Herrera *et al.*, 2007).
2.2.4 Transport of glutathione in plants

Long distance transport of GSH occurs in xylem and phloem (Rennenberg et al., 1979) enabling GSH to act as the major transport and storage form of reduced sulfur in plants. However, long distance transport of substantial amounts of S-methylmethionine in the phloem has also been shown (Bourgis et al., 1999).

The need for intracellular GSH transport becomes obvious when considering the localization of GSH metabolizing enzymes. As only plastids and the cytosol are able to synthesize GSH (Wachter et al., 2005), other organelles like mitochondria, the components of the secretory pathway and peroxisomes require GSH import. In addition, the exclusive plastidic localization of GCL means that γ-EC has to be exported from this compartment to feed the GSHS reaction in the cytosol. Export of γ-EC and GSH from the plastid would also act as a mechanism to regulate GCL activity as both substances are able to provide feedback inhibition (Pasternak, 2007). Furthermore, as glutathione reductase genes encode for proteins targeted to the cytosol, plastids and mitochondria (Creissen et al., 1995; The Arabidopsis Genome Initiative, 2000), not only the import of reduced GSH but also an efficient export of oxidized GSH from other organelles is necessary.

Kinetic analyses of GSH uptake suggested low- and high-affinity import systems in Nicotiana tabacum cells while kinetics measured for protoplasts from Vicia faba hinted at a single uptake system for reduced and two systems for oxidized GSH (Schneider et al., 1992). In bean cells GSH uptake was inhibited by GSSG and GSH-conjugates but not by other di- or tripeptides, indicating that a specific uptake system for GSH and its derivatives exists. The first plant GSH transporters were identified based on their homology to a high-affinity GSH transporter from yeast (Bogs et al., 2003; Zhang et al., 2004).

Recently, it could be shown that in GSHS knockout plants γ-EC is accumulating to very high amounts in the cytosol. Furthermore, GSHS expression in either the plastid or the cytosol could rescue the plants from seedling lethality and restore the wild-type phenotype (Pasternak, 2007).

2.2.5 Degradation of glutathione in plants

In mammals GSH is degraded by the sequential action of extracellular γ-glutamyl transpeptidase (GGT) and a membrane bound dipeptidase (Liebermann et al., 1995; Habib et al., 1996) and this pathway has been found to be essential for the reabsorption of cysteine and the degradation of GSH-conjugates (Liebermann et al., 1996). In Arabidopsis four GGT isoforms have been identified. GGT1 is localized in the apoplast and accounts for 80 – 99% of the activity in all tissues except seeds, where the other apoplastic isoform GGT2 provided about 50% of the activity (Martin et al., 2007; Ohkama-Ohtsu et al., 2007b). ggt1 mutant plants were described as stunted, early flowering and showing yellowing of leaves and accumulation of GSSG in the apoplastic space, while ggt2 mutants showed no phenotype (Ohkama-Ohtsu et al., 2007b). It has therefore been assumed that GGT1 is important for preventing oxidative stress by metabolizing extracellular GSSG, while GGT2 might play a role in the import of GSH into developing seeds. GGT3 and GGT4 are localized in the vacuole and are involved in the degradation of GSH conjugates (Grzam et al., 2007; Ohkama-Ohtsu et al., 2007a).

However, to what degree GGTs are involved in GSH degradation in plants is not yet fully understood. γ-EC was found to appear as the degradation product of radio-labelled GSH fed to tobacco cells, indicating a degradation pathway starting with a carboxypeptidase, while further degradation was catalyzed by a γ-glutamyl cyclotransferase, producing 5-oxo-proline (Steinkamp and Rennenberg, 1985). In soybean on the other hand cysteinylglycine was detected as degradation product, indicating a pathway using GGT and a dipeptidase (Bergmann and Rennenberg, 1993). A third possible pathway for GSH degradation, involving a phytochelatin synthetase (PCS) related protein was described for cyanobacteria (Harada et al., 2004) and degradation of GSH conjugates by PCS was also shown to be possible in higher plants (Beck et al., 2003). However, for GSH conjugates import into the vacuole seems to outcompete degradation by PCS (Grzam et al., 2006). To which degree these different pathways contribute to the degradation of underivatized GSH in planta and whether there are differences between tissues and developmental stages is unknown so far.

An important factor in the control of GSH degradation seems to be the GSH redox state, as overexpression of GSH reductase led to a significant increase in GSH levels (Foyer et al., 1995). The preferential degradation of GSSG might play a role in the upholding of redox homeostasis, as the accumulation of high amounts of GSSG has been shown to cause oxidative stress (Creissen et al., 1999).
2.3 Stress and housekeeping metabolism – the multiple roles of glutathione

2.3.1 Glutathione as a redox metabolite

2.3.1.1 The basis of glutathione redox chemistry

The role of glutathione as an antioxidant in stress defence and signalling has been extensively studied and discussed in the last years (Foyer and Noctor, 2005a; Mullineaux and Rausch, 2005). As a thiol reductant glutathione can form a dimer (GSSG) by oxidative formation of a disulfide bridge:

\[2 \text{GSH} \leftrightarrow \text{GSSG} + 2 \text{H}^+ + 2 e^- \]

This oxidative dimerization is reversible through the action of glutathione reductase (GR, E.C. 1.6.4.2) using NADPH as electron donor. In Arabidopsis two genes for glutathione reductase are present. One is encoding for a cytosolic protein while the other encodes for a protein with dual targeting to plastids and mitochondria (The Arabidopsis Genome Initiative, 2000; Chew et al., 2003). Glutathione reductase activity was also detected in peroxisomes of pea leaves (Jiménez et al., 1997). All other compartments, especially the apoplast, would require import of GSH and export or degradation of GSSG to balance their redox state.

The Nernst equation allows calculation of the glutathione redox potential, which is dependent on the redox state as well as the total concentration of GSH as it is influenced by oxidized glutathione in first order, while reduced glutathione does so in second order:

\[E_{\text{redox}} = E_{0,\text{redox}}^0 - \frac{R \cdot T}{n \cdot F} \cdot \ln \left(\frac{[\text{GSH}]}{[\text{GSSG}]} \right) \]

where \(E_{\text{redox}} \) is the redox potential, \(E_{0,\text{redox}}^0 \) the standard redox potential (for GSH/GSSG: \(E_{0,\text{redox}}^0 = -240 \text{ mV} \)), \(R \) the universal gas constant, \((8.314510 \text{ J K}^{-1} \text{ mol}^{-1}) \), \(T \) the temperature in Kelvin, \(n \) the number of electrons involved (for GSH/GSSG \(n = 2 \)) and \(F \) is the Faraday constant \(9.6485309 \times 10^4 \text{ C mol}^{-1} \).
The amounts of GSH found in eukaryotic cells combined with its standard redox potential of -240 mV (Schafer and Buettner, 2001), which is between the -320 mV of the NAD(P)H/NADP$^+$ couple and that of ascorbic acid/dehydroascorbate at -80 mV, render the GSH/GSSG couple one of the three major cellular redox buffering systems.

As a reductant glutathione is involved in several enzymatic reactions such as the reduction of 5’Adenylylsulfate (APS) by APS reductase or glutathione dependent formaldehyde reductase (Giese et al., 1994). It is also acting as an antioxidant, detoxifying reactive oxygen species and is involved in the control of protein redox state.

2.3.1.2 The role of glutathione in the detoxification of reactive oxygen species (ROS)

Several reactions in plant metabolism can lead to the formation of reactive oxygen species (ROS), the production of which is further enhanced when the metabolism is disturbed by stress (Alscher et al., 1997; Noctor and Foyer, 1998). While these ROS can have a role in signalling and induction of defence reactions (Vranova et al., 2002; Foyer and Noctor, 2005a), their chemical reactivity threatens to oxidize biologically important molecules like proteins, lipids and nucleic acids, therefore requiring cells to express efficient systems to keep the ROS levels under strict control.

Besides the oxidative reactions in peroxisomes, the largest contribution to ROS production is made by the electron transport chains of mitochondria and plastids. In chloroplasts electrons can be transferred by the Mehler reaction (Mehler, 1951) from photosystem I to molecular oxygen (O_2), resulting in the formation of superoxide anions (O_2^-). This reaction preferentially takes place when the NADP$^+/NADPH$ pool is highly reduced due to high light intensities, limiting the availability of the physiological electron acceptor NADP$^+$. Superoxide dismutases (SOD, EC 1.15.1.1) convert two superoxide anions to molecular oxygen and hydrogen peroxide (H_2O_2). Both, superoxides and peroxides, can undergo further reactions, resulting in highly reactive compounds like the hydroxyle radical (OH) or lipid peroxides. Several cellular mechanisms exist to detoxify hydrogen peroxide to prevent the formation of more aggressive ROS. Catalases can detoxify hydrogen peroxide by dissociating it to molecular oxygen and water but they show a low substrate affinity and are not found in plastids (Willekens et al., 1995). Therefore other detoxification mechanisms are required in this compartment.
Glutathione can directly react with some toxic oxidants like hydroxyl radicals and peroxynitrite (Kalyanaraman et al., 1996; Karoui et al., 1996) and can reduce less reactive oxidants like hydroperoxides with the aid of peroxidases. However, recently the plant genes annotated as glutathione peroxidase due to their homology to animal genes have been shown to actually be thioredoxin dependent peroxidases (Navrot et al., 2006). On the other hand it appears that some glutathione-S-transferases (GSTs, see paragraph 2.3.2.1) are able to reduce peroxides in a glutathione-dependent manner, therefore acting as glutathione peroxidases (Cummins et al., 1999). Furthermore, at least some peroxiredoxins, proteins that can reduce hydrogen peroxide and alkyl peroxides can be regenerated by glutaredoxins, proteins that use GSH as a cofactor to reduce protein disulfide bonds (Rouhier et al., 2001; Rouhier et al., 2002).

Most of the hydrogen peroxide, detoxified in a glutathione dependent manner is initially reduced by ascorbic acid peroxidase (APX, EC 1.11.1.11), resulting in the formation of monodehydroascorbic acid (MDHA) (Noctor and Foyer, 1998). MDHA can be reduced NADPH dependent by monodehydroascorbic acid reductases (MDHAR) or can disproportionate to ascorbic acid (AA) and dehydroascorbic acid (DHA), the latter being reduced to ascorbic acid by the glutathione dependent dehydroascorbic acid reductase (DHAR). As glutathione can be reduced by the NADPH dependent glutathione reductase (GR), the ascorbic acid glutathione cycle connects the three major soluble redox buffering systems of the plant cell to provide an efficient system for the detoxification of ROS (Fig 2.2).

The metabolites and enzymes required for the ascorbic acid-glutathione-cycle have been found in cytosol, plastids, mitochondria and peroxisomes where in Arabidopsis thaliana the same isoforms of the enzymes are imported into plastids and mitochondria (Jiménez et al., 1997; Chew et al., 2003). Little is known so far about the transport of glutathione and ascorbic acid between the cellular compartments and about the enzymes providing the peroxisomal activities so that the relative contribution of the different compartments to ROS detoxification remains somewhat unclear. Interestingly, however, it has been found that stress affects the ascorbic acid-glutathione-cycle in the various compartments differently, possibly hinting at a compartment specific role of antioxidant systems in stress defence and signalling (Jiménez et al., 1998; Nishikawa et al., 2003).
Fig. 2.2: Detoxification of reactive oxygen species (ROS) via the ascorbic acid glutathione cycle (Noctor and Foyer, 1998).

Abbreviations:

Metabolites:
- AA – ascorbic acid
- MDHA – monodehydroascorbic acid
- DHA – dehydroascorbate
- GSH – glutathione (red.)
- GSSG – glutathione (ox.)
- NADP⁺ – nicotinic adenine dinucleotide (ox)
- NADPH – nicotinic adenine dinucleotide (red.)

Enzymes:
- APX – AA peroxidase
- GR – GSH reductase
- DHAR – DHA reductase
- MDHAR – MDHA reductase
- SOD – superoxide dismutase

Keeping the ascorbic acid pool reduced, glutathione indirectly also acts as a protectant for further antioxidant systems which are reduced by ascorbic acid, like the tocopherol system, which is protecting biological membranes, and the xanthophyll cycle, which is involved in the dissipation of excess energy accumulated in the photosystem during high light conditions. Depletion of GSH in animal cells has been shown to lead to an increased concentration of ROS as well as to lipid peroxidation and DNA damage, emphasizing the importance of glutathione as an antioxidant protecting various cellular systems (Green et al., 2006; Reliene and Schiestl, 2006).
2.3.1.3 The role of glutathione in control of protein redox state

As glutathione is able to undergo redox reactions with the sulphydryl groups of other molecules, most likely it is the reductant to influence the redox state of protein cysteine residues. In animal cells the rate of reduced to oxidized glutathione has been found to be in the range from 30:1 to 100:1 in the whole cell, while the endoplasmatic reticulum (ER) shows a proportion of 3:1 to 1:1 (Hwang et al., 1992). It has been proposed that these differences in the redox state of glutathione are directly responsible for the varying redox state of proteins in these compartments, favouring the formation of disulfide bridges in the ER while keeping cytosolic proteins reduced. While GSH may interact with some protein cysteines or disulfide bridges spontaneously, a specific reduction of protein disulfide bridges can be accomplished by glutaredoxins, which are using glutathione as the electron donor (Morell et al., 1995; Szederkenyi et al., 1997).

The formation of mixed disulfides between glutathione and proteins, referred to as glutathionylation, has only recently become a field of interest. Glutathionylation can occur spontaneously, especially under oxidizing conditions, and it has been estimated that about half of the glutathione in the ER is found in the form of a mixed disulfide with proteins (Bass et al., 2004). De-glutathionylation reactions seem to be dependent on the action of glutaredoxins (Jung and Thomas, 1996; Nulton-Persson et al., 2003).

It has been speculated that glutathionylation could act as a protective mechanism, preventing the irreversible oxidation of cysteine residues. Furthermore, the specific glutathionylation of several proteins has been reported and proposed to play a role in the regulation of these proteins (see paragraph 2.3.3.1). Interestingly, for mammalian 1-Cys peroxiredoxins a mechanism depending on glutathione-S-transferase-mediated glutathionylation has been shown to be required for re-reduction of the enzyme after reacting with peroxides (Noguera-Mazon et al., 2006).
2.3.2 Involvement of glutathione in detoxification reactions

Besides the ability to participate in redox reactions, the sulfhydryl group of glutathione can undergo a number of other chemical reactions, based on its nucleophilic properties. The binding of foreign compounds like xenobiotics or heavy metal ions and the subsequent sequestration of the glutathione complexes is the basis for various detoxification processes.

2.3.2.1 Glutathione S-transferases

Covalent binding of glutathione can happen spontaneously for some reactive electrophilic chemicals like monobromobimane (mBBr) or 5,5'-Dithio-bis(2-nitrobenzoic acid) (DTNB), both of which can be used for the specific labelling of thiols. For other xenobiotics a detoxification system similar to that described for the animal system is present in plant cells, therefore sometimes referred to as the “green liver” (Sandermann, 1994; Kreuz et al., 1996). Substrates to be detoxified are chemically activated by monooxygenases and subsequently bound to the nucleophilic group of a hydrophilic substance like glutathione, sugars, or amino acids. This does on one hand increase the solubility of the substance, preventing uncontrolled passage of membranes, and on the other hand marks the xenobiotic with a group that can be specifically recognized and transported. The conjugation to glutathione is catalyzed by a group of enzymes referred to as glutathione-S-transferases (GST). These enzymes are expressed in a large number of isoforms, 48 in Arabidopsis thaliana, of which several are induced by xenobiotics or other stress factors (Marrs, 1996; Dixon et al., 2002). Finally the conjugates are transported into the vacuole or the apoplast by ATP-dependent transporters of the ABC (ATP binding cassette)-type (Martinoia et al., 1993; Lu et al., 1997; Rea et al., 1998). The transcript levels of these transporters have been found to be up-regulated in parallel to those for GSTs upon exposure to some xenobiotics.

In the vacuole GSH conjugates are quickly degraded by GGTs to cysteinylglycine conjugates and further to the cysteine conjugates (Grzam et al., 2007; Ohkama-Ohtsu et al., 2007a) from which further degradation is presumed to be substrate and species specific (Leustek et al., 2000). Recently, transporters allowing the transport of glutathione conjugates to the apoplast and from cell to cell have been described (Zhang et al., 2004) and experiments conducted on barley roots indicated that long distance transport of GSH conjugates and
exudation from the root might be another way for plants to cope with xenobiotics, being equivalent to animal excretion systems (Schröder et al., 2007). What the relative contribution of deposition and excretion to the detoxification of xenobiotics actually are in living plants remains to be elucidated.

There are several hints that glutathione-S-transferases also fulfil other roles besides the detoxification of xenobiotics. Some plant metabolites like medicarpin, an isoflavone, are subject to GSH-conjugation and transport to the vacuole (Li et al., 1997) and it has been shown that the bronze-2 mutant of maize is deficient in anthocyan deposition to the vacuole due to a defect in a GST (Marrs, 1996). This finding is supported by the observation that the accumulation of anthocyanes under high light conditions is GSH dependent (Xiang et al., 2001), indicating that the glutathione-GST system might play an important role in the import of metabolites into the plant vacuole. In addition, GSTs have also been presumed to be involved in glutathionylation reactions, binding GSH to protein cysteines (Noguera-Mazon et al., 2006).

Furthermore some GSTs have been shown to fulfil additional enzymatic functions such as the reduction of peroxides in a glutathione-dependent manner, therefore in fact acting as glutathione peroxidases. This functionality has been found to confer tolerance against chilling and salt in transgenic tobacco (Roxas et al., 1997) and to herbicides in black-grass (Cummins et al., 1999). Another catalytic role that is not involving GSH conjugation has been found for one Arabidopsis GST which catalyzes the GSH-dependent isomerization of maleylacetoacetate to fumarylacetoacetate, a step in the pathway of tyrosine degradation (Dixon et al., 2000).

GSTs and GSH conjugates have also been reported to play a role in signalling processes. In parsley it has been shown that the induction of genes encoding for the enzymes of flavonoid biosynthesis by ultraviolet light requires GSH and the expression of a specific GST (Loyall et al., 2000). Furthermore, in onion GSH conjugates have been described as being transported to the nucleus before sequestration to the vacuole, followed by a transient induction of defence reactions (Schröder and Stampfl, 1999). Recently, the electrostatic association of a glutathione S-transferase to the nuclear membrane of rat hepatocytes has been demonstrated, which could play a role in signalling or represent a specific defence mechanism of the nucleus (Stella et al., 2007).
2.3.2.2 Glutathione and heavy metal tolerance

Essential and non-essential heavy metal ions are taken up by plants via the root and can, depending on their cellular concentration, disturb the metabolism by different mechanisms. These include the inactivation of enzymes by displacement of required cations and the catalysis of several noxious chemical reactions, including the production of ROS. Therefore the concentration of heavy metal ion concentrations has to be strictly controlled. One possibility to bind heavy metal ions is provided by the ability of the sulfhydryl group to form metal ion complexes, a property that has led to the trivial name mercapto group for the SH group (Latin: mercurium captare – to grab/catch mercury). Proteins containing several cysteines that are presumed to be involved in metal homeostasis and detoxification are present in plants and animals in the form of metallothioneins (Cobbett and Goldsbrough, 2002).

Interestingly, expression of a metallothionein 2 from *Brassica juncea* not only increased copper and cadmium tolerance in *E. coli* and *Arabidopsis*, but inhibited root elongation in *Arabidopsis* seedlings (Zhigang *et al.*, 2006).

Glutathione can also play an important role in the detoxification of heavy metal ions by directly forming complexes as well as in the defence against secondary effects of heavy metal stress by the detoxification mechanism described previously. The production of adequate amounts of glutathione by plants has been shown to be essential for the tolerance of *Arabidopsis* against cadmium (Xiang *et al.*, 2001), where the cadmium sensitive mutant cad2-1 was found to have lowered glutathione concentrations due to a mutation in the GCL gene (Howden *et al.*, 1995a; Cobbett *et al.*, 1998). In several species of the related genus *Thlaspi* an elevated capacity for glutathione synthesis was shown to be associated with constitutively elevated levels of salicylic acid and was responsible for the high resistance towards nickel, allowing hyper-accumulation of this metal. Also, nickel tolerance of transgenic *Arabidopsis* lines was significantly correlated to the glutathione content (Freeman *et al.*, 2004; Freeman *et al.*, 2005).

Improved complexation of heavy metals is facilitated by the synthesis of metal-chelating glutathione polymers of the structure \((\gamma\text{-Glu-Cys})_n\text{-Gly}\) with \(n = 2-11\), called phytochelatins (PCs) (Grill *et al.*, 1985). In plant species that contain GSH homologs alternative phytochelatins, substituting the terminal glycine by alanine, serine or glutamate can be produced (Rauser, 1995). The ability to form phytochelatins has also been found in
yeast and some animals, including the nematode *Caenorhabditis elegans* (Cobbett and Goldsbrough, 2002).

The synthesis of phytochelatins from glutathione is catalyzed by phytochelatin synthase (PCS), a γ-glutamylcysteindipeptidyl-transpeptidase (EC 2.2.15) (Grill et al., 1989). The corresponding gene has been identified in *Arabidopsis* by screening mutants for reduced cadmium tolerance, identifying the cadmium sensitive mutant *cad1*, defective in PCS (Ha et al., 1999). The *cad1* mutant is unable to synthesize PCs, resulting in reduced tolerance to cadmium without showing a phenotype under non-stress conditions, indicating that phytochelatin synthesis probably is not involved in non-stress metal homeostasis (Howden et al., 1995b). Interestingly, a second gene showing high homology to PCS and providing PCS activity when expressed in *Saccharomyces*, was identified in *Arabidopsis*. Why this gene cannot rescue the *cad1* phenotype and which role it does play in vivo remains unclear (Cazale and Clemens, 2001).

PCS is a cytosolic protein and seems to be constitutively expressed on the transcript level in *Arabidopsis* and *B. juncea* (Ha et al., 1999; Heiss et al., 2003), while the protein amount was reported to increase upon prolonged cadmium treatment (Heiss et al., 2003). The regulation of PCS is thought to be primarily happening on the level of the enzymatic activity, which is dependent on the presence of heavy metal ions (Ha et al., 1999; Heiss et al., 2003). This is probably the case because glutathione-metal ion conjugates serve as the substrate for PC synthesis (Cobbett and Goldsbrough, 2002), which would provide a self-regulatory mechanism as the synthesis of PCs and the resulting depletion of metal ions by complexation would deplete the substrates (Loeffler et al., 1989).

The phytochelatin-metal ion complexes formed in the cytosol are then imported in an ATP-dependent manner into the vacuole (Salt and Rauser, 1995), where the addition of further S^{2-} and metal ions leads to the formation of high-molecular-weight complexes (Rauser, 1995; Cobbett and Goldsbrough, 2002). In addition to direct deposition in the vacuole, it has been shown that PCs can also undergo long-range transport in the plant (Gong et al., 2003), which might be responsible for redistribution of the metal ion load or might play a role in stress signalling.
2.3.3 Glutathione as a regulator of gene expression, protein activity and development

For many cellular or developmental processes a dependence on or regulation by glutathione has been reported. However, it is not in all cases clear whether glutathione is actually acting as a regulator or whether it is rather involved in establishing the metabolic background required for the progression of development.

The *Arabidopsis* mutant *rml1* (*root meristemless1*) which is unable to produce an active postembryonal root meristem was described to contain less than 5% of wild-type levels of glutathione due to a mutation in the GCL-gene (Cheng et al., 1995; Vernoux et al., 2000), confirming earlier results which indicated that the development of roots in *Arabidopsis* is under redox control via different mechanisms (Sanchez-Fernandez et al., 1997). Recent experiments with *rml1* and T-DNA insertion mutants of *Arabidopsis* have confirmed that glutathione biosynthesis within the embryo is required for normal maturation (Cairns et al., 2006).

It could further be shown that the progression of the cell-cycle from G_1 to S-phase requires a certain level of GSH, which is regulating the expression of several cyclin proteins (Vernoux et al., 2000). In fibroblasts most of the cellular GSH is localized to the nucleus during the S- and M-phase of the cell-cycle, while during G_1 and G_0 phases a major part of the cellular GSH was found in the cytosol (Markovic et al., 2007). In these cells it has also been shown that telomerase is regulated cell-cycle dependent by the redox-state, being most active in its reduced state in the presence of high GSH concentrations (Borras et al., 2004). Together these results indicate that the amount and localization of GSH in the cell might play a crucial role in regulating the progression of the eukaryotic cell cycle.

Other developmental processes that are influenced by glutathione or the ratio of GSH/GSSG are the induction of flowering in *Arabidopsis* and *Eustoma grandiflorum* (Ogawa et al., 2001; Ogawa et al., 2004; Yanagida et al., 2004), the development of trichomes and root hairs (Sanchez-Fernandez et al., 1997), the differentiation of xylem elements (Henmi et al., 2005) and the accumulation of anthocyanins (Xiang et al., 2001).

Evidence is accumulating that glutathione is also involved in the regulation of programmed cell death or apoptosis. As ROS are widely accepted to be an important signal for apoptosis and programmed cell death in various life forms, the antioxidant functions of GSH might act as a modulator of this signalling. It was shown that a glutathione-S-transferase
from tomato can suppress Bax-induced cell death when expressed in yeast, probably due to its action as a glutathione peroxidase, detoxifying hydrogen peroxide (Kampranis et al., 2000). In addition, it has been reported that in cardiomyocytes a decrease of the GSH/GSSG ratio in mitochondria is leading to an increased production of ROS and the opening of membrane ion channels, promoting cell death (Aon et al., 2007). On the other hand an influence of glutathione levels, independent of its redox state, on the decision for cell death accompanying defence reactions in plant has also been reported (Senda and Ogawa, 2004).

The importance of glutathione in the regulation of stress defence is also emphasized by the rax1-1 mutant of Arabidopsis thaliana (Ball et al., 2004), which has significantly reduced glutathione levels due to a mutation in GCL. This mutant shows a constitutive expression of the otherwise stress-induced ascorbate peroxidase 2.

Glutathione is furthermore involved in the regulation interactions between plants and other organisms (Gullner and Kömvies, 2006). Glutathione is involved in the induction of pathogen defence genes (Mou et al., 2003; Senda and Ogawa, 2004) and recently the Arabidopsis mutant pad2-1 (phytoalexin deficient), deficient in the defence molecule camalexin and more susceptible to pathogens, has been identified as a GCL mutant (Parisy et al., 2007). However, as camalexin deficiency alone could not explain the susceptibility towards different pathogens, a role for glutathione in the induction of defence reactions was presumed. In different oat genotypes, resistance to powdery mildew was shown to correlate with an increase of apoplastic GSH and its reduction state (Vanacker et al., 1998).

Furthermore, glutathione is likely to play a role in the defence against secondary effects of infections like ROS production and pathogen-produced xenobiotics and as the sulfur source for the synthesis of defence compounds (Rausch and Wachter, 2005). Surprisingly, the nickel hyperaccumulator Thlapsi, which shows constitutively elevated levels of GSH has been found to also show elevated susceptibility to powdery mildew (Erysiphe cruciferarum) (Freeman et al., 2005).

The importance of GSH for growth and possibly pathogenesis is hinted at by a high GST-activity of bacteria in the rhizosphere of plants, including the pathogen Xanthomonas campestris (Ilio et al., 1993; Zablotowicz et al., 1995) and the identification of a unique glutathione reductase in Xanthomonas (Loprasert et al., 2005) which is involved in the defence against oxidative stress.

Glutathione metabolism of plants and bacteria also seems to play an important role in symbiotic relations. Sinorhizobium and Bradyrhizobium strains without the ability to synthesize glutathione show significantly reduced growth and the former also showed
impaired nodule formation in symbiotic interaction with *Medicago* (Harrison et al., 2005; Sobrevals et al., 2006). Additionally, legumes seem to sustain an active and stress-reactive glutathione or homoglutathione metabolism in nodules to provide a suitable environment for symbiotic bacteria (Iturbe-Ormaetxe et al., 2001; Naya et al., 2007).

2.3.3.1 Mechanisms of glutathione-dependent regulation of proteins and genes

Regulation involving glutathione is most often presumed to be associated with redox regulation, although several cases are known where the total concentration of GSH seems to be the regulating factor. A direct involvement of GSH in the redox regulation of proteins is present in the form of glutaredoxin-mediated reduction of protein disulfide bridges, which is paralleling the reaction catalyzed by thioredoxins which are known to be involved in the redox regulation of various proteins (Vlamis-Gardikas and Holgren, 2002). A direct link between glutaredoxin and thioredoxin-mediated protein regulation was found in poplar, where thioredoxin *h4* was found to be reduced not by thioredoxin reductase but by a poplar glutaredoxin (Gelhaye et al., 2003). Reduction of thioredoxins by glutaredoxins was also shown for *Arabidopsis* when the NADPH-dependent thioredoxin reductase genes were knocked out (Reichheld et al., 2007).

In addition to a direct involvement of glutathione in redox regulation of cellular processes, GSH might also play a decisive role in the regulation of ROS signals, which have been described to be involved in the regulation of several processes, including the expression of defence genes and the induction of programmed cell death during hypersensitive response (Foyer and Noctor, 2005b). One example for this kind of involvement of glutathione in ROS signalling might be the prevention of apoptotic cell death by an tomato glutathione-S-transferase/peroxidase expressed in yeast (Kampranis et al., 2000).

Reduced glutathione has been shown to influence the expression of a large number of genes involved in different processes like metabolism, development, and stress defence (Stasolla et al., 2004). Examples include the regulation of superoxide dismutase genes in *Nicotiana tabacum* (Herouart et al., 1993) and the GSH-induced repression of peroxiredoxins (Baier and Dietz, 1997). On the other hand oxidized glutathione has been shown to inhibit translation in eukaryotes by promoting the phosphorylation of initiation factors (Kan et al., 1988).
Introduction

A possible direct link between the glutathione-mediated redox state and systemic acquired resistance (SAR), which confers immunity to a broad-spectrum of pathogens, has been described recently (Mou et al., 2003). The regulator protein NPR1 was found to be an inactive oligomer, formed through intermolecular disulfide bonds, in the uninduced state. Upon SAR induction by salicylic acid, a biphasic change in cellular redox potential occurs, resulting in the reduction of NPR1 disulfide bonds and subsequent monomerization and accumulation in the nucleus, followed by an activation of defence gene expression. However, for the induction of the pathogenesis-related gene PR-1 a dependence on GSH but not on the redox state of GSH was reported (Senda and Ogawa, 2004), indicating that several mechanistically independent ways of defence gene induction depending on GSH might exist in parallel in plant cells.

In the animal system it has been shown that the activity and nuclear translocation of the transcription factor NFkB is enhanced by binding of GSH, while GSSG is inhibiting DNA-binding and transactivation (Mihm et al., 1995). It is presumed that glutathione is acting specifically on this transcription factor instead of only providing reductive power, as other antioxidants or thiols could not mimic its effects.

Another possible way for glutathione to directly influence the activity of proteins in a redox-related manner is found in the glutathionylation reaction. A study using biotinylated GSH as a probe detected about 20 proteins to be glutathioylated in vivo in Arabidopsis cell culture, where signal strength was increased upon hydrogen peroxide treatment (Ito et al., 2003). Glutathionylation has been confirmed for recombinant triose phosphate isomerase (Ito et al., 2003) and A4-glyceraldehyde-3-phosphate dehydrogenase (Zaffagnini et al., 2007) from Arabidopsis and for f-type thioredoxin of Arabidopsis and spinach (Michelet et al., 2005). In all cases glutathionylation led to an inhibition of enzymatic activity and was reversible by DTT treatment. Notably, reversibility was not given for GSH-independent oxidative inhibition of A4-glyceraldehyde-3-phosphate dehydrogenase (Zaffagnini et al., 2007), indicating that glutathionylation might act as a protective mechanism to prevent irreversible oxidation of cysteine residues.

Interestingly, the targets for glutathionylation in plants identified so far are all involved in plastidic sugar metabolism or its regulation, indicating that glutathionylation plays a role in the repression of sugar metabolism under oxidizing conditions, presenting a counter player to the thioredoxin system, which is activating the Calvin cycle enzymes under reducing conditions.
Another possible involvement of glutathionylation in gene regulation has been found in hamster cells, where glutathionylation of two cysteine residues in the paired domain of the transcription factor Pax-8 can reversibly inhibit DNA-binding under decreasing GSH/GSSG ratios (Cao et al., 2005).

Besides glutathione itself GSH derivatives have also been found to be able to act as signalling molecules as in onion cells GSH conjugates have shown to induce defence reactions (Schröder and Stampfl, 1999). Since glutathione, glutathione S-conjugates and phytochelatins all have been reported to undergo long distance transport in the plant (Foyer et al., 2001; Gong et al., 2003; Schroder et al., 2007), it cannot be excluded that GSH and derivatives might play a role not only in cellular but also in systemic signalling in plants.
3 Results

3.1 The molecular mechanism for the redox regulation of *Brassica juncea* Glutamate cysteine ligase (BjGCL)

3.1.1 The crystal structure of the BjGCL protein shows two disulfide bridges

Glutamate cysteine ligase from *Brassica juncea* (BjGCL, accession number AJ563921) has previously been cloned, expressed recombinantly in *E.coli* and characterized enzymatically (Wachter, 2004). In the course of this thesis, BjGCL protein was produced in large scale under standard conditions and with seleno-methionine labelling (Figure 3.1), to allow crystallization and structure resolution by cooperation partners at EMBL (Hothorn et al., 2006). Crystal structures with bound BSO, mimicking γ-EC, or glutamate, respectively, allowed the identification of amino acids involved in substrate binding and of cysteine residues forming disulfide bridges in the oxidized protein, which might play a role in the redox regulation of the protein. (For description of the crystal structure see Discussion, paragraph 4.1).

The oxidized BjGCL protein shows two intramolecular disulfide bridges (Figure 3.2) and is arranged as a homodimer in the crystal structure. One of the disulfide bridges (CC1, Cys341-Cys356) is located in close proximity to the active site, possibly being involved in the positioning of a β-hairpin structure, while the other one (CC2, Cys178-Cys398) is located in the core of the protein, near the interface structure where two BjGCL monomers contact each other. As previous analysis showed that plant GCL is inhibited by reduction (Hell and Bergmann, 1990; Jez et al., 2004; Wachter, 2004) the possible roles these disulfide bridges might play in the redox regulation of BjGCL were investigated. For this purpose site-directed mutagenesis was combined with biochemical and structural analysis. This approach was chosen to enable separate examination of the two disulfide bridges, simulating the specific reduction of either one by removing one or both of the cysteine residues required for their formation.
Results

Figure 3.1: Purification of recombinant BjGCL protein from *E. coli* by nickel-affinity chromatography. BjGCL was overexpressed without the transit peptide (residues 66-514) as thioredoxin-6xHis tag fusion protein and purified natively via affinity chromatography. Protein was bound to a Ni\(^{2+}\)-NTA column and eluted after several washing steps with imidazole (column 1). The fusion protein was cleaved by TEV protease and the thioredoxin:6xHis tag was separated from BjGCL by binding to a second Ni\(^{2+}\)-NTA column. BjGCL:thioredoxin fusion protein is detected at a size of 65 kDa (A), pure BjGCL at 51 kDa (B) and TEV protease at 27 kDa. FT- flowthrough, W – wash, M – low molecular weight marker (Amersham), P – purified recombinant protein (FT and W of second column).

Figure 3.2: The crystal structure of BjGCL. A – Surface view of an oxidized BjGCL monomer showing the relative positions of a β-hairpin motif (in red) and the disulfide bond CC1 (Cys341-Cys356, in yellow). BSO bound in the active site is shown in bonds representation (in yellow) along with ADP (in black). B – Surface view of the dimer found in crystals grown under non-reducing conditions. At the level of the dimer interface, the surface has been removed to show the contributing helical elements (in blue). The disulfide bond CC2 (Cys178-Cys398) in both molecules is highlighted in yellow, a molecule of ADP is shown in the nucleotide binding site. C - Zoomed up view of the dimer interface in the same orientation as seen in B. (from Hothorn et al., 2006)
3.1.2 Knockout of the hairpin disulfide bridge (CC1) affects enzyme activity but not the K_m values of the substrates

BjGCL variants were produced by site-directed-mutagenesis and expressed in *E. coli* to evaluate whether the hairpin disulfide bridge (CC1; Cys341-Cys356) is involved in the redox regulation of BjGCL.

In the mutant proteins, Cys341 was exchanged for serine (C341S), Cys356 for alanine (C356A) or both exchanges were combined (C341S/C356A). All three variants were expressed with efficiencies comparable to the wild-type protein in *E. coli* and were soluble after purification. C341A showed the same elution profile as wild-type BjGCL (BjGCL-wt) in analytical size-exclusion chromatography, corresponding to a dimer in the oxidized state, and a similar distribution of secondary structure content in thermal unfolding experiments by circular dichroism spectroscopy (conducted by M. Hothorn, EMBL, Figure 3.3).

All three mutants showed glutamate cysteine ligase activity, detectable in a coupled enzymatic assay but for all three mutants the specific activity under saturating substrate concentrations was reduced to less than 20 % of that found for the wild-type protein (19 ± 7 % for C341S; 12.6 ± 2.6 % for C356A and 9.4 ± 0.9 % for C341S/C356A).

Michaelis-Menten kinetics of the mutant protein C356A were determined to discern whether this reduction in activity resulted from a reduced reaction velocity or a changed affinity to the substrates. For none of the three substrates cysteine, glutamate and ATP a pronounced change in the K_m value could be detected, showing that in CC1 mutants only the velocity of enzymatic catalysis but not the affinity for the substrates is affected (Table 3.1).

<table>
<thead>
<tr>
<th>kinetic constant</th>
<th>wild-type v_{max} (nmol min$^{-1}$ mg$^{-1}$)</th>
<th>C356A v_{max} (nmol min$^{-1}$ mg$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_m (cysteine)</td>
<td>0.12 ± 0.01</td>
<td>0.18 ± 0.03</td>
</tr>
<tr>
<td>K_m (glutamate)</td>
<td>8.5 ± 0.4</td>
<td>8.3 ± 0.5</td>
</tr>
<tr>
<td>K_m (ATP)</td>
<td>1.3 ± 0.2</td>
<td>1.1 ± 0.5</td>
</tr>
</tbody>
</table>

Table 3.1: Comparison of the Michaelis Menten kinetics of BjGCL wild-type and C356A mutant.

wild-type kinetics according to (Wachter, 2004), kinetics for C356A were determined as described in Material and Methods. v_{max} and K_m are described as means ± S.D. ($n = 5$).

a significant difference to the wild-type (Student’s t-test, $P < 0.0001$)
Results

Figure 3.3: Structural analysis of wild-type and mutant BjGCL by analytical size-exclusion chromatography and circular dichroism spectroscopy.

A: 280 nm absorbance trace of analytical size-exclusion chromatography (SD 200 HR10/30; see Methods). Wild-type BjGCL elutes at an apparent size consistent with a dimer (black line) as does the C341S mutant (blue line). The CC2 mutant (C178S) elutes in the void volume (red line). Void (V₀) and total volume (Vₜ) are shown together with the elution volumes of molecular weight standards (A, aldolase, MW 158 000; B bovine serum albumine, MW 67 000; C, chymotrypsinogen A, MW 25 000).

B, C, D: Far UV circular dichroism melting spectra recorded at 20 (blue line) to 90 °C (red line) of wild-type BjGCL (B), the C341S (C) and the C178S mutant proteins (D) (conducted by M. Hothorn, EMBL)
3.1.3 The Core Disulfide Bridge CC2 of BjGCL mediates redox dependent dimer formation

Overexpression of mutagenised BjGCL protein with knocked-out CC2 disulfide bridge by exchange of Cys178 for serine (C178S), led to protein that appeared to be heavily aggregated in size-exclusion chromatography and was already largely unfolded at room temperature as shown by circular dichroism spectroscopy (Figure 3.3). The residual activity of the soluble fraction of recombinant C178S was approximately 2% of the wild-type activity, probably due to large amounts of unfolded protein, and did not allow further enzymatic characterization.

To analyze the role of CC2 in the properly folded BjGCL protein, the CC1 mutant proteins C341S and C356A were subjected to treatment with reductants. As these mutant proteins were folded properly and were enzymatically active, they allowed to specifically address the role of CC2 in redox regulation of BjGCL.

Wild-type and C356A proteins were incubated before and during enzymatic assays with different concentrations of the reductants β-mercaptoethanol (β-ME), dithiothreitol (DTT) and Tris(2-carboxyethyl)phosphine hydrochloride (TCEP) and the resulting change in activity under saturating substrate conditions was determined (Table 3.2 and Figure 3.4).

Table 3.2: Inhibition of BjGCL wild-type (wt) and CC1-disulfide bridge knockout mutant (C356A) protein by reductants

<table>
<thead>
<tr>
<th>Concentration in mM</th>
<th>β-ME wt</th>
<th>C356A</th>
<th>DTT wt</th>
<th>C356A</th>
<th>TCEP wt</th>
<th>C356A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100 ± 3.4</td>
<td>100 ± 7.1</td>
<td>100 ± 3.4</td>
<td>100 ± 7.1</td>
<td>100 ± 3.4</td>
<td>100 ± 7.1</td>
</tr>
<tr>
<td>1</td>
<td>90.8 ± 7.1</td>
<td>112 ± 9.1</td>
<td>51 ± 20</td>
<td>87 ± 11.8</td>
<td>25 ± 17</td>
<td>70 ± 10.0</td>
</tr>
<tr>
<td>2</td>
<td>68.8 ± 6.3</td>
<td>105 ± 7.6</td>
<td>23 ± 12</td>
<td>65 ± 6.7</td>
<td>14 ± 22</td>
<td>55 ± 2.6</td>
</tr>
<tr>
<td>5</td>
<td>56.5 ± 5.5</td>
<td>90 ± 2.5</td>
<td>14.7 ± 3.6</td>
<td>47 ± 4.0</td>
<td>11 ± 12</td>
<td>23 ± 1.6</td>
</tr>
<tr>
<td>10</td>
<td>44.1 ± 3.4</td>
<td>76 ± 1.6</td>
<td>17.6 ± 7.6</td>
<td>31 ± 4.0</td>
<td>7.7 ± 6.9</td>
<td>17.7 ± 0.6</td>
</tr>
</tbody>
</table>

GCL protein was incubated for 16 hours in the presence of reductants and then analyzed in the coupled enzymatic assay for initial reaction velocity under saturating substrate concentrations. 100% activity was 3,336 ± 114 nmol min⁻¹ mg⁻¹ for the wild-type protein and 407 ± 87 nmol min⁻¹ mg⁻¹ for the C356A mutant.

Lower case letters mark a significant difference to the wild-type according to Student’s t-test:

- \(a\) \(P < 0.0001\)
- \(b\) \(P < 0.001\)
- \(c\) \(P < 0.01\)
Results

Figure 3.4: Inhibition of BjGCL wild-type and CC1-disulfide bridge knockout mutant (C356A) protein by reductants.
GCL protein was incubated for 16 hours in the presence of reductants and then analyzed in the coupled enzymatic assay for initial reaction velocity under saturating substrate concentrations. 100% activity was $3,336 \pm 114$ nmol min$^{-1}$ mg$^{-1}$ for the wild-type protein and 407 ± 87 nmol min$^{-1}$ mg$^{-1}$ for the C356A mutant.

Lower case letters mark a significant difference to the wild-type according to Student’s t-test:
- a \(P < 0.0001 \)
- b \(P < 0.001 \)
- c \(P < 0.01 \)

Both proteins showed a concentration dependent decrease in activity when treated with reductants, where the inhibitory effect correlated with the compound’s reduction potential. The relative inhibition of activity was significantly stronger in all cases for the wild-type enzyme than for the C356A mutant, indicating that the inhibition by reductants in wild-type BjGCL probably is mediated by both disulfide bridges.

GCL protein from tobacco and *Arabidopsis* was reported to elute differently in size-exclusion chromatography experiments when analyzed in the oxidized or reduced state, where
reduced protein eluted at approximately half the apparent size found for the oxidized protein (Hell and Bergmann, 1990; Jez et al., 2004). This effect was interpreted as a redox-dependent change in protein conformation, possibly resulting in a more compact fold in the reduced state. For BjGCL however, the crystal structure showed that the oxidized protein molecule has a very compact globular structure (Figure 3.2). Notably BjGCL molecules were found to be arranged as dimers with a well-defined interface structure in the crystals, located in close proximity to CC2 (See Figure 3.14 and Discussion paragraph 4.1). This finding proposes the possibility of a dimer to monomer transition to be responsible for the change of apparent size upon reduction. To analyze the effect of reduction on the oligomerization of BjGCL, wild-type and CC1 mutant proteins (C341S and C356A) were reduced by dialysis against a buffer containing 5 mM DTT or TCEP and subjected to analytical size exclusion chromatography.

For all three variants a peak shift upon reduction of the protein could be observed, with the retention times on the column being consistent with oxidized dimeric and reduced monomeric BjGCL protein, respectively (Figure 3.5 A). The change in the elution profile of BjGCL in response to reducing conditions was fully reversible, with the specific activity of the re-oxidized dimeric protein approximately 10-fold higher than for the reduced monomeric protein (1908 ± 38 and 207 ± 64 nmol min^{-1} mg^{-1}, respectively for wild-type enzyme).

While treatment of BjGCL with DTT led to complete monomerization within one hour, dialysis of BjGCL-wt in a buffer containing 5 mM TCEP resulted in much slower reduction where more and more dimeric GCL dissociated into the reduced monomeric form as a function of time (Figure 3.5 B). The specific activities of dimer and monomer fractions of wt-BjGCL (dimer: 3,336 ± 114 nmol min^{-1} mg^{-1}, dimer + 5 mM TCEP 480 ± 30 nmol min^{-1} mg^{-1}, monomer + 5 mM TCEP 207 ± 64 nmol min^{-1} mg^{-1}) suggest that the surface exposed CC1 disulfide was quickly reduced while dimer dissociation occurred on a rather large timescale in the range of several hours.

The reduction of sulfhydryl groups by TCEP requires more space around the target disulfide than reduction by DTT, while TCEP otherwise is the stronger reductant (Cline et al., 2004). While CC2 is located at the surface of the monomeric BjGCL protein, its position near the dimer interface would probably lead to a partial shielding of the disulfide bridge from access by soluble reductants upon the formation of the GCL dimer.
Results

Figure 3.5: Influence of the redox state on BjGCL oligomerization state.
A: 280 nm absorbance trace of analytical size-exclusion chromatography. BjGCL elutes as a dimer under nonreducing (black line) and as a monomer (in red) under reducing conditions (5 mM TCEP; dialyzed over night). Void (V_v) and total volume (V_t) are shown together with the elution volumes of molecular weight standards (A – 158 kDa; B – 67 kDa; C - 25 kDa). The estimated molecular weight values of the BjGCL dimer and monomer are 95 and 45 kDa, respectively. The calculated monomer molecular weight is 51 017.
B: Size-exclusion chromatography (SD 75 HR10/30) of BjGCL samples dialyzed against 50 mM HEPES (pH 8.0), 50 mM NaCl, 50 mM L-Glu and 5 mM TCEP for 0, 3 and 8 h, respectively

To further analyze the role of the dimer formation for the regulation of BjGCL, the Tyr186 in the center of the dimer interface was mutated to glutamate (Y186E) and the mutant protein expressed in E. coli. As found for the CC2 mutant protein, most of the Y186E protein (>95 %) appeared in size-exclusion chromatography to be aggregated. However, a minor population appeared to be correctly folded, where approximately equal amounts of protein eluted at the apparent sizes expected for monomeric and dimeric protein, respectively (Figure 3.6). Despite apparent mis- or unfolding of most of the protein, BjGCL-Y186E did show GCL activity and was partially inhibited by reductants as would be expected, due to reduction of CC1 and dissociation of the remaining dimers following reduction of CC2 (Figure 3.7).
Results

Figure 3.6: Size-exclusion chromatography of BjGCL-Y186E. $A_{280\text{nm}}$ profile of size exclusion chromatography on a Superdex 200 column. Peaks of dimeric and monomeric protein are marked by arrows and correspond to 130 and 60 kDa respectively; the molecular weight of monomer BjGCL is predicted to be 51 kDa. V_0 is the column void volume. Estimated from the peak area, about 96% of the protein was aggregated.

Figure 3.7: Inhibition of BjGCL-Y186E by DTT. GCL protein was incubated for 1 hours in the presence of DTT and then analyzed in the coupled enzymatic assay for initial reaction velocity under saturating substrate concentrations. 100% activity was 217 ± 3 nmol min$^{-1}$ mg$^{-1}$.

The aggregation of both mutant proteins affected in the dimer interface of BjGCL, C178S and Y186E, might point at a role of dimerization in the stabilization of the fold of BjGCL. To test whether BjGCL in the monomeric and dimeric conformation differ in their overall stability, recombinant wild-type protein was incubated for 2 hours with or without 5...
mM DTT and than digested by adding proteinase K (GCL/proteinase-ratio: 1/100 w/w) or a crude plastidic protein extract (see Material and Methods, paragraph 5.3.9). After incubation at 25°C the reaction was stopped by denaturing aliquots in protein loading buffer and digestion patterns were analyzed by immunoblotting (Figure 3.8). Proteinase K degradation rapidly led to the appearance of a 48 kDa fragment (“2” in Figure 3.8) while further degradation resulted in a reduction of overall protein amount without further detectable degradation products. At prolonged incubation times, degradation was stronger under reducing conditions, either due to activation of the protease or due to reduced stability of GCL. Degradation by the plastidic extract resulted in the successive appearance of fragments of 45 and 41 kDa (“3a” and “3b” in Figure 3.8). In both experiments no clear differences in the digestion patterns between oxidizing and reducing conditions could be observed, arguing against a prominent conformational change upon reduction of the protein.

![Figure 3.8: Dependence of protease digestion susceptibility of BjGCL on the redox state.](image)

BjGCL wild-type protein with proteinase K (a) or a crude plastidic protease preparation (b) in the oxidized state (O) or in the presence of 5 mM DTT (R). Aliquots were taken after different time points and the reaction was stopped by addition of SDS-PAGE loading buffer and heating to 95°C. GCL protein was separated on 11 % PAA gels and analyzed by immunoblotting. Arrows indicate the positions of undigested protein (1) and prominent digestion fragments (2, 3a, 3b). 0 min indicaes recombinant protein preincubated for 2 hours before addition of protease.
3.2 The BjGCL mutant analogous to rml1 shows normal oligomerization behaviour but is enzymatically inactive

The missense mutant rml1 (root meristemless1) of Arabidopsis thaliana GCL has been found to lack detectable GCL activity in vivo (Vernoux et al., 2000). In the rml1 protein Asp259 (Asp250 in BjGCL) is substituted for asparagine, an exchange that, predicted from the structure might influence the binding of the ATP nucleotide.

To analyze the properties of the rml1 mutant in vitro, mutagenized BjGCL, exchanging Asp250 to asparagine, was purified as recombinant protein. The BjGCL-rml1 protein was apparently folded correctly and eluted in size exclusion chromatography with an apparent size of 86 kDa, hinting at a dimeric state as for the wild-type BjGCL protein (Predicted sizes for dimeric and monomeric BjGCL are 102 and 51 kDa, respectively).

However, in the coupled enzymatic assay BjGCL-rml1 did show extremely low GCL activity under standard assay conditions or conditions with elevated ATP concentrations up to 100 mM (0.5 and 0.9 nmol min⁻¹ mg⁻¹). It therefore seems that the ability to conduct catalysis is so severely impaired in the rml1 protein that it can be presumed to be almost completely inactive under all physiological conditions.
Database research revealed that the cysteine residues involved in the redox-regulation of BjGCL are not fully conserved among plant species (see paragraph 3.5). While all plant genes encode the cysteines forming the core disulfide bridge CC2, most lack the cysteine corresponding to Cys356 in BjGCL that is part of CC1. The GCL gene of *Nicotiana tabacum* (*NtGCL*) is found among these sequences and as GCL from tobacco has been previously analyzed as partially purified protein (Hell and Bergmann, 1990), it has been chosen to be studied as a representative of naturally occurring plant GCL proteins lacking CC2.

The full-length sequence of the *NtGCL* mRNA was acquired via rapid amplification of cDNA ends (RACE), based on an EST sequence (BP137080) from the NCBI database (http://www.ncbi.nlm.nih.gov/) and confirmed by cloning and sequencing of the coding sequence. In contrast to the findings for the GCL genes from *Brassica juncea* and *Arabidopsis thaliana* (Wachter et al., 2005), 5’-RACE of *NtGCL* mRNA yielded only one product, indicating that there is a uniform population of transcripts. The full-length transcript contains a coding sequence of 1566 base pairs, encoding for a protein of 521 amino acid residues, flanked by 5’ and 3’ UTRs of 240 and 281 base pairs, respectively (see appendix, Figures A1 and A2). The full-length cDNA sequence has been deposited in the NCBI database (accession number DQ444219).

The NtGCL protein encoded by this sequence shows a high homology to BjGCL (79 % identical and 87 % similar residues overall, 87 % identical and 93 % similar residues omitting the transit peptides) and conservation of all amino acid residues identified in BjGCL to play a role in catalysis (Figure 3.9). The residues required for formation of the dimer interface are also found in NtGCL, except that Glu136 is exchanged for an aspartate, which can be considered a conservative exchange. In addition, the cysteines involved in the formation of CC2 are conserved, whereas BjGCL-Cys356 is substituted by a proline residue, preventing the formation of CC1. The NtGCL protein sequence does encode for a putative transit peptide (residues 1 – 45), which is predicted *in silico* to enable plastidic targeting (targetP).
Results

<table>
<thead>
<tr>
<th></th>
<th>MALMQGAGSHCIY3EKMCKC1GHSSITSNM1MLKMK1D1CFGN1SSSRN1SSKPM0Q0Y1DR 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>NtGCL</td>
<td>MALLSQAGGAYTVPSGHVSSHTGKTGTVSGCV0VLBMKSTVYSVSSRTLSTKSM---LKR 56</td>
</tr>
<tr>
<td>NtGCL</td>
<td>VGVERRRGLA1VAASPTEDAVVAAEAELIKEDLVAYLASCGLSKKEWRRTDPPKFGFE 120</td>
</tr>
<tr>
<td>BJGCL</td>
<td>S----KRGHQLVVAASPTDEAVVATPLTEDLIAYLASCGLSKKEWRRTDPPKFGFE 112</td>
</tr>
<tr>
<td>NtGCL</td>
<td>FGTLRPMKYEQIAELLNGIAERFDWEMGDNIIGLKQGKQSISEPGGF0F1SGAPLE 180</td>
</tr>
<tr>
<td>BJGCL</td>
<td>VNTLRPMKYDQIAELLNGIAERFEWEKMGDNIIGLKQGKQSISEPGGF0F1SGAPLE 172</td>
</tr>
<tr>
<td>NtGCL</td>
<td>TLHQTCAEVNSHLYQVKAVAEEMGIGFLGTQFQPKWGLDVPMK0EG1NYMPKGV 240</td>
</tr>
<tr>
<td>BJGCL</td>
<td>TLHQTCAEVNSHLYQVKAVAEEMGIGFLGMQFQPKWREDIPTMPK0EG1NYMPKGV 232</td>
</tr>
<tr>
<td>NtGCL</td>
<td>SLGLDMMFRTCTVQVNLDFSSEADMIRKFRAGLALQPIATALFANSPFTEGKPGNYS1 300</td>
</tr>
<tr>
<td>BJGCL</td>
<td>SLGLDMMFRTCTVQVNLDFSSEADMIRKFRAGLALQPIATALFANSPFTEGKPGNYS1 292</td>
</tr>
<tr>
<td>NtGCL</td>
<td>SLQTVLDMTSDWTAEEREMLRNK0PSGLKTPFRDGLLKHVAQDVVKLAKEGLERRGYKE 480</td>
</tr>
<tr>
<td>BJGCL</td>
<td>VLQSVLDLTADWTPAEREMLRNK0PSGLKTPFRDGLLKHVAEDVLKLINEGGLERRGYKE 472</td>
</tr>
<tr>
<td>NtGCL</td>
<td>TGFLNEVTEVVTGVPARKLLELYHGWKGRSVDV0FVEELY 522</td>
</tr>
<tr>
<td>BJGCL</td>
<td>VGRNVATVEVVTGVPARKLEMYNGW3QV0FQ0ELLY 514</td>
</tr>
</tbody>
</table>

Figure 3.9: Alignment of NtGCL and BjGCL. Residues involved in substrate binding and catalysis in Brassica are marked in red; residues involved in the formation of the dimer interface are underlined in blue. The cysteine residues forming the two disulfide bridges in Brassica (Cys178-Cys398 (CC2) and Cys341-Cys356 (CC1)) are marked in yellow. The predicted plastidic transit peptides are depicted in blue letters.

Due to difficulties in producing sufficient amounts of stable, active recombinant NtGCL protein, a complete enzymatic characterization was not conducted. The highest specific activity measured for a NtGCL preparation was at approximately 1,400 ± 300 nmol min⁻¹ mg⁻¹, roughly half of the activity found for wild-type BjGCL but three to four times that of BjGCL mutants lacking the hairpin disulfide bridge.

NtGCL activity was inhibited in a concentration dependent manner by buthionine sulfoximine (BSO), DTT and glutathione (Table 3.3, Figures 3.10, 3.13 and 3.19). Inhibition of NtGCL by the reductant DTT was found to be following a dose-response curve very similar to that found for the BjGCL-hairpin mutant C356A (Figure 3.10). As for BjGCL, incubation of NtGCL with DTT resulted in a monomerization of the dimeric protein (Figure...
Results

3.11). These results indicate that the mechanism of redox regulation, depending on the core disulfide bridge (CC2) in *Brassica* GCL, is also found in *Nicotiana* GCL.

<p>| Table 3.3: Effects of different inhibitors on the activity of Nicotiana tabacum GCL |
|---------------------------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Concentration in mM</th>
<th>BSO</th>
<th>DTT</th>
<th>GSH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100 ± 7.8</td>
<td>100 ± 7.8</td>
<td>100 ± 7.8</td>
</tr>
<tr>
<td>1</td>
<td>n.d.</td>
<td>89.1 ± 7.0</td>
<td>80.6 ± 9.4</td>
</tr>
<tr>
<td>2</td>
<td>63.6 ± 11.5</td>
<td>58.4 ± 7.3</td>
<td>63.0 ± 17.3</td>
</tr>
<tr>
<td>5</td>
<td>74.7 ± 4.5</td>
<td>35.1 ± 2.3</td>
<td>33.7 ± 11.2</td>
</tr>
<tr>
<td>10</td>
<td>59.6 ± 12.4</td>
<td>31.8 ± 3.7</td>
<td>18.0 ± 6.4</td>
</tr>
<tr>
<td>15</td>
<td>39.6 ± 1.0</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

GCL protein was incubated for 1 hour in the presence of inhibitors and then analyzed in the coupled enzymatic assay for initial reaction velocity under saturating substrate concentrations. 100% activity was 1,400 ± 300 nmol min⁻¹ mg⁻¹.

n.d. – activity not determined for this concentration of inhibitor.

Figure 3.10: Sensitivity of *Nicotiana tabacum* GCL towards reductants compared to *Brassica juncea* GCL wild-type and CC1 mutant. GCL protein was incubated for 1 hour in the presence of DTT and then analyzed in the coupled enzymatic assay for initial reaction velocity under saturating substrate concentrations. was 3,336 ± 114 nmol min⁻¹ mg⁻¹ for the *Brassica* wild-type protein, 1,400 ± 300 nmol min⁻¹ mg⁻¹ for the *Nicotiana* protein and 407 ± 87 nmol min⁻¹ mg⁻¹ for the C356A mutant. Different lower case letters mark significant differences, according to Student’s t-test ($P < 0.001$).
In contrast to the exclusive plastidic localization of BjGCL (Wachter et al., 2005), cellular fractionation experiments revealed plastidic and cytosolic GCL activities in tobacco (Hell and Bergmann, 1990). To elucidate whether the putative plastidic transit-peptide of NtGCL actually confers plastidic localization, the full-length cDNA was cloned into the vector pK7FWG2, enabling the expression in planta with GFP fused to the protein’s C-terminus. Transient expression of NtGCL:GFP in Nicotiana tabacum via leaf infiltration of Agrobacterium, resulted in GFP fluorescence colocalizing with plastidic autofluorescence (Figure 3.12), while fluorescence in other compartments or the cytosol was not detectable. This experiment verifies that the N-terminal peptide of NtGCL does act as a functional plastidic transit peptide.
Results

Figure 3.12: Subcellular localization of *Nicotiana tabacum* GCL. NtGCL:GFP fusion protein was transiently overexpressed in tobacco leaves via *Agrobacterium* leaf infiltration. GFP fluorescence (green, left) and plastidic autofluorescence (red, right) were detected via confocal laser scanning microscopy.
3.4 Redox and GSH feedback regulation of plant GCL are mechanistically independent

Glutathione has been reported to inhibit GCL from *Nicotiana tabacum* as a competitive inhibitor (Hell and Bergmann, 1990) and as a non-competitive inhibitor of *Arabidopsis thaliana* GCL (Jez et al., 2004). In the latter case, it has been speculated that inhibition by GSH acts via the same mechanism as inhibition by other reductants. Previous analysis of BjGCL on the other hand had shown that the enzyme was also inhibited by oxidized GSH (GSSG) and S-methyl-glutathione, both without reductive capability, to a similar extent as by reduced GSH (Wachter, 2004).

Based on the characterization of the molecular basis for redox regulation in BjGCL and on protein variants showing different dose-response curves when treated with reductants (BjGCL-C356A and NtGCL), a closer analysis of the relation of GSH and reductant inhibition of plant GCL was possible.

Brassica wild-type and mutant proteins lacking the hairpin disulfide bridge (CC1) as well as NtGCL were inhibited by the addition of glutathione to the assay medium (Table 3.4). Interestingly, the dose-response curves for inhibition by GSH were almost identical for all these proteins (Figure 3.13) while dose response curves for inhibition by β-ME, DTT and TCEP differed significantly with the *Brassica* wild-type enzyme being more susceptible to reductants than the other two proteins (Figure 3.10). This strongly indicates that CC1 is not involved in the inhibition of plant GCL by glutathione.
Results

Table 3.4: Inhibition of BjGCL wild-type, CC1-disulfide bridge knockout mutant (C356A) and NtGCL by glutathione

<table>
<thead>
<tr>
<th>[GSH]</th>
<th>BjGCL-wt % activity compared to untreated protein</th>
<th>C356A</th>
<th>NtGCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>100.0 ± 3.4</td>
<td>100.0 ± 7.1</td>
<td>100.0 ± 7.8</td>
</tr>
<tr>
<td>1</td>
<td>88.5 ± 13.3</td>
<td>100.2 ± 21.1</td>
<td>80.6 ± 9.4</td>
</tr>
<tr>
<td>2</td>
<td>62.2 ± 10.4</td>
<td>87.6 ± 16.8</td>
<td>63.0 ± 17.3</td>
</tr>
<tr>
<td>5</td>
<td>56.0 ± 9.2</td>
<td>45.5 ± 13.3</td>
<td>33.7 ± 11.2</td>
</tr>
<tr>
<td>10</td>
<td>29.1 ± 3.9</td>
<td>17.9 ± 9.3</td>
<td>18.0 ± 6.4</td>
</tr>
</tbody>
</table>

GCL protein was incubated for 1 hour in the presence of glutathione and then analyzed in the coupled enzymatic assay for initial reaction velocity under saturating substrate concentrations. Differences between GCL proteins were in no case significant (Student’s t-test, P < 0.01)

Figure 3.13: Feedback inhibition of plant GCL by glutathione. Comparison of the influence of GSH on the activity of *Brassica juncea* GCL, *Brassica juncea* GCL with knocked out hairpin disulfide bridge CC1 (C356A) and *Nicotiana tabacum* GCL. GCL protein was incubated for 1 hour in the presence of glutathione and then analyzed in the coupled enzymatic assay for initial reaction velocity under saturating substrate concentrations. Differences between proteins were in no case significant (Student’s t-test, P < 0.01)
BjGCL wild-type protein was also incubated in buffer containing 10 mM GSH and analyzed by size exclusion chromatography to show whether the CC2-dependent dimer to monomer transition upon reduction is involved in GSH feedback inhibition. No shift from monomer to dimer could be observed after short incubation times of 1 to 2 hours and even after incubation for 20 hours only a minor part of the protein was found to be in the monomer conformation (Figure 3.14). As for the reduction by TCEP this observation could be explained by blocked access to CC2 due to the dimer formation. Significant inhibition of BjGCL by GSH on the other hand was observed immediately after addition of GSH to the assay medium.

Together these data suggest a mechanism of inhibition by GSH, not depending on reduction of either of the two disulfide bridges in BjGCL, and therefore not directly related to redox regulation of the protein.

Figure 3.14: Influence of glutathione on the oligomerization state of BjGCL. $A_{280\text{nm}}$ profile of size exclusion chromatography of BjGCL protein pretreated for 20 hours with 0 or 10 mM GSH. GCL preparations were separated by gel filtration via FPLC on a Superdex 200 column. The peak of untreated BjGCL corresponds to 83 kDa, representing dimeric protein. After treatment with 10 mM GSH a minor part of the protein population is found at an apparent size of 47 kDa (indicated by the arrow). The molecular weight of monomer BjGCL is predicted to be 50 kDa.
3.5 Conservation of sequence motifs among plant and proteobacterial GCL proteins.

To assess whether and to which degree the regulatory mechanisms found for plant GCL are conserved among all group 3 GCL proteins, extensive database research was conducted. Using the BjGCL protein sequence as input, a BLAST (Basic Local Alignment Search Tool)-search directed against the NCBI database (http://www.ncbi.nlm.nih.gov/) identified 63 sequences annotated as full-length group 3 GCL sequences from different taxa (13 plants, two green algae, 40 alphaproteobacteria, 6 gammaproteobacteria and 2 unclassified proteobacteria, status: June 2007). To include more plant sequences into the study, additional searches directed against the EST databases were conducted, allowing the identification of further plant GCL sequences from which 9 additional full-length GCL sequences could be assembled. 3 sequences from Physcomitrella patens and 4 more green algal sequences were acquired from the “DOE Joint Genome Institute”-database (www.jgi.doe.gov) and the sequence for Vitis vinifera was acquired from Genoscope (http://www.genoscope.cns.fr). Additional partial plant GCL sequences were used for the analysis of the distribution of the disulfide bridge CC1. (The accession numbers of all sequences analyzed are listed in the appendix Tables A1 and A2).

To analyze the conservation of sequence motifs in plant and proteobacterial GCL, all full-length sequences were aligned and the conservation of residues involved in catalysis or redox regulation in BjGCL was analyzed (Representative alignment of selected sequences in Figure 3.15, complete alignment in the Appendix, Figure A3, Conservation matrices for interface residues in Appendix, Tables A3 and A4).

A phylogenetic tree of group 3 GCL sequences was constructed by the neighbor joining method, including the plant and proteobacterial sequences described above, five cyanobacterial sequences and GCL from Mycobacterium tuberculosis (Figure 3.16). Most phylogenetically recognized groups were recovered within the tree and had high bootstrap support. However, the relationships between the groups were not resoveld or only poorly supported. The GCL sequences from green algae were found in one clade with the sequences from embryophytes but this association was not supported well.
Results

Brassica
MALQQAAGGYTFPSHSHVSRGKTATYSAVCVGN---VRMKTETVSVSVSRTLSTKSM---LRKQ---

Nicotiana
MAIMQQAGSSSHCISYRKMCSISGCNSITHSNN---MLRMKDCFGNISSNSKPPGTYLIDLRVQGER---

Physcomitrella
MAITHAVASAQAQRVAARAVFVLDGEAVAA3APAAGVQVRKRALCQKLALANSCFSLG---LRRVFPSCFGEPG

Xanthomonas

Agrobacterium

Brassica
-KRGHQLIVAASPPTEEA--VVATEPLTREDLIAYLASGCKSKEKWRIGTEHEKFGFEVNLWRMKYD---I

Nicotiana
-RRGRLAIVAASPPTEDA--VVAAEPLTKEDLVAYLASGCKSKEKWRIGTEHEKFGFEVNLWRMKYEQ---I

Physcomitrella
-CRRRTIPLAIVSPPNEANSRRGSPRELPQDLVYGSLACGKPEKWTGEHEKFGFQLDNLQPMTYAQ---I

Xanthomonas
---MARDTATQDITLSSNVT---ELTDYASRAEADFRIYEHKAPFKTRDKNSFPYVFAYEA---

Agrobacterium

Brassica
AEIIANSIA ERFEWEKVMEGDKIIGL--KQGKQSISLEPGGQFELSGAPLETLHQTCAEVNSHLYQVKAVAEEM

Nicotiana
AEIIANSIA ERFDWEKVMEGDNIIGL--KQGKQSISLEPGGQFELSGAPLETLHQTCAEVNSHLYQVKAVAEEM

Physcomitrella
RQLLEGLADR FEWKKVMEGDNIIGL--TFDGQSVSLEPGGQFELSGAPLETLHQTCAEVNSHLYQVKAVAEEL

Xanthomonas
EALLVGMT-R FGWEQVQENGRTIAL--LRDGASVTLPEAQGFLGAVELMTYETETLISEAEVAGEL

Agrobacterium

Brassica
GIGFLGMGFQPKWRREDIPTMPKGRYDIMRNYMPKVGSLGLDMMLRTCTVQVNLDFSSEADMIRKFRAGLALQ

Nicotiana
GIGFLGTGFQPKWGLKDIPVMPKGRYEIMRNYMPKVGSLGLDMMFRTCTVQVNLDFSSEADMIRKFRAGLALQ

Physcomitrella
GLGFAGIGYQPKWSVAETPIMPKGRYEIMRNYMPKVGSYGLDMMFRTCTVQVNLDFSSEADMVKKFRVSLALQ

Xanthomonas
QLGFLGMGFQPKWRRDEMPWMPKGRYQIMKSYMPKVGSLGLDMMTRTCTIQVNLDFSSEADMRQKMRVSMKLQ

Agrobacterium

Brassica
PIATALFANSPFTEGKPNGFLSMRSHIWTDTDKDRTGMLPFVFDDFGFEQYVDYALDVPMYFAYRNGKYVDC

Nicotiana
PIATALFANSPFTEGKPNGYLSMRSHIWTDTDNNRAGMLPFVFDDFGFEQYVDYALDVPMYFVYRKKKYIDC

Physcomitrella
PIATALFANSPFTEGKPNGFLSFRSHIWTDVDKDRSGDLPFVFEDGFGYERYVDYLLDVPMYFSYRDGYYHDA

Xanthomonas
PIATALFADSPFTEGKPNGYLSYRSHIWTDTDADRTGMLDFVFDDGFGYERYVDYYLLDVPMYFSYRDGVYHDA

Agrobacterium

Brassica
TGMTFRQFLAGKLP-CLPGELPTYNDWENHLTTIFPEVRLKRYMEMRGADGGP WRRLCALPAFWVGLLYDEDV

Nicotiana
AGMSFRDFMNGKLS-PIPGDYPTLNDWENHLTTIFPEVRLKRYLEMRGADGGP WRRLCALPAFWVGLLYDDES

Physcomitrella
SCLSFSDKLEEGKLS-VLPGERPTLSDWSDHMTTAFPEVRLKKYLEMRGADAGP WNRLCALPAFWTGLLYDEES

Xanthomonas
THVTFRQFMGALGEIAWEPMTGDMWNTLSTIFPEVRLKRFLEMRGADGGP WRRLCALPAFWVGLLYDEES

Agrobacterium

Brassica
EVVRTGVTPAENLLEMYNGEWGQSVDPVFQELLY (514)

Nicotiana
EVVRTGVTPAEKLLELYHGKWGRSVDPVFQELLY (522)

Physcomitrella
EIVQTGKTPAERLLDLYHEKWNRNVDTVFEQELLY (531)

Xanthomonas
EIAETGVTAAERKLALYHGAWKGDIDPVFQELLYQY (454)

Agrobacterium

Brassica
EVRTGVTPAEELLEMYNGKWQSDVFQELLYQY (514)

Nicotiana
EVRTGVTPAEELLEHYRKWQSDVFQELLYQY (522)

Physcomitrella
EIYQTPAEELLEHYRKWQSDVFQELLYQY (531)

Xanthomonas
SIAETGVTAAERKLALYHGAWKGDIDPVFQELLYQY (454)

Agrobacterium

Brassica

Nicotiana

Physcomitrella

Xanthomonas

Agrobacterium

Figure 3.15: Alignment of GCL protein sequences from the vascular plants Brassica juncea (CAD91712) and Nicotiana tabacum (ABD98695), the moss Physcomitrella patens (assembled and translated from BJ964968, BY949421, BQ826821 and BJ976182), and the proteobacteria Agrobacterium tumefaciens (NP_353679) and Xanthomonas campestris (NP_638472). Residues involved in substrate binding and catalysis in Brassica are marked in red, residues involved in the formation of the dimer interface are highlighted in blue, and cysteine residues forming the two disulfide bridges in Brassica (CC1: Cys341-Cys356; CC2: Cys178-Cys398) are marked in yellow. Two insertions found in proteobacterial proteins are highlighted in light blue. The predicted plastidic transit peptides of plant genes are depicted in blue letters. Numbers at the end of each sequence show the number of total amino acid residues.

- 50 -
Results

Figure 3.16: Phylogenetic tree of group 3 GCL proteins. Plant and bacterial GCL protein sequences were aligned, omitting the plant transit peptides using the ClustalW program (http://www.ebi.ac.uk/Tools/clustalw/; complete alignment in the Appendix: Figure A3). Tree building was done by running a neighbour joining analysis as implemented in the program PAUP4.0beta (Swofford, 2002). For the bootstrap analysis, the optimality criterion was set to distance. The number of bootstrap replicates was 100 and all values above 50 are indicated on the corresponding branches.
3.5.1 The catalytic residues identified in BjGCL are highly conserved among plants and proteobacteria

Twelve amino acid residues have been identified to be involved in substrate binding in the BjGCL protein (Hothorn et al., 2006). Arg220, Tyr221, Met224, Met239, Tyr330 and Phe375 are involved in cysteine binding, Glu107, Thr242, Arg292 and Trp296 bind glutamate and Asp250 and Tyr383 are presumed to be involved in binding of ATP.

All of these residues are highly conserved among all group 3 GCL sequences analyzed, with only very few minor, conservative substitutions (Table 3.5). This indicates that the catalytic mechanism of group 3 GCL proteins has been highly conserved during evolution.

Table 3.5 Conservation of catalytic residues in plant and proteobacterial GCL enzymes.

<table>
<thead>
<tr>
<th>Residue</th>
<th>binds</th>
<th>Plants</th>
<th>Green Algae</th>
<th>Alpha-proteobacteria</th>
<th>Gamma-proteobacteria</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>E107</td>
<td>Glu</td>
<td>27/27</td>
<td>2/3</td>
<td>40/40</td>
<td>6/6</td>
<td>2/2</td>
</tr>
<tr>
<td>R220</td>
<td>Cys</td>
<td>27/27</td>
<td>4/4</td>
<td>40/40</td>
<td>6/6</td>
<td>2/2</td>
</tr>
<tr>
<td>Y221</td>
<td>Cys</td>
<td>27/27</td>
<td>4/4</td>
<td>40/40</td>
<td>6/6</td>
<td>2/2</td>
</tr>
<tr>
<td>M224</td>
<td>Cys</td>
<td>25/27 (2xIle)</td>
<td>4/4</td>
<td>40/40</td>
<td>6/6</td>
<td>2/2</td>
</tr>
<tr>
<td>M239</td>
<td>Cys</td>
<td>27/27</td>
<td>4/4</td>
<td>40/40</td>
<td>6/6</td>
<td>2/2</td>
</tr>
<tr>
<td>T242</td>
<td>Glu</td>
<td>27/27</td>
<td>3/4 (1xSer)</td>
<td>37/40 (3xSer)</td>
<td>6/6</td>
<td>2/2</td>
</tr>
<tr>
<td>D250</td>
<td>ATP</td>
<td>27/27</td>
<td>4/4</td>
<td>40/40</td>
<td>6/6</td>
<td>2/2</td>
</tr>
<tr>
<td>R292</td>
<td>Glu</td>
<td>27/27</td>
<td>4/4</td>
<td>40/40</td>
<td>6/6</td>
<td>2/2</td>
</tr>
<tr>
<td>W296</td>
<td>Glu</td>
<td>27/27</td>
<td>4/4</td>
<td>40/40</td>
<td>6/6</td>
<td>2/2</td>
</tr>
<tr>
<td>Y330</td>
<td>Cys</td>
<td>26/27 (1xLeu)</td>
<td>4/4</td>
<td>39/40 (1xLeu)</td>
<td>6/6</td>
<td>2/2</td>
</tr>
<tr>
<td>F375</td>
<td>Cys</td>
<td>27/27</td>
<td>4/4</td>
<td>40/40</td>
<td>6/6</td>
<td>2/2</td>
</tr>
<tr>
<td>Y383</td>
<td>ATP</td>
<td>27/27</td>
<td>4/4</td>
<td>12/40 (28xPhe)</td>
<td>3/6 (3xPhe)</td>
<td>2/2</td>
</tr>
</tbody>
</table>

Ratios indicate how many GCL sequences are conserved in the respective amino acid position (based on the BjGCL sequence) as compared to the total number of examined sequences. Sequences were retrieved from a BLAST search directed against the NCBI database (http://www.ncbi.nlm.nih.gov/), and all sequences with more than 50% amino acid identity to BjGCL were included. Additional plant sequences were assembled from EST sequences as described in Material and Methods.
3.5.2 The residues involved in redox regulation of BjGCL are conserved only among plant GCL sequences

Of the cysteine residues forming the two disulfide bridges in BjGCL three are conserved among all higher plants, while Cys356 is absent in most, indicating that the hairpin disulfide bridge CC1 cannot be formed in those proteins (Table 3.6). Mapping the occurrence of both CC1 cysteines to a phylogenetic tree of the angiosperms (AngiospermPhylogenyGroup, 1998, 2003) revealed that Cys356 is confined to sequences of species from the rosids clade, indicating a single origin for the mutation allowing the formation of CC1 instead of several independent incidents of convergent evolution (Figure 3.17).

Structural analysis of the homodimer interface of BjGCL (Hothorn et al., 2006) predicted that 11 amino acid residues are involved in establishment of the dimer contact, i.e. Glu133, Phe135, Glu136, Gln176, Asn182, Tyr186, Glu193, Trp394, Arg395, Lys471 and Phe475 (Figure 3.18; numbering according to BjGCL). In particular, several salt bridges (Glu133/Arg395, Glu193/Lys471, Glu136/Asn176) and aromatic amino acid side chains (Phe135, Tyr186, Trp394, Phe475) contribute to a zipper-like interface.

Parallel to the conservation of the cysteine residues involved in the formation of the core disulfide bridge CC2, the residues making up the dimer interface are also highly conserved among all higher plants, with only a few conservative exchanges in some sequences (Table 3.6, complete conservation matrix in Appendix Table A3). This also holds true for the most of the GCL sequences from non-angiosperms available in the databases (i.e. the moss Physcomitrella patens (sequences #1 and #3), the fern Ceratopteris reinhardii and the gymnosperm Picea glauca, Appendix Figure A4). However, one of the three GCL proteins encoded for in the genome of Physcomitrella patens is not only lacking the cysteines for CC2 but also shows very low conservation of the interface residues (Table 3.7). Interestingly, the same correlation is found among the green algal sequences. Here the GCL proteins from Chlamydomonas reinhardii and Volvox carteri show conservation of CC2 cysteines and interface residues while the proteins from Ostreococcus and Prototheca wickerhamii not only lack those cysteines but also show no conservation of the interface residues (Table 3.7, Figure A4). Considered together, these observations indicate that the biochemical basis for the redox regulation by reversible dimerization observed in BjGCL and NtGCL is highly conserved among terrestrial plants and conservation of the dimer interface residues is coupled to the occurrence of the CC2 cysteines.
Results

Figure 3.17: Distribution of CC1 ("hairpin") cysteine residues among plant GCL proteins indicates confinement to the rosids clade. Occurrence of both CC1 cysteine residues is indicated in a cladogram of the angiosperm orders (adapted from (AngiospermPhylogenyGroup, 1998)). √, both CC1 cysteines present; X, one CC1 cysteine missing. Orders for which no GCL sequences are available are marked with (-). The last line lists the species from which sequences have been analysed, continued in the footnotes.
Results

Figure 3.18: Ribbon model of the homodimer interface in BjGCL highlighting the amino acids involved in the zipper-like contact zone. The two monomers are depicted in blue and brown, respectively. Amino acid residues involved in the formation of the dimer interface and the core disulfide bridge are labelled with their position numbers. The site at which the second insertion is found in proteobacterial GCL proteins is marked with a red circle.

Table 3.6: Conservation of residues involved in redox regulation.

<table>
<thead>
<tr>
<th>Disulfide bridge residues</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Residue</td>
<td>bridge</td>
<td>Plants</td>
<td>Green Algae</td>
<td>Alpha-proteobacteria</td>
<td>Gamma-proteobacteria</td>
</tr>
<tr>
<td>C178</td>
<td>CC2</td>
<td>25/25</td>
<td>2/4</td>
<td>29/40</td>
<td>5/6</td>
</tr>
<tr>
<td>C341</td>
<td>CC1</td>
<td>25/25</td>
<td>0/4</td>
<td>5/40</td>
<td>1/6</td>
</tr>
<tr>
<td>C356</td>
<td>CC1</td>
<td>11/25</td>
<td>0/4</td>
<td>0/40</td>
<td>0/6</td>
</tr>
<tr>
<td>C398</td>
<td>CC2</td>
<td>25/25</td>
<td>2/4</td>
<td>32/40</td>
<td>6/6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface residues</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Residue</td>
<td>Plants</td>
<td>Green Algae</td>
<td>Alpha-proteobacteria</td>
<td>Gamma-proteobacteria</td>
<td>Others</td>
</tr>
<tr>
<td>E133</td>
<td>24/27 (2xAsp)</td>
<td>1/3 (1xAsp)</td>
<td>2/40 (10xAsp)</td>
<td>0/6</td>
<td>0/2 (1xAsp)</td>
</tr>
<tr>
<td>F135</td>
<td>26/27 (1xTyr)</td>
<td>1/3</td>
<td>16/40</td>
<td>6/6</td>
<td>0/2</td>
</tr>
<tr>
<td>E136</td>
<td>5/25 (21xAsp)</td>
<td>2/3</td>
<td>0/40 (1xAsp)</td>
<td>0/6</td>
<td>1/2</td>
</tr>
<tr>
<td>Q176</td>
<td>26/27</td>
<td>1/4</td>
<td>21/40</td>
<td>4/6</td>
<td>0/2</td>
</tr>
<tr>
<td>N182</td>
<td>26/27</td>
<td>2/4</td>
<td>20/40</td>
<td>1/6</td>
<td>1/2</td>
</tr>
<tr>
<td>Y186</td>
<td>26/27</td>
<td>2/4</td>
<td>0/40</td>
<td>0/6</td>
<td>0/2</td>
</tr>
<tr>
<td>E193</td>
<td>26/27</td>
<td>2/4 (1xAsp)</td>
<td>13/40 (14xAsp)</td>
<td>0/6 (1xAsp)</td>
<td>0/2</td>
</tr>
<tr>
<td>W394</td>
<td>26/27</td>
<td>3/4</td>
<td>34/40</td>
<td>5/6</td>
<td>1/2</td>
</tr>
<tr>
<td>R395</td>
<td>26/27</td>
<td>2/4</td>
<td>20/40</td>
<td>1/6</td>
<td>0/2</td>
</tr>
<tr>
<td>K471</td>
<td>24/27 (2xAsn)</td>
<td>0/4 (2xAsp)</td>
<td>0/40</td>
<td>0/6</td>
<td>0/2 (1xAsn)</td>
</tr>
<tr>
<td>F475</td>
<td>26/27</td>
<td>2/4 (2xTyr)</td>
<td>26/40</td>
<td>5/6</td>
<td>2/2</td>
</tr>
</tbody>
</table>

a) numbering of residues according to Brassica GCL

Ratios indicate how many GCL sequences are conserved in the respective cysteine residue (based on the BjGCL sequence) as compared to total number of examined sequences. Sequence acquisition as described for Table 3.5.
Table 3.7: Conservation of CC2 cysteines and dimer interface residues in plants and green algae

<table>
<thead>
<tr>
<th>Clade</th>
<th>Species</th>
<th>Localization</th>
<th>CC2 cysteines</th>
<th>Interface residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiosperms</td>
<td>24 different b)</td>
<td>Plastid</td>
<td>Yes</td>
<td>9.2; 10.1 or 11</td>
</tr>
<tr>
<td>Gymnosperms</td>
<td>Picea glauca</td>
<td>n.d.</td>
<td>Yes</td>
<td>10.1</td>
</tr>
<tr>
<td>Bryophyts (Mosses)</td>
<td>Physcomitrella patens #1 c)</td>
<td>Cytosol</td>
<td>Yes</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>Physcomitrella patens #2 c)</td>
<td>Mitochondrium</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Physcomitrella patens #3 c)</td>
<td>Mitochondrium or Plastid</td>
<td>Yes</td>
<td>8.2</td>
</tr>
<tr>
<td>Pteridophytes (Ferns)</td>
<td>Ceratopteris richardii</td>
<td>n.d.</td>
<td>Yes</td>
<td>8.1; 2 n.d.</td>
</tr>
<tr>
<td>Chlorophytes (Green Algae)</td>
<td>Chalmydomonas reinhardii</td>
<td>Plastid</td>
<td>Yes</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Ostreococcus lucimarins</td>
<td>Mitochondrium</td>
<td>No</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>Ostreococcus tauri</td>
<td>n.d.</td>
<td>No</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>Prototheca wickerhamii</td>
<td>Plastid</td>
<td>No</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>Volvox carteri</td>
<td>n.d.</td>
<td>Yes</td>
<td>6; 3 n.d.</td>
</tr>
</tbody>
</table>

Numbers indicate how of the eleven dimer interface residues are conserved in the respective GCL sequences. Digits in front of the dot indicate conservation while numbers behind the dot indicate conservative exchanges. Sequence acquisition as described for Table 3.5. Accession numbers for all sequences are listed in the Appendix, Table A1

n.d. – not determined because of truncated sequence

a as predicted by targetP
b see text
c The Physcomitrella genome encodes for 3 GCL genes Phypa1_1:70546 (#1), Phypa1_1:146491 (#2) and Phypa1_1:173526 (#3); DOE Joint Genome Institute (www.jgi.doe.gov)

Among proteobacterial GCL proteins, the cysteine residues corresponding to CC2 (but not CC1) are widely conserved whereas amino acid residues forming the dimer interface in BjGCL are not (Table 3.6, full conservation matrix in the Appendix, Table A4). Among all proteobacterial GCL sequences analyzed, the enzyme of Agrobacterium tumefaciens (AtuGCL) shows the highest similarity in the dimer interface region with 7 out of 11 positions conserved. However, in AtuGCL, as in all other proteobacterial GCL sequences, the residues involved in formation of two out of the three salt bridges found in BjGCL are not conserved (Glu193/Lys471 and Glu136/Asn176; see above). Also, among the aromatic residues, Tyr186, which is in close proximity to CC2, is absent in all proteobacterial GCL proteins. Furthermore, when compared to their plant counterparts, proteobacterial GCL sequences show two insertions of, in most cases, three and six additional amino acids, following residues 123 and 468, respectively (Figure 3.18; numbering according to BjGCL). While the first of these insertions is located in a loop region distant from the active site and dimer interface in BjGCL, the second insertion is positioned in proximity to the dimer-forming residues (i.e. Lys471 and Phe475 in BjGCL).

Based on these sequence comparisons it was assumed that homodimerisation is confined to plant GCL enzymes. Conversely, as CC2 appears to be conserved in...
proteobacterial GCL proteins, a regulatory function independent of GCL dimerisation could not be excluded. To analyze whether these predictions hold true, the GCL enzymes from *Agrobacterium tumefaciens* and *Xanthomonas campestris* were cloned, expressed in *E. coli* and characterized.
3.6 Cloning and characterization of proteobacterial GCL homologues

The ORFs coding for the GCL of the alphaproteobacterium *Agrobacterium tumefaciens* and of the gammaproteobacterium *Xanthomonas campestris* were cloned, and the corresponding proteins overexpressed in *E. coli* as described in the Material and Methods section. *Xanthomonas* GCL (XcaGCL) was chosen as it is the proteobacterial enzyme with the highest sequence similarity to plant GCLs, showing 61% conserved and 74% similar residues when compared to BjGCL. *Agrobacterium* GCL (AtuGCL) is the proteobacterial gene with the highest number of homodimer interface residues conserved (7 out of 11, see above). At the protein level, AtuGCL exhibits 56% identity and 69% similarity to BjGCL (Figure 3.15).

Recombinant XcaGCL protein was expressed as TrxA:6xHis:GCL fusion in the *E. coli* strain Rosetta gami DE3 and purified after cleavage from TrxA, while AtuGCL was expressed and purified as fusion to 6xHis only (Figure 3.19).
Recombinant proteobacterial GCL proteins were detectable in a Western Blot using antibodies directed against BjGCL and had the same electrophoretic mobility as proteins detected in lysates from *Agrobacterium* and *Xanthomonas* cultures. As the gene encoding for XcaGCL is annotated starting with a TTG, while the next upstream ATG would result in a protein of about 55 kDa, this does verify cloning of the correct open reading frame (Figure 3.20).

Activities of recombinant GCL enzymes were characterized in the coupled spectrophotometric assay and the reaction product γEC was also independently identified by HPLC after derivatisation with monobromobimane to confirm γ-glutamylcysteine ligase activity. Specific activities, turnover numbers and K_m values for cysteine, glutamate and ATP, respectively, were comparable to those found for plant GCL enzymes although the K_m value for glutamate was about four times lower for the proteobacterial proteins (Table 3.8). In addition, proteobacterial GCL was inhibited by buthionine sulfoximine in a similar fashion as plant GCL (Figure 3.21). Both proteins were also inhibited by addition of glutathione to the assay, and dose response curves matched those found for plant GCL (Figure 3.22). It is noteworthy that this inhibition of GCL activity was not dependent on the reducing power of GSH as S-methyl-GSH caused a similar inhibition (data not shown). Together these results indicate a mechanism of catalysis highly conserved among group 3 GCL proteins as predicted from the sequence comparison.

Both proteobacterial GCL proteins showed an approximately 4-5 fold higher specific activity in a buffer containing potassium chloride compared to sodium chloride (Figure 3.23). The same has been observed for the plant GCL, while animal GCL enzymes respond in reverse fashion (Webster and Varner, 1954; Davis et al., 1973).
Table 3.8: Comparison of enzyme activities, turn over numbers, and substrate affinities for recombinant GCL enzymes from *Agrobacterium tumefaciens*, *Xanthomonas campestris* and *Brassica juncea*.

<table>
<thead>
<tr>
<th></th>
<th>Agrobacterium</th>
<th>Xanthomonas</th>
<th>Brassica *)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific activity (nmol min(^{-1}) mg(^{-1}))</td>
<td>2585 ± 186(^a)</td>
<td>2405 ± 45(^a)</td>
<td>3336 ± 114(^b)</td>
</tr>
<tr>
<td>Turnover number (sec(^{-1}))</td>
<td>7920 ± 570(^a)</td>
<td>7350 ± 140(^a)</td>
<td>10190 ± 350(^b)</td>
</tr>
<tr>
<td>(K_m) (cysteine) (mM)</td>
<td>0.14 ± 0.01(^a)</td>
<td>0.07 ± 0.02(^b)</td>
<td>0.12 ± 0.01(^a)</td>
</tr>
<tr>
<td>(K_m) (glutamate) (mM)</td>
<td>1.9 ± 0.2(^a)</td>
<td>2.3 ± 0.4(^a)</td>
<td>8.5 ± 0.4(^b)</td>
</tr>
<tr>
<td>(K_m) (ATP) (mM)</td>
<td>0.59 ± 0.06(^a)</td>
<td>3.1 ± 0.7(^b)</td>
<td>1.3 ± 0.2(^c)</td>
</tr>
</tbody>
</table>

*) Data for BjGCL according to Hothorn *et al.* 2006.
Different lower case letters mark significant differences between enzymatic characteristics (*P* < 0.0001)

Figure 3.21: Dose dependance of inhibition of plant and proteobacterial GCL enzymes by *buthionine sulfoximine* (BSO) reveals similar sensitivity towards the specific GCL inhibitor. Enzyme activities are given as percentages of controls without BSO for recombinant GCLs from *Nicotiana tabacum*, *Agrobacterium tumefaciens*, and *Xanthomonas campestris*, respectively.
Results

Figure 3.22: Dose dependance of inhibition of plant and proteobacterial GCL enzymes by glutathione indicates comparable feedback inhibition. GSH effects on activities of recombinant wild-type GCLs from Nicotiana tabacum and Brassica juncea, as compared with the corresponding mutant in CC1 (Brassica C356A) and proteobacterial GCLs from Agrobacterium tumefaciens and Xanthomonas campestris, respectively. Enzyme activities are given as percentages of control activity in buffer without GSH.

Figure 3.23: Effect of monovalent cations on the activity of proteobacterial GCL. Relative activity of AtuGCL and XcaGCL when incubated in buffer containing KCl or NaCl. Activity in KCl containing buffer was set to 100%.
3.6.1 *Proteobacterial GCL proteins are not inhibited by reduction and are functional as monomers*

As both proteobacterial GCL proteins analyzed show conservation of the cysteines required for formation of the core disulfide (CC2) bridge in BjGCL, the effect of reductants on the fold and oxidation state of AtuGCL and XcaGCL was examined. Non-reducing SDS-gel electrophoresis of AtuGCL pre-treated with oxidizing or reducing (5 mM DTT) conditions showed a shift in retention times between treatments, as did BjGCL-C341S (mutant lacking the CC1 disulfide bridge). Both proteins showed a slightly smaller apparent size when oxidized, possibly caused by a more compact conformation due to formation of a disulfide bridge (Figure 3.25).

Initial mass spectrometry analysis (conducted at the ZMBH, AG Ruppert) also showed that only one cysteine residue in XcaGCL was accessible to derivatization with iodoacetamide in the oxidized state, while all three were derivatized after reduction of the protein (data not shown). This might indicate that two cysteines, probably those corresponding to the CC2 cysteines of BjGCL, are forming a disulfide bridge in the oxidized state.

![Figure 3.25: Non-reducing SDS-gel electrophoresis of AtuGCL and BjGCL-C341S.](image-url)

Protein was pretreated with 5 mM DTT (reduced) or loaded as purified (oxidized) and run after denaturing in non-reducing sample buffer. BjGCL protein is detected at ~ 50 kDa as a single band under reducing conditions (1) while an additional slightly higher band is detected under non-reducing conditions (2). Some uncleaved BjGCL-C341S:Trx fusion protein can be detected at ~ 65 kDa (3). The fusion protein is also detected as a double band under non-reducing conditions.
Figure 3.26: Gel filtration analysis of proteobacterial GCL. AtuGCL and XcaGCL remain monomeric under reducing and oxidizing conditions. Oxidized and reduced (DTT-treated) GCL preparations were separated by gel filtration via FPLC on a Superdex 200 column.

To determine whether proteobacterial GCL enzymes form homodimer complexes like their plant counterparts, and, if so, whether this is also affected by the redox state, recombinant GCL proteins were incubated under reducing (5 mM DTT) or oxidizing conditions, and their apparent sizes were subsequently analysed via FPLC. AtuGCL and XcaGCL eluted at a volume corresponding to their monomeric sizes, regardless of their pre-treatment, indicating that no dimer was formed under oxidizing conditions (Figure 3.26).

To assess whether the activity of proteobacterial GCL enzymes is affected by in vitro reduction as plant GCL proteins are, AtuGCL and XcaGCL enzymes were treated with different concentrations of DTT and analyzed in the coupled enzymatic assay under saturating substrate conditions (Figure 3.27). While XcaGCL was rather insensitive to DTT, the AtuGCL enzyme exhibited a 60 to 80% increase in activity. However, the degree of activation was not reproducible in all recombinant enzyme preparations. When AtuGCL activity was increased by DTT treatment, this had no effect on K_m values for its substrates. As recombinant GCL proteins were formed in an oxidizing cytosol (see above), it cannot be excluded that because of the presence of additional Cys residues the AtuGCL enzyme was partially
Results

misfolded due to the formation of illegitimate disulfide bridges and became activated upon DTT treatment. As the stimulatory effect of DTT varied between different enzyme preparations, it was not further studied and assumed an artefact.

In summary, these results demonstrate that the redox response of GCL activity and dimerisation are unique features of plant GCLs, despite the high similarity in protein sequence with their proteobacterial counterparts.

Figure 3.27: Effect of DTT treatment on the activity of proteobacterial GCL. Relative activity of AtuGCL and XcaGCL incubated with different amounts of DTT compared to activity in standard reaction buffer.
3.6.2 *Agrobacterium* and *Xanthomonas* show an active glutathione metabolism

To allow comparison of the enzymatic characteristics measured *in vitro* to the *in vivo* thiol metabolism of the two bacterial species, the thiols of bacteria growing under standard conditions have been extracted, derivatized with Monobromobimane (mBBr) and analyzed via HPLC (Figure 3.24). Comparison of bacterial extracts to standards of pure cysteine, γ-glutamylcysteine and GSH allowed identification and quantification of bacterial thiols. *Agrobacterium* showed 39.1 ± 11.2 nmol/gFW cysteine and 191 ± 61 nmol/gFW GSH with an average GSH/cys ratio of 4.86 ± 0.49 (n = 4). *Xanthomonas* showed 1317 ± 795 nmol/gFW cysteine and 453 ± 254 nmol/gFW GSH with an average GSH/cys ratio of 0.39 ± 0.14 (n = 4). In both cases total cellular cysteine and glutathione amounts were considerably higher than the total amounts found in uninoculated medium (Table 3.9), indicating that the bacteria actively synthesized these thiols and did not only take them up. γ-Glutamylcysteine concentrations were below the level of detectability in both species. Comparison to thiol concentrations found in other bacteria showed that the amounts of cysteine found in the two species are well within the range found in *E. coli* (Wheldrake, 1967), while GSH concentrations were among on the lower end of what was found in other aerobically grown bacteria (Fahey et al., 1978).

Based on an assumed even distribution within proteobacterial cells, intracellular GSH levels are estimated to be in the range of 0.2 to 0.5 mM. Thus under *in vivo* conditions a direct feed back inhibition of proteobacterial GCL by GSH appears unlikely. Under the same assumption cysteine concentrations would be approximately 0.04 mM for *Agrobacterium*, about one third the K_m (cysteine) of AtuGCL, and 1.3 mM for *Xanthomonas*, corresponding to 20 times the K_m (cysteine) of XcaGCL. This might indicate that cysteine availability is limiting for glutathione synthesis in *Agrobacterium* under standard culture conditions but not in *Xanthomonas*. As cysteine availability in the medium used for *Xanthomonas* culture was lower than in the medium used for *Agrobacterium* this might hint to a more efficient sulphur assimilation metabolism in the first (Table 3.9).
Figure 3.24: HPLC chromatogram of mBBr derivatized thiol extracts from *Agrobacterium* and *Xanthomonas*. Thiols were identified by comparison of retention times with standards of cysteine, γ-glutamylcysteine and glutathione. γ-glutamylcysteine could not be detected in bacterial extracts.

<table>
<thead>
<tr>
<th></th>
<th>Agrobacterium</th>
<th>Xanthomonas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cysteine concentration in bacteria [µM]</td>
<td>~ 40 a)</td>
<td>~1300 a)</td>
</tr>
<tr>
<td>Cysteine concentration in uninoculated medium [µM]</td>
<td>0.021 ± 0.005</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Glutathione concentration in bacteria [µM]</td>
<td>~ 200 a)</td>
<td>~ 450 a)</td>
</tr>
<tr>
<td>Glutathione concentration uninoculated medium [µM]</td>
<td>0.045 ± 0.001</td>
<td>0.293 ± 0.005</td>
</tr>
<tr>
<td>Total cysteine in bacteria from 50 ml medium [nmol]</td>
<td>1.56 ± 0.32</td>
<td>19.6 ± 9.5</td>
</tr>
<tr>
<td>Total cysteine in 50 ml uninoculated medium [nmol]</td>
<td>0.15 ± 0.04</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Total glutathione in bacteria from 50 ml medium [nmol]</td>
<td>7.60 ± 1.89</td>
<td>6.83 ± 2.80</td>
</tr>
<tr>
<td>Total glutathione in uninoculated medium [nmol]</td>
<td>0.313 ± 0.004</td>
<td>2.05 ± 0.04</td>
</tr>
<tr>
<td>GSH/Cys in bacteria</td>
<td>4.86 ± 0.49</td>
<td>0.39 ± 0.14</td>
</tr>
<tr>
<td>GSH/Cys in uninoculated medium</td>
<td>~ 3.2</td>
<td>> 500</td>
</tr>
</tbody>
</table>

Table 3.9: Analysis of thiol content in proteobacterial culture

Thiols were measured from pelleted bacterial culture or uninoculated medium by derivatization with monobromobimane and separation by HPLC.

a) thiol concentrations in bacteria were estimated by assuming a volume of 1 ml per g fresh weight
3.7 The expression of plant GCL is affected by the availability of soluble thiols

Beside post-translational regulation via substrate availability, redox state, and GSH feedback, plant GCL activity is also influenced by the control of protein expression (See paragraph 2.2.2.1). A possible connection between a GCL substrate and the expression of the protein has been found in previous analyses which had shown that the expression of GCL in *Beta vulgaris* hairy roots is enhanced upon feeding of cysteine or glutathione to the culture (Gromes, 2004; Müller, 2006). Interestingly, an increased expression has been found for the endogenous protein as well as for transgenically expressed *Brassica* GCL which are distinguishable due to a slightly different apparent size in the immunoblot, hinting at a possible posttranscriptional mechanism of expression regulation.

To exclude that the effects observed are specific for the hairy root system, feeding experiments have been repeated with suspension cell cultures from *Arabidopsis* and *B. vulgaris*. Upon addition of 1 mM cysteine or GSH both species showed an induction of GCL expression in immunoblots (Figure 3.28). The induction expression was stronger after GSH feeding and in *B. vulgaris* cell culture was less pronounced than in hairy roots, possibly due to a stronger GCL expression in cell culture under control conditions.

In all types of cell culture addition of either thiol led to an increase in both cysteine and GSH concentrations (Figure 3.29). However, thiol concentrations were significantly higher in suspension culture cells than in hairy roots, before and after addition of cysteine or glutathione. While feeding experiments had little influence on the redox state of glutathione in *Beta* hairy root or suspension cell culture both types of feeding did result in an increase of GSH oxidation in *Arabidopsis* suspension cell culture.
Results

Figure 3.28: Induction of GCL expression upon cysteine or glutathione feeding. Immunoblots detecting GCL expression using an antiserum raised against BjGCL.

a) GCL expression in three different lines of B. vulgaris hairy root cultures, expressing GFP or BjGCL. Samples were taken before addition (K) and 24 hours after addition of 1 mM cysteine (C). A sample from roots of Brassica juncea is shown as comparison to identify the lower GCL band as the transgenic BjGCL while the upper band corresponds to the endogenous protein.

b) GCL expression in Arabidopsis cell culture grown without addition of thiols (K) or grown for 24 hours in the presence of 1 mM cysteine (C) or glutathione (G).

c) GCL expression in B. vulgaris cell culture treated as described in b)

Further experiments were conducted to evaluate whether the effects of cysteine or glutathione feeding are specific for these thiols or dependent on a possible influence of such feeding on the redox state or sulfur metabolism of the culture. B. vulgaris hairy root culture was chosen for these experiments as the effect on GCL expression was most pronounced in this system. Sulfate feeding was performed to supply additional sulfur in a non-reducing form, providing 3 mM additional sulphate, therefore doubling the normal concentration found in the medium. To analyze whether feeding of a reducing thiol not related to cysteine affected GCL expression and glutathione synthesis, dithiothreitol (DTT) was added to the culture. Hydrogen peroxide feeding at 5 mM was conducted to analyze the effect of oxidative stress. All feeding experiments were analyzed for GCL expression and thiol concentration after 24 hours (Figure 3.30).

Hydrogen peroxide feeding was the only feeding that resulted in a visible change in the phenotype of hairy roots, resulting in a strong browning of the culture (Figure 3.30 d), associated by a mild increase in the rate GSH oxidation from 6.5 ± 3.6 % to 9.2 ± 3.1 % (n = 5). Neither sulphate, nor DTT or H$_2$O$_2$ feeding led to a general strong increase of GCL expression as found for cysteine feeding (Figure 3.30 a-c) and only DTT feeding led to a significant change in glutathione concentration, resulting in an approximately 6-fold increase. This effect might be due to incorporation of the reduced sulfur of DTT into GSH or due to a stabilization of GSH under reducing conditions as described for GSH reductase overexpressing plants (Foyer et al., 1995).
Results

These results show that the effect of cysteine and GSH feeding on the expression of GCL is specific for cysteine-related thiols, where the induction of expression following GSH feeding might be caused by elevated intracellular cysteine levels due to GSH degradation.

Figure 3.29: Effect of thiol feeding on cysteine and GSH concentrations and oxidation grades.

a) Glutathione concentration in *B. vulgaris* hairy root lines expressing GFP or BjGCL (n = 5 and 9, respectively) before and after addition of 1 mM cysteine (upper panel) and oxidation grade of cysteine and GSH before and after cysteine feeding (lower panel).

b) Cysteine and glutathione concentrations in *Arabidopsis* and *B. vulgaris* suspension culture cells under control conditions or after growth in the presence of 1 mM cysteine or GSH for 24 hours (upper panel). Oxidation grade of cysteine and glutathione in suspension culture cells at the same conditions (lower panel, n.d. – no oxidized cysteine detected).
Results

Figure 3.30: Effects of various feeding experiments on GCL expression, phenotype and thiol content of Beta vulgaris hairy root culture. Hairy root cultures were grown under standard conditions. Samples were taken before (Con) and 24 hours after addition of 1 mM cysteine (Cys), 3 mM sulfate (Sul), 1 mM DTT or 5 mM H$_2$O$_2$, respectively.

- a) – c) Expression of GCL protein in GFP or BjGCL expressing lines as detected in immunoblots after feeding of cysteine or sulphate (a), H$_2$O$_2$ (b) or DTT in comparison to control conditions (Con). Letter indicate: P – a preimmune band, Bv – endogenous Beta vulgaris GCL, Bj – transgenically expressed Brassica juncea GCL.
- d) Phenotype of the BjGCL expressing line 5140 24 hours after feeding of DTT or H$_2$O$_2$, respectively.
- e) Relative concentrations of GSH in lines expressing GFP or BjGCL after the different feeding experiments (100 % were 134 ± 22 nmol/gFW for GFP lines and 148 ± 46 nmol/gFW for GCL lines, n = 3 or more, each; n.d. – not determined).
4 Discussion

Considering the plethora of functions glutathione is fulfilling in plant metabolism it is obvious that complex regulation of its synthesis is required to integrate metabolic, developmental and environmental signals on one side and to provide the necessary amounts of glutathione under different conditions during plant life on the other side. As the reaction of glutamate cysteine ligase (GCL) is limiting for GSH synthesis under most conditions (Noctor et al., 1998b; Noctor et al., 1998a), it is likely that most of this control is happening at the level of the reaction catalyzed by this enzyme. While GCL expression is regulated to some degree by environmental factors on transcript and protein levels (Schäfer et al., 1997; Xiang and Oliver, 1998), several studies indicate that post-translational regulation of GCL activity might play an important role in controlling GSH synthesis (May et al., 1998).

On one hand it has been shown that GCL activity can increase with unchanged expression level (May et al., 1998) and on the other hand even strong overexpression of plant GCL usually results in only moderate effects on the GSH content of plants (Xiang et al., 2001; Wachter, 2004). Furthermore, enzymatic characterization of GCL enzymes from different plants have shown that the \(K_m \) values for cysteine are in a range similar to the cellular conditions and that GCL enzymes are highly sensitive to changes in the redox environment, showing a strongly enhanced activity in the oxidized state (Hell and Bergmann, 1990; Jez et al., 2004; Wachter, 2004). Substrate and redox control therefore might both play a prominent role in regulating GSH synthesis, emphasizing the importance to elucidate the underlying molecular mechanisms.

In the course of this thesis the redox regulation of recombinantly purified GCL from *Brassica juncea* (BjGCL) and *Nicotiana tabacum* (NtGCL) was characterized, based on biochemical analyses and the structure determination of the BjGCL protein. In addition, the evolution of the regulatory mechanisms of plant GCL was investigated by *in silico* analysis of plant and proteobacterial GCL homologs and by characterization of the GCL proteins from *Agrobacterium tumefaciens* (AtuGCL) and *Xanthomonas campestris* (XcaGCL). These comparative analyses allowed discerning which of the features found for BjGCL are common to all group 3 GCL proteins, specific for plant GCLs, or only found in a few closely related proteins, thereby providing new insight into the evolution of the central protein of GSH synthesis.
4.1 The Crystal Structure of *Brassica juncea* GCL reveals unique features compared to the *Escherichia coli* enzyme

Based on protein preparations provided during this and a previous thesis (Wachter, 2004), the crystal structure of *Brassica juncea* GCL was determined by collaborators at the EMBL (Hothorn et al., 2006). Two crystal forms were solved, showing the protein bound to BSO or glutamate, respectively, allowing the identification of the active site of the enzyme.

Despite the low sequence homology, BjGCL shows significant structural similarity to the *Escherichia coli* enzyme (May and Leaver, 1994; Hibi et al., 2004). The central part of BjGCL is a bowl-like structure composed of a six-stranded anti-parallel β-sheet, flanked by helical regions, and superimposes well with the *E. coli* counterpart (shown in blue in Figure 4.1).

Analysis of the crystal structure of BjGCL also allowed identification of the active site, which is located in a solvent accessible cavity, formed by two arm-like structures, flanking the central β-sheet, which are specific for the plant enzyme (shown in green in Figure 4.1). Interestingly, the residues making substrate contact in the active site were found to be highly conserved between BjGCL and the *E. coli* enzyme. Three glutamate residues (Glu107, Glu159, Glu165), one of which is substituted by an aspartate residue in *E. coli*, bind one Mg$^{2+}$ ion. Glutamate is coordinated by Arg292 along with Thr242 (Ile146 in *E. coli*) while additional contacts are made by Trp296 in BjGCL which are not found in the *E. coli* enzyme. The position of the cysteine binding pocket could be deduced from the position of the aliphatic side chain of BSO bound to the enzyme and is formed by several hydrophobic residues reaching the alkyl chain of BSO from four directions. This region also contains a β-hairpin structure (shown in red in Figure 4.1) located near the active site and stabilized by a disulfide bridge (Cys341-Cys356: CC1).
Figure 4.1: Front and side view of BjGCL in ribbon representation. The central β-sheet is depicted in dark-blue, the N- and C-terminal helical regions in light blue and the plant unique arms in dark and light green, respectively (See Discussion). L-glutamate bound in the active site is represented in bonds representation along with the Mg$^{2+}$ ion (in cyan). The two disulfide bridges CC1 (Cys341-Cys356) and CC2 (Cys178-Cys398) are highlighted in yellow; the β-hairpin module is shown in red (from Hothorn et al., 2006).

The crystal structure of BjGCL also allows interpretation of the molecular mechanisms leading to reduced GSH levels in several Arabidopsis GCL mutants. In the rml1 mutant Asp250 (corresponding to Asp259 in BjGCL) is substituted for asparagine, leading to an almost complete loss of GCL activity and GSH synthesis in vivo (Vernoux et al., 2000). Comparison of the E. coli GCL structure with that of BjGCL revealed that this residue is probably involved in binding of the adenine nucleotide and the recombinantly produced rml1 protein showed no detectable GCL activity, even under elevated ATP levels, indicating the crucial role of this residue in catalysis.

In the rax1-1 mutant Arg229 (Arg220 in BjGCL) is exchanged for lysine (Ball et al., 2004). This arginine residue is located at the proximal side of the cysteine binding pocket and may be important for recognition of the sulfhydryl-group of cysteine. This was confirmed by enzymatic characterization of the recombinantly produced rax1-1 protein, which showed a 5-fold higher K_m value for cysteine (Hothorn et al., 2006).

The mutant cad2-1 is caused by a six base-pair deletion in the GCL gene, affecting the residues 220-222 (211-213 in BjGCL). These residues are located in a loop-region and their deletion most likely alters the position of residues involved in substrate binding (e.g. R220, T242 in BjGCL) and may thus explain the altered GCL activity in planta. Recently, the GCL
mutant *pad2-1* has been shown to exhibit a S298N (Ser289 in BjGCL) substitution (Parisy et al., 2007). Again, this mutation is located close to the cysteine binding site.

Together these mutations emphasize the role of cysteine in the regulation of GCL activity, where changes in the affinity for this substrate result not only in significantly reduced GCL activity but also in strongly lowered GSH levels *in vivo*.

Noteably, while the *E. coli* protein was found to be monomeric, BjGCL proteins were arranged as dimers in the crystals (Figure 4.2) and show a well defined interface structure made up by 11 amino acid residues (Glu133, Phe135, Glu136, Gln176, Asn182, Tyr186, Glu193, Trp394, Arg395, Lys471 and Phe475; Figure 3.14. In particular, several salt bridges (Glu133/Arg395, Glu193/Lys471, Glu136/Asn176) and aromatic amino acid side chains (Phe135, Tyr186, Trp394, Phe475) contribute to a zipper-like interface. The whole interface appears to be stabilized by a disulfide bridge not present in the *E. coli* enzyme (Cys198-Cys398: CC2), linking two helices from the C- and N-terminus of the protein. Size-exclusion chromatography confirmed a dimer status of soluble oxidized BjGCL.
4.2 The redox regulation of BjGCL is dependent on two disulfide bridges

Redox regulation of plant GCL has been described previously and was found to be associated with a decrease of apparent size for the reduced protein, interpreted as a change in conformation (Hell and Bergmann, 1990; Jez et al., 2004). The crystal structure of BjGCL showed two disulfide bridges that might play a role in this process, possibly involved in positioning of a β-hairpin structure about 20 Å away from the active site (CC1) and in stabilizing the central structure of GCL, including the formation of the dimer interface (CC2). Recently, the presence of the corresponding disulfide bridges has been confirmed for GCL from *Arabidopsis* (AtGCL) by mass spectrometry of protease processed protein and site-directed mutagenesis (Hicks et al., 2007).

Site-directed mutagenesis and biochemical analysis showed that both of these disulfide bridges contribute to redox regulation of BjGCL *in vitro*. Knockout of CC1 led to a decrease of protein activity whereas substrate affinities were not affected. This could possibly be explained by a changed positioning of the β-hairpin structure upon loss of CC1 and a resulting hindrance of access to the active site, slowing down binding of substrates and release of the product. Dose response curves for BjGCL-C356A or NtGCL, both lacking the ability to form CC1, reveal a significant decrease in the susceptibility to treatment with reductants, compared to the wild-type BjGCL enzyme, confirming a contribution of CC1 to the *in vitro* redox regulation of the latter. However, in AtGCL, knockout of CC1 led to a decrease in activity of only 50 % in contrast to the 80 % decrease found for BjGCL. Also, the knockout did not lead to a significant change in midpoint potential of the protein, indicating no contribution to redox sensitivity. The different contributions of CC1 to *in vitro* redox regulation might, at least partially, depend on the different assay conditions applied in the two studies. While in this work a buffer containing KCl was used to determine the activity of BjGCL, a NaCl containing buffer was used for AtGCL (Jez et al., 2004; Hicks et al., 2007), despite the fact that sodium ions inhibit plant GCL (Webster and Varner, 1954). The preference for potassium over sodium ions was also confirmed for BjGCL (A. Wachter, personal communication). As plant tissues contain potassium ions and not sodium ions as the major monovalent cation, it is likely that the observations made for BjGCL are closer to the conditions found *in vivo*.

Interestingly, one of the cysteine residues involved in formation of CC1, corresponding to Cys356 in BjGCL, is not conserved in GCL enzymes from species outside
the Rosids clade while the other one is (Figure 3.17). Whether the ability to form CC1 does improve regulatory control of GSH synthesis in Rosids cannot be estimated yet, but the significant reduction of activity in BjGCL-CC1 mutants does imply that formation of CC1 is required for full activity of these enzymes in vivo. However, Nicotiana tabacum GCL (NtGCL) is lacking CC1 and does show a specific activity significantly higher than that of BjGCL-CC1-knockout enzyme, implying that a blockage of the active site is not occurring to the same degree as found for the latter.

Production of recombinant BjGCL protein with knocked-out CC2 cysteines leads to misfolded protein with minimal residual activity, whereas reduction of correctly folded wild-type or CC1 mutant protein does not result in aggregation or precipitation. Re-oxidation of these proteins leads to regeneration of enzymatic activity, indicating that CC2 is not required for the structural integrity after initial folding. As BjGCL is a nuclear-encoded plastidic protein (Wachter et al., 2005) and import into the chloroplast does require unfolding and refolding of the protein in two compartments with a reducing environment (Soll and Rien, 1998), it is likely that folding of BjGCL in planta is regulated differently than in E. coli Rosetta gami cells which have an oxidizing cytosol. However, it should be noted that production of correctly folded BjGCL was also possible from the E. coli strain B834 with a reducing cytosol, which was used for production of selenomethionine-labelled protein.

The effect of reduction of CC2 on plant GCL activity was investigated using mutant BjGCL without CC1 and NtGCL. Treatment of these proteins with reductants leads to a strong inhibition of enzymatic activity, along with a reduction of apparent molecular weight in size-exclusion chromatography to half the apparent size of the oxidized protein. The same observation has been described previously for partially purified GCL from Nicotiana and for the recombinant Arabidopsis enzyme (Hell and Bergmann, 1990; Jez et al., 2004). To decide whether this change in apparent size is caused by a different oligomerization state or by a massive change in conformation, ESI-TOF analysis has been conducted for the Arabidopsis enzyme and the detection of only very small amounts of dimeric protein has led the authors to favor the conformational change hypothesis (Jez et al., 2004).

However, the results obtained during this thesis, based on the crystal structure of BjGCL, strongly support the interpretation that the change in apparent size of plant GCL upon reduction is caused by the monomerization of the oxidized dimeric protein.

As described in the previous chapter, oxidized BjGCL is arranged as dimers in the crystal and shows a well defined dimer interface structure, consisting of 11 amino acid residues and stabilized by a disulfide bridge (CC2). However, in contrast to the heterodimer
found for animal GCL, this homodimer is based on non-covalent bonds and therefore is likely to break up under denaturing conditions like the 50 % methanol buffer used for the ESI-TOF analysis of the Arabidopsis enzyme, providing an explanation for the low amount of dimer found in this analysis. Interestingly, the determination of the molecular weight of GCL extracted from Arabidopsis chloroplasts by colorless native gel electrophoresis point to a dimeric state (Peltier et al., 2006).

Furthermore, the oxidized protein shows a compact globular structure and not the rod-like shape proposed in the conformational change hypothesis. Proteolytic processing of BjGCL also did not show differences in the digestion pattern of oxidized and reduced GCL that would strengthen the interpretation of a strong conformational change or hint at a hinge region.

The importance of the interface residues is further emphasized by their high conservation among higher plant GCL sequences along with complete conservation of the CC2 cysteines. Also, sequences from Physcomitrella or green algae that lack CC2 show low conservation for the interface residues as do proteobacterial sequences, where the resulting proteins are not inhibited by reductants or change their apparent size upon reduction. This correlation of conservation between CC2 and interface residues supports the assumption of a shared role for both in redox regulation.

Further support for the dimerization interpretation comes from the observation that TCEP is apparently reducing CC2 much slower than the weaker reductant DTT. As TCEP requires a larger space than DTT to efficiently reduce disulfide bonds (Cline et al., 2004), this would indicate a shielding of CC2 in the oxidized protein which is most easily explained by the formation of a dimer (Figure 4.2).

What the exact role of dimerization is in the redox regulation remains unknown but it can be speculated that the formation of CC2 in the core of the plant GCL enzyme has a stabilizing effect on the dimer interface as well as on the conformation of the active site. Association of two oxidized monomers would possibly strengthen the overall structure and, by shielding of CC2 from reductants, stabilize the oxidized form of GCL under in vivo conditions.
Figure 4.2: **Accessibility of CC2 in the BjGCL monomer and dimer.** Three-dimensional model of BjGCL with space filling model for atoms, gray = carbon, red = oxygen, blue = nitrogen, yellow = sulfur; A – side view of the BjGCL monomer; B and C – as A, turned 90°, viewing direction as indicated by the arrows in A; D – side view of the BjGCL dimer; E as D, turned 90°, viewing direction as indicated by the arrow in D. In the dimer the access to CC2 from the direction shown in C is blocked.
4.2.1 Several lines of evidence point to a role of GCL redox regulation in vivo

On theoretical ground, redox regulation of GCL would be an efficient and elegant way to integrate environmental signals into the regulation of GSH synthesis. Reduced BjGCL re-oxidizes and re-dimerizes spontaneously upon dialysis in buffer without additional oxidants. It is likely, that oxidation of plant GCL in vivo can also be caused by molecular oxygen or reactive oxygen species (ROS), especially under conditions of stress, where ROS accumulate. Reduction of BjGCL on the other hand requires strong reductants and is not efficient in the presence of GSH alone. It can therefore be assumed that in vivo reduction of plant GCL is either a very slow process or dependent on proteinaceous co-factors, such as a thiredoxin or glutaredoxin.

At the moment a direct evidence for an in vivo role of GCL redox regulation is still lacking, but several observations strongly support such a possibility. First of all, both cysteines of CC2 as well as the amino acid residues forming the dimer interface are highly conserved among all higher plant and at least some green algal GCL sequences. Even considering the overall high homology of plant GCL proteins, it seems unlikely that these residues, positioned at the surface of the monomeric protein, would be conserved by chance, especially when considering that they are obviously not required for catalysis as shown by the fact that they are not conserved among proteobacterial group 3 GCL proteins. The easiest explanation, why evolutionary pressure favours conservation of these residues in plants, is that they are involved in vivo in the same redox-dependent regulatory mechanism as observed in vitro.

Several observations made by other groups strengthen the assumption that the redox regulation mechanism described above is active in vivo. Fast increases of GCL activity in Arabidopsis thaliana cell culture, which were not accompanied by changes in the transcript amount, indicate an efficient posttranscriptional regulatory mechanism (May et al., 1998) as does the observation that plant GCL alone does not fully complement a GCL deficient yeast strain, probably due to the lack of an activating factor (May et al., 1998). Redox regulation could account for both observations as oxidation of GCL upon stress could lead to a 5 to 10-fold increase in activity without changes in the protein amount, while efficient reduction of heterologous GCL in the yeast cytosol would partially inactivate plant GCL.

Recently, Hicks et al. (2007) determined the redox midpoint potential of Arabidopsis GCL to be at – 318 mV at pH 7.0 and at – 365 mV at pH 7.9 for the wild-type enzyme with
little changes for CC1 mutants. This puts GCL in the same range as described for other redox-active proteins (from -290 mV to -330 mV) (Hutchinson and Ort, 1995; Hirasawa et al., 1999). Interestingly, the significantly lower midpoint potential found at a higher pH would indicate a lower susceptibility of GCL to reduction under conditions of active photosynthesis, possibly explaining the observation that GCL activity is correlated to photosynthetic activity (Ogawa et al., 2004). Hicks et al. (2007) were also able to extract a reduced and an oxidized form of GCL from roots of *Arabidopsis* seedlings, finding similar amounts of both under non-stress conditions while treatment of the plants with hydrogen peroxide, cadmium, BSO, or menadione led to a shift towards the oxidized form within one to four hours. However, as these experiments were conducted on non-reducing but denaturing gels, they do not tell anything about the *in vivo* oligomerization state of *Arabidopsis* GCL as non-covalent dimers would certainly be broken up by the treatment with SDS.

The main difficulty in proving the existence of a dimerisation dependent redox regulation *in vivo* by protein extraction methods lies in the requirement to extract protein from plant chloroplasts without disturbing the redox state and the non-covalent dimerisation. As initial trials to do so have failed in our lab, non-invasive approaches to analyze *in vivo* redox-regulation and dimerization might be necessary to achieve conclusive results. These questions might be approached by techniques like FRET-analysis or by analysing the ability of *GCL*-genes mutated in cysteine or interface residues to complement GCL-knockout lines.
4.4 Cysteine and glutathione regulate the activity of plant GCL via multiple mechanisms

In addition to redox regulation, metabolic regulation has a strong impact on glutathione synthesis. The K_m value of plant GCL for cysteine is close to the assumed physiological concentrations of this amino acid (Hell and Bergmann, 1990; Hothorn et al., 2006) and a rather mild (3-fold) reduction of the K_m for cysteine in the rax1-1 mutant protein seems to be sufficient to result in reduced GSH levels in vivo (Ball et al., 2004; Hothorn et al., 2006). As sulfur supply has been found to limit the content of GSH in plants, it can be assumed that cysteine levels exert a rather stringent control on GCL activity and therefore overall GSH synthesis in vivo (Meyer and Fricker, 2002; Noctor et al., 2002; Kopriva and Rennenberg, 2004).

The other metabolite likely to influence GCL activity in vivo is glutathione itself. GSH has been described as an inhibitor for plant GCL but different mechanisms have been proposed as biochemical analyses indicated a competitive (Hell and Bergmann, 1990) or non-competitive mechanism of inhibition (Jez et al., 2004). Analyses of the dose dependent inhibition of different plant GCL variants by GSH, and the observation that GSH does not reduce CC1 and CC2 in BjGCL efficiently, indicate that feedback regulation of plant GCL by GSH is largely independent from redox regulation in vitro. This conclusion is supported by the finding that BjGCL is inhibited in a very similar way by oxidized GSH or S-methyl GSH, where in both cases the redox active sulphydryl-group is blocked (Wachter, 2004; Pasternak, 2007). One reason why GSH is not able to efficiently reduce BjGCL might be steric. As access to CC2 appears to limit the efficiency of reduction for TCEP, this might also be the case for GSH. Crystallographic analysis has shown that GSH actually can bind in the active site of BjGCL and it is therefore likely that GSH is acting as competitive inhibitor (Esther Lenher, personal communication). However, it cannot be excluded that in vivo GSH is involved in the redox regulation of GCL, as proteinaceous cofactors like glutaredoxins might lead to an efficient reduction if they are able to facilitate access of GSH or redox-active cysteine residues to CC2.

Interestingly, the induction of GCL expression in hairy roots and suspension cell culture after cysteine or GSH feeding reveals another mechanism by which soluble thiols may influence GSH synthesis. Treatment with DTT does lead to a rise in GSH levels, possibly due
to reduction of the GSH pool, following a similar mechanism as observed upon GSH reductase overexpression (Foyer et al., 1995), while hydrogen peroxide or sulfate feeding result only in minor changes of GSH concentration. Notably, none of these treatments prominently affects GCL expression. This shows that induction of GCL expression is specific for cysteine or GSH feeding and is not dependent on a change of the cellular redox state or the overall sulfur availability. It can be assumed that the induction observed upon GSH feeding actually is a reaction to the increased levels of intracellular cysteine, caused by GSH uptake and degradation. A clear differentiation between intra- and extracellular thiols is, despite washing of the cells before extraction, very difficult in these experiments. Considering that GSH is the major transport form of reduced sulfur in plants, and therefore probably taken up more rapidly than cysteine, GSH feeding might actually lead to a higher intracellular cysteine concentration and therefore result in the stronger induction of GCL expression observed for suspension cultured cells.

Notably, in Beta vulgaris hairy roots, GCL expression is not only increased for the endogenous protein but also for heterologous BjGCL, expressed under control of the CaMV 35S promoter. As the construct used for transformation of these cultures includes the complete 5'UTR of BjGCL, this might be explained by a regulatory event either at the level of translation or in a change of the transcript or protein stability.

GSH metabolism has been proposed to have originally evolved to provide a soluble thiol less reactive and potentially toxic than cysteine (Fahey and Sundquist, 1991). It is intriguing to interpret the induction of GCL expression after cysteine feeding as part of a system to balance the intracellular content of free cysteine. This hypothesis may be supported by the observation that Arabidopsis plants with lowered GCL activity due to mutations were also reported to show up to five-fold increased concentrations of cysteine (Cobbett et al., 1998; Vernoux et al., 2000; Parisy et al., 2007).

Interestingly, the feeding of reduced or oxidized GSH to whole Arabidopsis plants had no effect on the expression of the endogenous GCL gene (Xiang and Oliver, 1998). A possible reason for this may be a lower rate of GSH uptake or degradation for whole plants when compared to heterotrophic cultured cells, resulting in a weaker impact of GSH feeding on intracellular cysteine content. On the other hand, increased expression of the GCL gene has been found for the rml1 mutant of Arabidopsis, which does show a very low GSH content (Wachter, 2004), indicating a feedback mechanism correlating GCL expression to the cellular GSH content. In yeast, GCL expression is negatively affected by high GSH levels via regulation by the Met4 transcription factor (Wheeler et al., 2002) but an analogous system in
plants has not yet been characterized. Summarizing, it appears that the intracellular concentrations of both GSH and cysteine affect the expression and activity of GCL via several independent mechanisms.

4.5 The combination of redox and metabolite regulation allows an efficient control of glutathione levels

Combining the observations described above, a model can be proposed for the in vivo regulation of plant GSH synthesis (Figure 4.3). As a nuclear encoded gene, GCL is translated in the cytosol and subsequently imported into the plastid. Proteins are imported into the plastid unfolded, assisted by cytosolic and plastidic chaperones (Soll and Rien, 1998). Therefore, newly synthesized GCL will probably arrive in this compartment in the reduced, less active form. Under non-stress conditions most of the GCL pool will remain in the reduced state, possibly maintained by the action of thioredoxins or glutaredoxins. The remaining GCL activity is then regulated by the ratio of cysteine to glutathione. A high availability of reduced sulfur in the form of cysteine supports a high GCL activity, resulting in the production of GSH as a non-toxic, exportable form of reduced sulfur. An additional activation of GSH synthesis will occur under conditions of increased GSH demand in other organelles, cells, or organs, leading to an increased GSH export and reducing the feedback inhibition exerted by this metabolite. Low supply of reduced sulfur or high amounts of GSH, independent of its redox state, on the other hand will inhibit further GSH synthesis, preventing potential disturbances in the cellular redox poise as observed upon overexpression of E. coli GCL in tobacco (Creissen et al., 1999).

It is noteworthy that the different localization of GCL and GSHS, with the first exclusively in the plastid and the latter mainly in the cytosol (Wachter et al., 2005), will have a direct impact on the regulation of GSH synthesis. The export of γ-EC to the cytosol and the exchange of GSH between both compartments allows regulation of the feedback inhibition exerted by these metabolites on GCL in the plastid, possibly integrating signals from outside this organelle.
Under stress conditions, the occurrence of elevated ROS concentrations and an overall more oxidative chloroplast stroma will lead to oxidation of GCL, providing a fast mechanism to activate GSH synthesis. Dimerization results in a shielding of CC2 from access of reductants and will therefore stabilize the more active, oxidized form even under conditions when the overall redox potential might favor reduction of the disulfide bridge. This stabilizing role of the dimer might also explain why Hicks et al. (2007) detected a considerable amount of oxidized protein even under non-stress conditions. Under conditions of GSH depletion, caused by increased export, GST-activity, or phytochelatine synthesis, the metabolic level of GCL control would further increase GCL activity. However, an accumulation of oxidized GSH as well as a drop in cysteine concentrations would counteract this activating mechanism, preventing a complete depletion of reduced sulfur or an overshooting production of glutathione. Upon cessation of the stress conditions the changes of redox and metabolite states might deactivate GCL activity again. However, due to the slow reduction of GCL, a considerable deactivation would probably occur only some time after the cessation of the stress condition, resulting in increased GSH levels and possibly contributing to hardening of the plant against repeated stress conditions.

While these mechanisms of post-translational regulation allow a quick adjustment of GSH synthesis rate to the conditions prevailing in the plastid, expression regulation of GCL allows the integration of signals from other compartments, developmental stages and long-term stress conditions. This might explain the observation that treatment of Brassica juncea plants with cadmium led to a notable increase in GCL expression only after prolonged exposure of at least three days (Schäfer et al., 1997; Wachter et al., 2005). However, a fast increase in GCL expression within a timeframe of a few hours was observed for oxidative and heavy metal stress (Xiang and Oliver, 1998), as well as for cysteine feeding (Müller, 2006), showing that expression of GCL is actually regulated at a variety of time frames.
Figure 4.3: Model for the regulation of plant GCL activity. Green arrows indicate activation while red arrows indicate inhibition. GCL expression is controlled on the levels of transcription and translation by metabolic, developmental and stress signals and the resulting protein is imported into the plastid in the reduced state assisted by cytosolic and plastidic chaperones (grey). After final folding the redox state of GCL is controlled by the level of ROS and possibly the action of proteinaceous cofactors, while the enzymatic reaction is influenced by the availability of substrates and GSH. Which role turnover of GCL plays and whether it is influenced by the redox state is unknown. However, a role of oxidized CC2 in stabilizing the structure of the folded protein is hinted at by the aggregation of recombinantly produced BjGCL without this disulfide bridge.
4.6 Proteobacterial glutathione biosynthesis is not subject to redox control

The catalytic residues identified in BjGCL are highly conserved not only among plant proteins but also among their proteobacterial homologs. Comparing the enzymatic characteristics of recombinant *Agrobacterium* and *Xanthomonas* GCL with those of the *Brassica* enzyme reveals similar kinetic properties, susceptibility to inhibition by GSH and the same preference for potassium over sodium ions.

These observations support a conservation of the catalytic mechanism among group 3 GCL proteins. However, while bacterial GCL show a specific activity and K_m values for cysteine and ATP similar to those found for plant GCL, the K_m values for glutamate are about four times lower than for BjGCL. This might indicate an adaptation to cellular glutamate concentrations or a more prominent role of this amino acid in the regulation of GSH synthesis in bacteria.

It is noteworthy that, although the cysteine residues forming CC2 in BjGCL are conserved in many bacterial proteins and preliminary data suggest that a disulfide bridge is present in recombinant AtuGCL and XcaGCL, neither of these proteins shows an inhibition of enzymatic activity upon reduction. Both proteins also do not undergo dimerization and are active in a monomeric state under oxidizing as well as under reducing conditions. Sequence analysis shows that in contrast to the conservation of CC2 cysteines, bacterial GCL proteins do not show a stringent conservation of the dimer interface residues and show an insertion of six amino acids near the interface region. This suggests that redox susceptibility is not conferred by the presence of CC2 alone, but probably also requires structural features and the dimerization mechanism which are exclusive to plant GCL. Interestingly, AtuGCL and XcaGCL both are inhibited by glutathione in a manner very similar to plant proteins, providing further evidence that feedback-inhibition of GCL by GSH is independent from redox regulation.

Analysis of the thiol concentrations from cultured *Agrobacterium* and *Xanthomonas* shed further light on the regulation of glutathione biosynthesis in these bacteria. As in neither of the species γ-glutamylcysteine could be detected, it appears that, as in plants, the reaction catalyzed by GCL is the limiting factor for glutathione synthesis. The GSH concentration, which could affect GCL activity via feedback regulation, was found in the range of 0.2 to 0.5 mM under standard culture conditions in both bacteria, far too low to cause efficient
inhibition. It therefore appears that GCL activity in these proteobacteria is mainly regulated by protein amount and substrate availability.

Cysteine concentrations in Agrobacterium were found to be as low as one third of the K_m value of AtuGCL (~0.04 mM and 0.14 mM, respectively), therefore probably exerting a rather stringent control of GCL activity. In contrast, very high amounts of cysteine could be detected in Xanthomonas, reaching up to 20-fold the K_m value of XcaGCL (1.3 mM and 0.07 mM, respectively). As the medium used for the growth of Xanthomonas shows a very low concentration of free cysteine (below the detection limit of 0.001 µM), these measurements indicate an active sulphur metabolism in Xanthomonas, either synthesizing cysteine by assimilation of sulphate or massively releasing sulphur from organic compounds like GSH or proteins. Consequently, it appears that in Xanthomonas the amount of expressed GCL protein would pose as the bottleneck of GSH synthesis. A difference in sulphur metabolism between the two bacterial species is also reflected in the proportion of cysteine to glutathione detected. While in Agrobacterium the concentration of GSH surpassed that of cysteine about 5-fold, in Xanthomonas GSH concentrations reached only about 40% of the values found for cysteine.

However, it should be noted that analyses of the thiol metabolism of bacteria have revealed high variations in the concentrations of intracellular cysteine and GSH, depending on species and culture conditions (Wheldrake, 1967; Fahey et al., 1978). By which factors GSH synthesis is limited in proteobacteria would therefore probably vary depending on a number of conditions. Understanding the role of cysteine and possibly glutamate availability, as well as that of GCL expression, will therefore certainly require further research.
4.7 The Evolution of Plant GCL can be traced by comparison of biochemical analysis and in silico data

4.7.1 Plants acquired their GCL genes via endosymbiosis or lateral gene transfer

The GCL genes of bacteria and eukaryotes fall into three distinct groups, representing gammaproteobacteria (group 1), animals and fungi (group 2), and alphaproteobacteria and plants (group 3). Although the phylogenetic relationship between the groups cannot be resolved reliably, the identification of conserved blocks among all three types indicates a common origin (Copley and Dhillon, 2002). This is also supported, at least for group 1 and group 3 GCL genes, by the high structural similarity of BjGCL to the E. coli enzyme as well as the apparent conservation of the catalytic mechanism. Further similarity searches have led to the suggestion that GCL enzymes are related to glutamine synthetases which catalyze the ligation of ammonium to the \(\gamma \)-carboxy group of glutamate (Abbott et al., 2001). It has been proposed that the GCL gene first evolved in cyanobacteria, as these were the first photosynthetically active cells and therefore probably needed an efficient defence against ROS (Copley and Dhillon, 2002). The \(\gamma \)-EC produced by GCL could have acted as an antioxidant as it still does in some halobacteria (Sundquist and Fahey, 1989). From here lateral gene transfer would have brought the gene to proteobacteria and eukaryotes.

Group 3 GCL genes are widely spread among alphaproteobacteria are well conserved. It therefore seems reasonable to assume that the gene has a single origin for all alphaproteobacteria and then evolved into the “typical” group 3 gene within this group. The related GCL genes in the gammaproteobacterial Xanthomonadales and Chromatales have probably been acquired from alphaproteobacteria by lateral gene transfer.

Another question of interest is, how plants acquired the group 3 GCL gene. The most obvious way would be by gene transfer from the alphaproteobacterial ancestor of the mitochondrion or during the fusion of a proteobacterium with the predecessor of the eukaryotic cell (Gray et al., 1999; Rivera and Lake, 2004). However, both of these events occurred early in eukaryotic evolution. So it remains puzzling that plant GCL is from a different type than the GCL proteins found in other eukaryotes belonging to group 2 (May and Leaver, 1994; Copley and Dhillon, 2002). These genes are found not only found in animals and fungi but also in the Bacillaryophytes Thalassiosira pseudonana and Phaeodactylum
Discussion

tricornutum (Protein Ids Thaps3:13064 and Phatr2:27240, respectively, DOE Joint Genome Institute; www.jgi.doe.gov) and in the red alga *Cyanidioschyzon merolae* (LocusCMG141C, *Cyanidioschyzon merolae* Genome Project; http://merolae.biol.s.u-tokyo.ac.jp/). As so far no eukaryotes with both types of genes are known, it cannot be judged whether a common ancestor held two types of GCL genes – group 2 from the host cell and group 3 from the mitochondrion. If this had been the case, plants would have retained the group 3 genes, possibly because they were the only eukaryotes integrating this gene into the nuclear genome, while in all other eukaryotes the group 2 gene prevailed.

Another possible way of acquisition of group 3 GCL could be the lateral gene transfer from a free living bacterium to an early plant. Since highly homologous genes are found throughout the plant kingdom, including the green algae, this transfer would have to have happened before the first land plants appeared in the Silurian age, approximately 425 million years ago (Lang, 1937).

From which alphaproteobacterial group exactly plant GCL originates remains uncertain. The available sequence data do not give strong support for either theory of gene acquisition. However, as lateral gene transfer between bacteria and eukaryotes is considered to be an extremely rare event, a mitochondrial heritage of plant GCL seems more likely at this point.
4.7.2 Redox regulation of plant GCL evolved in green algae, possibly in parallel to the plastidic localization of the enzyme

While several proteobacterial GCL proteins contain the cysteines required for the formation of CC2, they show low conservation of the dimer interface residue found in BjGCL and are not susceptible to redox regulation. On the other hand, all higher plant GCL proteins show an almost complete conservation of these residues, so it can be assumed that redox regulation, depending on CC2 and dimerization, is functional in all of these species. The same is found for the proteins of *Chlamydomonas* and *Volvox*, showing that this type of regulation probably evolved in the green algae. As both of these species belong to the Chlamydomonales, which are not considered to be direct predecessors of higher plants (Chapman and Buchheim, 1992), a broader conservation of these features among green algae appears likely. In contrast, one GCL isoform from *Physcomitrella* (#2 according to Tables 3.7 and A1) as well as the GCL proteins from the green algae *Ostreococcus* and *Prototheca* lack not only the CC2 cysteines, but also show very low conservation of the dimer interface residues.

Why some primitive plants retain GCL genes without redox regulation remains unclear. However, *Prototheca* is a non-photosynthetically active, parasitic green alga (Leimann et al., 2004) and *Ostreococcus* is the smallest known eukaryote (Courties et al., 1994). It therefore cannot be excluded that features found in these untypical organisms are a consequence of specialization. In *Physcomitrella* only one of three GCL isoforms (#2) appears to lack redox regulation. It would be interesting to know whether these isoforms differ in expression or subcellular localization.

The role of the second redox regulation mechanism found in vitro for *Brassica* GCL involving CC1 remains unclear. Both cysteines required for this mechanism are found only in those sequences from plants belonging to the Rosids clade. Therefore, this mechanism probably originated in a single event and might have proved beneficial under selective pressure.

In comparison to plant GCL with only the core disulfide bridge, wildtype *Brassica juncea* GCL showed a stronger inhibition in the presence of DTT. This might indicate that the selective benefit of the hairpin mechanism lies in the ability to more stringently regulate GCL activity depending on the redox environment. However, redox titration conducted with *Arabidopsis* GCL mutants did not provide evidence for a strong contribution of CC1 to redox regulation of this protein (Hicks et al., 2007). Further research, preferrably involving in vivo
studies on plants expressing GCL mutants with or without the CC1 bridge, will be necessary to conclusively judge whether this second mechanism does contribute significantly to redox regulation in planta.

It is striking that eukaryotes apparently evolved mechanisms for the redox regulation of GCL on two independent occasions – the mechanism depending on intramolecular disulfide bridges in the group 3 proteins of plants and the mechanism depending on an intermolecular disulfide bridge in group 2 GCL (Huang et al., 1993a; Huang et al., 1993b). In both cases redox regulation allows for a quick upregulation of GSH synthesis under conditions where oxidative agents are found in compartments with an otherwise reducing redox potential.

Several reasons might exist why this additional level of regulation is required in eukaryotic cells. Obviously, eukaryotic redox metabolism is much more complex than the prokaryotic one, as eukaryotic cells contain different compartments with different states of redox balance. Glutathione is believed to play an essential role in upholding these redox potentials (Schafer and Buettner, 2001). Overexpression of the *E. coli* GCL, lacking redox regulation, and the resulting increase in GSH content in tobacco led to unbalancing of the cellular redox state, resulting in visible stress symptoms (Creissen et al., 1999). Much larger variations of the cellular GSH and cysteine levels could be observed in *E. coli* under different conditions of sulfur availability without apparent negative effects (Wheldrake, 1967; Fahey et al., 1978) and in contrast to animals and plants *E. coli* is viable without the capability of GSH synthesis (Greenberg and Demple, 1986; Dalton et al., 2000; Cairns et al., 2006). These observations might indicate that eukaryotes are more susceptible to disturbances of the redox potential caused by deregulated GSH synthesis.

Beside its direct involvement in redox balance, GSH fulfils a plethora of functions in eukaryotes, including its involvement in such delicate processes as the regulation of gene expression, development, and protein activity (Mihm et al., 1995; Vernoux et al., 2000; Ball et al., 2004; Markovic et al., 2007; Parisy et al., 2007). A feedback regulation via the redox state, probably mediated by glutaredoxins, might provide a more efficient mechanism to control GSH levels than the direct competitive inhibition which depends on the levels of competing substrates.

Finally, redox feedback regulation might be especially efficient in eukaryotes as it provides a possibility to respond very fast to stress signals within the compartment where GSH synthesis takes place, circumventing the complex eukaryotic expression machinery.
Interestingly, the subcellular localization of GCL apparently differs between plants and other eukaryotes. While animal GCL is localized to the cytosol, all higher plant GCL sequences contain a presumed transit peptide ending in the highly conserved cleavage site IV/AASP, and in most cases this is predicted to facilitate import into the plastid (Appendix, Table A5). Exclusive plastidic localization was confirmed for GCL from *Brassica* and *Arabidopsis* (Wachter et al., 2005), tobacco (this work), and sugar beet (Müller, 2006). Sulfur is assimilated in the plastid (Leustek et al., 2000) and cysteine synthesis can take place here (Wirtz and Hell, 2007). Together with the production of ATP via photosynthesis and glutamate via nitrogen assimilation, the plastid might provide the most favourable environment for γ-glutamylcysteine synthesis in terms of substrate availability. Furthermore, as the Mehler reaction is one of the major sources of ROS in the plant cell, an active GSH metabolism in this compartment is required to cope with this type of stress (Noctor and Foyer, 1998). Plastids also hold a number of thioredoxins and glutaredoxins, possibly able to efficiently transmit redox signals to the GCL enzyme (Foyer and Noctor, 2003; Lemaire, 2004). It therefore could be speculated that the redox regulation of plant GCL evolved in parallel to its plastidic localization.

However, it should be noted that one of the GCL sequences from *Physcomitrella* (#1 according to Tables 3.7 and A1) apparently lacks a transit peptide (Table 3.7; Appendix, Figure A4), while showing conservation of the CC2 cysteines and dimer interface residues, and the predictions are not clear for the proteins from green algae.
Material and Methods

5 Material and Methods

5.1 Plant and Bacterial Culture

5.1.1 Plant material and Plant Cell Cultures

Tobacco plants (Nicotiana tabacum L. cv SNN) were grown on soil under standard greenhouse conditions.

Beta vulgaris hairy root cultures, transformed with either GFP of BjGCL were provided by the RooTec AG (Witterswill). Cultures were grown in 3.2 g/l Gamborg B5 medium (Serva) with 3 % sucrose and, in the case of plate culture 0.8 % plant agar (Duchefa), pH 5.8. Plate cultures were incubated in the dark at 22 °C and liquid cultures at 25 °C and 90 rpm shaking. Hairy root cultures were transferred to new plates once per month or grown for one to two weeks in liquid culture for feeding experiments.

Suspension cell cultures were incubated at 25 °C and 90 rpm shaking and transferred to new medium once per week. Approximately 5 g cells were incubated in 100 ml medium.

Medium for Arabidopsis thaliana: 4.3 ml g MS medium (Serva), 20 g/l sucrose, 1 mh/l 2,4 D, 1 ml/l vitamin stock solution (per 50 mg: 5 g inositol, 25 mg nicotinic acid, 25 mg pyrodixine, 25 mg thiamine), pH 5.7

Medium for Beta vulgaris: 3.2 g/l Gamborg B5 medium (Serva), 0.5 g/l caseine hydrolysate, 20 g/l sucrose, 0.2 mg/l kinetin, 0.5 mg/l NAA, 0.5 mg/l IAA, 2 mg/l 2,4 D, pH 5.5

5.1.2 Bacterial strains

For plant transformation and cloning of the AtuGSH1 gene Agrobacterium tumefaciens str. C58C1 carrying the T1-plasmid pGV2260 was used.

For all cloning purposes Escherichia coli strain XL1 blue (Stratagene) was used. Genotype: recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac[F’proAB lacIq ZΔM15 Tn10(Tet)r]c

For production of recombinant protein the following strains were used:

- B834 [DE3] (Novagen, Madison, USA), methionine-deficient. Genotype: F ompT hsdSB(rB- mB) gal dcm met
- Rosetta gami [DE3] (Novagen, Madison, USA), oxidizing cytoplasm and pRARE-plasmid coding for tRNAs rare in E.coli. Genotype: Δara-leu7697 ΔlacX74 ΔphoAPvuII phoR araD139 ahpC galE galK rpsL F0[lac+(lacIq)pro] gor522 ::Tn10 trxB ::kan pRARE

For cloning of the XcaGSH1 gene Xanthomonas campestris pv. Campestris str. ATCC 33913 was acquired from the German collection of Microorganisms and Cell Cultures (DMSZ, Braunschweig, Germany).
Material and Methods

5.1.2.1 Bacterial culture media and growth conditions

Glucose Yeast Extract-medium (Xanthomonas culture):
20 g/l glucose, 10 g/l yeast extract, 20 g/l CaCO₃ (precipitates); for plate cultures 17 g/l agar was added to the medium. *Xanthomonas campestris* was grown at 28 °C and, in case of liquid culture, 200 rpm shaking.

Low Salt Luria Bertani (LS-LB)-medium (E.coli culture):
10 g/l tryptone, 5 g/l yeast extract, 5 g/l NaCl, pH 7.0; for plate cultures 20 g/l agar was added to the medium. After autoclaving, appropriate antibiotics were added (see 4.1.2 and 4.2.1, the strain specific antibiotics were used for production of competent cells only). *Escherichia coli* was grown at 37 °C and, in case of liquid culture, 200 rpm shaking.

Medium A (Minimal medium for production of Se-Met labelled protein)
For 1 l:
- 100 ml M9 medium (10x), 10 ml trace element solution (100x), 20 ml 20% (w/v) glucose
- 1 ml 1 M MgSO₄, 0.3 ml 1 M CaCl₂, 1 ml Biotin (1 mg/ml), 1 ml Thiamin (1 mg/ml)

M9 medium (10x), for 1 l:
- 80 g Na₂HPO₄, 40 g KH₂PO₄, 5 g NaCl, 5 g NH₄Cl

Trace element solution (100x), for 1 l:
- 5 g EDTA, 0.83 g FeCl₃ x 6 H₂O, 84 mg ZnCl₂, 13 mg CuCl₂ x 2 H₂O, 10 mg CoCl₂ x 6 H₂O, 10 mg H₃BO₃, 1.6 mg MnCl₂ x 6 H₂O

SOC-medium (Recovery of bacteria after transformation by electroporation):
20 g/l tryptone, 5 g/l yeast extract, 10 mM NaCl, 2,5 mM KCl, 10 mM MgCl₂, 10 mM MgSO₄, 10 mM glucose, pH 7.0

Terrific Broth (TB)-medium (Overexpression of recombinant proteins in *E.coli*):
For 3 l the following components were autoclaved separately and then mixed:
- 300 ml TB-A: 0.17 M KH₂PO₄ (6.9 g), 0.72 M K₂HPO₄ (49.2 g)
- 2,700 ml TB-B: 36 g tryptone, 72 g yeast extract, 12 ml glycerol

Escherichia coli were grown at 37 °C and 200 rpm shaking. After induction of overexpression incubation temperature was reduced to 28 °C.

YEB-medium (*Agrobacterium* culture):
1 g/l yeast extract, 5 g/l beef extract, 5 g/l peptone, 5 g/l sucrose, 0.493 g/l MgSO₄ x 7 H₂O, pH 7.5; for plate cultures 20 g/l agar was added to the medium. After autoclaving, appropriate antibiotics were added (see 4.1.2 and 4.2.1). *Agrobacterium tumefaciens* was grown at 28 °C and, in case of liquid culture, 200 rpm shaking.

5.1.2.1.1 List of Antibiotics used

Table 5.1: Antibiotics used in this work

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Abbreviation</th>
<th>Concentration</th>
<th>Solvent</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>Amp</td>
<td>100 µg/ml</td>
<td>Water</td>
<td>Plasmids (see 4.2.1)</td>
</tr>
<tr>
<td>Carbenicillin</td>
<td>Carb</td>
<td>50 µg/ml</td>
<td>Water</td>
<td>Ti-Plasmid pMP90</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>CM</td>
<td>34 µg/ml</td>
<td>Ethanol</td>
<td>pRARE plasmid</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>Rif</td>
<td>50 µg/ml</td>
<td>Methanol</td>
<td>Agrobacterium (genomic)</td>
</tr>
<tr>
<td>Spectinomycine</td>
<td>Spec</td>
<td>100 µg/ml</td>
<td>Water</td>
<td>pK7FWG2 plasmid</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>Tet</td>
<td>12.5 µg/ml</td>
<td>70 % Ethanol</td>
<td>E.coli XL1 blue</td>
</tr>
</tbody>
</table>
5.1.2.1.2 Preparation of Glycerol Stocks

For long term storage of bacterial strains glycerol stocks were prepared by adding 200 µl of glycerol to 800 µl of liquid culture. Immediately after mixing the glycerol stock was shock frozen in liquid nitrogen and afterwards stored at – 80 °C.

5.1.2.2 Production of Competent Cells for Electroporation

For the preparation of electrocompetent bacterial cells bacteria 50 ml overnight culture was diluted in 1 l of standard medium with appropriate antibiotics (see 4.1.2.1) and incubated until reaching an OD_{600} of 0.7. The culture was cooled on ice and centrifuged for 15 min at 4000 rpm and 4 °C. The pellet was washed two times in cold water and once in 40 ml of 10 % glycerol and finally resuspended in 4 ml of 10 % glycerol. Aliquots of 50 µl were frozen in liquid nitrogen and stored at – 80 °C.

Transformation efficiency was determined by transformation with 10 pg of pUC19 vector and counting of the resulting colonies. Competent cells had transformation efficiencies of at least 2×10^8 cfu/µg DNA.

5.1.2.3 Transformation of bacteria

For transformation by electroporation 50 µl of competent bacteria (see 5.1.2.2) were thawed on ice and 0.5 to 1 µl of plasmid or ligation reaction was added. The sample was electroporated in a Gene Pulser II (Bio Rad) at 1.6 kV, 200 W and 25 µF. Immediately afterwards the bacteria were taken up in 1 ml SOC medium (see 5.1.2.1) and incubated for 1 hour at 37°C (Escherichia coli) or for 2 hours at 28 °C (Agrobacterium tumefaciens) before plating on appropriate medium with antibiotics. In case of selection for ampicillin-resistance this incubation was omitted.

5.2 Nucleic Acid Methods

5.2.1 List of Plasmids

Tab.5.2 of the basic plasmids used in this work, including references and applications. The constructs created from these are described in the appropriate sections. See Paragraph 5.1.2.1.1 for antibiotic abbreviations.

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Resistance</th>
<th>Provider/Reference</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCR2.1</td>
<td>Amp/Kan a)</td>
<td>Invitrogen</td>
<td>TA Cloning</td>
</tr>
<tr>
<td>pDONR201</td>
<td>Kan</td>
<td>Invitrogen</td>
<td>Entry vector for GATEWAY cloning</td>
</tr>
<tr>
<td>pETM-20</td>
<td>Amp</td>
<td>(Hothorn et al., 2003)</td>
<td>Protein Overexpression</td>
</tr>
<tr>
<td>pK7FWG2</td>
<td>Spec/Kan b)</td>
<td>(Karimi et al., 2002)</td>
<td>Binary vector for plant transformation</td>
</tr>
<tr>
<td>pQE30</td>
<td>Amp</td>
<td>QIAgen</td>
<td>Protein Overexpression</td>
</tr>
</tbody>
</table>

a) bacterial ampicillin and kanamycine resistance
b) bacterial spectinomycine resistance, plant kanamycine resistance
5.2.2 List of Oligonucleotides

All oligonucleotides were purchased from MWG Biotech (Ebersberg, Germany) and dissolved in water or TE buffer for a final concentration of 100 mM and stored at -20°C. Restriction sites are underlined.

Tab. 5.3 Oligonucleotides used in this work. Restriction sites (Res. Site) are underlined, bases changed in comparison to the wild type are printed in bold italics for mutagenesis primers.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Name</th>
<th>Sequence</th>
<th>Res. Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>BjGSH1-C341S</td>
<td>5'-CGGCAAATACGTGACTCTACTGGAATGACATTTCG-3'</td>
<td>HincII</td>
</tr>
<tr>
<td>B2</td>
<td>BjGSH1-C341S_R</td>
<td>5'-CGAATGCTCATCAGTGATAGTATTTGCGC-3'</td>
<td>HincII</td>
</tr>
<tr>
<td>B3</td>
<td>BjGSH1-C356A</td>
<td>5'-GCTGGAAGCTTCTGTCCGGGAGATCCCTAC-3'</td>
<td>SmaI</td>
</tr>
<tr>
<td>B4</td>
<td>BjGSH1-C356A_R</td>
<td>5'-GTAGGGCAGTTTCACC CGGGAAGCCGGAAGCTTCCAGC-3'</td>
<td>SmaI</td>
</tr>
<tr>
<td>B5</td>
<td>BjGSH1-Y186E</td>
<td>5'-CTGAAAGTCAACCTCAGCTCGAG CAGGTCAAAGCTGTCGCT-3'</td>
<td>XhoI</td>
</tr>
<tr>
<td>B6</td>
<td>BjGSH1-Y186E_R</td>
<td>5'-CAGCGACAGCTTGCCTGCTCGAG GTGAAGCTGTACTCAG-3'</td>
<td>XhoI</td>
</tr>
<tr>
<td>B7</td>
<td>BjGSH1-D250N</td>
<td>5'-GTACTGTTCAGGTAACCTGAGCTA-3'</td>
<td>HincII</td>
</tr>
<tr>
<td>B8</td>
<td>BjGSH1-D250N_R</td>
<td>5'-CATATCAGCTTCTGAGCTA-3'</td>
<td>HincII</td>
</tr>
<tr>
<td>N1</td>
<td>NtGSH15'RACE</td>
<td>5'-AACAATTGCCAAGCGTCTCCTGCT-3'</td>
<td>-</td>
</tr>
<tr>
<td>N2</td>
<td>NtGSH15'RACEnested</td>
<td>5'-TGTCCTGATGCTGCTGACTC-3'</td>
<td>-</td>
</tr>
<tr>
<td>N3</td>
<td>NtGSH13'RACE</td>
<td>5'-TAGGGCAAGCTTGCCTGCTGCT-3'</td>
<td>-</td>
</tr>
<tr>
<td>N4</td>
<td>NtGSH1otAflIII</td>
<td>5'-ACGTCATACATGTCGACAGTCCCTCAG-3'</td>
<td>AflIII</td>
</tr>
<tr>
<td>N5</td>
<td>3'NtGSH1XhoI</td>
<td>5'-ACGTCCTGAGATCGTAAGAAGCTCCTCAGA-3'</td>
<td>XhoI</td>
</tr>
<tr>
<td>N6</td>
<td>5'GATEWAYNtGSH1</td>
<td>5'-GGGGGACCACTTTGTGTAAGAAAGCTCGGATG-3'</td>
<td>-</td>
</tr>
<tr>
<td>N7</td>
<td>3'GATEWAYNtGSH1</td>
<td>5'-GGGGGACCACTTTGTGTAAGAAAGCTCGGATG-3'</td>
<td>-</td>
</tr>
</tbody>
</table>

Cloning and sequencing of proteobacterial GCL

<table>
<thead>
<tr>
<th>Cloning and sequencing</th>
<th>Sequence</th>
<th>Res. Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>5'AtuGSH1_BamHI</td>
<td>5'-CATGGATCTCACTGACAGCAGC-3'</td>
</tr>
<tr>
<td>P2</td>
<td>3'AtuGSH1_KpnI</td>
<td>5'-CATGGATCTCACTGACAGCAGC-3'</td>
</tr>
<tr>
<td>P3</td>
<td>5'XcGSH1_NcoI</td>
<td>5'-CATGGATCTCACTGACAGCAGCAG-3'</td>
</tr>
<tr>
<td>P4</td>
<td>3'XcGSH1_XhoI</td>
<td>5'-CATGGATCTCACTGACAGCAGCAG-3'</td>
</tr>
</tbody>
</table>
5.2.3 DNA Methods

5.2.3.1 Extraction of Genomic DNA from Bacteria

Bacterial DNA was extracted according to (Maloy, 1990) 1.5 ml of bacterial culture was pelleted by centrifugation, resuspended in 467 µl of TE buffer and incubated for 1 h with 30 µl 10 % SDS and 3 µl of 20 mg/ml proteinase K. Proteins were extracted twice with phenol/chloroform and the DNA from the aqueous phase was precipitated with 0.1 volume of 3 M sodium acetate and 0.6 volume of isopropanol. The pellet was washed in 70 % ethanol and resuspended in TE buffer.

5.2.3.2 Extraction of Plasmid DNA from Bacterial Culture

Plasmids were extracted from bacterial culture using the Plasmid Miniprep kit (Machery/Nagel) following manufacturers instructions or according to the following protocols.

1-5 ml of overnight culture was pelleted (1 min at 15,000 x g) and resuspended in 125 µl GTE buffer (50 mM glucose, 10 mM Tris-HCl, 0.1 mM EDTA, pH 7.5). 250 µl of lysis buffer was added (0.1M NaOH, 1% SDS, always prepared fresh) and the sample mixed by inverting 6 to 8 times. To neutralize the sample and precipitate proteins and genomic DNA 185 µl KAacetate (3 M, pH 4.3) was added and the sample mixed again by inverting. After centrifugation (15 min, 15,000 x g, 4 °C) the supernatant was transferred to a new Eppendorf tube and mixed with 1 volume Isopropanol. The plasmid DNA was pelleted by centrifugation (15 min, 15,000 x g, 4 °C) and washed with 750 µl of ethanol (70 %). After 3 min of centrifugation the supernatant was discarded, the pellet was dried and finally resuspended in 25 µl water or TE buffer or directly in a restriction reaction master mix (See 5.2.3.6).

For quick plasmid preparation for PCR checks 50 µl overnight culture or part of a bacterial colony resuspended in 50 µl TE was mixed with equal volume of chloroforme/isooamylalcohol (24:1) by vigorous vortexing. After centrifugation (10 min, 15,000 x g) 1 µl of the aqueous phase was used as PCR template.

5.2.3.3 Determination of Nucleic Acid Concentrations

DNA or RNA concentration was determined measuring the absorbance at 260 and 280 nm. According to Lambert-Beer’s law (\(E = \varepsilon * c * d \), with \(\varepsilon_{\text{DNA}} = 20 \ \mu l/\mu g \ \text{cm} \), \(\varepsilon_{\text{RNA}} = 25 \ \mu l/\mu g \ \text{cm} \)). Purity was controlled by calculation the ratio of \(OD_{260} / OD_{280} \) which ideally should be 1.8 to 2.0.
5.2.3.4 Nucleic Acid Gel Electrophoresis

5.2.3.4.1 Agarose Gel Electrophoresis

For agarose gel electrophoresis DNA samples were mixed with ¼ volume of 5x DNA loading buffer (5x TAE, 50 % glycerol, OrangeG) and run on gels of 0.7 to 1.5 % agarose in TAE. Gels were run at 70 to 90 V and afterwards stained in 1 mg/l ethidiumbromide and documented with a HeroLab E.A.S.Y. RH-3 system.

50x TAE buffer: 121 g/l Tris-Base, 68 g/l NaAcetate x 3 H₂O, 9.3 g/l EDTA, pH 7.2

5.2.3.4.2 Polyacrylamide Gel Electrophoresis

Small sized DNA fragments were analyzed by native PAGE on gels of 11.25 % polyacrylamide. Gels were run at 200 to 230 V and documented as described in paragraph 4.2.3.4.1

Recipe per gel:
3 ml water, 2 ml buffer (1.5 M Tris-Base, pH 8.8), 3 ml acrylamide solution (29.2 % (w/v) acrylamide, 0.8 % bisacrylamide), 30 µl 10 % ammoniumperoxidosulfate, 15 µl TEMED

Native running buffer: 3.6 g/l Tris-Base, 14.4 g/l glycine, pH 8.6

5.2.3.5 Polymerase Chain Reaction

For the specific amplification of DNA polymerase chain reaction was performed using JumpStart Taq (Sigma-Aldrich) as a non-proof-reading polymerase or Vent Polymerase (New England Biolabs) or Phusion Polymerase (Finnzymes, purchased from New England Biolabs) as proof-reading polymerases. PCR samples were prepared as follows (all amounts given in µl):

<table>
<thead>
<tr>
<th>Polymerase</th>
<th>Stock</th>
<th>JumpStart Taq</th>
<th>Vent Polymerase</th>
<th>Phusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer a)</td>
<td>10x</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>MgSO₄ b)</td>
<td>50 mM</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Primer (left)</td>
<td>50 mM</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Primer (right)</td>
<td>50 mM</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>dNTP solution c)</td>
<td>10 mM each</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Polymerase</td>
<td>as supplied</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Template</td>
<td>varying</td>
<td>varying</td>
<td>varying</td>
<td>varying</td>
</tr>
<tr>
<td>Water</td>
<td>bidest</td>
<td>ad 50</td>
<td>ad 50</td>
<td>ad 50</td>
</tr>
</tbody>
</table>

a) buffers were used as supplied with the polymerase
b) Mg²⁺ was already included in JumpStart Taq and Phusion polymerase buffers
c) dATP, dCTP, dGTP and dTTP
Material and Methods

PCR was conducted according to the following program:
Initial denaturing phase (1x):
- 2 to 5 min 94 °C (98 °C for Phusion polymerase)

PCR cycles (35x):
- 30 s 94 °C (15 s 98 °C for Phusion polymerase)
- 30 s 52 °C (Temperature varied depending on primers)
- varying 72 °C
 (time: 1 min/kB for Taq and Vent, 30 s/kB for Phusion polymerase)

Final elongation Phase (1x):
- 5 to 10 min 72 °C

5.2.3.5.1 PCR-based Site Directed Mutagenesis

The protocol used for site-directed mutagenesis was based on the QuickChange mutagenesis kit (Stratagene, La Jolla, CA).

A plasmid containing the gene of interest was amplified by PCR, using two complementary primers including the site to be mutagenized, an additional silent mutation introducing a restriction site for check-digestion of the resulting plasmid and 15 to 20 perfectly matching bases up- and down-stream of the mutagensises site. PCR was performed with elongation times allowing complete amplification of the plasmid. After PCR, the sample was incubated digested with 1 µl of DpnI at 37°C for 1 hour to digest the methylated template plasmid. Afterwards competent cells were transformed from the sample.

5.2.3.5.2 Purification of PCR or restriction digested DNA fragments

DNA was purified using the NucleoSpin® Extract II Kit (Machery-Nagel) for direct purification or the QIAquick® Gel extraction kit (QIagen) according to the provider’s instructions.

5.2.3.6 Restriction digestion

All restriction digests were conducted with enzymes from New England Biolabs in the recommended buffers. 2 to 3 units per µg DNA and enzyme were used and incubated for 1 to 16 hours at the recommended temperature and fragments purified as described under 5.2.3.3.1.

5.2.3.7 Ligation of DNA fragments

For the ligation of fragments into plasmids 1 µl of plasmid (100 ng) was mixed with 1 µl T4-Ligase (NEB), 1 µl buffer, a three to tenfold molar excess of insert and the sample filled to 10µl with water. For ligation of PCR fragments equimolar concentrations of both fragments were used. Ligation reactions were incubated at 100 cycles of 30 s at 4 °C and 30 s at 30 °C each, followed by a denaturing phase of 65 °C for 30 min.

For direct cloning of PCR fragments the TA-cloning kit (Invitorgen) was used according to the supplier’s instructions.
5.2.3.8 Cloning of DNA fragments by GATEWAY® cloning

For recombination-based cloning of PCR fragments the GATEWAY®-system (Invitrogen) was used according to the supplier’s instructions, where all samples were prepared with one fourth of the volume given proposed in the manual. PCR-fragments containing the appropriate recombination sites were purified by PEG-MgCl₂ as described in the GATEWAY® manual.

5.2.3.9 DNA Sequencing

All sequencing reactions were conducted as Extended Hot-Shot® sequencing by the SeqLab Sequencing Laboratories (Göttingen, Germany).

5.2.3.10 Cloning of GSH1 Genes from different organisms

5.2.3.10.1 Cloning and Mutagenesis of *Brassica juncea* GCL

BjGCL (acc AJ563921) had previously been PCR-amplified using sense primer 5’ACTGCCATGGGGGCGGCGAGTCCTCCCAC-3’ and anti-sense primer 5’-TAAGTCGACTCAGTAAAGCAGTTCCTGGAA-3’, thereby omitting the predicted plastidic transit peptide (residues 1-65). Subsequently, the Ncol/Sall-excised fragment was ligated into vector pETM20 (Wachter, 2004).

Site-directed mutagenesis was performed using the QuickChange Mutagenesis kit (Stratagene) according to the manufacturer’s instructions. For the mutant BjGCL-C341S primers B1 and B2 were used, for BjGCL-C356A primers B3 and B4, BjGCL-C341S/C356A was created using primers B3 and B4 on the BjGCL-C341S mutant. BjGCL-Y186E was created using primers B5 and B6 and BjGCL-D250N with primers B7 and B8.

5.2.3.10.2 Cloning of *Nicotiana tabacum* GCL

RNA from *Nicotiana tabacum* cultivar SNN was prepared using the RNeasy kit (Qiagen, Hilden, Germany). Full length *NtGSH1* for overexpression of the corresponding protein was amplified using primers N4 and N5, digested with AflIII and XhoI, and ligated into the pETM-20 vector. For transient overexpression in tobacco, *NTGSH1* was amplified using primers N6 and N7 and cloned via Gateway cloning (Invitrogen) into the vector pK7FWG2 (Karimi et al., 2002) to produce a N-terminal fusion to the gene coding for enhanced GFP.

The full-length mRNA sequence of NtGSH1 was deposited in the database as accession number DQ444219.

5.2.3.10.3 Cloning of proteobacterial GCL genes

The *Agrobacterium tumefaciens* γ-GCL (*AtuGCL*) gene was PCR amplified according to the NCBI database entry AE009034 (bases 651-2024, complement), using the primers P1 and P2. The product was purified, digested with *Bam*HI and *Kpn*I and cloned into the pQE-30 vector (Qiagen, Hilden, Germany) to produce a protein fused to a 6xHis-tag.

The *Xanthomonas campestris* γ-GCL (*XcaGCL*) gene was PCR amplified according to the NCBI database entry AE012458 (bases 3888-5252, complement), using the primers P3 and P4, substituting the wildtype start-TTG by ATG. The product was purified, digested with...
NcoI and XhoI and cloned into the pETM-20 vector (Hothorn et al., 2003) to produce a protein fused to thioredoxin and a 6xHis-tag for increased solubility.

5.2.4 RNA Methods

5.2.4.1 Extraction of Total RNA from Plant Tissue

RNA from *Nicotiana tabacum* cultivar SNN was prepared using the RNeasy kit (Qiagen, Hilden, Germany).

5.2.4.2 Reverse Transcription for cDNA Production

To produce cDNA the Omniscript® RT Kit (Qiagen) was used according to the provider’s instructions.

5.2.4.3 Rapid Amplification of cDNA Ends (RACE)

cDNA for RACE-PCR was produced and the 5’- and 3’-ends of the NtGSH1-gene were amplified using the GeneRacer kit (Invitrogen).

For the *NtGSH1* gene primers (N1) and (N2) were generated based on the EST sequence BP137080 and used for 5’ RACE as gene specific first PCR and nested PCR primers, respectively. For 3’ RACE the reverse complements of the same primers were used. PCR was conducted as described under 5.3.2.2 and the resulting amplificate cloned into the pCR2.1 vector (Invitrogen) as described under 5.3.2.5.

5.3 Protein Methods

5.3.1 Production of Recombinant Protein in E.coli

Recombinant protein was expressed in E. coli Rosetta gami DE3 (Novagen, Madison, WI, oxidizing cytosol) or E. coli M15[pREP4] (Qiagen, Hilden, Germany, reducing cytosol).

Cells grown to an OD \(600\text{nm} \) of 1.5 were induced with 1 mM isopropyl-b-D-thiogalactopyranoside in Terrific Broth at 28 °C for 18 h. Pelleted cells were resuspended in lysis buffer (50 mM Na-Phosphate (pH 8.0), 300 mM NaCl, 10 mM imidazole, 50 mM glutamate, 25 μg/mL DNase I) and lysed with an EmulsiFlex-C5 (Avestin Inc., Ottawa, Canada). The suspension was centrifuged at 22,000 x g for 30 min and purified by Ni\(^{2+}\) affinity chromatography (Qiagen, Valencia, CA). The column was washed and the protein eluted by applying increasing concentrations (10 to 200 mM) of imidazole. For BjGCL NtGCL and XcaGCL the eluted fusion protein was concentrated, dialyzed against 50 mM Na-Phosphate (pH 8.0), 200 mM NaCl and cleaved with recombinant tobacco etch virus (TEV) protease for 12 h at 4 °C. GCS was separated from the 6xHis tagged protease and thioredoxin
Material and Methods

by a second Ni$^{2+}$ affinity step. Pure recombinant GCS was dialyzed against 20 mM HEPES (pH 8.0) and 50 mM glutamate.

5.3.1.1 Production of Seleno-methionine-labelled Protein

Seleno-methionine-labelled protein was produced in the methionine heterotrophic E.coli strain B834(DE3). Bacteria transformed with the pETM-20::BjGSH1 construct were incubated over night in 5 ml Medium A plus 50 µg/ml methionine at 37 °C, 200 rpm shaking. This culture was diluted in 1 l Medium A plus 50 µg/ml methionine and grown to an OD_{600} of 0.6. Cells were pelleted by centrifugation and resuspended in Medium A without methionine. After incubation for 4 hours at 37 °C 50 µg/ml seleno-methionine was added and after another 30 min incubation expression of the recombinant protein was induced by addition of 1 mM IPTG at 28 °C. After induction purified as described under 5.3.1.

5.3.2 Preparation of Soluble Protein from Plant Tissue

For the extraction of soluble protein from plant tissue 50 to 250 mg of frozen ground tissue was mixed with 3.75 µl/mg of extraction buffer (10 mM HEPES/KOH, 250 mM sorbitol, 10 mM MgCl$_2$, 10 mM KCl, 1 mM PMSF, pH 7.1) by vigorous vortexing. After centrifugation (15,000 x g, 30 min, 4 °C) the supernatant was transferred to a new reaction tube. For gel electrophoresis the sample was mixed with 1/3 volume of 4x reducing or non-reducing loading buffer (Roti-Load, Roth) and denatured by heating to 94 °C for 7 min.

5.3.2.1 Crude plastid preparation for protease assay

200 mg of *Arabidopsis* leaves were ground in 1 ml of extraction buffer (10 mM HEPES/KOH, 250 mM sorbitol, 10 mM MgCl$_2$, 10 mM KCl, pH 7.1) and centrifuged for 2 min at 2,000 x g. The supernatant was transferred to a new tube and centrifuged for 2 min at 6,000 x g and the pellet resuspended in 200 µl of extraction buffer + 0.1 % Triton X-100.

5.3.3 Protein Extraction from Bacteria

For crude protein extraction from *Agrobacterium* and *Xanthomonas* 1 ml of bacterial liquid culture was pelleted by centrifugation (1 min, 15,000 x g), the pellet resuspended in 50 µl loading buffer (Roti-Load, Roth) and denatured by heating to 94 °C for 7 min.

5.3.4 Determination of Protein Concentration

Protein concentration was determined using the method of Bradford (Bradford, 1976). Protein-Assay solution (Bio-Rad) was diluted five-fold with water and 0.8 ml were mixed with appropriate amounts of protein solution. After 5 to 10 min incubation the OD_{595} was measured and the protein concentration calculated from comparison to a standard curve generated with bovine serum albumine (BSA).
5.3.5 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE)

Protein was analyzed electrophoretically by discontinuous SDS-PAGE (Laemmli, 1970). The stacking gel was prepared with 4.5 % (w/v) and the separating gel with 11 % (w/v) acrylamide. Gels were run at 100 V in the stacking and at 200 to 230 V in the separating gel. Gels were either directly stained with Coomassie Brilliant Blue or used for Western blotting. Samples for SDS-PAGE were denatured by addition of a 4x concentrated SDS-sample buffer containing a reducing agent (Roti-Load1, Roth) and boiling for 5 min at 95 °C. For the conservation of disulfide bridges, the non-reducing Roti-Load2 was used.

5.3.6 Analysis of Protein by Immunoblotting

Immunoblotting was performed using the semidry procedure and a 1:5,000 dilution of an antiserum raised against *Brassica juncea* GSH1-1 (Wachter et al., 2005). 20 µl of total bacterial protein extract and adequately diluted recombinant protein were loaded on a 11 % SDS-polyacrylamide gel. Proteins were transferred to a PVDF membrane (Immobililon; Millipore, Billerica, MA, USA) at 3.5 mA/cm² and 15 V for 45 min. After blocking with 5 % low fat milk powder in TBST for 1 h, the membrane was incubated with the primary antiserum in a 1:10,000 dilution in 5 % BSA (in TBS) at 4 °C for 12 h. Immunoblots were developed with anti-rabbit IgG-horseradish peroxidase conjugate (Sigma-Aldrich, Munich, Germany) and subjected to enhanced chemiluminescence detection (Super Signal West Dura; Pierce, Rockford, IL, USA), according to the manufacturer’s protocol.

TBS (10x): 58.4 g/l NaCl, 24.2 g/l Tris-base, pH 7.5 (HCl)

TBST (10x): As TBS plus 5 g/l Tween-20

5.3.7 Enzymatic Characterization of GCL Protein

Pure samples of recombinant protein were analysed in a coupled enzymatic assay as described (Abbott et al., 2001). A standard reaction mixture (0.5 ml) contained 100 mM Tris (pH 8.0), 150 mM KCl, 20 mM MgCl₂, 10 mM L-cysteine, 20 mM L-glutamate, 5 mM ATP, 2 mM phosphoenolpyruvate, 0.2 mM NADH, 5 units type II rabbit muscle pyruvate kinase and 10 units type II rabbit muscle lactic dehydrogenase (chemicals and enzymes were purchased from Sigma, St. Louis, MO). Reactions were initiated by addition of GCL (100–400 ng). The resulting decrease of \(OD_{340nm}\) was followed and steadystate kinetic parameters were determined by initial velocity experiments. For determining \(K_m\), substrate concentrations were varied from 0.2 to 20 mM (cysteine), 0.5 to 25 mM (glutamate) or 1 to 10 mM (ATP) while keeping the other component concentrations constant. Kinetic parameters were calculated to fit data to \(v = \frac{[S]}{(K_m + [S])}\) using the Solver function of Microsoft Excel.

5.3.8 Analysis of Protein Folding and Oligomerization State

5.3.8.1 Size-exclusion chromatography

Analytical size-exclusion chromatography for BjGCL was performed at EMBL using a Superdex 200 HR 10/30 column (Amersham Biosciences, Piscataway, NJ) preequilibrated in
50 mM HEPES (pH 8.0), 50 mM NaCl and 50 mM L-glutamate. Fifty micro liters of the sample (10 mg/mL) were loaded onto the column and elution at 0.8 mL/min was monitored by ultraviolet absorbance at 280 nm.

For reduction experiments, half of the C341S or C356A mutant protein from one preparation was loaded on the column equilibrated in 50 mM HEPES (pH 8.0), 50 mM NaCl and 50 mM L-glutamate, whereas the other half was extensively dialyzed over night against 50 mM HEPES (pH 8.0), 50 mM NaCl, 50 mM L-glutamate and 5 mM TCEP or 5mM DTT, respectively and then applied to the column equilibrated in the reducing buffer. For re-oxidation the reduced protein was dialyzed over night against 50 mM HEPES (pH 8.0), 50 mM NaCl and 50 mM L-glutamate and then reapplied to the column equilibrated in the oxidizing buffer.

Size exclusion chromatography for other GCL proteins was conducted at HIP. Protein was run on a Superdex 200 column (Amersham Pharmacia Biotech, Piscataway, NJ, USA) in 50 mM HEPES, 1 mM EDTA, pH 8.0 at 1 ml/min and protein in the flowthrough detected via its absorption at 280 nm.

5.3.8.2 Circular dichroism (CD) spectroscopy

CD spectroscopy was conducted at EMBL and was performed on a temperature controlled J-710 spectropolarimeter (Jasco, Easton, MD) at a cell-path of 0.2 cm and at a sensitivity of 50 mdeg using protein samples at a concentration of 0.25 mg/mL, dialyzed against 5 mM Na Pi (pH 8.0), 5 mM NaCl.

5.3.9 Protease stability assay

For the protease stability assay, 50 µg of recombinant BjGCL were incubated in 2 ml of buffer (100 mM Tris, 150 mM KCl, 20 mM MgCl₂, 5 mM ATP, pH 8.0) with or without 5 mM DTT for 2 hours. Digestion was started by addition of with 0.5 µg of proteinase K (Sigma) or 50 µl of crude plastid preparation (see 5.3.2.1) and the reaction was stopped by denaturing aliquots in sample loading buffer (Roti Load, Roth).

5.4 Other methods

5.4.1 Extraction and analysis of thiols

5.4.1.1 Thiol extraction from plant tissue

For thiol extraction approximately 30 mg of ground plant material was taken up in 1 ml of extraction buffer (0.1 M HCl, 1 mM EDTA, 4 % PVP), vortexed and centrifuged at 15,000 x g and 4 °C for 30 min. For derivatization, 100 µl of the supernatant was mixed with 100 µl of CHES-buffer (500 mM, pH 9.4), 20 µl monobromobimane (30 mM, in acetonitril) and 20 µl DTT (10 mM). After 15 min of incubation at room temperature in the dark, the reaction was stopped by addition of 800 µl acetic acid (10 %).
5.4.1.2 Thiol extraction from bacteria

Thiol determination was conducted as described (Newton et al., 1996) with minor changes. 15 to 50 µg of frozen bacteria were dissolved by vortexing in 0.5 ml of warm (60 °C) aqueous solution of 50 % acetonitrile, 20 mM Tris-HCl, pH 8.0, 4 mM monobromobimane (mBBr, Fluka, St.Gallen, CH) and 5 mM dithiothreitol. The mixture was incubated for 20 min at 60 °C in the dark, then proteins were precipitated by addition of 2.5 µl of 2.5 M HClO₄ and centrifugation at 15,000 x g for 10 min. Samples were stored at – 20 °C.

5.4.1.3 HPLC analysis of derivatized thiols

Derivatized thiols were analyzed by reverse phase HPLC (Kontron Instruments 322 pump system/360 autosampler) on a C-18 column (Nova-Pak; pore size 4 µm). Separated fluorescent thiol-bimane conjugates were detected with 380 nm excitation at an emission wavelength of 480 nm on an attached fluorescence detector (FP1520-S Intelligent Fluorescence Detector, Jasco). Samples were in a gradient of 10 % to 90 % Methanol, 2.5 % acetic acid pH 4.3. Data acquisition and processing were performed by Kroma System2000 software (Kontron). Identification of peaks and quantification was conducted by comparison to pure standards of derivatized cysteine, γ-glutamylcysteine and glutathione.

5.4.2 Statistical analysis

For statistical analysis of data Student’s t-test was conducted. \(t \) was calculated as:

\[
t = \frac{m_1 - m_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}
\]

\((m: \text{mean values, } \sigma: \text{standard deviations, } n: \text{number of replicates}) \)

Significance of differences was determined by comparing \(t \) to the quantile \(u_\alpha \) with results considered as significant with a probability of error (\(P \)) smaller than \(1-\alpha \) for \(t > u_{1-\alpha} \) for one-sided hypothesis (\(m_1 > m_2 \) or \(m_1 < m_2 \)) or \(t > u_{1-\alpha/2} \) for two-sided hypothesis (\(m_1 \neq m_2 \)) (Tab. 5.X).

Tab. 5.X: Quantiles of the standard distribution function

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(u_\alpha)</th>
<th>(\alpha)</th>
<th>(u_\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9999</td>
<td>3.7190</td>
<td>0.9900</td>
<td>2.3263</td>
</tr>
<tr>
<td>0.9995</td>
<td>3.2905</td>
<td>0.9500</td>
<td>1.6449</td>
</tr>
<tr>
<td>0.9900</td>
<td>3.0902</td>
<td>0.9000</td>
<td>1.2816</td>
</tr>
<tr>
<td>0.9950</td>
<td>2.5758</td>
<td>0.5000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Adapted from (Elpelt and Hartung, 2004)

5.4.3 Sequence analysis of plant and bacterial GCL

For computational analysis of GCL genes, sequences were retrieved via from a BLAST search directed against the NCBI database (http://www.ncbi.nlm.nih.gov/; Altschul et al.,
Material and Methods

1997) and all sequences with more than 50% identity to Brassica juncea GSH1 (40 alpha-proteobacterial, 6 gamma-proteobacterial, 2 other proteobacterial and 13 plant sequences, including NtGCL) were included into further analysis. In case of several entries for one genus only the one with the highest homology to BjGCL was used for further analysis. To allow the analysis of more plant GSH1 sequences an additional BLAST search was conducted directed against the plant EST sequence database. From the results of this search 11 additional full-length sequences could be assembled. For a complete list of sequences used see Tables A1 and A2 in the appendix.

GCL sequences were aligned on the protein level using the ClustalW algorithm (Chenna et al., 2003) and residues important for catalytic function were identified by comparison to Brassica juncea GCL (Hothorn et al., 2006).

For prediction of GCL localization, plant GCL protein sequences were analyzed using the targetP program (Emanuelsson et al., 2000).

Tree building was done by running a neighbour joining analysis as implemented in the program PAUP4.0beta (Swoffod, 2002). For the bootstrap analysis the optimality criterion was set to distance. The number of bootstrap replicates was 100. Trees were unrooted.
6 Abbreviation Index

(not including SI units, chemical elements, nucleic acid bases and amino acids)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Ascorbic acid</td>
</tr>
<tr>
<td>ABC</td>
<td>ATP binding cassette</td>
</tr>
<tr>
<td>At</td>
<td>Arabidopsis thaliana (genes or proteins)</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine-5’-diphosphate</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosine-5’-monophosphate</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>APS</td>
<td>5’Adenylylsulfate</td>
</tr>
<tr>
<td>APX</td>
<td>Ascorbic acid peroxidase</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine-5’-triphosphate</td>
</tr>
<tr>
<td>Atu</td>
<td>Agrobacterium tumefaciens (genes or proteins)</td>
</tr>
<tr>
<td>AU</td>
<td>Arbitrary units</td>
</tr>
<tr>
<td>Bj</td>
<td>Brassica juncea (genes or proteins)</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>β-ME</td>
<td>β-mercaptoethanol</td>
</tr>
<tr>
<td>Bp</td>
<td>Base pairs</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumine</td>
</tr>
<tr>
<td>BSO</td>
<td>Buthionine sulfoximine</td>
</tr>
<tr>
<td>Bv</td>
<td>Beta vulgaris (genes or proteins)</td>
</tr>
<tr>
<td>c(x)</td>
<td>concentration of substance x</td>
</tr>
<tr>
<td>cad</td>
<td>cadmium sensitive (Arabidopsis PCS and GCL mutants)</td>
</tr>
<tr>
<td>CaMV</td>
<td>cauliflower mosaic virus</td>
</tr>
<tr>
<td>Carb</td>
<td>Carbenicillin</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>cfu</td>
<td>colony forming unit(s)</td>
</tr>
<tr>
<td>CHES</td>
<td>2-(Cyclohexylamino)ethansulfonic acid</td>
</tr>
<tr>
<td>CLSM</td>
<td>Confocal Laser Scanning Microscope/Microscopy</td>
</tr>
<tr>
<td>CM</td>
<td>Chloramphenicol</td>
</tr>
<tr>
<td>C-terminal</td>
<td>Carboxy-terminal</td>
</tr>
<tr>
<td>d</td>
<td>diameter</td>
</tr>
<tr>
<td>DHA</td>
<td>Dehydroascorbic acid</td>
</tr>
<tr>
<td>DHAR</td>
<td>DHA reductase</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxyribonucleotide (dATP, dCTP, dGTP and/or dUTP)</td>
</tr>
<tr>
<td>DTNB</td>
<td>5,5’-Dithio-bis(2-nitrobenzoic acid)</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>ε_x</td>
<td>specific extinction coefficient of substance x</td>
</tr>
<tr>
<td>E</td>
<td>Extinction</td>
</tr>
<tr>
<td>E_{redox}</td>
<td>redox potential</td>
</tr>
<tr>
<td>E’_{redox}</td>
<td>standard redox potential</td>
</tr>
<tr>
<td>EC</td>
<td>Enzyme Comission number</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamine tetraacetic acid</td>
</tr>
<tr>
<td>EMBL</td>
<td>European Molecular Biology Laboratory</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmatic Reticulum</td>
</tr>
<tr>
<td>EtBr</td>
<td>Ethidium bromide</td>
</tr>
<tr>
<td>F</td>
<td>Faraday constant</td>
</tr>
<tr>
<td>Fig.</td>
<td>Figure</td>
</tr>
<tr>
<td>x g</td>
<td>multiple of standard terrestrial gravity (9.81 m/s2)</td>
</tr>
<tr>
<td>GCL</td>
<td>γ-Glutamylcysteine Ligase</td>
</tr>
<tr>
<td>γEC</td>
<td>γ-Glutamylcysteines</td>
</tr>
<tr>
<td>GFP</td>
<td>Green Fluorescent Protein</td>
</tr>
<tr>
<td>GR</td>
<td>Glutathione reductase</td>
</tr>
<tr>
<td>GS</td>
<td>Glutathione Synthetase</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathione (reduced)</td>
</tr>
<tr>
<td>GSH1</td>
<td>γ-Glutamylcysteine Synthetase (= GCL)</td>
</tr>
<tr>
<td>GSH2</td>
<td>Glutathione Synthetase (= GS)</td>
</tr>
<tr>
<td>GSSG</td>
<td>Glutathione disulfide (oxidized)</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathione S-transferase</td>
</tr>
<tr>
<td>HEPES</td>
<td>N-(2-Hydroxyethyl)piperazine-2-ethanesulfonic acid</td>
</tr>
<tr>
<td>HPLC</td>
<td>High pressure liquid chromatography</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropylthiogalactoside</td>
</tr>
<tr>
<td>Kan</td>
<td>kanamycin</td>
</tr>
<tr>
<td>kB</td>
<td>kilo base pairs</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo Daltons</td>
</tr>
<tr>
<td>K_m</td>
<td>Michaelis Menten constant</td>
</tr>
<tr>
<td>LMW</td>
<td>Low molecular weight protein marker (Amersham)</td>
</tr>
<tr>
<td>LS-LB</td>
<td>low salt Luria-Bertani medium</td>
</tr>
<tr>
<td>M</td>
<td>molar (1 M = 1mol/l)</td>
</tr>
<tr>
<td>mBBr</td>
<td>Monobromobimane</td>
</tr>
<tr>
<td>MCS</td>
<td>multiple cloning site</td>
</tr>
<tr>
<td>MDHA</td>
<td>Monodehydroascorbic acid</td>
</tr>
<tr>
<td>MDHAR</td>
<td>MDHA reductase</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>NAD(P)$^+$</td>
<td>Nicotine Adenine Dinucleotide (Phosphate), oxidized</td>
</tr>
<tr>
<td>NAD(P)H</td>
<td>Nicotine Adenine Dinucleotide (Phosphate), reduced</td>
</tr>
<tr>
<td>NCBN</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>n.d.</td>
<td>not detected or not determined (see specific description)</td>
</tr>
<tr>
<td>NEB</td>
<td>New England Biolabs (corporation)</td>
</tr>
<tr>
<td>N-terminal</td>
<td>Amino-terminal</td>
</tr>
<tr>
<td>NTP</td>
<td>Nucleotide Triphosphate (ATP, CTP, GTP and/or TTP)</td>
</tr>
<tr>
<td>$OD_{x, nm}$</td>
<td>Optical Density at x nm wavelength</td>
</tr>
<tr>
<td>P</td>
<td>probability of error (statistical analysis)</td>
</tr>
<tr>
<td>PAA</td>
<td>Polyacrylamide</td>
</tr>
<tr>
<td>pad2-1</td>
<td>phytoalexin-deficient (GSH1 mutant)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>PAGE</td>
<td>PAA gel electrophoresis</td>
</tr>
<tr>
<td>PC</td>
<td>phytochelatine</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PCS</td>
<td>Phytochelatine Synthase</td>
</tr>
<tr>
<td>pH</td>
<td>negative decadic logarithm of $[H^+]$</td>
</tr>
<tr>
<td>P_i</td>
<td>inorganic phosphate</td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenylmethanesulfonylfluoride</td>
</tr>
<tr>
<td>psi</td>
<td>pounds per square inch</td>
</tr>
<tr>
<td>R</td>
<td>universal gas constant</td>
</tr>
<tr>
<td>RACE</td>
<td>Rapid Amplification of cDNA ends</td>
</tr>
<tr>
<td>raxl-1</td>
<td>regulator of APX (GSH1 mutant)</td>
</tr>
<tr>
<td>Rif</td>
<td>Rifampicin</td>
</tr>
<tr>
<td>rml1</td>
<td>root meristem less (GSH1 mutant)</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse transcription followed by PCR</td>
</tr>
<tr>
<td>SAT</td>
<td>Serine Acetyl Transferase</td>
</tr>
<tr>
<td>S.D.</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulfate</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>Strep</td>
<td>Streptomycine</td>
</tr>
<tr>
<td>T</td>
<td>temperature in Kelvin</td>
</tr>
<tr>
<td>Tab.</td>
<td>Table</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris acetate EDTA buffer</td>
</tr>
<tr>
<td>TB</td>
<td>Terrific Broth medium</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris buffered saline buffer</td>
</tr>
<tr>
<td>TBST</td>
<td>TBS + Tween</td>
</tr>
<tr>
<td>TCEP</td>
<td>Tris(2-carboxyethyl)phosphine hydrochloride</td>
</tr>
<tr>
<td>TE</td>
<td>Tris-EDTA buffer (10 mM Tris-HCl, 1 mM EDTA, pH 7.5)</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N',N’-Tetramethyldiamine</td>
</tr>
<tr>
<td>Tet</td>
<td>Tetracycline</td>
</tr>
<tr>
<td>TEV</td>
<td>tobacco etch virus</td>
</tr>
<tr>
<td>T_i</td>
<td>tumor inducing (plasmid)</td>
</tr>
<tr>
<td>Tris</td>
<td>2-amino-2-hydroxymethyl-1,3-propanediol (trishydroxymethylaminomethane)</td>
</tr>
<tr>
<td>TP</td>
<td>targeting peptide</td>
</tr>
<tr>
<td>UTR</td>
<td>untranslated region</td>
</tr>
<tr>
<td>Vol.</td>
<td>volume</td>
</tr>
<tr>
<td>wt</td>
<td>wildtype</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume (where 1 % w/v is 10 g/l)</td>
</tr>
<tr>
<td>Xca</td>
<td>Xanthomonas campestris (genes or proteins)</td>
</tr>
</tbody>
</table>
7 Literature

Literature

Senda, K., and Ogawa, K.i. (2004). Induction of PR-1 accumulation accompanied by runaway cell death in the lsd1 mutant of Arabidopsis is dependent on glutathione levels but independent of the redox state of glutathione. Plant Cell Physiol. 45, 1578-1585.

6 Appendix

6.1 Sequence data for NtGCL

Figure A1: Full-length sequence of the NtGCL mRNA. The coding sequence is printed bold. The full length cDNA sequence has been deposited in the NCBI database as accession number DQ444219.

```
GAAATTTTTCTTTCAATCTGCTTCAGTACTCACTCCCAAGGCTCAACAGAATAAAAGAAAGGTAAAAAAAAAGCA
AAGAAATTAAAGACATGGCAATCAAAGAGTTGTAGCCGCCCCAGCACGCCAAAAAATTATTTTTGTGACACCCAA
TTACTATATATCCTAAAAAACAATGCGAGGAGTTATTTTTGCTGACACCCAA
```

Figure A2: Full-length sequence of the NtGCL protein. The plastidic transit peptide as determined by TargetP prediction is underlined.

```
MALMSQAGSSHCIYSEKMKCISGHSSITSNMEMLKMKDICFGNISSRNSSKPMQGIYLDRVG
```

MALMSQAGSSHCIYSEKMKCISGHSSITSNMEMLKMKDICFGNIISSRNSSKPMQGIYLDRVG
6.2 GCL sequences used for *in silico* analysis

Table A1: Plant GCL sequences

<table>
<thead>
<tr>
<th>Species</th>
<th>Family/Order</th>
<th>Accession number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allium cepa</td>
<td>Alliaceae/Asparagales</td>
<td>AAL61610</td>
</tr>
<tr>
<td>Aquilegia formosa x Aquilegia</td>
<td>Ranunculaceae/Ranunculales</td>
<td>DR913245 - DR918827 - DR918828</td>
</tr>
<tr>
<td>pubescens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arabidopsis thaliana</td>
<td>Brassicaceae/Brassicales</td>
<td>AAN28909</td>
</tr>
<tr>
<td>Beta vulgaris</td>
<td>Chenopodiaceae/Caryophyllales</td>
<td>none b)</td>
</tr>
<tr>
<td>Brassica juncea</td>
<td>Brassicaceae/Brassicales</td>
<td>CA178101</td>
</tr>
<tr>
<td>Chorispora bungeana</td>
<td>Brassicaceae/Brassicales</td>
<td>ABM46854</td>
</tr>
<tr>
<td>Citrus sinensis</td>
<td>Rutaceae/Sapindales</td>
<td>CF838565 - CX049544 - DR908254 - CX049543</td>
</tr>
<tr>
<td>Gossypium raimondii</td>
<td>Malvaceae/Malvales</td>
<td>CO112812 - CO116286 - CO130243 - CO112811</td>
</tr>
<tr>
<td>Lactuca perennis</td>
<td>Asteraceae/Asterales</td>
<td>DW091328 - DW094108 - DW087296</td>
</tr>
<tr>
<td>Lotus japonicus</td>
<td>Fabaceae/Fabales</td>
<td>AAB71230</td>
</tr>
<tr>
<td>Lycopersicon esculentum</td>
<td>Solanaceae/Solanales</td>
<td>CO066139 - CO867638 - EB148218 - CN995967</td>
</tr>
<tr>
<td>Malus domestica</td>
<td>Rosaceae/Rosales</td>
<td>CO066139 - CO867638 - EB148218 - CN995967</td>
</tr>
<tr>
<td>Medicago trunculata</td>
<td>Fabaceae/Fabales</td>
<td>AAC82334</td>
</tr>
<tr>
<td>Nicotiana tabacum</td>
<td>Solanaceae/Solanales</td>
<td>ABD98695</td>
</tr>
<tr>
<td>Oryza sativa</td>
<td>Poaceae/Poales</td>
<td>CAD48599</td>
</tr>
<tr>
<td>Phaseolus vulgaris</td>
<td>Fabaceae/Fabales</td>
<td>AAFF2123</td>
</tr>
<tr>
<td>Physcomitrella patens 1</td>
<td>Funariaceae/Funariales c)</td>
<td>Phys1_1:70546 d)</td>
</tr>
<tr>
<td>Physcomitrella patens 2</td>
<td>Funariaceae/Funariales c)</td>
<td>Phys1_1:146491 d)</td>
</tr>
<tr>
<td>Physcomitrella patens 3</td>
<td>Funariaceae/Funariales c)</td>
<td>Phys1_1:173526 d)</td>
</tr>
<tr>
<td>Pisum sativum</td>
<td>Fabaceae/Fabales</td>
<td>AAFF2137</td>
</tr>
<tr>
<td>Popula trichocarpa x deltoids</td>
<td>Salicaceae/Malpighiales</td>
<td>DT503226 - DT504859 - DT506856</td>
</tr>
<tr>
<td>Solanum tuberosum</td>
<td>Solanaceae/Solanales</td>
<td>BQ045799 - CV302325 - BM111889</td>
</tr>
<tr>
<td>Taraxacum officinale</td>
<td>Asteraceae/Asterales</td>
<td>DY841453 - DY826048 - DY841453</td>
</tr>
<tr>
<td>Triticum aestivum</td>
<td>Poaceae/Poales</td>
<td>CIJ60929 – CIJ670946 – CK204295</td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>Vitaceae/Rhamnales</td>
<td>GSVIVP00000418001 c)</td>
</tr>
<tr>
<td>Zea mays</td>
<td>Poaceae/Poales</td>
<td>CAC83005</td>
</tr>
<tr>
<td>Zinnia elegans</td>
<td>Asteraceae/Asterales</td>
<td>BAD27390</td>
</tr>
</tbody>
</table>

Green Algae

<table>
<thead>
<tr>
<th>Species</th>
<th>Chlorophyceae/Chlamydomonales</th>
<th>Protein ID: 181975 d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlamydomonas rheinhardtii</td>
<td>Prostarifae/Chlamydomonales</td>
<td>181975 d)</td>
</tr>
<tr>
<td>Ostreococcus lucimarinus</td>
<td>Prasinophyceae/Mamiellales</td>
<td>XP_001418312</td>
</tr>
<tr>
<td>Ostreococcus tauri</td>
<td>Prasinophyceae/Mamiellales</td>
<td>O斯塔4:15784 d)</td>
</tr>
<tr>
<td>Prototheca wickerhamii</td>
<td>Chlorrliaceae/Chlorellaes</td>
<td>AY616091</td>
</tr>
<tr>
<td>Volvox carteri</td>
<td>Chlorophyceae/Chlamydomonales</td>
<td>Volca1:104352 d)</td>
</tr>
</tbody>
</table>

a) according to NCBI, in case of more than one accession number given, the full-length sequence was assembled from EST sequences
b) Gromes, 2004 and Müller, 2006
c) belongs to the Bryophyta (Mosses) and has three GCL genes
d) DOE Joint Genome Institute (www.jgi.doe.gov)
e) Genoscope (www.genoscope.cns.fr)
Table A2: Proteobacterial GCL sequences

<table>
<thead>
<tr>
<th>Species</th>
<th>Accession</th>
<th>Species</th>
<th>Accession</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Proteobacteria</td>
<td></td>
<td>β-Proteobacteria</td>
<td></td>
</tr>
<tr>
<td>Acidiphilium cryptum</td>
<td>ZP_01144393</td>
<td>Agrobacterium tumefaciens</td>
<td>NP_531356</td>
</tr>
<tr>
<td>Aurantimonas sp.</td>
<td>ZP_01227851</td>
<td>Bartonella quintana</td>
<td>CAF25799</td>
</tr>
<tr>
<td>Bradyrhizobium sp.</td>
<td>ZP_00861439</td>
<td>Brucella melitensis</td>
<td>AAL53770</td>
</tr>
<tr>
<td>Caulobacter sp.</td>
<td>EAU09715</td>
<td>Dinoroseobacter shibae</td>
<td>ZP_01583544</td>
</tr>
<tr>
<td>Erythrobacter litoralis</td>
<td>YP_457472</td>
<td>Fulvimonas pelagi</td>
<td>ZP_01438843</td>
</tr>
<tr>
<td>Gluconobacter oxydans</td>
<td>AAW61713</td>
<td>Granulibacter bethesdensis</td>
<td>YP_746008</td>
</tr>
<tr>
<td>Hyphomonas neptunium</td>
<td>YP_760091</td>
<td>Jannaschia sp.</td>
<td>YP_511851</td>
</tr>
<tr>
<td>Loktanella vestfoldensis</td>
<td>ZP_01003184</td>
<td>Magnetospirillum magneticum</td>
<td>YP_423386</td>
</tr>
<tr>
<td>Maricaulis maris</td>
<td>ZP_01395103</td>
<td>Mesorhizobium loti</td>
<td>BAB53101</td>
</tr>
<tr>
<td>Nitrobacter hamburgensis</td>
<td>YP_575610</td>
<td>Novosphingobium aromaticivorans</td>
<td>YP_496228</td>
</tr>
<tr>
<td>Oceanicaulis alexandrii</td>
<td>ZP_00953035</td>
<td>Oceanicola batsensis</td>
<td>ZP_00998061</td>
</tr>
<tr>
<td>Paracoccus denitrificans</td>
<td>ZP_00631260</td>
<td>Parvibaculum lavamentivorans</td>
<td>ZP_01659605</td>
</tr>
<tr>
<td>Parvularcula bermudensis</td>
<td>ZP_01018087</td>
<td>Rhizobium etli</td>
<td>YP_468341</td>
</tr>
<tr>
<td>Rhodobacter sphaeroides</td>
<td>ZP_00915169</td>
<td>Rhodopseudomonas palustris</td>
<td>NP_946175</td>
</tr>
<tr>
<td>Rhodospirillum rubrum</td>
<td>YP_425661</td>
<td>Roseobacter denitrificans</td>
<td>YP_684207</td>
</tr>
<tr>
<td>Roseovarius rubinhibens</td>
<td>ZP_00959350</td>
<td>Sagittula stellata</td>
<td>ZP_01746232</td>
</tr>
<tr>
<td>Silicibacter pomeroyi</td>
<td>AAV96849</td>
<td>Sinorhizobium medicace</td>
<td>ZP_01414444</td>
</tr>
<tr>
<td>Sphingomonas sp.</td>
<td>ZP_01302692</td>
<td>Sphingopyxis alaskensis</td>
<td>YP_617319</td>
</tr>
<tr>
<td>Stappia aggregata</td>
<td>ZP_01548031</td>
<td>Sulfitobacter sp.</td>
<td>ZP_00953876</td>
</tr>
<tr>
<td>Xanthobacter autotrophicus</td>
<td>ZP_01195801</td>
<td>Zymomonas mobilis</td>
<td>AAF18278</td>
</tr>
<tr>
<td>γ-Proteobacteria</td>
<td></td>
<td>Unclassified Proteobacteria</td>
<td></td>
</tr>
<tr>
<td>Alkalilimnicola ehrlichei</td>
<td>ZP_00864771</td>
<td>Halorhodospira halophila</td>
<td>ZP_01151267</td>
</tr>
<tr>
<td>Nitrococcus mobilis</td>
<td>ZP_01126885</td>
<td>Stenotrophomonas maltophilia</td>
<td>ZP_01645073</td>
</tr>
<tr>
<td>Xanthomonas campestris</td>
<td>AAM42666</td>
<td>Xylella fastidiosa</td>
<td>AAF84237</td>
</tr>
</tbody>
</table>

Unclassified Proteobacteria

<table>
<thead>
<tr>
<th>Species</th>
<th>Accession</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetococcus sp.</td>
<td>EAN29119</td>
</tr>
<tr>
<td>Mariprofundus ferroxydans</td>
<td>ZP_01451910</td>
</tr>
</tbody>
</table>
6.3 Conservation matrices

Table A3. Conservation matrix for the dimer interface residues in plant GCLs.

<table>
<thead>
<tr>
<th>Brassica residue</th>
<th>E133</th>
<th>F135</th>
<th>E136</th>
<th>Q176</th>
<th>N182</th>
<th>Y186</th>
<th>E193</th>
<th>W394</th>
<th>R395</th>
<th>K471</th>
<th>F475</th>
<th>Residues conserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allium</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10.1</td>
</tr>
<tr>
<td>Aquilegia</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10.1</td>
</tr>
<tr>
<td>Arabidopsis</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Beta</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10.1</td>
</tr>
<tr>
<td>Brassica</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Chorispora</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Citrus</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10.1</td>
</tr>
<tr>
<td>Gossypium</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10.1</td>
</tr>
<tr>
<td>Lactuca</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10.1</td>
</tr>
<tr>
<td>Lotus</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10.1</td>
</tr>
<tr>
<td>Lycopersicon</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10.1</td>
</tr>
<tr>
<td>Malus</td>
<td>0.1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>8.2</td>
</tr>
<tr>
<td>Medicago</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10.1</td>
</tr>
<tr>
<td>Nicotiana</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10.1</td>
</tr>
<tr>
<td>Oryza</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10.1</td>
</tr>
<tr>
<td>Phasaeolus</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10.1</td>
</tr>
<tr>
<td>Physcomitrella 1</td>
<td>0.1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>8.2</td>
</tr>
<tr>
<td>Physcomitrella 2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Physcomitrella 3</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>8.2</td>
</tr>
<tr>
<td>Pisum</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10.1</td>
</tr>
<tr>
<td>Populus</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10.1</td>
</tr>
<tr>
<td>Solanum</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10.1</td>
</tr>
<tr>
<td>Taraxacum</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10.1</td>
</tr>
<tr>
<td>Triticum</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Vitis</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10.1</td>
</tr>
<tr>
<td>Zea</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Zinnia</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>conserved in species</th>
<th>24</th>
<th>26</th>
<th>5</th>
<th>26</th>
<th>26</th>
<th>26</th>
<th>26</th>
<th>26</th>
<th>26</th>
<th>24</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exchanges</td>
<td>2x(D</td>
<td>1xY</td>
<td>21xD</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2xN</td>
<td>-</td>
</tr>
</tbody>
</table>

Green algae

<table>
<thead>
<tr>
<th>Chlamydomonas *</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ostreococcus</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Prototheca</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Volvox *</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6/3?</td>
</tr>
</tbody>
</table>

This table lists conservation of the residue in comparison to BjGCL as 1, conservative exchanges as 0.1, and non-conservative exchanges as 0. ? indicates that the database entry for the Volvox GCL appears to be truncated. The total number of residues conserved per protein is highlighted in grey (right), as is the number of proteins in which each residue is conserved (below). Conservative exchanges are listed in the bottom row.

* Note that Chlamydomonas and Volvox GCL have the CC2 cysteines

Table A4. Conservation matrix for the dimer interface residues in proteobacterial GCLs. (next page)

This table lists conservation of the residue in comparison to the plant BjGCL enzyme as 1, conservative exchanges as 0.1 and non-conservative exchanges as 0. The total number of residues conserved per protein is highlighted in grey (right), as is the number of proteins in which each residue is conserved (below). Conservative exchanges are listed in the bottom row. γ-proteobacterial species are marked by an asterisk following the name; all other species belong to the α-proteobacteria.
Table A4. Conservation matrix for dimer interface residues in proteobacterial GCLs.

<table>
<thead>
<tr>
<th>Residues conserved</th>
<th>E133</th>
<th>F135</th>
<th>E136</th>
<th>Q176</th>
<th>N182</th>
<th>Y186</th>
<th>E193</th>
<th>W394</th>
<th>R395</th>
<th>K471</th>
<th>F475</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalilimnicola</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Halorhodospora</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Nitrooccus</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5.1</td>
</tr>
<tr>
<td>Stenotrophomonas</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Xanthomonas</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Xylella</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Magnetococcus</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.1</td>
</tr>
<tr>
<td>Mariprolundus</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>Acidiphilium</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Agrobacterium</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Aurantimomas</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bartonella</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bradyrhizobium</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brucella</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Caulobacter</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dinoroseobacter</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Erythrobacter</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Fulvimarina</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Gluconobacter</td>
<td>0</td>
</tr>
<tr>
<td>Granulibacter</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hyphomonas</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Januscha</td>
<td>0.1</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Loktanella</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Magnetospirillum</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Maricaulis</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mesorhizobium</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Nitrobacter</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Novosphingobium</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oceanicaulis</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oceanicola</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Paracoccus</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Parvibaculum</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Parvulacura</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rhizobium</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Rhodobacter</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rhodopseudomonas</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rhodospirillum</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Roseobacter</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Roseovarius</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sagittula</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Silicibacter</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4.2</td>
</tr>
<tr>
<td>Sinorhizobium</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Sphingomonas</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sphingopyxis</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Stappia</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sulfitobacter</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Xanthobacter</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Zymomonas</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>conserved in species</th>
<th>2</th>
<th>22</th>
<th>1</th>
<th>25</th>
<th>22</th>
<th>0</th>
<th>13</th>
<th>40</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>conservative</td>
<td>11xD</td>
<td>1xN</td>
<td>15xD</td>
<td>1xN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description see previous page
Appendix

6.4 Alignment of plant and bacterial GCL sequences and proteobacterial CGL protein sequences, including all sequences included in Tables A1 and A2 and listed on the next page. Plant transit peptides excluded.

Figure A3 (this page and following pages): Alignment of plant and bacterial GCL protein sequences, including all sequences included in Tables A1 and A2 and listed on the next page. Plant transit peptides excluded.

<p>| Arabidopsis | ------------------------------- | AASP |
| Chorispora | ------------------------------- | AASP |
| Brassica | ------------------------------- | AASP |
| Pisum | ------------------------------- | AASP |
| Medicago | ------------------------------- | AASP |
| Lotus | ------------------------------- | AASP |
| Phaseolus | ------------------------------- | AASP |
| Populus | ------------------------------- | AASP |
| Lactuca | ------------------------------- | AASP |
| Taraxacum | ------------------------------- | AASP |
| Zinnia | ------------------------------- | AASP |
| Lycompersicon | -------------- | AASP |
| Solanum | ------------------------------- | AASP |
| Nicotiana | ------------------------------- | AASP |
| Citrus | ------------------------------- | AASP |
| Gossypium | ------------------------------- | AASP |
| Malus | ------------------------------- | AASP |
| Aquilegia | ------------------------------- | AASP |
| Vitis | ------------------------------- | AASP |
| Beta | ------------------------------- | AASP |
| Allium | ------------------------------- | AASP |
| Oryza | ------------------------------- | AASP |
| Zea | ------------------------------- | AASP |
| Trichicum | ------------------------------- | AASP |
| Physcomitrella1 | ------------ | AAS |</p>
<table>
<thead>
<tr>
<th>Organism</th>
<th>Accession</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabidopsis</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Chorismora</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Medicago</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Lotus</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Phasus</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Lactuca</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Tectitum</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Zinnia</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Lykopodium</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Solanum</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Nicotiana</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Citrus</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Gossypium</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Malus</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Aegiligia</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Vitis</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Beta</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Allium</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Oryza</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Trichitum</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Physcomitrella3</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Physcomitrella2</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Volvox</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Chlamydomonas</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Prototheca</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Nodularia spumigena</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Crocosphaera watsonii</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Thermosynechococcus</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Nodularia spumigena</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Crocosphaera watsonii</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Thermosynechococcus</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Mycobacterium</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Mycobacterium tuberculosis</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Thermosynechococcus</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Nodularia spumigena</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Crocosphaera watsonii</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Thermosynechococcus</td>
<td>PTEEAV----</td>
<td></td>
</tr>
<tr>
<td>Mycobacterium</td>
<td>PTEEAV----</td>
<td></td>
</tr>
</tbody>
</table>

Appendix

- **Mycobacterium tuberculosis** (YP_001281721)
- **Thermosynechococcus elongatus** (ZP_00516735)
- **Nodularia spumigena** (ZP_01629821)

In addition to the sequences from Tables A1 and Figure A3 (continued): Alignment of plant and proteobacterial GCL protein sequences.

Figure A3: Alignment of plant and proteobacterial GCL protein sequences (Continued) in addition to the sequences from Tables A1 and Figure A3 (continued: Alignment of plant and proteobacterial GCL protein sequences). (BAC07874) Mycobacterium tuberculosis (ZP_00141832), Nodularia spumigena (ZP_00141832). Thermosynechococcus elongatus (ZP_00141832).
Appendix

Figure A3 (continued): Alignment of plant and proteobacterial GCL protein sequences.
Arabidopsis G——---KQISLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Chorispora G——---KQISLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Brassica G——---KQISLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Pisum G——---KQISLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Medicago G——---KQISLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Lotus G——---KQISLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Phaseolus G——---KQISLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Populus E——---KQISLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Lactuca G——---KQISLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Taraxacum G——---KQISLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Zinnia G——---KQISLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Lycopersicon G——---KQISLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Solanum G——---KQISLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Nicotiana G——---KQISLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Gossypium G——---KQISLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Malus G——---KQISLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Aquilegia G——---KQISLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Vitis G——---DQRLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Beta G——---NQNISEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Allium G——---KQISLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Zea G——---KQISLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Triticum G——---KQISLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Physcomitrella1 D——---QSVESEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Physcomitrella2 D——---QSVESEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Physcomitrella3 D——---QSVESEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Volvox D——---ASVESEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Chlamydomonas D——---QSVESEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Prototheca A——---NETVSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Ostreococcus _lucimarinus O——---KQISLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Ostreococcus _lauri O——---KQISLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Xanthomonas D——---GA-SVEQPAGQELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Stenotrophomonas D——---GA-SVEQPAGQELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Oceanicaulis E——---GS-SVEQPAGQELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Maricallis D——---GA-SVEQPAGQELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Alkalimicrobium D———KQISLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Halorhodospira E——---GGRLSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Nitrooccus F——---TMVSSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Rhodospirillum CN——GE-LSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Sphingopyxis S———DG-TSEPGQFELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Novosphingobium D———DG-ASVEQAPAGQELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Sphingomonas D———DG-ATISQAPAGQELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Erythrobacter E———DG-ASVEQAPAGQELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Zymomonas D———DG-AISQAPAGQELGAPLETQHTCAEVNSHLVQYKVAEEMGI
Roseobacter D———GANVSEPGQAEGLAPLETQHTCDEVNRELREVRAERGLG
Sulfito bacter D———GANVSEPGQAEGLAPLETQHTCDEVNRELREVRAERGLG
Sagittula D———GANVSEPGQAEGLAPLETQHTCDEVNRELREVRAERGLG
Silicibacter D———GANVSEPGQAEGLAPLETQHTCDEVNRELREVRAERGLG
Roseovarius D———GANVSEPGQAEGLAPLETQHTCDEVNRELREVRAERGLG
Janastrochichium D———GANVSEPGQAEGLAPLETQHTCDEVNRELREVRAERGLG
Dinoroseobacter N———GANVSEPGQAEGLAPLETQHTCDEVNRELREVRAERGLG
Oceanicaulis D———GANVSEPGQAEGLAPLETQHTCDEVNRELREVRAERGLG
Lomaterella D———GANVSEPGQAEGLAPLETQHTCDEVNRELREVRAERGLG
Paracoccus D———GANVSEPGQAEGLAPLETQHTCDEVNRELREVRAERGLG
Rhodobacter E———GANVSEPGQAEGLAPLETQHTCDEVNRELREVRAERGLG
Farvularcula E———GANVSEPGQAEGLAPLETQHTCDEVNRELREVRAERGLG
Hyphomicrobium E———GANVSEPGQAEGLAPLETQHTCDEVNRELREVRAERGLG
Caulobacter N———GANVSEPGQAEGLAPLETQHTCDEVNRELREVRAERGLG
Bradyrhizobium V——TGGAISLEPGQFELGAPVETQHTCDEVNRELREVRAERGLG
Nitrobacter V——TGGAISLEPGQFELGAPVETQHTCDEVNRELREVRAERGLG
Rhodopseudomonas V——TGGAISLEPGQFELGAPVETQHTCDEVNRELREVRAERGLG
Xanthobacter V——TGGAISLEPGQFELGAPVETQHTCDEVNRELREVRAERGLG
Mesorhizobium P——TGQAISLEPGQFELGAPLETQHTCDEVNSHLVQYKVAEEMGI
Brucella P——TGQAISLEPGQFELGAPLETQHTCDEVNSHLVQYKVAEEMGI
Rhizobium Q——NGMAISLEPGQFELGAPLETQHTCDEVNSHLVQYKVAEEMGI
Agrobacterium Q——NGMAISLEPGQFELGAPLETQHTCDEVNSHLVQYKVAEEMGI
Sinorhizobium P——SGNAISLEPGQFELGAPLETQHTCDEVNSHLVQYKVAEEMGI
Bacillus P——SGNAISLEPGQFELGAPLETQHTCDEVNSHLVQYKVAEEMGI
Aurantimonas S——EEQAISLEPGQFELGAPLETQHTCDEVNSHLVQYKVAEEMGI
Fullvirema D——EEQAISLEPGQFELGAPLETQHTCDEVNSHLVQYKVAEEMGI
Streptomyces Y——CG-AISLEPGQFELGAPLETQHTCDEVNSHLVQYKVAEEMGI
Magnetospirillum Y——CG-AISLEPGQFELGAPLETQHTCDEVNSHLVQYKVAEEMGI
Acidiphilium R——GFISLEPGQFELGAPLETQHTCDEVNSHLVQYKVAEEMGI
Granulibacter PSSLSASLEPGQFELGAPLETQHTCDEVNSHLVQYKVAEEMGI
Gluconobacter QNAISLSEPGQFELGAPLETQHTCDEVNSHLVQYKVAEEMGI
Maripropus D——ASVTSEPGQFELGAPLETQHTCDEVNSHLVQYKVAEEMGI
Magnetococcus D——ASVTSEPGQFELGAPLETQHTCDEVNSHLVQYKVAEEMGI
Nostoc D———ASVTSEPGQFELGAPLETQHTCDEVNSHLVQYKVAEEMGI
Nodularia D———ASVTSEPGQFELGAPLETQHTCDEVNSHLVQYKVAEEMGI
Anabaena P——HYESLEISLRPRQAARDYRLQGQYDYLTPPS
Crocophthera P——LSCYDRLCALVRPRNLAQRYLKIGNTIPPS
Thermodenococcus F———VVTDQALDLFPRSLRLAYLRQYDYLTPPS
Mycobacterium R———NTVIEVSIGECTAEMQDLRLTDLPARQIKVRDGM

Appendix

Figure A3 (continued): Alignment of plant and proteobacterial GCL protein sequences.
Appendix

Arabidopsis
Chorismopora
Brassica
Pisum
Medicago
Lotus
Phaseolus
Populus
Lactuca
Taraxacum
Zinnia
Lycopersicon
Solunum
Nicotiana
Citrus
Gossypium
Malus
Aquilegia
Vitis
Beta
Allium
Oryza
Zea
Triticum
Physcomitrella
Physcomitrella
Volvox
Chlamydomonas
Protothea
Ostreococcus
Ostreococcus
Xanthonemus
Stenotrophomonas
Xylella
Oceanicaulis
Maricaulis
Alkalilimnicola
Halorhodospira
Nitrococcus
Rhodospirillum
Parvibaculum
Sphingopyxis
Novosphotengobium
Sphingomonas
Erythrobacter
Zymomonas
Roseobacter
Nitrobcater
Sagittula
Silicibacter
Roseovarius
Janischia
Dinoroseobacter
Oceanicola
Loktaella
Paracoccus
Rhodobacter
Fervulacura
Hyphomonas
Caulobacter
Bradyrhizobium
Zymobacter
Rhodopseudomonas
Xanthobacter
Mesorhizobium
Brucella
Rhizobium
Agrobacterium
Sinorhizobium
Bartonella
Aurantimonas
Fulvimarina
Streptomyces
Magnetospirillum
Acidiphilum
Granulibacter
Gluconacetobacter
Mariprofundus
Magnetococcus
Nostoc

- 139 -

Figure A3 (continued): Alignment of plant and proteobacterial GCL protein sequences.
Arabidopsis
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSFTFRKPNGF
Chorispora
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSFTFRKPNGF
Pisum
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSFTFRKPNGF
Medicago
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Lotus
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSFTFRKPNGF
Phaseolus
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Populus
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Lactuca
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Taraxacum
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Zinnia
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Lycopersicon
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Solanum
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Nicotiana
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Citrus
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Gossypium
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Malus
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Aquilgia
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Vitis
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Beta
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Allium
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Oryza
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Zeal
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Triticum
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Physcomitrella
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Physcomitrella3
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Volvox
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Chlamydomonas
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Prototheca
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Ostreococcus
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Ostreococcus
taurei
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Xanthomonas
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Stenotrophomonas
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Xylella
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Oceanicaulis
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Maricaulis
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Alkalimicrobium
MRLTCTVQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Halorhodospira
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Nitrooccus
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Rhodospirillum
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Parvibaculum
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Sphingopyxis
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Novospongibium
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Sphingomonas
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Erythrobacter
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Zymomonas
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Roseobacter
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Sulfobacter
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Sagitella
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Silicibacter
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Roseovarius
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Jannaschiella
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Dinoroseobacter
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Oceanicola
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Loktella
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Paracoccus
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Rhodobacter
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Farvarcula
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Hymenobacter
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Caulobacter
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Bradyrhizobium
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Nitrobacter
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Rhodopseudomonas
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Xanthobacter
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Mesorhizobium
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Brucella
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Rhizobium
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Acidiphilium
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Granulibacter
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Glazeria
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Maripropus
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Magnetococcus
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Novococca
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Nodularia
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Anabaena
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Crocophyta
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Thalassiossirae
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF
Myocroberticum
MRLTCTQVNLDFSSEADM1KRFRAGLALQ1AT1ALFANSPFTTRKPNGF

Figure A3 (continued): Alignment of plant and proteobacterial GCL protein sequences.
Appendix

Arabidopsis
Brassica
Pisum
Medicago
Lotus
Phaseolus
Populus
Lactuca
Taraxacum
Zinnia
Lycopersicon
Solanum
Nicotiana
Citrus
Gossypium
Malus
Aquilegia
Vitis
Beta
Allium
Oryza
Triticum
Hordeum
Saccharomyces
Nitrococcus
Rhodospirillum
Parvibaculum
Sphingopyxis
Novosphaerium
Phytophthora
Caulobacter
Hyphomonas
Parvularcula
Rhodobacter
Paracoccus
Lokttella
Rhodobacter
Fall taxes
Nitrobacter
Rhodopseudomonas
Xanthobacter
Mesorhizobium
Brucella
Rhzobium
Agrobacterium
Sinorhizobium
Barclayella
Aurantimonas
Fulvimonas
Streptomyces
Magnetospirillum
Acidiphilium
Granulibacter
Gluconibacter
Maripropodospora
Magnetoedogoccus
Notococcus
Nodularia
Anabaena
Crocospheara
Thaumatobacterium
Myco bacterium

Figure A3 (continued): Alignment of plant and proteobacterial GCL protein sequences.
Appendix

Figure A3 (continued): Alignment of plant and proteobacterial GCL protein sequences.
Appendix

Figure A3 (continued): Alignment of plant and proteobacterial GCL protein sequences.
Arabidopsis NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Chorispora NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Brassica NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Pisum NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Medicago NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Lotus NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Phaseolus NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Populus NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Lactuca NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Tetraspora NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Zinnia NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Lycopersicon NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Solomon NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Nicotiana NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Citrus NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Gossypium NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Malus NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Aquilgia NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Vitis NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Beta NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Allium NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Oryza NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Zeae NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Triticum NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Physcomitrella1 NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Physcomitrella2 NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Volvox NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Chlamydomonas NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Prototheca NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Ostreococcus_lucimarines NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Xanthonemosa NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Mariculis NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Alkalimanicola NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Halochlorospira NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Nitroccocus NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Rhodospirillum NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Parvibaculum NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Siphogynops NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Novosphingobium NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Sphingomonas NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Erythrbyacte NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Zymomonas NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Roseobacter NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Sulfutobacter NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Sagittula NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Silicibacter NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Roseovaruis NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Jannaschhiili NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Dinoroseobacter NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Oceanicola NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Loktella NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Paracoccus NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Rhodobacter NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Farvulacurala NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Hyposromonas NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Caulobacter NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Bradyrhizobium NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Nitrobacter NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Rhodopseudomonas NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Xanthobacter NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Mesorhizobium NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Brucella NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Rhzobium NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Agrobacterium NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Sinorhizobium NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Bacillodermia NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Aurantimonas NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Fulvimarina NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Streptosporangium NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Acidiphilium NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Granulibacter NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Glimmeribacter NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Marifusor NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Magnetococcus NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Notococcus NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Nodularia NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Anabaena NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Crocosphaera NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Thureononas NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG
Myxobacterium NKPVPGGLKTFPRD-GLKLHVAEVDSVFLAKLQGDLRG-------YKEAG

Appendix

Figure A3 (continued): Alignment of plant and proteobacterial GCL protein sequences.
Appendix

Arabidopsis

Chorispora

Brassica

Pisum

Medicago

Lotus

Phaseolus

Populus

Lactuca

Triticum

Zinnia

Lycopersicon

Solanum

Nicotiana

Gossypium

Malus

Aquilgia

Vitis

Beta

Allium

Oryza

Zea

Triticum

Phycosiphonella

Physcomitrella2

Volvox

Chlamydomonas

Prototheca

Ostreococcus_lucimarinus

Ostreococcus_lauri

Xanthomonas

Xylella

Oceanicaulis

Maricaulis

Alkalilimnicola

Halorhodospirilla

Rhodospirillum

Parvibaculum

Sphingopyxis

Parvibaculum

Nitrobacter

Sulfobacter

Sagittula

Silicibacter

Roseovarius

Jannaschia

Dinoroseobacter

Oceanicola

Prototheca

Roseobacter

Ostreococcus tauri

Ostreococcus lucimarinus

Prototheca

Chlamydomonas

Volvox

Physcomitrella3

Physcomitrella2

Zea

Allium

Beta

Vitis

Aquilegia

Malus

Nicotiana

Zinnia

Taraxacum

Lactuca

Phaseolus

Brassica

Arabidopsis

Figure A3 (continued): Alignment of plant and proteobacterial GCL protein sequences.
6.5 Alignment of BjGCL with non-angiosperm plant GCL proteins

Brassica

<table>
<thead>
<tr>
<th>Protein</th>
<th>Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picea</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 1</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 3</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 2</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ceratopteris</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ostreococcus tauri</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ostreococcus lucimarinus</td>
<td>Alignment</td>
</tr>
<tr>
<td>Chlamydomonas</td>
<td>Alignment</td>
</tr>
<tr>
<td>Anabaena</td>
<td>Alignment</td>
</tr>
</tbody>
</table>

Anabaena

<table>
<thead>
<tr>
<th>Protein</th>
<th>Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picea</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 1</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 3</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 2</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ceratopteris</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ostreococcus tauri</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ostreococcus lucimarinus</td>
<td>Alignment</td>
</tr>
<tr>
<td>Chlamydomonas</td>
<td>Alignment</td>
</tr>
<tr>
<td>Anabaena</td>
<td>Alignment</td>
</tr>
</tbody>
</table>

Appendix

<table>
<thead>
<tr>
<th>Protein</th>
<th>Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picea</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 1</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 3</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 2</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ceratopteris</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ostreococcus tauri</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ostreococcus lucimarinus</td>
<td>Alignment</td>
</tr>
<tr>
<td>Chlamydomonas</td>
<td>Alignment</td>
</tr>
<tr>
<td>Anabaena</td>
<td>Alignment</td>
</tr>
</tbody>
</table>

8.5 Alignment of BjGCL with non-angiosperm plant GCL proteins

Brassica

<table>
<thead>
<tr>
<th>Protein</th>
<th>Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picea</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 1</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 3</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 2</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ceratopteris</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ostreococcus tauri</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ostreococcus lucimarinus</td>
<td>Alignment</td>
</tr>
<tr>
<td>Chlamydomonas</td>
<td>Alignment</td>
</tr>
<tr>
<td>Anabaena</td>
<td>Alignment</td>
</tr>
</tbody>
</table>

Anabaena

<table>
<thead>
<tr>
<th>Protein</th>
<th>Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picea</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 1</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 3</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 2</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ceratopteris</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ostreococcus tauri</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ostreococcus lucimarinus</td>
<td>Alignment</td>
</tr>
<tr>
<td>Chlamydomonas</td>
<td>Alignment</td>
</tr>
<tr>
<td>Anabaena</td>
<td>Alignment</td>
</tr>
</tbody>
</table>

Appendix

<table>
<thead>
<tr>
<th>Protein</th>
<th>Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picea</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 1</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 3</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 2</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ceratopteris</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ostreococcus tauri</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ostreococcus lucimarinus</td>
<td>Alignment</td>
</tr>
<tr>
<td>Chlamydomonas</td>
<td>Alignment</td>
</tr>
<tr>
<td>Anabaena</td>
<td>Alignment</td>
</tr>
</tbody>
</table>

8.5 Alignment of BjGCL with non-angiosperm plant GCL proteins

Brassica

<table>
<thead>
<tr>
<th>Protein</th>
<th>Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picea</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 1</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 3</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 2</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ceratopteris</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ostreococcus tauri</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ostreococcus lucimarinus</td>
<td>Alignment</td>
</tr>
<tr>
<td>Chlamydomonas</td>
<td>Alignment</td>
</tr>
<tr>
<td>Anabaena</td>
<td>Alignment</td>
</tr>
</tbody>
</table>

Appendix

<table>
<thead>
<tr>
<th>Protein</th>
<th>Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picea</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 1</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 3</td>
<td>Alignment</td>
</tr>
<tr>
<td>Physcomitrella 2</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ceratopteris</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ostreococcus tauri</td>
<td>Alignment</td>
</tr>
<tr>
<td>Ostreococcus lucimarinus</td>
<td>Alignment</td>
</tr>
<tr>
<td>Chlamydomonas</td>
<td>Alignment</td>
</tr>
<tr>
<td>Anabaena</td>
<td>Alignment</td>
</tr>
</tbody>
</table>
Appendix

<table>
<thead>
<tr>
<th>Species</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brassica</td>
<td>AYRNGKYVSTGTMFPRQFLAGKLPDPGLELPTYDWENHLHTTIFPEVRLKPKEMRGADGDPFPCRAL</td>
</tr>
<tr>
<td>Picea</td>
<td>VYRKKYVQDSNGSFKDFMKGLPSLGPENLNDWENHLHTTIFPEVRLKPKEMRGADGDPFPCRAL</td>
</tr>
<tr>
<td>Physcomitrella 1</td>
<td>VYRNGKYVDCSGSFKDFMAGKLPALPGEKPSLNDWENHLTTIFPEVRLKPKEMRGADGDPFPCRAL</td>
</tr>
<tr>
<td>Physcomitrella 2</td>
<td>VYRNGKYVDCSGSFKDFMAGKLPALPGEKPSLNDWENHLTTIFPEVRLKPKEMRGADGDPFPCRAL</td>
</tr>
<tr>
<td>Physcomitrella 3</td>
<td>VYRNGKYVDCSGSFKDFMAGKLPALPGEKPSLNDWENHLTTIFPEVRLKPKEMRGADGDPFPCRAL</td>
</tr>
<tr>
<td>Ceratopteris</td>
<td>AYRNNKYVDGNSFKDMFAGKLPALPGEKPSLNDWENHLTTIFPEVRLKPKEMRGADGDPFPCRAL</td>
</tr>
<tr>
<td>Ostreococcus tauri</td>
<td>VYRNAYTVVSGLMDFRKDFMGKLPALPGEKPSLNDWENHLTTIFPEVRLKPKEMRGADGDPFPCRAL</td>
</tr>
<tr>
<td>Ostreococcus lucimarinus</td>
<td>VYRNAYTVVSGLMDFRKDFMGKLPALPGEKPSLNDWENHLTTIFPEVRLKPKEMRGADGDPFPCRAL</td>
</tr>
<tr>
<td>Chlamydomonas</td>
<td>VYRNQGNYNALSNGSDKDFMAGKLPALPGEKPSLNDWENHLTTIFPEVRLKPKEMRGADGDPFPCRAL</td>
</tr>
<tr>
<td>Volvox</td>
<td>VYRNQGNYNALSNGSDKDFMAGKLPALPGEKPSLNDWENHLTTIFPEVRLKPKEMRGADGDPFPCRAL</td>
</tr>
<tr>
<td>Prototheca</td>
<td>VRDGGYHDVQLFSPFDDGKLQAAPGFLPFTMDWNLHVTLPVDPRKPKEMRGADGDPFPCRAL</td>
</tr>
</tbody>
</table>
| *Anabaena* | NVRHLWVSPFRGDRFYPDLNLLEQTTLALLALEQTTLALLALEQTTLALLALEQTTLALLALEQTTLALLALEQTTLALLALEQTTLALLALEQTTLALLALEQTTLALLALEQTTLALLALEQTTLALLALEQTTLALLALEQTTLALLALEQTTLALLALEQTTLALLAL

Figure A4: Alignment of GCL protein sequences from *Brassica juncea*, the gymnosperm *Picea glauca* (partial, translated from DV974075 and DR584455), the moss *Physcomitrella patens*, the fern *Ceratopteris richardii* (CV735771, partial sequence) and the green algae *Ostreococcus lucimarinus* and *O. tauri*, *Chlamydomonas reinhardtii*, *Volvox carteri* (partial sequence), and *Prototheca wickerhamii*, and the cyanobacterium *Anabaena variabilis* (YP_323696). Residues involved in substrate binding and catalysis in *Brassica* are marked in red, residues involved in the formation of the dimer interface are highlighted in blue, and cysteine residues forming the two disulfide bridges in *Brassica* are marked in yellow. Predicted transit peptides are depicted in blue letters.
6.6 Predicted localization of plant GCL proteins

<table>
<thead>
<tr>
<th>Plant species</th>
<th>Predicted localization of GCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allium cepa</td>
<td>Plastidic (3)</td>
</tr>
<tr>
<td>Arabidopsis thaliana</td>
<td>Plastidic (4), confirmed (Wachter et al., 2005)</td>
</tr>
<tr>
<td>Aquilegia sp.</td>
<td>Cytosolic (4)</td>
</tr>
<tr>
<td>Beta vulgaris</td>
<td>Mitochondrial (5), confirmed plastidic (Müller, 2006)</td>
</tr>
<tr>
<td>Brassica juncea</td>
<td>Plastidic (2), confirmed (Wachter et al., 2005)</td>
</tr>
<tr>
<td>Citrus sinensis</td>
<td>Plastidic (3)</td>
</tr>
<tr>
<td>Gossypium raimondii</td>
<td>Plastidic (5)</td>
</tr>
<tr>
<td>Lactuca perennis</td>
<td>Plastidic (1)</td>
</tr>
<tr>
<td>Lotus corniculatus</td>
<td>Plastidic (4)</td>
</tr>
<tr>
<td>Lycopersicon esculentum</td>
<td>Plastidic (4)</td>
</tr>
<tr>
<td>Malus domestica</td>
<td>Plastidic (5)</td>
</tr>
<tr>
<td>Medicago trunculata</td>
<td>Plastidic (1)</td>
</tr>
<tr>
<td>Nicotiana tabacum</td>
<td>Plastidic (3), confirmed (this work)</td>
</tr>
<tr>
<td>Oryza sativa</td>
<td>Plastidic (5)</td>
</tr>
<tr>
<td>Phaseolus vulgaris</td>
<td>Mitochondrial (3)</td>
</tr>
<tr>
<td>Physcomitrella patens #1</td>
<td>Cytosolic (2)</td>
</tr>
<tr>
<td>Physcomitrella patens #2</td>
<td>Mitochondrial (4)</td>
</tr>
<tr>
<td>Physcomitrella patens #3</td>
<td>Mitochondrial (5)</td>
</tr>
<tr>
<td>Pisum sativum</td>
<td>Plastidic (3)</td>
</tr>
<tr>
<td>Populus trichocarpa</td>
<td>Plastidic (3)</td>
</tr>
<tr>
<td>Solanum tuberosum</td>
<td>Cytosolic (5)</td>
</tr>
<tr>
<td>Triticum aestivum</td>
<td>Mitochondrial (4)</td>
</tr>
<tr>
<td>Taraxacum officinale</td>
<td>Plastidic (3)</td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>Plastidic (4)</td>
</tr>
<tr>
<td>Zinnia elegans</td>
<td>Plastidic (3)</td>
</tr>
</tbody>
</table>

Table A5: Predicted localization of plant GCL proteins: Predictions were conducted using the targetP program (Emanuelsson et al., 2000). The value in parenthesis behind the prediction is the reliability class, with lower numbers indicating a higher reliability. Accession numbers for all sequences are found in the Appendix, Table A1
9 Publication record

10 Danksagung

An erster Stelle möchte ich Prof. Dr. Thomas Rausch für die stets freundliche, hilfsbereite und interessierte Betreuung meiner Doktorarbeit danken. Prof. Dr. Rüdiger Hell danke ich für die Übernahme des Korreferats.

Mein Dank gilt auch allen Mitgliedern der Arbeitsgruppe Rausch für die angenehme Arbeitsatmosphäre. Insbesondere danke ich Steffen Greiner, Andreas Wachter und Sebastian Wolf für unzählige hilfreiche Ratschläge, amüsante Unterhaltungen und stets geduldiges Korrekturlesen.

Conny danke ich für das heldenhafte Bewältigen unzähliger Proteinpräparationen.

Christiane Kiefer danke ich für die Hilfe bei den „systematischeren“ Teilen meiner Arbeit.

Schließlich danke ich meiner Familie und meinem Freundeskreis für die seelische Unterstützung und Moni für das zeitweise Ausleihen des Laptops.

Und Apollon, er weiß, warum...