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Abstract

This work presents a new approach for the further improving of the resolution

in the sub-diffraction fluorescence STED microscopy. The reduction of the sample

temperature down to 76K eliminates the disadvantages of anti-Stokes fluorescence

excitation and allows the use of wavelengths with larger STED efficiencies. On the

studied dyes, this approach enhances the resolving power by a factor of 1.6 compared

to room temperature and suggests further technical improvements for such resolution

increase. Besides resolution, the present work solves the issue of the high triplet

population in fluorescence imaging at liquid nitrogen temperature. A technique for the

triplet depopulation has been developed. It provides a manifold brightness increase in

the fluorescence imaging at low temperatures. The utilization of the low temperature

also increases the photo-stability of the fluorescent markers. The combination of a

complete triplet depopulation and higher fatigue resistance allows an enhanced signal

to noise ratio in STED and fluorescence microscopy in general.

Zusammenfassung

Dieser Arbeit präsentiert einen neuen spektroskopischen Ansatz, um die Auflö-

sungserhöhung in der hochauflösenden STED Fluoreszenzmikroskopie weiter zu ver-

bessern. Die Reduzierung der Temperatur bis zu 76K erlaubt den Einsatz von STED

Wellenlängen mit höheren Wirkungsquerschnitten für die stimulierte Emission. Es

wird gezeigt, dass deren Einsatz zu einer relativen Auflösungserhöhung von 1,6 im

Vergleich zu den bei Raumtemperatur einsetzbaren Wellenlängen führt. Allerdings be-

dingt das Arbeiten bei tiefen Temperaturen eine deutlich höhere Tripletbevölkerung

und somit eine Verschlechterung des Signal-zu-Rausch Verhältnisses in der fluo-

reszenzbasierten Bildgebung allgemein. Dies kann durch ein in dieser Arbeit ent-

wickeltes Verfahren zur Entvölkerung des Tripletzustands vermieden werden. Zudem

ist die Photozerstörung der fluoreszenten Moleküle ebenfalls stark reduziert bei tiefen

Temperaturen. Sowohl die lichtgetriebene Tripletentvölkerung als auch die hohe Pho-

tostabilität bei tiefen Temperaturen verbessern das Signal-zu-Rausch Verhältnis in

der STED und Fluoreszenzmikroskopie.
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Chapter 1

Introduction

Motivation

In microscopy, the term resolution refers to the minimum distance between two point-

like objects, which can still be told apart. Imaging studies of tiny structures ne-

cessitates the use of tools with the appropriate resolving power. In case of the life

sciences, especially disciplines like biology and medicine, optical far-field microscopy

has afforded great discoveries and allowed very useful techniques over the past few

centuries. Optical far-field microscopy provides the ability to look inside cells, which

are elemental units of living creatures. An introduction of fluorescence immunolabel-

ing has leveraged far-field microscopy to most popular imaging technique in the living

science domain.

Typical sizes of cellular structures appear at different sizes ranging from 20nm

(ribosome and microtubule) to 10µm (nucleus). Some proteins, the driving units of

molecular biochemistry, are very often even smaller than 10nm. The resolving power of

a far-field microscope is limited due to diffraction of light to nearly 200nm. Since some

details in cells remain unveiled due to the diffraction barrier, the scientific community

continues to develop new approaches to overcome the diffraction limit by exploiting

different effects in a smart way. One of these techniques is STED microscopy - an

improved version of far-field fluorescence microscopy.

This work uses a spectroscopic approach to study the key factor of STED mi-

croscopy, stimulated emission cross section, and improve the resolving power of cur-

rent fluorescence STED microscopes. The studies are carried out at liquid nitrogen

temperatures to eliminate the contribution of anti-Stokes excitation. The goal is to

find optimal conditions for maximum STED efficiency and highlight the necessary in-

gredients for maximum resolution. This work lays the foundation for developing an

optical fluorescence microscope with resolving power below 10nm.

2



1.1 Optical microscopy

Optical far-field microscopy began with the publication of Robert Hook [1], where he

presented detailed copper plate engravings of small insects and plant cells observed

with "‘various lenses"’. Soon a growing community of natural scientists adopted optical

microscopy due to its ease of use and its magnificent resolution ability for those times.

In 1873, almost two centuries after R. Hook, Ernst Abbe deduced the formula for

maximum resolution ∆r of an optical far-field microscope:

∆r =
0.61λ

NA
(1.1)

where λ is the wavelength of light and NA is the numerical aperture of the utilized

objective lens [2]. The term NA = n sin (α) describes the maximal angle α of incident

light which contributes to the focused light spot (so called point spread function (PSF))

and to the detection PSF.

Since the wavelength spectrum of visible light ranges from 400nm up to 750nm

and the commonly utilized value of NA is 1.4, the resolution of an optical far-field light

microscope is limited to ∼200nm. Many attempts have been undertaken to circumvent

the diffraction limit by applying shorter wavelengths (electron [3] and x-ray microscopy

[4,5]) or even discarding the far-field concept and using evanescent wave fields (total

internal reflection (TIRF) [6] and scanning near-field optical microscopy (SNOM) [7]).

These techniques provide great resolution ability (down to several nanometers in the

case of electron microscopy), often combined with destructive specimen preparation.

In electron and X-Ray microscopy, the energy of applied photon or electron beams is

very high and the specimen absorb these, thereby getting damaged. Therefore only

observation of thin slices less then 100nm thickness is possible. To this end the cells

are shock-frozen and cut into sections of desired thickness. On the other hand, near-

field techniques provide great resolution of approximately 50nm (SNOM). They are

however highly surface susceptible with an inability to look below the surface inside

the cells. The observation of 3D structure with those techniques is then only possible

with the effort of mechanical cut sectioning and subsequent imaging of each section.

In contrast to these techniques, far-field optical microscopy provides ease of use.

Moreover there are almost no restrictions on the specimen because visible light goes

through biological tissue without being absorbed or destroying the sample. However,

the major force behind its dominance in the life sciences is the invention of immunola-

beling with fluorescent markers [8] and the subsequent discovery of "‘native"’ expres-

sion of fluorescent proteins inside cells [9]. The greatest advantage here is the high

selectivity of observable regions. By using a specific binding antibody, nearly every re-

gion of interest inside a cell can be "‘colored"’ with fluorescent markers. In the case of

fluorescent proteins, an additional DNA sequence, a plasmid, allows cells to express
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a target protein, tagged with a fluorescent protein. Fluorescent markers, molecules

which can emit light, provide very large signal to noise ratio due to the Stokes shift

of the emission wavelength with respect to the excitation wavelength [10]. The com-

bination of these techniques with a confocal microscope [11] provides a superior tool

with diffraction limited resolution of 200nm and high selectivity of observable struc-

tures. Since a lot of details inside the cell are below the diffraction limit, increasing

the resolving power of optical fluorescence microscopes is a hot topic.

1.2 Super-resolution in fluorescence microscopy

In the past two decades, several interesting ideas to break the diffraction limit in fluo-

rescence microscopy have been proposed. The most promising concepts for resolution

enhancement are the RESOLFT [12] and the PALM [13,14] concepts.

The term RESOLFT is an abbreviation for REversible Saturable OpticaL (Fluores-

cent) Transition. We need two ingredients for RESOLFT - a light-driven, saturable and

reversible transition between two states, A and B, as well as an intensity distribution

with a well-defined zero, and an optimal slope around this zero. The states A and B

must be distinguishable by at least one measurable property. In optical microscopy,

fluorescence emission is very often used as the probe property. But, in principle,

the RESOL(F)T concept is not necessarily bound to that. To obtain images from a

specimen, all molecules are prepared to be in the state A. A modified intensity distri-

bution of de-excitation light with a well defined zeros then is applied to specimen. This

light drains the molecules from state A to state B everywhere except at the position(s)

with zero intensity. Afterwards, the specimen is probed for state A. Now only those

molecules in close vicinity of the zero intensity position will be detected. After the

acquisition of information for this pixel, the molecules need to be reversed into state

A completely for further cycles. The specimen is scanned pixel-wise by shifting the

zero intensity position over the sample. The resolution of the image is given by the lat-

eral width of distribution of state A molecules around the zero - an effective RESOLFT

PSF. The molecules undergo the cycle A → B many times and contribute to the image

construction only when they are in close vicinity of the de-excitation intensity zero.

The resolving power within this concept depends on the saturation level of the A → B

transition and the number of cycles before the molecules are photo-destructed. To

date, a large variety of optical transitions have been utilized in optical microscopy with

sub-diffraction resolving powers beyond the diffraction barrier down to 20nm [15–19].

The term PALM stands for PhotoActivated Localization Microscopy and the idea

takes advantage of the single, photo-switchable molecule events and the very high

localization ability of those. The photo-switchable molecules are gently activated in

such a manner so that the density of fluorescing molecules is sufficiently low, thereby
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ensuring that only single events are counted. Every single fluorescence burst can be

localized with very high precision by a centroid analysis [20], the precision ability is

given by the size of activation light spot divided by square root of the photon number

within this burst. The sub-diffraction image is constructed by mapping the positions

of the single bursts. The resolving power is limited by the number of photons which

come from one particular molecule. Recent experimental work has shown an increase

of resolution down to 10nm with acquisition times of around one day [13] and 20nm

with acquisition times of several minutes [21] in the lateral direction.

1.3 Concept of stimulated emission depletion

The first and most developed concept among the RESOLFT family is the idea to use

stimulated emission as the A → B transition for resolution enhancement [22,23]. In

this case, state A represents the fluorescent first excited state S1 of molecules, and

B the non-fluorescent ground state S0. Figure 1.1 shows a simple energy diagram of

S0

S1

spontaneous processstimulated process stimulated process

exch

σexc σSTED

h STED

k fluok ic

excitation relaxation stimulated emission

Figure 1.1: Simple two state model for stimulated emission.

the parameters involved. First, the molecules are excited to the first electronic state S1

with a certain rate σexchexc, given by the product of the excitation cross section σexc and

the excitation photon flux hexc. The reverse transition can occur in two possible ways:

(1) they relax spontaneously to the ground state S0 by emitting a photon with the flu-

orescence rate kfluo or radiationless by the internal conversion kic, or (2) the incoming

photon flux hSTED can stimulate the transition with the rate, given by the product of
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stimulated emission cross section and the triggering photon flux σSTEDhSTED. In case

of high STED efficiency (σSTEDhSTED ≫ kic + kfluo) the spontaneous pathways can be

neglected.

The population of the electronic states S1,S0 is then given by the rate equation:

d

dt
S1 (t) = −σSTEDhSTEDS1 (t) + σexchexcS0 (t)

d

dt
S0 (t) = −σexchexcS0 (t) + σSTEDhSTEDS1 (t)

In general, two cases can be differentiated. In the case of simultaneous excitation

and stimulated emission, both rates compete against one another and the solution for

steady state condition (temporal derivatives equal to zero) is given by:

S1 (hSTED) =
σexchexc

σexchexc + σSTEDhSTED
(1.2)

This case occurs for continuous wave (CW) excitation and de-excitation. If the exci-

tation and stimulated emissions are driven by pulsed lasers, and are thus temporally

separable, the de-excitation pulse is optimally tuned to come subsequent to the exci-

tation [24]. In this case, the excitation cross section can be neglected and the solution

for the S1 population is given by

S1 (hSTED) = exp (−σSTEDhSTED) (1.3)

The expressions 1.2 and 1.3 are plotted in figure 1.2. The development of depletion is

different for the initial intensity values because in the case of CW solution (red curve)

the excitation cross section competes against the stimulated emission cross section.

However, both characteristics show the depletion of the fluorescent S1 state population

down to zero.

By using the relation hSTED ∼ I the expression 1.3 can be rewritten as a function

of the STED laser intensity I:

S1 = exp (−σ̃STED I)

=̇ exp

(

− I

ISAT

)

(1.4)

The saturation intensity ISAT is an experimentally accessible parameter from the sa-

turation characteristic, where the S1 population is reduced to 1/e of its initial value. In

combination with the applied intensity I, we can define a saturation ratio ξ = I/ISAT.

Another ingredient for stimulated emission depletion microscopy is a well defined

de-excitation intensity pattern with distinguishable zero intensity positions. Figure

1.3(a) shows the appropriate intensity distributions. While the excitation light illu-
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Figure 1.2: Depletion of S1 population, and thus remaining fluorescence emission, due
to stimulated emission with STED intensity I for CW (red squares) and
pulsed (black squares) excitation and de-excitation.

minates the specimen with constant intensity (left lower image), the STED intensity

distribution is modified with the expression sin2 (x) + sin2 (y) (left upper image). This

modified intensity pattern can be achieved by the interference of several beams with

appropriate phase and intensity modulations [25], and provides a grid of spatially

distinguishable STED intensity zeros. Since the STED intensity distribution applies

with the saturation characteristic from the expression 1.4 (right upper image) to the

fluorescence, the resulting remaining fluorescence distribution show bright spots in

the close vicinity to the STED intensity zeros (right lower image). The specimen can

be scanned with the resulting effective PSF, the resolution enhancement is provided

by the constriction of the spatial fluorescence distribution around the STED intensity

zero with a high saturation ratio ξ. Figure 1.3(b) shows the shape of a single effective

fluorescence spot for different saturation ratios ξ in lateral direction.

Analyzing the intensity shape characteristic close to the zero and the saturation

ratio ξ, one can deduce the expression for the resolving ability of the described micro-

scope [26]:

∆(x, y) =
λ

π
arcsin

(

ξ−1/2
)

(1.5)

∼ λ

πNA
√

ξ
(1.6)
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(a) Construction of the super-resolved effective PSF by combining a mo-
dulated STED intensity (left upper image), saturated with ξ = 50 (right
upper image) with the homogeneous fluorescence excitation (left lower
image). The resulting remaining fluorescence distribution (right lower
image) provides an effective PSF with sub-diffraction size.

(b) Line profile through the effective PSF for different
saturation ratios ξ.

Figure 1.3: Sub-diffraction resolution enhancement within the concept of STED mi-
croscopy.
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In the special case of a confocal microscope, the excitation illumination is provided

by a single, diffraction limited laser spot. The resolution is given by a convolution

of the excitation PSF with a detection PSF [27] and is slightly better than the Abbe

rule [2]:

∆r =
0.5λ

NA
(1.7)

in the lateral direction. A resolution increase is then provided by a saturable stimu-

lated emission transition from the fluorescent first excited state into the dark ground

state in the same manner as described in figure 1.3. The fluorescence is quenched by

an appropriately modified intensity distribution, generated by the application of spe-

cial phase masks, which produce an asymptotically parabolic intensity distribution

around the zero [25]. The development of the effective PSF looks nearly the same, as

shown in figure 1.3(b). The resolution enhancement can be expressed as followed [28]:

∆r =
0.61λ

NA
√

1 + ξ
(1.8)

with ξ intensity saturation ratio I/ISAT.

1.4 Advances in present day STED microscopy

STED microscopy, as an improvement of far-field fluorescence microscopy, was first

suggested in 1994 and the first experimental demonstration took place in 1999 [22,

23]. Subsequently STED microscopy was continuously improved. First, phase retar-

dation masks were introduced to generated optimal de-excitation intensity distribu-

tions for 2D and 3D resolution. This led to a resolution enhancement of upto 97nm in

the axial and 104nm in the lateral dimensions while utilizing a 3D phase mask [29].

The best axial resolution of 33nm was reached some time later by combining a 4Pi mi-

croscope with the STED concept [30]. Introduction of optimized phase masks, which

provide optimal slope around the STED intensity zero for lateral resolution [31], has

improved the resolution to 16nm on single molecules [32] and ∼60nm in biological

specimen [33].

Tackling such problems, resolution down to macromolecular scale have been de-

monstrated recently. Realizing, that the most efficient pathway for the photo-bleaching

occurs via the dark state of fluorescent markers, a simple idea of complete triplet

relaxation between the excitation pulses was implemented in the D-Rex STED mi-

croscopy. This technique has provided lateral resolutions of 20nm in biological sam-

ples recently [19]. By eliminating the triplet channel contribution to photo-bleaching

by using reduced excitation frequency simply allows the use of higher de-excitation

intensities in biological specimen and leads to 10 times higher saturation ratio than
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before.

The resolution in STED microscopy is mainly limited by two key factors - the maxi-

mum saturation ratio ξ and the photo-stability of the fluorescent dye molecules dur-

ing cycles from S1 → S0 and reverse. Therefore the main task for improving STED

microscopy in terms of increasing the resolution lies in improving these key factors.

1.5 Resolution increase by optimizing the STED cross

section

The use of D-Rex STED microscopy scheme [19] has dramatically reduced the bleach-

ing probability due to elimination of the triplet population, and has increased the

applicable laser intensities and thereby the saturation ratio ξ = I/ISAT. Since the

saturation intensity ISAT is reciprocal to the cross section of the stimulated emission

σSTED, the saturation ratio ξ can be increased by optimizing σSTED. On the basic

of work on dye lasers from the 70’s and 80’s, it is known that the cross section for

the stimulated emission is proportional to the spectrum of spontaneous fluorescence

emission [34], [35]. Thus the best stimulated emission cross section, and thereby

the maximum saturation ratio ξ is obtainable for those STED wavelengths which are

the same as the values of the maximum fluorescence emission spectrum of the used

fluorophore.

This is exemplified in figure 1.4. The present day microscopes utilize STED wave-

lengths within the far-red edge of the emission spectrum of a fluorophore. This pro-

vides the relative STED cross sections below 12% in [33] or 18% in [19] in respect to

the value at maximum of the spontaneous emission. The reason behind the choice

of such red-shifted STED wavelengths is the additional fluorescence signal, which is

caused by the S0 → S1 absorption induced by the STED light. This direct fluorescence

excitation, so called anti-Stokes excitation, competes with the stimulated emission

and thereby reduces the saturation ratio ξ.

The utilization of shorter STED wavelengths promises a higher stimulated emission

cross section, as shown in figure 1.4 for the fluorescent marker Atto532. In this case,

the use of 553nm as STED wavelength promises an increase of saturation ratio ξ

by a factor of 5.8 with respect to λSTED = 605nm. For the utilization of such STED

wavelengths, a strong suppression of the anti-Stokes excitation is necessary.

The origin of the anti-Stokes excitation is believed to be the Boltzmann distributed

occupation of high excited vibrational states within the electronic ground state S0. For

these states the energy gap to first electronic excited state S1 is reduced, thus the

transition S0 → S1 by absorption of a red-shifted STED photon becomes probable. The

occupation number of a particular vibrational state with the energy Evib is given by
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Figure 1.4: A survey over the spectral properties of Atto532. The emission (black
squares) and excitation (2× magnified, red squares) spectra are compared
with the desirable STED wavelengths and their cross sections (red rhom-
bus).

Boltzmann distribution:

f (E, T ) = exp

(

−Evib

kBT

)

where kB is the Boltzmann constant and T is the temperature. According to this

expression, a linear reduction of the temperature would cool down the occupation

distribution exponentially, and thereby reduce the anti-Stokes excitation.

This work introduces the use of liquid nitrogen temperature in STED microscopy

for cooling down the anti-Stokes excitation, and thereby allowing the utilization of

STED wavelengths with larger stimulated emission cross sections a what is available

to date. The theoretical considerations on stimulated emission cross section as well as

experimental findings in dye laser research promise an enhancement in the resolving

power of factor 2.2 for the in figure 1.4 shown Atto532.

Also the heighten photo-bleaching probability within the STED concept due to more

often cycling between the S0 and S1 states off-side the intensity zeros, is expected to

be strongly reduced at low temperatures. The most prominent pathway for the photo-

bleaching is referred to the probability of a chemical reaction of the excited fluorescent

molecule with a diffusing oxidizing agents, such as oxygen [36]. The chemical reaction

rate k depends exponentially on the temperature T :

k = A exp

(

− EA

kBT

)

(1.9)

where A is a pre-exponential factor, EA is the activation energy for a chemical reaction
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and kB is the Boltzmann constant. This relation is known as the Arrhenius law.

So, a reduction of T from the room temperature to the liquid nitrogen temperature

reduces the rate of a chemical reaction by a factor of ∼44. The diffusion constant is

also suppressed by a similar expression as equation 1.9, where the constant E∗
A is

declared as the activation energy of duffusion.

The CryoSTED microscopy improves the key factors of the STED concept - the

STED efficiency and the photo-bleaching resistivity.
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Chapter 2

The CryoSTED setup

2.1 Liquid nitrogen flow-through cryostat

The studies at low temperature necessitate the use of a cryostat. For this work, a com-

mercially available microscopy cryostat, ST-500-LN from Janis Research Company,

USA is used. It uses a flow-through technique where a cold gas is pumped with a

membrane pump (ILMVAC GmbH, Germany) at a constant flux, from a dewar through

a spiral tube inside a cooling finger, and thereby reduces the sample temperature by

heat exchange. Liquid nitrogen is used as the cooling gas, the lowest temperature

which can be reached is 74K due to reduction of the vapor pressure above the liquid

nitrogen surface. Any temperature between 74K and 350K can be set by an additional

50W electrical resistance ring heater, the temperature is stabilized with a PID closed

loop regulator.

Figure 2.1 shows a schematic of the cryostat used. The liquid nitrogen lowers the

temperature of the cooling finger down to the desired temperature and is stabilized

by the 50W electrical resistance ring heater. A sample holder, made out of brass for

optimal thermal conductivity, is screwed into the cooling finger. The sample, a fluo-

rescent specimen between two round cover glasses, is attached to the sample holder

with glycerin to assure good thermal contact. The quality of the thermal contact is

tested in several runs by comparing the display of temperature controller with the

read-out of an extra thermocouple installed inside the sample. The measured differ-

ence between the temperature of the cooling finger (see schematic in fig. 2.1) and

the temperature inside the sample is below 3K at 76K. The stated temperature for all

further measurements is the displayed value on the temperature controller.

The use of such low temperatures T(LN2)= −196◦C below the freezing point of water

necessitates an effective protection from water condensation, which would otherwise

build an ice shelf around the sample within a very short time. Thus the sample holder
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Figure 2.1: A technical schematic of the cryostat, assembled with an air objective lens.

is placed inside a vacuum chamber, which is evacuated by a turbo molecular pump

(Turbo Cube from Pfeiffer, Germany) to a pressure below 1 × 10−5 mbar.

For the optical beam transmission, a quartz glass window with the flatness of λ/5

and 500 µm thickness is installed. The cryostat is mounted on a stage which can be

tilted with respect to the optical axis of the objective lens. The objective lens used

is an HCX PL FLUOTAR L objective lens from Leica Microsystems, Germany with a

magnification of 63× and a numerical aperture of 0.7. This objective lens provides a

correction ring for spherical aberrations and a working distance of 1.8 to 2.6mm. The

axial position of the focal plane can be adjusted roughly with a custom-built manual

translating stage and the fine adjustment is done with a piezo scanner MIPOS 200

from Piezo Systems Jena GmbH, Germany. The assembled objective lens with the

scanning device is mounted under the upside down mounted cryostat, like shown in

figure 2.1.

2.2 Beam scanning system

The scanning in the lateral direction is provided by a beam scanning assembly because

the huge weight of the cryostat inhibits a stage-scanning concept. For the appropriate

beam scanning, a tilting mirror scanner is installed - PSH 10/2 SG from Piezo Sys-

tems Jena GmbH, Germany. To assure a constant intensity distribution across the

back aperture of the objective lens and an appropriate tilting of the beam for lateral

scanning of the specimen, the object plane of the scanning mirror has to be translated
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to the pupil plane of the objective lens. Therefore a 4f imaging system is assembled

in the manner shown in figure 2.2. Here the incoming beam is tilted (red line) with

respect to the central beam (green line), which is translated into lateral displacement

of the PSF in the focal plane (inset on the right hand side).

scanning mirror

incoming beam

f lens 1 f f lens 2 f2211 objective lens

spatial displacement
of the PFS

x

z

Figure 2.2: A beam scanning schematic which deploys 4f imaging. The displacement
of the PSF in lateral direction is shown in the inset on the right hand side.

2.3 Optical setup

The other aspects of the technical assembly are orientated on previously built STED

setups, which have been published in more detail in the following theses [37,38]. The

setup contains mainly four parts, which are schematically drawn in figure 2.3 and

described in detail in the following.

Excitation light source

The excitation of the fluorescence is provided by a pulsed 532nm, 80MHz laser diode

(PicoTA from Picoquant, Germany). The laser diode can be triggered by an external

signal, which assures the temporal alignment of the excitation and the STED pulses.

The excitation beam is spatially filtered by a 5m long single mode fiber (Thorlabs Inc.,

USA), which provides in combination with an achromatic lens a collimated beam with a

plane phase distribution. The pulse width of the excitation is around 80ps, the value is

measured with a fast photo multiplier tube (Hamamatsu, Japan, temporal resolution

of 35ps) and a single photon counting card SPC730 (Becker & Hickel, Germany). The

polarization of the excitation light is chosen to be linear and parallel with respect to

the STED beam polarization for optimal STED efficiency. During the early stages of

this project, a pulsed 470nm laser diode (PicoQuant, Germany, 80MHz, pulse width

100ps) is deployed instead of the 532nm laser source.
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Figure 2.3: A schematic of the STED setup with an excitation laser, an STED laser and
an additional laser for triplet depopulation and a cryostat. For detailed
schematic of the cryostat, see fig. 2.1.
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STED light source

The STED beam is provided by an optically pumped oscillator (OPO, APE, Germany).

Here, a particular Ti:Sa wavelength (from MaiTai laser, Spectra Physics, Germany)

at 80MHz is used with two non-linear processes to produce a new wavelength in the

visible range of the light spectrum. The OPO wavelength is tunable in the range from

560nm to 610nm. The pulses have a width of several tens of femtoseconds. How-

ever, the necessary pulse widths for optimal STED microscopy lie above 100 picosec-

onds. Therefore the OPO pulses are stretched with a single mode fiber of 50m length

(Schäfter und Kirchhoff, Germany), which produces a pulse widths of around 120 pi-

coseconds. The single mode fiber also filters the laser mode spatially and provides

a collimated beam in combination with an achromatic lens. A laser power controller

(LPC, from BEOC, USA) is used to control the intensity of the STED laser (not shown

in fig. 2.3 for simplicity). The polarization of the STED beam is chosen to be linear due

to the constriction of the semi-circular π radians phase shift mask. The phase mask

is mounted on a replaceable holder, so that the shape of the STED PSF can then be

switched between a single diffraction limited spot for the spectroscopic measurements,

and a semi-circular π radians retarded 1D doughnut for the resolution enhancement

measurements, respectively.

The optimal STED efficiency depends on the temporal alignment of the excitation

and the STED pulses. Therefore, a 80MHz seed signal from the Ti:Sa laser system is

transferred to a time delay box (see fig. 2.3). The appropriately delayed signal (the

delay time can be tuned with the resolution of 4ps) is used to trigger the excitation

source. The fine adjustment is done by measuring the fluorescence depletion due

to STED of a fluorescent sample as a function of the delay time. This is shown in

figure 2.4, where the excitation pulse is fixed and the STED pulse is swept in time.

The maximum STED efficiency is reached when the STED pulse immediately follows

the excitation pulse. For a delay of more than 10ns, the STED efficiency vanishes

completely due to short fluorescence lifetimes of 2-3ns [37].

Triplet depopulation light source

A third laser source is used to tackle the triplet population issue at low temperatures.

The deployed lasers are diode pumped solid-state lasers (DPSSL) with wavelength

671nm and 300 mW of total power in CW mode (Shanghai DremLasers, China and

Alphalas, Germany). To raise the total power, two lasers are coupled into one 2.5m

long single mode fiber (Schäfter und Kirchhoff, Germany) with polarization alignment

perpendicular with respect to each other. This provides a nearly circularly polarized

light after the fiber. The use of the single mode fiber and an achromatic lens provides

a collimated beam and thereby produces a single, diffraction limited spot. The triplet
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Figure 2.4: The fluorescence depletion due to STED as function of the time delay be-
tween the excitation and STED pulses (black line). The repetition of the
excitation pulse position is shown as red line. The optimal delay time is
around several ps.

depopulation intensity is controlled by a LPC.

Detection

The signal detection can take place in two different modes: (1) confocal and (2) non-

confocal configuration.

The confocal configuration is used for an efficient detection of the fluorescent light

originating from the focal plane. Therefore, the collimated fluorescence beam is fo-

cused with an achromatic lens onto a multimode fiber with the appropriate diameter

of 50µm. The interplay of the fiber diameter (pinhole size) and the focal length of

the detection lens dictates the confocal condition [27]. The fluorescence contribution

is separated from the laser reflections with an appropriate fluorescence filter. The

harvested fluorescence light is detected with an avalanche photo diode (APD, IdQuan-

tique, Switzerland), which translates the single photon impacts into electronic TTL

pulses.

The non-confocal configuration is used for the spatial alignment of the diffraction

limited focal spots. Therefore, highly reflective gold spheres with 150nm in diameter

(150nm gold colloids from BBInternational, UK) are scanned with the laser PSFs. The

scattered light is then deflected by a replaceable pellicle beam splitter (Thorlabs Inc.,

USA) and focused onto a multimode fiber with 600µm diameter. This aperture reduces

the background noise that does not originate from the focal plane of the objective lens.
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The size of the aperture is chosen to be twelve fold size of the confocal condition

and fulfills the non-confocal requirements. The detected light is then translated into

electronic TTL pulses by a photo multiplier tube (PMT, Perkin Elmer, USA).

The electronic TTL pulse sequence is recorded by a single photon counting PC card

SPC730 (from Becker & Hickel, Germany). This card provides the ability to mea-

sure the arrival time histograms of detected photons (time correlated single photon

counting, TCSPC). Therefore the delay time between the TTL pulse on the detection

side and the laser pulse is recorded for every detected photon. Adding these delay

times in one graph provides the arrival time histogram of the detected photons. This

measurement technique can be used to obtain the fluorescence lifetime and to distin-

guish between the fluorescent and the non-fluorescent photons (e.g. scattering) due

to different temporal characteristics. This ability is used in this work for the remov-

ing the contribution of the laser scattering, which originates from the refractive index

mismatch in the samples (for detailed description see the appendix A).

2.4 PSF engineering

For optimal STED efficiency, the diffraction limited spots from all lasers has to be

spatially aligned. To assure the spatial alignment in all three dimensions, every sample

contains sparsely distributed gold spheres for the non-confocal alignment of the PSFs.

First, the aberrations are eliminated by consequent observation and optimization of

each PSF. The spatial alignment of the PSFs is tuned in the lateral direction with

the dichroic mirrors and in the axial direction with the z-position of the particular

achromatic lenses.

For the spectroscopic measurements, like the determination of the STED effi-

ciency, the anti-Stokes excitation or the influence of the triplet population to STED

microscopy, all the PSFs are adjusted in same manner, like in figure 2.5. This config-

uration provides the optimal spatial alignment of the diffraction limited spots.

As already described on page 6, a modified STED intensity with a zero is necessary

for the resolution enhancement in STED microscopy. The STED intensity spot is

modified by a semi-circular π-retardation phase mask, shown in figure 2.6(c). Here,

half of the STED beam travels through an additional layer with higher refractive index

than the remaining beam part. This phase mask produces an intensity distribution of

two neighboring spots with a valley in between (central PSF in figure 2.6(a)). At optimal

conditions, the minimum value of this valley is zero. For destructive interference in

the focal plane, the phase of the retarded part of the STED beam needs to be exactly

π radians. This is controlled by the thickness of the layer as well as by the refractive
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(a) Diffraction limited spots alignment of excitation (532nm), STED (568nm) and triplet depopu-
lation (671nm) laser sources.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e 

co
un

t r
at

e 
[a

.u
.]

x distance [µm] 

 532nm
 STED
 671nm

(b) Line scan through overlapped images in figure
2.5(a).

Figure 2.5: The PSF alignment in lateral dimension for spectroscopic studies.

index of the utilized material. The layer thickness is given by

d =
λSTED

2∆n
(2.1)

where ∆n is the difference between the refractive index of the material and air. The

phase plates were prepared by thermal evaporation and deposition in vaccum of the

MgF2 with refractive index nlayer = 1.367 for the wavelength of 563nm [39].

2.5 Experimental prerequisites

Sample preparation

The daily assembly of the cryostat with the optical setup causes slightly different

tilting angles of the sample with respect to the optical axis of the objective lens. This
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(a) STED intensity distribution with a semi-circular π phase mask (568nm) aligned with excita-
tion (532nm) and triplet depopulation (671nm) spots.
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(c) The semi-circular π radiant phase re-
tardation mask.

Figure 2.6: The PSF alignment in lateral dimension for resolution enhancement.

fact necessitates an in-situ1 PSF probing. Therefore, a sample always contains besides

the fluorescent specimen of interest, a sparsely distributed gold colloids for the PSF

adjustment.

The clean cover glass is incubated with a poly-l-lysine solution (Sigma-Aldrich

Chemie GmbH, Germany) for 10 min and then the residual solution is sucked off.

The poly-l-lysine treated surface is incubated with a diluted aqueous gold colloid so-

lution (10 parts water plus 1 part gold colloid stock solution) for further 10 min, the

residual solution is sucked off again. This assures a gold colloids distribution with the

spatial distance of 10-20 µm in between. As a final step, the fluorescent specimen is

attached to the surface, mounted with a drop of glycerin and covered with a second

clean cover glass.

Consequently the sample is attached to the sample holder with glycerin to assure

good thermal contact. Because the cover lid is only held by the vacuum inside the

vacuum chamber, the cryostat is evacuated very gently to avoid the mounting medium

from being sucked off. The cryostat with slightly reduced pressure inside the vacuum

1in the place lat.
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chamber is now mounted onto the stage.

PSF and detection adjustment

First, any casual present aberrations have to be eliminated. Usually two kinds of aber-

ration were observed during the CryoSTED project - (1) spherical aberrations and (2)

coma aberrations. The usually observed aberrations are shown in figure 2.7. Luckily,

(a) The correction for the spherical aberration is
provided by the correction ring of the objective
lens HCX PL FLUOTAR L (Leica Microsystems,
Germany).

(b) The correction for the coma aberration is made
by tilting the mounting stage with respect to
the optical axis of the objective lens with a
custom-made tilting device.

Figure 2.7: Elimination of the commonly observed aberrations in the CryoSTED
project. The PSFs are recorded with non-confocal PMT detection.

both aberration can be corrected. The correction of the spherical aberration is done

by adjustment of the correction ring of the objective lens. For the elimination of the

coma aberration, the angle of the sample inside the cryostat with respect to the optical

axis of the objective lens has to be adjusted to 90◦. This ability is provided by a cus-

tom made tilting mount with two degrees of freedom. Both adjustments are iteratively

performed and the quality of the PSFs is observed by eye in wide-field illumination.
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After the elimination of the aberrations, the three PSFs (excitation, STED and triplet

depopulation spots) are adjusted for the appropriate overlap at room temperature. To

this end, the reflection of the 150nm big gold colloids in the non-confocal detection

mode with a PMT is observed for each laser source. After the alignment steps ful-

fill the requirements, the confocal detection is adjusted roughly by maximizing the

fluorescence signal of the APD.

Cooling of the sample

The sample is cooled by a constant cold nitrogen gas flow, which is provided by a

membrane pump. The temperature on display is observed and if the temperature is

below the freezing point of the mounting media, the turbo molecular pump is switched

on. The cause for this is that under high vacuum conditions, the liquid mounting

medium evaporates completely, and thereby causes the loss of thermal contact. Thus

the display temperature needs to be less then 270K for aqueous solutions, less then

260K for glycerin and less then 160K for ethanol. In case of poly-vinyl-alcohol (PVA)

the mounting medium is rigid at room temperature. Therefore, in principle, the turbo

molecular pump can be switched on before cooling. After the vacuum reaches common

values below 1 × 10−5 mbar, the sample is cooled to lower temperatures.

After the cooling process, the alignment of the PSFs is checked again and optimized

if necessary. The confocal fluorescence detection is optimized to maximum signal.
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Chapter 3

Experimental results

The utilization of liquid nitrogen or even lower temperatures in fluorescence mi-

croscopy brings along new challenges. Besides the technical efforts, like the need

for vacuum technology and the high mechanical stability requirements, one has to

solve the photophysical problem of high triplet population at low temperature condi-

tions [40]. The triplet population build-up leads to a reduced brightness of fluores-

cence and increases the bleaching probability [36,41]. The interference of the triplet

population within the STED microscopy has been hardly studied to date. The major

tasks for this work are the characterization of the influence of the triplet population

within STED microscopy and to seek a practical solution for minimizing the triplet

population.

3.1 Triplet population

Basic considerations on the triplet state

The electron configuration of fluorescent dyes and its interaction with photons is

mainly given by the delocalized π-electrons [10]. These form a regular electron cloud

and propagate along the consolidated π-orbital system. The wave functions describe

the characteristic behavior of the electron system and their eigenvalues provide an

energy spectrum of the fluorescent molecule. A common way to visualize the energy

spectrum is the Jablonski diagram. A qualitative Jablonski diagram highlights the

energetic configurations and the pathways of possible transitions between them as

shown in figure 3.1. The energy diagram of a fluorescent molecule usually consists

of two kinds of the electronic configurations: a singlet configuration with a zero spin

sum
∑

i ~si = 0, and a triplet configuration with
∑

i ~si 6= 0. A transition between them

requires a spin flip, which is forbidden from the basic quantum mechanical model.

24



However the crossing probability can be increased by the introducing of small distor-

tions, e.g. by the addition of heavy atoms to the molecular structure [42].
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Figure 3.1: Jablonski diagram with the electronic singlet and triplet systems and the
significant transitions. Every electronic state splits into vibrational states.
The inset shows the typical ranges for presented rate constants, for abbre-
viations see corresponding text.

In the ground state S0, the molecules have the singlet configuration and can be

excited to higher singlet states S1, S2, ..., SN by absorbing a photon with the corre-

sponding wavelength. The amount of excited molecules is given by the product of the

excitation cross section and the photon flux σexchexc. The relaxation of the high ener-

getic, excited states S(N≥2) to the first excited state S1 is given by the Kasha rule [43].

These relaxations are very fast, the rates are in the same range as the vibrational re-

laxations kvib, they relax within several hundreds femtoseconds into the S1 state. In

the fluorescent molecules, the first excited state S1 has several channels for relaxation,

as highlighted in fig. 3.1. On one hand, the molecules can cross the S1 → S0 transition

by sending out a photon with the fluorescence rate kfluo, on the other hand they can

relax radiationless into the S0 state via internal conversion rate kic. The third pathway

for the molecules leads to the triplet state T1 with a intersystem crossing rate kisc. The

relaxation from the T1 state into the ground state S0 takes place in two manners: (1)

the molecule sends out a photon with a phosphorescence rate kphosph or (2) it relaxes

radiationless with the rate krelax. Because the transition T1 → S0 requires a spin flip,

both rates are slower than the singlet-singlet transitions (compare inset of fig. 3.1).

The temporal evolution of the state populations in the Jablonski diagram is de-
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scribed by the rate equations with the significant rates from fig. 3.1:

d

dt
S1 (t) = − (kfluo + kic + kisc) S1 (t) + σexchexcS0 (t) (3.1)

d

dt
T1 (t) = kiscS1 (t) − (krelax + kphosph) T1 (t) (3.2)

d

dt
S0 (t) = (kfluo + kic) S1 (t) − σexchexcS0 (t) + (krelax + kphosph) T1 (t) (3.3)

To obtain the population numbers in equilibrium, the rate equations are solved for

the steady state condition (temporal derivatives equal zero). The solution for the triplet

population T1 in case kfluo+kic ≫ kisc (compare inset of fig. 3.1) is given by expression:

T1 =
kisc

krelax + kphosph + kisc
(3.4)

The graphical presentation of expression 3.4 in figure 3.2 shows the characteristic

behavior of the triplet population with the change of krelax. It can be seen that the

reduction of relaxation constant krelax by 2-3 orders of magnitude comes along with

the triplet population build-up, where 90% of molecules are trapped in the triplet

state.
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Figure 3.2: Relative triplet population as function of krelax calculated from expression
3.4

Triplet population build-up at 76K

The properties of different dyes are studied at 76K with particular attention to the

triplet state population. The obtained results show the similar characteristics for all
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the dyes investigated, which underlines the general validity of the concepts presented

in the following.

The fluorescence behavior of the fluorescent marker Rh123 diluted in glycerin at

76K is shown in figure 3.3. The time trace in the upper graph shows the fluorescence

response to a certain temporal excitation pattern. The sample is illuminated with

a 470nm, 80MHz laser spot for 50ms, followed by 50ms long dark period, with the

subsequent repetition. The excitation pattern is shown via the green-shaded areas in

the background of figure 3.3.

When the excitation shutter opens for the first time, the fluorescence appears at its

initial value. From there on, a monotonous decrease in fluorescence can be observed.

After nearly 40ms, the value of the detected fluorescence reaches a saturation level

around 20% of the initial fluorescence value. After the dark period, the detected fluo-

rescence rises to 30% of the original value and, again, decreases to the plateau level

of around 20%.
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Figure 3.3: Triplet population of Rh123 at 76K and its behavior on the excitation pat-
tern (green-shaded areas) with different dark periods. (sample: Rh123
diluted in glycerin, excited with 470nm 80MHz laser diode.)

The decrease of the detected fluorescence is interpreted as build-up of a dark

molecule population within the excitation spot. Thereby the plateau level of fluores-

cence is given for the equilibrium condition between the build-up and the relaxation

of the triplet population. The amount of molecules, trapped in the dark (triplet) state,

is estimated by the difference of the initial fluorescence and the residual plateau level.
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Thus at 76K nearly 80% of the molecules inside the excitation spot are trapped in the

triplet state after reaching the steady state condition. The partial recovery of the fluo-

rescence around 10% after a 50ms dark period indicates that the relaxation time of the

triplet population is dramatically increased compared to room temperature conditions.

The lower trace in figure 3.3 shows the fluorescence behavior for the same sample

with a changed excitation pattern. Here the dark period between the excitation is

increased to 700ms. During the first excitation period, the fluorescence shows the

same behavior as described before: the detected signal decreases from its initial value

to the plateau level within 40ms. After a dark period of 700ms, the fluorescence signal

has recovered to ∼80% of the original value from the first excitation period. During

the second excitation period, the fluorescence again decreases to the plateau level of

20%.

In figure 3.3, the presented traces with different temporal excitation patterns indi-

cate a dark state population at 76K with a lifetime between 50ms and 700ms. This

dark state is supposed to be the triplet state T1. The lifetime of the triplet popula-

tion at 76K is measured by varying the dark period between two excitation periods.

The amount of molecules trapped in T1 is estimated from the difference of the initial

and the remaining fluorescence level. The measurements for different dark periods

are carried out at the same position of the sample, the contribution of the possible

photo-bleaching is corrected from the remaining fluorescence level.

The data for different times between the excitation periods are presented in fig-

ure 3.4. The triplet population curve (black squares) decreases exponentially with

increasing waiting times between two excitation periods. The exponential decay fit for

the triplet population delivers a lifetime of 511ms. The contribution of the bleaching

(red dots) shows a decrease of 11% from the original fluorescence value.

The data presented in figures 3.3 and 3.4 show a fluorescence decrease during

the excitation periods to a saturation level plateau within 40ms. The cause for the

fluorescence reduction is a build-up of the dark state, which is highly favored by

the slow relaxation time of this dark state. This dark state is supposed to be the

triplet state T1, but the measurements of the fluorescence decrease cannot rule out

the existence of an other dark state, which has been reported for a specific rigid matrix

[44].

The results can be nicely reproduced for every fluorescent marker that we have

tried out during this project. The dyes with known high intersystem rate (EosinB and

Atto465) have shown high triplet population build-ups at 76K, as well as the dyes

with known low triplet yield at room temperature (e.g. Rh110, Rh123 and Rh6G).

The fluorescent proteins (GFP and EYFP) have also shown similar behavior at 76K.

Independent from the fluorescent marker choice, the CryoSTED microscopy faces very

high triplet population values of around 80% and 90%. Thus a study of the inter-
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Figure 3.4: Left ordinate: Spontaneous triplet relaxation of Rh123 dye at 76K as func-
tion of relaxation time. Right ordinate: Bleaching approximation from fluo-
rescence signal remaining after triplet population. (sample: Rh123 diluted
in glycerin, excited with 470nm 80MHz laser diode. Triplet population is
estimated from peak height value.)

ference between the triplet state population and the stimulated emission depletion is

neccessary.

Influence of the triplet population in CryoSTED microscopy

The study of interference of the triplet population with the STED photons at 76K uti-

lizes a combination of a common STED microscope setup with pulsed laser sources

and a cryostat as described in section 2. The investigated fluorescent markers are

diluted in glycerin and polyvinylalcohol (PVA), and the fluorescent proteins in PBS-

buffered water. The diffraction limited excitation and de-excitation laser spots are

spatially aligned for optimal STED efficiency. The use of pulsed laser sources necessi-

tates a temporal alignment of the pulses. This alignment was performed by the tuning

of the electronic time delay between the excitation and de-excitation pulses.

The interaction between the triplet population and the STED photons can be visu-

alized most prominently, when the contribution of the stimulated emission depletion

of the first excited state S1 is ruled out. The fluorescence lifetime of the dyes used

is around 2-3 nanoseconds, and the lifetime of the triplet state is 0.5 seconds. Thus
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a stimulated emission depletion pulse tuned to arrive 10ns after the excitation pulse

can only interact with the triplet population (compare fig. 2.4). Commonly, the tempo-

ral alignment in STED microscopy is optimized for the best STED efficiency when the

STED pulse immediately follows the excitation pulse [24,45]. Both configurations are

tested on the fluorescent dyes on purpose to highlight the most prominent differences.

Figure 3.5 shows a typical behavior of the fluorescence on STED illumination at

76K. This particular graph shows the fluorescence development of green fluorescent

protein (GFP) for 10ns delayed (black squares) in contrast to several picoseconds de-

layed (red squares) STED pulse. The fluorescence signal in both time traces increases

as the excitation is switched on. The illumination with the STED light causes the

fluorescence signal to increase by a factor 1.4 compared to the initial fluorescence

value in the case of 10ns delayed STED pulse (black squares). When the STED light

is switched off, the fluorescence signal is reduced. The following repeat of the STED

illumination show the same picture: when the STED light is applied to the sample, the

fluorescence signal is increased. Since the time trace was taken on the same sample

position, an overlaying signal reduction due to photo-bleaching is observed.
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Figure 3.5: STED applied at 76K for different time delays between excitation and STED
pulses. (sample: GFP in PBS-buffered water, excited with 470nm 80MHz
laser diode and de-excited with 565nm 80MHz OPO system.)

The fluorescence trace with optimal temporal excitation and STED pulse alignment

shows a reduction of the fluorescence signal (red dots in fig. 3.5), the fluorescence
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signal is instantly reduced to 40%. When the STED illumination is interrupted, the

fluorescence signal increases. The general reduction of the fluorescence due to photo-

bleaching is also observed. The fluorescence deviation caused by the STED effect

vanishes with the number of following STED illumination periods.

The fluorescence trace in figure 3.5 with the 10ns delayed pulses arrangement show

an increase in fluorescence. The direct excitation by the STED pulse was excluded in a

separate measurement, where the sample was illuminated with the STED beam only.

Therefore the fluorescence increase can be immaculately accounted to the interfer-

ence of the STED photons with the triplet population. Somehow, the molecules which

are trapped in the T1 state absorb a STED photon, and thus return to the fluorescent

S1 state. The interpretation of the trace with the optimal excitation and STED pulse

alignment is more difficult, because the fluorescence reducing STED effect overlays

the interaction of particular STED photons with the triplet population. The achieved

fluorescence depletion of 60% also indicates a negative influence of the triplet popula-

tion within STED microscopy in a sense of reduced STED efficiency.

The presented fluorescence behavior in STED microscopy at 76K has proved to be

general for all dyes used. As long the triplet population is present, an increase of

the fluorescence signal has been observed. The fluorescence signal gain is caused by

the triplet depopulation, stimulated by absorption of STED photons. Thus a negative

influence on the STED effect, in particular worse signal to noise ratio and a reduced

STED efficiency, can be expected. Thus the presence of the triplet population is ex-

pected to reduce the resolution enhancement in STED microscopy, referring to the

dependency of the resolution enhancement on STED efficiency. The optimization of

the STED microscopy in terms of the resolution enhancement necessitates an elimi-

nation of the negative influence of the triplet state. A determination of the pathway for

the triplet depopulation is necessary in order to find a practical solution for the triplet

population issue.

Optical stimulated pathways from triplet to singlet

The triplet population issue at low temperatures can be solved by illumination of the

trapped molecules with light, as the measurements in figure 3.5 already have sug-

gested. A closer look at the Jablonski diagram suggests only two possible optically

driven pathways from the triplet into the singlet states: a direct stimulation of the

T1 → S0 transition and a T1 → TN transition with subsequent intersystem crossing to

the high energy singlet states SN.

An experimental test for the suggested pathway from the state T1 to S1 via higher

excited states TN, SN is the observation of the fluorescence from the S1 state during the

triplet depopulation. A triplet population of the fluorescent marker Rh6G is prepared

during excitation periods with the 532nm, 80MHz laser spot (green-shaded areas),
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followed by dark periods without the excitation illumination. The triplet population

prepared in that manner is then illuminated with a 671nm, CW laser spot (red-shaded

areas) at maximum intensity of 5.3MW/cm2. To rule out the possibility of the two

photon excitation, the sample is illuminated with 671nm after a dark period of 520ms

again (red-shaded area at around 950ms in fig. 3.6).
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Figure 3.6: Rhodamine6G shows a decrease of one order of magnitude in fluorescence
due to triplet population build-up. The illumination with 671nm causes
fluorescence from first excited singlet state. (sample: Rh6G in glycerin,
excited with 532nm 80MHz laser diode, triplet depopulation with 671nm
CW laser at 5.3MW/cm2.)

The fluorescence trace in figure 3.6 shows the behavior of Rh6G at 76K. During the

excitation period (first green-shaded area), the fluorescence decreases to a residual

fluorescence plateau of 11% of the initial signal value. During the second excitation

period, the fluorescence time trace starts at 23% of the original value, and decreases

to the plateau again. An illumination of the sample with the 671nm laser spot causes

a fluorescence signal (within the red-shaded areas in fig. 3.6), which is suppressed in

its height by three orders of magnitude compared to the original fluorescence value.

The additional illumination of the sample at the end of the measurement shows no

significant fluorescence signal.

In the presented fluorescence trace the decrease of the detected fluorescence is

ascribed to the triplet population build-up (compare the measurement in fig. 3.4). For
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the combination of 532nm excitation source and Rh6G, 89% of molecules are trapped

in the dark triplet state. The second excitation period shows that the amount of the

triplet is reduced to 77% after 50ms relaxation time, which is in very good agreement

with the triplet population decay with a lifetime of 500ms. The most interesting fact

is the appearance of fluorescence during the illumination with 671nm laser spot. A

possible contribution due to two photon excitation is excluded by the illumination of

the sample with the 671nm spot without present triplet population. Thus the observed

fluorescence caused by 671nm light can only originate from the triplet population.

The shown measurements unveil the pathway of the optical stimulated triplet-

singlet transition over the higher excited states TN, SN. This measurements also pro-

vide a practical solution to the triplet population issue in CryoSTED microscopy. We

suggest the utilization of an additional red-shifted laser source on purpose to effec-

tively depopulate the triplet state. This technique adds some benefits to STED mi-

croscopy at 76K, especially the enhanced brightness of the fluorescence markers due

to the strongly reduced retention in the dark triplet state.

The following sections (see pages 33 and 50) will present the benefits for confocal

imaging at 76K in terms of brightness enhancement and the influence on the STED

efficiency.

Triplet depopulation for imaging at low temperatures

The fluorescent specimen contains sparse diluted silica spheres of 65nm diameter

filled with Atto532. Glycerin is chosen as mounting medium due to its small refractive

index mismatch compared with glass (nglycerin = 1.47, nglass = 1.56) and its glassy-

like freezing properties [46]. The excitation (532nm, 80MHz) and triplet depopulation

(671nm, CW) laser spots are spatially aligned for optimal triplet depopulation. The

confocal images are taken sequentially line by line with alternating 671nm illumina-

tion. First, a line in the fast scanning axis is scanned under the illumination with

only the excitation spot; after that, the same line is scanned with the illumination of

both, the excitation and the triplet depopulation spots. In that manner both pictures

are taken parallel and this scanning mode eliminates the influence of slow drifts. The

figure 3.7 shows a composition of typical images obtained at 76K.

The parallel obtained images of the Atto532 fluorescent beads in figure 3.7(a) show

a dramatic brightness increase due to the triplet state depopulation of the Atto532

molecules. The intensity profiles along the white line are shown below in 3.7(b), the

brightness enhancement for the two shown beads is about 7-8. The development

of brightness increase as a function of the 671nm laser intensity is shown in the

fig. 3.7(c). It shows the averaged values of brightness increase, obtained from many

Atto532 beads. The curve shows an initial increase in the brightness due to the more

efficient triplet depopulation, followed by small decrease in the brightness for larger
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(a) Picture taken on silica beads with Atto532 at 76K. On left, the sample is illuminated
with excitation laser source (532nm) only, on the right additionally a 671nm laser
spot at 14.8MW/cm2 is switched on.
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(b) A line profile in 3.7(a) across the white lines.
The brightness enhancement provides seven-
fold higher intensity counts.
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Figure 3.7: Optically triggered triplet depopulation improves fluorescence imaging mi-
croscopy at liquid nitrogen temperatures. (sample: Atto532 spheres, 65nm
in diameter, excited with 532nm 80MHz laser diode. Triplet depopulation
with fiber-coupled 671nm CW.)
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intensities due to photo-induced bleaching.

The presented results confirm the expected brightness enhancement in the fluores-

cence imaging at 76K. The triplet depopulation with 671nm laser source is sufficient

and the saturation-like behavior indicates a completely empty triplet state under the

presented conditions.

Conclusions on the triplet state at 76K

The triplet population build-up at low temperatures is an issue for fluorescence imag-

ing microscopy in general. The presented results have been reproduced for several

other fluorescent markers; all have shown, besides small deviations in absolute val-

ues, a triplet population at 76K. The amount of the molecules trapped in triplet state

lies between 80% and 90% for all of the studied fluorescent markers. Therby the

triplet population has huge negative influence on STED microscopy in terms of re-

duced signal-to-noise ratio and reduced STED efficiency.

The solution for the triplet issue at low temperatures is provided by the introduc-

tion of an additional laser spot, which is assigned particular to the triplet depopula-

tion. The shown results confirm a complete triplet depopulation under the utilized

conditions. A patent has been applied for for the here presented solution to the triplet

population problem [47].
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3.2 Anti-Stokes excitation

Thermal distribution of vibrational modes

The disadvantage associated with direct anti-Stokes excitation has prevented the uti-

lization of STED wavelengths with optimal stimulated emission cross section to date.

The applied STED intensities directly stimulate the S0 → S1 transition and thereby

compete with the fluorescence depletion process. At a certain wavelength and inten-

sity, the anti-Stokes excitation just compensates the stimulated emission depletion

and thus annihilate the resolution enhancement. A control of the anti-Stokes excita-

tion by a conditional change can allow the appliance of the desired STED wavelengths

and thereby increase the STED efficiency.

The energetically higher excited vibrational states of the S0 state are accountable

for the direct anti-Stokes excitation by the STED photons. Usually, the transitions

from the excited vibrational states of the electronic ground state to a higher electronic

state is strongly suppressed. However large intensities from several MW/cm2 to few

GW/cm2 are applied to the samples in STED microscopy. Thus the very small excita-

tion cross sections are compensated by the large photon flux hSTED.

Since the population of high excited vibrational states is thermal activated [42],

a reduction of the temperature is a promising approach to reduce the anti-Stokes

excitation. A Jablonski diagram in fig. 3.8, considering the two singlet states S0 and

S1, shows the estimated occupation of the vibrational states at room temperature (red

dots on the left hand side) and at liquid nitrogen temperature (blue dots on the right

hand side). The reduced number of high excited, "‘hot"’ vibrational states at 77K

therefore allows the utilization of STED wavelengths with larger stimulated emission

cross section, than it is possible to date.

The occupation density of the vibrational states is given by the Boltzmann distribu-

tion [48]. The density f is a function of the energy Evib of a particular vibrational state

and of the thermal energy kBT , where T is the temperature and kB the Boltzmann

constant:

f (E, T ) = exp

(

−Evib

kBT

)

(3.5)

For the calculation of the anti-Stokes excitation cross section, we need to consider all

occupied vibrational states, which have the probability to be lifted to the first excited

electronic state S1 by a STED photon. These are all vibrational states with energy

Ecut ≥ ES1−S0
− EλSTED

. The total number of the occupied states above the energy level
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Figure 3.8: Schematic Jablonski diagram considering ground and first excited sin-
glet state of a fluorescent molecule. The occupation density of vibrational
states is estimated from expression 3.5 for room temperature (296K, red
dots on the left hand side) and liquid nitrogen temperature (77K, blue dots
on the right hand side). "‘Hot"’ vibrational states can be excited to first
electronic state S1 with probability σ∗

exchSTED. The largest deployable STED
wavelength at same anti-Stokes excitation level is a function of energy gap
∆E (S1 − S0), Ecut and temperature T from expression 3.8.

Ecut is given by the integral

#(E ≥ Ecut) =

∫ ∞

Ecut

dE exp

(

− E

kBT

)

(3.6)

= −kBT exp

(

− E

kBT

)∣

∣

∣

∣

∞

Ecut

(3.7)

= kBT exp

(

−Ecut

kBT

)

(3.8)

Since the anti-Stokes excitation cross section is proportional to number of the occu-

pied vibrational states #(E ≥ Ecut), a reduction of temperature will provide an expo-

nential decrease of the anti-Stokes excitation.

Excitation in anti-Stokes regime at different temperatures

The fluorescence excitation and emission spectra are obtained for different temper-

atures in order to demonstrate the temperature dependency of the excitation cross

section in a common fluorescence spectrophotometer. Since the excitation sources at-

tached to a spectrophotometer do not provide the necessary large intensities for STED

microscopy, the direct anti-Stokes excitation is measured as function of temperature

for the selected STED wavelengths in a custom-built STED microscope.
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The Atto532 silica beads are chosen for the appropriate comparability as model

sample. For the measurements in a spectrophotometer, a glycerin diluted solution of

these beads is cooled inside a custom made flow-through cryostat inset. The exci-

tation and emission spectra are taken at selected temperatures as a function of the

wavelength.

The measurements in the STED microscope are carried out at selected STED wave-

length as function of the temperature. The value for the anti-Stokes excitation is

normalized to the fluorescence level, caused by a common excitation source (532nm,

80MHz laser) with Iexc = 2.2kW/cm2. Therefore two images are taken line by line with

the alternating fluorescence excitation with 532nm at 2.2kW/cm2 and STED wave-

length at ISTED. This acquisition mode provides two parallel recorded images with

different fluorescence origin: (1) excitation with 532nm laser spot and (2) anti-Stokes

excitation caused by STED spot. The intensity values of single beads are taken and

compared, in a manner that the calculated ratio is plotted as a function of the temper-

ature for selected, measured STED wavelengths. For the wavelengths 560nm, 568nm

and 580nm, the triplet depopulation 671nm spot is switched on for both images in or-

der to rule out any triplet population contribution. In case of 605nm measurements,

no additional 671nm light is used because no triplet population was observable in the

corresponding temperature regime.

Figure 3.9(a) shows the temperature dependence of the fluorescence excitation

spectrum. The excitation cross section in the anti-Stokes regime decreases with lower

temperatures. Figure 3.9(b) shows the results of the directly obtained anti-Stokes

excitation in STED microscopy for the selected wavelengths. The measured ratio

Fanti−Stokes/F shows a decrease to zero anti-Stokes excitation contribution with low-

ering the temperature. The data values are fitted with the function

Fanti−Stokes

F
= A · kBT exp

(

−Ecut

kBT

)

+ background (3.9)

where A is a proportional factor.

The presented results are conform with the idea of the "‘hot"’ vibrational states as

being the source for the anti-Stokes excitation. Especially the exponential decrease

of the anti-Stokes contribution to the fluorescence excitation clearly supports this

prediction. The data obtained from these fits are compiled in table 3.1.

The utilization of low temperature in STED microscopy strongly suppress the anti-

Stokes excitation. The data for the 560nm STED wavelength show the limit of the

liquid nitrogen based cooling. Here the decrease in anti-Stokes excitation stops at the

value of 27% at 76K. From the fit function it can be concluded, that the anti-Stokes

excitation can be reduced to below 5% by lowering the temperature to 58K at 560nm.
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Figure 3.9: The compiled results for the anti-Stokes excitation behavior on the tem-
perature and wavelength change.
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STED λ Ecut Fanti−Stokes/F temperature
at 76K for 5% excitation

605nm 245 meV ≪1% 280K

580nm 105 meV ≪1% 172K

568nm 68 meV 1 % 115K

560nm 27 meV 27% 58K

Table 3.1: Compiled results from the anti-Stokes excitation measurements.

Benefits to STED microscopy

The application of liquid nitrogen temperatures in the STED microscopy opens the

possibility to deploy the STED wavelengths with higher stimulated emission cross

section as described in figure 1.4. According to the theory of the STED effect, this will

provide higher saturation ratios ξ, and thereby higher resolution enhancement.
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3.3 Saturation of stimulated emission depletion

Dependence of fluorescence depletion on STED intensity

The STED microscopy is one of the first experimentally realized and the most devel-

oped approaches to subdiffraction light microscopy among the RESOLFT family to

date. The resolution enhancement relies on the saturation level of stimulated emisi-

son cross section within the STED concept. According to the theoretical considerations

in section 1.3, the saturation characteristic of the fluorescence depletion for utilized

pulsed laser sources is described by:

F = exp (−σSTEDhSTED) (3.10)

where σSTED is the stimulated emission cross section and hSTED is the STED photon

flux. The STED photon flux hSTED is proportional to the applied laser intensity I. Thus

we can define the saturation behavior as a function of the laser intensity as following:

F = exp

(

− I

ISAT

)

(3.11)

The stimulated emission cross section can be then calculated from the reciprocal value

(ISAT)
−1 ∼ σSTED.

The theoretical saturation characteristic from expression 3.11 always shows a com-

plete depletion of the fluorescence. Although, it has been shown for certain experimen-

tal conditions that the fluorescence cannot be depleted to zero but remains at a certain

residual value [49]. A dependence of the residual fluorescence plateau on the STED

pulse width is observed; it is found empirically, that the optimal value lies at about

200-250ps. The utilized pulse width for presented measurements is about 120ps,

thus the observed residual fluorescence is expected to originate from that experimen-

tal arrangement. Hence the measured data are corrected for the residual fluorescence

Fresidual

F (I) = A exp

(

− I

ISAT

)

+ Fresidual (3.12)

The measurements of the fluorescence depletion saturation are done at 76K for

selected STED wavelengths. As a model sample Atto532 silica beads are used. The

fluorescence excitation source is a 532nm, 80MHz laser diode with diffraction lim-

ited spot. The stimulated emission is triggered by the OPO system (80MHz), coupled

into a 50m long single mode fiber for pulse stretching. The selected STED wave-

lengths (568nm, 575nm, 580nm and 605nm) do not show any anti-Stokes excitation

at 76K (compare with fig. 3.9(b)). The contribution of the triplet population is elimi-

nated by the use of the 671nm diffraction limited spot at maximum available intensity
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(∼37MW/cm2). The spatial alignment of the used PSFs is shown in figure 3.13, the

temporal alignment is adjusted for optimal STED efficiency.

Figure 3.10: The alignment of the PFSs for spectroscopic measurement of STED effi-
ciency.

For obtaining of data, two parallel images are acquired. The first with the illu-

mination of the excitation laser spot (532nm, 80MHz at 2.2kW/cm2) and the triplet

depopulation spot (671nm, CW at ∼37 MW/cm2), and the second with the excitation

and triplet depopulation spots as well as the additional STED spot (80 MHz). The flu-

orescence intensity for a particular bead is then evaluated from the images with and

without STED appliance. The calculated ratio gives the relative fluorescence decrease

due to stimulated emission depletion. Acquiring the images with different STED wave-

lengths and intensities completes the characteristics of the STED behavior at 76K and

is presented in figure 3.11.

The measured depletion shows a decay with the applied STED power to the residual

fluorescence value about 25% for each particuler STED wavelength. The depletion of

the fluorescence FSTED/F to a certain value, e.g. 0.5 takes place for lower STED laser

power for shorter STED wavelengths.

The data obtained at 76K cannot be fitted with a single exponential decay as a

function of the STED laser power. The only sufficient expression to described this

data with a model is by use of a stretched exponential decay

F (I) = A exp

(

− I

ISAT

)β

+ Fresidual (3.13)

with β = 0.46(4) for every STED wavelength.

Since a particular linear polarization of the excitation and the STED lasers is used

for these measurements, a stretched exponential depletion can be explained with a

random orientation distribution of the dipoles of the fluorescent markers. At low

temperature conditions, the rotation of the dipoles is dramatically suppressed. Thus

a dipole with not optimal orientation with respect to the given STED light polarization

particularly senses the reduced laser intensity. Hence, differently orientated rigid

dipoles contribute with different values for the ISAT. At room temperature, the rotation

speed simply smears out the particular contributions, so an averaged value for the ISAT
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Figure 3.11: Stimulated emission depletion at 76K as a function of STED power for
the selected wavelengths (squares), fitted with equation 3.12 (lines). The
inset shows the area of interest with the fitted saturation laser inten-
sities ISAT. (sample: Atto532 beads of 65nm in diameter, mounted in
glycerin, excited with 532nm 80MHz laser diode, STED with OPO system
at 80MHz, triplet depopulation with 671nm CW DPSSL at ∼37 MW/cm2.)

is measured.

Stimulated emission cross section

The key data from the measurements presented in fig. 3.11, the saturation intensities

ISAT for selected STED wavelengths are compiled in the table 3.2. Further, the value

for stimulated cross sections are calculated by using the relation

σSTED =
AλWλ

ISATτSTED
(3.14)

where Aλ is the illuminated area, Wλ is the energy of one photon and τSTED is the

width of the STED pulse. The measured values ISTED are used in expression 1.8 to

estimate the relative increase in the resolution with respect to 605nm.

The theoretical expectations on the behavior of the stimulated emission cross sec-
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STED ISAT hSAT
STED σSTED estimated increase

wavelength in resolution
[W/cm2] [cm−2] [cm2] compared with 605nm

568nm 1.5 × 106 5.8 × 1014 1.7 × 10−15 1.7

575nm 2.2 × 106 7.4 × 1014 1.3 × 10−15 1.4

580nm 3.1 × 106 10.6 × 1014 9.4 × 10−16 1.2

605nm 4.5 × 106 14.5 × 1014 6.9 × 10−16 1

Table 3.2: Results from figure 3.11.

tion as function of the wavelength σSTED (λ) has been published in literature [35]:

σSTED (λ) =
λ4E (λ)

8πcnτfluo
(3.15)

where E (λ) is the shape function of the spontaneous fluorescence emission, c is the

speed of light, n is the refractive index, and τfluo is the lifetime of the fluorescent state

S1. The obtained data for the stimulated emission cross sections in table 3.2 (red

columns) are compared with the theoretical expectation, calculated according to the

expression 3.15 (red line) in figure 3.12.
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Figure 3.12: Normalized emission spectrum of Atto532 (right ordinate axis) at 76K.
Referring to left ordinate axis, the measured (red columns) and the theo-
retical (red line) values are plotted.

The presented data are in a good agreement with the theoretical considerations.
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The stimulated emission cross section is increased by a factor of of 3 at 568nm STED

wavelength in respect to 605nm at 76K. The use of this wavelength, which is provided

by the introduction of liquid nitrogen temperatures, allows higher saturation ratios at

available laser intensities, and thus provides higher resolution enhancement in STED

microscopy. The expected resolution enhancement is 1.7 for 568nm with respect to

605nm STED wavelength at same laser intensity I.
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3.4 Resolution enhancement

Theoretical considerations

The resolution enhancement in STED microscopy depends on the saturation of the

stimulated emission depletion with a modified intensity distribution of the STED PSF,

as already described in section 1.3. The expression for the resolution ∆r

∆r =
0.61λ

NA
√

1 + ξ
(3.16)

features two components: (1) a non-linearly saturated stimulated emission depletion,

ascribed by the saturation ratio ξ = I/ISAT, and (2) a parabolic intensity shape around

the zero with the maximum slope, which provides the square root dependence on the

saturation ratio ξ in equation 3.16. The slope of this modified STED intensity has

been fully optimized already [31]. Thus, the further resolution increase can be gained

by optimization of the saturation ratio ξ. The results of increased stimulated emission

cross section, presented in table 3.2, already indicate that the use of shorter STED

wavelengths at 76K will provide increased resolution enhancement. In the following

section, the resolution enhancement in CryoSTED microscopy is studied.

Resolution at different STED wavelengths

The measurements are carried out on the already presented model sample - Atto532

silica beads of diameter 65nm at 76K. The sample is excited with a 532nm, 80MHz

laser diode with a diffraction limited spot. The stimulated emission is depleted by

the OPO system (80MHz) tuned to the desired wavelength. For the pulse stretching

of the OPO emission from several tens fs to 120ps, a 50m long single mode fiber is

used. The zero intensity distribution of the STED PSF is provided by a semi-circular π

radiant phase retardation mask. This phase mask provide a resolution enhancement

in one lateral direction - the x direction. The temporal alignment of the excitation and

the STED pulses is tuned for optimal STED efficiency (see also fig. 2.4). The triplet

depopulation laser source (671nm, CW) is deployed at maximum available intensity

(∼37MW/cm2) for these measurements intentionally to eliminate any triplet influence.

The spatial alignment of the PSFs used is shown in figure 3.13.

For the characterization of the dependence of the resolution ability on the STED

power, parallel confocal image (excitation and triplet depopulation illumination) and

STED image (excitation, triplet depopulation and STED illumination) are recorded for

several STED laser intensities. Then approximately 50 particular and distinguishable

beads are analyzed for the full width at half maximum (FWHM) intensity, which is

an indicator for the resolution ability of the microscope. A more detailed description
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Figure 3.13: The alignment of the PSFs for resolution enhancement in x direction.

STED FWHM enhancement rel. increase I1/2FWHM

wavelength at 20MW/cm2 factor in resolution
[nm] [nm] at 20MW/cm2 compared to 605nm [W/cm2]

568 142 3.3 1.6 6.4 × 106

580 212 2.2 1.1 15.6 × 106

605 222 2.1 1 17.8 × 106

Table 3.3: Compiled key data for the STED resolution at different wavelengths.

of the analysis can be found in appendix A. The figures 3.14(a) and 3.14(b) show

details of a 10 × 10 µm2 image; on the left hand side, the STED image unveils a

resolution enhancement in the x direction, compared to the confocal image at the

same position on the right hand side. The averaged line profile in the x direction over

a single bead, marked with the white circle in figure 3.14(a), is shown in figure 3.14(c)

for comparison between the confocal image (black squares) and the STED image (red

squares). While the confocal FWHM is 472nm, which is in good agreement with the

Abbe formula for the utilized NA = 0.7, the STED FWHM is 128nm. This provides

a resolution enhancement of 3.7. The example in figure 3.14(b) even unveils two

neighboring fluorescent beads in x direction. The distance between these beads is

389nm, and thus cannot be resolved by the confocal PSF.

Such images are taken at selected STED wavelengths (568nm, 580nm and 605nm),

each at varying intensities. The averaged FWHMs are obtained for every image by

accounting at least 50 beads for a particular STED intensity. These FWHMs are plotted

in figure 3.15 against the logarithmically scaled intensity. The values for the particular

STED wavelengths are fitted with the equation 3.16.

The starting value of the FWHM is around 468nm, this value is conform with the

confocal resolution. With increasing STED intensity I, the value of the obtained FWHM

decreases with different slopes for particular wavelengths. An indicator for this de-

crease rate due to intensity is the value I0.5×FWHM, this value is reached when the

resolution is increased by factor of 2. The fastest decrease is observed for the wave-

length λSTED = 568nm, the slowest for the λSTED = 605nm. The key data are compiled

in the table 3.3

The utilization of STED wavelength with higher stimulated emission cross section at
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(a) Detail of a STED and the corresponding confocal image from Atto532 beads. The
STED image shows a narrowing of fluorescence intensity distribution in x direction.

(b) Resolving of two neighboring beads in x direction by the CryoSTED microscopy.
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(c) An averaged profile in x direction taken
from the image 3.14(a) inside the white
circle with confocal FWHM = 472nm and
STED FWHM = 128nm.
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(d) An averaged x-line profile inside the white
ellipse in figure 3.14(b); STED picture un-
veils two neighboring beads, which are
undistinguishable in the corresponding
confocal image.

Figure 3.14: Details of examplary confocal and STED images, recorded at 76K. De-
ployed STED wavelength is 568nm at 25.6MW/cm2.
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Figure 3.15: Dependence of the FWHM on different STED wavelengths and STED laser
intensities.

76K provides a greater resolution enhancement within the STED microscopy. This is

in agreement with the theoretical expectations, since the resolution enhancement relys

on the saturation ratio ξ = I/ISAT. The relative increase in the resolution enhancement

from table 3.3 are in full agreement with the values from table 3.2, where the measured

values for the stimulated emission cross section are used for the estimation.

The introduction of CryoSTED microscopy allows the deployment of STED wave-

lengths with larger stimulated emission cross sections due to the absent anti-Stokes

excitation at 76K. Thus higher STED saturation ratios ξ are available which provide

higher resolution enhancement with respect to the STED microscopy at room tem-

perature. The negative influence of the triplet population at 76K is eliminated by the

additional use of a triplet depopulating laser.
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3.5 Influence of the triplet population on resolution

The influence of the triplet population on the fluorescence brightness was already

discussed in detail in section 3.1, while the issue of the STED efficiency shall be

dealt within this section. In the previously presented measurements, the influence of

the triplet state population was eliminated by utilization of the 671nm laser source,

now we shall discuss the influence of the high triplet population on the resolution in

CryoSTED microscopy.

The experimental conditions are chosen in same manner, like for the resolution en-

hancement measurements. The only difference is that now the 671nm laser spot illu-

mination is chopped in between the images recorded parallel. Thereby the first image

contains the fluorescence signal after illumination with the excitation spot (532nm,

80MHz) and the modified STED spot (605nm, 80MHz) with an applied semi-circular

phase mask at varying intensities, while the second image is additionally illuminated

by the triplet depopulation spot (671nm, CW). Figure 3.16 shows the xy intensity dis-

tributions of the PSFs, measure on scattering gold spheres.

Figure 3.16: The alignment of the PSFs for resolution enhancement in x direction.

Figure 3.17 shows the parallel recorded images of the fluorescent specimen with

671nm illumination (left hand side) and without (right hand side) for different STED

intensities. While the image in the first row with 671nm illumination shows a good

signal to noise ratio (268 counts in maximum to 4 counts as background), the image

without the 671nm triplet depopulation illumination is darker (75 counts in maximum

to 4 counts as background). With increasing the STED intensity, the difference in

fluorescence brightness becomes smaller between the images with and without the

671nm illumination.

The effect on the resolution enhancement is shown in figure 3.18, where the FWHM

of the beads is plotted as function of the STED intensity. The as black squares

marked values show the already observed behavior of the resolution enhancement

for the STED wavelength of 605nm, the FWHM is continuously reduced and follows

the theoretical expression 3.16. The behavior of the resolution without the additional

671nm illumination (red squares) shows a more complex behavior with the increasing

STED intensity. First, the averaged FWHM increases to the value of 580nm, which

50



Figure 3.17: Images taken with additional (left hand side) and without (right hand
side) the additional triplet depopulation illumination for three different
STED intensities, ISTED = 0.17 MW/cm2 for first row, 3.0 MW/cm2 in
second row and 21.7 MW/cm2 in last row.
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Figure 3.18: Influence of the triplet population on the CryoSTED resolution. Compar-
ison between (1) the triplet depopulation is activated (black squares) and
(2) the triplet depopulation is deactivated (red squares).

is 1.3 times higher than the initial confocal FWHM of 472nm, with a subsequent

decrease. The values of the FWHM, obtained without additional 671nm laser illumi-

nation (red squares) lag those obtained with the additional 671nm laser illumination

(black squares).

While the resolution dependence with the additional triplet depopulation (black

squares) is in good agreement with the theoretical expectations, the interpretation

of the measurement without the additional triplet depopulation laser spot is more

complicated. In section 3.1 it has been shown that the molecules trapped in triplet can

absorb a STED photon and thereby cross to the singlet state. This rate is competing

with the stimulated emission depletion. For small STED intensities, in this case under

1 MW/cm2, the triplet depopulation due to STED intensity is more pronounced than

the stimulated emission. Since the main STED intensity is applied in the outer region

of the confocal PSF due to the desired intensity distribution with a zero (compare with

figure 3.16), the fluorescence brightness is enhanced in these areas and the effective

PSF is broadened. Thus, the resolution ability decreases to the obtained FWHM value

of 580nm. Now, with further increasing of the STED intensity, the simulated emission

becomes more prominent, because the triplet state is already depopulated. So, a

52



present triplet population introduces a competing rate to the stimulated emission,

and thus reduces the STED efficiency. The resolution enhancement is pronouncedly

reduced by nearly 65nm at the maximum available STED intensity without the triplet

depopulation.

The presented measurements once again highlight the importance of triplet depop-

ulation in CryoSTED microscopy. The results clearly show that the utilization of an

additional triplet depopulating laser source provides higher fluorescence yield as well

as an optimal STED efficiency, and thus optimal resolution.
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3.6 Bleaching properties at low temperatures

Bleaching in STED microscopy

The resolution enhancement within STED microscopy relies besides the saturation

ratio ξ of the stimulated emission depletion also on the fatigue resistance of the

molecules, because bleached molecules cannot contribute to the fluorescence cycle

anymore. Unfortunately, the STED concept demands much higher fatigue resistivity

of the molecules than conventional fluorescence microscopy. Only the molecules in

close vicinity to the zero of a STED PSF contribute to the fluorescence brightness, while

the molecules in the outer region of the excitation spot are excited and subsequently

de-excited again without any contribution to the fluorescence. Thus fluorescent mark-

ers undergo much more excitation – de-excitation cycles and thereby they suffer from

higher bleaching probability.

The causes for the bleaching are manifold because there are many different ways to

destroy the fluorescent core, the π-electron configuration, e.g. by chemical reactions

or structural changes. The most prominent way for bleaching is a chemical reaction

of the excited fluorescent marker with a highly reactive molecule, such as oxygen.

The dependence of bleaching probability on the triplet population and the oxygen

concentration at room temperature has been studied before [36]. The contribution of

highly excited energetic states SN,TN to the bleaching has also been discussed in the

context of highly increase reactivity, and thereby bleaching probability [41], especially

due to excitation into SN,TN states by the STED light [50,51].

The average velocity of chemical reactions relies on the diffusion time of highly

reactive molecules, e.g. oxygen. The cooling of the sample to 76K strongly reduces

the diffusion time, and thus provides higher stability for the fluorescent molecules in

the SN,TN states. The velocity rate of a chemical reaction itself is exponentially sup-

pressed by the reduction of temperature as described by Arrhenius law (see page 11).

Both, the reduced diffusion constant and the rate for a chemical reaction, enhance the

fatigue resistivity at 76K, and thereby allow an application of higher laser intensities

in CryoSTED microscopy.

The bleaching probability is measured for Atto532 beads, the excitation and STED

parameters are the same as presented in section 3.5. Now, ten STED images are

recorded consequently at the same position at room temperature (293K) and low tem-

perature (76K). The evolution of the averaged intensity as well as the FWHM of the

beads are evaluated as function of the image number. Since hardly any triplet popu-

lation can be observed at room temperature, the application of the 671nm laser spot

is not necessary at 293K. At 76K the sample is illuminated with the 671nm laser

spot at maximum available intensity (∼37MW/cm2) in order to eliminate any triplet

population influence.
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Figure 3.19: Averaged brightness of fluorescent Atto532 beads as function of number
of images at 76K (blue columns) and 293K (red columns).

Figure 3.19 shows the evaluation for the fluorescence brightness development at

76K (blue columns) and at 293K (red columns). In case of room temperature, the

fluorescence decreases from its initial value of 43 counts down to nearly 4 counts in

the fourth image. The background noise in the picture is below 2 counts. The FWHM

evaluation is possible for only the first three images, the values show no dependence

on the number of image and stay at around 254nm FWHM within an error of 1nm.

The evaluation of the FWHM for the images 4-10 is not possible due to poor signal to

noise ratio.

The situation at 76K is different, the averaged fluorescence brightness in the first

image is 212 counts. The brightness decreases subsequently and is 25 counts in the

tenth image. The background noise is again below 2 counts. The evaluated FWHM

shows no dependence on the number of images and stays stable for all 10 images

around the value of 254nm FWHM within an error of 4nm.

On one hand, the absolute brightness value is five times higher in the initial STED

image at 76K with respect to room temperature. In the tenth image the difference is

even 63. This brightness increase can stem from several causes:

• reduction of the temperature reduces the rate of the internal conversion and

thereby increases the fluorescence quantum yield
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• the introduction of complete triplet depopulation due to additional 671nm laser

spot illumination also increases the fluorescence yield by reducing the dark time,

while the molecules stay in the triplet state

• higher stability in terms of fatigue resistivity increases the total number of fluo-

rescence photons

Usually, Atto532 has a fluorescence quantum yield of ∼90% in water, but the change

of the environment from an aqueous solution to a rigid silica matrix can cause a

reduction of the quantum yield. The value for the fluorescence quantum yield in

these silica beads as well as the quantitative triplet population of Atto532 at room

temperature are hardly experimentally accessible. Thus a quantitative assignment of

the relative brightness increase at 76K is not possible without further experiments.

However, the fact of the enhanced signal to noise ratio is a benefit itself to STED

microscopy .

The relative behavior of the bleaching can be described by double exponential decay

in the number of images n with a fast and a slow decay constants, ηfast and ηslow,

respectively:

F (n) = Afast exp

(

− n

ηfast

)

+ Aslow exp

(

− n

ηslow

)

(3.17)

The fitted decays from experimentally measured values are compared in following table

temperature ηfast ηslow

76K 0.71 8.1

293K 0.67 3.1

The double exponential decay usually explains two different populations, which show

different bleaching behavior. The brightness decrease in figure 3.19 indicates a fast

and a slow bleaching population of the fluorescent molecules. While the fast decay

constant ηfast is comparable for both temperatures, there is a huge difference in the

slow brightness decay ηslow. This population is 2.6 times more stable at 76K compared

with 293K.

Especially the longer slow bleaching decay τslow indicates high stability of the flu-

orescent markers at 76K in terms of photo-bleaching. The increased fluorescence

brightness at low temperatures increases the signal to noise ratio in STED microscopy.

Both, the higher photo-bleaching stability and the enhanced signal to noise ratio are

advantageous to CryoSTED microscopy.
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Chapter 4

Conclusion and outlook

4.1 Advantages of the CryoSTED microscopy

This work introduces the STED microscopy at cryogenic temperatures (CryoSTED) as

an improvement of the present day STED microscopy. Performing high-resolution

STED fluorescence imaging at liquid nitrogen temperatures holds several exceptional

advantages.

Elimination of the anti-Stokes excitation

The anti-Stokes excitation has prevented the use of STED wavelengths with larger

stimulated emission cross sections to date. This work has shown an exponential de-

crease of the anti-Stokes excitation with lowered temperature. These measurements

clearly indicated that the hot tail of the Boltzmann distribution of the vibrational ex-

cited states is responsible for the direct fluorescence excitation caused by the STED

light at room temperature. The lowering of the temperature reduces the population of

the higher excited vibrational states, and thereby reduces the fluorescence excitation

at high STED intensities.

The successful suppression of the anti-Stokes excitation at liquid nitrogen temper-

ature allows the use of more blue-shifted STED wavelengths with larger stimulated

emission cross sections, and thereby higher STED efficiency. An increase in the STED

efficiency by a factor of 3.7 compared with room temperature has been proved. This

leads to an resolution enhancement by a factor of 1.6.

The presented resolution enhancement is achieved with a STED wavelength of 66%

STED efficiency with respect to the fluorescence emission maximum. The further im-

provement can thus be achieved by the use of even lower temperatures, which requires

an utilization of liquid helium. The use of STED wavelengths which are the same as
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the maximum fluorescence emission wavelengths shall provide an improvement of

factor 2.2 in the resolving power with respect to the present day STED microscopy.

Triplet depopulation

At liquid nitrogen temperature, the fluorescence microscopy suffers to large dark

triplet population of the fluorescent markers. Because the relaxation rate of the triplet

state into the singlet ground state is reduced by several orders of magnitude at 76K,

a relative triplet population of between 80% and 90% has been observed. During this

work, an efficient light driven triplet depopulation technique has been developed. The

use of an additional laser spot with an appropriate wavelength provides a complete de-

population of the dark triplet state, and thereby improves the fluorescence brightness

by upto 7-8 times, and thereby enhances the signal to noise ratio.

A further advantage over room temperature microscopy lies in the complete control

of the triplet population. Since the light-driven triplet depopulation at room temper-

ature is hampered by photo-bleaching, the triplet state can only be depopulated by

thermal relaxation, and therefore the use of low repetition rate laser sources is neces-

sary. This technique (D-REX, [19]) brings along very long acquisition times and a poor

signal to noise ratio as compared to the CryoSTED microscopy.

Reduced photo-bleaching probability

The use of liquid nitrogen has strongly reduced the photo-bleaching probability – a

major problem in room temperature STED microscopy. Exemplary data for an organic

dye indicates a 2.6 times larger photo-stability in CryoSTED microscopy.

The contribution of the triplet state related photo-bleaching can be excluded at 76K

due to the continuous triplet depopulation with an additional wavelength. Thus the

photo-bleaching reactions most probably take place from the singlet excited states,

and low temperature condition suppresses the probability of chemical reaction due to

the Arrhenius law. This photo-stability will most likely allow larger applicable laser

intensities to the fluorescent specimen, and thereby increase the saturation ratio ξ

additionally to the enhancement due to the stimulated emission cross section.

Technical restrictions on the numerical aperture

The introduction of the low temperatures necessitates vacuum technology to shield

the sample thermally from the environment. An appropriate way is to use a vacuum

chamber for the sample and to use an objective lens placed outside this chamber.

This necessitates an air objective lens with a long working distance, which technically

restricts the numerical aperture to the maximum value of 0.7 to date. Such small
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numerical aperture provides a smaller resolving power with respect to the normally

used NA of 1.4 in the STED microscopy at room temperature. However, this technical

restriction has to be solved within the next design of CryoSTED microscope.

The role of numerical aperture within the RESOLFT concept

To discuss the impact of the presented topics on the resolution in STED microscopy,

its mathematical is first deduced. According to the equation 1.8, the resolution of a

STED microscope for large intensities is given by:

∆r ∼=
0.61λ

NA
√

I
ISAT

(4.1)

The laser intensity I is given by

I =
P

Aλ
(4.2)

Here P is the laser power within the focused spot in watt [W] and Aλ = 0.25π (FWHM)
2

is the area of the focused light in square centimeters [cm2], and FWHM = 0.61λ/NA

is the full width at half maximum of the diffraction limited focused spot. Thus the

resolution is given by:

∆r =
0.61λ

NA
√

4P
π(FWHM)2ISAT

(4.3)

=
1

2NA2
√

P
πISAT

(4.4)

The introduction of CryoSTED microscopy has enhanced the resolution by a de-

crease of the saturation intensity ISAT due to larger stimulated emission cross section,

and shall allow the use of higher laser power P due to enhanced photo-stability. Since

the most prominent dependence of the resolution is on the numerical aperture, the

further improvement necessitate the use of higher numerical apertures within the

CryoSTED microscopy.

4.2 The future development of CryoSTED microscopy

Use of higher NA

In this work, an air objective lens with a NA of 0.7 was used due to the need for large

working distance. The use of larger NA requires a re-design of the cryostat, where an

objective lens can be placed inside the vacuum chamber. This concept shall allow the
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use of short working distances, and thereby NA values of upto 0.9. An other interesting

concept would be the use of solid immersion lenses [52], but it necessitates a high

technical effort. Here, the numerical aperture depends on the choice of the immersion

medium and provide the NA values of upto 2.0 [53].

The table 4.1 shows the estimated resolutions for different scenarios. The estima-

tion is based upon the measured STED efficiency for an organic dye, Atto532 at 76K

and upon the equation 4.4. As STED laser sources two commercially available sys-

tems are presented, (1) an OPO at 80MHz (APE, Germany) and (2) an OPA at 350kHz

(Coherent, USA) with 8 times higher peak power compared to the OPO system. The

NA 0.7 0.9 1.4

FWHM with OPO (80MHz) 120nm 57nm 15nm

FWHM with OPA (350kHz) 43nm 20nm 6nm

Table 4.1: Estimation for the obtainable resolution based upon measured STED effi-
ciency for an organic dye (Atto532) and upon equation 4.4.

presented estimation confirm the huge potential of CryoSTED microscopy.

Applications of CryoSTED microscopy

Besides the ability to resolve even the smallest structure inside a cell, e.g. ribosomes,

where the proteins are assembled, the main advantage of such a small effective PSF

(∆r < 10nm) is the high precision for size measurement of structures inside cells.

Such small sizes of the effective PSF is even below the thickness of the double layered

membrane. Therefore with specific labeling, the inner and outer membranes should

become distinguishable with such high precision.

The resolution capability of below 10nm comes into the range of an electron mi-

croscope and could easily compete with this technique due to the advantages of the

fluorescence microscopy, such as specific labeling, high fluorescence contrast and the

ease of the 3D structure observation.
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Appendix A

Image processing

Software time gating

Due to the refractive index mismatch between glycerin and glass, a scattered light

from the laser sources was additionally detected with the confocal APD. Since the

scattered and the fluorescence light show different temporal characteristics, these

can be separated with the TCSPC measurement mode of the SPC730 card (Becker &

Hickel, Germany). Therefore the images are recorded in a mode, where the arrival time

histogram is obtained for each pixel as shown in figure A.1. The arrival time histogram

(upper graph in fig. A.1(b)) is analyzed for scattering signal, and if some appears, it

can be eliminated by deleting the referring time bins (as indicated in lower graph of

fig. A.1(b)).
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(b) Time of flight histogram

Figure A.1: Appeared scattering signal of pulsed laser in raw pictures can be removed
from time of flight histogram taken with SPC730 photon counting card.
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Deconvolution of images

The saturation characteristics, presented in section 3.3, have shown a residual fluo-

rescence of around 25% during the depletion. Thus the sub-diffraction efective PSF

consists out of a confocal and a sub-diffraction contribution. This is shown in fig-

ure A.2. The fig. A.2(a) shows a raw STED image of Ato532 silica beads. A line

profile in the x direction shows the contribution of the confocal resolution (gaus-

sian fit with FWHM=484nm) and of the STED enhanced resolution (Lorential fit with

FWHM=120nm). To obtain the resolution enhancement due to STED, the images have

to be deconvoled. The appropriate way to do this is to subtract a certain fraction of

the parallel recorded confocal image from the STED image [54].

(a) STED picture taken at 76K with λ = 568nm. Exem-
plary bead is enlarged by factor of 2.
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(b) Averaged line scan (21 contributing lines)
through enlarged bead (inset A.2(a))

Figure A.2: Confocal and STED contributions in CryoSTED microscope due to non-
zero fluorescence depletion.

The nature of liquid nitrogen, especially its wave-like evaporation, introduces vi-

brations to the fluorescence images at 76K. A technical solution requires a re-design

of the cryostat system. For obtaining the FWHM, the x profiles over each bead have

to be un-waggled first. This is provided by a computer program, which maximizes the

correlation signal of the neighboring x profiles [55]. This procedure is only applied for

the calculation of the FWHM, so no un-waggled images are shown in this thesis.
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