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Abstract

In this paper, we extend fundamental notions of control theory to evolving compact subsets of

the Euclidean space.

Dispensing with any restriction of regularity, shapes can be interpreted as nonempty compact sub-

sets of the Euclidean space RN . Their family K(RN ), however, does not have any obvious linear

structure, but in combination with the popular Pompeiu-Hausdorff distance dl, it is a metric space.

Here Aubin’s framework of morphological equations is used for extending ordinary differential equa-

tions beyond vector spaces, namely to the metric space (K(RN ), dl).

Now various control problems are formulated for compact sets depending on time: open-loop,

relaxed and closed-loop control problems – each of them with state constraints. Using the close

relation to morphological inclusions with state constraints, we specify sufficient conditions for the

existence of compact-valued solutions.

Contents

1 Introduction 1

2 A brief guide to morphological equations and inclusions 6
2.1 Morphological equations of Aubin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The step to morphological inclusions with state constraints: A viability theorem . . . . 10
2.3 Set evolutions under strong operability constraints . . . . . . . . . . . . . . . . . . . . . 11

3 Morphological control problems 13
3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 The link to morphological inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Application to control problems with state constraints . . . . . . . . . . . . . . . . . . . 18
3.4 Relaxed control problems with state constraints . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Closed control loops for problems with state constraints . . . . . . . . . . . . . . . . . . 23

A Clarke tangent cone in the morphological framework:
The circatangent transition set. 26

B The hypertangent transition set 32

Bibliography 34

1Interdisciplinary Center for Scientific Computing (IWR)

Ruprecht–Karls–University of Heidelberg

Im Neuenheimer Feld 294, 69120 Heidelberg (Germany)

thomas.lorenz@iwr.uni-heidelberg.de (January 22, 2008)





1 Introduction

“Shapes and images are basically sets, not even smooth” as Aubin stated [3]. So whenever we want

to investigate evolving shapes in full generality, we have to focus on subsets of the Euclidean space.

In particular, these subsets should be only supposed to be nonempty and compact – but lacking any

further assumptions about the regularity of their topological boundaries.

The main goal of this paper is to extend fundamental concepts of control theory to time-dependent

compact subsets of the Euclidean space. Here the essential challenge results from the lacking vector

space structure. Indeed, nonempty compact subsets of RN do not have any obvious linear structure,

but in combination with the well-known Pompeiu–Hausdorff distance dl, for example, they represent a

metric space.

So the differential tools of classical control theory have to be extended step by step beyond the traditional

border of vector spaces. For this purpose we continue a track initiated by Jean-Pierre Aubin in the 1990s:

morphological equations and inclusions. They provide extensions of ordinary differential equations and

differential inclusions respectively to the metric space (K(RN ), dl) of nonempty compact subsets of RN

supplied with the Pompeiu-Hausdorff distance.

In this paper, open-loop, relaxed and closed-loop control problems with state constraints are formulated

for shapes, i.e. in the metric space (K(RN ), dl). A viability theorem presented by the author in [18] then

lays the foundations for specifying conditions sufficient for the existence of their set-valued solutions.

Introducing nonrestrictive variations of compact sets in RN

Whenever a shape is to be optimized (in some sense), we require an appropriate form of “shape varia-

tions” for verifying if a compact set under consideration is a local minimizer or not. The so–called velocity

method or speed method suggests an approach to hardly restrictive shape variations and, it has led Céa,

Delfour, Zolésio and others to remarkable results about shape optimization (see e.g. [9, 11, 12, 28, 30]

and references there). It is based on prescribing a vector field v : RN × [0, T ] −→ RN such that the

corresponding ordinary differential equation d
dt x(·) = v(x(·), ·) induces a unique flow on RN . Indeed,

supposing v to be sufficiently smooth, the Cauchy problem
d
dt x(·) = v(x(·), ·) in [0, T ], x(0) = x0 ∈ RN

is always well–posed and, any compact initial set K ⊂ RN is deformed to

ϑv(t,K) :=
{
x(t)

∣∣ ∃ x(·) ∈ C1([0, t],RN ) : d
dt x(·) = v(x(·), ·) in [0, t], x(0) ∈ K

}
after an arbitrary time t ≥ 0. As a key advantage, this concept of set evolution does not require any

regularity conditions on the compact set K or its topological boundary (but only on the vector field v).

In a word, v can be interpreted as a “direction of deformation” in (K(RN ), dl). So it is “possible to define

directional derivatives and speak of shape gradient and shape Hessian with respect to the associated

vector space of velocities. This second approach has been known in the literature as the velocity method”

[11, Chapter 1, § 6]. (The ’first’ approach mentioned there in [11] refers to perturbations of the identity

map and applying techniques of differential geometry.)

Aubin seized this notion for extending ordinary differential equations to this metric space (K(RN ), dl).

The so–called morphological equations are sketched in [5] and then presented in [3, 4] in more detail.

(They seem to be closer to ODEs in RN than Panasyuk’s similar concept of “quasidifferential equations”

[23, 24, 25].)
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2 § 1 INTRODUCTION

The first aspect of generalization focuses on the “elementary set deformation” which are to describe

the directions in (K(RN ), dl). Aubin suggested reachable sets of differential inclusions as a more general

alternative to the velocity method. For any set–valued map G : RN ; RN and initial set K ⊂ RN

given, the so–called reachable set at time t ≥ 0 is defined as

ϑG(t,K) :=
{
x(t) ∈ RN

∣∣∣ ∃ x(·) ∈W 1,1([0, t], RN ) : x(0) ∈ K,
d
dτ x(τ) ∈ G(x(τ)) for Lebesgue–almost every τ ∈ [0, t]

}
.

In contrast to the velocity method, this kind of set deformation does not have to be reversible in time.

(Geometrically speaking, “holes” of sets can disappear while expanding.) The well–known Theo-

rem of Filippov ensures suitable properties of [0, 1] × K(RN ) −→ K(RN ), (t,K) 7−→ ϑG(t,K) if

G : RN ; RN has nonempty compact values and is bounded Lipschitz continuous. In fact, the Relax-

ation Theorem of Filippov–Ważiewski (e.g. [2, § 2.4, Theorem 2]) implies no changes of reachable sets

if each value of G is replaced by its convex hull. So we are always free to consider bounded Lipschitz

continuous maps G : RN ; RN whose nonempty compact values are convex in addition.

Differential inclusions with Lipschitz right–hand side

for specifying time derivatives of curves in (K(RN ), dl)

The second key contribution of Aubin is a suggestion how to interprete such a set–valued map (or,

strictly speaking, its reachable sets) as time derivative of a curve in the metric space (K(RN ), dl).

Indeed, let K(·) : [0, T ] −→ K(RN ) be a curve. A bounded Lipschitz set–valued

map G : RN ; RN with nonempty compact values represents a first–order

approximation of K(·) at time t ∈ [0, T [ if

lim
h ↓ 0

1
h · dl

(
K(t+ h), ϑG(h, K(t))

)
= 0. (∗)

Of course, such a map G(·) does not have to be unique and thus, all bounded Lipschitz maps with

this property (∗) form the so–called morphological mutation
◦
K (t) of K(·) at time t ∈ [0, T [. It is

a subset of LIP(RN ,RN ) denoting the set of all bounded Lipschitz maps RN ; RN with nonempty

compact values. Correspondingly, LIPco(RN ,RN ) consists of all bounded Lipschitz maps RN ; RN

with nonempty compact and convex values.
◦
K(t) ⊂ LIP(RN ,RN ) extends the time derivative to curves

in the metric space (K(RN ), dl).

Sets determine their own evolution: Morphological equations and inclusions

Ordinary differential equations are based on the fundamental notion of prescribing the time derivative

of the wanted curve as a function of its current state and time. Now we are free to formulate the same

problem for a set-valued curve in the metric space (K(RN ), dl) as mutations are available:

For a function f : K(RN ) −→ LIP(RN ,RN ) given, a Lipschitz continuous curve K(·) : [0, T ] −→ K(RN )

is called solution to the morphological equation
◦
K(·) 3 f(K(·)) in [0, T ] if at Lebesgue-almost every

time t ∈ [0, T ], the map f(K(t)) ∈ LIP(RN ,RN ) belongs to the mutation
◦
K(t) [3], i.e. by definition,

the reachable set ϑf(K(t))(·,K(t)) satisfies

lim
h ↓ 0

1
h · dl

(
K(t+ h), ϑf(K(t))(h, K(t))

)
= 0.

At first glance, the term “equation” and the symbol 3 might make a contradictory impression, but the
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mutation
◦
K(t) has just been defined as set of all set-valued maps G ∈ LIP(RN ,RN ) sharing property

(∗) above. (Strictly speaking, all these set-valued maps belong to the same equivalence class related with

vanishing distances up to first order. In the following, however, we do not use the underlying equivalence

relation explicitly because it does not provide additional insight, see [3, § 1.1] for more details.)

In this framework, Aubin extended the classical Theorem of Cauchy-Lipschitz (about existence and

uniqueness of solutions) from ordinary differential equations to morphological equations as quoted in

subsequent Theorem 2.7. Meanwhile also the counterpart of Peano’s existence theorem has been proved

and, Nagumo’s classical result about existence of solutions satisfying state constraints has been verified

for morphological equations as summarized in section 2.

So in a word, all relevant terms are now available for introducing control theory in the metric space

(K(RN ), dl) of nonempty compact subsets of RN .

Considering ordinary differential equations and classical control theory in finite dimensions, differen-

tial inclusions and selection principles have played a key role. In this paper, we follow essentially the same

track in (K(RN ), dl). Indeed, the step from morphological equations to morphological inclusions is based

on admitting more than just one set deformation for each state in (K(RN ), dl), i.e. the single-valued

function f : K(RN ) −→ LIP(RN ,RN ) is replaced by a set-valued map F : K(RN ) ; LIP(RN ,RN ). Cor-

respondingly, a Lipschitz continuous curveK(·) : [0, T ] −→ K(RN ) is called solution to the morphological

inclusion with F if at Lebesgue-almost every time t ∈ [0, T ], at least one map in F(K(t)) ⊂ LIP(RN ,RN )

also belongs to the mutation
◦
K (t), i.e. there exists a set-valued map G ∈ F(K(t)) ⊂ LIP(RN ,RN )

satisfying lim
h ↓ 0

1
h · dl

(
K(t+ h), ϑG(h, K(t))

)
= 0.

Reflecting this notion of a joint map in F(K(t)) and
◦
K(t) ⊂ LIP(RN ,RN ), a morphological inclusion

has to be written as intersection condition:
◦
K(·) ∩ F(K(·)) 6= ∅ (almost everywhere) in [0, T ].

Solutions to morphological inclusions are reachable sets with feedback

Consider a Lipschitz continuous solution K(·) : [0, T ] −→ (K(RN ), dl) to a morphological inclusion
◦
K(·) ∩ F(K(·)) 6= ∅ in [0, T ] with a given set-valued map F : K(RN ) ; LIP(RN ,RN ). The metric

condition on
◦
K(t) mentioned before has a geometric interpretation:

Indeed, for almost every t ∈ [0, T ], there exists a set-valued map Gt ∈
◦
K(t) ∩ F(K(t)) ⊂ LIP(RN ,RN )

by definition. Let us extend t 7→ Gt ∈ LIP(RN ,RN ) to the whole interval [0, T ] arbitrarily. Then,

G̃ : RN × [0, T ] ; RN , (x, t) 7→ Gt(x) is a set-valued map of both space and time and, we use it as

right-hand side of a nonautonomous differential inclusion in RN , namely x′(·) ∈ G̃(x(·), ·) a.e. in [0, T ].

Under appropriate assumptions about G̃, its reachable set ϑ eG(t,K(0)) ⊂ RN is nonempty compact at

every t ∈ [0, T ] and, it even coincides with K(t) : K(t) = ϑ eG(t,K(0)) for each t ∈ [0, T ]

So K(·) : [0, T ] −→ K(RN ) is characterized equivalently as reachable set of a nonautonomous differential

inclusion in RN whose set-valued right-hand side G̃ : RN × [0, T ] ; RN is induced by a selection of

F(K(·)) : [0, T ] ; LIP(RN ,RN ) (see § 3.2 for more details). To the best of our knownledge, the detailed

proof of this equivalence is given here for the first time.

In a word, each solution K(·) : [0, T ] −→ (K(RN ), dl) to a morphological equation or inclusion is

directly related to reachable sets of a nonautonomous differential inclusion in RN whose right–hand side

depends on the wanted curve K(·). So this framework covers some types of nonlocal set evolutions with

feedback.
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Control problems for compact sets via morphological inclusions

Similarly to classical control theory in RN , a metric space (U, dU ) of control parameter and a single-

valued function f : K(RN ) × U −→ LIP(RN ,RN ) of state and control are given. For each initial set

K(0) ∈ K(RN ), we are looking for a Lipschitz continuous curve K(·) : [0, T ] −→ K(RN ) solving the

following nonautonomous morphological equation
◦
K (t) 3 f(K(t), u(t)) in [0, T [

with a measurable control function u(·) : [0, T ] −→ U, i.e. by definition

lim
h ↓ 0

1
h · dl

(
ϑf(K(t),u(t))(h, K(t)), K(t+ h)

)
= 0 for almost every t ∈ [0, T ].

This is an open-loop control problem in the metric space (K(RN ), dl).

The existence of solutions is closely related to the corresponding morphological inclusion for which we

take all admitted controls into consideration simultaneously. So we introduce the set-valued map

FU : K(RN ) ; LIP(RN ,RN ), K 7→ {f(K,u) | u ∈ U} ⊂ LIP(RN ,RN )

and consider the morphological inclusion
◦
K(·) ∩ FU (K(·)) 6= ∅ in [0, T [. In § 3.2, Proposition 3.3,

sufficient conditions on U and f are formulated such that solutions to this morphological inclusion solve

the morphological control problem and vice versa.

The step from inclusion to control problem requires the existence of a measurable control function and,

it is concluded here from a well-known selection principle of Filippov whose Euclidean special case is

usually applied to differential inclusions in RN and classical control theory.

So all available results about morphological inclusions can be used for solving morphological control

problems. In the following, a viability theorem presented by the author in [18] plays a key role. It

concerns a morphological inclusion
◦
K(·) ∩ F(K(·)) 6= ∅ with state constraints K(t) ∈ V ⊂ K(RN )

at every time t and it is quoted in subsequent Theorem 2.13.

This viability theorem specifies sufficient conditions on F and the nonempty set V ⊂ K(RN ) of con-

straints such that at least one solution K(·) : [0, 1] −→ V ⊂ K(RN ) starts at each initial set K(0) ∈ V.
So in § 3.3, the close relationship between morphological inclusions and control problems provides

directly sufficient conditions on a morphological control system with state constraints for the existence

of solutions (Proposition 3.7).

In § 3.4, essentially the same approach is then used for solving relaxed control problems in the morpho-

logical framework. They are based on replacing the metric space U of control parameters by the set of

Borel probability measures on U (supplied with the linear Wasserstein metric). As immediate analytical

benefit, we can weaken some conditions of convexity in Proposition 3.13.

The viability condition for morphological inclusions: “Admit a ‘tangential’ reachable set“

For differential inclusions in RN , the viability condition on a nonempty closed subset V ⊂ RN is well-

known [6]: Under appropriate assumptions about the set-valued map F : RN ; RN , a solution x(·) of

x′(·) ∈ F (x(·)) with all values in V ⊂ RN starts at each point of V if and only if at every point x ∈ V,
the set F (x)⊂RN contains at least one vector v being “contingent” to V (in the sense of Bouligand),

i.e. lim inf
h ↓ 0

1
h · dist(x+ h v, V ) = 0.
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As main result of [18], essentially the same viability condition – just formulated with reachable sets

and in the metric space (K(RN ), dl) – is also sufficient for a morphological inclusion and any nonempty

closed set of constraints V ⊂ K(RN ) :

Under appropriate assumptions about the set-valued map F : K(RN ) ; LIP(RN ,RN ), a solution

K : [0, 1] −→ V ⊂ K(RN ) of
◦
K(·)∩F(K(·)) 6= ∅ starts at each set K(0) ∈ V if for every set K0 ∈ V,

at least one map G ∈ F(K0) ⊂ LIP(RN ,RN ) is “contingent” to V ⊂ K(RN ) in the following sense

lim inf
h ↓ 0

1
h · dist (ϑG(h,K0), V) = 0. (∗∗)

An example: Morphological control problems under “strong operability” constraints

In [17], Anne Gorre investigated morphological equations under the constraint that all evolving sets

K(t) ⊂ RN are contained in a fixed closed set M ⊂ RN . So the corresponding set of constraints is

VM :=
{
K ∈ K(RN )

∣∣ K ⊂M
}
.

and Gorre coined the term “strongly operable in M”. This type of constaint occurs, for example, when

a robot is to walk or stand in a stable way (consider the projection of its highly sensitive center of

gravity [17]) and when a bioreactor has to provide a suitable environment for a growing cell population.

Gorre’s exact characterization of “contingent to VM” is used here in combination with morphological in-

clusions and, so we obtain directly sufficient conditions for morphological control problems under strong

operability constraints.

The step to closed-loop control problems for compact sets in RN

Consider morphological control problems with state constraints{ ◦
K (·) 3 f(K(·), u), u ∈ U a.e. in [0, T [

K(t) ∈ V for every t ∈ [0, T [.

The metric space (U, dU ) of control, function f : K×U −→ LIP(RN ,RN ) and the closed set V ⊂ K(RN )

of constraints are given. The morphological viability condition mentioned before indicates where can-

didates for a closed-loop control u : V −→ U can be found, namely among those controls u ∈ U whose

reachable sets ϑf(K,u)(·,K) are “contingent” to V in the sense of condition (∗∗). This reflects the notion

of regulation maps defined by Aubin for control problems in finite-dimensional vector spaces [6, § 6].

In § 3.5, we specify sufficient conditions on U, f,V such that Michael’s famous selection theorem

implies the existence of a continuous closed-loop control (Proposition 3.17).

Michael’s selection theorem (quoted here in Proposition 3.18), however, focuses on lower semicontinuous

set-valued maps. So we need information about the semicontinuity properties of these regulation maps.

In this regard, the classical results about finite-dimensional vector spaces serve as motivation again.

The Clarke tangent cone TC
V (x) ⊂ RN , x ∈ V, to a nonempty closed set V ⊂ RN (alias circatangent set,

see Definition A.1) is known to have closed graph whereas the Bouligand contingent cone to the same set

does not have such a semicontinuity feature in general [7, 27]. Furthermore, Rockafellar characterized

the interior of the convex Clarke tangent cone TC
V (x) ⊂ RN by a topological criterion leading to the

so-called hypertangent cone ([26, Theorem 2], [10, § 2,4] and quoted here in App. B). So the set-valued

map of hypertangent cones to a fixed set V ⊂ RN is lower semicontinuous whenever all these cones are

nonempty.
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These two concepts, i.e. Clarke tangent cone and hypertangent cone to a given closed set, are extended

to the morphological framework where the metric space (K(RN ), dl) has replaced the Euclidean space.

In Appendix A, we apply Aubin’s definition of “circatangent transition set” [3, Definition 1.5.4] to

(K(RN ), dl) together with reachable sets of differential inclusions. The result proves to be a nonempty

closed convex cone in LIP(RN ,RN ). In Appendix B, the so-called hypertangent transition set is intro-

duced for a nonempty closed subset V ⊂ K(RN ). Its graph is identical to the interior of the graph of

circatangent transition sets in V × LIP(RN ,RN ).

In particular, this topological characterization proves to be very helpful for constructing closed-loop

controls on the basis of Michael’s selection principle (Proposition 3.17).

This introduction reflects the structure of the paper: § 2 gives a survey of morphological equations

and inclusions. In particular, it provides all definitions of this framework and summarizes the essential

theorems used subsequently. In § 3, we focus on morphological control problems and explain the link

with morphological inclusions (§ 3.2). These results are then applied to open-loop control problems with

state constraints (§ 3.3), relaxed control problems with state constraints (§ 3.4) and finally closed-loop

control problems with state constraints (§ 3.5).

2 A brief guide to morphological equations and inclusions

2.1 Morphological equations of Aubin

Morphological equations provide typical geometric examples of so–called mutational equations. First

presented in [5] and elaborated in [4, 3], mutational equations are to extend ordinary differential equa-

tions to a metric space (E, d). In a word, the key idea is to describe derivatives by means of contin-

uous maps (called transitions) ϑ : [0, 1] × E −→ E, (h, x) 7−→ ϑ(h, x) instead of affine–linear maps

(h, x) 7−→ x + h v (that are usually used in vector spaces). Strictly speaking, such a transition spec-

ifies the point ϑ(t, x) ∈ E to which any initial point x ∈ E has been moved after time t ∈ [0, 1].

It can be interpreted as a first–order approximation of a curve ξ : [0, T [−→ E at time t ∈ [0, T [ if

lim
h ↓ 0

1
h · d

(
ξ(t+ h), ϑ(h, ξ(t))

)
= 0.

The so–called morphological equations apply this concept to the set K(RN ) of nonempty compact

subsets of RN supplied with the Pompeiu–Hausdorff distance dl,

dl(K1,K2) := sup
x∈K1,
y∈K2

{
dist(x,K2), dist(y,K1)

}
= inf

{
ρ > 0

∣∣K1 ⊂ K2 + ρ B1, K2 ⊂ K1 + ρ B1

}
.

Here B1 always denotes the closed unit ball in RN , i.e. B1 := {x ∈ RN | |x| ≤ 1}. This is a very

general starting point for geometric evolution problems as there are no a priori restrictions in regard

to the regularity of sets and their boundaries. Motivated by the velocity method (often used in shape

optimization, e.g. [9, 11, 12, 28, 30]), the flow along ordinary differential equations can lay the basis

for transitions. Here, however, we follow a suggestion of Aubin (in [3, 4]) and consider a more general

approach of evolutions instead: autonomous differential inclusions and their reachable sets.
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Definition 2.1 ([3, Definition 3.7.1]) LIP(RN ,RN ) consists of all set–valued maps F : RN ; RN

satisfying
1. F has nonempty compact values that are uniformly bounded in RN ,

2. F is Lipschitz continuous with respect to the Pompeiu–Hausdorff distance.

Lip(M,RN ) consists of all bounded and Lipschitz continuous (single-valued) functions M −→ RN .

Definition 2.2 Choosing any set–valued map F : [0, T ]× RN ; RN , the so–called reachable set

ϑF (t,K) of the initial set K ∈ K(RN ) at time t ∈ [0, T ] is defined as

ϑF (t,K) :=
{
x(t) ∈ RN

∣∣∣ ∃ x(·) ∈W 1,1([0, t], RN ) : x(0) ∈ K,
d
dτ x(τ) ∈ F (τ, x(τ)) for almost every τ ∈ [0, t]

}
(and correspondingly for F : RN ; RN and its autonomous differential inclusion).

The special case of constant functions F (·) ≡ {v} (with an arbitrary vector v ∈ RN ) leads to the

Minkowski sum ϑF (t,K) = K + h · v ⊂ RN and, for an initial set K = {x} with just one element,

in particular, we return to the familiar affine–linear map (h, x) 7−→ x + h · v that has already been

mentioned as motivation.

An essential contribution of Aubin was to specify appropriate continuity conditions on the maps

ϑ : [0, 1] × E −→ E, (h, x) 7−→ ϑ(h, x) so that the familiar track of ordinary differential equations

can be followed in a metric space (E, d). Here we quote his definition introduced in the monograph [3]

(emphasizing the local features slightly more than his original version in [4]). Reachable sets of every

set-valued map F ∈ LIP(RN ,RN ) satisfy these conditions in the metric space (K(RN ), dl) :

Definition 2.3 ([3, Definition 1.1.2]) Let (E, d) be a metric space. A map ϑ : [0, 1] × E −→ E is

called transition on (E, d) if it satisfies the following conditions:

1. ϑ(0, x) = x for all x ∈ E,

2. lim
h ↓ 0

1
h · d (ϑ(t+h, x), ϑ(h, ϑ(t, x))) = 0 for all x ∈ E, t ∈ [0, 1[,

3. α(ϑ) := max
(
0, sup

x6=y
lim sup

h ↓ 0

d(ϑ(h,x), ϑ(h,y)) − d(x,y)
h · d(x,y)

)
<∞

4. β(ϑ) := sup
x∈E

lim sup
h ↓ 0

1
h · d(x, ϑ(h, x)) < ∞.

For any two transitions ϑ1, ϑ2 : [0, 1] × E −→ E on the same metric space (E, d), the transitional dis-

tance between ϑ1 and ϑ2 is defined by

dΛ(ϑ1, ϑ2) := sup
x∈E

lim sup
h ↓ 0

1
h · d (ϑ1(h, x), ϑ2(h, x)) .

Lemma 2.4 For every set-valued map F ∈ LIP(RN ,RN ), the map ϑF : [0, 1]×K(RN ) −→ K(RN ),

(h,K) 7−→ ϑF (h,K) of reachable sets (as introduced in Definition 2.2) is a well–defined transition on

the metric space (K(RN ), dl) according to Definition 2.3.
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To be more precise, the reachable sets satisfy for all initial sets K,K1,K2 ∈ K(RN ), set-valued maps

F,G ∈ LIP(RN ,RN ) and times t, h ≥ 0

ϑF (0,K) = K,

ϑF (t+ h,K) = ϑF (h, ϑF (t,K)),

dl(ϑF (h,K1), ϑF (h,K2)) ≤ dl(K1,K2) · eLip F ·h

dl(ϑF (h,K), ϑG(h,K) ) ≤ dl∞(F,G) · h eLip F ·h

dl(ϑF (t,K), ϑF (t+h,K)) ≤ ‖F‖∞ h

with ‖F‖∞
Def.= sup

x∈RN

sup
y∈F (x)

|y| < ∞

dl∞(F,G) Def.= sup
x∈RN

dl(F (x), G(x)) < ∞

and thus, α(ϑF ) ≤ Lip F, β(ϑF ) ≤ ‖F‖∞, dΛ(ϑF , ϑG) ≤ dl∞(F,G).

In particular, dl (ϑF (h,K1), ϑG(h,K2)) ≤ eLip F ·h (dl(K1,K2) + h · dl∞(F,G)).

The proof is presented in [3, Proposition 3.7.3] – as a direct consequence of Filippov’s Theorem (about

solutions to differential inclusions in RN ). In particular, this lemma justifies calling ϑF a morphological

transition on (K(RN ), dl) [3, Definition 3.7.2]. For the sake of simplicity, F ∈ LIP(RN ,RN ) is sometimes

identified with its morphological transition ϑF .

These reachable sets provide the tools for specifying (generalized) shape derivatives of a compact–valued

tube K(·) : [0, T [; RN , i.e. a curve K(·) : [0, T [−→ K(RN ). So the next step will be to solve equations

prescribing an element of the morphological mutation.

Definition 2.5 ([3, Definition 3.7.9 (2)]) For any compact–valued tube K(·) : [0, T [ ; RN , the

morphological mutation
◦
K(t) at time t ∈ [0, T [ consists of all set–valued maps F ∈ LIP(RN ,RN )

satisfying

lim
h ↓ 0

1
h · dl (ϑF (h, K(t)), K(t+ h)) = 0.

Definition 2.6 ([3, Definition 1.3.1, § 4.1)]) For any given function f : K(RN ) −→ LIP(RN ,RN ), a

compact–valued tube K(·) : [0, T [; RN is called solution to the morphological equation
◦
K(·) 3 f(K(·))

if 1. K(·) : [0, T [ ; RN is Lipschitz continuous with respect to dl and

2. for almost every t ∈ [0, T [, f(K(t)) ∈ LIP(RN ,RN ) belongs to
◦
K(t)

or, equivalently, lim
h ↓ 0

1
h · dl

(
ϑf(K(t))(h, K(t)), K(t+ h)

)
= 0.

At first glance, the symbol 3 here seems to be contradictory to the term “equation”. The mutation
◦
K(t), however, is defined as subset of all morphological transitions providing a first-order approximation

of K(t + ·) and so, the “right-hand side” f(K(t)) ∈ LIP(RN ,RN ) should be one of its elements. (In

the classical framework of differentiable functions and vector spaces, the mutation consists of just one

vector.)

As an essential result of [3, 4], the Cauchy–Lipschitz Theorem (about autonomous ordinary differential

equations) has the following counterpart:
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Theorem 2.7 ([3, Theorem 4.1.2]) Suppose f : (K(RN ), dl) −→
(
LIP(RN ,RN ), dl∞

)
to be λ–

Lipschitz continuous and to satisfy M := sup
K ∈K(RN )

Lip f(K) <∞.

For every initial set K0 ∈ K(RN ) and time T ∈]0,∞[, there exists a unique solution K(·) : [0, T [; RN

to the morphological equation
◦
K(·) 3 f(K(·)) with K(0) = K0.

Furthermore every Lipschitz compact–valued tube Q : [0, T [ ; RN with
◦
Q(t) 6= ∅ for every t ∈ [0, T [

satisfies the following estimate at each time t ∈ [0, T [

dl(K(t), Q(t)) ≤ dl(K0, Q(0)) · e(M+λ) t +
∫ t

0

e(M+λ) (t−s) · inf
G∈

◦
Q(s)

dl∞(f(Q(s)), G) ds.

In particular, the solution K(·) depends on the initial set K0 and the right–hand side f in a Lipschitz

continuous way.

Existence under (additional) state constraints proves to be a very interesting question for many ap-

plications. In the particular case of ordinary differential equations, Nagumo’s Theorem gives a necessary

and sufficient condition on the set of constraints V for existence of local solutions. It uses the contingent

cone (in the sense of Bouligand) and has served as a key motivation for viability theory (see e.g. [6]).

Definition 2.8 ([6, Definition 1.1.3]) Let X be a normed vector space, V ⊂ X nonempty and x ∈ V.

The contingent cone to V at x (in the sense of Bouligand) is

TV (x) :=
{
u ∈ X

∣∣ lim inf
h ↓ 0

1
h · dist(x+ hu, V ) = 0

}
.

This classical definition of contingent cone in a vector space is now extended to the metric space

(K(RN ), dl) by using the morphological transitions of LIP(RN ,RN ) :

Definition 2.9 ([3, Definition 1.5.2]) For a nonempty subset V ⊂ K(RN ) and any element K ∈ V,

TV(K) :=
{
F ∈ LIP(RN ,RN )

∣∣∣ 0 = lim inf
h ↓ 0

1
h · dist

(
ϑF (h,K), V

)}
is called contingent transition set of V at K (in the metric space (K(RN ), dl)).

Remark. Considering here the metric space (K(RN ), dl) (instead of a normed vector space as in

Definition 2.8) has an immediate consequence: By definition of the distance from a subset V ⊂ K(RN ),

dist
(
ϑF (h,K), V

)
= inf

C ∈V
dl

(
ϑF (h,K), C

)
.

In particular, we cannot expect any trivial identities of the contingent cone to a compact subset V ⊂ RN

and the contingent transition set to V := {V } ⊂ K(RN ). Furthermore, some of the subsequent general

results become definitely incorrect if the Pompeiu–Hausdorff distance dl is replaced by the one–sided

distance part called Pompeiu–Hausdorff excess (as defined in [3, § 3.2.1]).

Remark. The “geometric” background of reachable sets implies an additional property of morpho-

logical transitions in TV(K) ⊂ LIP(RN , RN ). Indeed, for any F ∈ TV(K), every map G ∈ LIP(RN ,RN )

with F (·) = G(·) in an open neighborhood of the compact set K is also contained in TV(K) be-

cause ϑF (t,K) = ϑG(t,K) for sufficiently small t > 0. So in other words, the criterion of TV(K)

depends only on an arbitrarily small neighborhood of the current set K. (The corresponding statement

even holds for an open neighborhood of the boundary ∂K as a closer investigation of the boundaries

∂ϑF (t,K) ⊂ ϑF (t, ∂K) reveals. These details, however, will not be used in the following.)
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In fact, Nagumo’s Theorem also holds for morphological equations:

Theorem 2.10 (Nagumo’s theorem for morphological equations [3, Theorem 4.1.7])

Suppose V ⊂ K(RN ) to be nonempty and closed with respect to dl.

Let f : (K(RN ), dl) −→
(
LIP(RN ,RN ), dl∞

)
be a continuous function satisfying

1. supM ∈K(RN ) Lip f(M) < ∞ (uniform bound of Lipschitz constants),

2. supM ∈K(RN ) ‖f(M)‖∞ < ∞ (uniform bound of compact values).

Then from any initial state K0 ∈ V starts at least one Lipschitz solution K(·) : [0, T [−→ K(RN ) of
◦
K (·) 3 f(K(·)) viable in V (i.e. K(t) ∈ V for all t) if and only if V is a viability domain of f in the

sense of f(M) ∈ TV(M) for each M ∈ V.

2.2 The step to morphological inclusions with state constraints:

A viability theorem

In [18], sufficient conditions for the existence of viable solutions were presented for morphological

inclusions, i.e. the single–valued function f : K(RN ) −→ LIP(RN ,RN ) of the right–hand side is

replaced by a set–valued map F : K(RN ) ; LIP(RN ,RN ). Correspondingly to Definition 2.6, we

specify the solution to a morphological inclusion in the following way:

Definition 2.11 ([18, Definition 3.1]) For any given function F : K(RN ) ; LIP(RN ,RN ), a compact–

valued tube K(·) : [0, T [ ; RN is called solution to the morphological inclusion
◦
K(·) ∩ F(K(·)) 6= ∅

if 1. K(·) : [0, T [ ; RN is Lipschitz continuous with respect to dl and

2. F(K(t))∩
◦
K(t) 6= ∅ for almost every t, i.e. a set-valued map G ∈ F(K(t)) ⊂ LIP(RN ,RN )

belongs to
◦
K(t) or, equivalently, lim

h↓0
1
h · dl (K(t+h), ϑG(h, K(t))) = 0,

In addition to F : K(RN ) ; LIP(RN ,RN ), a constrained set V ⊂ K(RN ) is now given.

We focus on the so-called viability condition demanding from each compact set K ∈ V that the value

F(K) and the contingent transition set TV(K) ⊂ LIP(RN ,RN ) have at least one morphological transi-

tion in common. Lacking a concrete counterpart of Aumann integral in the metric space (K(RN ), dl),

the question of its necessity (for the existence of “in V viable” solutions) is more complicated than for

differential inclusions in RN and thus, we skip it here deliberately.

Convexity again comes into play, but we have to distinguish between (at least) two aspects: First,

assuming F to have convex values in LIP(RN ,RN ) and second, supposing each set-valued map G ∈
F(K) ⊂ LIP(RN ,RN ) (with K ∈ K(RN )) to have convex values in RN . The latter, however, does not

really provide a geometric restriction on morphological transitions. Indeed, the well–known Relaxation

Theorem of Filippov–Ważiewski (e.g. [2, § 2.4, Theorem 2]) implies ϑG(t,K) = ϑco G(t,K) for every

map G ∈ LIP(RN ,RN ), initial set K ∈ K(RN ) and time t ≥ 0. So we suppose the values of F to be

in LIPco(RN ,RN ) :

Definition 2.12 ([18, Definition 3.4]) LIPco(RN ,RN ) denotes the set of all Lipschitz set–valued

maps G ∈ LIP(RN ,RN ) whose (nonempty compact) values are convex in addition.
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Theorem 2.13 (Viability theorem for morphological inclusions [18, Theorem 3.5])

Let F : K(RN ) ; LIPco(RN , RN ) be a set–valued map and V ⊂ K(RN ) a nonempty closed subset

satisfying :

1.) all values of F are nonempty and convex (i.e. for any G1, G2 ∈ F(K) ⊂ LIPco(RN ,RN ) and

λ ∈ [0, 1], the set–valued map RN ; RN , x 7→ λ ·G1(x) + (1− λ) ·G2(x) also belongs to F(K))

2.) sup
M∈K(RN )

sup
G∈F(M)

Lip G <∞ (uniform bound on all Lipschitz constants of set-valued maps)

sup
M∈K(RN )

sup
G∈F(M)

‖G‖∞ <∞ (uniform bound on all compact set values)

3.) the graph of F is closed (w.r.t. locally uniform convergence in LIP(RN , RN )),

4.) TV(K) ∩ F(K) 6= ∅ for all K ∈ V.

Then for every initial set K0 ∈ V, there exists a compact–valued Lipschitz continuous solution

K(·) : [0, 1] ; RN to the morphological inclusion
◦
K(·) ∩ F(K(·)) 6= ∅ with K(0) = K0 and

K(t) ∈ V for all t ∈ [0, 1].

Remark. In assumption (3.), the topology on LIP(RN ,RN ) is specified. A sequence (Gn)n∈N

in LIP(RN ,RN ) is said to converge “locally uniformly” to G ∈ LIP(RN ,RN ) if for every nonempty

compact set M ⊂ RN , dl∞(Gn(·)|M , G(·)|M ) Def.= sup
x∈M

dl(Gn(x), G(x)) −→ 0 for n −→ ∞ using

here the Pompeiu–Hausdorff distance dl on K(RN ).

Due to the uniform bounds in assumption (2.), the image F(K(RN )) ⊂ LIPco(RN ,RN ) is sequentially

compact with respect to this topology (as proved in [18, Lemma 3.11]). So F is upper semicontinuous

(in the sense of Bouligand and Kuratowski) according to [7, Proposition 1.4.8].

2.3 Set evolutions under strong operability constraints

Now Viability Theorem 2.13 is applied to a very special form of constraints:

VM :=
{
K ∈ K(RN )

∣∣ K ⊂M
}

with some (arbitrarily fixed) nonempty closed subset M ⊂ RN . Anne Gorre coined the term “strongly

operable in M” for this constraint [17]. Consequently, we obtain sufficient conditions on M ⊂ RN

and F : K(RN ) ; LIPco(RN , RN ) for the existence of a Lipschitz continuous solution K(·) : [0, 1] −→
K(RN ) satisfying { ◦

K(·) ∩ F(K(·)) 6= ∅ a.e. in [0, 1]

K(t) ⊂ M for each t ∈ [0, 1]

Here we benefit from earlier results of Gorre [17] considering the corresponding problems with morpho-

logical equations (instead of inclusions). In a word, she proved VM to be a closed subset of (K(RN ), dl)

and characterized their contingent transition sets completely by means of the tangential properties of

the closed set M ⊂ RN . Then she applied Nagumo’s theorem for morphological equations (quoted

here in Theorem 2.10). Her characterization in Lemma 2.14 has been combined directly with Viability

Theorem 2.13 in [18].
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Lemma 2.14 ([17, Theorem 4.3]) Let M ⊂ RN be closed and nonempty. For every nonempty

compact set K ∈ VM (i.e. K ⊂M) and each set–valued map G ∈ LIPco(RN , RN ), the following two

conditions are equivalent:

1. G ∈ TVM
(K), i.e. G belongs to the contingent transition set of VM at K (Definition 2.9).

2. G(x) ⊂ TM (x) for every x ∈ K, i.e. G(x) is contained in Bouligand’s contingent cone of M

at each point x ∈ K ⊂M (Definition 2.8). 2

Theorem 2.15 (Set evolutions “strongly operable” in M ⊂ RN [18, Theorem 4.5])

Let F : K(RN ) ; LIPco(RN , RN ) be a set–valued map and M ⊂ RN a closed subset satisfying :

1.) all values of F are nonempty, convex (as in Theorem 2.13) and have the global bounds

sup
K∈K(RN )

sup
G∈F(K)

(
‖G‖∞ + Lip G

)
<∞,

2.) the graph of F is closed (w.r.t. locally uniform convergence in LIP(RN , RN )),

3.) for any compact set K ⊂M, there exists G ∈ F(K) with G(x) ⊂ TM (x) for every x ∈ K.

Then for every nonempty compact set K0 ⊂M, there exists a compact–valued Lipschitz continuous

solution K(·) : [0, 1] ; RN to the morphological inclusion
◦
K(·) ∩ F(K(·)) 6= ∅ with K(0) = K0

and K(t) ⊂M for all t ∈ [0, 1].
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3 Morphological control problems

3.1 Formulation

Now a control parameter is to come into play. Indeed, the so-called control problems{
d
dt x(t) = f(x(t), u)

u ∈ U
(1)

have been studied thoroughly both in finite-dimensional and in infinite-dimensional vector spaces. Our

contribution now is to formulate the corresponding problem in the metric space (K(RN ), dl) using the

morphological framework for derivatives.

Definition 3.1 Let (U, dU ) denote a metric space and f : K(RN )× U −→ LIP(RN ,RN ) be given.

K : [0, T [ ; RN with values in K(RN ) is called solution to the morphological control problem{ ◦
K (·) 3 f(K(·), u) in [0, T [

u ∈ U
(2)

if there is a measurable function u(·) : [0, T [ −→ U such that K(·) solves the nonautonomous morpho-

logical equation
◦
K (t) 3 f(K(t), u(t)) in [0, T [, i.e. satisfying

1. K(·) : [0, T [ ; RN is Lipschitz continuous with respect to dl and

2. for almost every t ∈ [0, T [, f(K(t), u(t)) ∈ LIP(RN ,RN ) belongs to
◦
K(t)

or, equivalently, lim
h ↓ 0

1
h · dl

(
ϑf(K(t),u(t))(h, K(t)), K(t+ h)

)
= 0.

Proposition 3.2 (Solutions as reachable sets) Assume the metric space (U, dU ) to be complete

and separable and, consider LIPco(RN ,RN ) with the topology of locally uniform convergence. Suppose

f : K(RN ) × U −→ LIPco(RN ,RN ) to be continuous with sup
M∈K(RN )

u∈U

(‖f(M,u)‖∞+ Lip f(M,u)) < ∞.

Let K : [0, T [ ; RN be any compact-valued solution to the morphological control problem (2).

Then there is a measurable function u(·) : [0, T [−→ U such that at every time t ∈ [0, T [, the compact

set K(t) ⊂ RN coincides with the reachable set ϑf(K(·),u(·))(t, K(0)) ⊂ RN of the nonautonomous

differential inclusion d
dτ x(τ) ∈ f(K(τ), u(τ))

(
x(τ)

)
⊂ RN a.e.

Proof. Due to Definition 3.1, K(·) is Lipschitz continuous with respect to Pompeiu-Hausdorff distance

dl and, there is a measurable function u(·) : [0, T [−→ U such that for almost every t ∈ [0, T [,

lim
h ↓ 0

1
h · dl

(
ϑf(K(t),u(t))(h, K(t)), K(t+ h)

)
= 0.

Filippov’s Theorem in its generalized form (see e.g. [29, Theorem 2.4.3]) ensures the existence of solutions

x(·) ∈W 1,1([0, t],RN ) to the nonautonomous differential inclusion d
dτ x(τ) ∈ f(K(τ), u(τ))

(
x(τ)

)
a.e.

in [0, t] (whose right-hand side is just measurable in time, but uniformly Lipschitz continuous in space).

Moreover, the typical estimates hold which are well-known for autonomous differential inclusions and

have already laid the foundations for Lemma 2.4.

So the reachable set ϑf(K(·),u(·))(t, K(0)) ⊂ RN is well-defined and compact for every t ∈ [0, T [ and, due

to B := sup
M∈K(RN )

u∈U

(‖f(M,u)‖∞+ Lip f(M,u)) <∞, the map R : [0, T [; RN , t 7→ ϑf(K(·),u(·))(t, K(0))
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is B-Lipschitz continuous w.r.t. dl. Furthermore, [18, Corollary 3.14] ensures for almost every t ∈ [0, T [

that f(K(t), u(t)) ∈ LIPco(RN ,RN ) belongs to its mutation
◦
R (t).

As a consequence, the distance function δ : [0, T [ −→ [0,∞[ , t 7−→ dl (R(t),K(t)) is Lipschitz

continuous with δ(0) = 0 and satisfies at almost every time t ∈ [0, T [

lim sup
h ↓ 0

δ(t+h)−δ(t)
h = lim sup

h ↓ 0

1
h ·

(
dl

(
R(t+ h), K(t+ h)

)
− dl

(
R(t),K(t)

))
≤ lim sup

h ↓ 0

1
h ·

(
dl

(
R(t+ h), ϑf(K(t),u(t))(h, R(t))

)
+

dl
(
ϑf(K(t),u(t))(h, R(t)), ϑf(K(t),u(t))(h, K(t))

)
− dl

(
R(t),K(t)

)
+

dl
(
ϑf(K(t),u(t))(h, K(t)), K(t+ h)

))
≤ 0 + lim sup

h ↓ 0

1
h · δ(t) (eB h − 1) + 0

= B δ(t).
So Gronwall’s Lemma completes the proof: δ(·) ≡ 0. 2

3.2 The link to morphological inclusions

In vector spaces, the close relationship between control problem (1) and the corresponding differential

inclusion d
dt x(t) ∈

⋃
u∈U

f(x(t), u) a.e.

had been realized soon. A measurable selection provides the same link now for morphological inclusions.

In a word, the classical techniques using appropriate measurable selections (which had been developed

for differential inclusions in the Euclidean space) can also be used in the morphological framework

because the transitions are in a complete separable metric space, i.e. here LIP(RN ,RN ).

So a main result of this section is the following equivalence:

Proposition 3.3 Assume the metric space (U, dU ) to be complete and separable and, consider the set

LIP(RN ,RN ) with the topology of locally uniform convergence. Let f : K(RN ) × U −→ LIP(RN ,RN )

be a Carathéodory function (i.e. continuous in the first argument and measurable in the second one)

satisfying sup
M∈K(RN )

u∈U

(‖f(M,u)‖∞ + Lip f(M,u)) < ∞.

Set FU : K(RN ) ; LIP(RN ,RN ), K 7→ {f(K,u) | u ∈ U} ⊂ LIP(RN ,RN ).

A compact-valued tube K(·) : [0, T [ ; RN is solution to the morphological control problem{ ◦
K (·) 3 f(K(·), u) in [0, T [

u ∈ U

if and only if K(·) is solution to the morphological inclusion
◦
K(·) ∩ FU (K(·)) 6= ∅ (in the sense of

Definition 2.11).

Obviously, every morphological control problem leads to a morphological inclusion. So for proving

Proposition 3.3, we require the inverse connection (i.e. from inclusion to control problem). In the liter-

ature about differential inclusions in vector spaces, it is usually based on a selection result that is said

to go back to Filippov.
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Lemma 3.4 (Filippov [7, Theorem 8.2.10]) Consider a complete σ-finite measure space (Ω, A, µ),

complete separable metric spaces X,Y and a measurable set-valued map H : Ω ; X with closed

nonempty images. Let g : X × Ω −→ Y be a Carathéodory map (i.e. continuous in the first argu-

ment and measurable in the second one).

Then for every measurable function k : Ω −→ Y satisfying

k(ω) ∈ g(H(ω), ω) for µ-almost all ω ∈ Ω,

there exists a measurable selection h(·) : Ω −→ X of H(·) such that

k(ω) = g(h(ω), ω) for µ-almost all ω ∈ Ω.

So for applying Lemma 3.4 to morphological inclusions, we have to focus on two aspects: First,

LIP(RN ,RN ) as a separable metric space. Indeed, we usually supply LIP(RN ,RN ) with the topol-

ogy of locally uniform convergence (as specified in the remark after Theorem 2.13). This topology can

obviously be metrized by

dLIP : LIP(RN ,RN )×LIP(RN ,RN ) −→ [0, 1], (G,H) 7−→
∞∑

j=1

2−j
dl∞

(
G(·)|Bj(0), H(·)|Bj(0)

)
1 + dl∞

(
G(·)|Bj(0), H(·)|Bj(0)

)
with the abbreviation dl∞

(
G(·)|Bj(0), H(·)|Bj(0)

) Def.= sup
x∈RN , |x| ≤ j

dl(G(x), H(x)) < ∞.

Moreover, LIP(RN ,RN ) is separable with respect to dLIP due to the (global) Lipschitz continuity of

each of its set-valued maps and because both domains and values belong to the separable Euclidean

space RN .

Second, we study measurability of the “derivatives” for any compact-valued solution K(·) : [0, T [; RN .

Indeed for real-valued functions, it is well-known that Lipschitz continuity implies a Lebesgue-integrable

weak derivative and, the latter coincides with the differential quotient at Lebesgue-almost every time

(as a consequence of Rademacher’s Theorem [27, Theorem 9.60]). In the morphological framework,

however, the derivative is described as a subset of LIP(RN ,RN ), namely the mutation (in the sense of

Definition 2.5).

Proposition 3.5 (Measurability of compact mutation subsets)

For every threshold B ∈ [0,∞[ and Lipschitz continuous tube K(·) : [0, T [; RN with values in K(RN ),

the following set-valued map of transitions

[0, T [ ; LIP(RN ,RN ), t 7→
◦
K(t) ∩ {G ∈ LIP(RN ,RN ) | ‖G‖∞ + LipG ≤ B}

is Lebesgue-measurable.

Proof. For the sake of simplicity, we extend the Lipschitz map K(·) : [0, T [ ; RN continuously to R
according to K(s) := K(0) for s < 0 and K(s) := Limt↑T K(t) for s ≥ T.

The set B := {G ∈ LIP(RN ,RN ) | ‖G‖∞ + LipG ≤ B} ⊂ LIP(RN ,RN ) is compact with respect to

dLIP (i.e. locally uniform convergence in RN ) as a consequence of Arzela–Ascoli’s Theorem in metric

spaces (see e.g. [16, Theorem 2]).

Furthermore set Ĝ : RN ; RN , x 7→ BB+1(0) as an auxiliary set-valued map not belonging to B.
(Ĝ is just to ensure that all set-valued maps [0, T [ ; LIP(RN ,RN ) considered from now on have

nonempty values. So the results of [7] about measurability can be applied directly.)
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Now for each m,n ∈ N, define the set-valued map Mm,n : [0, T ] ; LIP(RN ,RN ) in the following

way: Mm,n(t) consists of Ĝ and all maps G ∈ B ⊂ LIP(RN ,RN ) such that

dl (ϑG(h, K(t)), K(t+ h)) ≤ 1
m h for all h ∈ [0, 1

n ].

The graph of Mm,n is closed. Indeed, let ((tj , Gj))j∈N be any convergent sequence in Graph Mm,n ⊂
[0, T ]× LIP(RN ,RN ) with the limit (t, G). If G = Ĝ, then we conclude Gj = Ĝ for all large j ∈ N.
So we can restrict our considerations to {Gj , G | j ∈ N} ⊂ B and in particular, for each j ∈ N,

dl
(
ϑGj (h, K(tj)), K(tj + h)

)
≤ 1

m h for all h ∈ [0, 1
n ].

Preceding Lemma 2.4 about reachable set of differential inclusions (applied to restrictions on a suffi-

ciently large ball in RN ) implies

dl (ϑG(h, K(t)), K(t+ h)) = lim
j→∞

dl
(
ϑGj (h, K(tj)), K(tj + h)

)
≤ 1

m h for all h ∈ [0, 1
n ],

i.e. G ∈Mm,n(t). Thus, Graph Mm,n is closed in [0, T ]× LIP(RN ,RN ).

Furthermore, all values of Mm,n are nonempty, closed and contained in the compact subset B∪{Ĝ} ⊂
LIP(RN ,RN ). So due to [7, Proposition 1.4.8], Mm,n : [0, T ] ; LIP(RN ,RN ) is upper semicontinuous

(in the sense of Bouligand and Kuratowski). Finally, this property implies the measurability of Mm,n

for each m,n ∈ N according to [7, Proposition 8.2.1].

Now we bridge the gap between the countable family (Mm,n)m,n∈N of measurable set-valued maps

and [0, T [ ; LIP(RN ,RN ), t 7→
◦
K(t) ∩ B considered in the claim: Due to the definition of Mm,n,⋃

n∈N
Mm,n(t) ⊂

{
G ∈ B

∣∣∣ lim sup
h ↓ 0

1
h · dl(ϑG(h,K(t)), K(t+h)) ≤ 1

m

}
∪ {Ĝ}⋃

n∈N
Mm,n(t) ⊃

{
G ∈ B

∣∣∣ lim sup
h ↓ 0

1
h · dl(ϑG(h,K(t)), K(t+h)) < 1

m

}
∪ {Ĝ}

Furthermore, Lemma 2.4 guarantees for every G,H ∈ B with dl∞
(
G(·)|B1(K(t)), H(·)|B1(K(t))

)
≤ ε

dl (ϑG(h,K(t)), ϑH(h,K(t))) ≤ ε h eB h for all h ∈ [0, 1
B ]

and thus, we obtain for a sufficiently small radius ε̃ > 0 (depending on m, t) the inclusion (w.r.t. dLIP)

Beε(B ∩
⋃
n∈N

Mm,n(t)
)
⊂

{
G ∈ B

∣∣∣ lim sup
h ↓ 0

1
h · dl(ϑG(h,K(t)), K(t+h)) ≤ 2

m

}
So the closure of the union on the left-hand side satisfies for every t ∈ [0, T [

B ∩
⋃
n∈N

Mm,n(t) ⊂
{
G ∈ B

∣∣∣ lim sup
h ↓ 0

1
h · dl(ϑG(h,K(t)), K(t+h)) ≤ 2

m

}
.

We conclude (again) for each t ∈ [0, T [

B ∩
⋂

m∈N

⋃
n∈N

Mm,n(t) =
{
G ∈ B

∣∣∣ lim sup
h ↓ 0

1
h · dl(ϑG(h,K(t)), K(t+h)) ≤ 0

}
=

◦
K(t) ∩ B.

Finally, [7, Theorem 8.2.4] ensures that the closure of a countable union and the countable intersection

preserve measurability of set-valued maps [0, T ] ; LIP(RN ,RN ) (see also [27, Proposition 14.11]).

This completes the proof. 2

Proof of Proposition 3.3. “⇐=” Let the compact-valued tube K(·) : [0, T [ ; RN be solution to

the morphological inclusion
◦
K(·) ∩ FU (K(·)) 6= ∅ (in the sense of Definition 2.11), i.e.
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1. K(·) : [0, T [ ; RN is Lipschitz continuous with respect to dl and

2. FU (K(t))∩
◦
K(t) 6= ∅ for almost every t, i.e. there is some u ∈ U such that the set-valued map

f(K(t), u) ∈ FU (K(t)) ⊂ LIP(RN ,RN ) belongs to the mutation
◦
K(t) or, equivalently,

lim
h↓0

1
h · dl

(
K(t+h), ϑf(K(t),u)(h, K(t))

)
= 0.

Setting B := sup
M∈K(RN )

u∈U

(‖f(M,u)‖∞ + Lip f(M,u)) < ∞, the set-valued map

[0, T [ ; LIP(RN ,RN ), t 7→
◦
K(t) ∩ {G ∈ LIP(RN ,RN ) | ‖G‖∞ + LipG ≤ B}

is Lebesgue-measurable according to Proposition 3.5. Due to [7, Theorems 8.1.3, 8.2.4], the intersection

[0, T [ ; LIP(RN ,RN ), t 7→
◦
K(t) ∩ FU (K(t))

is also Lebesgue-measurable and thus has a measurable selection k(·) : [0, T ] −→
(
LIP(RN ,RN ), dLIP

)
.

Finally, Lemma 3.4 of Filippov provides a measurable selection u(·) : [0, T ] −→ U of the constant map

H(·) ≡ U : [0, T ] ; U such that k(t) = f(K(t), u(t)) for Lebesgue-almost every t ∈ [0, T ]. 2

Moreover, we obtain a representation as reachable set similarly to Proposition 3.2 about morphological

control problems. It is the second key result in this section.

Proposition 3.6 (Solutions of morphological inclusions as reachable sets)

Let F : K(RN ) ; LIPco(RN , RN ) be a set–valued map satisfying

1.) all values of F are nonempty and have the global bounds sup
K∈K(RN )

sup
G∈F(K)

(
‖G‖∞ + Lip G

)
<∞,

2.) the graph of F is closed (w.r.t. locally uniform convergence in LIP(RN , RN )).

For every compact-valued solution K(·) : [0, T [ ; RN to the morphological inclusion
◦
K(·) ∩ F(K(·)) 6= ∅ in [0, T [,

there exists a measurable selection k(·) : [0, T [−→ LIPco(RN ,RN ) of the composition F(K(·)) : [0, T [;

LIPco(RN ,RN ) such that for Lebesgue-almost every t ∈ [0, T [, the set K(t) coincides with the reachable

set ϑk(·)(t,K(0)) ⊂ RN of the nonautonomous differential inclusion d
dτ x(τ) ∈ k(τ)

(
x(τ)

)
⊂ RN a.e.

Proof. As in the preceding proof of Proposition 3.3, there exists a measurable selection k(·) :

[0, T ] −→
(
LIP(RN ,RN ), dLIP

)
of the set-valued intersection

[0, T [ ; LIP(RN ,RN ), t 7→
◦
K(t) ∩ F(K(t))

due to Proposition 3.5 and [7, Theorems 8.1.3, 8.2.4]. The right-hand side of the nonautonomous

differential inclusion d
dτ x(τ) ∈ k(τ)

(
x(τ)

)
⊂ RN a.e. is measurable in time and uniformly Lipschitz

continuous in space (due to assumption (1.)). So Filippov’s Theorem about differential inclusions allows

us to follow exactly the same track as for Proposition 3.2 (about morphological control problems). 2
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3.3 Application to control problems with state constraints

The relationship between morphological control problems and morphological inclusions opens the door

to applying Viability Theorem 2.13. So we can now specify sufficient conditions on a morphological

control problem with state constraints for having at least one viable solution:

Proposition 3.7 (Viability theorem for morphological control problems)

Assume the metric space (U, dU ) to be compact and separable and, consider the set LIPco(RN ,RN ) with

the topology of locally uniform convergence. Suppose for f : K(RN ) × U −→ LIPco(RN ,RN ) and the

nonempty closed subset V ⊂ K(RN ):

1.) for any K ∈ K(RN ), the set {f(K,u) | u∈U} ⊂ LIPco(RN ,RN ) is convex, i.e. for any u1, u2∈U
and λ ∈ [0, 1], there exists some u ∈ U such that f(K,u) ∈ LIPco(RN ,RN ) is identical to the

set–valued map RN ; RN , x 7→ λ · f(K,u1)(x) + (1−λ) · f(K,u2)(x) (in the Minkowski sense).

2.) sup
K∈K(RN )

u∈U

(‖f(K,u)‖∞ + Lip f(K,u)) <∞,

3.) f is continuous,

4.) for each K ∈ V, there exists some u ∈ U with f(K,u) ∈ TV(K).

Then for every initial set K0 ∈ V, there exists a compact–valued Lipschitz continuous solution

K(·) : [0, 1] ; RN to the morphological control problem
◦
K(·) 3 f(K(·), u), u ∈ U with K(0) = K0

and K(t) ∈ V for all t ∈ [0, 1].

Proof. Define the set-valued map FU : K(RN ) ; LIPco(RN ,RN ), K 7→ {f(K,u) | u∈U}.
Obviously, it has nonempty convex values due to assumption (1.). Moreover, the graph of FU is a closed

subset of K(RN )×LIP(RN ,RN ) because f is continuous and U is compact. So FU satisfies the assump-

tion of Viability Theorem 2.13 and thus, for every initial set K0 ∈ V, there exists a compact–valued

Lipschitz continuous solution K(·) : [0, 1] ; RN to the morphological inclusion
◦
K(·) ∩ FU (K(·)) 6= ∅

with K(0) = K0 and K(t) ∈ V for all t ∈ [0, 1].

Due to Prop. 3.3, K(·) is solution to the morphological control problem
◦
K(·) 3 f(K(·), u), u ∈ U. 2

For a given closed subset M ⊂ RN , we conclude from Gorre’s characterization in Lemma 2.14 directly:

Corollary 3.8 (Morphological control problems strongly operable in M ⊂ RN)

Assume the metric space (U, dU ) to be compact and separable and, consider the set LIPco(RN ,RN ) with

the topology of locally uniform convergence. Suppose for f : K(RN ) × U −→ LIPco(RN ,RN ) and the

nonempty closed subset M ⊂ RN :

1.) for any K ∈ K(RN ), the set {f(K,u) | u∈U} ⊂ LIPco(RN ,RN ) is convex (as in Proposition 3.7),

2.) sup
K∈K(RN )

u∈U

(‖f(K,u)‖∞ + Lip f(K,u)) <∞,

3.) f is continuous,

4.) for each nonempty compact set K ⊂M, there is u ∈ U with f(K,u)(x) ⊂ TM (x) for all x ∈ K.

Then for every nonempty compact subset K0 ⊂M, there exists a compact–valued Lipschitz contin-

uous solution K(·) : [0, 1] ; RN to the morphological control problem
◦
K(·) 3 f(K(·), u), u ∈ U

with K(0) = K0 and K(t) ⊂M for all t ∈ [0, 1]. 2
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3.4 Relaxed control problems with state constraints

Considering the morphological control problem{ ◦
K (·) 3 f(K(·), u) in [0, T [

u ∈ U

(and the statements in Proposition 3.7 or Corollary 3.8, for example), the convexity of {f(K,u) |u ∈ U}
⊂ LIPco(RN ,RN ) is a hypothesis that can be difficult to verify.

For basically the same reason, the concept of “relaxed control” has been established for classical control

problems in vector spaces. In a word, it is based on replacing the metric space U of control parameters

by the set of Borel probability measures on U, from now on denoted by P(U).

The goal of this section is to adapt “relaxed controls” to the morphological framework.

Definition 3.9 Let (U, dU ) be a metric space and consider LIP(RN ,RN ) with the topology of locally

uniform convergence (metrized by dLIP as in § 3.2). Suppose g : U −→ LIP(RN ,RN ) to be continuous.

For any probability measure µ ∈ P(U), the integral
∫

U

g(u) dµ(u) is defined as set-valued map by∫
U

g(u) dµ(u) : RN ; RN , x 7→
∫

U

g(u)(x) dµ(u).

Remark. Using the notation of Definition 3.9, for each point x ∈ RN fixed, the set-valued map

U ; RN , u 7→ g(u)(x) is compact-valued and continuous in the sense of Bouligand and Kuratowski.

Thus the integral
∫

U

g(u)(x) dµ(u) ⊂ RN is well-defined in the sense of Aumann.

Definition 3.10 Let (U, dU ) denote a metric space and f : K(RN )× U −→ LIP(RN ,RN ) be given.

K : [0, T [ ; RN with values in K(RN ) is called solution to the morphological relaxed control problem{ ◦
K (·) 3 f(K(·), u) in [0, T [

u ∈ U

if there is a measurable function µ : [0, T [−→ P(U), t 7−→ µt such that K(·) solves the nonautonomous

morphological equation
◦
K (t) 3

∫
U

f(K(t), u) dµt(u) in [0, T [, i.e. satisfying

1. K(·) : [0, T [ ; RN is Lipschitz continuous with respect to dl and

2. for almost every t ∈ [0, T [, the closure
∫

U

f(K(t), u) dµt(u) ∈ LIP(RN ,RN ) belongs to
◦
K(t).

So the first question is now: Which effects do probability measures (on U) instead of U have on the

corresponding set-valued map FU : K(RN ) ; LIP(RN ,RN ) ?

Proposition 3.11 Assume the metric space (U, dU ) to be compact and separable.

Consider the set LIPco(RN ,RN ) with the topology of locally uniform convergence and the set P(U) of

Borel probability measures on U with the topology of narrow convergence (i.e. the dual setting with con-

tinuous and thus bounded functions U −→ R).
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Let f : K(RN ) × U −→ LIPco(RN ,RN ) be continuous with sup
K∈K(RN )

u∈U

(
‖f(K,u)‖∞+ Lip f(K,u)

)
< ∞

and, set for each K ∈ K(RN )

FU (K) :=
{
f(K,u)

∣∣ u ∈ U},
F̃U (K) :=

{ ∫
U

f(K,u) dµ(u)
∣∣∣ µ ∈ P(U)

}
.

Then,

1.) F̃U (·) is a set-valued map K(RN ) ; LIPco(RN ,RN ) with FU (K) ⊂ F̃U (K) for every K∈K(RN ).

2.) F̃U (·) has closed convex values with co FU (K) = F̃U (K) ⊂ LIPco(RN ,RN ) for every K∈K(RN ).

3.) The graph of F̃U (·) is closed.

The proof of this proposition uses some tools about Borel probability measures and Aumann integrals.

It is postponed to the end of this section 3.4.

The main notion is now to consider P(U) as control set instead of U. For applying Proposition 3.3 about

the relationship between control problem and morphological inclusion, however, the parameter space

has to be metric. So we need the following lemma for obtaining the counterparts to Proposition 3.7 and

Corollary 3.8. Proposition 3.13 and Corollary 3.14 are the main results of this section.

Lemma 3.12 ([1, §§ 5.1, 7.1])

Let U 6= ∅ be a Polish space (i.e. complete and separable metric space) with a bounded metric dU .

Then the set P(U) of Borel probability measures on U supplied with the topology of narrow convergence

is metrizable and separable. An example for a suitable metric on P(U) is the linear Wasserstein distance

(in its dual representation)

dP(U)

(
µ, ν

)
:= sup

{∫
U

ψ d(µ− ν)
∣∣∣ ψ : U −→ R 1–Lipschitz continuous

}
.

A subset M ⊂ P(U) is relatively compact in P(U) if and only if M is tight, i.e. for every ε > 0,

there exists a compact subset C ⊂ U with µ(U \C) ≤ ε for all µ ∈M (known as Prokhorov’s Theorem).

Proposition 3.13 (Viability theorem for morphological relaxed control problems)

Assume the metric space (U, dU ) to be compact and separable. Consider the set LIPco(RN ,RN ) with the

topology of locally uniform convergence and the set P(U) of Borel probability measures on U with the

topology of narrow convergence.

Suppose for f : K(RN )× U −→ LIPco(RN ,RN ) and the nonempty closed subset V ⊂ K(RN ):

(i) sup
K∈K(RN )

u∈U

(‖f(K,u)‖∞ + Lip f(K,u)) <∞,

(ii) f is continuous,

(iii) TV(K) ∩ co {f(K,u) | u ∈ U} 6= ∅ for each K ∈ V.

Then for every initial set K0 ∈ V, there exists a compact–valued Lipschitz continuous solution

K(·) : [0, 1] ; RN to the morphological relaxed control problem
◦
K(·) 3 f(K(·), u), u ∈ U (in the

sense of Definition 3.10) with K(0) = K0 and K(t) ∈ V for all t ∈ [0, 1].
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Proof. Considering
(
P(U), dP(U)

)
as metric parameter space instead of (U, dU ), the set-valued map

F̃U : K(RN ) ; LIPco(RN ,RN ), K 7→
{ ∫

U

f(K,u) dµ(u)
∣∣∣ µ ∈ P(U)

}
satisfies the assumptions of Viability Theorem 2.13 according to Proposition 3.11. So for each K0 ∈ V,
there exists a compact–valued Lipschitz continuous solution K(·) : [0, 1] ; RN to the morphological

inclusion
◦
K(·) ∩ F̃U (K(·)) 6= ∅ with K(0) = K0 and K(t) ∈ V for all t ∈ [0, 1].

Finally Proposition 3.3 guarantees that K(·) is solution to the morphological control problem

◦
K(·) 3

∫
U

f(K(·), u) dµ(u), µ ∈ P(U),

i.e. it solves the relaxed control problem. 2

Corollary 3.14 (Morphological relaxed control problems strongly operable in M ⊂ RN)

Assume the metric space (U, dU ) to be compact and separable. Consider the set LIPco(RN ,RN ) with the

topology of locally uniform convergence and the set P(U) of Borel probability measures on U with the

topology of narrow convergence.

Suppose for f : K(RN )× U −→ LIPco(RN ,RN ) and the nonempty closed subset M ⊂ RN :

(i) sup
K∈K(RN )

u∈U

(‖f(K,u)‖∞ + Lip f(K,u)) <∞,

(ii) f is continuous,

(iii) for each compact K ⊂M, there is a set-valued map G ∈ co {f(K,u) | u ∈ U} ⊂ LIPco(RN ,RN )

satisfying G(x) ⊂ TM (x) for every x ∈ K.

Then for every nonempty compact subset K0 ⊂M, there exists a compact–valued Lipschitz continu-

ous solution K(·) : [0, 1] ; RN to the morphological relaxed control problem
◦
K(·) 3 f(K(·), u), u ∈ U

(in the sense of Definition 3.10) with K(0) = K0 and K(t) ⊂M for all t ∈ [0, 1]. 2

Now we close this section with the proof of Proposition 3.11.

Proof of Proposition 3.11. (1.) As mentioned in the remark after Definition 3.9, the integral∫
U

f(K,u) dµ(u) is a well-defined set-valued map RN ; RN for each K ∈ K(RN ), u ∈ U and

µ ∈ P(U). Moreover, its closure is convex since all set-valued maps f(K,u) ∈ LIP(RN ,RN ) have convex

values and due to the general properties of Aumann integral (see e.g. [20, Theorem 2.1.17]).

Due to the assumption B := sup
K,u

(
‖f(K,u)‖∞+Lip f(K,u)

)
<∞, all compact sets f(K,u)(x) (with

K ∈ K(RN ), u ∈ U, x ∈ RN ) are contained in the closed convex ball {y ∈ RN | |y| ≤ B} and so are all

values of the closures of
∫

U

f(K,u) dµ(u).

Finally we prove that
∫

U

f(K,u) dµ(u) : RN ; RN is B–Lipschitz continuous for eachK ∈ K(RN ).

For any x1, x2 ∈ RN , the inclusion f(K,u)(x1) ⊂ f(K,u)(x2) + BB·|x1−x2|(0) ⊂ RN holds for every

u ∈ U and we conclude from [7, Proposition 8.6.2]∫
U

f(K,u)(x1) dµ(u) ⊂
∫

U

(
f(K,u)(x2) + BB·|x1−x2|(0)

)
dµ(u)

⊂
∫

U

f(K,u)(x2) dµ(u) + BB·|x1−x2|(0).
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(2.) The convexity of F̃(K) ⊂ LIPco(RN ,RN ) (with respect to pointwise convex combinations

as in Theorem 2.13 (1)) results from the convexity of P(U). Furthermore, coF(K) ⊂ F̃(K) ⊂ coF(K)

can be concluded easily from the fact that finite convex combinations of Dirac masses are dense in P(U)

(since U is compact and separable [8, § 30]).

Now we prove that F̃(K) ⊂ LIPco(RN ,RN ) is closed (with respect to locally uniform convergence)

for every K ∈ K(RN ). Indeed, let (µn)n∈N be any sequence in P(U) such that∫
U

f(K,u) dµn(u) n→∞−→ G ∈ LIPco(RN ,RN ) locally uniformly in RN .

As U is assumed to be compact, the sequence (µn)n∈N is tight and thus relatively compact in P(U)

according to Lemma 3.12. So a subsequence (µnj )j∈N converges narrowly to a measure µ∞ ∈ P(U).

We want to verify for every x ∈ RN∫
U

f(K,u)(x) dµ∞(u) = G(x) ⊂ RN .

Indeed, the set-valued map f(K, ·)(x) : U ; RN is continuous with nonempty compact convex values.

So both the closed integral in the recent claim and G(x) are nonempty, compact and convex. For any

vector p ∈ RN and any measure ν ∈ P(U), [7, Proposition 8.6.2] states

sup
(
p ·

∫
U

f(K,u)(x) dν(u)
)

=
∫

U

sup (p · f(K,u)(x)) dν(u).

Here the single-valued function sup (p · f(K, ·)(x)) : U −→ R is continuous and bounded. So on the

one hand we conclude from the narrow convergence µnj −→ µ∞ for each p ∈ RN

sup
(
p ·

∫
U

f(K,u)(x) dµnj (u)
)

j→∞−→ sup
(
p ·

∫
U

f(K,u)(x) dµ∞(u)
)
.

On the other hand the initial assumption of locally uniform convergence to G(·) implies for each p ∈ RN

sup
(
p ·

∫
U

f(K,u)(x) dµnj
(u)

)
j→∞−→ sup (p ·G(x)) .

So the two following convex sets coincide for every x ∈ RN∫
U

f(K,u)(x) dµ∞(u) = G(x) ⊂ RN .

Finally we have verified that F̃(K) ⊂ LIPco(RN ,RN ) is closed.

(3.) For proving that Graph F̃ ⊂ K(RN )×LIPco(RN ,RN ) is closed, let (Kn)n∈N, (µn)n∈N be

any sequences in K(RN ) and P(U) respectively such that

Kn
n→∞−→ K ∈ K(RN ) with respect to dl,∫

U

f(Kn, u) dµn(u) n→∞−→ G ∈ LIP(RN ,RN ) locally uniformly in RN .

Our goal is to verify G ∈ F̃(K).

Due to the compactness of U, the set {µn|n ∈ N} ⊂ P(U) is tight and so there exists a subsequence

(again denoted by) (µn)n∈N converging narrowly to some µ∞ ∈ P(U). In the proof of statement (2.),

we have already drawn the conclusion for each x ∈ RN∫
U

f(K,u)(x) dµn(u) n→∞−→
∫

U

f(K,u)(x) dµ∞(u) ⊂ RN
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So now it is sufficient to verify for each x ∈ RN∫
U

f(Kn, u)(x) dµ(u) n→∞−→
∫

U

f(K,u)(x) dµ(u) uniformly in µ ∈ P(U)

since it ensures
∫

U

f(Kn, u)(x) dµn(u) n→∞−→
∫

U

f(K,u)(x) dµ∞(u) ⊂ RN for each x ∈ RN .

Indeed, the continuous function f : K(RN ) × U −→ LIPco(RN ,RN ) (between metric spaces) is uni-

formly continuous on the compact set {K,Kn |n ∈ N}×U. So evaluating the set-valued maps at a fixed

point x ∈ RN respectively, we obtain for each ε > 0 that some small radius δ = δ(ε) > 0 satisfies

dl(Kn,K) + dU (u1, u2) ≤ δ =⇒ dl
(
f(Kn, u1)(x), f(K,u2)(x)

)
≤ ε.

In particular, there is some m = m(ε) ∈ N with dl
(
f(Kn, u)(x), f(K,u)(x)

)
≤ ε for all n ≥ m,u ∈ U.

Since f(Kn, u)(x) and f(K,u)(x) are always compact convex subsets of RN , it implies for the closure

of the Aumann integral with respect to any probability measure µ ∈ P(U) [20, Theorem 2.1.17 (i)]

dl
(∫

U

f(Kn, u) dµ(u),
∫

U

f(K,u) dµ(u)
)

≤ ε for all n ≥ m(ε). 2

3.5 Closed control loops for problems with state constraints

In this section, we specify sufficient conditions on the control system and state constraints for the

existence of a closed-loop control, i.e. a continuous function u(·) : V −→ U is to provide a feedback

law such that for any initial set K0 ∈ V ⊂ K(RN ), every Lipschitz solution K(·) : [0, T ] ; RN to the

morphological equation{ ◦
K (·) 3 f (K(·), u(K(·))) a.e. in [0, T [

K(0) ∈ K0

(3)

solves the morphological control problem with state constraints{ ◦
K (·) 3 f(K(·), u), u ∈ U a.e. in [0, T [

K(t) ∈ V for every t ∈ [0, T [.
(4)

Corresponding to Aubin’s notion of regulation maps [6, § 6], Nagumo’s Theorem 2.10 motivates to

construct the wanted closed-loop control u(·) : V −→ U as continuous selection of the set-valued map

V ; U, K 7→ {u ∈ U | f(K,u) ∈ TV(K)}

indicating “consistent” control parameters for preserving values in V.
Applying Michael’s famous selection theorem for lower semicontinuous functions [19],[7, Theorem 9.1.2],

this approach has been developed for constrained control problems in the Euclidean space [6, § 6.6.1].

Our contribution now is to extend it to the morphological framework.

The key challenge is to specify appropriate subsets of the contingent transition set TV(K) ⊂ LIP(RN ,RN )

so that “convenient” assumptions about them ensure the existence of a closed-loop control. For this

purpose, we extend Clarke tangent cone and hypertangent cone to the morphological framework in

(K(RN ), dl). Their counterparts are called circatangent transition set TC
V (K) and hypertangent transi-

tion set HV(K) respectively and, several of their features are presented in Appendix A and B.
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Definition 3.15 For a nonempty subset V ⊂ K(RN ) and any element K ∈ V,

TC
V (K) :=

{
F ∈ LIP(RN ,RN )

∣∣∣ ∀ hn ↓ 0, Kn → K with Kn ∈ V ⊂ K(RN ) :
1

hn
· dist

(
ϑF (hn,Kn), V

) n→∞−→ 0
}

is called circatangent transition set of V at K (in the metric space (K(RN ), dl)).

Definition 3.16 Consider the set LIP(RN ,RN ) with the topology of locally uniform convergence.

For a nonempty subset V ⊂ K(RN ) and any element K ∈ V,

HV(K) :=
{
F ∈ LIP(RN ,RN )

∣∣∣ ∃ ε > 0, neighborhood U of F ∀ G ∈ U :

lim sup
h ↓ 0

1
h · dist

(
ϑG(h,M), V

)
= 0 uniformly in M ∈ V ∩ Bε(K)

}
is called hypertangent transition set of V at K (in the metric space (K(RN ), dl)).

Obviously, HV(K) ⊂ TC
V (K) ⊂ TV(K) for every set K ∈ V.

Corresponding to the Clarke tangent cone in the Euclidean space, the circatangent transition set TC
V (K)

is convex according to Corollary A.7. Furthermore, there is a close relation to the hypertangent transition

set: Graph HV(·) is the interior of the graph of TC
V (·) : V ; LIP(RN ,RN ) due to Proposition B.7.

So now we can formulate the main result of this section:

Proposition 3.17 (Closed-loop control for morphological equations) Let U be a separable

Banach space and, consider the set LIP(RN ,RN ) with the topology of locally uniform convergence.

For a nonempty closed set V ⊂ (K(RN ), dl) and f : K(RN )× U −→ LIP(RN ,RN ) suppose:

(1.) f is continuous und bounded in the sense that sup
M∈K(RN )

u∈U

(‖f(M,u)‖∞ + Lip f(M,u)) < ∞.

(2.) RH : V ; U, K 7→ {u ∈ U | f(K,u) ∈ HV(K)} has nonempty convex values.

Then, the pointwise closure R
H

: V ; U, K 7→ RH(K) has a continuous selection u(·) : V −→ U.

In particular, every Lipschitz continuous solution K(·) : [0, T ] ; RN to the morphological equation{ ◦
K (·) 3 f (K(·), u(K(·))) a.e. in [0, T [

K(0) ∈ K0

with initial set K0 ∈ V is viable in V, i.e. K(t) ∈ V for all t ∈ [0, T ].

In combination with Nagumo’s theorem 2.10, Michael’s celebrated selection theorem lays the analytical

foundations. In particular, it motivates the choice of a Banach space for the controls (instead of a metric

space as in earlier sections of this paper).

Proposition 3.18 (Michael [19],[7, Theorem 9.1.2]) Let R be a lower semicontinuous set-valued

map with nonempty closed convex values from a compact metric space X to a Banach space Y .

Then R has a continuous selection, i.e. there exists a continuous single-valued function r : X −→ Y

with r(x) ∈ R(x) for every x ∈ X.
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Proof of Proposition 3.17.

Following a track similar to [6, Proposition 6.3.2], we first verify the lower semicontinuity of

RH : V ; U, K 7→ {u ∈ U | f(K,u) ∈ HV(K)}

(in the sense of Bouligand and Kuratowski). Indeed, choose K ∈ V and u ∈ RH(K) arbitrarily.

Graph HV is open in V × LIP(RN ,RN ) as a direct consequence of Definition 3.16. So there is r > 0

with Br(K)×Br

(
f(K,u)

)
⊂ Graph HV , i.e. Br

(
f(K,u)

)
⊂ HV(M) for all M ∈ Br(K) ⊂ K(RN ).

Finally the continuity of f provides a smaller radius ρ ∈ ]0, r[ with f(M,v) ∈ Br

(
f(K,u)

)
⊂ HV(M)

for all v ∈ Bρ(u) ⊂ U and M ∈ Bρ(K) ⊂ K(RN ).

In other words, the intersection of sets RH(M) Def.= {v ∈ U | f(M,v) ∈ HV(M)} for all M ∈ Bρ(K)

contains the ball Bρ(u) ⊂ U and thus, it is a neighborhood of u ∈ RH(K). So RH(·) : V ; U is

lower semicontinuous.

Now we consider the pointwise closure of RH , i.e. R
H

: V ; U, K 7→ {u ∈ U | f(K,u) ∈ HV(K)}.
Obviously, R

H
(·) has nonempty closed convex values in the Banach space U. Additionally, it inherits

lower semicontinuity from RH(·) as the topological criterion of lower semicontinuity (via neighborhoods)

reveals easily. So for any compact ball B ⊂
(
K(RN ), dl

)
, Michael’s Theorem (Proposition 3.18) provides

a continuous selection uB : B ∩ V −→ U of the restriction R
H

∣∣∣
B∩V

: B ∩ V ; U. Covering finally the

metric space
(
K(RN ), dl

)
with countably many balls, a locally finite continuous partition of unit leads

to the wanted continuous selection u : V −→ U of R
H

: V ; U because all values of R
H

are convex.

2
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A Clarke tangent cone in the morphological framework:

The circatangent transition set.

The invariance condition of Nagumo (in Theorem 2.10) has already served Aubin as motivation for

extending the contingent cone TV (x) in a normed vector space to the morphological framework (see

Definition 2.9 quoting [3, Definition 1.5.2]).

In this section, we seize the classical definition of Clarke tangent cone introduced by Frank H. Clarke

in the seventies (see [10] for details) and extend it to the morphological framework. Following the

alternative nomenclature of Aubin and Frankowska in [7, Definition 4.1.5 (2)], its counterpart will be

called circatangent transition set – just because this term is shorter and fits to the established “con-

tingent transition set”. In [3, Definition 1.5.4], Aubin introduced circatangent transition sets in the

more general framework of metric spaces and, Definition A.2 below is equivalent to the special case of

(K(RN ), dl) and morphological transitions. In [21], Murillo applied this concept to tuples of vectors and

compact subsets in RM × K(RN ) and proved an asymptotic relationship between their contingent and

circatangent transition set implying that the latter is closed [21, Theorem 4.6].

To the best of our knowledge, further features like convexity are extended from the Euclidean space to

the metric space (K(RN ), dl) in this paper for the first time.

Definition A.1 ([10, § 2.4],[7, § 4.1.3], [27, § 6.F]) Let K be a nonempty subset of a normed vector

space X and x ∈ X belong to the closure of K. The Clarke tangent cone or circatangent cone TC
K (x) is

defined (equivalently) by

TC
K (x) := Liminf h ↓ 0,

y−→
K

x

K−y
h

=
{
v ∈ X

∣∣∣ ∀ hn ↓ 0, yn → x with yn ∈ K : dist
(
v, K−yn

hn

) n→∞−→ 0
}

=
{
v ∈ X

∣∣∣ ∀ hn ↓ 0, yn → x with yn ∈ K : 1
hn
· dist

(
yn + hn · v, K

) n→∞−→ 0
}
.

Definition A.2 For a nonempty subset V ⊂ K(RN ) and any element K ∈ V,

TC
V (K) :=

{
F ∈ LIP(RN ,RN )

∣∣∣ ∀ hn ↓ 0, Kn → K with Kn ∈ V ⊂ K(RN ) :
1

hn
· dist

(
ϑF (hn,Kn), V

) n→∞−→ 0
}

is called circatangent transition set of V at K (in the metric space (K(RN ), dl)).

In fact, we do not have to restrict our considerations to arbitrary sequences (Kn)n∈N in V ⊂ K(RN ).

An equivalent characterization of TC
V (K) uses all sequences in K(RN ) converging to K :

Lemma A.3 For every nonempty closed subset V ⊂
(
K(RN ), dl

)
and K ∈ V,

TC
V (K) =

{
F ∈ LIP(RN ,RN )

∣∣∣ ∀ hn ↓ 0, Kn → K :

lim sup
n−→∞

1
hn

·
(
dist

(
ϑF (hn,Kn), V

)
− dist

(
Kn, V

))
≤ 0

}
Proof. “⊃” is an obvious consequence of Definition A.2.
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“⊂” For any F ∈ TC
V (K) ⊂ LIP(RN ,RN ) choose the arbitrary sequences (hn)n∈N, (Kn)n∈N in

]0,∞[ and K(RN ) respectively with hn −→ 0, dl(Kn,K) −→ 0 for n −→ ∞. Since closed balls in

(K(RN ), dl) are known to be compact, there exists a set Mn ∈ V ⊂ K(RN ) for each n ∈ N satisfying

dl(Kn,Mn) = dist
(
Kn,V) −→ 0 .

F ∈ TC
V (K) implies 1

hn
· dist

(
ϑF (hn,Mn), V

)
−→ 0 for n −→∞

and Lemma 2.4 ensures dl
(
ϑF (hn,Kn), ϑF (hn,Mn)

)
≤ dl(Kn,Mn) · eLip F ·hn for each n ∈ N.

Finally, we obtain

lim sup
n−→∞

1
hn

·
(
dist

(
ϑF (hn,Kn), V

)
− dist

(
Kn, V

))
≤ lim sup

n−→∞
1

hn
·

(
dl

(
ϑF (hn,Kn), ϑF (hn,Mn)

)
+ dist

(
ϑF (hn,Mn), V

)
− dl(Kn,Mn)

)
≤ lim sup

n−→∞

(
dl(Kn,Mn) · eLip F ·hn − 1

hn
+ 1

hn
· dist

(
ϑF (hn,Mn), V

) )
≤ 0. 2

So far, the circatangent transition set has been characterized by two sequences providing the arbitrarily

fixed link between “step size” hn > 0 and neighboring sets Kn ∈ K(RN ). The following condition proves

to be equivalent and avoids countability as essential feature:

Lemma A.4 Let K ∈ K(RN ) be any element of the nonempty closed set V ⊂
(
K(RN ), dl

)
.

Then, a set-valued map F ∈ LIP(RN ,RN ) belongs to the circatangent transition set TC
V (K) if and only

if there is a function ω : [0,∞[−→ [0,∞[ with limδ→ 0 ω(δ) = 0 and
1
h ·

(
dist

(
ϑF (h,M), V

)
− dist(M, V)

)
≤ ω

(
dl(M,K) + h

)
for all h ∈ ]0, 1], M ∈ K(RN ).

Proof. “⇐=” is an immediate consequence of Lemma A.3.

“=⇒” The triangle inequality of dl and Lemma 2.4 guarantee for all h > 0 and M ∈ K(RN )

dist
(
ϑF (h,M), V

)
− dist(M, V) ≤ dl

(
M, ϑF (h,M)

)
≤ ‖F‖∞ h.

So the auxiliary function ω : [0,∞[−→ [0,∞[,

ω(δ) := sup
{

1
h ·

(
dist

(
ϑF (h,M), V

)
− dist(M, V)

) ∣∣∣ M ∈ K(RN ), h ∈]0, 1], dl(M,K) + h ≤ δ
}

is well-defined and bounded for any set-valued map F ∈ LIP(RN ,RN ).

For F ∈ TC
V (K), however, we still have to verify ω(δ) −→ 0 for δ −→ 0.

If this asymptotic feature was not correct, there would exist some ε > 0 and sequences (hn)n∈N, (Mn)n∈N

in ]0, 1], K(RN ) respectively satisfying for all n ∈ N

dl(Mn,K) + hn ≤ 1
n and 1

hn
·
(
dist

(
ϑF (hn,Mn), V

)
− dist(Mn, V)

)
≥ ε > 0.

Due to hn ↓ 0 and Mn −→ K, it would contradict the initial assumption F ∈ TC
V (K) due to

Lemma A.3.

2

As the next propositions reveal, this circatangent transition set shares some properties with the Clarke

tangent cone in normed vector spaces. Indeed, it is a nonempty closed convex cone in LIP(RN ,RN ).
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Proposition A.5 Let K ∈ K(RN ) be any element of the nonempty closed set V ⊂
(
K(RN ), dl

)
. Then,

1. the circatangent transition set TC
V (K) ⊂ LIP(RN ,RN ) is a nonempty cone, i.e. for any G ∈

TC
V (K) and λ ≥ 0, the set–valued map RN ; RN , x 7→ λ ·G(x) (in the Minkowski sense) also

belongs to TC
V (K).

2. for every threshold B ∈ [0,∞[, the intersection TC
V (K) ∩ {G ∈ LIP(RN ,RN ) | ‖G‖∞+LipG ≤ B}

is closed in LIP(RN ,RN ) with the topology of locally uniform convergence.

Proof. (1.) Obviously, the constant set-valued map G0(·) := {0} : RN ; RN belongs to both

LIP(RN ,RN ) and TC
V (K) because ϑG0(h,K) = K for everyK ∈ K(RN ) and h ≥ 0. Thus, TC

V (K) 6= ∅.
For proving the cone property, choose any K ∈ V ⊂ K(RN ), G ∈ TC

V (K) ⊂ LIP(RN ,RN ) and λ > 0.

Moreover, let (hn)n∈N and (Kn)n∈N be arbitrary sequences in ]0,∞[ and V ⊂ K(RN ) respectively

with hn −→ 0 and dl(Kn,K) −→ 0 (for n→∞).

Every solution x(·) ∈W 1,1([0, hn],RN ) of x′(·) ∈ λG(x(·)) induces a solution y(·) ∈W 1,1([0, hn

λ ],RN )

of y′(·) ∈ G(y(·)) (and vice versa) by time scaling, i.e. x(t) = y(λ · t). So, ϑλ G(hn,Kn) = ϑG(hn

λ ,Kn).

The assumption G ∈ TC
V (K) guarantees now

1
hn

· dist
(
ϑλ G(hn,Kn), V

)
= 1

λ
λ

hn
· dist

(
ϑG(hn

λ ,Kn), V
)
−→ 0 for n→∞.

(2.) Let (Gj)j∈N be a sequence in TC
V (K) ⊂ LIP(RN ,RN ) with ‖Gj‖∞ + LipGj ≤ B for each j

and converging to G(·) ∈ LIP(RN ,RN ) locally uniformly. Obviously, ‖G‖∞ + Lip G ≤ B holds.

Our aim is to verify G ∈ TC
V (K).

Let (hn)n∈N and (Kn)n∈N be any sequences in ]0, 1] and V ⊂ K(RN ) respectively with hn −→ 0

and dl(Kn,K) −→ 0 (for n→∞). The last convergence implies that all Kn, n ∈ N, and K ∈ K(RN )

are contained in a ball BR(0) ⊂ RN of sufficiently large radius R <∞. So due to sup
n

hn ≤ 1,⋃
j,n∈N

⋃
0≤ t≤hn

(
ϑGj (t,Kn) ∪ ϑG(t,Kn)

)
⊂ BR+B(0) ⊂ RN .

On the basis of Lemma 2.4, we obtain the estimate for every j, n ∈ N
1

hn
· dist

(
ϑG(hn,Kn), V

)
≤ 1

hn
· dl

(
ϑG(hn,Kn), ϑGj (hn,Kn)

)
+ 1

hn
· dist

(
ϑGj (hn,Kn), V

)
≤ eB hn · sup

|x| ≤R+B

dl(G(x), Gj(x)) + 1
hn
· dist

(
ϑGj (hn,Kn), V

)
.

For any ε > 0 given, we can fix j ∈ N sufficiently large with sup
|x| ≤R+B

dl(G(x), Gj(x)) < ε and,

Gj ∈ TC
V (K) guarantees lim sup

n−→∞
1

hn
· dist

(
ϑG(hn,Kn), V

)
≤ ε with arbitrarily small ε > 0,

i.e. 1
hn
· dist

(
ϑG(hn,Kn), V

)
−→ 0 for n −→∞. 2

Proposition A.6 Let K ∈ K(RN ) be any element of the nonempty closed set V ⊂
(
K(RN ), dl

)
.

Then, TC
V (K)∩LIPco(RN ,RN ) is convex, i.e. for any G1, G2 ∈ TC

V (K)∩LIPco(RN ,RN ) and λ ∈ [0, 1],

the set–valued map RN ; RN , x 7→ λ ·G1(x) + (1− λ) ·G2(x) (in the Minkowski sense) also belongs

to the intersection TC
V (K) ∩ LIPco(RN ,RN ).

The proof of this convexity is based on parameterizing bounded set-valued maps with compact convex

values and thus, it is postponed to the end of Appendix A. As a consequence, we obtain the convexity

of the circatangent transition set rather easily:
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Corollary A.7 Let K ∈ K(RN ) be any element of the nonempty closed set V ⊂
(
K(RN ), dl

)
.

Then, TC
V (K) is convex in LIP(RN ,RN ), i.e. for any G1, G2 ∈ TC

V (K) and λ ∈ [0, 1], the set–valued

map RN ; RN , x 7→ λ ·G1(x) + (1− λ) ·G2(x) (in the Minkowski sense) also belongs to TC
V (K).

Proof. The well–known Relaxation Theorem of Filippov–Ważiewski (e.g. [2, § 2.4, Theorem 2]) implies

ϑG(t,M) = ϑco G(t,M) for every map G ∈ LIP(RN ,RN ), initial set M ∈ K(RN ) and time t ≥ 0.

As an immediate consequence, we conclude for any G ∈ LIP(RN ,RN ) that the pointwise convex hull

co G : RN ; RN is contained in TC
V (K) if and only if G ∈ TC

V (K).

Choose now G1, G2 ∈ TC
V (K) ⊂ LIP(RN ,RN ) and λ ∈ [0, 1] arbitrarily. Then, co G1 and co G2 are

contained in TC
V (K) ∩ LIPco(RN ,RN ) and, Proposition A.6 implies

λ · co G1 + (1− λ) · co G2 ∈ TC
V (K) ∩ LIPco(RN ,RN ).

This last set-valued map is identical to the pointwise convex hull of λ · G1 + (1 − λ) · G2 : RN ; RN

because for any M1,M2 ∈ K(RN ), the convex hulls satisfy co (M1 +M2) = co M1 + co M2.

Finally, co (λ ·G1 + (1− λ) ·G2) ∈ TC
V (K) implies λ ·G1 + (1− λ) ·G2 ∈ TC

V (K). 2

Now we prepare the proof of Proposition A.6, i.e. the convexity of TC
V (K) ∩ LIPco(RN ,RN ) is to be

verified. The following tools will be used:

Lemma A.8 (Parameterization of bounded maps, [7, Theorem 9.7.2])

Consider a metric space X and a set–valued map G : [a, b]×X ; RN satisfying
1. G has nonempty compact convex values,

2. G(·, x) : [a, b] ; RN is measurable for every x ∈ X,
3. there exists k(·) ∈ L1([a, b]) such that for every t ∈ [a, b], the set–valued map G(t, ·) : X ; RN

is k(t)–Lipschitz continuous.

Then there exists a function g : [a, b]×X × B1 −→ RN (with B1
Def.= {u ∈ RN : |u| ≤ 1}) fulfilling

1. ∀ (t, x) ∈ [a, b]×X : G(t, x) =
{
g(t, x, u)

∣∣ u ∈ B1

}
,

2. ∀ (x, u) ∈ X × B1 : g(·, x, u) : [a, b] −→ RN is measurable,

3. ∀ (t, u) ∈ [a, b]× B1 : g(t, ·, u) : X −→ RN is c · k(t)–Lipschitz continuous

4. ∀ t ∈ [a, b], x ∈ X, u, v ∈ B1 : |g(t, x, u)− g(t, x, v)| ≤ c ‖G(t, x)‖∞ |u− v|
with a constant c > 0 independent of G.

Lemma A.9 For every λ ∈ ]0, 1[, there exists µ ∈ L1([0, 1]) satisfying

1
t ·

∫ t

0

(µ(s)− λ) ds −→ 0 (t ↓ 0), µ(·) ∈ {0, 1} piecewise constant in ]0, 1[.

Proof. µ(·) is defined piecewise in each interval
[

1√
n+1

, 1√
n

[
(n∈N).

Set µ(t) :=

{
0 for 1√

n+1
≤ t < λ√

n+1
+ 1−λ√

n

1 for λ√
n+1

+ 1−λ√
n

≤ t < 1√
n

for each n ∈ N.

Then,
∫ 1√

n

1√
n+1

(µ(s)− λ) ds = 0 and thus,
∫ 1√

n

0

(µ(s)− λ) ds = 0.

Moreover,
∫ 1√

n

1√
n+1

|µ(s)− λ| ds = 2 λ (1− λ)
(

1√
n
− 1√

n+1

)
implies

sup
1√

n+1
≤ t≤ 1√

n

1
t ·

∣∣∣∣∫ t

0

(µ(s)− λ) ds

∣∣∣∣ ≤
√
n+ 1 ·

∫ 1√
n

1√
n+1

|µ(s)− λ| ds
n→∞−→ 0. 2
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Proof of Proposition A.6. For any G1, G2 ∈ TC
V (K) ∩ LIPco(RN ,RN ) and λ ∈ ]0, 1[, we have to

verify that the set-valued map G : RN ; RN , x 7→ λ ·G1(x)+(1−λ) ·G2(x) (in the Minkowski sense)

also belongs to TC
V (K). Indeed, G is obviously Lipschitz continuous with compact convex values and

thus, G ∈ LIPco(RN ,RN ). According to Lemma A.9, there exists a function µ ∈ L1([0, 1]) satisfying

1
t ·

∫ t

0

(µ(s)− λ) ds −→ 0 (t ↓ 0), µ(·) ∈ {0, 1} piecewise constant in ]0, 1[.

Now we compare the evolution of an arbitrary set M ∈ K(RN ) along the autonomous differential inclu-

sion with the right-hand side

G : RN ; RN , x 7−→ λ ·G1(x) + (1− λ) ·G2(x)

and along the nonautonomous differential inclusion with the right-hand side

H : RN × [0, 1] ; RN , (x, t) 7−→ µ(t) ·G1(x) + (1− µ(t)) ·G2(x).

We verify dl(ϑG(t,M), ϑH(t,M)) ≤ o(t) for t ↓ 0 uniformly in M.

First, both set-valued functions G1(·), G2(·) are parameterized on the basis of Lemma A.8 and, we

obtain Lipschitz continuous functions

g1 : RN × B1 −→ RN , (x, u1) 7−→ g1(x, u1)

g2 : RN × B1 −→ RN , (x, u2) 7−→ g2(x, u2)

with the closed unit ball B1 ⊂ RN and satisfying Gj(x) = { gj(x, uj) | uj ∈ B1} (j = 1, 2).

In particular, the functions

RN ×B1 × B1 −→ RN , (x, u1, u2) 7−→ λ · g1(x, u1) + (1− λ) · g2(x, u2)

RN × [0, 1]×B1 × B1 −→ RN , (x, t, u1, u2) 7−→ µ(t) · g1(x, u1) + (1− µ(t)) · g2(x, u2)

are Lipschitz continuous w.r.t. x, u1, u2 and parameterize the set-valued maps G(·),H(·) respectively.

Let x(·) ∈ W 1,1([0, 1],RN ) denote any solution to the nonautonomous differential inclusion x′(·) ∈
H(x(·), ·). Applying Lemma 3.4 of Filippov to this parameterization of the composed set-valued map

H provides two measurable functions k1, k2 : [0, 1] −→ B1 ⊂ RN satisfying for almost every t ∈ [0, 1]

x′(t) = µ(t) · g1
(
x(t), k1(t)

)
+ (1− µ(t)) · g2

(
x(t), k2(t)

)
∈ H(x(t), t).

Now fix ε > 0 arbitrarily. Considering the convolution of kj(·) and a suitable smooth auxiliary function

(with compact support), we obtain Lipschitz continuous approximations k̃1, k̃2 : [0, 1] −→ B1 ⊂ RN

and a parameter c̃(ε) <∞ fulfilling∫ 1

0

(
|k1(t)− k̃1(t)| + |k2(t)− k̃2(t)|

)
dt < ε, Lip k̃1 + Lip k̃2 ≤ c̃(ε).

Each right-hand side of the differential equations

x̃′(t) = µ(t) · g1
(
x̃(t), k̃1(t)

)
+ (1− µ(t)) · g2

(
x̃(t), k̃2(t)

)
∈ H(x̃(t), t)

ỹ′(t) = λ · g1
(
ỹ(t), k̃1(t)

)
+ (1− λ) · g2

(
ỹ(t), k̃2(t)

)
∈ G(ỹ(t))

is measurable with respect to t and Lipschitz with respect to x̃(t), ỹ(t) and thus, unique solutions

x̃(·), ỹ(·) ∈W 1,1([0, 1],RN ) start at the joint initial point x̃(0) = ỹ(0) = x(0) =: x0. Firstly, x(·) and

x̃(·) always satisfy∣∣x(t)− x̃(t)
∣∣ ≤

∫ t

0

(∣∣g1(x(s), k1(s))− g1(x̃(s), k̃1(s))
∣∣ +

∣∣g2(x(s), k1(s))− g2(x̃(s), k̃1(s))
∣∣) ds

≤
(
Lip g1 + Lip g2

) ∫ t

0

(∣∣x(s)− x̃(s)
∣∣ +

∣∣k1(s)− k̃1(s)
∣∣ +

∣∣k2(s)− k̃2(s)
∣∣) ds

and Gronwall’s Lemma ensures
∣∣x(t)− x̃(t)

∣∣ ≤ const(Lip g1, Lip g2) · ε t for every t ∈ [0, 1].



THE CIRCATANGENT TRANSITION SET 31

Secondly, we estimate the difference x̃(·)− ỹ(·)

|ỹ(t)− x̃(t)|

=
∣∣∣∫ t

0

(
λ g1

∣∣
(ey(s), ek1(s))

− µ(s) g1
∣∣
(ex(s), ek1(s))

+ (1− λ) g2
∣∣
(ey(s),ek2(s))

− (1− µ(s)) g2
∣∣
(ex(s),ek2(s))

)
ds

∣∣∣
≤

∣∣∣∫ t

0

(
(λ− µ(s)) g1

(
ỹ(s), k̃1(s)

)
+ (µ(s)− λ) g2

(
ỹ(s), k̃2(s)

))
ds

∣∣∣
+

∫ t

0

µ(s) · Lip g1 · |x̃(s)− ỹ(s)| ds +
∫ t

0

(1− µ(s)) · Lip g2 · |x̃(s)− ỹ(s)| ds

≤
∣∣∣∫ t

0

(λ− µ(s)) ·
(
g1(x̃0, k̃1(0))− g2(x0, k̃1(0))

)
ds

∣∣∣
+

∫ t

0

∣∣λ− µ(s)
∣∣ (Lip g1+Lip g2)

(
|ỹ(s)− x0|+ |k̃1(s)− k̃1(0)|+ |k̃2(s)− k̃2(0)|

)
ds

+ max{Lip g1, Lip g2} ·
∫ t

0

|x̃(s)− ỹ(s)| ds

≤ c ·
(∣∣∣ ∫ t

0

(λ− µ(s)) ds
∣∣∣ +

∫ t

0

(1 + 2 c̃(ε)) · s ds +
∫ t

0

|x̃(s)− ỹ(s)| ds
)

with a positive constant c depending only on G1(·), G2(·) (and its finite Lipschitz constants).

Gronwall’s Lemma ensures |x̃(t)− ỹ(t)| ≤ o(t) for t ↓ 0 uniformly with respect to the initial point x0

(but in general not uniformly with respect to ε > 0).

Last, but not least, the triangle inequality provides a link between the given solution x(·) of x′(·) ∈
H(x(·), ·) and the constructed solution ỹ(·) of ỹ′(·) ∈ G(ỹ(·)) after having fixed ε > 0 arbitrarily:

lim sup
t ↓ 0

1
t ·

∣∣x(t)− ỹ(t)
∣∣ ≤ const(G1(·), G2(·)) · ε uniformly with respect to the initial point x0∈RN .

Thus, for any initial set M ∈ K(RN ), the reachable sets satisfy

dist (ϑH(t,M), ϑG(t,M)) ≤ o(t) for t ↓ 0 uniformly in M ∈ K(RN ).

The same uniform estimates holds for dist (ϑG(t,M), ϑH(t,M)) since the preceding solutions x̃(·) and

ỹ(·) have required only the common “control parameters” k̃1(·), k̃2(·) and a joint initial point x0 ∈ RN .

So we obtain dl (ϑG(t,M), ϑH(t,M)) ≤ o(t) for t ↓ 0 uniformly in M ∈ K(RN ).

Finally, we focus on the asymptotic features of ϑH(·, ·) in regard to the circatangent transition set

TC
V (K), i.e. for any ε > 0, we verify the existence of a radius r > 0 such that all h ∈ ]0, r] and sets

M ∈ K(RN ) with dl(M,K) ≤ r satisfy

dist
(
ϑH(h,M), V

)
− dist(M, V) ≤ ε h.

As a consequence, for any sequences hn ↓ 0 and (Kn)n∈N in V ⊂ K(RN ) converging to K
1

hn
· dist

(
ϑH(hn,Kn), V

)
−→ 0 for n −→∞

and in combination with the uniform convergence mentioned before, we conclude
1

hn
· dist

(
ϑG(hn,Kn), V

)
−→ 0 for n −→∞,

i.e. G ∈ TC
V (K) due to Definition A.2.

Indeed, applying Lemma A.4 to G1, G2 ∈ TC
V (K), we obtain a joint function ω : [0,∞[ −→ [0,∞[

satisfying limδ→ 0 ω(δ) = 0, sup[0,∞[ ω(·) <∞ and for all j ∈ {1, 2}, h ∈ ]0, 1], M ∈ K(RN )
1
h ·

(
dist

(
ϑGj (h,M), V

)
− dist(M, V)

)
≤ ω

(
dl(M,K) + h

)
.

Fixing ε > 0 arbitrarily small, there exist a radius R > 0 with sup[0,R] ω(·) ≤ ε and additionally,

some r ∈ ]0, R
2 ] such that r ·

(
1 + ‖G1‖∞ + ‖G2‖∞

)
≤ R

2 . Then, each j ∈ {1, 2} and every h ∈ ]0, r],
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M ∈ K(RN ) with dl(M,K) ≤ r satisfy dl
(
ϑGj

(h,M),K
)
≤ dl(M,K) + ‖Gj‖∞ h ≤ R

2

dist
(
ϑGj (h,M), V

)
− dist(M, V) ≤ ω

(
dl(M,K) + h

)
· h ≤ ε h.

For drawing now conclusions about ϑH(h,M), we exploit the piecewise constant structure of auxiliary

function µ(·) : [0, 1] −→ {0, 1} (introduced in Lemma A.9). Indeed, there is a sequence (tk)k∈N tending

to 0 monotonically such that µ(·) is constant in every interval [tk+1, tk[, k ∈ N.
Applying the last estimate in each of these intervals separately, we conclude for every h ∈ ]0, r],

M ∈ K(RN ) with dl(M,K) ≤ r and sufficiently large k ∈ N with tk+1 < h ≤ tk

dist
(
ϑH(h,M), V

)
− dist(M, V)

≤ dist
(
ϑH(h− tk+1, ϑH(tk+1,M)), V

)
− dist

(
ϑH(tk+1,M), V

)
+ dist

(
ϑH(tk+1,M), V

)
− dist

(
ϑH(tk+2,M), V

)
± . . . − dist(M, V)

≤ ε · (h− tk+1) + ε · (tk+1 − tk+2) + . . .

≤ ε · h.
2

B The hypertangent transition set

For any closed subset of the Euclidean space, the interior of the Clarke tangent cone has been charac-

terized by Rockafellar in 1979 [26]. Indeed,

Proposition B.1 (Rockafellar [26, Theorem 2], [27, Theorem 6.36]) Let K ⊂ RN be a closed set

and x ∈ K. Then the interior of Clarke tangent cone to K at x satisfies
TC

K (x)◦ = {v ∈ RN | ∃ ε > 0 : (K ∩ Bε(x)) + ]0, ε[ · Bε(v) ⊂ K}
= {v ∈ RN | ∃ ε > 0 ∀ y ∈ K ∩ Bε(x), w ∈ Bε(v), τ ∈ ]0, ε[: y + τ · w ∈ K}

with Bε(v) abbreviating the closed ball Bε(v) := {w ∈ RN | |w − v| ≤ ε} and

U◦ denoting always the interior of a set U.

This equivalence serves as motivation for introducing the concept of “hypertangent cones”:

Definition B.2 ([10, § 2,4]) A vector v in a Banach space X is said to be hypertangent to the set

K ⊂ X at the point x ∈ K if for some ε > 0, all vectors y ∈ Bε(x) ∩ K, w ∈ Bε(v) ⊂ X and real

t ∈ ]0, ε[ satisfy y + t · w ∈ K.

We now focus on a similar description in the morphological framework. To be more precise, we are

going to specify subsets HV(K) ⊂ LIP(RN ,RN ) of the circatangent transition sets TC
V (K), K ∈ V,

whose graph V ; LIP(RN ,RN ), K 7→ HV(K) is identical to the interior of the graph of TC
V (·) in

V × LIP(RN ,RN ).

There is an essential difference between the vector space RN and the metric space (K(RN ), dl),

however, preventing us from applying Definition B.2 directly. Indeed, considering the neighborhood of a

vector y+t·v (with y, v ∈ RN , t > 0), each of its points can be represented as y+t·w with a “perturbed”
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vector w close to v, i.e. w ∈ Bε(v). The corresponding statement does not hold for reachable sets

of differential inclusions in general, i.e. for given F ∈ LIP(RN ,RN ), K ∈ K(RN ), t > 0, not every

compact set M ⊂ RN with arbitrarily small Hausdorff distance from ϑF (t,K) can be represented as

reachable set ϑ eG(t,K) with some G̃ ∈ LIP(RN ,RN ) “close to” F. As a typical example, we can consider

M := ϑF (t,K) \ Bε(x0)◦ ∈ K(RN ) with an interior point x0 of ϑF (t,K) and sufficiently small ε > 0.

For this reason, we prefer a different approach to the interior of Graph TC
V (·), but seize the termi-

nology of hypertangents:

Definition B.3 Consider the set LIP(RN ,RN ) with the topology of locally uniform convergence.

For a nonempty subset V ⊂ K(RN ) and any element K ∈ V,

HV(K) :=
{
F ∈ LIP(RN ,RN )

∣∣∣ ∃ ε > 0, neighborhood U ⊂ LIP(RN ,RN ) of F ∀ G ∈ U :

lim sup
h ↓ 0

1
h · dist

(
ϑG(h,M), V

)
= 0 uniformly in M ∈ V ∩ Bε(K)

}
is called hypertangent transition set of V at K (in the metric space (K(RN ), dl)).

Lemma B.4 Let K ∈ K(RN ) be any element of the nonempty closed set V ⊂
(
K(RN ), dl

)
.

Then, a set-valued map F ∈ LIP(RN ,RN ) belongs to the hypertangent transition set HV(K) if and only

if there exist a radius ε > 0 and a neighborhood U ⊂ LIP(RN ,RN ) of F such that for each map G ∈ U,
a modulus of continuity ω : [0, 1] −→ [0,∞[ (i.e. limδ→ 0 ω(δ) = 0) satisfies

1
h · dist

(
ϑG(h,M), V

)
≤ ω(h) for all h ∈ ]0, 1], M ∈ Bε(K) ∩ V ⊂ K(RN ).

The proof follows the same track as for Lemma A.4 about the circatangent transition set. Furthermore,

in combination with Lemma A.4, we conclude directly

Lemma B.5 For every nonempty closed subset V ⊂ K(RN ) and element K ∈ V, the hypertangent

transition set HV(K) is contained in the interior of the circatangent transition set TC
V (K). 2

For the same reason, we obtain an even more general result:

Lemma B.6 Consider the set LIP(RN ,RN ) with the topology of locally uniform convergence.

For every nonempty closed subset V ⊂ K(RN ), the graph of hypertangent transition sets

V ; LIP(RN ,RN ), K 7→ HV(K)

is contained in the interior of the graph of V ; LIP(RN ,RN ), K 7→ TC
V (K). 2

In fact, also the opposite inclusion holds and thus, we have a complete characterization of the interior

of Graph TC
V (·) in V × LIP(RN ,RN ) :

Proposition B.7 Let V ⊂ K(RN ) be nonempty and closed with respect to dl.

Then, Graph HV(·) ⊂ V×LIP(RN ,RN ) is equal to the interior of Graph TC
V (·) in V×LIP(RN ,RN ).
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Proof. Due to Lemma B.6, we just have to verify F ∈ HV(K) for every set-valued map F ∈ TC
V (K)

such that (K,F ) belongs to the interior of Graph TC
V (·) in V × LIP(RN ,RN ).

There exist a radius ρ > 0 and a neighborhood U ⊂ LIP(RN ,RN ) of F (with respect to locally uniform

convergence) such that all tuples (M,G) ∈
(
V ∩ Bρ(K)

)
× U ⊂ K(RN ) × LIP(RN ,RN ) belong to

Graph TC
V (·). For arbitrary G ∈ U, we now show indirectly

lim sup
h ↓ 0

1
h · dist

(
ϑG(h,M), V

)
= 0 uniformly in M ∈ V ∩ Bρ(K).

Otherwise there exist δ > 0 and sequences (hn)n∈N, (Mn)n∈N in ]0, 1[ and V ⊂ K(RN ) respectively

satisfying dist
(
ϑG(hn,Mn), V

)
≥ δ · hn, 0 < hn <

1
n , dl(Mn,K) ≤ ρ for all n ∈ N.

In the metric space (K(RN ), dl), all bounded closed balls are compact. So there is a subsequence

(Mnj
)j∈N converging to some M ∈ V ∩ Bρ(K). Due to the choice of ρ and U, we obtain G ∈ TC

V (M)

in particular. This contradicts, however, lim inf
j→∞

1
hnj

· dist
(
ϑG(hnj ,Mnj ), V

)
≥ δ > 0

lim
j→∞

dl
(
Mnj , M

)
= 0

completing the indirect proof. 2

Circatangent transition set TC
V (K) and hypertangent transition set HV(K) differ from each other

in an essential feature: The condition on a map F ∈ TC
V (K) depends on V ⊂ K(RN ) close to K,

of course, but only on reachable sets of the set-valued map F. So in particular, it does not have any

influence on this condition if we replace such a map F ∈ LIP(RN ,RN ) by its pointwise convex hull

RN ; RN , x 7→ coF (x) – due to the Relaxation Theorem of Filippov-Ważiewski [2, § 2.4, Theorem 2].

The condition on F ∈ HV(K), however, takes all set-valued maps G ∈ LIP(RN ,RN ) in a neighborhood

of F into account. Considering the topology of locally uniform convergence in LIP(RN ,RN ), the values

of these neighboring set-valued maps G do not have to be convex even if F belongs to LIPco(RN ,RN ).
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