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Abstract. In this paper, we extend fundamental notions of control theory to evolving compact
subsets of the Euclidean space – as states without linear structure.
Dispensing with any restriction of regularity, shapes can be interpreted as nonempty compact subsets
of the Euclidean space RN . Their family K(RN ), however, does not have any obvious linear struc-
ture, but in combination with the popular Pompeiu-Hausdorff distance dl, it is a metric space. Here
Aubin’s framework of morphological equations is used for extending ordinary differential equations
beyond vector spaces, namely to the metric space (K(RN ), dl).
Now various control problems are formulated for compact sets depending on time: open-loop, relaxed
and closed-loop control problems – each of them with state constraints. Using the close relation to
morphological inclusions with state constraints, we specify sufficient conditions for the existence of
compact-valued solutions.
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1. Introduction. “Shapes and images are basically sets, not even smooth” as
Aubin stated [3]. Whenever we want to investigate evolving shapes in full generality,
we have to focus on subsets of the Euclidean space. In particular, these subsets should
be only supposed to be nonempty and compact – but lacking any further assumptions
about the regularity of their topological boundaries.
The main goal of this paper is to extend fundamental concepts of control theory to
time-dependent compact subsets of the Euclidean space. Here the essential challenge
results from the missing vector space structure of states. Indeed, nonempty compact
subsets of RN do not have any obvious linear structure, but in combination with the
Pompeiu–Hausdorff distance dl, for example, they represent a metric space.
The differential tools of classical control theory have to be extended step by step
beyond the traditional border of vector spaces. For this purpose we continue a track
initiated by Jean-Pierre Aubin in the 1990s: morphological equations and inclusions.
They provide extensions of ordinary differential equations and differential inclusions
respectively to the metric space (K(RN ), dl) of nonempty compact subsets of RN .
In this paper, open-loop, relaxed and closed-loop control problems with state con-
straints are formulated for shapes, i.e. in the metric space (K(RN ), dl). A viability
theorem presented by the author in [19, 20] then lays the foundations for specify-
ing conditions sufficient for the existence of their compact-valued solutions to control
problems with state constraints.

Introducing less restrictive variations of compact sets in RN . Whenever
a shape is to be optimized (in some sense), we require an appropriate form of “shape
variations” for verifying if a compact set under consideration is a local minimizer or
not. The so–called velocity method or speed method suggests an approach to hardly
restrictive shape variations and, it has led Céa, Delfour, Zolésio and others to re-
markable results about shape optimization (see e.g. [9, 11, 12, 31, 33] and references
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there). It is based on prescribing a vector field v : RN × [0, T ] −→ RN such that the
corresponding ordinary differential equation d

dt x(·) = v(x(·), ·) induces a unique flow
on RN . Indeed, supposing v to be sufficiently smooth, the Cauchy problem

d
dt x(·) = v(x(·), ·) in [0, T ], x(0) = x0 ∈ RN

is always well–posed and, any compact initial set K ⊂ RN is deformed to

ϑv(t, K) :=
{

x(t)
∣∣ ∃ x(·) ∈ C1([0, t], RN ) : d

dt x(·) = v(x(·), ·) in [0, t], x(0) ∈ K
}

after an arbitrary time t ≥ 0. As a key advantage, this concept of set evolution does
not require any regularity conditions on the compact set K or its topological bound-
ary (but only on the vector field v). In a word, v can be interpreted as a “direction of
deformation” in (K(RN ), dl). Thus it is “possible to define directional derivatives and
speak of shape gradient and shape Hessian with respect to the associated vector space
of velocities. This second approach has been known in the literature as the velocity
method” [11, Chapter 1, § 6]. (The ’first’ approach mentioned there in [11] refers to
perturbations of the identity map and applying techniques of differential geometry.)
Aubin used this notion for extending ordinary differential equations to this metric
space (K(RN ), dl). The so–called morphological equations are sketched in [5] and then
presented in [3, 4] in more detail. (They seem to be closer to ODEs in RN than
Panasyuk’s similar concept of “quasidifferential equations” [25, 26, 27].)

The first aspect of generalization focuses on the “elementary set deformation”
which are to describe the directions in (K(RN ), dl). Aubin suggested reachable sets of
differential inclusions as a more general alternative to the velocity method. For any
set–valued map G : RN ; RN and initial set K ⊂ RN given, the so–called reachable
set at time t ≥ 0 is defined as

ϑG(t, K) :=
{

x(t) ∈ RN
∣∣∣ ∃ x(·) ∈ W 1,1([0, t], RN ) : x(0) ∈ K,

d
dτ x(τ) ∈ G(x(τ)) for L1–almost every τ ∈ [0, t]

}
.

In contrast to the velocity method, this kind of set deformation does not have to
be reversible in time. (Geometrically speaking, “holes” of sets can disappear while
expanding.)
The well–known Theorem of Filippov ensures suitable properties of [0, 1]×K(RN ) −→
K(RN ), (t, K) 7−→ ϑG(t, K) if G : RN ; RN has nonempty compact values and is
bounded Lipschitz continuous. Due to the Relaxation Theorem of Filippov–Ważiewski
(e.g. [2, § 2.4, Theorem 2]), we are always free to consider bounded Lipschitz contin-
uous maps G : RN ; RN whose nonempty compact values are convex in addition.

Differential inclusions with Lipschitz right–hand side for specifying
time derivatives of curves in (K(RN ), dl). The second key contribution of Aubin
is a suggestion how to interprete such a set–valued map (or, strictly speaking, its
reachable sets) as time derivative of a curve in the metric space (K(RN ), dl).

Indeed, let K(·) : [0, T ] −→ K(RN ) be a curve. A bounded
Lipschitz set–valued map G : RN ; RN with nonempty com-
pact values represents a first–order approximation of K(·) at time
t ∈ [0, T [ if

lim
h ↓ 0

1
h · dl

(
K(t + h), ϑG(h, K(t))

)
= 0. (∗)

Of course, such a map G(·) does not have to be unique and thus, all bounded Lipschitz
maps with this property (∗) form the so–called morphological mutation

◦
K (t) of K(·) at
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time t ∈ [0, T [. It is a subset of LIP(RN , RN ) denoting the set of all bounded Lipschitz
maps RN ; RN with nonempty compact values. Correspondingly, LIPco(RN , RN )
consists of all bounded Lipschitz maps RN ; RN with nonempty compact and con-
vex values.

◦
K (t) ⊂ LIP(RN , RN ) extends the time derivative to curves in the metric

space (K(RN ), dl).

Compact subsets determine their own evolution: Morphological equa-
tions and inclusions. Ordinary differential equations are based on the fundamental
notion of prescribing the time derivative of the wanted curve as a function of its cur-
rent state and time. Now we are free to formulate the same problem for a set-valued
curve in the metric space (K(RN ), dl) as mutations are available:
For a function f : K(RN ) −→ LIP(RN , RN ) given, a Lipschitz continuous curve K(·) :
[0, T ] −→ K(RN ) is called solution to the morphological equation

◦
K (·) 3 f(K(·)) in

[0, T ] if at Lebesgue-almost every time t ∈ [0, T ], the map f(K(t)) ∈ LIP(RN , RN )
belongs to the mutation

◦
K (t) [3], i.e. by definition, the reachable set ϑf(K(t))(·,K(t))

satisfies

lim
h ↓ 0

1
h · dl

(
K(t + h), ϑf(K(t))(h, K(t))

)
= 0.

At first glance, the term “equation” and the symbol 3 might make a contradictory
impression, but the mutation

◦
K (t) has just been defined as set of all set-valued maps

G ∈ LIP(RN , RN ) sharing property (∗) above. (Strictly speaking, all these set-valued
maps belong to the same equivalence class related with vanishing distances up to first
order. In the following, however, we do not use the underlying equivalence relation
explicitly because it does not provide additional insight, see [3, § 1.1] for more details.)

In this framework, Aubin extended the classical Theorems of Cauchy-Lipschitz,
Peano and Nagumo (about existence and uniqueness of solutions respectively) from
ordinary differential equations to morphological equations. A brief survey is given
in Appendix A. Hence, all relevant terms are now available for introducing control
theory in the metric space (K(RN ), dl) of nonempty compact subsets of RN .

Considering ordinary differential equations and classical control theory in finite
dimensions, differential inclusions and selection principles have played a key role. In
this paper, we follow essentially the same track in (K(RN ), dl). Indeed, the step from
morphological equations to morphological inclusions is based on admitting more than
just one set deformation for each state in (K(RN ), dl), i.e. the single-valued func-
tion f : K(RN ) −→ LIP(RN , RN ) is replaced by a set-valued map F : K(RN ) ;

LIP(RN , RN ). Correspondingly, a Lipschitz continuous curve K(·) : [0, T ] −→ K(RN )
is called solution to the morphological inclusion with F if at Lebesgue-almost every
time t ∈ [0, T ], at least one map in F(K(t)) ⊂ LIP(RN , RN ) also belongs to the muta-
tion

◦
K (t), i.e. there exists a set-valued map G ∈ F(K(t)) ⊂ LIP(RN , RN ) satisfying

lim
h ↓ 0

1
h · dl

(
K(t + h), ϑG(h, K(t))

)
= 0.

Reflecting this notion of a joint map in F(K(t)) and
◦
K (t) ⊂ LIP(RN , RN ), a morpho-

logical inclusion has to be written as intersection condition:
◦
K (·) ∩ F(K(·)) 6= ∅

(almost everywhere) in [0, T ].

Solutions to morphological inclusions are reachable sets with feedback.
Consider a Lipschitz continuous solution K(·) : [0, T ] −→ (K(RN ), dl) to a morpho-
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logical inclusion
◦
K (·) ∩ F(K(·)) 6= ∅ with a given set-valued map F : K(RN ) ;

LIP(RN , RN ). The metric condition on
◦
K (t) mentioned before has a concrete geo-

metric interpretation:
Indeed, for almost every t ∈ [0, T ], there exists a set-valued map Gt ∈

◦
K (t) ∩

F(K(t)) ⊂ LIP(RN , RN ) by definition. Let us extend t 7→ Gt ∈ LIP(RN , RN ) to
the whole interval [0, T ] arbitrarily. Then, G̃ : RN × [0, T ] ; RN , (x, t) 7→ Gt(x)
is a set-valued map of both space and time and, we use it as right-hand side of a
nonautonomous differential inclusion in RN , namely x′(·) ∈ G̃(x(·), ·) a.e. in [0, T ].
Under appropriate assumptions about G̃, its reachable set ϑ eG(t, K(0)) ⊂ RN is
nonempty compact at every t ∈ [0, T ] and, it even coincides with K(t) : K(t) =
ϑ eG(t, K(0)) for each t ∈ [0, T ]
Thus, K(·) : [0, T ] −→ K(RN ) is characterized equivalently as reachable set of a
nonautonomous differential inclusion in RN whose set-valued right-hand side G̃ :
RN × [0, T ] ; RN is induced by a selection of F(K(·)) : [0, T ] ; LIP(RN , RN ) (see
§ 2.2 for more details, to the best of our knownledge, this is the first article with the
detailed proof of this equivalent interpretation). As a consequence, this framework
covers some types of nonlocal set evolutions with feedback.

Control problems for compact sets via morphological inclusions. Sim-
ilarly to classical control theory in RN , a metric space (U, dU ) of control parameter
and a single-valued function f : K(RN )×U −→ LIP(RN , RN ) of state and control are
given. For each initial set K(0) ∈ K(RN ), we are looking for a Lipschitz continuous
curve K(·) : [0, T ] −→ K(RN ) solving the following nonautonomous morphological
equation

◦
K (t) 3 f(K(t), u(t)) in [0, T [

with a measurable control function u(·) : [0, T ] −→ U, i.e. by definition

lim
h ↓ 0

1
h · dl

(
ϑf(K(t),u(t))(h, K(t)), K(t + h)

)
= 0

for almost every t ∈ [0, T ]. This is an open-loop control problem, but its states are in
the metric space (K(RN ), dl) (rather than a vector space as usual).
The existence of solutions is closely related to the corresponding morphological in-
clusion for which we take all admitted controls into consideration simultaneously:
◦
K (·) ∩ FU (K(·)) 6= ∅ in [0, T ] with the set-valued map

FU : K(RN ) ; LIP(RN , RN ), K 7→ {f(K, u) | u ∈ U} ⊂ LIP(RN , RN )

In § 2.2, Proposition 2.3, sufficient conditions on U and f are formulated such that
solutions to this morphological inclusion solve the morphological control problem and
vice versa. The step from inclusion to control problem requires the existence of a
measurable control function and, it is concluded here from a well-known selection
principle of Filippov whose Euclidean special case is usually applied to differential
inclusions in RN and classical control theory.

All available results about morphological inclusions can be used for solving morpho-
logical control problems. In regard to additional state constraints K(t) ∈ V ⊂ K(RN ),
the author introduced a viability theorem in [20] and extended it in [19] (see subse-
quent Theorem A.13). It specifies sufficient conditions on F and the nonempty set
V ⊂ K(RN ) of constraints such that at least one solution K(·) : [0, 1] −→ V ⊂ K(RN )
starts at each initial set K(0) ∈ V. In § 2.3, the close relationship between mor-
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phological inclusions and control problems provides directly sufficient conditions on
a morphological control system with state constraints for the existence of solutions
(Theorem 2.6).
In § 2.4, essentially the same approach is applied briefly to relaxed control problems
in the morphological framework. They are based on replacing the metric space U
of control parameters by the set of Borel probability measures on U (supplied with
the linear Wasserstein metric). As immediate analytical benefit, we can weaken some
conditions of convexity in Theorem 2.7.

The viability condition for morphological inclusions: “Admit a ‘tan-
gential’ reachable set“. For differential inclusions in RN , the viability condition
on a nonempty closed subset V ⊂ RN is well-known [6]: Under appropriate assump-
tions about the set-valued map F : RN ; RN , a solution x(·) of x′(·) ∈ F (x(·)) with
all values in V ⊂ RN starts at each point of V if and only if at every point x ∈ V,
the set F (x)⊂RN contains at least one vector v being “contingent” to V (in the sense
of Bouligand), i.e.

lim inf
h ↓ 0

1
h · dist(x + h v, V ) = 0.

As main result of [19], essentially the same viability condition – just formulated with
reachable sets and in the metric space (K(RN ), dl) – is also sufficient for a morpho-
logical inclusion and any nonempty closed set of constraints V ⊂ K(RN ) :
Under appropriate assumptions about the set-valued map F : K(RN ) ; LIP(RN , RN ),
a solution K : [0, 1] −→ V ⊂ K(RN ) of

◦
K(·)∩F(K(·)) 6= ∅ starts at each set K(0) ∈ V

if for every set K0 ∈ V, at least one map G ∈ F(K0) ⊂ LIP(RN , RN ) is “contingent”
to V ⊂ K(RN ) in the following sense

lim inf
h ↓ 0

1
h · dist (ϑG(h, K0), V) = 0. (∗∗)

The step to closed-loop control problems for compact sets in RN . Con-
sider morphological control problems with state constraints{ ◦

K (·) 3 f(K(·), u), u ∈ U a.e. in [0, T [
K(t) ∈ V for every t ∈ [0, T [.

The metric space (U, dU ) of control, function f : K × U −→ LIP(RN , RN ) and the
closed set V ⊂ K(RN ) of constraints are given. The morphological viability condition
mentioned before indicates where candidates for a closed-loop control u : V −→ U can
be found, namely among those controls u ∈ U whose reachable sets ϑf(K,u)(·,K) are
“contingent” to V in the sense of condition (∗∗). It reflects the notion of regulation
maps presented by Aubin for control problems in finite-dimensional vector spaces in
[6, § 6].
In § 2.5, we specify sufficient conditions on U, f,V such that Michael’s famous selec-
tion theorem implies the existence of a continuous closed-loop control (Theorem 2.8).
Michael’s selection theorem (quoted here in Proposition 2.9), however, focuses on
lower semicontinuous set-valued maps. We need information about the semicontinu-
ity properties of these regulation maps.

In this regard, the classical results about finite-dimensional vector spaces serve
as motivation again. The Clarke tangent cone TC

V (x) ⊂ RN , x ∈ V, to a nonempty
closed set V ⊂ RN (alias circatangent set, see Definition B.1) is known to have closed
graph whereas the Bouligand contingent cone to the same set does not have such a
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semicontinuity feature in general [7, 30]. Furthermore, Rockafellar characterized the
interior of the convex Clarke tangent cone TC

V (x) ⊂ RN by a topological criterion
leading to the so-called hypertangent cone ([29, Theorem 2], [10, § 2,4] and quoted
here in Appendix C). The set-valued map of hypertangent cones to a fixed set V ⊂ RN

is lower semicontinuous whenever all these cones are nonempty.
These two concepts, i.e. Clarke tangent cone and hypertangent cone to a given closed
set, are extended to the morphological framework where the metric space (K(RN ), dl)
has replaced the Euclidean space.
In Appendix B, we apply Aubin’s definition of “circatangent transition set” [3, Def-
inition 1.5.4] to (K(RN ), dl) together with reachable sets of differential inclusions.
The result proves to be a nonempty closed cone in LIP(RN , RN ). In Appendix C,
the so-called hypertangent transition set is introduced for a nonempty closed subset
V ⊂ K(RN ). Its graph proves to be identical to the interior of the graph of circatan-
gent transition sets in V×LIP(RN , RN ). In particular, this topological characterization
proves to be very helpful for constructing closed-loop controls on the basis of Michael’s
selection principle (Theorem 2.8).

An application: Morphological control problems under “strong op-
erability” constraints. In [17], Anne Gorre investigated morphological equations
under the constraint that all evolving sets K(t) ⊂ RN are contained in a fixed closed
set M ⊂ RN . The corresponding set of constraints is

VM :=
{
K ∈ K(RN )

∣∣ K ⊂ M
}
.

and Gorre coined the term “strongly operable in M”. This type of constaint occurs,
for example, when a robot is to walk or stand in a stable way (consider the projection
of its highly sensitive center of gravity [17]) and when a bioreactor has to provide a
suitable environment for a growing cell population.
Gorre’s exact characterization of “contingent to VM” is used here in combination with
morphological inclusions. Finally we obtain directly sufficient conditions for morpho-
logical control problems under strong operability constraints in § 3.

This introduction reflects the structure of the paper: In § 2, we focus on morphological
control problems and explain the link with morphological inclusions (§ 2.2). These
results are then applied to open-loop control problems with state constraints (§ 2.3),
relaxed control problems with state constraints (§ 2.4) and finally closed-loop control
problems with state constraints (§ 2.5). Appendix A gives a survey of morphological
equations and inclusions. In particular, it provides all definitions of this framework
and summarizes the essential theorems used in this article. Appendix B provides
some new properties of the circatangent transition set and, Appendix C introduces
the hypertangent transition set.

2. Morphological control problems.

2.1. Formulation. So-called control problems

(2.1)
{

d
dt x(t) = f(x(t), u)

u ∈ U

have been studied thoroughly both in finite-dimensional and in infinite-dimensional
vector spaces. Our contribution now is to formulate the corresponding problem in the
metric space (K(RN ), dl) using the morphological framework for derivatives (see the
summary in Appendix A).
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Definition 2.1.
Let (U, dU ) denote a metric space and f : K(RN )× U −→ LIP(RN , RN ) be given.
K : [0, T ] −→ K(RN ) is called a solution to the morphological control problem

(2.2)
{ ◦

K (·) 3 f(K(·), u) a.e. in [0, T ]
u ∈ U

if there exists a measurable function u(·) : [0, T [−→ U such that K(·) solves the non-
autonomous morphological equation

◦
K (·) 3 f(K(·), u(·)), i.e. satisfying

1. K(·) : [0, T ] ; RN is continuous with respect to dl and
2. for L1-almost every t ∈ [0, T [, f(K(t), u(t)) ∈ LIP(RN , RN ) belongs to

◦
K (t)

i.e. by definition, lim
h ↓ 0

1
h · dl

(
ϑf(K(t),u(t))(h, K(t)), K(t + h)

)
= 0.

Proposition 2.2 (Solutions as reachable sets).
Assume the metric space (U, dU ) to be complete and separable. Consider LIPco(RN , RN )
with the topology of locally uniform convergence.
Suppose f : K(RN )× U −→ LIPco(RN , RN ) to be continuous with

sup
M ∈ K(RN )

u ∈ U

(‖f(M,u)‖∞+ Lip f(M,u)) < ∞.

Let K : [0, T ] ; RN be any compact-valued solution to the morphological control
problem (2.2).

Then there is a measurable function u(·) : [0, T ] −→ U such that at every time t ∈
[0, T ], the compact set K(t) ⊂ RN coincides with the reachable set ϑf(K(·),u(·))(t, K(0))
of the nonautonomous differential inclusion

d
dτ x(τ) ∈ f(K(τ), u(τ))

(
x(τ)

)
⊂ RN L1-a.e.

Proof. Due to Definition 2.1, K(·) is Lipschitz continuous with respect to Pompeiu-
Hausdorff distance dl and, there is a measurable function u(·) : [0, T [−→ U such that
for almost every t ∈ [0, T [,

lim
h ↓ 0

1
h · dl

(
ϑf(K(t),u(t))(h, K(t)), K(t + h)

)
= 0.

Filippov’s Theorem in its generalized form (see e.g. [32, Theorem 2.4.3]) ensures the
existence of solutions x(·) ∈ W 1,1([0, t], RN ) to the nonautonomous differential in-
clusion d

dτ x(τ) ∈ f(K(τ), u(τ))
(
x(τ)

)
a.e. in [0, t] (whose right-hand side is just

measurable in time, but uniformly Lipschitz continuous in space). Moreover, the typ-
ical estimates hold which are well-known for autonomous differential inclusions (see
Lemma A.4).
The reachable set ϑf(K(·),u(·))(t, K(0)) ⊂ RN is well-defined and compact for every
t ∈ [0, T [ and, due to B := sup

M∈K(RN )
u∈U

(‖f(M,u)‖∞+ Lip f(M,u)) < ∞, the set-valued

map R : [0, T [ ; RN , t 7→ ϑf(K(·),u(·))(t, K(0)) is B-Lipschitz continuous w.r.t. dl.
Moreover, [19, Corollary 3.14] ensures at Lebesgue-almost every time t ∈ [0, T [ that

f(K(t), u(t)) ∈ LIPco(RN , RN ) belongs to its mutation
◦
R (t), i.e. by definition,

lim
h ↓ 0

1
h · dl

(
ϑf(K(t),u(t))(h, R(t)), R(t + h)

)
= 0.

As a consequence, the distance function δ : [0, T [ −→ [0,∞[ , t 7−→ dl (R(t),K(t))
is Lipschitz continuous with δ(0) = 0 and satisfies at almost every time t ∈ [0, T [
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lim sup
h ↓ 0

δ(t+h)−δ(t)
h

= lim sup
h ↓ 0

1
h ·

(
dl

(
R(t + h), K(t + h)

)
− dl

(
R(t),K(t)

))
≤ lim sup

h ↓ 0

1
h ·

(
dl

(
R(t + h), ϑf(K(t),u(t))(h, R(t))

)
+

dl
(
ϑf(K(t),u(t))(h, R(t)), ϑf(K(t),u(t))(h, K(t))

)
− dl

(
R(t),K(t)

)
+

dl
(
ϑf(K(t),u(t))(h, K(t)), K(t + h)

))
≤ 0 + lim sup

h ↓ 0

1
h · δ(t) (eB h − 1) + 0

= B δ(t).
Gronwall’s Lemma completes the proof: δ(·) ≡ 0.

2.2. The link to morphological inclusions. In vector spaces, the close rela-
tionship between control problem (2.1) and the corresponding differential inclusion

d
dt x(t) ∈

⋃
u∈U

f(x(t), u) L1 − a.e.

had been realized soon. A measurable selection provides the same link now for mor-
phological inclusions. In a word, the classical techniques using appropriate measurable
selections (which had been developed for differential inclusions in the Euclidean space)
can also be used in the morphological framework because the transitions are in a com-
plete separable metric space, namely LIP(RN , RN ).
The main result of this section is the following equivalence:

Proposition 2.3. Assume the metric space (U, dU ) to be complete and separa-
ble. Consider the set LIP(RN , RN ) with the topology of locally uniform convergence.
Let f : K(RN ) × U −→ LIP(RN , RN ) be a Carathéodory function (i.e. continuous in
the first argument and measurable in the second one) satisfying

sup
M ∈ K(RN )

u ∈ U

(‖f(M,u)‖∞ + Lip f(M,u)) < ∞.

Set FU : K(RN ) ; LIP(RN , RN ), K 7→ {f(K, u) | u ∈ U} ⊂ LIP(RN , RN ).

A tube K(·) : [0, T ] ; RN is a solution to the morphological control problem{ ◦
K (·) 3 f(K(·), u) a.e. in [0, T ]

u ∈ U

if and only if K(·) is a solution to the morphological inclusion
◦
K (·) ∩ FU (K(·)) 6= ∅

(in the sense of Definition A.11).

Obviously, every morphological control problem leads to a morphological inclusion.
For proving Proposition 2.3, we require the inverse connection (i.e. from inclusion to
control problem). In the literature about differential inclusions in vector spaces, it is
usually based on a selection result that is said to go back to Filippov.

Lemma 2.4 (Filippov [7, Theorem 8.2.10]). Consider a complete σ-finite
measure space (Ω, A, µ), complete separable metric spaces X, Y and a measurable set-
valued map H : Ω ; X with closed nonempty images. Let g : X × Ω −→ Y be a
Carathéodory function.
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Then for every measurable function k : Ω −→ Y satisfying

k(ω) ∈ g(H(ω), ω) for µ-almost all ω ∈ Ω,

there exists a measurable selection h(·) : Ω −→ X of H(·) such that

k(ω) = g(h(ω), ω) for µ-almost all ω ∈ Ω.

For applying Lemma 2.4 to morphological inclusions, we focus on two aspects:
First, LIP(RN , RN ) is regarded as a separable metric space. Indeed, we supply
LIP(RN , RN ) with the topology of locally uniform convergence. This topology can be
metrized by

dLIP : LIP(RN , RN )× LIP(RN , RN ) −→ [0, 1],

(G, H) 7−→
∞∑

j=1

2−j dl∞

(
G(·)|Bj(0), H(·)|Bj(0)

)
1 + dl∞

(
G(·)|Bj(0), H(·)|Bj(0)

)
with the abbreviation dl∞

(
G(·)|Bj(0), H(·)|Bj(0)

) Def.= sup
x ∈ RN ,
|x| ≤ j

dl(G(x), H(x)) < ∞.

Moreover, LIP(RN , RN ) is separable with respect to dLIP due to the (global) Lipschitz
continuity of each of its set-valued maps and because both domains and values belong
to the separable Euclidean space RN .

Second, we study measurability of the “derivatives” for any compact-valued solution
K(·) : [0, T ] ; RN . Indeed for real-valued functions, it is well-known that Lipschitz
continuity implies a Lebesgue-integrable weak derivative and, the latter coincides
with the differential quotient at Lebesgue-almost every time (as a consequence of
Rademacher’s Theorem [30, Theorem 9.60]). In the morphological framework, how-
ever, the derivative is described as a subset of LIP(RN , RN ), i.e., the morphological
mutation (in the sense of Definition A.5).

Lemma 2.5 (Measurability of compact mutation subsets).
For every threshold B ∈ [0,∞[ and continuous tube K(·) : [0, T ] ; RN with values in
K(RN ), the following set-valued map of transitions

[0, T ] ; LIP(RN , RN ), t 7→
◦
K (t) ∩ {G ∈ LIP(RN , RN ) | ‖G‖∞ + Lip G ≤ B}

is Lebesgue-measurable.

Proof. [of Lemma 2.5] For the sake of simplicity, we extend the Lipschitz map
K(·) : [0, T [ ; RN continuously to R according to K(s) := K(0) for s < 0 and
K(s) := K(T ) for s > T.
The set B := {G ∈ LIP(RN , RN ) | ‖G‖∞ + Lip G ≤ B} ⊂ LIP(RN , RN ) is compact
with respect to dLIP (i.e. locally uniform convergence in RN ) as a consequence of
Arzela–Ascoli’s Theorem in metric spaces (see e.g. [16, Theorem 2]).
Furthermore set Ĝ : RN ; RN , x 7→ BB+1(0) as an auxiliary set-valued map not
belonging to B. (Ĝ is just to ensure that all set-valued maps [0, T [ ; LIP(RN , RN )
considered from now on have nonempty values. Hence the results of [7] about mea-
surability can be applied directly.)

Now for each m,n ∈ N, define the set-valued map Mm,n : [0, T ] ; LIP(RN , RN )
in the following way: Mm,n(t) consists of Ĝ and all maps G ∈ B ⊂ LIP(RN , RN )
such that for all h ∈ [0, 1

n ],

dl (ϑG(h, K(t)), K(t + h)) ≤ 1
m h.
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The graph ofMm,n is closed. Indeed, let ((tj , Gj))j∈N be any convergent sequence

in Graph Mm,n ⊂ [0, T ] × LIP(RN , RN ) with the limit (t, G). If G = Ĝ, then we
conclude Gj = Ĝ for all large j ∈ N. Thus we can restrict our considerations to
{Gj , G | j ∈ N} ⊂ B and in particular, for each j ∈ N,

dl
(
ϑGj (h, K(tj)), K(tj + h)

)
≤ 1

m h

for all h ∈ [0, 1
n ]. Lemma A.4 about reachable set of differential inclusions (applied to

restrictions on a sufficiently large ball in RN ) implies for all h ∈ [0, 1
n ]

dl (ϑG(h, K(t)), K(t + h)) = lim
j→∞

dl
(
ϑGj (h, K(tj)), K(tj + h)

)
≤ 1

m h,

i.e. G ∈Mm,n(t). Thus, Graph Mm,n is closed in [0, T ]×LIP(RN , RN ).
Furthermore, all values of Mm,n are nonempty, closed and contained in the compact
subset B∪{Ĝ} ⊂ LIP(RN , RN ). Hence due to [7, Proposition 1.4.8], Mm,n : [0, T ] ;

LIP(RN , RN ) is upper semicontinuous (in the sense of Bouligand and Kuratowski).
Finally, this property implies the measurability of Mm,n for each m,n ∈ N according
to [7, Proposition 8.2.1].

Now we bridge the gap between the countable family (Mm,n)m,n∈N of measur-

able set-valued maps and [0, T [ ; LIP(RN , RN ), t 7→
◦
K(t) ∩ B considered in the

claim: Due to the definition of Mm,n,⋃
n∈N

Mm,n(t) ⊂
{

G ∈ B
∣∣∣ lim sup

h ↓ 0

1
h · dl(ϑG(h, K(t)), K(t+h)) ≤ 1

m

}
∪ {Ĝ}⋃

n∈N
Mm,n(t) ⊃

{
G ∈ B

∣∣∣ lim sup
h ↓ 0

1
h · dl(ϑG(h, K(t)), K(t+h)) < 1

m

}
∪ {Ĝ}

Lemma A.4 guarantees for every G, H ∈ B with dl∞
(
G(·)|B1(K(t)), H(·)|B1(K(t))

)
≤ ε

and for all h ∈ [0, 1
B ]

dl (ϑG(h, K(t)), ϑH(h, K(t))) ≤ ε h eB h

and thus, we obtain for a sufficiently small radius ε̃ > 0 (depending on m, t) the
inclusion (w.r.t. dLIP)

Beε(B ∩
⋃
n∈N

Mm,n(t)
)
⊂

{
G ∈ B

∣∣∣ lim sup
h ↓ 0

1
h · dl(ϑG(h, K(t)), K(t+h)) ≤ 2

m

}
Thus the closure of the union on the left-hand side satisfies for every t ∈ [0, T [

B ∩
⋃
n∈N

Mm,n(t) ⊂
{

G ∈ B
∣∣∣ lim sup

h ↓ 0

1
h · dl(ϑG(h, K(t)), K(t+h)) ≤ 2

m

}
.

We conclude (again) for each t ∈ [0, T [

B ∩
⋂

m∈N

⋃
n∈N

Mm,n(t) =
{

G ∈ B
∣∣∣ lim sup

h ↓ 0

1
h · dl(ϑG(h, K(t)), K(t+h)) ≤ 0

}
=

◦
K(t) ∩ B.

Finally, [7, Theorem 8.2.4] ensures that the closure of a countable union and the count-
able intersection preserve measurability of set-valued maps [0, T ] ; LIP(RN , RN )
(see also [30, Proposition 14.11]).
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Proof. [of Proposition 2.3]

“⇐=” Let the compact-valued tube K(·) : [0, T ] ; RN be a solution to the mor-
phological inclusion

◦
K (·) ∩ FU (K(·)) 6= ∅ (in the sense of Definition A.11), i.e.

1.) K(·) : [0, T ] ; RN is continuous with respect to dl and
2.) FU (K(t)) ∩

◦
K (t) 6= ∅ for L1-almost every t, i.e. there is some u ∈ U such that the

set-valued map f(K(t), u) ∈ FU (K(t)) ⊂ LIP(RN , RN ) belongs to the mutation
◦
K (t) or, equivalently,

lim
h↓0

1
h · dl

(
K(t+h), ϑf(K(t),u)(h, K(t))

)
= 0.

Setting B := sup
M∈K(RN ), u∈U

(‖f(M,u)‖∞ + Lip f(M,u)) < ∞, the set-valued map

[0, T ] ; LIP(RN , RN ),
t 7→

◦
K (t) ∩ {G ∈ LIP(RN , RN ) | ‖G‖∞ + Lip G ≤ B}

is Lebesgue-measurable according to Lemma 2.5. Due to [7, Theorems 8.1.3, 8.2.4],
the intersection

[0, T ] ; LIP(RN , RN ), t 7→
◦
K (t) ∩ FU (K(t))

is also Lebesgue-measurable (with nonempty values at L1-almost every time) and
thus, it has a measurable selection

k(·) : [0, T ] −→
(
LIP(RN , RN ), dLIP

)
.

Finally, Lemma 2.4 of Filippov provides a measurable selection u(·) : [0, T ] −→ U
of the constant map H(·) ≡ U : [0, T ] ; U such that k(t) = f(K(t), u(t)) for
L1-almost every t ∈ [0, T ].

2.3. Control problems with state constraints. The relationship between
morphological control problems and morphological inclusions opens the door to ap-
plying Viability Theorem A.13. Now we can specify sufficient conditions on a morpho-
logical control problem with state constraints for having at least one viable solution
starting at each of its admitted sets:

Theorem 2.6 (Viability theorem for morphological control problems). As-
sume the metric space (U, dU ) to be compact and separable and, consider the set
LIPco(RN , RN ) with the topology of locally uniform convergence. Suppose for f :
K(RN )× U −→ LIPco(RN , RN ) and the nonempty closed subset V ⊂ K(RN ):

1.) for any K ∈ K(RN ), the set {f(K, u) | u∈U} ⊂ LIPco(RN , RN ) is convex, i.e.
for any u1, u2 ∈U and λ ∈ [0, 1], there exists some u ∈ U such that f(K, u) ∈
LIPco(RN , RN ) is identical to the set-valued map

RN ; RN , x 7→ λ · f(K, u1)(x) + (1−λ) · f(K, u2)(x),

2.) sup
K∈K(RN )

u∈U

(‖f(K, u)‖∞ + Lip f(K, u)) < ∞,

3.) f is continuous,

4.) for each K ∈ V, there exists some u ∈ U with f(K, u) ∈ TV(K).

Then for every initial set K0 ∈ V, there exists a compact–valued Lipschitz continuous
solution K(·) : [0, 1] ; RN to the morphological control problem

◦
K (·) 3 f(K(·), u),

u ∈ U with K(0) = K0 and K(t) ∈ V for all t ∈ [0, 1].
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Proof. Define the set-valued map

FU : K(RN ) ; LIPco(RN , RN ), K 7→ {f(K, u) | u∈U}.
Obviously, it has nonempty convex values due to assumption (1.). Moreover, the
graph of FU is a closed subset of K(RN )×LIP(RN , RN ) because f is continuous and
U is compact. Hence, FU satisfies the assumption of Viability Theorem A.13 and
thus, for every initial set K0 ∈ V, there exists a compact–valued Lipschitz continuous
solution K(·) : [0, 1] ; RN to the morphological inclusion

◦
K (·) ∩ FU (K(·)) 6= ∅

with K(0) = K0 and K(t) ∈ V for all t ∈ [0, 1]. Due to Proposition 2.3, K(·) is a
solution to the morphological control problem

◦
K (·) 3 f(K(·), u), u ∈ U.

2.4. A note about relaxed control problems with state constraints. Con-
sidering the morphological control problem{ ◦

K (·) 3 f(K(·), u) in [0, T [
u ∈ U

(and the statements in Theorem 2.6, for example), the convexity of {f(K, u) | u ∈ U}
⊂ LIPco(RN , RN ) is a hypothesis that can be difficult to verify.
For basically the same reason, the concept of “relaxed control” has been established
for classical control problems in vector spaces. In a word, it is based on replacing the
metric space U of control parameters by the set of Borel probability measures on U,
denoted by P(U). Now we sketch very briefly how to adapt “relaxed controls” to the
morphological framework.
The Aumann integral induces the set-valued map related with FU

F̃U (·) : K(RN ) ; LIPco(RN , RN ), K 7→
{ ∫

U

f(K, u) dµ(u)
∣∣∣ µ ∈ P(U)

}
.

In [18, § 5.3.4], it is verified in detail that the values of F̃U are identical to the closed
convex hulls of the values of FU respectively and that the graph of F̃U is closed.
Hence we can draw essentially the same conclusions now for F̃U (as for FU under the
additional assumption of convexity in § 2.3).

Theorem 2.7 (Viability theorem for morphological relaxed control problems).
Assume the metric space (U, dU ) to be compact and separable. Consider the set
LIPco(RN , RN ) with the topology of locally uniform convergence and the set P(U)
of Borel probability measures on U with the topology of narrow convergence.
Suppose for f : K(RN ) × U −→ LIPco(RN , RN ) and the nonempty closed subset
V ⊂ K(RN ):

(i) sup
K∈K(RN )

u∈U

(‖f(K, u)‖∞ + Lip f(K, u)) < ∞,

(ii) f is continuous,
(iii) TV(K) ∩ co {f(K, u) | u ∈ U} 6= ∅ for each K ∈ V.

Then for every initial set K0 ∈ V, there exists an in V viable compact–valued Lipschitz
continuous solution K(·) : [0, 1] ; RN to the morphological relaxed control problem

◦
K (·) 3 f(K(·), u), u ∈ U
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i.e. there is a measurable function µ : [0, 1] −→ P(U), t 7−→ µt such that

1.) K(·) : [0, 1] ; RN is continuous with respect to dl,

2.) for L1-a.e. t ∈ [0, 1], the closure
∫

U

f(K(t), u) dµt(u) ∈ LIPco(RN , RN ) belongs

to the mutation
◦
K (t),

3.) for every t ∈ [0, 1], K(t) ∈ V ⊂ K(RN ) and
4.) K(0) = K0.

2.5. Closed control loops for problems with state constraints. In this
section, we specify sufficient conditions on the morphological control system and
state constraints for the existence of a closed-loop control, i.e., a continuous func-
tion u(·) : V −→ U is to provide a feedback law such that for any initial set
K0 ∈ V ⊂ K(RN ), every solution K(·) : [0, T ] ; RN to the morphological equa-
tion { ◦

K (·) 3 f (K(·), u(K(·))) L1 − a.e. in [0, T ]
K(0) ∈ K0

solves the morphological control problem with state constraints{ ◦
K (·) 3 f(K(·), u), u ∈ U L1 − a.e. in [0, T ]
K(t) ∈ V for every t ∈ [0, T ].

Corresponding to Aubin’s notion of regulation maps [6, § 6], Nagumo’s Theorem A.10
motivates us to construct the wanted closed-loop control u(·) : V −→ U as a continu-
ous selection of the set-valued map

V ; U, K 7→ {u ∈ U | f(K, u) ∈ TV(K)}
indicating “consistent” control parameters for preserving values in V.

Applying Michael’s famous selection theorem for lower semicontinuous, this approach
has been developed for constrained control problems in the Euclidean space [6, § 6.6.1].
Our contribution now is to extend it to the morphological framework in the metric
space (K(RN ), dl).

The key challenge is to specify appropriate subsets of the contingent transition set
TV(K) ⊂ LIP(RN , RN ) so that “convenient” assumptions about them ensure the ex-
istence of a closed-loop control. For this purpose, we use circatangent transition set
T C
V (K) and hypertangent transition set T H

V (K) introduced in Appendices B and C.
There is a close relation between these two subsets of the contingent transition set:
Graph T H

V (·) is the interior of the graph of T C
V (·) : V ; LIP(RN , RN ) due to Propo-

sition C.7.
Now we can formulate the main result of this section:

Theorem 2.8 (Closed-loop control for morphological equations).
Let U be a separable Banach space and, consider the set LIP(RN , RN ) with the topol-
ogy of locally uniform convergence. For a nonempty closed set V ⊂ (K(RN ), dl) and
f : K(RN )× U −→ LIP(RN , RN ) suppose:

(1.) f is continuous und bounded in the sense that
sup

{
‖f(M,u)‖∞ + Lip f(M,u)

∣∣ M ∈ K(RN ), u ∈ U
}

< ∞.

(2.) RH : V ; U, K 7→ {u ∈ U | f(K, u) ∈ T H
V (K)} has nonempty convex values.
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Then, the pointwise closure R
H

: V ; U, K 7→ RH(K) has a selection u ∈ C0(V, U).
In particular, every continuous and compact-valued solution K(·) : [0, T ] ; RN to the
morphological equation{ ◦

K (·) 3 f (K(·), u(K(·))) a.e. in [0, T [
K(0) ∈ K0

with initial set K0 ∈ V is viable in V, i.e. K(t) ∈ V for all t ∈ [0, T ].

In combination with Nagumo’s theorem A.10, Michael’s well-known selection theorem
lays the analytical basis. In particular, it requires a Banach space for the control set
U (instead of a metric space as in the preceding sections of § 2).

Proposition 2.9 (Michael [21],[2, Theorem 1.11.1], [7, Theorem 9.1.2]).
Let R : X ; Y be a lower semicontinuous set-valued map with nonempty closed
convex values from a compact metric space X to a Banach space Y .
Then R has a continuous selection, i.e. there exists a continuous single-valued func-
tion r : X −→ Y with r(x) ∈ R(x) for every x ∈ X.

Proof. [of Theorem 2.8] Similarly to the proof of [6, Proposition 6.3.2], we first
verify the lower semicontinuity of

RH : V ; U, K 7→ {u ∈ U | f(K, u) ∈ T H
V (K)}

(in the sense of Bouligand and Kuratowski).
Indeed, choose any K ∈ V and u ∈ RH(K). Graph T H

V is open in V × LIP(RN , RN )
as a direct consequence of Definition C.3. Hence, there is a radius r > 0 with(

Br(K)× Br

(
f(K, u)

))
∩

(
V × LIP(RN , RN )

)
⊂ Graph T H

V ,

i.e. Br

(
f(K, u)

)
⊂ T H

V (M) for all M ∈ Br(K) ∩ V ⊂ K(RN ).

Finally the continuity of f provides a smaller radius ρ ∈ ]0, r[ with

f(M,v) ∈ Br

(
f(K, u)

)
⊂ T H

V (M)

for all v ∈ Bρ(u) ⊂ U and M ∈ Bρ(K) ∩ V ⊂ K(RN ). In particular, the intersection
of the sets RH(M) Def.= {v ∈ U | f(M,v) ∈ T H

V (M)} for all M ∈ Bρ(K)∩V contains
the ball Bρ(u) ⊂ U and thus, it is a neighbourhood of u ∈ RH(K).
As a consequence, RH(·) : V ; U is lower semicontinuous.

Now we consider the pointwise closure of RH , i.e.

R
H

: V ; U, K 7→ {u ∈ U | f(K, u) ∈ T H
V (K)}.

Obviously, R
H
(·) has nonempty closed convex values in the Banach space U. Addi-

tionally, it inherits lower semicontinuity from RH(·) as the topological criterion of
lower semicontinuity (via neighbourhoods) reveals easily.
For any nonempty compact ball B ⊂

(
K(RN ), dl

)
, Michael’s Theorem (quoted in

Proposition 2.9) provides a continuous selection uB : B ∩ V −→ U of the set-valued
restriction R

H ∣∣
B∩V : B ∩ V ; U.

Finally we cover the metric space
(
K(RN ), dl

)
with countably many balls and, a locally

finite continuous partition of unity leads to a selection u ∈ C0(V, U) of R
H

: V ; U

because all values of R
H

are convex.
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3. An application: Set evolutions under strong operability constraints.
Now the preceding results are applied to a very special form of constraints:

VM :=
{
K ∈ K(RN )

∣∣ K ⊂ M
}

with some (arbitrarily fixed) nonempty closed subset M ⊂ RN . Anne Gorre coined
the term “strongly operable in M” for this constraint [17]. Here we benefit from her
results how to characterize the contingent transition sets of VM completely by means
of the tangential properties of the closed set M ⊂ RN . In [17], Gorre restricted her
considerations to the immediate conclusions from Nagumo’s theorem for morpholog-
ical equations, but Viability Theorem A.13 leads to a more general result presented
by the author in [19].

Lemma 3.1 ([17, Theorem 4.3]). Let M ⊂ RN be closed and nonempty.
For every nonempty compact set K ∈ VM (i.e. K ⊂ M) and each set–valued map
G ∈ LIPco(RN , RN ), the following two conditions are equivalent:
1. G ∈ TVM

(K), i.e. G belongs to the contingent transition set of VM at K
(Definition A.9).

2. G(x) ⊂ TM (x) for every x ∈ K, i.e. G(x) is contained in Bouligand’s contingent
cone of M at each point x ∈ K ⊂ M (Definition A.8).

Proposition 3.2 (Set evolutions “strongly operable” in M ⊂ RN [19, Thm.
4.5]). Let F : K(RN ) ; LIPco(RN , RN ) be a set–valued map and M ⊂ RN a closed
subset satisfying :

1.) all values of F are nonempty, convex (as in Theorem A.13) and have the global
bounds sup

K∈K(RN )

sup
G∈F(K)

(
‖G‖∞ + Lip G

)
< ∞,

2.) the graph of F is closed (w.r.t. locally uniform convergence in LIP(RN , RN )),
3.) for any compact set K ⊂ M, there exists G ∈ F(K) with G(x) ⊂ TM (x) for

every x ∈ K.

Then for every nonempty compact set K0 ⊂ M, there exists a compact–valued Lips-
chitz solution K(·) : [0, 1] ; RN to the morphological inclusion

◦
K (·) ∩ F(K(·)) 6= ∅

with K(0) = K0 and K(t) ⊂ M for all t ∈ [0, 1].

Now we use Gorre’s characterization for morphological control problems under
strong operability constraints. Preceding Theorems 2.6 and 2.7 imply:

Corollary 3.3. Assume the metric space (U, dU ) to be compact and separable
and, consider the set LIPco(RN , RN ) with the topology of locally uniform convergence.
Suppose for f : K(RN ) × U −→ LIPco(RN , RN ) and the nonempty closed subset
M ⊂ RN :
1.) for any K ∈ K(RN ), the set {f(K, u) | u∈U} ⊂ LIPco(RN , RN ) is convex (as in

Theorem 2.6),
2.) sup

K∈K(RN )
u∈U

(‖f(K, u)‖∞ + Lip f(K, u)) < ∞,

3.) f is continuous,
4.) for each nonempty compact set K ⊂ M, there exists u ∈ U with

f(K, u)(x) ⊂ TM (x) for all x ∈ K.
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Then for every nonempty compact subset K0 ⊂ M, there exists a compact–valued
Lipschitz continuous solution K : [0, 1] ; RN to the morphological control problem{ ◦

K (·) 3 f(K(·), u)
u ∈ U

with K(0) = K0 and K(t) ⊂ M for all t ∈ [0, 1].

Corollary 3.4. Assume the metric space (U, dU ) to be compact and separable.
Consider the set LIPco(RN , RN ) with the topology of locally uniform convergence and
the set P(U) of Borel probability measures on U with the topology of narrow con-
vergence. Suppose for f : K(RN ) × U −→ LIPco(RN , RN ) and the nonempty closed
subset M ⊂ RN :

(i) sup
K∈K(RN )

u∈U

(‖f(K, u)‖∞ + Lip f(K, u)) < ∞,

(ii) f is continuous,
(iii) for each compact K ⊂ M, there is a set-valued map G ∈ co {f(K, u) |u ∈ U} ⊂

LIPco(RN , RN ) satisfying G(x) ⊂ TM (x) for every x ∈ K.

Then for every nonempty compact subset K0 ⊂ M, there exists a compact–valued
Lipschitz continuous solution K(·) : [0, 1] ; RN to the morphological relaxed control
problem

◦
K (·) 3 f(K(·), u), u ∈ U (in the sense of Theorem 2.7) with K(0) = K0

and K(t) ⊂ M for all t ∈ [0, 1].

Appendix A. Brief guide to morphological equations and inclusions.

A.1. Morphological equations of Aubin. Morphological equations provide
typical geometric examples of so–called mutational equations. First presented in [5]
and elaborated in [4, 3], mutational equations are to extend ordinary differential
equations to a metric space (E, d). The key idea is to describe derivatives by means of
continuous maps (called transitions) ϑ : [0, 1]×E −→ E, (h, x) 7−→ ϑ(h, x) instead of
affine–linear maps (h, x) 7−→ x + h v (that are usually used in vector spaces). Strictly
speaking, such a transition specifies the point ϑ(t, x) ∈ E to which any initial point
x ∈ E has been moved after time t ∈ [0, 1]. It can be interpreted as a first–order
approximation of a curve ξ : [0, T [−→ E at time t ∈ [0, T [ if

lim
h ↓ 0

1
h · d

(
ξ(t + h), ϑ(h, ξ(t))

)
= 0.

The so–called morphological equations apply this concept to the set K(RN ) of nonempty
compact subsets of RN supplied with the Pompeiu–Hausdorff distance dl,

dl(K1,K2) := sup
x∈K1,
y∈K2

{
dist(x,K2), dist(y, K1)

}
= inf

{
ρ > 0

∣∣ K1 ⊂ K2 + ρ B1, K2 ⊂ K1 + ρ B1

}
.

Here B1 always denotes the closed unit ball in RN , i.e. B1 := {x ∈ RN | |x| ≤ 1}.
This is a very general starting point for geometric evolution problems as there are no
a priori restrictions in regard to the regularity of sets and their boundaries. Motivated
by the velocity method (often used in shape optimization, e.g. [9, 11, 12, 31, 33]), the
flow along ordinary differential equations can lay the basis for transitions. Here, how-
ever, we follow a suggestion of Aubin (in [3, 4]) and consider a more general approach
of evolutions instead: autonomous differential inclusions and their reachable sets.
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Definition A.1 ([3, Definition 3.7.1]). LIP(RN , RN ) consists of all set–valued
maps F : RN ; RN satisfying
1. F has nonempty compact values that are uniformly bounded in RN ,
2. F is Lipschitz continuous with respect to the Pompeiu–Hausdorff distance.

Lip(M, RN ) consists of all bounded and Lipschitz (single-valued) functions M −→ RN .

Definition A.2. Choosing any set–valued map F : [0, T ] × RN ; RN , the
so–called reachable set ϑF (t, K) of the initial set K ∈ K(RN ) at time t ∈ [0, T ] is
defined as

ϑF (t, K) :=
{

x(t) ∈ RN
∣∣∣ ∃ x(·) ∈ W 1,1([0, t], RN ) : x(0) ∈ K,

d
dτ x(τ) ∈ F (τ, x(τ)) for almost every τ ∈ [0, t]

}
(and correspondingly for F : RN ; RN and its autonomous differential inclusion).

The special case of constant functions F (·) ≡ {v} (with an arbitrary vector v ∈ RN )
leads to the Minkowski sum ϑF (t, K) = K + h · v ⊂ RN and, for an initial set
K = {x} with just one element, in particular, we return to the familiar affine–linear
map (h, x) 7−→ x + h · v that has already been mentioned as motivation.

An essential contribution of Aubin was to specify appropriate continuity condi-
tions on the maps ϑ : [0, 1] × E −→ E, (h, x) 7−→ ϑ(h, x) so that the familiar track
of ordinary differential equations can be followed in a metric space (E, d). Here we
quote his definition introduced in the monograph [3] (emphasizing the local features
slightly more than his original version in [4]). Reachable sets of every set-valued map
F ∈ LIP(RN , RN ) satisfy these conditions in the metric space (K(RN ), dl) :

Definition A.3 ([3, Definition 1.1.2]). Let (E, d) be a metric space. A map
ϑ : [0, 1]×E −→ E is called transition on (E, d) if it satisfies the following conditions:

1. ϑ(0, x) = x for all x ∈ E,

2. lim
h ↓ 0

1
h · d (ϑ(t+h, x), ϑ(h, ϑ(t, x))) = 0 for all x ∈ E, t ∈ [0, 1[,

3. α(ϑ) := max
(
0, sup

x6=y
lim sup

h ↓ 0

d(ϑ(h,x), ϑ(h,y)) − d(x,y)
h · d(x,y)

)
< ∞

4. β(ϑ) := sup
x∈E

lim sup
h ↓ 0

1
h · d(x, ϑ(h, x)) < ∞.

For any two transitions ϑ1, ϑ2 : [0, 1]×E −→ E on the same metric space (E, d), the
transitional distance between ϑ1 and ϑ2 is defined by

dΛ(ϑ1, ϑ2) := sup
x∈E

lim sup
h ↓ 0

1
h · d (ϑ1(h, x), ϑ2(h, x)) .

Lemma A.4. For every set-valued map F ∈ LIP(RN , RN ), the map ϑF :
[0, 1]×K(RN ) −→ K(RN ), (h, K) 7−→ ϑF (h, K) of reachable sets (as introduced in
Definition A.2) is a well–defined transition on the metric space (K(RN ), dl) according
to Definition A.3.

To be more precise, the reachable sets satisfy for all initial sets K, K1,K2 ∈
K(RN ), set-valued maps F,G ∈ LIP(RN , RN ) and times t, h ≥ 0
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ϑF (0,K) = K,
ϑF (t + h, K) = ϑF (h, ϑF (t, K)),

dl(ϑF (h, K1), ϑF (h, K2)) ≤ dl(K1,K2) · eLip F ·h

dl(ϑF (h, K), ϑG(h, K) ) ≤ dl∞(F,G) · h eLip F ·h

dl(ϑF (t, K), ϑF (t+h, K)) ≤ ‖F‖∞ h

with ‖F‖∞
Def.= sup

x∈RN

sup
y∈F (x)

|y| < ∞

dl∞(F,G) Def.= sup
x∈RN

dl(F (x), G(x)) < ∞

and thus, α(ϑF ) ≤ Lip F, β(ϑF ) ≤ ‖F‖∞, dΛ(ϑF , ϑG) ≤ dl∞(F,G).
In particular, dl (ϑF (h, K1), ϑG(h, K2)) ≤ eLip F ·h (dl(K1,K2) + h · dl∞(F,G)).

The proof is presented in [3, Proposition 3.7.3] – as a direct consequence of Filippov’s
Theorem (about solutions to differential inclusions in RN ). In particular, this lemma
justifies calling ϑF a morphological transition on (K(RN ), dl) [3, Definition 3.7.2]. For
the sake of simplicity, F ∈ LIP(RN , RN ) is sometimes identified with its morphological
transition ϑF .
These reachable sets provide the tools for specifying (generalized) shape derivatives
of a compact–valued tube K(·) : [0, T ] ; RN , i.e. a curve K(·) : [0, T ] −→ K(RN ).
The next step will be to solve equations prescribing an element of the morphological
mutation.

Definition A.5 ([3, Definition 3.7.9 (2)]). For any compact–valued tube
K(·) : [0, T ] ; RN , the morphological mutation

◦
K (t) at time t ∈ [0, T [ consists

of all set–valued maps F ∈ LIP(RN , RN ) satisfying

lim
h ↓ 0

1
h · dl (ϑF (h, K(t)), K(t + h)) = 0.

Definition A.6 ([3, Definition 1.3.1, § 4.1)]). For any given function f :
K(RN ) −→ LIP(RN , RN ), a compact–valued tube K(·) : [0, T ] ; RN is called a solu-
tion to the morphological equation

◦
K (·) 3 f(K(·))

if 1. K(·) : [0, T ] ; RN is Lipschitz continuous with respect to dl and
2. for almost every t ∈ [0, T ], f(K(t)) ∈ LIP(RN , RN ) belongs to

◦
K (t)

or, equivalently, lim
h ↓ 0

1
h · dl

(
ϑf(K(t))(h, K(t)), K(t + h)

)
= 0.

As an essential result of [3, 4], the Cauchy–Lipschitz Theorem (about autonomous
ordinary differential equations) has the following counterpart:

Theorem A.7 ([3, Thm.4.1.2]). Suppose f : (K(RN ), dl) −→
(
LIP(RN , RN ), dl∞

)
to be λ–Lipschitz continuous and to satisfy M := supK ∈K(RN ) Lip f(K) < ∞.

For every initial set K0 ∈ K(RN ) and time T ∈ ]0,∞[, there exists a unique solution
K(·) : [0, T ] ; RN to the morphological equation

◦
K (·) 3 f(K(·)) with K(0) = K0.

Furthermore every Lipschitz compact–valued tube Q : [0, T ] ; RN with
◦
Q(t) 6= ∅ for

every t ∈ [0, T ] satisfies the following estimate at each time t ∈ [0, T ]

dl(K(t), Q(t)) ≤ dl(K0, Q(0))·e(M+λ) t+
∫ t

0

e(M+λ) (t−s) · inf
G∈

◦
Q(s)

dl∞(f(Q(s)), G) ds.

In particular, the solution K(·) depends on the initial set K0 and the right–hand side
f in a Lipschitz continuous way.
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Existence under (additional) state constraints proves to be a very interesting ques-
tion for many applications. In the particular case of ordinary differential equations,
Nagumo’s Theorem gives a necessary and sufficient condition on the set of constraints
V for existence of local solutions. It uses the contingent cone (in the sense of Bouli-
gand) and has served as a key motivation for viability theory (see e.g. [6]).

Definition A.8 ([6, Definition 1.1.3]). Let X be a normed vector space, V ⊂ X
nonempty and x ∈ V. The contingent cone to V at x (in the sense of Bouligand) is

TV (x) :=
{

u ∈ X
∣∣ lim inf

h ↓ 0

1
h · dist(x + h u, V ) = 0

}
.

This classical definition of contingent cone in a vector space is now extended to the
metric space (K(RN ), dl) by using the morphological transitions of LIP(RN , RN ) :

Definition A.9 ([3, Definition 1.5.2]). For a nonempty subset V ⊂ K(RN ) and
any element K ∈ V,

TV(K) :=
{

F ∈ LIP(RN , RN )
∣∣∣ 0 = lim inf

h ↓ 0

1
h · dist

(
ϑF (h, K), V

)}
is called contingent transition set of V at K (in the metric space (K(RN ), dl)).

Remark. Considering here the metric space (K(RN ), dl) (instead of a normed
vector space as in Definition A.8) has an immediate consequence: By definition of the
distance from a subset V ⊂ K(RN ), dist

(
ϑF (h, K), V

)
= inf

C ∈V
dl

(
ϑF (h, K), C

)
.

In particular, we cannot expect any trivial identities of the contingent cone to a
compact subset V ⊂ RN and the contingent transition set to V := {V } ⊂ K(RN ).
Furthermore, some of the subsequent general results become definitely incorrect if
the Pompeiu–Hausdorff distance dl is replaced by the one–sided distance part called
Pompeiu–Hausdorff excess (as defined in [3, § 3.2.1]). The latter can be useful, how-
ever, for other types of viability problems such as those examples discussed in [28].

Remark. The “geometric” background of reachable sets implies an additional
property of morphological transitions in TV(K) ⊂ LIP(RN , RN ). Indeed, for any
F ∈ TV(K), every map G ∈ LIP(RN , RN ) with F (·) = G(·) in an open neighborhood
of the compact set K is also contained in TV(K) because ϑF (t, K) = ϑG(t, K) for
sufficiently small t > 0. In other words, the criterion of TV(K) depends only on an
arbitrarily small neighborhood of the current set K. (The corresponding statement
even holds for an open neighborhood of the boundary ∂K as a closer investigation of
the boundaries ∂ϑF (t, K) ⊂ ϑF (t, ∂K) reveals. These details, however, will not be
used in the following.)
In fact, Nagumo’s Theorem also holds for morphological equations:

Theorem A.10 (Nagumo’s theorem for morphological equations [3, Thm.4.1.7]).
Suppose V ⊂ K(RN ) to be nonempty and closed with respect to dl.
Let f : (K(RN ), dl) −→

(
LIP(RN , RN ), dl∞

)
be a continuous function satisfying

1.) supM ∈K(RN ) Lip f(M) < ∞ (uniform bound of Lipschitz constants),
2.) supM ∈K(RN ) ‖f(M)‖∞ < ∞ (uniform bound of compact values).

Then from any initial state K0 ∈ V starts at least one Lipschitz solution K(·) :
[0, T ] −→ K(RN ) of

◦
K (·) 3 f(K(·)) viable in V (i.e. K(t) ∈ V for all t) if and only

if V is a viability domain of f in the sense of f(M) ∈ TV(M) for each M ∈ V.
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A.2. The step to morphological inclusions with state constraints: A
viability theorem. In [19], sufficient conditions for the existence of viable so-
lutions were presented for morphological inclusions, i.e. the single–valued function
f : K(RN ) −→ LIP(RN , RN ) of the right–hand side is replaced by a set–valued map
F : K(RN ) ; LIP(RN , RN ). Correspondingly to Definition A.6, we specify the
solution to a morphological inclusion in the following way:

Definition A.11 ([19, Definition 3.1]). For any given function F : K(RN ) ;

LIP(RN , RN ), a compact–valued tube K(·) : [0, T ] ; RN is called a solution to the
morphological inclusion

◦
K (·) ∩ F(K(·)) 6= ∅

if 1. K(·) : [0, T ] ; RN is Lipschitz continuous with respect to dl and
2. F(K(t)) ∩

◦
K (t) 6= ∅ for almost every t, i.e. a set-valued map G ∈ F(K(t))

belongs to
◦
K (t) or, equivalently, lim

h↓0
1
h · dl (K(t+h), ϑG(h, K(t))) = 0,

In addition to F : K(RN ) ; LIP(RN , RN ), a constrained set V ⊂ K(RN ) is given.
We focus on the so-called viability condition demanding from each compact set K ∈ V
that the value F(K) and the contingent transition set TV(K) ⊂ LIP(RN , RN ) have
at least one morphological transition in common. Lacking a concrete counterpart of
Aumann integral in the metric space (K(RN ), dl), the question of its necessity (for
the existence of “in V viable” solutions) is more complicated than for differential
inclusions in RN and thus, we skip it here deliberately.

Convexity again comes into play, but we have to distinguish between (at least)
two aspects: First, assuming F to have convex values in LIP(RN , RN ) and second,
supposing each set-valued map G ∈ F(K) ⊂ LIP(RN , RN ) (with K ∈ K(RN )) to
have convex values in RN . The latter, however, does not really impose a geometric
restriction on morphological transitions. Indeed, the well–known Relaxation Theorem
of Filippov–Ważiewski (e.g. [2, § 2.4, Theorem 2]) implies ϑG(t, K) = ϑco G(t, K) for
every map G ∈ LIP(RN , RN ), initial set K ∈ K(RN ) and time t ≥ 0. We suppose the
values of F to be in LIPco(RN , RN ) :

Definition A.12 ([19, Definition 3.4]). LIPco(RN , RN ) denotes the set of all
Lipschitz set–valued maps G ∈ LIP(RN , RN ) whose (nonempty compact) values are
convex in addition.

Theorem A.13 (Viability theorem for morphological inclusions [19, Thm.3.5]).
Let F : K(RN ) ; LIPco(RN , RN ) be a set–valued map and V ⊂ K(RN ) a nonempty

closed subset satisfying :

1.) all values of F are nonempty and convex (i.e. for any G1, G2 ∈ F(K) ⊂
LIPco(RN , RN ) and every λ ∈ [0, 1], the set–valued map RN ; RN , x 7→
λ ·G1(x) + (1− λ) ·G2(x) also belongs to F(K))

2.) sup
M∈K(RN )

sup
G∈F(M)

Lip G < ∞ (uniform bound on all Lipschitz constants)

sup
M∈K(RN )

sup
G∈F(M)

‖G‖∞ < ∞ (uniform bound on all compact set values)

3.) the graph of F is closed (w.r.t. locally uniform convergence in LIP(RN , RN )),
4.) TV(K) ∩ F(K) 6= ∅ for all K ∈ V.
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Then for every initial set K0 ∈ V, there exists a compact–valued Lipschitz contin-
uous solution K(·) : [0, 1] ; RN to the morphological inclusion

◦
K (·) ∩ F(K(·)) 6= ∅

with K(0) = K0 and K(t) ∈ V for all t ∈ [0, 1].

Remark. In assumption (3.), the topology on LIP(RN , RN ) is specified. A
sequence (Gn)n∈N in LIP(RN , RN ) is said to converge “locally uniformly” to G ∈
LIP(RN , RN ) if for every nonempty compact set M ⊂ RN , dl∞(Gn(·)|M , G(·)|M ) Def.=
sup

x∈M
dl(Gn(x), G(x)) −→ 0 for n −→∞ using here the Pompeiu–Hausdorff distance

dl on K(RN ).
Due to the uniform bounds in assumption (2.), the image F(K(RN )) ⊂ LIPco(RN , RN )
is sequentially compact with respect to this topology (as proved in [19, Lemma 3.11]).
Hence F is upper semicontinuous (in the sense of Bouligand and Kuratowski) accord-
ing to [7, Proposition 1.4.8].

Appendix B. Clarke tangent cone in the morphological framework:
The circatangent transition set.

The invariance condition of Nagumo (in Theorem A.10) has already served Aubin
as motivation for extending the contingent cone TV (x) in a normed vector space to
the morphological framework (see Definition A.9 quoting [3, Definition 1.5.2]).
In this section, we start with the classical definition of Clarke tangent cone introduced
by Frank H. Clarke in the seventies (see [10] for details) and extend it to the morpho-
logical framework. Following the alternative nomenclature of Aubin and Frankowska
in [7, Definition 4.1.5 (2)], its counterpart will be called circatangent transition set –
just because this term fits to the established “contingent transition set”.

Indeed, Aubin introduced circatangent transition sets in the more general frame-
work of metric spaces in [3, Definition 1.5.4] and, Definition B.2 below is equivalent
to the special case of (K(RN ), dl) and morphological transitions.
Murillo Hernández applied this concept to tuples (v,K) ∈ RN × K(RN ) with v ∈ K
and proved an asymptotic relationship between their contingent and circatangent
transition set implying that the latter is closed [23, Theorem 4.6].
In this section we generalize further features from the Euclidean space to the metric
space (K(RN ), dl).

Definition B.1 ([10, § 2.4],[7, § 4.1.3], [30, § 6.F]). Let K be a nonempty
subset of a normed vector space X and x ∈ X belong to the closure of K.
The Clarke tangent cone or circatangent cone TC

K (x) is defined (equivalently) by

TC
K (x) := Liminf h ↓ 0,

y−→
K

x

K−y
h

=
{

v ∈ X
∣∣∣ ∀ hn ↓ 0, yn → x with yn ∈ K : dist

(
v, K−yn

hn

) n→∞−→ 0
}

=
{

v ∈ X
∣∣∣ ∀ hn ↓ 0, yn → x with yn ∈ K : dist(yn+hn·v, K)

hn

n→∞−→ 0
}

.

Definition B.2. For a nonempty subset V ⊂ K(RN ) and any element K ∈ V,

T C
V (K) :=

{
F ∈ LIP(RN , RN )

∣∣∣ ∀ hn ↓ 0, Kn → K with Kn ∈ V ⊂ K(RN ) :
1

hn
· dist

(
ϑF (hn,Kn), V

) n→∞−→ 0
}

is called circatangent transition set of V at K (in the metric space (K(RN ), dl)).
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In fact, we do not have to restrict our considerations to arbitrary sequences (Kn)n∈N
in V ⊂ K(RN ). An equivalent characterization of T C

V (K) uses all sequences in K(RN )
converging to K :

Lemma B.3. For every nonempty closed subset V ⊂
(
K(RN ), dl

)
and K ∈ V,

T C
V (K) =

{
F ∈ LIP(RN , RN )

∣∣∣ ∀ hn ↓ 0, Kn → K :

lim sup
n−→∞

dist(ϑF (hn,Kn), V) − dist(Kn, V)
hn

≤ 0
}

.

So far, the circatangent transition set has been characterized by two sequences pro-
viding the arbitrarily fixed link between “step size” hn > 0 and neighboring sets
Kn ∈ K(RN ). The following condition proves to be equivalent and avoids such as-
pects of countability:

Lemma B.4. Let K ∈ K(RN ) be any element of the closed set V ⊂
(
K(RN ), dl

)
.

Then, a set-valued map F ∈ LIP(RN , RN ) belongs to the circatangent transition set
T C
V (K) if and only if there is a function ω : [0,∞[−→ [0,∞[ with lim

δ→ 0
ω(δ) = 0,

1
h ·

(
dist

(
ϑF (h, M), V

)
− dist(M, V)

)
≤ ω

(
dl(M,K) + h

)
for all h ∈ ]0, 1], M ∈ K(RN ).

The next proposition indicates further properties which the circatangent transition
set shares with the Clarke tangent cone in normed vector spaces. Indeed, it is a
nonempty closed cone in LIP(RN , RN ).
Convexity, however, is verified here only for morphological transitions in T C

V (K)
which are induced by Lip(RN , RN ), i.e. bounded Lipschitz continuous vector fields
RN −→ RN and their ordinary differential equations (rather than set-valued maps in
LIP(RN , RN ) and reachable sets of their respective differential inclusions).

Proposition B.5. For every K ∈ K(RN ) of a closed set V ⊂
(
K(RN ), dl

)
,

1.) the circatangent transition set T C
V (K) ⊂ LIP(RN , RN ) is a nonempty cone, i.e.,

for any G ∈ T C
V (K) and λ ≥ 0, the set–valued map RN ; RN , x 7→ λ ·G(x)

(in the Minkowski sense) also belongs to T C
V (K).

2.) for every threshold B ∈ [0,∞[, the intersection

T C
V (K) ∩ {G ∈ LIP(RN , RN ) | ‖G‖∞ + Lip G ≤ B}

is closed in LIP(RN , RN ) with the topology of locally uniform convergence.

Proposition B.6. Let K ∈ K(RN ) be in the closed set V ⊂
(
K(RN ), dl

)
.

Then, T C
V (K) ∩ Lip(RN , RN ) is convex, i.e., for any g1, g2 ∈ T C

V (K)∩ Lip(RN , RN )
and λ ∈ [0, 1], the Lipschitz function RN −→ RN , x 7−→ λ · g1(x) + (1 − λ) · g2(x)
also belongs to T C

V (K).

Now we provide the missing proofs in regard to the circatangent transition set.

Proof. [of Lemma B.3] “⊃” is an obvious consequence of Definition B.2.

“⊂” For any F ∈ T C
V (K) ⊂ LIP(RN , RN ) choose the arbitrary sequences (hn)n∈N,

(Kn)n∈N in ]0,∞[ and K(RN ) respectively with hn −→ 0, dl(Kn,K) −→ 0 for
n −→ ∞. Since closed balls in (K(RN ), dl) are known to be compact, there exists
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a set Mn ∈ V ⊂ K(RN ) for each n ∈ N satisfying

dl(Kn,Mn) = dist
(
Kn,V) −→ 0 .

F ∈ T C
V (K) implies 1

hn
· dist

(
ϑF (hn,Mn), V

)
−→ 0 for n −→∞

and, Lemma A.4 ensures dl
(
ϑF (hn,Kn), ϑF (hn,Mn)

)
≤ dl(Kn,Mn) · eLip F ·hn

for each n ∈ N. Finally, we obtain
1

hn
·

(
dist

(
ϑF (hn,Kn), V

)
− dist

(
Kn, V

))
≤ 1

hn
·

(
dl

(
ϑF (hn,Kn), ϑF (hn,Mn)

)
+ dist

(
ϑF (hn,Mn), V

)
− dl(Kn,Mn)

)
≤ dl(Kn,Mn) · eLip F ·hn − 1

hn
+ dist(ϑF (hn,Mn), V)

hn

and thus, its limit superior for n −→∞ is nonpositive.

Proof. [of Lemma B.4]
“⇐=” is an immediate consequence of Lemma B.3.

“=⇒” The triangle inequality of dl and Lemma A.4 guarantee

dist
(
ϑF (h, M), V

)
− dist(M, V) ≤ dl

(
M, ϑF (h, M)

)
≤ ‖F‖∞ h

for all h > 0 and M ∈ K(RN ). Hence the auxiliary function ω : [0,∞[−→ [0,∞[,

ω(δ) := sup
{

1
h ·

(
dist

(
ϑF (h, M), V

)
− dist(M, V)

) ∣∣∣
M ∈ K(RN ), h ∈]0, 1], dl(M,K) + h ≤ δ

}
is well-defined and bounded for any set-valued map F ∈ LIP(RN , RN ).

For F ∈ T C
V (K), however, we still have to verify ω(δ) −→ 0 for δ −→ 0.

If this asymptotic feature was not correct, there would exist some ε > 0 and sequences
(hn)n∈N, (Mn)n∈N in ]0, 1], K(RN ) respectively satisfying for all n ∈ N{

dl(Mn,K) + hn ≤ 1
n

1
hn
·
(
dist

(
ϑF (hn,Mn), V

)
− dist(Mn, V)

)
≥ ε > 0.

Due to hn ↓ 0 and Mn −→ K, it would contradict F ∈ T C
V (K) due to Lemma B.3.

Proof. [of Proposition B.5] (1.) Obviously, the constant set-valued map
G0(·) := {0} : RN ; RN belongs to both LIP(RN , RN ) and T C

V (K) since ϑG0(h, K) =
K for every K ∈ K(RN ) and h ≥ 0. Thus, T C

V (K) 6= ∅.
For proving the cone property, choose any set K ∈ V ⊂ K(RN ), map G ∈ T C

V (K) ⊂
LIP(RN , RN ) and scalar λ > 0. Moreover, let (hn)n∈N and (Kn)n∈N be arbitrary
sequences in ]0,∞[ and V ⊂ K(RN ) respectively with hn −→ 0, dl(Kn,K) −→ 0
(n →∞).
Every solution x(·) ∈ W 1,1([0, hn], RN ) of x′(·) ∈ λ G(x(·)) induces a solution y(·) ∈
W 1,1([0, hn

λ ], RN ) of y′(·) ∈ G(y(·)) (and vice versa) by time scaling, i.e. x(t) = y(λ·t).
Hence,

ϑλ G(hn,Kn) = ϑG(hn

λ ,Kn).

The assumption G ∈ T C
V (K) guarantees now

1
hn

· dist
(
ϑλ G(hn,Kn), V

)
= 1

λ
λ

hn
· dist

(
ϑG(hn

λ ,Kn), V
)
−→ 0 for n →∞.

(2.) Let (Gj)j∈N be a sequence in T C
V (K) with ‖Gj‖∞+LipGj ≤ B for each j ∈ N

and converging to G(·) ∈ LIP(RN , RN ) locally uniformly in RN .
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Obviously, ‖G‖∞ + Lip G ≤ B holds. Our aim is to verify G ∈ T C
V (K).

Let (hn)n∈N and (Kn)n∈N be any sequences in ]0, 1] and V ⊂ K(RN ) respectively with
hn −→ 0 and dl(Kn,K) −→ 0 (for n → ∞). The last convergence implies that all
Kn, n ∈ N, and K ∈ K(RN ) are contained in a ball BR(0) ⊂ RN of sufficiently large
radius R < ∞. Due to sup

n
hn ≤ 1,⋃

j,n∈N

⋃
0≤ t≤hn

(
ϑGj (t, Kn) ∪ ϑG(t, Kn)

)
⊂ BR+B(0) ⊂ RN .

On the basis of Lemma A.4, we obtain the estimate for all j, n∈N
1

hn
· dist

(
ϑG(hn,Kn), V

)
≤ 1

hn
· dl

(
ϑG(hn,Kn), ϑGj (hn,Kn)

)
+ 1

hn
· dist

(
ϑGj (hn,Kn), V

)
≤ eB hn · sup

|x| ≤R+B

dl(G(x), Gj(x)) + 1
hn
· dist

(
ϑGj (hn,Kn), V

)
.

For any ε > 0 given, we can fix j ∈ N sufficiently large with

sup
|x| ≤R+B

dl(G(x), Gj(x)) < ε

and, Gj ∈ T C
V (K) guarantees

lim sup
n−→∞

1
hn
· dist

(
ϑG(hn,Kn), V

)
≤ ε

with arbitrarily small ε > 0, i.e.,

lim sup
n−→∞

1
hn
· dist

(
ϑG(hn,Kn), V

)
= 0.

The subsequent proof of Proposition B.6 uses the following auxiliary result about
representing a constant λ as integral mean. A similar result cannot hold for the
L1 deviation because any integrable function µ : [0, 1] −→ {0, 1} satisfies for every
t ∈ ]0, 1] and λ ∈ [0, 1]

1
t ·

∫ t

0

|µ(s)− λ| ds ≥ min{λ, 1− λ}.

Lemma B.7. For every λ ∈ ]0, 1[, there exists µ ∈ L1([0, 1]) satisfying 1
t ·

∫ t

0

(µ(s)− λ) ds −→ 0 for t ↓ 0,

µ(·) ∈ {0, 1} piecewise constant in ]0, 1[.

Proof. µ(·) is defined piecewise in each interval
[

1√
n+1

, 1√
n

[
.

Set µ(t) :=

{
0 for 1√

n+1
≤ t < λ√

n+1
+ 1−λ√

n

1 for λ√
n+1

+ 1−λ√
n

≤ t < 1√
n

for each n ∈ N.

Then,
∫ 1√

n

1√
n+1

(µ(s)− λ) ds = 0 and thus,
∫ 1√

n

0

(µ(s)− λ) ds = 0.

Moreover,
∫ 1√

n

1√
n+1

|µ(s)− λ| ds = 2 λ (1− λ)
(

1√
n
− 1√

n+1

)
implies

sup
1√

n+1
≤ t≤ 1√

n

1
t ·

∣∣∣∣∫ t

0

(µ(s)− λ) ds

∣∣∣∣ ≤
√

n + 1 ·
∫ 1√

n

1√
n+1

|µ(s)− λ| ds
n→∞−→ 0.
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Proof. [of Proposition B.6]
For any functions g1, g2 ∈ T C

V (K) ∩ Lip(RN , RN ) and λ ∈ ]0, 1[, we verify that

g : RN −→ RN , x 7−→ λ · g1(x) + (1− λ) · g2(x)

also belongs to T C
V (K).

Obviously, g is bounded, Lipschitz continuous and thus, g ∈ Lip(RN , RN ). According
to Lemma B.7, there exists µ ∈ L1([0, 1]) satisfying 1

t ·
∫ t

0

(µ(s)− λ) ds −→ 0 for t ↓ 0,

µ(·) ∈ {0, 1} piecewise constant in ]0, 1[.

First we compare the evolution of an arbitrary set M ∈ K(RN ) along the autonomous
differential equation with the right-hand side

g : RN −→ RN , x 7−→ λ · g1(x) + (1− λ) · g2(x)

and along the nonautonomous differential equation with the right-hand side

f : RN × [0, 1] −→ RN , (x, t) 7−→ µ(t) · g1(x) + (1− µ(t)) · g2(x).

In particular, we prove

lim
t↓0

1
t · dl

(
ϑf (t, M), ϑg(t, M)

)
= 0 uniformly in M ∈ K(RN ).

Let x(·) ∈ W 1,1([0, 1], RN ) denote any solution to the nonautonomous differential
equation x′(·) ∈ f(x(·), ·). There exists a unique solution y(·) ∈ W 1,1([0, 1], RN ) to
the initial value problem y′(·) = g(y(·)), y(0) = x(0) and, we estimate the difference

|y(t)− x(t)|

=
∣∣∣∫ t

0

(
λ g1

(
y(s)

)
− µ(s) g1

(
x(s)

)
+

(1− λ) g2

(
y(s)

)
− (1− µ(s)) g2

(
x(s)

) )
ds

∣∣∣
≤

∣∣∣∫ t

0

(
(λ− µ(s)) g1

(
y(s)

)
+ (µ(s)− λ) g2

(
y(s)

))
ds

∣∣∣
+

∫ t

0

µ(s) · Lip g1 · |x(s)− y(s)| ds +
∫ t

0

(1− µ(s)) · Lip g2 · |x(s)− y(s)| ds

≤
∣∣∣∫ t

0

(λ− µ(s)) ·
(
g1(x(0))− g2(x(0))

)
ds

∣∣∣
+

∫ t

0

∣∣λ− µ(s)
∣∣ (Lip g1+Lip g2) |y(s)− x(0)| ds

+ max{Lip g1, Lip g2} ·
∫ t

0

|x(s)− y(s)| ds

≤ c ·
(∣∣∣ ∫ t

0

(λ− µ(s)) ds
∣∣∣ +

∫ t

0

‖g‖sup · s ds +
∫ t

0

|x(s)− y(s)| ds
)

with a constant c > 0 depending only on g1(·), g2(·). Due to Gronwall’s inequality,
|x(t)− y(t)| ≤ o(t) for t ↓ 0 uniformly with respect to the initial point x(0) = y(0).
(In particular, the estimate of Filippov’s Theorem is difficult to be applied here
directly as the integral mean of µ(·) − λ tends to 0 for t ↓ 0, but not the mean
of |µ(·)− λ|.)
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Thus, for any initial set M ∈ K(RN ), the reachable sets satisfy

lim
t↓0

1
t · dist

(
ϑf (t, M), ϑg(t, M)

)
= 0 uniformly in M ∈ K(RN ).

The same uniform estimates hold for dist
(
ϑg(t, M), ϑf (t, M)

)
since the preceding

solutions x(·) and y(·) have required only the joint initial point at time 0. Hence,

lim
t↓0

1
t · dl

(
ϑf (t, M), ϑg(t, M)

)
= 0 uniformly in M ∈ K(RN ).

Finally, we focus on the asymptotic features of ϑf (·, ·) in regard to the circa-
tangent transition set T C

V (K), i.e. for any ε > 0, we verify the existence of a radius
r > 0 such that all h ∈ ]0, r] and sets M ∈ K(RN ) with dl(M,K) ≤ r satisfy

dist
(
ϑf (h, M), V

)
− dist(M, V) ≤ ε h.

Then, for any sequences hn ↓ 0 and (Kn)n∈N in V ⊂ K(RN ) converging to K
1

hn
· dist

(
ϑf (hn,Kn), V

)
−→ 0 for n −→∞

and in combination with the uniform convergence mentioned before, we conclude
1

hn
· dist

(
ϑg(hn,Kn), V

)
−→ 0 for n −→∞,

i.e., g ∈ T C
V (K) due to Definition B.2.

Indeed, applying Lemma B.4 to g1, g2 ∈ T C
V (K) ∩ Lip(RN , RN ), we obtain a joint

function ω : [0,∞[−→ [0,∞[ satisfying limδ→ 0 ω(δ) = 0 and
1
h ·

(
dist

(
ϑgj (h, M), V

)
− dist(M, V)

)
≤ ω

(
dl(M,K) + h

)
for all j ∈ {1, 2}, h ∈ ]0, 1] and M ∈ K(RN ).
Fixing ε > 0 arbitrarily small, there exist a radius R > 0 with sup[0,R] ω(·) ≤ ε and
additionally, some r ∈ ]0, R

2 ] such that r ·
(
1 + ‖g1‖∞ + ‖g2‖∞

)
≤ R

2 .

Then, each j ∈ {1, 2} and every h ∈ ]0, r], M ∈ K(RN ) with dl(M,K) ≤ r satisfy{
dl

(
ϑgj (h, M),K

)
≤ dl(M,K) + ‖gj‖∞ h ≤ R

2

dist
(
ϑgj (h, M), V

)
− dist(M, V) ≤ ω

(
dl(M,K) + h

)
· h ≤ ε h.

For drawing now conclusions about ϑf (h, M), we exploit the piecewise constant struc-
ture of auxiliary function µ(·) : [0, 1] −→ {0, 1} (introduced in Lemma B.7). Indeed,
there is a sequence (tk)k∈N tending to 0 monotonically such that µ(·) is constant in
every interval [tk+1, tk[, k ∈ N. The last estimate in each of these subintervals leads
to the following inequalities for every h ∈ ]0, r], M ∈ K(RN ) with dl(M,K) ≤ r and
sufficiently large k ∈ N with tk+1 < h ≤ tk

dist
(
ϑf (h, M), V

)
− dist(M, V)

≤ dist
(
ϑf (h− tk+1, ϑf (tk+1,M)), V

)
− dist

(
ϑf (tk+1,M), V

)
+ dist

(
ϑf (tk+1,M), V

)
− dist

(
ϑf (tk+2,M), V

)
± . . .

− dist(M, V)

≤ ε · (h− tk+1) + ε · (tk+1 − tk+2) + . . .

≤ ε · h.
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Appendix C. The hypertangent transition set.
For any closed subset of the Euclidean space, the interior of the Clarke tangent

cone has been characterized by Rockafellar in 1979 [29]. Indeed,

Proposition C.1 (Rockafellar [29, Theorem 2], [30, Theorem 6.36]). Let
K ⊂ RN be a closed set and x ∈ K. Then the interior of Clarke tangent cone to K at
x satisfies
T C

K (x)◦ = {v ∈ RN | ∃ ε > 0 : (K ∩ Bε(x)) + ]0, ε[ · Bε(v) ⊂ K}
= {v ∈ RN | ∃ ε > 0 ∀ y ∈ K ∩ Bε(x), w ∈ Bε(v), τ ∈ ]0, ε[: y + τ w ∈ K}

with Bε(v) abbreviating the closed ball Bε(v) := {w ∈ RN | |w − v| ≤ ε} and
U◦ denoting always the interior of a set U.

This equivalence serves as motivation for introducing “hypertangent cones”:

Definition C.2 ([10, § 2, 4]). A vector v in a Banach space X is said to
be hypertangent to the set K ⊂ X at the point x ∈ K if for some ε > 0, all vectors
y ∈ Bε(x) ∩K, w ∈ Bε(v) ⊂ X and real t ∈ ]0, ε[ satisfy y + t · w ∈ K.

We now focus on a similar description in the morphological framework. To be more
precise, we are going to specify subsets T H

V (K) ⊂ LIP(RN , RN ) of the circatangent
transition sets T C

V (K), K ∈ V, whose graph V ; LIP(RN , RN ), K 7→ T H
V (K) is

identical to the interior of the graph of T C
V (·) in V × LIP(RN , RN ).

There is an essential difference between the vector space RN and the metric space
(K(RN ), dl), however, preventing us from applying Definition C.2 directly.
Indeed, considering the neighbourhood of a vector y + t · v (with y, v ∈ RN , t > 0),
each of its points can be represented as y+ tw with a “perturbed” vector w close to v.
The corresponding statement does not hold for reachable sets of differential inclusions
in general: For given F ∈ LIP(RN , RN ), K ∈ K(RN ), t > 0, not every compact set
M ⊂ RN with arbitrarily small Hausdorff distance from ϑF (t, K) can be represented
as reachable set ϑ eG(t, K) with some G̃ ∈ LIP(RN , RN ) “close to” F. As a typical
example, we can consider M := ϑF (t, K) \ Bε(x0)◦ ∈ K(RN ) with an interior point
x0 of ϑF (t, K) and sufficiently small ε > 0.

For this reason, we prefer a different approach to the interior of Graph T C
V (·),

but use the terminology of hypertangents:

Definition C.3. Consider the set LIP(RN , RN ) with the topology of locally
uniform convergence. For a nonempty subset V ⊂ K(RN ) and any element K ∈ V,

T H
V (K) :=

{
F ∈ LIP(RN , RN )

∣∣∣ ∃ ε > 0, neighbourhood U ⊂ LIP(RN , RN ) of F

∀ G ∈ U : lim
h ↓ 0

1
h · dist

(
ϑG(h, M), V

)
= 0

uniformly in M ∈ V ∩ Bε(K)
}

is called hypertangent transition set of V at K (in the metric space (K(RN ), dl)).

Lemma C.4. Let K ∈ K(RN ) be in the nonempty closed set V ⊂
(
K(RN ), dl

)
.

Then, a set-valued map F ∈ LIP(RN , RN ) belongs to the hypertangent transition set
T H
V (K) if and only if there exist a radius ε > 0 and a neighbourhood U ⊂ LIP(RN , RN )

of F such that for each map G ∈ U, a modulus of continuity ω : [0, 1] −→ [0,∞[ (i.e.
limδ→ 0 ω(δ) = 0) satisfies

1
h · dist

(
ϑG(h, M), V

)
≤ ω(h)

for all h ∈ ]0, 1] and M ∈ Bε(K) ∩ V ⊂ K(RN ).
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The proof results from essentially the same arguments as Lemma B.4 about the circa-
tangent transition set. Furthermore, in combination with Lemma B.4, we conclude
immediately:

Lemma C.5. For every nonempty closed subset V ⊂ K(RN ) and element
K ∈ V, the hypertangent transition set T H

V (K) is contained in the interior of the
circatangent transition set T C

V (K). 2

For the same reason, we obtain an even more general result:

Lemma C.6. Consider the set LIP(RN , RN ) with the topology of locally uniform
convergence. For every nonempty closed subset V ⊂ K(RN ), the graph of hypertangent
transition sets V ; LIP(RN , RN ), K 7→ T H

V (K) is contained in the interior of the
graph of V ; LIP(RN , RN ), K 7→ T C

V (K). 2

In fact, also the opposite inclusion holds and thus, we have a complete characteriza-
tion of the interior of Graph T C

V (·) in V × LIP(RN , RN ) :

Proposition C.7. Let V ⊂ K(RN ) be nonempty and closed with respect to dl.
Then, Graph T H

V (·) ⊂ V × LIP(RN , RN ) is equal to the interior of Graph T C
V (·) in

V × LIP(RN , RN ).

Proof. Due to Lemma C.6, we just have to show: If (K, F ) belongs to the
interior of Graph T C

V (·) in V × LIP(RN , RN ), then F ∈ T H
V (K).

There exist a radius ρ > 0 and a neighbourhood U ⊂ LIP(RN , RN ) of F (with respect
to locally uniform convergence) such that all tuples (M,G) ∈

(
V ∩ Bρ(K)

)
× U ⊂

K(RN ) × LIP(RN , RN ) belong to Graph T C
V (·). For an arbitrary set-valued map

G ∈ U, we now prove indirectly

lim sup
h ↓ 0

1
h · dist

(
ϑG(h, M), V

)
= 0 uniformly in M ∈ V ∩ Bρ(K).

Otherwise there exist δ > 0 and sequences (hn)n∈N, (Mn)n∈N in ]0, 1[ and V ⊂
K(RN ) respectively satisfying for all n ∈ N,

dist
(
ϑG(hn,Mn), V

)
≥ δ · hn,

0 < hn < 1
n ,

dl(Mn,K) ≤ ρ.

In the metric space (K(RN ), dl), all bounded closed balls are known to be compact.
Thus, there is a subsequence (Mnj )j∈N converging to a compact set M ∈ V ∩Bρ(K).
Due to the choice of ρ and U, we obtain G ∈ T C

V (M) in particular. This contradicts,
however,  lim inf

j→∞
1

hnj
· dist

(
ϑG(hnj ,Mnj ), V

)
≥ δ > 0

lim
j→∞

dl
(
Mnj , M

)
= 0

completing the indirect proof.

Remark. Circatangent transition set T C
V (K) and hypertangent transition set

T H
V (K) differ from each other in an essential feature:

The condition on a map F ∈ T C
V (K) depends on V ⊂ K(RN ) close to K, of course,
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but only on reachable sets of the set-valued map F. In particular, it does not have
any influence on this condition if we replace such a map F ∈ LIP(RN , RN ) by its
pointwise convex hull RN ; RN , x 7→ co F (x) – due to Relaxation Theorem of
Filippov-Ważiewski [2, § 2.4, Theorem 2].

The condition on F ∈ T H
V (K), however, takes all set-valued maps G ∈ LIP(RN , RN )

in a neighbourhood of F into account. Considering the topology of locally uniform
convergence in LIP(RN , RN ), the values of these neighboring set-valued maps G do
not have to be convex even if F belongs to LIPco(RN , RN ).
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[33] J.-P. Zolésio, Identification de domaine par déformations. Thèse de doctorat d’état, Univer-
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