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Zusammenfassung

Risikoadaptierte Optimierung in der intensitätsmodulierten
Protonentherapie (IMPT)

Die ausgeprägten Dosisgradienten eines Protonenstahls können in der Protonentherapie
zu Bestrahlungsplänen führen, die auf Unsicherheiten in der Bestrahlungsplanung und -
applizierung sehr anfällig sind. Allerdings bietet die IMPT viele Lösungen des inversen
Problems an, die vergleichbare Dosisverteilungen aufweisen. Diese Arbeit beschäftigt sich
mit Möglichkeiten, diese Entartung der Lösungen zur Generierung robuster Bestrahlungspläne
auszunutzen. Eine Überprüfung des Optimierungsalgorithmus der verwendeten IMPT Soft-
ware KonRad ergab, daß der Standardalgorithmus den optimalen Bestrahlungsplan nicht in
angemessener Zeit ermitteln kann. Deshalb wurden zusätzlich mehrere Optimierungsalgo-
rithmen in KonRad implementiert und getestet. Die besten Ergebnisse erzielte der L-BFGS
Algorithmus. Zur Beurteilung der Empfindlichkeit der Dosisverteilung einzelner Beamlets
im Hinblick auf Unsicherheiten, wurde das Konzept der Heterogenitätszahl Hi entwick-
elt. Es wurde gezeigt, daß Hi sowohl mit dem Dosisberechnungsfehler, der durch den
üblicherweise verwendeten Pencilbeam Algorithmus entsteht, als auch mit der Empfind-
lichkeit der einzelnen Beamlets im Bezug auf Fehllagerungen korreliert. Schließlich wurde
die “worst case Optimierung” entwickelt um Unsicherheiten in die inverse Bestrahlungs-
plannung mit einzubeziehen. Diese Technik wurde auf Reichweitenunsicherheiten, Fehllagerun-
gen des Patienten sowie deren Kombination angewandt. Die Bestrahlungspläne, die mit
dieser neuen Methode erzeugt wurden, weisen im Vergleich zu konventioneller IMPT und
sogar zu konventionellen Ein-Feld Bestrahlungsplänen eine deutlich größere Robustheit
gegen die jeweiligen Unsicherheiten auf.

Abstract

Risk-adapted Optimization in Intensity Modulated Proton
Therapy (IMPT)

Due to the pronounced dose gradients generated by proton beams, proton treatment plans
can be very sensitive to treatment uncertainties. However in IMPT many different solutions
of the inverse problem exist which result in dose distributions of comparable quality. This
thesis investigates methods to exploit this degeneracy of solutions to generate treatment
plans which are robust to uncertainties. An investigation of the optimization algorithm in
the used IMPT software KonRad revealed that the standard optimization algorithm is not
capable to find the optimal treatment plan in a reasonable time. Thus several additional
optimization algorithms were implemented and tested in KonRad. The best results were
achieved using the L-BFGS algorithm. To rate the sensitivity to uncertainties of individual
beamlet dose distributions the heterogeneity number Hi was developed. It was shown
that Hi correlates with the dose calculation error introduced by the commonly employed
pencil beam algorithm as well as with the sensitivity to setup errors of individual beamlets.
Finally, the “worst case optimization” was developed to account for uncertainties during the
inverse treatment planning. This technique was applied to account for range uncertainties,



setup errors and a combination of both uncertainties. The treatment plans generated with
this new method are much more robust to the respective uncertainties as conventional
IMPT and even as conventional single-field proton plans.
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Chapter 1

Introduction

Cancer is among the leading causes for death in Germany. In 2002, more than 400.000

newly diagnosed cases and more than 200.000 deaths due to cancer were reported [1].

The three main therapies against cancer are surgery, chemotherapy and radiation ther-

apy. Often a combined therapy is employed. The Deutsche Gesellschaft für Radioonkologie

(DEGRO) states that almost 60% of all cancer patients receive radiation at least as a part

of their therapy [2]. This results in approximately 240.000 radiation treatments in Ger-

many per year. The vast majority of these treatments employ photon radiation. However

accelerated charged particles such as proton radiation offer the possibility to generate dose

distributions which are not achievable with photons. Tumors which are so close to critical

structures that they cannot be irradiated with photons might be cured by proton therapy.

Nevertheless proton treatment plans cannot only deliver dose distributions with very steep

dose gradients. Precisely because of these sharp dose gradients proton treatment plans can

be very sensitive to uncertainties in the treatment planning and the dose delivery process.

There are multiple sources for such uncertainties. The treatment planning CT which serves

as the patient model for the treatment planning process is usually taken a few days before

the beginning of the actual treatment course. Furthermore due to radiobiological effects

radiation therapy is usually delivered in multiple fractions. At each day of the treatment

the patient has to be positioned relative to the treatment beam. A positioning error of a

few mm compared to the treatment planning CT can already lead to a deteriorated dose

distribution [3]. Furthermore, a different patient anatomy such as a different filling of the

bladder and rectum or weight -gain or -loss of the patient can lead to a different range of

the proton beam and thus degenerate the dose distribution [4]. Besides these uncertainties

in the treatment delivery process the planning CT already introduces uncertainties into

the treatment planning process. The CT provides electron densities quantified in so-called
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1. Introduction

Hounsfield units (HU) for each volume element in space. To calculate the proton range

and thus the dose distribution in the medium the relative stopping power of each volume

element is needed. However there is no one-to-one transition between relative stopping

power values and Hounsfield units. Two different materials with different relative stopping

power values can result in the same Hounsfield unit [5]. Furthermore CT artefacts can have

a large impact on the dose calculation. Metal implant lead to pronounced CT artefacts.

Such implants are often present in patients which received surgery prior to radiotherapy.

Although large efforts are made to minimize these uncertainties there still remain unavoid-

able uncertainties which can have a large impact on the delivered dose distributions. The

aim of this thesis is to investigate methods for a risk-adapted proton treatment planning.

For photon intensity modulated radiation therapy (IMRT) it has been shown that there

are multiple possibilities to deliver dose distributions of similar quality, leading to a de-

generated space of solutions for IMRT (see e.g. Alber et al. [6]). The intensity of photon

radiation can only be modulated across the two-dimensional lateral beam profile. The pro-

ton beam can additionally be varied in the beam energy, leading to a different range of

the beam. Thus the intensity of the proton radiation can be modulated in three dimen-

sions. Due to this additional flexibility in the dose delivery process for proton therapy the

degeneracy of solutions for IMPT is even expected to increase beyond the degeneracy for

IMRT. In risk-adapted proton treatment planning, this degeneracy of creating treatment

plans is utilized to search for high quality treatment plans that show a reduced sensitivity

to treatment uncertainties.

The thesis is subdivided into six chapters. Chapter 2 will give a short introduction

into proton therapy. The research done for this thesis will be presented in the following

chapters. An investigation of the optimization algorithms used in the inverse planning

process is shown in chapter 3. A method to quantify the risks resulting from lateral tissue

heterogeneities of an individual beamlet is presented in chapter 4. In chapter 5, a method

is developed to account for uncertainties in the inverse treatment planning process. Finally

a summary and an outlook for further research is given in chapter 6. Parts of this thesis

have been published or submitted for publication. References [7], [8] and [3] each cover

parts of chapters 3, 4 and 5, respectively. Parts of the thesis have also been presented on

international conferences. Abstracts to these talks can be found in references [9, 10, 11, 12,

13, 14].
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Chapter 2

Proton Therapy

2.1 Introduction

The absorption mechanisms of charged particle radiation in matter are different compared

to those of photon radiation. Already in 1946 R. Wilson [15] recognized the physical ad-

vantages of accelerated charged particles for radiation therapy. Photons are absorbed in

one (photoelectric effect, pair production) or a few (Compton effect) interactions. This

results in an exponential decay of the number of absorbed photons as the photon beam

transverses a medium. Assuming that the photon energy is deposed locally at the site of

the interaction this results in an exponential decay of the deposed dose in depth. (This

assumption is not exactly fulfilled, leading to a buildup effect as it can be see in figure 2.1.)

Compared to this charged particles release their energy in multiple interactions, predomi-

nately Coulomb interactions with the atomic electrons of the target material. The energy

loss of charged particles as they traverse matter can be described by the Bethe-Bloch equa-

tion (see e.g.[16]). For therapeutical energies the energy loss increases in this equation as

the particles slow down. This results in an increase of the absorbed energy in depth up

to a point where all particles are absorbed, leading to a distinct peak in the depth-dose

distribution. This peak was first measured by Sir William Henry Bragg who published his

work “On the Ionization Curves of Radium” together with Richard Kleeman in 1904 [17].

To his honor this peak is called “Bragg peak”. Often this behavior of charged particles is

also referred to as inverse depth-dose profile. An analytical derivation of this curve can be

found in [18].The penetration depth of the charged particles depends on their initial kinetic

energy thus the range can be adjusted. A comparison between the absorbed dose in water

of a photon beam and proton beams of different initial energies is shown in figure 2.1. The

physical advantage of charged particles for radiation therapy compared to photons lies in
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2. Proton Therapy
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Figure 2.1: The absorbed dose in water of broad proton beams of different energies and
a 6 MV photon beam. The curves are normalized to the maximal value. The photon beam
was measured, the proton beams are calculated using the analytical form of the Bragg peak
as described in [18].

the reduced dose in the entrance region as well as in the vanishing dose behind the Bragg

peak. All heavy charged particles beams show this characteristic Bragg peak. Several parti-

cles were utilized for radiation therapy, besides protons, helium ions, carbon ions and pions

were employed. However protons are the major modality for charged particles radiation

therapy. Of all patients treated with charged particles up to 2005, 88% received a proton

treatment and 9% received a carbon ion therapy [19]. This thesis concentrates on proton

therapy, although the methods derived here can also be applied to other charged particle

beams.

In principle all tumors treated with photons can also be treated with protons. The main

argument against proton therapy is the costs associated with this modality. Proton therapy

is estimated to be 1.7 to 3 times more expensive than the most advanced photon therapy

(IMRT) [20].

2.2 Delivering techniques for proton therapy

Radiation therapy aims to deliver a prescribed dose homogeneously to the tumor while

minimizing the dose to the surrounding healthy tissue. To realize this, several delivering

techniques were utilized in proton therapy, starting from passive techniques to active tech-

niques and finally to intensity modulated proton therapy (IMPT). This order represents

the chronological order as well as the order of technical complexity as well as the order for

the improvement of the sparing of healthy tissue. The three techniques will be explained

in the following sections.
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2.2 Delivering techniques for proton therapy

2.2.1 Passive techniques

A proton beam is generated by a particle accelerator, resulting in an almost monoenergetic,

narrow beam of protons. To make such a beam useful for therapy it has to be broadened

laterally as well as in depth to enclose the whole tumor with a homogeneous dose. The

lateral broadening of the beam can be achieved by scattering foils as a pure passive tech-

nique or using wobbling magnets. To realize a homogeneous dose in depth, several initial

proton energies are needed as shown in figure 2.2. The resulting beam shown there is called

a spread-out Bragg peak (SOBP) [16]. For passive techniques, this SOBP can be generated
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Figure 2.2: To generate a homogeneous dose in depth, Bragg peaks of different energies
with different weights are superimposed. This is called a Spread-out Bragg Peak (SOBP).

using a modulator wheel which is spinning in the beam line. This wheel consists of sectors

of varying thickness of material. It resembles a spiral staircase, where the height of each

stair determines the individual energy and the width of each stair its weight. Two patient

specific devices are additionally used to deliver proton therapy with passive techniques. A

collimator is applied to laterally shape the beam to the tumor. Finally a compensator is

used to align the distal edge of the tumor with the distal edge of the SOBP. The devices

are schematically presented in figure 2.3, where it is indicated that the width of the SOBP

is determined by the largest extension in depth of the tumor. Since the width of the SOBP

cannot be changed laterally using a passive technique, a large part of the surrounding

healthy tissue is receiving the full therapeutic dose. Additionally, the material placed into
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2. Proton Therapy

Figure 2.3: Picture taken from [16]. Patient specific devices and the resulting dose distri-
bution is sketched for passive proton therapy.

the proton beam like the scattering foil, the collimator and the compensator results in

the production of neutrons which can be harmful to the patient (see e.g. [21]). These two

problems are the main disadvantages of passive techniques, the main advantage being its

simplicity.

2.2.2 Active techniques

The active delivering techniques were pioneered in the 1990s at the Paul Scherrer Institute

(PSI), Switzerland, for proton therapy and at the Gesellschaft für Schwerionenforschung

(GSI), Darmstadt, Germany, for carbon ion therapy. The principle of active scanning is

sketched in figure 2.4. Instead of broadening the beam by scattering foils, a narrow proton

beam with a fixed energy is scanned over the tumor using scanning magnets. After the

tumor has been scanned the energy of the proton beam is changed, either passively by

inserting a plate of material, a so-called range shifter, into the beam line or actively by

directly changing the accelerator settings. This process is repeated until the whole tumor

has been irradiated. The active delivering technique is technically more challenging than the

passive technique. While for the passive technique the SOBP is shaped using one universal

modulator wheel per SOBP width, the number of protons applied to each scanning position

has to be calculated for each patient individually. As for intensity modulated therapy this is

done using inverse treatment planning. This is described in the following section. To control
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2.2 Delivering techniques for proton therapy

Figure 2.4: Picture modified from [16]. Using the active delivering technique, the narrow
proton beam is scanned over the tumor. By changing the beam energy the range of the Bragg
peak can be adjusted to the corresponding energy slices. For simplicity, only one scanning
magnet is shown. A second scanning magnet is needed to deflect the proton beam in the
third dimension.

the beam scanning within the required accuracy is another challenge. This is especially true

if the tumor is able to move during the treatment as it is the case for e.g. lung tumors.

There the interplay between the tumor motion and the beam scanning can deteriorate the

dose distribution. These interplay effects are one reason why the active scanning technique

has mainly been applied to immobile tumors such as brain tumors and lesions at the spinal

cord. However compared to the passive technique the active technique offers the possibility

to spare healthy tissue proximal to the tumor since the width of the SOBP can be adjusted

for each lateral position. Furthermore much less material is placed in the proton beam using

the active technique, thus much less neutrons are generated.

2.2.3 Intensity Modulated Proton Therapy (IMPT)

Both the active and the passive technique can be applied with only one treatment beam.

Even if multiple beams are used in these techniques every beam is applied independently,

that is every beam results in a homogeneous dose distribution in the target. In intensity

modulated proton therapy (IMPT), multiple treatment beams are used. The superposition

of all treatment beams result in a homogeneous dose distribution to the target, whereas

each treatment beam alone can deliver an inhomogeneous dose to the target. To generate

7



2. Proton Therapy

IMPT plans, the treatment beams are subdivided into multiple beamlets. The treatment

beam can now be modulated by assigning a weight to each individual beamlet. The optimal

beamlet weights are usually identified by an iterative process, the so-called optimization

loop. For this an initial weight is assigned to each beamlet. The dose distribution due to

these beamlet weights is then calculated and compared with the desired dose distribution.

The difference between these two dose distributions is quantified by the so-called objec-

tive (or cost) function. The beamlet weights are then updated such that the value of the

objective function is reduced. This loop is then repeated until a suitable treatment plan

is identified. This process is called inverse treatment planning. In the DKFZ, the inverse

planning is done using the research version of the in-house treatment planning software

KonRad [24]. The following sections describe the elements of the the inverse treatment

planning process for IMPT in more detail. The optimization process to update the beam-

let weights will be the topic of chapter 3 and is excluded here.

Inverse treatment planning is also used to determine the weights of the individual Bragg

peaks for the active delivery technique. Thus the active delivery technique could also be

seen as intensity modulated proton therapy. However it has been agreed on that only

techniques where each individual treatment beam may result in an inhomogeneous dose

distribution are called IMPT [22]. This is motivated by the fact that for the active tech-

nique there is only one modulation of the treatment beams that leads to the desired dose

distribution. In contrast to this there are usually multiple sets of beamlet weights which

result in comparable dose distributions for the IMPT techniques. The inverse problem for

IMPT is thus degenerated.

IMPT techniques

Lomax described four techniques to deliver IMPT [23]. The methods differ in the way they

subdivide the treatment beam into individual beamlets. They are illustrated in figure 2.5.

The beamlets for the 2D method are narrow spread-out Bragg peaks (SOBPs). As for the

passive technique, the extension of the SOBP in depth is identical for each lateral position.

The beamlets for the 2.5D method are SOBPs with a variable plateaulength such that the

size of the SOBP is matched with the target size at each lateral position.

The distal edge tracking (DET) technique proposed by Deasy et al. [25] uses single Bragg

peaks as beamlets. However only one Bragg peak is used for each lateral position, namely

the Bragg peak which stops at the distal edge of the target. With this technique a homo-

geneous dose in the target can only be achieved if multiple beam directions are employed.

Finally the 3D method proposed by Brahme et al. [26] uses individual Bragg peaks as

8



2.2 Delivering techniques for proton therapy

Figure 2.5: The four methods to deliver IMPT as described by Lomax [23].

beamlets. Contrary to the DET method Bragg peaks of multiple energies are used at each

lateral position, covering the target from the distal edge up to the proximal edge.

The full three dimensional modulation is the most flexible IMPT technique, the other

methods are merely constrained versions of it. All solutions obtained with the other three

methods can also be obtained using the 3D technique. The rationale for the other three

methods is to reduce the number of beamlets which reduces the complexity of the inverse

problem as well as the complexity of the treatment delivery. Depending on the actual ge-

ometry the number of beamlets can be reduced by approximately a factor of ten when

changing from the 3D to e.g. the DET method. Additionally, the use of SOBPs in the

2D and 2.5D method can decrease the sensitivity to range uncertainties of the resulting

treatment plan.

Although the DET method only uses a very limited number of Bragg peaks it can, depend-

ing on the tumor size and the number of used treatment beams, result in dose distributions

which are comparable to the 3D method (see e.g. [27]). Figure 2.2 shows that for an SOBP

dose delivery the Bragg peak at the distal edge has by far the largest weight to generate a

homogeneous dose in the target. Furthermore this Bragg peak has the best dose to target

/ dose to normal tissue ratio. Thus the DET method concentrates on the most important

Bragg peaks.
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2. Proton Therapy

Objective function

The optimal dose distribution in radiation therapy would be a prescribed dose applied

homogeneously to the target with no dose to the surrounding healthy tissue. Obviously

this goal cannot be fulfilled. The objective function F quantifies the difference between the

actual and the desired dose distribution. Since the actual dose distribution depends on the

beamlet weights this function can be expressed in terms of the beamlet weight vector, ~w.

Thus F (~w) is a N-dimensional function, N being the number of beamlets. Several different

objective functions have been proposed. In this thesis the following quadratic objective

function is used:

F (~w) =
1

NTarget

NTarget∑

i

(
pui [Dpresi −Di(~w)]2+ + poi [Di(~w)−Dpresi]

2
+

)

+
OAR∑

k

1

Nk

Nk∑

i

poi
[
Di(~w)−Dk

toli

]2
+

(2.1)

with Di(~w) =

N∑

j

wjDij (2.2)

and [x]+ = 0 for x < 0, [x]+ = x for x ≥ 0.

Here Nm is the number of voxels in the respective volume m. Di(~w) is the actual dose

in voxel i. Dpresi is the dose prescribed to the target, Dk
toli

the dose tolerated by the k-th

organ at risk (OAR). pui/oi are penalty factors for the under/over dosage of voxel i. Dij is

the dose in voxel i due to unit fluence of beamlet j. This Dij (or influence) matrix can be

calculated once prior to the optimization. During the optimization, where multiple dose

calculations are required, this Dij matrix can be used as a quick lookup table for a fast

dose calculation. With this approach demanding dose calculation algorithms as e.g. Monte

Carlo algorithms can be used in the inverse treatment planning process.

Due to the positivity operator [·]+ this objective function is strictly speaking not a quadratic

function. Nevertheless it is commonly referred to as quadratic objective function thus this

terminology is kept in this thesis.

2.3 Proton dose calculation

Several dose calculation algorithms are available for proton therapy. An overview can be

found e.g. in [27]. Two common approaches are described in this section, namely the pencil

beam algorithm (PB) and the Monte Carlo approach (MC). The description of the pencil
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2.3 Proton dose calculation

beam algorithm follows reference [27]. While pencil beam algorithms are very fast and rea-

sonably accurate, Monte Carlo algorithms provide a gold standard at the cost of prolonged

calculation times.

2.3.1 Initial phase space

Often the modeling of the particle accelerator is decoupled from the dose calculation using

the concept of the initial phase space (IPS) [27]. The initial phase space IPS(~r, ~p, E) is a

complete description of the beam in a plane perpendicular to the beam axis, including the

direction of flight (~p) distribution and the energy (E) distribution of the incoming protons

at each position ~r of the plane. The energy distribution of the protons is usually assumed

to be independent of the lateral position, which reduces the complexity of the initial phase

space. This thesis investigates IMPT which is delivered using a scanned narrow beam. Such

a beam is controlled by the beam optics, which usually yields a Gaussian lateral distribution

and an almost parallel momentum distribution of the protons. Assuming a parallel initial

phase space with all protons moving in the direction of the beam axis further reduces the

complexity of the IPS.

2.3.2 Pencil beam algorithm

The pencil beam algorithm described here makes use of the two simplification described in

the previous section, thus it assumes a parallel initial phase space with a constant energy

spectrum. The initial phase space is thus reduced from IPS(~r, ~p, E) to IPS(~r). The pencil

beam algorithm calculates the dose due to an infinitesimally narrow proton beam with the

given energy spectrum starting at the plane on which the IPS is defined. By convolving

the dose of this pencil beam, P (~r, d, E0), with the IPS the complete dose distribution D

is obtained:

D(~r, d) =

∫
d2~r′ IPS(~r′) · P (~r − ~r′, d, E0) (2.3)

Here ~r are the two coordinates perpendicular to the beam axis while d represents the co-

ordinate along the beam axis.

The pencil beam algorithm is now described for the dose calculation in a homogeneous

target such as a water phantom. Two physical effects dominate the behavior of a proton

beam transversing material. The energy loss leads to the characteristic depth-dose curve

including the Bragg peak. The energy loss of the accelerated protons is mainly due to

Coulomb interaction with the atomic electrons of the target material. Additionally, the
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2. Proton Therapy

multiple Coulomb scattering (MCS) of the accelerated protons with the target atoms re-

sults in a broadening of the beam. Since the energy loss and the scattering are almost

independent a common approximation of all pencil beam algorithms is to decouple these

two effects. This leads to a factorization of the dose of the pencil beam into a central axis

depth-dose curve Dcax(d, E0) and a lateral distribution L(r, d, E0):

P (~r, d, E0) = Dcax(d, E0)× L(~r, d, E0) (2.4)

Both terms can either be measured or calculated using analytical models. An analyt-

ical approximation for the depth-dose curve was given by Bortfeld [18]. The multiple

Coulomb scattering which leads to the lateral distribution L(~r, d, E0) was investigated

by Molière [28]. He found that the lateral distribution can be described to first order by a

Gaussian distribution, thus L(~r, d, E0) = (2πσ2(d, E0))−1 · exp
(
− (~r−~r0)2

2σ2(d,E0)

)
. Here ~r0 is the

position of the central beamlet axis and σ2(d, E0) is the width of the Gaussian distribution

which is dependent of the depth d in the target and the initial energy E0 of the proton

beam. With this approximation the lateral distribution can be parameterized simply by

σ2(d, E0). Furthermore a Gaussian initial phase space as that of a scanned narrow beam

is now easily included into the dose calculation. The convolution of two Gaussian distribu-

tions a and b is another Gaussian distribution c with σ2
c = σ2

a + σ2
b . Thus the convolution

with the dose of an infinitesimally narrow pencil beam and the initial phase space can

be achieved analytically by adding the two sigmas in quadrature. This approach is called

finite size pencil beam algorithm. This algorithm is implemented in our in-house treatment

planning system KonRad which is used throughout this thesis. For a fast dose calculation,

the depth-dose curve Dcax(d, E0) and the depth-dependent sigma σ2(d, E0) in water are

stored in KonRad for each available energy as lookup tables. Thus measured data as well

as base data derived from analytical models can be employed for the dose calculation.

Up to now, a homogeneous phantom was assumed. To include inhomogeneities such as

air cavities or bones the depth axis is scaled. The geometrical depth d is replaced by the

water equivalent (or radiological) depth WED. The WED takes into account the different

slowing down properties of the different materials. The ability of a material to slow down

accelerated particles can be quantified by the mass stopping power SMat. It is defined as

the energy loss per unit length in that material. Often, the relative stopping power com-

pared to water is given, that is SMat
H2O

= SMat

SH2O
. The water equivalent depth is now defined

as WED =
∑

i ∆di ·SMat
H2O

. With this definition, a particle that traveled a distance d in the

inhomogeneous target lost the same energy as a particle which traveled a distance WED

in a water phantom. For the dose calculation in the inhomogeneous target, equation 2.4 is

12



2.3 Proton dose calculation

thus changed to:

P (~r, d, E0) = Dcax(WED,E0)× L(~r,WED,E0) (2.5)

While this one dimensional scaling is a good approximation for Dcax(d, E0) which describes

the energy loss of the particle it can lead to large errors in the lateral distribution. Szy-

manowski et al. [5] presented a two dimensional scaling algorithm which improves the

calculation of the lateral dose distribution in the presence of inhomogeneities. Nevertheless

the commonly used 1D scaling is employed in this thesis.

Both the 1D and the 2D algorithm calculate the water equivalent depth only on the cen-

tral axis of the pencil beam, thus both algorithms assume a slab geometry of the phantom.

Lateral heterogeneities cannot be included into the dose calculation using a pencil beam

algorithm. This is its major limitation. One approach to solve this problem known as fine

sampling is to split the finite pencil beam into multiple subpencil beams [29]. However,

since every subpencil beam then still needs a slab geometry for the dose calculation. But

even an infinitesimally narrow proton beam of e.g. 200 MeV is broadened due to multiple

Coulomb scattering to approximately σ = 0.7 cm in a depth in water of 25 cm [27], thus

this approach is limited. In cases with large lateral inhomogeneities more accurate dose

calculation algorithms as e.g. Monte Carlo methods are needed.

2.3.3 Monte Carlo algorithm

Monte Carlo (MC) algorithms trace individual particles through the medium. Models to

predict the probability of specific interactions and their outcome are employed. At each

interaction of the particle with the medium random numbers are used to decide the further

path of the particle according to these models. This generates individual particle tracks

in the medium. To calculate the dose of a proton beam, multiple primary protons are

generated according to the initial phase space. The dose of all individual primary proton

tracks is then averaged to yield the dose of the whole proton beam. Since the Monte Carlo

algorithm is a statistical method the statistical uncertainty of the resulting dose distribution

can be calculated. This can be used to estimate the number of individual protons necessary

to reduce the statistical uncertainty in the dose calculation below a required level.

In this thesis the Monte Carlo code GEANT4.7.0 [30] is used. In GEANT4 the utilized

models for the physical interactions are defined in the so-called physics list. A physics list

suitable for proton therapy was provided by Hanitra Szymanowski. To be able to trace

the protons through patients a patient model is needed which assigns a specific material

to each volume element in space. The available CT of the patients only offers Hounsfield
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2. Proton Therapy

Units (HU), thus a correlation between HUs and the corresponding materials is needed.

This is done as described by Schneider et al. [31].

2.4 Challenges in proton therapy: Towards risk adapted

optimization

The physical properties of a proton beam such as the distinct Bragg peak and the adjustable

range of such a beam offer the possibility to create dose distributions which are superior

to the ones obtained by photon radiation. However this new modality also poses new

challenges. The dose gradient behind the Bragg peak is very steep. Thus small errors in

the range calculation can lead to large errors in the dose distributions. Multiple sources

can lead to errors in the calculated range. The calculation of the proton range is based

on a CT scan of the patient. This scan is obtained using photon radiation. There is no

unique transformation from the Hounsfield units (HU) resulting from a CT scan to the

stopping powers required for the calculation of the proton range. As shown e.g. in [32] two

materials with different stopping powers can result in the same value of the Hounsfield

unit. Schaffner et al. [33] stated that solely the conversion from HU to stopping powers

leads to “a range precision of about 1−3 mm in typical treatment situations.” Additionally

to this uncertainty CT scans can exhibit large artefacts especially if a material with a high

atomic number such as metal is present in the CT. These artefacts also contribute to the

range uncertainty of the proton beam. Many patients receive surgery prior to the radiation

therapy. Often metal implants are used to e.g. stabilize the spine after this surgery thus

the metal artefacts in treatment planning CT scans are a common problem. Changes of

the patient anatomy such as weight gain/loss or (hopefully) tumor shrinkage during the

approximately 30 days of the treatment can change the calculated proton range.

Another risk factor are beamlets which encounter large lateral inhomogeneities as e.g. a

scanned narrow beam which passes parallel to bone/air interface. Small changes such as

setup errors or shifts caused by e.g. breathing motion can shift the beam to the other side of

the interface, again resulting in a large change of the calculated proton range. Additionally

the commonly used pencil beam algorithm cannot account for lateral inhomogeneities thus

large dose calculation errors occur using this algorithm for such geometries.

In the active scanning technique a narrow proton beam is scanned over the target. If the

tumor is also moveable as it can be the case e.g. for lung tumors these two motions lead

to interplay effects which can deteriorate the resulting dose distribution.

As stated in section 2.2.3, the inverse problem of intensity modulated proton therapy is
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degenerated, thus there are multiple sets of beamlet weights which result in a comparable

dose distribution in the patient. This degeneracy can be exploited to create treatment plans

with a reduced sensitivity to uncertainties. The aim of this thesis is to develop methods

for such a risk adapted optimization.
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Chapter 3

Optimization in IMPT

In intensity modulated radiation therapy, the optimal beamlet weights are determined by

minimizing an objective function. Several optimization algorithms have been proposed for

radiation therapy, see e.g. [23, 34, 35, 36]. Most optimization algorithms are local algo-

rithms, meaning that if the function which is to be minimized has more than one minima

then the optimization algorithm will terminate in an arbitrary one. This is not guaranteed

to be the minima with the lowest possible function value. Usually objective functions with

only one minima are used in radiation therapy to prevent the optimization algorithm to

get stuck in a local minimum. Such functions are e.g. convex functions as the quadratic

objective function presented in section 2.2.3. Instead of using convex functions global opti-

mization algorithms such as simulated annealing could be used. In practice these algorithms

are usually too slow [16]. The objective function is a function of the beamlet weights. These

beamlet weights are constraint to positive values as negative fluences cannot be delivered.

Moreover, if we could deliver negative fluences the resulting dose distributions would cer-

tainly be improved. In fact, using negative beamlet weights the optimal dose distribution

could be realized. This means that the minimum of the unconstrained objective function

will be in the forbidden region. Thus this positivity constraint will be important during

the optimization.

In this chapter several optimization algorithms for IMPT are investigated. A summary of

all optimization algorithms implemented into KonRad is presented in table 3.2 on page 29.

The standard optimization algorithm (std) in our inverse planning tool KonRad is a quasi-

Newton algorithm introduced by Bortfeld et al. [34] for intensity modulated photon therapy

in 1990. This routine yields good optimization results for clinical cases, however it has sev-

eral drawbacks: It has a very crude approach to fulfill the positivity constraint of the
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3. Optimization in IMPT

beamlet weights. Often the algorithm is only slowly converging, especially towards the end

of the optimization. Finally this routine uses a free parameter, the so-called damping factor

α, that has to be chosen appropriately for every new optimization. The standard algorithm

does contain an algorithm to determine a value for α. However it is almost impossible to

find the optimal value for a parameter that changes with every new optimization. Therefore,

an improved optimization algorithm has been implemented into KonRad. The improved

algorithm is based on the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)

algorithm [37] which is also a quasi-Newton algorithm. The implementation follows the

description of Nocedal and Wright [38].

Another widely used optimization algorithm is the conjugate gradient algorithm (CG) (see

e.g. [39, 36] and others). To show the results in a larger context the CG was integrated

into this comparison.

3.1 Optimization algorithms

Most optimization algorithms are iterative. At each iteration, the algorithm chooses a di-

rection and a step length in the variable space. This is repeated until a termination criteria

is fulfilled. A common class of optimization algorithms are the Newton methods: At each

iteration, the function is approximated at the current position by a quadratic function.

The minimum of this quadratic function determines the next position. The method is il-

lustrated in one dimension in figure 3.1. In 1D, the step pk from position xk to xk+1 is given

Figure 3.1: Illustration of the Newton method in one dimension.

by pk = −f ′(x)
f ′′(x)

. For n dimensions, this generalizes to ~pk = −H(~xk)
−1~∇f(~xk). The Hessian

matrix H of the second derivatives is a n × n matrix. For large n it is very demanding

to calculate and invert it, thus H−1 is often approximated. Algorithms doing so are called
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3.1 Optimization algorithms

quasi-Newton algorithms. The Newton method as described up to now is not guaranteed to

converge. To guarantee convergence, the length of the vector ~pk has to fulfill a convergence

criteria. Frequently used convergence criteria are e.g. the so-called strong Wolfe conditions

as described in [38]. The strong Wolfe conditions are used for the improved algorithm and

are stated in the appendix for completeness.

Both the standard and the improved optimization algorithms described in the following

paragraphs are quasi-Newton algorithms. They differ in the way they approximate H−1

and the way they handle the positivity constraint of the beamlet weights. All algorithms

described terminate if the change of the objective function is less than 0.1% for two suc-

cessive iterations.

3.1.1 Standard algorithm

The standard algorithm in KonRad is the algorithm published by Bortfeld et al. in 1990 [34].

It takes only diagonal matrix elements of H into account. The inversion of H then becomes

trivial. The full Newton step length is scaled down by a fixed fraction, the damping factor

α. Without this down scaling, the algorithm does not converge. Thus the step is finally

given by ~pk = −α
(

∂F
∂w1
∂2F

∂w2
1

, . . . ,
∂F
∂wn
∂2F

∂w2
n

)
. The damping factor α is chosen such that when starting

from zero the first step results in a mean dose to the planning target volume (PTV) equal

to the prescribed dose. This α is used throughout the optimization. As a useful by-product

the weights obtained during the determination of α are used as the initial solution for the

standard as well as for the improved optimization algorithm.

To fulfill the constraint of non-negative weights, all negative wj (if any) are set to zero

after each step. This projection results in a valid solution. However it can slow down the

algorithm since it can go repeatedly in the same direction. The projection can even result

in solutions which are worse than the previous iteration (see Fig. 3.2).

3.1.2 Improved algorithm (L-BFGS)

The improved algorithm is similar to the optimization algorithm described in [35]. It solves

the non-negative constraint by a variable transformation: wj → x2
j . Thus F (~w) changes to

F̃ (~x) with equation 2.2 changing to:

Di(~w)→ D̃i(~x) =
beamlets∑

j

x2
jDij. (3.1)
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3. Optimization in IMPT

Figure 3.2: An example objective function for two beamlets is plotted. Starting from the
optimal value (circle), an iteration step will point towards the global minimum, leading to
a negative weight w1. In this case by setting w1 to zero the resulting solution is worse than
the previous iteration.

Using this transformation each actual beamlet weight wj is the square of an optimization

variable xj and therefore it is positive for any choice of xj. The constrained optimization

problem has thus been transformed into an unconstrained one. This is beneficial since the

theory of unconstrained optimization is simpler and usually faster. However, this trans-

formation also turns the convex objective function into a non-convex one. This issue is

addressed in section 3.3.1.1.

The improved algorithm generates the iteration steps using the L-BFGS algorithm as

described in [38]. This algorithm directly calculates H−1(~x)~∇F̃ (~x) using only previously

calculated positions and gradients. No second derivatives need to be calculated, nor does

the algorithm need the memory to store the n × n Hessian matrix (3 GB using single pre-

cision for n = 40000 beamlets, a number easily reached in hadron therapy). The L-BFGS

routine needs one previous step to calculate the search direction. The first iteration is thus

done using the standard algorithm.

To ensure convergence, an inexact line search along the direction ~pk is invoked after each

iteration. Inexact means that it is not locating the minimum along the line, but only identi-

fies a point that fulfills a convergence criteria. The commonly used strong Wolfe conditions

are employed as this convergence criteria. They are stated in the appendix. By choosing

the parameters as recommended by [38] for the strong Wolfe conditions, the length of the

vector ~pk has to be adjusted in only a few percent of all iterations. Only then an additional

time-consuming function evaluation is necessary. Thus there is not much time lost due to

this additional line search. The L-BFGS algorithm needs in each iteration an initial solution
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3.1 Optimization algorithms

for the inverse of the Hessian matrix. This initial solution can be used as a scaling factor

as described in [38]. This leads to well-scaled search directions which also contributes to

the fact that the line search does usually not need extra function evaluations.

The constants used in the algorithm follow the recommendation of [38], except for the

number m of stored positions and gradients. There I used a value of m = 100 instead of

the recommended m = 15. This number is a tradeoff between the accuracy for the esti-

mation of H(~x)−1~∇F (~x) and the time to calculate this product. However, in this case the

time to calculate the product is negligible compared to the time of the function evaluation.

Thus going to a higher m showed better results since the improved accuracy saved extra

function evaluations.

3.1.3 Conjugate gradient algorithm

The intuitive way to choose a new search direction is the direction of the steepest descend,

thus along the gradient. This method known as steepest descend or simple gradient method

can be “... excruciatingly slow on difficult problems.” [38]. This is due to the fact that using

this approach the search direction is selected independently for each iteration. This can

lead to very similar search directions and thus to little progress in the optimization. The

method of conjugate gradients (CG) avoids this problem by taking into account the previ-

ous search directions, resulting in a set of search directions which are said to be conjugate

to each other (for a detailed description of the conjugate gradient method see e.g. [38, 40]).

To generate the next search direction out of this set only the gradient at the previous and

the actual position is necessary. Thus the memory required is only 2 · n, which makes this

method attractive for problems with many degrees of freedom. The set of search directions

are only conjugate to each other if the exact minimum along the search direction is located,

thus an inexact line search as for the improved algorithm is not feasible here. In contrast

to the L-BFGS method the CG method does only give a search direction. No estimation

of a suitable steplength along this direction is given.

The implementation of the conjugate gradient algorithm in this thesis uses the well estab-

lished routines from the “Numerical Recipes in C”[40]. I used the recommended Polak-

Ribière formula to update the search direction. The exact line minimization is done using

the “Numerical Recipes” routines “mnbrak” to bracket the minimum and “brent” to locate

it. A tolerance of 1% was used for the line search. Since a quadratic objective function is

used the routine “brent” is very suitable for the line minimization as it employs parabolic

interpolation to locate the minimum. Both methods to assure positive beamlet weight were

investigated in combination with the conjugate gradient method. In the following section,
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negative beamlet weights are set to zero after each iteration as it is done in the standard

algorithm. This approach is compared to the variable transformation employed in the im-

proved algorithm in section 3.3.1.

Although the line minimization makes use of the quadratic form of the objective function

it does need several function evaluations, ranging from five to over twenty in the examples

shown in this chapter. This is the main drawback compared to the other two optimization

algorithms.

3.2 Comparison of the three optimization algorithms

Figure 3.3: A CT slice of the prostate patient data used for the example treatment plan.
The plan consists of three coplanar, equidistant proton fields. Spacing of the Bragg peaks is
3 mm in the lateral directions as well as in depth. This results in 28586 individual beamlets.

Several treatment plans have been optimized using all three optimization algorithms.

This includes photon as well as proton treatment plans. The influence matrix has been

pre-calculated before the optimization, using a pencil beam algorithm for the photon and

the finite size pencil beam algorithm for the proton beamlets. Typical values of the grid

sizes for the dose calculation were between 2.6 mm and 3.0 mm. One example treatment

plan is shown here in detail. It is a three field IMPT treatment plan of the prostate cancer

patient shown in figure 3.3. The development of the objective function value over time is

plotted in figure 3.4. The dashed lines show the objective function value at termination of

the respective algorithm. For all three algorithms the optimization was repeated without

the termination criteria. Switching off the termination criteria shows that the standard

optimization algorithm reaches the same objective function value as the improved algo-

rithm using the termination criteria, however it converges very slowly towards the optimal

solution. Obviously, the objective function value cannot be decreased to zero. However,

the minimal possible objective function value is unknown. In figure 3.4, the solid black

line indicates the smallest objective function value (10678) found without a termination
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Figure 3.4: (Left) Development of the objective function value over time for the proton
treatment plan shown in figure 3.3. Dots: standard algorithm, crosses: improved algorithm,
triangles: conjugate gradient. The circles indicate the points where the termination crite-
ria was fulfilled, the dashed lines the respective values of the objective function. The grey
symbols show the further behavior of the three algorithms if the termination criteria was
switched off. (Right) Identical graph with an expanded time axis to show the convergence
of the standard algorithm without using a termination criteria.

criteria. At that point, numerical problems (division by zero) were observed. Such problems

are expected at the true minimum of the objective function due to the limited accuracy of

floating point variables, thus this value is expected to be near the lowest possible one.

In this example, the improved algorithm (imp) takes longer to reach the termination

criteria than the standard algorithm (std) (timp = 1322 s, tstd = 652 s, optimization

time change: TCimp =
tstd−timp

tstd
= −103% ). However, it stops at a much lower objec-

tive function value (Fimp = 12024, Fstd = 21000, objective function value improvement:

FCimp =
Fstd−Fimp

Fstd
= 43%). To decouple these two effects I also considered the time to

reach the same goal, thus the same objective function value. The objective function value

at termination of the standard algorithm is taken for this purpose. While the standard op-

timization algorithm takes 652 s to reach this goal, the improved optimization algorithm

reaches this value in 214 s. Thus the optimization can be performed faster by a factor

fimp = 3.0.

The results for the conjugate gradient algorithm (CG) are: tCG = 3128 s, optimization time

change TCCG = −380%, final objective function value: FCG = 15046, objective function

value improvement: FCCG = 28%, fCG = 0.7.

In addition to the decrease in optimization time, it is also worthwhile to look at the qual-

ity of the resulting treatment plans. The resulting dose volume histograms (DVH) after

termination of the algorithms are plotted in figure 3.5. The improvement of the objective

23



3. Optimization in IMPT

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Dose / [Gy]

V
ol

um
e 

/ [
%

]

 

 
Boost
PTV
Rectum
Bladder
n. Tissue

Figure 3.5: The DVHs resulting from the optimization using three different optimization
algorithms. The prescribed dose to the PTV was 66 Gy. It included a boost volume prescribed
to 76 Gy. Crosses: DVH constraints for the rectum. Used dose tolerances: bladder 30 Gy,
normal tissue 20 Gy. Solid line: standard algorithm; Dashed line: improved algorithm;
Chain dotted line: conjugate gradient.

function value by 43% using the improved algorithm clearly results in an improved DVH.

The objective function value improvement of 28% using the conjugate gradient algorithm

results in a DVH in between the DVHs from the other two optimization algorithms.

The discussed parameters (optimization time improvement, objective function value im-

provement and speedup factor f) were calculated for several cases. The results are sum-

marized in table 3.1.

Degrees of Opt. time change Obj. function improv. fi
freedom TCi = tstd−ti

tstd
FCi = Fstd−Fi

Fstd

Case imp CG imp CG imp CG

Head and neck, prot. 76775 +24% −113% +41% +41% 5.1 2.4
Brain, protons 41946 +9% −8% +51% +32% 7.1 2.6
Prostate, protons 28586 −103% −380% +43% +28% 3.0 0.7
Lung, protons 3464 +47% −123% +61% +58% 11.7 2.6
Prostate, photons 502 +57% +4% +19% +16% 6.3 2.6
Prostate, photons 450 +34% −14% +6% +3% 2.9 1.2

Average n/a +11% −106% +37% +30% 6.0 2.0

Table 3.1: Results for various treatment plans. Proton treatment plans employ IMPT using
the full three-dimensional modulation technique, while photon treatment plans use IMRT.
t and F refer to the optimization time and objective function value at termination of the
respective algorithm. f is the speedup factor for the respective algorithm (see text).
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3.3 Constraints

3.3.1 Positivity constraints

Besides using the L-BFGS algorithm, the improved optimization algorithm also applies a

variable transformation to turn the constrained optimization into an unconstrained one. To

investigate the effect of this variable transformation the case shown in section 3.2 was opti-

mized using the L-BFGS algorithm alone. As for the standard algorithm, negative beamlet

weights are set to zero after each iteration. The results are compared to the improved

algorithm in figure 3.6. Again the optimization was done with and without termination

criteria.
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Figure 3.6: Development of the objective function value using the improved algorithm
with (crosses) and without (dots) variable transformation. After the termination criteria,
the curves are shown in grey. Lines and circles as in figure 3.4. Note that the scales of
the y-axis are identical in both graphs. The fluctuations raise the objective function value
well above Fstd, a value which has been shown to result in a clearly deteriorated DVH (see
figure 3.5). Thus the fluctuations shown here are large.

Without the variable transformation two effects were observed. Firstly, the optimization

was terminated at a higher objective function value (14872 compared to 12024 for the

improved optimization algorithm) and secondly, the objective function value increased for

some iterations.

As stated before the plan consisted of 28586 individual beamlets. At the termination crite-

ria, already more than 4000 beamlet weights had to be set to zero. After the termination

criteria this number raised up to more than 10000. As sketched in figure 3.2 setting so many
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beamlet weights to zero leads to the large increases of the objective function value after

the termination criteria. In treatment plans for other patients increases of the objective

function have even been observed before the termination criteria was reached. Despite the

large fluctuations after the termination criteria, the algorithm still reached the objective

function value of the improved algorithm at its termination. However, it took several days.

This finding suggests that the treatment of the positivity constraint might be the reason

for the slow convergence of the standard optimization algorithm towards the end of the

optimization. To check this hypothesis I tried to implement the variable transformation

into the standard algorithm. However it turned out that this algorithm needs a convex

objective function. Using the variable transformation, the quadratic objective function is

transformed into a function of fourth degree, thus it is no longer convex. F̃ (~x) exhibits

local maxima as well as inflection points where the second derivative is zero. As stated in

section 3.1.1, the standard algorithm determines the value of the optimization variable xi

in step k + 1 by: xk+1
i = xki − α ·

(
∂F̃
∂xi
/∂

2F̃
∂x2
i

)
. Thus a second partial derivative close to zero

can lead to arbitrary large xi and thus to arbitrary large beamlet weights. Furthermore,

the pure Newton method only locates extrema. If local maxima are present, this method

will also converge towards a local maximum. Both effects have been observed when the

variable transformation was used in combination with the standard optimization algorithm

thus this approach was abandoned.
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Figure 3.7: Development of the objective function value using the conjugate gradient al-
gorithm with (gray circles) and without (black triangles) variable transformation. After the
termination criteria, the curves are shown in blue and red, respectively. Lines and circles
as in figure 3.4.
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Finally, the optimization was repeated with both approaches to fulfill the positivity con-

straints using the conjugate gradient algorithm. The results are shown in figure 3.7. Con-

trary to the improved optimization algorithm, using either method resulted in a very

similar development of the objective function value over time for the conjugate gradient

algorithm. In figure 3.7, both variants of the CG algorithm exhibit plateaus in which the

objective function value does hardly change for multiple iterations. In this case, the termi-

nation criteria was fulfilled in the first plateau using the variable transformation and in the

second plateau when setting negative beamlet weights to zero. Nevertheless this does not

appear to be a systematic difference between the two approaches and might be the other

way around in the next optimization case. However this has not been investigated further.

The conjugate gradient algorithm was not used in the subsequent chapters in this thesis

since the improved optimization algorithm was found to be superior to either variant of

the conjugate gradient algorithm.

Since the treatment of the positivity constraints turned out to be an important part of

the optimization algorithm this issue was investigated further. For that the L-BFGS-B [41]

code was implemented into KonRad as a third method to fulfill the positivity constraints.

This code is an implementation of the L-BFGS algorithm which is capable to handle bound

constraints on the optimization variables. Details to this algorithm are published in [42].

The L-BFGS-B code was used in three variants. As intended, the positivity bounds were

explicitly specified (bounds). Obviously this algorithm can also be used without specifying

bounds, treating the optimization as an unconstrained problem. This was done without the

variable transformation while negative beamlet weights were set to zero after each iteration

(setzero). Finally, the L-BFGS-B code was used to optimize the unconstrained objective

function resulting from the variable transformation wj → x2
j (w2x2). The last variant is

formally identical to the improved optimization algorithm. However the results vary slightly

due to the different implementations. The three variants of the L-BFGS-B code were applied

to a two field IMPT plan for a brain tumor patient. A CT slice of the patient including the

direction of incidence of the fields is displayed in figure 3.8 (left). The development of the

objective function value for all three variants is also shown this figure (right). The standard

and the improved optimization algorithm are included in this graph for comparison. As

expected the L-BFGS-B (w2x2) and the improved optimization algorithm terminated at

a comparable objective function value, while the L-BFGS-B (w2x2) implementation was

a bit faster in this case. Similar to the case shown in figure 3.6, the L-BFGS-B (setzero)

terminated at a higher objective function value compared to the L-BFGS-B (w2x2) variant,

and in this case it also took longer to reach the termination criteria. The L-BFGS-B

(bounds) does not only take longer than the L-BFGS-B (w2x2) to reach the termination
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3. Optimization in IMPT

Figure 3.8: (Right) Development of the objective function value for different optimization
algorithms in a two field IMPT plan for a patient with a brain tumor (Left).

criteria. It is remarkable that the algorithm designed to handle bound constraints also

terminates at a considerably higher objective function value compared to the unconstrained

algorithm using the variable transformation. Although there are some concerns against

the variable transformation which will be outlined in the following section, these findings

suggest the use of it to avoid the problems from the constrained optimization.

Another effect is visible for the L-BFGS-B (setzero) variant in figure 3.8. Similar to the case

in figure 3.6 there are increases in the objective function value due to the projection of the

negative beamlet weight to zero. However here the increases in the objective function value

are present before the termination criteria is reached. Nevertheless the large fluctuation as

in figure 3.6 are not present in figure 3.8. The L-BFGS-B code terminates if an increase

in the objective function value is detected. The algorithm has to be restarted which erases

all previously calculated positions and gradients. This restart might be the reason why

the large fluctuations present in figure 3.6 are not observed using the L-BFGS-B (setzero)

variant.

3.3.1.1 Local minima due to the variable transformation

As stated before, the variable transformation wj → x2
j turns the quadratic objective func-

tion F (~w) into a function of fourth degree, thus the new objective function F̃ (~x) is no

longer convex. F̃ (~x) will have multiple minima, which is the main argument against using

this variable transformation. However in this section I will show that these minima are all

identical and thus are all global minima.

To show this, first of all note that due to the transformation the new objective func-

tion is symmetric, thus all orthants are mirror images of each other. (An orthant is the
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3.3 Constraints

name of selection selection positivity
optimization alg. search direction steplength constraints

1 Standard alg. diag. elements of H damp. factor α setzero
2 Standard alg. diag. elements of H damp. factor α wi → x2

i

3 CG conjugate gradient exact line search setzero
4 CG conjugate gradient exact line search wi → x2

i

5 Improved alg. L-BFGS inexact line search setzero
6 Improved alg. L-BFGS inexact line search wi → x2

i

7 L-BFGS-B L-BFGS inexact line search setzero
8 L-BFGS-B L-BFGS inexact line search wi → x2

i

9 L-BFGS-B L-BFGS inexact line search constrained opt.

Table 3.2: The list of all optimization algorithms described in this chapter. Algorithms
2 − 9 were implemented as part of the research for this thesis. Algorithms 7 and 8 are
formally identical to 5 and 6, respectively. The L-BFGS-B package was implemented for
the constrained optimization capabilities (algorithm 9).

space separated by the coordinate hyperplanes.) Assume the point P (x1, . . . , xi, . . . , xn) is

a minimum, then ∀ i ∈ [1..n] P̃ (x1, . . . ,−xi, . . . , xn) is also a minimum. However, they are

identical since the actual weight of beamlet i is x2
i . Thus it is sufficient to concentrate on

the positive orthant. It is left to show that due to the transformation it is not possible to

generate a second minimum in the positive orthant. If this is true every minimum in the

new objective function is identical and global.

An intuitive way to show this is to note that in the positive orthant the transformation

wj → x2
j is strictly monotonically increasing. Thus in this orthant the transformation is

simply a non-linear stretching. Lets assume that the graph of the old objective function in

the positive orthant is given. Then the graph of the new objective function can be obtained

leaving the old graph untouched simply by replacing the numbers on the coordinate axis.

This cannot introduce an additional minimum.

A more formal way to show that the variable transformation cannot introduce an addi-

tional minimum in the positive orthant is given next. For simplicity first assume that F (~w)

is strictly convex. Then this function has only one minimum and no inflection point, thus

only one point with:

∂F

∂wi
= 0 ∀ i with wi 6= 0 and

∂F

∂wi
≥ 0 ∀ i with wi = 0. (3.2)

According to the chain rule the partial derivative of the new objective function is ∂F̃
∂xi

=
∂F
∂wi
· ∂wi
∂xi

, thus to introduce a new stationary point due to the variable transformation ∂wi
∂xi
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3. Optimization in IMPT

has to be zero. However ∂wi
∂xi

= 2 · xi is only zero for xi = 0 = wi. This means that new

stationary points can only be introduced on the coordinate hyperplanes. But a stationary

point of F̃ (~x) on the coordinate hyperplanes can only be a minimum if the corresponding

point before the transformation fulfills equation 3.2. Assume a stationary point of F̃ (~x)

with xi = wi = 0 and ∂F
∂wi

< 0. Then F̃ (x1, . . . , xi = 0, . . . xn) > F̃ (x1, . . . , xi = ε, . . . xn),

thus this point is either a saddle point or a local maximum.

Since there is only one point in F (~w) that fulfills the equation 3.2 there can also be only

one minimum in the positive orthant of F̃ (~x).

If F (~w) is convex but not strictly convex there can be multiple points that fulfill equa-

tion 3.2. However, these points then all belong to the same minima, thus they all have the

same objective function value. �
Although the variable transformation does not introduce local minima of different objective

function value it does introduce instable stationary points (saddle points, local maxima).

In principle the optimization can be terminated if by chance an optimization step ends up

exactly on an instable stationary point, although this was not observed. The algorithms

using the variable transformation always terminated at a lower objective function value

compared to the other algorithms, indicating that they did not get stuck on an instable

stationary point.

Lahanas et al. [35] investigated the L-BFGS algorithm in combination with the variable

transformation wj → x2
j . They reported a case of different objective function values at

the termination of the algorithm for different starting points of the optimization. They

concluded this is caused by local minima introduced by the variable transformation. Since

this variable transformation does not induce local minima of different objective function

value these effects might have been cases where the optimization got stuck on instable

stationary points. They also presented a method to eliminate this problem.

3.3.2 DVH constraints

Additionally to the quadratic objective function, DVH constraints are a valuable tool to

shape the dose distribution resulting from the inverse treatment planning process. DVH

constraints enforce that not more than x% volume of an organ is receiving a dose of more

than y Gy. Such constraints are used e.g. in figure 3.5. A simple way to integrate the

DVH constraints into the objective function was presented by Bortfeld et al. [43]. This

approach is used in KonRad. While this approach is easily integrated into the objective

function, it does result in discontinuities in the objective function. These discontinuities
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Figure 3.9: The objective function value F̃ (~x) and its derivative are plotted along the
search direction for an iteration in the optimization of the case presented in section 3.2.
The steplength is plotted in units of the newton steplength. The objective function values
are shifted to zero to be able to plot the values and the derivatives into one graph. As the
objective function F̃ (~x) without the DVH constraints is a function of fourth degree, the
graph of it along any direction is also a polynomial of maximal fourth degree. The DVH
constraints lead to a piecewise continuous objective function where the pieces of the curve
are shifted. In this example there is no steplength which fulfills the strong Wolfe conditions.

can lead to situations where there is no point along the search direction that fulfills the

strong Wolfe conditions. Such a case is shown in figure 3.9. To prevent an endless loop, the

line search in the improved optimization algorithm is terminated if no suitable steplength

is found within three function evaluations. Although it failed the Wolfe conditions the last

trial steplength is then applied in this iteration. Up to now this approach gave good results.

3.4 Discussion

In addition to the standard optimization algorithm the conjugate gradient algorithm and

the improved algorithm based on the L-BFGS method were implemented into KonRad.

These algorithms were compared in section 3.2. The use of a different optimization algo-

rithm led to a different final objective function value as well as to a different duration of
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3. Optimization in IMPT

the optimization. To decouple the two effects the optimization time was compared at the

point where the optimization algorithms reached the same objective function value.

The improved optimization algorithm showed the best results, leading to an average objec-

tive function improvement of 37% and an average speedup of 6.0 compared to the standard

algorithm. The conjugate gradient algorithm ranked in between the other two with an av-

erage objective function improvement of 30% and an average speedup of 2.0.

The main drawback of the conjugate gradient method is the need for an exact line search.

In the shown example, the conjugate gradient method needed an average of 8.9 function

evaluations per iteration to perform the line search. Compared to this only 8 out of the 142

iterations needed extra function evaluations using the inexact line search of the improved

optimization algorithm, leading to an average of 0.1 function evaluations per line search

for this algorithm.

Beside the speedup of the optimization it is worthwhile looking at the objective function

improvement. Optimization algorithms usually do not stop at the true optimum but they

stop whenever they reach a termination criteria. If an algorithm is converging very slowly

as it is the case for the standard algorithm this termination criteria can be fulfilled even if

the resulting treatment plan is not near the optimum yet. As shown in figure 3.5, solely the

change of the optimization algorithm can lead to considerably improved treatment plans.

The example plans calculated for particle therapy benefited most from the improved algo-

rithm. Intuitively, this can be understood since the standard optimization algorithm does

not take into account off-diagonal elements of the Hessian matrix. Off-diagonal elements of

the Hessian matrix are non-zero if two beamlets deliver dose to the same voxel. By setting

these elements to zero every beamlet is treated independently during each optimization

step. This is a good approximation as long as there are not too many beamlets delivering

substantial dose to the same voxels. While this might be a reasonable approximation for

photon treatment plans, this is not the case for particle treatment plans.

Three variants to enforce the positivity constraint on the beamlet weights have been tested

for the L-BFGS algorithm in section 3.3.1: Setting negative beamlet weights to zero after

each iteration, using an algorithm which can handle bound constraints (and applying the

variable transformation wj → x2
j to turn the constrained optimization problem into an

unconstrained one. Although it is common practice to set negative weights to zero it is not

clear how this affects the convergence properties of the respective algorithms. While the

convergence of the conjugate gradient algorithm did hardly change, the convergence of the

L-BFGS algorithm was severely affected by this approach, leading to large increases of the

objective function value in several iterations. In addition this variant led to a final objec-

tive function value well above the minimal value found with other methods. Surprisingly

32
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even the algorithm designed to handle bound constraints on the optimization variables

terminated at an objective function value well above the one found using the variable

transformation.

In conclusion the improved optimization algorithm was found to be superior to the stan-

dard optimization algorithm. This is true for the speedup factor f of the optimization as

well as for the final objective function value. The conjugate gradient algorithm ranked in

between the other two algorithms. Furthermore the data presented in section 3.3.1 sug-

gests that the variable transformation wj → x2
j should be used to turn the constrained

optimization into an unconstrained one.
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Chapter 4

Quantifying lateral tissue

heterogeneities

4.1 Introduction

In proton therapy with scanned narrow beams, tissue heterogeneities lateral to the beam

direction are problematic for two main reasons. One reason is the dose calculation algo-

rithm. As described in section 2.3 the commonly used pencil beam algorithms assume a slab

geometry. Thus they can only account for tissue heterogeneities in depth and not lateral to

the beam axis. This can introduce substantial dose calculation errors in the presence of lat-

eral tissue heterogeneities [45]. More accurate dose calculation algorithms like Monte Carlo

algorithms could reduce this error. However these techniques usually cannot be used for

routine treatment planning due to the prolonged calculation times. An other complication

due to lateral tissue heterogeneities is the sensitivity of the resulting dose distribution to

patient setup errors. If the central axis of a scanned narrow beam is next to e.g. a air/bone

interface, a small lateral shift of the patient can cause the beam spot traversing the bone

instead of the air, which can shift the Bragg peak by several centimeters.

In this chapter I derive a new quantity, the heterogeneity number Hi, as an indicator to

quantify the lateral tissue heterogeneity for a single beamlet i in IMPT. The full three

dimensional modulation technique is used in this chapter, thus a beamlet is defined as a

single Bragg peak of a scanned narrow beam. With the help of Hi, the sensitivity to setup

errors and the induced dose calculation error of the pencil beam algorithm is investigated

for such single beamlets of a treatment plan.
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4. Quantifying lateral tissue heterogeneities

4.2 Methods

4.2.1 The heterogeneity number Hi

4.2.1.1 Definition of Hi

The influence of tissue heterogeneities lateral to the beam direction can be investigated

by assessing the water equivalent depth (WED) since the WED is an integration of the

slowing down properties for all materials in the beam path encountered up to this point.

The heterogeneity number Hi is introduced to quantify lateral tissue heterogeneities for a

single beamlet i. The definition of Hi is sketched in figure 4.1. For the definition of Hi I

used a coordinate system with its origin at the Bragg peak position of the beamlet i and

the z-axis pointing towards the source.

Figure 4.1: Sketch for the definition of Hi.

The WED is examined for all straight particle trajectories parallel to the beam direction

at the anticipated depth of the Bragg peak, thus the WED on the x-y plane in figure 4.1.

In a laterally homogeneous phantom, i.e. a slab geometry, the WED’s of all rays should be

equal throughout the x-y plane whereas in laterally inhomogeneous media variations of the

WED’s are expected. The square of the heterogeneity number Hi is defined as the integral

over the squared differences between the WED on the x-y plane and the WED at the origin,

weighted by the relative particle fluence at the entrance of the patient. Equation 4.1 gives

the mathematical formula for Hi.

Hi =

√√√√√√√√

+∞∫
−∞

+∞∫
−∞

Φi(x, y, Pz) · [WEDi(x, y, 0)−WEDi(0, 0, 0)]2 dxdy

+∞∫
−∞

+∞∫
−∞

Φi(x, y, Pz)dxdy

(4.1)
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Here, Φ is the particle fluence and P the point where the central axis of the beamlet i

enters into the patient.

This definition yields Hi=0 mm for a homogeneous phantom. Heterogeneities lateral to the

beamlet axis will increase the value of Hi.

The method of the heterogeneity number Hi was adopted by Soukup et al. [44] for their

treatment planning system. They extended the method to quantify the total lateral het-

erogeneity of a treatment plan by weighting the individual Hi with the respective beamlet

weights in square:

Htotal =

√∑
w2
i ·H2

i∑
w2
i

(4.2)

This method will also be used in this chapter for the evaluation of the total lateral hetero-

geneity of a treatment plan.

4.2.1.2 Calculation of Hi

In practice, Hi is calculated by sampling the double integrals from equation 4.1 at discrete

points, thus it transforms into equation 4.3:

Hi =

√√√√√√

∑
j∈Si

Φi(xj, yj, Pz) · [WEDi(xj, yj, 0)−WEDi(0, 0, 0)]2

∑
j∈Si

Φi(xj, yj, Pz)
(4.3)

where Si is an appropriate set of sampling points. Naturally, these sampling points are

taken from the existing voxels of the CT grid. All voxels which are closer than 3 · σ to

the z-axis and closer than half the grid resolution to the x-y plane are used as sampling

points, with σ being the standard deviation of the lateral Gaussian beamlet profile at P .

In all cases shown in this chapter, the grid resolution for the CT data as well as for the

dose calculation was ∆x = ∆y = ∆z = 1.2 mm. To speed up the calculation of Hi the

WED of every voxel for a given beam direction is pre-calculated. The calculation of these

WED-values takes about 5− 15 sec. Fortunately, these values are also calculated for other

reasons in the treatment planning system KonRad, so there is no additional computation

time in this task. Using this method the heterogeneity numbers of roughly 500 beam spots

per second can be calculated on a standard PC (3.2 GHz).
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4. Quantifying lateral tissue heterogeneities

4.2.2 Beamlet dose calculation

As described in section 2.3, the finite size pencil beam algorithm used in KonRad assumes

a slab geometry, thus it ignores lateral tissue heterogeneities. This will introduce dose cal-

culation errors in the presence of such heterogeneities. To quantify these errors this pencil

beam algorithm is compared to Monte Carlo calculations as a gold standard. In order to

achieve a meaningful comparison of the two different dose calculation algorithms one has

to make sure that both algorithms are calibrated to the same machine, thus that both algo-

rithms use the same initial phase space. While the input data for the pencil beam algorithm

can be easily measured, a major difficulty in performing Monte Carlo dose calculation is to

model the unknown machine phase space. This problem was avoided by defining a virtual

machine with known phase space. The parameters of this virtual machine are listed in

Depth modulation Active Energy Selection
311 energies
Range = 4− 35 cm in steps of 1 mm

Machine phase space Parallel beam
Initial beam width σx = σy = 3 mm
Gaussian energy spectrum
σE = 2 MeV

Table 4.1: Virtual machine parameters.

table 4.1. Using this phase space I generated the input data needed for the pencil beam al-

gorithm by Monte Carlo simulations. This ensured that differences between the algorithms

do not result from an inconsistent modeling of the initial phase space.

As stated in section 2.3.3, the GEANT4.7.0 code was used for the Monte Carlo calcu-

lations [30]. The Monte Carlo simulations were utilized for three different applications.

Firstly it was used to generate the base data for the pencil beam algorithm. Secondly it

is used as the gold standard to calculate the dose deposited by single beam spots and

compare it to the results obtained by the pencil beam algorithm. Finally, it is employed in

section 4.3.5 to recalculate complete treatment plans in the presence of setup errors.

Commonly Monte Carlo simulations calculate the dose to the medium, whereas the pencil

beam algorithm calculates dose to water. To be able to compare the two algorithms every

dose deposited by the Monte Carlo algorithm was converted to dose to water by multiply-

ing it with the mass stopping power ratio of water and the medium for the actual particle

and energy.

As stated in section 2.3.3, the number of protons used in the Monte Carlo simulation de-
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termines the statistical uncertainty of the calculated dose. For each beamlet I employed

300, 000 primary protons. The statistical uncertainty of the calculated dose in the lateral

profile for a typical beamlet is shown in figure 4.2. Two methods to generate the primary

protons in the Monte Carlo simulations were tested. Usually, the particles are generated

according to the generation probability defined by the initial phase space of the beamlet,

e.g. with a Gaussian lateral profile and Gaussian energy spectra. The contributions of ev-

ery primary particle are then summed up using an uniform weight of one for each primary

particle track. However, this is equivalent to generating a uniform distribution of primary

particles and weighting each particle track with its generation probability. But with the

second method it is possible to calculate the dose distribution for multiple beamlets in

one run. For a simulated primary particle the generation probability for every position of a

beamlet can be calculated and thus each simulated primary particle can be used for several

beamlets. This method can speed up the calculation if there are overlapping generation

probabilities for the beamlets, which is especially the case for only slightly shifted beam-

lets. This second method is employed in section 4.2.4 where the impact of setup errors

on the resulting beamlet dose distribution is investigated. The drawback of the second

method is that it increases the statistical noise of the resulting dose distributions as shown

in figure 4.2, thus more primary particles are needed to reduce the statistical uncertainty

of the calculated dose to the same level.
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Figure 4.2: The statistical uncertainty in the lateral profile of a typical beamlet dose distri-
bution resulting from a Monte Carlo simulation using 300, 000 primary protons. Generating
the primary protons according to the initial phase space of the beamlet (blue) results in less
statistical uncertainty compared to generating the primary protons uniformly (green). How-
ever, the second method is more flexible. The lateral dose profile (red) in arbitrary units is
included in this graph for orientation.
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4.2.3 Beamlet dose comparison

In proton therapy, the protons stop completely inside the patient. Thus the total energy

per proton deposited inside the patient is the initial energy E0 of the proton beam, up

to a small fraction of energy which escapes as neutrons and photons. In contrast to the

integral dose the summation of the deposited energy only depends on the initial energy

of the proton beam and is independent on the position of the beamlet. Thus I used the

deposited energy to quantify the difference between two three-dimensional beamlet dose

distributions. To convert the dose distribution into a deposited energy distribution the

density of each voxel is needed. For this the same conversion from Hounsfield units to

materials as already used for the Monte Carlo calculations [31] was employed.

Assume there are two dose distributions for a single beamlet, mc and pb. I defined the error

between the two, ∆E, as the summation of the absolute difference in deposited energy for

all voxels, divided by two:

∆E =

all voxels∑

i

|∆Ei|
2

=
1

2

all voxels∑

i

∣∣∣Emc
i − Epb

i

∣∣∣ (4.4)

The factor of 1
2

is introduced since the absolute value of ∆Ei is used. If for some reason the

two dose distributions do not overlap at all, this definition results in an error of ∆E = E0.

Thus the magnitude of the error can be readily seen, knowing that the therapeutic proton

beam energy ranges from 70 MeV to 250 MeV.

Instead of using |∆Ei| =
∣∣∣Emc

i − Epb
i

∣∣∣, the energy difference per voxel can also be calculated

using the gamma index method [46, 47]. The gamma index allows to compare the dose

in two voxels, in such a way that an uncertainty in dose, ∆D, as well as a geometrical

uncertainty, ∆x, is tolerated. Since the Monte Carlo method has an inherent statistical

uncertainty I made use of the gamma index method. |∆Ei| was calculated the following way:

if a voxel i passes the gamma test, |∆Ei| was set to zero. If it fails, |∆Ei| is set to the smallest

energy difference found within the geometrical uncertainty: |∆Ei| = min
(∣∣∣Emc

i − Epb
j

∣∣∣
)

with j being all voxels closer than ∆x to the voxel i. As parameters for the gamma test

I took ∆D = 3% and a geometrical uncertainty of one voxel (including those neighboring

voxels that have either a face or an edge in common) thus ∆x =
√

2 · grid size =
√

2 ·
1.2 mm = 1.7 mm. As shown in figure 4.2, the statistical uncertainty from the Monte Carlo

calculations varies for different voxels of the dose distribution. The value of ∆D = 3% was

chosen as a conservative estimate of the statistical uncertainty.
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4.2.4 Beamlet dose sensitivity to setup errors

Setup errors not only lead to a shifted dose distribution, they can also change the shape of

the dose distribution. While a shifted dose distribution can be handled using safety margins,

margins can hardly be adopted to a changed shape of the dose distribution. In this chapter

the sensitivity to setup errors refers to the change of the shape of the distribution. The

sensitivity to setup errors for a single beamlet is quantified in the following way: The dose of

the beamlet is calculated at the intended position, as well as in 12 laterally shifted positions

as shown in figure 4.3. The resulting dose distribution of each position is shifted back to

Figure 4.3: Sampling positions in beam’s eye view.

the original position, so that the only difference to the intended dose distribution results

from the different shape of the two. The back-shifted and the intended dose distribution are

then compared as described in the preceding section. With this procedure an error for each

sampling position in figure 4.3 is determined which only results from the changed shape

of the dose distribution. These errors are then summed up, weighted with the probability

for the respective setup being realized. For the setup probability I assumed a Gaussian

distribution of the lateral shift with σx = σy = 1.5 mm.

The dose distributions were calculated using the Monte Carlo algorithm. As described in

section 4.2.2, the primary protons were generated uniformly across the lateral coordinates

thus each particle track calculated in the Monte Carlo simulation could be utilized for the

dose calculation of each lateral sampling position sketched in figure 4.3.

4.2.5 Including Hi into the optimization

Typically, there are only a few beam spots that encounter large lateral tissue heterogeneities

in a treatment plan. When using IMPT the dose contributions of these beamlets can usually

be compensated for by beamlets delivered from a different beam entry angle. The easiest

way to incorporate the information of Hi into the optimization is to introduce a cutoff

value Hcut and to exclude all beamlets i with Hi > Hcut from the optimization. Using this

approach, however, all beam spots i with Hi < Hcut are treated as equally applicable. This
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is problematic especially for a large cutoff value, which is often necessary to guarantee target

coverage. Thus I included the heterogeneity number into the optimization by introducing

an additional term into the objective function F:

FH = F + p0

N∑

i=1

wi
N∑
j=1

wj

· p(Hi). (4.5)

Here wi is the weight of the beamlet i, p0 is a constant to tune the importance of the

additional term and p(Hi) is the penalty for the beam spot i with heterogeneity index Hi.

For
N∑
i=1

wi = 0 this additional term is not defined. However, this case cannot occur during

the optimization. For simplicity I chose p(Hi) = H2
i . This choice guarantees a stronger

suppression of beam spots with a large value of Hi. Of course, other functions of p(Hi) are

possible as well. To minimize this objective function, the improved optimization algorithm

described in section 3.1.2 was employed.

4.3 Results

4.3.1 Examples for small and large Hi

The described methods were tested on several head and neck cases since for these cases large

lateral heterogeneities due to air cavities and bony structures are expected. The patients

were actually treated at the DKFZ with photon IMRT a few years ago. One of these cases

is shown in figure 4.4. I created an IMPT treatment plan using three equidistant, coplanar,

3D modulated treatment fields including an anterior-posterior beam. This treatment plan

had more than 7000 beamlets with energies ranging from 70 MeV to 159 MeV. In figure 4.4,

two of these beamlets taken from the anterior-posterior beam are shown, one with a very

low Hi-value of 2.26 mm and one with a large Hi-value of 24.07 mm. Indicated is the

WED in the x-y plane minus the WED of the central ray on this plane, thus the remaining

water equivalent range. For the homogeneous beamlet this is close to zero within the

beamlet size, whereas there are differences up to 7 cm water equivalent range within 7.7 mm

lateral distance for the beamlet with Hi = 24.07 mm. Obviously, the assumption of a slab

geometry completely fails in this situation. However, this assumption is crucial for the

pencil beam algorithm. Consequently, doses derived with the pencil beam algorithm deviate

substantially from the Monte Carlo calculations in the inhomogeneous case. However, the
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4.3 Results

Figure 4.4: First row: beamlet with Hi = 2.26 mm; Second row: beamlet with Hi =
24.07 mm. Plotted is the remaining water equivalent range in mm on the x-y plane and
the CT slices containing the central ray of the beam spot. The radius of the disc is 3σ, σ
being the lateral spread of the beam when entering the patient. The disc and the central ray
of the beamlet are shown in red in the CT-slices.
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Figure 4.5: Dose along the central beamlet axis for the two examples shown in figure 4.4.
Solid line: pencil beam algorithm; dashed line: Monte Carlo.
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4. Quantifying lateral tissue heterogeneities

result of the two algorithms match nicely for the beamlet with Hi = 2.26 mm as indicated

in figure 4.5.

4.3.2 Dose calculation error

For all beamlets used in the plan described in the previous paragraph I quantified the error

between the pencil beam and the Monte Carlo algorithm as described in section 4.2.3. The

error plotted against the heterogeneity number is shown in figure 4.6. The dependence of

the dose calculation error on the heterogeneity number is clearly visible.

Since there are only a few beamlets with large lateral tissue heterogeneities there is not

much data available in this region. Thus the statistics is only meaningful in the area of

moderate values of Hi.
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Figure 4.6: Dose calculation error in MeV per incident proton depending on the hetero-
geneity number for more than 7000 beamlets. The straight line shows the mean, the error
bars one standard deviation of the dose calculation error.

4.3.3 Sensitivity to setup errors

A second patient with a brain tumor was chosen to investigate the sensitivity to setup

errors using the method described in section 4.2.4. A CT slice of this patient is shown in

figure 4.7. I created a treatment plan using three coplanar beams, an anterior-posterior, a

left lateral and a right lateral beam. The beamlets at the distal edge of the tumor were

taken for this analysis, resulting in over 600 beamlets with energies ranging from 80 MeV
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4.3 Results

Figure 4.7: A transversal CT slice of the patient used for the analysis in section 4.3.3
and 4.3.4.

to 147 MeV.

Again, the calculated dose distributions are converted to energy per voxel thus the resulting

error has units of MeV per incident proton. Its dependency on Hi is shown in figure 4.8.

The increasing sensitivity to setup errors with increasing lateral tissue heterogeneity is

evident. As stated in the last paragraph, this data is also only statistically meaningful in

the range of moderate values Hi.
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Figure 4.8: Sensitivity to setup errors depending on Hi. Again, the straight line shows the
mean, the error-bars one standard deviation of the error.

4.3.4 Including Hi into the optimization

The new objective function (eq. 4.5) was applied to optimize a treatment plan for the

brain tumor patient described in the previous paragraph. The treatment plan consists of

45



4. Quantifying lateral tissue heterogeneities

Figure 4.9: Histogram of Hi values for the IMPT plan described in section 4.3.4.

five coplanar, equidistant, 3D modulated fields, including an anterior-posterior beam. The

energies ranged from 70 MeV to 149 MeV. The distribution of the Hi values occurring

in this treatment plan is given in figure 4.9. The pencil beam algorithm was used as dose

engine for the optimization. The resulting plan was then recalculated with the Monte Carlo

algorithm. The results are given in figure 4.10. For the standard optimization (p0 = 0), the

discrepancy between the pencil beam algorithm and Monte Carlo calculation can be clearly

seen in the shown example (figure 4.10a). By increasing the weight (p0) of the additional

term in the objective function and thus increasingly suppressing beam spots with a large Hi

from the optimization this discrepancy can be reduced considerably (figure 4.10b). This also

leads to a reduced total lateral heterogeneity (see eq. 4.2) of the treatment plan which drops

from 7.5 mm (p0 = 0) to 3.2 mm (p0 = 50). If p0 is selected too large, however, the quality

of the resulting treatment plan will be reduced. The dosimetric data in the target for the

cases shown in figure 4.10 is summarized in table 4.2. Although for the minimum dose there

is no difference between the standard and the p0 = 50 optimization, a big improvement

can be seen for the D99 value. This indicates that lateral tissue heterogeneities are not the

only source for dose calculation errors of the pencil beam algorithm. However, it also shows

that the sensitivity to errors introduced by the use of the fast pencil beam dose calculation

algorithm can be reduced by suppressing beam spots with a large Hi in the optimization.

4.3.5 Evaluation of the treatment plan in presence of setup errors

The analysis shown in the previous section only addresses the problem of the dose calcu-

lation error. This effect can be reduced if sufficient computation power is available to use

an improved dose calculation algorithm during the optimization. From the data presented
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Figure 4.10: DVH for the IMPT plan described in section 4.3.4. Black: planning target
volume; gray: brainstem. Pencil beam calculations are plotted as solid, recalculations with
Monte Carlo as dashed lines. In the second row the beamlet weights are plotted against the
Hi value. Without the additional term in Eq. (4.5) (case a) also beam spots with a high
Hi are used leading to a considerable difference between the pencil beam prediction and
the recalculation. This difference is reduced by suppressing beamlets with large Hi (case b).
The total heterogeneity of the treatment plan is 7.5 mm for the standard optimization and
3.2 mm for p0 = 50.

Dmin D99 Dmax Dmean σDose
PbStandard 50.4 57.3 63.2 60.0 0.74
MCStandard 38.2 44.7 72.6 57.3 3.81
Pbp50 50.4 56.7 63.9 60.0 0.90
MCp50 38.4 49.8 79.8 59.3 2.84

Table 4.2: Dose statistics in the planning target volume for the four examples shown in
figure 4.10. All values are given in Gy. D99 means that 99% of the target voxels receive a
dose higher than that value.
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4. Quantifying lateral tissue heterogeneities

in figure 4.8, however, an improved robustness of the treatment plan to setup errors is

also expected when the beamlets with large Hi values are suppressed during the optimiza-

tion. To investigate this, the treatment plan shown in the previous section was utilized.

To exclude the effects described in the last section, the Monte Carlo algorithm was used

here as the dose calculation engine during the optimization. The dose calculation for a

single beamlet took roughly 1 − 2 h, while the treatment plan employed more than 9000

beamlets. Although a computer cluster was available the calculation of the Dij-matrix took

several weeks. Again the optimization was done for two values of the additional penalty,

p0 = 0 and p0 = 50. To assess the effects of setup errors, the resulting treatment plans

were then recalculated with a shifted target point. The recalculation was done for 81 sam-

pling locations of the target point, while all 81 shifted target point locations where inside

a sphere with a radius of 3 mm around the original target point location. The recalcula-

tion was again done using the Monte Carlo algorithm. Similar to the method described in

section 4.2.4, the primary protons were generated uniformly over the lateral coordinates of

the treatment beams, thus all 81 dose distributions could be calculated in one simulation.

Using this method, the dose distribution for an arbitrary number of target point locations

inside the sphere can be calculated without increasing the calculation time. The restriction

to 81 target point locations is not posed by the computation time but by the computer

memory since all considered dose distributions have to be stored simultaneously. The DVHs

of the brain stem and the CTV of all 81 dose distributions are plotted in figure 4.11 for

the optimization using p0 = 0 and p0 = 50. The DVHs are color-coded with the distance
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Figure 4.11: The DVHs for the CTV and the brain stem for 81 shifted locations of the
target point. The distance to the original target point location in mm is color-coded. The
DVHs are plotted in order of the distance to the original target point location, from the
furthest to the nearest.
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between the shifted and the original target location, while the DVHs are plotted in order

from the furthest to the nearest. Thus this figure directly shows the possible variations

of the DVH for a given setup error. While the optimization was done on the PTV, the

DVH of the CTV is used in this figure since the safety margin between these two volumes

is introduced to prevent an underdosage due to a shifted dose distribution. By respecting

these margins in the evaluation of the treatment plans the remaining differences are now

solely due to changes of the shape of the dose distribution. Contrary to the expectation,

penalizing beamlets with a large Hi did not improve the sensitivity of the treatment plan

to setup errors. As shown in figure 4.11, the dose to the CTV is hardly degraded due to the

considered setup errors for p0 = 0 thus large improvements are not possible. The degrada-

tion is even slightly increased if beamlets with large Hi are penalized in the optimization.

The main reason for this is that reducing the weight to a single beamlet in a treatment

beam will leave a “hole” in the dose delivered from this beam which has to be filled up from

another direction. Obviously, such a configuration is sensitive to shifts of the target point.

For the sensitivity of a treatment plan to setup errors, this effect canceled the benefit from

excluding beamlets with a large lateral heterogeneity in this case.

4.4 Discussion

The heterogeneity number Hi has been introduced to quantify lateral tissue heterogeneities

of a single beamlet i. From the data presented I conclude that Hi can be used as a tool

to assess the risks of lateral tissue heterogeneities. Hi is a statistical quantity, in the sense

that for two individual beamlets it is not guaranteed that the one with the lower Hi value

will be the better one according to the error measures introduced in this chapter. Given

many beamlets, however, the ensemble with a low Hi value will on average perform better

than the ensemble with a high Hi value. While the calculation of the error measures for

all beamlets of the shown treatment plan took several weeks on a computer cluster, the

calculation of the heterogeneity numbers can be done in a few seconds on a standard PC. It

is thus technically feasible to use the information of Hi during routine treatment planning.

One option to use the information of Hi in the treatment planning process is to exclude

beamlets with a Hi value above a cut value Hcut. However better results were obtained

be applying a penalty to beamlets with large lateral heterogeneities in the optimization

as shown in section 4.3.4. This approach considerably reduced the dose calculation error

introduced by the use of the fast pencil beam algorithm. However there are several prob-

lems using these two methods. These problems and possible solutions are outlined in the

following:
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4. Quantifying lateral tissue heterogeneities

• The determination of the weight p0 of the additional term in the objective function

is not straightforward. The value of the additional term compared to the other terms

in the objective function can be used as a hint to choose p0. A more elegant way

would be to include this parameter into the framework of a multicriterial optimiza-

tion (see e.g. [48]). The prioritized prescription goals optimization recently proposed

by Wilkens et al. [49] offers another interesting approach to include Hi into the op-

timization.

• Due to the normalization 1/

(
N∑
i=1

wi

)
the additional term in the objective function

is not convex. In a simple two beamlet model, local minima have been observed.

This poses a challenge to the optimization algorithm. Without this normalization,

the additional term in the objective function not only penalizes the use of beamlets

with a large Hi, it also aims to reduce the sum of all beamlet weights. Assuming

that all beamlets result in approximately the same integral dose per unit weight this

results in a penalty to the total integral dose. This effect is usually desirable, thus the

normalization could also be removed, resulting again in a convex objective function

with only one minimum. The normalization was included in this thesis since the goal

was to investigate only the effects resulting from the use of beamlets with large Hi

values.

• As described in section 4.3.5, reducing the weight of single beamlets in a treatment

beam results in an inhomogeneous dose distribution from this beam. This is enhanced

if single beamlets are excluded form the optimization using a cunt value Hcut. The

“holes” generated in the dose distribution have to be filled up by a treatment beam

from a different angle. However, such configurations are sensitive to setup errors

thus this method can increase the sensitivity of a treatment plan to setup errors.

Optimization strategies which account for setup uncertainties could be used to avoid

this problem. Such a method is introduced in the following chapter.

An additional benefit of the suppression of beamlets with large Hi is a beamlet reduction.

In the standard optimization, 15.5% of the beamlets had a weight below 0.001% of the

maximal beamlet weight. Optimizing with the additional term FH in the objective function,

22.3% of the beamlet weights were below this threshold. Since such small beamlet weights

are usually set to zero this is expected to result in an improved delivery time for the

treatment plan.

However the are also other ways to utilize the information of Hi. Obviously, the best way

to avoid risks due to lateral heterogeneities is to choose a beam direction without large
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lateral heterogeneities. A histogram of all Hi values for a given beam direction summarizes

the heterogeneity information for this direction of incidence. This information could be

used as an objective measure to decide on a beam direction in a manual or automatic

beam selection tool. Selecting suitable beam directions can have a large impact on IMPT

treatment planning since in IMPT only a few beam directions (typically two to maybe five)

are utilized.

Hi could also be used as a criterion whether a beamlet can be calculated with the fast pencil

beam algorithm or if it has to be calculated using a more sophisticated, but also more time

consuming algorithm, like a subsampling of the finite pencil beam [29] or a Monte Carlo

code. Using a subsampling of the finite pencil beam, the number of subsamples is a trade-

off between accuracy and computation time. As Hi is correlated to the error of the fast

pencil beam algorithm, Hi might be used to determine the needed accuracy and thus the

number of subsamples. Since usually there are only a few beam spots with large Hi values

(see figure 4.9) and since for low Hi values the fast pencil beam algorithm is a reasonable

approximation (see figure 4.6), a fast and accurate dose calculation algorithm could be

designed using this hybrid approach.
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Chapter 5

Worst case optimization

5.1 Introduction

Proton treatment plans can be very sensitive to small uncertainties in the treatment vari-

ables such as uncertainties in the range of the individual Bragg peaks or errors in the setup

of the patient. Due to the steep distal gradient of the Bragg peak a range uncertainty of

a few mm can lead to an underdoseage in the radiation target by 100%, depending on the

assigned safety margins. However, the concept of safety margins partly fails for setup er-

rors since shifts of the patient not only shift the dose distribution they can also change the

range of the Bragg peaks leading to a distorted dose distribution. As intensity modulated

proton therapy is more complex than standard proton treatments, this sensitivity is often

expected to increase for IMPT. However, as stated in section 2.2.3 there usually exist many

different solutions to the inverse problem in IMPT, each represented by a set of Bragg peak

weights that will deliver dosimetrically equivalent plans. This degeneracy of the solutions

can be used to reduce the sensitivity of treatment plans if the uncertainties are accounted

for in the optimization. In this chapter such a method to account for uncertainties in the

optimization is developed. This worst case optimization method makes use of a worst case

dose distribution as introduced by Lomax et al. [22]. The method has been implemented

into the research version of KonRad to account for range uncertainties, setup errors and

a combination of these two uncertainties. Finally an example is given how this method

could be used in 4D treatment planning, that is in treatment planning which takes into

account the motion of the patient. Unkelbach et al. [50] recently published two methods to

account for range uncertainties in IMPT, one method using a probabilistic approach, the

other applying methods from robust linear programming. Differences between the methods

proposed by Unkelbach et al. and the worst case optimization will be outlined at the end
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of this chapter (section 5.3.6).

5.2 Methods

Four different methods to realize intensity modulated proton therapy are described in

section 2.2.3. To exploit the full degeneracy of the inverse treatment planning problem the

most flexible one, the full three-dimensional modulation technique, is used in this chapter.

As shown in figure 2.5 this technique places individual Bragg peaks on lines from the distal

to the proximal edge of the target volume such that the whole target volume is covered

with Bragg peaks. I refer to an individual Bragg peak as a beamlet and to all beamlets

on such a line as a ray. In this chapter the optimization is done using the L-BFGS-B

code and the variable transformation to turn the constrained optimization problem into

an unconstrained one (see chapter 3).

5.2.1 Worst case dose distribution

The worst case dose distribution introduced by Lomax et al. [22] is a method to combine

multiple dose distributions (e.g. dose distributions calculated for different ranges of the

Bragg peaks) into a single one. For a voxel inside the target volume, the minimum dose

of this voxel in all dose distributions is stored in the worst case dose distribution. For a

voxel outside the target volume, the maximum is taken. The worst case dose distribution is

unphysical since it treats every voxel independently. This means that while the worst case

dose in a voxel i is realized under one of the considered conditions, it might not be true that

the worst case dose in a voxel j can be simultaneously realized. Although being unphysical

this worst case dose distribution can serve as a lower bound for the worst quality of the

treatment plan.

Similar to the worst case dose distribution a best case dose distribution can be defined

where inside the target volume the maximum and outside the target the minimum is taken.

This best case dose distribution is not used during the worst case optimization. However,

it can be used for the evaluation of the resulting treatment plan. While the worst case dose

distribution is a lower bound, the best case distribution formally serves as upper bound

for the achievable plan quality. When plotting the DVHs of the worst and the best case

dose distribution, the DVHs of all dose distributions which were considered to calculate

the worst/best case dose distribution are in between these two DVHs.
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5.2.2 Uncertainties

5.2.2.1 Range uncertainties

There are multiple sources of range uncertainties in proton therapy, e.g. CT artefacts,

weight-gain or -loss of a patient, conversion from Hounsfield units (HU) to stopping powers,

to name a few. Schaffner et al. [33] found that solely the conversion from HU to stopping

powers leads to “a range precision of about 1 − 3 mm in typical treatment situations.”

However, the range uncertainties of all individual Bragg peaks are not uncorrelated. In the

3D technique, multiple beamlets are placed in rays parallel to the beam direction from the

distal edge to the proximal edge of the tumor. Since all beamlets in such a ray traverse

the same path in the CT these beamlets are treated as correlated, i.e. I do not consider

the case where one beamlet of the ray has an increased range while an other beamlet in

the ray has a decreased range. This approximation assumes that the range uncertainty is

accumulated up to the target volume. Effects inside the target volume that could reduce

this correlation are not considered.

To include the range uncertainties into the optimization, the dose of each beamlet has to be

calculated at multiple ranges. For small range uncertainties of around 2− 5 mm it turned

out that three range samples were sufficient, namely the nominal range, the maximal range

and the minimal range. For larger range uncertainties, more samples were needed.

5.2.2.2 Setup errors

Setup errors lead to a shift of the target point relative to the patient in three dimensions.

For each beam I only consider shifts perpendicular to the beam axis since these shift have

the largest impact on the dose distribution. This results in a shift in only two dimensions,

thus less samples are needed to include the setup errors into the optimization. For the

optimization, the dose is calculated for 5 positions, namely the nominal position and a

shift of ± the maximal setup error for each direction perpendicular to the beam axis.

While for the range uncertainties the rays of a beam are considered uncorrelated, the rays

are certainly correlated for the setup error in a static patient geometry. However, I treat

the setup error for each beam as being uncorrelated to the other beams. This is more con-

servative as it needs to be but this approach offers the possibility to use the projection of

the setup error onto the plane perpendicular to each beam and thus allows to sample a two

dimensional distribution instead of a three dimensional one. Thus the setup uncertainty

can be included using only four additional sampling positions.
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5.2.3 Worst case optimization

In addition to the nominal dose distribution, Dnom, the worst case optimization uses a

second dose distribution, the worst case dose distribution Dw. Dw is included into the

optimization simply by applying the used objective function F to both dose distributions:

F̃ (~w) = F (Dnom(~w)) + pw · F (Dw(~w)) (5.1)

Here ~w is the beamlet weight vector and the worst case penalty pw is a newly introduced

parameter to tune the importance of the worst case dose distribution. In particular, by

setting pw = 0 the conventional IMPT plan is recovered.

The worst case dose distribution Dw is calculated the following way:

For range uncertainties, the dose of each ray is calculated for every range sample, e.g. for

the minimal, nominal and maximal range. From these multiple dose distributions a single

worst case dose distribution is determined as described in section 5.2.1. This calculation is

done ray by ray. The resulting worst case ray dose distributions are accumulated in Dw.

A similar approach is used to calculate Dw for setup errors, except that now the rays are no

longer considered independent and thus the calculation described for range uncertainties

is performed for each beam instead of each ray.

To calculate Dw for range uncertainties combined with setup errors I applied two simpli-

fications. For each beam, the laterally shifted dose distributions are only calculated for

the nominal beamlet range. The range uncertainties are only calculated for the unshifted

beam. Furthermore I treated for simplicity the range uncertainties of all rays in a beam

as correlated. With these simplifications there are seven dose distributions per treatment

beam to calculated the worst case dose distribution, which are accumulated for each beam

in Dw.

5.2.3.1 Worst case optimization in 4D treatment planning

Patient motion such as breathing can cause range uncertainties. If CT data for multiple

phases of e.g. the breathing cycle is available such 4D-CT data can be used to estimate

the range uncertainties introduced due to this patient motion. These estimates of the

range uncertainties can then be accounted for in the optimization by the same methods

described in section 5.2.3. A common approach in 4D treatment planning is to generate a

volume which encloses the tumor in every phase of the 4D-CT, the internal target volume

(ITV) (see ICRU62 [51]). Usually one phase of the 4D-CT is chosen as the reference phase.

Conventional treatment planning can then be performed for the ITV on this reference

56



5.2 Methods

phase, including the calculation of the water equivalent range of the distal edge of the

target volume for every ray of each beam. With the information of the 4D-CT, these water

equivalent ranges can also be calculated for every other breathing phase available. For 4D

planning different uncertainties for the maximal and the minimal range are assumed, thus

instead of the uncertainty interval [r − u, r + u] I consider r ∈ [r − l, r + u]. Furthermore

these uncertainties are different for each ray of a treatment beam. Using the information

from the 4D-CT the upper and lower range uncertainty of each ray are set to

u = max
[
max(WERDEi −WERDEref ), max(WERPEi −WERPEref )

]

l = max
[
max(WERDEref −WERDEi), max(WERPEref −WERPEi)

]

WERDEi/WERPEi is the water equivalent range of the distal/proximal edge of the ITV

for breathing phase i. Using a static patient this definition yields u = l = 0, thus it recovers

the standard IMPT.

The resulting range uncertainties are then included into the optimization by the same

method described in section 5.2.2.1. If these uncertainties for each ray are accounted for

during the optimization, it is possible to generate a treatment plan that ensures a target

coverage independent of the actual breathing phase in which the treatment plan is delivered.

However since it is assumed that the range uncertainty for all beamlets on a ray are

correlated each ray would have to be applied within a single breathing phase. Furthermore

interplay effects between the scanned beam and the tumor motion are not considered by

this approach. This greatly restricts the possible use of this method.

5.2.4 Patient data

Figure 5.1: Transversal CT slices for Patient A (left) and Patient B (right). Coplanar
fields are used in this study. The direction of incidence are shown as green lines.
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Two patient data sets are used to demonstrate the potential of the worst case optimization.

Patient A is a typical IMRT case for which the target volume is wrapped around the spinal

cord. For simplicity the spinal cord was chosen as the only organ at risk in this study. This

patient had a surgery prior to radiotherapy thus metal implants were present to stabilize

the spine. It was chosen because of the similar location and shape of the target volume

compared to the first clinical IMPT case reported [52] and because of the similarity to the

target used by Unkelbach et al. [50]. Equivalently to these cases three coplanar fields were

used as shown in figure 5.1.

As patient B a lung tumor patient was considered for whom 4D-CT data were available.

CT data from six different breathing phases could be utilized for this study. To apply the

method presented in section 5.2.3.1 an internal target volume was created for this patient.

The ITV had a volume of 8.1 cm3. The tumor was mainly moving in the cranio-caudal (cc)

direction. The peak-to-peak difference in the cc position of the tumor was 9 mm. For this

study a single field was applied as shown in figure 5.1.

5.3 Results

5.3.1 Range uncertainties

The data of patient A was used to test the worst case optimization method to include

range uncertainties. Range uncertainties of ±5 mm were considered. The range uncertainty

was sampled at three positions, namely at the nominal range, the maximal range and

the minimal range. The optimization was done for four values of the worst case penalty,

pw = 0 (conventional IMPT), pw = 0.05, pw = 0.2 and pw = 1. The resulting dose volume

histograms are shown in figure 5.2. The sensitivity to range uncertainties of the conventional

IMPT treatment plan is clearly visible in figure 5.2, both as a strong underdosage in the

target as well as a strong overdosage in the spinal cord for a beamlet range error of 5 mm.

Another characteristic visible is that the DVH of the worst case and the best case dose

distributions together serve as upper and lower bounds in which the true DVH is located for

any realization of the beamlet ranges within the considered uncertainty levels. By increasing

pw these bounds are brought closer together, thus reducing the variation of DVHs from

dose distributions for different realized beamlet ranges. The nominal dose distribution,

where the planned beamlet range is realized for every beamlet, is shown in figure 5.3

for each beam for pw = 0 and pw = 1. For pw = 0 (conventional IMPT) the excellent

separation of the DVH of the target and the spinal cord, shown in figure 5.2, is achieved by

shaping the dose gradient between the target and the organ at risk mainly with the distal
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Figure 5.2: The DVH for patient A obtained with four values of the worst case penalty
pw. Blue: CTV, green: spinal cord. The colored solid lines represent the case where the
delivered range of every beamlet equals the planned range. The dashed/chain-dotted line
represents the DVH of the unphysical worst/best case dose distribution. The black lines
show the DVH for the two extreme cases where the delivered ranges of all beamlets are
increased (solid lines) or decreased (dashed lines) by 5 mm compared to the planned range.

gradient of the Bragg peaks. In presence of range uncertainties these promising features of

the DVHs can deteriorate substantially. The worst case optimization results in a slightly

deteriorated plan quality, however the obtained dose distributions are much less sensitive

to range uncertainties. Three effects lead to this reduced sensitivity to range uncertainties

as it is shown in figure 5.3:

(i) the dose gradients between the target and the organ at risk is shaped using the lateral

instead of the distal gradient of the Bragg peaks

(ii) a “safety margin” is created automatically at the distal field edge for each treatment

beam

(iii) the dose profile in depth for each treatment beam is flattened compared to the nominal

plan
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5. Worst case optimization

Figure 5.3: Dose distributions in Gy for the three individual beams for pw = 0 (upper
row) and pw = 1 (lower row). Range uncertainties of 5 mm are accounted for.

Recalculation of the treatment plan:
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Figure 5.4: DVH of dose distributions recalculated for 1331 different realizations of the
range uncertainties (black lines). Colored solid lines: DVH for nominal dose distribution.
Colored dashed/chain-dotted lines: worst/best case dose distribution.

To show that the DVHs of the worst/best case dose distributions act as bounds for any

dose distribution calculated within the considered uncertainties, the resulting treatment

plan was recalculated for multiple realizations of the beamlet ranges. The dose for each

treatment beam has been recalculated for 11 different realization of the ranges equally

spaced between the minimal and the maximal range using the beamlet weights resulting

from the optimization. Unlike in the optimization the rays in each beam are correlated

in this recalculation because the use of uncorrelated rays leads to more possible dose
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distributions that can be practically calculated. With three beams each having 11 different

dose distributions there are 113 = 1331 possibilities to combine them to the total dose.

The DVHs of these 1331 dose distributions are plotted in figure 5.4. For the organ at risk

they are spread almost over the entire region between the DVH of the best and the worst

case dose distribution. Figure 5.4 also shows very nicely the reduced sensitivity to range

uncertainties for the plan optimized with pw = 1, where the DVHs for all 1331 different

realizations of the beamlet ranges are very close to each other.

Comparison to non-IMPT proton therapy

IMPT treatment plans might be expected to be more sensitive to uncertainties compared

to conventional proton therapy plans, where a homogeneous dose distribution in the target

is applied from each direction of incidence. To investigate this, the data shown in figure 5.2

is compared to such a treatment plan. A typical conventional, non-IMPT plan for pa-

tient A would consist of a single treatment field from posterior to anterior (second beam

in figure 5.3). The DVH of this conventional treatment plan is shown in figure 5.5. Again
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Figure 5.5: The DVH of a conventional, non-IMPT proton plan for patient A (left). The
DVH for pw = 0 and pw = 1 from figure 5.2 are included for comparison.

the DVH for an increase/decrease of the beamlet ranges of 5 mm as well as the DVH for

the worst/best case dose distributions for this uncertainty are included in the figure. In

this example, the conventional non-IMPT treatment plan is indeed less sensitive to range

uncertainties than the conventional IMPT plan. However, the single-field proton plan is
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5. Worst case optimization

still very sensitive to range uncertainties. With the help of the worst case optimization, an

IMPT plan can be generated which is less sensitive to range uncertainties compared to the

conventional non-IMPT approach.

5.3.2 Setup errors

To account for setup errors in the optimization I applied the method described in sec-

tion 5.2.2.2 to patient A. A setup error of 2 mm was assumed. Range uncertainties are not

taken into account in this section. Figure 5.6 shows the resulting DVHs for two values of

the worst case penalty, pw = 0 (conventional IMPT) and pw = 1. This figure also includes

a recalculation of the optimization results on a finer sampling grid. The dose distribution

of each beam was calculated for a shift of ±1 mm and ±2 mm in each direction perpen-

dicular to the beam direction using the beamlet weights resulting from the optimization.

Including the unshifted position this results in nine dose distributions per beam, leading

to 93 = 729 possible combinations to the total dose distribution. The DVHs of these 729

dose distributions are plotted as black lines in figure 5.6. Although less pronounced as
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Figure 5.6: DVH of dose distributions recalculated for 729 different shifted beam positions
(black lines). Colored solid lines: DVH for nominal dose distribution. Colored dashed/chain-
dotted lines: worst/best case dose distribution.

for range uncertainties figure 5.6 shows that setup errors can still lead to a considerably

deterioration of the anticipated dose distribution. The sensitivity to these errors can be

decreased by increasing the worst case penalty pw. The dose distributions of the individual

beams are shown in figure 5.7. Beam doses with a reduced sensitivity to setup errors again

show three characteristics:
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Figure 5.7: Dose distributions in Gy for the three individual beams for pw = 0 (upper
row) and pw = 1 (lower row). A 2 mm setup error was assumed, range uncertainties are
not included.

(i) the beam dose is reduced for parts of the beam which hit the patient at a narrow

angle, as there a small shift leads to a large change in radiological depth

(ii) a “safety margin” is created automatically at the lateral field edges for each treatment

beam

(iii) the lateral dose profile is flattened compared to the nominal plan

The last feature is in direct conflict with the results from the optimization including only

range uncertainties, where the lateral dose gradients were explicitly used to shape the dose

gradient between the target and the organ at risk. The next section will investigate the

case where both uncertainties are included into the optimization. When setup errors are

included into the optimization, the dose distribution of the first beam shows an extension at

the distal end of the target as can be seen in figure 5.7, lower row, left picture. Switching the

CT window to metal (CT window: mean = 1500 HU, width = 1 HU) as shown in figure 5.8

reveals the reason for this “dose finger”. This part of the beam is passing next to a metal

implant. By shifting the beam 2 mm to the right perpendicular to the beam direction this

part transverses the metal implant which reduces the range of the dose finger towards the

distal edge of the target volume. Thus range uncertainties which arise due to setup errors

are automatically accounted for if setup errors are included into the optimization.
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5. Worst case optimization

Figure 5.8: Dose distribution of the first beam in Gy using pw = 1. The applied CT
window shows the metal implants only. First: nominal position of the treatment beam,
second/third: beam shifted by 2 mm perpendicular to the beam direction in the image plane
to the right/left.

5.3.3 Range uncertainties and setup errors

If range uncertainties are accounted for in IMPT, the optimization shapes the dose gra-

dient between the target and the organ at risk using preferably the lateral fall-off of the

beamlets. However, the deteriorating effects of the setup errors are alleviated by softening

the lateral dose gradients. If both uncertainties are accounted for simultaneously in the

optimization, a compromise between these two goals has to be reached. To investigate this,

Figure 5.9: Dose distribution of the second beam in Gy. pw = 1, range uncertainty 5 mm,
setup error (from left to right) 0 mm, 2 mm, 5 mm.

both uncertainties were included into the optimization as described in section 5.2.3. As

in the previous section a range uncertainty of 5 mm was assumed. This uncertainty was

combined with a setup error of 0 mm, 2 mm and 5 mm. A worst case penalty of pw = 1

was employed for all three cases. Exemplarily the dose distribution of the second beam

for these cases is shown in figure 5.9. Using the range uncertainty only, the optimization

avoids beamlets stopping in front of the spinal cord, leading to a valley in the lateral dose

profile. Increasing the value for the setup error this valley is smeared out to flatten the

lateral dose profile. When applying a setup error of 5 mm, the beamlets stopping in front

of the organ at risk are again used to shape the dose gradient. However it is interesting

to see that this dose gradient is not as steep as it can be using a single Bragg peak. The
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5.3 Results

beamlet weights are chosen such that the distal gradient is smeared out. The contour lines

show that this gradient is comparable to the lateral dose gradient.

5.3.4 4D treatment planning with internal target volumes

To achieve a treatment plan which is applicable for every breathing phase of a 4D-CT I

applied the method described in section 5.2.3.1 to patient B. Five sampling positions were

used to account for the resulting range uncertainties. The CT of 0% inhale was employed

as reference CT. The treatment plan was optimized for this reference CT while the other

CT phases were only used to set the range uncertainties of the individual rays. After the

optimization, the resulting treatment plan was then recalculated on each breathing phase

of the 4D-CT. The DVHs are shown in figure 5.10. While the conventional treatment plan
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Figure 5.10: Resulting DVHs for conventional IMPT (pw = 0) and using the 4D method
(pw = 0.1). Blue: ITV, reference phase. Green: right lung, reference phase. Black: ITV
recalculated on all other breathing phases. The DVH of the lung is only shown for the
reference phase as it is nearly identical for all breathing phases.

is only applicable for the reference CT phase, the worst case optimization resulted in a

treatment plan that ensures target coverage for every CT phase used in the optimization.

Since a single field was used in this study, the dose of each ray has to be a spread-out Bragg

peak (SOBP). By accounting for the range uncertainties determined from the 4D-CTs in

the optimization, the SOBP for each ray is enlarged such that it enclosed the ITV for

all breathing phases. The enlargement of the SOBP for the individual rays ranged from

1.1 mm to 18.8 mm.
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5. Worst case optimization

5.3.5 Benefits from precise delivery

In proton therapy, large efforts are taken to reduce uncertainties in the delivery process.

With the method presented in this chapter, treatment plans can be generated which are

insensitive to the remaining uncertainties. However, the quality of the resulting treatment

plan will depend on the magnitude of the uncertainties considered during the optimiza-

tion. By repeating the optimization for multiple values for the remaining uncertainties

the potential improvement of the treatment plan quality due to an improved accuracy in

the delivery process can be monitored. In figure 5.11, such a study is shown exemplarily

for range uncertainties. The treatment plan for both patients described in this chapter

was optimized accounting for various values of the range uncertainty. Here, patient B was

treated as a static patient thus only the reference phase of the 4D CT was employed. The

worst case penalty was chosen to pw = 1 for all cases since this value resulted in insensitive

treatment plans where the DVHs of the worst and the best case distributions are very

close to each other. Since the worst case optimization resulted in treatment plans with

a median dose in the target slightly above the prescribed value all treatment plans have

been rescaled to a median dose of 60 Gy. The target volume for patient A is very close to
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Figure 5.11: The DVH of the nominal treatment plan for multiple values of the range
uncertainty. The DVHs for the target and the brain stem are plotted for patient A (left),
the ITV and the right lung were considered for patient B (right).

the brain stem. As shown in figure 5.11, this patient can benefit from efforts to reduce the

range uncertainty in the delivery process. Contrary to this, for patient B since there are no

critical organs at risk in a close vicinity of the tumor thus the safety margins created by

the worst case optimization can easily be expanded. Accounting for range uncertainties as

large as 10 mm does not considerably reduce the treatment plan quality for this patient.
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Elaborate efforts to reduce the range uncertainty which can result in additional costs and

additional hazards (e.g. control CTs, general anesthesia) might not be necessary here.

5.3.6 Comparison of the three methods to account for uncertain-

ties

Unkelbach et al. [50] recently published two methods to account for uncertainties in the

optimization. Both methods as well as the worst case optimization resulted in very similar

dose distributions. However they are conceptually different:

The probabilistic method proposed by Unkelbach considers the uncertain treatment vari-

able as a random variable with an associated probability density function. Consequently,

the dose is also an random variable which exhibits an expectation value. The objective

function is then applied to this dose expectation value distribution. Doing so, the variance

of the expectation value is minimized simultaneously, which means that the uncertainty of

the delivered dose in minimized.

The robust formulation applies methods from robust linear programming. In linear pro-

gramming the inverse treatment planning is treated as a feasibility problem. The linear

objective function is translated into linear constraints for under- and overdosage of each

voxel (see e.g. [53]). The feasible set of solutions are all beamlet weight vectors which fulfill

these dose constraints. In the robust formulation of the linear programming problem, the

constraints are extended for every possible value of the uncertain treatment variable such

that the solution stays feasible for all cases. As stated in [50], the robust formulation can

be interpreted as a worst case optimization where for each voxel the maximum absolute

difference between the delivered and the prescribed dose, which can occur for all possible

range combinations, is minimized.

Instead of using the complex robust formalism, the worst case optimization method simply

calculates the worst case dose distribution. The objective function is then applied to both,

the nominal and the worst case dose distribution.

Although all three methods show similar results, the different approaches have different

strengths and weaknesses which will be outlined next. A summary is presented in table 5.1.

Model of the uncertainties: The robust formalism as well as the worst case opti-

mization only require an interval of possible values for the uncertain treatment variable.

Contrary to this the probabilistic method needs a detailed model of the uncertain treatment

variable to determine the required probability density function. Such a model is usually not

available. Unkelbach et al. employed a Gaussian distribution. This is a reasonable assump-
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5. Worst case optimization

tions as long as the uncertainty is accumulated from multiple independent uncertainties,

e.g. the total range uncertainty as a result of the accumulated range uncertainties due to

the conversion from Hounsfield units to stopping powers for each voxel. Then according

to the central limit theorem the resulting probability density function will be Gaussian.

However this assumption might fail if the uncertainty results from a single uncertainty,

e.g. the range uncertainty due to a CT artefact. However if such a detailed model for the

uncertainty is available the probabilistic method can distinguish between systematic and

random uncertainties which is not possible with the other two methods. This difference

can be important since radiation therapy is applied in multiple fractions thus random

uncertainties have less impact than systematic uncertainties.

Objective function: The robust formalism requires a linear objective function which

is then translated into a constrained linear programming problem. Other objective func-

tions like the standard quadratic objective function, objective functions to realize DVH

constraints, the equivalent uniform dose (EUD) based objective function or objective func-

tions for biological optimization cannot be used or at least have to be modified. Contrary

to this the other two methods can readily be applied to any objective function.

Necessary sampling points: The uncertain treatment variable has to be sampled at

discrete sampling points. The computational resources needed roughly scale with the num-

ber of sampling points, thus as few as possible should be used. To account for range

uncertainties, the worst case optimization method already showed good results for three

sampling points to account for a 5 mm range uncertainty. Contrary to this, Unkelbach et

al. applied eleven sampling points to account for the same range uncertainty. Since the

robust formulation also optimizes the worst case distributions three samples might also be

sufficient for this method. The probabilistic method calculates a statistical quantity, the

expectation value. For this calculation three samples can hardly suffice.

Correlation of the range uncertainties for individual rays: For both methods pre-

sented by Unkelbach et al. the range uncertainties of the individual rays in each treatment

beam were assumed to be correlated. They did not observe large effects between using this

assumption and employing uncorrelated range uncertainties for all rays. However the main

source of range uncertainties are uncertainties of the patient model. For these uncertainties

there is no physical reason to assume correlated range uncertainties. This assumption is

necessary since for uncorrelated uncertainties all possible combinations have to be calcu-

lated. With k rays using N different ranges, this results in N k possible dose distributions
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which have to be calculated. One strength of the worst case optimization method is that

if the worst case dose distribution can be calculated independently for parts of the treat-

ment plan then the sum of them, Dw, is the solution for all possible combinations of the

independent parts. In the shown example to account for range uncertainties I calculated

the dose of 1392 independent rays at three different realizations of the beamlet range, thus

the resulting Dw is the solution for 31392 different total dose distributions, although only

three had to be calculated.

Treatment plan evaluation: The DVHs of the worst case and the best case dose dis-

tributions can be used to visualize the sensitivity of the treatment plan to the considered

uncertainties. These two dose distributions are readily available using the worst case opti-

mization.

Complexity The worst case method is a simple method to account for uncertainties

in the treatment planning process. The dose is calculated for N different realizations of

the uncertain treatment variable. The resulting dose distributions are then combined to

the worst case dose distribution Dw to which the objective function is applied. The com-

putational resources needed roughly scale with N . Using three sampling points to take

range uncertainties into account during the optimization resulted in an optimization time

increase of only 2.3 − 3 compared to standard IMPT. Quantitative comparisons of the

optimization times are not available for the other two methods. The following informations

are given by Jan Unkelbach in a personal communication. For the robust formulation, the

number of constraints increases by N ×K, K being the number of treatment beams. The

computation time is not directly proportional to this number, however it is expected to

increase as the number of constraints increases. For N = 11 and K = 3, Jan Unkelbach

observed an increase of the computation time of approximately 20. The computation time

needed for an exact evaluation of the objective function in the probabilistic method scales

with NK . Therefore, they employed a stochastic gradient descent during the optimization.

With N = 11 and K = 3, this approach yielded an increase of only approximately eleven

in the computation time compared to the standard IMPT. The stochastic gradient descent

might also be employed for the other two methods to reduce the computation time needed

for the optimization. However, this has not been investigated.
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5. Worst case optimization

Probabilistic Robust Worst case
method formulation optimization

no uncertainty model needed - + +
distinction random/systematic uncer. + - -
all obj. functions possible + - +
needed sampling points - + +
uncorrelated rays possible - - +
Sensitivity analysis included - - +
Complexity without/with stoch. grad. - / + - / ? + / ?

Table 5.1: Summary of the advantages and disadvantages for the three methods to account
for uncertainties.

5.4 Discussion

5.4.1 Range uncertainties

Using the worst case optimization, the sensitivity to range uncertainties of IMPT treatment

plans could be greatly reduced. For the example of range uncertainties it was also shown

that the resulting IMPT treatment plans are even less sensitive to range uncertainties

compared to a conventional, non-IMPT plan. Dose distributions which are insensitive to

range uncertainties show three characteristics. The dose gradient between the target and

the organ at risk is shaped using preferably the lateral gradient of the Bragg peaks. The

dose from each treatment beam is extended at the distal edge of the target. Finally the

dose profile in depth for each treatment beam is flattened compared to the standard IMPT.

5.4.2 Setup errors

Since the lateral fall-off of the beamlets is less steep than the distal fall-off setup errors

are not as critical as range uncertainties. However setup errors can also lead to a change

of the beamlet range. The DVHs in figure 5.6 showed that setup errors can lead to an

underdosage of the target as well as to an overdosage of the organ at risk. This can be

reduced if setup errors are taken into account during the optimization. Dose distributions

with a reduced sensitivity to setup errors again show three characteristics. The weights of

beamlets which hit the patient at a narrow angle are reduced. The dose from each treatment

beam is extended at the lateral edge of the target. Finally the lateral dose profile for each

treatment beam is flattened compared to the standard IMPT.

The sampling is more critical for setup errors than for range uncertainties. Next to a lateral

interface an infinitesimal lateral shift can in principle lead to an arbitrarily large change
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of the beamlet range. I checked the optimization results using a finer sampling of 1 mm

for the setup errors. The recalculated DVHs where still inside the bounds predicted by

the optimization using a sampling of 2 mm for the setup errors, thus a sampling of 2 mm

seemed to be sufficient in the considered case. Since this patient had very pronounced

lateral interfaces, namely the metal implants, this value might also be sufficient for other

patients.

5.4.3 Range uncertainties and setup errors

Accounting only for range uncertainties in the optimization resulted in dose distributions

where the lateral fall-off is used to shape the dose gradient between the target and the organ

at risk, while accounting only for setup errors the lateral dose profile of each treatment

beam is flattened. A compromise between these two conflicting goal has to be found if both

uncertainties are accounted for in the optimization. One such compromise can be to choose

the beamlet weights such that the distal dose gradient of the treatment beam is smoothed

as shown in figure 5.9.

5.4.4 4D treatment planning with internal target volumes

Using the methods of range uncertainties is a very simple way to include 4D information

into the proton treatment planning. There is no limit on the number of breathing phases

used for this 4D treatment planning since besides the reference CT phase the other CT

phases are only used to set the range uncertainties. Thus this method does not require

extensive computational resources.

The method results in a treatment plan which is valid for all breathing phases. However,

it is only valid if the complete dose is delivered during one breathing phase. For very small

tumors this might be achievable. In 2004 the PSI was treating roughly a 300 cm3 volume

a minute [54]. The ITV of patient B has a volume of 8.1 cm3 which results in a theoretical

treatment time of about 1.6 s for this beam.

A currently pursued approach to reduce the sensitivity to motion artefacts in proton ther-

apy is to implement a fast rescanning of the treatment beam. If the rescanning can be

made fast enough to do a single scan within one breathing phase then a method which

results in a treatment plan which is applicable in each breathing phase might be desirable.

71



5. Worst case optimization

5.4.5 Benefits from precise delivery

By accounting for uncertainties in the inverse treatment planning process, treatment plans

which are insensitive to the considered uncertainties can be created, independently of the

magnitude of the uncertainties. However the quality of the resulting treatment plan can

depend on the magnitude of the uncertainties. The method shown in this section can be

used to asses the potential benefit due to an improved accuracy in the delivery process. If

an acceptable treatment plan can be generated considering relatively large uncertainties,

costly and potentially dangerous procedures such as control CTs or general anesthesia

might not be necessary. If multiple uncertainties are present, such an analysis can be used

to assess the impact of the individual uncertainties. This can steer the development to

reduce the remaining uncertainties.

5.5 Conclusion

The quality of proton treatment plans can be very sensitive to uncertainties in the treat-

ment variables. Consequently all unavoidable related risks should be accounted for in the

inverse treatment planning process. In this chapter I devised efficient treatment planning

strategies that can account for a variety of potential treatment uncertainties and result in

robust treatment plans with considerably reduced risks of respective treatment errors. The

price to pay for this improved robustness of the treatment plan is a slightly deteriorated

nominal dose distribution. The method presented in this chapter results in qualitatively

similar treatment plans as the two methods described by Unkelbach et al.[50], suggesting

that all three methods are equally applicable to reduce the sensitivity to uncertainties of

IMPT plans.
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Chapter 6

Summary, outlook and conclusion

In this chapter, the research done for this thesis is briefly summarized and an outlook on

potential topics for further research is given.

Summary: The research towards risk-adapted optimization in IMPT presented in this

thesis is divided into three parts.

In chapter 3, different optimization algorithms were investigated for the inverse treat-

ment planning process. Additionally to the existing standard algorithm an improved opti-

mization algorithm based on the L-BFGS algorithm and the conjugate gradient algorithm

were implemented into KonRad. Furthermore the possibility to turn the constrained opti-

mization into an unconstrained one using the a variable transformation was investigated.

It turned out that the commonly employed standard optimization algorithm resulted in

suboptimal treatment plans. By changing the optimization algorithm the resulting treat-

ment plan quality could be considerably improved. The optimization algorithm based on

the L-BFGS algorithm using the variable transformation to turn the constrained optimiza-

tion problem into an unconstrained one was found to be superior to the other methods.

Consequently, this method was used in the subsequent chapters.

Lateral tissue heterogeneities introduce uncertainties into the treatment planning pro-

cess such as dose calculation errors and sensitivities to setup errors. In chapter 4, a method

to quantify the lateral tissue heterogeneity of a single beamlet was developed. It was shown

that this heterogeneity index Hi correlates with the dose calculation error introduced by

the use of the fast pencil beam algorithm. Furthermore Hi also correlated with the sensi-

tivity to setup errors of the dose distribution for an individual beamlet. The information of

Hi can either be used prior to the optimization to avoid beam directions with large lateral

heterogeneities or it can be integrated into the objective function to penalize individual

beamlets. This reduced the dose calculation error introduced by the use of the fast pencil
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beam dose calculation algorithm. However reducing the weight of a single beamlet can also

induce a sensitivity of the resulting treatment plan to setup errors.

Finally in chapter 5 a inverse treatment planning method method was developed which

accounts for uncertainties in the treatment planning and delivery process. This method is

based on a worst case dose distribution Dw which is derived from all dose distributions

resulting from possible realizations of an uncertain treatment variable. This worst case

optimization method can considerably reduce the sensitivity of the resulting treatment

plan to uncertainties. It was implemented to account for range uncertainties, setup errors

and a combination of both uncertainties.

Outlook: Using the worst case optimization method, the two uncertainties with suppos-

ably the largest impact on the resulting dose distributions for a static patient have been

integrated into the inverse treatment planning process. Other uncertainties in a static pa-

tient model as e.g. uncertainties in the modeling of biological input data can be integrated

in a similar manner. However large uncertainties also result from the motion of the patient

such as breathing, cardiac or even peristaltic motion. Current approaches to reduce these

uncertainties aim to change the delivery process of particle therapy. These methods in-

clude employing a gated radiation therapy (see e.g [16]), to utilize a fast rescanning of the

treatment fields (see e.g [55]) and to dynamically track the tumor volume (see e.g [56]). An

interesting field of further research is to account for these uncertainties in the optimization

process. An example how to use the worst case optimization for such a 4D optimization

was given, however this approach can only be applied under very restricted conditions.

It neglects interplay effects between the delivery and the tumor motion, furthermore it

assumes that all beamlets in a ray are correlated, that is that they are applied during the

same phase of the motion. These two assumptions lead to the constraint that the whole

treatment plan needs to be delivered within the same phase of the motion. If this constraint

is to be relaxed, other correlations have to be found in order to employ the worst case op-

timization method to achieve a treatment plan which is robust against patient motion.

Such a correlation could be e.g. that an energy slice can be delivered within one breathing

phase. If this assumption holds, Dw could be calculated as accumulation of the worst case

dose distributions calculated for each energy slice determined from all breathing phases.

Most likely large patient motions would decrease the nominal plan quality for such a robust

treatment plan significantly. However such a method could also be used in combination

with the gating technique to enlarge the gating window. If only patient motions within a

gating window have to be accounted for the resulting nominal plan quality might be ac-

ceptable. But such an approach could reduce the disadvantages resulting from the gating
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technique using a very narrow gating window.

Another approach to improve the worst case optimization could be to integrate the

stochastic gradient optimization methods proposed by Unkelbach for the probabilistic

method (see section 5.3.6). Using this approach, many additional sampling positions could

be integrated into the worst case optimization.

As stated in chapter 4, the heterogeneity number Hi can be used prior to the optimiza-

tion to choose beam directions which avoid large heterogeneities or during the optimization

to reduce the weight of individual beamlets with large heterogeneities. A third approach

to utilize the information of Hi could be a post-processing of the optimization results. The

idea is outlined in the following. In the minimum, the objective function can be approxi-

mated by a quadratic function. The second order Taylor expansion T (~w) of the objective

function F (~w) around the minimum ~wm is given by:

T (~w) = F (~wm) +∇F (~wm)(~w − ~wm) +
1

2
(~w − ~wm)∇2F (~wm)(~w − ~wm) (6.1)

Since F (~wm) is constant and the gradient of the objective function in the minimum,

∇F (~wm), is zero this leaves only the second order term, thus the Hessian matrix in the

minimum ∇2F (~wm). An eigen analysis of the Hessian matrix can now determine the degen-

eracy of the solution space (see e.g. [6]). Changing the solution ~wm along any eigenvector

of the Hessian matrix with an eigenvalue of zero will not change the objective function

value, thus these vectors span the space of degenerated solutions. This space can now be

searched for the solution with the minimal total heterogeneity. As stated in chapter 4,

reducing the weight of individual beamlets can lead to a sensitivity to setup errors of the

resulting treatment plan. Thus an objective function which accounts for setup errors as

shown in chapter 5 should be used. Of course, this space could also be searched for other

goals too, e.g. for a minimal delivery time. The computational effort needed to calculate

the Hessian matrix is usually prohibitive due to the large number of degrees of freedom in

IMPT, however if an quasi-Newton algorithm as e.g. the BFGS algorithm is used during

the optimization, an approximation of the inverse Hessian matrix is available which could

be employed for this task. The challenge of this approach is that the determination of the

eigenvalues and -vectors are problems of third order, meaning the computational effort

needed is proportional to N 3 (N being the number of beamlets).

Conclusions: In conclusion, several improvements for IMPT have been developed in this

thesis. The improved optimization algorithm was shown to be superior to the standard op-

timization algorithm, considerably improving the resulting IMPT treatment plan quality.
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This algorithm can also be employed in the optimization of IMRT treatment plans. Further-

more, the heterogeneity index Hi was developed as a valuable tool to quantify the lateral

tissue heterogeneities encountered by individual beamlets. The usefulness of the hetero-

geneity index is stressed by the fact that it was already adopted by other researchers [44].

Finally, the importance of accounting for treatment planing and delivery uncertainties has

been shown. The worst case optimization method was developed as a simple and effective

method to account for such uncertainties.
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Chapter 7

Appendix

Strong Wolfe conditions

The strong Wolfe conditions are used as the convergence criteria for the inexact line mini-

mization in the improved optimization algorithm. They are: (see e.g. [38], chapter 3)

F (~x+ α~p) ≤ F (~x) + c1α~∇F (~x)~p (7.1)∣∣∣~∇F (~x+ α~p)~p
∣∣∣ ≤ c2

∣∣∣~∇F (~x)~p
∣∣∣ (7.2)

~x is the position were the line search is started, ~p the search direction, α the step length.

Equation 7.1 is also known as sufficient decrease condition, equation 7.2 as curvature

condition. c1 and c2 are constants which can be chosen between 0 < c1 < c2 < 1. The

constant c2 can be used to tune the line search. A small value of c2 results in a step which

is close to the real line minimum, a larger value of c2 accepts steps which are further apart

from it. I employed the values recommended in [38] for quasi-Newton algorithms, namely

c1 = 0.0001 and c2 = 0.9. This large value of c2 is recommended since for quasi-Newton

methods it is in general more beneficial to continue along a new search direction instead

of spending too much time to locate the exact minimum on the line.
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