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The method of computer-simulated scenarios has recently been introduced to 
study how people solve complex problems. This article describes a special 
approach to constructing such microworlds by means of linear structural equation 
systems. The subjects' task is to first identify in a knowledge acquisition phase 
the causal structure of a hitherto unknown system. In a later knowledge applica
tion phase they try to control this system with respect to a given goal state. 
Verbalizable knowledge that was acquired on the task is assessed both by means 
of causal diagrams as well as by the degree of successful control performance. 
Five experiments on special attributes of such systems illustrate the approach. 
The experiments investigated effects of active interventions versus observations 
only, effects of different degrees of Eigendynamik, the influence of different 
degrees of side effects, the role of prior knowledge, the amount of controllability 
and number of variables to be controlled. These factors have considerable effects 
on identification of the system structure and control of its states, these being two 
central indicators of complex problem solving. Three topics are identified as main 
goals for future research: (1) separation of different sources of variance (person, 
system, situation); (2) research on reliability and validity of performance indica
tors; (3) development of measures for an operators' heuristic and strategic know
ledge. 

1 Preparation of this article was supported in part by a grant from the "Deutsche Forschungs-
gemeinschaft (DFG)" to the author (Az. Fu 173/1). I wish to thank Gerd Fahnenbruck, 
Uwe Kleinemas, Horst Muller and Barbel Rasche for their support in this research. Also 
thanks to Axel Buchner for improving the English text, and to Gerd LUer and an anony
mous reviewer who all gave valuable hints on an earlier version. 
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1. Introduction 

Studying complex problem solving by means o f computer-simulated 
scenarios ("microworlds") has become one of the favorite themes in German-
speaking countries for researchers who are interested in the psychology of 
thinking. Instead o f studying problem-solving behavior in restricted situa
tions (such as "Tower of Hanoi" or "Cannibals and Missionaries" tasks; cf. 
Greeno, 1974; Jeffries, Poison & Razran, 1977), the new approach focuses 
on semantically rich domains that provide a touch of reality that was not 
inherent in previous research (see also Bhaskar & Simon, 1977; Broadbent 
& Aston, 1978; Mackinnon & Wearing, 1985). The main reason for shifting 
the emphasis to simulated real-life situations was to attain new insights into 
processes o f thinking and action regulation under high cognitive and 
emotional load. Fol lowing the pioneering work of Dietrich Dorner (Univer
sity of Bamberg, F R G ) in the mid-seventies, several new scenarios have been 
developed and applied in correlational as well as in experimental studies (for 
a review see Funke, 1988). For instance, in a computer-administered micro-
world called " L O H H A U S E N , " a subject has to take the role of an omnipotent 
mayor of a little town (Dorner, 1987). In other work, a subject plays the role 
of a manager of a little shop or of an engineer in a Third World country 
(Putz-Osterloh & Lemme, 1987). In general, the new approach deals with the 
exploration and control o f complex and dynamic systems by human individu
als. According to DSmer, subjects must satisfy the fol lowing requirements: 
(1) they must deal with the complexity o f the situation and with the connec
tivity of the variables involved; (2) they must deal with the intransparency or 
opaqueness of the situation since typically not all information that is needed 
is available; (3) they must deal with dynamic developments of variables 
which change their states autonomously and make it necessary to anticipate 
trends; and (4) they must deal with multiple goals some of which may 
contradict others (e.g. as a manager: pay high wages due to the trade-union's 
request and at the same time maximize the company's profits). 

Despite 10 years of research in the area, there is neither a clearly formu
lated specific theory nor is there any agreement on how to proceed with 
respect to the research philosophy. Even worse, no stable phenomena have 
been observed. Merely some rather general observations concerning some 
kind o f breakdown of the cognitive system in cases of information overload 
have reliably been reported. A lso , questions concerning the influence of test 
intelligence on complex problem solving have been answered ambiguously. 

Therefore, the main concern of this article is to explain a systematic 
research strategy for studying how people deal with dynamic systems, and to 
illustrate the usefulness of this strategy with the help of experimental data. 
The paper will describe my own approach to studying complex problem 
solving which I conceive of as a dynamic process of knowledge acquisition 
and knowledge application in an information processing human. In Section 



2, I will briefly describe the philosophy underlying this research, the D Y -
N A M I S shell for creating and presenting scenarios, the general experimental 
procedure, the diagnostic approach to eliciting subjects' knowledge about the 
task, and the approach to measuring performance. In Section 3 the results o f 
f ive studies within this framework wil l be presented. Final ly, in Section 4 the 
results will be summarized and related to other studies. A lso , I will give some 
perspectives for future research. 

2. A Method for Analyz ing Complex Problem Solving 

From its beginning, research about solving complex problems had to cope 
with a number o f difficulties (see the critical aspects mentioned by Funke, 
1984). One central point was the reliable measurement of problem solving 
quality. Since no optimal solution path and no "best" intervention was avail
able in most o f these microworlds (because o f the partially nonlinear rela
tionships between the variables for which mathematically no optimal solution 
could be found), researchers were never quite sure whether a subject's solu
tion to a problem was really better or worse than that o f other subjects. 
However, at least qualitative judgments were possible. In other cases, in 
which subjects could set their own goals, problem solving quality was rated 
by "experts." Along with this came a complete loss of comparability o f 
results. With these tasks it was impossible to separate out which part of the 
observed system changes was due to the tasks' characteristics and which was 
due to the subjects' attempt to cope with the problem. A lso , the question of 
reliability of performance measures has been answered mainly by referring 
to the face validity o f the tasks. 

T o overcome some o f these problems, the line o f research done in our 
Bonn laboratory established the fol lowing principles: (1) It should always be 
possible to define the quality o f a solution by comparing it with an optimal 
solution strategy. (2) T h e situation should realize the features of complex 
problems (complexity, connectivity, intransparency, Eigendynamik [i.e., au
tonomous processes] and multiple goals) as far as possible. (3) A detailed 
diagnostic procedure should reveal subject's development o f hypotheses 
about the system. This implies that subjects have to be prompted repeatedly 
about the causal structure they assume to the system. (4) There should be a 
clear distinction between a phase o f knowledge acquisition (mainly realized 
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by encouraging the subjects to explore the system) and a phase of knowledge 
application in which given states of the problem space should be reached by 
the subjects as quickly as possible. In this last phase, performance measures 
should precisely indicate the quality of a subjects' intervention. 

2.1 The DYNAMIS Shell for Scenarios 

Trivial ly, before you can control a complex system, you must learn how it 
works. T o study experimentally the acquisition as well as the application of 
knowledge we confront our subjects with computer-simulated scenarios. A s 
a universal tool for constructing these scenarios a computer program called 
" D Y N A M I S " serves as a shell with which the experimenter can implement 
in a simple way different types o f simulated systems which all have in 
common one formal background. This general frame is a linear equation 
system (see e.g. Steyer, 1984) which consists o f an arbitrary number o f 
exogenous (= x) and endogenous (= y) variables according to the following 
equation: 

y ' + ^ A x y ' + B x x ' , (1) 

where yl+l and y1 are vectors representing the state of the y-variables at times t+1 and t; x' is 
a vector representing the values chosen by the subject for the x-variables; A, B are matrices 
containing the weights for the variables. 

A set of measures for describing such systems formally has been suggested 
(e.g., Hiibner, 1989). A n equation system is constructed according to 
theoretical considerations about the presumed influence o f certain system 
attributes on task complexity (e.g., the effect of Eigendynamik, or the in
fluence o f side effects or effects due to different interdependencies). It is not 
intended to simulate a domain o f reality adequately because that kind of 
simulation places too many constraints on the attributes of the system to be 
useful for basic research on problem solving. Consequently, most of the 
simulated systems used in our research group have been "artificial." With 
respect to a distinction made by Hays and Singer (1989) one can say that 
what we want our systems to possess is not physical fidelity but rather 
functional fidelity. A s an example see the SINUS system shown in Figure 1. 

2 This distinction is somewhat artificial: In most cases knowledge acquisition occurs in order 
to reach certain goals. The goals in our settings concern the acquisition of the causal 
structure of the system under exploration with the goal of achieving control over that 
system (which is related to the application phase). 
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Figure I. Causal structure of the system SINUS. The weight parameters a, b, c, and d are 
subject to experimental changes. The standard configuration is a = 1, b = 0, c = 0.2, and 
d = 0.9. 

Subjects are told that this fictitious system consists of living creatures 
from a distant planet called SINUS. The "exogenous" variables are intro
duced as creatures labeled "Gase ln" (y i ) , "Schmorken" (yi) and "Sisen" (y3), 
the "endogenous" creatures are called "Olschen" (xi) , "Mukern" (x2) and 
"Raskeln" (x3). The system has the fol lowing structure (parameters a, b, c, 
and d are variable weights): 

yi,+ = lO.Ox xi1 + ax yi' + bx y3' 
y 2 , = 3 .0X X3 l + l.Ox y 2 ' + CX y 3 \ 

1+1 = 2.0x X2 l + 0.5x X31 + dx y 3 ' . y3 

(2) 
(3) 
(4) 

The task for subjects is first to explore the system (i.e. the causal links 
between the system variables) and then to control the endogenous variables 
(= the numbers of y-creatures) by means of the exogenous variables with 
respect to a set o f given goal states. Parameters a-d are manipulated depend
ing on the experimental conditions (see below). 

2.2 General Experimental Procedure 

In our experiments, subjects pass through at least two phases. In the first 
phase, the "knowledge acquisition phase," subjects can explore the system 
and its behavior as they like (see also Moray, Lootsteen & Pajak, 1986; 
Shrager & Klahr, 1986). They can take actions (i.e., make an intervention on 
one or more of the exogenous variables) and observe the resulting effects in 
the endogenous variables. Figure 2 shows how SINUS is presented to sub
jects. 
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SINUS Block 1 
Week ] 4 5 

__ •> State: 
Gaseln loUU 1700 lylXJ ZkAKI 

Schmorken.. yuo 1013 l los 1 f\QA 

Sisen 300 293 286 281 306 

Intervention: 
Olschen.... 10 10 10 10 _? 

12 11 13 28 ? 
Kaskeln.... -1 -1 -5 -5 ? 

Press "space bar" to select an intervention, choose a value 
and then PTBM "return" 

Figure 2. Screen display of DYNAMIS when presenting system SINUS after 4 weeks (= 
trials) on the first block. The upper part shows the state of the three endogenous variables, the 
lower part shows past interventions. 

Each block consists o f a certain number of trials (referred to as "weeks" 
in the cover story) which all depend on each other. From one block to another 
the system is reset to the same starting values. From time to time we measure 
the knowledge that has been acquired so far by asking the subjects for a 
graphical representation o f their structural knowledge ("causal diagrams"). In 
the second phase, called "knowledge application phase," the subject has to 
reach a defined system state and try to maintain the variable values as close 
as possible to the values defined as goal states. In this phase, we measure the 
quality of the operator's control by assessing the distance between the current 
and the goal values for all endogenous variables. Some comments on meas
uring structural knowledge and system performance seem necessary at this 
point because this is central to our studies. A review on techniques for 
knowledge assessment can be found in K luwe (1988). Also, Rouse and 
Morris (1986) discuss some o f the diagnostic problems in more detail. 

2.3 Measuring Structural Knowledge and System Performance^1 

Starting with control performance quality, the goal is to determine how well 
a given goal state is approximated by the operator's interventions. The 
classical approach requires the measurement of the deviation from the target 
system state in terms o f the root mean squares criterion (RMS) . This indicator 
reflects the mean deviation, independent o f sign. The weights o f individual 

3 This section follows the presentation as given in Funke (1991). 



deviations become increasingly higher the farther away they are from the 
target state. A good discussion of the frequently used R M S criterion can be 
found in Poulton (1973) and Bosser (1983). 

There is, however, an aspect which reflects an ugly property of this kind 
o f system performance evaluation: Assume that an operator has knowledge 
about the system. Reaching the goal is of little or no difficulty for him and 
the resulting R M S will be low. But what can we say about the operator with 
little or no knowledge? The resulting distance to the goal state as measured 
by the R M S criterion varies as a function of his (random) interventions. 
Depending on the weight matrices of the system, this would result in a large 
variety of measured distances. Therefore, different values o f the RMS, in this 
case, do not reflect different degrees o f quality of system performance. The 
argument here is one o f different reliabilities of the R M S criterion for 
different states of an operator's knowledge, being best in the case of correct 
knowledge (RMS indicating reliable values near zero) and worst in the case 
of purely random intervention (RMS indicating an enormous range of values 
due to decreasing reliability). 

One potential solution for this problem is a logarithmic transformation o f 
the RMS. This transformation leads to an evaluation of distances which is 
more efficient: Larger distances are no longer weighted more heavily. Rather, 
they are considered less important by this measure. It does not matter i f 
someone missed the goal by 10,000 or 100,000 points. This difference has 
the same importance as the difference between a deviation of 1 and 10. The 
transformation, thus, reduces the error variance that increases as a function 
of the operator's distance to the goal state. In the experimental section the 
variable " Q S C " refers to this kind of dependent variable ("Quality of System 
Contro l "—a low Q S C reflecting a good score because of low discrepancies 
between goal values and the values subjects reached on the endogenous 
variables through their control behavior). 

Measuring the structural knowledge an operator has acquired about a 
system requires also some kind of distance or similarity measurement In this 
case the distance exists between the structural relations hypothesized by 
subjects and those implemented in the system. For this purpose, the operator 
marks on a sheet (or in some versions directly on the screen) the assumed 
causal relationships at certain points in time. The problems with this kind o f 
measurement are; (1) Response tendency: Subjects differ in their degree with 
which they indicate relations in cases they are not quite sure about. Therefore, 
one has to count both hits (i.e., correspondence between assumed and existing 
relation) and false alarms (like in conventional recognition tests). (2) Differ
ent quality of knowledge: On the lowest level it is only assumed that a 
relationship between two variables exists (relational knowledge). On the next 
higher level the sign of the relation is known (sign knowledge). In the optimal 
case the numerical weights are known (numerical knowledge). (3) Function
ality instead of correctness: False models can be useful for system control, 
at least within a restricted area of values. Similarity measures are blind to this 
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aspect. (4) Implicit assumptions: Consider, for example, a variable that does 
not change over time. The weight for that relation is assumed to be equal to 
one. This kind of knowledge a subject often does not find worth mentioning. 
(5) Single vs. multiple models: It is not clear whether a subject follows only 
one single model at a given point in time or whether there exist several 
models concurrendy. 

For problems (3) to (5), no solution can be given at present. Problems (1) 
and (2), however, can be solved using a quantification o f the following kind: 
For each causal specification of a subject one first counts whether it belongs 
to one of the three classes of knowledge (relational, sign, or numerical) and 
whether it is correct or false. Then, for each of the three levels one can 
determine the "quality of system identification" (QSI) in terms o f the differ
ence between "hits" (HI) and "false alarms" (FA) , weighted by a "guessing" 
probability (p) according to the fol lowing scheme which closely resembles 
the discrimination index Pr from the two-high threshold model for recogni
tion memory (see Snodgrass & Corwin, 1988; the proposed "correction for 
guessing" dates back to Woodworth, 1938): 

HI FA 
QI = ( l - p ) - p — , - p S Q I S ( l - p ) (5) 

max(HI) max(FA) 

The guessing probability for numerical parameters in a dynamic system 
could, for instance, be set to zero. In this case all hits are counted relative to 
the maximal number of hits, max(HI). If one sets the guessing probability to 
0.5 in the case o f sign knowledge, then errors lead to a reduction in the Q S I 
index for that level. The index for structural knowledge, which serves as a 
dependent variable in the following experiments, is called " Q S I " ("Quality 
of Identif ication"—high Q S I revealing a good score because of high corre
spondence between implemented and assumed causal relations) and results 
from an additive combination of the QSI-values for all three knowledge 
levels. A study by Miiller (in press) demonstrates considerable reliability and, 
thus, sufficient psychometric quality of this index. 

3. Experimental Studies on System Properties 

In the fol lowing section f ive experiments on the role of different system 
properties serve to illustrate the approach just outlined. The focus of the 
experiments is on the role of active intervention into a system vs. pure 
observation (Exp. 1), on the influence of different degrees of Eigendynamik 
(Exp. 2) and side effects (Exp. 3), and on the effects of presentation mode, 
prior knowledge, controllability of the system, and degree of control required 
(Exp. 4 & 5). For each of the experiments the presentation includes a 
description o f the independent as well as dependent variables, subjects. 
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material, procedure, hypotheses, result, and a short discussion. Then, in a 
next section, a general discussion selects interesting results and connects 
them with results f rom other studies. 

3.1 Experiment I: Active Intervention vs. Pure Observation 

Independent and dependent variables. In this first experiment (for more 
details see Funke & Midler, 1988) learning by active interventions was 
compared to learning by pure observation of the system's development (Fac
tor l ; intervention vs. observation, I vs. O) . In addition, the effect o f a 
diagnostic tool (subjects had to predict the next system's state) was compared 
to a nonprediction condition (Factor 2: prediction vs. no prediction, P vs. 
NP) . Dependent variables were Q S C and QSI . 

Subjects, material and procedure. Subjects were 32 college students. In 
each o f the four conditions eight subjects were run individually. This al lows 
for detection o f "large effects" (f = 0.40 in Cohen's meaning of the word, 
1977) with ct = 0.10 and P = 0.30 for main effects. In the I- and O-condit ion 
experimental twins were used. Each subject in the O-condit ion observed the 
system data which another subject (the twin) under the I-condition had 
produced (yoked-control design). 

The system used was S INUS with parameters a = l , b = 0, c = 0.2, and 
d = 0.9 in Eq. (2), (3) and (4). The system had to be manipulated during f ive 
blocks o f seven trials each. During the first four blocks subjects could freely 
explore the system. During the fifth block all subjects (both the I- and the 
O-group) had to reach and maintain a previously specified goal state. The 
amount o f system knowledge subjects had acquired (QSI , as measured by the 
"causal d iagram" at the end of exploration) and the control quality (QSC, as 
measured v ia the distance of the actual to the specified goal states) served as 
dependent variables. 

Results. Funke and Miil ler expected the I-group to be superior to the 
"observers" with regard to amount o f knowledge as well as to control quality. 
A l so , the "predictors" should accumulate more knowledge than the "non-pre
dictors." Path-analytical evaluation of the data supported the expectations 
partially: The I-group was indeed better in controlling the system (significant 
standardized path coefficient p = 0.42* f rom I to QSC) , but seemed to know 
less than the "observers" (p = -0.30* from I to QSI ) . "Predictors" had more 
knowledge than "non-predictors" (mean QSI : 1.02 vs. 0.57, F(i,28) = 5.50*). 
Knowledge about the system was generally a good predictor o f control 
performance (p = 0.41* from Q S I to Q S C ) . Interestingly, there was a nega
tive relationship between the time spent on the task and the quality o f 
performance. 

Discussion. The results demonstrate the effects of task manipulations. 
Act ive interventions al low better system control. However, this effect is not 
accompanied by an increase in "extemal izable" knowledge. Similar dissocia
tions have been reported by Broadbent, FitzGerald, and Broadbent (1986), 
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Berry and Broadbent (1984, 1987), and Putz-Osterloh (1987), for a critique 
see Sanderson (1989). Requiring subjects to predict the next state increases 
the amount of knowledge as revealed by Q S L Detailed analyses of so-called 
"experimental twins"—pairs of subjects who had to cope with the same 
system situations—indicated a high interindividual variability: There were no 
significant correlations between the twins' QSI and Q S C scores, thus show
ing the importance of person-specific ways o f information processing. 

3.2 Experiment!: Effects of Eigeiutynamik 

Independent and dependent variables. In this second experiment the effect of 
different degrees of "Eigendynamik" was analyzed. Eigendynamik means 
that an endogenous variable at time t has an effect on its own state at time 
t+1. Thus, parameters a and d from Figure 1 and Eq. (2) to (4) were changed 
in three steps: (1) a = 1, d = 1: a control condition without any Eigendy
namik; (2) a = 1, d = 0.9: one variable with Eigendynamik; (3) a = 1.1, 
d ~ 0.9: two variables with Eigendynamik. Parameters b = 0 and c = 0,2 
were held constant. Dependent variables were Q S C and QSL 

Subjects, material, and procedure. A total of 24 paid males doing their 
civi l service served as subjects. Under each of the three conditions eight 
subjects were run individually. Assuming a = 0.10 and "large effects" 
(f = 0.40), the power 1-fJ proves to be at 0.50 in this case for the main effect 
(Cohen, 1977). SINUS was used to simulate the system with the charac
teristics described above. The system had to be manipulated during f ive 
blocks of seven trials each. During the first four blocks subjects could freely 
explore the system. During the fifth block all subjects had to reach and 
maintain a previously specified goal state. 

Results. It was expected that with an increase in Eigendynamik the amount 
of acquired knowledge as well as the degree of control over the system 
should deteriorate. Analysis of variance revealed only a significant effect for 
Q S C (F(2,2i) = 3.23*; mean Q S C for Eigendynamik of 0, 1 and 2 are 3.86, 
3.70 and 5.18), but not for QSI (Fp.21) = 1.12, n.s.). 

Discussion. The results show that the degree o f knowledge acquisition 
does not seem to be influenced by Eigendynamik. In contrast, the control of 
the system varied as a function o f Eigendynamik. Particularly under the 
condition o f two variables with Eigendynamik, control of the system turned 
out to be much more difficult. This points to the fact that knowledge acqui
sition and knowledge application require different abilities, which under 
certain circumstances lead to a dissociation of both measures. 

3.3 Experiment 3: Identification of Side Effects 

Independent and dependent variables. In this third experiment the effect of 
three different degrees of side effects was analyzed. Side effects were oper-
ationalized as minor effects from one endogenous variable on to another. In 



this case, parameters a and d from Figure 1 and Eq. (2) to (4) remained 
unchanged (1 resp. 0.9), but parameters b and c were changed in three steps: 
(1) b = 0, c = 0: a control condition without side effects; (2) b = 0, c = 0.2: 
one side effect; (3) b = 0.5, c = 0.2: two side effects. Dependent variables 
were Q S C and QSI . 

Subjects, material, and procedure. Under each of the three conditions 
eight male subjects were run individually. According to Cohen (1977), as
suming a = 0.10 and "large effects" (f = 0.40) power 1-p proves to be 0.47 
for the main effect. The system used was again SINUS with the changes 
described above and with the fol lowing change of the procedure. During the 
first four blocks exploration was not limited by number o f trials but by time 
(15 min per block). During the fifth block all subjects were required to reach 
and maintain the previously specified goal states over seven trials, but 
without time pressure. 

Results. The expected influence of side effects on knowledge acquisition 
was confirmed by a significant negative path coefficient (P = -0.35*) from 
the side effect predictor to Q S I (mean Q S I for 0 , 1 and 2 side effects are 1.14, 
1.26 and 0.77, F(2,2i) = 1.74, n.s., respectively). A lso , the effect from knowl
edge onto control quality reached significance (p = 0.73* from QSI to Q S C ; 
mean Q S C for 0, 1 and 2 side effects are 2.39, 2.86 and 4.72, F<2,21) = 4.01*. 
respectively). The number o f trials in blocks 1 to 4 had (contrary to our 
expectation) no predictive value for Q S C or QSI, but this conclusion is taken 
only as preliminary because o f medium power. 

Discussion. A s in previous experiments, the manipulation o f another sys
tem attribute shows an effect on knowledge acquisition as revealed by the 
Q S I measure and, again, the amount of knowledge predicts the quality o f 
system control. This result is in line with Conant and Ashby (1970). Accord
ing to these authors, good control has to be a consequence of a good model. 

3.4 Experiment 4 and 5: Effects of Presentation Mode, Prior Knowledge, 
Controllability and Amount of Control 

Material. For the last two experiments a different system was used called 
A L T O L (=used oi l) which was designed to activate prior knowledge. There
fore, in a pilot study based on interviews with 32 students we assessed the 
relations between variables within the area of the "ecological load of used 
o i l . " A "moda l " model was constructed using the relations which were named 
by at least 23 of the participants in the pilot study. T h e resulting relations are 
depicted in Figure 3. 
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Figure 3. Causal structure of the ALTOL simulation. The signs in parentheses are valid only 
in the "mismatching version" (see text). The Roman figures indicate the numbers of the 
partial systems which are mutually independent. 

Independent and dependent variables. Experimental variations were made 
with respect to the fol lowing factors. (1) Knowledge compatibility: T w o 
versions o f A L T O L were realized such that the signs o f the parameters of 
two o f the four exogenous effects were either in concordance with the 
assumed prior knowledge (matching condition) or disagreed with it (mis
matching condition). The question was how the semantic embedding inhibits 
or facilitates the identification of two systems with identical structures. (2) 
In one condition subjects had to control all four endogenous variables on the 
last block, whereas a second condition required the control of only two of the 
variables. (3) The experiment also investigated whether control of the system 
would be influenced by the number o f exogenous variables by which subjects 
could manipulate the endogenous variables. This was a within-subjects fac
tor. The A L T O L system consisted of three independent parts (marked by I, 
II and III in Figure 3) with a 1:2, 1:1 and 2:1 relation between exogenous and 
endogenous variables. (4) The last factor manipulated the user interface o f 
the system: In one condition the variables were presented numerically (Exp. 
4) , the second condition used a graphical presentation which contained the 
same information (Exp. 5; see Fig. 4). 
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Figure 4. Screen display of ALTOL on the fifth simulated week of a trial (graphical condi
tion). Upper part: endogenous variables (straight lines: goal values), lower part: exogenous 
variables (straight lines: zero intervention). The end points of the exogenous variables can be 
dragged in the upper or lower edge of the box in order to indicate the degree of a positive or 
negative intervention. 

Dependent variables were Q S C and QSI . Because for subjects in the 
condition with only partial system control a general QSC-score could not be 
computed, a separate Q S C is computed on the basis o f the two partial systems 
these subjects had to control. 

Subjects and procedure. A total o f 80 Bonn University students served as 
subjects for both experiments, such that under each of the eight conditions 
10 subjects were used. Assuming a = 0.10 and "large effects" (f = 0.40) 
power 1-p proves to be at 0.96 for the main as well as for the interaction 
effects (Cohen, 1977). Subjects were either given a small honorarium or they 
fulf i l led course requirements. 

Results. Wi th respect to knowledge compatibil ity it was expected that a 
system with counterintuitive relationships would diminish knowledge acqui
sition as well as control performance. O n QSI , a significant main effect o f 
knowledge compatibil ity was observed (mean Q S I for matching and mis 
matching version is 0.31 and 0.17, F(i,72) = 3.92*, respectively). A l so , control 
performance was affected (mean Q^SC for matching and mismatching version 
are 4.10 and 8.28, F(i,36) = 13.86 , respectively; note that only for subjects 
with four goals Q S C could be computed). 

A second hypothesis specified effects o f presentation format: The graphi
cal user interface of the system should facilitate the identification of system 
structure (QSI) , whereas the numerical condition should facilitate control 
performance (QSC) . Both expectations were disconfirmed. Neither Q S I nor 
Q S C showed significant main effects o f presentation mode. 

Presentation effects can be observed if one takes into consideration the 
third factor, the number o f goals to be reached, for which a main effect was 
expected but d id not occur on Q S I (F < 1). The interaction between presen
tation mode and number of goals is significant (mean Q S I for the numerical 
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version is 0.38 and 0.14 for 2 and 4 goals, for the graphical version it is 0.08 
and 0.36, F(ij2) = 13.36 ). Given numerical presentation and only 2 goals the 
causal analysis of the system was better than for the graphical version. With 
4 goals the effect was opposite, producing better identification under graphi
cal than under numerical presentation. 

A final hypothesis specified that a 2:1 relation o f exogenous to endo
genous variables (condition I, high degree of controllability) would result in 
better control than the reverse relation (condition in , low degree of control
lability). Contrary to this expectation, subjects showed best system control 
under condition III, medium control under II, and worst control under I (mean 
Q S C for I, II, and III are 4.75, 6.98, and 8.13; F(2,72) = 5,26*. respectively). 

Discussion. It is not surprising that the match or mismatch between prior 
knowledge and implemented system structure shows strong effects on knowl
edge acquisition and control performance. This illustrates an effect which 
could implicitly occur in studies where subjects' prior knowledge remains 
uncontrolled. In addition to the classical methods of analyzing effects of prior 
knowledge by comparing novices and experts (Reither, 1981) or by compar
ing a semantically embedded system with an abstract one (Hesse, 1982), the 
method of constructing two semantically equivalent systems which corre
spond differently to prior knowledge proves to be useful. 

Presentation format per se was not a critical factor. However, it is obvious 
that depending on the nature o f the task, differential effects occur: In order 
to cope with the more complex task the graphical presentation which is less 
precise in presenting system information yields better results. It remains 
unclear why different degrees of controllability did not have their expected 
effect on control performance: Selective motivational effects (the task which 
appears more difficult motivates subjects to work harder on it during the 
control phase) could be one possible explanation for this surprising result. 

4. General Discussion 

The main conclusions o f the five experiments presented above are as follows. 
First, a research program of manipulating formal system attributes experi
mentally contributes to an exploration of the differential influence of these 
attributes on knowledge acquisition and knowledge application. Second, the 
dependent variables for the amount o f causal knowledge and precision of 
system control seem useful indicators in studies designed to analyze acquisi
tion and application of knowledge. Third, the distinction between different 
kinds of relations within a system (endogenous and exogenous effects, 
Eigendynamik, side effects) should be further explored because QSI and Q S C 
seem to be influenced by that kind. Fourth, the formal approach is not 
restricted to systems with "artificial" semantic embedding but is also useful 
for semantically rich systems. Fifth, besides variations of system attributes 



the effects o f different presentation modes (active vs. passive exploration; 
numerical vs. graphical display) have also been found to be influential. 

Still lacking is a theory o f how people build up a mental representation o f 
a system and how they derive interventions from that model. Such a theory 
should also explain under which circumstances failures in a system could be 
detected and how, for example, operators can cope with dangerous situations. 
A lso , the model should incorporate human error which occurs even in cases 
where perfect knowledge is available (e.g., with overtrained pilots). 

Klahr and Dunbar (1988) recently developed an integrated model for 
scientific reasoning that seems to be applicable to our scenarios. They argued, 
"that scientific reasoning can be conceptualized as a search through two 
problem spaces: an hypothesis space and an experiment space" (1988, p. 7). 
These spaces result from the task of a (naive or well-trained) scientist: 

"The successful scientist, like the successful explorer, must master two 
related skills: knowing where to look and understanding what is seen. The 
first skil l—experimental design—involves the design o f experimental and 
observational procedures. The second skill—hypothesis formation—involves 
the formation and evaluation o f theory." (Klahr & Dunbar, 1988, p. 2). 

This assumption seems applicable to the research topic o f this paper 
insofar as the experimental situation Klahr and Dunbar were concerned 
with—exploration of a hitherto unknown object—is basically identical to the 
situation of exploring and controlling an unknown linear equation system. 
Furthermore, they conceptualized the process of knowledge acquisition in 
terms o f hypotheses that are developed either more inductively or more 
deductively. With respect to interindividual differences one could assume 
that some of the subjects fol low more closely the hypothesis-oriented ap
proach (and do some sort o f model testing), whereas others proceed more 
data oriented (and try to inductively form a model). 

Besides the great similarity in the experimental procedure and in the 
theoretical frame o f reference, however, there are some differences. The main 
difference can be seen in the way subjects' knowledge is measured. Klahr 
and Dunbar primarily used verbal data (see Bainbridge, 1979, as well as 
Ericsson & Simon, 1980, for a critical comment on verbal data in this 
context), whereas in our procedure different approaches are taken to diagnose 
the structural knowledge a subject acquires. This difference is partly due to 
our "object" of exploration: Subjects explicitly have to anticipate the next 
states of the system, they have to write down their hypotheses about struc
tural relationships, and they have to control the system as well as possible. 

Brehmer (1989) conceptualizes process control in terms of "dynamic 
decision tasks"—in contrast to static or sequential decision tasks—with the 
fo l lowing four characteristics: " (a) a series o f decisions are required; (b) these 
decisions are interdependent; (c) the decision problem changes, both auton
omously and as a consequence o f the decision maker's action; and (d) the 
decisions are made in real t ime" (Brehmer, 1989, p. 144). With exception of 
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the last criterion, this definition is also applicable to the systems SINUS and 
ALTOL. 

What are the main goals for future research? Three tasks will be outlined 
briefly: (1) a differentiation between factors influencing complex problem 
solving that come from individual, situational and system attributes; (2) 
reliability and validity research on complex problem solving scenarios; (3) 
adequate measurement of the actual "mental model" and of the potential 
heuristics that complex problem solvers use, also over time. 

Concerning the first task, separation of person, situation, and system 
influences on performance measures, the approach taken by Streufert et al. 
(1988) seems to point into an interesting direction: Instead o f using "free" 
simulations in which decisions can change a system's state quite drastically, 
they use a "quasi-experimental simulation technology," in which the system 
reacts in part independently of subjects' interventions such that each subject 
receives comparable information and events. Despite this fact, subjects still 
believe that they have a direct or delayed impact on the system. This tech
nique should be explored further in order to standardize the conditions under 
which subjects' performance quality is measured independent of system 
attributes. A lso , one has to make clear how this kind of pseudo-feedback 
affects knowledge acquisition or even prevents it. In the case of small-scale 
systems like SINUS the technique may not be indicated, but in large-scale 
systems like L O H H A U S E N the real feedback appears not to be of central 
importance. In this latter case, strange constellations may seem plausible 
because even in case of correct feedback not all the information can be 
processed by the problem solver. In the former case of a deterministic 
small-scale system, pseudo-feedback would quickly cause irritation. 

Even if subjects did not detect different degrees o f side effects or Eigendy-
namik—an argument used recently by Strohschneider (1991) in a critique of 
the present experimental approach—the effects of this manipulation on the 
dependent measures cannot be denied. Also, Brehmer and Allard (1991) point 
to the critical role o f system characteristics. In their studies, introducing 
different degrees of feedback delay leads to a detrimental problem solving 
behavior (see also Sterman, 1989). 

Concerning task 2, reliability and validity aspects, there is a good deal of 
work to be done, and it is not quite clear how to proceed: Up to now, 
researchers mainly pointed to the face validity of their tasks and dependent 
measures. Jager (1986, p. 274) called this "uncovered checks" that have to 
be cashed in subsequent research. It is simply not enough to show that there 
are no correlations between dynamic tasks and standard intelligence tests 
because many reasons can account for such results. Rather, one has to show 
positive connections to other psychometric instruments as well as to external 
criteria. Reliability studies have to demonstrate that the indices used do not 
show "random wa lk" characteristics. Much progress would also be possible 
if at least results f rom empirical studies were subjected to replication. By 
now, such replications are widely missing. If no direct assessment of relia-



bility seems possible, then at least replications should be presented in order 
to establish stable phenomena. 

Traditional measurement theory is not the only way to give answers to this 
question. Modern concepts like latent state-trait theory (see Steyer, Widaman, 
& Graser, in press), with their distinction between consistency and specificity 
o f certain variables, offer the potential for careful design o f reliability studies 
such as the one conducted by Miiller (in press) which revealed good scores 
for the Q S C and Q S I measures but also showed the existence o f situational 
influences. 

One possible line of validity research could be the use o f the learning test 
concept (e.g., Guthke, 1982) according to which intelligence is not a static 
variable but must be interpreted as "learning potential." It could be possible 
that relations exist between this "learning potential" and the ability to solve 
complex problems. Following a solid comparison of the two different re
quirements, predictions are possible concerning what kind o f selected de
pendent variables from both areas should correlate. 

Concerning task 3, the adequate measuring of the problem solvers' mental 
models and their heuristics, one has to develop instruments that sensitively 
assess those relevant parts of human memory that are required for identifica
tion and control. Whereas in the area o f assessing structural (or declarative) 
knowledge some useful techniques exist, there are clear deficits in diagnosing 
the heuristic knowledge that human problem solvers operate with. A lso , more 
attention should be given to developing measurement techniques that reveal 
the implicit knowledge of an operator. These could be developed similar to 
the procedures used in experimental memory research: If the recent use of a 
representation or of a procedure facilitates its subsequent access (as revealed, 
for instance, by reaction time measurements in verification tasks on these 
representations or procedures), then indirect effects could be established in 
roughly the same manner as in research on human memory. 

Reaction time measurements have proven useful in the area o f process 
control of finite state automata (see Funke & Buchner, in press). Based on a 
formal analysis o f the task under study it was demonstrated that a facilitating 
effect on R T occurs in verification situations in which the "natural" sequence 
o f state transitions is reinstated during test. 

Concerning the general research strategy, I find it more useful to manipu
late critical variables in system structures and in presentation modes than to 
create numerous new systems which are completely unrelated and offer no 
solid basis for comparisons. Collecting data without theoretical assumptions 
produces puzzling situations in which spurious correlations may suggest 
significant effects where no effects are present. Only the strategy of analyzing 
the effects o f selected variations based on some minimal theoretical prem
ises—the experimental method—can offer new insights into the principles 
and mechanisms that govern complex human problem solving. For this pur
pose, the research strategy outlined above offers a method for the systematic 
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construction and variation o f stimulus material with well known charac
teristics to be used in future experiments. 
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