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B4 BUCHMER AND FUNKE

The purpose of this paper is twofold: (1) We wish to introduce human
interaction with finite-state automata as a new res¢arch paradigm for
studying processes of knowledge acquisition and knowledge application in
dynamic task environments. (2) In order to illustrate the approach, a study
will be reported in which finite-state automata were used as dynamic task
environments. The study aimed at investigating the usefulness of an
external memory aid in exploring and controlling a device,

Using computer-simulated scenarios in problem-solving research has be-
come increasingly popular during the last decade (e.g. Berry & Broadbent,
1984, 1987, 1988; Brehmer, 1987; Broadbent, Fitzgernid, & Broadbent,
1989; Dorner, 1987; Funke, 1988, 1991; Hayes & Broadbent, 1988; Hoc,
1989; Hunt & Rouse, 1981; Jeffries, Polson. & Rasran, 1977; Moray.
Lootsteen, & Pajuk, 1986; Moms & Rouse, 1985; Plotzner, Spada,
Stumpf, & Opwis, 1990; Putz-Osterloh & Lemme, 1987, Sanderson, 1989).
This approach to problem solving seems attractive for several reasons. In
contrast to static problems, computer-simulated scenarios provide the
unique opportunity to study human problem-solving behaviour when the
task environment changes concurrently. Subjects can manipulate a specific
scenario via & number of input variables (their number typically ranging
from 2 to 20, and in some exceptional instances up to 2000}, and they
observe the system’s state changes in a number of output variables. In
exploring andfor controlling a system, subjects have to acquire con-
tinuously and use knowledge about the internal structure of the system.

Computer-simulated “microworlds" seem to possess what is called “eco-
logical validity”. Simulations of (simplified) industrial production (e.g.
Moray et al., 1986), medical systems (e.g. Broadbent, Berry, & Gardner,
1990), or political processes (e.g. Dorner, 1987) have the appeal of bringing
“real-world tasks™ to the laboratory. This has stimulated the use of a great
diversity of dynamic systems as experimental task environments, each of
which is designed to relate to a different aspect of “reality”. The problem,
however, is that such vastly different experimental tasks, and, hence, the
results of experiments using these tasks, are very difficult to compare. In
particular, it becomes unclear as to whether one should attribute experi-
mental findings to the experimenter’s manipulation or, rather, to the
peculiarities of the task employed. Most systems differ not only with
respect to surface features (i.c. the semantics implied by the labelling of
their input and output variables), which we know to have strong influences
on problem-solving behaviour in both static tasks (e.g. Kotovsky &
Fallside, 1989; Novick, 1988; Wagenaar, Keren, & Lichtenstein, 1988) and
dynamic ones (e.g. Hesse, 1982; Putz-Osterioh, 1990). Equally important,
for most systems it is unclear how one should compare them with respect
to the underlying formal structure.

There are two possible solutions to the latter problem. One possibility
is to define a set of formal dynamic system characteristics and use this set
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for systematically comparing the tasks used in various experiments (e.g.
Funke, 1990), Such an analysis will at least give a rough idea of whether
or not two dynamic tasks could yield comparable results. The other poss-
ibility s to denve different dynamic task environments from the same
formal background. The formal homogeneity of differemt task environ-
memts facilitates compansons between expenments and increases the
chances of discovering effects that are not only “local”.

The theoretical framework we refer 1o is the cybernetic theory of finite-
state automata (cf. Ashby, 1956; Hoperoft & Ullmann, 1979; Roberts,
1976; Salomaa, 1985). We wish to show that, from the perspective of
cognitive psychology, the paradigm of investigating human interaction with
finite-state automata has several interesting aspects. These are mentioned
here and discussed in greater detail further on. (1) The theory of finite-state
automata may serve as a basis for constructing classes of formally well-
described dynamtic task environments. As a consequence, it becomes pos-
sibie to construct different problems that may share well-known
and differ with respect to a critical feature, (2) The formal description of
finite-state automata suggests inferesting assumptions about plausible
cognitive processes and forms of mental representution necessary 1o control
a discrete dynamic system effectively. (3) The same formalism
appropriate and systematic diagnostic procedures that closely correspond
to the assumptions about mental representation. (4) Using finite-state auto-
mata, one does not have 10 give up the “ecological validity" appeal of more
conventional dynamic task environments.

Formal Background

Finite-state automata theory is a well-claborated framework in the area of
computer science. Here, however, we make use only of the framework’s
most elementary concepts. Within finite-state sutomata theory, any system
can be defined and exhaustively described by a transformation function
that specifies the state transitions given a specific state of the system. In
this paper we focus on deterministic aotomata. A deterministic finite-state
automaton is defined by three sets and two functions:

. & finite set X of input signals (the input alphabet);

. a finite set ¥ of output signals (the output alphabet);

. a finite set § of states;

. @ transition function 8, which is a mapping of § x X on § and which
determines the next state of the system as a consequence of the input
signal;

5. a result function A, which is a mapping of § X X on Y and which

determines the output signal of the system as a consequence of the input

signial.

L bl
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The automaton A = [X, ¥, §, 6, A| is called a deterministic Mealy-auto-
maton (see Figure 1). To make things more concrete, the input alphabel
of an arbitrary technical device ¢onsists of the button and switch positions
that can be selected as input at a certain point in time. The output alphabet
contains all possible display settings. It is assumed in the above definition
that the system works on the basis of a discrete rime scale. At each point
in timic, the system is in a certain state in which it receives exactly one
input stgnal (e.g. on a VCR, the “fast forward” button 1 pressed). The
systemi then moves to the nexr stare, which is determined by the transition
function & (e.g. the VCR starts to wind the video tape). Subsequently, the
device emits exactly one output signal, which is deternuined by the result
function A as a consequence of the current state and the input signal (e.g.
the “fast forward” arrows on the VOR's front display are highlighted).
Note that in this general version the output signal ks informative about
both the next system state and the input signal (and, hence, about the
previous system state). To illustrate this with apother example, an error
message of a computer program typically contains information about both
the present state and the previous state. Thus, the same state s € § (e.g.
a fatal system error) may be associated with a number of different output
signals ¥ & Y (e.g. error messages), depending on what preceded the trans-
ition 1o that state.

An autaomaton in which the output signal y € Y depends only on the
new state 5 « 5 as determined by 8(s, x) (i.e. y is not a direct function of
the mmput signal x e A) s called a deterministic Moore awtomaton, In this
case @ marker function u exists, which is a mapping of 5 on ¥, replacing
the result function A. In other words, the output signal contains information
only about the state of the svstem following the Intervention (e.g. that a
system error has occurred), and not how one got there (e.g. which type
of error cansed The computer to crash), Numbers displayed on a pocker
calculator may also serve as everyday examples for this situation. The digits
in the calculator's display do pot unambiguously inform us about the cal-
culator's previous state and the last input. Thus, in 2 Moore automaton,
an output signal is less mformative, because it only refliects the current
state of the system. This is an important system characteristic to keep in
mind in constructing dynamic task environments. Naturally, in any realistic
automaton both forms of output signals may coexist. Figure 1 illustrates
in the simplest possible case the formal difference between Moore and
Mealy types of automata.

Two convenient ways of describing finite-state automaia are used. state
transition matrices and directed graphs. Each possible description of finite-
state automats puts a different emphasis on certain aspects of system
behaviour. Knowing about these differences is helpful in constructing
dynamic task environments, A state transition maltrix contains in its cells
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FIG. 1, Directed graphs amd state transitiom matrices illustrating (a) & Mealy and (b) &
Moore sutomaten. 51 and 52 represent the two states of the automaton, 11 and I2 represent
the mput signals, and lower-case letters represent the output signals

the automaton's state at time ¢ + | {S,.,, the next state), given a specific
state at time ! (S,, the current state) and 3 specific input signal at nme r
([, the user intervention). In each column it contains the “function” of an
input signal, and the rows reflect possible next states given a certam current
state.

Figure 1 also shows that every deterministic automaton may be un-
ambiguously described by a directed graph D with D = (V, OPE), where
V is a set of vertices (states, nodes) and OPE is a set of ordered pairs of
elements of V called arcs (state transitions, edges). For small automata,
directed graphs are & particularly useful (ool for visualizing the automata’s
functional characteristics,’

Another form of describing the characteristics of a finite-state auto-
maton (not illustrated in Figure 1) is a ree. A tree is an ordered graph
consisting of a “source” node from which hierarchical “branches” to
successor nodes originate. The source node represents the initial state of
the system. Successor nodes are all states that can possibly be reached
from the current node by any of the available interventions. The “leaves™
associated with the branches represent the output signals of the system

'In addition, graph theory provides certain (descriptive ) concepts for characterizing finite-
state automata, such as different forms of connectedness 01 arc-vulnerability. Roughly, fot
imitanie, arc-vulnerability describes the degree to which there exist alternative sers of state
transitions that may be wed  one st of transitions s no longer svailable 1o get 2 system
from a specific state 5, 1o another specific wate 5., This may happen. for instance, dus 1o
a system failure or because of forgetting on the side of the user. The smaller the pumber of
alternatives, the more vulnershle the system is relative 10 the 55, tramition (for further
detaily, see Robers, 1976)
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gasociated with the ctate transitions. Thers ave a8 many levele of hranches
as there are interventions 1o be considered. Thus, the branches of the tree
reflect the accumulated state transitions of the system. One reason for
using trees to visualize the structure of an sutomaton may be to illustrate
quickly the decisions a person has to face in interacting with the system.

The cases considered so far involve only user-generated state transitions.
However, state 1ransitions may also occur autonomously {i.e. not caused
by direct user interventions). Aulonomens fransitions oocur as a function
of discrete time intervals, As an everday example of such ume-dependent
transitions, consider an automatic ticket vendor that ejects the inserted
money if no user input occurs within a certain Ume interval, [n order to
répresent time-dependent transiions. one can simply add a separate
column to the transition matrix analogous to & new input signal. This new
column contains for each state as parameters not only the next system state
S,., but also the length of the time interval after which the specified state
transition will occor (unless, of course, the user selected a different inteér-
vention hefore the end of the time interval).

Transparency a5 an importan! system characteristic depends on the
nature and the number of laten! states implemented in a system. A state
is said to be latent if, for instance, a state transition to this state resalts in
an output signal identical to the signal of the preceding transition. A ticket
vendor that does not emit information about how much money has been
inserted can serve as a simple example. After cach coin inserted, the system
siate changes, but the ouiput signal stays constant. Roughly speaking, the
larger the number of different states that share the same output signal, the
less transparent the system will appear to the person frying to inferact with
it-

Attractive Features of the Discrete Systems
Paradigm

The paradigm of human interaction with finite-state automata has a
number of antractive features for studying processes of knowledge acquisi-
tion and knowledge application in dynamic task environments, These fea-
tures, which have already been mentioned, are described here in greater
detail,

1. Constructing Classes of Well-described Dynamic Task Environ-
ments. This is an important aspect. as manipulating the properties of task
environments seems essential for experimental cognitive psychology. Yet
in the area of problem-solving research this aspect has often been neg-
lected. Instead, what we find is a collection of simulated scenarios, most
of which have been constructed to “mimic” some aspect of reality more
or less adequately. These scenarios—and, hence, the results of experiments

FINITE-STATE AUTOMATA AS DYNAMIC TASK ENVIRONMENTS 89

employing them—<can hardly be compared, and it is difficult 1o manipulate
isolated properties of unsystematically constructed “realistic” scenarios
(see c.g. Brehmer, Leplat, & Rasmussen, 1991). One reason for this deficit
is that the appropriate formal criteria are not readily available.

Systematically varying and controlling the properties of task environ-
ments helps to detect effects that are unique 1o a specific task, and it may,
# the same ume, seTve 1o estimate the impact of these properties on
processes of knowledge acquisition and application. Within the theory of
finite-stale automata the tools are available for exhaustively describing
different discrete dynamic systems on the basis of the same formalism.
This facilitates both system comparisons and systematic variations of single
task properties. A concrete example may be system complexity. System
complexity is determined by the number of states a device can be in, and
by the number of interventions with different consequences possible for a
given sysiem state. The number of different interventions corresponds to
the number of potential user decisions given that state. For each state, the
number of different interventions may vary between | (a “trivial” case in
which all input signals have the same consequence) and the number of
input signals available (each inpul signal has a different consequence),
McCabe (1976), for instance, has introduced & complexity measure that
takes into account these parameters that together define the decisional
structure inherent in a system. This complexity measure may be used to
characterize the overall complexity of automata. Considering the graphical
representation G of a Gnite-state automaton with » states, ¢ edges, and p
connected components, complexity C is defined as

CG)=e-n+2+p

As p is different from | only for hierarchically nested automata (a case
that is irrelevant for our present purpose), we can say that for the extremely
simpie example in Figure 1 we find ¢ = 4 edges and n = 2 states, resulting
inC=4—-2+2=1= 4. This figure may then be used to make ordinal
comparisons between different automata.® McCabe’s measure is applied
to the automata used in our experiments.

Of course, experimental research using dynamic task environments rmust
not exhaustively focus on the variation of formal properties of task environ-
ments. However, formal properties may serve as a first basis for inter-
preting psychologically interesting effects (such as differences in the
amount of knowledge acquired) and as a stimulant for interesting experi-

C takes on & minimal value of 1 for autommta in which sl mterventions that sre possible
a! & given state lead 0 the same nexy iste. The graph of sech sutomata takes on the farm
of 2 chain, lesding in & straight fine from the initial sate vis all Intermediate states to the
rerminal stute, Henee, the number of stales n surpasses the number of edges ¢ by exactiy 1,
thid C=[n—1)=n+2=|
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ments, particulariy if subjects’ performance deviates from what would be
expected on formal grounds.

2 Plausible Cognitive Processes and Forms of Mental Representarion.
The formal descriptions of automata also provide a basis for selecting
p]ausible psychological hypotheses about their mental representation and
about processes of knowledge acquisition. The user's knowledge sbout a
system) can be described m terms of those parts of the transition matrix
that are represented in memory and available for guiding system inter-
ventions. We call this the person's “individual transition matrix™ (TTM),
The person’s I'TM may. of course, deviate from the automaton’s transition
matrix because it is incomplete or because it contains incorrect fransitions.

if 2 person is confronted with a previously unknown sutomaton and
begins to explore this device, leaming about the functioning of it must
begin at the level of mdividual state transitions composed of a previous
state, a0 intervention, and a next state. A person’s experiences of these
transitions while explonng the automaton constitute the “entries'’ for the
ITM, At that level. the signals belonging to different states, interventions,
and pest states must become associated. Figure 2 illustrates the necessary
associgtions between the basic components of individual state transitions,
(1) We assume that 3 systetn state becomes associated 1o a specific inter-
vention (F;) as a consequence of the feedback provided by the subsequent
state of the system. Such an association could be the leaming to press a
stop switch in an emergency situation. (2) The intervention itself may be
associated with a specific subsequent system state (F;). Pressing the off-
switch of a device, for instance, will be strongly related to the subsequent
terminal state, (3) States may be directly associated to subsequent states
(Fy). particularly if there is only a limited choice of possible interventions,
if the chiice of an intervention does not matter to the state transition, or
if the transition occurs autonomously (i.e. as a function of a discrete time

Bs B

Fig 2 Forward (F) and backward (B) associations between basic components of state
[T T T haTs L
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interval without an explicit user intervention). (4) We need to consider
associations of subsequent interventions as a componen! association that
should be important when ouiput signals of the system are not attended
(Fy). Following manual or cookbook instructions may serve as & proto-
typical example in this context,

In analogy to paired associate learning findings (cf. Martin, 1965) we
may expect both forward and backward associations to be formed (the
latter are referred to as 8, 1o B, in Figure 2). However, forward associ-
ations should be dominant, as free exploration of an automaton results in
a more serial learning [ype of experience. In contrast, paired associate
learming expenments that find strong backward assoctations typically ran-
domize the order of presentation of the pairs of stimuli from trial to trial,
thus prevenung serial learning from playing an important role {e.g
Harcum, 1953; Murdock, 1956, 1958, Richardson, 1960).

Of course, combinations of component associations will be relevant
depending on the situation. For instance, associations F; and F; are
relevant for predicting the next system state given the present state amd
an imervention. In making such a prediction, the current state and a
specified intervention may be combined in short-term memory to form
“compound cue'’ (Gillund & Shiffrin, 1984) to retrieve the next state of
the system.

Later ¢n in the process of leaming, people may no longer primarily use
knowledge about individual state transitions to control a device. Instead,
they will cluster individual state transitions into more abstract concepts
according to, for instance, the statistical propertics of the elements of the
state transitions (e.g. co-occurrence of a subset of outpul signals with a
specific subset of input signals) in order 10 reduce memory load

We can distinguish two different ways of organizing clusters of state
transitions. { 1) “Routimes” may be developed to get a system reliably from
one state to a distant state, This can be referred - as the formation of
“hortzontal chunks™ of state transitions. For example, the state transition
sequence S~1~8,, LS04, ~8,.3 may be reduced to the form $-{I-
1, \=1,.:}-5,, s where the interventions necessary to get from state 8, to §,, ,
[orm one single component of a compound state transition and the user
no longer needs to attend to the intermediate outpul signals (e.g
Anderson, 1982; Frensch, 1991, MacKay, 1982; Newell & Rosenbloom,
1981}. (2) State transitions can be combined across a specific mtervention
or a specific state, given the intervention or the state can be identified as
the source of a specific form of invariance. This process can be referred
to as the formation of “vertical chunks" of state transitions. An example
could be an intervention to change the mode of operation of a device (in
the most simple case this is an “on/off” switch).

The concepts induced from the experience of individual state transitions
arc necessarily more abstract in that they no longer correspond to one
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single specific physical event in the automaton. For instance, concepts like
copying, cutting, deleting, and inserting text in a word processor may be
grouped as editing functions. In a new dynamic task environment, how-
ever, leaming-by-exploration will start at the level of individual state tran-
sitions, and it seems necessary to understand the process of learming at the
level of state transitions before proceeding to a higher level of knowledge
oTgamzation.

3. Diagnostic Procedures. A frequent practice in problem-solving
research is to use specifically designed guestionnaires or performance
measures that are directly derived from the task at hand, such as the
“production output™ in an economic scenario. The problem with these
idiosyncratic measures is twofold. (1) Again, it is difficult if not impossible
to compare such measures if they stem from different tasks and use system
parameters as performance criteria. (2) They have no clear relation to
“elassical” measures of memory, and hence we renounce a considerable
body of information accumulated about these latter measures (e.g. Posner,
1978).

The formalism taken from the theory of finite-state automara provides
tools for developing adequate and systematic diagnostic procedures. We
can assume that a person’s experiences of state transitions while exploring
an automaton constitute the “entries” for the ITM. State transitions, in
turn, consist of a given system state at time ¢ (S,), an intervention at time
t (1), and a next system state at ime 1+1 (5., ). A straightforward way to
assess users’ representations about a discrete dynamic system, then, is to
confront them with two elements of this triple and ask for the missing
element. This results in three basic types of questions that can be asked
to investigate a given state of knowledge:

. Prognostic question: Given state §, and intervention [,, what new state
81 will result?

2. Interpolation guestion:  Given state §, and state S, |, what intervention
1, does produce this state transition?

3. Retrognostic question: Given an intervention [, and a resulting state
Si+1, what was the previous state 5,7

With these questions it is possible 1o take “samples™ from the ITM. For
deterministic discrete gystems the answer to Question | always has only
ane correct solution, For Questions 2 and 3, however, the actual answer
may be taken from a set of correct items, depending on the specific char-
acteristics of the automaton. The questions may be presented in analogy
to classical direct measures of memory, either in a cued recall situation
(the person must recall the missing element) or in a recognition procedure
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{the person must select the missing element from a list of alternatives).
Also, we have been successful at using variants of these questions that
constitute mdirect measures of system knowledge n that they do not
require an explicit recollection of the prior learning episode (Buchner.,
1993).

In addition to presenting only two out of three elements, one can also
expose subjects to entire stale transitions that are either possible or impos-
sible for a given device and ask for a response indicating the correctness
of the transition. This is similar 10 a classical verification task, and both
reaction time and error rates provide well-known dependent measures.

A unigque feature of dynamic systems tasks is that “control performance™
provides an additional access to a person’s knowledge about a system. For
evaluating these performance data and for making performance com-
parisons between subjects it 15 essential 1o have a criterion for optimal
performance. This criterion is directly available within the finite-state auto-
mata approach. Given a present state of a discrete system and an arbitrarily
defined poal state. it is always possible 1o specify whether there exists a
sequence of interventions to reach the goal state and, if so. how many and
what steps constitute an optimal sequence of interventions (i.e. a sequence
invalving a minimal number of steps),

The finite state automata formalism also suggests other performance
measures. For instance, subjects’ exploration behaviour (i.e. the way they
approach the knowledge acquisition task) may itself be an interesting basis
for additional dependent variables. A readily available indicator of ex-
ploration behaviour is the number of different state transitions explored
relative to all states in the state transition matrix of the system. One can
assume that under difficult learning conditions subjects restrict their
exploratory activities 1o a smaller number of transitions 1o build up firm
knowledge about the device.

4. Ecological Validity. Finally, we want to point out that many tech-
nical systems we deal with in everyday life are adequately described within
the formalism provided by finite-state automata theory. Examples include
computer programs, TV sets, programmable VCRs, digital wrist watches,
banking machines, and so on (see also the examples given by Weir, 1991),
In addition, consider some highly formalized way of social interaction. For
instance, everyday experience with administrative processes is that bureau-
cratic institutions accept only a finite set of input signals, take on a finite
set of states, and emit & finite set of output signals, Thus, in drawing upon
a well-developed formalism for constructing dynamic task environments,
one does not automatically lose the appeal of “ecological validity"" that is
often demanded of psychological research.
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AN ILLUSTRATIVE EXPERIMENT
ON THE EFFECTS OF EXTERNAL MEMORY AIDS

To illustrate the approach outlined above, we briefly present an experiment
that used finite state automata as dynamic task environments to investigate
the utility of an external memory for learning about a system.

Three groups of subjects performed successively on two different
unknown automats, For each automaton, their task was the following:
subjects were instructed to explore each automaton on two subsequent
“'exploration phases™ and to find out how it worked by manipulating it.
One group performed without additional help. Subjects in each of the two
remaining groups could use one of two different versions of an external
memory. After both exploration phases, all subjects were confronted with
a recognition task ("'prognostic questions”, see earlier discussion) to assess
their system knowledge, and with a verification task to test a representa-
tional hypothesis (see later discussion). Finally, in a third phase subjects
were asked to try to reach a specified goal state as often as possible during
a particular interval (“control phase™). Thereafter, subjects were again
confronted with the recognition task and the venfication task. The same
procedure was repeated with the second automaton.

Qur basic assumption is that learming about a new discrete dynamic
system starts at the level of individual state transitions (5-/-S.,
sequences). Later on in the course of learming these state transitions may
be combined into higher-order units (see earlier). However, as a pre-
requisite they have 1o be avalable in working memory to become integ-
rated. The present expenment was designed to test whether an external
memory that graphically displays past states and interventions would facil-
irate the miegration process by expanding the amouni of transitions that
can be made available to working memory, and whether the external
memary would reduce interference between the mdividually experienced
state transitions that share elements of the §-/-S,,, wnple, thereby
changing subjects’ exploratory behaviour. An additional question was
whether the usefulness of the external memory would depend on the com-
plexity of the system with which subjects interacted.

Hypotheses

The major focus of the experiment was on the utility of an external memory
aid as one way to support identification of the unknown system structure
Existing research in this field mostly focuses on conditions that encourage
people to use external memory aids spontaneously (e.g. Harris, 1980). For
the most part this seems to be a question of a person’s metacogmtive skills
and the available knowledge about the utility of an external memory aid
in a particular situation. At least adults seem to know fairly well when
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they should use which type of external memory aid (cf. Intons-Peterson &
Fournier, 1986).

In & novel automaton, learning starts at the level of associating elements
of state fransitions. Parbicularly at the beginning of the learning process,
these associations will still be fragmentary, Also, normally there will be a
number of transitions that share elements of the §-1-5,., triple. An
attempt to retrieve a particular transition or a component thereof will
consequently be susceptible to imterference from similar transitions. For
instance, given a current state 5, and a desired next state S,,,, an inter-
vention §, may be retrieved either because it is associated with the current
state bul not with next states different from .., or because it 1s associated
with the desired next state §,., but not with the current state. As a con-
sequence, subjects may restrict thewr exploratory activities to a smaller
number of transitions in an attempt to reduce this mterference, If, in
contrast. the availability of an external memory aid serves to reduce the
interference, more different state transitions should be explored (Hypo-
thesis ). As a consequence of a more extensive exploratory activity, more
will be learmned about the structure of the automaton. Thus, subjects sup-
ported by an external memory should perform better both on the recogni-
tion task and on the control task (Hypothesis 2). If this is true, an external
memary that in addition to preserving past information enables users to
resume exploration at a part of the state transition matrix they already
know could further reduce the imterference and facilitate a systematic
expansion of a person's individual state transition matrix, thereby causing
an additional performance increase on the recognition task and on the
control task {Hypethesis 7).

The rwo automata used in this expeniment differed greatly in complexity
as defined by formal system charactenstics. Assuming that this formal
property influences the leaming rate, we postulate that performance should
be better on the small automaton than on the complex automaton (Hypo-
thesiz 4). It was also of interest whether the wtility of the external support
system was uniform for automata of different complexities. As the external
memory displays an identical number of state transitions for both auto-
mata, the relave reduction of mterference should be much lower for the
complex automaton. Considering the large difference in complexity
between the automata (see later discussion), we postulate that the perform-
ance differences specified by Hypotheses 1 and 2 will be present for the
small aytomaton but not for the complex automaton (Hyporthesis 5).

A separate question concerns so-called “efficiency—divergency” effects.
Oesterreich {1981) has suggested that in complex choice situations subjects
prefer actions that imply more alternatives (more divergent actions) but
lead to a goal less efficiently, compared to actions that are more efficient
but less divergent. We wanted to see whether corresponding results could
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be found for dynamic task situations when subjects explore a device under
conditions of imperfect knowledge. They should then prefer to explore
and, consequently, acquire more knowledge about states that lead to the
goal state less guickly but with a smaller risk of running into a state that
is further away from the goal than the present state. In contrast. they
should know less about efficient but less divergent transitions ( Hypothesis
6).

Finally, it was mtended to test a representational hypothesis that follows
from the assumption about the serial learning character of associating state
transttions. For that purpose, we itroduced & verification task in which
subjects judged whether or not a given transition was possible for the
automaton they explored. {f the assumption holds, we would expect faster
verification times for the second of a pair of state transitions if the pair
corresponded to the natural sequence of transitions in the automaton. In
contrast, if the second item of the pair violated the normal sequentiality,
no priming henefit should occur (Hypaothesis 7),

The Task

Two dynamic systems were constructed on the basis of the theory of
finite-state mutomata. They were displayed using MacFAUST." Mac-
FAUST provides a standard graphical user interface for many different
kinds of discrete systems (yee Figure 3).

During the exploranon and control phases, subjects interacted with an
automaton by clicking with the computer mouse into “input buttons” m
the display. A selected button turned grey. For example, on left side of
Figure 3, the combination “alpha, +.@" has been selected. For each inter-
vention, subjects selected exactly one button in each row of input buttons
and clicked 0K when they were satisfied with their choice. Changes of
selections were possible as long as “0K™ had not been clicked, and "OK"
was active only if one button in each row had been selected. The results
of the intervention could then be observed in the “output fields™ (right
side of Figure 3) of the display. The input butions were cleared, and
subjects could select their next inpul.

The two systems used in this experiment were designed to be com-
parable with respect to most features and yet to differ with respect to their
degree of complexity. Complexity is supposed to be a major factor
influencing the difficulty of the identification task and of the utility of the
external memory support, As a measure of complexity we employed

"aacFAUST (= Finite AUtomsata Simulation Tool) runs on Apple Macintosh computers
and sgrves to creste and experiment with finite state automata 35 dynamic lask snvironments.
For a more detsiled description of MacFAUST see Buchner, Schmitt, Funke, and Nikelowsii
(1991). MacFAUST s wveilable wpon Teguest
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FIth. 3. Example user mterface display for the small mstomaton. Left side: jnput buttons,

McCabe's (1976) complexity index (see above). The small aumtomaton has,
according ta this measure, a complexity of 32 (g = Wedges and n =9
states). The complex automaton’s complexity is 260 (¢ = 304 edges and
n = 46 states), Thus, the automata differ considerably with respect 1o the
decisional complexity implied by their state transition matrices, The state
transition matrices for both automata are given in the Appendix (Tables
Al and A2).

Both automata operate like Moore automata. The output signals reflect
only the system states, and cach state {s associated with a unique output
signal (i.c. there are no latent states]. Each automaton has three rows of
input bultons. In each row, one button must be selected for the complete
input signal. Also, in both automata the output signal has three com-
ponents (see Figure 3 and Tables Al and A2 in the Appendix). In each
automaton, ane row of input buttons works similarly to #n “onfoff™ switch
(+/— and /0 for the smail and the complex automaton, respectively) in
that it controls whether or not inputs in the other rows have an effect on
the systém in the sense thai they produce a transition to a 8, # 31 state,
where S§1 s the mitial stare. For instance, if a person selected *—"" in the
second row of the small automaton’s input buttons, the following transition
always resulted in the initial state, regardless of the setting of the buttons
in the remaining rows. Another row of input variables worked like a
“mode™ switch (alpha/beta and amount/AA4). Depending on the current
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setting of this input button, the inputs in the third row have different
effects. For instance, if the small automaton is in its Initial state S1 and if
“alpha” is selected in the first (and " +" in the second) row of input buttons,
the effect of pressing “##” in the third row (I2) is that the automaton
moves to state 52, and "B" is displayed in the bottom component of the
output signal_ If “beta” (I6) is selected instead of “alpha”, the system stays
in state 51 and no change in the output signal occurs following that inter-
vention,

The exact way of how the sutomata worked is reflected in the state
transition matrices (see Tables Al and A2 in the Appendix). Roughly, the
small automaton may be described in analogy to a primitive ticket vendor.
The user first selects one of two types of cards (e.g. one selects card “B”
by pressing the combination “alpha,+ ee" which leads to state §2), then
inserts money (e.g. by selecting “beta,+ ##9” which leads to state 56),
and finally tells the machine to eject the card (by selecting “bela, + sese”
which leads to the goal state $8). To understand the complex automaton,
one may think of an automatic telier. The users sets the machine to display
a certain amount of money (by selecting several rimes “®_ amount”, and
one of the appropriate buttons A" to “E"") and then types in one of three
permissible 3-letter code words to reach the goal (by selecting several times
"o AAA", and one of the appropriate buttons “A'" to “E"). Alternatively,
the user may starl to tvpe in the code and then specify the amount of
money.

The automata were compietely unknown to subjects, and the labels of
the input and ouiput signals were designed to be semantically poor so as
to make the task primarily one of structure identification. Subjects should
not use any specific knowledge they might have had about a concrete
system to infer the automata’s structures.

It has frequently been reported that, particularly for novices, surface
features are crucial for positive transfer between different tasks (e.g.
Gentner & Gentner, 1983; Novick, 1988; Schumacher & Gentner, 1988),
Therefore, surface features of the two systems were made dissimilar to
minimize possible transfer effects between systems. (1) The labels used for
the input and output variables and for their levels were changed from one
system to the other. (2) The spatial positions of the input buttons and the
output fields on the graphical display were different for both automata.

The External Memory

For two of the three expermmental groups, an external memory was
available during the exploration phase. Two different versions of the
external memory were implemented. Both versions graphically displayed
six past states at a time in a separate window, and the window automatically
appeared on the screen every six interventions. The display consisted of
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scaled-down copies of the original displays and showed the selected input
buttons, together with the following output signal. An example of the
external memory for the small automaton is presented in Figure 4. Subjects
n_:::ould mspect all past transitions of the current exploration phase by clicking
into the numbered top row of the window, The state with the appropriate
ordinal oumber and its five predecessors were then displayed in the
memory window, Subjects clicked into the window's “close box” in the
top left corner when they wanted to continue to explore the automaton.
This “static” version of the external memory was presented to one group.
For amluhrr group the external memory additionally included the
":::Iynam:c“ option to make one of the old states displayed i the memory
w:ndulw the next present state of the system and to continue system ex-
ploration at that state. To achieve this, subjects clicked into the part of
the window displaying the desired next state. They were then asked to
confirm their decision before the memory window was closed. The auto-
maton then displayed the desired next state as its current state from which

subjects could continue their exploration. The transition was counted like
a normal user intervention.

Knowledge Assessment

After cach interval of 50 interventions, subjects were confronted with
a recognition test and a verification task. The recognition test consisted of
10 items, the verification task consisted of 20 jtems,

( |
<-= Click here 10 cancel

mal b I u“T He i
(| | -
m I ad
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qu_ 4. Example display of the external memory for the small antomaton, All trialy huve
ordinal numbers, with that of the present tnal being the highes. '
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Dunng the recognition test the screen display was identical 1o the display
during the intervention tnials. except that the three output signal displays
were divided horizontally into two separate ficlds, one of which showed a
system state S, and the other parl was empty. Also, three mput buttons
were shaded grey to indicate an intervention [, Subjects’ task was to con-
sider the state §, and the intervention [, and then to select from a list of
possible and an equal number of impossible output signals the appropriate
signa| of the next state S, ("prognostic question”, see earlier discussion).
More specifically, for each possible output signal in one of the three com-
ponents there was one impossible alternative. Subjects selected the three
componenis by clicking inte the output fields. Each dlick in one of the
ficlds brought up a different output signal component. Subjects clicked
“0K” when they thought the displaved components constituted the correct
output signal.

A complete list of the recognition items for both zutomata is given m
Table A3 in the Appendix. The items did not represent a random sample
from the state rransition matrix but were selected 10 cover certain
interesting features of the automaton. For instance, Items 9 and 10 cover
inputs with a different efficiency-divergency characteristic (see Hypothesis
6). To illustrate, consider the complex automaton in which two 13 inter-
ventions may replace seven Il interventions to reach state S35 from the
initial state 51. On the other side, for intervention I3 there is a higher risk
of ending up in State §12, from which the distance to the Goal State $45
is maximal (only resets to the initial state are possible). Thus, as we expect
that subjects will prefer less efficient but also less “dangerous™ (more
divergent) interventions during their exploration trials, they should end up
knowing, less about the efficient intervention covered by Item 10 in compar-
o0 to the less efficient intervention covered by Item 9. We also expect
them 1o acquire less knowledge about the “mode” interaction (Items 3 and
4) than about the “on/off™ interaction (ltems 5 and 6).

In the verification task the display was identical to that in the recognition
task, except that the blank parts of the output signal components showed
the components of a next system state 5..,. In other words, a complete
S§~1-5,., transition was displayed. Subjects judged as fast as possible by
pressing a “YES" or “NO" key on the keyboard whether a given siate
transition was possible for the automaton they had explored. Half of the
itens were correct transitions. These were automatically selected from the
subject’s prior intervention trials in pairs, such that for three of these pairs
the second item was a state transition that had occurred after the first item,
thus corresponding to the “natural™ seriality of system state transitions. [n
contrast, two pairs of items were selected such that the second item was a
state transition that had occurred before the frst item, thus confradicting
the normal seriality of state transitions.
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During the controf task subjects interacted with the automaton as during
the exploration phase, but this time the mstruction was to use the shortest
possible sequence of interventions 1o reach the goal state (States S8 and
545 for the small and the complex automaton, respectively) as often as
possible within 50 mierventions. For the small automaton the optimal
sequence involves three, for the complex automaton it involves six inter-
ventions. Every time the goal state is reached, an additional transition is
used for the reset to the automaton’s initial state. The external memory
was not available during the control phase.

A final dependent measure was taken directly from subjects’ exploration
trials. It was counted how many different state sransitions subjects generated
while they attempted to learn how the automaton operated.

Method

Subjects. Subjects were 68 Bonn University students who either volun-
teered or participated to fulfil course requirements. They were aged 20 1o
) years.

Design.  Subjects were randomly assigned to one of the three experi-
mental conditions, these being no memory (NM), static memory (SM),
and dynamic memory (DM). There were 23 subjects in Groups NM and
SM, and 22 subjects in Group DM. Because subjects performed on two
successive automata, one half within each group started with the complex
automaton, the other half started with the small automaton,

Procedure. Subjects were tested individually. The instructions were
read to them in a standardized form and repeated on the computer. All
subjects received a printed version of the graphical display of the system
and a description of the course of the experiment. They were instructed
that they would be confronted with two unknown antomata and that their
task was to Identify how these automata operated. They were told that
each automston had one particular goal state and that if they would reach
this state, the automaton would present s brief signal indicating their
“success” and would then automatically reset itself to the initial state from
where they could then resume exploration. Subjects in the memory condi-
tions were informed about the external memory and instructed how to
handie the memory window. Subjects performed about 30 interventions
on an extremely simple “learning automaton" to become acquainted with
the use of the computer mouse.

Each subject then performed on two successive automata. For each
automaton they carried out two exploration phases and one control phase.
Each of the exploration phases and the control phase consisted of 50 inter-
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vention trials. During the two exploration phases, subjects’ task was to
icarn how the automaton operated by manipulating it and observing the
state changes. For the memory conditions. the memory window was dis-
played sutomatically every six trials during the two exploration phases.

In contrast, during the controf phase subjecis were instructed (o Iry 1o
reach the goal state ag often as possible. None of the groups received
external support while performing on this task.

After each explotation phase and after the control phase subjects per-
formed on the recognition task (10 jtems) and on the verification task {20
items ). The order of presentation of single items was randomized for the
recogmition task. For the verificaton task, the order of presentation of
patrs of items (presented in contradicting or corresponding sequence) was
randomized for ecach subject After each recognition item, subjects were
asked to indicate the degree to which they felt their choice was appropriate,
on a scale from | (= guess) to 4 (= perfect confidence).

The same procedure was repeated with the second automaton, except
that subyjects were not specifically instructed for the second automaton and
simply told that their 1ask and the procedure were the same as before but
that the automaton was different.

Results

A multivariate approach was used to analyse the repeated measures data
statistically (O'Brian & Kaiser, 1985). The Pillai-Bartlett-V criterion,
known for its robustness, was chosen as the multivariate test statistic
{Olson, 1976). However, the F-approximation to the distribution of V is
used in describmg the results. For all analyses, the critical level of a and
3 was sef to .05, which is sufficient 10 detect “large effects” given N = 23
in each of the three experimental groups. Also, for every significant effect
partial R%s (R;) will be reported as a measure of the proportion of variance
explained relative (o the total variance not explained by other experimental
variabfes (Cohen, 1977),

We first analysed whether the availability of an external memory had
an influence on subjects’ exploratory activities by reducmg the interference
from simular state transitions (Hypothesis 1). 1f thus was the case, subjects
in Groups SM and DM should have exposed themszlves 1o more different
state transitions than subjects in Group NM. Table | {upper section) dis-
plays the relevant data. Two ANOVAs were run separately for the two
automata with planned contrasts to compare the memory groups to Group
NM. The Ftests yielded significant group differences only for the small
automaton, F(2, 65) = 3.93, R} = (.11 [vs. A2, 65) < 1.38 for the com-
plex automaton]. a direct comparison showed that the difference in the
small automaton s dee to Group NM's lower number of different state
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TABLE1
Mean Number of Different State Transitions and "Off" Siates during the
Exploration Phases for the Three Experimentsl Groups and the
Two Different Automata

o

Variahis Awtomaton N SAF DM

Different srate sransitions Small 339091 WS(BE)  HL6(10.0)
Complex  80.9(17.1) 60.8(14.2) 67.3(12.3)

SO states Snmall 56.9(17.2) 45.9016.00  409(16.0)
Complex  40.7([58) 3540199 3I21(18.4)

Nowe:  Standard deviations are given in parentheses.

transitions relative to the memory groups [n(65) = —2.56|, whereas there
is no difference between Groups SM and DM [1(65) < 1.14].

Table ! also displays how many trials subjects spent with the sutomaton
“switched off”, which we analysed for exploratory purposes. In contrast
to any of the other dependent variables considered here, this represents a
possible system-specific measure of performance. A person who is better
at acquining the “on/off™ concept should “waste™ fewer inlervention tnals
with the automaton switched off. For the small automaton, we find overall
group differences, F(2, 65) = 5.53, R} = (.15, planned contrasts revealed
significant differences between the memory groups and Group NM,
#65) = 3.17, but not between Groups SM and DM [1(65) < —1.03]. For
the complex automaton, the overall test indicated that the group means
do not differ significantly {F(2, 65) < 1.28].

The data from the control task are shown in Table 2. An ANOVA with
group as independent factor showed that there is no significant difference
for either the small automaton [F(2, 63) < 1.79] or the complex automaton
(£ < 1] in terms of how ofien subjects reached the goal state during the
control task. Considering, however, the low overall number of goal states
reached and the fact that the means are in the expected direction a1 a
descriptive level, one maght suspect a floor effect. If one applies the optimal
sequence of mterventions for the small sutomaton, the goal state can be
reached 12 times during 50 intervention trials (three transitions from the
Initial Srate S1 10 SR plus one “avtonomous™ transition back to the initial
state). With the complex automaton the goal state can be reached five
times at the most. It is possible that the automata were 100 difficult 10
contro|, given the number of exploration trials,

The knowledge acquired about the automaton should be reflected in
the number of correct responses on the recognition test (see Figure 5). A
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TABLE 2
Mesn Numbaer of Gos! States Reached during the Control
Phaza for the Three Experimental Groups and

the Two Ditfersnt Automats
Crromps
Auterrmaien = Wi M D
:ﬂ-a! 0.7 (2.4} 1.6(4.3) 1.6{3.3)
Complex 0.4{1:3) 0.8{1.8) 0.7(L.B}

MNote:  Standard deviavons are green in parentheses.

global F-test mdicates performance differences on the small automaton
between groups, FI2, 65) = 7.23, R} = (.18; planned contrasts show that
whereas there is no difference between Groups SM and DM [r[ﬁS} < 1.08],
the difference between the memory groups and Group NM is significant,
#65) = —1.65 The memory groups bave more knowledge available about
the sutomaton than does the group without support. For the complex
automaton, the global F-test yields no significant group differences
(F < 1.11). It is interesting to note that the confidence ratings thas followed
each recognition item show exactly the same pattern. For the small auto-

Compies Awtowmaton

[ Ao exernal mrmory
B s etterng! memory
B [veamic external mesmory
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FIG. 5, ﬁvmpnuﬂerﬂmrt&pﬂmmth:mw:mtmmhﬂnmlh:ﬂm

mmdmﬁﬂ}nphnnmphncmdlhnmﬁphmﬁ}!mﬂm:mﬂmmm
sutomaton. The error bars represenl the standard deviations

Somenl]l Autowmaion -

Mumber ol correct redponses
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maton, there are significant group differences, F2, €5} = 6.41, R} = 017,
the difference exists between the memory groups and Group NM,
n65) = 3.37, and there is no difference betwsen Groups SM and DM
[r(65) < 1.23]. For the complex automaton, there are no significant group
differences [F(2., 65) < 1.78].

Considering performance on the small automaton, the data seem o be
compatible with Hypotheses | and 2 {with the exception of the controb
phase). Performance benefits due 1o the availability of an external memory
can be observed. However, Groups SM and DM consistently do not show
any performance differences. Thus, Hypotbesis 3 can be rejected.

In general, performance is worse on the automaton for both
the number of goal states reached [F(1, 65) = 6.33, R} = 0.09] and the
number of correst responses 1o recognition items [F{1, 65) = 4099,
R} = 0.39). This pattern has been specified by Hypathesis 4. Together witht
the fact that performance benefits for the memory groups occurred only
for the small automaton, this points to the differential utility of the external
memory support, It was effective only when subjects interacted with the
less complex of two otherwise very similar automata (Hypothesis 5).

The recognition test a1so illustrates that subjects continuously acquire
more knowledge about the automats. A MANOVA with phases as within-
subjects factor and planned contrasts corfitmn that the number of correcy
responses on the recognition 1ask Increases as a function of
the nummafmummmm.w—ﬂmgnw.mm
first to the mwphm (1, 65) = 40.35, and from the first
two exploration phunhﬂﬂ : Mﬁl 65) = 123,58

A more Mmhmﬁmﬂ#ﬁmﬂhmpiﬂm rest
revealed that effects (Hypathesis 6) were found for
the complex automaton, F{1, 65) = 10,40, RE = 0,14, but not for the small
automaton [F(1, 65} < 1.83]. This may be due to the difference in effi-
ciency as implemented in the automnta, The difference is larger for the
critical items in the complex antomaton (see Table AZ).

Table 3 also shows the “mode” intersction (items 3 snd 4, see Tabie
A3) was more difficult to understand thap the “onfoff™ hmﬂ:mﬂn (items
S and 6) of the input variables (see T.IHU-J:'I A MANOVA with item type
as within-subjects factor reviealed si t differences between the two
different types of items, F{1, 65) = 60.91, Ry = 0,48,

Finally. our concern was whether we mh‘l‘ find the represeniational
effects specified by Hypothesis 7 in the verification task. If the seriality of
events (i.e. state transitions) as experienced during exploration is mentally
represented, then reactions to the second member of @ pair of items “cor-
responding™ to this seriality should be facilitated. In contrast, reaction
times to “contradicting” items and to the first members of the pair should
be slower. The latter iterss may be called “neutral” because they follow &
distractor item. Only reaction times of cofrect answers were entered into
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TABLE 2
Hean Number of Goal States Reached dudng the Contml
Phass for the Three Experimental Groups and

the Two Different Automats
Gronps
Auibormaion N M DM
;al] 0.7{2.4) 26(4.3) L&{33)
Copmples G4{13) 0.9(1.8) B.7(1.8)

Noze: Standard deviations gre grven i parentheses.,

global F-test indicates performance ditferences on the small automaton
between groups, F(2, 65) = 7.23, R} = 0.18; planned contrasts show that
whereas there is no difference between Groups SM and DM [#(65) < 1.08],
the difference between the memory groups and Group NM is significant,
#65) = —3.65. The memory groups bave mote knowledge svailable about
the automaton than does the group without support. For the complex
automaton, the global F-test yields no significant group differences
(F < 1.11). It is interesting to note that the confidence ratings that followed
each recognition item show exactly the same pattern. For the small auto-
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N cxrernal memory
Seaile extermal meemory
B Dviamic exernal memary
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FIG. 5. Average number of correct responses i the recognition tasks following the first
{1} and second (2} exploration phase &nd the control phase (3) for the small and the complex
mntramatnn The ermie hors rerretesd e stamrtend deviafanmne

Number al correct responses
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maton, there are significant group differences, (2, 65) = 6.41, R = 0.17;
the difference exists between the memory groups and Group NM,
#{65) = 3.37, and there is no difference between Groups 3M and DM
[f{65) < 1.23]. For the complex automaton, there are no significant group
differences [F{2, 65) < 1.78].

Considering performance on the small automaton, the data seem to be
compatible with Hypotheses | and 2 (with the exception of the control
phase), Performance benefits due to the availability of an external memory
can be observed. However, Groups 5M and DM consistently do not show
any performance differences, Thus, Hypothesis 3 can be rejected.

In general, performance is worse on the complex automaton for both
the number of goal states reached [F(1, 65) = 6.33, R} = 0.09] and the
number of correct responses 10 recognition vems [#(1, 651 = 40.99,
R} = 0.39]. This pattern has been specified by Hypothesis 4. Together with
the fact that performance benefits for the memory groups occurred only
for the small automaton, this points to the differential utility of the cxternal
memory support. It was effective only when subjects interacted with the
less complex of 1wo otherwise very similar automata (Hypothesis 5).

The recognition test also illustrates that subjects continuously acquire
more knowledge about the automata. A MANOVA with phases as within-
subjects Factor and planned contrasts confirms that the number of correct
responses on the recognition task increases monotonically as a function of
the number of trials on the task, F(2, 64) = 64.13, R} = 0.67, from the
first 1o the second exploration phase, F{1, 65) = 40.35, and from the first
two exploration phases to the subsequent control phase, F{1, 65) = 123.58.

A more detailed analysis of some of the items of the recognition test
revealed that efficiency—divergency effects (Hypothesis 6) were found for
the complex automaton, A1, 65) = 10.40, R} = 0.14, but not for the small
automaton [F(1, 65) < 1.83]. This may be due to the difference in effi-
ciency as implemented in the automata. The difference is larger for the
critical items in the complex automaton (see Table A2),

Table 3 also shows the “mode’ interaction (items 3 and 4, see Table
A3) was more difficult to undersiand than the “on/off” interaction (items
5 and 6) of the input variables (see Table 3). A MANOVA with item type
as within-subjects factor revealed significamt differences berween the two
different types of items, F(1, 63) = 60.91, R = 0.48.

Finally, our concern was whether we would find the representational
effects specified by Hypothesis 7 in the verification task. If the seriality of
events (i.c. state transitions) as expenenced during exploration is mentally
represented, then reactions to the second member of a pair of items “cor-
responding” to this serjality should be facilitated. In contrast, reaction
times to “contradicting” items and 1o the first members of the pair should
be slower. The latter items may be called “neutral” because they follow a
distractor item. Only reaction times of correct answers were entered into
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TABLE 3
Avarage Number of Correct Answers to an em on the Aecognition Task Following
the Two Exploration Phases and the Control Phase

Ttems 3 &4 ftemy S &6 liem & mm_m
i : i "Ml'lﬁ‘ﬂ'" "Iﬁ.l' e mﬂﬂ" f

imtergction frseraction efficient ingi" it
0.54 nL .65

Small Automaton
08 ——— L5

Complen Autonzaton Ly —=— 075

Newe:  Maximum 18 three cOITeCT BREWETS.

the analyses.* Reaction times to contradicting items are significantly slower
than reaction Times o corresponding items {see Figure 6: FI2, 57) = 4.5,
R: = 0.14, and F(2, 54) = 4.95, Ry = 0.16, for the small and complex
automaton, fespectively). In contrast, reaction times o contradicting items
are not different from resction times 10 neutral items {(both Fs < 1). Pre-
senting items in their normal order facifitates their verification. These data
are in line with Hypothesis 7.

Discussion

The most alent result of the present experiment is that the extemal
MEMOTY smi showed beneficial effects on a number of different
performance measures, but only for the less complex of two nm‘mnata._h
is suggested that this finding is best interpreted in @ﬂﬂg m_the differential
approach known from clinical psychology according to which we may ask

]
Small Automgron  Comples Attamaton

FIG. 6 Mean reaction times for correct responses to different types of ircms in the

verification taske

'HmzmudmtumlunmdmmmmmumwhipmMMbeudw

ﬁmmmrmwlmdnmhgvﬂm.m:mummedmﬂmmm
b By adhad sl B eeenal far The pafive camnde
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which type of support system is indicated in which situation under which
type of task demand for which type of person. Consequently, a desirable
strategy of support system design would take into account as much as
possible person variables, situational variables, and task variables. In the
present case, complexity as a task variable had a differential effect on the
utility of the support system, Subjects benefited from the external memory
only when they explored the small automaton.

The external support did not affect performance on the number of goal
states subjects reached duning the control phase. This vaniable seems to
represent a difficult aspect of the experimental task, and the results could
reflect a floor effect. [n this case giving subjects more trials to explore the
system should reveal group differences, Allernatively, one could develop
more refined measures of control performance, How often subjects reach
a certain goal state is only a very global assessment of their control perform-
ance. It seems possible to design tasks at different levels of difficulty that
are indicative of subjects’ knowledge state (cf. Falmagne, 1989),

In no case was the performance of Group DM better than that of Group
SM. This finding runs contrary to our expectations, We therefore analysed
how often subjects in Geoup DM actually used the option to meke 2
well-known old state the new state from which to resume exploration. It
wurned out that just about half of the subjects in Group DM (12 out of 23)
ever used the option. Those subjects who used it did 50 on an average of
only 4.1 (out of a maximum of 16) occasions. This could explain why Group
DM did not perform better than Group SM. The extemal memory iself
was automatically displayed in a fixed interval of six trials. In contrast, the
“dynamic’’ option was left at subjects’ disposal. More importantly, there
wits no obvious visual reminder of the option on the screen (subjects simply
clicked onto the desired state display in the memory window—see Figure
4). It might be that such design faciors comiributed 1o the fact that the
oplion was mostly ignored.

With respect to the number of different state transitions, it is interesting
to note that the memory manipulation in this case affected a variable that
reflects a qualitative aspect of subjects’ exploratory behaviour. Our inter-
pretation of this finding is that the availability of past system states on an
external medium reduces the interference in memory that is otherwise
caused by state transitions that share identical elements of the S~/~5..,
triple.

The efficiency—divergency effect had been demonstrated for the complex
automaton only. This could be due to the somewhat smaller efficiency-
divergency difference between the critical inputs in the small automaton.
If the interpretation is correct, the finding indicates that exploring an
unknown device parallels a complex choice situation in that subjects prefer
actions that imply more alternatives but lead to a goal less efficiently com-
pared to actions that are more efficient but less divergent.
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Reaction times fo state transitions in the verification task yielded useful
information about how discrete dynamic systems might be represented. If
the second item of a pair was a state transition that in the chronology of
system events ocourred after the first item, reaction times were faster than
when the second item had actually occurred before the first member of the
pair. The facilitative effect indicates that seriality is an important aspect
of how experience with a dynamic system is mentally represented. This
could have implications for the development of new diagnostic procedures
to assess system knowledge more adequately. In the present experiment,
the items in the diagnostic phases were independent, and their sequence
was randomized. [n addition, they were static, presenting §,, [, and the
new (to be recognized) §,,, at the same time. Thus, one possible con-
sequence for the further development of diagnostic procedures could be
to probe subjects’ knowledge with sequences of items that correspond 1o
the chronology of system events.

GENERAL DISCUSSION

The purpose of this paper was to illustrate how a well-elaborated theor-
etical background such as the theory of finite-state auntomata can provide
the basis for an interesting experimental paradigm in research on know-
ledge acquisition and knowledge application using computer-simulated
*microworlds”. More specifically, the approach can be helpful in con-
structing classes of task environments that can be compared with respect
to formal characteristics, and it facilitates the direct manipulation of such
characteristics by providing a common formal background. We have also
argued thal the formalism for describing automata can be used to select
plausible psychological hypotheses about, for instance, how learming-by-
exploration may proceed, and how system information is represented.

Another interesting aspect of the approach is that it directly suggests a
mumber of methads to assess a person’s knowledge about a system. These
methods are both general in the sense that they can be applied to any
automaton (¢.g. “prognostic questions™), and related to “classical™ meas-
ures of memory like cued recall, recognition, or verification 1asks, Such
items may be ¢ither randomly sampled from the state transition matrix, or
they may be selected to cover critical features of the task environment.
The latter procedure has been used in the recognition task in the present
experiment. With respect to the verification task, we would like to point
out that methods of “mental chronometry™ (Posner, 1978}, which have up
to now been absent in this research domain, were shown to be applicable
to assessing the way system information is represented in memory.

In addition, finite-state automata theory provides a criterion for optimal
performance that is essential for evaluating a person’s system control
behaviour. However, other performance measures are also readily avail-
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dble. For instance, we have attempied 1o demonstrate that the number of
different state transitions a person decides to explore can be an interesting
ficpendcnt variable. Another example could be to compare recognition
flems covering transitions that have actually been explored to items cov-
ering transitions that have not. This procedure may turn out to be useful
for assessing generalization processes such as a person’s discovery of an
“ON/OFF" or “mode” interaction. To conclude this point, we would like
to argue that these more general methods of knowledge assessment are a
rather attractive alternative to idiosyneratic diagnostic procedures that are
directly derived from task parameters such as *'production output” (e.g.
Darner, 1987; Moms & Rouse, 1985).

We also wish 1o emphasize the paruliels between finite-state automata
and finite grammars (e.g. Chomsky & Miller, 1958). Finite grammars
generate structured event sequences such as sentences over an alphabet,
whereas finite state automata “understand™ these sequences. This suggests
a close relationship between tasks that involve identifying the structure of
an agtomaton and tasks that require subjects to process material that was
generated by a finite grammar (e.g. Brooks, 1978; Dulany, Carlson, &
Dewey, 1984; Reber, 1989).

Of course, using a finite-stale automata framework in experimental
psychology is nol an entirely new idea. Suppes (1969), for instance,
suggested the use of automata theory as a theoretical background for mod-
¢lling animal and human behaviour. Another application of automata
theory is the construction of machine prototypes and the analysis of human
effort to reach certain goals. Such analyses were done by Bosser and
Melchior (1992). However, the potential of automata theory as 3 frame-
work for generating classes of dynamic task environments and appropriate
diagnostic instruments has 10 our knowledge not been outlined before.

The most serious problem of the finite state automata approach to
human interaction with dynamic systems probably is one of system com-
plexity. In principle, it is possible to design discrete dynamic systems of
any complexity.” However, there is a practical upper limit in terms of
computer memory and computational effort as well as in terms of the effort
it takes the experimenter {o construct very large state transition matrices.
For instance, the simulation of a complicated industrial production process
clearly is beyond the capability of the approach. This limitation certainly
reduces the applicability of the discrete systems framework.

We can see two partial remedies to the problem: (1) It may not be
necessary 1o simulate the entire complexity of a leaming environment to
investigate the basic cognitive processes involved in interacting with iL.

*It shoald be noted 1hat most so-called “continuous™ systems sre in principle discrete n
thay they accept as input and display as output only discrete numbers. On the other hand, &
distrete systems’ outpul may sppear contimuous if it has a sufficiently large number of levels.
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Depending on the system, it could be possible to omit certain details or
simulate only paris of the system as long as “simulation fidelity” (Hays &
Singer, 1989) can be preserved. (2) A second aspect is that some of the
advantageous properties of the approach. such as the diagnostic procedures
and representational assumptions discussed above, can be utilized as long
as one conceives of the system in terms of 3 finite-state antomaton. The
actual implementation may be quite different.

Yet another problem common to many approaches 1o human interaction
with complex dynamic task environments is finding the proper level of
abstraction for characlerizing 3 device. For the case of learning about an
entirely new device, we have assumed that different states, interventions,
and next states must become associated. In this situation lesrning occurs
on the level of physical events in the automaton. After some experience,
however, individual stite transitions may be combined into chunks. Sech
chunks may be “honzontal” combinations of transitions into routines 1o
get a system reliably from one state to a distant state, or they may be
“vertical” ¢ombinations across, for example, a specific intervention like an
“oNfOFF" switch. The problem of developing an adequate model for such
abstraction processes Is aggravated by the fact that concepts may be avail-
able at different degrees of abstraction, Concepts at different degrees of
abstraction enable more expenienced learners to attend to {(and, hence,
control) a task at different levels. Naturally, if a person has prolonged
experience with attending to a task at a high level of abstraction, it may
be difficult and effortful to recollect individual states and interventions
when required to do so, either outside the context of the immediate control
process or If an unexpected event, like a failure, interrupts an ongoing
procedure. This is assumed because normally what we are able to recall is
information we actively attend to (Kellog, 1980; Norman, 1969). Moray
(1990), for instance, has presented a “lattice theory” designed to describe
such abstraction phenomena occurring at different levels. He does not,
however, make any assumptions about cognifive processes involved in
abstraction, nor does he specify how shifts between different levels of
abstractions might occur.

The processes underlying abstractions of the type described here will
certainly need more attention in the furure. Nevertheless it can be
interesting 10 analyse learning processes at the elementary level of state
transitions. In another study (Buchner & Funke, 1991), we investigated
carly learning in and transfer of associations between finite-state automata.
After initially acquiring knowledge sbout a “source automaton" (a
simplified radio with a buit-in alarm device). several groups of subjects
performed on different “target automata™. The state transition matrices
underlying the target automata were identical for all groups but completely
different from that of the source automaton. The automata differed with

FINITE-STATE AUTOMATA AS DYMAMIC TASK ENVIRONMENTS 111

respect 1o the labelling of their input and output signals. In one condition
these tabels were entirely new, whereas in a different condition the original
labels had been preserved. If learning indeed occurs at the level of associ-
ating states, interventions, and next states, the latter case should corres-
pond to the A-B, A-Br situation in paired associate learming (cf. Martin,
1965). Stimuli and responses from the first hist are preserved in the transfer
list except that they are repaired. This is known to produce considerable
negative transfer. In accordance with our expectations, it was observed
that those subjects performed worst that interacted with the target auto-
maton in which the onginally associated elements were preserved but were
also repaired (due to an entirely different transition matrix),

In summary, there are definite problems and limitations that come with
the approach we advocated for in this paper. However, we believe that its
attractive features make it worth exploring further the applicability to
rescarch using dynamic task environments. In this sense the finite-state
automata approach could provide an interesting additional way of address-
ing problems of human knowledge acquisition and knowledge use in
dynamic tasks, and it could have the potential to stimulate research in the
arca.
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State Transition Matrix for the Compiex Automaton (“Automatic Teller™)
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TABLE A3
Recognition items Usad in the Diagnostic Phases
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3 2 f 5 Code — ECU {mode interaction ) 14 1 1
4 3 7 & Code - ECU (mode interaction)) mw W i
X 1 4 o Code — OFF {onfoff interaction) 38 il &
& 4 q 9 ECU - OFF {on‘off interaction) w u 46
7 4 1 4 ECU = ECU {recursion) n 5 23
s 7 k] " ECU — ECU {recursion) M P u
L) 4 5 5 ECL — ECL! {less efficient) & | ]
(1] 4 & 3 ECU <= ECLl {more cfficient) 1 i 5

bote: The mombers of the states and input signals refer To he $lalc ransilion mATTICes
depicied in Tables Al and A2 The “Comment™ column jllustrates which functional aspect
of the sutomaton is refiected in the item



