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Abstract

Testing is one of the most time-consuming and cost-intensive tasks in softwaredevelopment

projects today. A recent report of the NIST [RTI02] estimated the costs for the economy of the

Unites States of America caused by software errors in the year 2000 to range from$22.2 to $59.5

billion. Consequently, in the past few years, many techniques and tools have been developed to

reduce the high testing costs. Many of these techniques and tools are devoted to automate various

testing tasks (e.g., test case generation, test case execution, and test result checking). However,

almost no research work has been carried out to automate the testing of database applications (e.g.,

an E-Shop application) and relational database management systems (DBMSs). The testing of a

database application and of a DBMS requires different solutions because the application logic of

a database application or of a DBMS strongly depends on the contents of thedatabase (i.e., the

database state). Consequently, when testing database applications or DBMSs new problems arise

compared to traditional software testing.

This thesis focuses on a specific problem: thetest database generation. The test database genera-

tion is a crucial task in the functional testing of a database application and in thetesting of a DBMS

(also called test object further on). In order to test a certain behavior of the test object, we need to

generate one or more test databases which are adequate for a given set of test cases. Currently, a

number of academic and commercial test database generation tools are available. However, most

of these generators are general-purpose solutions which create the test databases independently

from the test cases that are to be executed on the test object. Hence, the generated test databases

often do not comprise the necessary data characteristics to enable the execution of all test cases.

In this thesis we present two innovative techniques (Reverse Query ProcessingandSymbolic Query

Processing), which tackle this problem for different applications (i.e, the functional testing of

database applications and DBMSs). The idea is to let the user specify the constraints on the test

database individually for each test case in an explicit way. These constraints are then used directly

to generate one or more test databases which exactly meet the needs of the test cases that are to be

executed on the test object.
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Zusammenfassung

In heutigen Softwareentwicklungsprojekten ist das Testen eine der kosten- und zeitintensivsten

Tätigkeiten. Wie ein aktueller Bericht des NIST [RTI02] zeigt, verursachten Softwarefehler in

den USA im Jahr 2000 zwischen22, 2 und59, 5 Milliarden Dollar an Kosten. Demzufolge wur-

den in den letzten Jahren verschiedene Methoden und Werkzeuge entwickelt, um diese hohen

Kosten zu reduzieren. Viele dieser Werkzeuge dienen dazu die verschiedenen Testaufgaben (z.B.

das Erzeugen von Testfällen, die Ausführung von Testfällen und das Überprüfen der Testergeb-

nisse) zu automatisieren. Jedoch existieren fast keine Forschungsarbeiten zur Testautomatisierung

von Datenbankanwendungen (wie z.B. eines E-Shops) oder von relationalen Datenbankmanage-

mentsystemen (DBMS). Hierzu sind neue Lösungen erforderlich, da dasVerhalten der zu tes-

tenden Anwendung stark vom Inhalt der Datenbank abhängig ist. Folglichergeben sich für den

Test von Datenbankanwendungen oder von Datenbankmanagementsystemen neue Probleme und

Herausforderungen im Vergleich zum traditionellen Testen von Anwendungen ohne Datenbank.

Die vorliegende Arbeit diskutiert ein bestimmtes Problem aus diesem Umfeld: DieGenerierung

von Testdatenbanken. Die Generierung von Testdatenbanken ist eine entscheidende Tätigkeit

für den erfolgreichen Test einer Datenbankanwendung oder eines Datenbankmanagementsystems

(im weiteren Verlauf auch Testobjekt genannt). Um eine bestimmte Funktionalität des Testob-

jekts zu testen, müssen die Daten in den Testdatenbanken bestimmte Charakteristika aufweisen.

Zur Erzeugung einer Testdatenbank existieren verschiedene Forschungsprototypen wie auch kom-

merzielle Datenbankgeneratoren. Jedoch sind die existierenden Datenbankgeneratoren meist Uni-

versallösungen, welche die Testdatenbanken unabhängig von den auszuführenden Testfällen erzeu-

gen. Demzufolge weisen die generierten Testdatenbanken meist nicht die notwendigen Daten-

charakteristika auf, die zur Ausführung einer bestimmten Menge von Testfällen notwendig sind.

Die vorliegende Doktorarbeit stellt zwei innovative Ansätze vor (Reverse Query Processingund

Symbolic Query Processing), die dieses Problem für unterschiedliche Anwendungen (d.h. für das

funktionale Testen von Datenbankanwendungen und Datenbankmanagementsystemen) lösen. Die

generelle Idee beider Ansätze ist, dass der Benutzer explizit für jeden Testfall die notwendigen

Bedingungen an die Testdaten formulieren kann. Diese Bedingungen werden dann dazu genutzt,

um eine oder mehrere Testdatenbanken zu generieren, die die gewünschten Datencharakteristika

aufweisen, welche zur Ausführung der Testfälle notwendig sind.
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Chapter 1
Introduction

I think and think for months and years, ninety-nine times, the conclusion is false.

The hundredth time I am right.

– Albert Einstein, 1879-1955 –

1.1 Motivation

Testing is one of the most time-consuming and cost-intensive tasks in the software development

projects today. A recent report of the NIST [RTI02] estimated the costs for the economy of the

Unites States of America caused by software errors in the year 2000 to range from$22.2 to $59.5

billion (or about 0.6 percent of the gross domestic product). While one halfof these costs result

from error avoidance and mitigation activities of the users, the other half is borne by software

developers due to inadequate testing techniques and tools. Another study [Erl00] in the E-Business

sector stated that roughly 90 percent of the total software costs are spent on system maintenance

and evolution which includes development costs to identify and correct software defects.

Consequently, in the past few years many techniques and tools have beendeveloped by industry

and academia to reduce the costs caused by software errors and the time spent for testing activities.

Many of these techniques and tools are devoted to automate various testing tasks (e.g., the test

case generation, the test case execution, and the test result checking). According to [Bal06], the

worldwide market for Automated Software Quality Tools was about $948 million in2005 and will

be higher than $1 billion in 2006, and $1.8 billion in 2010.

However, almost no research work has been carried out to automate the testing of database applica-

tions and relational database management systems (DBMSs). The testing of adatabase application

2



1.1 MOTIVATION

or of a DBMS needs different solutions because the application logic of a database application or

of a DBMS strongly depends on the content of the database (database state)1. Consequently,

when testing database applications or DBMSs, new problems and opportunities arise compared to

traditional software testing. For example, [HKL07] showed that traditional test case scheduling

techniques in the test execution phase do not work optimally for database applications. Moreover,

[HKL07] illustrated that specialized scheduling strategies can reduce the total running time of the

test execution phase dramatically.

This thesis focuses on another specific problem: thetest database generation. The test database

generation is a crucial task in the functional testing of a database applicationor a DBMS (called

test object further on). In order to test a certain behavior of the test object, we need to generate a

database state that satisfies certain data characteristics.

A simple example is alogin function of an E-Shop like Amazon which rejects users to log in

after having tried to log in more than three times with an incorrect password. Inorder to test

that function thoroughly, the test database should comprise a user who has not yet tried to log in

wrongly more than three times to test the positive case where the user is not rejected. Moreover,

the test database should also comprise another user who has already entered an incorrect password

more than three times, to test the negative case where the user is rejected by the login function.

Another example is the testing of a DBMS. Most of the functionality of a DBMS strongly de-

pends on the data characteristics of the stored data; e.g., the optimizer of a query execution en-

gine chooses the physical execution plan depending on the data characteristics of the underlying

database and the data characteristics of the intermediate query results. If we want to test the func-

tionality of the query optimizer thoroughly, it is necessary to vary the data characteristics which

are used to calculate the costs of the alternative query plans.

Currently, a number of academic and commercial tools are available which generate test databases.

These tools can be classified into two categories: either the test database is extracted from a live

database, or a synthetic test database is generated according to a givendatabase schema. The

existing tools which extract the test database from a live database sufferfrom various problems:

One problem is that using a live database may not always be possible, because of data protection

regulations; another problem is that a live database often does not comprise all the necessary data

characteristics to enable the execution of all interesting test cases (e.g., there is no user in the live

database who has tried to log in more than three times with the incorrect password).

Consequently, generating a synthetic test database seems to be the panacea to solve these problems.

However, existing tools which generate synthetic test databases suffer from the same problem;

i.e., the generated test databases do not comprise all the data characteristics necessary to execute

a given set of test cases. The reason is that the existing tools are general-purpose solutions which

take constraints on the complete database state as input (e.g., table sizes and value distributions

1In this thesis we use the termsdatabase state, database instance, andtest databaseas synonyms.

3



CHAPTER 1: INTRODUCTION

T1

T2

T3

T4

T1

T2

T3

T4

(a) Random Test Database Generation (b) Test Case Aware Database Generation

Test Database Test Database(s)

Test Cases Test Cases

Figure 1.1: Test Database Generation Problem

of individual attributes). However, these constraints are not suitable to express the relevant data

characteristics necessary to execute each individual test case.

Consequently, the test databases are usually generated independently from the needs of the individ-

ual test cases. We call these approaches which generate the test database independently from the

test casesRandom Test Database Generationtechniques. Conceptually, this problem is demon-

strated in Figure1.1(a): This figure shows a test database which is generated independentlyfrom

a set of given test cases {T1, T2, T3, T4}. Using this randomly generated test database, only some

test cases (e.g.,T2 andT3) can be executed, while the other test cases (e.g.,T1 andT4) cannot be

executed at all.

In order to deal with this problem in practice, the generated test databasesare often modified

manually in order to fit to the needs of all test cases. As a result, the maintenance of a test

database becomes hard because a manual modification of the test databasefor a new or a modified

test case often corrupts the test database for other test cases that areto be executed on the same

test database.

In this thesis we present two innovative techniques which tackle thetest database generation

problem in a different way by enabling aTest Case Aware Database Generation; i.e., one or more

test databases are generated which exactly fit to the needs of the test cases that are to be executed

on the test object (as shown in Figure1.1(b), the generated test databases enable the execution of

all test cases).

The main idea of theTest Case Aware Database Generationis to let the user specify constraints

on the database state individually for each test case in an explicit way. These constraints are then

used directly to generate one or more test databases which exactly satisfy the constraints specified

by the test cases that are to be executed on the test object.

For example, when testing a database application, it is necessary to formulateconstraints on the
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values of individual tuples (and not on the complete database state); e.g., totest thelogin function

of the E-Shop application, the tester needs to specify that two different users exist in the test

database (i.e., one who is allowed to log in and one who is not allowed to log in). Alike, when

testing a DBMS, it is important that the data characteristics of the intermediate query results of a

test query, and not only the characteristics of the base tables, can be controlled explicitly in order

to test a particular behavior of the DBMS.

1.2 Contributions and Overview

The main contributions of this thesis are the formal concepts and prototypicalimplementations

of two new test database generation frameworks (calledReverse Query Processing[BKL06b;

BKL06a; BKL07b] and Symbolic Query Processing[BKL07a; BKLO07]) which generatetest

case aware databasesfor the functional testing of OLAP applications (e.g., a reporting applica-

tion) and for the functional testing of DBMS components (e.g., the cardinality estimation compo-

nent). Both frameworks are extensible and thus not bound to a specific application, even though

they are motivated by the particular applications mentioned above.

As a further contribution, we discuss two more applications of Reverse Query Processing in detail;

i.e., the functional testing of OLTP applications (like an E-Shop) [BKL08] as well as the functional

testing of a query language [BKLSB08]. Moreover, we also present the required extensions of

RQP to support these two applications. Furthermore, we show how the extensions of RQP for the

functional testing of a query language can be used in an industrial environment. Finally, we sketch

some other applications of Reverse Query Processing which need additional research.

For both frameworks we carried out a set of experiments to analyze the performance and the ef-

fectiveness of our prototypical implementations under a variety of workloads.

The remainder of the thesis is structured as follows:

• In the next chapter, we present the background in software testing andillustrate the state of

the art in the testing of database applications and DBMSs as well as the state ofthe art in

test database generation.

• In Part II of this thesis, we discuss the first framework which enables a test case aware

database generation (called Reverse Query Processing or RQP for short). The main appli-

cation of RQP is the functional testing of OLAP applications.

• In PartIII we illustrate two further applications of RQP in detail (i.e., the functional testing

of OLTP applications as well as the functional testing of a query language)and discuss the
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extensions of RQP which are necessary to support these applications. Moreover, we sketch

other potential applications of RQP.

• Subsequently, in PartIV we describe the second framework which enables a test case aware

database generation (called Symbolic Query Processing or SQP for short). SQP is designed

to generate test databases for the functional testing of individual DBMS components.

• Finally, PartV contains the conclusions (i.e., the current state of this work and its limita-

tions) as well as suggestions for future work (i.e., research problems and potential improve-

ments for a better industrial applicability).

A more detailed discussion of the individual contributions and a detailed outlinewill be given

separately for each part.
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Chapter 2
Background

Knowledge is of two kinds. We know a subject ourselves, or we know where we can

find information upon it.

– Samuel Johnson, 1709-1784 –

2.1 Software Testing: Overview and Definitions

Software Testingis the execution of a component or a system using combinations of input and

state to reveal defects [Bin99] by verifying the actual output. The component or system under test

is called thetest object. Depending on thetest levelthe test object is of different granularity: In

Unit Testingthe test object is usually a method or a class, inIntegration Testingthe test object is

the interface among several units, and inSystem Testingthe test object is a complete integrated

application.

In software testing the terminology is very often not clear. In this thesis we refer to the terminol-

ogy defined in [IST06]. Especially, the terms failure, defect, and error are often used as synonyms

while a having a different meaning: Afailure is the inability of a test object to perform a function

within certain limits; i.e., the system or component returns an incorrect output, terminates abnor-

mally, or does not terminate within certain time constraints. Adefectis the missing or incorrect

code that caused the failure of the test object. Anerror is the human action that produced a defect

(e.g., by coding). Testing can only show the presence of defects in a testobject but never their

absence.

Software testing activities can have differenttesting objectives: One possible objective is to reveal

defects through failures (which is calledfault-directedtesting). Another objective is to demon-
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strate the conformance of a test object to the required capabilities (which is calledconformance-

directedtesting). A conformance-directed test type isfunctional testingwhich checks the confor-

mance of the test object with the specification of the functionality. Another conformance-directed

test type is usability testing which checks the conformance of the user interface to some usability

guidelines or performance testing which checks the conformance to some time restrictions etc.

A test caseusually specifies the test object, the inputs that are used to exercise the testobject

as well as the state of the test object before the test case is executed (called precondition); e.g.,

external files, contents of the database. Moreover, a test case defines the expected output and the

expected state of the test object after the test case execution (calledpostcondition). The expected

output and the postcondition are often calledtest oracle. A test suiteis a set of test cases that are

related; e.g., by a common test objective.

A test runis the execution of a test suite which comprises a set of test cases. A test case is executed

as follows: First, in aset-upphase the precondition is used to the set the state of the test object.

Afterwards, thetest object is exercisedusing the given input. Finally, the actual output and the

state after the execution of the test case are compared to the expected output and the expected state

(postcondition) in order toverify the test resultsand decide whether a test case passes or not.

Executing all possible test cases (which is calledexhaustive testing) by using all combinations of

input values and preconditions to execute the test object is practically impossible because the num-

ber of all combinations of input values and preconditions is usually too huge. For, example assume

that we want to test a method that takes ten8-bit integer values as input. The possible input space

would be(28)10. If we could execute 1000 test cases per second then it would take approximately

41.210 days which is roughly38334786263782 years to run all test cases for exhaustive testing.

In order to deal with that problem varioustest design techniquescan be used to derive and select

the test cases that shall be exercised on a test object.Black-boxtest design techniques are based

on an external view of the test object, and not on its implementation; i.e., black-box test design

techniques analyze the external behavior to derive test cases. One example of a black-box test de-

sign technique are equivalence classes. Equivalence classes partitionthe domain of the individual

input values into sub-domains for which the behavior of the test object is assumed to be the same.

The idea of equivalence classes is that the tester can pick one value out of each class instead using

all possible input values.

In contrast to black-box test design techniques,white-boxtest design techniques are based on

the internal structure of a test object which can be the result of a sourcecode analysis. One

example of a white-box test design technique iscontrol-flow testing which uses the information

about the control-flow to execute different code paths of the test object.While white-box test

design techniques are more often used for fault-directed testing (e.g., to find a division by zero),

black-box test design techniques are more often used for conformance-directed testing (e.g, to

check whether the test object behaves as specified or not).
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The coverageof a test suite is measured by acoverage metric. A typical coverage metric for

white-box testing is thestatement coveragewhich defines the percentage of executable statements

that have been exercised by a test suite. A coverage metric for black-box testing is theequivalence

class coverage. The equivalence class coverage is defined as ratio of the number of tested equiv-

alence classes and the number of all equivalence classes; i.e., the metric shows the percentage of

equivalence classes that have been exercised by a particular test suite[IST06].

The goal oftest automationis to minimize the manual overhead necessary to execute certain test

activities; e.g., test case generation, test case execution and test resultchecking. In most cases test

automation can be seen as a system engineering problem to implement a specialkind of software

which executes the test activity automatically.

Test automation has several benefits compared to manual testing. For example, the automation of

the test case execution helps to run more test cases in a certain time span and thus to increase the

test coverage. Moreover, test automation makes testing repeatable because humans tend to vary

the test cases during manual execution. Thus, automating the test case execution is a precondition

for effectiveregression testingwhile the goal of regression testing is to execute one or more test

suites after the test object has changed and compare its behavior beforeand after the changes.

2.2 State of the Art

This section gives an overview of the state of the art related to this thesis: First, we discuss some

general problems that arise when testing a database application or a DBMS and show several solu-

tions to these problems. Afterwards, we study the problem of generating test databases in Section

2.2.2in detail. While some of these approaches deal with a similar problem statement asthis the-

sis (i.e., the generation of test case aware databases), some other approaches discuss orthogonal

aspects (i.e., efficient algorithms for generating huge data sets or algorithmsfor generating various

data distributions).

2.2.1 Testing Database Applications and DBMSs

In the past years many techniques and tools have been developed by academia and industry to

automate the different testing activities [Bin96]. Surprisingly, relatively little attention has been

given to developing systematic techniques to support the individual testing tasks for database ap-

plications and DBMSs [Kap04]. In the following, we discuss specific problems and opportunities

that arise when testing database applications and DBMSs. Moreover, we briefly illustrate some of

the existing work.
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Test Database Generation: Before a test suite of a database application or a DBMS can be

executed, it is necessary to create an initial database state that is appropriate for each test case. For

example, as mentioned in the introduction, in order to execute a test case of anE-Shop application

which executes thelogin function, different types of users need to be created.

Currently, some industrial tools (e.g., [IBM; DTM; dbM]) and research prototypes (e.g., [BC05;

SP04; HTW06; NML93; CDF+04; MR89; ZXC01; WE06]) are available which generate test

databases. However, most of these tools generate the test databases independent from the test

cases that are to be executed on the test database. Consequently, in manycases the generated test

databases are not appropriate to execute all intended test cases. The reason is that the existing tools

are general-purpose solutions which offer only very limited capabilities to constrain the generated

test database (i.e., most tools take only the database schema as input and generate random data over

that schema). However, these constraints are not adequate to expressthe needs of the individual

test cases which should to be executed on the database application or the DBMS.

Consequently, as the test databases are generated independent fromthe test cases there has also

been no work on the evolution of the test database if the test suite changes (e.g., new test cases are

added or existing test cases are modified). Currently, the only way to dealwith the evolution of a

test suite is to regenerate the test database completely.

As this thesis focuses on the problem of generating test case aware databases, we present some of

the existing tools in more detail separately in the next Section2.2.2.

Test Case Generation: In order to generate test cases for database applications and DBMSs,

new test design techniques need to be developed because existing techniques cannot deal with the

semantics of database applications and DBMSs.

When testing a DBMS, for example, a test case usually comprises one or moreSQL queries that

are issued against the test database. Traditional test design techniqueslike equivalence classes

are hardly applicable to automatically create test cases (i.e., SQL queries) for DBMS systems and

the huge domain of possible SQL queries. Thus, different tools like RAGS [Slu98] and QGEN

[PS04] have been developed to quickly generate SQL queries that cover interesting query classes

for a given database schema and other input values (e.g., a parse tree,statistical profiles). In order

to extend a given test suite with further interesting test cases, [TCdlR07] devises some mutation

operators for SQL queries to generate new test queries from a given set of test queries.

Another work [BGHS07] (which was used to test the SQL Server 2005) presents a genetic ap-

proach to create a set of test queries (i.e., a test suite) for DBMS testing. The initial set of test

queries is created randomly; e.g., by using approaches like RAGS and QGEN. Moreover, each

time before a test suite is executed, a new test query is generated by mutating the queries of the

existing test suite. Afterwards, the queries of test suite and the new queryare executed on the

DBMS and execution feedback (e.g., query results, query plan, tracesthat expose internal DBMS
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state) is collected. Based on the execution feedback a fitness function determines whether a newly

created test case will be added to the test suite or not. For example, the fitness function could use

existing code coverage metrics to decide whether the new test query increases the coverage of the

test suite or not.

When testing database applications instead of DBMSs, a test suite should cover test cases that

exercise the different execution paths of the application. However, standard test design techniques

do not work properly because they do not consider the database state when test cases are created.

As a result, the test cases may not cover all interesting execution paths. For example, when testing

the login function of an E-Shop application then not all interesting test cases might becreated

(e.g., to test different users where one user has already tried to log in more than three times with

the incorrect password and another user has not).

In [yCC99] the authors argue that existing white-box test design techniques generate test cases

that do not cover all interesting code paths because the semantics of SQL statements that are em-

bedded in a database application are rarely considered. Thus, the authors suggest to transform the

declarative SQL statements into imperative code and then to apply existing white-box test design

techniques to create test cases. The objective of the transformation is to include the semantics of

the SQL statements into the imperative code so that more test cases are generated to reveal defects

that result from different internal database states.

For example, a function of an E-Shop application that displays the books ofa particular author

could use a 2-way join query on authors and books that is embedded in the code to extract the

necessary data from the database. In order to test that function, the 2-way join is transformed into

a nested loop statement in the application code. Using the transformed code asinput, white-box

design techniques will generate test cases that cover different database states: one test case could

execute the function for an author with no books which means that the nestedloop is not executed

at all, and another test case could execute that function for an author withn books which means

that the nested loop is executedn times.

Another drawback of many existing test design techniques is that they create test cases which

do not specify the database state before and after the execution of a testcase (i.e., as pre- and

postconditions). Consequently, the test cases cannot be used to set thedatabase state before the

execution and to check the database state after the execution.

The work in [RDA04] presents a framework for the black-box testing of database applications

called AutoDBT. AutoDBT takes a specification of the user navigation (as a finite state machine),

a data specification which defines constraints on the database for each transition in the user navi-

gation, as well as an initial database state as input and generates test cases that can be executed on

the given database state. Using the data specification, AutoDBT can track the database changes of

each test case (i.e., AutoDBT can calculate a set of pre- and postconditions on the database state).
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Consequently, AutoDBT can decide whether the precondition of a test case holds (i.e., if the test

case can be executed on the current database state) and whether the postcondition is satisfied when

the test case was executed (i.e., if the database is in the expected state). Forexample, for a test case

which deletes a given book of an E-Shop, AutoDBT will check (1) if the book exists before the

test case is executed and (2) if the book was deleted successfully after the test case was executed.

Coverage metrics: As we discussed in Section2.1 thecoverageof a test suite is measured by

a coverage metric. However, existing test coverage metrics cannot deal with the semantics of

database applications and DBMSs.

In order to tackle that shortcoming, [KS03] proposed a new family of coverage metrics for the

white-box testing of database applications which capture the interactions of adatabase applica-

tion with a database at multiple levels of granularity (attribute, tuple, relation, database) . The

test coverage metric uses the dataflow information that is associated with the different entities in

a relational database (i.e., how many percent of the attributes, tuples, or relations are read or up-

dated by a given test suite). The empirical study in [KS03] confirms that a significant number of

important database interactions are overlooked by traditional coverage metrics.

Another work [CT03] proposed a new coverage metric for testing SQL statements. The idea is to

apply an existing coverage metric, the multiple condition coverage [MS77], to SQL statements.

This coverage metric analysis if a given predicate is evaluated thoroughly inall possible ways for

a given test database. For a SQL query, the metric in [CT03] analysis if the join and selection

predicates of a given SQL query are evaluated to true and false for the different tuples in the test

database. If a predicate is a complex predicate with conjunctions and disjunctions then the cov-

erage metric analysis each simple predicate. For example, if a SQL query contains the predicate

b_aid = a_id ∧ a_name = ‘Knuth‘ then the coverage metric checks if the complete predicate

evaluates to true and false for different tuples of the test database and ifeach simple predicate

(b_aid = a_id anda_name = ‘Knuth‘) does so, too. Based on that information the value of the

coverage metric is calculated.

Test Case Execution: When executing test cases for database applications and DBMSs a par-

ticular database state has to be reset before each test case can be executed in order to guarantee a

deterministic behavior of the test object. For example, assume that we want to execute a test case

T1 of an E-Shop application that lists all books of a particular author (who haswritten 100 books)

and the test cases passes if all 100 books are displayed. However, if another test caseT2 (which

deletes all books of that author) is executed before test caseT1, thenT1 will fail because no books

are displayed (i.e., the expected result is different from the actual result). Thus, a trivial solution

to avoid this problem is to set the appropriate database state each time before the test case is ex-

ecuted. However, this can take very long if the test database is huge: e.g.,it already takes about
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two minutes to reset a100MB database [HKK05]. Moreover, traditional execution strategies do

not consider that fact when scheduling the test cases for a test run. Consequently, if a test suite

should be used for nightly regression tests, then not all test cases might be executed because of the

unexpected long running time.

Consequently, the authors in [HKL07] devised several scheduling algorithms which try to find an

optimal order of the test cases in a test suite with the goal to minimize number of database resets.

This work assumes that all test cases of a test suite can use the same database state. Consequently,

if no test case of a test suite updates the test database, then the database state has to be reset only

once at the beginning of a test run.

Thus, the basic idea of the algorithms in [HKL07] is to apply the database reset lazily; i.e., a

test case of a test suite is executed without setting the appropriate databasestate. If the test case

execution fails, then the database state is reset and the test case is re-executed. If the test case

passes afterwards, then the test case has a conflict with a previously executed test case which

updated the database state. Otherwise, the test case detected a failure. During a test run (i.e., the

execution of a test suite), the algorithms learn which test cases are possiblyconflicting with each

other (i.e., which test case might have updated the database state so that another test case fails).

As a result, the scheduling algorithms reorder the conflicting test cases of atest suite for the next

test run with the goal to reduce the number of necessary database resets.

For example, the following test suite is executed in the given order:T = {T1, T2, T3} . Assume

that onlyT3 fails because of a “wrong” database state (which was caused by an update ofT1 and/or

T2). Then for the next test run, the scheduling algorithms would reorder thetest suite to avoid the

conflict of the test caseT3 with test casesT1 and/orT2. A new order could beT = {T3, T1, T2}.

Test Result Verification/Test Oracle: When executing a test case on a database application or

a DBMS, the actual test results (actual output and state of the test database) have to be verified in

order to decide whether a test case passes or fails.

In the regression testing of database applications, the expected output ofa test suite is created by

executing the test cases on the test object and recording the behavior ofthe test object [HKK05]

(called recording phase). During the recording phase, the test objectis expected to work correctly.

After modifications of the database application, the test suite is re-executed (called playback phase)

and the actual results are compared to the expected (recorded) results.While regression testing

needs a running application to create the test oracle, other test techniquesderive the expected

results from specifications of the test object (e.g., as discussed in [RDA04]).

Another idea for verifying the result when testing the query processing engine of a DBMS is

illustrated in [Slu98]. In order to verify the actual results of the test queries, the author of [Slu98]

propose to execute the test queries on a comparable DBMS which returns the expected results for
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verification. This idea can be generalized and used for the test result verification of other kinds of

test objects (not only DBMSs), too.

2.2.2 Generating Test Databases

In this section we present several test database generation tools. These tools can be classified into

two categories: either a synthetic test database is generated or the test database is extracted from a

live database.

Synthetic Test Databases: Currently, there are a number of commercial tools available (e.g.,

[IBM; DTM; dbM]) which generate a random test database over a given database schema. Beside

the database schema, some tools also support the input of the table sizes, data repositories and

additional constraints used for data instantiation (e.g. statistical distributions,value ranges). Most

of the commercial tools are not extensible (e.g., the set of supported data distributions is fixed).

Additionally, a number of academic tools are available which generate test databases. Some of

them are designed to be extensible in a few aspects. For example, [BC05] tackles the problem that

most existing tools support only a fixed set of data distributions. However,in order to thoroughly

evaluate new DBMS techniques (e.g., new access methods, histograms, andoptimization strate-

gies) varying data distributions need to be generated. Consequently, this work presents a flexible

framework to specify and generate test databases using rich data distributions as well as intra-

and inter-table correlations for a given database schema. The framework is based on composable

iterators that generate data values, whereas the set of iterators can be extended by the user.

[SP04] presents another test database generation framework (called MUDD) that can also be ex-

tended by complex user defined data distributions. MUDD was designed to generate test databases

for the TPC-DS benchmark [TPCa] and thus is intended for use in the performance evaluation of

DBMS decision support solutions. MUDD also supports varying databaseschemes.

Moreover, [HTW06] also developed a database generator which is also intended to be used in the

performance evaluation of DBMS decision support solutions. Again, the user can easily add new

data types and distributions. In addition, their tool takes a graph model and some data dependen-

cies as input: The graph model specifies the database schema and thus defines the order how the

tables are populated. The data dependencies (e.g., foreign-key constraints) further constrain the

database state.

A different tool which takes a set of user defined predicates as input togenerate the test database

is presented in [NML93]. The tool supports a subset of the first-order-logic and thus allows the

definition of more complex constraints as the tools discussed before which only take the database

schema and some data distributions as input. However, [NML93] showed that their approach to
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generate a test database which meets a set of arbitrary constraints formulated in first-order-logic

does not scale for large test databases and complex constraints.

All the tools discussed before generate test databases independent ofthe test cases that are to be

executed on the test object. The tools that we illustrate in the sequel try to tacklethis problem by

taking some information about the test cases as input (i.e., the application queries of the database

application or the test queries that are to be executed on the DBMS).

In [CDF+04] a set of tools for testing database applications (called AGENDA) is presented. One

tool of AGENDA is a database generator which takes a database schema (with integrity con-

straints), an application query and some sample values as input. The selectionpredicate of the ap-

plication query is used to partition the domains of all attributes that participate in thepredicate into

equivalence classes. For example, if a SQL query defines a filter predicate10 ≤ b_price ≤ 100

then three partitions are generated for the attributeb_price: ]−∞, 10[, [10, 100], and]100,∞[. For

other attributes not in the selection predicate, the user can define the equivalence classes manually.

The database generator offers different heuristics to guide the test database generation process: one

heuristic is to generate boundary values for the specified equivalence classes; another heuristic is

to generate NULL values if possible, etc.

Another work which also takes a SQL query as input is presented in [MR89]. The goal of this

work is to generate a test database for a given relational query (limited to simple select-project-

join queries) so that the query result is unique for the given test query;i.e., no other non-equivalent

query exists that returns the same result for the generated test database. A test database which

satisfies this criteria can be used for the testing of a query language; i.e., for such a test database it

is easier to decide whether the actual result of a test query is the expectedresult or not because the

expected result can be returned for only one particular test query (i.e.,two non-equivalent queries

must have different expected results).

In [ZXC01] the authors study the generation of test databases for the white-box testing of database

applications. The goal of this work is to generate a test database which returns a result that has

certain characteristics for a given SQL query in order to execute a particular code path of the

application. The tool supports only select-project-join queries as input and the user can specify

that the result of such a query should be empty or not and she can also add domain constraints

on the result attributes (e.g., all values of theb_price attribute should be greater0). In order to

generate the test database, all the constraints on the query result are translated into a constraint

satisfaction problem which can be solved by existing constraint solvers.

A similar tool is presented in [WE06]. The only difference to [ZXC01] is that the constraint

formula which is used to generate the test database for a given database schema is constructed

more systematically; i.e., the SQL query is translated into a relational algebra expression and

the query operators transform the constraints on the query result into constraints on the database

schema. For example, a projection operator adds the deleted attributes to the constraint formula
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to let the constraint solver instantiate values for those attributes. Again, onlyselect-project-join

queries are supported as input.

In contrast to all tools discussed before, [GSE+94] focuses on particular problems that arise when

huge synthetic databases need to be generated. This work is orthogonalto all tools presented

above. In particular, this work discusses how parallelism can be used to get generation speed-up

and scale-up and presents algorithms to generate huge data sets that followvarious distributions

(e.g., uniform, exponential, normal). Moreover, solutions to generate indexes concurrent to the

base table are discussed, too.

Extracts from Live Databases: Another alternative to generate test databases is to extract the

data from a live database. However, extracting data from a live database might be problematic be-

cause the use of data from live databases has the potential to expose sensitive data to an unautho-

rized person. Moreover, a live database may not cover all interesting data characteristics adequate

to test a particular behavior of the test object.

In [WSWZ05], the authors investigate a method to generate a so calledmock databasebased on

some a-priori knowledge about the live database without revealing any confidential information of

the live database. The techniques of this work guarantee that the mock database will have almost

identical statistics compared to the live database. Consequently, the mock database can be used to

evaluate the performance of a database application.

A similar approach can be found in [BGB05]. The authors of this work devise a formal framework

for database sampling. Their initial motivation was to generate a test databasefor testing new

features of a database application. The framework extracts a test database from a live database

that meets the same integrity constraints as the live database and includes all the“data-diversity”

found in the live database. The resulting database is expected to better support the development of

new features of a database application than a synthetic test database.

2.2.3 Resume

Some approaches for generating test databases that we presented in Section 2.2.2 [CDF+04;

MR89; ZXC01; WE06] discuss the same problem statement as this thesis; i.e., generating test

case aware databases. However, all these approaches fall short inmany aspects tackled by this

work:

• The main drawback of all these approaches is that they generate test databases for only a

small subset of the SQL queries (like [MR89; ZXC01; WE06]) or they only consider certain

fragments of the test query like the selection and/or the join predicates (like [CDF+04]).

Consequently, these approaches cannot deal with all classes of possible SQL queries not to

mention the complex semantics of database applications in general.
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• Moreover, these approaches give ad-hoc solutions for the supported query classes so that

the presented solutions cannot be extended easily.

• Another problem is that these approaches are not designed to generatehuge amounts of

data. For example, [ZXC01] and [WE06] first create one constraint formula and then in-

stantiate this formula to generate the complete test database. However, the running time of

a constraint solver is exponential to the input size of the constraint formula. Consequently,

these approaches cannot deal with test databases for many practical problems when huge

amounts of data are necessary (e.g., for the testing of OLAP applications).

All other approaches discussed in Section2.2.1and in Section2.2.2focus on orthogonal prob-

lems.
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Chapter 3
Motivating Applications

All our dreams can come true – if we have the courage to pursue them.

– Walt Disney, 1902-1966 –

When designing a completely new database application or modifying such an application (e.g., a

reporting application or an E-Shop) it is necessary to generate one or more test databases in order

to carry out all the necessary functional tests on the application logic to guarantee a certain quality

of the application under test. As discussed in Section2.2.2, there are a number of commercial and

academic tools which enable the generation of a test database for a given database schema. Beside

the database schema, those tools usually take value ranges, data repositories, or some constraints

(e.g., the table sizes, statistical distributions) as input and generate a test database accordingly.

However, these tools generate test databases which do not reflect the semantics of the application

logic that should be executed by a certain test case. For example, if a test case for a reporting

application issues a complex SQL query against such a synthetic test database, it is likely that the

SQL query returns no or non-meaningful results for testing that query.An example of a typical

reporting query is shown below. The query lists the total sales of orderedline items per day, if the

discounted price was less than a certain average and more than a certain sum (the database schema

of the application is given in Figure4.2(a)):

SELECT o_orderdate, SUM(l_price*(1-l_discount)) as sum1

FROM lineitem, orders WHERE l_oid=o_id

GROUP BY o_orderdate

HAVING AVG(l_price*(1-l_discount))<=100

AND SUM(l_price*(1-l_discount))>=150;
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The following tables show a real excerpt of the test database generatedby a commercial test

database generation tool1 for the example application:

l_id l_name l_price l_discount l_oid

103132 Kc1cqZlf 810503883 0.7 1214077

126522 hcTpT8ud34 994781460 0.1 1214077

397457 5SwWn9q3 436001336 0.0 1297288

... ... ... ... ...

Tablelineitem

o_id o_orderdate

1214077 1983-01-23

1297288 1995-01-01

... ...

Tableorders

Obviously, the query above returns an empty result for that test database because none of the gen-

erated tuples satisfies the complexHAVING clause (including different aggregations on arithmetic

functions). Even though some tools allow the user to specify additional rulesin order to constrain

the generated databases (e.g., constraining the domain of the attributel_discount), those con-

straints are defined on the base tables only and there are no means to control the query results of

a certain test query explicitly. Therefore, those tools can hardly deal withcomplex SQL queries

used for reporting not to mention the complex semantics of database applications in general.

In order to generate meaningful test databases, this thesis proposes a new technique calledReverse

Query Processingor RQP, for short. RQP takes a SQL query and the expected query result (in

addition to the database schema) as input and generates a database that returns that result if the

query is executed on that database. More formally, given a QueryQ and a TableR, RQP generates

a DatabaseD (a set of tables) such thatQ(D) = R.

One application of RQP is the regression testing of reporting applications (i.e.,OLAP applica-

tions): The main use case of a reporting application is that a user executes ad-hoc reports on the

business data. In order to test various types of reports, the tester couldextract the SQL queries

which implement the different reports from the application. Furthermore, thetester provides one

or several sample results for each report that are interesting for the functional testing. A combina-

tion of a SQL query (i.e., a report) and a result of that report specify a test case for the reporting

application. Such a test case can then be used to generate a test databaseby RQP which is ade-

quate for that test case. The thus generated test databases can be used as a basis for the regression

testing of the reporting application: i.e., if the reporting application is modified, thequeries (i.e.,

reports) defined by the test cases can be re-executed on the corresponding test database and it can

be checked if the actual result of a particular report is the same as the expected result that is defined

by the test case.

Another important use case of a reporting application is that the user wants todisplay the results

of a report in different formats by executing some actions like pivoting. Consequently, the func-

tionality which shows the results of the reports on the screen strongly depends on the data that

1We do not disclose the name of the tool for legal reasons.
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should be displayed. Consequently, in order to test the display functionalitythoroughly, we can

use RQP to generate different test databases for various reports andresults of these reports that are

to be displayed.

There are also several other applications of RQP: One application that wewill describe in detail

in Part III of this thesis is the generation of a test database for the functional testing ofOLTP

applications. While one SQL query and one result is usually sufficient to specify the database

state to execute a test case for a reporting application, we usually need morethan one SQL query

to specify the characteristics of the test database to execute a test case ofan OLTP application.

The reason is that OLTP applications usually implement use cases which consist of sequences of

actions whereas each action reads or updates different entities of the database (e.g., a use case of

an E-Shop application that creates a new order would first read the relevant customer and product

data from the database and then insert a new order using that data).

Another application that will be presented in PartIII is the functional testing of a query language

where it is important to verify the actual query result of an arbitrary test query to reveal defects

in the query processing functionality. For that application we extend RQP to generate also an

expected result for a given test query following certain input parameters (e.g., the result size). The

expected result and the corresponding test query can then be used to generate a test database by

RQP which returns the expected query result. During the test execution phase the expected result

of a test query is used to verify the actual result of executing the test query on the generated test

database.

Contributions: The main contribution of this part is the conceptual framework for RQP and a

prototype implementation called SPQR (System for Processing Queries Reversely) which takes

one SQL query and one expected result as input to generate a test database. Furthermore, this part

gives the results of some performance experiments for the TPC-H benchmark [TPCb] using SPQR

in order to demonstrate how well the proposed techniques scale for complexqueries coming from

typical OLAP applications. The other applications (i.e., functional testing of an OLTP applications

and functional testing of a query language) will be discussed separatelyin PartIII .

Outline: The remainder of this part is organized as follows: Chapter4 defines the problem

statement and gives an overview of the solution. Chapter5 describes the reverse relational algebra

(RRA) for RQP which is used to generate test databases for arbitrary SQL queries. Chapter6 to

8 present the techniques implemented in SPQR, our prototype implementation for RQP. Chapter

9 describes the results of the experiments carried out using SPQR and the TPC-H benchmark.

Chapter10discusses related work.
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Chapter 4
RQP Overview

My way is to seize an image that moment it has formed in my mind,to trap it as a

bird and to pin it at once to canvas. Afterward I start to tame it, to master it. I bring

it under control and I develop it.

– Joan Miró, 1893-1983 –

In the last thirty years, a great deal of research and industrial effort has been invested in order

to make query processing more powerful and efficient. New operators,data structures, and algo-

rithms have been developed in order to find the answer to a query for a given database as quickly

as possible. This thesis turns the problem around and presents methods in order to efficiently find

out whether a table can possibly be the result of a query or not and, if so, what the corresponding

database might look like.

Reverse query processing is carried out in a similar way as traditional query processing. At

compile-time, a SQL query is translated into an expression of the relational algebra, this expres-

sion is rewritten for optimization and finally translated into a set of executable iterators [HFLP89].

At run-time, the iterators are applied to input data and produce outputs [Gra93]. What makes

RQP special are the following differences:

• Instead of using the relational algebra, RQP is based on a reverse relational algebra. Log-

ically, each operator of the relational algebra has a corresponding operator of the reverse

relational algebra that implements its reverse function.

• Correspondingly, RQP iterators implement the operators of the reverse relational algebra

which requires the design of special algorithms. Furthermore, RQP iterators have one input

and zero or more outputs (think of a query tree turned upside down). As aconsequence, the
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CHAPTER 4: RQP OVERVIEW

best way to implement RQP iterators is to adopt a push-based run-time model, instead of a

pull-based model which is typically used in traditional query processing [Gra93].

• An important aspect of reverse query processing is to respect integrityconstraints of the

schema of the database. Such integrity constraints can impact whether a legal database

instance exists for a given query and query result. In order to implement integrity constraints

during RQP, this work proposes to adopt a two-step query processing approach and make

use of a model checker at run-time in order to find reverse query resultsthat satisfy the

database integrity constraints.

• Obviously, the rules for query optimization and query rewrite are different because the cost

tradeoffs of reverse query processing are different. As a result, different rewrite rules and

optimizations are applied.

As will be shown, reverse query processing for SQL queries is challenging. For instance, reverse

aggregation is a complex operation. Furthermore, model checking is an expensive operation even

though there has been significant progress in this research area in the recent past. As a result,

optimizations are needed in order to avoid calls to the model checker and/or make such calls as

cheap as possible.

4.1 Problem Statement and Decidability

As mentioned before, this thesis addresses the following problem for relational databases. Given

a SQL QueryQ, the SchemaS of a relational database (including integrity constraints), and a

expected resultR (calledRTable), find a database instanceD such that:

R = Q(D)

andD is compliant withS and its integrity constraints.

In general, there are many different database instances which can be generated for a givenQ and

R. Depending on the application some of these instances might be better than others. In order

to generate test databases for functional testing a reporting application, for instance, it might be

advantageous to generate a smallD so that the running time of test cases is reduced. While

the techniques presented in the following chapters try to be minimal, they do not guarantee any

minimality. The purpose of this thesis is to find any viable solution. Studying techniques that

make additional guarantees is one avenue for future work.

Theorem 4.1 Given an arbitrary SQL queryQ, a resultR, and a database schemaS, it is not

possible to decide whether a database instanceD exists that satisfiesS and returnsQ(D) = R

or not.
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4.2 RQP ARCHITECTURE

Proof (Sketch) 4.2 In order to show that RQP is undecidable, we reduce the query equivalence

problem to RQP. However, as shown in [Klu80], the equivalence of two arbitrary SQL queries

is undecidable1. As a result, RQP for SQL must be also undecidable; that is, in general it isnot

possible to decide whether aD exists, ifQ does not follow the rules discussed in [Klu80].

An arbitrary instance of the query equivalence problem can be reducedto an instance of RQP as

follows. LetQ1 and Q2 be two arbitrary SQL queries. In order to decide whetherQ1 and Q2

are equivalent, we can use RQP to decide whether a database instanceD exists for the query

Q = χCOUNT (∗)((Q1 − Q2) ∪ (Q2 − Q1)), a resultR of Q which definesCOUNT (∗) > 0.

Moreover,D should meet the constraints of the database schemaS. If RQP can find such a

database instanceD, thenQ1 andQ2 are not equivalent (i.e., ifQ1 andQ2 would be equivalent,

the result ofQ must be empty). Otherwise, if RQP can not find such a database instanceD, then

it immediately follows thatQ1 andQ2 are equivalent.

Furthermore, there are obvious cases where noD exists for a givenR andQ (e.g., if tuples in

R violate basic integrity constraints). The approach presented in this thesis, therefore, cannot be

complete. It is a best-effort approach: it will either fail (return anerror because it could not find a

D) or return a validD.

4.2 RQP Architecture

Figure4.1gives an overview of the proposed architecture to implement reverse query processing.

A query is (reverse) processed in four steps by the following components:

Query Compilation: The SQL query is parsed into a query tree which consists of operators of

the relational algebra. This parsing is carried out in exactly the same way asin a traditional SQL

processor. What makes RQP special is that that query tree is translated into a reverse query tree.

In the reverse query tree, each operator of the relational algebra is translated into a corresponding

operator of thereverse relational algebra. The reverse relational algebra is presented in more

detail in Chapter5. In fact, in a strict mathematical sense, the reverse relational algebra is not

an algebra and its operators are not operators because they allow different outputs for the same

input. Nevertheless, we use the termsalgebraandoperatorin order to demonstrate the analogies

between reverse and traditional query processing.

Bottom-up Query Annotation: The second step is to propagate schema information (e.g., data

types, attribute names, and integrity constraints) to the operators of the query tree. Furthermore,

1Two arbitrary SQL queriesQ1 andQ2 are equivalent, iffQ1 andQ2 return the same resultR for all possible
database instancesD.
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Figure 4.1: RQP Architecture

properties of the query (e.g., predicates) are propagated to the operators of the reverse query tree.

As a result, each operator of the query tree is annotated with constraints that specify all necessary

conditions of its output. Chapter6 describes this process in more detail. That way, for example,

it can be guaranteed that a top-level operator of the reverse query tree does not generate any data

that violates one of the database integrity constraints.

Query Optimization: In the last step of compilation, the reverse query tree is transformed into

anequivalentreverse query tree that is expected to be more efficient at run-time. An example op-

timization is the unnesting of queries. Unnesting and other optimizations are described in Chapter

8.

Top-down Data Instantiation: At run-time, the annotated reverse query tree is interpreted us-

ing the resultR (RTable) as input. Just as in traditional query processing, there is a physical

implementation for each operator of the reverse relational algebra that is used for reverse query

execution. In fact, some operators have alternative implementations which maydepend on the

application (e.g., test database generation involves different algorithms than testing data security,

see PartIII ). The result of this step is a valid database instanceD. As part of this step, we propose

to use a model checker (more precisely, the decision procedure of a model checker) in order to
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CREATE TABLE lineitem (
l_id INTEGER PRIMARY KEY,
l_name VARCHAR(20),
l_price FLOAT,
l_discount FLOAT
CHECK (1>= discount >=0),

l_oid INTEGER);

CREATE TABLE orders(
o_id INTEGER PRIMARY KEY,
o_orderdate DATE);

SELECT SUM(l_price)
FROM lineitem, Orders
WHERE l_oid=o_id
GROUP BY o_orderdate
HAVING AVG(l_price)<=100;

π-1
SUM(l_price)

σ-1
AVG(l_price)≤100

o_orderdateχ-1
SUM(l_price), AVG(l_price)

l_oid=o_id

lineitem orders

D
at

a
 F

lo
w

(i)

(ii)

(iii)

(iv)

SUM(l_price)
100
120

(i) RTable

o_orderdate SUM(l_price) AVG(l_price)
1990-01-02 100 100
2006-07-31 120 60

(ii) Output ofπ−1; Input ofσ−1

o_orderdate SUM(l_price) AVG(l_price)
1990-01-02 100 100
2006-07-31 120 60

(iii) Output of σ−1; Input ofχ−1

l_id l_name l_price l_discount l_oid o_id o_orderdate
1 productA 100.00 0.0 1 1 1990-01-02
2 productB 80.00 0.0 2 2 2006-07-31
3 productC 40.00 0.0 2 2 2006-07-31

(iv) Output ofχ−1; Input of⋊⋉−1

l_id l_name l_price l_discount l_oid
1 productA 100.00 0.0 1
2 productB 80.00 0.0 2
3 productC 40.00 0.0 2

lineitem

o_id o_orderdate
1 1990-01-02
2 2006-07-31

orders

(a) Example Schema and Query (b) Reverse Relational Algebra Tree (c) Input and Output of Operators

Figure 4.2: Example Schema and Query for RRA

generate data [CGP00]. How this Top-down data instantiation step is carried out is described in

more detail in Chapter7.

In many applications, queries have parameters (e.g., bound by a host variable). In order to pro-

cess such queries, values for the query parameters must be provided as input to Top-down data

instantiation. The choice of query parameters again depends on the application; for test database

generation, for instance, it is possible to generate several test databases with different parameter

settings derived from the program code. In this case, the first three phases of query processing

need only be carried out once, and the Top-down data instantiation can use the same annotated

reverse query tree for each set of parameter settings.

It is also possible to use constraint formulas on variables in theRTable R. That way, it is possible

to specify tolerances. For example, a user who wishes to generate a test database for a decision

support application could specify an example report for sales by product. Rather than specifying

exact values in the example report, the user could say that the sales for, say, tennis rackets arex

with 90K ≤ x ≤ 110K. This additional constraint for variablex would be considered during

the execution of Top-down data instantiation. Specifying such tolerances has two important ad-

vantages. First, depending on the SQL query it might not be possible to finda test database that

generates a report with the exact value of 100K for the sales. That is, the RQP instance might sim-

ply not be satisfiable. Second, specifying tolerances (if that is acceptable for the application) can

significantly speed-up reverse query processing because it gives the model checker more options

to find solutions.
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4.3 RQP Example

Figure4.2gives an example of reverse query processing. Figure4.2a shows the database schema

(definition of thelineitem andorders tables with their integrity constraints) and a SQL query

that asks for the sales (i.e.,SUM(l_price)) grouped byo_orderdate. The query is parsed and

optimized and the result is a reverse query tree with operators of the reverse relational algebra.

The resulting reverse query tree is shown in Figure4.2b. This tree is very similar to the query tree

used in traditional query processors. The differences are that (a) operators of the reverse relational

algebra (Section5) are used and (b) that the data flow through that tree is from the top to the

bottom (rather than from the bottom to the top).

The data flow at run-time is shown in Figure4.2 (c). Starting with anRTable that specifies that

two result tuples should be generated (Table (i) at the top of Figure4.2 (c), each operator of the

reverse relational algebra is interpreted by the Top-down data instantiationcomponent in order to

produce intermediate results of reverse query processing. In this phase, RQP uses the decision

procedure of a model checker in order to guess appropriate values (e.g., possible order dates). Of

course, several solutions are possible and the decision procedure ofthe model checker chooses

possible values that match all constraints discovered in the Bottom-up annotation step randomly:

depending on the application, alternative heuristics could be used in orderto generate values that

are more advantageous for the application. The final result of RQP in this example are possible

instantiations for thelineitem andorders tables. It is easy to see that these instantiations meet

the integrity constraints of the database schema and that (forward) executing the SQL query using

these instantiations gives theRTable as a result.

Figure4.2 does not demonstrate how the Bottom-up query annotation component annotates the

reverse query tree using the integrity constraints of the database schema and properties of the

query. The example, however, does show the effects of that step. Forexample, the result of

reverse projection (Table (ii) in Figure4.2(c) generates values for theAV G(price) column which

are compliant with the predicate of theHAVING clause of the query. This process is described in

more detail in Chapter6.
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Chapter 5
Reverse Relational Algebra

Algebra is generous; she often gives more than is asked of her.

– Jean Baptiste le Rond d’Alembert, 1717-1783 –

The Reverse Relational Algebra (RRA) is a reverse variant of the traditional relational algebra

[Cod70] and its extensions for group-by and aggregation [GMUW01]; i.e., each operator of the

relational algebra has a corresponding operator in the reverse relational algebra. The symbols of

the operators are the same (e.g.,σ for selection), but each operatorop of the RRA are marked as

op−1 (e.g.,σ−1). Furthermore, the following equation holds for all operators and all validtables

R:

op(op−1(R)) = R

However, reverse operators in RRA should not be confused withinverseoperators because the

following formula isnot necessarily true for some valid tablesS: op−1(op(S)) = S

In the traditional relational algebra, an operator has 0 or more inputs and produces exactly one

output relation. Conversely, an operator of the RRA has exactly one inputand produces 0 or more

output relations. Just as in the traditional relational algebra, the operators of the RRA can be

composed. As shown in Figure4.2(b), the composition is carried out according to the same rules

as for the traditional relational algebra. As a result, it is very easy to construct a reverse query plan

for RQP by using the same SQL parser as for traditional query processing.

The close relationship between RRA and the traditional relational algebra has two consequences:

• Basic Operators:The reverse variants of the basic operators of the (extended) relational

algebra (selection, projection, rename, cartesian product, union, aggregation, and minus)
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form the basis of the RRA. All other operators of the RRA (e.g., reverse outer joins) can be

expressed as compositions of these basic operators.

• Algebraic Laws:The relational algebra has laws on associativity, commutativity, etc. on

many of its operators. Analogous versions of most of these laws apply to theRRA. Some

laws are not applicable for the RRA (e.g., applying projections before joins); these laws are

listed in [Klu80] and must be respected for RQP optimization (Section8).

The remainder of this Chapter defines the seven basic operators of the reverse relational algebra,

which form the basis for a complete implementation of a reverse query processor. A physical

implementation (e.g., algorithms) of the RRA operators for generating test databases is described

in Chapter7.

5.1 Reverse Projection

The reverse projection operatorπ−1 generates new columns according to itsoutput schema. The

output schema of an operator is defined as the set of attributes and constraints (from the database

schema and the query) of the output relation generated by the operator. The output schema of each

operator is created in the Bottom-up annotation phase (Chapter6). Again, as for all operators of

the reverse relational algebra,π(π−1(R)) = R must apply for all validR.

In Figure4.2, the reverse projection creates theo_orderdate andAV G(l_price) columns. In

order to generate correct values for these columns, the reverse project operator needs to be aware of

the constraints imposed by the aggregations (SUM andAVG) and theHAVING clause of the query.

That is, the values in theAV G(l_price) column must be smaller or equal to 100 so that theσ−1

does not fail. Furthermore, the value of theo_orderdate column must be unique and the values

in the AV G(l_price) andSUM(l_price) columns must match so that the reverse aggregation

(χ−1) does not fail. In this specific example, there are no integrity constraints from the database

schema or functional dependencies that must be respected as part of the reverse projection. In

general, such constraints must also be respected in an implementation of theπ−1 operator.

An algorithm to implement theπ−1 operator is presented in Chapter7. This algorithm is based

on calls to the decision procedure of a model checker in order to fulfill all constraints or fail (i.e.,

returnerror), if the constraints cannot be fulfilled.

5.2 Reverse Selection

The simplest operator of the reverse relational algebra is the reverse selection (σ−1): It either

returnserror or a superset (or identity) of its input.Error is returned if the input of the reverse

select operator does not match the selection predicate. For example, if the query asks for all
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employees with salary greater than 10,000 and theRTable contains an employee with salary

1,000, thenerror is returned. Another example ofσ−1 is given in Figure4.2 (c). Table (ii) in

Figure4.2(c) (the output ofπ−1) is the input ofσ−1. Since the input ofσ−1 is compliant with its

output schema, the output ofσ−1 (Table (iii) in Figure4.2c) is the same as its input.

5.3 Reverse Aggregation

Like the π−1 operator, the reverse aggregation operatorχ−1 generates columns. Furthermore,

the reverse aggregation operator possibly generates additional rows inorder to meet all con-

straints of its aggregate functions. Again, as for all RRA operators, the goal is to make sure

thatχ(χ−1(R)) = R and that the output is compliant with all constraints of the output schema

(e.g., functional dependencies, predicates, etc.). If this is not possible, then the reverse aggregation

fails and returnserror. An algorithm to implement theχ−1 operator using the decision procedure

of a model checker is presented in Section7.

Tables (iii) and (iv) of Figure4.2 (c) show the input and output of reverse aggregation for the

running example. In that example, the values of thel_id, l_name, andl_discount columns are

generated obeying the integrity constraints of thelineitem table (top of Figure4.2(a). The value

of the l_price column is generated using the input (the result of the reverse selection) and the

intrinsic mathematical properties of the aggregate functions. The values of the l_oid ando_id

columns are generated obeying the constraints imposed by the join predicate of the query and the

primary-keyconstraint of theorders table.

5.4 Reverse Join, Cartesian Product

The reverse join operator⋊⋉−1 completes the running example. It takes one relation as input and

generates two output relations. Like all other operators, the reverse joinmakes sure that its outputs

meet the specified output schemata (the database schema for thelineitem andorders tables in the

example of Figure4.2) and that the join of its outputs gives the correct result. If it is not possible

to fulfill all these constraints, then anerror is raised. Really, the only thing that is special about

the⋊⋉
−1 operator is that it has two outputs. Again, an efficient algorithm to implement a reverse

join is presented in Chapter7. The reverse Cartesian product is a variant of the reverse join with

trueas a join predicate.

5.5 Reverse Union

Like the reverse join, the reverse union operator (∪−1) takes one relation as input and generates two

output relations. According to the constraints of the output schemata of the two output relations,
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Figure 5.1: Reverse Union (left); Reverse Minus (right)

the reverse union distributes the tuples of the input relation to the corresponding output relations.

An example is given in the left part of Figure5.1. Both relationsR and S have an attribute

a. Let the input for the reverse union be three tuples:{〈2〉, 〈12〉, 〈8〉}. In this case, the reverse

union must output〈2〉 to the left reverse selection operator and output〈12〉 to the right selection

operator.〈8〉 can be output to either the left or the right selection operator. If the input of a reverse

union involves a tuple that does not fulfill the constraints of any branch (this is not possible in the

example of Figure5.1), then the reverse union fails and returnserror.

5.6 Reverse Minus

An example of a reverse minus operator (−−1) is shown in the right part of Figure5.1. Input tuples

are always routed to the left branch or result in an error. Furthermore, it is possible that the−−1

generates new tuples for both branches in order to meet all its constraints.In this example, the

reverse minus would output an input tuple〈2〉 (or any other input witha ≤ 5) to its left branch, and

it would returnerror if its input contains a tuple witha > 5. No new tuples need to be generated

in this example.

5.7 Reverse Rename

The reverse rename operator has the same semantics as in the traditional relational model. Thus,

only the output schema is affected; no data manipulation is carried out.
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The more constraints one imposes, the more one frees one’s self. And the

arbitrariness of the constraint serves only to obtain precision of execution.

– Igor Stravinsky, 1882-1971 –

The bottom-up query annotation phase in Figure4.1 annotates each operatorop−1 of a reverse

query tree with anoutput schemaSOUT and aninput schemaSIN . This way, each operator can

check the correctness of the input and ensure that it generates valid output data.

Definition 6.1 (Input/Output SchemaS:) A schemaS (input and output) in RQP is formally

defined as the following four-tuple:

S = (A, C, F, J)

The tuple defines (1) the attributesA, (2) the integrity constraintsC, (3) the functional dependen-

ciesF and (4) thejoin dependenciesJ (as well as multivalued dependencies as special cases of

J).

The set of attributesA defines the attribute namesname(a), the data typetype(a), and the fre-

quency|a| for each attributea ∈ A.

Definition 6.2 (Attribute Frequency|a|:) The frequency|a| of an attributea ∈ A defines how

often the same attribute instance (i.e. value of a tuple) can be used in a relation instance that

satisfiesS. The frequency is either given by a constantc (i.e., |a| = c) or as|a| ≥ 1.
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Notation Description
S SchemaS

S.A Attributes
S.C Integrity Constraints
S.F Functional dependencies
S.J Join dependencies
CCK Check constraints
CUN Unique constraints
CPK Primary-key constraints
CNN Not null constraints
CAGG Aggregation constraints

Table 6.1: Notations used in the bottom-up phase

For example, the frequency of the attributeo_id in the input schema of the reverse union operator

of the reverse query expression(orders ∪−1 orders) is two (i.e.,|orders.o_id| = 2) because the

same value will be used twice in the result of the reverse query expression.

The join dependenciesused in that work are a generalization of those known from textbooks like

[GMUW01].

Definition 6.3 (Join DependencyJD:) A join dependencyJD in that work is defined as follows:

JD = (A1, A2, p)

A JD defines that the projection of the relationR to the attributes inA1 ∪ A2 must represent

a lossless join on of the two projections ofR to A1 and R to A2 using p as join predicate:

πA1∪A2
(R) = (πA1

(R)) ⋊⋉p (πA2
(R)). Join dependencieswith more than two sets of attributes

can be represented as a recursive combination of thesejoin dependencies. More details on how

the join dependenciesare calculated for each reverse operator will be given in the corresponding

sections.

Moreover, RQP considers the integrity constraints of SQL (Primary-Key, Unique, Foreign-key, Not

Null, andCheck) as well asAggregationconstraints [RSSS94]. In order to denote the different

constraint types in a schemaS, we useS.CCK , S.CUN , S.CPK , S.CNN andS.CAGG . The

notations used in this chapter are summarized in Table6.1.

Obviously, a unary operator (e.g.,σ−1) in the RRA has only one output schema (SOUT ) whereas

a binary operator (e.g.,⋊⋉−1) has two output schemata. In a reverse query tree, the output schema

of an operator must match the input schema of the reverse operator which consumes the data from

that operator in in a reverse query tree. For example, the input schema ofthe σ−1 is the same

as the output schema of theπ−1 in the example of Figure4.2 (b) because the reverse selection

consumes data from the reverse projection in the reverse query tree.
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In order to annotate each operator of a reverse query tree the annotation phase operates in a bottom-

up way. It starts with the output schemata of the leaves of the reverse query tree (e.g., the operators

that read thelineitem andorders in Figure4.2(b)). Consequently, the output schemata of these

leaves are defined by the database schema (e.g., the SQL DDL code of Figure 4.2 (a). Then, for

each operator, the input schema is computed from the output schema of the operator. This input

schema is then used to initialize the output schema of the operator at the next level up.

[Klu80] showed that the problem of calculating constraints that hold on the intermediate results

of arbitrary relational queries is undecidable. In this chapter, we discuss a set of best-effort rules

to calculate the constraints that hold on the intermediate results (SIN andSOUT ) of an arbitrary

relational query.

The remainder of this chapter defines the set of best-effort rules usedfor the annotation of each

RRA operator and shows how the bottom-up phase works for each operator of the example re-

verse query tree in Figure4.2. Furthermore, we also show how the bottom-up phase works for

nested queries. In this regard, our work is an extension of the work presented in [Klu80]; that

work describes howfunctional dependenciesandcheckconstraints expressing the equality can be

propagated for expressions of the relational algebra. We extend that work for all elements (A, C,

F andJ) contained in a schemaS and add rules for the aggregation operator ([Klu80] did not

discuss the aggregation operator). As shown later, theprimary-keyand theuniqueconstraints inC

can be derived fromF , the attribute frequency, and thenot nullconstraints inS. Furthermore, the

rules introduced in the sequel use full qualified attribute names (relation nameand attribute name)

instead of the position of an attribute in a relation (which is used in [Klu80]) in order to identify

the attributes uniquely. Another extension is that we assumebagsemantics, as in SQL.

6.1 Leaf initialization

As stated above, the output schemata of the leaves of the reverse query tree are initialized using the

database schemaS. We assume that a database schema which is used as input of the bottom-up

annotation phase (see Figure4.1) defines a schemaSR = (A, C, F, J) for each relationR. For

each attributea ∈ A we set|a| = 1 if a has auniqueor aprimary-keyconstraint. Otherwise we set

|a| ≥ 1. In order to initialize a leaf of a RRA expression representing a relationR, the bottom-up

phase must extract the corresponding schemaSR out of the database schemaS.

Foreign-key constraints defined in the output schema are treated speciallyin the bottom-up phase.

They are rewritten as a reverse equi-join with a join predicate representingtheprimary-key/foreign-

key relationship.

Example: Assume the tablelineitem in the example of Figure4.2 (a) defines aforeign-keyon

the attributel_oid which refers theprimary-keyattributeo_id of the relationorders and we want
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to reverse process the following query:

SELECT l_name

FROM lineitem

WHERE price>100

This query would then be rewritten as:

SELECT l_name

FROM lineitem, orders

WHERE l_price>100 and l_oid=o_id

For the rest of the input schema elements of a leaf, they are the same as the elements of the leaf’s

output schema. For example, the input and output schemata of thelineitem andorders table in

Figure4.2 (b) can be represented in the following way (there are nounique, no foreign-key, and

no not null constraints in this example): the attributesA of both schemataSlineitem andSorders

define the attribute name, the type and the frequency of each attribute.

A: l_id; INTEGER; |l_id| = 1,

l_name; VARCHAR(20); |l_name| ≥ 1,

. . .

l_oid; INTEGER; |l_oid| ≥ 1

C: PRIMARY KEY(l_id)

CHECK(1 ≥ l_discount ≥ 0)

F : {l_id} → {l_name, l_price, ..., l_oid}

J : ∅

A: o_id; INTEGER; |o_id| = 1

o_orderdate; DATE; |o_orderdate| ≥ 1

C: PRIMARY KEY( oid)

F : {o_id} → {o_orderdate}

J : ∅

Slineitem Sorders

6.2 Reverse Join

The reverse join has two output schemata calledSOUT
left andSOUT

right . Its input schemaSIN is com-

puted from these two output schemata by the following rules:

(1) SIN .A = SOUT
left .A ∪ SOUT

right.A;

– If p is an equi-join predicatea1 = a2 (a1 ∈ SOUT
left .A anda2 ∈ SOUT

left .A) and there is a

primary-keyconstraint or auniqueconstraint in the database schemaS on the attributea1 (or

a2), then for eacha ∈ SIN .A ∪ SOUT
right.A (or for eacha ∈ SIN .A ∪ SOUT

left .A) set|a| ≥ 1

– Else for eacha ∈ SIN .A set|a| ≥ 1

(2) SIN .F = closure(SOUT
left .F ∪ SOUT

right.F ∪ createFD(p));

– p denotes the join predicate

– createFD(p) is a function to createfunctional dependenciesfrom predicates (see Figure6.1).
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– the functionclosure is the function to compute the closure of a given set offunctional depen-

denciesin [Klu80].

(3) SIN .J = SOUT
left .J ∪ SOUT

right.J ∪ JD(SOUT
left .A, SOUT

right.A, p)

(4) SIN .C is defined for each type as follows:

(4.1) SIN .CCK = SOUT
left .CCK ∪ SOUT

right.CCK ∪ p;

– p denotes the join predicate;

(4.2) SIN .CNN = SOUT
left .CNN ∪ SOUT

right.CNN ;

(4.3) (SIN .CPK , SIN .CUN ) = createPKAndUnique(SIN .F, SIN .CNN , SIN .A)

– createPKAndUnique is a function to createprimary-keyanduniqueconstraints from

functional dependencies,not nullconstraints, and attributes (see Figure6.2).

(4.4) SIN .CAGG = SOUT
left .CAGG ∪ SOUT

right.CAGG;

The set of attributesSIN .A of the input schema is the union of the set of attributes from the reverse

join’s output schemata (rule 1). The frequency of each attributea ∈ SIN .A is set to|a| ≥ 1 if the

join predicatep is not an equi-join predicate on an attribute inSOUT
left (or SOUT

right ) with a primary-

keyor a uniqueconstraint in the database schemaS. Otherwise, we set|a| ≥ 1 only for those

attributes inSIN .A that come fromSOUT
right (or SOUT

left ).

Thefunctional dependenciesSIN .F of the input schema are defined as the closure of the union of

thefunctional dependenciesin the reverse join’s output schemata and thefunctional dependencies

computed from the join predicate by the functioncreateFD in Figure6.1 (rule 2). The function

createFD takes a predicatep as input and outputs a set of derivablefunctional dependencies.

This function deals with arbitrary predicates by transforming the given predicate into conjunctive

normal form (Line 3 in Figure6.1). The conjunctive normal form of a predicate consists of one or

more conjuncts, each of which is a disjunction (OR) of one or more literals (simple predicates with

no boolean operator). Afterwards, each conjunct is analyzed separately (Line 5 in Figure6.1). In

case that the conjunct only consists of a simple predicate expressing the equality, it is transformed

into a set of functional dependencies (Line 9 to 15).

The join dependenciesSIN .J of the input schema are defined as a union of thejoin dependencies

in the reverse join’s output schemata and a newjoin dependencycomputed from the attributes of

both output schemata and the join predicatep (rule 3). Thus we are able to express joins on joined

relations.

Thecheckconstraints (rule 4.1) are the union of thecheckconstraints from the output schemata

and the join predicate. Thenot null constraints (rule 4.2) are the union of thenot null constraints

of the output schemata. Theuniqueconstraints andprimary-keyconstraints can be derived from

F , thenot null, and the attributes inSIN (rule 4.3). The functioncreatePKAndUnique (see

Figure6.2) used by that rule takes thefunctional dependenciesF , thenot null constraintsNN ,

and the of attributesA as input and outputs allprimary-keyanduniqueconstraints implied byF ,
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createFD(Predicate p)
Output:
-Set F // Set of functional dependencies
(1) //transform p to conjunctive normal form
(2) //cnf_p = pOR1 ∧ ... ∧ pORn

(3) cnf_p = CNF(p)
(4) //Analyze each conjunct pORi

(5) FOREACH pOR in cnf_p
(6) //domain equality: ai = aj

(7) //value equality ai = c;
(8) //ai,aj are attributes; c is a constant
(9) IF(pOR is domain equality)

(10) //e.g. add ({ai} → {aj}), ({aj} → {ai})
(11) F.add({pOR.leftAtt()} → {pOR.rightAtt()})
(12) F.add({pOR.rightAtt()} → {pOR.leftAtt()})
(13) ELSE IF(pOR is value equality)
(14) //e.g. add (∅ → {ai})
(15) F.add(∅ → {pOR.leftAtt()})
(16) //ELSE do nothing for complex predicates
(17) END IF
(18) END FOR
(19) RETURN F

Figure 6.1: FunctioncreateFD

NN , andA. A functional dependencyf expresses auniqueor primary-keyconstraint on the set

of attributesA, if all attributesA appear in the right side off and all attributes in the left side off

have a frequency of one (Line 6 in Figure6.2). When there arenot nullconstraints on the left side

of f , then aprimary-keyconstraint is added for the attributes; else auniqueconstraint is added for

the attributes (Line 7-10 in in Figure6.2).

Theaggregationconstraint (rule 4.4) is a new type of constraint which is explained in the following

section. These constraints are also computed as union of theaggregationconstraints of the two

output schemata.

Going back to the example of Figure4.2, the two output schemata of the⋊⋉−1 are given by the

input schemata of the relationslineitem andorders. Following the complete set of rules for⋊⋉
−1,

the resulting input schema of the⋊⋉−1 can be represented as follows:
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createPKAndUnique(Functional dependencies F ,Not null constraints NN ,
Attributes A)

Output:
-Set PK // Set of primary-key constraints
-Set UN // Set of unique constraints
(1) PK = UN = ∅
(2) //analyze F
(3) FOREACH f in F
(4) //if all attributes A are in right side of f
(5) //and each attribute a in left side has |a| == 1
(6) IF(A-f.rightAtts() == ∅ && |a| == 1 for each attribute a ∈ A)
(7) IF(NN has a constraint for f.leftAtts())
(8) PK.add(PK(f.leftAtts()))
(9) ELSE
(10) UN.add(UNIQUE(f.leftAtts()))
(11) END IF
(12) END IF
(13) END FOR
(14) RETURN (PK,UN)

Figure 6.2: FunctioncreatePKAndUnique

A: l_id; INTEGER; |l_id| = 1,

. . . ,

l_oid; INTEGER; |l_oid| ≥ 1,

o_id; INTEGER; |o_id| ≥ 1,

o_orderdate; DATE; |o_orderdate| ≥ 1

C: PRIMARY KEY(l_id), /*from lineitem*/

CHECK(1 ≥ l_discount ≥ 0), /*from lineitem*/

CHECK(o_id = l_oid) /*join predicate*/

F : {l_id} → {l_name, . . . , o_id, o_orderdate} ,

{o_id} → {o_orderdate} ,

{l_oid} → {o_id} ,

{o_id} → {l_oid}

J : JD({l_id, ..., l_oid}, {o_id, o_orderdate}, (l_id = l_oid)) ,

6.3 Reverse Aggregation

The input schema of a reverse aggregation operator is defined by the following rules:

(1) SIN .A = Agr ∪ Aagg;

– Agr denotes theGROUP BY attributes,

– Aagg denotes the attributes of the new aggregate columns of theSELECT andHAVING clause

– If Agr 6= ∅ then for eacha ∈ Agr set|a| = 1 and for eacha ∈ Aagg set|a| ≥ 1; Else for each

a ∈ Aagg set|a| = 1

39



CHAPTER 6: BOTTOM-UP QUERY ANNOTATION

(2) SIN .F = closure(cleanFD(SOUT .F,Agr) ∪ {Agr → Aagg});

– cleanFD is a function to filter unrelated FDs (see Figure6.3).

(3) SIN .J = cleanJD(SOUT .J, Agr)

– cleanJD is a function to filter unrelated JDs (see Figure6.4).

(4) SIN .C is defined for each type as follows:

(4.1) SIN .CCK = cleanConstraints(SOUT .C, (SIN .A ∪ Aagg.atts()), CK);

– cleanConstraints is a function to clean constraint (see Figure6.5).

(4.2) SIN .CNN = cleanConstraints(SOUT .C, (SIN .A ∪ Aagg.atts()), NN)∪

createNotNull(Aagg, S
OUT .CNN );

– createNotNull is a function to createnot nullconstraints (see Figure6.7).

(4.3) SIN .CAGG = cleanConstraints(SOUT .C, (SIN .A∪Aagg.atts()), AGGREGATION)∪

AGGREGATION(Agr, Aagg)

(4.4) (SIN .CPK , SIN .CUN ) = createPKAndUnique(SIN .F, SIN .CNN , SIN .A);

– createPKAndUnique is a function to createprimary-keyanduniqueconstraints from

functional dependencies, not nullconstraints, and attributes (see Figure6.2).

The attributesA of SIN are given by the attributes in theGROUP BY clause of the query plus

the aggregate columns specified in theSELECT andHAVING clause of the query (rule 1). The

frequency for each attribute in theGROUP BY clause is set to|a| = 1 and to|a| ≥ 1 for the

aggregate columns. If the query has noGROUP BY clause, then the frequency for the aggregate

columns is set to|a| = 1.

The computation ofF is listed in rule 2. It first uses the functioncleanFDs (Figure 6.3) to

keep onlyfunctional dependenciesf with at least one of the attributes of the left side off in the

input schema (Line 5 to 6). Then a newfunctional dependencywhich expresses that all aggregate

columns are functional dependent from the attributes in theGROUP BY clause is added. If no

GROUP BY clause exists, an empty set is used as left side of the newfunctional dependency.

The computation ofJ is shown by rule 3. It uses the functioncleanJD (Figure6.4) to keep only

those attributes in ajoin dependencyj with at least one of the attributes in theGROUP BY clause.

The checkand not null integrity constraints (rule 4.1 and rule 4.2) are inherited from the out-

put schema only if they are correlated to any attribute in the input schema or a metric attribute

Aagg.atts() of the aggregation functionsAagg. The functioncleanConstraints (Figure 6.5)

takes a set of integrity constraintsCOUT , a set of attributesA, and the constraint type as input

and outputs those integrity constraintsCIN of the given type which are correlated to any attribute

in A. In order to find correlated integrity constraints, the functioncleanConstraints invokes

a functioncreateConstraintGraph (Figure6.6) to create a constraint graph (Line 2 in Figure

6.5) whose vertices represent the given integrity constraints inCOUT and whose edges show if
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cleanFD(Functional dependencies FOUT , Attributes AIN )
Output:
-Set FIN // Cleaned functional dependencies

(1) FIN = ∅
(2) //analyze FDs in FOUT

(3) FOREACH f in FOUT

(4) //if left attributes of f are in AIN

(5) IF(f.leftAtts() ∩ AIN != ∅)
(6) f.rightAtts() = f.rightAtts() ∩ AIN

(7) F IN.add(f)
(8) END IF
(9) END FOR
(10) RETURN F IN

Figure 6.3: FunctioncleanFD

cleanJD(Join dependencies JOUT , Attributes AIN )
Output:
-Set JIN // Cleaned join dependencies

(1) JIN = ∅
(2) //analyze each JDs in JOUT

(3) FOREACH j in JOUT

(4) //analyze A1 and A2 in j given by j.atts()
(5) FOREACH set A in j.atts()
(6) //remove attributes not in AIN from j
(7) j.A1 = j.A1 ∩ AIN; j.A2 = j.A2 ∩ AIN

(8) //add j to JIN if A1 and A2 is not empty
(9) IF(j.A1 6= ∅ && j.A2 6= ∅) JIN = JIN ∪ j
(10) END FOR
(11) END FOR
(12) RETURN JIN

Figure 6.4: FunctioncleanJD
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cleanConstraints(Constraints COUT , Attributes A, Type t)
Output:
-Set CIN // Cleaned integrity constraints

(1) //create constraint graph of COUT

(2) GOUT = createConstraintGraph(COUT)
(3) GIN = (∅, ∅)
(4) //analyze attributes A
(5) FOREACH a in A
(6) //analyze constraints of GOUT

(7) FOREACH c in GOUT .V
(8) //if a is in attributes of c
(9) IF(a ∈ c.atts())

(10) //subgraph calculates all constraints
(11) //connected to vertex c in GOUT

(12) GSUB = GOUT.subgraph(c)
(13) //add constraints to GIN

(14) GIN.add(GSUB)
(15) GOUT.remove(GSUB)
(16) END IF
(17) END FOR
(18) END FOR
(19) //the vertices of GIN are the constraint
(20) CIN = GIN .V
(21) IF(t!=∅) RETURN CIN

t

(22) ELSE RETURN CIN

Figure 6.5: FunctioncleanConstraints

two constraints refer to at least one common attribute. The function keeps allintegrity constraints

which are connected to an integrity constraint, which refers to at least oneattribute inAIN (Line

9 to 16).

The aggregationconstraint (represented bySIN .CAGG) in Rule 4.3 is a new type of constraint

introduced in [RSSS94]. An aggregation constraint specifies the requirements of the aggregation

functions and theGROUP BY clause. They are also computed by the functioncleanConstraints.

Additionally, a new aggregation constraint for that operator is added, too.

Theprimary-keyanduniqueconstraints (rule 4.4) can be derived fromF , as already described for

the reverse join.

In the example of Figure4.2, the output schema of theχ−1 is given by the input schema of the

⋊⋉
−1. The input schema of theχ−1 is specified as follows.
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createConstraintGraph(Set C)
Output:
-Graph G = (V,E) // Graph of correlated constraints

(1) V = ∅
(2) E = ∅
(3) //integrity constraints in set C
(4) FOREACH c in C
(5) FOREACH c′ in V
(6) //if c and c′ have common attributes
(7) IF(c.atts() ∩ c′.atts()! = ∅)
(8) E.add(c, c′)
(9) END IF
(10) END FOR
(11) V .add(c)
(12) END FOR
(13) RETURN G = (V,E)

Figure 6.6: FunctioncreateConstraintGraph

A: o_orderdate; DATE; |o_orderdate| = 1,

SUM(l_price); FLOAT; |SUM(l_price)| ≥ 1,

AVG(l_price); FLOAT; |AV G(l_price)| ≥ 1

C: PRIMARY KEY (o_orderdate),

AGGREGATION(GROUP BY o_orderdate,

{SUM(l_price), AVG(l_price)} )

F : {o_orderdate} → {SUM(l_price), AVG(l_price)}

J : ∅

6.4 Reverse Selection

The input schema of a reverse selection inheritsA, F , C, andJ from its output schema. The only

difference between the output and input schema is that the selection predicate is added to thecheck

constraints of the input schema. The selection predicate is translated into correspondingfunctional

dependenciesin the same way as for the predicates of a reverse join (see Figure6.1).

In the example of Figure4.2, the input schema of theσ−1 is almost identical with the input schema

of theχ−1 (previous paragraph): only thecheckconstraint with the predicateAV G(l_price) ≤

100 is added to the constraintsCCK .

6.5 Reverse Projection

Theπ−1 operator has similar rules as theχ−1 operator. The rules are as follows:
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createNotNull( Aggregation constraints CAGGS , Not null constraints CNN )
Output:
//Not null constraints for aggregation functions
-Set CNN ′

(1) CNN ′ = ∅
(2) //analyze aggregation functions in AGGS
(3) FOREACH agg in CAGGS

(4) //if all metrics are NOT_NULL
(5) IF(agg.atts() - CNN .atts() = ∅)
(6) CNN ′.add(NOT_NULL(agg))
(8) END IF
(9) END FOR

(10) RETURN CNN ′

Figure 6.7: FunctioncreateNotNull

(1) SIN .A = Aproj ;

– Aproj denotes the projected attributes.

(2) SIN .F = cleanFD(SOUT .F, SIN .A);

– cleanFD is the same function as before (see Figure6.3)

(3) SIN .J = cleanJD(SOUT .F, SIN .A);

– cleanJD is a function to filter unrelated JDs (see Figure6.4).

(4) SIN .C = cleanConstraints(SOUT .C, SIN .A, ∅);

– cleanConstraints is the same function as before, see Figure6.5.

The attributes of the input schema (rule 1) are derived from the attributes intheSELECT clause

(the projection does not change the frequency). Thefunctional dependenciesand thejoin depen-

dencies(rule 2 and 3) are calculated by the functionscleanFD andcleanJD just like in reverse

aggregation. Also, the integrity constraints (rule 4) are calculated by the functioncleanConstraints

which keeps all constraints correlated to the attributes in the input schema.

In the example of Figure4.2, the input schema of theπ−1 is as follows.

A: SUM(l_price); FLOAT; |SUM(l_price)| ≥ 1

C: CHECK(AVG(l_price) ≤ 100),

AGGREGATION(GROUP BY o_orderdate,

{SUM(l_price), AVG(l_price)} )

F : ∅

J : ∅

44



6.6 REVERSE UNION

In the example, thecheckconstraint is correlated to theaggregationconstraint. Thus, it is kept

in the input schema, although the attributeAV G(l_price) itself is not kept. The reason is that

the functioncreateConstraintGraphwhich is used in order to calculate the correlated constraints

calls a methodatts() of each integrity constraint in the output schema (see Figure6.6, Line 7).

This method call on anaggregationconstraint returns all aggregated columns (e.g.,AV G(price))

plus all metrics of the aggregation functions (e.g.,l_price). Thus constraints correlated to all

aggregation functions and metrics are kept in the input schema.

6.6 Reverse Union

The reverse union has two output schemata like the reverse join. Its input schema is computed

from the two output schemata by the following rules.

(1) SIN .A = SOUT
left .A;

– For eacha ∈ SIN .A set|a| = SOUT
left .|a| + SOUT

right.|a|. If SOUT
left .a or SOUT

right.a has a frequency

≥ 1 then set|a| ≥ 1.

(2) SIN .F = SOUT
left .F ∩ SOUT

right.F ;

(3) SIN .J = ∅;

(4) SIN .C is defined for each type as follows:

(4.1) SIN .CCK = (SOUT
left .CCK) ∨ (SOUT

right.CCK);

(4.2) SIN .CNN = SOUT
left .CNN ∩ SOUT

right.CNN ;

(4.3) SIN .CAGG = SOUT
left .CAGG ∩ SOUT

right.CAGG;

(4.4) (SIN .CPK , SIN .CUN ) = createPKAndUnique(SIN .F, SIN .CNN , SIN .A); (see Figure

6.2)

The set of attributesA of the input schema is equal to the set of attributes of its left output schema

(rule 1), if the attribute types of both output schemata match. The frequencyof the attributes inA

is the sum of the input frequencies. An example is given in the introduction ofthis chapter.

The functional dependenciesin the input schema (rule 2) are computed by the intersection of the

functional dependenciesof the two output schemata. Rule 3 states that thejoin dependenciesare

initialized with an empty list. Obviously, at this point weloosesome constraints (i.e., our rule set

is not complete) as we discussed before.

The derivation of thecheckconstraints is more complex (rule 4.1): the set ofcheckconstraints

of the input schema is computed by combining the set ofcheckconstraints from the left output

schema with the set ofcheckconstraints from the right output schema disjunctively. However, as

the attribute names could be different in the right output schema they have to be renamed to the

45



CHAPTER 6: BOTTOM-UP QUERY ANNOTATION

corresponding attribute of the left output. Thenot null andaggregationconstraints are computed

by an intersection of these constraints of both output schemata (rule 4.2 andrule 4.3). Theprimary-

keyanduniqueconstraints (rule 4.4) are again derived fromF , as already described for the reverse

join.

Example: In the reverse union example in Figure5.1, the newcheckconstraints with the pred-

icate (R.a ≤ 10) ∨ (R.a > 5) of the input schema of the reverse union is derived from the

predicates of thecheckconstraints in the two output schemata ((R.a ≤ 10) and(S.a > 5)). We

can see that the attributes of thecheckconstraint of the right output schema are renamed.

6.7 Reverse Minus

The reverse minus operator has also two output schemata. To derive the input schema we generally

consider its left output schema only. The schema computation for the input schema of the reverse

minus operator is given by the following rules:

(1) SIN .A = SOUT
left .A

(2) SIN .F = SOUT
left .F

(3) SIN .J = ∅;

(4) SIN .C = SOUT
left .C ∧ ¬SOUT

right.CCK ;

The set of attributes of the input schema as well as allfunctional dependenciesand other integrity

constraints are equal to the left output schema (rule 1, 2 and 4). Thejoin dependenciesare again

initialized with an empty list (rule 3). In addition to these rules, (rule 4) states thata checkcon-

straint which is the negation of the conjunction of allcheckconstraint predicates of the right output

schema is added. In the reverse minus example in Figure5.1, acheckconstraint with the predicate

!(b > 5) is added to the input schema of reverse minus.

6.8 Reverse Rename

To derive the input schema we only rename the corresponding attribute respectively relation names

of the output schema inA, C, F andJ .
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6.9 Annotation of Nested Queries

In order to reverse process a nested query, SPQR uses the conceptof nested iterations (sometimes

called apply operators) which are known from traditional query processing [GLJ01], in a reverse

way (see Section7.10). A nested query has the following general structure:

OUTER QUERY

bind predicate

INNER QUREY

correlation predicate

In many cases, the bottom-up phase can be applied to the outer and inner query block separately.

However, if the inner query is a query connected by equality (bind predicate) to the outer query,

then the reverse apply operator adds an additionalfunctional dependencyto the outer query. In

case that the inner query is correlated to the outer query, thecorrelation predicatemust express the

equality, otherwise nofunctional dependencyis added to input schema of the reverse selection of

the outer query. Thefunctional dependencyadded by the reverse apply operator has the following

structure (correlation attributeandbind attributeare the attributes of the outer query used in the

correlation predicateand thebind predicate):

{correlation attribute} → {bind attribute}

Example: Assume the following query is given:

SELECT s_age, s_salary

FROM Student

WHERE s_age =

SELECT MAX(p\_age)

FROM Professor

WHERE p_salary=s_salary

In that example, afunctional dependency{s_salary} → {s_age} is added to the input schema of

the reverse selection operator of the outer query.
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Top-down Data Instantiation

I’d like our software somehow automatically recognizing your data and your

situation and respond to that without you having to set it up.

– Scott Cook –

The Top-down data instantiation component in Figure4.1 interprets the optimized reverse query

execution plan using anRTable R and query parameters as input. It generates a database instance

D as output. The generated databaseD fulfills the constraints of the database schema and the

overall correctness criterion of RQP under the decidability concerns asmentioned in Section4.1.

If this is not possible, thenerror is returned.

A reverse query execution plan consists of a set of physical RRA operators. As in traditional

query processing, the set of physical RRA operators is called the physical reverse relational alge-

bra. Each logical RRA operator may have different counterparts in the physical RRA. The choice

may be application dependent; for example, different physical implementations are used for SQL

debugging and for scalability testing. This chapter presents the physical algebra of SPQR, a pro-

totype of RQP. The physical algebra of SPQR tries to keep the generated database as small as

possible.

Moreover, there is a limitation on implementing some physical RRA operators: If the same

database table is referenced multiple times in a reverse query tree, then the physical implemen-

tations ofσ−1, ⋊⋉
−1 and−−1 are not allowed to generate additional tuples for that table. This

limitation does not affect the physical RRA in this thesis as these operators generate no additional

tuples in order to keepD as small as possible. But this limitation does affect physical algebras

which generate additional tuples (e.g., a physical algebra for performance testing).
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Example: That problem can be shown by the following example query which should bereverse

processed disregarding the rule above (TableS has the attributesA, B). We see that tableS is

referenced multiple times.

SELECT S1.A,S1.B,S2.A,S2.B

FROM S as S1, S as S2

WHERE S1.B=S2.B AND

S1.A>5 AND S2.A<=5;

Assume that a resultR is given which has only one tuple<6,1,5,1>. The reverse query tree

for that query contains two reverse selections (one onS1 and one onS2). The reverse selection

A > 5 onS1 pushes<6,1> down toS1 and creates an additional tuple which satisfies!(A > 5),

e.g. <5,2> for S1.A, S1.B. The reverse selectionA <= 5 on S2 pushes<5,1> down toS2

and creates an additional tuple which satisfies!(A <= 5), e.g.<6,2> for S2.A, S2.B. So at the

endS would contain four tuples{<6,1>,<5,2>,<5,1>,<6,2>}. If we run the query above

on the generated tuples inS the result would contain two tuples{<6,1,5,1>, <6,2,5,2>}

and not only one tuple as defined byR.

The remainder of this chapter is organized as follows. At the beginning we introduce the general

architectural model used to implement the physical RRA operators. Afterwards, a non blocking

implementation is shown for each RRA operator which can be used in most cases. Some special

cases which need a blocking implementation, as well as the reverse processing of nested queries

are discussed afterwards. Finally, optimizations for some RRA operators are presented.

7.1 Iterator Model

As in traditional query processing, each operator is implemented as an iterator [Gra93]. Unlike

traditional query processing, the iterators are push-based. That is, whenever an operator produces

a tuple, it calls thepushNextmethod of the relevant child (output) operator(s) and continues pro-

cessing once the child operator(s) is (are) ready. Thus, the whole datainstantiation is started by

scanning theRTable R and pushing each tuple ofR one at a time to the root operator of the re-

verse query plan. A push-based model is required because operators of the RRA can have multiple

outputs; the alternative would be to implement a pull-based model with bufferingwhich is signif-

icantly more complex [MF02]. All iterators have the same interface which contains the following

three methods:

• open: prepare the iterator for producing data (as in traditional query processing).
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• pushNext(Tuplet): (a) receive a tuplet, (b) check ift satisfies the input schemaSIN of

the operator, (c) produce zero or more output tuples, and (d) for each output tuple, call the

pushNextmethod of the relevant children operators.

• close: clean up everything (as in traditional query processing).

The following subsections show how the operators produce tuples in theirpushNextmethod. All

other aspects (e.g.,openandclose) are straightforward so that the details are omitted for brevity.

7.2 Reverse Projection

In SPQR, the reverse project operator produces exactly one output tuple for each input tuple. In

order to generate values for new columns, the reverse project operator calls the decision procedure

of a model checker. The idea is to create a constraint formula which represents the constraints

which have to be satisfied by the output. These constraints represent the values known from the

input tuple on the one hand and the output schema on the other hand. For example, if the input

schema has one column (A), the input tuple is<3>, and the output schema has two columns (A

andB) and an additional constraint thatA + B < 30, then the following constraint formula is

generated:

A = 3 & A+B < 30

This constraint formula is passed to the model checker which in turn generates values for all

variables orerror if no instantiations that satisfy the formula can be found. In this example, the

model checker would return, say,A = 3, B = 20 and these values would be used to generate an

output tuple.

Figure7.1shows the pseudocode of how theπ−1 operator which generates an output tuple from an

input tuple. The most important statement is the call of theinstantiateDatafunction (Line 2) which

does the actual work. Since this function is also used by the implementation of theχ−1 operator,

it has two return parameters: one which defines the instantiated data (variable, value pairs) and

another which indicates how many tuples are used to solve aggregations which might be part of

the formula (see below). The second return value is only needed for theχ−1 operator so that it

can be ignored for the moment. If the call toinstantiateDatawas successful (i.e.,I 6= NULL in

Line 3), then a new output tuple is created according to the output schema oftheπ−1 operator and

passed to the next reverse operator (Lines 6 to 8). Otherwise,error is returned (Line 4).

The pseudocode of a simplified version of theinstantiateDatafunction is shown in Figure7.2. This

function creates a constraint formulaL (Line 9) following the semantics of the reverse operator

and executes the decision procedure of the model checker onL (Line 10). As part of the creation

of the constraint formula, restrictions of the model checker need to be taken into account. For
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π−1.pushNext (Tuple t)

(1) //Instantiate output data
(2) (I,count)=instantiateData(t,SOUT)
(3) IF(I=NULL) //no instantiation found
(4) RETURN error;
(5) ELSE
(6) tout=createTuple(I,SOUT,1)
(7) //push down the new tuple tout

(8) nextOperator.pushNext(tout)
(9) END IF

Figure 7.1: MethodpushNextof π−1

instantiateData(Tuple t, Schema SOUT )
Output:
-Instantiation I //data instantiation
-int n //number of tuples for aggregation
(1) //number of tuples for aggregation
(2) IF t includes COUNT of aggregation
(3) count,maxcount=COUNT value in t
(4) ELSE //USER_THREHOLD=1 if no aggregation
(5) count=1; maxcount=USER_THRESHOLD
(6) END IF
(7) FOR(n=count TO maxcount)
(8) //Create constraint formula L
(9) L=createConstraint(t,SOUT,n)
(10) I=decisionProcedure(L)
(11) IF(I!=NULL) RETURN (I,n)
(12) END FOR //Trial-and-error
(13) RETURN (NULL,0)

Figure 7.2: FunctioninstantiateData(simplified)

example, the model checker used in the performance experiments (Section9) does not support

SQL numbers and dates. As a result, all SQL numbers and dates must be converted into (long)

integers and the constraints must be adjusted accordingly. Furthermore, arithmetic expressions

(e.g.,A + B) which might appear in the input and output schema of the reverse projection must

be taken into account.

The most complex part of theinstantiateDatafunction deals with the generation of columns that

involve aggregations. In Figure4.2, for example, theπ−1 operator needs to generate values for the

AV G(l_price) column. In order to generate correct values, theinstantiateDatafunction needs

to guess how many tuples are aggregated by the aggregate function; for instance, two tuples are

aggregated for the second tuple of theRTable R in Figure4.2. The two tuples are generated by

theχ−1 operator, but theπ−1 operator which only generates one output tuple per input tuple must
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be aware of this fact in order not to generate values that cannot be matched by theχ−1 operator.

Unfortunately, today’s publicly available model checkers have not beendesigned for aggregation

so that this guessing must be carried out as part of theinstantiateDatafunction in a trial and error

phase (Lines 6 to 11). The guessing iteratively tries different values ofn (the number of tuples

aggregated) and calls the decision procedure for each value until the decision procedure of the

model checker was successful and able to instantiate data.

Continuing the example of Figure4.2 for the second tuple of theRTable R (SUM(l_price) =

120), the following formula is generated forn = 1:1

sum_l_price=120 &

o_orderdate!=19900102 & avg_l_price<=100 &

sum_l_price=l_price1 & avg_l_price=sum_l_price/1

This formula is given to the decision procedure of the model checker and obviously, the model

checker cannot find values for the variablesprice1 andavg_price that meet all constraints. In the

second attempt forn = 2, the following formula is passed to the decision procedure:

sum_l_price=120 &

o_orderdate!=19900102 & avg_l_price<=100

sum_l_price=l_price1+l_price2 & avg_l_price=sum_l_price/2

This time, the decision procedure finds an instantiation:2

sum_l_price=120, avg_l_price=60,

l_price1=80, l_price2=40,

o_orderdate=20060731

From this instantiation, the values ofo_orderdate, avg_l_price, andsum_l_price are used in

order to generate the output tuple of the reverse project operator. In the SPQR prototype, the max-

imum number of attempts (maxcount in Figure7.2) can be constrained by the user in order to

make sure that the whole process does not run for ever. Moreover, all the guessing is not necessary

if the query involves aCOUNT aggregation because the values (or constraints) of the corresponding

COUNT column in the tuple (t) can be used (Lines 2 and 3 of Figure7.2). Furthermore, in order

to avoid the guessing, several optimizations can be applied (Section7.11). These optimization

techniques work very well such that in practice not much guessing is required; in fact, the experi-

mental results in Chapter9 show that no guessing is required for the whole TPC-H benchmark.

1The constraint onorderdate is generated becauseo_orderdate is theprimary-keyattribute of the output schema
and, thus, a differento_orderdate value must be generated for the tuple withSUM(l_price) = 120 than for the tu-
ple´withSUM(l_price) = 100. 19900102 is the integer representation for the date January 2, 1990, theo_orderdate

value of the tuple withSUM(l_price) = 100.
220060731 is the integer representation of the date July 7, 2006.
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χ−1.pushNext (Tuple t)

(1) //Instantiate data
(2) (I,count)=instantiateData(t,SOUT)
(3) IF(I=NULL) //no instantiation found
(4) RETURN error;
(5) ELSE
(6) FOR(n=1 TO count)
(7) tout =createTuple(I,SOUT,n)
(8) nextOperator.pushNext(tout)
(9) END FOR
(10) END IF

Figure 7.3: MethodpushNextof χ−1

The pseudocode of Figure7.2 is a simplification for the special case that there are no nested

aggregations (e.g.,SUM(AVG(price))) and no joins on aggregated values (e.g., aggregations in

several subqueries). However, the code can easily be generalized for all cases. This generalization

is not shown because it is fairly straightforward. SPQR indeed implements such a generalized

version of theinstantiateDatafunction.

7.3 Reverse Aggregation

The reverse aggregation operator can be implemented in an analogous wayto the reverse projec-

tion. The difference is that while theπ−1 operator only guesses how many tuples are potentially

involved in an aggregation, theχ−1 operator actually generates these tuples. The key idea to use

the decision procedure of a model checker, however, is the same.

Figure7.3shows the pseudo-code. TheinstantiateDatafunction is called in the same way as for

π−1. The only difference is that the return parametercount is now initialized (Line 2) which

defines the number of output tuples. If theinstantiateDatafunction was successful, thencount

tuples are generated (Lines 6 to 9) using the values returned by theinstantiateDatafunction. If

not, thenerror is generated (Lines 3 and 4). Again, an example that shows this code in action can

be seen in Figure4.2(c) (Tables (iii) and (iv)).

7.4 Reverse Join

The reverse join operator can be implemented in different ways, depending on the join predicate.

The simplest (and cheapest) implementation is the implementation of an equi-join that involves

a primary-keyor an attribute with auniqueconstraint. Such joins are the most frequent joins

in practice. They can be implemented as a simple projection with duplicate elimination. The
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∪−1.pushNext (Tuple t)

(1) //Create constraint formulas
(2) Lleft=createConstraint(t,SOUT

left )

(3) Lright=createConstraint(t,SOUT
right)

(4) //call model checker
(5) IF(decisionProcedure(Lleft)!=NULL)
(6) left_operator.pushNext(t)
(7) //call model checker
(8) ELSE IF(decisionProcedure(Lright)!=NULL)
(9) right_operator.pushNext(t)

(10) ELSE
(11) return error
(12) END IF

Figure 7.4: MethodpushNextof ∪−1

implementation of general joins and Cartesian products is more complex; the fullalgorithms are

given in Section7.9.1. In any event, the implementation of reverse joins and Cartesian products

do not involve calls to a model checker so that these operators are much cheaper than reverse

projections and aggregations.

7.5 Reverse Selection

The simplest implementation of theσ−1 operator would return its input (i.e., implement the iden-

tity function). For example in Figure4.2 (c), theσ−1 implements the identity function such that

its output relation (Table (iii) in Figure4.2(c)) is identical to its input relation (Table (ii) in Figure

4.2(c)). If any input tuple is not compliant with the output schema, thenerror is returned.

7.6 Reverse Union

Like the reverse join, the reverse union operator takes one relation as input and generates two

output relations. According to the output schemata of the two output relations, the reverse union

operator distributes the input tuples to the correct output relation.

Figure7.4shows a implementation of the reverse union. The implementation checks for each input

tuple if it is complaint with the output schema of the left output relation by creatinga constraint

formula representing the input tuple and the constraints imposed by the output schema (Line 1

to 3); and pushes the tuple to the left output relation if they are compatible (Line6). Otherwise,

the reverse union checks the compatibility of the input tuple with the right outputrelation (Line

8). If an input tuple is not complaint with any output relations, thenerror is returned (Line 11).

Obviously, the reverse union implementation is cheap: its complexity is Linear to theinput size.
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7.7 Reverse Minus

The implementation of the reverse minus operator is similar to the reverse union operator. It checks

for each input tuple if it is compliant with the left output schema but not the right output schema;

and pushes the input tuple to the left output if possible. Otherwise, it returns error. Again, the

complexity of this implementation is Linear to the input size just like the reverse unionoperator.

7.8 Reverse Rename

Since the reverse rename operator does not have any data manipulation, itsimplementation is the

same as the reverse selection: it returns identity.

7.9 Special Cases

The implementations of the operators discussed so far are all non-blocking. That is, whenever

an operator takes in a tuple, the operator can push the result tuple(s) to thechild output operator

immediately after processing. However, in some very special cases, RQP needs to use blocking

RRA operators in order to guarantee correctness and they are discussed in details in this section.

These special cases, however, are very rare in practice. For example, the TPC-H benchmark used

in the experiments does not have any of the special cases and all non-blocking operators described

above were used in the experiments.

7.9.1 Reverse Join

As discussed before the reverse equi-join that involves aprimary-keyor an attribute with aunique

constraint is trivial. However, all other reverse joins need more complex blocking implementations

which are shown in the following.

Case 1: If the join predicate expresses the equality of two attributes (ai = aj) and bothai and

aj are not theprimary-keyor an attribute with auniqueconstraint of the output schemata, then a

blocking implementation of the reverse join operator is needed.

The blocking implementation is shown in Figure7.5. First, the complete input relation is grouped

by the attributes of the left output schema (Line 1). Afterwards each group is analyzed (Line 3 to

24). If the group does not fulfill the join predicate anerror is returned (Line 5 to 7). Afterwards,

the left and right output are created for that group (Line 10,11). If any of both outputs (in the

algorithm we use the left output) of the previous group has the same value for the join attribute

as the current group, then the current right output must be the same as the previous right output;
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else anerror is returned (Line 14 to 19). If the input is correct, then the current left and right

outputs are propagated to the next operators and they are saved as previous outputs for the next

loop execution (Line 21 to 24).

Moreover, if one of the output schemata allows duplicates, the reverse joinoperator has to find out

the correct cardinality of the outputs out of different possibilities. In thatcase duplicate elimina-

tion is needed in Line 10 and Line 11. However, this extension is straightforward and not shown

in this thesis.

Example: An example of that case can be shown by the following query:

SELECT c_id, c_age, s_id, s_age

FROM customer, supplier

WHERE c_age=s_age

Both relations (customer andsupplier) have aprimary-keyattributeid. The input is given by

the following two tuples:<1, 27, 1 , 27> and<2, 27, 2 , 27>. Both tuples are in

separate groups because the attributes of the left outputc_id andc_age have different values. As

the reverse join produces different supplier tuples for the right outputof both groups, although

they have the same attribute value for the join attributec_age, the input is incorrect. A correct

input should have four tuples:{<1, 27, 1 , 27>, <1, 27, 2 , 27>, <2, 27, 1

, 27>, <2, 27, 2 , 27>}.

Case 2: If the join is not an equi-join and the join predicate is in the form ofai > aj or in the

form of ai ≥ aj , then the blocking version of the reverse join operator is needed, too.

Example: Consider the following query and the given input:

SELECT c_id, c_age, s_id, s_age

FROM customer, supplier

WHERE c_age > s_age

c_id c_age s_id s_age

1 27 1 25 /*1st group*/

1 27 2 26

2 28 1 25 /*2nd group*/

2 28 3 27
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⋊⋉
−1.pushNext (Relation r)

(1) r_groups = groupby(r, SOUT
left .A)

(2) //analyze each group in r_groups
(3) FOREACH r_group in r_groups
(4) //check join predicate
(5) IF(r_group not fulfills ⋊⋉

−1.p)
(6) RETURN error
(7) END IF
(8) //projection (with dupl. elimination)
(9) //to attributes of output schemata
(10) leftout = r_group[SOUT

left .A]

(11) rightout = r_group[SOUT
right.A]

(12) //if join values of previous group
(13) //are equal to current group
(14) IF(leftpre[⋊⋉

−1 .p.att()] == leftout[⋊⋉
−1 .p.att()])

(15) //then right outputs must be the same
(16) IF(rightout! = rightprev)
(17) RETURN error
(18) END IF
(19) END IF
(20) left_operator.pushNext(leftout)
(21) right_operator.pushNext(rightout)
(22) leftpre = leftout

(23) rightpre = rightout

(24) END FOR

Figure 7.5: Case 1: MethodpushNextof ⋊⋉
−1
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⋊⋉
−1.pushNext (Relation r)

(1) r_groups = groupby(r, SOUT
left .A)

(2) r_groups = sortbyatt(r_groups, SOUT
left .A∩ ⋊⋉

−1 .p.atts(), ⋊⋉
−1 .p)

(3) //analyze each group in r_groups
(4) FOREACH r_group in r_groups
(5) //check join predicate
(6) IF(r_group not fulfills ⋊⋉

−1.p)
(7) RETURN error
(8) END IF
(9) //projection (with dupl. elimination)

(10) //to attributes of output schemata
(11) leftout = r_group[SOUT

left .A]

(12) rightout = r_group[SOUT
right.A]

(13) //right output of successor group
(14) //must be contained in previous group
(15) IF(rightprev − rightout! = ∅)
(16) RETURN error
(17) END IF
(18) END IF
(19) left_operator.pushNext(leftout)
(20) right_operator.pushNext(rightout)
(21) rightpre = rightout

(22) END FOR

Figure 7.6: Case 2: MethodpushNextof ⋊⋉
−1

With a careful look on the input, it can be seen that the input is not a valid input of the reverse

join since a tuple<2, 28, 2, 26> is missing in the second group. As a result, the reverse join

operator has to examine all the input before it produces the first result.

The implementation for that case is given in Figure7.6. It is similar to the implementation of case

1 - the differences are marked bold. In particular, the reverse join also has to group the input by

the attributes of the left output schema (e.g.,c_id, c_age), and additionally has to sort the input

by the join attribute (e.g.,c_age) in ascending order (descending order is used if the comparison

operator is< or ≤) (Line 1 and 2). This way, the set of output tuples which is produced forthe

right output (e.g. tablesupplier) of the first group must be contained completely in the set of

output tuples which is produced for the second group (Line 15). If this condition holds among all

adjacent groups, then the input is valid; otherwiseerror should be returned (Line 16).

Case 3: If the join is not an equi-join and the join predicate is in the form of!(ai = aj), then

a blocking version of the reverse join operator is needed. The blocking version is implemented

similar to the first case: the input tuples are grouped by the left output schema and the join operator

checks if each group produces the same set of output tuples for right output.
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Case 4: In order to process more complex join predicates, the algorithms introduced before

must be combined. For example, to check the input of a reverse join operator with a conjunctive

predicate likeai > aj ∧ ak < al, the input must be grouped byai andak and the groups must

be sorted ascending byai and descending byak. Moreover, to check the input of a reverse join

operator with a disjunctive join predicate the tuples of the input must be divided into different

input groups each fulfilling one predicate element. E.g. for a join predicate likeai > aj ∨ ak < al

we divide the input into two groups - one which fulfills the predicateai > aj and another which

fulfills the predicateak < al. If a input tuple fulfills more than one predicate the tuple is added

to all corresponding input groups. Afterwards, each input groups are checked separately by the

algorithms introduced for the previous cases. As each join predicate can be transformed into

disjunctive normal form, we are able to process arbitrary reverse join operators3.

7.9.2 Reverse Projection and Reverse Aggregation

In two special cases, the top down phase of RQP needs the blocking implementation of the reverse

projection operator and the reverse aggregation operator.

Case 1: If the output schema of a reverse projection (or reverse aggregation)operator contains

a checkconstraint in the form ofaj < ai < ak or in the form ofaj < ai < c or in the form of

c < ai < aj (alternatively the predicate could use the≤ instead of the< operator), whereaj and

ak are attributes in the input schema andai is an attribute in the output schema but not in the input

schema and is bound by auniqueor primary-keyconstraint, the data instantiation phase should

use the blocking implementations of the operators.

Example: An example of this special case is a query like the following one:

SELECT b

FROM R

WHERE b<a and a<10

The relationR consists of attributesa andb; anda is a primary-keyattribute. If there are two

input tuples<7> and<8>, then the reverse projection may generate<9, 7> for the first input

tuple<7>. If that is the case, the reverse projection could not find an instantiation for the second

tuple<8> because<9,8> is the only possible instantiation (asb < a < 10) but this instantiation

violates theprimary-keyconstraints imposed by the first output tuple<9, 7> on the attributea.

As a result, a blocking implementation is needed such that the reverse projection and the reverse

aggregation operator consider all input tuples and generates the output inone batch. For the

3This thesis does not discuss the details of this algorithm.
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example above, the reverse projection has to buffer all the input in orderto produce the output

<8, 7> and<9, 8>.

Figure7.7shows a generalized version of the functioninstantiateDatawhich is used by the block-

ing implementation of both operators. This version takes a complete relation as input and returns

an instantiation of the output for the complete input, as well as an array of numbers which represent

the number of tuples, which have to be used for each input tuple in order to dissolve aggregations

(n[i] is the number of output tuples which have to be created for thei-th input tuple). Therefore

the function guesses the right number of output tuples for each input tupleby creating all possible

combinations of count values for all input tuples (Line 1 to 13). Afterwards the function tries to

find an instantiation of the output for each possible combination of count values (Line 14 to 20). In

case that the function finds an instantiation, it returns this instantiation and the current combination

of count values. If none of the combinations is satisfiable(NULL, NULL) is returned.

This function is more expensive than the simpleinstantiateDatafunction, because of several rea-

sons: One is that the constraint formula is more complex for the complete input and thus the

model checker needs more time; another reason is that the trial-and-errorhas to be carried out for

the complete input and thus the size of combinations grows exponential with the number of input

tuples.

Case 2: If a reverse projection (or reverse aggregation) operator generates tuples which are pro-

cessed by a reverse join operator (implied by a join dependency in the output schema) and its join

predicate does not express the equality on aprimary-keyattribute of one of the output schemata,

then blocking versions of the operators are needed during the data instantiation phase. Otherwise

these operators may generate incorrect values which do not satisfy the join properties. The im-

plementation of the blocking versions for these two operators in this special case needs similar

algorithms as the blocking version of the reverse join operators in Section7.9.1in order to check

the input. The algorithms can be adapted easily from that section and are notshown here.

Additional algorithms are needed in order to produce the output. First, the input must be grouped

as described for the different join predicates in Section7.9.1. Afterwards, the output generation

is carried out for each group of the input separately in order to generate values which respect the

join properties.

In the following we explain the output generation for join predicates which equal to those of case

2 in Section7.9.1. For illustration purposes we use the following example.

Example: Consider the following query and the given input. The query is similar to the example

query of case 2 in Section7.9.1. However the join attributes_age is not given by the input:
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instantiateData(Relation r, Schema SOUT )
Output:
//data instantiation
-instantiation I
//number of tuples to ungroup each tuple
-int[] n
(1) //number of tuples to ungroup r
(2) int[] count, maxcount
(3) i = 1
(4) //analyze each tuple t ∈ r
(5) FOREACH t in r
(6) IF t includes COUNT of aggregation
(7) count[i] = maxcount[i]=COUNT value in t
(8) ELSE //USER_THREHOLD=1 if no aggregation
(9) count[i]=1; maxcount[i]=USER_THREHOLD
(10) i = i + 1
(11) END FOR
(12) //create combinations of count domains
(13) comb=createCombinations(count,maxcount)
(14) FOREACH n in comb //n is a k−array; k is the cardinality of r
(15) //Create constraint formula L
(16) L=createConstraint(r,SOUT,n)
(17) I=decisionProcedure(L)
(18) IF(I!=NULL) RETURN (I,n)
(19) END FOR //Trial-and-error
(20) RETURN (NULL,NULL)

Figure 7.7: Case 1: FunctioninstantiateData
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SELECT c_id, c_age, s_id

FROM customer, supplier s

WHERE c_age>s_age

c_id c_age s_id

1 27 1 /*1st group*/

1 27 2

2 28 1 /*2nd group*/

2 28 2

2 28 3

First, the operator analyzes which join attributes are given by the input. If at least one join attribute

is given by the input (e.g.c_age), the input is grouped by the attributes of that output schema

of the corresponding reverse join operator which contains that join attribute (e.g. c_id, c_age).

Afterwards, the input groups are sorted by that join attribute (e.g.c_age) ascending or descending

depending on the relational operator of the join predicate (>, geq or <, leq). If both join attributes

are not given by the input, then the input is grouped by the attributes of the left output schema of

the corresponding reverse join and sorted ascending by the cardinality of each group. If the value

for the join attribute of the output schema we grouped by is not given by the input (e.g.c_age),

then the operator has to generate one distinct value per group where the values for all groups are

sorted ascending or descending depending on the join predicate (e.g. 27, 28). However, in our

example the attributec_age is given by the input and thus no values have to be generated. Other

values which must be generated for that output schema must be distinct foreach group, too. If

the value for the join attribute of the other output schema is not given by the input (e.g. s_age),

then the attribute values generated for the first group must be reused by the second group (e.g. we

generate 25, 26 for the tuples withs_id = 1 ands_id = 2). Values generated for other attributes of

that output schema (not in the join predicate) must be reused, too. New values must be generated

for those tuples which are in the second but not in the first group (e.g. wegenerate 27 for the tuple

with s_id = 3). The new values for the join attribute have to be greater than the maximum value

of the join attribute (e.g.s_age) used in the first group in case that the join operator is> or geq

or smaller than the minimum value of the join attribute in case that the join operator is< or leq.

Moreover, all generated join attribute values have to fulfill the join predicate. These steps have to

be carried out for all adjacent groups.

The algorithms for other join predicates are straightforward. As the previous algorithm, these

algorithms generate values for the join attributes in a similar way such that these values fulfill the

properties of the particular join predicate shown in the different cases ofSection7.9.1.
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7.9.3 Reverse Union

If both output schemata of a reverse union operator have aprimary-keyor auniqueconstraint on

the same attributeai and there is acheckconstraint on another attributeaj in the output schema,

then a blocking version of the reverse union is needed in the top down data instantiation phase.

Example: An example can be shown by the query in Figure5.1 (left side). Assume attributeb

is theprimary-keyattribute of both relationR andS and the two input tuples are<6, 6> and

<2, 6>. Using the non-blocking version of the reverse union operator, the first tuple<6, 6>

might be distributed to the relationR. Then, the second tuple<2, 6> cannot be distributed to

relationS becausea = 2 cannot not fulfill the selection predicatea > 5. Alike, this tuple also

could not be distributed to relationR because of theprimary-keyconstraint. Therefore, a blocking

implementation of the reverse union operator is needed which buffers all theinput and distributes

<6, 6> to S and<2, 6> to R.

Figure7.8shows the implementation of the blocking version of the reverse union operator. First,

the method analyzes which tuple must be distributed to the left, right, and which tuple can be

distributed to both outputs in a similar way as the non-blocking reverse union implementation

(Line 1 to 20). Afterwards those tuples which can by distributed to both outputs (bothout) must be

divided into two relations, one for each output (by method calldistribute) (Line 22). The method

distribute(not shown as algorithm) analyzes possible combinations to distribute tuples inbothout

to leftout andrightout. In order to check if a combination satisfies the output schemata, two

constraint formulas have to be constructed (one forleftout and one forrightout). These formulas

have to be checked by the model checker if they are satisfiable. If not, thenext combination is

tried. If no combination is found, thedistributemethod returns an error (Line 24), else the output

is propagated to the left and right branch (Line 26, 27) as specified in thecombination.

7.10 Processing Nested Queries

As mentioned in Section6, SPQR uses the concept of nested iterations (sometimes called apply

operators) which are known from traditional query processing [GLJ01], in a reverse way: The

inner subquery can be thought of as a reverse query tree whose input is parameterized on values

generated for correlation variables of the outer query.

Example 1: Assume that thelineitem table (from Figure4.3a)) has an extra columnl_shipdate.

Then, the following nested query is processed reversely as follows:
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∪−1.pushNext (Relation r)

(1) leftout = ∅
(2) rightout = ∅
(3) bothout = ∅
(4) FOREACH t in r
(5) //Create constraint formulas
(6) Lleft=createConstraint(t,SOUT

left )

(7) Lright=createConstraint(t,SOUT
right)

(8) //call model checker
(9) IF(decisionProcedure(Lleft ∧ Lright)!=NULL)

(10) bothout.add(t)
(11) //call model checker
(12) ELSE IF(decisionProcedure(Lleft)!=NULL)
(13) leftout.add(t)
(14) //call model checker
(15) ELSE IF(decisionProcedure(Lright)!=NULL)
(16) rightout.add(t)
(17) ELSE
(18) return error
(19) END IF
(20) END FOR
(21) (leftout, rightout) =
(22) distribute(bothout, leftout, rightout)
(23) IF(leftout, rightout=(NULL,NULL))
(24) return error
(25) END IF
(26) left_operator.pushNext(leftout)
(27) right_operator.pushNext(rightout)

Figure 7.8: MethodpushNextof ∪−1 in special case
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SELECT o_id FROM orders

WHERE orderdate IN

(SELECT l_shipdate FROM lineitem

WHERE l_oid = o_id)

First, the reverse query plan of the outer query is executed given anRTable R. The values

generated for the bind variableo_orderdate and the correlation attributeo_id are used to initialize

the input for the reverse query tree of the inner subquery. Processing nested queries is, thus,

expensive: it has quadratic complexity with the size of theRTable R. Section8 shows how almost

all nested queries can be unnested for reverse query processing in order to improve performance.

In those cases where the bind or the correlation predicate does not express the equality, the reverse

apply operator has to be implemented as blocking operator. This is obvious, as each nested RRA

expression can be unnested, e.g. by using reverse join operators (asshown in Section8). In the case

that the reverse join operator uses a inequality predicate, it also must use blocking implementation.

Thus, the algorithms for the blocking reverse apply operators are similar to the reverse join and not

shown in this technical report. The only difference is that the reverse apply generates new input

values for the inner subquery.

7.11 Optimization of Data Instantiation

The previous subsections showed that reverse query processing heavily relies on calls to a model

checker. Unfortunately, those calls are expensive. Furthermore, thecost of a call grows with the

length of the formula; in the worst case, the cost is exponential to the size ofthe formula. The re-

mainder of this section lists techniques in order to reduce the number of calls to the model checker

and reduce the size of the formulae (in particular, the number of variables inthe formulae). The

optimizations are illustrated using the example of Figure4.2.

Definition 7.1 (Independent attribute:) An attributea is independentwith regard to an output

schemaSOUT of an operator iffSOUT has no integrity constraints limiting the domain ofa anda

is not correlated with another attributea′ (e.g. bya > a′) which is not independent.

Definition 7.2 (Constrictive independent attribute:) An attributea is constrictive independent,

if it is independent with regard to an output schemaSOUT disregarding certain optimization-

dependent integrity constraints.

The following optimizations use these definitions:
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OP 1: Default-value Optimization

This optimization assigns a default (fixed) value to an independent attributea. The default value

assigned toa depends on the type of the attribute. Attributes which use this optimization are not

included in the constraint formula. An example attribute which could use this optimization is the

attributel_name of lineitem. This attribute could use a default value; e.g.,‘product‘.

OP 2: Unique-value Optimization

This optimization assigns auniqueincrement counter value to a constrictive independent attribute

a which is only bound byuniqueor primary-keyconstraints. Here, the optimization-dependent

integrity constraints which are disregarded in the definition of constrictive independent attribute

areuniqueandprimary-keyconstraints. Attributes which use this optimization are not included

in the constraint formula. In the running example, values for thel_id attribute could be generated

using this optimization. If another attributea′ of the same schema exists which is correlated by

equality (e.g.a = a′ from an equi-join) anda′ is an independent or a constrictive independent

attribute which is only bound byuniqueor primary-keyconstraints, then attributea′ is set to the

sameuniquevalue asa and constraints involvinga′ need not be included in calls to the model

checker either.

OP 3: Single-value Optimization

This optimization can be applied for a constrictive independent attributea which is only bound

by checkconstraints. An example of such an attribute is the attributel_discount of lineitem.

Such attributes are only included in a constraint formula the first time the top-down phase needs

to instantiate a value for them. Afterwards, the instantiated value is reused.

OP 4: Aggregation-value Optimization

This optimization can be applied for constrictive independent attributesa which are only bound by

an aggregation constraint. If the attributea is used in an aggregation function, e.g.,SUM(a) and

a result value for the aggregation function is given, then different techniques to instantiate values

for a can be used. Some possibilities are shown below:

1. If SUM(a) is an attribute in the operator’s input schema,MIN(a) andMAX(a) are not

in the operator’s input schema, anda has type float: Instantiate a value fora by solving

a = SUM(a)/n with n the number of tuples used to solve the aggregation constraint in the

instantiateDatafunction. In this case, no variablesa1, a2, . . . , an need to be generated and

used in the constraint formula passed to the model checker.

66



7.11 OPTIMIZATION OF DATA INSTANTIATION

2. Same as (1), butMIN(a) or MAX(a) are in the operator’s input schema, andn ≥ 3: Use

values forMIN(a) or MAX(a) once to instantiatea. Instantiate the other values fora by

solvinga = (SUM(a) − MIN(a) − MAX(a))/(n − 2).

3. Same as (1), buta is of data type integer: Again, we can directly computea by solving

SUM(a) = n1×a1 +n2×a2, wherea1 = ⌊sum(a)/n⌋, a2 = ⌈sum(a)/n⌉, n1 = n−n2

andn2 = (SUM(a)%n).

4. If COUNT (a) is in the operator’s input schema,a can be set using the Default-value opti-

mization (OP 1) becausea is independent in this case.

OP 5: Count Heuristic

Unlike the previous four optimizations, this optimization does not find instantiations. Instead, this

optimization reduces the number of attempts for guessing the number of tuples (n in Figure7.2)

to reverse process an aggregation by constraining the value ofn. The heuristics for this purpose

are shown below. The theoretical foundations for these heuristics are given in [RSSS94].

1. If SUM(a) andAV G(a) are attributes of the operator’s input schema,

thenn = SUM(a)/AV G(a).

2. If SUM(a) andMAX(a) are attributes of the operator’s input schema,

thenn ≥ SUM(a)/MAX(a) (if SUM(a) ≥ 0 andMAX(a) ≥ 0; if SUM(a) ≤ 0 and

MAX(a) ≤ 0 usen ≤ SUM(a)/MAX(a)).

3. If SUM(a) andMIN(a) are attributes of the operator’s input schema,

thenn ≤ SUM(a)/MIN(a) (if SUM(a) ≥ 0 andMIN(a) ≥ 0; if SUM(a) ≤ 0 and

MIN(a) ≤ 0 usen ≥ SUM(a)/MIN(a)).

OP 6: Tolerance on precision

As mentioned in Section4, tolerances can be exploited in order to speed up model checking. That

is, rather than, say, specifyinga = 100, a more flexible constraint90 ≤ a ≤ 110 can be used.

Of course, this optimization is only legal for certain applications. Our prototype, SPQR has a

user-defined tolerance range which is set to 0 percent by default.

OP 7: Memoization

Another general optimization technique is to cache calls to the model checker.For example,π−1

andχ−1 often solve similar constraints and carry out the same kind of guessing. In Figure 4.2,

for instance, the results of guessing for theπ−1 operator can be re-used by theχ−1 operator.

67



CHAPTER 7: TOP-DOWN DATA INSTANTIATION

Memoization at run-time has been studied in [HN96] for traditional query processing; that work

is directly applicable in the RQP context.
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Chapter 8
Reverse Query Optimization

Efficiency is doing better what is already being done.

– Peter Drucker, 1909-2005 –

The job of the reverse query optimizer is to transform a reverse query tree into a moreefficient

reverse query tree (Figure4.1). As part of such a rewrite, the input and output schemes need to be

adjusted (Chapter6). Depending on the application, different optimization goals can be of interest

(e.g., running time and or database size). The RQP framework allows the integration of different

query optimizers for different goals. In this work we present some firstideas on a RQP optimizer

that tries to minimize the running time of reverse query processing. E.g., designing optimizers

with other optimization goals (e.g., minimizing the size of the generated database instances) are

beyond the scope of this thesis.

Just as in traditional query optimization, the reverse query optimizer rewritesa reverse query tree

into anequivalentreverse query tree that satisfies a certain optimization goal. There are several

possible definitions of equivalence:

Definition 8.1 (General RQP-equivalence:) Two Reverse Query TreesT1 and T2 are generally

RQP equivalent for a Query Q iff for allRTablesR: Q(T1(R)) = Q(T2(R)) = R.

Definition 8.2 (Result-equivalence:) Reverse Query TreesT1 andT2 are result-equivalent iff for

all RTablesR: T1(R) = T2(R).

Traditional query optimization is based on result-equivalence: after a rewrite the same results

should be produced. Query optimization for RQP can be much more aggressive and thus allows
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more rewrites. A rewrite is correct if the new reverse query tree generates a different database

instance (in fact, it might even be desired); the only thing that matters is that theoverall RQP

correctness criterion (Section4.1) is met. That is why general RQP-equivalence is used in the

optimizer of the SPQR prototype.

8.1 Optimizer Design

The most expensive operators of RQP areπ−1 andχ−1 because these operators call the decision

procedure of the model checker. The exact cost of these operatorsis difficult to estimate for a

specific query because there are no robust cost models for model checkers; defining such cost

models is a research topic in its own right in that community. Nevertheless, it is clear that the

simpler and shorter the constraints, the better. One consequence is that it isimportant to minimize

the number ofπ−1 andχ−1 operators in a reverse query tree. Therefore, the canonical translation

of a SQL query into an expression of the relational algebra [GMUW01] is already good because

it results in at most oneπ−1 operator at the root of the reverse query tree. Optimizations that

add projections and group-by operations as devised for traditional query processing need not be

applied.

In addition toπ−1 andχ−1, the execution of nested queries is expensive because it isO(n2),

with n the size of the input (i.e.,RTable or intermediate result). Therefore, it is important to

unnest queries. Rules that make it possible to fully unnest almost all queries are given in the

next subsection. Furthermore,∪−1 and−−1 operators can be expensive because they potentially

involve calls to the model checker. As forπ−1 andχ−1 operators, therefore, the goal is to minimize

the number of∪−1 and−−1 operators in a reverse query plan. Again, the canonical translation of

SQL queries is good enough in practice for this purpose.

All other operators are cheap. They are linear in the size of their inputs and do not require any

calls to the model checker. In particular, the reverse equi-join that involves a primary-keyor

an attribute with auniqueconstraint is cheap. As a result, it is not important to carry out cost-

based join ordering or worry about different reverse join methods. Again, the canonical relational

algebra expression can be used for simple rewrites that eliminate unnecessary operators (e.g.,

σ−1’s in certain cases) and/or simplifies the expressions in the reverse querytree. Such rewrites

are presented in the last subsection of this chapter.

8.2 Query Unnesting

There are three rewrite rules that can be used to fully unnest most SQL queries. Only some queries

that involve the same table in the outer and in the inner query cannot be unnested for RQP. This
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very aggressive unnesting is possible because of the relaxed equivalence criterion presented at the

beginning of this chapter.

Rule 1: A subqueryQinner1 nested inside aNOT IN operator can be removed if (1) the inner

and outer queries refer to different tables and (2) no other subqueryQinner2 exists which refers to

the same table asQinner2 and is not nested insideNOT IN.

As a result, in the following example queryQ1 can be rewritten toQ2:

Q1 : SELECT l_name FROM lineitem WHERE l_oid NOT IN

(SELECT MAX(o_id) FROM orders

GROUP BY o_orderdate);

Q2 : SELECT l_name FROM lineitem;

To check the correctness, consider anRTable R with only one tuple:<‘productA>‘. Q1 and

Q2 are obviously not result-equivalent with respect toR. RQP forQ1 would generate at least one

lineitem tuple and oneorders tuple; in contrast, RQP forQ2 would only generate alineitem

tuple. The queries are general RQP-equivalent, however, becauseapplyingQ1 to both database

instance would return the required result; i.e. a single row with value‘productA‘.

Rule 2: An inner query in a nested query can be removed if (1) the columns used in theSELECT

clause of the inner query are also used in theSELECT clause of the outer query and (2) the two

queries are correlated by an equality predicate or by anIN predicate.

For example, the following QueryQ3 can be rewritten to QueryQ4:

Q3 : SELECT l_name, l_price FROM lineitem

WHERE price=(SELECT MIN(l_price) FROM lineitem)

Q4 : SELECT l_name, l_price FROM lineitem

Rule 3: If Rule 1 and Rule 2 are not applicable, all methods proposed in [GW87] to unnest

queries for traditional query processing can be applied to reverse query processing, too.

The proof is straightforward because result-equivalence for traditional query processing implies

general RQP-equivalence for reverse query processing. However, the optimizer has to take care of

the operator order mentioned in [Klu80] in order to preserve the general RQP-equivalence.
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8.3 Other Rewrites

At the begin of this chapter, we would like to mention the following (somewhat surprising) rewrite

rule:

Rule 4: Remove reverse select operators from the reverse query plan.

Chapter7 showed that this operator can be implemented using the identity function at run-time.

Only a reverse select at the root of the plan must not be removed in orderto make sure that its

predicate is checked.

There are several other rewrite rules that help to simplify expressions (e.g., eliminateLIKE and

other SQL functions from predicates). One such rewrite rule is:

Rule 5: A LIKE predicate can be rewritten as a equality predicate without the wildcards (e.g.

%) if (1) the attributes included in theLIKE predicate are not given by the input and (2) these

attributes do not have auniqueconstraint.

It is obvious, that the instantiated values for the rewritten equality predicate also fulfills theLIKE

predicate; e.g., all values which fulfillname = ‘A‘ also fulfill name LIKE %A%.
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Chapter 9
Experiments

No amount of experimentation can ever prove me right; a single experiment can

prove me wrong.

– Albert Einstein, 1879-1955 –

This chapter presents the results of performance experiments with our prototype system SPQR

and the TPC-H benchmark [TPCb]. These experiments show the running times of reverse query

processing and the size of the generated databases.

9.1 Experimental Environment

The SPQR system was implemented in Java (Java 1.4) and installed on a Linux AMD Opteron 2.2

GHz Server with 4 GB of main memory. In all experiments reported here, SPQRwas configured

to allow 0 percent tolerance; that is, OP 6 of Section7.11was disabled. As a backend database

system, PostgreSQL 7.4.8 was used and installed on the same machine. As a decision procedure,

Cogent [CKS05] was used. Cogent is a decision procedure that is publicly available and has been

used in several projects world-wide. Cogent was written using the C programming language. For

our purposes, it was configured to generateerror if numerical overflows occurred.

The TPC-H benchmark is a decision support benchmark and consists of 22 business oriented

queries and a database schema with eight tables. The queries have a high degree of complexity:

all of them include at least one aggregate function with a complex formula, and many queries

involve subqueries. Some queries (e.g., Q11) are parametrized and their results and running times

depend on random settings of the parameters. The experiments were carried out in the following
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100M 1G 10G

Query RTable Generated RTable Generated RTable Generated
1 4 600,572 4 6,001,215 4 59,986,052
2 44 220 460 2,300 4,667 23,335
3 1216 3,648 11,620 34,860 114,003 342,009
4 5 10,186 5 105,046 5 1,052,080
5 5 30 5 30 5 30
6 1 1 1 1 1 1
7 4 24 4 24 4 24
8 2 32 2 32 2 32
9 175 1,050 175 1,050 175 1,050
10 3767 15,068 37,967 151,868 381,105 1,524,420
11 2541 7,623 1,048 3,144 289,022 867,066
12 2 6,310 2 61,976 2 621,606
13 38 162,576 42 1,629,964 46 16,298,997
14 1 4 1 4 1 4
15 1 2 1 2 1 2
16 2762 23,264 18,314 236,500 27,840 2,372,678
17 1 3 1 3 1 3
18 5 15 57 171 624 1,871
19 1 2 1 2 1 2
20 21 105 204 1,020 1,968 9,840
21 47 2,325 411 20,705 4,009 197,240
22 7 1,282 7 12,768 7 127,828

Table 9.1: Size of Generated Databases andRTable (rows)

way: First, a benchmark database was generated using thedbgenfunction as specified in the TPC-

H benchmark. As scaling factors, we used 0.1 (100 MB database; 860K rows), 1 (1 GB; 8.6

million rows), and 10 (10 GB; 86 million rows). Then, the 22 queries were run, again as specified

in the original TPC-H benchmark. The query results were then used as inputs (i.e., asRTables) for

reverse query processing of each of the 22 queries. We measured thesize of the resulting database

instance (as compared to the size of the original TPC-H database instance)and the running time

of reverse query processing.

9.2 Size of Generated Databases

Table9.1 shows the size of the databases generated by SPQR for all queries on thethree scaling

factors. For queries which include an explicit or implicit1 COUNT value inR, the size of the

generated database for different scaling factors depends on thatCOUNT value. For example, Q1

generates many tuples (600,572 tuples for SF=0.1) from a smallRTable R because Q1 is an

aggregate query whereR explicitly defines bigCOUNT values for each input tuple. For those

queries which do not define aCOUNT value, only a handful of tuples is generated because the

trial-and-error phase starts from creating one output tuple per input tuple (e.g., Q6). In that case,

the size of the generated database is independent from the scaling factor. As a summary, we see

1Implicit means that theCOUNT value can be calculated by the optimization ruleOP 5of Section7.11.
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9.3 RUNNING TIME (SF=0.1)

Query RQP QP DB MC M-Invoke

1 26:51 12:01 8:42 6:06 4
2 0:24 < 1ms 0:21 0:02 44
3 19:20 0:14 0:11 18:55 1216
4 0:20 0:05 0:14 < 1ms 5
5 0:12 < 1ms < 1ms 0:11 10
6 0:02 < 1ms < 1ms 0:1 2
7 0:10 < 1ms 0:01 0:9 8
8 0:15 < 1ms 0:02 0:13 12
9 4:23 0:02 0:03 4:17 175
10 56:33 0:42 0:37 55:13 3767
11 42:11 0:13 0:14 41:43 2541
12 7:25 0:16 0:11 6:57 3155
13 2:56 1:38 1:16 < 1ms 21
14 0:08 < 1ms 0:01 0:07 6
15 0:03 < 1ms < 1ms 0:03 3
16 0:29 0:15 0:14 < 1ms 0
17 0:02 < 1ms < 1ms 0:01 2
18 0:01 < 1ms < 1ms < 1ms 15
19 0:02 < 1ms < 1ms 0:01 2
20 0:21 < 1ms < 1ms 0:20 42
21 1:43 0:04 0:05 1:34 465
22 0:26 0:01 0:01 0:23 641

Table 9.2: Running Time (min:sec): SF=0.1

that the generated databases are already as small as possible. Huge databases are only generated

by SPQR if the query result explicitly states the size.

9.3 Running Time (SF=0.1)

Table9.2 shows the running times of RQP for the TPC-H benchmark with scaling factor 0.1. In

the worst case, the running time is up to one hour (Query 10). However, most queries can be

reverse processed in a few seconds. Table9.2 also shows the cost break-down of reverse query

processing.QP is the time spent processing tuples in SPQR (e.g., constructing constraint formulae

and calls to thepushNextfunction). For all queries (except Q1), this time is below a minute. Q1

is an exception because it generates many tuples and a great deal of work is necessary in order

to carry out the optimizations of Section7.11for each tuple.DB shows the time that is spent by

PostgreSQL in order to generate new tuples (processing SQLINSERT statements through JDBC).

Obviously, this time is proportional to the size of the database instance generated as part of RQP.

TheMC column shows the time spent by the decision procedure of the model checker. It can be

seen that this time dominates the overall cost of RQP in most cases; in particular, it dominates the

cost for the expensive queries (Q10 and Q11). This observation justifies the decision to focus all

optimization efforts on calls to the decision procedure (Sections7 and8). M-Invoke shows the

number of times the decision procedure is called. Comparing theMC andM-Invoke columns,

it can be seen that the cost per call varies significantly. Obviously, the decision procedure needs

more time for long constraints (e.g., Q10) than for simple constraints (e.g., Q22). We still have
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Query 100M 1G 10G

1 26:51 207:11 2054:19
2 0:24 0:47 4:02
3 19:20 183:49 1819:48
4 0:20 2:26 24:15
5 0:12 0:12 0:12
6 0:02 0:01 0:01
7 0:10 0:10 0:09
8 0:15 0:17 0:14
9 4:23 4:33 10:20
10 56:33 566:45 5639:13
11 42:11 18:15 4472:00
12 7:25 83:09 719:56
13 2:56 27:47 276:05
14 0:08 0:08 0:15
15 0:03 0:03 0:04
16 0:29 4:04 36:37
17 0:02 0:02 0:08
18 0:01 0:10 1:54
19 0:02 0:02 0:02
20 0:21 3:24 32:27
21 1:43 14:44 140:47
22 0:26 4:08 42:00

Table 9.3: Running (min:sec): Vary SF

not found a way to predict the cost per call and we are hoping for progress in this matter from the

model checking research community.

We also measured the number of attempts each TPC-H query needed for guessing the number of

tuples in aggregations (Section7). These results are not shown in Table9.2, but the results are en-

couraging: in fact, none of the 22 required any trial-and-error. The reason is that the optimizations

proposed in Section7.11effectively made it possible to pre-compute the right number of tuples

for all TPC-H queries.

9.4 Running Time: Varying SF

Table9.3 shows the running times of reverse processing the 22 TPC-H queries forthe three dif-

ferent scaling factors. In some cases, due to the nature of the queries,the running times (as the

size of the generated databases, Table9.1) is independent of the scaling factor; example queries

are Q5 and Q6. For all those queries, for which the running times were higher for a larger scaling

factor, the running time increased linearly. Examples are queries Q10 and Q21. Again, these re-

sults are encouraging because they show that RQP potentially scales linearly and that even large

test databases can be generated using RQP. Note that Q11 has a parameter that is set randomly;

this observation explains the anomaly that the running time for SF=0.1 is higher than for SF=1 for

that query.
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Chapter 10
Related Work

The work of the individual still remains the spark that movesmankind ahead even

more than teamwork.

– Igor Sikorsky, 1889-1972 –

To the best of our knowledge, there has not been any previous work on reverse query process-

ing. The closest related work is the work on model checking which has a similar goal: find

instantiations of logical expressions. Consequently, we use the results ofthat research commu-

nity in our design. However, the model checking community has not addressed issues involv-

ing SQL or database applications. In addition, that community has not addressed any scalability

issues that arise if millions of tuples need to be generated as for the TPC-H benchmark. In or-

der to provide scalability, our design adopted techniques from traditional query processing; e.g.,

[HFLP89; Gra93]. All that work is orthogonal to our work.

As mentioned in Chapter2.2 there has been significant related work in the area of generating

test databases. [MR86] shows how functional dependencies can be processed for generating test

databases. The bottom-up phase of RQP (Section6) makes use of the findings of the work in

[Klu80] and extends it for the complete SQL specification. Likewise, other work onthe gener-

ation of test databases (e.g., [NML93; CDF+04]) focuses on one aspect only and falls short on

most other aspects of RQP. [IWL83] discusses a similar problem statement as RQP but only ap-

plicable to a very restricted set of relational expressions. There has also been work on efficient

algorithms and frameworks to produce large amounts of test data for a given statistical distribution

[GSE+94; BC05]. In the other potential application areas of RQP (e.g., sampling), to the bestof

our knowledge, nobody has tried yet to apply techniques such as RQP.
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Part III

Applications of Reverse Query

Processing
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The first two chapters of this part discuss the extensions of RQP to support two further applica-

tions: Chapter11 presents the extensions that are necessary to support the testing of OLTP appli-

cations where RQP gets set of queries and results as input to generate a test database. Chapter12

then describes the extensions of RQP to support the testing of a query language where we need to

be able to verify the actual query result that is returned by executing a test query on a particular test

database. These techniques are currently used in an industrial environment for the testing of the

Query Processing Functionality of the new ADO.Net Entity Framework of Microsoft (Redmond,

USA). Finally, in the last chapter of this part we sketch some other applications of RQP which

include the debugging of SQL queries and the testing of the confidentiality of data that comes

from different views.
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Chapter 11
Functional Testing of OLTP Applications

If I have seen further, it is by standing on the shoulders of giants.

– Isaac Newton, 1643-1727 –

In contrast to OLAP applications which implement reports that read a huge amount of correlated

data from the database, OLTP applications implement use cases which execute a sequence of

actions whereas each action usually reads or updates only a small set of tuples in the database. As

an example, think of an online library. One potential use case of such an application is that a user

wants to borrow a book. The sequence of actions which is implemented by thatuse case could be

as follows:

1. The user enters the ISBN of the book (where the ISBN is unique for each book of the library).

2. The system shows the details of that book.

• Exception 1: The book is borrowed by another user. The systemdenies the request.

• Exception 2: The book belongs to the closed stack of the library. The system denies the

request.

3. The user enters personal data (username, password) and confirms that she wants to borrow the book.

4. The system checks the user data and updates the database.

• Exception 3: The user has entered an incorrect username or password. The system denies the

request.

• Exception 4: There are charges on the user account that exceed a certain limit. The system

denies the request.
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Functional testing the implementation of such a use case means that we have to check the confor-

mance of the implementation with the specification of the functionality [Bin99] (i.e., the use case).

Consequently, we need to create a set of test cases to test the correctness of the different execution

paths of a use case. In the following we show some test cases which can beused for the functional

testing of the implementation of the use case shown above:

• Test Case 1:The user wants to borrow a book with a particular ISBN that is already borrowed by

another user.

• Test Case 2:The user wants to borrow a book with a particular ISBN but the book belongs to the

closed stack.

• Test Case 3:The user wants to borrow a book with a particular ISBN and enters an incorrect user-

name or password.

• Test Case 4:The user wants to borrow a book with a particular ISBN but there are charges on her

account that exceed a certain limit.

• Test Case 5:The user borrows a book with a particular ISBN successfully.

In order to execute all these test cases, one or more test databases need to be created which com-

prise different types of books (i.e., books which are already borrowed by another user or not, and

books which belong to the closed stack and other books which do not) and different user accounts

(i.e., user accounts with and without charges which exceed a certain limit). For example, in order

to executeTest Case 2the database should include a book which belongs to the closed stack.

Currently, there are a number of commercial and academic tools available (e.g., [IBM; DTM; dbM;

BC05; SP04; HTW06; NML93; CDF+04]) which generate test databases for a given database

schema. Beside the database schema, some tools also support the input of the table sizes, data

repositories and additional constraints used for data instantiation (e.g., statistical distributions of

individual attributes, value ranges). Unfortunately, all the aforementioned tools suffer from the

problem that the generated test databases often do not comprise the data characteristics sufficient

to execute a given set of test cases. The reason is that these tools take constraints on the complete

database state as input (e.g., table sizes and value distributions of individual attributes) which are

not suitable to express the needs of the individual test cases. Consequently, the generated test

databases are usually inadequate to support the execution of all given test cases.

A solution to tackle this problem was shown in PartII which discusses a new technique called

Reverse Query Processing (or RQP for short). The idea of RQP is to letthe user constrain the

database state by using one SQL queryQ and a expected resultR of that query. The RQP processor

SPQR then generates a set ofINSERT statements which create a test databaseD for a given

schemaS (including integrity constraints) such thatD returns the expected resultR for that query;

i.e., Q(D) = R. The main application of RQP is the testing of the reporting functionality of an
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OLAP application. In order to create a set of test cases and the corresponding test databases, we

suggested to extract the SQL queries which are defined by the individualreports and to manually

create one or several expected results for each of these reports. A SQL query which implements a

report and a sample result of that report together represent a test case which can directly be used

as input of the RQP processor to generate a corresponding test database for that test case. For the

testing of the OLAP application, the SQL query (i.e., the report) which is defined by a test case is

executed on the generated test database and the actual result is compared the expected result for

verification.

However, one SQLSELECT query and one expected result are usually not sufficient to specify

a test database that is adequate to execute a test case of an OLTP application. The reason is that

most test cases of an OLTP application need toread or updatedifferent tuples in the database

that are not necessarily correlated. Therefore, in order to specify the relevant values of the tuples

that are read or updated by a particular test case, in this chapter we suggest that a tester uses

SQL as a database generation language: i.e., the tester specifies the test database for one test

case bymanuallycreating a set of SQLSELECT queries and their expected results (called test

database specification). A test database which returns these expected results for all the given

SQL SELECT queries enables the execution of a particular test case of an OLTP application.

Compared to the approach discussed in PartII , we do not provide a formal method to derive the

SQLSELECT queries for the test database specification from the code of the OLTP application or

from the test cases because we think that using SQL as a database generation language is intuitive.

Consequently, the SQLSELECT queries in the test database specification are independent from

the SQL statements implemented by the OLTP application (i.e., theSELECT, INSERT, UPDATE,

andDELETE statements).

For example, if we want to generate a test database forTest Case 4above, the test database needs to

comprise a book with a particular ISBN which does not belong to the closed stack (i.e., the attribute

b_closedstack must have the value‘false‘) and a user whose charges exceed a certain limit (e.g.

$20)1. The desirable database state, can be specified by multiple queries and the corresponding

expected query results (e.g., the queries and expected results shown in the following example).

By doing so, the tester can focus on the data that is relevant forTest Case 4(e.g., the values for

b_isbn and b_closedstack specified byQ1 andR1) and she does not have to take care of the

irrelevant data (e.g., the values forb_price andb_title). Unfortunately, RQP is not capable to

support multiple queries and the corresponding expected results as input.

1The database schema for all examples in this chapter is shown in Figure11.3(a) on Page96.
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Q1 : SELECT b_closedstack FROM book

WHERE b_isbn=’0130402648’
R1 : {<’false’>}

Q2 : SELECT u_pasword, u_charges FROM user

WHERE u_name=’test’
R2 : {<test, 20.0>}

Consequently, in this chapter we study the problem of Multi-RQP (or MRQP for short). Unlike

RQP, MRQP gets asetof SQL SELECT queries and thecorresponding expected query results

as input and tries to generate one test database that returns the expectedresults for all the given

queries. However, we can show that MRQP is undecidable for arbitrarySQL SELECT queries.

Thus, as we suggest that the tester creates the queries manually to specifythe test database, we

can restrict the classes of queries to be supported by MRQP so that MRQPbecomes decidable.

Moreover, when defining the restricted classes of input queries that are to be supported by MRQP,

we have to make sure that the tester can still specify any database instance any test database for a

given OLTP application by only using these restricted query classes.

Contributions: The contributions of this chapter can be summarized as follows: (1) We formu-

late the problem statement of MRQP and prove that it is undecidable for arbitrary SQLSELECT

queries. (2) In order to generate test databases for a test case of anOTLP application, we propose

a new database generation language called MSQL. MSQL is a pure subsetof SQL. Using MSQL

a tester can manually create a set of queries and the corresponding expected results to specify the

test database state for one test case. MSQL is carefully designed: UsingMSQL the tester can

easily formulate queries that satisfy certain restrictions so that MRQP on these queries is decid-

able and can be solved efficiently while the tester can still specify any test database for a given

schema. (3) Using the specified queries and expected results, we discuss how a test database can

be automatically generated by MRQP which is adequate to support the execution of a particular

test case. (4) As a last contribution we present an algorithm which reduces the number of test

databases for all test cases (MRQP initially generates one test database per test case). As a result

many test cases can use the same test database. Consequently, the test cases can be executed more

efficiently [CAA+04; HKL07] and the management of the test databases becomes easier.

Outline: The remainder of this chapter is organized as follows: Section11.1discusses the prob-

lem statement of MRQP and define some general restrictions on the input queries of MRQP such

that MRQP becomes decidable under the assumption that RQP is decidable foreach single query.

Section11.2then introduces the new test database generation language MSQL for which we can

easily check whether a set of given queries fulfills the aforementioned restrictions or not. More-

over, we also show a complete example of MRQP using MSQL and discuss somefurther exten-
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sions of MSQL. Section11.3describes the algorithm which reduces the number of test databases

for all test cases. Finally, Section11.4discusses related work.

11.1 MRQP Overview

In this section we first study the decidability of MRQP. Therefore, we present the general problem

statement of MRQP and show that MRQP is undecidable for arbitrary SQL queries. Afterwards,

we introduce some restrictions on the input queries of MRQP such that MRQPbecomes decidable

(under the assumption that RQP is decidable for each individual query and its expected query

result). Finally, we illustrate a procedure which solves MRQP under these restrictions.

11.1.1 Problem Statement and Decidability

As mentioned before, this chapter addresses the following problem: Givena set of arbitrary SQL

SELECT queriesQ = {Q1, ..., Qn}, a set of expected resultsR = {R1, ..., Rn} of these queries,

and the database schemaS of a relational database (including integrity constraints), find a database

instanceD so that

Ri = Qi(D)

for all 1 ≤ i ≤ n andD is compliant withS and its integrity constraints. There may exist many

different database instancesD that satisfy these criteria. In this chapter, it is the goal to find one

viable database instance.

The decision problem (based on the problem statement above) which askswhether a database

instanceD exists or not that satisfies the schemaS and returnsRi = Qi(D) for all 1 ≤ i ≤ n

is thus called theMRQP decision problem. Obviously, the MRQP decision problem cannot be

decidable because RQP is not decidable for arbitrary SQL queries either(see Section4.1).

11.1.2 MRQP Restrictions

As already mentioned in the introduction of this chapter, we suggest that a user manually creates

a set ofSELECT queriesQ = {Q1, Q2, . . . , Qn} and the expected results of these queriesR =

{R1, R2, . . . , Rn} in order to specify the test database for one test case. By doing so, we can

restrict the input queries inQ to be able generate a test database for many practical situations.

Consequently, in this section we first introduce a restriction on the query set Q which requires that

Q must beRQP-disjoint. Under that restriction and the assumption that RQP is decidable for each

individual SQL queryQi ∈ Q, MRQP can be solved efficiently by first generating one individual

test database for each queryQi ∈ Q using RQP and then taking the union over all these individual
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test databases to create the final test database that returns the expectedresult defined inR for all

queries inQ.

Despite that restriction, a tester can still specify any test database instancefor a given database

schema of an OLTP application. However, in some cases it is cumbersome forthe tester to define

such an RQP-disjoint query setQ. Therefore, we introduce a relaxation of that restriction which

enables a tester to specify the test database in a more elegant way by creating query refinements

for the individual queriesQi ∈ Q. Moreover, in this section we also show how to generate a test

database under that relaxation.

As already mentioned, we do not present a method how to derive the test database specification

for one test case (i.e., an RQP-disjoint query set and some query refinements) from the code of

the application or the test cases because we believe that it is intuitive to use SQL as a database

generation language. Moreover, compared to the manual creation of a test database, using our

approach the tester only needs to specify the relevant data for a test case and she does not have to

take care of the irrelevant data.

RQP-disjoint Queries

In order to solve MRQP we require that the input query setQ is RQP-disjoint.

Definition 11.1 (RQP-disjoint Queries:) A set of queriesQ is RQP-disjoint iff all possible pairs

(Qj , Qk) with j 6= k are RQP-disjoint. Two queriesQj andQk in Q with j 6= k are RQP-disjoint,

iff the view specified by queryQj is update independent from any update (i.e.,INSERT statement)

that could be generated by RQP for the queryQk and any possible expected resultRk of that

query and vice versa.

As an example, look at the following two SQL queriesQ1 andQ2 and the corresponding expected

resultsR1 andR2 which specify the test database forTest Case 3in Section1. This test case

requires a test database which comprises a book with a particular ISBN thatdoes not belong to

the closed stack and a user with a distinct user name and a password which isdifferent from a

given password (that is used as input value for the test case). The twoqueriesQ1 andQ2 are RQP-

disjoint becauseQ2 is update independent from anyINSERT statement that could be generated by

an RQP processor forQ1 any expected result of that query (e.g.,Q1 is update independent from

theINSERT statementI1 which is generated forQ1 andR1 by an RQP processor) and vice versa

(e.g., the view defined byQ1 is update independent fromI2).
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Q1 : SELECT b_closedstack FROM book

WHERE b_isbn=’0201485419’
R1 : {<’false’>}

I1 : INSERT INTO book

(b_id, b_title, b_price, b_isbn, b_closedstack)

VALUES (1, ’TitleB’, 100.0, ’0201485419’, ’false’)
Q2 : SELECT COUNT(*) FROM user

WHERE u_name=’test’ AND u_password!=’test’
R2 : {<1>}

I2 : INSERT INTO user

(u_id, u_name, u_password, u_charges)

VALUES (1, ’test’, ’test1’, 0.0)

If the queries inQ are RQP-disjoint, then we can generate a test database by calling the RQP pro-

cessor separately for each query and the corresponding expected result (i.e.,RQP (Q1, R1, S) =

D1, ..., RQP (Qn, Rn, S) = Dn)2. Afterwards, we take the union of all the individual test

databases to create the final test database (i.e.,D = D1 ∪ ... ∪ Dn)3. Continuing the example

above: In order to generate a test database for the two RQP-disjoint queriesQ1 andQ2 and the

two expected resultsR1 andR2, we first generate two individual databasesD1 andD2. Conse-

quently, the test databaseD1 comprises one book with the given ISBN and the value specified

for the attributeb_closedstack (i.e.,D1 is created byI1) and test databaseD2 comprises the user

account with the given username and a password which is not equal to theinput value‘test‘ (i.e.,

D2 is created byI2). Subsequently, the final test databaseD is D = D1 ∪ D2.

Using an RQP-disjoint query set as input of MRQP, the user can specifyany database instance

for a given schemaS. In order to show that this is possible, we assume that a tester creates one

query per table which reads all tuples (e.g.,SELECT * FROM orders) and the expected results

of these queries. Using these queries and the expected results the tester can obviously control all

attribute values individually for each tuple in every table of the database schemaS and thus specify

any database instance.

In order to make sure that the final databaseD which is generated for an RQP-disjoint query set

fulfills the primary-keyanduniqueconstraints in the database schemaS, MRQP has to make sure

that the individual RQP calls assign unique values to the attributes inS that are bound by such

a constraint for all queries inQ and the corresponding expected results inR. However, if some

expected results inR define values that violate theprimary-keyor uniqueconstraint of an attribute

in S, then MRQP will return anerror if the union of the individual databases (i.e.,D = D1 ∪

D2) violates such a constraint. This error handling can be implemented using standard database

techniques for checking integrity constraints. For example, assume that thetester specifies two

queries and expected results where each query and its expected queryresult defines a user tuple

2In this chapter we call the RQP processor as an external function which takes a queryQ, an expected resultR, and
a database schemaS as input and generates a databaseD which satisfiesS and returnsQ(D) = R.

3The∪ operator here creates the union over all tables of the database schemaS.
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with the same username (i.e., the attributeu_name) but with different passwords (i.e., the attribute

u_password). Creating the union of the two test databases that are generated for these two queries

and expected results would return an error because the attributeu_name has auniqueconstraint

in the database schemaS (see Figure11.3(a)). One way for the user to avoid these kinds of errors

will be discussed in Section11.2.4.

Query Refinements

Using only an RQP-disjoint query set to specify the intended test databasefor a test case can

sometimes be cumbersome for the tester. For example, assume the tester wants to specify a test

database (for a test case not shown in Section1) which should comprise five books with a total

sum of prices which is$1000 while one of these books should have the price$100 and the title

‘TitleA‘.

Unfortunately, there is no elegant way to specify such a test database byusing only an RQP-

disjoint query set: (1) The first possibility is that the tester specifies one query (i.e, SELECT

b_price, b_title FROM book) and defines an expected result which holds the values for

the attributesb_price and b_title of all books (while the tester has to manually take care that

the total sum is$1000 and she also has to define the titles for four out of five books that are not

relevant for the test case). (2) Another possibility is that the tester specifies two individual SQL

queries while one query specifies the one book which has the price of$100 and the title‘TitleA‘

(as shown by the queryQ1 and the expected resultR1 in the following example) and the other

query specifies the remaining four books (as shown by queryQ2 and the expected resultR2 in the

following example). However, in that case the tester has to manually adjust thequeryQ2 and the

expected resultR2 so that the total sum for the four remaining books is$900 and none of these

books uses the same ISBN as the book with the price of$100 (i.e., the selection predicate ofQ2

must beb_isbn! = ‘0130402648‘).

Q1 : SELECT b_price, b_title FROM book

WHERE b_isbn=’0130402648’
R1 : {<100.0, ’TitleA’>}

Q2 : SELECT SUM(b_price), COUNT(*) FROM book

WHERE b_isbn!=’0130402648’
R2 : {<900.0, 4>}

A more elegant solution to that problem is that in addition to the RQP-disjoint set of queriesQ

and the expected resultsR we allow the user to define at maximum onequery refinementfor each

queryQi ∈ Q. The intuition is that a query refinementFi for a queryQi gives more information

(attribute values) about a subset of tuples that are read byQi. That is, a query refinementFi refines

a queryQi. In the following we give a more formal definition and show how MRQP can generate

the test database if some queriesQi ∈ Q are refined by a query refinement.
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Definition 11.2 (Query Refinement:) A query refinementFi for a queryQi ∈ Q is a set of RQP-

disjoint queriesFi = {Fi1, . . . , Fin} plus the expected resultsRFi for each query inFi; i.e.,

RFi = {RFi1, . . . , RFin} whereQi is update dependent (=opposite of update independent) of

all INSERT statements that could be generated by RQP for any queryFij ∈ Fi and an arbitrary

expected resultRFij ∈ RFi of that query. Moreover,baseAttr(Ri) ⊆ baseAttr(RFij) must hold

for all RFij ∈ RFi (Ri is the expected result ofQi andbaseAttr(Ri) is a function that extracts

the names of the attributes in the database schemaS that participate in the expected resultRi).

Furthermore, for each queryFij ∈ Fi the user can recursively specify further query refinements.

A simple query refinement for the example above is shown by the following query Q1 and the

refinement given byF1 = {F11}. While Q1 specifies the total sum of prices for all books,F1

specifies the price and the title of one book with a particular ISBN number. Obviously, Q1 is

update dependent from anyINSERT statement that could be generated by RQP for each query in

F1 and some arbitrary expected results (e.g.,Q1 is update dependent from theINSERT statement

IF11 which is generated by RQP for the expected resultRF11 and the queryF11). Moreover,

baseAttr(R1) = {b_price} is a subset ofbaseAttr(RF11) = {b_price, b_title}. Thus,F1 =

{F11} is a query refinement for queryQ1.

Q1 : SELECT SUM(b_price), COUNT(*) FROM book

R1 : {<1000.0, 5>}

F11 : SELECT b_price, b_title FROM book

WHERE b_isbn=’0130402648’
RF11 : {<100, ’TitleA’>}

IF11 : INSERT INTO book

(b_id, b_title, b_price, b_isbn, b_closedstack)

VALUES (1, ’TitleA’, 100.0, ’0130402648’, ’false’)

In the following we illustrate how MRQP can generate a test database for a queryQi of an RQP-

disjoint query setQ which is refined by a query refinementFi and its expected resultsRFi. A

general solution how to generate a test database for a RQP-disjoint query setQ where some queries

Qi ∈ Q can be recursively refined by a query refinement is shown in the next Section11.1.3.

The idea presented here is similar to the one shown for an RQP-disjoint query set. MRQP first

generates one test database forQi and another one forFi by calling an RQP processor individually

for Qi andFi and taking the union of both test databases. However, before the test database for the

queryQi and its expected resultRi can be generated by an RQP processor, MRQP has to adjust

Qi andRi w.r.t. the query refinementFi and its expected resultsRFi. The details of this process

are described in the sequel.

Firstly, MRQP generates a test databaseDFi for the query refinementFi of queryQi and the

expected resultsRFi of the refinementFi as described in Section11.1.2for any RQP-disjoint set
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of queries. Afterwards, MRQPadjuststhe expected resultRi of the queryQi which is refined by

Fi with respect to the generated test databaseDFi by executingR′
i = Ri⊖Qi(DFi). The operator

⊖ is called theAdjustoperator and its implementation depends on the type of queryQi. In general,

the⊖ operator “removes” those tuples from the expected resultRi that are already specified by the

queries in the refinementFi and the expected resultsRFi and thus do not have to be generated for

the queryQi and the expected resultRi anymore. Consequently, in some cases theAdjustoperator

⊖ can be implemented by the relational minus operator for bags (i.e.,−). If an expected resultRi

is notadjustablethen this operator returns an error. Moreover, in addition to the expectedresult

Ri, we also have to adjust the queryQi (which results inQ′
i) so that RQP generates no tuples

for Q′
i and the adjusted expected resultR′

i that would be returned by any query in the refinement

Fi. A detailed description of the implementation of theAdjustoperator and the function which

adjusts the queryQi will be given in Section11.2for all query classes supported in in the database

generation language MSQL. Subsequently, MRQP generates a test databaseD′
i for the adjusted

queryQ′
i and the adjusted expected resultR′

i by calling the RQP processor. The final test database

Di for the queryQi and the query refinementFi is created by taking the union ofD′
i andDFi;

i.e.,Di = D′
i ∪ DFi.

For instance, in order to generate a test databaseDF1 for Q1 and F1 in the example above,

MRQP first generates a test databaseDF for the query refinementF1 = {F11} and the expected

resultsRF1 = {RF11} as discussed in Section11.1.2; e.g., a minimal test databaseDF1 com-

prises one book with the given values (i.e., one book with the values specified for the attributes

b_price, b_title andb_isbn by F11 andRF11). Afterwards, the expected resultR1 is adjusted

by executingR′
1 = R1 ⊖ Q1(DF1) = {< 900.0, 4 >} and the queryQ1 is adjusted, too, which

returns the adjusted queryQ′
1:

Q′

1 : SELECT SUM(b_price), COUNT(*) FROM book

WHERE b_isbn!=’0130402648’

Subsequently, we generate the test databaseD′
1 for the adjusted queryQ′

1 and the adjusted ex-

pected resultR′
1 (i.e., four books with the total sum$900 that have an ISBN value other than

‘0130402648‘). The final test databaseD1 that returnsR1 for Q1 andRF11 for F11 is created by

taking the union ofD′
1 andDF1; i.e.,D1 = D′

1 ∪ DF1.

11.1.3 MRQP Solution

The functionMRQPwhich is shown in Figure11.1implements a general procedure for MRQP which

generates a test database for a RQP-disjoint query setQ where some queriesQi ∈ Q can be re-

cursively refined by a query refinement.

The functionMRQPfirst creates an empty databaseD for the query setQ (Line 1). Afterwards,

the function checks for each queryQi ∈ Q if there exists a query refinementFi for that query
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MRQP(Queries Q, Results R, Schema S, Query Refinements ( Fi, RFi))
Output: database D
(1) D=∅ //Generate an empty DB
(2) FOR EACH Query Qi in Q
(3) Ri= R.get(i) //Extract expected result
(4) DFi=∅
(5) IF(Qi has a Query Refinement (Fi, RFi))
(6) DFi=MRQP(Fi, RFi, S) //Generate DB for Fi

(7) Ri=Ri ⊖ Qi(DFi) //Adjust result
(8) Qi=AdjustQuery(Qi, Fi) //Adjust query
(9) END IF
(10) //Try to create union
(11) IF(D=D∪RQP(Qi,Ri,S)∪DFi returns ERROR)
(12) RETURN ERROR
(13) END IF
(14) END FOR
(15) RETURN D

Figure 11.1: FunctionMRQP

(Line 5). If yes, then this function generates a test databaseDFi for that query refinement and the

expected resultsRFi by callingMRQPrecursively (Line 6). Subsequently, the function adjusts the

expected resultRi and the queryQi w.r.t. DFi (Line 7-8). Afterwards, the functionMRQPcreates

the new test databaseD as a union of the existing test databaseD, the test database that is created

for the adjusted queryQi and the adjusted expected resultRi, and the test databaseDFi generated

for a potential query refinementFi (Line 11). If the union does not satisfy the database schemaS

because someprimary-keyor uniqueconstraints inS are violated, then an error is returned (Line

12). If all queries inQ are processed the final test databaseD for Q andR is returned.

11.2 The DB Generation Language MSQL

As discussed in the Section11.1.2, we allow a tester to specify a test database which is adequate to

execute a particular test case by manually creating a set of RQP-disjoint queriesQ and at maximum

one query refinementFi for each queryQi ∈ Q. In order to support the tester in formulating an

RQP-disjoint query setQ and some query refinements, we have to decide whetherQ is RQP-

disjoint or not and whether a query refinementFi refines a queryQi ∈ Q or not. However, update

independence in general is undecidable [LS93], which means that it is also undecidable whether a

set of arbitrary queriesQ is RQP-disjoint or not and it is also undecidable whether a given set of

arbitrary queries inFi refines a queryQi ∈ Q or not.

Consequently, in this section we define a database generation language called MSQL (based on

SQL) and a Reverse Relational Algebra called MRRA which is used in MRQP togenerate the
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test database (based on the Reverse Relational Algebra RRA of RQP in Section 5)4. For a query

setQ and some query refinements for the queriesQi ∈ Q that are formulated in MSQL, we can

easily check whether the query setQ is RQP-disjoint and if a query refinementFi refines a query

Qi ∈ Q (if the MRRA is used to reverse process these queries). Moreover, in order to enable the

generation of a test database using the function illustrated in Section11.1.3, we designed MSQL

in such a way that RQP is decidable for individual queries. However, wedid not prove that there

does not exist a more expressive language than MSQL that has the same properties.

Additionally, in this section we also illustrate an efficient solution for theAdjustQueryfunction

and theAdjustoperator⊖. Both are necessary to reverse process MSQL queries that are refined

by a query refinement (as discussed in the section before). Finally, we present some extensions

(query and result variables) as well as some query rewrites to enhancethe usability of MSQL.

11.2.1 Query Classes and Algebra

In MSQL, a tester can formulate SQLSELECT queries with and without aggregations in the

SELECT clause. Moreover, the queries supported by MSQL are not allowed to include join state-

ments or subqueries and the predicate in theWHERE clause must be a conjunctive predicate in

propositional logic that satisfies certain restrictions5. More precisely, the supported query classes

in MSQL are:

(1) Non-Aggregation queries which can be mapped to the following relational algebra expres-

sion:

πA(σp(T ))

whereA represents the attributes and arithmetic functions in theSELECT clause,p is the

selection predicate in theWHERE clause, andT is an arbitrary relation of the schemaS.

(2) Aggregation queries which can be mapped to the following relational algebra expression:

σq(χB,COUNT (∗) as c,AGG(D)(σp(T )))

whereq is the selection predicate in theHAVING clause,B represents theGROUP-BY

attributes,COUNT (∗) is the non-distinct count function,AGG(D) are the aggregation

functions (AV G, MIN , MAX, SUM ) in theSELECT clause on the attributes and arith-

metic functionsD, p is the selection predicate in theWHERE clause, andT is an arbitrary

relation of the schemaS.

4The RRA of RQP is the reverse variant of the relational algebra which pushes the expected query result from the
root of a query tree down to the leaves in order to generate the test database.

5All example queries shown in the previous sections are already supported by MSQL.
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TheCOUNT (∗) function is obligatory for aggregation queries (query class (2) above)because

theAdjustoperator⊖ which is used in theMRQPfunction to process query refinements relies on

that value (see Section11.2.2). Moreover, for both query classes the selection predicatep must be a

conjunctive predicate formulated in propositional logic. If a clausepi in the conjunctive selection

predicatep comprises an attributea with a primary-keyconstraint, or auniqueconstraint, or a

foreign-keyconstraint in the database schemaS thenpi is only allowed to be a simple predicate

expressing the equality of the attributea and a constant valuev (i.e.,a = v).

The reverse relational algebra which is used to reverse process thesequery classes in MRQP is

called MRRA. MRRA is similar to the RRA defined in Section5. The only difference is that the

reverse selection operator (i.e.,σ−1) and the reverse join operator (i.e.,⋊⋉
−1) are not allowed to

generate additional tuples that satisfy the negation of the selection predicateor the negation of the

join predicate. Provided, that we use MRRA to generate a test database, then the following two

theorems hold.

Theorem 11.3 Two arbitrary MSQL queriesQj andQk are RQP-disjoint iffQj andQk specify

tuples for different relations orpj ∧ pk is not satisfiable which is decidable for the selection

predicates in MSQL (pj is the selection predicate representing theWHERE clause ofQj andpk is

the selection predicate representing theWHERE clause ofQk).

Proof (Sketch) 11.4 It is obvious thatQj andQk are RQP-disjoint ifQj andQk specify tuples

in different relations becauseQk will be update independent from anyINSERT statement which

is generated by RQP forQj and an arbitrary expected resultRj of that query and vice versa. It

immediately follows from [BCL86] that Qj and Qk are RQP-disjoint ifQj and Qk read tuples

from the same relationT andpj ∧ pk is not satisfiable because allINSERT statements that could

be generated forQj and an arbitrary expected resultRj by RQP satisfypj and thus will not be

returned byQk which has the selection predicatepk and vice versa.

Theorem 11.5 An arbitrary MSQL queryQj refines another arbitrary MSQL queryQk iff the

queriesQj and Qk read tuples from the same relationT and (pj ⇒ pk) is valid which means

that we have to show that(!pj ∨ pk) is valid or the negation(pj∧!pk) is not satisfiable which is

decidable for the selection predicates in MSQL (again,pj is the selection predicate representing

theWHERE clause ofQj andpk is the selection predicate representing theWHERE clause ofQk).

Proof (Sketch) 11.6 It immediately follows from [BCL86] that Qj refinesQk iff (pj ⇒ pk) is

valid, because allINSERT statements that could be generated forQj and an arbitrary expected

resultRj by RQP satisfypj and thus will be returned byQk which has the selection predicatepk.
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⊖(Relation R, Relation S)

Output: Relation R′

(1) R′ = ∅ //Create an empty result
(2) FOR EACH tuple r in R
(3) r′ = ∅ //Create empty tuple r′

(4) //Extract tuple s from S
(5) s = S.get(B,R.B)
(6) IF(s==∅) r′=r
(7) ELSE
(8) if(B!=∅) r′(B) = r(B) //set B
(9) r′(c) = r(c)-s(c) //set c
(10) //Init results of agg. functions
(11) FOR EACH attribute agg(D) in AGG(D)
(12) IF(agg==SUM)
(13) r′(agg(D))=r(agg(D))-s(agg(D))
(14) ELSE IF(agg==AVG)
(15) r′(agg(D))=(r(agg(D))*r(c)-s(agg(D))*s(c))/r′(c)
(16) ELSE IF(agg==MIN || agg==MAX)
(17) IF(r(agg(D))!=s(agg(D))) r′(agg(D))=r(agg(D))
(18) END FOR
(19) END IF
(20) R′.add(r′) //add new tuple r′ to R′

(21) END FOR
(22) RETURN R′ //return result

Figure 11.2: Adjust operator⊖

11.2.2 Adjust Operations for Query Refinements

TheAdjustQueryfunction is used in theMRQPfunction (see Figure11.1) to adjust the queryQi

so that calling RQP forQi does not generate any data for the expected resultRi which is returned

by any query in the query refinementFi = {Fi1, . . . , Fin} for the queryQi. The implementation

of this function is the same for both query classes of MSQL. We simply extractthe selection

predicatepi of the queryQi and the selection predicatespFij of each queryFij ∈ Fi and create a

new selection predicatep′i for the adjusted queryQ′
i asp′i = pi∧¬pFi1∧· · ·∧¬pFin. An example

for theAdjustQueryfunction was shown at the end of Section11.1.2.

The Adjust operator⊖ is used in theMRQP function (see Figure11.1) to adjust the expected

result Ri of a queryQi w.r.t. the databaseDFi generated for the query refinementFi. The

implementation of⊖ for a non-aggregation queryQi (query class (1) of MSQL) is a standard

relational minus operator for bags as described in any database textbook. Additionally, theAdjust

operator for non-aggregation queries checks ifQi(DFi) − Ri = ∅ holds. Otherwise the expected

result is not adjustable because the queries in the refinementFi specify more tuples than the query

Qi which is not allowed by the definition. In that case theAdjustoperator returns an error.

For an aggregation queryQi (query class (2) of MSQL) the implementation of theAdjustoperator
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is given in Figure11.2. In that algorithm we refer to the group-by attributesB, the count valuec,

and the aggregation functionsAGG(D) that are defined by the expected result of an aggregation

query. An example for that operator will be discussed in the next Section11.2.3. The Adjust

operator in Figure11.2is a binary operator which takes two relationsR andS as input:R is the

expected result of the queryQi andS is the actual result of executing the queryQi over the test

databaseDFi that was generated for the query refinementFi (i.e.,S = Qi(DFi)). The output of

this operator is the adjusted resultR′.

The implementation of theAdjustoperator is as follows: The operator first creates an empty result

R′ (Line 1) and then iterates over all tuples in the expected resultR (Line 2-21). For each tuple

r in R an empty result tupler′ is created that should hold the adjusted values fromr (Line 3).

Afterwards, the tuples is extracted fromS that has the same values for the group-by attributesB

in r. If queryQi does not define a group-by attribute (i.e.,B = ∅) then the only tuple in resultS is

returned (Line 5). If there does not exist such a tuples, then the⊖ operator usesr as the adjusted

tupler′ and addsr′ to R′. Otherwise, the⊖ operator adjusts the expected query result (Line 7-19)

as follows: First, the group by attributesB of r′ are initialized with the attribute valuesr(B) (Line

8). Then, the new count value is calculated as the difference of the original count valuer(c) and the

count values(c) (Line 9). Finally, the adjusted expected resultsr′(agg(D)) for each aggregation

functionagg(D) ∈ AGG(D) is created according to the type of the aggregation function (Line

10-18):

• Line 12-13: The adjusted expected result of aSUM function is calculated as the difference

of the original expectedSUM valuer(agg(D)) and the one ins (i.e.,s(agg(D))).

• Line 14-15: The adjusted expected result of aAVG function is calculated as the differ-

ence of the original expectedAVG valuer(agg(D)) multiplied with the original expected

count valuer(c) (which results in the original expectedSUM value) minus theAVG value

s(agg(D)) multiplied with the count values(c) divided by the adjusted expected count

valuer′(c).

• Line 16-17: The adjusted expected result of aMIN/MAX function has the same value as

r(agg(D)) if r(agg(D)) is different froms(agg(D)). Else, theMIN/MAX value is not

added tor′ (which means thatagg(D) has to be removed from the adjusted queryQ′
i as

well).

Finally, the adjusted tupler′ is added to the resultR′ (Line 20). If all tuplesr in R are processed

the adjusted resultR′ is returned (Line 22). An example of that algorithm is given in the next

subsection.
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CREATE TABLE user (
u_id INTEGER PRIMARY KEY,
u_name VARCHAR(20) UNIQUE, 
u_password VARCHAR(20),
u_charges FLOAT NOT NULL

CHECK(u_charges>=0));

CREATE TABLE book (
b_id INTEGER PRIMARY KEY,
b_isbn VARCHAR(20) UNIQUE, 
b_closedstack BOOLEAN NOT NULL
b_aid INTEGER FOREIGN KEY 

REFERENCES author(a_id));

CREATE TABLE author (
a_id INTEGER PRIMARY KEY,
a_name VARCHAR(20) UNIQUE, 
a_fname VARCHAR(20));

SELECT COUNT(*)
FROM book
WHERE b_aid=1

Q1:

<5>R1:

SELECT u_password
FROM user
WHERE u_name = 'test'
AND u_charges<=20

Q2:

<'test'>R2:

SELECT b_closedstack
FROM book
WHERE b_isbn='0130402648'
AND b_aid=1

F1:

<false>RF1:

1false01304026481

b_aidb_closedstackb_isbnb_idDF:

1true01304026525

1true01304026514

1false01304026503

1true01304026492

1false01304026481

b_aidb_closedstackb_isbnb_idD1:

0.0testtest1

u_chargesu_passwordu_nameu_idD2:

a_fname1a_name11

a_fnamea_namea_id

a_fname1a_name11

a_fnamea_namea_id

(a) Database Schema (b) Example Query Set Q={Q1, Q2} 
and Query Refinement F={F1}

(c) Generated Test Database D = D1 ∪∪∪∪ D2

user

author

book

author

book

Figure 11.3: MSQL Example

The Adjust operator⊖ for aggregation queries returns an error if the expected resultR is not

adjustable w.r.t. the resultS , if one of the following cases occurs (this error handling is not

implemented in Figure11.2):

• The expected count valueR(c) is less thanS(c)

• SUM(D) in R is less thanSUM(D) in S andD can only have positive values orSUM(D)

in R is greater thanSUM(D) in S andD can only have negative values

• AV G(D) in R is less thanAV G(D) in S andD can only values greater thanAV G(D) in R

or AV G(D) in R is greater thanAV G(D) in S andD can only values less thanAV G(D)

in R

• MIN(D) in R is greater thanMIN(D) in S or MAX(D) in R is less thanMAX(D) in

S

• S has a tuples that has values for the group-by attributesB andR does not have a tuple

with the same values for the attributesB.

11.2.3 MSQL Example

Figure11.3gives a complete example of MRQP: Figure11.3(a) shows the database schema and

Figure11.3(b) shows the RQP-disjoint query setQ and a query refinementF1 which specify the
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test database for Test Case 5 of the online library (see Section1). The queryQ1 ∈ Q specifies the

total number of all books in the test database. The other queryQ2 ∈ Q specifies the password and

the charges of a particular user with a certain password. The queriesQ1 andQ2 are RQP-disjoint

because they specify tuples for different tables. The queryQ1 is refined by a query refinement

F1 = {F11} and its expected resultsRF1 = {RF11}. The queryF11 and the resultR11 specify

the value of the attributeb_closedstack of one book in the test database with a particular ISBN

(i.e.,b_isbn = ‘0130402648‘).

If we call the functionMRQP in Figure 11.1 for the RQP-disjoint query setQ, then the test

databaseDF1 for the query refinementF1 is generated first (DF1 is shown in Figure11.3(c)). Due

to the foreign-key handling in RQP a tuple for the author witha_id = 1 is created, too. As a next

step in MRQP, the adjusted expected result for queryQ1 is calculated asR′
1 = R1 ⊖ Q1(DF1):

The queryQ1 is an aggregation query andQ1(DF1) returns a count value of1. Following the

algorithm of⊖ for aggregation queries (see Figure11.2) the adjusted expected resultR′
1 has one

tuple with the count value of4. Afterwards, the queryQ1 is adjusted which results inQ′
1:

Q′

1 : SELECT COUNT(*) FROM book

WHERE b_isbn!=’0130402648’

Afterwards, the test databaseD′
1 for the adjusted queryQ′

1 and its adjusted expected resultR′
1

is generated which means that four tuples in the tablebook are created which satisfyb_isbn! =

‘0130402648‘ (D′
1 is not shown separately in Figure11.3(c)). The databaseD1 which is shown

in Figure11.3(c) is the union ofD′
1 and the test databaseDF1 generated for the query refinement

F1.

Finally, the test databaseD2 is generated forQ2 andR2 (Q2 is not refined by a query refinement).

As a last step, the final test databaseD is created as the union ofD1 andD2 (i.e.,D = D1 ∪D2).

11.2.4 Queries and Result Variables

For a test case of an OLTP application it is common that a tester needs to specify individual tuples

in the test database that have certain values (e.g., an author with a certain name or a book with

a certain ISBN) in order to enable the execution of that test case. Thus, atester often needs to

formulate queries that specify single tuples using auniquevalue for an attribute in the selection

predicate with aprimary-keyconstraint or a with auniqueconstraint in the database schema (e.g.,

the predicateb_id = 1 on the tablebook). However, defining unique values for such an attribute

in the selection predicates or in the expected query results over differentqueries (of one test case

or even over different test cases) that are used as input of MRQP is not trivial for the tester.

Consequently, we extend MRQP so that the user can define variables as aplaceholders for unique

values and let MRQP instantiate the variables so that the constraints of the database schemaS are

satisfied. A variable has a name that starts with a$ sign (e.g.,$b_id1 could be use as a variable in
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the selection predicate above which results inb_id = $b_id1). In general a variable can be used

as a placeholder in the following cases:

(1) As a placeholder for a constant valuev of aprimary-keyattribute, an attribute with aunique

constraint, or aforeign-keyattribute in the expected result of a MSQL query.

(2) As a placeholder for a constant valuev in a clausepi (i.e., a simple predicate) of the conjunc-

tive selection predicatep of a MSQL queryQi where the clausepi expresses the equality

of aprimary-keyattribute, or an attribute with auniqueconstraint, or aforeign-keyattribute

and a constant valuev (e.g.,b_id = $b_id1).

However, RQP does not support variables as placeholders for unique values. Consequently, in

order to instantiate these variables, we add a pre-processing phase to MRQP which creates unique

values for these variables defined by an MSQL query and its expected result. This pre-processing

phase instantiates the variables using the following rules:

• For variables specified by the queries and expected results of one test database specification

for one test case (i.e., an RQP-disjoint query, some query refinements, and the expected

query results) which have the same name and which are assigned to the same attribute, the

pre-processing phase instantiates the same value.

• For variables specified by the queries and expected results of one test database specification

for one test case which have different names and which are assigned tothe same attribute,

the pre-processing phase instantiates different values.

• For variables specified by the queries and expected results of different test database speci-

fication for different test cases which are assigned to the same attribute, the pre-processing

phase instantiates different values (This is useful if we want to merge two test databases of

different test cases; see Section11.3).

An example of the pre-processing phase is given for the following RQP-disjoint query setQ =

{Q1, Q2} which is used in a test database specification for one test case. A valid instantiation of

the variables that could be produced by the pre-processing phase of MRQP is: $b_id1 = 1 and

$b_id2 = 2.

Q1 : SELECT b_title

FROM books

WHERE b_id=$b_id1

Q2 : SELECT b_title

FROM books

WHERE b_id=$b_id2

As the pre-processing phase does not analyse all queries and expected results of one or even all test

database specifications before it instantiates the unique values for the variables, the pre-processing
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phase requires that either all test database specifications define the values of a particular attribute

as variables or as constants. Otherwise, this phase may generate values that violate the constraints

of the database schemaS (e.g., different tuples with the same value for aprimary-keyattribute

might be generated). For example, assume that one test database specification for on test case

defines an expected resultR1 of a queryQ1 holding a variable for a result attribute (e.g., the

variable$b_id1 for the attributeb_id) and another expected resultR2 of a queryQ2 holding a

constant value (e.g.,1 for the attributeb_id). If MRQP first generates a test databaseD1 for Q1

andR1, then the pre-processing phase could instantiate the constant value1 for the variable$b_id1

in R1. If MRQP subsequently generates the test databaseD2 for theQ2 andR2 which defines the

constant value1 for the attributeb_id, then the union ofD1 andD2 will return an error because

theprimary-keyconstraint on the attributeb_id in the database schemaS is violated.

11.2.5 Query Rewrites

The query classes of MSQL that can be used by the tester to specify the test database (i.e., non-

aggregation and aggregation queries on one relation) are limited because join operations or nested

queries are not supported. However, some of these queries can be rewritten so that they are sup-

ported by MSQL. A rewrite of a queryQi ∈ Q (Q is a RQP-disjoint set of MSQL queries which

specifies the test database in MRQP) into one or more queriesP is valid if (1) all queries inP are

supported by MSQL and (2) the query set consisting of{Q − Qi ∪ P} is still RQP-disjoint. In

this section we discuss rewrites of queries using equi-joins, nested queries, and queries using view

definitions.

Rewrites for Equi-Join Queries

A non-aggregation queryQi (i.e., query class (1) of MSQL) whereT is the result of a 2-way

equi-join on the relationsT1 andT2 can be rewritten as follows if the selection predicatep is a

conjunctive predicate where each clause uses attributes from eitherT1 or T2:

(1) If T is the result of an equi-join on the primary attributes of the two input relationsT1 and

T2
6, then we splitQi into two queriesQi1 andQi2: Qi1 is a new non-aggregation query on

the relationT1 andQi2 is a new non-aggregation query on the relationT2. The projection

attributes forQi1 areA1 = A ∩ attr(T1) (A are the attributes in theSELECT clause ofQi,

attr(T1) is a function that returns all attributes of the relationT1). The selection predicatep1

of Qi1 is a conjunction of all clauses in the selectionp of Qi that uses attributes inattr(T1).

The expected result ofQi1 is Ri1 = πA1(Ri) (whereRi is the expected result ofQi and the

π operator deletes duplicates).Qi2 andRi2 can be created analogously.

6T1 andT2 could represent one entity that was vertically split into two relations for performance reasons.
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(2) If T is the result of an equi-join along theforeign-keyrelationship fromT2 to T1 (e.g., an

equi-join on theforeign-keyattributeb_aid in the tablebook and theprimary-keyattribute

a_id in the tableauthor), then we createQi1 andQi2 as well as the expected resultsRi1

andRi2 as described in (1). Additionally, we add theprimary-keyattribute ofT1 to the

projection attributesA1 (e.g., the attributea_id of the tableauthor) and theforeign-key

attribute ofT2 to the projection attributesA2 (e.g., the attributeb_aid of the tablebooks).

We also have to add these attributes and the corresponding values to the expected results

Ri1 andRi2 to implement theforeign-keyrelationship explicitly (e.g., by using the same

variables or constants for theprimary-keyandforeign-keyattributes that are to be joined).

Moreover, if there is an equality-predicate on theprimary-keyattribute ofT1 in p1 of Qi1

(e.g., a_id = $a_id1, where$a_id1 is a variable), then we add the same simple equi-

predicate top2 of Qi2 replacing theprimary-keyattribute inT1 by theforeign-keyattribute

of T2 (e.g.,b_aid = $a_id1). In that case we do not need to add theprimary-keyattribute

and theforeign-keyattribute to the projection attributes (i.e., toA1 andA2) of the queriesQi1

andQi2 as well as to the expected resultsRi1 andRi2. Alike, if there is an equality-predicate

on theforeign-keyattribute ofT2 in p2 of Qi2 (e.g.,b_aid = $b_aid1, where$b_aid1 is a

variable) then we can add a simple equality-predicate on theprimary-keyof T1 to p1 that

uses the value of theforeign-keyattribute fromT2 defined inp2 (e.g.,a_id = $b_aid1) .

A complete example of the rewrite (2) is given by the following 2-way join queryQ1 which selects

all book titles, prices and the author name of one particular author:

Q1 : SELECT b_title, b_price, a_name

FROM book JOIN author ON b_aid=a_id

WHERE a_id=$a_id1
R1 : {<’TitleB’,64.80, ’Hector Garcia-Molina’>}

This query can be rewritten into the two queriesQ11 andQ12 below. The selection predicate

of Q11 (i.e., a_id = $a_id1) is used directly as selection predicate forQ12 on theforeign-key

attributeb_aid (i.e., b_aid = $a_id1). Following the rule (2) above, theprimary-keyattribute

a_id is not added to the expected resultR11 of queryQ11 and theforeign-keyattributeb_aid is

not added to the expected resultR12 of queryQ12:

Q11 : SELECT a_name FROM author

WHERE a_id=$a_id1
R11 : {<’Hector Garcia-Molina’>}

Q12 : SELECT b_title, b_price FROM book

WHERE b_aid=$a_id1
R12 : {<’TitleB’,64.80>}

N-way equi-joins can be rewritten by applying the above rules recursively.
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Reduce(List of Test Cases T , Database Schema S)

Output: Map D_T
(1) //Generate one Test DB per Test Case Ti:
(2) //Ti specifies Queries Ti.Q + Results Ti.R
(3) D = Empty List of Test DBs
(4) FOR EACH Ti in T
(5) Di=MRQP(Ti.Q, Ti.R, S)
(6) D.add(Di) //add Di to D
(7) END FOR
(8) //Reduce the number of Test DB
(9) D_T=Empty Map(Key:DB,Value:Test Cases)
(10) FOR(i=1...D.length())
(11) Di=D.get(i) //Test DB Di

(12) Ti=T.get(i) //Test Case Ti

(13) FOR EACH Dj in D_T.keys()
(14) IF(Dij = Di ∪ Dj returns error) continue
(15) TJ=D_T.get(Dj) //Test Cases for Dj

(16) //Test if merge was successful
(17) IF(Q(Dij) = R for all TJ and Ti)
(18) D_T.remove(Dj) //Remove Dj and TJ

(19) //Add Dij and all Test Cases to D_T
(20) D_T.add(Dij, TJ ∪ Ti)
(21) BREAK //Continue with next Di ∈ D
(22) END IF
(23) END FOR
(24) D_T.add(Di, Ti)
(25) END FOR
(26) RETURN D_T

Figure 11.4:ReduceFunction

Other Rewrites

A nested query or a query that involves a view definition is supported by MSQL if the query can

be rewritten by unnesting techniques discussed in [GW87] or view unfolding if the rewrite is valid

as discussed at the beginning of this subsection.

11.3 Reducing the Test Databases

In this section, we present a greedy algorithm which first generates an individual test database for

each test database specification of test case (of a given set of test cases) and then tries to reduce

the number of test databases that are necessary to execute all test cases. The implementation of

this algorithm is given by the functionReducein Figure11.4. This function takes a set of test

casesT (where each test caseTi ∈ T defines a set of queriesTi.Q and the corresponding expected

resultsTi.R as test database specification) and a database schemaS as input and generates a
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Input: T = {T1, T2, T3, T4}
Output: D_T = {D124 → {T1, T2, T4},D3 → {T3}}
Line 7: D = {D1,D2,D3,D4}
Line 25,D1: D_T = {D1 → {T1}}
Line 25,D2: D_T = {D12 → {T1, T2}}
Line 25,D3: D_T = {D12 → {T1, T2},D3 → {T3}}
Line 25,D4: D_T = {D124 → {T1, T2, T4},D2 → {T3}}

Figure 11.5: Example of theReduceFunction

mapD_T that assigns test cases to a test database that could be used to execute these test cases.

This algorithm does not guarantee to find the minimal number of test databasesfor a set of test

cases. This would be an avenue for future work to find an efficient algorithm which guarantees

minimality.

As discussed before, the functionReducefirst generates a list of test databasesD which contains

one test databaseDi for each test caseTi ∈ T using MRQP (Line 1-7). Afterwards, the function

reduces the number of test databases required to execute all test casesin T (Line 8-26): Therefore,

a mapD_T is created which assigns a list of test cases to individual test databases (Line 9).

Then, the function iterates over all generated test databasesDi in D and tries to merge each test

databaseDi with the test databases saved as keys in the mapD_T . Obviously, for the first test

database inD the lines 13-23 are skipped becauseD_T is empty and the test databaseDi and the

corresponding test caseTi are just added as a new entry to the mapD_T (Line 24). For all other

test cases, the function tries to create a merged databaseDij iteratively for each key inDT and

checks if the following conditions hold for the merged databaseDij : (1) the union does not return

an error because it violates the schemaS (Line 14) and (2) the queries of all test cases that should

be executed on the merged test databaseD (i.e., the list of test casesTJ and the test caseTi) return

the expected results for all queries of those test cases (Line 17). In thecurrent implementation

of the Reducefunction we use DBMS to merge the databases and to check whether the merged

database satisfies the given database schemaS. If these conditions hold, then the databaseDj

and the corresponding test casesTJ are removed fromD_T and the list of test casesTJ for Dj

together with the test caseTi for Di are assigned to the merged test databaseDij (Line 18-21). At

the end of the function, the mapD_T is returned (Line 26).

Figure 11.5 shows an example for the functionReduce. The input is a list of four test cases

T = {T1, T2, T3, T4} and the output is a map that assigns the list of test cases{T1, T2, T4} to a test

databaseD124 and the test caseT3 to a test databaseD3. The example shows the listD and the

mapD_T in different stages of the algorithm. At the beginning (functionReduce, Line 7) a list of

test databasesD is created that contains one test database for each test case inT (The queries and

expected results of each test case are not shown). Afterwards, the functionReducemerges these
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test databases:

• Function Reduce, Line 25:In the first iteration the test databaseD1 and the test caseT1 is

added to the empty mapD_T without merging.

• FunctionReduce, Line 25: In the next iteration, the test databaseD2 is successfully merged

with D1 which results in a new test databaseD12 that can be used to execute the test cases

T1 andT2.

• Function Reduce, Line 25:In the third iteration the merge of the test databaseD3 andD12

fails, e.g. because the queries of one test case in{T1, T2, T4} do not return the expected

results for the merged test databaseD123. Thus, the test databaseD3 and test caseT3 are

added as a new entry toD_T .

• Function Reduce, Line 25:Finally, in the last iteration the test databaseD4 is successfully

merged withD12.

11.4 Related Work

The closest related work to MRQP is the work on Information Disclosure like the one in [MS04].

This work addresses the question which information is disclosed by a set ofviews that are pub-

lished over the same database instance. Moreover, there has also been some work on efficient

algorithms and frameworks to produce large amounts of test data for a given statistical distribution

[GSE+94; BC05]. This work is orthogonal to our work. All other existing approaches ontest

databases generation (e.g., [NML93; CDF+04]) focuses on other particular aspects not directly

relevant for MRQP.
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Chapter 12
Functional Testing of a Query Language

The whole of science is nothing more than a refinement of everyday thinking.

– Albert Einstein, 1879-1955 –

Functional testing of a query language like SQL, or more precisely functional testing the execution

of a query, is a challenging task in practice. A basic problem is to create a comprehensive set of

test queries and test databases which enable a high test coverage of thequery processing function-

ality (e.g., of a relational DBMS). Consequently, many existing approaches(e.g., [Slu98], [PS04],

[SP04], [GSE+94], [HTW06], [BC05]) focus on the generation of test queries and test databases

with various query and data characteristics. These approaches are often used to find errors by

simply executing the generated test queries on different test databases.However, these approaches

do not address the problem of automatically verifying the actual result of the test queries over the

test databases which is a crucial task to reveal errors in the query processing functionality.

For instance, if we want to use the following SQL query for functional testing the query processing

functionality of a relational DBMS, then the execution of the query over a database may only

reveal some abnormal behavior such as a very long execution time or a system crash. However,

functional errors like defects in the filter operation or in the aggregation operation can only be

found by the verification of the actual query result.

SELECT o_orderdate,SUM(l_price) as sum1

FROM orders, lineitem

WHERE o_id=l_oid

AND o_orderdate>=date ’2005-01-01’

GROUP BY o_orderdate;
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In order to verify the actual result of a test query over a certain database, the actual result has to

be compared to the expected (correct) result. If the actual result is the same as the expected result,

then the verification succeeds, otherwise the verification fails.

The problem of automatically computing the expected result of an arbitrarily complex test query

over a given test database is not trivial. One solution is to first generate aset of test databases

as well as test queries and then to compute the expected query results for each test query over

the individual test databases by executing the test query on an alternative query processor with

comparable capabilities (like the previous version, or a implementation of a different vendor) as

proposed in [Slu98]. However, this solution is not feasible for the testing of the new features of

a query language which are not yet supported by another query processor or to test a new query

language like Entity SQL of the ADO.Net Entity Framework [ABMM07] where no comparable

implementation exists. Another problem of this solution is that many test queries might return

empty results which are of no interest for the functional testing of a query language.

In this chapter, we discuss a solution that addresses the verification of theactual query result in

a different way. Instead of first generating a set of test databases as well as test queries and then

computing the expected results, we first create one or more expected results for a given test query

and then generate a test database individually for each combination of a test query and an expected

result which returns the expected result if the test query is executed correctly.

In order to generate a database instance for a given test query and anexpected result of that query,

we use the RQP framework discussed in PartII . Our approach to verify the actual query result is

based on the assumption that the implementation of RQP is correct1.

The main benefit of our approach is that we have full control of the expected results of each test

query. Thus, we can define the test cases for the functional testing of aquery language from a

totally different angle. For example, we can explicitly create two test databases for the same test

query with a filter operation where the first test database returns a minimal result and the second

test database returns a huge result with interesting boundary values thatwe intent to use for the

functional testing of the filter operation of the test query.

A drawback of our methodology is that it is expensive to generate one testdatabaseD individually

for each combination of a test queryQ and an expected resultR. Mutating a test queryQ into a

test queryQ′ with the condition thatQ′(D) = R still holds, allows us to reuse the test database

D in order to test queryQ′ and verify the actual result of that query with the help of the same

expected resultR. An example mutation of a SQL query which does not change the expected

result, is to add a self join on theprimary-keyof a relation which is used in theFROM clause of the

query. Mutations are not discussed in this thesis.

1In functional testing, it is a general assumption that the testing tool is correct, i.e. a failed test run primarily indicates
a bug in the application under test and not in the testing tool itself.
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Contributions: In order to generate a test database for an arbitrary test query, our approach

needs to automatically create a valid expected result for that test query first. However, generating

a valid expected query result for an arbitrary test query (like the examplequery at the beginning

of this Section) is not a trivial task. As a first contribution of this chapter, we extend RQP so

that it automatically creates a valid result for a given test query. Moreover, we present a method

which efficiently compares the actual with the expected result. As a third concrete contribution, we

discuss the implementation of our approach for the query language Entity SQLof the ADO.NET

Entity Framework and particularly focus on the extension of RQP for the nested relational data

model in order to support this query language.

Outline: The remainder of this chapter is organized as follows: Section12.1discusses our new

approach for the functional testing of the query language SQL. Section12.2then gives an overview

of the ADO.Net Entity Framework and the query language Entity SQL. Subsequently, Section

12.3describes the extensions of RQP in order to support that query language Entity SQL instead

of SQL only. Finally, Section12.4discusses related work.

12.1 Functional Testing of SQL

Our approach for the functional testing of a query language like SQL canbe divided into three

phases which will be discussed in detail in this section: (1) In the first phase an expected query

resultR is generated for a given test queryQ and a database schemaS. The test query which must

be provided as input to this phase can either be created manually by the testeror be generated by

using an existing approach like RAGS [Slu98] or QGen [PS04]. The database schema is usually

created manually by the tester. (2) Afterwards, a test databaseD is generated for the given database

schema which returns the expected resultR (generated in step 1), if the test queryQ is executed

correctly over the database instanceD, i.e. Q(D) = R. This step is completely based on RQP2.

(3) The last step carries out the actual functional testing: the test queryQ is executed over the

databaseD and the actual resultR′ is compared to the expected resultR for verification. If both

results are the same, the verification succeeds.

12.1.1 Generating the Expected Query Result

The basic idea to generate a valid result for an arbitrary test query is to use the input schema of

the root operator of the reverse query tree (calledresult schema) which is computed during the

bottom-up query annotation phase of RQP. The input schema of the root operator describes all

possible instantiations of a result of a query. To guide the result instantiation, the user can provide

2As future work, we want to explore different knobs for RQP which allowus to vary the characteristics of the
generated test database.
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values for theresult sizeand aset of constantsfor each attribute which participates in the query

result. If these values are not provided by the user, then the expected result generation use a default

value for the result size and the complete domain of the attributes to instantiate a valid result which

fulfills the constraints of the result schema.

Generating a query result which satisfies the result schema can be implemented by adding a reverse

projection with an empty attribute list on top of the reverse query tree duringquery compilation

of RQP. Thus, the result generation can reuse the algorithms of the reverse projection operator for

the top-down data instantiation phase.

The top-down data instantiation phase of RQP is changed to get the result size and a set of con-

stants as input instead of a valid resultR. In a first step, this phase generates a resultR∅ which

consists of a set ofempty tuples3. The number of empty tuples inR∅ is given by the result size. The

resultR∅ is used as input for the rewritten reverse query tree with the additional reverse projection

on top. During reverse query execution, the additional reverse projection generates the expected

resultR of the original reverse query tree as output. The constants which are provided as input

to the top-down data instantiation phase are used to instantiate the values inR (if possible). The

necessary modifications in the system architecture of RQP (Query Compilation, Top-down Data

Instantiation) which implement these changes are shown bold in Figure12.1.

For example, assume that we want to generate a valid expected resultR for the reverse query tree

in Figure4.2(b) (i.e., values for the attributeSUM(price)): The user inputs the result size of two

tuples and gives the set of constants{0, MAX_FLOAT} for the attributeSUM(price). Follow-

ing the solution described before, thequery compilationphase of RQP adds a reverse projection

on top of the reverse aggregation. During reverse query processing, the top-down data instanti-

ation phase creates two empty tuples as resultR∅. R∅ is used as input for the additional reverse

projection which generates a valid query resultR as output using the set of constants provided by

the user in order to instantiate the values for the attributeSUM(price).

12.1.2 Verifying the Actual Query Result

To verify the actual resultR′ of a test queryQ over a databaseD we compareR′ with the expected

resultR which was used to generate the databaseD. In a first step, we check if both results have

the same result size. If they do not have same size, then the verification of the actual query result

fails. Otherwise, we have to compare the actual and the expected result bytheir result values.

If the test query contains anORDER BY statement on theprimary-keyattribute(s) of the result

schema of a reverse query tree, then it is guaranteed that the tuples of theactual and the expected

result are in the same order. Otherwise, it makes sense to sort both resultsby the same sort criteria

(either ascending or descending). If the result schema of the reversequery tree contains aprimary-

3An empty tupleis a dummy tuple which defines no attribute values.
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Figure 12.1: Modified RQP Architecture

keyconstraint, then we can use the key attributes to sort both results. Otherwise, we have to sort

both results by all result attributes.

After sorting both results, we can compare the results tuple-by-tuple, i.e. wecompare the first tuple

of the actual result with the first tuple of the expected result, then the second tuple of the actual

result with the second tuple of the expected result and so on. If one pair of tuples has a different

number of result attributes or a different result value for one attribute, then the verification fails. If

all tuples have the same value for each attribute, then the verification succeeds.

For example, if we want to verify the actual result of the SQL query in Figure 4.2 (b) which was

used to generate the database instance (tablelineitem andorders) in Figure4.2 (c), then we

first execute that query on the generated database instance. Assume, that the actual result of that

test query over that database instance contains the following two tuples{<120>, <100>}. In

order to verify the actual result, we first check if the expected result (table i) in Figure4.2 (c)

has the same size as the actual result. As the result size is the same, we sort the actual and the

expected result ascending by the attributeSUM(l_price) of the query result and compare both

results tuple-by-tuple. The verification succeeds because the expectedand the actual result are the

same.
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Figure 12.2: Entity Framework – Mapping

12.2 The ADO.NET Entity Framework

The ADO.NET Entity Framework is a data-access layer which enables developers to model and

access their data on the client using a conceptual schema called Entity Data Model. The upper

part of Figure12.2shows an example Entity Data Model. The Entity Data Model is a concrete

implementation of the entity-relationship model [Che76].

The Entity Data Model defines entity types (e.g.,Orders, Lineitem) and their associations. En-

tity types represent a structured record consisting of one or more properties. The properties of an

entity type have a simple or a complex data type. A simple data type represents a scalar type (e.g.,

int, string), while a complex data type represents a structured property (e.g.,address which is

not shown in the example). A complex data type is composed of one or more properties, which

again have a simple or complex data type. Associations are used to relate (or,describe relation-

ships between) two or more entity types (e.g., the associationMyOrder in Figure12.2relates the

Lineitem entity type with theOrder entity type). Moreover, the Entity Data Model also supports

inheritance; i.e., an entity type can be derived from another entity type (e.g.,in Figure12.2 the

entity typeRushOrders is derived from the entity typeOrders).

Entities are instances of entity types. An entity is uniquely identified by a key which is formed

out of one or more properties of the entity type (e.g., the key of the entity typeLineitem is the
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propertyid), just like a key in the relational data model. The entities are organized in persistent

collections called entity sets. An entity set of typeT holds entities of typeT or any type that

derives fromT .

The ADO.NET Entity Framework does not materialize the entities and association on the client.

The Entity Data Model is mapped to a relational data model via a flexible mapping. The details

of the mapping can be found in [MAB07]. An example mapping is shown by the arrows in

Figure12.2. The Entity Data Model and the relational data model in the example contain roughly

the same elements. One difference is that the attributes in the relational data model use slightly

different names than the properties of the Entity Data Model. Another difference is that the entity

typeOrders and the derived entity typeRushOrders are mapped to one and not two tables in the

relational data model. The tableorders holds the properties of both entities and has an additional

column with the nameo_type which stores information about the entity type of the tuple (e.g.,

the string‘Orders‘ or ‘RushOrders‘). Moreover, the associations of the Entity Data Model are

implemented as an additional attributel_oid and aforeign-keyin the tablelineitem.

Entity SQL is the data manipulation language for the Entity Data Model. An Entity SQL query

retrieves entities from one or more entity sets. The following query is an example of an Entity

SQL statement which queries the entity setLineitem. For convenience, we assume that the entity

set has the same name as the entity types in Figure12.2.

SELECT l.price, l.MyOrder.orderdate

FROM Lineitem l

WHERE l.MyOrder is of RushOrders

Entity SQL supports expressions to navigate from one entity to a one or more entities reachable

via a given association (e.g.,l.MyOrder is the navigation from aLineitem entity to the corre-

spondingOrders entity). Moreover, filter operations support type interogation by using theIS

OF expression (e.g.,IS OF RushOrders checks if an entity is of the typeRushOrders).

Query execution in the Entity Framework is delegated to the relational store. Thus, the Entity

Framework translates an Entity SQL query into an equivalent SQL query which can be executed

by the query processor of the underlying relational database. The translation is based on the so

called query and update views which are derived from the mapping of the Entity Data Model to

the relational data model. These views are used to translate queries and updates on instances of

the Entity Data Model to queries and updates on the relational data.

The following query shows the translation of the Entity SQL query above into acorresponding

SQL statement for the mapping which is defined in Figure12.2. The navigationl.MyOrder

in the Entity SQL query is translated into a join on the tableslineitem andorders. TheIS

OF predicate of the Entity SQL query is translated into a filter operation with a simple equality

predicate on the columno_type.
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SELECT l_price, o_orderdate

FROM lineitem JOIN orders ON l_oid = o_id

WHERE o_type=’RushOrder’

After executing the SQL query on the relational store, the result is reshaped by the ADO.Net Entity

Framework according to the structures of the Entity Data Model (e.g., creating associations from

foreign-keyvalues) and returned to the client.

12.3 Reverse Query Processing Entity SQL

12.3.1 Discussion and Overview

Section12.2showed that an Entity SQL query is executed over a given database instance using

the following three steps:

(1) An Entity SQL query is translated into a SQL query

(2) The SQL query is executed over the relational database

(3) The result of the SQL query is mapped into a result of the Entity Data Model

Functional testing of Entity SQL should be able to reveal errors in all the three steps of the query

execution. The main steps of our approach for the functional testing of a query language (see

Section12.1) are the generation of an expected resultR and of a test databaseD for a given test

queryQ and a database schemaS using RQP. However, the existing RQP prototype supports only

SQL and the relational data model but not Entity SQL and the Entity Data Model. Consequently,

in order to reverse process an Entity SQL query, we either use the SQL query Q′ which is the

output of step (1) above and the relational database schema which is usedto store the data of the

Entity Data Model as input for RQP or we extend RQP to support Entity SQL and the Entity Data

Model directly4.

The problem of using the SQL queryQ′ as input for RQP is that the step (1) of processing an

Entity SQL query could be erroneous and thus the output SQL query maybewrong. Consequently,

RQP would generate a test databaseD for that wrong SQL query which means that the correctness

criterionQ(D) = R does not hold anymore for the generated test databaseD and the Entity SQL

queryQ.

In this thesis, we describe a solution where RQP takes an Entity SQL query and an Entity Data

Model directly as input in order to avoid this problem. Implementing RQP for EntitySQL and the

4We do not discuss the verification of a result of an Entity SQL query because this is a straightforward extension to
Section12.1.2.
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Entity Data Model needs some extensions in the data model and the algebra of RQP. The Entity

Data Model and the algebra for Entity SQL (called Command Trees [ABMM07]) are similar to

the nested relational model and the nested relational algebra. In the following Sections12.3.2

and12.3.3, we define anExtendedNested Relational Data Model as well as a Reverse Nested

Relational Algebra for RQP and discuss the mapping of the Entity Data Model and the query

language Entity SQL to that data model and that algebra.

Based on that algebra and that data model an Entity SQL queryQ is reverse-processed in the

following way: In the first step, the Entity Data ModelS is mapped into a corresponding Extended

Nested Relational Data ModelS′. UsingS′, thequery compilationphase of RQP translates a given

Entity SQL query into an equivalent nested relational algebra expressionand then replaces each

forward operator by the correspondingreverseoperator. During thetop-down data instantiation

phase, an expected query resultR is generated which satisfies the nested result schema (that is

computed by thebottom-up query annotationphase usingS′) and the input constraints of the user

(e.g., the result size). Then, this nested resultR is pushed down the reverse query tree operator by

operator to the leaves. The data model of the input and output of the reverse operators are nested

relations of the extended nested relational data model. The only exception are the leaf operators

which take a nested relation as input and create a set of entities and associations as output which

satisfy the given Entity Data Model.

Afterwards, as an additional step, the generated entities and associationsare mapped back to re-

lational data model which is used to store the data of the Entity Data Model. A straightforward

solution to implement this step is to use the update views which are provided by the Entity Frame-

work. Using the update views is not problematic because our goal is to functional test the query

execution (phases 1-3 above) of the Entity Framework and not the updatecapabilities.

For example, in order to reverse process the Entity SQL query shown in Section 12.2, the given

Entity Data Model (see Figure12.2) is translated into a extended nested relational data model

(see structure of tables in Figure12.3and Figure12.4). Subsequently, RQP compiles the given

test query into a reverse query tree using the reverse nested relationalalgebra and then com-

putes the nested result schema of that reverse query tree (which consists of the two attributes

Lineitem.price andLineitem.MyOrder.orderdate). In the next step, RQP generates an ex-

pected result which satisfies the nested result schema and pushes that result down to the leaves

of the reverse query tree which generate a set of(Rush)Orders as well asLineitem entities

and their associations for the given Entity Data Model (shown in Figure12.2). These entities and

associations are then mapped back to the tablesorders and lineitem (defined by the mapping

in Figure12.2) in order to generate the test database, which means that e.g., the values ofthe

foreign-keycolumnl_oid must be created from the associations between the(Rush)Orders and

Lineitem entities.
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Orders
type: entity
keys: {Orders.id, Orders.MyLineitems.id}
predicates:{Orders.@type = ‘Orders‘||Orders.@type = ‘RushOrders‘}
id orderdate arrivaldate fee MyLineitems @type
type: int type: date type: date type: float type: ref(Lineitem) type: string

cardinality: *
id
type: int

1 2005-01-01 NULL NULL 1 Orders
2 2005-01-02 2005-01-03 10 2 RushOrders

3

Figure 12.3: Nested RelationsOrders

Lineitem
type: entity
keys: {Lineitem.id}
predicates:{Lineitem.price >= 0&&Lineitem.@type = ‘Lineitem‘}
id price MyOrder @type
type: int type: float type: ref(Orders)

cardinality: 1
id
type: int

1 999 1 Lineitem
2 1000 2 Lineitem
3 215 2 Lineitem

Figure 12.4: Nested RelationsLineitem

12.3.2 Extended Nested Relational Data Model

We define theExtended Nested Relational Data Modelas an extension of the standardNested

Relational Data Model[AHV95]. The standard nested relational data model allows the type of an

attribute which is defined by aschema of a nested relationto be a set of records (e.g., an attribute

Orders inside a schema of a nested relationLineitem which represents the order that a line-item

belongs to) or a simple data type (likeint, string), rather then requiring it to be a simple data

type only. Anested relationis an instance of a schema of nested relation and anested tupleis

a row of such a nested relation. Apath expressionidentifies an attribute inside a nested relation

(e.g.,Lineitem.Orders.orderdate is a path expression which points to the attributeorderdate

nested inside anOrders attribute of the nested relationLineitem). The extensions of the standard

nested relational data modelthat are necessary to map the Entity Data Model are discussed in this

section when necessary.

An Entity typeT of the Entity Data Model is mapped to the extended nested relational data model

as follows: a base entity type is mapped to a nested relation with the same name and the type

entity. A property of an entity type which either has a simple or a complex data type is mapped
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to an attribute with the same name and a corresponding simple data type or a data type which

represents set of records. Derived entity types and their properties are mapped to the same nested

relation as the base entity type. Thus, a nested relation which represents anentity typeT defines

all attributes of the entity typeT and the attributes of entity types that derive from T. An example

of two nested relations which represent instances of the entity typesOrders, RushOrders, and

Lineitem of the Entity Data Model in Figure12.2is shown in the Figures12.3and12.4. Each

base entity type (Orders, Lineitem) is mapped to one nested relation with the same name. The

properties of the two entity types are mapped to the attributesOrders.id, Orders.orderdate, as

well asLineitem.id, Lineitem.price with the same data types. The properties of the derived

entity typeRushOrders are also mapped to the nested relationOrders. A tuple of that nested

relation which represents an entity of typeOrders (e.g., the nested tuple withOrders.id = 1 in

Figure12.3) holds aNULL value for all attributes which are defined by the derived entity type

RushOrders.

A nested relation defines an additional attribute@type which holds a string value that indicates the

entity typeT of the nested tuple. The value of this column is restricted to the entity types which

are represented by that nested relation (e.g., the@type column of the nested relationOrders in

Figure12.3is restricted to the values‘Orders‘ and‘RushOrders‘).

Mapping associations of the Entity Data Model to the extended nested relational data model is also

straightforward. The associations are implemented by an attribute (calledassociationattribute)

with the same name and the typeref (e.g., the associationMyOrder is implemented as an attribute

with the same name in the nested relationLineitem). Moreover, the association attribute (e.g.,

Lineitem.MyOrder) holds a set of nested attributes (calledreferenceattributes) with the names

of the key attributes of the referred entity (e.g.,Lineitem.MyOrder.id). The typeref of the

association attribute can be seen as aforeign-keywhich constrains the values of this attribute to

the key values of the referred entity. Thecardinality of the association attribute is an extension of

the standard nested relational data model and is used to represent the cardinality of an association.

For instance, aLineitem entity refers to exactly oneOrders entity. Thus, the cardinality of the

association attributeLineitem.MyOrder is 1.

Moreover, a schema of a nested relational must be able to hold the constraints of the Entity Data

Model (keys, predicates) in order to be suitable for thebottom-up query annotationphase of RQP.

Thus, we extend the standard nested relational data model in such a way that a nested schema can

also hold a set ofkeys andpredicates of a nested relation. For instance, thekeys of the nested

relationOrders are on the attributesOrders.id andOrders.MyLineitems.id. This means, that

the values of these attributes must be unique in the nested relationOrders.
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12.3.3 Reverse Nested Relational Algebra

The operators of the Reverse Nested Relational Algebra that are presented in this section allow the

reverse processing of a subset of possible Entity SQL queries. For each reverse operator of that

algebra, we first discuss the Entity SQL expressions that are mapped to thisoperator duringquery

compilationof RQP. Analog to the reverse relational algebra in PartII where the definition, e.g.

of the reverseselection operator is based on theforward selection operator of the relational alge-

bra, we first define theforward operator of the Nested Relational Algebra which implements the

forward processing capabilities of certain Entity SQL expressions and then we define thereverse

operators of theReverseNested Relational Algebra based on the definition of the correspond-

ing forward operator. The implementation details of the bottom-up query annotation phase and

top-down data instantiation phase of RQP for that algebra are omitted for brevity.

Reverse ScanEntity (ScanEntity−1
name,alias):

During query compilation, RQP maps an entity set which is listed in theFROM clause of an Entity

SQL query to areverse ScanEntityoperator.

The forward ScanEntityoperator of the nested relational algebra scans an entity set with a given

name and produces a nested relation as output (the mapping was described in Section 12.3.2).

The output nested relation has the name of the scanned entity set. For instance, the output of a

forward ScanEntity operator which scans the entity setOrders of the Entity Data Model in Figure

12.2could be a nested relation that is shown in Figure12.3. Moreover, the forward ScanEntity

operator implements the renaming of an entity set to an optionalalias.

Accordingly, thereverse ScanEntityoperator gets a nested relation as input and creates a set of

entities as well as the associations of a given Entity Data Model as output. With the help of the

column@type in the input, the reverse ScanEntity operator instantiates the correct entity type and

initializes the property values of the entities using the attribute values of the nested tuples. The

associations are created by dereferencing the attribute values which represent the associations.

For example, a reverse ScanEntity operator which gets the nested relation of Figure12.3as input,

creates oneOrders and oneRushOrders entity of the Entity Data Model in Figure12.2 as

output. The associationMyLineitems is instantiated by dereferencing the values of the attribute

Orders.MyLineitems.id (e.g., for the entity which is created for theOrders tuple withid = 1,

an association to aLineitem entity with id = 1 is instantiated).

Reverse Ref-Key Join (⋊⋉−1
{r1,...,rn}={k1,...,kn}

):

Navigations along associations inside an Entity SQL query are mapped to areverse Ref-Key Join

operator during the compilation phase of RQP. An association of the Entity DataModel is rep-
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Orders
id orderdate arrivaldate fee MyLineitems @type

id price ... @type

1 2005-01-01 NULL NULL 1 999 ... Lineitem Orders
2 2005-01-02 2005-01-03 10 2 1000 ... Lineitem RushOrders

3 215 ... Lineitem

Figure 12.5: Output/Input of the Forward/Reverse Ref-Key Join

resented by a set of reference attributes (r1, ..., rn) in the extended nested relational data model

which point to thekey attributes (k1, ..., kn) of a nested relation.

The forward Ref-Key Joinoperator gets the two nested relations which participate in the associ-

ation as input: the input which defines the reference attributes is called thereference inputand

the other input which defines the key attributes is called thekey input. The forward Ref-Key Join

operator joins the two input relations in the following way: it replaces the values of the refer-

ence attributes of all tuples in the reference input by the nested tuples of thekey input which

have the same value for the key attributes. Thus, the forward Ref-Key is similar to an equi-join

with a join predicate which expresses the equality of the reference and the key attributes, i.e.

r1 = k1&&...&&rn = kn.

For example, the navigationOrders.MyLineitems in the following Entity SQL query is imple-

mented as a forward Ref-Key Join with the reference attributeOrders.MyLineitems.id and the

key attributeLineitem.id.

SELECT Orders.MyLineitems as lineitems

FROM Orders

If this join gets the nested relations of Figure12.3and Figure12.4as input, then it replaces the

values of the attributeOrders.MyLineitems.id with tuples of the nested relationLineitem

which have the same value for the attributeLineitem.id, i.e. Orders.MyLineitems.id =

Lineitem.id is true in the output. Figure12.5shows the output of that join.

Correspondingly, thereverse Ref-Key Joinsplits a given input into two nested relations to create

its output (called thereferenceand thekey output). Thekey outputis created by extracting the

nested tuples in the input relation which are identified by the reference attribute. For example,

the reverse Ref-Key Join⋊⋉−1
{Orders.MyLineitems.id}={Lineitem.id} which gets the nested relation

in Figure12.5as input, extracts the nested tuples which are identified by the reference attribute

(Orders.MyLineitems.id) in order to create thekey output. Afterwards, the reverse Ref-Key

Join operator deletes all attributes in the input relation which are at the same level as the reference

attribute, but not the reference attribute itself, in order to produce the reference output. In our

example, the attributesOrders.MyLineitems.price, ..., andOrders.MyLineitems.@type in

the input relation (Figure12.5) are deleted to create thereference output. The two output relations
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lineitems
id price ... @type

1 999 ... Lineitem
2 1000 ... Lineitem
3 215 ... Lineitem

Figure 12.6: Output/Input of the Forward/Reverse Projection

of that reverse join are shown by the nested relation in Figure12.3 (reference output) and the

nested relation in Figure12.4(key output).

Reverse Projection (π−1
{p1,...,pn},{a1,...,an}

):

The compilation phase of RQP maps theSELECT clause of an Entity SQL query to thereverse

projectionoperator. The projection list (p1, ..., pn) of this operator defines a set ofpath expres-

sions. Optionally, aliases (a1, ..., an) can be given for each path expression in the projection list.

The forward projectionof the extended nested relational algebra is similar to the projection op-

erator of the relational algebra. It pulls up the attributes in the nested input relation which are

identified by the path expressions to the top-level and renames these attributes according to the

given aliases to create the output. All attributes in the input that are not in the projection list are

deleted in the output.

For example, a forward projection which implements theSELECT clause of the Entity SQL query

shown for the reverse nested selection operator, pulls-up the attribute which is identified by the

given path expressionOrders.MyLineitems to the top-level of relation and renames this at-

tribute by the aliaslineitems. All other attributes (e.g.,Orders.id, Orders.orderdate, ...,

Orders.@type) are deleted in the output. If this projection operator gets the nested relation in

Figure12.5 as input, then the output consists of two nested tuples shown Figure12.6: the first

tuple holds theLineitem with id = 1, and the second tuple holds the twoLineitems with

id = {2, 3}.

The reverse projectionoperator reverts the forward projection: It takes the attributes in the input

relation that are identified by the aliases (a1, ..., an) and initializes the attributes in the output rela-

tion which are identified by the corresponding path expressions (p1, ..., pn) of the projection list.

The values of all other attributes that are deleted by the forward projectionmust be generated by the

reverse projection. For instance, the reverse projection operatorπ−1
{Orders.MyLineitems},{lineitems}

which gets the nested relation in12.6 as input, creates its output by initializing the attribute

Orders.MyLineitems in the output with the values of thelineitems attribute in the input. Af-

terwards, the values are generated for the attributes which are deleted bythe forward projection

(e.g.,Orders.id, Orders.orderdate, ...,Orders.@type in Figure12.5).
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o
id orderdate arrivaldate fee MyLineitems @type

id

2 2005-01-02 2005-01-03 10 2 RushOrders
3

Figure 12.7: Output/Input of the Forward/Reverse Selection

Reverse Selection (σ−1
p ):

TheWHERE clause of an Entity SQL query is mapped to areverse selectionoperator during the

compilation of RQP. The selection predicatep is an arbitrarily complex predicate which uses path

expressions instead of attributes to express the filter condition (e.g.,Orders.price >= 100). An

IS OF predicate in theWHERE clause of a Entity SQL query is also mapped to a reverse selection

operator with a simple equality predicate. For example, theWHERE clause of the following Entity

SQL query is implemented by the predicateo.@type = ‘RushOrders‘.

SELECT o

FROM Orders o

WHERE o IS OF RushOrders

As in the relational algebra, theforward selectionoperator filters all tuples in the input which do

not satisfy the predicate. The path expressions which are used in the predicate must point to a

scalar value and not a set of records; e.g., a forward selection with the predicate

Orders.MyLineitems.price > 100 on the input (Figure12.5) is not allowed because the path

expressions points to a set of integer values. However, a forward selection with the predicate

o.@type = ‘RushOrders‘ which gets the nested relation in Figure12.5 as input would be al-

lowed. The output of this operator is shown by Figure12.7:

In the simplest case, thereverse selectionoperator can be implemented as the identity function.

However, the reverse selection can also add some additional nested tuplesto its output which sat-

isfy the negative selection predicate. The number of tuples which are added by the reverse selec-

tion could be another parameter which is provided by the user as input for the top-down data instan-

tiation phase. For example, if thereverse selectionwith the predicateo.@type = ‘RushOrders‘

is executed on the input nested relation in Figure12.5, then it could add some nested tuples

to the output which satisfyo.@type! = ‘RushOrders‘ and the constraints (Orders.@type =

‘Orders‘||Orders.@type = ‘RushOrders‘) of the schema of the nested relation in Figure12.3.
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12.4 Related Work

To the best of our knowledge, there has been almost no work on the automatic result verification for

the functional testing of a query language. [Slu98] suggested the method to execute the test query

on a comparable query processor to obtain the expected query result which can be compared to the

actual result for verification. The software engineering community has also addressed this problem

(known as the computation of atest oracle) for the testing of different applications [Bin96] but not

for the testing of a query language.

The work in [BCT06] tackles the problem of controlling some characteristics like the cardinality

of the (intermediate) query results for a given test query by generating query parameters for a given

test query. This approach could be used to partially verify the actual query results by comparing

the controllable characteristics of the expected query result with the same characteristics of the

actual result. However, that approach is not as powerful as our approach.

Most existing approaches for the functional testing of a query languagefocused on the generation

of test queries and test database instances (see Section2.2.2). These approaches are often used to

first generate a set of test database instances and test queries and then execute these test queries on

the generated database instances to find some errors without verifying theactual query result.
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Science never solves a problem without creating ten more.

– George Bernard Shaw, 1856-1950 –

Apart from test database generation, RQP has also a lot of other potential applications. As its main

contribution this section sketches how RQP can be useful for those applications. However, much

additional research is required in order to further explore these applications.

Data Security: One future application of RQP is to study the query-view security problem. This

problem addresses the question if a set of views that are published overthe same database instance

disclose any information about a query that a potential attacker wants to execute. RQP could be

used to generate different test databases from the published view data (queries and query results)

in order to test the confidentiality of the view data [MS04].

SQL Debugging: Another practical application of RQP is to debug database applications with

embedded SQL code. If a query produces the wrong query results, then RQP can be used to step-

wise reverse engineer the query based on its query plan and find the operators that are responsible

for the wrong query results; e.g., a wrong or missing join predicate.

Program Verification: RQP can also be an important component for Hoare’s Grand Challenge

project of program verification [HM05]. In order to prove the correctness of a program, all possible

states of a program must be computed. In order to compute all states of a database program (e.g.,

Java plus embedded SQL), RQP is needed for finding all necessary conditions of the database in

order to reach certain program states.
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Updating Views: The SQL standard is conservative and specifies that only views on basetables

without aggregates are updatable. Many applications make heavy use of SQL view definitions

and, therefore, require a more relaxed specification of updatable views. For example, Microsoft’s

ADO.NET allows the client-side update of data, regardless of the kind of viewthat was used

to generate that data. The reason why SQL is conservative is that updates to certain views are

ambiguous. RQP could be used in order to find all possible ways to apply an update (possible

infinitely many). Additional application code can then specify which of these alternatives should

be selected.

Database Sampling, Compression: Some databases are large and query processing might be

expensive even if materialization and indexing is used. One requirement might be to provide a

compressed, read-only variant of a database that very quickly givesapproximate answers to a pre-

defined set of parametrized queries. Such database variants can be generated using RQP in the

following way: First, take a sample of the queries (and their parameters) andexecute those queries

on the original (large) database. Then, use RQP on the query results and the sample queries in

order to find a new (smaller) database instance.
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Symbolic Query Processing
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Chapter 14
Motivating Applications

Logic will get you from A to B. Imagination will take you everywhere.

– Albert Einstein, 1879-1955 –

The complexity of database management systems (DBMS) makes the addition of new features

or the modifications of existing features difficult. The impact of the modificationson system

performance and on other components is hard to predict. Therefore, after each modification, it is

necessary to run tests to evaluate the relative system improvements and the overall system quality

under a wide range of test cases and workloads.

Today a common methodology for testing a database system is to generate a comprehensive set of

test databases and then study the before-and-after system behavior by executing many test queries

over the generated data. Current database generation tools allow a userto define the sizes and the

data characteristics (e.g., value distributions and inter/intra-table correlations) of the base tables

(see Section2.2.2). Based on the generated test databases, the next step is to either createtest

queries manually, or stochastically generate many valid test queries by query generation tools

such as RAGS [Slu98] or QGEN [PS04], and then execute them to test the DBMS.

Unfortunately, the current testing methodology is inadequate to test individual features of the

database systems because very often it is necessary to control the input/output of the intermediate

operators of a query during a test. For example, assume that the technicalteam of a DBMS product

wants to test how a newly designed memory manager influences the performance of multi-way

hash join queries (i.e., how the per-operator memory allocation strategy of thememory manager

affects the resulting execution plans). Figure14.1shows such a sample test case (figure extracted

from [BCT06]). A test case is a parametric queryQP with a set of constraints defined on each

operator. In Figure14.1, the test query of the test case first joins a large filtered tableS with a
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size=10

σ R.attr1<:p1 σ S.attr2>:p2

σ T.attr3≤:p3

R
size=1000

S
size=5000

T size=2000

R.attr4=S.attr5

S.attr6=T.attr7

size=1500

size=500

Figure 14.1: A test case: a query with operator constraints

filtered tableR to get a small join result. Then the small intermediate join result is joined with

a filtered tableT to obtain a small final result. Since the memory requirements of a hash join is

determined by the size of its inputs, it would be beneficial if the input/output of each individual

operator in the query tree can be controlled/tuned according to the test requirements. For example,

the memory allocated to⋊⋉S.attr6=T.attr7
by the memory manager, can be studied by defining the

output cardinality constraint on the joinσ(R) ⋊⋉ σ(S) and the output cardinality constraint on

σ(T ) in the test case. However, even though the tester can instruct the database engine to evaluate

the test query by a specific physical execution plan (e.g., fixing the join order and forcing the use

of hash-join as the join algorithm), there is currently no easy way to control the (intermediate)

results of a query because those results depend on thecontentof the test database.

Testing the features of DBMS requires the execution of a test query on a test database. Usually

the test query is given by the testers (e.g., the one in Figure14.1). In general, a good test database

should cover the test cases (i.e., the database content is possible to give the desired intermediate

query results for a test query when the query is executed on it). However, existing test database

generators do not take the test query as part of the inputs. Therefore, unless with intensive manual

tuning on the database content, it is hard to guarantee that executing the testquery on the test

database can obtain the desired (intermediate) query results that are defined in the test case. Figure

14.2(a) shows this problem. In the figure, there are two test cases,T1 andT2 (denoted by dots)

and there are three generated test database instances (denoted by squares). The three generated

test databases (Databases 1, 2, and 3) do not cover test caseT2 at all (i.e., executing test queryQP

of T2 on Databases 1, 2, and 3 can never fulfill the constraints that are defined in T2). Even if a test
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T1

T2

(a) Traditional Test DB Generation (b) Query Generation

Database 1

(c) Query Parameter Generation (d) Query-Aware Test DB Generation

Database 2

Database 3
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QP’ QP’’

QP’’’

QP’ QP’’

QP’’’

T1

T2

Database 1

Database 2

Database 3

RAGS/QGen
Queries

RAGS/QGen
Queries

RAGS/QGen
Queries

T1

T2

Database 1

Database 2

Database 3

T1

T2

Query-Aware
Test Database 1

Query-Aware
Test Database 2

Figure 14.2: The DBMS Feature Testing Problem

database covers a test case (e.g., Database 1 coversT1), it is difficult to manually find the correct

parameter valuesP of test queryQP such that the query results match the constraints in the test

case. For instance, it is unlikely that instantiating test queryQP in Figure14.2(a) with three sets

of parameter valuesP ′, P ′′, P ′′′ manually can match the requirements of test caseT1.

Given a test database, query generation tools such as RAGS and QGEN generate many queries in

order to cover a variety of test cases. However, RAGS and QGEN werenot designed for testing

an individual DBMS component. To test an individual DBMS component, thedesired test query

is usually given by a tester (e.g., the query in Figure14.1). In this situation, RAGS and QGEN

may need to generate many queries in order to match the test query and the requirements of the

test case (see Figure14.2(b)). In addition, RAGS and QGEN also rely on what databases they are

working on or otherwise they never can generate a test query that matches the test case (e.g.,T2).

The problem of testing DBMS features has been pointed out by [BCT06]. Given a test database

D, a parametric conjunctive queryQP , and cardinality constraintsC over the sub-expressions of

QP , they studied how to find the parameter valuesP of QP such that the output cardinality of

each operator inQP fulfills C. In their pioneering work, they found that their formulation of the

problem isNP-hard. Their approach is illustrated in Figure14.2(c). Given the predefined test
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databases (e.g., Databases 1, 2, and 3), it may be possible that there areno parameter values that

can let test queryQP match the requirements in test caseT2. Even if a test database covers a

test case (e.g., Database 1), since the solution space is too large, only simpleselect-project-join

queries with single-sided predicates (e.g.,p1 ≤ a or a ≤ p2) or double-sided predicates (e.g.,

p1 ≤ a ≤ p2) (wherea is an attribute andp1 andp2 are parameter values) can be supported.

We observe that the test database generation process is the main culprit ofineffective DBMS fea-

ture testing. Currently, test databases are generated without taking the test queries as input. Thus

the generated databases cannot guarantee that executing the test query on them can obtain the de-

sired (intermediate) query results that are specified in the test case. Therefore, the only way for

meaningful testing is to do a painful trial-and-error test database generation process (i.e., gener-

ating test databases one-by-one, or manually tune the database content, until we find a good test

database that matches the test case), and execute queries generated byRAGS/QGEN, or execute

test queries with parameters instantiated by [BCT06].

In this thesis, we address the DBMS feature testing problem in a different and novel way: Instead

of first generating a test database and then seeing if it is possible for the test query to obtain

the desired query results that match the test case (otherwise use a trial-and-error approach to find

another test database), we propose to generate a specific test database for each test case (see Figure

14.2(d)). To that end, we propose a new technique calledSymbolic Query Processingor SQP, for

short. Given a database schemaS, a logical query planQ, and a set of user-defined constraints

C on each query operator, SQP directly generates a databaseD such that executingQ on D

guarantees that the user requirements imposed on the query operators are fulfilled.

Consequently, SQP implements theTest Case Aware Database Generationfor the testing of indi-

vidual DBMS components. Traditional database generators (see Section2.2.2) allow constraints

to be defined only on the base tables (e.g., a join key distribution is defined on the base tables).

As a result, a tester cannot specify operator constraints (e.g., the outputcardinality of a join) in an

explicit way. SQP allows a user to annotate constraints on each operator and on each base table

directly, and thus the users can easily get a meaningful test database fora distinct test case.

The test databases generated by SQP can be used in a number of ways for the testing of DBMS

components. For example, in addition to testing the memory manager, testers can use SQP to

generate a test database that guarantees the size of the intermediate join results to test the accuracy

of the cardinality estimation components (e.g., histograms) inside a query optimizerby fixing the

join order.1 As another example, testers can use SQP to generate a test database that guarantees

the input and the output sizes (the number of groups) for an aggregationoperator (GROUP-BY)

in order to evaluate the performance of the aggregation algorithm under a variety of cases such as

in multi-way join queries or in nested queries.

1However, it is inapplicable to test the join reordering feature of a query optimizer directly because in this case the
physicaljoin ordering should not be fixed by the tester; and the intermediate cardinalities guaranteed by SQP may affect
the optimizer to return a different physical execution plan with different intermediate results.
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Contributions: The main contribution of this part is the conceptual framework for SQP and a

prototype implementation called QAGen (Query-Aware Database Generator). QAGen can gen-

erate test databases for a variety of complex queries such as TPC-H [TPCb] queries efficiently.

In some cases, the test database generation process still involves solvinganNP-hard problem

such that QAGen generates a test database in which the test query execution gets approximate

cardinalities instead of exact cardinalities as defined on the test case. Forexample, QAGen may

generate a test database in which executing the test query in Figure14.1gets a join result with 12

tuples rather than 10 tuples in the joinS.attr6 ⋊⋉ T.attr7. In practice, this relaxation is desirable

because for testing the feature of a DBMS, it usually does not matter whether or not the final join

result size exactly matches the test case requirements. In many cases, a good approximate answer

is sufficient and it turns out that such relaxation allows QAGen to efficientlysupport a much richer

class of SQL queries.

Sometimes it would be advantageous to add new kinds of constraints to an operator in addition

to the cardinality constraint during testing. For instance, the aggregation (GROUP-BY) operator

may not only need to control the output size (i.e., the number of groups), but may also need to

control how to distribute the input to the predefined output groups (i.e., somegroups have more

tuples while others have fewer). Thus, QAGen is designed to be extensiblein order to incorporate

new operator constraints easily.

The final contribution of this part is the design and implementation of a semi-automatic DBMS

testing framework. The framework automates the step of manually constructingDBMS test cases

like the one in Figure14.1. As a result, testers may not need to explicitly specify the constraint

details (e.g., the cardinality constraintsize = 500 in Figure14.1), but let the framework to auto-

matically create and execute a set of test cases which cover different testing requirements.

Outline: The remainder of this part is organized as follows: Chapter15 gives an overview of

SQP. Chapter16 to 18describe the prototype implementation for SQP called QAGen. Chapter19

presents the semi-automatic DBMS testing framework that generates and executes test cases. This

framework is built on top of QAGen. Chapter20 presents the experimental results. Chapter21

discusses related work.
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Chapter 15
SQP Overview

We can’t solve problems by using the same kind of thinking we used when we created

them.

– Albert Einstein, 1879-1955 –

15.1 Problem Statement and Decidability

This thesis addresses the following problems: (1) The first problem is to identify a subset of

constraintsC in a given set of constraints (e.g., output cardinality, distribution of a certain attribute)

that could be controlled for each sub-expression (i.e., output of an operator) of a logical query plan

Q, and a database schemaS (including integrity constraints). (2) Given a valuationV for each

constraint inC (e.g., concrete values for the output cardinality or a concrete distribution of an

attribute), the second problem is to find a test database instanceD that satisfiesV andS. In

general, there are many different database instances which can be generated for a given logical

query planQ and the constraint valuationV . The purpose of this thesis is to find any possible

database instanceD.

Theorem 15.1 Given a logical query planQ, a valuationV of the constraintsC, and a database

schemaS, it is undecidable whether there exists a database instanceD that satisfiesV andS or

not.

Proof (Sketch) 15.2We can use the same argument as in Section4.1 for RQP. In order to show

that SQP is undecidable, we reduce the query equivalence problem to SQP. Since the query equiv-

alence problem is undecidable [Klu80], we prove the theorem.
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Let Q1 andQ2 be two arbitrary SQL queries. In order to decide whetherQ1 andQ2 are equiv-

alent, we can use SQP to decide whether a database instanceD exists for the queryQ =

χCOUNT (∗)((Q1 − Q2) ∪ (Q2 − Q1)), a cardinality constraint on the query resultR, and a

valuation of that constraint which defines that the cardinalityc of R must satisfyc > 0. Moreover,

D should meet the constraints of the given database schemaS. If SQP can find such a database

instanceD, thenQ1 andQ2 are not equivalent (i.e., ifQ1 andQ2 would be equivalent, the result

of Q must be empty). Otherwise, if SQP can not find such a database instanceD, it immediately

follows thatQ1 andQ2 are equivalent.

Furthermore, there are obvious cases where noD exists for a givenV andQ (e.g., if values in

v violate each other; e.g., when the output cardinality of a selection operator isgreater than the

output cardinality of its child). Again, the approach presented in this thesis,cannot be complete. It

is a best-effort approach: it will either fail (return anerror because it could not find aD) or return

a validD.

15.2 SQP Architecture

SQP is a framework that gives a best effort solution for the problem statement discussed before.

The data generation process of SQP consists of two phases: (1) the symbolic query evaluation

phase, and (2) the data instantiation phase. The goal of the symbolic queryevaluation phase is

to capture the user-defined constraints on the query into the target database. To process a query

without concrete data, SQP integrates the concept of symbolic execution [Kin76] from software

engineering into traditional query processing. Symbolic execution is a well known program ver-

ification technique, which represents values of program variables with symbolic values instead

of concrete data, and manipulates expressions based on those symbolic values. Borrowing this

concept, SQP first instantiates a database which contains a set of symbols instead of concrete data

(thus the generated database in this phase is called asymbolic database). Figure15.1shows an

example of a symbolic database with threesymbolic relationsR, S andT . Essentially, a sym-

bolic relation is just a normal relational table which consists of a set ofsymbolic tuples. Inside

each symbolic tuple, the values are represented bysymbolsrather than by concrete values. For

example, symbola1 in symbolic relationR in Figure15.1represents any value under the domain

of attributea. The formal definition of these symbolic database related terms will be given in

Chapter17. For the moment, let us just treat the symbolic relations as normal relations and treat

the symbols as variables. Since the symbolic database is a generalization of relational databases

and provides an abstract representation for concrete data, this allows SQP to control the output of

each operator of the query.

The symbolic query evaluation phase leverages the concept of traditionalquery processing. First,

the input query is analyzed by aquery analyzer. Then, the user specifies her desired requirements

130



15.2 SQP ARCHITECTURE

a b
t1: a1 b1
t2: a2 b2

c d
t3: c1 d1
t4: c2 d2
t5: c3 d3
t6: c4 d4

a b = c d
t7: a1 b1 d1
t8: a1 b1 d2
t9: a1 b1 d3
t10: a2 b2 d4

e f
t11: e1 f1
t12: e2 f2

TableR TableS R ⋊⋉b=c S TableT

Figure 15.1: Example of pre-grouped input data

on the operators of the query tree. Afterwards, the input query is executed by asymbolic query

enginejust like in traditional query processing; i.e., each operator is implemented as an iterator,

and the data flows from the base tables up to the root of the query tree [Gra93]. However, unlike in

traditional query processing, the symbolic execution of operators deals with symbolic data rather

than concrete data. Each operator manipulates the input symbolic data according to the operator’s

semantics and user-defined constraints, and incrementally imposes the constraints defined on the

operators to the symbolic database. After this phase, the symbolic database isa query-aware

database that captures all constraint on the intermediate query results defined in the test case (but

without concrete data).

The data instantiation phase follows the symbolic query evaluation phase. Thisphase reads the

tuples from the symbolic database that are prepared by the symbolic query evaluation phase and in-

stantiates the symbols in the tuples by a constraint solver. The instantiated tuplesare then inserted

into the target database.

To allow a user to define different test cases for the same query, the input query of SQP is in

the form of a relational algebra expression. For example, if the input query is a 2-way join

query (σage>p1
customer ⋊⋉ orders) ⋊⋉ lineitem, then the user can specify a join key distri-

bution (e.g., a Zipf distribution) between the line items and the orders that join with customers

with an age greater thanp1. On the other hand, if the input query is(orders ⋊⋉ lineitem) ⋊⋉

σage>p1
customer, then the user can specify the join key distribution between all orders and all

lineitems.

Figure15.2 shows the general architecture of SQP. It consists of the following components: a

Query Analyzer, a Symbolic Query Engine, a Symbolic Database and a Data Instantiator.

15.2.1 Query Analyzer

In the beginning of the symbolic query evaluation phase, SQP first takes a query planQ and the

database schemaS as input. The queryQ is then analyzed by the query analyzer component in

SQP. The query analyzer has two functionalities:
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Figure 15.2: SQP Architecture

(1) Correct knob selections: The query analyzer analyzes the input query and determines which

constraints (knobs) are available for each operator. A knob can be regarded as a parameter of an

operator that controls the output. A basic knob that is offered by SQP is theoutput cardinality1.

This knob allows a user to control the output size of an operator. However, whether such a knob is

applicable depends on the operator and its input characteristics. This stepis fairly simple and the

query analyzer can accomplish it without analyzing the input data of each operator. Thus,the query

analyzer essentially annotates the appropriate knob(s) to each operator. As a result, the output of

the query analyzer is an annotated query tree with the appropriate knob(s) on each operator. As an

example, for a simple aggregation querySELECT MAX(a) FROM R, the cardinality constraint

knob should not be available for the aggregation operator (χ), because the output cardinality is

always one ifR is not empty or zero ifR is empty. Chapter16will present the details of this step.

(2) Assign physical implementations to operators: As shown above, different knobs are avail-

able under different input characteristics. In general, different (combinations of) knobs of the same

operator need separate implementation algorithms. Moreover, even for the same (combination of)

knobs of the same operator, different implementation algorithms are conceivable (this is akin to

traditional query processing where an equi-join operation can be implemented by a hash-join or

a sort-merge join). Consequently, the other function of the query analyzer is to assign the correct

(knob-supported) implementation to an operator. As a result, the output of the query analyzer is

1The output cardinality of an operator can be specified as an absolute value or as a selectivity. Essentially they are
equivalent.
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a knob-annotated query execution plan. Chapter17 will present the implementation algorithms

for each symbolic operation implemented in QAGen. In general, the job of the query analyzer

is analogous to the job of the query optimizer in traditional query processing.However, in the

current version of QAGen, only one implementation algorithm for each (combination of) knob is

available. If there are more than one possible implementation of the same symbolic operation,

then the query analyzer can be extended to be a query optimizer.

15.2.2 Symbolic Query Engine and Database

The symbolic query engine of SQP is the heart of the symbolic query processing phase and it is

similar to a normal query engine. However, before the symbolic query engine starts execution,

the user can specify the value(s) for the available knob(s) of each operator in the knob-annotated

execution plan. It is fine for a user to fill up values for some but not all knobs. In this case,

the symbolic query engine will evaluate those operators by using default knob values which are

defined by the creator(s) of those knob(s).

The symbolic query execution is also based on the iterator model. That is, an operator reads in

symbolic tuples from its child operator(s) one-by-one, processes eachtuple, and returns the result-

ing tuple to the parent operator. Similar to traditional query processing, mostof the operators in

symbolic query processing can be processed in a pipelined mode, but somecannot. For example,

the equi-join operator is a blocking operator under a special case. In these cases, the symbolic

query engine materializes the intermediate results into the symbolic database if necessary. More-

over, the table in a query tree is regarded as a special operator. Duringits open() method, the

table operator initializes a symbolic relation based on the input schemaS and the user-defined

constraints (e.g., table sizes) on the base tables.

During processing, a symbolic operation evaluates the input tuples according to its own semantics.

On the one hand, it imposes additional constraints to each input tuple in orderto reflect the con-

straints defined on the operator. On the other hand, it controls its output to its parent operator so

that the parent operator can work on the right tuples. As a simple example, assume the input query

is a simple selection queryσa≥p1
R on symbolic relationR in Figure15.1and the user specifies

the output cardinality as 1 tuple. Then, if the getNext() method of the selection operator iterator is

invoked by its parent operator, the selection operator reads in tuplet1 from R, annotates apositive

constraint[a1 ≥ p1] to symbola1 and returns tuple〈a1, b1〉 to its parent. When the getNext()

method of the selection operator is invoked a second time, the selection operator reads in the next

tuple t2 from R, and annotates anegativeconstraint[a2 < p1] to symbola2. However, this time

it doesnot return this tuple to its parent, because the cardinality constraint (1 tuple) is already

fulfilled.
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Figure 15.3: QAGen Framework

It is worth noting that sometimes a user may specify some contradicting knob values on the knob-

annotated query tree given by the query analyzer. For instance, a user may specify the output

cardinality of the selection in the above example as 10 tuples even if she specified tableR to have

only two tuples. In the following sections of this chapter, we assume that the users are experienced

testers and the test case has no contradicting knob values.

15.2.3 Data Instantiator

The data instantiation phase starts after the symbolic query engine of SQP hasfinished processing.

The data instantiator reads in the symbolic tuples from the symbolic database andinstantiates the

symbols inside each symbolic tuple by a constraint solver. In SQP, we treat the constraint solver

as an external black box component where it takes a constraint formula (in propositional logic)

as input and returns a possible instantiation on each variable as output. Forexample, if the input

constraint formula is40 < a1+ b1 < 100, then the constraint solver may returna1 = 55, b1 = 11

as output (or any other possible instantiation). Once the data instantiator hascollected all the

concrete values for a symbolic tuple, it inserts a corresponding tuple (with concrete values) into

the target database.

15.3 Supported Symbolic Operations

In the following chapters, we consider only a limited class of relational algebra expressions that

are able to be processed by our current SQP prototype implementation QAGen. In particular, we

consider expressions that use the following relational algebra operators: selection (σ), projection

(π), equi-join (⋊⋉), aggregation (χ), union (∪), minus (−) and intersection (∩). The set of com-
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parison operators is restricted to=, 6=,≤,≥, <, >, <>. Furthermore, we assume the number of

possible values in the domain of a group-by attribute is greater than the numberof tuples to be

output for an aggregation operator.

As shown in the previous section, in many cases, the available knobs for anoperator depend on its

input characteristics. Details about the input characteristics and formal definitions will be given in

Chapter16. Figure15.3shows a summary of the class of SQL queries that QAGen supports. The

solid lines denote the cases or operators supported by the current version of QAGen. The dotted

lines show the cases or operators that the future version of QAGen should support. According to

Figure15.3, the current version of QAGen already suffices to cover 13 out of 22complex TPC-H

queries. In general, supporting new operators (e.g., theta join), or adding new knobs (which may

depend on new input characteristics) to an operator is straightforward inQAGen. For example,

adding a new knob to an operator simply means incorporating the new QAGen implementation of

that operator into the symbolic query engine and then updating the query analyzer about the input

characteristics that this new knob depends on.
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Query Analyzer

The information encoded in your DNA determines your unique biological

characteristics, such as sex, eye color, age and Social Security number.

– Dave Berry, born 1947 –

The query analyzer has two functionalities: (1) the correct knob selection for the operators of

a given relational algebra expression, and (2) the assignment of the physical implementation to

each operator of the relational algebra expression. QAGen currently supports only one physical

implementation for each possible combination of knobs per relational algebra operator. As a result,

(2) is straightforward and we do not focus on it. This chapter focuses on (1), which describes how

to analyze the query and determine the available knob(s) for each operator in the input query.

Figure15.3shows the knobs of each operator offered by QAGen under different cases.

The general procedure for the correct knob selection is as follows: First, the query analyzer de-

termines the input characteristics of each operator of the relational algebra expression in order to

decide what kinds of knobs are available for each operator. To determine the input characteristics

for each operator in the query tree, the query analyzer computes the setof functional dependen-

cies that holds in each intermediate result of the input query in a bottom-up fashion. In PartII , we

presented how to compute the functional dependencies for queries in detail. Thus, starting from

the base tables, the query analyzer computes the set of functional dependencies that holds in each

intermediate result in a bottom-up fashion. Since the definition of the input characteristics of an

operator solely depends on the functional dependencies, the type of knobs available for an operator

can be easily determined according to Figure15.3. In symbolic query processing, there are four

types of input characteristics:pre-grouped, not pre-grouped, tree-structure, andgraph-structure.

Let A be the set of attributes of the input of an operator. The input characteristic definitions are as
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follows:

Definition 16.1 (Pre-grouped / Not pre-grouped:) LetA be the set of attributes of the input of an

operator. Then the input of an operator isnot pre-groupedwith respect to an attributea ∈ A, iff

there is a functional dependencya → {A − a} (which means thata is distinct) that holds in the

input. Otherwise, the input of the operator ispre-groupedwith respect to attributea.

Definition 16.2 (Tree-structure / Graph-structure:) A set of attributesA′ ⊂ A of the input of an

operator has atree-structure, iff either the functional dependencyai → aj or aj → ai holds in

the input of the operator (for allai, aj ∈ A′ andai 6= aj). Otherwise, the set of attributesA′ ⊂ A

of the input of the operator has agraph-structure.

For example, look at the base tablesR andS in Figure15.1. As we will see in the next chapter,

all symbols in the base tables are distinct initially. As a result, the initial set of functional depen-

dencies for the base tables can be determined easily; e.g., the base tableR in Figure15.1contains

two functional dependencies:{a} → {b}, and{b} → {a}. Following the rules in PartII and the

definitions above, the intermediate resultR ⋊⋉b=c S (wherec is a foreign-key referring tob) of the

query(R ⋊⋉b=c S) ⋊⋉a=e T has threepre-groupedattributesa, b andc (whereb = c) and has one

attributed that is not pre-grouped. This is because:

• Initially, the set of functional dependencies ofR is {{a} → {b}, {b → a}} and the set of

functional dependencies ofS is {{c} → {d}, {d} → {c}}.

• According to the functional dependency calculation rule for joining, two morefunctional

dependencies{b} → {c} and{c} → {b} for the equi-join predicateb = c are added, and

{c} → {d} is removed because one tuple fromR can join with many tuples fromS (due

to the foreign-key fromc referring tob) and the attributec is initialized with the values of

a in the output of the equi-join. The final set of functional dependencies of Fout of the

intermediate join resultR ⋊⋉b=c S is {{a} → {b, c}, {b} → {a, c}, {c} → {a, b}, {d} →

a, b, c}.

• Among the set of attributesA = {a, b, c, d} in the intermediate result, attributed func-

tionally determines all attributes inA whereas the others do not. As a result, according to

the definition of pre-grouping,d is notpre-groupedanda, b, andc are pre-grouped in the

intermediate result.

We use another example to illustrate the concept of tree and graph input characteristics. Assume

the following table is an intermediate result of a query:
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a b c d

a1 b1 c1 d1

a2 b1 c1 d2

a3 b2 c1 d2

a4 b3 c2 d1

Assume the following functional dependencies hold on the above intermediateresult: {{a} →

{b, c, d}, {b} → {c}}. Following the definitions oftree- andgraph-structure, the attribute set

A = {a, b, c} has atree-structurebecause all attributes are functional dependent on each other. On

the other hand, the attribute setA = {a, b, d} has agraph-structurebecause there is no functional

dependency betweenb andd (i.e., neither{b} → {d}, nor{d} → {b} holds on the intermediate

result).

After the input characteristics are determined, the query analyzer annotates the correct knob(s)

according to Figure15.3. As an example, the available knob(s) of an equi-join (⋊⋉) depends on

whether the input ispre-groupedor not on the join keys. If the input is pre-grouped, the equi-join

can only offer the output cardinality as a single knob (Figure15.3case (d)). If the input is not

pre-grouped, the user is allowed to tune the join key distribution as well (Figure15.3case (c)).

For example, consider a 2-way join query(R ⋊⋉b=c S) ⋊⋉a=e T on the three symbolic relations

R, S, andT in Figure15.1. When symbolic relationR first joins with symbolic relationS on

attributesb andc, it is possible to specify the join key distribution such as joining the first tuplet1

of R with the first three tuples ofS (i.e., t3, t4, t5); and the last tuplet2 of R joins with the last

tuplet6 of S (kind of like Zipf distribution [Zip49]). However, after the first join, the intermediate

join result ofR ⋊⋉ S is pre-groupedw.r.t. attributesa, b andc (e.g., symbola1 is not distinct on

attributea in the join result). Therefore, if this intermediate join result further joins with symbolic

relationT on attributesa ande, then the distribution cannot be freely specified by a user. That

is because if the first tuplet11 of T joins with the first tuplet7 of the intermediate results, this

implies thate1 = a1 and thust11 must join witht8 andt9 as well.

The above example shows that it is necessary to analyze the query in order to offer the right knobs

to the users. For this purpose, the query analyzer parses the input query in a bottom-up manner

(i.e., starting from input schemaS) and incrementally pre-computes the output characteristics of

each operator (e.g., annotates an attribute of the output of an operator aspre-grouped if necessary).

In the example, the query analyzer annotates attributesa, b, andc aspre-groupedin the output of

R ⋊⋉ S. Based on this information, the query analyzer disables the join key distribution knob on

the next equi-join that joins withT .
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Symbolic Query Engine

And I also trust that there’s more than one way to do something.

– Dennis Muren, born 1946 –

In this chapter, we first define the data model of symbolic data and discuss how to physically store

the symbolic data. Then we present the algorithms for the operators in symbolicquery engine

through a running example.

17.1 Symbolic Data Model

17.1.1 Definitions

Definition 17.1 (Symbolic Relation:) Asymbolic relationconsists of arelation schemaand a

symbolic relation instance. The definition of a relation schema is exactly the same as the classical

definition of a relation schema [Cod70]. Let R(a1:dom(a1), . . . , ai: dom(ai), . . . , an: dom(an))

be a relation schema withn attributes; and for each attributeai, let dom(ai) be the domain of

attributeai.

Definition 17.2 (Symbolic Relation Instance:) Asymbolic relation instanceis a set ofsymbolic

tuplesT . Each symbolic tuplet ∈ T is an-tuple withn symbols: 〈s1, s2, . . . , sn〉. As a shorthand,

symbolsi in tuple t can be referred byt.ai. A symbolsi is associated with a set ofpredicates

Psi
(wherePsi

can be empty). The value of symbolsi represents any one of the values in the

domain of attributeai that satisfiesall predicates inPsi
. A predicatep ∈ Psi

of a symbolsi

is a propositional formula that involves at leastsi, and zero or more other symbols that appear

139



CHAPTER 17: SYMBOLIC QUERY ENGINE

in different symbolic relation instances. Therefore, a symbolsi with its predicatesPsi
can be

represented by a conjunction of propositional logic formulas.

Definition 17.3 (Symbolic Database:) Asymbolic databaseis defined as a set of symbolic rela-

tions and there is a one-to-many mapping between one symbolic database and many traditional

relational databases.

17.1.2 Data Storage

Symbolic databases are a generalization of relational databases and provide an abstract represen-

tation of concrete data. Given the close relationship between relational databases and symbolic

databases, and the maturity of relational database technology, it may not pay off to re-design

another physical model for storing symbolic data. QAGen opts to leverage existing relational

databases to implement the symbolic database concept. To that end, a naturalidea for storing

symbolic data is to store the data in columns of tables, introduce a user-definedtype (UDT) to

describe the columns, and use SQL user-defined functions to implement the symbolic operations.

However, symbolic operations (e.g., a join that controls the output size and distribution) are too

complex to be implemented by SQL user-defined functions. As a result, we propose to store sym-

bols (and associated predicates) in relational databases by simply using thevarchar SQL data

type and let the QAGen symbolic query engine operate on a relational database directly. For that

reason, we integrate the power of various access methods brought by the relational database engine

into symbolic query processing.

The next interesting question is how to normalize a symbolic relation for efficient symbolic query

processing. From the definition of a symbol, we know that a symbol may be associated with a set

of predicates. For example, symbola1 may have a predicate[a1 ≥ p1] associated with it. As we

will see later, most of the symbolic operations impose some predicates (from now on, we use the

term predicate instead of constraint) on the symbols. Therefore, a symbolmay be associated with

many predicates. As a result, QAGen stores the predicates of a symbol in a separate relational

table calledPTable. Reusing Figure15.1 again, symbolic relationR can be represented by a

normal table in a RDBMS namedR with the schema: R(a:varchar, b: varchar) and a table

namedPTable with the schema: PTable(symbol:varchar, predicate:varchar). After a simple

selectionσa≥p1
R on tableR, the relational representation of symbolic tableR is:

a b

a1 b1

a2 b2

symbol predicate

a1 [a1 ≥ p1]

a2 [a2 < p1]

(i) TableR (2 tuples) (ii) PTable (2 tuples
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17.2 Symbolic Operations

The major difference between symbolic query execution and traditional query processing is that

the input (and thus the output) of each operator is symbolic data but not concrete data. The

flexibility of symbolic data allows an operator to control its internal operation and thus its output.

As in traditional processing, an operator is implemented as an iterator. Therefore the interface of

an operator is the same as in traditional query processing which consists ofthree methods:open(),

getNext()andclose().

Next, we present the knobs and the algorithms for each operator througha running example.

Unless stated otherwise, the following subsections only show the details of thegetNext()method

of each operator. All other aspects (e.g.,open()andclose()) are straightforward so that they may

be omitted for brevity. The running example is a 2-way join query which can demonstrate the

details of the symbolic execution of selection, equi-join, aggregation and projection. We also

discuss some special cases of these operators. Figure17.1(a) shows the input query tree (with all

knobs and their values given). The example is based on the following simplified TPC-H schema:

CREATE TABLE customer (

c_id INTEGER PRIMARY KEY, c_acctbal FLOAT

)

CREATE TABLE orders (

o_id INTEGER PRIMARY KEY, o_date DATE,

o_cid INTEGER REFERENCES Customer.c_id

)

CREATE TABLE lineitem (

l_id INTEGER PRIMARY KEY, l_price FLOAT,

l_oid INTEGER REFERENCES Orders.o_id

)

17.2.1 Table Operator

Knob: Table Size (compulsory)

In QAGen, a base table in a query tree is regarded as an operator. During the open() method, it

creates a relational table in a RDBMS with the attributes specified on input schemaS. According

to the designed storage model, all attributes are in the SQL data typevarchar. Next, it fills up

the table by creating new symbolic tuples until it reaches the defined table size.Each symbol in

141



CHAPTER 17: SYMBOLIC QUERY ENGINE

size=4;
uniform

size=8;
zipf

σc_acctbal≥:p1 orders

lineitem

customer
size=4

size=6

c:_id=o_cid

o_id=l_oid

size=10

size=2

σ SUM(l_price)≥:p2

o_dateχ SUM(l_price)

π SUM(l_price)

size=2

size=1

(a) Input Query Tree

c_id c_acctbal

c_id1 c_acctbal1
c_id2 c_acctbal2
c_id3 c_acctbal3
c_id4 c_acctbal4

o_id o_date o_cid

o_id1 o_date1 o_cid1
o_id2 o_date2 o_cid2
o_id3 o_date3 o_cid3
. . . . . . . . .

o_id6 o_date6 o_cid6

l_id l_price l_oid

l_id1 l_price1 l_oid1
l_id2 l_price2 l_oid2
l_id3 l_price3 l_oid3
. . . . . . . . .
. . . . . . . . .

l_id10 l_price10 l_oid10

symbol predicate

(i) Customer (4 tuples) (ii) Orders (6 tuples) (iii) Lineitem (10 tuples) (iv) PTable

(b) Initial Symbolic Database

c_id c_acctbal

c_id1 c_acctbal1
c_id2 c_acctbal2

c_id3 c_acctbal3
c_id4 c_acctbal4

o_id o_date o_cid

o_id1 o_date1 c_id1
o_id2 o_date2 c_id1
o_id3 o_date1 c_id2
o_id4 o_date2 c_id2

o_id5 o_date5 c_id3
o_id6 o_date6 c_id3

l_id l_price l_oid

l_id1 l_price1 o_id1
l_id2 l_price1 o_id1
l_id3 l_price1 o_id1
l_id4 l_price1 o_id1
l_id5 l_price5 o_id2
l_id6 l_price5 o_id2
l_id7 l_price1 o_id3
l_id8 l_price5 o_id4

l_id9 l_price9 o_id5
l_id10 l_price10 o_id6

symbol predicate

c_acctbal1 [c_acctbal1 ≥ p1]
c_acctbal2 [c_acctbal2 ≥ p1]
c_acctbal3 [c_acctbal3 < p1]
c_acctbal4 [c_acctbal4 < p1]
l_price1 [aggsum1 = 5 × l_price1]
l_price5 [aggsum2 = 3 × l_price5]
aggsum1 [aggsum1 ≥ p2]
aggsum2 [aggsum2 < p2]

(i) Customer (4 tuples) (ii) Orders (6 tuples) (iii) Lineitem (10 tuples) (iv) PTable

(c) Final Symbolic Database

Figure 17.1: Running Example
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the newly created tuples is named using the attribute name as prefix and a uniqueidentification

number. Therefore, at the beginning of symbolic query processing, each symbol in the base ta-

ble should be unique. Figure17.1 (b) shows the relational representation of the three symbolic

relationscustomer, orders andlineitem for the running example. ThegetNext()method of the

table operator is the same as the traditional Table-Scan operator that returns a tuple to its parent or

returns null (an end-of-result message) if all tuples have been returned. Note that if the same table

is used multiple times in the query, then the table operator only creates and fills the base symbolic

table once.

Primary-keys, uniqueandnot nullconstraints are already enforced because all symbols are initially

unique.Foreign-keyconstraints related to the query are taken care of by the join operator directly.

17.2.2 Selection Operator

Knob: Output Cardinalityc (optional; default value = input size)

Let I be the input andO be the output of the selection operatorσ and letp be the selection pred-

icate. The symbolic execution of the selection operator controls the cardinalityc of the output.

Depending on the input characteristics, the difficulty of the problem and thesolutions are com-

pletely different. Generally, there are two different cases.

Case 1: Input is not pre-grouped w.r.t. the selection attribute(s)

This is case (a) in Figure15.3and the selections in the running example (Figure17.1a operator

(ii) and (vi)) are in this case. This implementation is chosen by the query analyzer when the input

is not pre-grouped w.r.t. the selection attribute(s) and it is the usual case for most queries. In this

case, the selection operator controls the output as follows:

1. During its getNext() method, read in a tuplet by invoking getNext() on its child operator and pro-

cess with [Positive Tuple Annotation] if the output cardinality has not reachedc. Else proceed to

[Negative Tuple Post Processing] and then return null to itsparent.

2. [Positive Tuple Processing] If the output cardinality has not reachedc, then (a) for each symbols in

t that participates in the selection predicatep, insert a corresponding tuple〈s, p〉 to thePTable; and

(b) return this tuplet to its parent.

3. [Negative Tuple Post Processing] However, if the output cardinality has reachedc, then fetch all

the remaining tuplesI− from input I. For each symbols of tuple t in I− that participates in the

selection predicatep, insert a corresponding tuple〈s,¬p〉 to thePTable, and repeat this step until

calling getNext() on its child has no more tuples (returns null).

143



CHAPTER 17: SYMBOLIC QUERY ENGINE

c_id c_acctbal
c_id1 c_acctbal1
c_id2 c_acctbal2

symbol predicate

c_acctbal1 [c_acctbal1 ≥ p1]
c_acctbal2 [c_acctbal2 ≥ p1]
c_acctbal3 [c_acctbal3 < p1]
c_acctbal4 [c_acctbal4 < p1]

(i) Output ofσ; 2 tuples (ii) PTable

Figure 17.2: Symbolic Database after selection

Each getNext() call on the selection operator returns apositivetuple to its parent that satisfies

the selection predicatep until the output cardinality has been reached. Moreover, to ensure that

all negative tuples (i.e., tuples obtained from the child operator after the output cardinality has

been reached) would not get some instantiated values later in the data instantiation phase that ends

up passing the selection predicate, the selection operator associates the negation of predicatep

to those negative tuples. In the running example, attributec_acctbal in the selection predicate

[c_acctbal ≥ p1] of operator (ii) is not pre-grouped, because the data comes directly from the base

customer table. Since the output cardinalityc of the selection operator is 2, the selection operator

associates the positive predicate[c_acctbal ≥ p1] to symbolsc_acctbal1 andc_acctbal2 of the

first two input tuples and associates the negated predicate[c_acctbal < p1] to symbolsc_acctbal3

andc_acctbal4 of the rest of the input tuples. Figure17.2 (i) shows the output of the selection

operator and Figure17.2(ii) shows the content of thePTable after the selection.

Case 2: Input is pre-grouped w.r.t. the selection attribute(s)

This is case (b) in Figure15.3. This implementation is chosen by the query analyzer when the

input is pre-grouped with respect to any attribute that appears in the selection predicatep. In

this case, we can show that the problem of controlling the output cardinality isreducible to the

subset-sum problem.

The subset-sum problem [GJ90] takes as input an integer sumc and a set of integersC =

{c1, c2, ..., cm}, and outputs whether there exists a subsetC+ ⊆ C such that
∑

ci∈C+ ci = c.

Consider Figure17.3, which is an example of pre-grouped input of a selection. InputI defines

one attributek and has in total
∑

ci rows. The rows inI are clustered inm groups, where thei-th

group has exactlyci tuples using the same symbolic valueki (i ≤ m). We now search for a subset

of thosem groups inI such that the output has the sizec. Assume, we find such a subset, i.e., the

symbolic values of those groups which result in the output with sizec. The groups returned by

such a search induce a solution for the original subset-sum problem.
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k
k1 } e.g.c1 = 5 times
k2 } e.g.c2 = 4 times
k3 } e.g.c3 = 3 times
k4 } e.g.c4 = 1 times
...
km } cm times

Input I

Figure 17.3: Pre-grouped selection

The subset-sum problem is a weaklyNP-complete problem and there exists a pseudopolynomial

algorithm which uses dynamic programming to solve it [GJ90]. The complexity of the dynamic

programming algorithm isO(cm), wherec is the desired output cardinality andm is the number

of different groups inI. Whenc is large, the dynamic programming algorithm runs very slow.

Furthermore, it is also possible that there is no subset in the input whose sum exactly meetsc as

well. As a result, when the query analyzer detects that the input of a selection is pre-grouped, it

allows the user to specify the following knob in addition to the output cardinality knob:

Knob: Approximation ratioǫ

The approximation ratio knob allows the selection to return an approximate number of tuples

rather than the exact number of tuples that is specified by the testers, whichis acceptable in DBMS

feature testing.

There are several approximation schemes in the literature to solve the subset-sum problem (e.g.,

[IK75], [Prz02], [KMPS03]). However, these approximation schemes are not directly applicable

in our case. We illustrate this problem using the test case in Figure17.4. The test query in the

test case is a two-way join query with an aggregation. In Figure17.4, the tester defines that

the output cardinality of the selection is5 tuples with an approximation ratio of0.1. Assume

that the input of the selection in Figure17.4has eight tuples but they are pre-grouped into three

clusters (a clusterc1 consists of four tuples, and two clustersc2 andc3 consist of two tuples each)

with respect to both attributesattr1 andattr2 after the two-way join. In order to pick the right

subset of pre-grouped tuples with a total cardinality asc (c = 5 in the example), the selection

operator needs to solve the subset-sum problem by an approximation scheme. Unfortunately,

all existing approximation schemes would return a subset whose sum issmaller than(or equal

to) the target sum. For example, it is possible that the approximation scheme suggests picking

clustersc2 andc3 from the pre-grouped input, such that the selection returns a total of four tuples

(which is actually the optimal solution) as output. However, if the selection reallyreturns four
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R S
size=4size=2

T
size=8

σ R.attr1>:p1 or T.attr2<:p2

χ

size=4

size=8

size=5, ε=0.1

size=5

Figure 17.4: A test case with the approximation ratio knob

tuples, then the upper aggregation operatorχ in Figure17.4would experience a “lack-of-tuple”

error (it expects to have five or more input tuples). Even though the target users of QAGen are

experienced testers and we assume there are no contradicting knob values in the input test case, it

is often difficult for the testers to specify a semantically correct test case when the system allows

tolerances on the operator’s cardinality constraint. This practical problem drove us to develop an

approximation scheme that returns a subset with sumgreater than or equal tothe target sumc and

has an approximation ratioǫ. We call this new problem as theOverweight Subset-Sum Problem

and it requires non-trivial modifications to the current approximation schemes.

Our new approximation scheme is based on the “quantization method” [IK75] and consists of

two phases. It takes a listC of sorted numbers as input. Then, it first separates the input list of

numbers into two lists: large number listL and small number listS. In the first phase, it tries to

quickly come up with a set of approximation solutions by only considering the numbers with large

values (i.e., only elements inL). Then, in the second phase, it tries to fine tune the approximation

solutions by the set of small numbers inS.

Figure17.5shows the pseudocode of the approximation scheme. In the beginning, it trimsinput

list C if it contains more than one number which has a value greater than or equal tothe target

sumc. For example, assume input listC is [1, 2, 5, 6, 13, 27, 44, 47, 48], the target sumc is 30,

and the approximation ratioǫ is 0.1. After Line (1–2),C becomes[1, 2, 5, 6, 13, 27, 44] because

the number 47 and 48 cannot be part of the answer. Then it tries to quantize the large subset-sum

values into different buckets (Line 4-7) in order to minimize the number of subsequent operations

from Line 11 to Line 24. Essentially, based on the quantization factord, the algorithm quantizes
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Algorithm APPROXIMATE_OVERWEIGHT_SUBSET_SUM(P )
Input: (a) A list of sorted integersC = [c1, c2, ..., cm] whereci < ci+1 (b) Target sumc, (c) Approximation

ratio ǫ
Output: A subset of integersC+ ⊆ C such thatc ≤

∑
ci∈C+ ci with approximation ratioǫ

1. if ∃ci ∈ C, ci ≥ c
2. then Trim C by removing elementsci+1, ..., cm

3. Set the largest possible optimal solutionp asp = c1 + c2 + ...+ cr ≥ c wherec1 + c2 + ...+ cr−1 < c.
If cr ≥ c, return {cr}. If no suchr exists,return “no solution exists".

4. Set quantization factord = (ǫ/2)2p
5. Set number of bucketsg = ⌈p/d⌉ + min{r, ⌈2/ǫ⌉}
6. Initializeg + 1 approximate answer bucketsB= {B0, B1, ..., Bg}
7. Initialize a subset-sum arrayX of sizeg + 1 whereX[i] stores the subset-sum of the elements inBi.

SetX[0] = 0 andX[i] = −1 (1 ≤ i ≤ g)
8. Set listS = [c1, c2, ..., cu] wherecu < (ǫ/2)p
9. Set listL = [cu+1, cu+2, ..., cm] wherecu+1 ≥ (ǫ/2)p
10. ReturnS as the answer ifL is empty
11. for each numberci ∈ L
12. Set the quantized value ofvi of ci as⌈ci/d⌉
13. for eachj = g − vi down-to 0
14. if X[j] 6= −1
15. then if X[j + vi] < X[j] + ci

16. then setBj+vi
= Bj ∪ {ci},

17. setX[j + vi] = X[j] + ci

18. for each bucketBi ∈ B with X[i] 6= −1
19. setj = 0
20. while X[i] < c
21. setBi = Bi ∪ {cj}, wherecj is thej-number in listS,
22. setX[i] = X[i] + cj

23. j = j + 1
24. return Bi, whereX[i] = min(X[j]) for all 0 ≤ j ≤ g andX[j] ≥ c;

Figure 17.5: Approximation scheme for the Overweight Subset-Sum Problem
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the input list of numbers intog buckets. The quantization factord is carefully chosen such that it

is large enough to give a manageable number of buckets and at the same time respecting the error

bound given by the approximation ratioǫ [IK75]. The quantization factord is computed based on

the approximation ratioǫ and one of the possible subset-sumsp. Such ap value is found (Line 3)

by addingc1, c2, . . . until the sum is at least the target sumc; if no such value is found, the sum of

all values inC must be less thanc, and we can conclude that there is no solution for the overweight

subset-sum problem. An interesting special case is that, if the last value of the sum,cr, is at leastc,

we immediately know{cr} is the desiredoptimalsolution to the overweight subset-sum problem.

X is a subset-sum array. EntryX[i] stores the subset-sum of the elements in bucketBi (Line 7).

Initially, X[0] is set to 0 as a boundary condition andX[i] (wherei 6= 0) is set to -1 to make sure

a subset-sum cannot exceedi × d in any case.

In the example,p = 1+2+5+6+13+27 = 54, and thus the quantization leveld and the number

of bucketsg are 0.135 and 406, respectively. Afterwards, the algorithm createsg + 1 approximate

answer bucketsB and a subset-sum arrayX, where each approximate answer bucketBi will hold

a set of numbers whose sum is close to a factori of the quantization factord (i.e., the subset-sum

is close toi × d) andX[i] represents the total sum of numbers inBi.

As mentioned, the input list of numbers is separated into two listsS and L according to the

numbers’ value (Lines 8–9). In the example, the small listS consists of the first two numbers1

and2 in the input listC and the large listL consists of all the rest of the numbers[5, 6, 13, 27, 44].

Then, the first phase (Lines 11–17) begins by examining each number in the large number list

L and tries to assign the number into different buckets. For example, the firstnumber inL is 5

and its quantized values is⌈5/0.135⌉ = 38. Therefore, the algorithm setsB38 = {5} and the

corresponding subset-sum array entryX[38] has a value of 5. Similarly, for the second number 6

in L, its quantized value is⌈6/0.135⌉ = 44. As a result, the algorithm setsB44 to be{6}, updates

X[44] to be 6, setsB82 to be{5, 6} and updatesX[82] to have a value of 11 (= 5+6). If a bucket

is non-empty, the algorithm only updates the bucket (and its correspondingsubset-sum inX) if

the updated subset-sum is larger than the current subset-sum of that bucket (Lines 15–17).

In the second phase (Lines 18–23), the algorithm tries to fine tune each approximate answer bucket

B by adding the numbers in the small listS, one-by-one, until it exceeds the target sumc. Af-

terwards, the algorithm scans arrayX and identifies the subset which has the smallest subset-sum

that is greater than the target sumc. Finally, it returns the corresponding subset inB as the final

result.

The complexity of our proposed approximation scheme isO(m/ǫ2). We put the correctness proof

and the complexity analysis in AppendixA. We now reuse Figure17.3 to illustrate the overall

algorithm of the selection operator. Assume that the input has 13 tuples whichare clustered

into 4 groups with symbolk1, k2, k3, andk4 respectively. Furthermore, assume that the output

cardinality and the approximation ratio is defined as 7 tuples and 0.2 respectively. The pre-grouped
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input selection controls the output as follows:

1. [Subset-sum solving] During its open() method, (a) materialize inputI of the selection operator; (b)

extract the pre-group size (e.g.,c1 = 5, c2 = 4, c3 = 3, c4 = 1) of each symbolki by executing

“Select Count(k) From I Group By k Order By Count(k)” on the materialized input; (c) invoke the

approximation scheme in Figure17.5with the pre-group sizes (the set of numbers), the output car-

dinality (the target sum), and the error toleranceǫ as input. The output of this step is a subset of

symbolsK+ in I such that the output cardinality (approximately) matches the requirement (e.g.,

K+ = {k1, k3} becausec1 + c3 = 5 + 3 = 8 ≥ c). If no such a subset exist, then stop processing

and report this error to the user.

2. [Positive Tuple Processing] During getNext(), (a) for each symbolki in K+, read all tuplesI+ from

the materialized input ofI which haveki as the value of attributek; (b) for each symbols that

participates in the selection predicatep in tuple t of I+, insert a corresponding tuple〈s, p〉 to the

PTable; (c) return tuplet to the parent.

3. [Negative Tuple Post Processing] This step is the same as the Negative Tuple Post Processing step in

the simple case (Section17.2.2case 1) that annotates negative predicates to each negativetuple.

Note that, in this case, the selection is a blocking operation because it needs toread all the tuples

from inputI first in order to solve the subset-sum problem. One optimization for this case isthat

if c is equal to the input size ofI, then all input tuples must be returned to its parent and thus the

subset-sum solving function can be skipped even though the input data is pre-grouped.

17.2.3 Equi-Join Operator

Knob: Output Cardinalityc (optional; default value = size of the non-distinct input)

Let R andS be the inputs,O be the output, andp be the simple equality predicatej = k where

j is the (non-pregrouped) join attribute onR, andk is the join attribute onS that refers toj by

a foreign-key relationship. The symbolic execution of the equi-join operator ensures that the join

result size isc. Again, depending on whether the input is pre-grouped or not, the solutions are

different.

Case 1: Input is not pre-grouped w.r.t. join attribute k.

This is case (c) in Figure15.3, where join attributek in inputS is not pre-grouped. In this case, it

is possible to support one more knob on the equi-join operation:

Knob: Join Key Distributionb (optional; choices = [Uniform or Zipf]; default = Uniform)
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The join key distributionb defines how many tuples of inputS join with each individual tuple

in input R. For example, if the join key distribution is uniform, then each tuple inR joins with

roughly the same number of tuples inS. Both join operators in Figure17.1(a) fall into this case.

In this case, the equi-join operator (which supports both output cardinalityc and distributionb)

controls the output as follows:

1. [Distribution instantiating] During its open() method,instantiate a distribution generatorD, with the

size ofR as domain (denoted byn), the output cardinalityc as frequency, and the distribution typeb

as input. This distribution generatorD can be the one that has been proposed earlier (e.g., [GSE+94],

[CN97]) or any statistical packages that generaten numbersm1,m2, . . . ,mn following Uniform or

Zipf [Zip49] distribution with a total frequency ofc. The distribution generatorD is an iterator with

a getNext() method. For thei-th call on the getNext() method (0 ≤ i ≤ n), it returns the expected

frequencymi of thei-th number under distributionb.

2. During its getNext() call, if the output cardinality has not yet reachedc, then (a) check ifmi = 0 or

if mi has not yet initialized, and, if so, initializemi by calling getNext() onD and get a tupler+

from R (mi is the total number of tuples fromS that should join withr+); (b) get a tuples+ from S

and decreasemi by one; (c) join tupler+ with s+ according to [Positive Tuple Joining] below; (d)

return the joined tuple to the parent. However, during the getNext() call, if the output cardinality has

reachedc already, then process [Negative Tuple Joining] below, and return null to its parent.

3. [Positive Tuple Joining] If the output cardinality has not reachedc, then (a) for tuples+, replace

symbols+.k, which is the symbol of the join key attributek of tuple s+, by symbolr+.j, which

is the symbol of the join key attributej of tupler+. After this, tupler+ and tuples+ should share

exactly the same symbol on their join attributes. Note that the replacement of symbols in this step

is done on both tuples loaded in the memory and the related tuples in base table as well (using an

SQL statement like “Updatek.BaseTable Set k=r+.j WHERE k=s+.k” to update the symbols on

the base table where join attributek comes from); (b) perform an equi-join on tupler+ ands+.

4. [Negative Tuple Joining] However, if the output cardinality has reachedc, then fetch all the remaining

tuplesS− from inputS. For each tuples− in S−, randomly look up a symbolj− on the join keyj

in the set minus between the base table where join attributej originates from andR (using an SQL

statement with theMINUS keyword), replaces−.k with symbolj−. This replacement is done on the

base tables only because these tuples are not returned to theparent.

In the running example (Figure17.1), after the selection on tablecustomer (operator ii), the next

operator is a join between the selection output (Table (i) in Figure17.2) and tableorders (Table

(ii) in Figure 17.1 (b)). The output cardinalityc of that join (operator iii) is 4 and the join key

distribution is uniform. Since the input of the join on the join keyo_cid is not pre-grouped, the

query analyzer uses the algorithm above to perform the equi-join. First, the distribution generator

D generates 2 numbers (which is the size of inputR), with total frequency of 4 (output cardinal-

ity), and uniform distribution. AssumeD returns the sequence {2, 2}. This means that the first

customerc_id1 should take 2 orders (o_id1 ando_id2) and the second customerc_id2 should also
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c_acctbal o_id o_date c_id=o_cid
c_acctbal1 o_id1 o_date1 c_id1
c_acctbal1 o_id2 o_date2 c_id1
c_acctbal2 o_id3 o_date3 c_id2
c_acctbal2 o_id4 o_date4 c_id2

o_id o_date o_cid

o_id1 o_date1 c_id1
o_id2 o_date2 c_id1
o_id3 o_date3 c_id2
o_id4 o_date4 c_id2
o_id5 o_date5 c_id3
o_id6 o_date6 c_id4

(i) Output of(σ(Customer) ⋊⋉ Order); 4 tuples (ii) Orders (4 pos, 2 neg)

Figure 17.6: Symbolic Database after join

c_id c_acctbal o_date o_cid l_id l_price o_id = l_oid
c_id1 c_acctbal1 o_date1 o_cid1 l_id1 l_price1 o_id1
c_id1 c_acctbal1 o_date1 o_cid1 l_id2 l_price2 o_id1
c_id1 c_acctbal1 o_date1 o_cid1 l_id3 l_price3 o_id1
c_id1 c_acctbal1 o_date1 o_cid1 l_id4 l_price4 o_id1
c_id1 c_acctbal1 o_date2 o_cid1 l_id5 l_price5 o_id2
c_id1 c_acctbal1 o_date2 o_cid1 l_id6 l_price6 o_id2
c_id2 c_acctbal2 o_date3 o_cid2 l_id7 l_price7 o_id3
c_id2 c_acctbal2 o_date4 o_cid2 l_id8 l_price8 o_id4

l_id l_price l_oid

l_id1 l_price1 o_id1
l_id2 l_price2 o_id1
l_id3 l_price3 o_id1
l_id4 l_price4 o_id1
l_id5 l_price5 o_id2
l_id6 l_price6 o_id2
l_id7 l_price7 o_id3
l_id8 l_price8 o_id4
l_id9 l_price9 o_id5
l_id10 l_price10 o_id6

i) Output of(σ(Customer) ⋊⋉ Order) ⋊⋉ Lineitem. 8 tuples (ii) Lineitem (8 pos, 2 neg)

Figure 17.7: Symbolic Database after 2-way join

take 2 orders (o_id3 ando_id4). As a result, symbolso_cid1 ando_cid2 from the Orders table

should be replaced byc_id1 and symbolso_cid3 ando_cid4 from the Orders table should be re-

placed byc_id2 (Step 3 above). In order to fulfill the foreign-key constraint on those tuples which

do not join, Step 4 above (Negative Tuple Joining) replaceso_cid5 ando_cid6 by customers that

did not pass through the selection filter (i.e., customerc_id3 andc_id4) randomly. Figure17.6(i)

below shows the output of the join and Figure17.6(ii) shows the updatedorders table (updated

join keys arebold).

After the join operation above, the next operator in the running example is another join between

the above join results (Figure17.6(i)) and the baselineitem table (Figure17.1b(iii)). Again,

the input of the join on the join keyl_oid of the lineitem table is not pre-grouped and thus the

above equi-join algorithm is chosen by the query analyzer. Assume that thedistribution generator

generates a Zipf sequence {4,2,1,1} for the four tuples in Figure17.6(i) to join with 8 out of 10

line items (where 8 is the user-specified output cardinality of this join operation). Therefore it

produces the output in Figure17.7(i) (updated join keys arebold):

Finally, note that if the two inputs of an equi-join are base tables (with foreign-key constraint),

then the output cardinality knob is disabled by the query analyzer. This is because in that case, all

tuples from inputS must join with a tuple from inputR and thus the output cardinality must be
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j
j1
j2
j3
...
...
jl

k
k1 } e.g.c1 = 5 times
k2 } e.g.c2 = 4 times
k3 } e.g.c3 = 3 times
k4 } e.g.c4 = 1 times
...

km } cm times

(i)TableR (ii) TableS

Figure 17.8: Pre-grouped equi-join

same as the size ofS.

Case 2: Input is pre-grouped w.r.t. join attribute k.

This is case (d) in Figure15.3and this implementation is chosen by the query analyzer when input

S is pre-grouped w.r.t. join attributek. This sometimes happens when a preceding join introduces

a distribution onk as in the example in Figure15.1. In the following we show that if the input

is pre-grouped w.r.t. join attributek of an equi-join, then the problem of controlling the output

cardinality (even without the join key distribution) is also reducible to the subset-sum problem.

Consider tablesR andS in Figure17.8, which are the inputs of such a join. TableR has one

attributej with l tuples all using distinct symbolic valuesji (i ≤ l). TableS also defines only one

attributek and has in total
∑

ci rows. The rows inS are clustered intom groups, where thei-th

group has exactlyci tuples using the same symbolic valueki (i ≤ m). We now search for a subset

of thosem groups inS that join with arbitrary tuples inR so that the output has sizec. Assume

that we find such a subset, i.e., the symbolic values of those groups which result in the output

with sizec. The groups returned by such a search induce a solution for the original subset-sum

problem.

For testing the feature of a DBMS, again, it is sufficient for the equi-join to return an approximate

number of tuples that is close to the user specified cardinality. As a result, when the query ana-

lyzer detects that one of the equi-join inputs is pre-grouped, then it allows the user to specify the

following knob in addition to the output cardinality knob:

Knob: Approximation Ratioǫ

Again, this is a blocking operator because it needs to read all the input tuples fromS first (to solve

the subset-sum problem). Similar to the optimization in the selection operator, ifc is equal to the
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input size ofS, then all tuples ofS must be joined withR and the subset-sum solving function

can be skipped even though the data is pre-grouped.

We reuse Figure17.8to illustrate the algorithm. Assume the join is on TableR and TableS and

the join predicate isj = k. Assume TableR has three tuples (〈j1〉, 〈j2〉, 〈j3〉), and TableS has 12

tuples which are clustered into 4 groups with symbolsk1, k2, k3, k4 respectively. Furthermore,

assume the join onR andS is specified with an output cardinality asc = 7. The pre-grouped

input equi-join controls the output as follows:

1. [Subset-sum solving] During its open() method, (a) materialize inputS of the join operator; (b)

extract the pre-group size (e.g.c1 = 5, c2 = 4, c3 = 2, c4 = 1) of each symbolki by execut-

ing Select Count(k) From S Group By k Order By Count(k) Desc on the ma-

terialized input; (c) invoke the approximation scheme in Figure17.5with the pre-group sizes (the

set of numbers), the output cardinality (the target sum), and the approximation ratioǫ as input. The

output of this step is a subset of symbolsK+ in I such that the output cardinality (approximately)

matches the requirement (e.g.,K+ = {k1, k3} becausec1 + c3 = 5 + 3 = 8 ≥ c). If no such subset

exists, then stop processing and report this error to the user.

2. [Positive Tuple Joining] During getNext(), (a) for each symbolki in K+, read all tuplesS+ from the

materialized input ofS which haveki as the value of attributek; (b) afterwards, call getNext() onR

once and get a tupler, join all tuples inS+ with r by replacing the join key symbols inS+ with the

join key symbols inr. For example, the first fivek1 symbols inS are replaced withj1 and the three

k3 symbols inS are replaced withj2 (again, these replacements are done on symbols loaded in the

memory and the changes are propagated to the base tables where j andk originate from); (c) return

the joined tuples to the parent.

3. [Negative Tuple Joining] This step is the same as the Negative Tuple Joining step in the simple case

(Section17.2.3case 1) that joins the negative tuples in inputR with the negative tuples in inputS.

17.2.4 Aggregation Operator

Knob: Output Cardinalityc (optional; default value = input size)

Let I be the input andO be the output of the aggregation operator andf be the aggregation

function. The symbolic execution of the aggregation operator controls the size of the outputc.

Simple Aggregation

This is the simplest case of aggregation where there is no grouping operation (i.e,. no GROUP-

BY keyword) defined on the query. In this case, the query analyzer disables the output cardinality
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knob because the output cardinality is either 1 (not-empty input) or 0 (empty input). In SQL, there

are five aggregation functions: SUM, MIN, MAX, AVG, COUNT. For simple aggregation, the

solutions are very similar for both pre-grouped or non-pre-grouped input on the attribute(s) inf .

The following shows the case of non-pre-grouped input:

Let expr be the expression in the aggregation functionf which consists of at least a non-empty

set of symbolsS in expr and let the size of inputI ben.

1. SUM(expr). During its getNext() method, (a) the aggregation operator consumes alln tuples fromI;

(b) for each symbols in S, adds a tuple〈s, [aggsum = expr1+expr2+. . .+exprn]〉 to thePTable,

whereexpri is the corresponding expression on thei-th input tuple; and (c) returns symbolic tuple

〈aggsum〉 as output. As an example, assume there is an aggregation function SUM(l_price) on top

of the join result in Figure17.7 (i) of the previous section. Then, this operator returns onetuple

〈aggsum〉 to its parent and adds 8 tuples (e.g., the 2nd inserted tuple is 〈l_price2, [aggsum =

l_price1 + l_price2 + . . . + l_price8]〉) to thePTable.

In fact, the above is a base case. If there are no additional constraints that will be further imposed on

the predicate symbols, the aggregation operator will optimize the number and the size of the above

predicates by inserting only one tuple〈l_price1, [aggsum = l_price1 × 8]〉 to thePTable and

replacing symbolsl_price2, . . . , l_price8 by symboll_price1 on the base table. One reason for

doing that is the size of the input may be very big, if that is the case, the extremely long predicate

may exceed the SQLvarchar size upper bound. Another reason is to insert fewer tuples inthe

PTable. However, the most important reason is that the cost of a constraint solver call is exponential

to the size of the input formula in the worst case. Therefore,this optimization reduces the time of

the later data instantiation phase. However, there is a trade-off: for each input tuple, the operator has

to update the corresponding symbol in the base table where this symbol originates from.

2. MIN(expr). The MIN aggregation operator also uses similar predicateoptimization as SUM ag-

gregation if possible. During its getNext() method, (a) it regards the first expressionexpr1 as

the minimum value and returns〈expr1〉 as output; and (b) replaces the expressionexpri in the

remaining tuples (where2 < i ≤ n) by the second expressionexpr2 and inserts two tuples

〈expr1, [expr1 < expr2]〉 and 〈expr2, [expr1 < expr2] 〉 to thePTable. Note that the above

optimization must be aware of whether the input is pre-grouped or not. If it is, not only the first but

all tuples withexpr1 are kept and the remaining are replaced with symbolexpr2.

As an example, assume that there is an aggregation function MIN(l_price) on top of the join result in

Figure17.7(i). Then, this operator returns〈l_price1〉 as output and inserts 2 tuples to thePTable:

〈l_price1, [l_price1 < l_price2]〉 and〈l_price2, [l_price1 < l_price2]〉 to thePTable. Moreover,

l_price3, l_price4, . . . , l_price8 are replaced byl_price2 on the base table.

3. MAX(expr). During its getNext() method, (a) it regards the first expressionexpr1 as the maximum

value and returns〈expr1〉 as output; and (b) replaces the expressionexpri in the remaining tuples

(where2 < i ≤ n) by the second expressionexpr2 and inserts two tuples〈expr1, [expr1 > expr2]〉

and〈expr2, [expr1 > expr2] 〉 to thePTable.
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4. COUNT(expr). The aggregation operator handles the COUNT aggregation function similar to tradi-

tional query processing. During its getNext() method, (a) it counts the number of input tuples,n; (b)

add a tuple〈aggcount, aggcount = n〉 to thePTable; and (c) returns a symbolic tuple〈aggcount〉

as output.

5. AVG(expr). It is the similar to the case of the SUM aggregation. Duringits getNext() method,

(a) the aggregation operator consumes alln tuples fromI; (b) for each symbols in S, it adds

a tuple〈s, [aggavg = (expr1 + expr2 + . . . + exprn)/n]〉 to the PTable, whereexpri is the

corresponding expression on thei-th input tuple; and (c) returns symbolic tuple〈aggavg〉 as output.

The optimization can be illustrated by our example: It adds only one tuple〈l_price1, [aggavg =

l_price1]〉 to thePTable and replaces symbolsl_price2, . . . , l_price8 by symboll_price1 on the

base table.

In general, combinations of different aggregation functions in one operator (e.g. MIN(expr1) +

MAX( expr2)) need different but similar solutions. Their solutions are straightforward and we do

not cover them here.

Single GROUP-BY Attribute

When the aggregation operator has one group-by attribute, the output cardinality c defines how to

assign the input tuples intoc output groups. Letg be the single grouping attribute. For all algo-

rithms we assume thatg has no unique constraint in the database schema. Otherwise, the grouping

is predefined by the input already and the query analyzer disables all knobs on the aggregation

operator for the user. Again, this symbolic operation of aggregation can be divided into two cases:

Case 1: Input is not pre-grouped w.r.t. the grouping attribute In addition to the cardinality

knob, when the symbols of the grouping attributeg in the input are not pre-grouped, it is possible

to support one more knob:

Knob: Group Distributionb (optional; choices = [Uniform or Zipf]; default = Uniform)

The group distributionb defines how to distribute the input tuples into thec predefined output

groups. In this case, the aggregation operator controls the output as follows:

1. [Distribution instantiating] During its open() method,instantiate a distribution generatorD, with the

size ofI (denoted byn) as frequency, the output cardinalityc as domain, and the distribution typeb

as input. The distribution generator is the same one as the one for doing equi-join (Section17.2.3). It

generatesc numbersm1,m2, . . . ,mc, and thei-th call on its getNext() method(0 ≤ i ≤ c) returns

the expected frequencymi of thei-th number under distributionb.
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2. During getNext(), callD.getNext() to get a frequencymi, fetchmi tuples (let them beIi) from I

and execute the following steps. If there are no more tuples from its child operator, return null to the

parent.

3. [Group assigning] For each tuplet in Ii, except the first tuplet′ in Ii, replace symbolt.g, which is

the symbol of the grouping attributeg of tuplet, by symbolt′.g. t′.g is the symbol of the grouping

attributeg of the first tuplet′ in thei-th group. Note that, the replacement of symbols in this stepis

done on both tuple loaded in the memory and the related tuplesin the base table as well.

4. [Aggregating] Invoke the Simple Aggregation Operator inthe previous section (Section17.2.4) with

all the symbols participated in the aggregation function inIi as input.

5. [Result Returning] Construct a new symbolic tuple〈t′.g, aggi〉 to its parent whereaggi is the sym-

bolic tuple returned by the Simple Aggregation Operator forthe i-th group. Return the constructed

tuple to its parent.

Sometimes, during the open() method, the distribution generatorD may return 0 when the dis-

tribution is very skew (e.g., Zipf distribution with high skew factor). In this case, it may happen

that an output group does not get any input tuple and the final number ofoutput groups may less

than the output cardinality requirement. There are several ways to handlethis case. One way

is to regard this as an runtime error which let the user know that she should not specify such a

highly skewed distribution when she asks for many output groups. Another way is to adjust the

distribution generatorD such that it first assigns one tuple to each output group (which consumes

c tuples), and then it starts assigning the restn − c tuples according to the distribution generation

algorithm. This way, it ensures that the cardinality requirement is fulfilled butthe final distribution

may not strictly adhere to the original distribution. Here, we assume the user does not specify any

contradicting requirements, therefore QAGen uses the first approach.

Case 2: Input is pre-grouped w.r.t. the grouping attribute When the input on the grouping

attribute is pre-grouped, it is understandable that this operation does notsupport the group distri-

bution knob as in the above case. But if the input is pre-grouped w.r.t. the grouping attribute and

the output cardinality is the only specified knob, it is not a hard problem.

The aggregation operator (v) in the running example (Figure17.1(a) falls into this case. Referring

to Figure17.7 (i), which is the input of the aggregation operator in the example. The grouping

attribute in the example iso_date, after several joins, the data ino_date is pre-grouped into 4 pre-

groups (o_date1×4; o_date2×2; o_date3×1; o_date4×1). In this case, the aggregation operator

controls the output by assigning tuples from the same pre-group to the same output group and each

pre-group is assigned intoc output groups in a round-robin fashion. In the example, the output

cardinality of the aggregation operator is 2. The aggregation operator assigns the first pre-group

(with o_date1) which includes 4 tuples into the first output group. Then the second pre-group
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o_date SUM(l_price)
o_date1 aggsum_1
o_date2 aggsum_2

symbol predicate

c_acctbal1 [c_acctbal1 ≥ p1]
c_acctbal2 [c_acctbal2 ≥ p1]
c_acctbal3 [c_acctbal3 < p1]
c_acctbal4 [c_acctbal4 < p1]
l_price1 [aggsum_1 = 5 × l_price1]
l_price5 [aggsum_2 = 3 × l_price5]

(i) Output ofχ (2 tuples) (ii) PTable

Figure 17.9: Symbolic Database after aggregation

o_date SUM(l_price)

o_date1 aggsum1

Figure 17.10: Output of HAVING clause (1 tuple)

(with o_date2) which includes 2 tuples is assigned to the second output group. When the third pre-

group (witho_date3) which includes 1 tuple is being assigned to the first output group (because of

round-robin), the aggregation operator replaceso_date3 with o_date1 in order to put the 5 tuples

into the same group. Similarly, the aggregation operator replaceso_date4 from the input tuple

with o_date2. For the aggregation function, each output groupgi invokes the Simple Aggregation

Operator in Section17.2.4with all the symbols participated in the aggregation function as input,

and gets a new symbolagggi
as output. Finally, for each group, the operator constructs a new

symbolic tuple〈gi, agggi
〉 and returns it to the parent. Figure17.9 (i) shows the output of the

aggregation operator, and Figure17.9 (ii) shows the updatedPTable after the aggregation in

the running example. Furthermore, since the aggregation operator involves attributeso_date and

l_price, the orders table and thelineitem table are also updated (Figure17.1 (c) shows the

updated tables).

HAVING and Single GROUP-BY Attribute

In most cases, dealing with a HAVING clause is the same as having a selection operator on top of

the aggregation result.

Figure17.1(c) shows thePTable content after the HAVING clause. It imposes two more con-

straints: [aggsum1 ≥ p2] which is the positive tuple and [aggsum2 < p2] which is the negative

tuple, and it returns Figure17.10to the parent.

Special case of GROUP-BY with HAVING: There is a special case for the aggregation opera-

tor together with the HAVING clause. When there are more than one parameterin the query which
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influences the number of tuples of each output group implicitly, it is necessary to ask the user to

define the count of each output group explicitly. The following is an example:

SELECT o_date, SUM(l_price)

FROM Orders, Lineitem

WHERE o_id = l_oid

AND l_price>=:p1

GROUP BY o_date

HAVING SUM(l_price)<=:p2

In this query, the parameterp1 andp2 implicitly affect the number of tuples that can pass through

the HAVING clause. For example, during data instantiation phase, ifp1 gets a value of 50 andp2

gets a value of 200, then only groups with less than 4 tuples can pass through the HAVING clause.

In other words, if the user wants to control the output cardinality of the HAVING clause, she has

to first control the number of tuples of each group. When the query analyzer detects this case, it

prepares the following knobs for the user:

Knobs: (a) positive group-countgc+ and number of positive output groupsc+

(optional; default:gc+ >= 1, c+ = input size)

(b) negative group-countgc− and number of negative output groupsc−

(optional; default:gc− >= 1, c− =0)

The knobc+ defines the number of groups which should pass through the HAVING selection

and its coexisting knobgc+ defines the number of tuples for every positive group. The knob

c− defines the number of groups which should not pass through the HAVINGselection and its

coexisting knobgc− defines the number of tuples for every negative group. The positive group-

count (gc+) and the negative group-count (gc−) can be given in terms of a lower or a upper bound.

The number of positive and negative groups together must be the same as the output cardinality of

the aggregation operator (i.e.c+ + c− = c).

In the following, we discuss the algorithms to implement this special case. The hardness of the

problem depends on whether the input is pre-grouped w.r.t. the group-by attribute or not. Note

that, in both cases the user cannot control how to assign the input tuples intodifferent output

groups because this would conflict with the above knobs.

Special case of GROUP-BY with HAVING, sub-case 1: Input is not pre-grouped w.r.t. the

group-by attribute Assume that the aggregation operator of the query above gets an input of10

tuples which is not pre-grouped w.r.t. the group-by attributeo_date. Furthermore, the user defines

the following knob values:gc+ ≥ 2, c+ = 3, gc− ≤ 1, c− = 2. Thus the output cardinality of the

aggregation operator isc = 5 in the example. The following illustrates the desired output:
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gc+ ≥ 2

gc+ ≥ 2

gc+ ≥ 2

gc− ≤ 1

gc− ≤ 1

In this special case, the symbolic execution of the aggregation operator controls the output as

follows:

1. [Assigning tuples to output groups with a upper bound group-count] During its open() method, it

first assigns one tuple to each output group with upper bound group-count.

2. [Assigning tuples to output groups with a lower bound group-count] Assign the minimum number

of tuples to each output group with lower bound group-count.

3. [Post-processing] If there are still some tuples in the input which are not assigned to an output group,

then assign these input tuples to the output groups as follows: (a) if there are some output groups

with lower bound group-count, then assign all remaining tuples to one of these output groups; (b) if

there are only output groups with upper bound group-count, then assign tuples to those output groups

until its upper-bound has been reached.

4. [Aggregating] During each getNext() call, get an output groupOi, invoke the Simple Aggregation

Operator (Section17.2.4) like the normal case does.

5. [Result Returning] Construct a new symbolic tuple〈t.g, aggi〉 and returns this tuple to its parent,

whereaggi is the symbolic tuple returned by the Simple Aggregation Operator for the groupOi and

t.g is the symbol of the group-by attribute ofOi. Return the constructed tuple to its parent.

In the example, the negative output groups usesgc− ≤ 1 as the knob value. Therefore, each of

the two negative group gets one tuple during Step 1. The positive output groups usesgc+ ≥ 2

as the knob value. Thus each of the three positive output groups gets twotuples during Step 2.

The two remaining tuples out of the 10 input tuples are distributed to the first positive output group.

Special case of GROUP-BY with HAVING, sub-case 2: Input is pre-grouped w.r.t. the group-

by attribute This sub-case contains theNP-complete Group Assignment Problem defined in

Appendix B and is thereforeNP-hard. In fact, this special case rarely happens in practice.

Nonetheless, we present an efficient heuristic that solves most of the instances that arise in prac-

tice. In case there are some group-count constraints that cannot be satisfied, the system alerts the

user and suggests her to change the knob values.

The heuristic is inspired by the best fit decreasing algorithm (BFD) for thebin packing problem

[Joh74]. The basic idea of the BFD algorithm is that it considers the items in the order of non-

increasing item sizes. Among the possible bins for an item, the algorithm alwayschooses the one
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that would have minimum leftover space after addition of that item. If an item fits in no bin, a new

bin is opened.

In our context, we treat a resulting output group as a bin and a pre-group of k input tuples as

an item in sizek. When all group constraints are upper bound constraints (e.g.,gc+ ≤ 2 and

gc− ≤ 2), we have a classical bin packing problem with different bin sizes and a fixed number

of bins. Basically, the resulting problem asks for a feasible packing for the given bin sizes. For

this case we propose to execute the BFD algorithm as sketched above (with all bins being initially

open).

When the group constraints consist of mixed greater equal and lower equal constraints (sub-case

1 above is in this case), we have a bin packing and filling problem withp packing(lower equal

constraints) andc covering(greater equal constraints) bins. It becomes trivial to fulfill all lower

equal constraints. Without loss of generality, for thep lower equal constraints we can assign the

i-th smallest item (pre-group) to thei-th smallest packing bin (output group) for1 ≤ i ≤ p.

It remains to clarify how to deal with the covering bins. For this problem we propose to iteratively

search for a solution that satisfies as many constraints as possible. To this end we search for

solutions that cover thec′ ≤ c w.l.o.g. smallest covering bins, starting atc′ = c. Although

theoretically a binary search would be faster for finding the maximumc′ we expect that for real

instancesc′ will be very close toc, which justifies a linear search. For a givenc′ the algorithm relies

on the observation that a good cover of the bins overpacks these as little aspossible. Therefore,

we propose an analogous approach to best fit decreasing. Execute the best fit decreasing algorithm

to fill the bins as good as possible.

Multiple GROUP-BY Attributes

If there is a set of group-by attributesG (with multiple attributes), then the implementation of the

aggregation operator depends not only on whether the input is pre-grouped, but also depends on

whether the group-by attributes in the input have a tree-structure or havea graph-structure (see

Chapter16). QAGen currently supports queries with tree-structure group-by attributes (see Figure

15.3). Studying the problem of controlling the output cardinality of an aggregation operator with

graph-structure group-by attributes is part of the future work.

The aggregation operator treats aggregation with multiple group-by attributesin the same way as

the case of a single group-by attribute (Section17.2.4). Assume attributean is the attribute in

G which is functional dependent on the least number of other attributes inG. The aggregation

operator treatsan as the single group-by attribute and set the rest of attributes inA to a constant

valuev (attributean is selected because it has the largest number of distinct symbols in the input

comparing to the other attributes).

As an example, assume the following table is an input to an aggregation operator.
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SUM(l_price)

aggsum1

Figure 17.11: Output ofπ(1 tuple)

b c d

b1 c1 d1

b2 c1 d1

b3 c2 d1

Assume the set of group-by attributesA is {b, c, d}, and the functional dependencies which hold

on the input of the aggregation operator are:{b} → {c, d} and{c} → {d}. According to the

definition in Chapter16, the set of group-by attributesG has a tree-structure.

In the input above, attributeb is functional dependent on least other attributes inG (b is functional

dependent on no attributes whered is functional dependent onb andc). As a result, the aggre-

gation operator treats attributeb as the single group-by attribute and invokes the single group-by

aggregation implementation. Other attributes use the same symbol for all input tuples (e.g., set all

symbols for attributec to bec1).

Since the aggregation operator with multiple-group attributes essentially is handled by the aggre-

gation operator that supports a single group-by attribute, it shares the same special cases (HAVING

clause on top on an aggregation where the parameter values control the group count) as the case

of aggregation with a single group-by attributes.

17.2.5 Projection Operator

Symbolic execution on a projection operator is exactly the same as the traditionalquery processing,

it projects the specified attributes and no additional constraints are added.As a result, the final

projection operator in the running example takes in the input from Figure17.10and ends with the

result shown in Figure17.11.

17.2.6 Union Operator

In SQL, the UNION operator eliminates the duplicates if they exist. On the other hand, the UNION

ALL operator does not eliminate the duplicates. In SQP, the query analyzerdoes not offer any

knob to the user to tune the UNION ALL operation. Therefore, the symbolic execution of the

UNION ALL operation is straightforward to implement: it reuses the UNION ALLoperator in

RDBMS and unions the two inputs into one.
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For the UNION operation, in SQP, the query analyzer offers the followingknob to the user:

Knob: Output Cardinalityc (optional; default value = size ofR + size ofS)

Let R andS be the inputs of the UNION operation which are not pre-grouped. The symbolic

execution of the UNION operator controls the output as follows:

1. During its getNext() call, if the output cardinality has not yet reachedc, then (a) get a tuplet from

R (or from S alternatively); and (b) returnt to its parent. However, during the getNext() call, if the

output cardinality has reachedc already, then process [Post-processing] below, and returnnull to its

parent.

2. [Post-processing] Fetch the remaining tuplesT− from inputsR and S, set the symbols in tuple

t− ∈ T to have the same symbol as one of the returned tuplet in the previous step.

17.2.7 Minus Operator

In SQL, the MINUS operator selects all distinct rows that are returned bythe query on the left

hand side but not by the query on the right hand side.

Let R and S be the non-pregrouped inputs of the MINUS operation. In this case, the query

analyzer offers the following knob to the user:

Knob: Output Cardinalityc (optional; default value = size ofR)

The symbolic execution of the MINUS operator controls the output as follows:

1. During its getNext() call, if the output cardinality has not yet reachedc, then (a) get a tupler+ from

R, and; (b) returnr+ to its parent. However, during the getNext() call, if the output cardinality has

reachedc already, then process [Post-processing] below, and returnnull to its parent.

2. [Post-processing] Fetch a tupler− from R, fetch all tuplesS− from S, set the symbols in tuple

s− ∈ S− to have the same symbol asr−.

17.2.8 Intersect Operator

Knob: Output Cardinalityc (optional; default value = size ofR)
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In SQL, the INTERSECT operator returns all distinct rows selected by both queries. Currently,

QAGen supports INTERSECT with non-pregrouped inputs. LetR and S be the input of the

INTERSECT operator, the symbolic execution of the INTERSECT operatoris as follows:

1. During its getNext() call, if the output cardinality has not yet reachedc, then (a) get a tupler+ from

R, and get a tuples+ from S; (b) set the symbols ofs+ as same asr+ and returnr+ to its parent.

However, during the getNext() call, if the output cardinality has reachedc already, return null to its

parent.

17.2.9 Processing Nested Queries

Nested queries in symbolic query processing reuses the techniques in traditional query processing

because queries can be unnested by using join operators [GW87]. In order to allow a user to have

full control on the input, the user should give the input query in its unnested format. If the inner

query and the outer query refer to the same table(s), then the query analyzer disables some knobs

on operators that may allow a user to specify different constraints on the operators that work on

the same table in both inner and outer query.
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Data Instantiator

Logic takes care of itself; all we have to do is to look and see how it does it.

– Ludwig Wittgenstein, 1889-1951 –

The final phase of the data generation process is the data instantiation phase. The data instantia-

tor fetches the symbolic tuples from the symbolic database and uses a constraint solver (strictly

speaking, the constraint solver is the decision procedure of a model checker [CGP00]) to instanti-

ate concrete values for them. The constraint solver takes a propositionalformula (remember that

a predicate can be represented by a formula in propositional logic) as input and returns a set of

concrete values for the symbols in the formula that satisfies all the input predicates and the actual

data types of the symbols. If the input formula is unsatisfiable, the constraintsolver returns an

error. Such errors, however, cannot occur in this phase becausewe assume there are no contra-

dicting knob values. A constraint solver call is an expensive operation.In the worst case, the cost

of a constraint solver call is exponential to the size of the input formula [CGP00]. As a result,

the objective of the data instantiator is to minimize the number of calls to the constraintsolver if

possible. Indeed, the predicate size optimizations during symbolic query processing (e.g. reducing

aggsum = l_price1 + . . . + l_price8 to aggsum = l_price1× 8) are designed for this purpose.

After the data instantiator has collected all the concrete values of a symbolic tuple, it inserts the

instantiated tuple into the final test database. The details of the data instantiator are as follows:

1. The process starts from any one of the symbolic tables.

2. It reads in a tuplet, say〈c_id1, c_acctbal1〉, from the symbolic tables.

3. [Look up symbol-to-value cache] For each symbols in tuplet, (a) it first looks ups in a table called

SymbolV alueCache in the symbolic database. TheSymbolV alueCache is a table in the symbolic
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database that stores the concrete values of the symbols thathave been instantiated by the constraint

solver; (b) if symbols has been instantiated with a concrete value, then the symbolis initialized with

the same cached value and then proceeds with the next symbol in t.

In the running example, assume the constraint solver randomly instantiates thecustomer table (4

tuples) first. Since symbolc_id1 is the first symbol to be instantiated, it has no instantiatedvalue

stored in theSymbolV alueCache table. However, assume later when instantiating the first two

tuples oforders table (witho_id1, o_id2), theiro_cid values will use the same value as instantiated

for c_id1 by looking up theSymbolV alueCache.

4. [Instantiate values] Look up predicatesP of s from the PTable. (a) If there are no predicates

associated withs, then instantiates by a unique value that matches the actual domain ofs in input

schemaS.

In the example,c_id1 does not have any predicates associated with it (seePTable in Figure17.1).

Therefore, the data instantiator does not instantiates with a constraint solver but instantiates a unique

valuev (becausec_id is a primary-key), say, 1, toc_id1. Afterwards, insert a tuple〈s, v〉 (e.g.,

〈c_id1, 1〉) to theSymbolV alueCache.

(b) However, ifs has some predicatesP in thePTable, then compute thepredicate closureof s. The

predicate closure ofs is computed by recursively looking up all the directly correlated or indirectly

correlated predicates ofs.

For example, the predicate closure ofl_price1 is [aggsum1 = 5 × l_price1 AND aggsum1 ≥ p2].

Then the predicate closure (which is in the form of a formula in propositional logic) is sent to the

constraint solver (symbols that exist in theSymbolV alueCache are replaced by their instantiated

values first). The constraint solver instantiates all symbols in the formula in a row (e.g.,l_price1 =

10, aggsum1 = 50, p2 = 18).

For efficiency purposes, before a predicate closure is sent to the constraint solver, the data instan-

tiator looks up another cache table calledPredicateV aluesCache in the symbolic database. This

table caches the instantiated values of predicates. Since many predicates in thePTable essentially

share the same pattern, the predicates stored inPredicateV aluesCache are in the predicate pat-

tern format. For example, predicates [c_acctbal1 ≥ p1] and [c_acctbal2 ≥ p1] in Figure 17.1

(c) share the same pattern: [c_acctbal ≥ p1]. As a result, after the instantiation of predicate

[c_acctbal1 ≥ p1], the data instantiator inserts an entry〈[c_acctbal ≥ p1], c_acctbal1, p1〉 into

thePredicateV aluesCache table. When the next predicate closure [c_acctbal2 ≥ p1] needs to be

instantiated, the data instantiator looks up the predicatein PredicateV aluesCache by its pattern; if

the same predicate pattern is inPredicateV aluesCache, then the data instantiator skips the instan-

tiation of this predicate and reuses the instantiated valueof c_acctbal1 in theSymbolV alueCache

table for symbolc_acctbal2 (same forp1).

The number of constraint solver calls is minimized by the introduction of theSymbolV alueCache

andPredicateV aluesCache tables. Experiments show that this feature is crucial or otherwise

generating a 1G query-aware database takes weeks instead of hours.Finally, note that in Step 4

(a), if a symbols has no predicate associated with it, the data instantiator assigns a value tos
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according to its domain and its related integrity constraints (e.g., primary-keys). In general, those

values can be assigned randomly or always use the same value. However, it is also possible to

instantiate some extra data characteristics (e.g., distribution) for those symbolsto test certain as-

pects of the query optimizer even though those the values of symbols would not affect the query

results.
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Chapter 19
Semi-Automatic DBMS Testing

The first rule of any technology used in a business is that automation applied to an

efficient operation will magnify the efficiency.

– Bill Gates, born 1955 –

So far, the discussion of QAGen is restricted to having a complete test case as input and generating

a query-aware test database as output. A test case, as shown in Figure14.1, has to consist of a

logical query plan of a SQL queryQP and a set of knob values defined on each query operator.

In practice, the most tricky job is to determine different sets of interesting knob values for the

test query in order to form different useful test cases. Currently, the knob values of a test case are

manually chosen by the testers. In this chapter, we discuss the possibilities ofautomating this step.

In software engineering, there exist different test design techniquesand coverage metrics which

assist the tester in creating a useful test suite for a program (test object)by generating test cases

with different combinations ofinterestingparameter values [AO94]. One way of choosing the

interesting values of a parameter is called the Category Partition (CP) method [OB88]. The CP

method suggests the tester first partitions the domain of a parameter into subsets(calledpartitions)

based on the assumption that all points in the same subset result in a similar behavior from the test

object. The tester should select one value from each partition to form the set of interesting values.

Consider a simple queryR ⋊⋉ S joining two tablesR andS. Assume tableR has 1000 tuples and

tableS has 2000 tuples and the two tables are not connected by foreign-key constraint. In this case,

the interesting values for the output cardinality knob for the join could be formed by partitioning

the possible knobs values into, say 4 partitions: Extreme case partition (0 tuple), Minimum case

partition (1 tuple), Normal case partition (500 tuples), and Maximum case partition (1000 tuples).
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T1 : {A = a1, B = b1, C = c1}
T2 : {A = a1, B = b2, C = c2}

T1 : {A = a1, B = b1, C = c1} T3 : {A = a1, B = b1, C = c2}
T2 : {A = a2, B = b2, C = c2} T4 : {A = a2, B = b1, C = c1}

T5 : {A = a2, B = b2, C = c2}
T6 : {A = a2, B = b2, C = c1}

(a) Each-used Coverage (b) Pair-wise Coverage

Figure 19.1: Coverage Example

In addition, Uniform distribution and Zipf distribution can be regarded as twopartitions of the join

key distribution knob.

Having decided the set of interesting values for each parameter (knob),the next step is to combine

those values to form different test cases (i.e., a test suite). There are different algorithms (known

as combination strategies) to combine the interesting values and form different test suites. Each

algorithm will result in a test suite that achieves certaincoverage. The following are some well-

known coverage criteria for combination strategies:

• Each-used. TheEach-usedcoverage is also known as1-wisecoverage. It is the simplest

coverage criterion that requires every interesting value of every parameter to be included

in at least one test case in the test suite. Consider a program with three parametersA,

B andC and the interesting values (selected from each partition) of each parameterare

{a1, a2},{b1, b2} and{c1, c2} respectively. An example test suite that satisfies theEach-

usedcoverage is shown in Figure19.1(a), which includes two test casesT1 andT2.

• Pair-wise. ThePair-wisecoverage is also known as 2-wise coverage. It requires that every

possible pair of intersecting values of any two parameters is included in some test cases

in the test suite. Consider the same example program as above, an example test suite that

satisfies thePair-wisecoverage is shown in Figure19.1(b), which includes six test cases.

• T-wise. The t-wisecoverage [WP01] is a generalization of the above two coverages which

requires that every possible combination of intersecting values oft parameters to be included

in some test cases in the test suite.

• Variable strength. TheVariable strengthcoverage [CGMC03] allows different coverages

on different sets of parameters. For example, it requires a higher coverage (e.g.,2-wise)

among the parameterA andB and a lower coverage (e.g.,1-wise) on the parameterC in

our example program.

• N-wise. TheN-wisecoverage requires if there areN parameters, then all possible combina-

tions of interesting values should be included in some test cases in the test suite.
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T1 : {σ1 = 1(min), ⋊⋉= 1(min), σ2 = 1(min)}
T2 : {σ1 = 1(min), ⋊⋉= 1(max), σ2 = 1(min)}
T3 : {σ1 = 1(min), ⋊⋉= 2000(max), σ2 = 2000(max)}
T4 : {σ1 = 1000(max), ⋊⋉= 1(min), σ2 = 1(min)}
T5 : {σ1 = 1000(max), ⋊⋉= 2000(min), σ2 = 2000(max)}
T6 : {σ1 = 1000(max), ⋊⋉= 1(max), σ2 = 1(min)}

Figure 19.2: A pair-wise test suite generated by current combination strategies

Each coverage criterion has its own pros and cons and they serve for different types of applications.

There are different combination strategies to generate test suites that satisfy different coverage cri-

teria. For example, the AETG algorithm [CDFP97] is a non-deterministic algorithm that generates

test suites which satisfy thePair-wisecoverage.1 As another example, theEach Choicealgorithm

[AO94] is a deterministic algorithm that generates test suites which satisfy theEach-usedcover-

age. However, these algorithms cannot be directly applied to our automatic testing framework.

The first problem is that the knobs are correlated to each other in a knob-annotated QAGen exe-

cution plan. As a result, it is not easy to do category partitioning. As an example, it is difficult to

partition the cardinality of the root (aggregation) operator of TPC-H Query 8 (see Figure20.2(a))

because the interesting value of the maximum case partition (i.e., the maximum numberof output

groups) depends on the cardinalities of its child operators.

The second problem is that the correlation of operators in a knob-annotated QAGen execution

plan causes existing combination strategies to generate test suites that may notsatisfy the coverage

criterion. For example, consider a select-join queryσ1(R) ⋊⋉ σ2(S) whereR has 1000 tuples and

S has 2000 tuples, andS has a foreign-key referring toR on the join attribute. Assume that we

are able to determine the minimum and the maximum cardinality of each operator:

min max

σ1 1 1000

σ2 1 2000

⋊⋉ 1 2000

Then, according to the existingPair-wisetest suite combinational strategies, a test suite like the one

in Figure19.2would be returned. However, if we look closer to the test suite in Figure19.2, we can

find out that the generated test suite actually does not strictly fulfill thePair-wisecriterion. For test

caseT1 andT2, the selections onR andS return 1 tuple (minimum case partition). Consequently,

no matter the output cardinality of the join is defined as the minimum case partition (T1) or the

maximum case partition (T2), the join can only return 1 tuple. As a result,T1 andT2 are essentially

the same and the final test suite does not make sure every possible pair of interesting values of any

two knobs is included.
1Non-deterministic algorithms means that it may generate different test suites every time.
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Figure 19.3: Semi-automatic Testing Framework

19.1 The Framework

To automate the task of creating a set of meaningful test cases, it is necessary to devise a new

set of combination strategies for each coverage that are aware of the aforementioned correlations

in a logical query plan. In the next section, a simple method for generating1-wise test suites

is presented. Discussion on how to design different combination strategiesthat satisfy different

coverages would be an interesting research topic for the software engineering community but is

out of the scope of this thesis.

Figure 19.3 shows the semi-automatic DBMS feature testing framework. It is an extension of

the QAGen architecture in Figure15.2. As usual, the tester gives a parametric queryQP and the

schemaS as input. After the query analyzing phase, the tester specifies the size of the base tables,

and a test suite that satisfies the1-wisecoverage is generated from the test suite generator. Each

test case is then processed by the Symbolic Query Engine and the Data Instantiator and a query-

aware test database is generated as usual. Finally, the test query of the test case is automatically

executed against the generated database, and the execution details (e.g.,the execution plan, cost,

time, etc) is inserted into the test report.

Note that, in general, testers use their domain knowledge in order to create input test queries.

However, this step can also be automated by query generation tools (e.g., RAGS [Slu98] and

QGEN [PS04]). In this case, the framework is a fully-automatic testing framework which is useful

to do some higher level testings such as regression test or integration test on the system.

19.2 Test Case Generation

The current testing framework can generate a test suite that satisfies the1-wisecoverage. One

reason for using1-wisecoverage in the framework is that there may be many knobs available in

a QAGen query execution plan. Defining coverage stronger than1-wise(e.g.,2-wise) may then

result in a very large test suite. In addition, based on1-wisecoverage, it is possible to design an
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algorithm so that the knob values are not affected by the correlations of the output cardinalities

between operators in a query.

The following shows the test case generation algorithm that is used inside the test suite generator.

It takes a knob-annotated query plan as input and returns a set of testcases as output.

1. [Creating a test case for each cardinality1-wisepartition] For each partitiong of the output cardinal-

ity knob, create a temporary test caseTg.

2. [Assigning1-wisevalue to distribution knob] For each temporary test caseTg, create a test caseTgd

from Tg using one distribution knob valued. The valued should not be repeated until each value is

used once at least.

3. [Assigning real values to the cardinality partition] Foreach test caseTgd, parse test queryQ of Tgd in

a bottom-up manner and assign cardinality values toTgd according to Table19.1. This table shows

the minimum and maximum partitions for each symbolic operation. The notation used in the table

follows the discussion of Chapter17. For example,R denotes the input of an unary operator and|R|

denotes its cardinality.

Figure19.4shows the test case generation process of a simple queryσ(R) ⋊⋉ S. In the current

framework, we only consider the minimum and the maximum partitions for the cardinality knob

and only Zipf and Uniform distribution for the distribution knob. Although the test generation

algorithm is simple, experimental results show that the generated test suite caneffectively gen-

erate different query-aware test databases that show different system behaviors of a commercial

database system. In this thesis, we regard this simple SQL test case generation algorithm as a

starting point for this new SQL test case generation problem. In fact, the current testing frame-

work has several restrictions. First, it requires that the same table cannot be used twice in the input

of a binary operator, for example, the queryR ⋊⋉ R is prohibited. Second, Table19.1does not

capture the cases of pre-grouping input and the cases of having two disjoint subqueries [Elk89]

for a binary operator. Therefore, the computed knob value may not be accurate in these cases. As

a result, in the current framework, if the query analyzer detects that there are some operators with

pre-grouped input or with disjoint subqueries in the query execution plan, it will prompt the tester

to verify that automated computed test case before QAGen starts execution.As part of the future

work, we plan to further improve the framework in order to eliminate these restrictions.
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Figure 19.4: Testing Case Generation Example
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Operator Minimum Partition Maximum Partition

Selection 1 |R|
Aggregation 1 |R|

Join 1 |S|
Union max(|R|, |S|) |R| + |S|
Minus |R| − |S| |R|

Intersect 1 min(|R|, |S|)

Table 19.1: Knob value table.
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Chapter 20
Experiments

The true method of knowledge is experiment.

– William Blake, 1757-1827 –

We have run a set of experiments to test a prototype implementation of QAGen. The implemen-

tation is written in Java and is installed on a Linux AMD Opteron 2.2 GHz Server with4 GB of

main memory. The symbolic database and the target database use PostgreSQL7.4.8 and they are

installed on the same machine. As a constraint solver, a publicly available constraint solver called

Cogent [CKS05] is used. During the experiments, if the approximation ratio knob is enabled by

the query analyzer, the value 0.1 is used.

We execute three sets of experiments with the following objectives: The firstexperiment (Section

20.1) studies the efficiency of the symbolic execution of individual operators.The second exper-

iment (Section20.2) studies the scalability of QAGen for generating different database sizesfor

different queries. The last experiment (Section20.3) uses the semi-automatic testing framework

to generate different test databases for the same query in order to studyif the generated test cases

could effectively affect the behavior of a commercial database.

20.1 Efficiency of Symbolic Operations

The objective of this experiment is to evaluate (1) the running time of individual symbolic oper-

ators, (2) their scalability, and (3) the running time of the data instantiation phase by generating

three query-aware databases in different scales (10M, 100M, and 1G). The input query is query

8 in the TPC-H benchmark. Its logical query plan is shown in Figure20.1. We have chosen
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TPC-H query 8 because it is one of the most complex queries in TPC-H with 7-way joins and

aggregations. This query has various input characteristics to the operators enabling us to evaluate

the performance of different operator implementations (e.g., the normal equi-join and the special

case of equi-join that needs solving the subset sum problem). The experiments are carried out as

follows: First, three benchmark databases are generated usingdbgenfrom the TPC-H benchmark.

As a scaling factor, we use 10 MB, 100 MB, and 1GB. Then, we execute query 8 on top of the

three TPC-H databases, and collect the base table sizes and the cardinalityof each intermediate

result under the three scaling factors. The extracted cardinality of eachintermediate result of query

8 is shown in Table20.1 (Output-size) columns. Next, we generate three TPCH-query-8-aware

databases with the collected base table sizes and output cardinalities as inputand measure the

efficiency of QAGen for generating databases that produces the same cardinality results. For this

experiment, the value distribution between two joining tables is the uniform distribution.

Table20.1shows the cost breakdown of generating query-aware databases for TPC-H query 8 in

detail. QAGen only takes about 10 minutes for generating a 10MB query-aware database. The

symbolic query processing phase is fast and scales linearly. It takes about 1 minute for 10MB

and less than 3 hours for 1G database. The longest SQP operations arethe initialization of the

large symbolic tableLineitem (Line 10 in Table20.1), and the join between the intermediate

resultR5 andLineitem (Line 11). That join requires a long time because it accesses the large

Lineitem table frequently to update the symbolic values of the join attributes. In query 8,the

input is pre-grouped on the last join (Line 17 in Table20.1and operator (17) in Figure20.2) and

the approximation ratio knob is enabled. Nevertheless, the equi-join finishes quickly because the

input size is not big. Table20.1also shows that the symbolic execution of each individual operator

scales well.

The data instantiation phase dominates the whole data generation process. Ittakes about 9 minutes

to instantiate a 10M query 8 aware database and about 17 hours to instantiatea 1G query 8 aware

database. Nevertheless, about 40% of time is the overhead of reading symbolic tuples and inserting

concrete tuples (not shown in the Table). In the experiments, the number ofconstraint solver

(cogent) calls is small – there are only 14 calls for 3 scaling factors. The number of calls is constant

because the data instantiator caches the patterns of the predicates but notthe concrete predicates.

We indeed repeat the same experiment by turning off the caching feature of QAGen, but it ends

up that the data instantiation phase for a 1G database cannot finish within 2 weeks because the

constraint solver takes a lot of time. It proves that the predicate optimization inSQP and the

caching in the data instantiator work effectively.
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# Symbolic operation size = 10M size = 100M size = 1G
Output-size Time Output-size Time Output-size Time

1 Region 5 < 1s 5 < 1s 5 < 1s

2 σ(Region) = R1 1 < 1s 1 < 1s 1 < 1s

3 Nation 25 < 1s 25 < 1s 25 < 1s

4 (R1 ⋊⋉ Nation) = R2 5 < 1s 5 < 1s 5 < 1s

5 Customer 1.5k < 1s 15.0k 5s 150k 49s

6 (R2 ⋊⋉ Customer) = R3 0.3k 1s 3.0k 7s 299.5k 75s

7 Orders 15.0k 4s 150.0k 45s 1.5m 553s

8 σ(Orders) = R4 4.5k 8s 45.0k 67s 457.2k 709s

9 (R3 ⋊⋉ R4) = R5 0.9k 3s 9.0k 22s 91.2k 277s

10 Lineitem 60.0k 26s 600.5k 237s 6001.2k 2629s

11 (R5 ⋊⋉ Lineitem) = R6 3.6k 34s 35.7k 348s 365.1k 4694s

12 Part 2.0k < 1s 20.0k 5s 200k 60s

13 σ(Part) = R7 12 1s 147 8s 1451 72s

14 (R7 ⋊⋉ R6) = R8 29 3s 282 27s 2603 533s

15 Supplier 0.1k < 1s 1k < 1s 10k 3s

16 (Supplier ⋊⋉ R8) = R9 29 < 1s 282 1s 2603 6s

17 (Nation ⋊⋉ R9) = R10 29 < 1s 282 < 1s 2603 3s

18 χ(R8) = R11 2 < 1s 2 1s 2 10s

Symbolic Query Processing 01m : 20s 12m : 53s 161m : 13s

Data Instantiation (# Cogent-call) 09m : 31s (14) 96m : 03s (14) 1062m : 54s (14)

Total 10m : 51s 108m : 56s 1224m : 07s

Table 20.1: QAGen Execution Time for TPC-H Query 8

20.2 Scalability of QAGen

The objective of this experiment is to evaluate the scalability of QAGen for generating a variety

of query-aware test databases. Currently, QAGen supports 13 out of 22 TPC-H queries. It does

not support some queries because those queries either fall into the special cases of QAGen (e.g.,

query 5 (Q5) falls into the special case of the selection operator in Section17.2.2case 2); or

because some of them use non-equi-joins (e.g., Q16, Q22). Nevertheless, we generate query-

aware databases for the rest of the queries in three different scaling factors 10M, 100M and 1G.

Table20.2shows the detailed results. These results show that both phases scale wellfor all 13

TPC-H queries and the data instantiation (DI) phase is still the time dominating phase.

20.3 Effectiveness of the Semi-Automatic Testing Framework

The objective of this experiment is to show how the test databases that are generated by the semi-

automatic testing framework can show different behavior of a commercial database. In this exper-

iment, the target database size is fixed at 100MB and the input query is query 8 in TPC-H. The

experiments are carried out in the following way: First, we generate four query-aware databases
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Query Phase 10M 100M 1G

1 SQP 02m:40s 26m:45s 321m:27s
DI 07m:42s 78m:35s 844m:52s
Total 10m:22s 105m:10s 1166m:19s

2 SQP 00m:09s 01m:32s 16m:47s
DI 02m:27s 24m:55s 249m:50s
Total 02m:36s 26m:27s 256m:37s

3 SQP 01m:35s 16m:18s 185m:21s
DI 09m:34s 97m:07s 1016m:59s
Total 11m:09s 113m:25s 1202m:20s

4 SQP 02m:32s 23m:23s 221m:17s
DI 06m:10s 67m:22s 627m:11s
Total 08m:42s 80m:45s 848m:28s

6 SQP 01m:52s 64m:36s 180m:22s
DI 10m:36s 333m:31s 1121m:06s
Total 12m:28s 398m:07s 1301:28s

9 SQP 03m:08s 31m:59s 445m:16s
DI 09m:01s 92m:16s 967m:24s
Total 12m:09s 124m:15s 1412m:40s

10 SQP 01m:16s 12m:56s 156m:22s
DI 09m:42s 98m:13s 1107m:10s
Total 10m:58s 111m:09s 1263m:32s

12 SQP 02m:11s 21m:32s 244m:07s
DI 12m:01s 123m:04s 1387m:27s
Total 14m:12s 144m:36s 1631m:34s

14 SQP 01m:39s 08m:47s 95m:49s
DI 17m:15s 94m:50s 1023m:39s
Total 18m:54s 103m:27s 1119m:28s

15 SQP 00m:58s 09m:10s 98m:07s
DI 05m:40s 92m:24s 966m:10s
Total 06m:38s 101m:34s 1064m:17s

16 SQP 00m:14s 01m:42s 27m:01s
DI 05m:38s 05m:19s 52m:40s
Total 06m:52s 07m:01s 79m:41s

18 SQP 00m:55s 08m:20s 86m:30s
DI 08m:41s 86m:53s 861m:11s
Total 09m:36s 95m:13s 947m:41s

19 SQP 04m:14s 41m:45s 411m:12s
DI 97m:23s 973m:03s 9707m:11s
Total 101m:37s 1014m:48s 10118m:23s

Table 20.2: QAGen Scalability
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Result TPC-H(Uniform/Zipf) MIN-Uniform MAX-Zipf

R1 1 1 5

R2 5 1 25

R3 3k 1 15k

R4 45k 1 150k

R5 9k 1 150k

R6 36k 1 600k

R7 147 1 20k

R8 282 1 600k

R9 282 1 600k

R10 282 1 600k

R11 2 1 2

Execution Plan Figure20.2(a) Figure20.2(b) Figure20.2(c)

Table 20.3: Knob Values and Resulting Execution Plans

for TPC-H query 8. Then, we execute query 8 on the four generated databases (on PostgreSQL)

and study their physical execution plans. The first database [MIN-Uniform] is automatically gen-

erated by the testing framework using the minimum case partition. The database will let query

8 to have the minimum cardinality on each intermediate result during execution. Inthe [MIN-

Uniform] database, the key values between two joining relations have a Uniform distribution. Fur-

thermore, during a grouping operation, tuples will be uniformly distributed intodifferent groups

in the [MIN-Uniform] database. The second database [MAX-Zipf] is alsogenerated by the test

framework using the maximum case partition with a Zipf distribution. The third database [TPCH-

Uniform] is manually added to the test suite and is generated by QAGen using theintermediate

result sizes extracted from executing query 8 on TPC-Hdbgendatabase (as in the first experiment

above). The last database [TPCH-Zipf] is generated by QAGen using the same intermediate result

sizes as [TPCH-Uniform] but with a Zipf distribution. Table20.3shows the intermediate result

sizes of the above set up.

Figure 20.2 shows the physical execution plans of executing TPC-H query 8 on the generated

query-aware databases. By controlling the output cardinalities of the operators, it causes Post-

greSQL to use different join strategies. For example, when the cardinality of each output is mini-

mum [MIN-Uniform], PostgreSQL tends to use a left-deep-join order (Figure 20.2(b). When the

cardinality of each output is maximum [MAX-Zipf], PostgreSQL tends to use abushy-tree join

order (Figure20.2 (c). The output cardinalities also strongly influences the choice of physical

operators; when the output cardinality is large, PostgreSQL tends to use hash joins (Figure20.2c).

However, when the output cardinality is small, PostgreSQL tends to use fewer hash joins but used

sort-merge-joins and nested-loop-joins (Figure20.2 (a), (b)). The input and output cardinality

also influence the choice of physical aggregation operators. When the input to the aggregation

(i.e.,R10 in Table 2) is minimum or same as the TPC-H size, then PostgreSQL tends to use group

aggregation (Figure20.2 (a), (b)). However, when the input to is maximum, then PostgreSQL
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Figure 20.1: TPC-H Query 8: Logical Query Plan

tends to first do a hash aggregation and then sort it (Figure20.2(c)).

Controlling the distributions of the query operators shows that the operators in PostgreSQL are less

sensitive to the data distribution. For example, when the cardinality is same as TPCH size (Figure

20.2(a)), the distribution knob does not influence the execution plans. Moreover, the distribution

knob also has less influences on the choice of physical operators.

In this experiment, we attempt to use other database generation tools to generate the same set of test

databases which can produce the same intermediate query results. We try to run this experiment

with two commercial test database generators, DTM Data Generator and IBMDB2 Test Database

Generator, and one research prototype [HTW06]1. However, these tools only allow constraining

the base tables properties and we fail to manually control the intermediate result sizes for the

purpose of this experiment. Another attempt is to use the query parameter generation tool from

[BCT06] to generate query parameters on top of the generated databases. However, that tool can

only support select-project-join queries (with single-sided or double-side predicates) which is not

suitable for the complex TPC-H queries (which include aggregations and complex predicates) in

this experiment.

1We also attempt to evaluate DGL from Microsoft [BC05], however their tool is not publicly available.
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Base Tables:C = Customer, N = Nation, L = Lineitem, O = Orders
P = Part, R = Region, S = Supplier

Physical Operators:ga = Group Aggregate, hash = Hash, ha = Hash Aggregate, hj = Hash Join
mj = Merge Join, nlj = Nested Loop Join, sort = Sort
ga

sort

nlj

mj R

sortN

nlj

nlj C

hj O

nlj

P L

hash

mj

S sort

N

ga

sort

nlj

mj R

sortN

nlj

nlj C

hj O

mj

S sort

hash

nlj

P LN

sort

ha

hj

hj hash

hashhj

hj

L H

hj

S hash

N

P

hj

O hash

hj

C H

hj

N hash

R

(a) [TPCH-Uniform] and [TPCH-Zipf] (b) [MIN-Uniform] (c)[MAX-Zipf]

Figure 20.2: Physical Execution Plans of TPC-H Query 8
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Chapter 21
Related Work

Math and music are intimately related.

Not necessarily on a conscious level, but sure.

– Stephen Sondheim, born 1930 –

The closest related work in DBMS testing is the work of [BCT06] which studies the generation of

query parameters for test queries with given test databases. However, existing database generation

tools such as IBM DB2 Database Generator and others (e.g., [GSE+94], [HTW06], [BC05]) were

designed to generate general-purpose test databases without any concern for the test queries, and

thus the generated databases cannot guarantee sufficient coverageof specific test cases. As a

consequence, [BCT06] can hardly find a good database to work on and eventually only a very

limited subset of SQL is supported.

QAGen extends symbolic execution [Kin76] and proposes the concept of symbolic query process-

ing (i.e., SQP) to generate query-aware databases. SQP is related to constraint databases (e.g.,

[Kui02]); however, constraint databases focus on constraints that represent infinite concrete data

(e.g., spatial-temporal data) whereas SQP works on finite but abstract data.

The semi-automatic testing framework in this part is related to a number of softwaretesting re-

search work. For example, [AO94] first states the test case selection problem for traditional

program testing. Some solutions for the traditional test case selection problem can be found in

[AO94; CDFP97; CGMC03; WP01; GOA05].
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Summary
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Chapter 22
Conclusions and Future Work

What is now proved was once only imagined.

– William Blake, 1757-1827 –

This thesis presented two innovative techniques for specifying and generating test case aware

databasesand discussed several applications of these techniques.

PartII presented a new technique called Reverse Query Processing or RQP, for short. RQP com-

bines techniques from traditional query processing (e.g., query rewriteand the iterator model) and

model checking (e.g., data instantiation based on constraint formulae of propositional logic). The

main application of RQP is the generation of databases for the testing of OLAP applications. It

could be shown that a full-fledged RQP engine for SQL (called SPQR) canbe built and that it

scales linearly with the size of the databases that need to be generated for the TPC-H benchmark.

Part III discussed two more applications of RQP in detail (i.e., the functional testing of OLTP

applications as well as the functional testing of a query language) and presented the necessary

extensions of RQP. RQP for the functional testing of a query language is currently used in an

industrial environment at Microsoft for the testing of the query processing capabilities of the new

ADO.Net Entity Framework.

For many other applications of RQP (e.g., Update of Views, Program Verification) significant

additional research is needed in order to exploit the potential of RQP. Consequently, the most

important avenue for future work is to further explore these applications.Furthermore, additional

work is required in order to develop techniques for RQP which guaranteecertain properties of

the generated data (e.g., minimality). In addition, it is going to be important to leverage recent

developments of the model checking community.
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Finally, PartIV presented another technique called Symbolic Query Processing or SQP, for short.

SQP combines the techniques from traditional query processing (e.g., the iterator model) and

symbolic execution from software engineering (e.g., representing concrete data by symbols). The

main application of SQP is to generate test case aware databases for the testing of individual

DBMS components. A prototype system QAGen which implements a symbolic queryprocessing

engine for a subclass of SQL queries was presented. It could be shown that QAGen is able to

generate query aware databases for complex SQL queries and that it scales linearly. Moreover,

a semi-automatic test case generation framework was proposed, which provides a good starting

point for building a fully-automatic DBMS testing framework.

One of the most important avenues for future work is to support more query classes in QAGen.

Additionally, in order to support further applications, we also plan to extendSQP to take a set of

annotated query plans as input to generate one test database that incorporates all the constraints

of these annotated query plans. Alike, it is also important to study the possibilityof instantiating

many symbolic tuples in parallel during the data instantiation phase in order to increase the effi-

ciency of QAGen. Another interesting future work is to extend the currenttest case generation

framework so that it supports more coverage criteria. For example, it would be interesting if the

framework can generate test cases where an operator (e.g., selection)gets a maximum partition

input but returns a minimum partition output. Finally, we believe that the work of SQP can be

integrated with traditional symbolic execution so as to extend program verification and test case

generation techniques to support the testing of database applications as well.

For both frameworks, RQP and SQP, we have shown that they are able generate test case aware

databases which satisfy complex constraints and that our prototype implementations already scale

well for huge amounts of data. Consequently, we can generate test databases for many practical

situations which is a basic requirement for an industrial application of both frameworks. However,

both frameworks also have some limitations:

• For a better industrial acceptance it would be helpful to enhance the usability of the frame-

works; e.g., by implementing graphical tools which simplify the specification of thecon-

straints on the test databases.

• Another drawback of both frameworks is that initially one test database is generated per test

case, which is very expensive and makes it difficult to manage the generated test databases

for industrial applications where many thousands of test cases are necessary. Therefore, in

this thesis we already sketched several solutions to tackle this problem; e.g., by merging the

test databases or by mutating the test cases so that more than one test case can be executed

on the same test database. However, we did not analyze this problem in detail.
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• Moreover, we also have not considered the evolution of the generated test databases when

the test cases that are to be executed on a database application or on a DBMS are modified.

Consequently, it would also be an important avenue for future work to support the evolution

of the generated test databases without having to regenerate the complete test databases in

order to make both frameworks even more interesting for practical applications.

In general, we believe that this thesis is only the first steps into a new research direction.
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Appendix A
Analysis of the Approximate Overweight

Subset-Sum Problem

A.1 Correctness

As explained in the Section17.2.2and Figure17.5, if our algorithm returns an answer after Line 3,

the answer must be optimal. Thus, in the following, we shall assume that the algorithm proceeds

after Line 3, so thatcr ≤ c, and
∑r−1

i=1 ci < c ≤
∑r

i=1 ci = p.

Let OPT denote the optimal subset sum. Suppose thatOPT is the sum of some subsets ofC that

consists ofa values inL andb values inS, say,{ℓ1, ℓ2, . . . , ℓa} and{s1, s2, . . . , sb}. Immediately,

we have the following facts:

Fact A.1 p/2 ≤ c ≤ OPT ≤ p.

Proof A.2 Since
∑r−1

i=1 ci < c and cr ≤ c, we havep ≤ 2c. On the other hand,OPT is the

optimal subset sum value, soc ≤ OPT ≤ p.

Fact A.3 a ≤ r.

Proof A.4 Since the sum of the smallestr values inC is already at least the target sumc, OPT

cannot contain more thanr values. Thus,a + b ≤ r and soa ≤ r.

Fact A.5 a ≤ 2/ǫ.

Proof A.6 Since each large valueℓi is at least(ǫ/2)p, we haveℓi ≥ (ǫ/2)c asp ≥ c (by Fact

A.1). Thus, the sum of any2/ǫ large values is at leastc, so thatOPT cannot contain more than

2/ǫ large values. This impliesa ≤ 2/ǫ.
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PROBLEM

Let L∗ = ℓ1 + ℓ2 + . . .+ ℓa. Letv∗ = ⌈ℓ1/d⌉+⌈ℓ2/d⌉+ . . .+⌈ℓa/d⌉ be the sum of the quantized

values of eachℓi. Note thatv∗ is at mostL∗/d + a, which is at most⌈p/d⌉ + a ≤ g. Thus, there

is a bucketBv∗ and a valueX[v∗] corresponding tov∗. We now claim that when we execute Line

24 in Figure17.5, the valueX[v∗] satisfies the condition below:

Claim A.7 c ≤ X[v∗] ≤ (1 + ǫ)OPT .

If the claim is true, then after the execution of Line 24 in Figure17.5, the setBi returned must

have a value of at leastc and at most(1 + ǫ)OPT , so that it is a desired approximate solution to

the overweight subset-sum problem. So, it remains to prove ClaimA.7.

Let L′ be the value ofX[v∗] at the end of Phase 1 (Line 11-17 in Figure17.5), so thatL′ is

the sum of the “large" numbers inBv∗ . By our choice of updating the buckets, it is easy to

prove by induction thatL′ ≥ L∗. (Without loss of generality, assumeℓ1 ≤ ℓ2 ≤ · · · ≤ ℓa.

Then, inductively, after we have finished processingℓi in lines 13–17, the valueX[j] with j =

⌈ℓ1/d⌉ + ⌈ℓ2/d⌉ + · · · + ⌈ℓi/d⌉ is at leastℓ1 + ℓ2 + · · · + ℓi.) On the other hand,L′ is at most

dv∗, so that

L′ ≤ (⌈ℓ1/d⌉ + ⌈ℓ2/d⌉ + . . . + ⌈ℓa/d⌉)d ≤ L∗ + ad.

By FactsA.1, A.3 and A.5, we havead ≤ (2/ǫ)d = (ǫ/2)p ≤ ǫOPT . Thus, the value ofX[v∗]

at the end of Phase 1, which isL′, satisfies:

L∗ ≤ L′ ≤ L∗ + ǫOPT .

Now, there are two cases:

Case 1: If L′ ≥ c, then Phase 2 (lines 18–23 in Figure17.5) will not change the value ofX[v∗],

so thatX[v∗] ≤ L∗ + ǫOPT ≤ (1 + ǫ)OPT .

Case 2: If L′ < c, after the fine-tuning in Phase 2, the value ofX[v∗] must be at leastc (other-

wise,L′ plus the sum of all numbers in the small setS is less thanc. However,L′ ≥ L∗, so this

will contradict the fact thatOPT, which isL∗ plussomenumbers in the small setS, is at leastc.)

and at mostc+(ǫ/2)p. Thus, after Phase 2, the value ofX[v∗] satisfiesc ≤ X[v∗] ≤ (1+ǫ)OPT .

This completes the proof of the claim, which leads to the following theorem:

Theorem A.8 Suppose there exists an optimal solution for the overweight subset sum problem on

a setC and a target sumc. Suppose further that the optimal solution has sumOPT . Then, on

given anyǫ, our algorithm always returns a feasible subset ofC whose sum is at most(1+ǫ)OPT .
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A.2 Time and Space Complexities

A breakdown of the time complexities is as follows. Firstly, Line 1-6 and Line 8–9is done in

O(m) time. Then, the value ofg is bounded by1 + 4/ǫ2 + 2/ǫ = O(1/ǫ2), so Line 7 is done in

O(1/ǫ2) time. In Phase 1, the loop (lines 11–17) is executed at mostm times, and each execution

requires an update of at mostg values (by careful implementation with a standard trick, so that

when we processck ∈ L, we storeBj,vi
by a triple(j, k, ci) in Line 16 instead). Thus, Phase

1 in total takesO(m/ǫ2) time. In Phase 2, the loop (lines 18–23) is executedg times, and each

execution requiresO(m) time. So Phase 2 in total also takesO(m/ǫ2) time. Therefore, the time

complexity of the algorithm isO(m/ǫ2).

Next, the algorithm requires two arraysB andX. Each bucket ofB can store up tom numbers,

so in total it occupiesO(gm) space. Each entry ofX stores one integer, so in total it takesO(g)

space. Together with the space to storeC, the space complexity isO(gm). Thus, we have the

following:

Theorem A.9 The algorithm runs inO(m/ǫ2) time, and requiresO(gm) space.
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Appendix B
Complexity of the Group Assignment

Problem

Problem Definition: The combinatorial problem that we call theGroup Assignmentproblem is

non-trivial to define. Therefore, we begin by defining the major entities ofthe input and then

define the problem itself.

Definition B.1 (Group Assignment Problem (GA), input) The input(G, C, m) consists of a ground

setG of n itemswhere each item represents a pre-group of the input of an aggregationoperator, as

well as aconstraint setC of m group-count constraintswhich result from the positive and negative

group-count knob values (andm is the output cardinality of the aggregation operator) and of an

instantiation restriction vectorr which results from domain constraints on the group-by attributes.

We first describe the ground set and the associated variable set: Each item a ∈ G has anitem

sizes(a) ∈ N and an associatedd-dimensionalvariable vectorv(a). A variable vectorv =

(v1, . . . , vd) is taken from the Cartesian product ofd disjoint variable setsΣ1, . . . ,Σd. Thus, the

variable vectorv(a) represents the symbolic values of the group-by attributes of the pre-group

which is represented bya and the sizes(a) represents the size of that pre-group. In case that the

input is not pre-grouped w.r.t. the group-by attributes, the size iss(a) = 1 for all itemsa ∈ G.

The goal of the GA is to partition the items intom groups(γ1, . . . , γm), where
⊎

i γi = G, such

that each groupγ meets the associated group constraintc(γ) ∈ C. Each itema ∈ G is associated

with a size values(a). Each group constraintc(γi) is of one of the following three types:

∑

a∈γi

s(a) ≤ rhs(i)
∑

a∈γi

s(a) = rhs(i)
∑

a∈γi

s(a) ≥ rhs(i)

A last part of the input is the instantiation restriction vectorr. Part of the problem is to assign

values from finite sets to the variables. More precisely, for each dimensioni,1 ≤ i ≤ d there is a
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separate finite domain setDi = 1, . . . , ri from which the variables inΣi can be instantiated (Di

can be created from the domain constraints on thei-th group-by attribute). The instantiation can

be seen as aninstantiation mappingf : Σ1×, . . . ,×Σd → D1×, . . . ,×Dd such thatf(v(a)) is

the instantiated variable vectorv(a). Thus,r specifies the cardinalities of these domains.

Definition B.2 (GA problem) Given an input(G, C, m) to the GA problem, partition the ground

set intom groups(γ1, . . . , γm) such that the constraints given byC hold and find an instantiation

mappingf such that the following property holds:

Two items are in the same group if and only if they have componentwise equal instantiated variable

vectors:∃i : a, b ∈ γi ⇔ f(v(a)) = f(v(b)).

It is not surprising that the GA-problem is NP-complete.

Lemma B.3 The GA-problem is strongly NP-complete for varying sizes of ground set(single and

multiple group-by attributes) and constraint set, an arbitrary single constraint type and a single

fixed right hand side for the constraints.

Proof B.4 The problem is obviously in NP, as one can guess and verify a solution. Forthe reduc-

tion we reduce to the 3-partition problem, problem SP15 in [GJ90].

3-partition asks for a given setA of 3m elements of sizesσ(a′) for a′ ∈ A and a boundB

(with B/4 < σ(a′) < B/2 as well as
∑

a′∈A σ(a′) = mB) whetherA can be partitioned into

m disjoint setA1, . . . , Am such that for eachAi,
∑

a′∈Ai
σ(a′) = B. Note that eachAi must

therefore contain exactly three elements ofA.

This problem can be formulated by the grouping part of the above problemalone: Each element

a′ ∈ A maps to an itema ∈ G with s(a) = σ(a′) andv(a) = αa. In this transformation each item

gets a separate variable. The constraint set consists ofm constraints that impose
∑

a∈γi
s(a) =

B. Note that it is possible to replace all equal constraints together by lower orgreater equal

constraints.
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