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Abbreviations 

AP-1 activator protein-1 

bFGF basic fibroblast growth factor 

bp base pair 

CCL2 chemokine (C-C motif) ligand 2 

CCL5 chemokine (C-C motif) ligand 5 

CCR2 chemokine receptor 2 

CWS circumferential wall strain 

cDNA complementary desoxyribonucleic acid 

DNA desoxyribonucleic acid 

DHE dihydroethidium 

D-MEM Dulbecco’s modified Eagle’s medium 

DMSO dimethyl sulfoxyd 

dNTP dosexynucleotide triphosphate 

dODN decoy oligodeoxynucleotide 

EDTA ethylendinitrilo-N, N, N’, N’-tetraacetate 

eNOS endothelial nitric oxide synthetase 

FCS fetal calf serum 

FGF fibroblast growth factor 

FSS fluid shear stress 

GM-CSF granulocyte-macrophage colony stimulating factor 

HIF-1 hypoxia inducible factor-1 

hSMCs human smooth muscle cells 

HUVECs human umbilical vein endothelial cells 

ICAM-1 intracellular adhesion molecule-1 

IL-8 interleukin-8  

LFA-1 lymphocyte function-associated antigen-1 
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Mac-1 macrophage-1 antigen 

MAP mitogen-activated protein 

MCP-1 monocyte chemotactic protein-1 

MMP-2 matrix metalloproteinase-2 

MMP-9 matrix metalloproteinase-9 

mRNA messenger ribonucleic acid 

mSMCs mouse smooth muscle cells 

NF-κB nuclear factor-kappa B 

NO nitric oxide 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PIGF placenta growth factor 

RNA ribonucleic acid 

ROS reactive oxygen species  

RT room temperature 

RT-PCR reverse transcription-polymerase chain reaction 

SEM standard error of the mean 

STAT-1 signal transducer and activator of transcription-1 

TGF-ß transforming growth factor-β 

TIMP-1 tissue inhibitor of matrix-proteases  

TNF-α tumour necrosis factor-α 

TRE triphorbol acetate response elements 

uPA urokinase-type plasminogen activator 

VEGF vascular endothelial growth factor 
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1. Introduction 

1.1. Clinical relevance of arteriogenesis vs. angiogenesis 

Cardiac and peripheral arterial occlusive diseases are the leading cause of death in 

the Western world and often result in the development of ischemia in the affected 

tissues. The treatment of patients with occlusive vascular disease consists of 

lifestyle modifications and pharmacotherapy addressing the risk factors to 

minimize the risk for disease progression and mortality in myocardial infarction 

and stroke. In case of progressing peripheral artery disease, the patient might 

suffer from rest pain and ischemic ulceration and gangrene due to critical limb 

ischemia (Figure 1).  

 

 

Figure 1. Schematic drawing of the pathogenesis in peripheral artery disease (taken 
from Palmer-Kazen, 2003). Symptoms of lower extremity peripheral artery disease 
include pain on walking—intermittent claudication, which is the earliest and most 
frequently present symptom.  
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Symptomatic invasive treatment consists of surgical or endovascular 

revascularization. Unfortunately, about 20% to 30% of patients with critical limb 

ischemia cannot be treated by any of these methods and amputation is often the 

only remaining option (Palmer-Kazen 2003). 

However, it has been known for a long time that patients suffering from ischemic 

vascular diseases can develop collateral vessels bypassing the side of occlusion 

(Fulton 1969). Depending on the initial trigger, growth of blood vessels in adult 

organisms proceeds via two major processes, angiogenesis and arteriogenesis 

(Figure 1) (Semenza 2007). Stimulation and acceleration of these natural 

protective mechanisms have the potential to become an alternative therapeutic 

approach to improve the blood supply to ischemic tissue in case of occlusive 

vascular disease.  

 

Angiogenesis is defined as the formation of new capillaries from existing vessels 

resulting in an improved new capillary network (Risau 1997). It is an important 

component of various normal and pathological conditions such as wound healing, 

fracture repair, folliculogenesis, ovulation, and pregnancy (Buschmann 2001). 

However, if not properly controlled, angiogenesis can also represent a significant 

pathogenic component of tumor growth and metastasis, rheumatic arthritis, and 

retinopathaties.  

Angiogenesis consists of several distinct processes, which include endothelial cell 

migration and proliferation, extracellular proteolysis, endothelial cell 

differentiation, and vascular wall remodelling. In most cases angiogenesis is 

induced by local ischemia, where a decrease in local oxygen tension initiates the 

expression of hypoxia-inducible genes through activation of the transcription factor 

hypoxia inducible factor-1 (HIF-1). Besides the erythropoietin gene, regulating the 

production of erythrocytes in the bone marrow, several angiogenesis-related genes 

are under the control of HIF-1, among which VEGF (vascular endothelial growth 

factor) is the best studied. Synthesized in several splicing variants, VEGF is a 

potent mitogen for endothelial cells and of critical importance for physiological as 

well as pathological angiogenesis, e.g. in neoplastic tumors. VEGF acts like a pro-

angiogenic factor by binding to two tyrosine-kinase receptors VEGFR1 and VEGFR2 

on endothelial cells, whereas VEGFR3 induces lymphangiogenesis upon binding to 
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isoforms VEGF-C and VEGF–D. VEGF induces a complex response in endothelial cells 

including the expression of endothelial nitric oxide synthase (eNOS) and matrix 

metalloproteinases (MMPs) necessary for enhancing permeability of the basal 

membrane and the surrounding matrix (Tammela 2005).  

As a result of angiogenesis, a dense capillary network is formed with the ability to 

support local tissue perfusion but especially to improve the diffusion of oxygen 

from the blood to the tissue. However, these newly formed capillary tubes lack 

vascular smooth muscle cells. Any developing new network of sprouting capillaries 

that is not surrounded by mural cells is fragile and probably unable to sustain 

proper circulation. Likewise, clinical studies revealed that angiogenesis per se is 

not sufficient to fully restore the blood supply to the affected tissues (Scholz 2001; 

Henry 2003; Heil 2006).  

 

In contrast, the growth and remodelling of pre-existing collateral arteries 

bypassing an arterial occlusion much more efficiently compensate for the 

consequences of peripheral artery disease (Schaper 1971; Schaper 2001; Unthank 

2004). This adaptive remodelling process is referred to as arteriogenesis. In 

contrast to angiogenesis, arteriogenesis is not driven by the methabolic demand of 

the tissue and is initiated independently from hypoxia. The region in which 

bypassing collaterals grow is much more proximal to the hypoxic zone (Figure 2) 

(Schaper 2003), and the remodelling process is initiated by physical forces which 

appear within the collateral arteriole after a marked increase in blood flow (Heil 

2006).  
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A variety of factors have been identified that are able to therapeutically stimulate 

arteriogenesis. While some of them reached clinical testing in pilot studies, others 

had to be abandoned in the preclinical phase due to significant side effects. For 

example, granulocyte-monocyte colony-stimulating factor (GM-CSF) is having 

positive effect on arteriogenesis via circulating cells. Although the mechanisms by 

which GM-CSF stimulates arteriogenesis remain partially unclear, both 

intravascular (Buschmann 2001) as well as subcutaneous (Schneeloch 2004) 

applications of GM-CSF have been shown to effectively stimulate arteriogenesis in 

animal model experiments. In the clinical setting, however, the equipotency of 

these administration routes remains questionable. In a pilot trial in patients with 

extensive coronary artery disease, Seiler et al. demonstrated a significant positive 

effect on coronary artery flow of a single intracoronary bolus of GM-CSF followed 

by a two week subcutaneous treatment period (Seiler 2001). In the START trial, 

van Royen et al. applied a similar treatment in patients with moderate to severe 

Figure 2. Collateral growth occurs in pre-existent arterioles (taken from Schaper, 
2003). Laser Doppler image of collateral blood flow in an anesthetized mouse with 
exposed upper thigh skeletal muscles with chronic occlusion (7 days) of the left femoral 
artery. Shown are 2 preexistent arterioles that exhibit a faintly visible flow signal but a 
very strong signal on the occluded side, ie, the effect of growth after 7 days of occlusion. 
1 indicates aorta; 2, A. iliaca; 3, A. femoralis; 4, A. pudenda externa; 5, A. profunda 
femoris; 6, A. tibialis posterior; and 7, A. saphena. 
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intermittent claudication. However, in this setting of peripheral artery disease no 

beneficial effect on the primary end point walking was observed (van Royen 2005).  

Another cytokine in preclinical testing for the enhancement of collateral artery 

growth is fibroblast growth factor (FGF). Infusion of this pluripotent cytokine into 

developing collateral circulation results in a strong stimulation of arteriogenesis 

(van Royen 2002). Exogenous application of FGF2 also results in a significant 

stimulation of collateral artery growth. After recombinant FGF2 was found to be 

safe and potentially efficacious in pilot studies, Lederman et al. reported in the 

TRAFFIC study of patients with intermediate claudication a significant 

improvement in the peak walking time 90 days after the first protein infusion 

(Lederman 2002). However, while the investigators observed a trend towards 

symptomatic improvement after 90 days, this effect diminished 180 days after the 

protein infusion and no beneficial effect on myocardial perfusion or exercise 

tolerance was detected.  

Local infusion of one of the most potent pro-arteriogenic cytokines – monocyte 

chemotactic protein-1 (MCP-1) – into the collateral circulation following femoral 

artery ligation in the rabbit has been shown to significantly enhance collateral 

artery conductance compared to a control group only receiving vehicle (Ito 1997). 

Unfortunately, since the efficacy of MCP-1 infusion was shown to depend on 

monocyte chemoattraction, van Royen et al. demonstrated that local infusion of 

MCP-1 in apolipoprotein E-deficient mice results indeed in systemic monocyte 

activation, increased neointima formation and change in plague composition 

towards an unstable phenotype in pre-existing lesions (van Royen 2003). 

 

It is difficult at this time point to rate the pro-arteriogenic compounds with regard 

to their chances of future success as most substances are in early phases of 

investigation. Moreover, the eligible patient population for angiogenic/arteriogenic 

therapies needs to be better identified, as previous trials often were focused on 

patients with severe coronary artery disease, where local application of drugs is 

difficult.  The limited success of all clinical studies so far demonstrate that besides 

compound selection the issues of dosage, drug delivery and choice of valid 

endpoints remain to be solved. 

 



- 15 -  

1.2. Physical forces regulating arteriogenesis 

Morphologically, collateral arteriolar enlargement is associated with a corkscrew-

like appearance that is thought to be the consequence of a growth in length 

between two fixed points (Schaper 1971; Heil 2004). In the re-entry region they 

join up with the distal part of the occluded artery at nonphysiological angles, 

which adds to their resistance against flow.  

Based on Poiseuille´s equation  

3

8

R

QµL
P

ππππ
====∆∆∆∆  

 

(Q = volumetric flow rate; µ = viscosity; L = length; R = radius), occlusion of the 

main artery will lead to an increase in resistance and to a significant drop in 

pressure distal to the stenosis. The resulting pressure gradient enhances blood flow 

through the vascular connections like the pre-existing collateral anastamoses 

between the high-pressure region proximal to the occlusion and the low-pressure 

region distal to the occlusion (Figure 3).  

 

 

Figure 3. Scheme of the ischemic hindlimb model (taken from Heil, 2007). The 
femoral artery is ligated distally to the bifurcation of the A. profunda femoris causing a 
decrease in blood pressures distal to the side of ligation. Blood flow is redistributed 
along the blood pressure gradient, thereby recruiting pre-existing collateral 
anastomoses. 
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Not surprisingly, physical forces previously have been identified to be instrumental 

for arteriogenesis (Pipp 2004). An increased blood flow directly augments fluid 

shear stress (FSS) which is sensed by the endothelial cells of the arteriole. Hence, 

one can assume that the altered blood flow after an arterial occlusion leads to 

increased FSS which in turn is the driving force for arteriogenesis (Unthank 1996). 

However, in physical terms FSS with a range of 10-100 dyn/cm2 is a much weaker 

force acting on the arterial wall than circumferential wall strain (CWS)  

w

RP
S itm
t ====  

(Ptm – pressure difference, Ri – inner radius, w – vessel wall thickness), which is 103-

104 times higher in this case (Schaper 2003). On the other hand, even a small 

increase in the radius of the collateral arterioles leads to a decrease in FSS 

because of the cubic relationship  

ππππ
ττττ

3

4

R

µQ====  

and hence, the FSS-related growth of the vessels ends prematurely (Schaper 2003). 

Moreover, proliferation of smooth muscle cells (SMCs) – critical for the remodelling 

of the vessel wall - is activated by an increase in pressure-related forces like CWS 

which is due to the volume-mediated distension of the vessel wall, but structurally 

weakened by matrix degradation. 

Taken together, collective evidence suggests that these two forces act together to 

alter the hemodynamics which govern arteriogenic remodelling (Scheel 1979; Pipp 

2004). This is consistent with the earlier proposed hypothesis by Price et al. that 

the maintenance of mean CWS values and the pressure-shear stress relationship 

are operative design principles for collateral arteriole development during 

physiological growth (Price 2002). 

 

1.3. Molecular mechanisms of arteriogenesis 

Presently it is not well understood how the stimulus of an increased biomechanical 

load is transmitted from the vascular cell membrane to the nucleus. The initial 

step of arteriogenesis – the elevation of shear stress - is thought to primarily affect 

the endothelial cells (ECs). Although the nature and location of the 
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mechanotransducer of shear stress are still controversial, it has been observed that 

vascular ECs lose volume control and swell due to the changes in the open 

probability of chloride channels (Ali 2002). 

Further, endothelial cells react by activating eNOS (Nishida 1992) and 

paradoxically with an increased expression of cytokines, such as MCP-1, GM-CSF 

and tumour necrosis factor-α (TNF-α) (Wahlberg 2003). Expression of selectins, 

intercellular adhesion molecules (ICAM-1 and -2) and vascular cell adhesion 

molecules (VCAM-1) is not only increased but they are also clustered in focal 

adhesion complexes (Scholz 2000). An increase in MCP-1 expression together with 

transforming growth factor-β (TGF-β) leads to the adhesion of monocytes (Hoefer 

2004; Lee 2004). And their binding  to the collateral surface is mediated by 

integrin receptors such as macrophage-1 antigen (Mac-1) and lymphocyte function-

associated antigen-1 (LFA-1). These heterodimeric molecules are counterparts of 

ICAM-1, -2 and VCAM-1 and their expression on monocytes can be up-regulated by 

growth factors (e.g. VEGF, PIGF, TGF-β) and chemokines like MCP-1 (Heil 2000; van 

Royen 2002; Pipp 2003). This pro-inflammatory differentiation of endothelial cells,  

which, however, cannot be the direct consequence of an increase in shear stress, 

finally leads to augmentation of the adhesion and recruitment of monocytes 

(Scholz 2000). 

Adhesion of monocytes that become activated during arteriogenesis is a 

prerequisite for the subsequent changes in the structure of the vessel wall 

(Schaper 1976). However, no radial growth of the arteriole can occur without a 

controlled reorganization of the original vessel architecture. After transformation 

to macrophages, monocytes produce fibronectin, proteoglycans, and proteases, 

which remodel the extracellular matrix.  These inflammatory cells also produce 

large amounts of vascular growth factors, essentially from the fibroblast growth 

factor (FGF) family, namely FGF-2 (basic FGF). One of the effects of FGF-2 binding 

to its receptor is the stimulation of endothelial and smooth muscle cell 

proliferation (Wahlberg 2003). Consequently, an active remodelling process takes 

place where the basic matrix is digested by matrix metalloproteinases (MMP-2, 

MMP-9) (Cai 2000). These proteases are up-regulated in the SMCs that 

simultaneously down-regulate the tissue inhibitor of matrix-proteases (TIMP-1).  
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Taken together, the described events are thought to increase mobility of the SMCs, 

which partially migrate into the intima, divide in situ or die by apoptosis (Scholz 

2001), resulting in radial growth of the vessel wall.  

 

1.3.1. Chemokines and arteriogenesis 

Chemokines (chemotactic cytokines) are important in leukocyte trafficking and 

influence a diverse array of normal and pathophysiologic processes including 

arteriogenesis, angiogenesis, and skeletal muscle regeneration (Charo 2004). 

Increasing evidence suggest that MCP-1–dependent recruitment of 

monocytes/macrophages is a rate limiting step in arteriogenesis and reperfusion of 

ischemic tissue.  MCP-1 (also known as chemokine ligand 2 - CCL2) belongs to the 

largest family of CC chemokines, known to attract mononuclear cells and first 

found at sites of chronic inflammation.  

Hindlimb ischemia studies using CCL2-/- mice have consistently documented a 

decreased restoration of perfusion (Voskuil 2004; Shireman 2007). Interestingly, 

several studies showed that knock-out of the MCP-1 receptor (CC chemokine 

receptor 2 - CCR2) also dramatically reduced arteriogenesis in adult animals (Heil 

2004), whereas few other studies reported the opposite - similar perfusion in CCR2 

deficient mice compared to control mice (Tang 2004). Perhaps, MCP-1 functions 

through receptors other than CCR2, and the loss of MCP-1 signalling via these 

undefined receptors may be responsible for the delayed restoration of perfusion in 

CCR2-/- mice. Moreover, CCR2-/- mice exhibit increased CCL2 in tissue compared 

with control mice in response to hindlimb ischemia (Contreras-Shannon 2007) 

which may allow binding to alternative receptors not normally activated at 

physiological levels of MCP-1 (Shireman 2007).   

Furthermore, it has been reported earlier that the infusion of MCP-1 leads to an 

increased monocyte accumulation in the walls of collateral arteries and an 

increase in collateral artery formation in the hindlimbs of MCP-1—treated animals 

compared with controls 7 days post femoral artery ligation (Ito 1997).  

Although these data suggest that chemokines such as MCP-1 are important in 

collateral artery formation, involvement in other processes occurring 

simultaneously in the adductor muscle cannot be excluded (Lee 2004). 
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1.3.2. Transcriptional regulation of MCP-1 

Multiple signalling mechanisms have been reported to be involved in MCP-1 gene 

expression in vascular cells (Shyy 1993; Roebuck 1999; Goebeler 2001) including 

but not limited to the activation of phosphatidylinositol-3-OH kinase, Akt/protein 

kinase B, phospholipase C, p60src-Ras, protein kinase C, and tyrosine kinases in 

response to a variety of stimuli like cytokines, mitogens or mechanical strain. 

These may ultimately be transmitted to the nucleus through the activation of 

mitogen-activated protein (MAP) kinases and transcription factors such as nuclear 

factor-kappa B (NF-κB) and activator protein-1 (AP-1) (Beyaert 1996; Whitmarsh 

1996; Cho 2002). These transcription factors have also been shown to contribute to 

the hemodynamic forces-induced gene expression (Wung 1997; Takemura 2004; Wu 

2007), and particularly to the cytokine-dependent induction of MCP-1 in human ECs 

(Martin 1997).  

The promoter region of the human MCP-1 gene contains putative consensus binding 

sites for a variety of transcription factors (Ueda 1994). Likewise, the triphorbol 

acetate response element (TRE), which is recognised by the AP-1 heterodimer c-

Jun and c-Fos, and/or NF-κB consensus sequence upstream of the transcription 

start site are involved in the control of MCP-1 gene expression in various cell types 

in response to diverse extracellular stimuli (Ueda 1994; Martin 1997). It has been 

suggested that the differential activation and binding of inducible transcription 

factors such as AP-1 and NF-κB to the promoter regions of chemokine genes 

provides a critical regulatory mechanism by which the chemokine can be 

selectively expressed in a cell type and stimulus-specific manner (Roebuck 1999).  

Several reports demonstrated that AP-1 is activated in vascular cells through an 

increase in static or cyclic stretch (Kumar 2003; Mitchell 2004). Accumulating 

evidence, however, suggest that reactive oxygen species (ROS) may act as second 

messengers in these cells exposed to the stretch stimulus (Satriano 1993; Lo 1996). 

Earlier studies by Wung et al. (Wung 1997) showed that MCP-1 expression is 

directly mediated by strain-induced ROS formation in vascular endothelial cells. 

For example, the antioxidant enzyme catalase, co-incubated with strained ECs, 

abolished strain-induced MCP-1 expression but had no effect on expression in static 

cells. Moreover, cyclic strain as well as H2O2 treatment induced AP-1 DNA binding 

activity, and this could be attenuated by antioxidant pretreatment of strained ECs. 



- 20 -  

These observations suggest that cyclic strain-induced MCP-1 expression involves 

ROS-dependent activation of the AP-1 binding sites in the MCP-1 promoter region.   

 

1.4. Aims of the study 

The induction of the expression of MCP-1 during the onset of arteriogenesis seems 

to be a key trigger in the remodelling process of collateral arterioles occurring 

after occlusion of the main artery.  Thus, the first aim of this study was to analyze 

the arteriogenic remodelling process by employing two different in vivo mouse 

models – hindlimb ischemia and ear artery ligation models and in particular to 

analyze at which time point MCP-1 expression is up-regulated in the collateral 

arterioles following artery occlusion.  

The second aim was to establish a perfusion model in situ which allowed studying 

the impact of different biomechanical forces on gene expression in situ. In this 

context, MCP-1 expression should be induced by pro-arteriogenic flow conditions 

and the cellular source of MCP-1 identified.  

The third aim was to analyse in detail how application of shear stress and cyclic 

stretch – a surrogate of circumferential wall strain – individually affects expression 

of MCP-1 in vascular both endothelial and smooth muscle cells in vitro.  

Based on these results, the final approach was aimed at characterising the 

transcriptional mechanism leading to MCP-1 expression during the onset of 

arteriogenesis.  

If successful, this study should provide new insights into the mechanism of the 

arteriogenic remodelling process and the role of MCP-1 expression during its early 

phase. The investigation would then contribute to a better understanding of the 

initiation of arteriogenesis and possibly pave a way towards an induction of this 

remodelling process as a new alternative treatment for occlusive vascular diseases.  



- 21 -  

2. Materials 

2.1. Antibodies 

All antibodies used for protein detection are listed in the Table 2.1. In case of 

using the DakoCytomation EnVisionTM+System-HRP (DAB) Kit, antibodies specifically 

for this kit were used according to the manufacturer’s instructions. 

Table 2.1. Antibodies used for protein detection 

Name Source 

Anti α-smooth muscle 
actin 

mouse monoclonal 
(clone 1A4) 

Dianova (Hamburg, Germany) 

Anti CD31  
rat polyclonal 

(clone MEC 13.3) 
Santa Cruz Biotechnology®, Inc. (Heidelberg, Germany) 

Anti MCP-1  
rabbit polyclonal 

AbCam® (Cambridge, UK) 

Anti F4/80  
rat polyclonal 

Dianova 

Anti-rat biotinylated DakoCytomation (Hamburg, Germany) 

 

2.2. Cell culture 

All medium and substances used for cell culture are listed in the Table 2.2. 

Table 2.2. Medium and substances for cell culture 

Medium and 
substances 

Source 

M199 InvitrogenTM (Karlsruhe, Germany) 

SMC growth media Promocell® (Karlsruhe, Germany) 

D-MEM InvitrogenTM  

Suplemental Mix Promocell® 

0.05% Trypsin/ 0.2% 
EDTA 

InvitrogenTM 
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Penicillin InvitrogenTM 

Streptomycin InvitrogenTM 

Fungizone InvitrogenTM 

FCS InvitrogenTM 

Hank’s BSS PAA (Cölbe, Germany) 

Dispase Boehringer (Mannheim, Germany) 

Gelatine Sigma-AldrichTM (Steinheim, Germany) 

Collagenase Sigma-AldrichTM 

Polyvinylpyrrolidone Sigma-AldrichTM 

 

2.3. Bacteria and plasmid vectors 

Bacterial strains and plasmid vectors used for cloning and maintenance of plasmids 

constructs are listed in Table 2.3  

Table 2.3. Bacterial E. coli strains and plasmid vectors 

A. Bacterial strain 

Strain Company Genotype 

Top 10 F 
InvitrogenTM 

(Karlsruhe, Germany) 

F´{lacIq Tn10 (TetR)} mcrA ∆(mrr-hsdRMS-
mcrBC) Φ80lacZ∆M15 ∆lacX74 recA1 

araD139 ∆(ara-leu)7697 galU galK rpsL endA1 
nupG 

B. Plasmid vector 

Vector Company Properties 

pCR®2.1-
TOPO® 
3.9 Kb 

InvitrogenTM 
pUC origin, Ampicillin & Kanamycin resistance 

genes, lacZα reporter, T7 RNA polymerase 
promoter, TA cloning site. 
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2.4. Primers 

Primers used for real-time PCR gene expression analyses are listed in Table 2.4. 

Table 2.4. Primers for real-time PCR 

Gene product 
Expected 
fragment 
length (bp) 

Annealing 
temperature 

(°C) 
Primer (forward/reverse) 

Mouse RPL32 63 60 
GGGAGCAACAAGAAAACCAA 
ATTGTGGACCAGGAACTTGC 

Mouse CD31 96 55 
GAGCCCAATCACGTTTCAGTTT 
TCCTTCCTGCTTCTTGCTAGCT 

Mouse MCP-1 64 60 
TTCCTCCACCACCATGCAG 
CCAGCCGGCAACTGTGA 

Mouse ICAM-1 49 60 
ATCTCAGGCCGCAAGGG 
CGAAAGTCCGGAGGCTCC 

 

 

2.5. Decoy oligodeoxynucleotides 

Decoy oligodeoxynucleotides used for decoy experiments are listed in table 2.5. 

Sequence specific decoys were manufactured by IBA (Göttingen, Germany). 

Table 2.5. Decoy oligodeoxynucleotides 

Name of decoy 
Sequence (forward/reverse) 

(“*” indicates phosphorothioate-bonded bases) 

AP-1 
G*T*G*CTGACTCAG*C*A*C 
G*T*G*CTGAGTCAG*C*A*C 

Mutated AP-1 
G*T*G*CTTACTTAG*C*A*C 
G*T*G*CTAAGTAAG*C*A*C 

STAT-1 
C*A*T*GTTATGCATATTCCTGTAA*G*T*G 
C*A*C*TTACAGGAATATGCATAAC*A*T*G 

Mutated STAT-1 
C*A*T*GTTATGCAGACCGTAGTAA*G*T*G 
C*A*C*TTACTACGGTCTGCATAAC*A*T*G 
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2.6. Kits 

All kits used are outlined in Table 2.6. 

Table 2.6. Kits used throughout this project 

Name Source 

A. Nucleic acid purification kits 

RNeasy® Mini Kit Qiagen (Hilden, Germany) 

QIAPrep® Spin Miniprep Kit Qiagen 

B. RT-PCR kits 

Sensiscript® Kit Qiagen (Hilden, Germany) 

Omniscript® Kit Qiagen 

QuantiTect SYBR Green® Kit Qiagen 

C. PCR cloning kits 

TOPO TA Cloning® kit InvitrogenTM (Karlsruhe, Germany) 

D. Protein detection kits 

EnVisionTM+System-HRP (DAB) 
Kit 

DakoCytomation (Hamburg, Germany) 

 

2.7. Analysis software and online tools  

Table 2.7. Software and online tools  

Program Use Reference 

A. Software 

Cell^R Imaging analysis Olympus (Hamburg, Germany) 

analySIS^D version 
5.0 

Imaging analysis Olympus Soft Imaging Systems GmbH 

InStat® version 
3.06 

Statistical analysis Graph Pad Software Inc. 

PhotoImpact XL Imaging analysis Ulead Systems, Inc. 
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Program Use Reference 

B. Online tools 

BLAST 
Finding similar 

sequences 
http://www.ncbi.nlm.nih.gov/BLAST 

Primer3 Primer design http://primer3.sourceforge.net/ 

 

2.8. Buffers and stock solutions 

2.8.1. Histological buffers and stock solutions 

Ringer solution 

154 mM NaCl 
5.6 mM KCl 
2.4 mM CaCl2 
6.0 mM NaHCO3 
 
Zinc fixative solution 

0.1 M Tris-HCl pH 7.4 
3.2 mM Ca(CH3COO)2•H2O 
22.8 mM Zn(O2CCH3)2(H2O)2 
35.9 mM ZnCl2 
 
Coloured pigment solution  

8 g HKS Gouache 318 (Schmincke, Germany) 
50 ml zinc fixative solution 

Coloured particles are dissolved by mechanical mixing and homogenized by using 
ultrasound. 
 

2.8.2. Cell biology buffers and stock solutions 

Dispase solution 

5 g lyophilised extract 
1.6 l dH2O 
 
Solution is sterile filtrated. 
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2.8.3. Molecular biology solutions 

TEN Buffer  

100 mM NaCl  
10 mM Tris pH 7.5  
1mM EDTA  

 
LB (Luria-Bertani) Medium  

To 950 ml dH
2
O add:  

Bacto-tryptone 10 g  
Bacto yeast extract 5 g  
NaCl 10 g  
 
Solutes are dissolved and pH is adjusted to 7.0 with 5 M NaOH. The volume is 
adjusted then to 1L with dH

2
O and the solution is sterilised by autoclaving for 20 

min at 15 lb/square inch.  
 
LB agar  

15 g agarose 
1l LB-medium 
 
Sterilisation as described above.  
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3. Methods 

3.1. In vivo and in situ models 

All animal studies were performed with permission of the Regional Council 

Karlsruhe and conformed to the Guide for the Care and Use of Laboratory Animals 

published by the US National Institutes of Health (NIH Publication No. 85-23, 

revised 1996). 

 

3.1.1. Hindlimb ischemia model 

At least 24 weeks old male NMRI mice were anesthetized with isoflurane and the 

femoral artery was ligated just distal to the origin of the deep femoral artery using 

a 6-0 surgery silk suture The wound was closed and animals were allowed to 

recover. On day 1 or 7 after surgery, the mice were euthanized and the left 

ventricle of the heart was cannulated and perfused for 2 min at 90-100 mm Hg 

with Ringer solution containing 0.1% adenosine and 0.05% BSA (w/v) at 37°C 

followed by zinc fixative containing a colored pigment that cannot pass the 

capillary system. The hindlimbs were then dissected and processed for RNA and 

histological analyses.  

 

3.1.2. Ear artery ligation model 

For ligation of the mouse ear artery at least 24 weeks old male NMRI mice were 

anesthetized as described for the hindlimb ischemia model. The mouse ear is 

usually supplied by three, occasionally four neurovascular bundles, each consisting 

of an artery, a large vein and a nerve. Three to four consecutive orders of vessels 

with decreasing diameters originate from the major Y-shaped vascular branches 

which then drain into the capillaries (Barker 1989). First order arteries in the 

center of the ear were ligated by using 6-0 surgery silk sutures. Seven days after 

surgery, the mice were euthanized and the vasculature perfused through the left 

ventricle of the heart as described above. 
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3.1.3. Visualization of the arterial system 

Perfused mouse hindlimb and ear specimens were postfixed in zinc fixative (18 

hours) and dehydrated using a series of alcohol and isopropanol: 1 hour incubation 

in 70%, 85% and 95% ethanol each followed by 1 hour incubation in isopropanol. 

Tissues were then incubated in a mixture of benzyl alcohol and benzyl benzoate 

(1:1, v/v) having the same refractive index of the tissue for at least 18 hours. This 

procedure induces transparency of the tissue and allows detailed analysis of the 

pigment-loaded arterial system (Barker 1989) (Figure 4). The diameter of the 

collateral arterioles was measured by using the morphological analysis software 

Cell^R from Olympus at at least 3 different sites of an individual arteriole. 

 

   

 

 

 

Before perfusion After perfusion 

Selective arterial perfusion: 
Arteries filled with pigments 

Blood in arteries and veins 

V A 

Figure 4. Visualization of the arterial vasculature in the ear artery ligation model. 
The arterial system of the mouse can selectively be visualized by perfusion with 
pigmented particles that cannot pass the capillary system.  
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3.1.4. Perfusion of isolated branches of mouse mesenteric artery 

Animals were sacrificed and the ileum together with branches of superior mesenteric 

artery and vein were dissected. Second order branches of the mesenteric artery 

were excised and inserted into the perfusion chambers of the Culture Myograph 

system (DMT, Copenhagen, Denmark). The chambers were placed in an incubator at 

37°C and 5% CO2, and the branches of the arteries were continuously perfused for 6 

hours with D-MEM medium containing 15% FCS at a longitudinal pressure gradient of 

20 mm Hg with a flow of ~0.07 mL/min or at a pro-arteriogenic pressure gradient of 

50 mm Hg with a flow of ~0.17 mL/min (Figure 5).  

 

 

Figure 5. The in situ perfusion model mimics the hemodynamic situation of the collateral 
arterioles after occlusion of the main artery. Perfusion of isolated second order branches of 
the mouse mesenteric artery was performed under control conditions (∆P=20 mm Hg, flow 
~0.07 mL/min) and under pro-arteriogenic conditions (∆P=50 mm Hg, flow ~0.17 mL/min), 
resembling the increased flow in the collateral arterioles following occlusion of the femoral 
artery. 
 

Control: 

∆∆∆∆P 20 mm Hg 

Ligation: 

∆∆∆∆P 50 mm Hg 

 

Pressure gradient  

Control conditions, low flow 

70 
mmHg 

50 
mmHg 

 

Pressure gradient  

„Arteriogenic“ conditions,high flow 

70 
mmHg 

20 
mmHg 

70-80 mmHg 

50-60 mmHg 

10-20 mmHg 

70-80 mmHg 
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The functional and cellular integrity of the segments was routinely checked by their 

vasodilator response to acetylcholine (5 µM) and by immunohistochemical staining 

for the endothelial cell marker CD31 (Figure 6). 

 

 

 

3.2. Cell biology methods 

3.2.1. Culture of human umbilical vein endothelial cells (HUVECs) 

Human umbilical vein endothelial cells were isolated from freshly collected 

umbilical cords with the consent of parents. The procedure has been approved by 

the Local Ethical Committee (document number 336/2005). Umbilical veins were 

flushed with Hank’s buffer solution, filled with 10 ml dispase solution (3,1 g/l) and 

incubated for 30 min at 37°C. Veins were then flushed with 40 ml M199 medium 

which was collected in a 50-ml tube, the cell-containing medium was centrifuged 

at 1000 rpm for 5 min. The pellet was resuspended in M199 medium containing 20% 

fetal bovine serum, 50 U/ml penicillin, 50 µg/ml streptomycin and 0.25 µg/ml 

Fungizone® antimycotic, and supplemented with endothelial cell growth 

supplement. The cells were routinely cultured on plastic dishes coated with 2% 

gelatine or collagen type I coated BioFlex elastomers. Culture medium was 

changed every third day. 

 

A B 
M A M A 

CD31 

∆∆∆∆P 20 mmHg ∆∆∆∆P 50 mmHg 

Figure 6. Analysis of CD31 expression in isolated perfused small mouse arteries. 
Representative immunohistochemical staining (brown colour) of the endothelial cell 
marker CD31 in second order branches of the mesenteric artery verified the integrity of 
the endothelial cell monolayer after perfusion (6 hours) under control (∆P = 20 mmHg, 
low flow, A) and pro-arteriogenic (∆P = 50 mmHg, high flow, B) conditions (M – media; A 

– adventitia; scale bar=10 µm). 



- 31 -  

3.2.2. Culture of mouse smooth muscle cells  

Mouse smooth muscle cells were isolated from branches of the mouse mesenteric 

artery. The branches of the artery were dissected, cut into to fragments, washed 

several times with Hank’s BSS solution and transferred to a 40 mm Petri dish 

containing 250 µl of 1% collagenase solution and 1.4 ml mixture (1:1) of smooth 

muscle cell medium with D-MEM and 2,5% supplemental mix.  

Petri dishes with the fragments of mesenteric arteries were placed in an incubator 

at 37°C with 5% CO
2 
to allow hydrolysis of the extracellular matrix overnight (14-16 

hours). Isolated cells were then centrifuged for 5 min at 1000 rpm and were re-

suspended in 2 ml mixture (1:1) of smooth muscle cell medium with D-MEM and 

2,5% supplemental mix. Cells were allowed to adhere and the medium was 

changed every 4 days thereafter. After passage one the smooth muscle cells were 

cultured in D-MEM containing 15% fetal bovine serum, 50 U/ml penicillin, 50 µg/ml 

streptomycin and 0.25 µg/ml Fungizone® antimycotic. The phenotype of the cells 

was confirmed by anti-mouse α-smooth muscle actin immunofluorescent staining 

(Figure 7). 

 

 

 

 

Figure 7. Analysis of the phenotype of cultured mouse smooth muscle cells. 

Representative immunofluorescent staining for the smooth muscle cell marker α-smooth 
muscle actin (B; red fluorescence - α-SMA; blue - nuclei) in the cultured smooth muscle 

cells (A) isolated from mouse mesenteric artery. 

A B 
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3.2.3. Plating and passage of smooth muscle cells (enzymatic hydrolysis) 

Confluent cultures of smooth muscle cells were washed with serum free D-MEM 

medium, incubated with 0.05% trypsin/0.02% EDTA solution for 5 min at 37°C, re-

suspended in M199 and spun at 1000 rpm for 5 min. Thereafter, the supernatant 

was carefully removed and mSMCs were re-suspended in D-MEM with 15% FCS, 50 

U/ml penicillin, 50 µg/ml streptomycin and 0.25 µg/ml Fungizone® antimycotic. 

For the experiments described, cells of passage 3 to 4 were used throughout.  

 

3.2.4. Application of shear stress and cyclic stretch 

Confluent cultured human vascular endothelial cells were exposed to laminar shear 

stress (30 dyn/cm2) by using a cone-and-plate viscometer (Cattaruzza 2004) (Figure 

8). Shear stress stimulated and static control monolayers were cultured in the 

same medium for each experiment. One hour prior to the experiment the medium 

was changed to M199 containing 20% FCS and 6% polyvinylpyrrolidone to increase 

the viscosity of the medium. 

 

 

Application of cyclic stretch onto human vascular endothelial cells and human and 

mouse smooth muscle cells was performed by using a microprocessor controlled 

vacuum pump (FX-3000 FlexerCell Strain Unit, Flexcell, Hillsborough, NC). Both 

Figure 8. Scheme of the cone-and-plate viscometer. The essential components consist 
of a teflon cone with an angle of 0.5° rotating over a stationary base plate, which 
supports either 60 mm or 100 mm diameter polystyrene plates. The entire apparatus is 

maintained at 37°C in a humidified 5% CO2 and 95% air atmosphere.  

HUVEC 
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cell types were cultured on BioFlex collagen type I 6-well plates (Figure 9), for 

primary cultured HUVECs the plates were coated with gelatin (2 mg/ml gelatin in 

0.1 M HCl for 30 min at 37°C). Stretching was performed with 15% cyclic elongation 

at frequency of 0.5 Hz, which corresponds to the physiological maximum 

deformation in the human carotid artery (Perktold 1995).   

 

 

 

3.2.5. Stimulation of cultured cells with Idebenone or glucose oxidase  

Cells were stimulated with glucose oxidase reagent (final concentration 12 mU/ml, 

Sigma-Aldrich) or with Idebenone reagent (final concentration 3 µM, Takeda 

Pharma AG). For one well of a 6-well plate 2 µl of glucose oxidase in dH2O or 

Idebenone in DMSO was added to a medium volume of 2 ml. Cells were kept at 

37°C and 5% CO2 at static conditions or exposed to cyclic stretch for 6 hours. 

 

3.3. Molecular biology methods 

3.3.1. Isolation of total RNA 

Total RNA was isolated from cultured cells, individually excised collateral 

arterioles and isolated branches of mouse mesenteric arteries using the RNeasy® 

kit according to the manufacturer’s instructions. An aliquot of 13 µl of RNA was 

used to make single-stranded (ss) cDNA for RT-PCR reactions (3.3.2.).  

 

Figure 9. Scheme of the BioFlex collagen type I elastomer. BioFlex culture 6-well plates 
are fixed in the BioFlex baseplate and maintained at 37°C in a humidified 5% CO2, 95% air 
atmosphere. The computer-regulated bioreactor applies cyclic tensile stain to the cells by 
using regulated vacuum pressure to deform the flexible-bottomed culture plates 
producing up to 30% substrate elongation. 
.   

HUVEC / SMC 

cyclic stretch  
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3.3.2. RT-PCR 

Conventional RT-PCR was performed by using Oligo(dT)15 primers (Promega, 

Mannheim, Germany) and the Sensiscript® kit for material from the isolated mouse 

arteries or the Omniscript® kit for material from the cultured cells and the 

dissected mouse arterioles according to the manufacturer’s instructions. 

 

3.3.3. Measurement of RNA/cDNA concentration 

Measurement of RNA and cDNA concentrations was performed by using the 

NanoDrop® ND-1000 spectrophotometer. For quantitative real-time PCR analysis 80 

pg - 1 ng of cDNA was used (3.3.4.).  

 

3.3.4. Quantitative real-time PCR 

Real-time PCR was carried out in a LightCycler instrument (Roche Diagnostics, 

Penzberg, Germany) by using the QuantiTect SYBR Green® kit according to the 

manufacturer’s instructions. Standard cDNA probes for quantitative analysis were 

generated by using the TOPO TA Cloning® kit (3.3.5.1.). As an internal standard 

the ribosomal protein L32 (RPL32) or the endothelial cell marker platelet 

endothelial cell adhesion molecule-1 (PECAM-1 or CD31) were chosen. 

 

3.3.5. TOPO cloning 

Amplified DNA fragments of the desired molecules were cloned into the pCR® 

TOPO 2.1 vector (3.9 Kb) using the TOPO TA Cloning® Kit according to the 

manufacturer’s instructions. Plasmids containing the inserts were amplified further 

(3.3.5.1.). 

 

3.3.5.1. Transformation of competent bacteria 

pCR® TOPO vector with insert was mixed with 20 µl of Top10FTM competent cells in 

a 1.5 ml Eppendorf tube and incubated on ice for 30 min. Thereafter, cells were 

submitted to the heat shock at 42°C for 40 s, and placed back on ice. Two hundred 

and fifty µl of SOC medium was added to the cells and the suspension incubated at 

37°C for 1 h with shaking at 300 rpm. Sterile LB-agar medium with 20 µg/ml of 
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ampicillin in Petri dishes was pre-warmed to 37°C and 25 µl and/or 75 µl of 

transformed competent cells were plated onto the dishes. Plates were then 

incubated at 37°C overnight to allow bacterial colonies to grow. 

 

3.3.5.2. Plasmid mini-cultures and plasmid purification 

Transformed colonies of Top10FTM competent cells were picked by using a sterile 

pipette tip and added to 3 ml of LB Broth (with appropriate antibiotic) in 15 ml 

falcon tubes. Caps of the falcon tubes were perforated to allow air to circulate 

through the tube. These cultures were then incubated at 37°C with shaking 

overnight.  

Plasmids grown in minicultures were purified using the QIAPrep® Spin Miniprep Kit 

according to the manufacturer’s instructions. 

 

3.3.6. Decoy oligodeoxynucleotide technique 

3.3.6.1. Hybridization of decoy oligodeoxynucleotides 

Equal volumes of single-stranded phosphorothioate-bonded decoy 

oligodeoxynucleotides (dODNs) were mixed and melted at 95°C for 5 min in a 

water bath. The dODNs were then allowed to cool down to approximately 30°C in 

the water bath. The efficiency of the hybridization reaction was verified with 2.5% 

agarose gel electrophoresis in comparison with the single stranded 

oligodeoxynucletides and usually found to exceed 95% (Figure 10). 

 

 

Figure 10. Hybridization of dODNs. Exemplary agarose gel depicting single-stranded 
(ss) vs. hybridised double-stranded (ds) oligodeoxynucleotide.  

 

AP-1 dODN 

ss        ds ODN 

STAT-1 dODN 

ss        ds ODN 



- 36 -  

3.3.6.2. Administration of the decoy oligodeoxynucleotides  

The transcription factor decoys are molecules that mimic the binding sites for 

transcription factor proteins, and compete with promoter regions to absorb this 

binding activity in the cell nucleus (Figure 11). 

Cultured mSMCs and isolated mouse arteries were transfected with naked ODNs (10 

µmol/L), i.e. without using any cationic lipid or liposomal complex for 4 hours at 

37°C.  

For local application in vivo, hybridized ODNs were mixed with Unguentum 

emulsificans to yield a final concentration of 0.25% (w/v) and 20 mg of this mixture 

was homogeneously spread across the surface of the mouse ear one day before, 

directly after occlusion of an artery, and then every second day thereafter until 

euthanization of the animals on day 7. 

 

 

 

 

 

 

Figure 11. Transcription factor-decoy strategy (taken from Mann, 2005). 
Transcription factor decoys mimic the sequence specific binding sites for transcription 
factor proteins that are found in the promoter regions of target genes. Delivery of the 
decoy to the cell leads to binding of the transcription factor and prevention of 

transactivation (or suppression) of the target gene. 
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3.4. Protein biochemistry methods 

3.4.1. Immunohistological analysis 

Immunohistochemical and immunofluorescence staining for MCP-1, CD31 or F4/80 

was performed on 5-µm paraffin or frozen sections by using the polyclonal rabbit 

anti-mouse MCP-1 and rat anti-mouse CD31 antibody in combination with an 

enhanced detection method (Envision™, DAKO, Hamburg, Germany) and 3, 3 -

diaminobenzidine (DAB) as a substrate; or the polyclonal rat anti-mouse F4/80 

antibody with biotinylated rabbit anti-rat antibody and Streptavidin-RPE (DAKO) 

according to the manufacturers instructions. Nuclei were visualized by Mayer´s 

hemalaum counter stain or Hoechst dye 33258. MCP-1 staining intensity was 

determined by using the Cell^R software analyzing at least two different sections 

per experimental group and animal. Exposure times during digital imaging were 

kept constant. 

 

3.4.2. Dihydroethidium staining 

Detection of reactive oxygen species (ROS) by using dehydroethidium (DHE), which 

is rapidly oxidized by ROS into its derivative ethidium bromide, was performed 

with cells cultured on elastomers or with freshly prepared 5-7 µm frozen sections. 

Dihydroethidium was added onto the sections or into the cell culture medium at a 

final concentration of 5 µM in PBS. After 30 min of incubation at 37°C, sections or 

cells were washed with PBS and covered with coverslips. Fluorescence intensity 

was determined as described above.  

 

3.4.3. Bandeiraea lectin staining 

To visualize blood vessels in whole mount preparations of mouse tissues, 200 µl of 

biotinylated Bandeiraea (BS-I) lectin labelled with FITC was injected intravenously 

into the tail vein of anesthetized mice and allowed to circulate for 3-5 min. 

Thereafter, animals were sacrificed and perfused through the left ventricle of the 

heart with Ringer solution followed by 1% paraformaldehyde (PFA) solution. 

Arterioles from mouse hindlimbs were dissected from adductor, medial large and 
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gracilis muscles and the fluorescence was detected by confocal microscopy as 

described above.  

 

3.4.4. ELISA 

The concentration of MCP-1 protein in supernatants from mSMCs and HUVECs was 

determined by ELISA kits from R&D Systems® according to the manufacturer’s 

instructions. The human MCP-1 immunoassay was carried out with 1:10 diluted 

media samples and the mouse MCP-1 immunoassay with the media samples diluted 

1:5. For both assays, the values obtained under control conditions were set to 

100%.  

 

3.5. Statistical analysis 

All results are expressed as means±SEM. Differences between experimental groups 

were analyzed by unpaired Student’s t-test using the Instat™ version 3.06 statistics 

software package (Graph Pad Software, San Diego, CA, USA). P-values < 0.05 were 

considered statistically significant. 
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4. Results 

4.1. Hind limb ischemia model 

4.1.1. Arteriogenic remodelling is characterized by an increase in diameter of 

collateral arterioles after femoral artery ligation 

In order to analyze the arteriogenic remodelling process of collateral arterioles in 

mouse hindlimbs, the femoral artery was ligated just distal to the origin of the 

deep femoral artery. The growing collaterals in the hindlimb follow a constant 

course on the surface of the adductor muscles facilitating their identification in 

transparent tissue and histological preparations (Scholz 2002; Deindl 2003). On day 

7 after femoral artery ligation the remodelled collaterals were easily identified by 

their corkscrew-like morphology (Figures 12A-B, arrows) and increase in diameter 

(Figure 12C).   
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Figure 12. Analysis of collateral arteriolar remodelling in the mouse hindlimb. 
Images of particle-perfused transparent mouse hindlimbs (A, sham operated; B, ligated, 
scale bar=1 mm). Arteriogenic remodelling of collateral arterioles is indicated by their 

tortuous morphology (arrows) and increased diameter (C, **P<0.01 vs. sham, n=5). 
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4.1.2. MCP-1 is one of the first molecules up-regulated during the onset of 

arteriogenesis 

The remodelling process of collateral arterioles after femoral artery ligation in 

mouse hindlimbs was accompanied by an increase in the expression of MCP-1 which 

was observed by using real-time PCR analysis already at 24 hours as well as 7 days 

post ligation (Figure 13A). Due to the defined and thus predictable anatomy of 

collateral arterioles in the mouse hindlimb, expression of MCP-1 in these vessels 

could also be analyzed 24 hours after ligation of the femoral artery even without 

establishing their tortuous morphology.  Similarly, the expression of ICAM-1, 

another well known gene product the up-regulation of which is associated with 

arteriogenesis (Hoefer 2004; Hur 2007), was also up-regulated 7 days post 

occlusion in the remodelling collateral arterioles (Figure 13B). ICAM-1 is expressed 

mainly in endothelial cells, therefore analysis of its mRNA abundance was 

normalized by using the endothelial cell marker CD31. 
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Figure 13. Expression of MCP-1 and ICAM-1 in collateral arterioles undergoing 
arteriogenesis in mouse hindlimbs after femoral artery ligation. Quantitative 
real-time PCR analyses of MCP-1 (A, *P<0.05 vs. sham, ##P<0.01 vs. sham, n=5) and 
ICAM-1 (B, **P<0.01 vs. sham, n=5) expression in individual arteriogenic arterioles 
after femoral artery occlusion in the hindlimb ischemia model in mice (MCP-1/RPL 
and ICAM-1/CD31 ratio under control conditions was set to 100%).  
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4.2. Ear artery ligation model 

4.2.1. Arteriogenic remodelling in the mouse ear is characterized by an 

increase in number and diameter of corkscrew-like arterioles after artery 

occlusion  

In order to analyse the arteriogenic remodelling process more closely, a mouse ear 

artery ligation model was employed. Similar to the hindlimb ischemia model, 

ligation of one first order mouse ear artery resulted in an increase in diameter 

(Figure 14C) as well as the number (Figure 14D) of corkscrew-like collateral 

arterioles (Figures 14B, arrows).  
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Figure 14. Analysis of collateral arteriolar remodelling in the mouse ear. Images of 
particle-perfused transparent mouse ears (A, sham operated; B, ligated, scale bar: 0.5 
mm) 7 days after arterial occlusion. Arteriogenic remodelling of collateral arterioles is 
indicated by their tortuous morphology (arrows), increased diameter (C, *P<0.05 vs. 

sham, n=5) and number (D, *P<0.05 vs. sham, n=5). 
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4.2.2. Adaptive remodelling of collateral arterioles after ear artery ligation is 

accompanied by an increased expression of MCP-1 and ICAM-1 

The expression of MCP-1 and ICAM-1 in single isolated collateral arterioles from the 

mouse ear was analyzed as well by using real-time PCR analysis. Likewise, 

expression of MCP-1 (Figure 15A) and ICAM-1 (Figure 15B) in corkscrew-like 

collateral arterioles from the mouse ear 7 days post artery occlusion was 

significantly increased compared to collaterals isolated from sham-operated ears.   

  

 

 

 

 

4.3. Perfusion model of isolated branches of the mouse mesenteric 

artery  

4.3.1. Pro-arteriogenic perfusion conditions up-regulate MCP-1 expression in 

vascular smooth muscle cells  

To mimic the changes in arteriolar perfusion which occur after occlusion of the 

femoral artery, an in situ perfusion model was established. This model is mainly 

based on the fact that mean arterial pressure distal to the site of occlusion drops 
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Figure 15. Expression of MCP-1 and ICAM-1 in arteriogenic collateral arterioles 
isolated from the mouse ear.  MCP-1 (A, *P<0.05 vs. sham, n=5) and ICAM-1 (B, *P<0.05 
vs. sham, n=5) expression in isolated control and arteriogenic arterioles was determined 
by real-time PCR analyses in the mouse ears (MCP-1/RPL32 and ICAM-1/CD31 ratios 
under control conditions were set to 100%).  
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thereby increasing the pressure difference between both ends of the collateral 

arterioles (Helisch 2003; Heil 2004). As a result of the experimentally set pressure 

gradient (50 mm Hg vs. 20 mm Hg), flow increased proportionally to the difference 

in pressure from ~0.07 ml/min to ~0.17 ml/min in the isolated perfused second 

order branches of the mouse mesenteric artery. Immunohistochemical analyses 

revealed an increased abundance of MCP-1 in the media of these segments upon 

perfusion under pro-arteriogenic conditions for 6 hours (compare Figures 16A and 

B).  

 

 

 

To localize the source of MCP-1 expression in the perfused branches of the 

mesenteric artery, the endothelial cell layer was mechanically removed by 

denuding the vessels just after termination of perfusion. Immunohistochemical 

analyses confirmed the increase in MCP-1 abundance in the media upon perfusion 

under pro-arteriogenic conditions (compare Figures 17A and B).  

 

A B 
M A 

M A 

MCP-1 

∆∆∆∆P 20 mmHg ∆∆∆∆P 50 mmHg 

Figure 16. Analysis of the expression of MCP-1 in isolated perfused small mouse 
arteries. Immunohistochemical staining of MCP-1 (brown colour) revealed an increased 
abundance of the cytokine in the media upon exposure to an increased pressure 
gradient (B; M – media; A – adventitia; scale bar=10 µm). 
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Moreover, real-time PCR analyses of the perfused arteries confirmed that 

mechanical removal of the endothelial cell monolayer did not affect the relative 

change in MCP-1 mRNA abundance under pro-arteriogenic flow conditions (Figure 

18).  

 

 

 

 

Figure 17. Analysis of the expression of MCP-1 in isolated perfused small mouse 
arteries after removal of the EC monolayer. Immunohistochemical staining of MCP-1 
(brown colour) revealed an increased abundance of the cytokine in the media after 
perfusion under pro-arteriogenic conditions (B; M – media; A – adventitia; scale bar=10 
µm). 
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Figure 18. Analysis of MCP-1 mRNA abundance in isolated perfused branches of the 
mouse mesenteric artery. Compared to the perfused arteries with the intact EC 
monolayer, its mechanical removal after perfusion did not alter the increase in the 
MCP-1 mRNA after exposure to pro-arteriogenic perfusion conditions as evidenced by 

real-time PCR. (*P<0.05 vs. control, i.e. ∆P=20 mm Hg, #P<0.05 vs. control, n=6; MCP-
1/RPL32 ratio under control conditions was set to 100%). 
 



- 45 -  

4.4. Effects of shear stress and cyclic stretch application in vitro 

As an increase in flow with the resulting distension of the vessel wall affects both 

shear stress and circumferential wall strain, the impact of these two 

biomechanical forces on MCP-1 expression in cultured cells was analyzed 

individually. 

 

4.4.1. Cyclic stretch rather than shear stress up-regulates MCP-1 expression in 

cultured vascular cells 

Cultured HUVECs were exposed to fluid shear stress (30 dyn/cm2) for 6 hours and 

analyzed by real-time PCR and ELISA for MCP-1 expression. An increase in shear 

stress had no effect on MCP-1 mRNA (Figure 19A) and protein (Figure 19B) in the 

cultured HUVECs.  

 

 

This effect was also confirmed in endothelial cells isolated from the mouse lung 

microvasculature (Figure 20A) and in the mouse EC cell line bEnd.3 isolated from 

the cerebral cortex (Figure 20B and 21). 
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Figure 19. Analysis of MCP-1 expression in cultured endothelial cells in response to 
shear stress. MCP-1 mRNA levels (A, real-time PCR analysis) and MCP-1 protein levels in 
supernatants of HUVECs (B, ELISA) were not significantly altered following exposure to 
shear stress (30 dyn/cm2) for 6 hours (n=3; MCP-1 expression/release under static 
conditions was set to 100%). 
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As a surrogate parameter for an increase in circumferential wall strain, cyclic 

stretch was applied to the cultured HUVECs and mSMCs for 6 hours (15% elongation 

at 0.5 Hz). In contrast to the shear stress experiments, quantitative real-time PCR 

analyses revealed an increased expression of MCP-1 in both cell types on the mRNA 

level (Figure 22A). MCP-1 protein abundance determined by ELISA was also 

significantly increased in both types of cells upon exposure to cyclic stretch as 

compared to the static controls (Figure 22B).  

 

Figure 21. Exemplary analysis of MCP-1 expression in cultured endothelial cells in 
response to shear stress. MCP-1 protein abundance (ELISA) in supernatants of the in 
mouse EC cell line bEnd.3 was not significantly changed after exposure to shear stress (30 
dyn/cm2) for 6 hours (n=1, the level of MCP-1 release under control conditions was set to 
100%). 
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Figure 20. Exemplary analysis of MCP-1 expression in cultured mouse endothelial cells in 
response to shear stress. MCP-1 mRNA levels (real-time PCR) in endothelial cells isolated 
from mouse lung microvasculature (A) and in the mouse EC cell line bEnd.3 (B) were not 
significantly changed after exposure to shear stress (30 dyn/cm2) for 6 hours (n=1, the level 
of MCP-1/RPL32 under control conditions was set to 100%). 
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These results were confirmed with cultured human smooth muscle cells where 

application of cyclic stretch rapidly induced MCP-1 expression on the protein level 

(Figure 23). 

 

 

 

Figure 23. Analysis of MCP-1 expression in cultured human smooth muscle cells in 
response to cyclic stretch. Exposure to cyclic stretch (15% elongation at 0.5 Hz) of 
SMC isolated from human thymus veins for 6 hours increased MCP-1 protein expression 
(ELISA; *P<0.05 vs. static control, n=6). The level of MCP-1 release under control 
conditions was set to 100%. 
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Figure 22. Analysis of MCP-1 expression in cultured endothelial and smooth muscle 
cells in response to cyclic stretch. Exposure to cyclic stretch (15% elongation at 0.5 Hz) 
of both HUVEC and mSMC for 6 hours similarly increased the abundance of MCP-1 mRNA 
(A, real-time PCR; *P<0.05, #P<0.05 vs. static control, n=3) and protein (B, ELISA; 
*P<0.05, #P<0.05 vs. static control, n=3). The level of MCP-1 expression/release under 
control conditions was set to 100%. 
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4.5. The impact of AP-1 activation on the regulation of MCP-1 

expression 

Among several mechanosensitive transcription factors, AP-1 has repeatedly been 

shown to contribute to stretch-induced gene expression in vascular cells and this 

also seems to apply to the regulation of several pro-inflammatory gene products 

(Wung 1997; Park 1999; Kumar 2003). Therefore, the role of AP-1 in stretch-

induced MCP-1 expression was analyzed.   

 

4.5.1. Expression of MCP-1 induced by pro-arteriogenic perfusion conditions is 

dependent on the activation of AP-1 

In order to analyze whether activation AP-1 is necessary for MCP-1 expression, the 

decoy oligodeoxynucleotides technique was employed first in the isolated branches 

of the mouse mesenteric artery. The gene expression studies showed that pre-

treatment with an appropriate AP-1 dODN completely abrogated the increase in 

MCP-1 expression in arteries exposed to pro-arteriogenic perfusion conditions 

(Figure 24).  
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Figure 24. Analysis of the role of AP-1 in the mechanosensitive expression of MCP-1. 
Pre-treatment of arterial segments with the AP-1 dODN (10 µmol/L) for 4 hours abolished 

the increase in MCP-1 expression under pro-arteriogenic perfusion conditions (∆P = 50 
mmHg) whereas treatment with mutant control ODN had no effect (real-time PCR 
analysis; *P<0.05 vs. control, i.e. ∆P=20 mm Hg, n=6; MCP-1 mRNA under control 
conditions was set to 100%).  
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To verify the specificity of the AP-1 dODN, a mutant control ODN was administered 

in parallel to the isolated branches of the mouse mesenteric artery, but did not 

affect MCP-1 expression induced by pro-arteriogenic perfusion conditions (Figure 

24).   

 

4.5.2. Activation of AP-1 is critical for stretch-induced MCP-1 expression in 

vitro 

Cultured mouse smooth muscle cells were pre-treated with the AP-1 dODN and 

exposed to cyclic stretch for 6 hours (15% elongation at 0.5 Hz). Gene expression 

analysis by real-time PCR showed that inhibition of AP-1 activity abolished stretch-

induced MCP-1 expression on the mRNA level (Figure 25A). ELISA further confirmed 

that stretch-induced expression of MCP-1 protein was completely abrogated as well 

(Figure 25B). Treatment with the control ODN, on the other hand, had no effect on 

the expression of MCP-1 mRNA or protein in the cultured mSMCs (Figure 25).  

 

 

 

Figure 25. Analysis of MCP-1 expression in stretch-stimulated cultured mouse smooth 
muscle cells treated with the AP-1 dODN. Treatment with the AP-1 dODN but not the 
mutant control ODN inhibited stretch-induced expression of both MCP-1 mRNA (A, real-time 
PCR; *P<0.05, #P<0.05 vs. static control, n=3) and protein (B, ELISA; *P<0.05, #P<0.05 vs. 
static control, n=3). The level of MCP-1 expression/abundance under control conditions was 
set to 100%. 
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4.6. Analysis of ROS formation in cells exposed to cyclic stretch 

and in the perfused arteries 

4.6.1. Cyclic stretch increases production of ROS in cultured smooth muscle 

cells  

The transcription factor AP-1 has been shown to be activated by increased 

formation of reactive oxygen species (ROS). Therefore, formation of ROS in the 

cultured smooth muscle cells upon exposure to cyclic stretch was analyzed. 

Incubation of the cultured cells with dihydroethidium revealed a marked increase 

in ROS formation 6 hours after exposure to cyclic stretch which was abolished in 

the presence of the ROS scavenger Idebenone (Figure 26) verifying the specificity 

of the dehydroethidium detection method.  

 

 

static control  cyclic stretch (6h)  

Idebenone (3 µM)  

control  

A B 

C D 

Figure 26. Formation of reactive oxygen species (ROS) in stretched mSMCs. 
Detection of ROS by dihydroethidium in stretch-stimulated mSMCs in the absence (A, 
static control; B, cyclic stretch: 15% elongation at 0.5 Hz for 6 hours) and in the 
presence of the ROS scavenger Idebenone (3 µM; C, control; D, cyclic stretch; scale 

bar=50 µm). 
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In order to delineate a role for ROS in the regulation of MCP-1 expression, cultured 

mouse smooth muscle cells were exposed to cyclic stretch in the presence of 

Idebenone (3 µM) for 6 hours. Quantitative real-time PCR analyses revealed that in 

contrast to the previous series of experiments there was no stretch-induced 

increase in MCP-1 expression both on the mRNA (Figure 27A) and protein level 

(Figure 27B) in the presence of Idebenone.  

 

 

 

 

4.6.2. Formation of ROS is necessary for MCP-1 expression induced by pro-

arteriogenic flow conditions in situ 

Similarly, an enhanced ROS formation was detected in the isolated perfused 

branches of the mouse mesenteric artery. Immediately after perfusion the vessel 

segments were frozen in liquid nitrogen and 5 µm sections were incubated with 

dihydroethidium. Analysis of the fluorescence intensity revealed that perfusion 

under pro-arteriogenic flow conditions for 6 hours induced an increase in ROS 

formation mainly in the media of the vessels (Figure 28). 
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Figure 27. Analysis of MCP-1 expression in cultured mouse smooth muscle cells in 
response to cyclic stretch in the presence of Idebenone. Exposure to cyclic stretch 
(15% elongation at 0.5 Hz) for 6 hours in the presence of Idebenone (3 µM) failed to 
raise MCP-1 mRNA (A, real-time PCR; n=3) or protein (B, ELISA; n=3) levels. The level of 
MCP-1 expression/release under control conditions was set to 100%. 
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Similarly, the effect of Idebenone was investigated in the perfused branches of the 

mouse mesenteric artery where it inhibited MCP-1 mRNA expression induced by 

pro-arteriogenic flow conditions (Figure 29). 
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Figure 29. Analysis of MCP-1 expression in isolated perfused branches of the mouse 
mesenteric artery in the presence of Idebenone. In the presence of Idebenone (3 µM) 
there was no increase in MCP-1 mRNA abundance, as analyzed by real-time PCR, upon 
perfusion under pro-arteriogenic conditions (n=6, MCP-1/RPL32 ratio under control 

conditions was set to 100%).  

∆∆∆∆P 20 mm Hg ∆∆∆∆P 50 mm Hg 

A B 

Figure 28. Analysis of ROS formation in isolated perfused mouse arteries. Detection 
of ROS by dihydroethidium (A, perfusion under control conditions; B, perfusion under 
pro-arteriogenic conditions; scale bar=100 µm) revealed that pro-arteriogenic flow 
conditions enhance ROS formation in the isolated arterial segments. 
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4.6.3. An increased ROS formation is associated with collateral arterioles 

undergoing arteriogenesis  

Furthermore, ROS formation in the collateral arterioles of the mouse hindlimbs 

was analyzed after femoral artery occlusion. Shortly before animals were 

sacrificed DHE solution in PBS and BS I Lectin labeled with FITC (to identify the 

vessels in the muscle of the hindlimb) were injected into the mouse tail vein. By 

using confocal microscopy an increased ROS formation was detected associated 

with the collateral arterioles in the mouse hindlimbs 3 days after occlusion of the 

femoral artery compared to arterioles from sham-operated animals (Figure 30).   
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Figure 30. Formation of ROS in collateral arterioles after ligation of the femoral 
artery (mouse hindlimb ischemia model). Detection of ROS by dehydroethidium (red 
fluorescence), combined with BS I lectin-FITC labeling of the vessel wall (green 
fluorescence) in collateral arterioles of the mouse hindlimb 3 days after ligation of the 
femoral artery (A-C, sham; D-F, ligation; scale bar=50 µm).  
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4.6.4. Expression of MCP-1 can be induced by an increase in exogenous ROS 

formation in vitro 

Cultured smooth muscle cells were stimulated with glucose oxidase to induce 

exogenous formation of hydrogen peroxidase and analyze its effect on MCP-1 

expression in these cells. Quantitative real-time PCR analysis demonstrated an 

increased expression of MCP-1 in the mSMCs after exposure to glucose oxidase 

(Figure 31A). Unexpectedly, MCP-1 protein abundance did not change significantly 

in the presence of glucose oxidase (Figure 31B). 
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Figure 31. Expression of MCP-1 in cultured mouse smooth muscle cells stimulated 
with glucose oxidase. Exposure to glucose oxidase (12 mU/ml) for 6 hours at 37°C 
resulted in increased MCP-1 expression on the mRNA level (A, real-time PCR analysis, 
n=3, *P<0.05) while that on the protein level did not reach statistical significance (B, 
ELISA, n=3). The level of MCP-1 expression/release under control conditions was set to 

100%. 
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4.7. Activation of AP-1 is crucial for MCP-1 expression and 

monocyte recruitment during arteriogenesis 

Since the aforementioned data had identified AP-1 as a pivotal factor in stretch-

induced MCP-1 expression in vascular SMCs in vitro and in situ, the role of AP-1 

during arteriogenesis in vivo was further analyzed. To this end, the mouse ears 

were treated with a topical formulation of the AP-1 dODN or the corresponding 

control ODN during the induction and early manifestation phase of the remodelling 

process. Topical administration of the fluorescent dye-labelled dODN as an 

ointment resulted in an excellent penetration of the nucleic acid through the skin 

into the wall of the ear blood vessels within 24 hours after the first application 

where it was still detectable after 48 hours (Figure 32). Thus, the ointments 

containing the AP-1 dODN and the corresponding control ODN were topically 

administered to the mouse ear the day before the ligation was made, on the day of 

the ligation and every 48 hours following the ligation of the ear artery.    

 

Seven days after occlusion of the main supplying artery in one ear the animals 

were sacrificed and the ears harvested for further analyses. Morphological analysis 

by using coloured particle-perfusion showed that topical application of the AP-1 

dODN completely abrogates the arteriogenic remodelling process when compared 

to treatment with the mutant control ODN (Figures 33A-C).   
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Figure 32. Monitoring of the penetration of the AP-1 dODN through the skin of the 
mouse ear. Fluorescence dye ATTO*565-labelled AP-1 dODN (red fluorescence) was 
homogeneously administered once to the surface of the ear and monitored 1, 2 and 7 
days later by way of confocal fluorescence microscopy (left panel, endothelial cells in 
the ear blood vessels were labelled by perfusion with BS I lectin-FITC, green 
fluorescence). Labelled AP-1 dODN was detected adjacent to ear blood vessels (right 
panel, arrow) and in endothelial cells (right panel, inserts). 
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Closer analysis revealed that both the enlargement (Figure 34A) and increase in 

the number of collateral arterioles with corkscrew-like morphology (Figure 34B) 

was virtually blunted upon treatment with the AP-1 dODN, while treatment with 

the mutant control ODN had no such effect. In addition, real-time PCR analyses 

confirmed that there was no arteriogenesis-associated increase in MCP-1 

expression in the collateral arterioles of AP-1 dODN-treated animals (Figure 34C). 

Treatment with the mutant control ODN, on the other hand, did not affect the 

increase in MCP-1 mRNA level in the remodelling collateral arterioles.  

 

A 

B 

Figure 33. Visualization of the 
effects of AP-1 dODN blocking AP-1 
activity on the arteriogenic 
remodelling process in the mouse 
ear 7 days after occlusion of the 
main artery (A, arrows). Topical 
treatment with the AP-1 dODN (C) but 
not the mutant control ODN (B, for 
details of the treatment regimen 
refer to the Methods section) 
inhibited collateral arteriolar 
remodeling (B, C, arrows; scale bar: 1 
mm) as indicated by the reduced 
number of corkscrew-like arterioles.  

 

C 
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Since MCP-1 is a powerful chemoattractant for circulating monocytes (Ernst 1994), 

the effect of the AP-1 dODN treatment on the recruitment of monocytes to the 

arteriogenic vessel wall was analyzed. Following treatment with the AP-1 dODN but 

not the mutant control ODN there was a marked decline in the number of F4/80-

positive macrophages surrounding the arteriolar vessel wall (Figure 35). 

 

 

Figure 34. Analysis of the effects of AP-1 inhibition in the mouse ear artery ligation 
model. Diameter and number of corkscrew-like blood vessels is decreased by treatment 
with the dODN 7 days post ear artery occlusion and accompanied by a decrease in MCP-1 
expression as evidenced by real-time PCR analyses (A-C, *P<0.05, ***P<0.001 vs. non-
treated control mouse ears, n=5). 
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4.8. Inhibition of STAT-1 activity does not affect arteriogenic 

remodelling of collateral arterioles 

In order to delineate effects associated with the activity of AP-1 from that of other 

pro-inflammatory transcription factors on the arteriogenic remodelling process, 

decoy oligonucleotides specific for neutralizing signal transducer and activator of 

transcription-1 (STAT-1) were administration in the same manner to the skin of 
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Figure 35. Effect of the topical AP-1 dODN treatment on arteriogenesis-associated 
monocyte recruitment. Representative immunofluorescence images showing F4/80-
positive macrophages (red fluorescence, arrows) surrounding collateral arterioles (nuclei, 
blue fluorescence; dotted circle: arteriole filled with particles showing intense red 
autofluorescence; scale bar: 25 µm) 7 days post occlusion of the main artery in control 
(A), mutant control ODN-treated (B) and AP-1 dODN-treated (C) mouse ears. The number 
of F4/80-positive macrophages surrounding arteriogenic collateral arterioles is 
significantly reduced by treatment with the AP-1 dODN (D, **P<0.01 vs. untreated 
arteriogenesis control, n=5). 
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mouse ear. On day 7 after ligation of an ear artery the mice were sacrificed and 

ears dissected as described above.  

 

 

 

Morphological analysis with coloured particle-perfusion showed that blockade of 

STAT-1 activity did not affect the arteriogenic remodelling process in the mouse 

ear (Figure 36). This lack of effect was further detailed by quantification of the 

number and diameter of the corkscrew-like collateral arterioles (Figure 37).  

 

Figure 36. Visualization of the effects of 
STAT-1 inhibition on arteriogenic 
remodelling of the arterioles in the mouse 
ear 7 days after occlusion of the main 
artery (A, arrows). Topical treatment with 
the STAT-1 dODN (C) as well as the mutant 
control ODN (B, for details of the treatment 
regimen refer to the Methods section) did 
not affect collateral arteriolar remodelling 
(arrows; scale bar: 1 mm).  
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Figure 37. Analysis of the effects of STAT-1 inhibition in the mouse ear artery 
ligation model. Diameter (A, n=3) and number (B, n=3) of corkscrew-like collateral 
arterioles is not affected by STAT-1 dODN treatment 7 days post ear artery occlusion 
compared to ears treated with the mutant control ODN. 
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5. Discussion 

Occlusive vascular diseases continue to be the most common cause of death in the 

Western world and hence constitute a high unmet medical need. In the 

Cardiovascular Health Study, peripheral artery disease was found in 13.9% of 2214 

men aged ≥ 65 years and in 11.4% of 2870 women aged ≥ 65 years without known 

cardiovascular disease (Newman 1993). In Germany, prevalence was 9.2% of 6880 

males over 65 years of age in primary care (Diehm 2004). With the progress in the 

field of percutaneous intervention and vascular surgery, development of 

atherosclerotic vascular disease has become treatable in a growing number of 

patients. However, in a significant amount of cases the disease can not be treated 

effectively. Patients suffering from peripheral artery disease have a large number 

of co-morbidities including coronary heart disease (angina, myocardial infarction) 

and cerebrovascular disease (stroke) increasing the risk particularly of surgical 

therapies (Nikol 2007).   

Alternative approaches to restore blood flow to the ischemic tissue are needed for 

those patients with untreatable lesions or contraindications to surgical 

interventions. As a consequence, several strategies are currently tested to 

stimulate collateral artery growth and the formation of natural bypasses 

(arteriogenesis). Therapeutic stimulation of this protective mechanism, which is 

far more efficient than angiogenesis, has the potential to become a significant 

treatment option for vascular occlusive diseases.  

Despite major advances during the past years, a large discrepancy exists between 

the successful stimulation of arteriogenesis in experimental animal models and the 

disappointing outcome of recent clinical trials (van Royen 2005). For example, in 

the past decade, cardiovascular research particularly profited from knowledge 

gained from studying the possible inhibition of tumor angiogenesis (de novo 

formation of capillaries). Tumors with high rates of angiogenesis grow faster and 

usually become larger than those with low capillary density. The first clinical 

trials, therefore, were focused on influencing angiogenesis in cancer patients to 

inhibit further tumor growth or metastases by preventing angiogenesis and thus 

microcirculation in the tumor tissue. In ischemic vessel disease, the opposite of 

anti-angiogenesis is required. The hypoxia-driven sprouting of capillaries observed 
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in angiogenesis is fundamentally different from mechanical forces-mediated 

beneficial arteriogenesis in cardiovascular diseases (Grundmann 2007). The 

incorrect assumption of an equal efficacy of angiogenesis and arteriogenesis is a 

likely explanation for the negative outcome of the first clinical trials with the 

objective to stimulate collateral artery formation in cardiovascular disease (Heil 

2006). Blood flow to the regions distal to the site of occlusion is limited and oxygen 

supply is decreased. Therefore, the insights from anti-angiogenesis strategies were 

first used to enhance microcirculatory blood flow in the ischemic regions and 

improve clinical outcome of patients with stenotic vessel disease by promoting 

angiogenesis. Although not all turned out positive, various placebo-controlled trials 

have been initiated in recent years, indicating the potential of VEGF and FGFs to 

stimulate therapeutic angiogenesis (e.g. TRAFFIC, AGENT, VIVA), (Grines 2002; 

Lederman 2002; Simons 2002; Henry 2003). However, the focus on the capillary 

sprouting instead of stimulating growth of functional collateral arteries resulted in 

the negative outcome of therapeutic treatment of occlusive vascular disease.  

Intensive research on the basic mechanism of arteriogenesis is progressing towards 

first clinical trials with pro-arteriogenic compounds (Seiler 2001; Simons 2002; van 

Royen 2005) which by and large might facilitate arteriogenesis but would not 

induce it. Moreover, the processes regulating arterial enlargement are far from 

being understood and, especially, the translation from basic research to clinical 

practice remains challenging.  

The purpose of the present work was to delineate mechanisms responsible for the 

onset of arteriogenesis, particularly the mechanism of mechanosensitive 

expression of MCP-1 and its regulation of expression during this process. Moreover, 

the role of AP-1 activation was evaluated for the first time in the context of 

arteriogenesis.  

 

5.1. In vivo models of arteriogenesis – development of experimental 

tools 

Several animal models have been developed to outline factors that promote 

arteriogenesis (Scholz 2001). The first detailed studies of growing collateral vessels 

were performed in dog hearts, where the initial level of collateral development 
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seemed to predict the final development of collateral vessels after repetitive 

coronary occlusion (Yamamoto 1984). The events of collateral vessel growth 

observed in pig hearts are somewhat less clear than those in dogs. Due to their 

smaller size pre-existing porcine coronary collateral vessels are more difficult to 

define and to study serially (White 1992). In rabbit hindlimbs, pre-existing 

collateral arterioles have been identified in the thigh, and their transformation 

into collateral arteries upon artery occlusion is very similar to the growth process 

of canine coronary collateral vessels including neointima formation (Scholz 2000). 

In another model of arteriogenesis in rats, a pronounced remodelling of pre-

existing collateral thigh arterioles was observed within 7 days of femoral artery 

occlusion with subsequent neointima formation during the first three weeks 

(Hoefer 2001). And finally, in the mouse hindlimb, the growth of collateral arterial 

anastamoses observed after femoral artery ligation seems to be based on pre-

existing arteriolar connections that remodel into larger vessels with one to two 

layers of vascular smooth muscle cells forming the tunica media (Scholz 2002).    

Although differing in the spatiotemporal progression of the remodelling process, 

the common feature of these models is that the acute occlusion of a main feeding 

artery is employed to increase the blood flow in the collateral arterioles (Schaper 

2003). And despite the anatomical differences in these models, the primary 

importance of pre-existing collateral vessels for the natural revascularization 

process does not seem to be species-specific. The abrupt occlusion of a larger 

feeding artery, on the other hand, is one of the biggest hurdles of arteriogenesis 

research today – especially in terms of translational research – since in humans a 

relevant stenosis in a larger artery leading to compensation arteriogenesis, 

develops rather slowly over time.  

 

Nonetheless, in the present study a mouse ear artery ligation model (North 1958) 

was adapted to analyze the arteriogenic remodelling of collateral arterioles, 

thereby exploiting the easy accessibility and simplicity of the nearly two-

dimensional architecture of the ear vasculature. Occlusion of a distinct first order 

ear artery up-regulated the expression of intercellular adhesion molecule-1 (ICAM-

1) and monocyte chemotactic protein-1 (MCP-1) in the remodelling arterioles 

which could be identified by their corkscrew-like morphology after four to seven 
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days. Moreover, the classical mouse hindlimb ischemia model was used for 

comparison, in which an increased expression of ICAM-1 and MCP-1 was also 

observed 7 days after femoral artery occlusion. These findings correspond to 

earlier results obtained by Lee et al. (Lee 2004), where transcriptional profiling of 

the nonischemic adductor muscle in the thigh after artery excision had revealed an 

increased expression of MCP-1. They also resemble previously published 

observations made already in 1958 by North et al. that division of a blood vessel in 

the mouse ear is followed by a progressive enlargement of its collateral vessels 

(North 1958). 

 

5.2. MCP-1 orchestrates early steps in arteriogenesis 

Due to the predictability of collateral arteriolar enlargement in the mouse 

hindlimb, MCP-1 expression was analyzed already 24 hours after femoral artery 

occlusion. The observed significant up-regulation of MCP-1 expression during this 

period suggests that this chemokine may orchestrate rather early steps in the pro-

arteriogenic cascade. The release of MCP-1 is a prerequisite for the recruitment of 

monocytes to the arteriolar vessel wall which in turn initiate its transformation to 

a small conductance artery (Scholz 2000). After occlusion of an artery activated 

vascular cells of the collateral arterioles express MCP-1 and transfer it to their 

luminal cell surface where it is immobilized by proteoglycans (Heil 2007). Changes 

in the expression and conformation of adhesion molecules transform the collateral 

endothelium from a quiescent vessel layer into a “sticky” surface, now supporting 

attraction, adhesion and invasion of leukocytes. Consequently, expression of 

selectins, ICAM-1 and -2, and vascular cell adhesion molecules (VCAM-1) is 

increased (Scholz 2000). In addition, adhesion molecules undergo a fast 

conformational change and are clustered in so-called focal adhesion complexes.  

Attracted by MCP-1 and probably other chemoattractants, the monocyte binding to 

the collateral surface is mediated by intergrin receptors like Mac-1 and LFA-1 – 

counterparts of endothelial ICAM-1, -2 and VCAM-1. Monocytes, which mature to 

macrophages after entering the collateral vessel wall, have a central function in 

the induction of proliferation of vascular cells as well as in vascular cell 

remodelling. They function as micro-bioreactors and potently express proteases 

like matrix-metalloproteinases and urokinase-type plasminogen activator (uPA) 
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(Kusch 2002; Menshikov 2002) that weaken the cellular matrix. It was also observed 

that monocytes invade deeper layers of the collateral arteriolar wall and 

accumulate in perivascular clusters. 

Correspondingly, it has been shown earlier that local infusion of MCP-1 with the aid 

of an osmotic minipump into the proximal stump of an occluded femoral artery in 

rabbits markedly enhanced the recruitment of monocytes and the speed of 

arteriogenesis. In comparison to other growth factors, MCP-1 is the strongest pro-

arteriogenic peptide known (Ito 1997). In line with this, collateral artery growth 

and reperfusion in the ischemic tissue was diminished in MCP-1 and CC chemokine 

receptor 2 (CCR2) deficient mice (Heil 2004; Voskuil 2004).  

Interestingly, CCR2 - the primary receptor for MCP-1 – is not only expressed on 

monocytes but also on other leukocytes such as activated T-cells. This could mean 

that other leukocytes also recruited by this pathway which has been shown for 

lymphocytes are - similar to monocytes – leave the blood stream and localize in the 

vicinity of the growing arteriolar collaterals. Likewise, Stabile et al. (Stabile 2003) 

concluded that T-cells contribute to arteriogenesis by releasing chemoattractive 

factors, hence supporting monocyte recruitment and supporting their paracrine 

activity during arteriogenesis. 

 

5.3. Expression of MCP-1 is restricted mainly to smooth muscle cells  

Despite its importance for the initiation of arteriogenesis, only little is known 

about the mechanisms that control the expression of MCP-1 in this context. 

Therefore, a new experimental in situ model was established, where small second 

order branches of the mouse mesenteric artery were subjected to control (low 

flow) and pro-arteriogenic (high flow) conditions. Despite the common notion of 

MCP-1 being expressed in activated endothelial cells in the collateral arteriolar 

vessel wall during the onset of arteriogenesis (Scholz 2001), here the smooth 

muscle cells of the media were identified as the main source of MCP-1.  

Earlier studies were already pointing towards a localization of this chemokine to 

the smooth muscle cell layer of the remodelling collateral arterioles in the mouse 

hindlimb in vivo. Jost et al. observed that in mice treated with GM-CSF after 

ligation of the femoral artery expression of MCP-1 in the hindlimbs was restricted 

to cells constituting the vessel wall (media) after 3 days (Jost 2003).  
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Next, the question was addressed as to what triggers the expression of MCP-1 in 

the smooth muscle cells of the collateral arterioles undergoing remodelling. In this 

context, hemodynamic forces were characterized to be important for triggering 

arteriogenesis. Particularly, fluid shear stress has been intensively discussed as a 

molding force that probably initiates the cascade of events (Pipp 2004). It acts 

mainly on the endothelium which cushions the effect on the underlying smooth 

muscle cells that are further shielded by the internal elastic lamina. The related 

primarily but not exclusively force acting on the smooth muscle cell layer is 

circumferential wall strain (Schaper 1967; Scheel 1979). Its magnitude is much 

higher than that of fluid shear stress, and its increase in arteriogenesis is due to 

the initial volume-mediated distention (by Laplace’s law: dP = T/R, dP - 

transmural pressure difference, T- wall tension, R - and radius) and later, with the 

onset of active remodelling, by the thinning of the vessel wall (Scholz 2001). 

Proliferation of the smooth muscle cells normalizes circumferential wall strain 

again and probably contributes to the premature halt of the arteriogenic process 

(Scheel 1979).  

In this context, the observations made in this study suggest that of the two 

putative biomechanical determinants of arteriogenesis, FSS and CWS (Schaper 

2003; Heil 2004), the latter most likely is responsible for the increase in MCP-1 

expression, since changes in fluid shear stress can only be directly sensed by 

endothelial cells and an increase in fluid shear stress inhibited rather than 

augmented MCP-1 expression in both mouse and human endothelial cells.  

 

5.4. MCP-1 expression in vitro is induced only by cyclic stretch 

Further, the individual effects of laminar FSS and CWS on the expression of MCP-1 

were investigated in cultured cells. Exposing cultured endothelial cells to shear 

stress resulted in a decrease rather than an increase in MCP-1 expression both on 

the mRNA and protein level. This finding is in agreement with previous studies 

demonstrating that endothelial cell MCP-1 expression is in fact down-regulated in 

response to shear stress over a similar period (Shyy 1994). Likewise, up-regulation 

of expression of adhesion molecules (ICAM-1, VCAM-1 and E-selectin) critical for 

arteriogenesis has been shown to be inhibited in endothelial cells in response to 

laminar shear stress (Chiu 2003).  
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In contrast, exposure of cultured cells to cyclic stretch – a substitute of 

circumferential wall strain - resulted in a robust increase in MCP-1 expression both 

in cultured endothelial and smooth muscle cells. Moreover, the increase in MCP-1 

abundance in the supernatant of vascular smooth muscle cells was particularly 

striking. These results are in line with reports showing that cyclic stretch induces 

MCP-1 expression in cultured human endothelial cells (Okada 1998), and extend 

this finding also to vascular smooth muscle cells.  On the other hand, smooth 

muscle cells are also shown to be capable of up-regulating MCP-1 in response to 

certain pro-inflammatory cytokines (Cattaruzza 2002).  

Furthermore, the data support the hypothesis that cyclic or static stretch, as the 

result of an increase in circumferential wall strain, plays a decisive role in the 

expression of MCP-1 in the collateral arteriolar wall during the early phase of 

arteriogenesis. Conversely, the observations of this study question the view of 

arteriogenesis as a predominantly shear stress-mediated remodelling process. 

 

5.5. Up-regulation of MCP-1 expression depends on AP-1 activation 

As mentioned above, the mechanism by which MCP-1 expression is regulated during 

the onset of arteriogenesis it is not yet understood. Chemokine expression is 

regulated primarily at the level of gene transcription, although contributions by 

posttranscriptional mechanisms have also been reported (Villarete 1996; Martin 

1997; Olszewska-Pazdrak 1998). Previously it has been shown that the promoters of 

many chemokine genes, including interleukin-8 (IL-8), chemokine ligand 5 (CCL5 or 

RANTES), and MCP-1 contain binding sites for the redox-sensitive transcription 

factors activator protein-1 (AP-1) and nuclear factor-kB (NF-kB), both of which are 

thought to be involved in the transcriptional control of the aforementioned genes 

(Roebuck 1999).  

AP-1 and NF-kB are inducible transcription factors critical for the expression of 

many genes involved in the inflammatory response, including cytokines and 

adhesion molecules (Baeuerle 1994). Activator protein-1 is one of the main 

transcription factors activated by either ERK or JNK and plays a central role in a 

variety of cellular responses (Shaulian 2001). For example, in a series of 

experiments in rats, it has been shown that MAP kinases and AP-1 are significantly 
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activated in the hypertrophied heart, the balloon-injured artery and hypertensive 

vascular or renal tissue (Kim 2003). 

In the present study, the decoy oligodeoxynucleotide (dODN) technique (Mann 

2005) was employed to inhibit AP-1 activity in the cultured vascular cells and in 

the perfused branches of the mouse mesenteric artery. These short double-

stranded DNA sequences contain at least one consensus binding motif for AP-1 and 

even in the absence of surrounding DNA can bind the transcription factor in a 

highly specific manner (Dzau 2002). Taken together, the results revealed that 

stretch-induced MCP-1 expression in cultured smooth muscle cells is abolished in 

the presence of the AP-1 dODN. The same effect was observed in the branches of 

the mouse mesenteric artery perfused under pro-arteriogenic flow conditions.  

Moreover, these results are in line with previous reports where AP-1 has been 

shown to regulate the expression of many stress response genes, like connexin 43 

and MCP-1, including those associated with a pro-inflammatory phenotype of 

endothelial or smooth muscle cells (Wung 1997; Wu 2007).  

 

5.6. ROS formation is increased during arteriogenic remodelling  

A class of highly diffusible and ubiquitous molecules, termed reactive oxygen 

species (ROS), has previously been shown to function as signalling molecules 

leading to changes in gene expression during inflammatory episodes (Suzuki 1997) 

moreover, they can act as second messengers in cells exposed to various stimuli 

such as cytokines (Lo 1996). ROS encompass species such as the superoxide anion, 

hydrogen peroxide (H2O2), and hydroxyl radicals (Halliwell 1990). These highly 

reactive molecules are known to regulate many important cellular events, 

including gene expression (Lo 1995), transcription factor activation (Schreck 1991), 

DNA synthesis (Crawford 1988), and cell proliferation (Murrell 1990).  

Moreover, ROS have been shown to regulate chemokine gene expression. 

Particularly Satriano et al. have demonstrated that ROS act as second messengers 

for cytokine-induced MCP-1 expression (Satriano 1993). Although this redox 

regulation of MCP-1 expression appears to be at the transcriptional level and 

involves redox-sensitive transcription factors such as AP-1 and NF-kB, the exact 

mechanisms are unknown. On the other hand, in most cases, the activation of AP-1 

is triggered by an increase in the formation of ROS - another hallmark of vascular 
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stress responses (Shono 1996; Wung 1997), and inhibited by antioxidants such as 

the thiol compound N-acetyl cysteine (Pinkus 1996).   

In the present study, a marked increase in ROS formation was observed in smooth 

muscle cells upon exposure to cyclic stretch as well as in the isolated small 

arteries perfused under pro-arteriogenic conditions. Moreover, an increased 

formation of ROS associated with collateral arterioles undergoing remodelling was 

detected in the mouse hindlimb after femoral artery ligation. These findings 

support the hypothesis that the arteriogenesis-associated up-regulation of MCP-1 

expression in the arteriolar vessel wall most probably is triggered through a ROS – 

AP-1 pathway. This notion was verified by the finding that exposure of cultured 

smooth muscle cells to glucose oxidase lead to a rapid increase in MCP-1 mRNA 

confirming a role for the H2O2-generation in this context. 

 

5.7. AP-1 dependent regulation of arteriogenesis 

Collectively, the facts discussed so far suggest that in the early phase of 

arteriogenesis an increase in circumferential wall strain, hence stretch, triggers an 

increase in ROS formation in the arteriolar vessel wall which in turn leads to the 

translocation of AP-1 to the nucleus where it transactivates the MCP-1 gene. If this 

assumption is correct, then blocking of AP-1 activity in vivo should preclude the 

onset of arteriogenesis.  

To this end, the ear artery ligation model proved to be highly valuable due to the 

fact that it allowed administration of the AP-1 dODN in a dermal formulation. 

Topical application of this ointment resulted in an excellent penetration of the 

dODN through the skin into the wall of the ear blood vessels within 24 hours after 

the application. The resulting neutralization of AP-1 not only abrogated the 

arteriogenic response in the mouse ear 7 days post artery ligation, but also 

prevented the increase in MCP-1 expression. Furthermore, the infiltration of 

monocytes into the wall of the remodelling collateral arterioles was significantly 

decreased. The specificity of the AP-1 dODN approach was confirmed by the lack 

of effect of a mutant control ODN. Moreover, a dODN directed against the potent 

pro-inflammatory transcription factor signal transducer and activator of 

transcription-1 (STAT-1) also had no effect on the remodelling of the collateral 
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arterioles after ligation of the main artery. Thus, the AP-1 dependent adaptive 

response occurring in the remodelling collateral arterioles must be different from 

the more potent and potentially chronic inflammatory reaction which transcription 

factors such as STAT-1 are typically involved with.  

In contrast to many other forms of genetic manipulation both in cells in vitro and 

in intact tissues, transcription factor decoys have become a versatile tool for 

researches attempting both to define the role of various genes in normal and 

pathologic cell biology and to consider novel interventions. In just the past few 

years, for example, decoys have been studied in models of inflammation ranging 

from arthritis, sepsis, cerebral ischemia/reperfusion and transplant vasculopathy 

(NF-kappaB) to glomerulonephritis (E2F and AP-1), allergic airway reactivity and 

asthma (STAT-1, NF-kappaB) (Mann 2005). The most advanced clinical program 

involving the use of transcription factor decoys in human patients has been 

modification of the biology of venous bypass graft vasculopathy through intra-

operative administration of an E2F dODN (Ehsan 2001).  

In this study performed in the mouse ear artery ligation model, the application of 

dODNs in the dermal formulation not only showed a promising therapeutic 

approach, but also accentuated the pivotal role of AP-1 activation in the 

arteriogenic remodelling process.  

 

5.8. An outlook 

Even though MCP-1 is only one among many AP-1 target genes, the findings of this 

study corroborate that MCP-1 dependent monocyte recruitment is a rate-limiting 

step in arteriogenesis (Heil 2002). Moreover, they establish AP-1 as a critical 

modulator of MCP-1 expression in an as yet unrecognized context and point 

towards stretch-induced AP-1 dependent changes in gene expression in general as 

a decisive step in the initiation of arteriogenesis.  

These results are in line with previous reports where such AP-1 dependent changes 

in gene expression have also been shown to play a role in hypertension-induced 

arterial remodelling, where the activation of mitogen-activated protein (MAP) 

kinases was followed by c-fos and c-jun gene expression, hence activation of AP-1 

in vivo (Xu 1996). Moreover, accumulating evidence suggest that activation of AP-1 
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is a critical step in restenosis following angioplasty and stent placement (Buchwald 

2002).  

Therefore, a systematical comparison of the initial steps of these adaptive 

remodelling processes with that of arteriogenesis may ultimately lead to the 

identification of the main trigger of arteriogenesis and thus spur the development 

of a pro-arteriogenic therapy. 

Increasing the concentration of circulating monocytes is one potential target for 

therapeutic arteriogenesis nowadays, as there is a direct correlation between the 

number of circulating monocytes and arteriogenic remodelling (Heil 2002). Another 

approach would be to locally raise the number of monocytes, and one promising 

factor for this would be MCP-1 (Hoefer 2006). However, even though administered 

downstream of the abdominal aorta (i.e. into the collateral arteries of a murine 

hindlimb), MCP-1 significantly increased atherosclerotic plaque formation in the 

aortas of apolipoprotein E deficient mice (van Royen 2003), diminishing the chance 

that this potent pro-arteriogenic compound will make its way into clinical 

application.  

Other compounds, such as GM-CSF, have been shown to present anti-atherogenic 

properties as well as strong pro-arteriogenic actions. However, in the START trial 

van Royen et al. demonstrated that GM-CSF treatment does not have a beneficial 

effect in the patients with peripheral artery disease (van Royen 2005). For TGF, 

the effect of a pro-arteriogenic therapy on the underlying pathology, 

atherosclerosis, is not yet known and seems to be dose-dependent (Grundmann 

2007). Previous studies indicate that TGF has at least a neutral, if not inhibiting 

effect on atherosclerotic plaque formation (Lutgens 2002).  

The ideal candidate molecule should have a pro-arteriogenic and anti-

atherosclerotic effect at the same time, stimulate collateral artery growth at any 

rate independent of the history of the patient and the affected vascular bed, and 

it should be easy to administer. Thus, by enhancing the current mechanistic 

knowledge in this field, the observations of this study may contribute to the 

understanding of a well-orchestrated and self-limiting arterial remodelling process 

that may eventually be exogenously induced for therapeutic purposes.  
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6. Summary 

Occlusive vascular diseases represent the most frequent cause of death in 

industrialized nations. Treatment of the end-stage of these diseases such as 

myocardial infarction, stroke, peripheral artery disease and others is usually 

limited to interventions such as angioplasty, bypass surgery or limb amputation. An 

alternative approach to restore blood flow to the ischemic tissue can be the 

therapeutic induction and/or enhancement of the endogenous collateral 

circulation (arteriogenesis), bypassing the site of stenosis and protecting the 

downstream tissue from ischemic injury. Since biomechanical forces have been 

implicated in the initiation of arteriogenesis, their impact on the remodelling 

process during the onset of arteriogenesis and on the mechanosensitive expression 

of a pivotal pro-arteriogenic molecule, monocyte chemoattractant protein-1 (MCP-

1), was investigated in the present study. MCP-1 governs the recruitment of 

circulating monocytes to the wall of the remodeling collateral arterioles – an 

essential step in the initiation of collateral artery formation. 

Employing two different in vivo mouse models – the hindlimb ischemia model and a 

novel ear artery ligation model – revealed that MCP-1 expression is significantly 

increased in collateral arterioles undergoing arteriogenesis already 24 hours after 

its onset. To define the mechanism triggering MCP-1 expression, an in situ 

perfusion model of small mouse arteries was established, mimicking the pro-

arteriogenic perfusion conditions. Subsequent gene expression analyses showed 

that MCP-1 expression is predominantly up-regulated in the smooth muscle cells of 

these arterial segments which solely sense changes in circumferential wall strain or 

stretch. Further analyses of cultured endothelial and smooth muscle cells 

confirmed that elevated levels of shear stress do not up-regulate MCP-1 expression 

in these cells while application of cyclic stretch to both cell types resulted in a 

robust increase in MCP-1 expression both on the mRNA and especially on the 

protein level.  

Inhibition of the mechanosensitive transcription factor activator protein-1 (AP-1) 

by employing the decoy oligodeoxynucleotide (dODN) technique abolished the 

stretch-induced expression of MCP-1 in the cultured cells as well as in the isolated 

perfused segments of the mouse mesenteric artery.  
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Further analyses revealed an increased ROS formation in the cultured smooth 

muscle cells upon exposure to cyclic stretch as well as in the second order 

branches of mouse mesenteric artery perfused under pro-arteriogenic flow 

conditions in situ. Inhibition of ROS production by the ROS scavenger Idebenone 

abolished stretch-induced MCP-1 expression.  

Finally, topical application of the AP-1 dODN to the mouse ear after arterial 

occlusion completely abrogated remodelling of the collateral arterioles through 

down-regulating MCP-1 expression and monocyte recruitment. Administration of a 

dODN against transcriptional factor signal transducer and activator of 

transcription-1 (STAT-1) in the same model did not affect the arteriogenic 

remodelling process pointing towards a more specific role of AP-1 signaling to the 

nucleus therein.  

In summary, the present study establishes the ear artery ligation model of the 

mouse as a new experimental tool to investigate adaptive arteriolar remodelling 

processes in vivo. Furthermore, the data point towards a stretch-induced AP-1 

mediated rise in MCP-1 expression in vascular smooth muscle cells as a critical 

determinant for the initiation of arteriogenesis. Conversely, the observations of 

this study question the view of arteriogenesis as a predominantly shear stress-

mediated remodelling process and contribute to the deeper understanding of a 

well-orchestrated arterial remodelling process that may eventually be exogenously 

induced for therapeutic purposes.  
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