INAUGURAL-DISSERTATION
zur
Erlangung der Doktorwiirde

der

Naturwissenschaftlich-Mathematischen Gesamtfakultat

der

Ruprecht - Karls - Universitat
Heidelberg

Diplom Informatiker Domnic Savio Benedict
aus: Coimbatore, Indien
Tag der miindlischen Priifung: 19.05.2008



Tracking Biped Motion in Pervasive Environment

1. Gutachter: Prof. Dr. habil Thomas Ludwig
2. Gutachter: Prof. Dr. habil Gerhard Reinelt



Ich versichere, dass ich die vorliegende Dissertation selbst und ohne unerlaubte Hilfe angefertigt
habe. Es wurden alle in Anspruch genommenen Quellen und Hilfsmittel in der Dissertation
angegeben.



Abstract

Textiles are ubiquitous to humans since ages. Transistors made of silicon have made a deep
impact in modern industry. A new field of research called wearable electronics integrates
both these worlds to provide intelligent new services. Based on modern technologies of textile
manufacturing, a carpet is embedded with a network of computing devices. One of their
applications is to sense, when someone walks over them. This carpet was used to track the
path a person took on his walk.

When a person steps on the carpet, embedded sensors in the carpet get activated. These
activations are stored at a monitoring PC as a log file. This data is processed and carefully
viewed by data mining algorithms to identify hidden patterns that reveal the trails of the
subject on his motion over the carpet.

Different methods for validating the data mining algorithms are presented. These methods
are perfected to produce an ideal reference in a format that can be directly compared with the
estimated results of the algorithms. The evaluation results show a better performance for the
new approach compared to the state-of-the-art technologies.

Veracious testing, discussions, suggestions and their impact after implementation, are dis-
cussed in detail. The concepts used in the data mining algorithms are structurally sound and
maintainable. Suggestions are given for further work on this system as whole. The footsteps
of the person walking on the carpet are identified. The trajectory of walk is traced. The
carpet can be used in a variety of domains. Rich examples on usage, assisted with augmented
literature conclude this work.



Zusammenfassung

Textilwaren sind dem Menschen seit langem allgegenwartig. Aus Silikon gefertigte Transis-
toren beeinflussen sehr stark die moderne Industrie. Ein neues Forschungsgebiet nennt sich
"Tragbare Elektronik". Dieses Gebiet integriert Silikon und Textilien, um intelligente neue
Dienstleistungen zur Verfiigung zu stellen. Beruhend auf modernen Technologien der Textil-
herstellung wird ein Teppich in ein Netz von Rechengeraten eingebettet. Dieser Teppich kann
dazu verwendet werden, um die Beriihrung eines dariiber laufenden FuSSes zu erkennen. Er
kann somit den Weg ausfindig machen, den eine Person auf dem Teppich gegangen ist.

Wenn eine Person auf dem Teppich geht, werden eingebettete Sensoren im Teppich aktiviert.
Diese Aktivierungen werden am Uberwachungsrechner in einer Protokolldatei abgespeichert.
Die Daten werden durch Data Mining- Algorithmen bearbeitet, um versteckte Muster zu
identifizieren, die durch die Bewegungen iiber den Teppich verursacht wurden.

In der vorliegenden Arbeit werden verschiedene Methoden zur Validierung der Data Mining-
Algorithmen vorgestellt. Diese Methoden sind dazu geeignet eine Referenz in einem Format
bereitzustellen, das direkt mit den Ergebnissen der Erkennungsalgorithmen verglichen werden
kann. Die Ergebnisse dieser neuen Algorithmen erreichen eine héhere Genauigkeit als bekannte
Technologien.

Des weiteren wird auf zuverldssige Priifungen, Diskussionen, Vorschlige und deren Einfluss
nach der Implementierung ausfiihrlich eingegangen. Die Konzepte, welche in den Data Mining-
Algorithmen verwendet werden, sind gut strukturiert und erweiterbar. Die Schritte einer Per-
son, die auf dem Teppich geht, kénnen identifiziert und deren Laufbahn verfolgt werden. Der
Teppich kann in verschiedenen Bereichen angewendet werden. Hierfiir werden abschlieSSend
Beispiele genannt und Vorschlége fiir weitere zukiinftige Arbeiten an diesem gesamten System
unterbreitet.
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1. Introduction

The desktop computer has rapidly changed the way we do things. A typesetting program
enables the secretary to edit a document any number of times, before the final version is
printed which was not the case a few decades before. Not only the typewriter was replaced by
the desktop, the process of editing, typesetting, and proof reading consequently added comfort
in authoring, set the liberty of illustration, and enhanced accuracy on the final document.
This was the aftermath of one desktop computer, which hosts a microcontroller as its seat of
thought. Looking around the number of gadgets that hang around our desk today, the printer,
fax machine, cell phone, calculator, the PDA, and notably the bluetooth headset for example
all have similar microcontrollers with different degrees of computing power and communication
capabilities adding ease, flexibility, intelligence on the execution of our thoughts, and activities
in our daily routine. What is now being influenced is the way we do things, for example papers
and post are packed in bits and bytes, transported on the information highway and the delivery
time is less than a finger click.

There is another set of interesting changes that have taken place. The mouse and the keyboard
that used to be the input devices of the standard desktop have now a series of extended family
members. The interface devices are changing shape and incorporate friendly features. The
integrated keypad in the mobile phone doesn’t have 101 keys but still can be used to type
almost every key of a regular keyboard. And the mobile phone can hear us and dial a number
when we just command it. The mobile phone can understand our language. How would it be
if our computer could understand our walking! Close a door and switch off the lights when
we leave the room! Making the computer understand our footsteps and identify the path of
our walk is a demanding intention, focused in this thesis. The applications that benefit from
this understanding are classified under the banner of context aware computing. When trying
to examine walking and developing an interface for our footsteps, this thesis focuses precisely
on tracing the path taken by the subject while walking by identifying where the feet were
placed. By tracking the feet and their movements the methods in this thesis plot a trajectory
of walk, the subject took when he or she moved from one place to another. Based on the plot
subsequent actions can be taken by the desktop, decorated with applications.

Tracking human motion is an ongoing area of research attracting rich experiments. The at-
tempted formal methods can be broadly classified as intrusive and non-intrusive tracking tech-
niques. In an intrusive technique, sensoric devices are embedded on the subject. Here, the
subject has to wear or carry some sensors while being in motion. The sensors then activate a
series of controllers, wired or wireless. Data collected from these sensors are then processed
off-line or real time. With non-intrusive methods, sensors are placed in a fixed location. The
data is collected from these sensors to identify movement. A fixed camera or a motion detec-
tion sensor for example could be used to extract features of the subject to locate and calculate
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1. Introduction

the position and displacement of the subject.

1.1. Observing Walking

Although we consider both the cases, non-intrusive methods of tracking have an advantage as
the subject does not need to carry or wear any sensors. But to recognize objects in both cases,
location of the sensors have to be optimized, features have to be selected to determine what
is being tracked, and the result of the tracking system should have an acceptable tolerance.
The methods used could depend on the desired result. However, the science of observing walk-
ing could make tremendous contributions. For example, in neuroimaging studies, researchers
investigated biological motion and its activity in certain regions of the brain (STS - superior
temporal sulcus) | |. They observed that normal biological motion activates STS. By sim-
ulating non-biological motions and carefully coordinating them, they were able to understand
how intensively the brain could process non-biological motion, which is a huge resource for
physically disabled persons. Pervasive means of monitoring health has tremendous impact
in providing quality health care. In the U.S. about 1.4 million lower extremity fractures are
occurring annually. Researchers show that the patients recover faster with limited weight
bearing programs. But gauging how much pressure to apply on the injury, before doing harm,
is difficult. A new E-foot was developed to address this, by the students in the Johns Hopkins
University | |. A force sensor is placed under the sole where the feet lands. As the patients
walk, it measures the pressure and alerts patients if they apply too much pressure on their
injured leg. FitSense a Massachusetts based sports wear company, has developed footwear that
can monitor speed, pace and distance of an athlete during training. This confirms the fact,
walking has been observed for quite some time. The observations can be used in context aware
computing to enhance safety and performance. However, the above examples are intrusive
ones which require the user to wear a part of the system which has sensors. It would make
more sense if the subject didn’t need to be burdened with wearing such apparel.

1.2. Extracting Gait

Observing a human walk is a part of identifying the physical characteristics of the person
during his motion. Methods used to identify persons based on their physiological or behav-
ioral characteristics are called biometrics. Proven biometric methods range from fingerprint
and hand geometry tangenting to more sophisticated techniques like face recognition and iris
scanning. If we consider these methods under the ambiance of context aware computing, the
methods need direct contact to the sensoric elements or more precisely they need to get the
attention of the subject to proceed an action. Although face recognition and iris scanning do
have advantages over it, they need illumination and often cannot be hidden from the view of
the subject. An infra-red camera can of course reveal the presence of a person, but to extract
facial features, perception is diminished in an IR image. Biometrics that can address these
shortcomings is human ’gait’ or the walking style of an individual. Gait is more attractive
because it does not require a cooperative subject and non intrusive methods can be extensively
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1. Introduction

employed. Early attempts of gait recognition date back to mid 70s. A subject with dark attire
was attached with small light bulbs at his joints | |. When he was still, the lights formed
a star constellation to indicate the subject was standing. When he moved, the lights formed
curves and cues to indicate motion. Research over the years gathered evidence that there exists
identity information in gait and motivated development of computer vision based algorithms
for gait based human recognition. Movement of thighs were fitted in pendulum motion models
to identify gait of a person (Fig. 1.1) | ].

{a) ib)

Figure 1.1.: Pendulum model of a leg

Binarized silhouette of a person was taken and fitted with numerous circles (Figure 1.2) and
ellipses | ]. Then the centroids, tangents and foci from the shapes were taken to identify
a gait signature.

Figure 1.2.: Fitting Ellipses on Silhouette

Most of these works have been carried out based on images and videos taken by observing
walking. However, background detection, low illumination levels and objects in the background
contribute a lot of noise that is still posing a major problem for gait identification of a person by
visual means. Secondly the presence of a camera before a person always gives the psychological
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1. Introduction

feeling, every step he or she takes is being watched.

1.3. Ground Reaction Forces(GRF)

While walking, as a person moves, due to gravity he constantly maintains contact with the
ground. In this process there occurs interactions between the body and the ground. At each
foot step, the body exerts certain forces on the ground. According to Newton’s 3rd law of
motion, there is an equal and opposite reaction. This reaction force supplied by the ground is
specifically called the ground reaction force (GRF). It is an important external force affecting
human motion.

X Y

(a) Force components (b) Ground reactions

(c) Reaction on force sensors (d) Equivalent force

Figure 1.3.: Ground reaction forces

The ground reaction force (Fig. 1.3(a)) has three components: X-, Y- and Z-components (R,
R, and R.). Among these, the Y-component is along the direction of the motion which reflects
the propulsion or the braking force. The Z-component supports the body to prevent it from
collapsing, and also to thrust the body upward in jumping motion. Figure 1.3(b) shows the
reactions from the ground to the foot. The sum of all the reactions from the ground shown
in figure 1.3(d) is equivalent to the sum of the forces measured by the four force sensors in a
force plate (R1 + Ra + R3 + R4) as illustrated (Fig. 1.3(c)). A force plate consist of force
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1. Introduction

sensors placed at the four corners of a stable flat plate. The force sensors can be connected to
an analog to digital converter or an oscilloscope to measure the signals.
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Figure 1.4.: GRF on an oscilloscope

Figure 1.4, shows the observed oscilloscope signal of a step during a normal walk. The first
peak b1 is the result of the heal strike on the ground. Shoe designers often observe this part
to know the softness and the grip of the material while designing their performance wears. As
the person lands the palm and tends to parallel the foot to the ground the transfer of body
weight takes place. This is the valley at r. As the person transfers the weight on the foot,
he or she moves forward and tends to lift the foot applying a small pressure at the toe, this
is the second peak at b2. As the person removes the foot from the ground the slope b2 to t2
takes place. This complete profile is observed from the four force sensors placed at the edges
of the force plate. Constructing such sensors on the floor would help to detect the person’s
weight, speed of walking, stride length and furthermore, by making a GRF profile a person’s
gait signature can be constructed to identify a footstep.

1.4. Hiding Gait Extraction

To construct this gait information, force sensors with signal processing circuits are needed. An
analog to digital converter parses the signals coming from the force sensors and constructs a
digital information of the person’s foot stamp.

L Signal Feature
Force sensors  [—f=~( A/D converter ibcassli T extraction / display
Embedded components Partially centralized components

Figure 1.5.: Blocks for footstep recognition
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1. Introduction

This data is then passed through signal processing algorithms running on a computer to
analyze and detail features of the footstep. This requires a lot of computing effort in the
embedded level. A desktop computer and the computing time cannot be avoided unless fast
signal processing circuits are miniaturized to fit in a sensor. Alternatively certain blocks of
the process can be embedded near the sensors and the rest can be routed to a centralized
processing machine (Fig 1.5 on the previous page). For example the force sensors and the
A /D converters can be placed together with certain signal processing capabilities on a single
printed circuit board. Such a board can be placed on a flat plate or a tile big enough to cover
a foot stamp. Placing such tiles on the ground would avoid the visibility of the sensor.

By observing walking in this method, the sensor that captures the motion can be completely
hidden from an intruders knowledge by simply embedding the sensor in the floor. This allows
not only the subject to walk comfortably, but irrespective of the illumination, night or day, a
gait profile can be constructed by this method. A person’s footsteps can be detected without
any background noise which dominates in video based gait detection. In areas where surveil-
lance is required, the struggle to conceal monitoring cameras is often an issue based on the
environment. The best hidden eye can at times hide information, too. But in this approach of
embedding sensors in the ground new possibilities of observing and using human motion can
be realized.

1.5. Pervasive Environment

Observing human motion by integrating sensors and associated electronics in the environment
to add comfort and enhance services is a new area of research. Sensors are embedded in
a normal carpet and the observed data is then sent to a desktop computer which processes
the data coming from the carpet. Although processing algorithms are the main contribution
of this thesis, this work also provides an insight into technologies that can understand the
environment of walkers and provide services relevant to the context. Human motion, observed
by embedding computing power in an existing environment like a floor carpet, is presented in
this work. By this approach, the presence or absence of a foot press is detected and reported
to a desktop where the data is analyzed and relevant services can be rendered. This not only
strikes the sticks to disappear the computing behind a walk, it also paves the way for new
services. Imagine Bob, with a busy schedule has such a carpet installed in his office room.
As he leaves the office in the evening, the carpet senses his footsteps and calculates his path
when he leaves the room. If he exits at the main entrance and is not reentering, perhaps
for a few minutes, the lights can automatically switch off. If installed in an old age home,
it could activate an alarm if Bob’s dad fell on the ground, was helpless and could not move.
By embedding sensors and their electronics in a carpet the computing is well hidden from the
user’s point. It also enables a next generation of interacting devices and user interfaces. It
offers the possibility for a new vision of applications which are based on how and where we
walk.
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1. Introduction

1.6. Summary

We live in a world where personal electronics try to understand our requests. This development
has over the years caused machines to become outdated. As devices become smaller, research
is trying to make them interactive. One such context aware computing is trying to provide
services based on human motion. As a person moves, the walk triggers an equivalent ground
reaction force which can be trapped by force sensors. Converting this information enables new
technologies to identify the location of a foot step. As a subject walks, permanent contact
to the ground is always maintained in the path, which helps tracking algorithms to identify
it. Tracking human motion promises new applications in the field of biomedical engineering,
surveillance, surveying and health care to name a few. The next chapter briefs the prototype of
such an ubiquitous concept with details of actual hardware. It is then followed by an overview
of contents of each chapter in this thesis.
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2. Human Motion Tracking and The Smart
Carpet Concepts

Enabling things around to compute and communicate, we create an environment where in-
formation is available anywhere and anytime also known as Ubiquitous Computing. Under
this context, common devices such as appliances, gadgets and toys are given computational
sensing and communication abilities. This technological movement has been amplified by re-
search initiatives like MIT Media Laboratory’s Things that Think projects and Xerox PARC’s
concepts on Ubiquitous Computing. The fact that humans enjoy clothing as a universal body
language has contributed to new areas of research where textiles and computing are integrated.
A system stitched inside a carpet as a sensor layer would hide the existence of computation in
a carpet. Such a carpet could be used to capture human motion.

2.1. State-of-the-Art for Pervasively Identifying Human Motion

There has been an increasing interest in pervasive means of sensing and identifying foot pres-
sure. Some of the pioneering works towards this goal are worth mentioning at this point. Early
attempts of tracking human motion can be traced back to Olivetti and Oracle Research labo-
ratories | ]. A floor tile was considered as a force plate. Load sensors were integrated to
form a sensor tile. In the early stages one load cell was considered for one tile. Although the
weight of an object could be precisely measured, many times the weight of the object would
be spread across the tiles. It was not easy to interpret spread loads. Hence four load cells were
taken and placed on the edges where tiles join (Fig. 2.1). In this way one load cell could collect
load from different cells and the load spread is dealt uniformly to form an Active Floor.

Ramp

Floor tile

Load-cell

Figure 2.1.: Construction of Active Floor

17



2. Human Motion Tracking and The Smart Carpet Concepts

An array of load cells supporting four adjacent floor tiles in the middle and two at the edges
is placed to form the Active Floor. Steel plates about 500 by 500 mm in size and 3 mm thick
are shaped together with an 18 mm thick plywood of similar size to form a tile. Carpet tiles
were fitted on top of the floor tiles to give the appearance of a normal office floor. A wooden
ramp is placed on all four sides of the Active floor to provide a smooth transition.

A full bridge circuit provided 10 V DC excitation voltage to the load cells. A VXI based strain
gauge data acquisition equipment with a 64 channel, 16-bit ADC board converts 16 full bridged
load cell signals to a Hewlett-Packard’s Virtual Engineering Environment (HPVEE) software.
Sampling the signals of walking and running people at different sample rates, it is found that
most of the load cell signals are less than 250 Hz. The experiment was split into three different
stages. In the initial stage, data from the center load cell was taken and sampled at 500 Hz. In
the second stage, 819 samples of each sensor’s data set are averaged and the result is deducted
from the data set to remove systematic errors due to the static weight of the floor. The data is
then converted from volts to kilograms. This instruments in finding the weight of any object
placed on the Active Floor which is directly proportional to the vertical GRF components. In
the final stage the previous data set is analyzed and the time traces of the footstep’s vertical
GRF components are extracted. The experiment is repeated for different subjects in a regular
pattern. Each subject was requested to step over the center tile. A database logged the foot
signatures for a group of 15 people.

Hidden Markov models (HMM) are constructed and the data is passed on to these models.
The weight estimator calculated the average of the GRF over a step interval. This resulted
in error rates greater than 50 % obtained by the HMM. Hence the direct application of HMM
over the entire signal was inadequate. Although the results are not that practical, there are
certain useful properties that distinguish this experiment from alternative approaches:

e It is non inversive

e Objects cannot be hidden

e Pervasive in nature

e Can be hidden from the subject under observation

e Can be combined with other sensor system

It is evident from this experiment that sensors embedded in the floor can reveal the distribution
of vertical GRF components. These signals can be captured to identify human motion.

Since Active Floor used HMM which averaged the amplitude of the GRF signal over the step
interval which resulted in more than 50% errors, a further development was made in Smart
Floor [ ]. Here, similar experimental setup is used at the Georgia Institute of Technology
in building the Smart Floor. Instead of an array of tiles, only one tile with four load cells
placed in the four corners of a custom made force plate are used. The captured signals are
also treated differently. Instead of using an HMM model a more computationally easy method
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2. Human Motion Tracking and The Smart Carpet Concepts

is chosen where footstep profile features are drawn out of the footstep interval (Fig. 2.2).

Ymax1 4
| 'r" H'-.h area
Ymax2 —— / \\ ;"II"L}/
Y
g b wu/ \
Ymin | H"‘ |
L
mean F‘l e
'II dev%ﬁun
[
e e
Xmax1 Xmin Xmax2
Length

Figure 2.2.: Footstamp profile using Smart Floor

The features included the mean value of the profile; the standard deviation of the profile; the
length of the profile; the total area under the profile curve; the coordinate of the maximum
point in the first half of the profile; the coordinate of the maximum point in the last half of the
profile and the coordinate of the minimum point between the two maxims. The footsteps are
placed in a ten-dimensional feature space and a nearest-neighbor search is performed to match
unidentified footsteps with the identity of the closest cluster in the training set. The Euclidean
distance is then calculated. The identity of the cluster with the least average distance is taken
as the identity of the unknown footstep.

Subjects were made to walk in straight lines and make a single step on this floor tile. The walk
was repeated over different shoes and various foot sizes. The Smart Floor is able to identify
88 % of the footsteps correctly. It is concluded from this research that the footwear does not
greatly affect the ability of this approach to identify user by his footstep. The Smart Floor
was intended to be deployed in the Aware Home of the Georgia Tech ubiquitous experiment
project | , .

In another approach [ | new materials are applied in constructing a sensor based floor.
Electro mechanical film (EMFI) is a thin, flexible low cost conductive material which consist
of cellular, biaxially oriented polypropylene film coated with metal electrodes. In manufac-
turing this film, an internal vacuum layer is created in the polypropylene layer where a large
permanent charge can be stored by electric fields that exceed the dielectric strength of the
EMFTI (Fig. 2.3 on the following page).
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Figure 2.3.: Cross section of a EMFI sensor stripe

An external force affecting the EMFi surface causes a change in the film’s thickness, resulting
in a change in charge between the conductive metal layers. This charge can be detected as a
voltage signal. The EMFi floor consists of 30 vertical and 34 horizontal EMFi sensor strips.
Each strip is 30 cm wide and 10 m long. They are installed under normal flooring. Each stripe
produces a continuous signal which is sampled at a rate of 100 Hz using an analog to digital
conversion card - PCI6033E from National Instruments. This data acquisition device handles
upto 64 analog channels simultaneously. The digital output is streamed to a PC on the PCI
bus.

As a subject walks on these stripes, the majority of the footsteps land in the middle or between
two adjacent stripes. This results in a heel strike profile on one channel and the tow push
off profile in the one next to it. Secondly, when consecutive footsteps land on the same
stripe, the baseline of the EFMI-signal starts to fluctuate. As a signal amplitude based simple
thresholding method done in HMM is inadequate for footstep pattern detection, a statistical
pattern matching method | , | based on Segmental Semi Markov Model (SSMM)
is chosen.

This method contains two major components: an explicit state duration distribution and a
segmental observation distribution. Unlike standard HMM, where a state generates a single
observation yt, a state in a SSMM generates a segment of observations yt;. .. yt2. The duration
of this segment in time is modeled by a specific distribution with a mean duration and some
variability around that mean. This segmental observation model brings the aspect of shape
variability into the detection process. This helps to generate a specific footstep pattern for
every kind of footstep. Once this footstep profile is generated by combining observed segments
from adjacent stripes using a piecewise linear segmentation algorithm, then a Viterbi based
algorithm is used to detect similar waveforms in the data generate by the EMFi-sensor (Fig. 2.4
on the next page). This experiment has proven that footsteps can be more reliably detected
than with the previously developed HMM based detection techniques [ ]
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Figure 2.4.: Foot stamp profile segmented in PLS
In an interactive approach, Magic Carpet | | produces a soundscape which generates

music and notes to the subtle movements of a performer when he dances on this carpet. A
cable that can sense foot pressure is laid out in the carpet. The cable consists of piezoelectric
wires with an inter wire pitch of 4inches and an insulating layer of piezoelectric co-polymer
material. The cable is shielded at the outer layer to give the construction of a coaxial cable.
Such a cable, working like a transducer, produces a voltage when pressed or flexed anywhere
along its length. The cable is a more rugged, off the shelf product with a higher dynamic range
in pressure response. Signals from each wire are buffered by a high-impedance operational
amplifier and the footstep profile is being detected by an envelope detector circuit.

A custom made circuit scans 64 signals at 60 times a second. Every time a new pressure peak
is detected, the circuit sends out a MIDI note with the note number corresponding to the
particular wire generating the data, along with a 7 bit pressure value. As the subject lifts the
feet, the pressure on a particular wire drops. This is also sensed by the circuit to turn off the
corresponding music note that was switched on. Additional to sensing foot Doppler radars
are also implemented to observe the dynamics and position of the body and arm swing. The
Doppler-shifted reflections of a beam from a moving performer in its vicinity is gathered in a
4 element micro patch antenna. These radars respond to motion within a range of at least 15
feet. Instead of processing the Doppler signals in the Fourier domain, a simple analog signal
conditioner produces three analog signals for each radar. These signals are sampled at 50 Hz
and represented as 8 bits. The digitized data is used by a music generation algorithm and fed
to a sound bank.

As the floor uses a grid of wires, it is a relatively coarse grained matrix when considering the

translation of steps into a choreographic representation. The response of the entire system is
rather slow, approximately 0.5 seconds. Although the floor is scanned at high sample rate, the
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effective responsive rate is hampered by the sensitive noisy wires and the bandwidth limits of
the low pass filter that conditions the analog signals of the radar. The Magic Carpet cannot
guarantee the location of steps if more than one step is present at an instance.

A LiteFoot [ | Floor is developed to overcome these disadvantages. It has an area of
1.76 m?, made of a 10 cm thick wooden slab with a matrix array of optical proximity sensors.
When a subject keeps the foot on the floor, the location of contact points between the floor
and the foot is detected by the sensors. An embedded controller scans through the sensors
every 10ms. It considers each sensor position as a pixel and identifies changes in the pixels.
The changes are then transmitted to the PC (Fig. 2.5).

"""" BC / [Media1 ]
FootWare -g:~—b |Media 2 |
N

I\

Dance Floor

|

Controller I—'—P TipTapToe

Figure 2.5.: Blocks of the LiteFoot

The LiteFoot Floor operates in two modes. In the reflective mode, the performer would have
to wear a shoe that has light reflective soles. The footsteps are detected by the proximity of
an object causing a reflection of light back to the sensor. In the shadow mode, the floor is
flooded with light and the footsteps that stop light entering the sensors are detected. The
software running on the PC displays where the feet are located. Another set of libraries map
the floor positions and a simple MIDI device to a pentatonic scale. This resulted in a very
sensitive floor subject to subtle inflections of foot movement. The dancer’s steps became the
music with the rhythm and tempo of the dance augmented by additional dimensions of pitch
and timbre.

Tracking human motion and enabling applications to use the movements have gathered much
attention in recent years. However the identifying footsteps and estimating its locations still
remains a technical challenge. The methods suggested so far are pervasive in nature but have
to be considered as a single piece of floor equipment with a predefined shape and is difficult
to reinstall or transport to another place. Hence the design considerations started to demand
modularity and flexibility in installation.

A new approach was needed following the footsteps of the Active Floor. Hence modular units
with sensors were considered, which can form blocks of a compound system. In this new
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development, the modular blocks which could be interlocked or disassembled even with a new
size or shape were designed. Each modular unit is required to provide sensing capabilities.
In order to provide the widest possible range of information to the external application, the
size of the sensor is reduced to 40 mm diameter. Twenty such sensors made of force sensitive
resistors are fused to form a tile known as Z-Tile | ].
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Figure 2.6.: Internal logical structure of Z-Tile

Each module has a unique shape that can interlock with each other in a regular pattern and
can hold firmly. The modules are protected by a 2mm plastic material on their surface. The
control circuitry for each tile is contained within the tile casing and consists of 5 Cygnal
microcontrollers in each tile. The controllers can read the sensor information, provide data
communication and self organization for a network of interconnected tiles. The tiles communi-
cate with each other using the universal asynchronous receiver/transmitter (UART) interface.
Since the tiles can be interlocked, interfaces between the tiles eliminate wiring between the
tiles. A light weight network protocol transports data to a central PC which governs the activ-
ities on the Z-tiled floor (Fig. 2.6). Wired connections offer the advantage of high speed, direct
communication between the nodes in a network and a lightweight communication protocol can
be used, as compared to the wireless counterparts.

The Z-tiles are targeted towards music and dance control applications. Pressure sensing can
be used to give the musicians control over existing musical instruments. The tiles have been
tested as an input device for control of computer games using virtual reality.

To emphasis on modularity and transportability Geta Sandals [ | are developed in a
intrusive way. Geta Sandals are targeted further in reducing system infrastructure and cost.
This system can identify footsteps due to the sensors and computing devices installed in a
wooden sandal. The system could also compute the location of the user. The sandal detects
the heel strike and toe off stances. As the user walks from location A to B, he would leave a
series of footprints. The system continuously measures a displacement vector formed between
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two advancing footprints. To track a user’s current location relative to the starting point,
the system sums all previous footprint displacement vectors (Fig. 2.7) leading to his current
location.

global
coordinate
system

Starting point (X0 Verars)

(a) (b)

Figure 2.7.: Displacement vectors corresponding to footsteps

To measure the displacement vector for each footprint, two ultrasonic infrared combo receivers
in the left sandal and two similar transmitters on the right sandal are installed respectively at
the inner sides of the sandals. The coordinates of these two transmitters are measured relative
to the local coordinate system of the left sandal. However, the sandals could not provide good
position accuracy due to the signal interference of the two transmitters. Hence the receivers
calculate incorrect coordinates. Secondly, the initial location of the user is assumed to be at
a starting point which needs to be calibrated to the physical location of the user in a room.
As the user walks any error introduced in the displacement vector gets accumulated over each
step. To eliminate the signal interference problem, one of the transmitters was removed. To
reduce the error accumulation in the displacement vectors, passive RFID tags are laid in the
floor in a regular grid fashion. Each tag has a location information. Hence, as the user walks
the displacement vector error is reset to the corresponding location of the RFID tag in the
floor. However, this is the second experimental setup which is aimed in tracking human motion.
The first one could be considered as the Active Floor which was more targeted towards human
identification.

In a recent development towards tracking human motion, sensor blocks about 18 by 18 cm in
size, consisting of binary sensors are integrated in the Human Tracker | ]. The blocks are
laid to cover an area of 37m? to track human motion. The signals are then processed using
Markov Chain Monte Carlo method to treat lossy data. The system could track a person
within 58 cm of his true position.
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The possibility of identifying footsteps has interested researchers to find methods to improve
performance and feasibility of the final product. Summarizing the important works that have
been developed so far, we could see where more attention has gathered. The following tree
shows the developments over time (Fig. 2.8). Active Floor, Smart Floor, Ubi Floor are targeted
towards footstep identification. Meanwhile Magic carpet, LiteFloor, and Expressive foot wear
are targeted towards musical floors based on foot stamps at specified locations. But all of these
are single block units which lack modularity and cannot be targeted towards a commercial
implementation. It is because each of the systems need an expensive ADC board for a set
of sensors (maximum 16) which is not economical and cannot be embedded. Geta Sandals
and Z tiles do have a modular approach. Geta sandals offer the possibility of tracking people
while Z tiles does not provide human motion tracking (there is no publication in this direction
using Z tiles till the time this thesis was written). Geta sandals are intrusive in nature and
the accuracy is largely attenuated by the accumulating displacement vector error. Human
tracker is an improved version of Ubifloor with human motion tracking. Again the system
lacks modularity. There is a huge gap between tracking human motion, a modular concept,
and a commercial implementable solution.

1997 Active Floor
/ \
Magic Carpet Smart Floor
Lite Floor Expressive footwear Ubi Floor
2002 Z-Tiles Geta Sandals
2005 Human Tracker
future

Figure 2.8.: State-of-the-art comparisons with respect to technological advance

It could be observed that Z tiles have developed towards a more robust, easily transportable,
self organizing system to identify foot pressure. On the other hand Human tracker offers the
possibility to track walkers at a tolerance of 58 cm. What is missing, is the gap in between,
where there is a need for a system, that can be shaped to the size of the environment, still
modular in architecture and easily transportable. The system should also offer the possibility
of commercial manufacturability with components off the shelf. This would be the next step
from research stepping out of the laboratories into commercial implementation. The system
should not only identify footsteps, but also locate them in any event and provide means of
tracking the footsteps of the subject in the targeted environment.

A Smart Carpet was developed to address these requirements.
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2.2. Smart Carpet Internals

The Smart Carpet is made up of different layers of polymers, cotton and electronics. In the
bottom layer is a black sheet of sturdy polymer to hold the above layers quite stiff. On top
of this layer is a thin glue layer. The glue layer is double stick synthetic gum that glues the
upper and the bottom layers firmly. On top of this layer is the conductive textile layer -
textile fabric which is interwoven with copper wires (Fig. 2.10 on the following page). They
are woven in a regular grid fashion. Small printed circuit boards (PCB) are integrated to this
layer. The boards have electrical connection thru the copper wires that interconnect them
thru this layer. The complete setup is then insulated by a transparent double sided hair crow
layer. The velcro layer houses a normal floor carpet making it a uniform structure of textile
with sensors of computing capability.

2.2.1. Hardware Construction

A capacitive sensor was constructed by placing a thin insulating material between two pieces
of a 225 cm? conductive foil. This sensor is placed on top of the conductive textile layer. The
plates of the capacitor are terminated to a (General Purpose Input/Output) GPIO pin of the
microcontroller. Additionally the microcontroller has 4 UARTs. The H852249 microcontroller
with 256 KByte of in-build RAM is used. The microcontroller with additional circuitry for
power distribution and operation is built in a thin protected PCB of 52cm? forms a node
(Fig. 2.9).
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Figure 2.9.: A Microcontroller with 4 UARTS

120 such identical nodes with sensors are serially interwoven at the UARTSs to form a regular
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mesh network. The interconnections between the nodes were recognized using conductive tex-
tile based wires. Similar wire fibers were provided for power and ground signals separately. A
polyester fabric with interwoven silver-coated copper wires with a line resistance of 0.4 ohm/m
was used as a textile cloth. One of the nodes from the network was terminated to a PC. A
12V DC distribution circuitry powers a few nodes. These few nodes route power to the whole
network using MOSFETs and a power routing algorithm.

Figure 2.10.: Textile interconnect and the conductive textile layer

This algorithm checks for powered neighbors and open or short circuits. At each node, power
consumption is approximately 10 mA per module in active and 6 mA per module in standby
mode.

A special bonding adhesive called Anisotropic conductive adhesive (ACA) [Doe06] was used
to integrate the electronic module to the copper wires in the textile. The ACA is a bonding
material which consists of metal particles dispersed in an epoxy adhesive. This allows electrical
current to flow along a single axis. The conductive particles are aligned under a magnetic field
during curing, therefore, controlling the spacing of the metal particles within the material.
Separately-spaced columns that conduct between opposing conductive surfaces are formed
without requiring pressure. The ACA bonding is a low-temperature process (around 120 degree
Celsius) compared with soldering. Hence, it is possible to interconnect the textile wires and
the solder pads on the node module (Fig. 2.10).

Since the textile wires are interwoven in as a single fabric, by integrating the nodes on them
provided a single piece of a smart textile cloth. This piece of cloth is cold-laminated between
two layers of textile material to reduce the mechanical stress and equalize the height of the
nodes with casing (2mm). The top layer is a tufted carpet. The bottom layer consists of a
1000 gram polymer material. The size of the carpet is 240 by 200 cm. The power consumption
of this network with 120 nodes was 8.4 watts.

Since each node in the network has four UART’s, data communication is possible in all four
directions sequentially. Communication between the nodes was performed by an algorithm
CORP [Sav04], based on the serial communication protocol. In this algorithm, UART’s are
chosen based on the current requests and priorities at a node. The priorities of the UART
interrupts are rotated in a regular cyclic way so the whole network has equal probabilities of
sending and receiving data at any instance. The protocol does a software handshaking before
it starts to send the data. Data is transferred dynamically using an inbuilt dynamic data
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transfer controller (DTC) | ]. The protocol also supports bidirectional and fault tolerant
data transfer.

2.2.2. Software Description

Currently, one node is interfaced to the RS232 port of the PC at a data rate of 115200 bps. A
self organizing network operating system, ADNOS (Algorithmic Device Network Organization
System) | , , ] is built in the nodes. ADNOS takes care of certain network
features that are quite crucial to the network, like fault tolerance, self booting, error reporting
and sensor status. Certain parts of the carpet can be removed and the whole network can still
be reorganized to work in a regular mesh topology. The carpet undergoes a series of phases ,
until the whole network becomes operational (Fig. 2.11).

Power routing Determine Determine
and check for coordinates distances to
failing elements of modules portal

t Generation of Numbering of
routes for elements for Start

data transfer data transfer operation

Figure 2.11.: Stages of software flow

Power routing is the first phase, where starting from the PC, each node checks its neighbors
for current limits, disables defective neighbors and switches the power through to all func-
tional nodes until the whole network is powered up. During the second phase, the network
is organized. A boot frame is passed from the PC which contains the initial coordinates for
that particular node interfaced to the PC. Based on this information and the number of avail-
able neighbors the spatial coordinated for the neighbors are calculated and the neighbors are
booted by this node. No prior knowledge of the spatial coordinates is used except from the
ones provided in the boot frame.

The orientation of the nodes is also determined using the reference to the UARTs. In this
fashion the boot frame is recalculated at each node as it travels till the end of the network.
As the frame passes on, the distance to the PC is calculated at each node using hop counts.
With this information a backward organization algorithm performs data route determination
at each node. Hence each node has a specific data routing path to send its sensor signals and
error codes to the PC. Then the PC issues a static identification number also referred to as
the processor number to the node to which it is terminated. This node with the knowledge
of all its neighbors, calculates the processor numbers for its neighbors. In this way, each node
on the network has its spatial coordinates identified by a unique processor number. After this
phase the network in the carpet is ready for operation.
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2.2.3. Operation

The whole network is kept alive by constantly sending ping frames between the nodes using
the data routes calculated during the initializing phase. The ping frames originate from the
PC at the rate of 5 seconds which is also configurable. If there is a failure in the ping message,
the PC is informed about the exact node where this message failed. If there is any electrical
failure at a node or if there was any physical tear at a place on the carpet which led to wearing
off of a node, either the interrupts at the neighbors get triggered or failure of consequent ping
messages generate a deactivation frame to the PC with its identity.

A monitor routine runs on the PC which takes care of displaying the status at each node, the
structure of the network, and all the administration tasks of the ADNOS. Figure. 2.12 shows
a snapshot of the SCM in the operation mode. This monitoring routine records each frame
that is sent and received from the carpet. At each instance a time stamp of the transmission
or reception is also recorded. This data is presently available as a text file referred to in the
rest of the chapters as the log file. When the whole network is organized, the carpet is then
activated by sending an activation frame. After this frame is being received at the end of the
nodes in the network the carpet can be used as a smart sensor floor.
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Figure 2.12.: Snapshot of the Smart Carpet Monitoring routine
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When a person steps on the carpet the capacitive sensors get activated due to the foot pressure
and send a sensor ON frame to the PC along with a processor number. When the person moved
or kept the foot off from that particular sensor, a sensor OFF frame is sent from that node to
the PC through the data path calculated during booting.
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Figure 2.13.: Test configuration for observing hop delay and data collision

2.2.3.1. Performance

As the PC receives each frame, a time stamp is recorded along with the frame in a log file.
The time taken for one sensor information to be recognized, processed and transmitted to its
neighbor takes approximately 1.5ms. Figure 2.13 shows configuration details and results of
data exchange during hopping and collision. As the frame tries to find its way to the PC, it
passes at a speed of 1.5ms at each hop. When two nodes need to send data simultaneously
to each other data is mutually exchanged on a negotiation (Fig. 2.14 on the following page).
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This avoids collisions and increases throughput.

s Al Channels
. 2msiciv; 23

L — Trigger signal-
Fig. a. Trigger sighal for activating the sensor

.Fig. d. Results for coﬁﬁguration éhc-wn in Fi-g.1 £,

Figure 2.14.: Oscilloscope snapshot showing data exchanging avoiding collision

The typical area occupied by a normal person while walking is 2.3 m?. Comparing this to the
traffic that would occur in a network of 120 sensors spread across an area of 7.6 m?, we can
expect a maximum of three people walking without touching each other | ]. They would
activate a maximum of 24 sensors per second (6 feet by 4 sensors per foot, if their foot lands
at borders of two sensors).

If there is a stampede a maximum of 6 people could congest and if they are running, they
would trigger 48 sensors per second (12 feet by 4 sensors per foot). If tap dancers are dancing
on the carpet, three dancers in the given area, they would generate 480 sensor packets (6 feet
by 4 sensors by 20 taps per second). These situations are simulated on the carpet for the
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given area. Results of the measurements taken are shown in Fig. 2.15. They show that, the
Smart Carpet is able to effectively handle data packets with minimal losses even at extreme
situations(Fig. 2.15).
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Figure 2.15.: Transmitted vs received packets

7Z tile has done exclusive research on reducing data loses in smart sensor floors. Their solu-
tion was to eliminate data loses by data blobbing | ]. This method improves network
performance and increases the throughput. Similar principles can be applied to the commu-
nication protocol and the messages delivered by the Smart Carpet. Another important factor
that contributes to the data loss is the operating system on the PC. Unsynchronized processes
occurring at random intervals do cause delays on threads running on the RS232 protocol. Sec-
ondly, the GUI that is getting updated also proximates delay in the threads synchronized with
the RS232 interface at the PC.

2.3. Thesis Motivation

Considering human motion estimation using video analysis techniques, most of the proposed
studies involve extracting parameters from the pose of the human body and represent them as

kinematic chain of parts [ , , | or as spatial arrangement of blobs [ ] or
point features | ]. A general overview of such analysis | ] can be brought in under a
framework for tracking human motion based on four main tasks | ]: prediction, synthesis,

image analysis, and state estimation. However, these tasks can be true for camera based
tracking approaches where the prediction task considers previous states up to time ¢ to make
a prediction for time t+1. It allows the integration of knowledge into the tracking process.
The synthesis component translates the prediction from the state level to the measurement
(image) level. The synthesis allows the image analysis task to selectively focus on a subset of
regions and look for a subset of features. Finally, the state estimation task computes the new
state using the segmented image. This framework can be applied to any model-based tracking
problem, whether involving a 2D or 3D tracking space. However, they suffer from the fact
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that as number of cameras increases, the complexity of processing all the videos and images
increases, t0o0.

Secondly, video analysis cannot guarantee exact location of a person in spatial coordinates.
When he or she is not cooperative or if the shape is modulated while carrying a load for
example, the subject’s silhouette is modulated. The shadows need to be extracted from the
neighbor or a dark object behind the subject. The camera field has to be mapped to fit
the area of the observation. This means for each camera the mapping has to be modified
which is also dependent on the location and surroundings. Feature extraction is affected by
the lightning effects on the camera and the perspective distortions. Ubiquitous computing
had opened new possibilities in sensing and processing observed data. Extensive research had
been conducted in this area where sensors based on state-of-the-art materials are embedded
in diverse environments to sense foot pressure and identify foot steps. However, most of
the systems except for Z tiles lack a modular design. None of the systems are available for
commercial productivity. Very few of them provide footstep tracking which is of major interest
for security and health care segments. Hence tracking people using natural means is still an
unsolved problem.

Table 2.1.: Table of comparison for state-of-the-art of pervasive environments and human mo-
tion tracking

Project | Identification | Tracking Algorithm Accuracy

Active Floor Yes No | Standard Mean 50 %
Magic Carpet Yes No Proprietary N.A.
Lite Foot Yes No Proprietary N.A.
Smart Floor Yes Yes HMM 93 %

7 Tiles Yes No Proprietary N.A.

Geta Sandals Yes Yes Proprietary | error 158 cm
Human Tracker Yes Yes MCMM | error 59 cm

2.3.1. Challenges

The table 2.1 summarizes the different innovative research attempts towards a pervasive envi-
ronment intended to sense foot pressure and identify footsteps. However, a smart floor system
should have the properties of self organizing, less power consumption and sources, detecting
newly added parts of the floor or the shape of the floor space. It should be fault tolerant,
e.g. able to detect when some of the sensors got damaged, should be able to recognize a best
route for data to reach an external controller like a PC. It should be easily transportable,
commercially marketable and easily manufactured. All of these above properties qualify the
Smart Carpet.

Although the Smart Carpet does offer the possibility to locate a footstep at any particular

location, a new set of rules has to be identified and realized as an algorithm to identify the
sensor activations as a person walks on the carpet, detect the sequential footprints of a person
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and identify the spatial coordinates that can be mapped to a physical location in a room. It
should be able to identify time at each instance of motion. The rest of this thesis is contributed
to this part of the research where the data from the Smart Carpet is explored, analyzed and
the results are discussed.

2.4. Contribution of this Dissertation

This research attempts to analyze the data that is generated from the Smart Carpet. It tries
to empirically model the nature of a footprint on the Smart Carpet. It attempts to build
data mining models that can use the structured data from the Smart Carpet. The models are
adapted to patterns of actions rendered by human motion. The models deliver a set of spatial
coordinates and time stamps that describe the trajectory of the human motion on the carpet.
This thesis also presents novice methods to validate the models. The models are compared
with motion patterns a subject took while walking on the Smart Carpet and the state-of-the-
art technologies. The models together with the Smart Carpet system are targeted towards a
most accurate human motion tracking system.

2.4.1. Data Definition

Before we go into the details of the models, the data that is generated by the Smart Carpet is
carefully examined. The Smart Carpet consists of touch sensors which are capacitive in nature.
These sensors are terminated to the GPIO pins of a microcontroller. When a person keeps
the feet on the carpet the sensor triggers an interrupt signal in the microcontroller to intimate
the presence of foot pressure. On receptio