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Abstract

In this thesis, multiple shooting methods for optimization problems constrained by partial differential
equations are developed, and, furthermore, a posteriori error estimates and local mesh refinement
techniques for these problems are derived. Two different approaches, referred to as the direct and the
indirect multiple shooting approach, are developed. While the first approach applies multiple shooting
to the constraining equation and sets up the optimality system afterwards, in the latter approach
multiple shooting is applied to the optimality system of the optimization problem. The setup of both
multiple shooting methods in a function space setting and their discrete analogs are discussed, and
different solution and preconditioning techniques are investigated. Furthermore, error representation
formulas based on Galerkin orthogonality are derived. They involve sensitivity analysis by means of an
adjoint problem and employ standard error representation on subintervals combined with additional
projection errors at the shooting nodes. A posteriori error estimates and mesh refinement indicators are
derived from this error representation. Several mesh structures originating from different restrictions
to local refinement are discussed. Finally, numerical results for the solid state fuel ignition model are
presented. This model describes an explosive system that does not allow the solution by standard
solution techniques on the whole time domain and is a typical example for the application of time
domain decomposition methods like multiple shooting.

Zusammenfassung

In dieser Doktorarbeit werden Multiple Shooting Verfahren für durch partielle Differentialgleichungen
beschränkte Optimierungsprobleme entwickelt und zusätzlich a posteriori Fehlerschätzer und Metho-
den zur lokalen Gitterverfeinerung für diese Probleme ausgearbeitet. Es werden zwei unterschiedliche
Ansätze, welche als direkter und indirekter Ansatz eines Multiple Shooting Verfahrens bezeichnet
werden, betrachtet. Während der erste Ansatz das Multiple Shooting Verfahrens für die beschrän-
kende Differentialgleichung ansetzt und anschließend das Optimalitätssystem aufstellt, wendet der
letztere das Multiple Shooting Verfahren auf das Optimalitätssystem an. Die Darstellung beider
Ansätze im Funktionenraum und die diskreten Entsprechungen werden diskutiert, und verschiede-
ne Lösungs- und Vorkonditionierungstechniken werden untersucht. Des weiteren werden basierend
auf Eigenschaften der Galerkinorthogonalität Fehlerdarstellungen hergeleitet. Diese beinhalten eine
Sensitivitätsanalyse anhand von adjungierten Problemen und verwenden Fehlerdarstellungen auf
Teilintervallen zusammen mit zusätzlichen Projektionsfehlern an den Zeitknoten des Multiple Shooting
Verfahrens. Ausgehend von dieser Darstellung werden a posteriori Fehlerschätzer und Indikatoren
für die Gitterverfeinerung hergeleitet. Verschiedene Gitterstrukturen, welche aus unterschiedlichen
Restriktionen an die lokale Verfeinerung resultieren, werden diskutiert. Abschließend werden numeri-
sche Ergebnisse für ein Modell, welches die Zündungsphase eines Festkörperbrennstoffes beschreibt,
angegeben. Dieses Modell beschreibt ein explosives Systems, das die Lösung mit Standardverfahren
auf dem gesamten Zeitgebiet nicht zulässt, und das daher ein typisches Beispiel für die Anwendung
von Zeitgebietszerlegungsmethoden, wie zum Beispiel Multiple Shooting Verfahren, darstellt.
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1 Introduction

In this thesis, we develop and investigate multiple shooting methods for optimal control
problems constrained by parabolic partial differential equations. Furthermore, we combine
these multiple shooting methods with a posteriori error estimation techniques and adaptive
mesh refinement procedures.

Systems of partial differential equations (PDEs) play an important role as models for dynamic
processes, for example in physics, chemistry, biology, or engineering. Optimization problems
occur as parameter estimation problems in the context of quantitative modeling or as optimal
control or optimal design problems where a process has to be constructed or operated to
meet certain objectives.

Reactors, built to study the details of chemical reactions, must provide stable and predictable
environments (pressure, temperature, mixture of species) in order to avoid spurious ob-
servations. Therefore, the reactor must be controlled to maintain these environments. In
dynamical processes, this should be achieved by optimal control, which can be interpreted as
a constrained optimization problem. In this case, the constraints consist of a PDE initial
boundary value problem and further technical restrictions. Thus, a typical example for
optimal control problems constrained by PDEs with path and control constraints is the
cost-minimal operation of a catalytic tube reactor under temperature restrictions [36] or the
control of flow conditions for measurements in a high-temperature flow reactor [19]. Further
examples of PDE constrained optimization problems are problems of catalytic reactions,
for example the catalytic partial oxidation of methane in tubular reactors or the catalytic
conversion of exhaust gas in passenger cars or a high-temperature flow reactor which has
extensively been researched in [19].

Possible approaches to the solution of PDE constrained optimization problems are given by
the class of shooting methods. Originally developed for the solution of boundary value problems
(BVPs) in ordinary differential equations (ODEs), these approaches obtain their denomination
from the typical solution process: For a guessed initial value, the approximation of the terminal
time value is numerically calculated, and the approximation of the initial condition is improved
by an iterative procedure. Metaphorically speaking, given an approximation of the initial
value, we shoot onto the terminal time value and seek to match the prescribed value at this
time point.

In general, we differentiate between single shooting and multiple shooting methods, though
single shooting merely displays the special case of multiple shooting for one time interval as
we will see later on.

Multiple shooting methods have proven to be the state-of-the-art for optimization problems
in the context of ordinary differential or differential algebraic equation systems. Multiple
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1 Introduction

shooting methods simultaneously solve the constraints (the simulation or forward problem)
and the optimization problem through globalized tailored infeasible Newton-like methods.
They typically use time-adaptive strategies for the discretization of the differential equation
constraints and tailored decomposition methods for the solution of the structured quadratic
problems in every iteration ([9, 27]).

Multiple shooting methods possess several advantages. First, multiple shooting methods
are stable and can be applied for the solution of highly instable problems. Second, the time
domain decomposition allows the introduction of knowledge about the process at all timepoints
by choosing adequate initial guesses for the states. Furthermore, multiple shooting methods
allow the parallel solution of the subproblems on the different time subintervals.

The multiple shooting method as a time domain decomposition scheme goes back to the
solution of two point boundary value problems for ordinary differential equations which are
of interest not only in the context of optimization problems, but are often encountered in
physics and engineering. Starting from the single shooting method, early developments into
the direction of multiple shooting for two point boundary value problems can be found in the
publication of Morrison, Riley, and Zancanaro [31], the article of Holt [23], and the article of
Keller [26]. A good overview of the multiple shooting approach for ODE two point boundary
value problems is given in the textbook of Stoer [39], where further extensions to ODE
constrained optimization through the indirect approach are shortly introduced. This matter
is also discussed in the report of Bulirsch [13]. The advantages of the direct approach are
outlined in the diploma thesis of Plitt [33], in which first approaches to the software package
MUSCOD are implemented and discussed, and further in the article of Bock and Plitt [11]
and in the thesis of Bock [9]. Over the years a variety of different techniques for certain
concrete ODE constrained problems has been derived from the original ideas of Bock, Holt,
Keller, Plitt, and others and has been applied for the solution of those application problems
mentioned above. In this context the solution of PDE constrained optimization problems by
multiple shooting is brought down to the ODE approach by spatial discretization with the
method of lines ([36]). For this reason the approach is limited to coarse spatial discretizations,
and spatial mesh adaptation is not possible.

The idea to extend the multiple shooting approach for ODE constrained optimization to
optimization problems which are constrained by parabolic PDEs is a rather new topic of
research. First approaches were derived by Serban, Li, and Petzold who made first advances
into the direction of adaptive mesh refinement in combination with multiple shooting. This
approach is associated with the structured adaptive mesh refinement method (SAMR) and
was first discussed in [37]. A direct multiple shooting approach for linear quadratic optimal
control problems was developed by Ulbrich in [42] and Heinkenschloss in [20], and further
extensions were presented by Comas in her doctoral thesis [14]. All these approaches are
limited to linear quadratic optimal control problems and are mainly motivated by the possible
parallelization of the intervalwise problems and by the reduced storage requirements. The
efficient parallelization is difficult due to a lack of appropriate parallelizable preconditioners.
The reduced storage requirements do not hold for the multiple shooting method in combination
with adaptive mesh refinement obtained by the dual weighted residual method (DWR method).
This restriction follows from the required storage of primal and dual variable over the whole
time interval for the evaluation of the a posteriori error estimator.
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Nevertheless, multiple shooting is of crucial importance for the solution of highly instable
constrained optimization problems in which the constraining differential equation can not
be solved for slightly disturbed control parameters. A typical example of an instable ODE
constrained optimization problem is given by Example 1.1 below. We want to determine
a time distributed control q : I → R and a state function u : I → R such that the cost
functional (1.1a) is minimized while u fulfills the ordinary first order differential equation
(1.1b). In this optimization problem we search the best possible approximation of ū : I → R

limited by a regularization term penalizing the control costs.

Example 1.1.

min
q,u

J(q, u) := α

2

∫ T

0
|q(t)|2dt+ 1

2

∫ T

0
|u(t)− ū(t)|2dt (1.1a)

such that
u′ − λeu = q on I = (0, T ),

u(0) = u0.
(1.1b)

For an appropriate choice of ū, the solution u of the constraining equation exists and is
bounded for the optimal control q. But for the standard initial control q = 0 the solution of
the constraining differential equation blows up: With the parameter λ = 5 and the initial
value u0 = 0 we search to calculate the solution for q ≡ 0. The solution has a blowup at
about t = 0.2 as shown in Figure 1.1, and the numerical integration of the equation on the
whole time interval is thus impossible.
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Figure 1.1: Behavior of u(t) for different times t ∈ [0, 0.25] for Example 1.1 with λ = 5 and
u0 = 0. (x-axis: t, y-axis: u(t))

Multiple shooting as a time domain decomposition method on the other hand splits the
time interval into small subintervals. This enables us to calculate intervalwise trajectories
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1 Introduction

and thereby to improve the intervalwise approximation of the control successively in the
optimization process.

An analogous example can be stated for PDE constrained optimal control problems. We
consider the solid fuel ignition model which in the context of optimization has been investigated
in [25] or [24]. This problem is a powerful example for demonstrating the properties of explosive
systems, and a comprehensive theoretical framework discussing the existence of solutions
is available in the literature. We will describe these theoretical aspects and properties of
the problem later on when considering a numerical application. For now, it is sufficient
to present the pure problem formulation in Example 1.2 and to point out the motivation
for applying multiple shooting techniques to this problem. Similar to the ODE example,
we want to determine a control q : I → L2(Ω) as a source term on the right-hand side of
the constraining equation (1.2b) such that the state u : I → L2(Ω) fulfills the constraining
equation and approximates the given state ū : I → L2(Ω) in the cost functional (1.2a) best
possible.

Example 1.2. (The solid fuel ignition model)

min
q,u

J(q, u) := α

2

∫ T

0
‖q(t)‖2dt+ 1

2

∫ T

0
‖u(t)− ū(t)‖2dt (1.2a)

subject to the constraining equation

∂tu−∆u− λeu = q in I ×Ω,
u(0) = u0 in Ω,

u(t, ·) = 0 on I × ∂Ω.
(1.2b)

For the time interval I = (0, 1), the spatial domain Ω = (−1, 1) × (−1, 1), the control
q ≡ 0, the initial condition u0 = 0, and the parameter λ = 7.5, the solution blows up at
approximately t = 0.14. The solution on a 6 times globally refined mesh for different time
points is shown in Figure 1.2. In contrast, the solution of the optimal control problem (we
consider the simplest case of ū ≡ 0 in the following) is bounded in time. By application
of multiple shooting, we are able to solve the intervalwise problems and obtain the correct
solution after some steps of multiple shooting. We have chosen intervalwise constant controls
in time and performed the calculation for 20 intervals with time step size 0.01. The control
and corresponding solution obtained by the calculation are presented in Figure 1.3 and 1.4.
The solution over the whole time interval does not only blow up for the easiest case of
q ≡ 0, but also for several other tested initial controls. Therefore, the breakdown of standard
optimization routines is likely, whereas multiple shooting with a sufficiently large number of
intervals is suitable for the solution of the problem.

The accurate approximation of the solution to a PDE usually requires high computational
effort which can be reduced by using adaptive grid strategies. Finite element schemes have
proven to be very successful in this context. In particular, the method of dual weighted
residuals (DWR method) is suited to speed up optimal control problems governed by partial
differential equations, since it allows the efficient approximation of the goal of the optimization
problem. Therefore, the combination of multiple shooting methods for PDE constrained
optimization with mesh adaptation techniques is also discussed.
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(a) t = 0.04 (b) t = 0.08

(c) t = 0.12 (d) t = 0.1389

Figure 1.2: Solution u(t, x, y) for q ≡ 0, u0 = 0, λ = 7.5 at different timepoints.

(a) t = 0.25 (b) t = 0.75

(c) t = 0.95 (d) t = 1.00

Figure 1.3: Control q(t, x, y) for λ = 7.5, α = 10−2.

We now give a short overview of the topics related to mesh adaptive multiple shooting that
are discussed in this thesis.

In Chapter 2 we present the formulation and theory of PDE constrained optimization
problems and give a brief overview on the theoretical background concerning existence and
uniqueness of solutions. Furthermore, we cite and prove needed standard results from the
literature, for example first and second order optimality conditions.

5



1 Introduction

(a) t = 0.25 (b) t = 0.75

(c) t = 0.95 (d) t = 1.00

Figure 1.4: Primal solution u(t, x, y) for λ = 7.5, α = 10−2.

We proceed with an overview on the historical background of the multiple shooting
approach in Chapter 3. Here, the historical motivation and development of multiple shooting
for ODEs is summarized, and the insufficiency of the single shooting approach for the solution
is discussed. We introduce multiple shooting and explain briefly further developments, such
as condensing and efficient derivative generation. Furthermore, the basic idea of multiple
shooting for ODE constrained optimization problems is briefly presented.

The idea of multiple shooting for PDE constrained optimization is introduced in
Chapter 4. First, we develop the indirect multiple shooting approach, which applies multiple
shooting techniques to the optimality system of the problem. After that, we introduce the
direct multiple shooting approach which parameterizes the constraining equation and the cost
functional by multiple shooting and derives the optimality system afterwards. Finally, we
close the chapter with a theoretical investigation of the relation between direct and indirect
multiple shooting.

Chapter 5 is devoted to the appropriate discretization in time and space. We introduce
continuous Galerkin finite element methods on quadrilaterals as one possible method for
the spatial discretization. For the time discretization, we present discontinuous Galerkin
methods, and finally we discuss different possibilities for the discretization of the control
space. Above all, the choice of the spatial meshes at the multiple shooting nodes is of great
importance, and a variety of possible choices exists. Furthermore, the chapter provides us
with two fundamentally different approaches for the choice of the changing spatial meshes
in time. The first approach allows dynamically changing meshes in each time step, and the
second approach is based on constant meshes for each subinterval. Finally, we present the
implicit Euler time stepping scheme as the simplest example for a discontinuous Galerkin

6



time discretization scheme.

In Chapter 6 we discuss solution techniques for the multiple shooting approach.
Newton’s method is applied in both direct and indirect multiple shooting for solving the
optimality system. The resulting linearized problem is solved by application of the generalized
minimum residual method. We review different preconditioners and outline the necessity
and efficiency of preconditioning by numerical examples. Additionally, in analogy to the
ODE approach, we develop a condensing technique for direct multiple shooting which reduces
the computational effort. The chapter closes with a numerical comparison of the different
approaches.

Chapter 7 is devoted to the study of a posteriori error estimation for the discretization
error of the cost functional. The discretization of state and control space is necessary for the
computational solution of the problem and leads to inexact approximations of both control
and state variables. This error results in an incorrect functional value, and the aim is to
chose the discretization such that the error is minimal for a prescribed number of cells. As a
first idea, the usual goal oriented dual weighted residual error estimator for PDE constrained
optimization problems can be used as an add-on functionality after the solution of the problem
by the multiple shooting approach. In the context of multiple shooting, this approach is
limited to certain discretizations, where adjacent meshes on the multiple shooting nodes are
the same. Therefore, we develop a new error estimation approach for the converged solution
which allows the consideration of additional projection errors on the multiple shooting nodes.

In Chapter 8, we discuss different strategies for the combination of multiple shooting and
mesh adaptation. First, we present the common idea of refinement due to the cellwise
error indicators. This approach results in dynamically changing spatial meshes. Second,
we develop a refinement strategy with intervalwise constant meshes, which equilibrates the
projection error on the multiple shooting nodes with the discretization error on the intervals.
Finally, numerical examples illustrate the efficiency of both approaches in comparison to
global refinement.

In the context of applications, the solid fuel ignition model is a typical example for
multiple shooting. We present this example in detail in Chapter 9. Here, the chemical and
theoretical background are summarized. We discuss the reasons for the unstable behavior of
the problem. Finally, we present results from numerical computations for different settings of
the problem at the end of the chapter. All computations in this thesis were done with the
finite element software package deal.II. The obtained solutions were visualized by means of
the software VisuSimple.

The final Chapter 10 is devoted to an overview on multiple shooting for PDE constrained
optimization, drawing conclusions and giving an outlook on further developments. The
results obtained so far are summarized, and conclusions concerning the properties and
applicability of the method are drawn. Possible extensions and promising future ways for
developments of multiple shooting methods for PDE constrained optimization are briefly
outlined.
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2 Formulation and Theory of PDE
Constrained Optimization Problems

This chapter covers a brief outline of the formulation and theory of PDE constrained
optimization problems. We formulate an introductory example in order to develop the general
and fundamental idea of parabolic optimization problems in Section 2.1 and continue with
the usual mathematical setting and abstract formulation of these problems in Section 2.2.
Well known results on existence and uniqueness of solutions to parabolic partial differential
equations are briefly reviewed in Section 2.3, and the necessary and sufficient optimality
conditions for parabolic optimization problems are revised in the final Section 2.4.

2.1 Preliminaries

Before we go into detail with respect to an abstract formulation of parabolic optimization
problems, we give an introductory example to the kind of problems considered in this thesis.
Our goal of optimization is finding an optimal control for a system governed by a partial
differential equation of parabolic type. The simplest possible case is a linear problem involving
the Laplacian with homogeneous Dirichlet boundary conditions and given initial value 0. The
control parameter q is the source term of the equation. Utilizing an abstract cost functional
J(q, u) to be discussed later, our optimal control problem is: find a pair (q, u) in suitable
spaces such that

Example 2.1.
J(q, u) = min

under the constraints
∂tu+∆u = q in I ×Ω,

u = 0 on I × ∂Ω,
u(0, .) = 0 in Ω

in a polygonal domain Ω ⊂ Rd and on a time interval I = (0, T ).

The next paragraph is devoted to the development of an abstract mathematical framework
for parabolic optimization problems. Keeping the previous example in mind we generalize
the formulation of the state equation. We present appropriate spaces for states and controls
and specify the cost functionals of interest. Finally, we give further examples and embed
them into the abstract formulation.

9



2 Formulation and Theory of PDE Constrained Optimization Problems

2.2 Formulation of Abstract Parabolic Optimization Problems

Let us first introduce the Hilbert spaces V and H, where V is continuously embedded and
dense in H :

V
d
↪→ H.

We identify the Hilbert space H with its dual space H∗, and together with the dual space of
V , V ∗, we retrieve the Gelfand triple

V
d
↪→ H ∼= H∗

d
↪→ V ∗.

Furthermore, the duality pairing of V ∗ and V is denoted by 〈·, ·〉V ∗×V , and the scalar product
on H is given by (·, ·)H . In the following, we consider the continuous continuation of (·, ·)H
onto 〈·, 〉V ∗×V as a new representation for the functionals in V ∗. This can be done due to the
following remark:
Remark 2.1. Let the injection of V into V ∗ be denoted by i : V → H. The dual mapping of
i is the injection of H∗ into V ∗ and is denoted by i∗ : H∗ → V ∗. From the definition of i∗
the following identity holds for every h ∈ H ∼= H∗:

〈i∗(h), v〉V ∗×V = (h, i(v))H ∀v ∈ V,

and we can consider h as a linear continuous functional on V . Due to the dense embedding of
H∗ into V ∗, every functional 〈v∗, ·〉V ∗×V can be uniformly approximated by scalar products
(h, i(·))H . Therefore it is reasonable to consider the continuous continuation of (·, ·)H onto
〈·, 〉V ∗×V as a new representation for the functionals in V ∗. A detailed description of this
concept can be found for example in Lions [28] and Wloka [43].

Now, let R be a spatial Hilbert space for the control q(t). We assume that the time dependent
functions u and f have temporal values u(t) ∈ V and f(t) ∈ V ∗, and the initial value of our
state u is given by u(0) = u0 ∈ H. On a time interval I = (0, T ), 0 < T <∞, we consider
parabolic optimization problems of the following abstract type:

∂tu(t) +A(u(t)) +B(q(t)) = f(t),
u(0) = u0.

(2.2)

Remark 2.2. (More general nonlinear equations) The decoupling of u and q in (2.2) is done
for the purpose of notational simplification. The general case of an operator C : X ×Q→ V ∗

with corresponding nonlinear PDE

∂tu(t) + C(u(t), q(t)) = f(t),
u(0) = u0

can be treated analogously. Therefore, all results presented in this thesis can be applied to
this case, too.

Here, B is assumed to be a (nonlinear) operator, with B : R→ V ∗, given by a semi-linear
form b̄ : R× V → R as

〈B(q̄), v̄〉V ∗×V = b̄(q̄)(v̄) ∀v̄ ∈ V.
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2.2 Formulation of Abstract Parabolic Optimization Problems

The elliptic spatial differential operator A : V → V ∗ is given in weak formulation by the
semi-linear form ā : V × V → R as

〈A(ū), v̄〉V ∗×V = ā(ū)(v̄) ∀v̄ ∈ V.

For the weak formulation of problem (2.2) we introduce another Hilbert space X for the time
dependent states,

X := W (I) := { v | v ∈ L2(I, V ) and ∂tv ∈ L2(I, V ∗) } ,

for which we have (see, for example, [16]) a continuous embedding in C(Ī , H). Furthermore,
we assume that the space Q of the controls is a subspace of L2(I,R),

Q ⊆ L2(I,R).

Its scalar product and norm are denoted by (·, ·)Q and ‖·‖Q.

Now, we have the mathematical tools at hand to pose the state equation (2.2) in a weak
form:

For a given control q ∈ Q find a state u ∈ X such that for all ϕ ∈ X∫
I
(∂tu(t), ϕ(t))Hdt+

∫
I
ā(u(t))(ϕ(t))dt+

∫
I
b̄(q(t))(ϕ(t))dt =

∫
I
(f(t), ϕ(t))Hdt,

u(0) = u0.

In the following, we omit the index H at the scalar product, (·, ·), and for the sake of brevity
we additionally introduce the following notation:

((v, w)) :=
∫
I
(v(t), w(t))dt,

a(u)(v) :=
∫
I
ā(u(t))(v(t))dt,

b(q)(v) :=
∫
I
b̄(q(t))(v(t))dt.

By coupling the initial condition to the state equation, we retrieve by virtue of the abbreviatory
notation the following compact form of the state equation:

((∂tu, ϕ)) + a(u)(ϕ) + b(q)(ϕ) + (u(0), ϕ(0)) = ((f, ϕ)) + (u0, ϕ(0)) ∀ϕ ∈ X. (2.3)

The objective or cost functional of the optimization problem is denoted by J : Q×X → R.
We define J as the sum of two functionals, J1 : X → R and J2 : H → R, and a regularization
term by

J(q, u) = α1J1(u) + α2J2(u(T )) + α3
2
‖q − q̂‖2Q, (2.4)

where we demand αi ≥ 0, i = 1, 2, 3 and q̂ ∈ Q. Furthermore, we assume, that there is a
functional F : V → R such that

J1(u) =
∫
I
F (u(t))dt. (2.5)

We need this assumption for the consideration of the multiple shooting approach. In this
context, we decompose the time domain I into smaller subintervals and want to consider the
restriction of the cost functional J1 to each of the subintervals.
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2 Formulation and Theory of PDE Constrained Optimization Problems

Remark 2.3. Throughout this thesis, we set q̂ = 0 for the ease of presentation, but keep in
mind that the general case follows straightforward and is often of relevance in application
problems where a priori information on the control is available.
Remark 2.4. Later on, we mainly consider cost functionals of the following structure:

J1(u) := 1
2

∫
I
‖u(t)− ū(t)‖2dt and J2(u(T )) := 1

2
‖u(T )− ūT ‖2

where ū ∈ X and ūT ∈ H.
Remark 2.5. In the context of a posteriori error estimation, we assume that J1 and J2 are
three times Gâteaux differentiable, which has to be verified for each concrete functional anew.
In the case of J1 and J2 having the structure stated in Remark 2.4 this assumption clearly
holds.

The goal of the optimization problem is now to minimize J(q, u) under the constraining
demand that q and u fulfill the state equation (2.3). Thus, the optimization problem reads

min
(q,u)∈Q×X

J(q, u) subject to (2.3). (2.6)

Before discussing existence and uniqueness of solutions to parabolic optimization problems,
let us first present three examples for problems of this type. We consider examples for two
different types of quadratic functionals with linear and nonlinear constraining equations.

Let us first reconsider Example 2.1 in this abstract framework:

Example 2.2. (Distributed control of a terminal time functional) Let Ω be a bounded
Lipschitz domain in Rd. The optimal control problem is given by

min
(q,u)∈Q×X

J(q, u) := α2
2
‖u(T )− ūT ‖2L2(Ω) + α3

2

∫
I
‖q(t)‖2L2(Ω)dt

subject to the linear heat equation

∂tu−∆u = q in Ω × I,
u = 0 on ∂Ω × I,
u = 0 in Ω × {0} .

This example can be regarded in the previous abstract context by choosing the spaces

H = L2(Ω), V = H1
0 (Ω), and Q = L2(I, L2(Ω)).

We have chosen α1 = 0, and J2 is given by

J2(u(T )) = 1
2
‖u(T )− ūT ‖2L2(Ω).

The semi-linear forms are chosen as
a(u)(ϕ) = ((∇u,∇ϕ)),
b(q)(ϕ) = −((q, ϕ)).

And finally the right-hand side and initial condition are given by

f = 0 and u0 = 0.

12



2.2 Formulation of Abstract Parabolic Optimization Problems

Whereas in the previous example we wanted to fit a given function ūT at the terminal time
point, we might furthermore be interested in matching a given time dependent function ū(t):

Example 2.3. (Distributed control of a distributed functional)

min
(q,u)∈Q×X

J(q, u) := α1
2

∫
I
‖u(t)− ū(t)‖2L2(Ω)dt+ α3

2

∫
I
‖q(t)‖2L2(Ω)dt

subject to the nonlinear parabolic equation

∂tu−∆u+ u3 = q in Ω × I,
u = 0 on ∂Ω × I,
u = 0 in Ω × {0} .

For this example we have in the abstract formulation

H = L2(Ω), V = H1
0 (Ω), and Q = L2(I, L2(Ω)).

With α2 = 0, the remaining part of the cost functional is given by

J1(u) = 1
2

∫
I
‖u(t)− ū(t)‖2L2(Ω)dt,

and the semi-linear forms are chosen as

a(u)(ϕ) = ((∇u,∇ϕ)) + ((u3, ϕ)),
b(q)(ϕ) = −((q, ϕ)).

And finally the right-hand side and initial condition are given by

f = 0 and u0 = 0.

Finally, we consider an example of Neumann boundary control:

Example 2.4. (Distributed Neumann boundary control of a distributed functional)

min
(q,u)∈Q×X

J(q, u) := α1
2

∫
I
‖u(t)− ū(t)‖2L2(Ω)dt+ α3

2

∫
I
‖q(t)‖2L2(∂Ω)dt

subject to the nonlinear parabolic equation

∂tu−∆u+ u3 − u = 0 in Ω × I,
∂nu = q on ∂Ω × I,
u = 0 in Ω × {0} .

For this example we have in the abstract formulation

H = L2(Ω), V = H1
0 (Ω), and Q = L2(I, L2(∂Ω)).

Here, α2 = 0, and for J1 we obtain

J1(u) = 1
2

∫
I
‖u(t)− ū(t)‖2L2(Ω)dt.

13



2 Formulation and Theory of PDE Constrained Optimization Problems

The semi-linear forms are chosen as

a(u)(ϕ) = ((∇u,∇ϕ)) + ((u3, ϕ)),

b(q)(ϕ) = −
∫
I
(q, ϕ)L2(∂Ω)dt,

and finally the right-hand side and initial condition are given by

f = 0 and u0 = 0.

We proceed with the discussion of existence and uniqueness of solutions.

2.3 Existence and Uniqueness of Solutions

The matter of existence and uniqueness of solutions to optimization problems as presented
above has extensively been discussed for example in the textbooks of Lions [28], Fursikov
[18], and Tröltzsch [41]. In the literature two different techniques are used for proving results
on existence and uniqueness. On the one hand, the reduced approach is applied such that
the states are considered as a function of the control q. On the other hand, the non-reduced
approach treats the states and controls explicitly coupled. In the following, we refer to the
reduced approach for the theoretical investigation of existence and uniqueness.

Let us first recall some abstract results on existence and uniqueness. We assume the existence
of a solution operator S : Q → X which maps the control q onto the solution u(q) of the
constraining state equation (2.3). The validity of this assumption only depends on the unique
solvability of the parabolic equation (2.3) and has to be verified for each problem in detail.
Within the reduced approach, the reduced cost functional j : Q→ R is introduced as

j(q) := J(q, S(q)),

and the optimization problem (2.6) is reformulated as an unconstrained optimization problem

min
q∈Q

j(q), q ∈ Q. (2.10)

We apply the classical theorem on existence from the calculus of variations:

Theorem 2.1. Let the reduced functional j : Q→ R be weakly lower semi-continuous, that
is

lim inf
n→∞

j(qn) ≥ j(q) whenever qn ⇀ q in Q

and coercive over Q, that is
j(q) ≥ α‖q‖Q + β

for every q ∈ Q and for some α > 0, β ∈ R. Then problem (2.10) has at least one solution
q ∈ Q.

Proof. See for example the textbook of Dacorogna [15].

14
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Furthermore, for the uniqueness of the solution we have to demand stronger restrictions on
the reduced functional j:

Theorem 2.2. Let the reduced functional j fulfill the requirements of Theorem (2.1). If in
addition j is strongly convex on Q, that is

j(λq1 + (1− λ)q2) < λj(q1) + (1− λ)j(q2)

for all λ ∈ (0, 1) and all q1, q2 ∈ Q, q1 6= q2, then problem (2.10) has a unique solution.

Proof. Let us assume that q1 and q2, q1 6= q2, are solutions of (2.10). For λ ∈ (0, 1) the
following inequality holds due to the strong convexity of j:

j(λq1 + (1− λ)q2) < λj(q1) + (1− λ)j(q2) = min
q∈Q

j(q).

This is in contradiction to the optimality of q1 and q2.

For the application of these theorems to arbitrary nonlinear problems, the requirements on j
have to be verified. We show unique solvability within the abstract framework of the previous
section only for the simple case of Example 2.2.

Let us first state the unique solvability of the linear heat equation:

Theorem 2.3. Let I be a bounded time interval and Ω be a bounded Lipschitz domain. Set
H = L2(Ω) and V = H1

0 (Ω). The linear parabolic equation

∂tu−∆u = f in Ω × I,
u = 0 on ∂Ω × I,
u = u0 in Ω × {0}

has a unique solution u ∈ X for f ∈ L2(I, V ∗) and u0 ∈ H. Additionally, u depends
continuously on the data:

(f, u0) 7→ u

is a continuous mapping from L2(I, V ∗)×H into X.

Proof. See for example the textbook of Lions [28].

Now, we can state the following theorem:

Theorem 2.4. Let I be a bounded time interval and Ω be a bounded Lipschitz domain. Set
H = L2(Ω) and V = H1

0 (Ω), Q = L2(I, L2(Ω)). Furthermore let α1, α3 > 0. Then the
optimization problem

min
(q,u)∈Q×X

J(q, u) := α2
2
‖u(T )− ū‖2L2(Ω) + α3

2

∫
I
‖q(t)‖2L2(Ω)dt (2.11a)
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2 Formulation and Theory of PDE Constrained Optimization Problems

subject to the linear heat equation

∂tu−∆u = q in Ω × I,
u = 0 on ∂Ω × I,
u = 0 in Ω × {0}

(2.11b)

has a unique solution (q, u) ∈ Q×X.

Proof. From Theorem 2.3 the solution operator S : Q → X, Sq = u of equation (2.11b)
is known to be continuous and linear. The continuity and convexity of the reduced cost
functional j : Q→ R can directly be seen from its definition

j(q) := J(q, S(q)) = α2
2
‖S(q(T ))− ū‖2L2(Ω) + α3

2

∫
I
‖q(t)‖2L2(Ω)dt,

and thus it is weakly lower semi-continuous. Application of Theorem (2.1) yields the existence
of at least one solution, and α3 > 0 ensures strong convexity of j and thus uniqueness of the
solution.

For more general, nonlinear parabolic optimization problems the procedure of proving
existence and uniqueness of solutions is quite similar to the one presented for the case of linear
quadratic optimal control problems. Nevertheless, the proofs are more complicated, and for
further details we refer to the literature cited at the beginning of this section. Throughout
this thesis, we assume that our optimization problem of interest (2.6) admits a (locally)
unique solution. Furthermore, in the context of multiple shooting, we also assume that the
intervalwise problems admit a (locally) unique solution.

2.4 Optimality Conditions

In this section, we present first order necessary and sufficient optimality conditions for problem
(2.6) by means of the reduced approach. Before recalling appropriate theorems, we shortly
review the standard definitions of differentiability in normed vector spaces.

Definition 2.1. (Directional derivative) Let X and Y be normed vector spaces and U be a
neighborhood of a point x ∈ X, and let f : U → Y . If for any h ∈ X there exists the limit

f ′(x)(h) := lim
t↘0

f(x+ th)− f(x)
t

,

then f ′(x)(h) is called the directional derivative of f at x in direction h. If this limit exists
for all h ∈ X, then f is called directionally differentiable at x.

Definition 2.2. (Gâteaux derivative) Let X and Y be normed vector spaces and U be a
neighborhood of a point x ∈ X, and let f : U → Y be directionally differentiable in x. If
the directional derivative f ′(x) is a continuous linear mapping from X to Y , then f is called
Gâteaux differentiable and f ′(x) is called the Gâteaux derivative of f at x.
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Definition 2.3. (Fréchet derivative) Let X and Y be normed vector spaces and U be a
neighborhood of a point x ∈ X, and let f : U → Y . If there exists a continuous linear
mapping f ′(x) : X → Y such that

lim
‖h‖X→0

‖f(x+ h)− f(x)− f ′(x)(h)‖Y
‖h‖X

= 0,

then f is called Fréchet differentiable at x and f ′(x) is called the Fréchet derivative of f at x.

With these preparations at hand, we can state the first and second order necessary and
second order sufficient optimality conditions. The theorems and proofs in a more detailed
explanation are given in the book of Troeltzsch [41].

Theorem 2.5. (First order necessary optimality condition) Let the reduced functional j be
Gâteaux differentiable on an open subset Q0 ⊆ Q. If q ∈ Q0 is a local optimal solution of the
optimization problem (2.10), then q fulfills the first order necessary optimality condition

j′(q)(δq) = 0 ∀δq ∈ Q. (2.12)

Proof. With Q0 open and given direction δq ∈ Q there exists due to local optimality of
q ∈ Q0 a positive λ ∈ R such that q + λδq ∈ Q0 and j(q + λδq) < j(q). Therefore, we have
for the difference quotient

j(q + λδq)− j(q)
λ

≥ 0.

With λ↘ 0 we obtain in the limit
j′(q)(δq) ≥ 0.

Due to linearity of the Gâteaux derivative and with −δq a feasible direction, we obtain
analogously

j′(q)(δq) ≤ 0

and thus the stated condition.

Remark 2.6. (Additional convexity of j) In the special case that the functional j is additionally
convex, that is for all λ ∈ [0, 1] and all q1, q2 ∈ Q there holds

j(λq1 + (1− λ)q2) ≤ λj(q1) + (1− λ)j(q2),

condition (2.12) is not only a necessary but also a sufficient optimality condition of (2.10).

Theorem 2.6. (Second order necessary optimality condition) Let the reduced functional j be
two times continuously Fréchet differentiable on an open subset Q0 ⊆ Q of q. If q ∈ Q0 is
a local optimal solution of the optimization problem (2.10), then it holds the second order
necessary optimality condition

j′′(q)(δq, δq) ≥ 0 ∀δq ∈ Q.
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Proof. With Q0 open and given direction δq ∈ Q there exists a positive λ ∈ R such that
q + λδq ∈ Q0. From local optimality of q we obtain by Taylor expansion

0 ≤ j(q + λδq)− j(q) = λj′(q)(δq) + λ2

2
j′′(q)(δq, δq) + rj2(q, λδq),

where rj2 is a remainder term of second order. From the first order necessary optimality
condition and division by λ2/2 we obtain

0 ≤ j′′(q)(δq, δq) + 2rj2(q, λδq)
λ2

and in the limit for λ↘ 0
0 ≤ j′′(q)(δq, δq)

which completes the proof.

Finally, we recall the second order sufficient optimality condition.
Theorem 2.7. (Second order sufficient optimality condition) Let the reduced functional j be
two times continuously Fréchet differentiable on a neighborhood Q0 ⊆ Q of q. Assume that q
fulfills the first order necessary optimality condition (2.12) and that there exists a positive
γ ∈ R such that the second order sufficient optimality condition holds:

j′′(q)(δq, δq) ≥ γ‖δq‖2Q ∀δq ∈ Q.

Then there exists a positive constant ρ ∈ R such that the following quadratic growth condition
holds:

j(q + δq) ≥ j(q) + γ

4
‖δq‖2Q

for all δq ∈ Q with ‖δq‖2Q ≤ ρ. Thus, q is a local solution of the optimization problem (2.10).

Proof. The proof is performed by application of Taylor expansion. With θ ∈ (0, 1) we obtain
for ρ small enough such that q + δq ∈ Q0

j(q + δq) = j(q) + j′(q)(δq) + 1
2
j′′(q + θδq)(δq, δq)

= j(q) + 1
2
j′′(q + θδq)(δq, δq)

= j(q) + 1
2
j′′(q)(δq, δq) + 1

2
[j′′(q + θδq)− j′′(q)](δq, δq).

With the assumed continuity of j′′ at hand, we retrieve for small ‖δq‖Q ≤ ρ[∥∥j′′(q + θδq)− j′′(q)
]
(δq, δq)

∥∥ ≤ γ

2
‖δq‖2Q.

Inserting the second proposition of the theorem, we finally obtain the stated result

j(q + δq) ≥ j(q) + γ

2
‖δq‖2Q −

γ

4
‖δq‖2Q = j(q) + γ

4
‖δq‖2Q.

These theoretical results have been presented rather for the sake of completeness than for the
investigation of our problem of interest. Whenever necessary, we hint at the theorems in the
actual context.
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3 Historical Background of the Multiple
Shooting Approach

This chapter presents a historical motivation of multiple shooting and gives an overview on
certain properties of multiple shooting in the context of ODE optimization. We have seen
in Chapter 1 that multiple shooting for PDE constrained optimization is amongst others
motivated by the application to highly instable problems. The historical background, however,
is due to the application to ODE boundary value problems. Therefore, in Section 3.1 we
give a standard example of an ODE boundary value problem to illustrate the insufficiency of
single shooting methods and summarize shortly the idea and application of multiple shooting
to ODE boundary value problems in Section 3.2. The idea of condensing is presented in
Section 3.3, and efficient derivative generation is briefly discussed in Section 3.4. Finally, in
Section 3.5 the usual direct multiple shooting approach for ODE constrained optimization is
introduced.

3.1 The Single Shooting Approach for ODE Boundary Value
Problems

A common approach for the solution of boundary value problems in ODEs is the so called
single shooting method. This approach suggests itself and is consequently of simple structure.
It is introduced in most of the standard textbooks on ordinary differential equation numerics
as the before mentioned book of Stoer and Bulirsch [39] from which we borrow the notation.
Remark 3.1. In the following, we make use of the classical ODE notation and furthermore of
the common notation used in the context of single and multiple shooting for ODE problems.
First of all, we denote the derivative with respect to time by u′(t) and the solution of the
corresponding differential equation by u(t). The solution of an initial value problem which is
depending on the initial value s ∈ Rn, is written as u(t; s).

In an ODE boundary value problem we want to find a function u : (a, b)→ Rn with

u′(t) = f(t, u(t)), (3.1a)

where u and f consist of the components

u(t) =

 u1(t)
...

un(t)

 , f(t, u(t)) =

 f1(t, u1(t), . . . , un(t))
...

fn(t, u1(t), . . . , un(t))

 for t ∈ (a, b),
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3 Historical Background of the Multiple Shooting Approach

such that with r : Rn ×Rn → Rn,

r(u, v) =

 r1(u1, . . . , un, v1, . . . , vn)
...

rn(u1, . . . , un, v1, . . . , vn)

 ,
u fulfills the boundary condition

r(u(a), u(b)) = 0. (3.1b)

Existence and uniqueness of solutions to problems of this type have extensively been studied
in the literature mentioned in the introduction. We skip these theoretical aspects for the
sake of brevity and go on with the solution of problem (3.1) by application of single shooting.
The idea of the single shooting method is the reformulation of problem (3.1) as an initial
value problem with an additional parameter σ ∈ Rn for the initial value. This parameter is
determined iteratively during the solution process:

Find σ = (σ1, . . . , σn) ∈ Rn such that for u with

u′(t;σ) = f(t, u(t;σ)), u(a;σ) = σ (3.2a)

the following boundary condition holds:

F (σ) := r(σ, u(b;σ)) = 0. (3.2b)

The equivalence of problem (3.2) and (3.1) is easily shown by elementary calculus and is not
repeated in this overview. This problem of finding a zero σ of equation (3.2b) subject to
the ODE initial value problem (3.2a) can for example be solved by application of Newton’s
method:

σ0 ∈ Rn, σk+1 := σk −DF (σk)−1F (σk) k = 0, 1, . . . .

This iteration needs the evaluation of the function and its derivative,

F (σk) and (DF (σk))ij =
(
∂Fi
∂σj

)
(σk),

in each step. For the determination of F (σk) = r(σk, u(b;σk)) the initial value problem (3.2a)
has to be solved with initial value σ = σk, and the calculation of the derivative can either be
performed by straightforward application of difference quotients,

DF (σk) ≈ (F η1(σk), . . . , F ηn(σk)) ,

where
F ηj (σk) :=

F (σ1,k, . . . , σj,k + ηj , . . . , σn,k)− F (σ1,k, . . . , σj,k, . . . , σn,k)
ηj

,

or by more sophisticated derivative generation techniques. We go into this in more detail
later on in this chapter.

However, the single shooting approach often lacks stability with respect to the solution of
the initial value problem (3.2a). A standard example for this property can be found in the
textbook of Stoer and Bulirsch [39] and shall not be repeated in this overview. Summarizing,
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3.2 The Direct Multiple Shooting Approach for ODE Boundary Value Problems

the example therein outlines that the computational solution of boundary value problems
with single shooting is assorted with difficulties: for a general solution of an initial value
problem of the type u′(t) = f(t, u(t)), u(a; s) = s with Lipschitz continuous function f and
Lipschitz constant L > 0, the following well known estimate on the sensitivity to errors in
the initial data holds:

‖u(t; s1)− u(t; s2)‖ ≤ eL|t−a|‖s1 − s2‖.

Obviously, the influence of the error can be bounded, when the interval of interest is chosen
small enough. This property leads to the idea of multiple shooting for the solution of ODE
boundary value problems.

3.2 The Direct Multiple Shooting Approach for ODE Boundary
Value Problems

The multiple shooting method for the solution of ODE two point boundary value problems is
based on the idea of solving initial value problems on small time subdomains in parallel. An
outer iterative method is applied to match the intervalwise trajectories on the edges of the
time subdomains. We reconsider the boundary value problem (3.1) for which a time domain
decomposition of the interval is chosen

a = τ0 < τ2 < . . . < τm = b,

and m+1 additional variables, the multiple shooting variables, s0, . . . , sm ∈ Rn are introduced.
Now, consider the intervalwise restricted initial value problems which determine intervalwise
functions uj : (τj , τj+1)→ Rn with

(uj)′ = f(t, uj), u(τj) = sj , j = 0, . . . ,m− 1. (3.3)

The solution uj depends on the initial value sj and is denoted by uj(·; sj) in the following. The
goal of multiple shooting is the determination of the multiple shooting variables s0, . . . , sm
such that the corresponding piecewise trajectories of (3.3) fit together at the edges of the
intervals and the boundary condition is fulfilled.

In mathematical formulation: for j = 0, . . . ,m find sj such that

F (s) :=


F0(s0, s1)
F1(s1, s2)

...
Fm−1(sm−1, sm)
Fm(s0, sm)

 :=


s1 − u0(τ1; s0)
s2 − u1(τ2; s1)

...
sm − um−1(τm; sm−1)

r(s0, sm)

 = 0 (3.4)

with uj(·; sj) solution of (3.3), and s := (s0, . . . , sm). Newton type methods are appropriate
choices for the solution of equation (3.4). For instance, the application of Newton’s method
yields the iteration

s0 ∈ Rn, sk+1 := sk −DF (sk)−1F (sk) for k = 0, 1, . . . .
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Figure 3.1: Idea of multiple shooting for boundary value problems.

With this basic description of the multiple shooting approach for the solution of two point
boundary value problems at hand, we are able to present two important techniques for the
efficient solution of the multiple shooting formulation of the problem. On the one hand,
we are in need of solving the linearized system in Newton’s method. On the other hand,
most time of the multiple shooting method is spend in the assembling of the left hand side
of the linear problem, which is equivalent to the derivative generation ∂uj

∂sj
on each of the

subintervals. Therefore, condensing techniques and efficient derivative generation play an
important role in multiple shooting.

3.3 Condensing Techniques

This paragraph mainly equips us with the idea of condensing for the simplest case of multiple
shooting. Nevertheless, these techniques can be extended to more complicated cases, especially
to ODE constrained optimization problems. For the ease of presentation, we omit the index k
of the Newton step in the sequel. The n(m+1)×n(m+1) Jacobian DF (s) = (∂Fi

∂sj
(s))i,j=0,...,m

has, due to the special structure of the matching conditions, a sparse block structure of
intervalwise Jacobians and identities,

DF (s) =



−G0 I 0 0

0 −G1 I
. . .

. . . . . . . . . 0

0 . . . −Gm−1 I
A 0 0 B


.

Therefore, further simplifications can be performed on the system. Considering the blocks,
the Jacobians Gk, A,B ∈ Rn×n are determined by differentiation of the state equation and
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3.3 Condensing Techniques

the boundary condition with respect to the multiple shooting variables:

Gj := DsjFj(s) = ∂uj

∂sj
(τj+1; sj), j = 0, . . .m− 1,

A := Ds0Fm(s) = Ds0r(s0; sm),
B := DsmFm(s) = Dsmr(s0; sm).

If the Newton update for sj ∈ Rn is denoted by ∆sj ∈ Rn, j = 0, . . . ,m, equation (3.4) turns
into

G0∆s
0 −∆s1 = −F0,

G1∆s
1 −∆s2 = −F1,

...
Gm−1∆s

m−1 −∆sm = −Fm−1,

A∆s0 +B∆sm = −Fm.

(3.5)

Simple transformation and recursive insertion of the equations yields

∆s1 = G0∆s
0 + F0,

...

∆sm = Gm−1Gm−2 . . . G0∆s
0 +

m−1∑
j=0

 m−1∏
l=j+1

Gl

Fj .
(3.6)

From the last identity of (3.5) we finally obtain the determining equation for the remaining
increment ∆s0 as

(A+BGm−1Gm−2 . . . G0)∆s0 = w. (3.7)
Thereby, the right hand side w is determined via

w = −(Fm +BFm−1 +BGm−1Fm−2 + · · ·+BGm−1Gm−2 . . . G1F0).

Hence, problem (3.5) for the evaluation of the Newton increment ∆s ∈ R(m+1)·n is reduced
to the solution of the linear system (3.7) for ∆s0 ∈ Rn and successive backward substitution
according to (3.6) for the calculation of the remaining m increments. For further details on
the convergence of Newton’s method for this problem and the invertability of the matrix
A + BGm−1Gm−2 . . . G0 we refer to the literature mentioned in the introduction of this
chapter.

It is easily verified by elementary calculus that in each Newton step m initial value problems
have to be solved for the calculation of the residual, while for the explicit assembling of the
left hand side matrix we need to solve m×n additional initial value problems – the assembling
of Gj requires the solution of n initial value problems, one for each direction. Furthermore,
to ensure convergence of Newton’s method, a certain accuracy of the numerical solution
must be guaranteed. Therefore, efficient techniques for the generation of the derivatives
are indispensable. The next section is devoted to a brief review of two techniques that are
commonly used. First, we discuss the (inefficient) application of difference quotients, and
second, we present the internal numerical differentiation (IND) which is stable and highly
efficient.
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3 Historical Background of the Multiple Shooting Approach

3.4 Derivative Generation

The first and simplest approach for the calculation of the derivatives is the application
of difference quotients. In the context of the ODE example problem, this means to solve
the initial value problem repeatedly with slightly perturbed initial values. This procedure
results in a first order approximation of the derivative by finite differences. In detail, an
approximation of the n× n Wronskian

W j := ∂uj

∂sj
(τj+1; sj)

is obtained by perturbing the initial value in each component sjl , l = 1, . . . , n, by the
perturbation ηl, and performing this procedure for every component of the solution. Therefore,
we define the perturbed vector as

sjηl := (sj1, . . . , s
j
l−1, s

j
l + ηl, s

j
l+1, . . . , s

j
n)

and obtain the Wronskian as

W j
il = (∂u

j

∂sj
(τj+1; sj))il ≈ (∂u

j

∂sj

η

(τj+1; sj))il :=
uji (τj+1; sjηl)− u

j
i (τj+1; sj)

ηl
.

This method, sometimes also denoted as external numerical differentiation, has certain
disadvantages. On the one hand the application of integration schemes with variable order
and step size is difficult – slight perturbations in the initial value might lead to different
integration steps, and a reliable calculation of the derivatives is not guaranteed. On the other
hand, the application of integration schemes with fixed order and step size requires a much
higher computational effort and is thus inefficient. The accuracy for the integration scheme
would have to be set on a high level, and even then the best achievable accuracy for the
calculation of the derivative is εD =

√
ε. Here ε denotes the accuracy to which the original

trajectory is calculated. If we denote by(
∂uj

∂sj

η,h

(τj+1; sj)
)
il

the inexact approximation of the difference quotient obtained by numerical integration, we
can write for the error

εD =
(
∂uj

∂sj

η,h

(τj+1; sj)
)
il

−
(
∂u

∂sj
(τj+1; sj)

)
il

= O(ε) +O(η2)
η

.

A minimal bound of this expression is given εD =
√
ε for η2 = O(ε).

A promising alternative was first presented in [8]. The so called internal numerical differ-
entiation (IND) is based on the idea of differentiating the discretization scheme itself. In
the case of available exact derivatives of f (for example by automatic differentiation), this
is equivalent to the solution of the variational differential equation with the integration
scheme used for the solution of the original differential equation. Thus, the difference quotient
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3.5 The Multiple Shooting Approach for ODE Constrained Optimization Problems

is approximated by the integrator with accuracy O(ε). Summarizing this, the achievable
accuracy is for η2 = O(εmach) given by the identity

εD = O(ε) +O(
√
εmach),

where εmach denotes the machine precision. Internal numerical differentiation allows us
to reuse the step sizes and matrices of the integration scheme used for the calculation of
uj(τj+1; sj). That is, the calculation of the nominal trajectory uj and the corresponding
Wronskian is performed simultaneously, which means that each time step is performed first
for the nominal trajectory and then with the same parameters and matrix for the derivatives.
This reduces, according to [9], the effort in comparison to external numerical differentiation
by up to 80%.

3.5 The Multiple Shooting Approach for ODE Constrained
Optimization Problems

The idea to apply multiple shooting techniques to ODE constrained optimization problems
goes back to Bulirsch [13] where the indirect multiple shooting approach is developed for
ODE constrained optimal control problems. A more popular approach, the direct approach,
was introduced in the late seventies and early eighties, for example by Plitt [33] and Bock [11].
We give a short introduction to the direct approach, but do not go into detail concerning the
solution of the multiple shooting problem. For details, we refer to the literature mentioned in
the introduction.

Let I = (0, T ) denote the time interval, u : I → Rnu is the state variable, and q : I → Rnq

is the control. Furthermore we define the cost functional J : Rnq × Rnu → RnJ and the
function f : I ×Rnu ×Rnq → Rnu . The optimization problem of interest reads

min
q,u

J(q, u) (3.8a)

such that
u′(t) = f(t, u(t), q(t)), u(0) = u0. (3.8b)

Most common approaches for the solution of this problem make use of a combination of
iterative optimization tools and forward solvers for the constraining equation (3.8b). The
multiple shooting approach, for example in [9], uses the idea of interpreting the problem (3.8)
as a multi point boundary value problem which can be solved by multiple shooting. As before,
the multiple shooting approach exploits the stable solution of smaller initial value problems
on subintervals with additional matching conditions. The time domain decomposition and
multiple shooting variables are chosen as before, 0 = τ0 < τ1 < . . . τm−1 < τm = T and
s0, . . . , sm ∈ Rnu , and the control is parameterized intervalwise by

qj := q
∣∣∣
(τj ,τj+1)

∈ Rnq , j = 0, . . . ,m− 1.

The intervalwise initial value problems are given by

uj
′(t) = f(t, uj(t), qj), u(τj) = sj , for j = 0, . . . ,m− 1.
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3 Historical Background of the Multiple Shooting Approach

Again, additional matching conditions have to be posed on the edges of the intervals to
ensure continuity of the multiple shooting solution. These matching conditions are given by
a system of nonlinear equations,

F (s0, . . . , sm, q0, . . . qm−1) = 0,

where the function F on the left hand side is defined as

F (s0, . . . , sm, q0, . . . qm−1) :=



s1 − u0(τ1; s0, q0)
s2 − u1(τ2; s1, q1)

...
sm−1 − um−2(τm−1; sm−2, qm−2)
sm − um−1(τm; sm−1, qm−1)

s0 − u0


.

The reformulation of (3.8) in terms of the multiple shooting variables and the parameterized
controls reads as follows:

min
s0,...,sm,q0,...qm−1

J̃(s0, . . . , sm, q0, . . . qm−1) (3.9a)

such that the following equality constraints holds:

F (s̃, q̃) = 0. (3.9b)

Here, the cost functional J̃ is obtained straightforward by inserting the parameterized states
and controls into the original cost functional J . In [9], it has been shown that an appropriate
choice of the multiple shooting nodes ensures the existence and boundedness of uj on the
intervals. Additionally, under appropriate assumptions on J and F , the well posedness and
differentiability of problem (3.9) can be shown. Further on, the Lagrangian is set up and the
optimality system has to be solved, usually by application of Newton type methods, like SQP
methods and reduced SQP methods which are currently state of the art. Most approaches
apply reduction and condensing techniques similar to equation (3.6) and (3.7) and efficient
derivative generation techniques like backward differentiation formulas in combination with
IND. For a description of Newton type methods for the solution of these problems, we refer to
the textbook on numerical optimization of Nocedal and Wright [32], and a detailed description
of derivative generation can be found in the diploma thesis of Albersmeyer [1].

Multiple shooting for ODE constrained optimization has been developed quite far during
the last years. Nonlinear model predictive control problems as well as PDE constrained
optimization problems have been solved by this approach, and a lot of effort has been put into
the development of more efficient derivative generation techniques, condensing techniques and
solvers, for example in [1], [35], or [10]. PDE constrained optimization problems have been
solved by discretizing the PDEs with the method of lines and applying usual ODE multiple
shooting techniques for the resulting system of ODEs. This approach is limited to fixed coarse
spatial meshes such that the solutions lack spatial accuracy. Our approach will overcome
these difficulties by applying multiple shooting directly to the PDE problem in function space.
The next chapter introduces the idea of multiple shooting for PDE constrained optimization
and provides an appropriate notational and theoretical framework.
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4 The Multiple Shooting Approach for PDE
Constrained Optimization

In this chapter we develop and investigate the basic ideas of multiple shooting for nonlinear
optimal control problems constrained by partial differential equations. We start with the
discussion of the general differences between multiple shooting for ODE constrained and
PDE constrained optimization problems in Section 4.1. Afterwards, we proceed in Section
4.2 with a detailed development of the so called indirect multiple shooting approach for
PDE constrained optimization problems. The chapter is closed by the description of the
direct multiple shooting approach in Section 4.3. For both approaches, the notational and
theoretical framework is derived, and the realization of the approach is outlined by means of
simple example problems.

4.1 From ODEs to PDEs – Differences and Challenges

The generalization of multiple shooting approaches for ODE constrained to PDE constrained
optimization problems assigns us with a variety of new challenges. The following composition
describes the different changes and resulting tasks in developing a multiple shooting approach
for PDE constrained optimization. For simplicity, we consider a system of only one component
in the following listing.

1. First of all, in the case of PDE constrained optimization we have to consider not only a
time dependent state, but in addition the spatial dependence. Whereas for ODEs with
f ∈ C(I) the solution is in C1(I), we now have to consider a solution in W (I).

2. Consequently, for PDE constrained problems the multiple shooting variables are no
longer in R, but in L2(Ω).

3. In the case of PDE constrained optimization, the infinite dimensional spatial space has
to be discretized for the numerical solution.

4. For ODE constrained problems a high accuracy can easily be obtained by application
of appropriate time stepping schemes of sufficiently high order. PDE constrained
optimization requires spatial mesh adaptation in order to reduce the computational
effort needed to obtain a certain accuracy.

5. For ODE problems, matrices of interest (for example for systems of equations) have
a manageable number of entries, whereas matrices occurring in the context of PDEs
usually tend to become quite huge due to a fine spatial discretization.
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4 The Multiple Shooting Approach for PDE Constrained Optimization

6. Spatial mesh adaptation possibly leads to different adjacent meshes at the multiple
shooting nodes. Thus, we need an appropriate formulation of the matching conditions,
for example by means of projection operators.

In the following sections, we present two possible multiple shooting approaches which overcome
these difficulties. On the one hand, we consider the indirect multiple approach in which
we apply multiple shooting to the optimality system of the original problem. On the other
hand, the direct multiple shooting approach is presented which follows the classical ODE
approach and parameterizes the constraining equation by multiple shooting before applying
the Lagrange formalism on the cost functional and matching conditions. Summarizing, we
differentiate between a first-optimize-then-multiple-shooting and a first-multiple-shooting-
then-optimize approach. We will finally see how these approaches have a great deal in
common but at the same time bear several varieties with respect to the performance.

4.2 The Indirect Multiple Shooting Approach

The indirect multiple shooting approach for PDE constrained optimization is a recent topic
of research and was first introduced for linear quadratic optimal control problems in [21].
The derivation of this approach is given in the following. In contrast to the direct approach
where multiple shooting is applied to the constraining equation, the basic idea of indirect
multiple shooting is the application of multiple shooting to the optimality system of the
optimization problem. Multiple shooting is applied to the primal and dual variable. The
control is no longer part of the multiple shooting system, but is covered by the coupling of
primal, dual, and control variable by boundary value problems with the same structure as
the original optimality system.
Remark 4.1. In the following, we assume that the state equation and the intervalwise state
equations have unique solutions. Furthermore, we request the unique solvability of all
boundary value problems under consideration.

First, let us recall the constrained optimization problem (2.6):

The constraining parabolic partial differential equation is given by

((∂tu, ϕ)) + a(u)(ϕ) + b(q)(ϕ) + (u(0), ϕ(0)) = ((f, ϕ)) + (u0, ϕ(0)) ∀ϕ ∈ X. (4.1)

With J as defined in (2.4), the optimization problem of interest reads

min
(q,u)∈Q×X

J(q, u) subject to (4.1). (4.2)

Application of the Lagrange formalism yields the Lagrangian L : Q ×X ×X → R of the
problem with Lagrange multiplier z ∈ X which we refer to as the dual variable in the sequel.

L(q, u, z) := J(q, u)− {((∂tu, z)) + a(u)(z) + b(q)(z) + (u(0), z(0))− ((f, z))− (u0, z(0))} .
(4.3)

By differentiation with respect to the states and the control, we retrieve the first order
optimality system consisting of three equations, namely primal, dual and control equation:
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4.2 The Indirect Multiple Shooting Approach

Primal equation:

((∂tu, ϕ)) + a(u)(ϕ) + b(q)(ϕ) + (u(0), ϕ(0)) = ((f, ϕ)) + (u0, ϕ(0)) ∀ϕ ∈ X. (4.4a)

Dual equation:

− ((∂tz, ψ)) + a′u(u)(ψ, z) + (z(T ), ψ(T ))− J ′u(q, u)(ψ) = 0 ∀ψ ∈ X. (4.4b)

Control equation:
b′q(q)(χ, z)− J ′q(q, u)(χ) = 0 ∀χ ∈ Q. (4.4c)

Replacing J in (4.4) by the definition from equation (2.4), we get the following formulation:

Primal equation:

((∂tu, ϕ)) + a(u)(ϕ) + b(q)(ϕ) + (u(0), ϕ(0)) = ((f, ϕ)) + (u0, ϕ(0)) ∀ϕ ∈ X. (4.5a)

Dual equation:

− ((∂tz, ψ)) + a′u(u)(ψ, z) + (z(T ), ψ(T ))− α1J
′
1(u)(ψ)− α2J

′
2(u(T ))(ψ(T )) = 0 ∀ψ ∈ X.

(4.5b)
Control equation:

b′q(q)(χ, z)− α3(q, χ)Q = 0 ∀χ ∈ Q. (4.5c)

Multiple shooting is now applied to this optimality system as described in the sequel:

Let us, as in the approach for ordinary differential equations, decompose the time interval
I = (0, T ) into m multiple shooting intervals Ij := (τj , τj+1) with

0 = τ0 < τ1 < . . . < τm−1 < τm = T.

For the purpose of multiple shooting in function space, we additionally introduce the inter-
valwise spaces

Xj := W (Ij) and Qj := Q(Ij) :=
{
q
∣∣∣
Ij

∣∣∣∣ q ∈ Q }
and the scalar products and norms ((·, ·))j on Xj , (·, ·)Qj and ‖·‖Qj on Qj . The intervalwise
restriction of the states and controls u, z and q shall be denoted by

qj := q
∣∣∣
Ij
, uj := u

∣∣∣
Ij
, zj := z

∣∣∣
Ij

for j = 0, . . . ,m− 1.

Remark 4.2. (Choice of the control space) The problem formulation considered in this thesis in
combination with intervalwise consideration of optimal control problems yields a restriction of
the suitable control spaces. An equivalent reformulation of the original problem in the direct
or indirect multiple shooting approach is only possible, if the intervalwise calculated control
is in the control space Q, that is for arbitrary q0 ∈ Q0, . . . , qm−1 ∈ Qm−1 the composition
q : I → R with q

∣∣∣
Ij

= qj fulfills the inclusion q ∈ Q. For clarification, consider the following
concrete cases:
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4 The Multiple Shooting Approach for PDE Constrained Optimization

While for Q = L2(I,R) the stated requirement for Q is no restriction at all, we are not able
to consider the case of a control which is constant on the whole time interval:

Q =
{
v ∈ L2(I,R)

∣∣∣ v(t) = c ∈ R
}

Qj =
{
v ∈ L2(Ij , R)

∣∣∣ v(t) = cj ∈ R
} (4.6)

and therefore qj = cj but not necessarily c0 = c1 = . . . = cm−1 = c. Consequently, the
appropriate choice of Q in the context of multiple shooting is

Q(I) =
{
v ∈ L2(I,R)

∣∣∣∣ v∣∣∣
Ij

= cj ∈ R
}
, (4.7)

the space of intervalwise constant functions in time. Nevertheless, many control problems
require a piecewise constant or piecewise linear control in time such that this restriction can
be considered feasible.

On the multiple shooting nodes τj , j = 0, . . . ,m, we introduce the multiple shooting variables
sj ∈ H as initial value for uj in τj and λj+1 ∈ H as terminal time value for zj in τj+1. Thus,
we can now consider intervalwise two point boundary value problems of the same structure
as (4.5) on each interval Ij . For the formulation of these problems, we introduce according
to the notation in equation (2.5) the intervalwise functionals J j1 : X(Ij)→ R by

J j1(uj) :=
∫
Ij

F (u(t))dt.

In this notation, the intervalwise boundary value problems read as follows:

Primal equation:

((∂tuj , ϕ))j + a(uj)(ϕ) + b(qj)(ϕ) + (uj(τj)− sj , ϕ(τj))− ((f, ϕ))j = 0 ∀ϕ ∈ Xj . (4.8a)

Dual equation:

− ((∂tzj , ψ))j + a′u(uj)(ψ, zj) + (zj(τj+1)− λj+1, ψ(τj+1))− α1J
j′
1 (uj)(ψ) = 0 ∀ψ ∈ Xj .

(4.8b)
Control equation:

b′q(qj)(χ, zj)− α3(qj , χ)Qj = 0 ∀χ ∈ Qj . (4.8c)

Next, we give the reformulation of the optimality system (4.5) in terms of the multiple
shooting formulation. Therefore, we request additional matching conditions at the multiple
shooting nodes and assume that the intervalwise states and controls solve (4.8):

Find s0, . . . , sm, λ0, . . . , λm such that

(s0 − u0, v) = 0 ∀v ∈ H,
(sj+1 − uj(τj+1), v) = 0 ∀v ∈ H, j = 0, . . . ,m− 1,

(λj − zj(τj), v) = 0 ∀v ∈ H, j = 0, . . . ,m− 1,
(λm, v)− α2J

′
2(sm)(v) = 0 ∀v ∈ H.

(4.9)

and qj , uj , zj solve system (4.8) for j = 0, . . . ,m− 1.
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Remark 4.3. The introduction of s0, λ0, sm and λm is artificial, and the variables could
be removed from the system by inserting their definitions. Thus, it would be sufficient to
introduce multiple shooting variables on the interior nodes. Nevertheless, their introduction
allows us to handle the equations on all intervals identically, which turns out to be helpful
with respect to the simplicity of the implementation.

Let us consider for j = 0, . . . ,m− 1 the solution operators

Σuj :
{

H ×H → Xj

(sj , λj+1) 7→ uj
and Σzj :

{
H ×H → Xj

(sj , λj+1) 7→ zj

which map the boundary values sj and λj+1 onto the solutions uj and zj .

Furthermore we introduce the operators

Σ̄uj :
{

H ×H → H

(sj , λj+1) 7→ uj(τj+1)
and Σ̄zj :

{
H ×H → H

(sj , λj+1) 7→ zj(τj)

mapping the boundary values sj and λj+1 onto uj(τj+1) and zj(τj). We can now insert these
operators into the system of matching conditions (4.9) and introduce the following notation:
According to the number of multiple shooting variables in the indirect approach, we define
the following abbreviations for the Cartesian product of vector spaces:

H̃ := H × · · · ×H︸ ︷︷ ︸
m+1 times

, Q̃ := Q0 × · · · ×Qm−1, X̃ := X0 × · · · ×Xm−1. (4.10a)

Furthermore we abbreviate the vectors of multiple shooting variables by

s̃ := (s0, . . . , sm) ∈ H̃, ũ := (u0, . . . , um−1) ∈ X̃,
λ̃ := (λ0, . . . , λm) ∈ H̃, z̃ := (z0, . . . , zm−1) ∈ X̃,
q̃ := (q0, . . . , uq−1) ∈ Q̃

(4.10b)

and introduce on the product spaces the standard definition for the norm. For example, for
H̃ this standard norm is given by

‖v‖H̃ :=

√√√√ m∑
i=0
‖vi‖2.

From (4.9), we finally obtain the multiple shooting formulation: Find (s̃, λ̃) ∈ H̃ × H̃ such
that

(s0 − u0, v) = 0 ∀v ∈ H,
(sj+1 − Σ̄uj (sj , λj+1), v) = 0 ∀v ∈ H, j = 0, . . . ,m− 1,

(λj − Σ̄zj (sj , λj+1), v) = 0 ∀v ∈ H, j = 0, . . . ,m− 1,
(λm, v)− α2J

′
2(sm−1)(v) = 0 ∀v ∈ H.

(4.11)

This formulation is equivalent to the original problem (4.5) as stated in the following lemma.
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Lemma 4.1. Let (q, u, z) ∈ Q × X × X be a solution to problem (4.5) and define for
j = 0, . . . ,m− 1

sj := u(τj), λj+1 := z(τj+1). (4.12)

Then (s̃, λ̃) ∈ H̃ × H̃ is a solution to problem (4.11).

Let (s̃, λ̃) ∈ H̃ × H̃ be a solution to problem (4.11) and let qj be defined through the boundary
value problem (4.8) for j = 0, . . . ,m− 1. Then (q, u, z) ∈ Q×X ×X defined by

u
∣∣
Ij

:= Σuj (sj , λj+1),

z
∣∣
Ij

:= Σzj (sj , λj+1), j = 0, . . . ,m− 1,

q
∣∣
Ij

:= qj , j = 0, . . . ,m− 1

(4.13)

is a solution to problem (4.5).

Proof. Let (q, u, z) ∈ Q×X ×X be a solution to the boundary value problem (4.5) and for
j = 0, . . . ,m− 1 let sj , λj+1 be defined through equation (4.12). Now let for sj , λj+1 on Ij
the solutions of the boundary value problems (4.8) be given through qj , uj , zj . For reasons
of unique solvability of the boundary value problem (4.5) and its restriction (4.8) we directly
retrieve the identities

qj = q
∣∣∣
Ij
, uj = u

∣∣∣
Ij
, zj = z

∣∣∣
Ij
.

For reasons of continuity of q, u, and z we can easily see that sj and λj+1 and the corresponding
solutions uj , zj fulfill the continuity conditions (4.11).

Now, let (s̃, λ̃) ∈ H̃ × H̃ be a solution to problem (4.11) and let (q, u, z) ∈ Q ×X ×X be
defined by the equations (4.13). Due to (4.11) q, u and z are continuous. By summing up the
intervalwise boundary value problems (4.8) we can directly see that q, u and z are solutions
of the boundary value problem (4.5).

To make these rather abstract results easier understandable, we shortly present the indirect
multiple shooting approach for Example 2.3.

Example 4.1. (Indirect multiple shooting for Example 2.3) The constraining equation is
the heat equation with nonlinear reactive term u3:

((∂tu, ϕ))− ((∇u,∇ϕ)) + ((u3, ϕ)) + (u(0)− 0, ϕ(0)) = ((q, ϕ)) ∀ϕ ∈ X,

and in the cost functional we set α1 = 1, α2 = 0, α3 = 1. The spaces are defined as
H = L2(Ω), V = H1

0 (Ω), R = L2(Ω) and Q = L2(I, L2(Ω)). It is easily verified, that the
optimality system for this problem reads as follows:

((∂tu, ϕ)) + ((∇u,∇ϕ)) + ((u3, ϕ)) + (u(0)− 0, ϕ(0)) = ((q, ϕ)) ∀ϕ ∈ X,
−((∂tz, ψ)) + ((∇z,∇ψ)) + ((3u2z, ψ)) + (z(T ), ψ(T )) = ((u− ū, ψ)) ∀ψ ∈ X,

((q, χ)) = −((z, χ)) ∀χ ∈ X.
(4.14)

We chose the time interval I = (0, 1) and consider a multiple shooting time domain decom-
position 0 = τ0 < τ1 < τ2 = 1 of m = 2 multiple shooting intervals. In the framework
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of multiple shooting for this problem we denote s̃ := (s0, s1, s2) and λ̃ := (λ0, λ1, λ2) and
q̃ := (q0, q1) and retrieve the intervalwise boundary value problems for j = 0, 1:

For all ϕ,ψ ∈ Xj , χ ∈ Qj :

((∂tuj , ϕ))j + ((∇uj ,∇ϕ))j + (((uj)3, ϕ))j + (uj(τj)− sj , ϕ(0)) = ((qj , ϕ))j ,
−((∂tzj , ψ))j + ((∇zj ,∇ψ))j + ((3(uj)2zj , ψ))j + (zj(τj+1)− λj+1, ψ(T )) = ((uj − ū, ψ))j ,

((qj , χ))j = −((zj , χ))j .
(4.15)

And finally the matching conditions for primal and dual solution are easily derived as

(s0 − 0, ϕ) = 0 ∀ϕ ∈ H,
(λ0 − Σ̄z0(s0, λ1), ϕ) := (λ0 − z0(τ0; s1, λ1), ϕ) = 0 ∀ϕ ∈ H,
(s1 − Σ̄u0(s0, λ1), ϕ) := (s1 − u0(τ1; s0, λ1), ϕ) = 0 ∀ϕ ∈ H,
(λ1 − Σ̄z1(s1, λ2), ϕ) := (λ1 − z1(τ1; s1, λ2), ϕ) = 0 ∀ϕ ∈ H,
(s2 − Σ̄u1(s1, λ2), ϕ) := (s2 − u1(τ2; s1, λ2), ϕ) = 0 ∀ϕ ∈ H,

(λ2 − 0, ϕ) = 0 ∀ϕ ∈ H.

The optimization problem in terms of the indirect multiple shooting formulation requests
the solution of the matching conditions (4.11) subject to the intervalwise boundary value
problems (4.8). We discuss different techniques to solve this constrained problem of finding
a zero to the system of matching conditions in Chapter 6. In what follows, we introduce
and generalize the direct multiple shooting approach, which has first been addressed by
Heinkenschloss and Comas in [20] and [14] for linear quadratic optimal control problems.

4.3 The Direct Multiple Shooting Approach

This section is devoted to development of the direct multiple shooting approach. We introduce
an appropriate notational framework, which differs from the notation used in [14] and [20],
and we generalize the approach presented in these publications to nonlinear optimization
problems with arbitrary cost functionals. We consider again problem (4.2) and decompose
the time interval I = (0, T ) into m multiple shooting intervals Ij := (τj , τj+1). As before we
denote the intervalwise spaces by Xj and Qj with the scalar products and norms ((·, ·))j on
Xj , (·, ·)Qj and ‖·‖Qj on Qj . Furthermore, the intervalwise restrictions of the state u and
control q are given by

qj := q
∣∣
Ij

and uj := u
∣∣
Ij

for j = 0, . . . ,m− 1.

In contrast to the indirect approach, which reformulates the problem in terms of matching
conditions and intervalwise boundary value problems, the direct multiple shooting approach
is based on the formulation of intervalwise initial value problems with additional matching
conditions. The transformations performed on the optimization problem (4.2) are similar
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to the procedures needed for the direct multiple shooting approach for ODE constrained
optimization.

We introduce on the multiple shooting node τj the multiple shooting variable sj ∈ H for
j = 0, . . . ,m− 1 as initial value for the initial value problem (4.1) restricted to Ij :

((∂tuj , ϕ))j + a(uj)(ϕ) + b(qj)(ϕ) + (uj(τj), ϕ(τj)) = ((f, ϕ))j + (sj , ϕ(τj)) ∀ϕ ∈ Xj . (4.16)

The state variable uj can now be treated as a function of the control qj and the initial value
sj . We define on each interval the (nonlinear) solution operator Sj and the operator S̄j which
maps the initial value and the control onto the terminal time value u(τj+1) of the solution:

Sj :
{
H ×Qj → Xj

(sj , qj) 7→ uj
and S̄j :

{
H ×Qj → H

(sj , qj) 7→ Sj(sj , qj)(τj+1)
.

For given qj and sj , j = 0, . . . ,m − 1, the state uj is according to Remark 4.1 uniquely
determined on Ij . By posing additional matching conditions on the edges of the intervals
to ensure continuity of the global state, we are able to reformulate problem (4.2) as an
equivalent equality constrained optimization problem in the multiple shooting variables
s0, . . . , sm−1, q0, . . . , qm−1. We briefly recapitulate the abbreviatory notation for the vectors
of multiple shooting variables and the Cartesian products of the spaces:

(s̃, q̃) := (s0, . . . , sm−1, q0, . . . , qm−1), H̃ := H × · · · ×H︸ ︷︷ ︸
m times

, Q̃ := Q0 × . . .×Qm−1.

In this notation, we define the reformulated cost functional J̄ : H̃ × Q̃→ R by

J̄(s̃, q̃) :=
m−1∑
j=0

α1J
j
1(Sj(sj , qj)) + α2J2(S̄m−1(sm−1, qm−1)) +

m−1∑
j=0

α3
2
‖qj‖2Qj .

Now, an equivalent formulation of problem (4.2) in terms of the multiple shooting variables
and parameterized controls reads

min
(s̃,q̃)∈H̃×Q̃

J̄(s̃, q̃) (4.17a)

such that uj solves (4.16) and the following matching conditions are fulfilled:

(s0 − u0, v) = 0 ∀v ∈ H,
(sj+1 − S̄j(sj , qj), v) = 0 ∀v ∈ H, j = 0, . . . ,m− 2.

(4.17b)

Remark 4.4. If (s̃, q̃) ∈ H̃ × Q̃ fulfills the equality constraints (4.17b) it is called a feasible
point of problem (4.17). If we define for a feasible point the solutions uj := Sj(sj , qj) ∈ Xj

for j = 0, . . . ,m − 1 and (q, u) ∈ Q ×X with q
∣∣
Ij

:= qj and u
∣∣
Ij

:= uj then the following
identity holds for the reformulated cost functional in (4.17a):

J(q, u) = J̄(s̃, q̃).

This identity can directly be derived from the definition of J̄ .
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Before proceeding with the description of the direct multiple shooting approach, let us state
the equivalence of problem (4.2) and problem (4.17) in terms of the following lemma:

Lemma 4.2. Let (q, u) ∈ Q×X be an optimal solution to problem (4.2). Then (s̃, q̃) ∈ H̃×Q̃,
defined intervalwise by

qj := q
∣∣
Ij

and sj := u(τj) for j = 0, . . . ,m− 1 (4.18)

is an optimal solution to problem (4.17).

Let (s̃, q̃) ∈ H̃ × Q̃ be an optimal solution to (4.17), then (q, u) ∈ Q×X, defined by

q
∣∣
Ij

:= qj and u
∣∣
Ij

:= Sj(sj , qj) for j = 0, . . . ,m− 1

is an optimal solution of problem (4.2).

Proof. We only prove the first part of the lemma, the proof of the second part is analogous.
Assume (q, u) ∈ Q × X to be an optimal solution to problem (4.2) and let qj ∈ Qj and
sj ∈ H, j = 0, . . .m − 1, be defined by equation (4.18). Due to the unique solvability of
equation (4.16) we can directly derive the identity u

∣∣
Ij

= Sj(sj , qj) for j = 0, . . . ,m− 1. For
all (q̂, û) ∈ Q×X we have due to the optimality of (q, u) the inequality

J(q, u) ≤ J(q̂, û). (4.19)

Now suppose that there exists a feasible point (δ̃s, δ̃q) ∈ H̃ × Q̃ with J̄(δ̃s, δ̃q) < J̄(s̃, q̃).
Then (δq, δu), defined by δq

∣∣
Ij

:= δqj and δuj := Sj(δsj , δqj) for j = 0, . . . ,m− 1 is a feasible
point for problem (4.2). Thus, due to Remark 4.4, we can now write

J(δq, δu) = J̄(δ̃s, δ̃q) < J̄(s̃, q̃) = J(q, u),

which is in contradiction to assumption (4.19).

The first order necessary optimality conditions for problem (4.17) are obtained by application
of the Lagrange formalism. Let us introduce the Lagrange multipliers pj ∈ H, j = 0, . . . ,m−1,
and define p̃ := (p0, . . . , pm−1) ∈ H̃. With this notation, the Lagrangian L : Q̃× H̃ × H̃ → R

of problem (4.17) is given by

L(q̃, s̃, p̃) := J̄(q̃, s̃)−

(s0 − u0, p
0) +

m−2∑
j=0

(sj+1 − S̄j(sj , qj), pj+1)

 ,
and the first order necessary optimality condition is obtained as the Karush Kuhn Tucker
system (KKT system)

L′(q̃, s̃, p̃)(ϕ̃, ψ̃, χ̃) = 0 ∀(ϕ̃, ψ̃, χ̃) ∈ Q̃× H̃ × H̃.

Explicit calculation of the derivative on the left hand side yields a system of equations. We
omit the arguments (sj , qj) of the derivatives of the solution operators for the purpose of
notational brevity:

S′jsj (ψj) := S′jsj (s
j , qj)(ψj), S′jqj (ϕj) := S′jqj (s

j , qj)(ϕj),

S̄′jsj (ψj) := S̄′jsj (s
j , qj)(ψj), S̄′jqj (ϕj) := S̄′jqj (s

j , qj)(ϕj).

35



4 The Multiple Shooting Approach for PDE Constrained Optimization

With this notation we retrieve the following optimality system:

Differentiation with respect to pj :

For j = 0 and for all ϕ ∈ H:
(s0 − u0, ϕ) = 0. (4.20a)

For j = 1, . . . ,m− 1 and for all ϕ ∈ H:

(sj − S̄j−1(sj−1, qj−1), ϕ) = 0. (4.20b)

Differentiation with respect to sj :

For j = 0, . . . ,m− 2 and for all ψ ∈ H:

α1J
j′
1 (uj)(S′jsj (ψ))− (ψ, pj) + (S̄′jsj (ψ), pj+1) = 0. (4.20c)

For j = m− 1 and for all ψ ∈ H:

α1J
m−1′
1 (um−1)(S′m−1sm−1(ψ)) + α2J

′
2(um−1(τm))(S̄′m−1sm−1(ψ))− (ψ, pm−1) = 0. (4.20d)

Differentiation with respect to qj :

For j = 0, . . . ,m− 2 and for all χ ∈ Qj :

α1J
j′
1 (uj)(S′jqj (χ)) + α3(qj , χ)Qj + (S̄′jqj (χ), pj+1) = 0. (4.20e)

For j = m− 1 and for all χ ∈ Qm−1:

α1J
j′
1 (um−1)(S′m−1qm−1(χ)+α2J

′
2(um−1(τm))(S̄′m−1qm−1(χ))+α3(qm−1, χ)Qm−1 = 0. (4.20f)

For a better understanding let us briefly describe how the derivatives of the solution operators
have to be interpreted in this formulation.

Lemma 4.3. (Derivatives of the solution operators) Let for j = 0, . . . ,m− 1 the solution
operators for the restricted problem (4.16) be given as before by

Sj :
{
H ×Qj → Xj

(sj , qj) 7→ uj
and S̄j :

{
H ×Qj → H

(sj , qj) 7→ Sj(sj , qj)(τj+1)
.

Furthermore let the following problems for the determination of v ∈ Xj and w ∈ Xj on Ij be
given:

((∂tv, ϕ))j + a′u(uj)(v, ϕ) + (v(τj)− s̄, ϕ(τj)) = 0 ∀ϕ ∈ Xj , (4.21)
((∂tw,ϕ))j + a′u(uj)(w,ϕ) + b′q(qj)(q̄, ϕ) + (w(τj), ϕ(τj)) = 0 ∀ϕ ∈ Xj . (4.22)

For the derivatives of the solution operators the following identities hold:

S′jsj :
{
H → Xj

s̄ 7→ v
and S̄′jsj :

{
H → H

s̄ 7→ v(τj+1)
,

S′jqj :
{
Qj → Xj

q̄ 7→ w
and S̄′jqj :

{
Qj → H

q̄ 7→ w(τj+1)
.
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Proof. The proof follows directly by differentiation of the restricted state equation (4.16)
with respect to the initial value sj and the restricted control qj for j = 0, . . . ,m− 1.

Remark 4.5. Lemma 4.3 yields that S′jsj is the solution operator of problem (4.21) which is
obtained by linearization of the original problem (4.16) with respect to the initial value into
the direction s̄. Therefore, the operator is mapping the initial value of the linearized problem,
s̄, to the solution v of equation (4.21). Furthermore, S′jqj is the solution operator of problem
(4.22). Again, the equation is obtained as the linearization of (4.16), here with respect to
the control into the direction q̄. Thus, the solution operator maps q̄ onto the solution w.
Analogously, S̄′jsj resp. S̄

′
jqj evaluate the solution v resp. w at the terminal time point τj+1

of the interval Ij .

For further transformations of system (4.20), we additionally introduce adjoint operators and
describe their interpretation as solution operators of the adjoint equations in Lemma 4.4.

S′∗jsj := S′∗jsj (s
j , qj) : Xj∗ → H∗,

S′∗jqj := S′∗jqj (s
j , qj) : Xj∗ → Qj∗,

S̄′∗jsj := S̄′∗jsj (s
j , qj) : H∗ → H∗,

S̄′∗jqj := S̄′∗jqj (s
j , qj) : H∗ → Qj∗.

We remind that, according to Remark 2.1, the Hilbert space H was identified with its dual
space H∗.

Lemma 4.4. For j = 0, . . . ,m − 1 let the solution operators for the equations (4.21) and
(4.22) be given as before by

S′jsj :
{
H → Xj

s̄ 7→ v
and S̄′jsj :

{
H → H

s̄ 7→ v(τj+1)
,

S′jqj :
{
Qj → Xj

q̄ 7→ w
and S̄′jqj :

{
Qj → H

q̄ 7→ w(τj+1)
.

Furthermore let the following problems for the determination of x ∈ Xj and y ∈ Xj on Ij be
given:

−((∂tx, ψ))j + a′u(uj)(ψ, x) + (x(τj+1), ψ(τj+1)) = 〈r, ψ〉Xj∗×Xj ∀ψ ∈ Xj , (4.23)
−((∂ty, ψ))j + a′u(uj)(ψ, y) + (y(τj+1)− ζ, ψ(τj+1)) = 0 ∀ψ ∈ Xj . (4.24)

For the adjoint operators the following identities hold:

(S′∗jsj (r), ξ) = (x(τj), ξ) ∀ξ ∈ H,

〈S′∗jqj (r), χ〉Qj∗×Qj = −b′q(qj)(χ, x) ∀χ ∈ Qj ,

(S̄′∗jsj (ζ), ξ) = (y(τj), ξ) ∀ξ ∈ H,
〈S̄′∗jqj (ζ), χ〉Qj∗×Qj = −b′q(qj)(χ, y) ∀χ ∈ Qj .

(4.25)
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Proof. We prove only the first identity, the remaining equations can be shown analogously.
By definition of the adjoint operator and the identification H ∼= H∗, the following equation
is true for S′∗jsj :

(S′∗jsj (r), ξ) = 〈r, S′jsj (ξ)〉Xj∗×Xj ∀ξ ∈ H, ∀r ∈ Xj∗. (4.26)

From equation (4.23) we have for all ξ ∈ H:

〈r, S′jsj (ξ)〉Xj∗×Xj = −((∂tx, S′jsj (ξ)))j + a′u(uj)(S′jsj (ξ), x) + (x(τj+1), S′jsj (ξ)(τj+1))

= ((∂tS′jsj (ξ), x))j + a′u(uj)(S′jsj (ξ), x) + (x(τj), S′jsj (ξ)(τj)).
(4.27)

Equation (4.21) together with the definition of S′jsj (ξ) yields:

((∂tS′jsj (ξ), x))j + a′u(uj)(S′jsj (ξ), x) + (x(τj), S′jsj (ξ)(τj)) = (x(τj), ξ) ∀ξ ∈ H.

Now, together with equation (4.26) and (4.27) we retrieve the assertion

(S′∗jsj (r), ξ) = (x(τj), ξ) ∀ξ ∈ H.

With these identities at hand, we are able to perform further simplifications of the KKT
system (4.20). We prove the following theorem:

Theorem 4.5. Let the dual and control equations (4.20c), (4.20d), (4.20e) and (4.20f) be
given as before: Determine p̃ ∈ X̃j and q̃ ∈ Q̃j such that for all ψ ∈ Xj, χ ∈ Qj

α1J
j′
1 (uj)(S′jsj (ψ))− (ψ, pj) + (S̄′jsj (ψ), pj+1) = 0, j = 0, . . . ,m− 2, (4.28a)

α1J
j′
1 (uj)(S′jsj (ψ)) + α2J

′
2(uj(τj+1))(S̄′jsj (ψ))− (ψ, pj) = 0, j = m− 1, (4.28b)

α1J
j′
1 (uj)(S′jqj (χ)) + α3(qj , χ)Qj + (S̄′jqj (χ), pj+1) = 0, j = 0, . . . ,m− 2, (4.28c)

α1J
j′
1 (uj)(S′jqj (χ)) + α2J

′
2(uj(τj+1))(S̄′j,qj (χ)) + α3(qj , χ)Qj = 0, j = m− 1. (4.28d)

An equivalent formulation of these equations is given by the system

(zj(τj)− pj , ψ) = 0 ∀ψ ∈ H, j = 0, . . . ,m− 1,
α3(qj , χ)Qj − b′q(qj)(χ, zj) = 0 ∀χ ∈ Qj , j = 0, . . . ,m− 1

where zj is obtained as the solution of the following intervalwise initial value problems:

− ((∂tzj , ϕ))j + a′u(uj)(ϕ, zj) + (zj(τj+1)− pj+1, ϕ(τj+1))

= α1J
j′
1 (uj)(ϕ) ∀ϕ ∈ Xj , j = 0, . . . ,m− 2, (4.29a)

− ((∂tzj , ϕ))j + a′u(uj)(ϕ, zj) + (zj(τj+1), ϕ(τj+1))
= α1J1(uj)j′(ϕ) + α2J

′
2(uj(τj+1))(ϕ(τj+1)) ∀ϕ ∈ Xj , j = m− 1. (4.29b)
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Proof. The proof is mainly based on the interpretation of the adjoint operators (4.25). We
transform the equations (4.28) by applying the definition of the adjoint operators such that
the test functions are no longer arguments of the operators itself. The obtained equations
allow the application of Lemma 4.4. The variables can be interpreted as solutions of the
partial differential equations (4.23), (4.24), and the proposition follows by linear combination
of the solutions. In detail, we proceed as follows:

Due to the assumptions on the parts of the functional in Remark 2.5 the linear functional
J ′1(uj) : Xj → R is continuous and thus bounded on Xj . We write for a uniquely determined,
but unknown, element g1 ∈ Xj∗ the representation

α1J
′
1(uj)(v) = 〈g1, v〉Xj∗×Xj ∀v ∈ Xj .

Accordingly, J ′2(uj(τj+1)) : H → R is a bounded linear functional on H, and we can write for
an element g2 ∈ H the Riesz representation

α2J
′
2(um−1(τm))(w) = (g2, w) ∀w ∈ H.

Now, we have everything at hand to transform equation (4.28) into a more compact formula-
tion. First, we insert g1 and g2 into the equations. In the new formulation, we search p̃ ∈ X̃j

and q̃ ∈ Q̃j such that for all ψ ∈ H, χ ∈ Qj

〈g1, S′jsj (ψ)〉Xj∗×Xj − (pj , ψ) + (pj+1, S̄′jsj (ψ)) = 0, j = 0, . . . ,m− 2,

〈g1, S′jsj (ψ)〉Xj∗×Xj + (g2, S̄′jsj (ψ))− (pj , ψ) = 0, j = m− 1,

〈g1, S′jqj (χ)〉Xj∗×Xj + α3(qj , χ)Qj + (pj+1, S̄′jqj (χ)) = 0, j = 0, . . . ,m− 2,

〈g1, S′jqj (χ)〉Xj∗×Xj + (g2, S̄′j,qj (χ(τm))) + α3(qj , χ)Qj = 0, j = m− 1.

Second, we insert the definition of the adjoint operators and obtain the following system of
equations:

(S′∗jsj (g1), ψ)− (pj , ψ) + (S̄′∗jsj (p
j+1), ψ) = 0, j = 0, . . . ,m− 2, (4.30a)

(S′∗jsj (g1), ψ) + (S̄′∗jsj (g2), ψ)− (pj , ψ) = 0, j = m− 1, (4.30b)

〈S′∗jqj (g1), χ〉Qj∗×Qj + α3(qj , χ)Qj + 〈S̄′∗jqj (p
j+1), χ〉Qj∗×Qj = 0, j = 0, . . . ,m− 2, (4.30c)

〈S′∗jqj (g1), χ〉Qj∗×Qj + 〈S̄′∗j,qj (g2), χ(τm)〉Qj∗×Qj + α3(qj , χ)Qj = 0, j = m− 1. (4.30d)

We exploit (4.25) together with the linear partial differential equations (4.23) and (4.24).
Introducing the intervalwise states xj , yj ∈ Xj as solutions of the partial differential equations

− ((∂txj , ϕ))j + a′u(uj)(ϕ, xj) + (xj(τj+1), ϕ(τj+1)) = 〈g1, ϕ〉Xj∗×Xj

= α1J
j′
1 (uj)(ϕ) ∀ϕ ∈ Xj , j = 0, . . . ,m− 1,

−((∂tyj , ϕ))j+a′u(uj)(ϕ, yj)+(yj(τj+1)−pj+1, ϕ(τj+1)) = 0 ∀ϕ ∈ Xj , j = 0, . . . ,m−2,
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− ((∂tyj , ϕ))j + a′u(uj)(ϕ, yj) + (yj(τj+1), ϕ(τj+1)) = (g2, ϕ(τj+1))
= α2J

′
2(uj(τj+1))(ϕ(τj+1))) ∀ϕ ∈ Xj , j = m− 1,

the nonlinear system of equations (4.30) transforms into

(xj(τj), ψ)− (pj , ψ) + (yj(τj), ψ) = 0 ∀ψ ∈ H, j = 0, . . . ,m− 1,
−b′q(qj)(χ, xj)− b′q(qj)(χ, yj) + α3(qj , χ)Qj = 0 ∀ψ ∈ Qj , j = 0, . . . ,m− 1.

(4.32)

Now, we can define zj := xj + yj ∈ Xj for j = 0, . . .m− 1, and by linear combination of the
linear PDEs for xj and yj we obtain the final formulation in terms of the dual variable zj :
Let zj be determined by the partial differential equation

− ((∂tzj , ϕ))j + a′u(uj)(ϕ, zj) + (zj(τj+1)− pj+1, ϕ(τj+1)) = 〈g1, ϕ〉Xj∗×Xj

= α1J
j′
1 (uj)(ϕ) ∀ϕ ∈ Xj , j = 0, . . . ,m− 2,

− ((∂tzj , ϕ))j + a′u(uj)(ϕ, zj) + (zj(τj+1), ϕ(τj+1)) = 〈g1, ϕ〉Xj∗×Xj + (g2, ϕ(τj+1))

= α1J
j′
1 (uj)(ϕ) + α2J

′
2(uj(τj+1))(ϕ(τj+1))) ∀ϕ ∈ Xj , j = m− 1.

The nonlinear system of equations (4.32) can be rewritten as

(zj(τj)− pj , ψ) = 0 ∀ψ ∈ H, j = 0, . . . ,m− 1,
α3(qj , χ)Qj − b′q(qj)(χ, zj) = 0 ∀ψ ∈ Qj , j = 0, . . . ,m− 1,

which completes the proof.

Remark 4.6. In order to symmetrize the notation for the primal and dual variables, we intro-
duce an additional function pm ∈ H on the right boundary of the time interval. Furthermore,
we remark, that the variable p0 is obviously redundant. The matching conditions and defining
equations for zj transform into

(zj(τj)− pj , ψ) = 0, j = 1, . . . ,m− 1,
α2J

′
2(um−1(τm))(ψ)− (pm, ϕ) = 0,

where the dual variable zj ∈ Xj is obtained from the partial differential equation

− ((∂tzj , ϕ))j + a′u(uj)(ϕ, zj) + (zj(τj+1)− pj+1, ϕ(τj+1)) = ((g1, ϕ))j
= α1J

j′
1 (uj)(ϕ) ∀ϕ ∈ Xj , j = 0, . . . ,m− 1. (4.34)

Next, we introduce solution operators for the dual equations. The variable zj must be
considered as a function not only of the control qj , but also of the terminal time value pj+1

and via the dependence on u of sj . The solution operators for the dual equation are defined
by the following identities:

Ξj :
{
H ×H ×Qj → Xj

(pj+1, sj , qj) 7→ zj
and Ξ̄j :

{
H ×H ×Qj → H

(pj+1, sj , qj) 7→ Ξj(pj+1, sj , qj)(τj)
.
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4.3 The Direct Multiple Shooting Approach

Summarizing, we can write the multiple shooting formulation of the direct approach as
follows. Inserting the reformulated matching conditions due to Theorem 4.5, considering
Remark 4.6 and applying the definition of the solution operators, the direct multiple shooting
formulation is given by the formulation: Find s̃ ∈ H̃, p̃ ∈ H̃, q̃ ∈ Q̃ such that the following
identities hold.

(s0 − u0, v) = 0 ∀v ∈ H,
(sj+1 − S̄j(sj , qj), v) = 0 ∀v ∈ H, j = 0, . . . ,m− 2,

(pj − Ξ̄j(pj+1, sj , qj), ψ) = 0 ∀ψ ∈ H, j = 1, . . . ,m− 1,
(pm, ϕ)− α2J

′
2(um−1(τm))(ψ) = 0 ∀ψ ∈ H,

α3(qj , χ)Qj − b′q(qj)(χ,Ξj(pj+1, sj , qj)) = 0 ∀χ ∈ Qj , j = 0, . . . ,m− 1.

. (4.35)

Finally, by means of Theorem 4.5 we can point out the relation between the direct and the
indirect multiple shooting approach. We have already seen that both approaches reformulate
the original problem in terms of a (nonlinear) system of equations which allows the application
of a nonlinear iterative solver as we will see in Chapter 6. These systems of equations for direct
and indirect multiple shooting are closely related as is depicted in Figure 4.1. The equations

Direct Multiple Shooting Indirect Multiple Shooting

Initial Value Problems

Matching Conditions

Boundary Value Problems

Matching Conditions

Dual Equation

Primal Variable

Dual Variable

Primal Equation

Dual Equation

Control Equation

Primal Variable

Dual Variable

Primal Equation

Control Variable

Figure 4.1: Relation between direct and indirect multiple shooting.

for primal and dual intervalwise states coincide for the direct and indirect multiple shooting
approach. Keeping in mind the redundancy of λm and sm due to Remark 4.3, this can be
seen from equations (4.16), (4.34) and (4.8a), (4.8b). Additionally the matching conditions
for the primal and dual variables coincide due to equations (4.35) and (4.9). Furthermore, the
matching condition corresponding to the control in the direct case, the last equation of (4.35),

41



4 The Multiple Shooting Approach for PDE Constrained Optimization

and the control equation (4.8c) are identical. Thus, we see that equations and matching
conditions are closely related, and the essential difference is the elimination of the control
from the system of matching conditions in the indirect multiple shooting approach. This
yields intervalwise feasible states and controls due to the intervalwise solution of boundary
value problems. These boundary value problems can be interpreted as optimality systems
of intervalwise optimal control problems. In contrast, for the direct approach feasibility is
obtained not until convergence of the multiple shooting approach. We see the advantages and
disadvantages of both of these properties later on, when discussing the numerical solution of
the multiple shooting formulations.

Example 4.2. (Direct multiple shooting for Example 2.3) For a better understanding of
this abstract formulation of the direct multiple shooting approach, let us now take a look
at the case of Example 2.3 with α1 = 1, α2 = 0, and α3 = 1. We chose the time interval
I = (0, 1) and consider a multiple shooting time domain decomposition 0 = τ0 < τ1 < τ2 = 1
of m = 2 multiple shooting intervals.

The constraining equation is the heat equation with nonlinear reactive term u3:

((∂tu, ϕ))− ((∇u,∇ϕ)) + ((u3, ϕ)) + (u(0)− 0, ϕ(0)) = ((q, ϕ)) ∀ϕ ∈ X.

We have H = L2(Ω), V = H1
0 (Ω), R = L2(Ω), and Q = L2(I, L2(Ω)). In the framework

of multiple shooting for this problem we denote s̃ := (s0, s1) and q̃ := (q0, q1), and the
reformulated cost functional reads

J̄(s̃, q̃) :=
1∑
j=0

1
2

∫
Ij

‖Sj(sj , qj)(t)− ū(t)‖2dt+
1∑
j=0

1
2

∫
Ij

‖qj(t)‖2dt.

The intervalwise state equations read for j = 0, 1

((∂tuj , ϕ))j − ((∇uj ,∇ϕ))j + (((uj)3, ϕ))j + (uj(τj)− sj , ϕ(0)) = ((qj , ϕ))j ∀ϕ ∈ Xj . (4.36)

The matching conditions are given by

(s0 − 0, ϕ0) = 0 ∀ϕ0 ∈ H,
(s1 − S̄0(s0, q0), ϕ1) = 0 ∀ϕ1 ∈ H.

Now we have everything at hand to set up the Lagrangian of the problem with p̃ = (p0, p1),
p0, p1 ∈ H:

L(q̃, s̃, p̃) :=
1∑
j=0

1
2

∫
Ij

‖Sj(sj , qj)(t)− ū(t)‖2Hdt

+
1∑
j=0

1
2

∫
Ij

‖qj(t)‖2dt−
{
(s0 − 0, p0) + (s1 − S̄0(s0, q0), p1)

}
.

42



4.3 The Direct Multiple Shooting Approach

The corresponding optimality system reads

(s0, ϕ) = 0 ∀ϕ ∈ H,
(s1 − S̄0(s0, q0), ϕ) = 0 ∀ϕ ∈ H,

((S′0s0(ψ), S0(s0, q0)− ū))0 − (ψ, p0) + (S̄′0s0(ψ), p1) = 0 ∀ψ ∈ H,
((S′1s1(ψ), S1(s1, q1)− ū))1 − (ψ, p1) = 0 ∀ψ ∈ H,

((S′0q0(χ), S0(s0, q0)− ū))0 + ((q0, χ))0 + (S̄′0q0(χ), p1) = 0 ∀χ ∈ Q0,

((S′1q1(χ), S1(s1, q1)− ū))1 + ((q1, χ))1 = 0 ∀χ ∈ Q1.

We can easily verify by differentiation of the intervalwise state equation (4.36) that the
directional derivatives of the solution operators are determined by the following equations.
For given j = 0, 1, sj ∈ H and qj ∈ Qj – and thus given uj ∈ Xj – and given directions
ϕ ∈ H and ψ ∈ Qj the following identities hold:

((∂tS′jsj (ϕ), v))j + ((∇S′jsj (ϕ),∇v))j + ((3(uj)2S′jsj (ϕ), v))j
+ (S′jsj (ϕ)(τj)− ϕ, v(τj)) = 0 ∀v ∈ Xj ,

((∂tS′jqj (ψ), v))j + ((∇S′jqj (ψ),∇v))j + ((3(uj)2S′jqj (ψ), v))j
+ (S′jqj (ψ)(τj), v(τj)) = ((ψ, v))j ∀v ∈ Xj .

These equations correspond to the abstract interpretation of the operators in Lemma 4.3.
Now, the introduction of the adjoint operators allows us to reformulate the optimality system
as follows:

(s0, ϕ) = 0 ∀ϕ ∈ H,
(s1 − S̄0(s0, q0), ϕ) = 0 ∀ϕ ∈ H,

(S′∗0s0(S0(s0, q0)− ū), ψ)− (p0, ψ) + (S̄′∗0s0(p1), ψ) = 0 ∀ψ ∈ H,
(S′∗1s1(S1(s1, q1)− ū), ψ)− (p1, ψ) = 0 ∀ψ ∈ H,

〈S′∗0q0(S0(s0, q0)− ū), χ〉Q0∗×Q0 + ((q0, χ))0 + (S̄′∗0q0(p1), χ) = 0 ∀χ ∈ Q0,

〈S′∗1q1(S1(s1, q1)− ū), χ〉Q1∗×Q1 + ((q1, χ))1 = 0 ∀χ ∈ Q1.

(4.37)

For the sake of completeness, let us shortly present the equations that allow us to calculate
the evaluations of the adjoint operators. Let for given j = 0, 1, uj ∈ Xj and r ∈ Xj∗, ξ ∈ H
the functions x ∈ Xj and y ∈ Xj solve the following equations for all ϕ ∈ Xj :

−((∂tx, ϕ))j + ((∇x,∇ϕ))j + ((3(uj)2x, ϕ))j + (x(τj+1), ϕ(τj+1)) = 〈r, ϕ〉Xj∗×Xj ,

−((∂ty, ϕ))j + ((∇y,∇ϕ))j + ((3(uj)2y, ϕ))j + (y(τj+1)− ξ, ϕ(τj+1)) = 0.

For the adjoint operators the following equations hold:

(S′∗jsj (r), ρ) = (x(τj), ρ) ∀ρ ∈ H,

〈S′∗jqj (r), χ〉Qj∗×Qj = (x, χ)Qj ∀χ ∈ Qj ,
(S̄′∗jsj (ξ), ρ) = (y(τj), ρ) ∀ρ ∈ H,

〈S̄′∗jqj (ξ), χ〉Qj∗×Qj = (y, χ)Qj ∀χ ∈ Qj .
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4 The Multiple Shooting Approach for PDE Constrained Optimization

Application of Theorem 4.5 finally yields the simple direct multiple shooting formulation

(u0(τ0)− s0, ϕ) = 0 ∀ϕ ∈ H,
(u0(τ1)− s1, ϕ) = 0 ∀ϕ ∈ H,
(u1(τ2)− s2, ϕ) = 0 ∀ϕ ∈ H,
(z0(τ0)− p0, ψ) = 0 ∀ψ ∈ H,
(z1(τ1)− p1, ψ) = 0 ∀ψ ∈ H,

(q0, χ)Q0 + (z0, χ) = 0 ∀χ ∈ Q0,

(q1, χ)Q1 + (z1, χ) = 0 ∀χ ∈ Q1,

where the dual states z0 and z1 and are obtained from the following equations: For all ϕ ∈ X0

resp. X1:

−((∂tz0, ϕ))0 + ((∇z0,∇ϕ))0 + ((3(u0)2z0, ϕ))0 + (z0(τ1)− p1, ϕ(τ1)) = ((u0 − ū, ϕ))0,
−((∂tz1, ϕ))1 + ((∇z1,∇ϕ))1 + ((3(u1)2z1, ϕ))1 + (z1(τ2)− p2, ϕ(τ2)) = ((u1 − ū, ϕ))1.

So far, we have developed two different multiple shooting approaches for PDE constrained
optimization problems in function space. We have discussed the similarities and differences
of direct and indirect multiple shooting in the previous section. For the numerical solution,
time and space have to be discretized appropriately as it is discussed in the next chapter.
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5 Space-Time Finite Element Discretization

This chapter is devoted to the discretization of states and controls in time and space. To be
precise, we discuss Galerkin finite element discretizations which are crucial for the development
of the a posteriori error estimator later on.

In the first Section 5.1 we explain the discontinuous Galerkin method of degree r (dG(r)
method) for the temporal discretization of the states of the intervalwise problems (4.8).
Thereafter, Section 5.2 points out the space discretization of the semidiscrete problems
obtained by the previously mentioned time discretization. It is followed by Section 5.3 which
deals on the one hand with the discretization of the multiple shooting variables in Subsection
5.3.1 and on the other hand with the time-space discretization of the states. In this context,
we consider dynamically changing meshes (cf. Subsection 5.3.2) and interval wise constant
meshes (cf. Subsection 5.3.3). Furthermore, Section 5.4 deals shortly and rather abstract
with the discretization of the control space Q. Finally, Section 5.5 specifies a concrete time
stepping scheme which was used for the implementation.
Remark 5.1. (Discretization for direct and indirect multiple shooting) From the previous
chapter, and especially Figure 4.1, we have seen how the equations of direct and indirect
approach are closely related. In fact, the equations of the optimality system (4.8) of the
indirect approach cover the equations of the direct multiple shooting approach. Therefore,
we consider only the discretization of the indirect multiple shooting approach in the following
presentation.
Remark 5.2. (Commutability of discretization and optimization) Galerkin discretization
schemes have the pleasant property that discretization and dualization interchange. Therefore,
we are allowed to consider the discretization of the optimality system (4.8) directly instead
of discretizing the optimal control problem (4.2) first and calculating the discrete optimality
system afterwards. In other words, for Galerkin discretizations the first-optimize-then-
discretize approach is equivalent to the first-discretize-then-optimize approach.

5.1 Time Discretization

In this section we explain the discontinuous Galerkin method of degree r (dG(r) method)
which is defined by the use of discontinuous test and trial functions of degree r. A detailed
derivation and description of discontinuous time discretization methods can be found in the
textbook of Eriksson, Estep, Hansbo, and Johnson [17]. For the following description of the
dG(r) method, we need some preliminaries and notational framework. First, let us chose a
partition of the closure of the time interval Īj = [τj , τj+1]:

Īj = { τj } ∪ Ij,1 ∪ Ij,2 · · · ∪ Ij,nj−1 ∪ Ij,nj ,
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5 Space-Time Finite Element Discretization

with Ij,l = (tj,l−1, tj,l],

τj = tj,0 < tj,1 < · · · < tj,nj−1 < tj,nj = τj+1

and kj,l := |Ij,l|. The discretization parameter is denoted by k, and is a piecewise constant
function defined through the length of the subintervals k

∣∣∣
Ij,l

:= kj,l.

With the subintervals at hand, let us define the following spaces, which we need for the
definition of the trial and test functions in the following sections. Let Pr(Ij,l, V ) denote the
space of polynomials on Ij,l up to order r with values in V . We define the spaces of piecewise
polynomials as follows:

X̃r
jk :=

{
vjk ∈ L

2(Ij , H)
∣∣∣∣ vjk∣∣∣

Ij,l
∈ Pr(Ij,l, V ), l = 1, . . . nj and vjk(τj) ∈ H

}
.

Remark 5.3. We should remark that X̃j,r
k 6⊂ Xj , because the piecewise defined functions of

this space are not necessarily continuous.

The discontinuous Galerkin method of degree r calculates a piecewise polynomial solution in
the space X̃j,r

k . The discontinuities of the functions vjk ∈ X̃
j,r
k on the interior time nodes of

Ij are considered by means of the following notation:

vj+k,l := lim
t↘0

vjk(tj,l + t), vj−k,l := lim
t↗0

vjk(tj,l + t) = vjk(tj,l), [vjk]l := vj+k,l − v
j−
k,l .

For example for the dG(0) method this notation can be interpreted as follows: vj+k,l is the
limit “from above”, vj−k,l is the limit “from below” and [vjk]l is the “jump” in vjk(t) at the
node tj,l. We illustrate this in Figure 5.1. We can now formulate the dG(r) method for the

tj,l+1tj,l−1 tj,l

Ij,lIj,l−1

vj−k,l

[vjk]l

vj+k,l

vjk

Figure 5.1: Notation for the dG(0) method.

discretization of the intervalwise state equations (4.16) as follows: Find for given control
qjk ∈ Qj a state ujk ∈ X̃

j,r
k such that

nj∑
l=1

((∂tujk, ϕk))j,l + a(ujk)(ϕk) + b(qjk)(ϕk) +
nj−1∑
l=0

([ujk]l, ϕ
+
k,l) + (uj−k,0, ϕ

−
k,0)

= ((f, ϕk))j + (sj , ϕ−k,0) ∀ϕk ∈ X̃j,r
k , (5.1)

46



5.1 Time Discretization

where ((v, w))j,l :=
∫
Ij,l

(v(t), w(t))dt.

Existence and uniqueness of the time discrete solution ujk ∈ X̃
j,r
k of (5.1) is proved in the

book of Thomee [40]. In this book, uniqueness is shown by standard arguments, and the
existence of a solution is concluded by reducing (5.1) to a finite dimensional problem by
application of an eigenspace decomposition of the operator A as defined in (2.2).
Remark 5.4. The dG(r) approach as stated in (5.1) incorporates the initial value into the
definition of X̃j,r

k . A more common, equivalent description, like in [40] and [17], eliminates
the initial value from the definition of X̃j,r

k :

nj∑
l=1

((∂tujk, ϕk))j,l + a(ujk)(ϕk) + b(qjk)(ϕk) +
nj−1∑
l=1

([ujk]l, ϕ
+
k,l) + (uj+k,0, ϕ

+
k,0)

= ((f, ϕk))j + (sj , ϕ+
k,0) ∀ϕk ∈ X̃j,r

k .

The equivalence of both schemes can be shown by elementary calculus.

Consideration of the time discretization of the restricted optimality system (4.8) yields the
following semi discrete equations:

Primal equation:

nj∑
l=1

((∂tujk, ϕk))j,l + a(ujk)(ϕk) + b(qjk)(ϕk) +
nj−1∑
l=0

([ujk]l, ϕ
+
k,l) + (uj−k,0, ϕ

−
k,0)

= ((f, ϕk))j + (sj , ϕ−k,0) ∀ϕk ∈ X̃j,r
k . (5.2a)

Dual equation:

nj∑
l=1
−((∂tzjk, ψk))j,l + a′u(u

j
k)(ψk, z

j
k)−

nj−1∑
l=0

([zjk]l, ψ
−
k,l) + (zj−k,nj , ψ

−
k,nj

)

= α1J
j′
1 (ujk)(ψk) + (λj+1, ψ

−
k,nj

) ∀ψk ∈ X̃j,r
k . (5.2b)

Control equation:
b
′
q(q

j
k)(χk, z

j
k)− α3(qjk, χk)Qj = 0 ∀χk ∈ Qj . (5.2c)

Remark 5.5. This rather abstract discrete formulation for the general case of the dG(r)
discretization method is specified in Section 5.5 for r = 0 which is the implicit Euler time
stepping scheme.
Remark 5.6. (Evaluation of the integrals) The evaluation of the integrals of primal and dual
equations is done by application of a quadrature formula, for example the box rule.
Remark 5.7. (Semi discrete formulation of (4.5)) For purpose of later use, let us shortly
discuss, how the semi discretization of the non restricted problem on the whole time interval
can be formulated in terms of the above introduced notation. Let us denote the intervalwise
restriction of the states and controls as before, and let us accordingly denote the time discrete
space on the time interval I by

X̃r
k :=

{
vk ∈ L2(I,H)

∣∣∣∣ vk∣∣∣
Ij,l
∈ Pr(Ij,l, V ), j = 0, . . .m− 1, l = 1, . . . nj , and vk(0) ∈ H

}
.
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System (4.5) reads in time discrete formulation as follows:

Primal equation:

m−1∑
j=0


nj∑
l=1

((∂tujk, ϕ
j
k))j,l + a(ujk)(ϕ

j
k) + b(qjk)(ϕ

j
k) +

nj−1∑
l=1

([ujk]l, ϕ
j+
k,l )


+ ([u0

k]0, ϕ0+
k,0) +

m−2∑
j=0

(u(j+1)+
k,0 − uj−k,nj , ϕ

(j+1)+
k,0 ) + (u0−

k,0, ϕ
0−
k,0)

= ((f, ϕjk)) + (u0, ϕ
0−
k,0) ∀ϕjk ∈ X̃

r
k . (5.3a)

Dual equation:

m−1∑
j=0


nj∑
l=1
−((∂tzjk, ψ

j
k))j,l + a′u(u

j
k)(ψ

j
k, z

j
k)−

nj−1∑
l=1

([zjk]l, ψ
j−
k,l )


− ([z0

k]0, ψ0−
k,0)−

m−2∑
j=0

(z(j+1)+
k,0 − zj−k,nj , ψ

j−
k,0) + (z(m−1)−

k,nm−1
, ψ

(m−1)−
k,nm−1

)

=
m−1∑
j=0

α1J
j′
1 (ujk)(ψ

j
k) + α2J

′
2(um−1(T )(ψ(m−1)−

k,nm−1
) ∀ψk ∈ X̃r

k . (5.3b)

Control equation:
b
′
q(qk)(χk, zk)− (qk, χk)Q = 0 ∀χk ∈ Q. (5.3c)

In the next section we develop the spatial discretization of the continuous spaces V and H
which still remain in the definition of the semidiscrete spaces X̃j,r

k .

5.2 Space Discretization

The spatial discretization of the Hilbert space V is done by defining finite dimensional
subspaces V s

h ⊆ V consisting of finite elements of maximal order s. The spatial discretizations
may differ for each interval Ij,l, which we take into account by adding additional indices j
and l in the notation of the discrete space whenever necessary. For now, we merely consider
an arbitrary discrete space V s

h ⊆ V for a given triangulation.

In this section we introduce the triangulation of the bounded spatial domain Ω ⊂ Rd, d = 2, 3,
and develop appropriate finite element spaces on this triangulation. We assume the boundary
of the domain, ∂Ω, to be of polygonal shape. The general case is not considered in this thesis
but is for example derived in the book of Braess [12]. Depending on the dimension of the
space, we decompose the domain Ω into quadrilaterals (for d = 2) or hexalaterals (for d = 3)
denoted by K which cover the whole domain Ω. The corresponding triangulation is labeled
Th = {K}, where the parameter h is a cellwise constant function and gives information on
the diameter of the current cell, h

∣∣∣
K

= hK := diamK.

A mathematical formulation of this context is given in [12] in terms of the following definition:
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Definition 5.1. (Regular triangulation) A triangulation Th = {K} of Ω is called regular if
the following properties hold:

1. Ω̄ =
⋃
K∈Th .

2. If for two cells K1 and K2, K1 6= K2, the intersection K1 ∩K2 = p, p ∈ Ω, then p is a
vertice of both cells K1 and K2.

3. If for two cells K1 and K2, K1 6= K2, the intersection K1 ∩K2 consists of more than
one point, then K1 ∩K2 is a face of both cells K1 and K2.

Remark 5.8. The parameter h is often considered as the maximum diameter of all cells in Th,
that is h := maxK∈Th diamK.

We are especially interested in families of triangulations arising from the successive refinement
of cells. Therefore, we request the following properties for the triangulations:

Definition 5.2. (Quasi uniform family of triangulations) A family of regular triangulations
{Th} with h ↘ 0 is called quasi uniform, if there exist κ > 0 such that each K ∈

⋃
h Th

contains a circle of radius ρK with

ρK ≥
hK
κ
.

Definition 5.3. (Uniform family of triangulations) A family of triangulations {Th} with
h↘ 0 is called uniform, if there exist κ > 0 such that each K ∈

⋃
h Th contains a circle of

radius ρK with

ρK ≥
h

κ
,

where h has to be interpreted in the sense of Remark 5.8.

Remark 5.9. The definitions of quasi uniformity and uniformity above are merely used for
theoretical purpose when considering approximation properties of the finite element spaces
and performing a priori error analysis. We do not persecute this theoretical investigations,
but refer to the literature mentioned before. Nevertheless, our triangulations fulfill quasi
uniformity in practice.

For the purpose of local refinement we have to weaken the last condition in Definition 5.1.
We allow hanging nodes, that are nodes that lie in the middle of a face of a cell K, and
assume furthermore that the triangulation Th is obtained from the triangulation T2h by
patchwise refinement. A patch denotes a set of four cells (for d = 2) or eight cells (for d = 3)
obtained by refinement of a coarser cell. This patchwise organization is of importance when
we consider patchwise interpolation for higher order approximation of the exact solution.
This is needed for the evaluation of a posteriori error estimators in Chapter 7. An example
for a triangulation with patchwise organization of the cells is given in Figure 5.2.

In the context of finite elements, we consider the cells of a triangulation as transformations
of a reference cell K̂, for example the unit square in the case of quadrilaterals. We denote
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T2h Th

Figure 5.2: Triangulation with patchwise cell organization (right) obtained from a coarser
triangulation (left) by global refinement.

the transformation that maps the reference cell onto the current cell K by ϕK : K̂ → K, see
Figure 5.3, and define the polynomial space on the reference cell K̂ by

Q̂s(K̂) := span
{

d∏
k=1

xαkk

∣∣∣∣∣ αk ∈ {0, 1, . . . , s}
}
.

Then the corresponding space of polynomials on K is defined by use of the transformation ϕ:

Qs(K) :=
{
v
∣∣∣ v ◦ ϕ ∈ Q̂s(K̂)

}
.

K̂ K

Figure 5.3: Transformation of the reference cell into an arbitrary cell.

The finite element space consists of continuous piecewise polynomial functions of order up to
s, that is

V s
h :=

{
vh ∈ V

∣∣∣∣ vh∣∣∣
K
∈ Qs(K),K ∈ Th

}
.

Remark 5.10. The admission of hanging nodes leads to problems with respect to the continuity
on the faces. In order to make a finite element function globally continuous, we have to make
sure that the hanging nodes have values that are compatible with the adjacent nodes on
the vertices, such that the function has no jump when coming from the refined cells to the
adjacent coarse cell. Therefore, we eliminate the degrees of freedom corresponding to the
hanging nodes and determine the values at the hanging nodes from the adjacent degrees of
freedom by an interpolation procedure after the solution process.
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5.3 Discretization of Time and Space

In this section we finally merge the discretization schemes for time and space from Sections
5.1 and 5.2 in order to obtain a time-space discrete formulation of problem (4.8) with fully
discretized states. We present two different discretization schemes, one of which has been
proven to be more efficient with respect to the implementation and the computational effort.
First, we consider the discretization of the multiple shooting variables. This can be done
independently from the discretization of the states on the intervals and offers a large variety of
possibilities for the choice of the mesh. Second, we present the discretization with dynamically
changing meshes in every time step which are only related by a common coarse grid. And
finally, a special case of the dynamically changing meshes, namely the case of intervalwise
constant meshes, is derived.

5.3.1 Discretization of the Multiple Shooting Variables

The intervalwise consideration of the time space discrete intervalwise problems possibly yields
different adjacent spatial meshes on the multiple shooting nodes. This is due to the fact,
that the local mesh size of T j,lh is determined by refinement indicators on the interval Ij .
Therefore, the final mesh of Ij and the first mesh of Ij+1 are in general different and only
related by a common coarse grid. As a consequence, we have a certain freedom to choose the
discretization for the shooting variables connecting the two. In particular, we end up with
different discretizations of H in each shooting node τj . We denote these spaces by Hj

h and
the corresponding meshes by T τjh . The spatial discretization is, as before, performed with a
continuous Galerkin approach of degree s. The spatial discrete multiple shooting variables
are denoted by sjh, λ

j
h ∈ H

j
h.

Remark 5.11. (Choice of the node meshes) While the mesh used for Hj
h can be chosen

independent of the neighboring intervals, we use the trace mesh of either the left interval or
the right for practical purposes in the section on numerical experiments.

5.3.2 Dynamically Changing Spatial Meshes

A spatial discretization with dynamically changing meshes in time suggests itself. The
triangulation corresponding to the timepoint tj,l is denoted by T j,lh and the appropriate finite
element space by V j,l,s

h as illustrated in Figure 5.4.

With this notation at hand, we are able to define the following fully discrete spaces:

X̃j,r,s
kh :=

{
vkh ∈ L2(Ij , H)

∣∣∣∣ vkh∣∣∣
Ij,l
∈ Pr(Ij,l, V j,l,s

h ), l = 1, . . . nj , and vkh(τj) ∈ V j,0,s
h

}
.

It can directly be seen that due to the conformity V j,l,s
h ⊆ V the inclusion X̃j,r,s

kh ⊆ X̃j,r
k holds

for the fully discrete space. For discretizations of this type, the notation cG(s)dG(r) has been
introduced in [17] because of the cG(s) discretization in space and the dG(r) discretization
in time. The cG(s)dG(r) formulation of problem (4.16) is consequently obtained from the
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tj,l+1

tj,l−1

tj,l

Ij,l
Ij,l+1

T j,l−1
h

T j,lh

T j,l+1
h

Figure 5.4: Dynamically changing spatial meshes in time.

semidiscrete formulation (5.1) by replacing the space X̃j,r,s
k by its fully discrete equivalent

X̃j,r,s
kh and adding an index h to the variables and test functions:

Find for given control qjkh ∈ Qj a state ujkh ∈ X̃
j,r,s
kh such that

nj∑
l=1

((∂tujkh, ϕkh))j,l + a(ujkh)(ϕkh) + b(qjkh)(ϕkh) +
nj−1∑
l=0

([ujkh]l, ϕ
+
kh,l) + (uj−kh,0, ϕ

−
kh,0)

= ((f, ϕkh))j + (sjh, ϕ
−
kh,0) ∀ϕkh ∈ X̃j,r,s

kh .

By the same procedure, we obtain the cG(s)dG(r) formulation from the semidiscrete opti-
mality system (5.2):

Primal equation:

nj∑
l=1

((∂tujkh, ϕkh))j,l + a(ujkh)(ϕkh) + b(qjkh)(ϕkh) +
nj−1∑
l=0

([ujkh]l, ϕ
+
kh,l) + (uj−kh,0, ϕ

−
kh,0)

= ((f, ϕkh))j + (sjh, ϕ
−
kh,0) ∀ϕkh ∈ X̃j,r,s

kh . (5.4a)

Dual equation:

nj∑
l=1
−((∂tzjkh, ψkh))j,l + a′u(u

j
kh)(ψkh, z

j
kh)−

nj−1∑
l=0

([zjkh]l, ψ
−
kh,l) + (zj−kh,nj , ψ

−
kh,nj

)

=
m−1∑
j=0

α1J
j′
1 (ujkh)(ψkh) + (λj+1

h , ψ−kh,nj ) ∀ψkh ∈ X̃j,r,s
kh . (5.4b)

Control equation:

b
′
q(q

j
kh)(χkh, z

j
kh)− α3(qjkh, χkh)Qj = 0 ∀χkh ∈ Qj . (5.4c)

52



5.3 Discretization of Time and Space

Remark 5.12. (Time-space discrete formulation of (4.5)) To complete this presentation and
for purpose of later usage, the time space discrete formulation of problem (4.5) is gained by
the same procedure applied to the semi discrete system (5.3). We introduce the fully discrete
space on the time interval I by

X̃r,s
kh :=

{
vk ∈ L2(I,H)

∣∣∣∣ vk∣∣∣
Ij,l
∈ Pr(Ij,l, V j,l,s

h ), j = 0, . . .m− 1, l = 1, . . . nj , vk(0) ∈ V j,0,s
h

}
and write the optimality system in time-space discrete formulation as follows:

Primal equation:

m−1∑
j=0


nj∑
l=1

((∂tujkh, ϕ
j
kh))j,l + a(ujkh)(ϕ

j
kh) + b(qjkh)(ϕ

j
kh) +

nj−1∑
l=1

([ujkh]l, ϕ
j+
kh,l)


+ ([u0

kh]0, ϕ0+
kh,0) +

m−2∑
j=0

(u(j+1)+
kh,0 − uj−kh,nj , ϕ

(j+1)+
kh,0 ) + (u0−

kh,0, ϕ
0−
kh,0)

= ((f, ϕjkh)) + (u0, ϕ
0−
kh,0) ∀ϕjkh ∈ X̃

r,s
kh . (5.5a)

Dual equation:

m−1∑
j=0


nj∑
l=1
−((∂tzjkh, ψ

j
kh))j,l + a′u(u

j
kh)(ψ

j
kh, z

j
kh)−

nj−1∑
l=1

([zjkh]l, ψ
j−
kh,l)


− ([z0

kh]0, ψ0−
kh,0)−

m−2∑
j=0

(z(j+1)+
kh,0 − zj−kh,nj , ψ

j−
kh,0) + (z(m−1)−

kh,nm−1
, ψ

(m−1)−
kh,nm−1

)

=
m−1∑
j=0

α1J
j′
1 (ujkh)(ψ

j
kh) + α2J

′
2(um−1(T )(ψ(m−1)−

kh,nm−1
) ∀ψkh ∈ X̃r,s

kh . (5.5b)

Control equation:
b
′
q(qkh)(χkh, zkh)− (qkh, χkh)Q = 0 ∀χkh ∈ Q. (5.5c)

Remark 5.13. (Discrete matching conditions) The discrete matching conditions are finally,
under consideration of Remark 5.11, given as

(s0h − u0, vh) = 0 ∀vh ∈ H0
h,

(sj+1
h − uj−kh,nj (τj+1), vh) = 0 ∀vh ∈ H

(j+1)
h , j = 0, . . . ,m− 1,

(λjh − z
j−
kh,0(τj), vh) = 0 ∀vh ∈ Hj

h, j = 0, . . . ,m− 1,

(λmh , vh)− α2J
′
2(smh )(vh) = 0 ∀vh ∈ Hm

h .

Remark 5.14. (Efficiency) The application of dynamically changing meshes for multiple
shooting methods is very time consuming in practice. The number of matrix assemblations is
extremely large, and most of the calculation time is thus spent by calculating the system
matrices and right-hand sides. A possible improvement is the consideration of intervalwise
constant meshes as presented in the following subsection.
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5 Space-Time Finite Element Discretization

5.3.3 Intervalwise Constant Spatial Meshes

The spatial discretization with intervalwise constant meshes is a promising alternative to the
choice of dynamically changing meshes. As depicted in Figure 5.5, the spatial mesh is the
same for all time steps of one multiple shooting interval.

Ij Ij+1Ij−1

T j−1
h T jh T j+1

h

τj τj+1

Figure 5.5: Intervalwise constant meshes in time.

On the one hand, this simplifies the notation because we no longer need the time step index
l for the discretization of V , on the other hand we see later on, that this idea provides us a
highly efficient framework for the implementation and solution of the discretized problems.
As this approach is only a special case of the general idea of dynamically changing meshes, the
formulation of the discretized intervalwise optimality systems and the matching conditions is
the same as in the previous subsection.

5.4 Discretization of the Controls

In the previous sections, the control space Qj has been kept undiscretized while the space
Xj was discretized in time and space by the cG(s)dG(r) method. In the sequel, we shortly
discuss possible discretizations, and the discretization method for Qj is illustrated by means
of Example 2.3. Before we proceed, we should remark that according to [22] the solution of
the optimal control problem is possible without discretizing the control space, even if it is of
infinite dimension.

The control spaces Qj have been introduced by the inclusion

Qj ⊆ L2(Ij , R)

with a Hilbert space R. Concerning the control, we generally chose the time discretization of
the control the same as for the states, that is a dG(r) discretization on the same temporal
mesh. For the space discretization of R we allow a cG(p) discretization method of lower
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5.4 Discretization of the Controls

degree than chosen for the states, that is p ≤ s. Altogether, we chose a finite dimensional
subspace Qjd ⊆ Qj which is defined through a cG(p)dG(r) discretization method. In the
following we denote the spatial discrete equivalent of R in tj,l by Rj,l,ph . In combination with
the discretization of the states, we obtain a fully discrete formulation of the optimization
problem.

On the basis of Example 2.3 we can see that this choice is reasonable:

Example 5.1. (Discretization of Qj for Example 2.3) In this example the control space is
given by

R = L2(Ω) and thus Qj = L2(Ij , L2(Ω)),

whereas the space for the states was defined through

H = L2(Ω) and V = H1
0 (Ω).

From the control equation in (4.14) we retrieve the relation between the dual state zj and
the control qj as

((q, χ))j = − 1
α3

((z, χ))j ∀χ ∈ Qj .

From this context, it is consequential to chose the discretization of the control either the
same as for the state zj or a coarser one or a discretization of lower degree. The choice of
a coarser triangulation in space or time is not considered in this thesis. Nevertheless, the
extension of the herein mentioned multiple shooting and error estimation methods to these
cases is straightforward.

Our discretizations Qjd of Qj , as presented for Example 2.3, always fulfill conformity, such
that the fully discrete restricted optimization problem can be derived straightforward from
(5.4) by adding an additional discretization index to the states, controls and the control
space. Following the notation of Meidner [29], we denote the fully discrete variables by
qjkhd, u

j
khd, z

j
khd and abbreviate the index khd by σ. With this notation, the fully discretized

state equation reads as follows:

Find for given control qjσ ∈ Q
j
d a state ujσ ∈ X̃

j,r,s
kh such that

nj∑
l=1

((∂tujσ, ϕσ))j,l + a(ujσ)(ϕσ) + b(qjσ)(ϕσ) +
nj−1∑
l=0

([ujσ]l, ϕ+
σ,l) + (uj−σ,0, ϕ

−
σ,0)

= ((f, ϕσ))j + (sjh, ϕ
−
σ,0) ∀ϕσ ∈ X̃j,r,s

kh ,

and analogously we obtain the fully discrete formulation of the optimality system (5.2):

Primal equation:

nj∑
l=1

((∂tujσ, ϕσ))j,l + a(ujσ)(ϕσ) + b(qjσ)(ϕσ) +
nj−1∑
l=0

([ujσ]l, ϕ+
σ,l) + (uj−σ,0, ϕ

−
σ,0)

= ((f, ϕσ))j + (sjh, ϕ
−
σ,0) ∀ϕσ ∈ X̃j,r,s

kh . (5.6a)
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Dual equation:

nj∑
l=1
−((∂tzjσ, ψσ))j,l + a′u(ujσ)(ψσ, zjσ)−

nj−1∑
l=0

([zjσ]l, ψ−σ,l) + (zj−σ,nj , ψ
−
σ,nj )

= α1J
j′
1 (ujσ)(ψσ) + (λj+1

h , ψ−σ,nj ) ∀ψσ ∈ X̃j,r,s
kh . (5.6b)

Control equation:
b
′
q(qjσ)(χσ, zjσ)− α3(qjσ, χσ)Qj = 0 ∀χσ ∈ Qjd. (5.6c)

Remark 5.15. (Fully discrete formulation of (4.5)) The fully discrete formulation of (4.5) is
derived analogously from (5.5):

Primal equation:

m−1∑
j=0


nj∑
l=1

((∂tujσ, ϕjσ))j,l + a(ujσ)(ϕjσ) + b(qjσ)(ϕjσ) +
nj−1∑
l=1

([ujσ]l, ϕ
j+
σ,l )


+ ([u0

σ]0, ϕ0+
σ,0) +

m−2∑
j=0

(u(j+1)+
σ,0 − uj−σ,nj , ϕ

(j+1)+
σ,0 ) + (u0−

σ,0, ϕ
0−
σ,0)

= ((f, ϕjσ)) + (u0, ϕ
0−
σ,0) ∀ϕjσ ∈ X̃r,s

σ . (5.7a)

Dual equation:

m−1∑
j=0


nj∑
l=1
−((∂tzjσ, ψjσ))j,l + a′u(ujσ)(ψjσ, zjσ)−

nj−1∑
l=1

([zjσ]l, ψ
j−
σ,l )


− ([z0

σ]0, ψ0−
σ,0)−

m−2∑
j=0

(z(j+1)+
σ,0 − zj−σ,nj , ψ

j−
σ,0) + (z(m−1)−

σ,nm−1 , ψ
(m−1)−
σ,nm−1 )

=
m−1∑
j=0

α1J
j′
1 (ujσ)(ψjσ) + α2J

′
2(um−1(T )(ψ(m−1)−

σ,nm−1 ) ∀ψσ ∈ X̃r,s
σ . (5.7b)

Control equation:
b
′
q(qσ)(χσ, zσ)− (qσ, χσ)Q = 0 ∀χσ ∈ Qd. (5.7c)

To complete this section on the fully discrete formulation, we state the matching conditions
for the fully discrete case in the following remark.
Remark 5.16. (Fully discrete formulation of the matching conditions) The discrete matching
conditions are finally given as

(s0h − u0, vh) = 0 ∀vh ∈ H0
h,

(sj+1
h − uj−σ,nj (τj+1), vh) = 0 ∀vh ∈ H

(j+1)
h , j = 0, . . . ,m− 1,

(λjh − z
j−
σ,0(τj), vh) = 0 ∀vh ∈ Hj

h, j = 0, . . . ,m− 1,

(λmh , vh)− α2J
′
2(smh )(vh) = 0 ∀vh ∈ Hm

h .

(5.8)
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Remark 5.17. (Notation) In view of the subsequent chapters, we introduce an additional
notation for the Cartesian product of discrete spaces as given below:

X̃kh := X̃0,r,s
kh × · · · × X̃m−1,r,s

kh ,

Q̃d := Q0
d × · · · ×Qm−1

d ,

H̃h := H0
h × · · · ×Hm

h .

5.5 The Implicit Euler Time Stepping Scheme

In this section, we shortly describe a concrete time discretization method for r = 0, which we
use throughout our computations. The time stepping scheme for the cG(s)dG(0) method
corresponds to the implicit Euler scheme as presented in the sequel, where we approximate
the arising integrals by the box rule. The parameter choice of r = 0 means to have
piecewise constant functions in time such that it is straightforward to introduce the following
subintervalwise notation:

Qjσ,l := qj−σ,l , U jσ,l := uj−σ,l , Zj−σ,l := zj−σ,l . (5.9)

We remark that the functional J1 was defined such that an interval wise splitting according
to equation (2.5) is possible.

The cG(s)dG(0) scheme for problem (4.8) in fully discrete formulation is stated as follows:
for all ϕ ∈ V j,l,s

h , χ ∈ Rj,l,ph let the following equations be fulfilled

Primal equation:

l = 0:
(U j0 , ϕ) = (sjσ, ϕ),

l = 1, . . . , nj :

(U jσ,l, ϕ) + kj,lā(U jσ,l)(ϕ) + kj,lb̄(Qjσ,l)(ϕ) = (U jσ,l−1, ϕ) + kj,l(f(tj,l), ϕ),

Dual equation:

l = nj :
(Zjnj , ϕ) = (λj+1

σ , ϕ),

l = 1, . . . , nj − 1:

(Zjσ,l, ϕ) + kj,lā
′
u(U

j
σ,l)(ϕ,Z

j
σ,l) = (Zjσ,l+1, ϕ) + α1kj,lF

′(U jσ,l)(ϕ),

l = 0:
(Zj0 , ϕ) = (Zj1 , ϕ),

Control equation:
b̄′q(Q

j
σ,l)(χ,Z

j
σ,l) = α3(Qjσ,l, χ)R.

We proceed with the investigation of solution techniques for the multiple shooting problem
in the next chapter.
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Shooting Approach

This chapter is devoted to the development and discussion of different solution techniques
for the multiple shooting approach. Multiple shooting as presented in the previous chapters
exploits the idea of applying standard iterative solvers to the system of equations, treating the
underlying boundary or initial value problems as solved by a (not yet concretized) solution
routine. In this chapter, we derive for both direct and indirect multiple shooting first the
iterative solvers for the system of equations and second the solution techniques for the
boundary and initial value problems.

Consequently, the first Section 6.1 deals with the solution techniques for the indirect multiple
shooting approach. First of all, the solution of the discretized system of matching conditions
(5.8) by Newton’s method is considered in Subsection 6.1.1. In this context, the linearized
system is derived, and a short pseudo matrix notation is introduced. Its solution by means of
a Krylov subspace method is investigated in the subsequent Subsection 6.1.2. The necessity
of a preconditioner is outlined by numerical examples, and consequently three different
preconditioners are presented in the sequel. It will turn out, that most of the computational
effort is spend in the solution of the intervalwise nonlinear and linear boundary value
problems. Thus, different solution techniques for the intervalwise problems are discussed
in the Subsections 6.1.3, 6.1.4, and 6.1.6. We investigate the idea of solving the nonlinear
boundary value problems by application of Newton’s method on the whole interval problem
in 6.1.3 and line out the limitations of this approach in Subsection 6.1.5.

Section 6.2 is engaged with the solution techniques for the direct multiple shooting approach.
We start with an analogous discussion of Newton’s method for the solution of the discrete
nonlinear system of matching conditions in Subsection 6.2.1 and proceed with the investigation
of a preconditioned Krylov subspace method for the solution of the linearized system in
Subsection 6.2.2. Furthermore, an efficient condensing technique for the linearized system
is introduced in Subsection 6.2.3. This procedure allows a remarkable reduction of the
solution space. The condensing technique is similar to the ODE condensing approach, and
consequently we devote Subsection 6.2.4 to the restrictions which the transfer of the ODE
approach to PDEs is subject to.

Finally, we close this chapter with the numerical comparison of the different solution techniques
by means of numerical examples in Section 6.3.

Remark 6.1. (Notation) Throughout this chapter we consider with a few exceptions the
fully discretized problem and accordingly the fully discrete matching conditions. Thus, the
solution operators within have to be understood as those of the discretized problems. As
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6 Solution Techniques for the Multiple Shooting Approach

from the arguments given to the solution operators, there is no way of misunderstanding we
do not denote the discrete solution operators differently from the continuous ones.

6.1 Solution Techniques for the Indirect Multiple Shooting
Approach

This section deals with the development of two different solution techniques for the indirect
multiple shooting approach. Both ideas start with the application of Newton’s method to the
system of matching conditions and the application of an iterative Krylov subspace method for
the solution of the linearized system. Newton’s method requires the evaluation of the residual,
and the iterative linear solver needs the calculation of the directional derivatives forming the
left-hand side of the linear problem. Clearly, the linear solver depends on the solution of
interval wise linear boundary value problems (BVPs) while the evaluation of the residual
needs the solution of nonlinear problems. The interrelation of the different subproblems is
sketched in Figure 6.1.

Matching Conditions

Linearized System

Newton

Nonlinear BVP

Directional Derivatives

Residual

Linear BVP

Figure 6.1: Nesting of the different solvers.

6.1.1 Solution of the Multiple Shooting System

The consideration of Newton’s method as a solver for the system of matching conditions (5.8)
yields the following linear system for the calculation of the Newton increment (∆s̃h, ∆λ̃h):

Find (∆s̃h, ∆λ̃h) ∈ H̃h × H̃h such that for all j = 0, . . . ,m− 1

(∆s0h, v) = −(s0h − u0, v) ∀v ∈ H0
h,

(∆sj+1
h − Σ̄′uj ,sj (∆s

j
h)− Σ̄

′
uj ,λj+1(∆λj+1

h ), v) = −(sj+1
h − Σ̄uj (s

j
h, λ

j+1
h ), v) ∀v ∈ Hj+1

h ,

(∆λjh − Σ̄
′
zj ,sj (∆s

j
h)− Σ̄

′
zj ,λj+1(∆λj+1

h ), v) = −(λjh − Σ̄zj (s
j
h, λ

j+1
h ), v) ∀v ∈ Hj

h,

(∆λmh , v)− α2J
′′
2 (smh )(v,∆smh ) = −(λmh , v)− α2J

′
2(smh )(v) ∀v ∈ Hm

h ,
(6.1)
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for which we used the abbreviations

Σ̄′uj ,sj (∆s
j
h) := Σ̄′uj ,sj (s

j
h, λ

j+1
h )(∆sjh),

Σ̄′uj ,λj+1(∆λj+1
h ) := Σ̄′uj ,λj+1(sjh, λ

j+1
h )(∆λj+1

h ),

Σ̄′zj ,sj (∆s
j
h) := Σ̄′zj ,sj (s

j
h, λ

j+1
h )(∆sjh),

Σ̄′zj ,λj+1(∆λj+1
h ) := Σ̄′zj ,λj+1(sjh, λ

j+1
h )(∆λj+1

h ).

The directional derivatives of the solution operators can be interpreted in terms of Lemma
6.1, and their discretizations are obtained accordingly for the discretized equations.

Lemma 6.1. On Ij, j = 0, . . . ,m− 1 we consider the two point boundary value problems:

((∂tws, ϕ))j + a′u(uj)(ws, ϕ) + b′q(qj)(xs, ϕ) + (ws(τj)− ρ, ϕ(τj)) = 0 ∀ϕ ∈ Xj ,

−((∂tys, ψ))j + a′′uu(uj)(ws, ψ, zj) + a′u(uj)(ψ, ys) + (ys(τj+1), ψ(τj+1))

−α1J
j′′
1 (uj)(ws, ψ) = 0 ∀ψ ∈ Xj ,

b′′qq(qj)(xs, χ, zj) + b′q(qj)(χ, ys)− α3(xs, χ)Qj = 0 ∀χ ∈ Qj .

and

((∂twλ, ϕ))j + a′u(uj)(wλ, ϕ) + bq(qj)(xλ, ϕ) + (wλ(τj), ϕ(τj)) = 0 ∀ϕ ∈ Xj ,

−((∂tyλ, ψ))j + a′′uu(uj)(wλ, ψ, zj) + a′u(uj)(ψ, yλ) + (yλ(τj+1)− ξ, ψ(τj+1))

−α1J
j′′
1 (uj)(wλ, ψ) = 0 ∀ψ ∈ Xj ,

b′′qq(qj)(xλ, χ, zj) + b′q(qj)(χ, yλ)− α3(xλ, χ)Qj = 0 ∀χ ∈ Qj .

Then the following identity holds for the solution operators:

Σ̄′uj ,sj :
{
H → H,

ρ 7→ ws(τj+1)
and Σ̄′zj ,sj :

{
H → H,

ρ 7→ ys(τj)
,

Σ̄′uj ,λj+1 :
{
H → H,

ξ 7→ wλ(τj+1)
and Σ̄′zj ,λj+1 :

{
H → H,

ξ 7→ yλ(τj)
.

Proof. The statements of the lemma follow directly by differentiation of the boundary value
problem (4.8) with respect to the boundary values and from the definition of the solution
operators Σ̄uj and Σ̄zj for j = 0, . . . ,m− 1.

Remark 6.2. Lemma 6.1 implies that in the context of Newton’s method additional intervalwise
linear boundary value problems have to be solved for the calculation of the directional
derivatives of the state variables.

Let us assume that according to Remark 2.4 the functional J2 has the special structure
J2(sm) = 1

2‖s
m − ū(T )‖2. The general case for arbitrary J2 follows analogously but is more
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complicated with respect to the notation. For reasons of brevity, we introduce the following
notation:

Aj :=
(
I 0
0 I

)
, j = 0, . . .m− 1,

Bj :=
(
B11
j B12

j

B21
j B22

j

)
:=
(
B:1
j B:2

j

)
:=
(

0 −Σ̄′zj ,sj
0 −Σ̄′uj ,sj

)
, j = 0, . . .m− 1,

Cj :=
(
C11
j C12

j

C21
j C22

j

)
:=
(
C :1
j C :2

j

)
:=
(
−Σ̄′zj ,λj+1 0
−Σ̄′uj ,λj+1 0

)
, j = 0, . . .m− 1,

F :=
(
0 −I

)
,

(6.2)

rI := s0h − u0,

rj :=
(
sj+1
h − Σ̄uj (s

j
h, λ

j+1
h )

λjh − Σ̄zj (s
j
h, λ

j+1
h )

)
, j = 0, . . .m− 1,

rF := λmh − (smh − ū).

(6.3)

Here, B:1
j , B:2

j , C :1
j , and C :2

j denote the columns of the pseudo matrices. The linearized
system of matching conditions (6.1) can now be written in short pseudo matrix notation:

I
B:2

0 A0 C0
B1 A1 C1

. . . . . . . . .
Bm−2 Am−2 Cm−2

Bm−1 Am−1 C :1
m−1

F I


︸ ︷︷ ︸

=:K



∆s0h
(∆λ0

h, ∆s
1
h)T

(∆λ1
h, ∆s

2
h)T

...
(∆λm−2

h , ∆sm−1
h )T

(∆λm−1
h , ∆smh )T
∆λmh


︸ ︷︷ ︸

=:∆x

= −



rI
r0
r1
...

rm−2
rm−1
rF


︸ ︷︷ ︸

=:b

. (6.4)

The solution of the multiple shooting problem by application of Newton’s method to the
system of matching condition reads consequently in algorithmic formulation as presented in
Algorithm 6.1.

Algorithm 6.1 Newton’s method for the indirect approach
1: Set i = 0.
2: Start with initial guess for multiple shooting variables xi = (s0h,i, . . . , smh,i, λ0

h,i, . . . , λ
m
h,i)T .

3: repeat
4: Calculate the residuals bi = (rI,i, r0,i, . . . , rm−1,i, rF,i)T according to (6.3).
5: Solve the linear system (6.4) for the Newton update,

Ki∆xi = −bi, with ∆xi = (∆s0h,i, . . . ,∆smh,i, ∆λ0
h,i, . . . λ

m
h,i)T .

6: Calculate next iterate
xi+1 = xi +∆xi.

7: Set i = i+ 1.
8: until ‖bi‖H̃×H̃ :=

√
‖rI,i‖2 +

∑m−1
j=0 ‖rj,i‖2 + ‖rF,i‖2 < tol.
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Remark 6.3. (Matrix-vector based formulation of Newton’s method) The consideration of
Newton’s method in the discrete case needs the determination of the coefficient vectors of
the solutions from a linear system of equations. Therefore, we need the concretization of the
linear system (6.4) for given bases of the discretized spaces on the multiple shooting nodes.
We do this exemplarily for only one block row (Bj Aj Cj) of the pseudo block matrix K.
We memorize the corresponding equations of the linearized system (6.1):

(∆λjh − Σ̄
′
zj ,sj (∆s

j
h)− Σ̄

′
zj ,λj+1(∆λj+1

h ), v) = −(λjh − Σ̄zj (s
j
h, λ

j+1
h ), v) ∀v ∈ Hj

h,

(∆sj+1
h − Σ̄′uj ,sj (∆s

j
h)− Σ̄

′
uj ,λj+1(∆λj+1

h ), v) = −(sj+1
h − Σ̄uj (s

j
h, λ

j+1
h ), v) ∀v ∈ Hj+1

h .

Now, we assume that ϕj0, . . . , ϕjnj is a basis of Hj
h, and the coefficient vectors of the Newton

increments ∆sjh and ∆λjh with respect to this basis are given by ∆ξj,s ∈ Rnj and ∆ξj,λ ∈ Rnj .
With this notation at hand, we are able to rewrite the linear equations as

G0∆ξ
j,λ −Gs1∆ξj,s −Gλ1∆ξj+1,λ = −d0,

G2∆ξ
j+1,s −Gs3∆ξj,s −Gλ3∆ξj+1,λ = −d1,

where the matrices G0, G
s
1 ∈ Rnj×nj , Gλ1 ∈ Rnj×nj+1 , G2, G

λ
3 ∈ Rnj+1×nj+1 , Gs3 ∈ Rnj+1×nj

have to be understood according to the following identities:

(G0)li = (ϕji , ϕ
j
l ), (Gs1)li = (Σ̄′zj ,sj (ϕ

j
i ), ϕ

j
l ), (Gλ1)li = (Σ̄′zj ,λj+1(ϕj+1

i ), ϕjl ),

(G2)li = (ϕj+1
i , ϕj+1

l ), (Gs3)li = (Σ̄′uj ,sj (ϕ
j
i ), ϕ

j+1
l ), (Gλ3)li = (Σ̄′uj ,λj+1(ϕj+1

i ), ϕj+1
l )

and the right-hand side vectors d0 ∈ Rnj and d1 ∈ Rnj+1 according to

(d0)l = (λjk − Σ̄zj (s
j
k, λ

j+1
k ), ϕjl ),

(d1)l = (sj+1
k − Σ̄uj (s

j
k, λ

j+1
k ), ϕj+1

l ).

We remark, that d0 and d1 are usually different from the coefficient vectors for the right-hand
sides. With this interpretation at hand, the transfer of the function space method to a
matrix-vector based one is straightforward by setting up the discrete linear system for the
determination of the coefficient vectors of the Newton updates. In addition, it is often
convenient and suitable to replace the Hilbert space norm on H by the l2-norm on the finite
dimensional vector space Rnj .

For reasons of vividness, let us consider Newton’s method for Example 2.3:

Example 6.1. (Newton’s method for Example 2.3) Reconsidering the multiple shooting
approach for Example 2.3 which was introduced in Example 4.1, we retrieve the following
linearized system:

(∆s0h, ϕ) = −(s0h − u0, ϕ) ∀ϕ ∈ H0
h,

(∆λ0
h − Σ̄′z0,s0(∆s0h), ϕ) = −(λ0

h − Σ̄z0(s0h), ϕ) ∀ϕ ∈ H0
h,

(∆s1h − Σ̄′u0,λ1(∆λ1
h), ϕ) = −(s1h − Σ̄u0(λ1

h), ϕ) ∀ϕ ∈ H1
h,

(∆λ1
h − Σ̄′z1,s1(∆s1), ϕ) = −(λ1

h − Σ̄z1(s1h), ϕ) ∀ϕ ∈ H1
h,

(∆s2h − Σ̄′u1,λ2(∆λ2
h), ϕ) = −(s2 − Σ̄u1(λ2

h), ϕ) ∀ϕ ∈ H2
h,

(∆λ2
h, ϕ) = −(λ2

h, ϕ) ∀ϕ ∈ H2
h.
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Differentiation of the (undiscretized) boundary value problems (4.15) yields for the derivatives
of the solution operators the following identities:

On Ij let the boundary value problem be given as follows: for all ϕ,ψ, χ ∈ X:

((∂tw,ϕ))j + ((∇w,∇ϕ))j + ((3(uj)2w,ϕ))j + (w(τj), ϕ(0)) = ((x, ϕ))j ,
−((∂ty, ψ))j + ((∇y,∇ψ))j + ((3(uj)2y, ψ))j + (y(τj+1)− ξ, ψ(T )) = ((w,ψ))j − ((6ujwzj , ψ))j ,

((x, χ))j = −((y, χ))j .

Then
Σ̄′uj ,λj+1(ξ) = w(τj+1).

For all ϕ,ψ, χ ∈ X:

((∂tw,ϕ))j + ((∇w,∇ϕ))j + ((3(uj)2w,ϕ))j + (w(τj)− ρ, ϕ(0)) = ((x, ϕ))j ,
−((−∂ty, ψ))j + ((∇y,∇ψ))j + ((3(uj)2y, ψ))j + (y(τj+1), ψ(T )) = ((w,ψ))j − ((6ujwzj , ψ))j ,

((x, χ))j = −((y, χ))j .

Then
Σ̄′zj ,sj (ρ) = y(τj).

For the discrete derivatives of the solution operators this holds analogously for the discretized
equations.

Throughout this chapter, we consider this example for pointing out the setup of the different
methods. In the following, we discuss the solution of the linearized system (6.4) by application
of an iterative solver from the class of Krylov subspace methods.

6.1.2 The GMRES Method for the Solution of the Linearized System

The pseudo matrix notation of problem (6.4) reveals a sparse tridiagonal block structure
of the problem with identity operators on the diagonal. This property proves useful when
considering the solution of the linearized system by application of a preconditioned Krylov
subspace method. The solution of a linearized system with a similar structure as in (6.4)
is extensively studied in [20] and [14], where the application of a preconditioned Krylov
subspace method is suggested. Our choice is a preconditioned generalized minimum residual
method (GMRES), and as a reasonable preconditioner the forward backward block Gauss
Seidel preconditioner is chosen. To underline on the one hand the necessity of a preconditioner
and on the other hand the advantage of forward backward block Gauss Seidel preconditioning,
different preconditioners have been tested at a linear example. This example presents the
simplest case of an optimal control problem constrained by a parabolic PDE and serves quite
well for the outline of the basic properties of the GMRES method.

Example 6.2. Let Ω = (−1, 1)× (−1, 1) be a square shaped domain, I = (0, 5), and let the
optimal control problem be given by

min
(q,u)∈Q×X

J(q, u) := 1
2
‖u(T )− 0.5‖2L2(Ω) + 0.001

2

∫
I
‖q(t)‖2L2(Ω)dt
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6.1 Solution Techniques for the Indirect Multiple Shooting Approach

subject to the constraining heat equation

∂tu−∆u = q in Ω × I,
u = 0 on ∂Ω × I,

u = cos
(
π

2
x

)
cos

(
π

2
y

)
in Ω × {0} .

We consider the problem on a five times globally refined mesh, that is a mesh of 1024 cells.
Due to the linearity of the problem, the outer Newton method converges in one step which
results in only one application of the GMRES method for the solution of the linearized
system of matching conditions. In Figure 6.2, we compare the number of iterative steps until
convergence for different preconditioners and various numbers of intervals. The results of the
calculations illustrate that preconditioning is essential. The forward backward block Gauss
Seidel preconditioner yields by far the best results of the considered preconditioners, and
additionally the number of GMRES iterations until convergence is approximately constant
77 steps for the different numbers of intervals. The assumption, that the forward backward
Gauss Seidel preconditioner leaves the number of GMRES iterations constant for different
time domain decompositions was substantiated by calculation of other examples not presented
in this thesis.

50

100

150

200

250

300

350

5 10 15 20 25 30 35 40

FW-BW GS
FW GS
BW GS

ID

Figure 6.2: Results for the forward backward Gauss Seidel preconditioner (red), the forward
Gauss Seidel preconditioner (dark blue), the backward Gauss Seidel precondi-
tioner (blue) and without preconditioner (magenta) calculated for Example 6.2.
(x-axis: number of intervals, y-axis: number of iterations)

Remark 6.4. (Parallelizability) As a crucial drawback of this approach we should mention
that the preconditioner presented above is not parallelizable. As a matter of fact, several
preconditioners have been studied in [14]. Numerical experiments show that so far considered
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good preconditioners for problem (6.4) are not parallelizable while parallelizable precondi-
tioners do not yield the desired improvement with respect to the convergence of the Krylov
subspace method.

For the purpose of presenting the block Gauss Seidel preconditioner, the following pseudo
block matrix decomposition into a lower triangular pseudo block matrix L, an upper triangular
pseudo block matrix U and a diagonal pseudo block matrix D is introduced:


. . . −U

D

−L . . .

 :=


I
B:2

0 A C0
. . . . . . . . .

Bm−1 A C :1
m−1

F I

 .

The preconditioning pseudo matrices for the forward block Gauss Seidel and the backward
block Gauss Seidel preconditioner read

Pfwd := D − L and Pbwd := D − U,

and for the forward backward block Gauss Seidel preconditioner the preconditioning pseudo
matrix is defined as

P := (D − L)D−1(D − U). (6.5)
Thus, the application of the forward backward block Gauss Seidel preconditioner in the
GMRES method for the solution of (6.4) is equivalent to the solution of the system

P−1Kx = P−1b (6.6)

by the unpreconditioned GMRES method. Due to the special structure of the matrices, and
due to D = D−1, the calculation of P−1v, v ∈ H̃ × H̃, can be performed by forward and
backward substitution as outlined in the following:

I
B:2

0 A
B1 A

. . . . . .
Bm−2 A

Bm−1 A
F I


︸ ︷︷ ︸

D−L



y0
(x0, y1)T
(x1, y2)T

...
(xm−2, ym−1)T
(xm−1, ym)T

xm


︸ ︷︷ ︸

z

=



vI
v0
v1
...

vm−2
vm−1
vF


︸ ︷︷ ︸

v

⇔



y0 = vI

(x0, y1)T = v0 −B:2
0 y0

(x1, y2)T = v1 −B2(x0, y1)T

...
(xm−2, ym−1)T = vm−2 −Bm−2(xm−3, y

T
m−2)

(xm−1, ym)T = vm−1 −Bm−1(xm−2, ym−1)T

xm = vF − F (xm−1, ym)T



.
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The inversion of D − U is treated analogously:

(D − U)z = v ⇔



xm = vF

(xm−1, ym)T = vm−1 − C :1
m−1xm

(xm−2, ym−1)T = vm−2 − Cm−2(xm−1, ym)T

...
(x1, y2)T = v1 − C1(x2, y3)T

(x0, y1)T = v0 − C2:
0 (x1, y2)T

y0 = vI



.

Here, the pseudo matrix vector products, that is the evaluation of the directional deriva-
tives, and the residuals are calculated according to Lemma 6.1 from intervalwise boundary
value problems. The (unpreconditioned) GMRES method (see for instance the textbook of
Saad [34]) is proposed in Algorithm 6.2. Therefore, in addition to the already introduced
pseudo vectors ∆x, b ∈ H̃h × H̃h, we redefine r ∈ H̃h × H̃h as the residual of the linearized
system, and introduce additional auxiliary pseudo vectors v, w ∈ H̃h × H̃h and real numbers
β, yi, zi, hil, τ, ν, ci, cs ∈ R for the formulation of the algorithm.

Algorithm 6.2 GMRES for the solution of (6.4)
1: Chose tol.
2: Set i = −1.
3: Start with initial guess for the Newton update ∆x0.
4: Calculate r0 := b0 −K∆x0, β := ‖r0‖, v1 := r0/β, z0 := β.
5: repeat
6: i = i+ 1.
7: wi = Kvi.
8: for l = 0 to i do
9: Set hli := (vl, wi)H̃×H̃ .

10: Set wi := wi − hlivl.
11: Set hi+1,i := ‖wi‖H̃×H̃ .
12: Set vi+1 := wi/hi+1,i.
13: for l = 0 to i− 1 do
14: Set

(
hli

hl+1,i

)
:=
( cl sl
−sl sl

) ( hli
hl+1,i

)
.

15: Set τ := |hii|+ |hi,i+1|.
16: Set ν := τ ·

√
(hii/τ)2 + (hi,i+1/τ)2.

17: Set ci := hii/ν, and si := hi,i+1/ν.
18: Set zi+1 := −sizi. Set zi := −cizi.
19: until |zi|/β < tol.
20: yi := zi/hii.
21: for l = i− 1 down to 0 do
22: Set yl = (zl−

∑i

j=l+1 hljyj)/hll.
23: ∆xi = ∆x0 +

∑i
l=0 ylvl.
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Remark 6.5. (Matrix-vector based formulation of the GMRES method) As before, the practical
implementation of the method is based on the determination of the coefficient vectors of
the solutions. The interpretation of those is due to Remark (6.3) and thus not repeated
particularly for this method.

From the discussion above, it has become clear that all preconditioners can only be applied
at additional costs. In detail, for the forward backward block Gauss Seidel preconditioner
we have to solve 2 additional linear boundary value problems on each interval, which makes
a total amount of 4 linear boundary value problems per interval for every iteration of the
GMRES method. Over all, most of the effort is spend for the preconditioned iterative solver,
outlined by a simple analysis of Example 6.1. In Figure 6.3 the total number of solved
linear and nonlinear problems is presented for the different number of intervals. We have
previously seen, that for this example the preconditioned iteration needs 77 iterative steps,
which makes a total number of 4 · 77 linear boundary value problems per interval, or over all
m · 308 problems until convergence. On the other hand, we have to evaluate the matching
conditions twice, such that 2 ·m nonlinear boundary value problems have to be solved. Half
of the solved linear boundary value problems are due to the preconditioning, the other half
are solved during the calculation of the directional derivatives themselves. Nevertheless, we
see that despite the additional effort, the preconditioned iteration is by far better than the
unpreconditioned GMRES method.

0

5.0 · 103

1.0 · 104

1.5 · 104

2.0 · 104

2.5 · 104

3.0 · 104

5 10 15 20 25 30 35 40

nonlinear
linear (preconditioned)

linear (not preconditioned)

Figure 6.3: Number of solved linear and nonlinear boundary value problems for different
numbers of shooting intervals, calculated with and without preconditioning.
(x-axis: number of intervals, y-axis: number of solved problems)

Remark 6.6. We should keep in mind that for different number of intervals, the interval length,
and thus the solution time for the intervalwise boundary value problems, is different, too.
Therefore, Figure 6.3 contains only information on the relative efficiency of the preconditioners,
but not on the absolute effort and time needed for the performance of the methods.
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Next, we investigate efficient solution techniques for the intervalwise boundary value problems,
linear and nonlinear ones. This effort has resulted in two different approaches which we
explain in the following paragraphs.

6.1.3 Solution of the Interval Problems – Newton’s method

The calculation of the Newton residuals in (6.1) for the outer Newton method requires the
solution of the intervalwise nonlinear boundary value problems (5.6). In this subsection
we present a solution strategy which is motivated by the idea of linearizing the nonlinear
boundary value problems within an inner Newton method. It has the great advantage of
solving both linear and nonlinear boundary value problems by only one solver. Therefore,
the whole problem is brought down to the solution of linear boundary value problems by
standard techniques. We sketch this idea in the flow diagram in Figure 6.4.

By application of Newton’s method on the nonlinear boundary value problems we obtain
another set of linear boundary value problems of the same structure as those presented in
Lemma 6.1.

Linear interval BVP Nonlinear interval BVP

Newton

Linear interval BVP

Same system matrix

Same linear solver

Figure 6.4: Transformation of the nonlinear boundary value problems.

Remark 6.7. We set up this approach for the undiscretized problem only and remark, that in
the discretized case the corresponding algorithm is obtained by replacing the undiscretized
equations, solutions, and spaces by their discrete equivalents.

We recall the formulation of the intervalwise nonlinear boundary value problems in the
following, before we proceed with the description of Newton’s method for their solution:

Primal equation:

((∂tuj , ϕ))j + a(uj)(ϕ) + b(qj)(ϕ) + (uj(τj)− sj , ϕ(τj))− ((f, ϕ))j = 0 ∀ϕ ∈ Xj . (4.8a)

Dual equation:

− ((∂tzj , ψ))j + a′u(uj)(ψ, zj) + (zj(τj+1)− λj+1, ψ(τj+1))− α1J
j′
1 (uj)(ψ) = 0 ∀ψ ∈ Xj .

(4.8b)
Control equation:

b′q(qj)(χ, zj)− α3(qj , χ)Qj = 0 ∀χ ∈ Qj . (4.8c)
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The application of Newton’s method to the whole nonlinear system results in the linearized
system (6.8) from which the Newton update (δqjl , δu

j
l , δz

j
l ) ∈ Qj × Xj × Xj in step l is

calculated.

Primal equation:

((∂tδujl , ϕ))j + a′u(u
j
l )(δu

j
l , ϕ) + b′q(q

j
l )(δq

j
l , ϕ) + (δujl (τj), ϕ(τj)) = −((ru, ϕ))j ∀ϕ ∈ Xj .

(6.8a)
Dual equation:

− ((∂tδzjl , ψ))j + a′′uu(uj)(δu
j
l , ψ, z

j) + a′u(uj)(ψ, δz
j
l ) + (δzjl (τj+1), ψ(τj+1))

− α1J
j′′
1 (ujl )(δu

j
l , ψ) = −((rz, ψ))j ∀ψ ∈ Xj . (6.8b)

Control equation:

b′′qq(q
j
l )(δq

j
l , χ, z

j
l ) + b′q(q

j
l )(χ, δz

j
l )− α3(δqjl , χ)Qj = −(rq, χ)Qj ∀χ ∈ Qj . (6.8c)

Here, the right-hand side is given by the residual of the nonlinear boundary value problem

((rju, ϕ))j := ((∂tujl , ϕ))j + a(ujl )(ϕ) + b(qjl )(ϕ) + (ujl (τj)− s
j , ϕ(τj))− ((f, ϕ))j ,

((rjz, ψ))j := −((∂tzjl , ψ))j + a′u(u
j
l )(ψ, z

j
l ) + (zjl (τj+1)− λj+1, ψ(τj+1))− α1J

j′
1 (uj)(ψ),

(rjq, χ)Qj := b′q(q
j
l )(χ, z

j
l )− α3(qjl , χ)Qj .

(6.9)
The subsequent Newton iterate is then calculated as usual by updating

qjl+1 = qjl + νlδq
j
l , ujl+1 = ujl + νlδu

j
l , zjl+1 = zjl + νlδz

j
l ,

where the damping parameter νl ∈ (0, 1] is determined by standard backtracking techniques
such that a descent in the Newton direction is guaranteed. The pseudo code notation of the
algorithm is given in Algorithm 6.3.

Algorithm 6.3 Newton’s method for the solution of (4.8)
1: Set l = 0.
2: Start with an initial guess qj0 ∈ Qj , u

j
0 ∈ Xj , zj0 ∈ Xj .

3: repeat
4: Calculate the residuals rju,l, r

j
z,l and r

j
q,l according to (6.9).

5: Solve the linear boundary value problem (6.8) for δqjl , δu
j
l , δz

j
l .

6: Choose νl such that for the next iterate a descent in the residual is obtained.
7: Calculate next iterate

(qjl+1, u
j
l+1, z

j
l+1) = (qjl , u

j
l , z

j
l ) + νl(δqjl , δu

j
l , δz

j
l ).

8: Set l = l + 1.
9: until

√
‖rju,l‖2 + ‖rjz,l‖2 + ‖rjq,l‖2Q < tol

A comparison shows that the linear boundary value problems developed above coincide with
those for the directional derivatives of the states in Lemma 6.1 except for the right-hand
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6.1 Solution Techniques for the Indirect Multiple Shooting Approach

sides and the initial values. As a convenient consequence, we are able to apply the same
linear solver for both linear and nonlinear boundary value problems.

Summarizing, this approach requests only the solution of interval wise linear boundary value
problems instead of nonlinear ones, and is quite simple with respect to the implementation.
In what follows, we discuss the solution of the linear interval wise boundary value problems.
Further on, we give some results on the performance of the approach and point out the
limitations and difficulties that occur.

6.1.4 Solution of the Linear Problems – Fixed Point Iteration and Gradient
Method

Investigating the structure of the linear boundary value problems, the obvious and easiest
way of solving would be the application of a modified fixed point iteration. The basic idea of a
fixed point iteration on Ij is to evaluate uj , zj and qj successively in a loop: As an example,
in step l of the fixed point iteration, given a control qjl , we calculate the state ujl from the
primal equation. The dual state zjl can then be calculated from the dual equation and an
update for the control, qjl+1 is obtained from the control equation. Unfortunately, numerical
experiments show that the convergence behavior of a fixed point iteration is extremely bad
for fully coupled boundary value problems. A closer investigation reveals that in this context,
it is equivalent to a gradient method with step size 1/α3 as we prove in the following.

Remark 6.8. Again, the methods are derived for the undiscretized problem only and the exten-
sion to the discrete case is obtained straightforward by replacing the undiscretized equations,
solutions, solution operators, functionals and spaces through their discrete equivalents.

For the purpose of showing the equivalence of a fixed point iteration and the gradient method,
it is sufficient to consider a simplified optimal control problem. The proof for the general
case of an arbitrary optimal control problem follows analogously with the same basic ideas
but needs a more complicated notational framework and is quite hard to follow up.

For the ease of presentation we omit the interval index j. We consider on I = (0, T ) the
optimization problem

min
q,u

J(q, u) := α1
2

∫
I
‖u(t)− ū(t)‖2dt+ α2

2
‖u(T )− ūT ‖2 + α3

2
‖q(t)‖2Q (6.10a)

subject to
((∂tu, ϕ)) + a(u, ϕ) + b(q, ϕ) + (u(0), ϕ(0)) = 0 ∀ϕ ∈ X. (6.10b)

The choice of a homogenous initial value and right-hand side is suitable due to the fact, that
for the linear constraining equation the general case follows immediately by an affine linear
shift of the solution space. The Lagrangian is defined as before by

L(q, u, z) = J(q, u)− {((∂tu, z)) + a(u, z) + b(q, z) + (u(0), z(0))} , (6.11)
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and the corresponding optimality system is given by the linear boundary value problem
stated below.

Primal equation:

((∂tu, ϕ)) + a(u, ϕ) + b(q, ϕ) + (u(0), ϕ(0)) = 0 ∀ϕ ∈ X.

Dual equation:

−((∂tz, ψ)) + a(ψ, z) + (z(T )− α2(u(T )− ūT ), ψ(T ))− α1((u− ū, ψ)) = 0 ∀ψ ∈ X.

Control equation:
α3(q, χ)Q − b(χ, z) = 0 ∀χ ∈ Q.

Again, we introduce the solution operators for the constraining equation (6.10b)

S :
{
Q→ X

q 7→ u
and S̄ :

{
Q→ H

q 7→ u(T )
.

We reformulate problem (6.10) in the so called reduced formulation by replacing u in (6.10a)
by Sq and u(T ) by S̄q:

min
q
j(q) := J(q, Sq) = α1

2

∫
I
‖Sq(t)− ū(t)‖2dt+ α2

2
‖S̄q − ūT ‖2 + α3

2
‖q(t)‖2Q. (6.13)

A more concrete description of the reduced approach is given later on in Section 6.1.6.

The gradient method in function space with step size 1/α3 for this problem is described by
the formula

(qnew, δq)Q = (qold, δq)Q −
1
α3
j′(qold)(δq) ∀δq ∈ Q.

We proceed with the development of a simplified representation of the gradient. From the
definition of the reduced cost functional in (6.13) and the Lagrangian in (6.11) we obtain for
given q and u = Sq the identity

j(q) = L(q, u, z).

Now, differentiation with respect to q into the direction δq ∈ Q yields the following represen-
tation of the gradient j′(q)(δq):

j′(q)(δq) = L′q(q, u, z)(δq) + L′u(q, u, z)(δu) + L′z(q, u, z)(δz)

where δu = du
dq (δq) and δz = dz

dq (δq).

Due to u = Sq, the primal equation is fulfilled, and thus L′z(q, u, z)(δz) = 0. Choosing z such
that the dual equation is fulfilled, too, we obtain additionally L′u(q, u, z)(δu) = 0 and retrieve
for the gradient

j′(q)(δq) = L′q(q, u, z)(δq)
= α3(q, δq)Q − b(δq, z).

(6.14)

Now, we have everything at hand to investigate the relation between a fixed point iteration
and the gradient method. We give the pseudo code notation for one step of both iterations,
and a step-by-step comparison immediately gives evidence of their equivalence.
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Algorithm 6.4 One step of the gradient method for a linear BVP
Require: qold given.

1: Calculate uold as
uold = Sqold.

2: Solve dual equation for zold.
3: Evaluate gradient according to

j′(q)(δq) = α3(qold, δq)Q − b(δq, zold).

4: Obtain new control qnew as

(qnew, δq)Q = (qold, δq)−
1
α3

(α3(qold − b(δq, zold), δq)Q)

= 1
α3
b(δq, zold).

Algorithm 6.5 One step of the fixed point iteration for a linear BVP
Require: qold given.

1: Calculate uold as
uold = Sqold.

2: Solve dual equation for zold.
3: Obtain new control qnew from the control equation

(qnew, δq)Q = 1
α3
b(δq, zold) = 0 ∀δq ∈ Q.

Comparing the steps of both methods, the equivalence is quite obvious. The first three steps
are the same for both algorithms, and step four and five of the first algorithm correspond to
the fourth step of the second one. The bad convergence behavior of the fixed point iteration
can thus be explained by the corresponding step size of the gradient method. For a small
regularization parameter α3 > 0, the step size 1/α3 becomes extremely large and convergence
is no longer guaranteed.

A promising alternative for the solution of the boundary value problems is the application of
a conjugate gradient method (CG method). The description of this method for the function
space problem differs from the formulation for finite dimensional matrix vector systems as the
equivalent to the usual matrix vector products is given by the application of operators and
their duals on functions in Q. The CG method for the solution of the linear boundary value
problems shall not be described in detail in this section – we present the Steihaug conjugate
gradient method in functions space for the solution of both linear and nonlinear boundary
value problems in the context of the reduced approach in Subsection 6.1.6.
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6.1.5 Applicability of Newton’s Method for the Interval Problems

At first sight, the application of Newton’s method works quite well for the solution of the
example problems considered in the introduction. However, application to more complicated
problems leads to poor convergence results or no convergence at all, which we investigate in
the following. For reasons of simplicity, we consider the solution of a nonlinear ODE initial
value problem, the well known instable Lorenz attractor, by Newton’s method as presented
above and hereby point out the weak points of the approach.

Example 6.3. (Lorenz attractor) We consider the nonlinear system of ordinary differential
equations

∂tu1 = −au1 + au2,

∂tu2 = −bu1 − u2 − u1u3,

∂tu3 = −cu3 + u1u2,

u1(0) = 10,
u2(0) = 0,
u3(0) = 25,

(6.15)

with given parameters
a = 10, b = 28, c = 2.67.

The efficient solution of the non stiff Lorenz attractor system is usually performed by higher
order explicit time stepping schemes. However, in our exemplary context it is sufficient to
consider the solution with the implicit Euler time stepping scheme. The solution of (6.15)
on a time interval I = (0, 20) with step size 0.002 and application of Newton’s method in
every time step yields the commonly known solution of the Lorenz attractor system shown in
Figure 6.5.
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Figure 6.5: Solution of the Lorenz attractor.

Now, we apply Newton’s method to the nonlinear system of equations and solve the linearized
system for the Newton update ũ by the same implicit Euler time stepping scheme as before.
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The resulting linear system is given by the equations

∂tũ1 = −aũ1 + aũ2 − r1,
∂tũ2 = −bũ1 − ũ2 − ũ3u3 − u1ũ3 − r2,
∂tũ3 = −cũ3 + ũ1u2 + u1ũ2 − r3,

with homogenous initial values and residuals as follows:

ũ1(0) = 0,
ũ2(0) = 0,
ũ3(0) = 0,

r1 = ∂tu1 − (−au1 + au2),
r2 = ∂tu2 − (−bu1 − u2 − u1u3),
r3 = ∂tu3 − (−cu3 + u1u2).

.

We observe that even on small time intervals the Newton iterates converge very slowly to
the solution. Regarding Figure 6.6, we see the dependence of the number of Newton steps
performed until convergence on the length of the time interval. The reason for this behavior of
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Figure 6.6: Convergence behavior of Newton’s method for different intervals I = (0, T ).
(x-axis: T , y-axis: steps until convergence)

Newton’s method can be illustrated by visualizing the Newton residuals for different Newton
steps. This is done in Figure 6.7 from which we clearly see that within the Newton method,
the error is annihilated successively in time, but simultaneously the error at the later time
steps grows exponentially.

This behavior can be understood by considering the fact that the application of an implicit
Euler time stepping scheme leads to a fast growing approximation error of the Newton
increment in time. Therefore, the Newton updates for the solution on earlier time steps are
close to the exact update while the updates at later time steps are only a poor approximation.
Thus the next Newton iterate is a better approximation to the solution on early time steps
but a worse in later ones. Now, in each Newton step, further time steps of the update can
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Figure 6.7: Newton residuals r1 (red), r2 (dark blue), r3 (blue) with increasing number l of
Newton steps from (a) to (d). (x-axis: time, y-axis: error)

be approximated quite well and the residuals vanish successively, but slowly, after a certain
number of Newton steps.

On the other hand, the solution of the problem with the common approach, that is the
application of the time stepping scheme to the nonlinear problem and solving each time step
with Newton’s method, works quite well. The reason for this different behavior of Newton’s
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method can be revealed by means of the condition numbers of the system matrices. It is well
known that the Lorenz attractor system is locally well conditioned and globally ill conditioned
as explained in the following. For the common approach, in each Newton step a system
matrix of size 3× 3 is inverted, whereas one Newton step of the Newton approach for the
whole problem can be interpreted as the solution of a linear system of size 3 · n× 3 · n where
n denotes the number of time steps. This large system matrix is obviously built up from the
time step matrices on the diagonal and additional identity matrices on the upper secondary
diagonal. Figure 6.8 points out, how the condition of the system matrix changes with the
enlargement of the matrix. While the small matrices of each time step have a condition
of approximately 1, the condition of the large system grows in time, and so does the error.
Accordingly, for fixed terminal time and decreasing time step size, the condition grows, too,
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Figure 6.8: Condition number with growing T for fixed time step size. (x-axis: number of
time steps, y-axis: condition)

as shown in Figure 6.9. Over all, we can summarize that Newton’s method for the solution
of the initial value problem has crucial drawbacks which lead to a breakdown of the method.

The problems discussed above can directly be transferred to the application on the intervalwise
boundary value problems of the indirect multiple shooting approach. Thus, we do not follow
this approach further on, but present an alternative method for the solution of both linear
and nonlinear boundary value problems.

6.1.6 Solution of the Interval Problems – The Reduced Approach

The second approach starts with the reformulation of the nonlinear boundary value problems
in terms of intervalwise optimization problems which can be solved by application of the
reduced approach. This transformation is done by calculation of the Lagrangian by means of
evaluating the antiderivative with respect to the states and control.
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Figure 6.9: Condition number with decreasing time step size for fixed T . (x-axis: time step
size, y-axis: condition)

First, we set up the optimization problem

min
(qj ,uj)∈Qj×Xj

J j(qj , uj) := J j1(uj) + α3
2
‖qj‖2Qj + (uj(τj+1), λj+1) (6.16a)

such that (qj , uj) fulfills the constraining equation

((∂tuj , ϕ))j + a(uj)(ϕ) + b(qj)(ϕ) + (uj(τj)− sj , ϕ(τj)) = ((f, ϕ))j ∀ϕ ∈ Xj . (6.16b)

The corresponding Lagrangian is given as

Lj(qj , uj , zj) := J j1(uj) + α3
2
‖qj‖2Qj + (uj(τj+1), λj+1)

−
{
((∂tuj , zj))j + a(uj)(zj) + b(qj)(zj) + (uj(τj)− sj , zj(τj))− ((f, zj))j

}
,

and differentiation with respect to the control and the states yields the optimality system

((∂tuj , ϕ))j + a(uj)(ϕ) + b(qj)(ϕ) + (uj(τj)− sj , ϕ(τj)) = ((f, ϕ))j ∀ϕ ∈ Xj . (6.17a)

−((∂tzj , ψ))j+a′u(uj)(ψ, zj)+(zj(τj+1)−λj+1, ψ(τj+1)) = α1J
j′
1 (uj)(ψ) ∀ψ ∈ Xj . (6.17b)

b′q(qj)(χ, zj)− α3(qj , χ)Qj = 0 ∀χ ∈ Qj . (6.17c)

which is exactly the nonlinear boundary value problem (4.8).
Remark 6.9. (Boundedness of J j) In the case that u depends linearly on q, that is u = γq,
and a cost functional as stated in Remark 2.4 it can easily be verified that the cost functional
J j in (6.16) is bounded from below. With J j1(uj) + α3

2 ‖q
j‖2Qj bounded from below due to

the solvability of the original problem, and thus

J j1(uj) = O(‖q‖2Qj ) for ‖q‖Qj →∞,
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we obtain
J j(qj , uj) = J j1(uj) + α3

2
‖qj‖2Qj + γ(qj , λj+1)

= J j1(uj) + α3
2
‖qj‖2Qj + γ(qj , λj+1)

= J j1(uj) + 1
2
(qj , α3q

j + 2γλj+1) > −∞.

This is due to the fact that 1
2(qj , α3q

j + 2γλj+1) = O(‖q‖Qj ) for ‖q‖Qj →∞. In the general
case, the boundedness can be shown analogously by more sophisticated transformations.

In order to simplify the notation, we drop the interval index j in the following presentation. A
detailed description of the reduced approach is given in [29]. Applying it to the optimization
problem (6.16) we introduce the solution operator S : Q→ X for the primal equation and
the reduced cost functional j : Q→ R which is defined as

j(q) := J(q, Sq).

We can now reformulate (6.16) in terms of an unconstrained optimization problem

Minimize j(q), q ∈ Q,

for which the first order optimality condition (6.18) is obtained by differentiation with respect
to the control q:

j′(q)(δq) = 0 ∀δq ∈ Q. (6.18)

In order to solve (6.18) by Newton’s method, differentiation of (6.18) with respect to q leads
to the linear system (6.19) for the Newton updates:

j′′(q)(δq, τq) = −j′(q)(τq) ∀τq ∈ Q. (6.19)

Consequently, Newton’s method needs the evaluation of the first and second derivatives of j.
In [29] representation formulas for these derivatives are developed and discussed in detail.
The general idea is the usage of the relation

j(q) = L(q, u, z)

which is valid for u = Sq, and the differentiation of this expression with respect to q.
Exploiting the relation u = Sq we obtain

j′(q)(δq) = L′u(q, u, z)(δu) + L′q(q, u, z)(δq).

Keeping in mind that L′u(q, u, z)(ϕ) = 0 for all ϕ ∈ X yields the dual equation, the evaluation
of the first derivative of the reduced cost functional can be brought down to the following
two steps:

1. Calculate z ∈ X such that z solves the dual equation (6.17b).

2. Evaluate j′(q)(δq) according to the identity

j′(q)(δq) = L′q(q, u, z)(δq)
= b′q(q)(δq, z)− α3(q, δq)Q.
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For the second derivative, similar ideas can be applied but a more complex notational
framework is needed due to the consideration of the second derivatives of L. The second
derivative of j is obtained by differentiation and application of the chain rule. We introduce
the abbreviations

δu := du

dq
(δq), τu := du

dq
(τq), δτu := d2u

dq2
(δq, τq),

δz := dz

dq
(δq), τz := dz

dq
(τq), δτz := d2z

dq2
(δq, τq)

and obtain by elementary calculus the representation of the second derivative:

j′′(q)(δq, τq) = L′′qq(q, u, z)(δq, τq) + L′′qu(q, u, z)(δq, τu) + L′′qz(q, u, z)(δq, τz)

+ L′′uq(q, u, z)(δu, τq) + L′′uu(q, u, z)(δu, τu) + L′′uz(q, u, z)(δu, τz)

+ L′′zq(q, u, z)(δz, τq) + L′′zu(q, u, z)(δz, τu)

+ L′u(q, u, z)(δτu) + L′z(q, u, z)(δτz).

With u and z solutions of primal and dual equation, the last two terms of the sum vanish,
and we retrieve

j′′(q)(δq, τq) = L′′qq(q, u, z)(δq, τq) + L′′qu(q, u, z)(δq, τu) + L′′qz(q, u, z)(δq, τz)

+ L′′uq(q, u, z)(δu, τq) + L′′uu(q, u, z)(δu, τu) + L′′uz(q, u, z)(δu, τz)

+ L′′zq(q, u, z)(δz, τq) + L′′zu(q, u, z)(δz, τu).

In analogy to the calculation of the first derivative, we recommend that δu and δz are
determined, such that

L′′qz(q, u, z)(δq, ϕ) + L′′uz(q, u, z)(δu, ϕ) = 0 ∀ϕ ∈ X, (6.20)
L′′qu(q, u, z)(δq, ψ) + L′′uu(q, u, z)(δu, ψ) + L′′zu(q, u, z)(δz, ψ) = 0 ∀ψ ∈ X. (6.21)

These additional equations (6.20) and (6.21) are denoted as the tangent equation and the
additional adjoint equation. Reattaching the interval index, these equations read

((∂tδuj , ϕ))j + a′u(uj)(δu, ϕ) + b′q(qj)(δqj , ϕ) + (δuj(τj), ϕ(τj)) = 0 ∀ϕ ∈ Xj , (6.22)

− ((∂tδzj , ψ))j + a′u(uj)(ψ, δzj) + (δzj(τj+1), ψ(τj+1)) + a′′uu(uj)(δuj , ψ, δzj)

− α1J
j′′
1 (uj)(δujψ) = 0 ∀ψ ∈ Xj . (6.23)

The second derivative of j can now be calculated by the following procedure:

1. Solve the tangent equation (6.22) for δu.

2. Solve the additional adjoint equation (6.23) for δz .

3. Evaluate the second derivatives by means of

j′′(q)(δq, τq) = L′′qq(q, u, z)(δq, τq) + L′′uq(q, u, z)(δu, τq) + L′′zq(q, u, z)(δz, τq)
= b′q(q)(δq, δz) + b′′qq(q)(δq, τq, z)− α3(δq, τq)Q.
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We do not go further into detail concerning the derivation of the additional equations. A
thorough investigation and description can be found in the literature mentioned in the intro-
duction of this paragraph. Instead, we focus on the setup of a globalized Newton method for
the solution of (6.18). So far in this subsection, we have considered the undiscretized, infinite
dimensional problem formulation, while in the following, when describing the Newton method,
we want consider again the finite dimensional case. Therefore, we need the discrete solution
operator Skh : Qd → Xj,r,s

kh , according to the discretization of (6.17a), and furthermore all
partial differential equations (6.17b), (6.22), (6.23) have to be replaced by their discretizations.
Consequently, from now on, we consider the reduced functional

jkh(qσ) := J(qσ, Skh(uσ)).

Remark 6.10. For the ease of presentation, Newton’s method for this problem is presented in
function space. Whenever necessary, we hint at the formulation in terms of the coefficient
vectors.

We have already discussed, that one step of Newton’s method requires the solution of the
linear system (6.19), which is the first order optimality condition of the linear quadratic
optimal control problem

min
δqσ

m(qσ, δqσ) := jkh(qσ) + j′kh(qσ)(δqσ) + 1
2
j′′kh(qσ)(δqσ, δqσ). (6.24)

Thus, if δqσ is a solution of (6.24), it is a solution of (6.19). Furthermore, if the second
derivative is positive definite, j′′kh(qσ)(δqσ, δqσ) > 0 ∀δqσ ∈ Q 6=0

d , the first order optimality
condition is not only necessary but also sufficient, and the reversal holds, too. In the following,
we demand an additional constraint on the Newton update, ‖δqσ‖Q ≤ µ, µ ∈ R ∪ {∞}, for
this problem, which allows us to apply a conjugate gradient method in combination with
trust region globalization techniques:

min
δqσ

m(qσ, δqσ) := j(qσ) + j′(qσ)(δqσ) + 1
2
j′′kh(qσ)(δqσ, δqσ) s.t. ‖δqσ‖Q ≤ µ. (6.25)

Remark 6.11. (Interpretation of gradient and Hessian) The formulation of Newton’s method
in function space requires the setup and calculation of the gradient ∇jkh(qσ) ∈ Qd and the
Hessian ∇2jkh(qσ) : Qd → Qd which have to be understood by means of the Hilbert space
identifications

(∇j(qσ), τq)Q = j′kh(qσ)(τq) ∀τq ∈ Qd,
(∇2jkh(qσ)(δqσ), τq)Q = (j′kh(qσ)(δqσ), τq)Q ∀τq ∈ Qd.

Remark 6.12. (Calculation of discrete gradient and Hessian) In the discrete, finite dimensional
case, we have to consider the vector representation with respect to the basis of the discretized
control space. The coefficient vectors representing gradient and Hessian can be calculated
explicitly. Exemplary with { τq0, . . . , τqn } a basis of the discrete control space Qd, the vector
g for the gradient is obtained as the solution of the linear system

Gg = r
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6 Solution Techniques for the Multiple Shooting Approach

for which the Gramian matrix G and right-hand side r are determined via

Gij = (τqi, τqj)Q and ri = j′kh(qσ)(τqi).

Accordingly, the vector representation d of the directional derivative ∇2jkh(qσ)(δqσ) is
obtained from the linear system

Gd = h

with right-hand side
hi = j′′kh(qσ)(δqσ, τqi).

By means of these concretizations, all algorithms presented in this subsection can easily be
brought forward to the vector based implementation of the approach.

With the equivalence of (6.24) and (6.19) at hand, we can formulate the Newton algorithm
in function space.

Algorithm 6.6 Newton’s method for the solution of (6.18)
1: Start with an initial guess qσ,0 ∈ Qd, µ0 ∈ R ∪ {+∞}, set l = 0.
2: repeat
3: Solve the state equation for uσ,l.
4: Solve the dual equation for zσ,l.
5: Calculate the gradient ∇jkh(qσ,l) according to Remark 6.11.
6: Solve the problem

min
δqσ∈Qd

m(qσ,l, δqσ) s.t. ‖δqσ‖Q < µl.

7: Choose µl+1 and νl according to the behavior of the algorithm.
8: Calculate next iterate qσ,l+1 = qσ,l + νlδqσ.
9: Set l = l + 1.

10: until ‖∇jkh(qσ,l)‖Q < tol

The solution of the constrained minimization problem in step 6 of Algorithm 6.6 is preferen-
tially done by use of an iterative solver which requires merely the evaluation of ∇2j(qσ,l)(δqσ).
The evaluation procedure for this second derivative can be performed as described in Algorithm
6.7.

Algorithm 6.7 Calculation of ∇2jkh(qσ,l)(δqσ)
Require: uσ,l and zσ,l have already been computed for given qσ,l.

1: Solve the discretized tangent equation for δuσ,l.
2: Solve the discretized additional adjoint equation for δzσ,l.
3: Obtain ∇2j(qσ)(δqσ) according to Remark 6.11.

Furthermore, the region of interest in each step is determined by the value of the radius
µl, and the actual Newton step is specified by the choice of the damping parameter νl.
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6.1 Solution Techniques for the Indirect Multiple Shooting Approach

Both values are determined anew in each step of Newton’s method, in order to optimize
the convergence behavior. These globalization techniques are described at the end of this
subsection. Next, we consider the solution of the linear problem (6.25) for the evaluation of
the Newton update δqσ which was not yet determined for step 6 of Algorithm 6.6. We therefor
apply the Steihaug conjugate gradient method as described in the sequel. The method for the
solution of the constrained optimization problem was developed in [38], and the algorithm
for our function space setting is recapitulated in Algorithm 6.8. This algorithm terminates,

1. If the curvature of the calculated direction is negative. In this case we move to the
boundary of the domain if its radius is finite, µl <∞, otherwise we take the previous
iterate.

2. If the norm of the iterate is too large. Then we take a linear combination of the previous
iterate and the current one which lies on the boundary of the domain.

3. If the Newton update is approximated sufficiently well.

Algorithm 6.8 The Steihaug conjugate gradient method for the solution of (6.25)
1: Set p0 = 0, r0 = −∇j′kh(qσ), g0 = r0 and i = 0.
2: loop
3: Compute the directional derivative h = ∇2(qσ,l)(gi) using Algorithm 6.7.
4: Set γ = (h, gi)Q.
5: if γ ≤ 0 then
6: if µl <∞ then
7: Compute ξ > 0 such that ‖pi + ξgi‖Q = µl.
8: Set δqσ = pi + ξgi.
9: else

10: Set δqσ = pi−1 or d = p0 if i = 0.
11: break (Negative curvature found.)
12: Compute α = |ri|2/γ.
13: Set pi+1 = pi + αgi.
14: if ‖pi+1‖Q > µl then
15: Compute ξ > 0 such that ‖pi + ξgi‖Q = µl.
16: Set δq = pi + ξgi.
17: break (Norm of approximation too large.)
18: Compute ri+1 = ri − αh.
19: if ‖ri+1‖Q/‖r0‖Q < tol then
20: Set δqσ = pi+1
21: break (Approximation good enough.)
22: Compute β = ‖ri+1‖2

Q/‖ri‖2
Q.

23: Set gi+1 = ri+1 + βgi.
24: Set i = i+ 1.

Finally, we have to specify the choice of µ and ν in the context of globalization techniques
of Newton’s method. We are faced with the choice between line search methods and trust
region methods. In this context, we have decided to apply a trust region globalization.
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6 Solution Techniques for the Multiple Shooting Approach

Algorithm 6.9 Determination of µl+1 and νl
1: if ρl < 0.25 then
2: Set µl+1 = 0.25‖δqσ‖Q.
3: else if ρl > 0.75 and ‖δqσ‖Q = µl then
4: Set µl+1 = min(2µl, µmax).
5: else
6: Set µl+1 = µl.
7: if ρl > θ then
8: Set νl = 1.
9: else

10: Set νl = 0.

A Newton step is either accepted or rejected, that is νl = 1 or νl = 0 while the diameter
µl < ∞ of the current trust region is adapted in each Newton step. According to the
textbook of Nocedal and Wright [32] the trust region method is determined by the choice of
its parameters, which are the maximal radius µmax > 0, the initial radius µ0 ∈ (0, µmax) and
a parameter θ ∈ [0, 0.25) by which we determine the minimum performance needed for the
Newton step to be accepted. Therefore, we define the ratio

ρl :=
jkh(qσ,l)− jkh(qσ,l + δqσ)
m(qσ,l, 0)−m(qσ,l, δqσ)

which gives information on the quality of the approximation of j by the functional m. The
parameters µl+1 and νl are then determined by Algorithm 6.9.

So far, we have seen how the (nonlinear) intervalwise boundary value problems can be solved
by the reduced approach for PDE constrained optimization problems. We have shortly
presented the basic ideas of this approach and pointed out the algorithmic aspects of the
solvers. Next, the solution techniques for the direct multiple shooting approach are presented
analogously.

6.2 Solution Techniques for the Direct Multiple Shooting
Approach

The solution techniques for the direct approach start analogously to the indirect approach
with the application of Newton’s method to the system of matching conditions. The linearized
system is either solved directly by application of a Krylov subspace method, similar to the
approach in [14], or otherwise a condensing technique reduces the problem to a linear system
on the control space. The condensed direct multiple shooting approach comes close to the
multiple shooting approach for ODE constrained optimization. Therefore, we point out at
the end of this section why certain efficient solution techniques from the ODE approach
can not be transferred to the PDE approach, and consequently why the PDE approach has
limitations with respect to the efficiency.
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6.2 Solution Techniques for the Direct Multiple Shooting Approach

Newton’s method requires the evaluation of the residual, and the linear solver needs the
calculation of the directional derivatives forming the left-hand side of the linearized problem.
Therefore, the linear solver requires the solution of intervalwise linear initial value problems
(IVPs) while the calculation of the residual needs the solution of nonlinear initial value
problems. The interrelation of the different problems is shown in Figure 6.10.

Linearized System
Directional Derivatives

Residual

Nonlinear IVP

Linear IVP

Linear equations on Qj

Nonlinear equations on Qj
Matching conditions

Newton

Figure 6.10: Different solution approaches for direct multiple shooting.

6.2.1 Solution of the Multiple Shooting System

The linear system determining the Newton update (∆q̃σ, ∆s̃h, ∆p̃h) is obtained by differenti-
ation of (4.35) with respect to the multiple shooting variables.
Remark 6.13. In the following, we consider s0 and pm as defined by the corresponding
equations in (4.35). Therefore, these variables do not have to be determined by Newton’s
method, and we can define ∆s0 := 0 and ∆pm := 0.

We obtain for j = 0, . . . ,m− 1, the following equations:

(∆sj+1
h − S̄′jsj (∆s

j
h)− S̄

′
jqj (∆q

j
σ), ϕ) = −(rju, v) ∀ϕ ∈ Hj+1

h ,

(∆pjh − Ξ̄
′
jpj+1(∆pj+1

h )− Ξ̄ ′jsj (∆s
j
h)− Ξ̄

′
jqj (∆q

j
σ), ψ) = −(rjz, ψ) ∀ψ ∈ Hj

h,

α3(∆qjσ, χ)Qj − b′′qq(qj)(∆qjσ, χ,Ξj(p
j+1
h , sjh, q

j
σ))

−b′q(qjσ)(χ,Ξ ′jsj (∆s
j
h) +Ξ ′jqj (∆q

j
σ) +Ξ ′jpj+1(∆pj+1

h )) = −(rjq, χ)Qj ∀χ ∈ Qjd
(6.26)
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with the Newton residuals defined as

(rju, ϕ) := (sj+1
h − S̄j(sjh, q

j
σ), ϕ),

(rjz, ψ) := (pjh − Ξ̄j(p
j+1
h , sjh, q

j
σ), ψ),

(rjq, χ)Qj := α3(qjσ, χ)Qj − b(qjσ)(χ,Ξj(p
j+1
h , sjh, q

j
σ)).

Here, the derivatives of the solution operators for the primal equation have to be understood
according to Lemma 4.3. For the solution operators of the dual equation an analogous
statement holds and can easily be derived by differentiation of the dual equation with respect
to pj+1, sj , and qj . We skip the explicit formulation but annotate that the discrete solution
operators as considered here are defined accordingly for the discrete equations. We continue
with the introduction of an abbreviatory notation as done in (6.2) by introducing additional
operators Ej for j = 1, . . . ,m − 1, Fj for j = 0, . . . ,m − 1, and Gj for j = 0, . . . ,m − 2 in
weak formulation:

(Ej(∆sjh), χ) := b′q(qjσ)(χ,Ξ ′jsj (∆s
j
h)),

(Fj(∆qjσ), χ) := α3(∆qjσ, χ)Qj − b′′qq(qjσ)(∆qjσ, χ,Ξj(p
j+1
h , sjh, q

j
σ))− b′q(qjσ)(χ,Ξ ′jqjσ(∆q

j
σ)),

(Gj(∆pj+1
h ), χ) := b′q(qjσ)(χ,Ξ ′jpj+1(∆pj+1

h )).

We define the pseudo matrices for the different blocks of the linearized system:

A0 :=
(
I −S̄′0,q0

0 F0

)
, Aj :=

 I −S̄′j,qj 0
0 Fj 0
0 −Ξ̄ ′j,qj I

 , Am−1 :=
(
Fj 0
−Ξ̄ ′m−1,qm−1 I

)
,

B0 :=

 −S̄
′
1,s1 0

−E1 0
−Ξ̄ ′1,s1 0

 , Bj :=

 −S̄
′
j+1,sj+1 0 0

−Ej+1 0 0
−Ξ̄ ′j+1,sj+1 0 0

 , Bm−2 :=
(
−Em−1 0 0
−Ξ̄ ′m−1,sm−1 0 0

)
,

C0 :=
(

0 0 0
0 0 −G0

)
, Cj :=

 0 0 0
0 0 −Gj
0 0 −Ξ̄ ′jpj+1

 , Cm−2 :=

 0 0
0 −Gm−2
0 −Ξ̄ ′m−2pm−1

 .
Furthermore, for the right-hand side and the increment, we define for the different intervals(

(r0,0, ϕ)
(r0,1, χ)Qj

)
:=
(

(s1h − S̄0(s0h, qjσ), ϕ)
α3(q0σ, χ)Qj − b(qjσ)(χ,Ξj(p1

h, s
0
h, q

0
σ))

)
, (rj,0, ϕ)

(rj,1, χ)Qj
(rj,2, ψ)

 :=

 (sj+1
h − S̄j(sjh, qjσ), ϕ)

α3(qjσ, χ)Qj − b(qjσ)(χ,Ξj(p
j+1
h , sjh, q

j
σ))

(pjh − Ξ̄j(p
j+1
h , sjh, q

j
σ), ψ)

 ,
(

(rm−1,0, χ)Qj
(rm−1,1, ψ)

)
:=
(
α3(qm−1

σ , χ)Qm−1 − b(qm−1
σ )(χ,Ξj(pmh , s

m−1
h , qm−1

σ ))
(pm−1
h − Ξ̄j(pmh , s

m−1
h , qm−1

σ ), ψ)

)
,

x0 := (∆s1h, ∆q0σ)T ,

xj := (∆sj+1
h , ∆qjσ, ∆p

j
h)
T ,

xm−1 := (∆qm−1
σ , ∆pm−1

h )T ,
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such that the linear system (6.26) reads in pseudo matrix notation
A0 C0
B0 A1 C1

. . . . . . . . .
Bm−3 Am−2 Cm−2

Bm−2 Am−1


︸ ︷︷ ︸

=:K


x0
x1
...

xm−2
xm−1


︸ ︷︷ ︸

=:x

= −


r0
r1
...

rm−2
rm−1


︸ ︷︷ ︸

=:b

. (6.28)

The algorithmic formulation of Newton’s method for the solution of the direct multiple
shooting approach is equivalent to the formulation for the indirect approach except for the
definition of the linear system. The explicit formulation is given in Algorithm 6.10.

Algorithm 6.10 Newton’s method for the direct approach
1: Set i = 0.
2: Start with initial guess for multiple shooting variables

xi = (s1h,i, q0σ, s2h,i, q1σ, p1
h, . . . , s

m−1
h,i , qm−2

σ,i , pm−2
h,i , qm−1

σ,i , pm−1
h,i )T .

3: repeat
4: Calculate the residuals bi = (r0,i, . . . , rm−1,i)T according to (6.3).
5: Solve the linear system (6.28) for the Newton update

Ki∆xi = −bi,

∆xi = (∆s1h,i, ∆q0σ, ∆s2h,i, ∆q1σ, ∆p1
h, . . . ,∆s

m−1
h,i , ∆qm−2

σ,i , ∆pm−2
h,i , ∆qm−1

σ,i , ∆pm−1
h,i )T .

6: Calculate next iterate
xi+1 = xi +∆xi.

7: Set i = i+ 1.
8: until ‖bi‖ :=

√
‖r0,i‖2H1

h
×Q0

d
+
∑m−1
j=0 ‖rj,i‖2Hj+1

h
×Qj

d
×Hj

h

+ ‖rm−1,i‖2Qm−1
d
×Hm−1

h

< tol.

Remark 6.14. (Matrix-vector based formulation of Newton’s method) The consideration of
Newton’s method in the discrete case needs the determination of the coefficient vectors of
the solutions from a linear system of equations. Therefore, we need the concretization of the
linear system (6.28) for given bases of the discretized spaces. Again, we do this exemplarily
for only one block row (Bj−1 Aj Cj) of the pseudo block matrix K. We memorize the
corresponding equations of the linearized system (6.26).

(∆sj+1
h − S̄′jsj (∆s

j
h)− S̄

′
jqj (∆q

j
σ), ϕ) = −(rju, ϕ) ∀ϕ ∈ Hj+1

h ,

(∆pjh − Ξ̄
′
jpj+1(∆pj+1

h )− Ξ̄ ′jsj (∆s
j
h)− Ξ̄

′
jqj (∆q

j
σ), ψ) = −(rjz, ψ) ∀ψ ∈ Hj

h,

α3(∆qjσ, χ)Qj − b′′qq(qj)(∆qjσ, χ,Ξj(p
j+1
h , sjh, q

j
σ))

−b′q(qjσ)(χ,Ξ ′jsj (∆s
j
h) +Ξ ′jqj (∆q

j
σ) +Ξ ′jpj+1(∆pj+1

h )) = −(rjq, χ)Qj ∀χ ∈ Qjd.
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We assume that ϕj0, . . . , ϕjnj is a basis of the discrete space Hj
h, and that χj0, . . . , χjνj is a basis

of the discrete control space Qjd. We denote the coefficient vectors for the Newton updates
∆sjh, ∆p

j
h and ∆qjσ with respect to these bases by ∆ξj,s ∈ Rnj , ∆ξj,p ∈ Rnj , and ∆ξj,q ∈ Rνj .

With this notation at hand, we are able to rewrite the linear equations as

I0∆ξj+1,s − B0∆ξ
j,s −A0∆ξ

j,q = −d0,

I1∆ξj,p − C1∆ξj+1,p − B1∆ξ
j,s −A1∆ξ

j,q = −d1,

−C2∆ξj+1,p − B2∆ξ
j,s −A2∆ξ

j,q = −d2.

The matrices I0 ∈ Rnj+1×nj+1 , I1 ∈ Rnj×nj , A0 ∈ Rnj+1×νj , A1 ∈ Rnj×νj , A2 ∈ Rνj×νj ,
B0 ∈ Rnj+1×nj , B1 ∈ Rnj×nj , B2 ∈ Rνj×nj , C1 ∈ Rnj×nj+1 , C2 ∈ Rνj×nj+1 have to be
understood according to the following identities:

(I0)li = (ϕj+1
i , ϕj+1

l ),

(I1)li = (ϕji , ϕ
j
l ),

(A0)li = (S̄′jqj (χ
j
i ), ϕ

j+1
l ),

(A1)li = (Ξ̄ ′jqj (χ
j
i ), ϕ

j
l ),

(A2)li = −α3(χji , χ
j
l )Qj + b′′qq(qj)(χ

j
i , χ

j
l , Ξj(p

j+1
h , sjh, q

j
σ)) + b′q(qjσ)(χ

j
l , Ξ

′
jqj (χ

j
i )),

(B0)li = (S̄′jsj (ϕ
j
i ), ϕ

j+1
l ),

(B1)li = (Ξ̄ ′jsj (ϕ
j
i ), ϕ

j
l ),

(B2)li = b′q(qjσ)(χ
j
l , Ξ

′
jsj (ϕ

j
i )),

(C1)li = (Ξ̄ ′jpj+1(ϕj+1
i ), ϕjl ),

(C2)li = b′q(qjσ)(χ
j
l , Ξ

′
jpj+1(ϕj+1

i )).

The right-hand side vectors d0 ∈ Rnj+1 , d1 ∈ Rnj , and d2 ∈ Rνj are given according to

(d0)l = (rju, ϕ
j+1
l ), (d1)l = (rjz, ϕ

j
l ), and (d2)l = (rjq, χ

j
l )Qj .

With this interpretation at hand, the transfer of the function space method to a vector based
one is straightforward by setting up the discrete linear system for the determination of the
coefficient vectors of the Newton updates. In addition, it is often convenient and suitable to
replace the Hilbert space norm on H by the l2-norm on the finite dimensional space Rnj .

In the following, we consider Example (2.3) to illustrate the application of Newton’s method
in a concrete case.

Example 6.4. (Newton’s method for Example 2.3) We reconsider the multiple shooting
approach for Example 2.3 with 2 intervals (Example 4.2). We remark, that s0 and p2 are
determined by the boundary values of the original problem and are not part of the unknowns
of the linearized problem:

(S̄′0,q0(∆q0σ)−∆s1h, ϕ) = −(S̄0(s0h, q0σ)− s1, ϕ) ∀ϕ ∈ H1
h,

(Ξ̄ ′1,s1(∆s1h) + Ξ̄ ′1,q1(∆q1σ)−∆p1
h, ψ) = −(Ξ̄1(s1h, q1σ, p2

h)− p1
h, ψ) ∀ψ ∈ H1

h,

(∆q0σ, χ)Q0 + (Ξ ′0,q0(∆q0σ) +Ξ ′0,p1(∆p1
h), χ) = −((q0σ, χ)Q0 + (Ξ0(s0h, q0σ, p1

h), χ)) ∀χ ∈ Q0
d,

(∆q1σ, χ)Q1 + (Ξ ′1,s1(∆s1h) +Ξ ′1,q1(∆q1σ), χ) = −((q1σ, χ)Q1 + (Ξ1(s1h, q1σ, p2
h), χ)) ∀χ ∈ Q1

d.
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In pseudo matrix notation this special system is written as
−I S̄′0,q0 0 0
0 I +Ξ ′0,q0 0 Ξ ′0,p1

Ξ ′1,s1 0 I +Ξ ′1,q1 0
0 0 Ξ̄ ′1,q1 −I



∆s1h
∆q0σ
∆q1σ
∆p1

h

 = −


S̄0(s0h, q0σ)− s1h

q0σ +Ξ0(s0h, q0σ, p1
h)

q1σ +Ξ1(s1h, q1σ, p2
h)

Ξ̄1(s1h, q1σ, p2
h)− p1

h

 .
Differentiation of the dual equation yields the determining equation for the derivatives of the
solution operators, and accordingly for their discretizations by considering the corresponding
discrete equations. However, we present for the sake of brevity of the equations only the
continuous case.

We determine x, y, w ∈ Xj , such that for all ϕ ∈ Xj , j = 0, 1, the following PDEs are fulfilled:

− ((∂txj , ϕ))j + ((∇xj ,∇ϕ))j + ((3(uj)2xj , ϕ))j + (xj(τj+1), ϕ(τj+1))
= ((S′j,sj (ξ), ϕ))j − ((6ujS′j,sj (ξ)x

j , ϕ))j ,

− ((∂tyj , ϕ))j + ((∇yj ,∇ϕ))j + ((3(uj)2yj , ϕ))j + (yj(τj+1), ϕ(τj+1))
= ((S′j,qj (ρ), ϕ))j − ((6ujS′j,qj (ρ)x

j , ϕ))j ,

−((∂twj , ϕ))j + ((∇wj ,∇ϕ))j + ((3(uj)2wj , ϕ))j + (wj(τj+1)− ζ, ϕ(τj+1)) = 0.
The derivatives of the solution operators with respect to sj , qj , and pj+1 are given as the
solution operators of the equations above by the following mappings:

Ξ ′j,sj (ξ) = x, Ξ ′j,qj (ρ) = y, Ξ ′j,pj+1(ξ) = w,

Ξ̄ ′j,sj (ξ) = x(τj), Ξ̄ ′j,qj (ρ) = y(τj), Ξ̄ ′j,pj+1(ξ) = w(τj).

6.2.2 The GMRES Method for the Solution of the Linearized System

As in the indirect multiple shooting approach, the pseudo matrix notation of problem (6.28)
has a sparse tridiagonal block structure, but with more complicated blocks on the diagonal.
Nevertheless, the application of the generalized minimum residual method is an obvious
choice, and the application of a preconditioner is absolutely necessary. This fact is outlined
by consideration of Example 6.2 which has been solved for differently fine discretizations
and a different number of intervals as shown in Figure 6.11. As before a forward backward
block Gauss Seidel preconditioner is due to the structure of the pseudo system matrix K an
appropriate choice. This assumption is additionally supported by its outstanding performance
in comparison with different preconditioners as shown in Figure 6.12. Again, we introduce a
matrix decomposition into a lower triangular pseudo block matrix L, an upper triangular
pseudo block matrix U , and a diagonal pseudo block matrix D:


. . . −U

D

−L . . .

 :≡


A0 C0
B0 A1 C1

. . . . . . . . .
Bm−3 Am−2 Cm−2

Bm−2 Am−1

 .

89



6 Solution Techniques for the Multiple Shooting Approach

0

100

200

300

400

500

600

700

0 200 400 600 800 1000

5 Intervals
10 Intervals
15 Intervals

Figure 6.11: Convergence behavior of the GMRES method for differently fine discretizations
calculated for different numbers of shooting intervals in Example 6.2. (x-axis:
number of cells, y-axis: number of GMRES steps)
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Figure 6.12: Results for the forward backward Gauss Seidel preconditioner (red), the
forward Gauss Seidel preconditioner (dark blue), the backward Gauss Seidel
preconditioner (blue) and without preconditioner (magenta) calculated for
Example 6.2. (x-axis: number of intervals, y-axis: number of iterations)

The preconditioning pseudo matrix P for the forward backward block Gauss Seidel precondi-
tioning was already introduced in the previous section in equation (6.5) as

P := (D − L)D−1(D − U),
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and the preconditioned problem is given as in equation (6.6) by the linear system

P−1Kx = P−1b.

While the general setup of the GMRES method is the same as in Algorithm 6.2, the different
block structure of the diagonal blocks results in a more sophisticated block inversion in the
case of direct multiple shooting. There are different possible ways to invert a diagonal block
of the pseudo matrix D. On the one hand, a diagonal block of D can be interpreted as an
optimization problem. In this case, standard techniques for the solution of optimization
problems can be applied. On the other hand the inversion can be achieved by direct application
of an iterative solver. The interpretation in terms of an optimization problem is thoroughly
discussed in [20], where different examples and numerical results in the context of linear
quadratic optimization problems are given. We follow the other way and apply an iterative
solver for the inversion of the diagonal block. But first, let us describe for the sake of
completeness the multiplication with the preconditioning pseudo block matrix by successive
substitution. As mentioned, the procedure of preconditioning is mainly performed as before
except for the additional multiplication with D. First, the inversion of the lower diagonal
pseudo block matrix D − L is done by forward substitution, as shown in equation (6.29).
Afterwards, we multiply with the diagonal pseudo block matrix D and finally the inversion
of the upper triangular pseudo block matrix D − U is obtained by backward substitution as
given in equation (6.30).

(D − L)x = r ⇔



x0 = A−1
0 r0

x1 = A−1
1 (r1 −B0x0)

...
xm−2 = A−1

m−2(rm−2 −Bm−3xm−3)
xm−1 = A−1

m−1(rm−1 −Bm−2xm−2)


(6.29)

(D − U)x = r ⇔



xm−1 = A−1
m−1rm−1

xm−2 = A−1
m−2(rm−2 − Cm−2xm−1)

...
x1 = A−1

1 (r1 − C1x2)
x0 = A−1

0 (r0 − C0x1)


(6.30)

The evaluation of the directional derivatives has already been discussed in the prequel. We
now describe the block inversion of Aj by means of an iterative solver. We decided to apply
a standard GMRES method as already stated in Algorithm 6.2 for the solution of the linear
block problem, where the pseudo matrix vector product y = Ajx is obtained by solution of
additional problems as given in Algorithm 6.11.
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6 Solution Techniques for the Multiple Shooting Approach

Algorithm 6.11 Evaluation of the pseudo matrix vector product for a diagonal block Aj .
1: if j = 0 then
2: Calculate v0 ∈ H1

h from (v0, ϕ) = (S̄′0,q0(x1), ϕ) ∀ϕ ∈ H1
h.

3: Calculate v1 ∈ Q1
d from (v1, χ) = α3(x1, χ)Qj − b′′qq(q0σ)(x1, χ, z

0
σ) ∀χ ∈ Q1

d.
4: Set y0 = −x0 + v0.
5: Set y1 = v1.
6: return y.
7: else if j > 0 and j < m− 1 then
8: Calculate v0 ∈ Hj+1

h from (v0, ϕ) = S̄′j,qj (x1) ∀ϕ ∈ Hj+1
h .

9: Calculate v2 ∈ Hj
h from (v2, ψ) = (Ξ̄ ′jqj (x2), ψ) ∀ψ ∈ Hj

h.
10: Calculate v1 ∈ Qjd from (v1, χ) = α3(x1, χ)Qj − b′′qq(qjσ)(x1, χ, z

j
σ) ∀χ ∈ Qjd.

11: Set y0 = −x0 + v0.
12: Set y1 = v1.
13: Set y2 = −x2 + v2.
14: return y.
15: else
16: Calculate v1 ∈ Hm−1

h from (v1, ψ) = (Ξ̄ ′jqm−1(x0), ψ) ∀ψ ∈ Qm−1
d .

17: Calculate v0 ∈ Qm−1
d from (v0, χ) = α3(x0, χ)Qj − b′′qq(qm−1)(x0, χ, z

j) ∀χ ∈ Qm−1
d .

18: Set y0 = v0.
19: Set y1 = −x1 + v1.
20: return y.

Remark 6.15. The conversion of the algorithm to a vector based one is straightforward, and
can be achieved by consideration of Remark 6.14 for the interpretation of the solutions and
solution operators in terms of vectors and matrices.

We want to give an impression of the additional effort which is needed for the preconditioning
of the system. Therefore, we assume the best case, which is that we are able to invert the
diagonal block Aj in one step of the inner GMRES method. The analysis of the costs yields
the following coherence: 1 step of the plain GMRES method needs the numerical solution
of 2 ·m initial value problems, whereas 1 step of the preconditioned GMRES method needs
the solution of at least 6 ·m initial value problems. Thus, a compensation of the additional
effort is achieved only if the number of GMRES iterations is at least reduced to 1/3 of those
in the unpreconditioned case. The best case usually does not hold for our applications, such
that an enormously larger number of additional initial value problems has to be solved than
predicted by this simple formula. Nevertheless, the reduction obtained by preconditioning
still reduces the overall effort and enables us to solve those problems for which no convergence
could be obtained without preconditioning. We have solved Example 6.2 with and without
preconditioning on different numbers of intervals and have plotted the number of solved
initial value problems for different numbers of multiple shooting intervals in Figure 6.13.

Another promising approach is the application of condensing techniques similar to the ODE
approach. We give a detailed description of this idea in the next subsection.
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Figure 6.13: Number of solved initial value problems for different numbers of shooting
intervals, calculated with and without preconditioning. (x-axis: number of
intervals, y-axis: number of solved problems)

6.2.3 Condensing Techniques for the Solution of the Linearized System

We recall the formulation of the linearized system (6.26) and aim at the reduction of this
system onto the space of the control variables by successive substitution. For this purpose,
we make use of the following relations.

(∆s1h, ϕ) = (S̄′jq0(∆q0σ), ϕ)− (r0u, ϕ),
(∆s2h, ϕ) = (S̄′js1(∆s1h) + S̄′jq1(∆q1σ), ϕ)− (r1u, ϕ),

...
(∆sm−1

h , ϕ) = (S̄′m−2sm−2(∆sm−2
h ) + S̄′

m−2qm−2
σ

(∆qm−2
σ ), ϕ)− (rm−2

u , ϕ),

(∆pm−1
h , ψ) = (Ξ̄ ′jsm−1(∆sm−1

h ) + Ξ̄ ′jqm−1(∆qm−1
σ ), ψ)− (rm−1

z , ψ),
(∆pm−2

h , ψ) = (Ξ̄ ′jpm−1(∆pm−1
h ) + Ξ̄ ′jsm−2(∆sm−2

h )− Ξ̄ ′
jqm−2
σ

(∆qm−2
σ ), ψ)− (rm−2

z , ψ),
...

(∆p1
h, ψ) = (Ξ̄ ′jp2(∆p2

h) + Ξ̄ ′js1(∆s1h) + Ξ̄ ′jq1(∆q1σ), ψ)− (r1z , ψ).

We can now write the unknown Newton increments for primal and dual shooting variables as
a function of the control variables. Introducing

fj : Q̃d → Hj
h,

gj : Q̃d → Hj
h
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such that
∆sjh = fj(∆q0σ, . . . ,∆qm−1

σ )

∆pjh = gj(∆q0σ, . . . ,∆qm−1
σ )

,

we reduce the linear multiple shooting system (6.26) to the determination of the control
increments ∆q0σ, . . . ,∆qm−1

σ from the condensed multiple shooting system (6.31).

Let for j = 0, . . . ,m− 1 the following equations be fulfilled:

α3(∆qjσ, χ)Qj − b′′qq(qjσ)(∆qjσ, χ,Ξj(p
j+1
h , sjh, q

j
σ))

− b′q(qjσ)(χ,Ξ ′jsj (fj(∆q
0
σ, . . . ,∆q

m−1
σ )) +Ξ ′jqj (∆q

j
σ))

+ b′q(qjσ)(χ,Ξ ′jpj+1(gj(∆q0σ, . . . ,∆qm−1
σ ))) = −(rjq, χ)Qj ∀χ ∈ Qjd. (6.31)

The whole solution procedure of each Newton step is thus brought down to the solution of
(6.31) by application of a GMRES method. The algorithmic performance of this GMRES
method needs the evaluation of the directional derivatives given on the left-hand side of
(6.31), which is done as stated in Algorithm 6.12.

Algorithm 6.12 Calculation of the directional derivatives vj in the GMRES method
Require: Iterates ∆q0σ, . . . , qm−1

σ .
1: for j = 1, . . . ,m− 1 do
2: Evaluate ∆sjh = fj(∆q0σ, . . . ,∆qm−1

σ ).
3: for j = m− 1, . . . , 1 do
4: Evaluate ∆pjh = gj(∆q0σ, . . . ,∆qm−1

σ ).
5: for j = 0, . . .m− 1 do
6: Calculate directional derivative vj ∈ Qjd from

(vj , χ) = α3(∆qjσ, χ)Qj − b′′qq(qjσ)(∆qjσ, χ,Ξj(p
j+1
h , sjh, q

j
h))

− b′q(qjσ)(χ,Ξ ′jsj (∆s
j
h) +Ξ ′jqj (∆q

j
σ) +Ξ ′jpj+1(∆pj+1

h )) ∀χ ∈ Qjd.

7: return vj ∈ Q̃d.

Remark 6.16. (Algorithm 6.12 in terms of the coefficient vectors) The algorithm can explicitely
be written in matrix vector notation by applying the notation introduced in Remark 6.14.
For example with the vectors defined as in Remark 6.14 we rewrite step 6 as

ζj = −C2∆ξj+1,p − B2∆ξ
j,s −A2∆ξ

j,q

where the coefficient vector of the directional derivative is denoted as ζj ∈ Rνj .

The reduction of the number of GMRES steps by condensing the system is quite remarkable
and the additional effort is limited to the condensing in the beginning and the expansion
after convergence. These procedures make a total amount of 4 ·m additional initial value
problems. Figure 6.14 gives an impression of the improvement obtained by application of the
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condensing techniques in comparison to the preconditioned direct multiple shooting approach.
Example 6.2 has been solved on 1024 cells by both techniques, and the number of solved
initial value problems gives evidence of the computational effort saved by condensing.
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Figure 6.14: Number of solved initial value problems for different numbers of shooting
intervals, calculated for preconditioned and condensed direct multiple shooting.
(x-axis: number of intervals, y-axis: number of solved problems)

As mentioned in the introduction of this section, the condensed multiple shooting approach
comes close to the idea of multiple shooting for ODE constrained optimization problems.
At this point, we are able to underline the restrictions of the transfer of the direct multiple
shooting approach from ODEs to PDEs. This is done in the following subsection.

6.2.4 From ODEs to PDEs – Limitations

In Chapter 3 we have given an overview of state-of-the-art techniques for the solution of the
direct multiple shooting approach for ODE constrained optimization. The main advantage of
multiple shooting for ODEs is the high efficiency which is not only obtained by application of
condensing techniques, but depends crucially on the efficiency of the time stepping schemes
and the simultaneous calculation of all directional derivatives for the explicit assembling and
inversion of the large matrix of all directional derivatives.

In the context of PDEs not all of the latter features can be applied for certain reasons, and
further research is necessary. First of all, we discretize in time by discontinuous or continuous
Galerkin methods, and are thus limited to the application of those time stepping schemes
which can be interpreted as a Galerkin method. Numerical computations in this thesis have
only been performed for the dG(0) first order time stepping scheme. Further investigations
are needed to test higher order time stepping schemes and the possible improvement of the
multiple shooting approach.
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Second, the simultaneous calculation of all directional derivatives for the assembling of the
large system matrix results in an unacceptable high computational effort whenever the control
is discretized sufficiently fine. Consider for example the case of a distributed control on a
spatial mesh of 5000 nodes, and the states discretized accordingly. On each interval Ij , the
directional derivatives with respect to qj , sj and λj have to be calculated for every direction,
that is with respect to every basis vector of the finite element discretization. Assuming
bilinear elements, this makes a total of 5000 forward and 5000 backward initial value problems
per interval. And for a total of 10 intervals, we obtain an amount of 100000 initial value
problems for the assembling of the matrix.

Third, the storage requirements are extremely large. The system matrix for the condensed
system in the above mentioned example is of the size of 10 · 5000× 10 · 5000 = 50000× 50000
and (due to the condensing) usually not of sparse structure. If the matrix is once assembled,
the explicit inversion is quite expensive too, and consequently, this procedure is not suitable
in the context of PDEs with fine spatial discretizations of the control space.

Finally, we want to devote the rest of this chapter to a numerical comparison of the efficiency
of the previously presented multiple shooting approaches for PDE constrained optimization
problems.

6.3 Numerical Comparison of the Direct and Indirect Multiple
Shooting Approach

In this final section, a numerical comparison between the indirect multiple shooting approach,
the direct multiple shooting approach and the condensed multiple shooting approach is given.
We consider a nonlinear optimization problem with Neumann boundary control.

Example 6.5. (Neumann boundary control on a T-shaped domain) We search to minimize
the distributed cost functional

min
(q,u)∈Q×X

J(q, u) = 1
2

∫
I
‖u− ū‖2Γodt+ α

2

∫
I
‖q‖2Qdt

subject to the constraining nonlinear equation

∂tu−∆u− u3 − u = 0 on I ×ΩT ,
u(0) = u0 on ΩT ,

∂nu = q on I × Γc,
∂nu = 0 on I ×ΩT \Γc.

ΩT is a T-shaped domain with control boundary Γc and observation boundary Γo as sketched
in Figure 6.15. In the concrete case of interest, we pick the parameters u0 = 0.9, ū ≡ 1,
α = 0.01 and the time domain I = (0, 2). Furthermore, the time stepping scheme is initialized
with a time step size of 0.01.
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Γo

Γc

Figure 6.15: ΩT with observation and control boundary (Γo and Γc).

The numerical comparison of the efficiency of the three approaches is mainly based on time
measurements – first of all the total computation time of the approaches gives evidence of
the efficency of each approach, but additionally we point out, what the time is spent for
in detail. Throughout this section, we consider the solution for 5, 10, 15 and 20 multiple
shooting intervals. The controls are intervalwise constant in time but distributed in space.
The values of all time measurements are given in seconds.
Remark 6.17. The following computations are performed on only one fixed spatial mesh.
Nevertheless, numerical computations on meshes of different refinement levels suggest the
assumption that the results presented in this section are independent of the mesh size.

The total time needed for the solution of Example 6.5 by the different approaches is depicted
against the number of intervals in Figure 6.16. While the time needed for the solution of the
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Figure 6.16: Total time for different numbers of intervals for Example 6.5, solved by different
multiple shooting approaches. (x-axis: number of intervals, y-axis: time in
seconds)

initial value problems is inverse proportional to the number of intervals, the total number
of initial value problems grows proportional to the number of intervals. Furthermore, the
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number of steps of the outer Newton method and the outer GMRES method are nearly
independent from the number of intervals, such that the approximately constant total time
for direct and condensed approach is the logical consequence. On the other hand, for the
indirect approach, the number of iterative steps needed for the solution of the intervalwise
boundary value problems decreases with the interval length, while the relations above still
hold. Therefore, the total time needed for the solution of the problem by the indirect approach
decreases with a growing number of intervals.

The distribution of the total time onto the solution of the linear and nonlinear interval
problems for different multiple shooting parameterizations is shown in Figure 6.17. The
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Figure 6.17: Time spent for the solution of the linear and the nonlinear interval problems
for Example 6.5, solved by different multiple shooting approaches. (x-axis:
number of intervals, y-axis: time in seconds)

plots confirm what we have already postulated in the previous sections: For all approaches,
most of the time is spend for the solution of the linearized system of matching conditions.
Precisely, Figures 6.18 and 6.19 point out that for direct and indirect multiple shooting
without condensing about 97% of the computation time are needed for this procedure, while
only approximately 2% pass during the calculation of the residual. The rest of the time is
spent for the initialization, the output, and other procedures which do not directly belong to
the multiple shooting method. For the condensed approach the time distribution is more
equilibrated, though still about 82% of the time is needed for the solution of the linearized
problem while only 17% of the time are spent for the calculation of the residual.

So far, we have seen, that the condensed approach is the most promising one out of the three
different approaches considered in this chapter. In the next two chapters, we want to combine
the multiple shooting approach with mesh adaptation gained by a modification of the dual
weighted residual method. This idea allows us to the increase the efficency of the methods by
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Figure 6.18: Percentage of the time for the solution of the nonlinear interval problems
for Example 6.5, solved by different multiple shooting approaches. (x-axis:
number of intervals, y-axis: percentage of time)
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Figure 6.19: Percentage of the time for the solution of the linear interval problems for
Example 6.5, solved by different multiple shooting approaches. (x-axis: number
of intervals, y-axis: percentage of time)

solving the PDEs under consideration on meshes that are as coarse as possible for obtaining
a certain discretization error in the cost functional.
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This chapter is devoted to the presentation of a posteriori error estimation. Starting with the
repetition of the original ideas of dual weighted residual a posteriori error estimation (DWR
method) in Section 7.1, we proceed with the application of the classical error estimator to
the multiple shooting approach. We point out, that the classical error estimator is limited to
the case of coinciding adjacent meshes at the multiple shooting nodes. Next, a new error
estimator, especially suited for the application to the multiple shooting solution, is derived
in Section 7.2. This error estimator is designed to incorporate the projection errors on the
multiple shooting nodes due to different adjacent meshes. It is based on the consideration
of the converged multiple shooting system in terms of a Galerkin approach. While the
error estimators are developed for the error between the fully discrete solution and the
continuous solution in function space, for the numerical consideration we limit ourselves
to the further investigation of the spatial part of the error for the remaining part of the
chapter. The developed error estimators contain the unknown solution of the optimization
problem. Therfore, the evaluation of the error estimators needs reliable approximations of
the aforementioned solutions. Consequently, the practical evaluation of the error is discussed
in Section 7.3. Finally, this chapter closes by presenting some numerical examples in Section
7.4 which illustrate the performance of the developed error estimators.

Remark 7.1. We should remark that the application of the considered error estimators to
the multiple shooting solution is independent of the multiple shooting approach. The error
estimator as an additional feature is applied to the solution after convergence and needs no
information on the approach itself.

7.1 The Classical Error Estimator for the Cost Functional

We start this section by reviewing a modification of a fundamental result from [7]. This modi-
fication is for example derived in [29] and is an essential ingredient for all later developments.

Lemma 7.1. Let Y be a function space and L a three times Gâteaux differentiable functional
on Y . We seek a stationary point y∗ of L on Y1 ⊂ Y , that is

L′(y∗1)(y1) = 0 ∀y1 ∈ Y1.

This equation is approximated by a Galerkin method, using a space Y2 ⊂ Y . The approximative
problem seeks y∗2 ∈ Y2 such that

L′(y∗2)(y2) = 0 ∀y2 ∈ Y2. (7.1)
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If the continuous solution y∗1 fulfills additionally

L′(y∗1)(y2) = 0 ∀y2 ∈ Y2, (7.2)

and the following error representation holds for arbitrary y2 ∈ Y2.

L(y∗1)− L(y∗2) = 1
2
L′(y∗2)(y∗1 − y2) +R.

The remainder term R is given by

R = 1
2

∫ 1

0
L′′′(y∗2 + se)(e, e, e) · s · (s− 1)ds

where the error e is defined as e = y∗1 − y∗2.

Proof. First, from the main theorem of calculus, the following identity holds for y1 ∈ Y1,
y2 ∈ Y2:

L(y∗1)− L(y∗2) =
∫ 1

0
L′(y∗2 + se)(e)ds.

Application of the trapezoidal rule to the integral yields:∫ 1

0
L′(y∗2 + se)(e)ds = 1

2
L′(y∗2)(e) + 1

2
L′(y∗1)(e) + 1

2

∫ 1

0
L′′′(y∗2 + se)(e, e, e) · s · (s− 1)ds︸ ︷︷ ︸

=:R

.

The second addend vanishes according to (7.2), and due to (7.1) we have for arbitrary y2 ∈ Y2

1
2
L′(y∗2)(e) = 1

2
L′(y∗2)(y∗1 − y2).

This completes the proof.

Remark 7.2. (Notation) Throughout this chapter different Lagrangians, cost functionals, and
residuals are defined. In order to keep the notation easily understandable we use the same
notation within the different subsections whereas the certain meaning becomes clear in the
context. The Lagrangians in function space are denoted by L, Lagrangians of the discretized
problems by L̃. Furthermore, all residuals are named ρ̃ with, if necessary, additional indices
to specify the corresponding interval number and equation.

We want to recall some results on the estimation of the discretization error in the cost
functional by the dual weighted residual method. The idea of this approach was first
developed by Becker, Kapp, and Rannacher in [4], [5], [3], [7] and extensions to optimization
problems have been developed by Meidner and Vexler in [6], [30]. Whereas Meidner and Vexler
are interested in splitting the discretization error of the fully discretized solution into different
parts due to the spatial discretization, the temporal discretization, and the discretization of
the control space, we first derive the error estimators for the error J(q, u)−J(qσ, uσ) and later
in the numerical applications restrict ourselves to the case of estimating J(qk, uk)− J(qσ, uσ).

We start by recalling a result for the DWR error representation of the cost functional J
on the whole time interval. Therefore, we need some preparatory results presented in the
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following. We recall the definition of the Lagrangian L : Q ×X ×X → R from equation
(4.3), which was given by

L(q, u, z) := J(q, u)− {((∂tu, z)) + a(u)(z) + b(q)(z) + (u(0), z(0))− ((f, z))− (u0, z(0))} .

Its discrete counterpart L̃ : Qd × X̃r,s
k × X̃

r,s
k → R reads in terms of the chosen dG(r)cG(s)

discretization

L̃(qσ, uσ, zσ) := J(qσ, uσ)−
{

n∑
l=1

((∂tuσ, zσ))l + a(uσ)(zσ) + b(qσ)(zσ)

+
n−1∑
l=0

([uσ]l, z+
k,l) + (u−σ,0 − u0, z

−
σ,0)− ((f, zσ))

}
. (7.3)

For the derivatives of the discrete Lagrangian the following relations hold true:

Lemma 7.2. Let for the optimization problem of interest, lastly stated in (4.2), the solutions
of the continuous, resp. discretized, problem be given as

(q, u, z) ∈ Q×X ×X and (qσ, uσ, zσ) ∈ Qd × X̃r,s
kh × X̃

r,s
kh .

Then the following equations hold true:

L̃′(qσ, uσ, zσ)(q̂σ, ûσ, ẑσ) = 0 ∀(q̂σ, ûσ, ẑσ) ∈ Qd × X̃r,s
kh × X̃

r,s
kh , (7.4)

L̃′(q, u, z)(q̂σ, ûσ, ẑσ) = 0 ∀(q̂σ, ûσ, ẑσ) ∈ Qd × X̃r,s
kh × X̃

r,s
kh . (7.5)

Proof. Equation (7.4) is equivalent to the first order optimality condition of the discretized
optimization problem and thus fulfilled for its solution (qσ, uσ, zσ) ∈ Qd × X̃r,s

kh × X̃
r,s
kh . The

proof of equation (7.5) is more sophisticated. In order to clarify the basic ideas of this proof,
we show how the verification is performed for the primal equation

L̃j′z (q, u, z)(ẑσ) = 0 ∀ẑσ ∈ X̃r,s
kh . (7.6)

The proof for the remaining equations

L̃j′u (q, u, z)(ûσ) = 0 ∀ûσ ∈ X̃r,s
kh ,

L̃j′q (q, u, z)(q̂σ) = 0 ∀q̂σ ∈ Qd.

follows analogously.

Regarding the definition of the Lagrangian in (7.3), the jumps and the initial condition cancel
out for the continuous solution. We remain with the reformulation of (7.6) as follows:

nj∑
l=1

((∂tu, ẑσ))l + a(u)(ẑσ) + b(q)(ẑσ) = 0 ∀ẑσ ∈ X̃r,s
kh . (7.7)

Now, by density of X in L2(I, V ) with respect to the norm on L2(I, V ), and by the inclusion
X̃r,s
kh ⊂ L2(I, V ), we are able to approximate ẑσ by a sequence of functions in X. Considering

the limit, we obtain that (7.7) is true and consequently that equation (7.6) holds true.
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Now, we have everything at hand to consider the error representation of the functional error
in the cost functional J :

J(q, u)− J(qσ, uσ).
We are able to prove the following well known result for the discretization error:
Theorem 7.3. Let (q, u, z) be a stationary point of the Lagrangian L, that is, it fulfills the
first order optimality condition (4.4). Furthermore, let (qσ, uσ, zσ) be a stationary point of
the discrete Lagrangian L̃, that is, it solves the discretization of (4.4). For the error of the
cost functional the following representation holds:

J(q, u)− J(qσ, uσ) = 1
2
L̃′(qσ, uσ, zσ)(q − q̂σ, u− ûσ, z − ẑσ) +Rσ (7.8)

where (q̂σ, ûσ, ẑσ) ∈ Qd ×Xr,s
kh ×X

r,s
kh arbitrary and the remainder terms Rσ has the same

form as in Lemma 7.1 with L = L̃j.

Proof. From previous thoughts we know, that the continuous solution fulfills (4.4), and
the fully discrete solution fulfills its discretization. Therefore, the primal equation in the
formulation of the Lagrangian vanishes and we directly obtain

J(q, u)− J(qσ, uσ) = L̃(q, u, z)− L̃(qσ, uσ, zσ).

The remaining part of the proof is obtained from Lemma 7.1 with

Y1 := Q×X ×X,
Y2 := Qd × X̃r,s

kh × X̃
r,s
kh ,

Y := Y1 + Y2.

Due to Lemma 7.2, condition (7.2) in Lemma 7.1 holds for L = L̃, and we retrieve the
equality

L̃(q, u, z)− L̃(qσ, uσ, zσ) = 1
2
L̃′(qσ, uσ, zσ)(q − q̂σ, u− ûσ, z − ẑσ) +Rσ

for arbitrary (q̂σ, ûσ, ẑσ) ∈ Qd ×Xr,s
kh ×X

r,s
kh . Altogether this yields the stated condition

J(q, u)− J(qσ, uσ) = 1
2
L̃′(qσ, uσ, zσ)(q − q̂σ, u− ûσ, z − ẑσ) +Rσ

and completes the proof.

We can furthermore write the error identities of Theorem 7.3 by means of the residuals
ρ̃u(q, u)(ϕ), ρ̃z(q, u, z)(ψ), ρ̃q(q, u, z)(χ) of the discretized primal, dual, and control equation:

ρ̃u(qσ, uσ)(ϕ) = L̃′z(qσ, uσ, zσ)(ϕ),
ρ̃z(qσ, uσ, zσ)(ψ) = L̃′u(qσ, uσ, zσ)(ψ),
ρ̃q(qσ, uσ, zσ)(χ) = L̃′q(qσ, uσ, zσ)(χ).

Introducing this notation and neglecting the remainder terms, system (7.8) turns into

J(q, u)− J(qσ, uσ)

≈ 1
2
{ρ̃u(qσ, uσ)(z − ẑσ) + ρ̃z(qσ, uσ, zσ)(u− ûσ) + ρ̃q(qσ, uσ, zσ)(q − q̂σ)} . (7.9)
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7.1 The Classical Error Estimator for the Cost Functional

Example 7.1. (Residuals for the cG(s)dG(0) discretization) To make these theoretical
results more substantial, the residuals for the cG(s)dG(0) discretization are stated in the
following. The notation is according to equation (5.9).

ρ̃u(qσ, uσ)(ψ) = (Uσ,0 − u0, Ψ0)

+
n∑
l=1
{(Uσ,l − Uσ,l−1, Ψl)

+klā(Uσ,l)(Ψl) + klb̄(Qσ,l)(Ψl)− kl(f(tl), Ψl)
}

ρ̃z(qσ, uσ, zσ)(ψ) = (Zσ,0 − Zσ,1, Ψ0)

+
n−1∑
l=1

{
(Zσ,l − Zσ,l+1, Ψl) + klā

′
u(Uσ,l)(Ψl, Zσ,l)

−klF ′(Uσ,l)(Ψl)
}

+ (Zσ,n, Ψn)− J ′u(Qσ,n, Uσ,n)(Ψn)

ρ̃q(qσ, uσ, zσ)(ψ) =
n∑
l=1

{
b̄′q(Qσ,l)(Ψl, Zσ,l)− (Qσ,l, Ψl)R

}

We continue by embedding the error estimator into the context of multiple shooting. Therefore,
let us first state two preliminary remarks.

Remark 7.3. (Discretization of the multiple shooting variables) In the following, we assume
that adjacent meshes at the multiple shooting nodes are equivalent for reasons of consistency.
The multiple shooting variables are discretized accordingly, and for the spatial discretization
we have V j,nj ,s

h = V j+1,0,s
h .

Remark 7.4. The multiple shooting solution on the different stages of discretization fulfills
the matching conditions. Therefore, according to Remark 7.3, we have the following identities
for the fully discrete multiple shooting solution:

uj−σ,nj = u
(j+1)−
σ,0 = sj+1

h and z
(j+1)−
σ,0 = zj−σ,nj = λj+1

h .

We prove the following theorem which displays the classical DWR error representation of the
functional error in terms of the intervalwise residuals:

Theorem 7.4. Let (q, u, z), (qσ, uσ, zσ) be solutions of problem (4.2) on the different stages
of discretization, and let us denote their intervalwise restrictions as before. Let ρ̃u, ρ̃z, ρ̃q
denote the discrete primal, dual, and control residual of the equations in (5.7). For the
functional error there holds

J(q, u)− J(qσ, uσ)

= 1
2
{ρ̃u(qσ, uσ)(z − ẑσ) + ρ̃z(qσ, uσ, zσ)(u− ûσ) + ρ̃q(qσ, uσ, zσ)(q − q̂σ)} (7.11a)
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where the residuals are obtained by summation of the intervalwise residuals:

ρ̃u(qσ, uσ)(z − ẑσ) =
m−1∑
j=0

ρ̃ju(qjσ, ujσ)(zj − ẑjσ),

ρ̃z(qσ, uσ, zσ)(u− ûσ) =
m−1∑
j=0

ρ̃jz(qjσ, ujσ, zjσ)(uj − ûjσ),

ρ̃q(qσ, uσ, zσ)(q − q̂σ) =
m−1∑
j=0

ρ̃jq(qjσ, ujσ, zjσ)(qj − q̂jσ).

(7.11b)

Here, the terms ρ̃ju(qjσ, ujσ)(ϕ), ρ̃jz(qjσ, ujσ, zjσ)(ψ), and ρ̃jq(qjσ, ujσ, zjσ)(χ) denote the residuals of
the discretized intervalwise optimality system (5.6).

Proof. The first statement has already been proven in Lemma 7.3. Therefore, only the proof
of the last statement remains undone. We prove the identity only for the primal residual, the
result for dual and control residual follows analogously. From equation (5.2a) we retrieve by
summation over the multiple shooting intervals

m−1∑
j=0

ρ̃ju(qjσ, ujσ)(zj − ẑjσ) =

m−1∑
j=0

{ nj∑
l=1

((∂tujσ, zj − ẑjσ))j,l + a(ujσ)(zj − ẑjσ) + b(qjσ)(zj − ẑjσ)

+
nj−1∑
l=0

([ujσ]l, z
j+
l − ẑ

j+
σ,l ) + (uj−σ,0 − s

j
h, z

j−
0 − ẑ

j−
σ,0)− ((f, zj − ẑjσ))j

}
.

Due to Remark 7.4 the terms (uj−σ,0, z
j−
0 −ẑ

j−
σ,0) and (sjh, z

j−
0 −ẑ

j−
σ,0) cancel out for j = 1, . . . ,m−1,

and only the term for j = 0 remains. Furthermore, we can substitute for continuous zj the
terms zj+l = zj−l = z(tj,l) and obtain

m−1∑
j=0

ρ̃ju(qjσ, ujσ)(zj − ẑjσ) =

m−1∑
j=0

{ nj∑
l=1

((∂tujσ, zj − ẑjσ))j,l + a(ujσ)(zj − ẑjσ) + b(qjσ)(zj − ẑjσ)

+
nj−1∑
l=0

([ujσ]l, z(tj,l)− ẑ
j+
σ,l )
}

+ (u0−
σ,0 − u0, z(τ0)− ẑ0−

σ,0)−
m−1∑
j=0

((f, zj − ẑjσ))j .

From Remark 7.4 we see further that for j = 0, . . . ,m− 2 the jump terms for l = 0 can be
written as

([uj+1
σ ]0, z(τj+1)− ẑ(j+1)+

σ,0 ) = (u(j+1)+
σ,0 − uj−σ,nj , z(τj+1)− ẑ(j+1)+

σ,0 ).
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7.2 A Posteriori Error Estimation for the Multiple Shooting System

We insert this into the equation and obtain

m−1∑
j=0

ρ̃ju(qjσ, ujσ)(zj − ẑjσ) =

m−1∑
j=0

{ nj∑
l=1

((∂tujσ, zj − ẑjσ))j,l + a(ujσ)(zj − ẑjσ) + b(qjσ)(zj − ẑjσ)

+
nj−1∑
l=1

([ujσ]l, z(tj,l)− ẑ
j+
σ,l )
}

+ ([u0
σ]0, z(τ0)− ẑ0+

σ,0) +
m−2∑
j=0

(u(j+1)+
σ,0 − uj−σ,nj , z(τj+1)− ẑ(j+1)+

σ,0 )

+ (u0−
σ,0 − u0, z(τ0)− ẑ0−

σ,0)−
m−1∑
j=0

((f, zj − ẑjσ))j .

The right-hand side of this equation is equivalent to the residual of the discrete primal
equation of (5.7):

m−1∑
j=0

ρ̃ju(qjσ, ujσ)(zj − ẑjσ) = ρ̃u(qσ, uσ, zσ)(z − ẑσ). (7.12)

This completes the proof.

So far we have seen how the classical DWR error estimator can be composed from intervalwise
residuals under the assumption of identical adjacent meshes on the multiple shooting nodes.
This assumption is due to the fact, that the solution obtained by multiple shooting must
coincide with the solution from the classical approach. In the next subsection, we develop an
approach that allows us to handle the error estimator for solutions with differently refined
adjacent meshes. This error estimator incorporates additional projection errors on the
multiple shooting nodes.

7.2 A Posteriori Error Estimation for the Multiple Shooting
System

The following approach to a posteriori error estimation for the functional error is based on
embedding the whole multiple shooting approach after convergence into the context of Galerkin
methods. This procedure enables us to treat each interval separately without any assumptions
on the adjacent grids from different intervals. The resulting error estimator inherits parts of
the classical DWR error estimator but additionally incorporates projection errors for both
primal and dual shooting variables on the multiple shooting nodes.
Remark 7.5. (Error estimation for direct and indirect multiple shooting) We derive this
estimator by means of the indirect multiple shooting approach only, but remark that the
obtained solutions for direct and indirect multiple shooting are identical. Therefore, the
results hold accordingly for the solution of the direct multiple shooting approach.
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7 A Posteriori Error Estimation

Let us consider the following optimization problem for which we show that its optimality
system is equivalent to the indirect multiple shooting formulation (4.8) with matching
conditions (4.9). Using the notation as introduced in (4.10), we set up the minimization
problem

min
s̃,ũ,q̃
J (q̃, ũ, s̃) :=

m−1∑
j=0

{
α1J

j
1(uj) + α3

2
‖qj‖2Qj

}
+ α2J2(sm) (7.13a)

such that

1. for all ϕ ∈ Xj , j = 0, . . . ,m− 1,

((∂tuj , ϕ))j + a(uj)(ϕ) + b(qj)(ϕ) + (uj(τj)− sj , ϕ(τj))− ((f, ϕ))j = 0, (7.13b)

2. for all v ∈ H, j = 0, . . . ,m− 1

(s0 − u0, v) = 0,
(sj+1 − uj(τj+1), v) = 0.

(7.13c)

The Lagrangian of (7.13), mapping from Q̃× X̃ × H̃ × X̃ × H̃ → R reads

L(q̃, ũ, s̃, z̃, λ̃) =
m−1∑
j=0

{
α1J

j
1(uj) + α3

2
‖qj‖2Qj

}
+ α2J2(sm)

−
{m−1∑
j=0

{
((∂tuj , zj))j + a(uj)(zj) + b(qj)(zj) + (uj(τj)− sj , zj(τj))− ((f, zj))j

}
+
m−1∑
j=0

{
(sj+1 − uj(τj+1), λj+1)

}
+ (s0 − u0, λ

0)
}
. (7.14)

Explicit calculation of the first order optimality condition

L′(q̃, ũ, s̃, z̃, λ̃)(χ̃, ϕ̃, ξ̃, ψ̃, η̃) = 0 ∀(χ̃, ϕ̃, ξ̃, ψ̃, η̃) ∈ Q̃× X̃ × H̃ × X̃ × H̃

yields back the intervalwise optimality systems (4.8) of the indirect approach together with
the matching conditions (4.9):

Differentiation of (7.14) with respect to the primal variables (ũ, s̃) yields for all (ϕ̃, ξ̃) ∈ X̃×H̃
the condition

m−1∑
j=0

α1J
j′
1 (uj)(ϕj) + α2J

′
2(sm)(ξm)

−
{m−1∑
j=0

{
((∂tϕj , zj))j + a′u(uj)(ϕj , zj) + (ϕj(τj)− ξj , zj(τj))

}
+
m−1∑
j=0

{
(ξj+1 − ϕj(τj+1), λj+1)

}
+ (ξ0, λ0)

}
= 0
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which by partial integration transforms into

m−1∑
j=0

α1J
j′
1 (uj)(ϕj) + α2J

′
2(sm)(ξm)

−
{m−1∑
j=0

{
− ((∂tzj , ϕj))j + a′u(uj)(ϕj , zj) + (zj(τj+1), ϕj(τj+1)) + (zj(τj), ξj)

}
+
m−1∑
j=0

{
(ξj+1 − ϕj(τj+1), λj+1)

}
+ (ξ0, λ0)

}
= 0.

Now, summing up the terms appropriately, we end up with the equation

m−1∑
j=0

α1J
j′
1 (uj)(ϕj) + α2J

′
2(sm)(ξm)− (λm, ξm)

−
{m−1∑
j=0

{
− ((∂tzj , ϕj))j + a′u(uj)(ϕj , zj) + (zj(τj+1)− λj+1, ϕj(τj+1))

}
+
m−1∑
j=0

(λj − zj(τj), ξj)
}

= 0.

We separate the equations and obtain for j = 0, . . . ,m− 1 the following PDE:

Determine zj ∈ Xj such that for all ϕj ∈ Xj

α1J
j′
1 (uj)(ϕj)−

{
− ((∂tzj , ϕj))j + a′u(uj)(ϕj , zj) + (λj+1 − zj(τj+1), ϕj(τj+1))

}
= 0.

This equation is equivalent to the dual equation (4.8b). Furthermore we obtain a set of
conditions which are equivalent to the matching conditions for the dual variable in (4.9):

(zj(τj)− λj , ξj) = 0 ∀ξj ∈ H,
α2J

′
2(sm)(ξm)− (λm, ξm) = 0 ∀ξm ∈ H.

Analogously we obtain by differentiation of (7.14) with respect to q̃ the intervalwise control
equations (4.8c).

Now, as before, we are in need of the Lagrangian of the discretized problem in order to
develop the error estimator for the cost functional. We denote the Lagrangian for the fully
discrete problem by L̃ : Q̃d× X̃kh× H̃h× X̃kh× H̃h → R. The discrete Lagrangian is defined
by the following identity:

L̃(q̃σ, ũσ, s̃h, z̃σ, λ̃h) :=
m−1∑
j=0

{
α1J

j
1(ujσ) + α3

2
‖qjσ‖2Qj

}
+ α2J2(smh )

−
{m−1∑
j=0

{ nj∑
l=1

((∂tujσ, zjσ))j,l+a(ujσ)(zjσ)+b(qjσ)(zjσ)+
nj−1∑
l=0

([ujσ]l, z
j+
σ,l )+(uj−σ,0−s

j
σ, z

j−
σ,0)−((f, zjσ))j

}
+
m−1∑
j=0

{
(sj+1
h − ujσ(τj+1), λj+1

h )
}

+ (s0h − u0, λ
0
h)
}
.
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We obtain by differentiation of the Lagrangian with respect to q̃σ, ũσ, s̃h the fully discrete
intervalwise optimality system as in (5.6) and the discrete matching conditions (5.8). This can
either be verified as done for the continuous case by elementary calculus or by argumenting that
discretization and dualization interchange for Galerkin discretizations. Now, the derivation
of the error estimator proceeds as already seen for the classical DWR error estimator in
Subsection 7.1. Let us state the following theorem:

Theorem 7.5. (Error estimator for the multiple shooting solution) Let (q̃σ, ũσ, s̃h) be a
stationary point of the fully discretized problem (5.6) with matching conditions (5.8). Then,
for the functional error the following identity holds:

J (q̃, ũ, s̃)− J (q̃σ, ũσ, s̃h)

= 1
2
L̃′(q̃σ, ũσ, s̃h, z̃σ, λ̃h)(q̃ − ˆ̃qσ, ũ− ˆ̃uσ, s̃− ˆ̃sh, z̃ − ˆ̃zσ, λ̃− ˆ̃λh) +Rσ

=
m−1∑
j=0

{1
2
{
ρ̃ju(qjσ, ujσ, s

j
h)(z

j − ẑjσ) + ρ̃jz(qjσ, ujσ, zjσ, λ
j
h)(u

j − ûjσ) + ρ̃jq(qjσ, ujσ, zjσ)(qj − q̂jσ)
}

+ 1
2
{
ρ̃js(ujσ, s

j
h)(λ

j − λ̂jh) + ρ̃jλ(z
j
σ, λ

j
h)(s

j − ŝjh)
}}

+Rσ (7.15)

for arbitrary ûjσ, ẑjσ ∈ X̃
j,r,s
kh , q̂jσ ∈ Q

j
d, ŝ

j
h, λ̂

j
h ∈ H

j
h and Rσ a remainder term of the same

form as in Lemma 7.1 with L = L̃. The residuals are defined as follows:

ρ̃ju(qjσ, ujσ, s
j
h)(z

j − ẑjσ) :=
nj∑
l=1

((∂tujσ, zjσ − ẑjσ))j,l + a(ujσ)(zjσ − ẑjσ) + b(qjσ)(zjσ − ẑjσ)

+
nj−1∑
l=0

([ujσ]l, z
j+
σ,l − ẑ

j+
σ,l ) + (uj−σ,0 − s

j
h, z

j−
σ,0 − ẑ

j−
σ,0)− ((f, zjσ − ẑjσ))j , (7.16a)

ρ̃jz(qjσ, ujσ, zjσ, λ
j
h)(u

j − ûjσ) := −α1J
j′
1 (ujσ)(ujσ − ûjσ)

+
nj∑
l=1

{
−((∂tzjσ, ujσ − ûjσ))j,l

}
+ a′u(ujσ)(ujσ − ûjσ, zjσ)

−
nj−1∑
l=0

([zjσ]l, u−σ,l − û
−
σ,l)(z

j−
σ,nj − λ

j+1
h , u−σ,nj − û

−
σ,nj ), (7.16b)

ρ̃jq(qjσ, ujσ, zjσ)(qj − q̂jσ) :=
{
b′q(qjσ)(zjσ, qj − q̂jσ)− α3(qjσ, qj − q̂jσ)Q,

(7.16c)

ρ̃js(ujσ, s
j
h)(λ

j − λ̂jh) :=

 (sjh − u0, λ
j − λ̂jh) j = 0,

(sjh − u
j−1
σ (τj), λj − λ̂jh) j = 1, . . . ,m,

(7.17a)

ρ̃jλ(z
j
σ, λ

j
h)(s

j − ŝjh) :=

 (λj − zjσ(τj), sj − ŝ
j
h) j = 0, . . . ,m− 1,

(λj , sj − ŝjh)− α2J
′
2(sj)(sj − ŝ

j
h) j = m.

(7.17b)
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Proof. From the validity of the discretized formulation of condition (7.13b) and (7.13c) for
both continuous and fully discrete stationary points of the problem, we obtain as for the
classical error estimator

J (q̃, ũ, s̃)− J (q̃σ, ũσ, s̃h) = L̃(q̃, ũ, s̃, z̃, λ̃)− L̃(q̃σ, ũσ, s̃h, z̃σ, λ̃h). (7.18)

With the same argumentation as in Lemma (7.2) we can conclude that the following equalities
hold for all (χ̃σ, ϕ̃σ, ξ̃h, ψ̃σ, η̃h) ∈ Q̃d × X̃kh × H̃h × X̃kh × H̃h:

L̃′(q̃, ũ, s̃, z̃, λ̃)(χ̃σ, ϕ̃σ, ξ̃h, ψ̃σ, η̃h) = 0,
L̃′(q̃σ, ũσ, s̃h, z̃σ, λ̃h)(χ̃σ, ϕ̃σ, ξ̃h, ψ̃σ, η̃h) = 0.

We choose the spaces
Y1 := Q̃× X̃ × H̃ × X̃ × H̃,
Y2 := Q̃d × X̃kh × H̃h × X̃kh × H̃h,

Y := Y1 + Y2

and apply Lemma (7.1) to the right hand side of (7.18). This yields the relation

J (q̃, ũ, s̃)−J (q̃σ, ũσ, s̃h) = 1
2
L̃′(q̃σ, ũσ, s̃h, z̃σ, λ̃h)(q̃− ˆ̃qσ, ũ− ˆ̃uσ, s̃− ˆ̃sh, z̃− ˆ̃zσ, λ̃− ˆ̃λh) +Rσ.

Explicit calculation of L̃′ directly yields the stated condition in terms of the residuals.

A closer investigation of the error representation (7.15) reveals the composition of the error.
First, the intervalwise discretization errors replay in the residuals ρ̃ju, ρ̃jz, and ρ̃jq of the
equations. Second, the contribution of the projection errors on the nodes is given by the
residuals ρ̃s and ρ̃λ of the matching conditions.

Remark 7.6. (Simplifications) Let us note at this point that special choices of the spaces Hj
h

for the shooting variables yield simplifications of the error estimator. First, if we choose Hj
h

as the superset of the trace spaces from both adjacent intervals (equivalently, the mesh at
τj is the common refinement of both adjacent meshes), then the shooting residuals (7.17)
vanish, and the classical error estimator presented in the previous section remains.

Alternatively, we can shift the errors due to inconsistencies at the shooting nodes completely
to the shooting residuals by choosing Hj

h as the intersection of the two adjacent trace spaces.
In this case, the terms corresponding to the boundary values of primal and dual residual in
(7.16) vanish. While this approach would yield the smallest shooting system, we did not use
it here: it can be feared that it may yield an uncontrollable loss of accuracy at the nodes if
the shooting residuals are not properly taken into account for the refinement of the adjacent
meshes.

On the other hand, if Hj
h is equal to the trace space from the left or right, then the terms

according to the right and the left boundary value in the second and first residual in (7.16)
vanish, respectively. Additionally, either ρ̃js for j = 1, . . . ,m or ρ̃jλ for j = 0, . . . ,m − 1 in
(7.17) vanish as well.
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We follow this last approach in the numerical experiments, where we choose Hj
h to be the

trace space from the right hand side, yielding the simplified residuals

ρ̃ju(qjσ, ujσ, s
j
h)(z

j − ẑjσ) =
nj∑
l=1

((∂tujσ, zjσ − ẑjσ))j,l + a(ujσ)(zjσ − ẑjσ) + b(qjσ)(zjσ − ẑjσ)

+
nj−1∑
l=0

([ujσ]l, z
j+
σ,l − ẑ

j+
σ,l )− ((f, zjσ − ẑjσ))j , (7.19a)

ρ̃jλ(z
j
σ, λ

j
h)(s

j − ŝjh) =
{

0 j = 0, . . . ,m− 1,
(λm, sm − ŝmh )− α2J

′
2(sm)(sm − ŝmh ) j = m.

(7.19b)

All other residuals remain unchanged.

We have developed an error estimator for both cases of mesh handling, dynamically changing
meshes with identical adjacent meshes on the nodes and intervalwise constant meshes with
differently refined adjacent meshes. Consequently, we have to discuss how the error estimators
can be evaluated in practice, that is how the exact solutions can be approximated properly
for the evaluation of the error estimators.

Remark 7.7. In the introduction to this chapter we already mentioned, that we are only
interested in the estimation of the spatial discretization error. Nevertheless, from the theo-
retical point of view, the whole discretization error can be treated analogously. However, the
practical implementation of time-space finite elements is highly sophisticated and is not done
in this thesis. Thus, in the following, we consider (qk, uk, zk) and (q̂k, ûk, ẑk) instead of the
continuous solution. This is allowed because all derivations done so far in this chapter hold
for the time discrete formulation, too.

7.3 Evaluation of the Error Estimators

In this section, we present possible evaluation techniques for the a posteriori error estimators
which we developed in the previous sections. Our main goal is the evaluation of the error
estimators presented in Subsections 7.2 and 7.1. We want to evaluate the estimator for the
discretization error such that the resulting error indicators reflect the error distribution in
space properly, and the error estimator converges to the discretization error for h↘ 0.

Remark 7.8. Throughout the remaining part of this chapter, we restrict ourselves to the two
dimensional case of quadrilateral meshes. A generalization to the three dimensional case of
hexalateral meshes is straightforward.

In the sequel, we want to consider the evaluation of the discretization error estimators
presented before. First, for both error estimators, the evaluation procedure of the intervalwise
residuals includes an approximation of the interpolation errors

(zjk − ẑ
j
σ), (ujk − û

j
σ), (qjk − q̂

j
σ),
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where ẑjσ = I
(s)
h zjk ∈ X̃

j,r,s
kh , ûjσ = I

(s)
h ujk ∈ X̃

j,r,s
kh and q̂jσ = Idq

j
k ∈ Q

j
d are the correspond-

ing interpolants of the current solutions. Furthermore, for the evaluation of (7.15), the
interpolation errors

(sj − ŝjh), (λj − λ̂jh)

with ŝjh = I
(s)
h sj ∈ Hj

h, λ̂
j
h = I

(s)
h λj ∈ Hj

h have to be approximated.

We introduce linear operators that map the computed solutions to approximations of these
interpolation errors as follows:

zjk − I
(s)
h zjk ≈ Phz

j
σ,

ujk − I
(s)
h ujk ≈ Phu

j
σ,

qjk − Idqk ≈ Pdq
j
σ,

sj − I(s)
h sj ≈ P̂hλjh,

λj − I(s)
h λj ≈ P̂hsjh.

For the special case of quadrilateral meshes and a cG(s) space discretization, a concretization
of the operators Ph and P̂h is given as follows:

Ph = I
(2s)
2h − id with I

(2s)
2h : X̃j,r,s

kh → X̃j,r,2s
k(2h),

P̂h = Î
(2s)
2h − id with Î

(2s)
2h : Hj

h → Hj
(2h).

Hereby, the piecewise biquadratic interpolation I
(2s)
2h can easily be computed due to the

requested patch structure of the refined mesh introduced in Section 5.2. The second operator
Pd has to be defined according to the choice of Qd. According to Section 5.4 we restrict
ourselves to a cG(p)dG(r), p ≤ s, discretization of the control space Q. Therefore, an
appropriate choice of Pd is given by

Ph = I
(2p)
2h − id with I

(2p)
2h : X̃j,r,p

kh → X̃j,r,2p
k(2h) .

Remark 7.9. Whenever the discretization of the states and control coincide, that is p = s,
the error due to the control equation vanishes:

ρ̃jq(qjσ, ujσ, zjσ)(qj − q̂jσ) = 0.

We discuss the practical evaluation of the error terms in the following. We easily obtain
a fully computable version of both error estimators, (7.11) and (7.15), as follows: For the
intervalwise formulation of the classical DWR error estimator, we obtain

J(qk, uk)− J(qσ, uσ)

= 1
2

{m−1∑
j=0

ρ̃ju(qjσ, ujσ, zjσ)(Phzjσ)+
m−1∑
j=0

ρ̃jz(qjσ, ujσ, zjσ)(Phujσ)+
m−1∑
j=0

ρ̃jq(qjσ, ujσ, zjσ)(Pdqjσ)
}

+Rσ.
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Accordingly, the computable formulation of the error estimator for the complete multiple
shooting system is given by

J (q̃k, ũk, s̃)− J (q̃σ, ũσ, s̃h)

=
m−1∑
j=0

{1
2
{
ρ̃ju(qjσ, ujσ, s

j
h)(Phz

j
σ) + ρ̃jz(qjσ, ujσ, zjσ, λ

j
h)(Phu

j
σ) + ρ̃jq(qjσ, ujσ, zjσ)(Pdqjσ)

}
+ 1

2
{
ρ̃js(ujσ, s

j
h)(P̂hλ

j
h) + ρ̃jλ(z

j
σ, λ

j
h)(P̂hs

j
h)
}}

+Rσ.

Finally, to conclude this chapter, let us present some numerical examples in order to verify
the validity of the error estimators.

7.4 Numerical Examples

We present numerical results of the error estimators for Example 2.1 and 2.4. As mentioned
before, the error estimator for the whole multiple shooting system with intervalwise constant
meshes is considered to be more promising from the computational point of view. Therefore,
we mainly focus on this approach henceforth, but nevertheless give comparative results on
the classical DWR error estimator for dynamically changing meshes, too. We start with an
example constrained by the heat equation with control as a source term on the right-hand
side. The cost functional measures the terminal time deviation from a desired stated.

Example 7.2. (Distributed control of the heat equation) Considering Example 2.1 with
parameters α2 = 1, α3 = 10−3, T = 2.5, and desired terminal time state ū = 0.5, we apply
multiple shooting with a total number of 10 intervals. The intervals are subdivided into 25
time steps each, that is a constant time step size of 0.01 for the time discretization. The
spatial domain is chosen as a square Ω = (−1, 1)× (−1, 1). Furthermore, the initial condition
is given by the function u(0) = cos(π2x) cos(π2x), and the boundary conditions are given as
homogenous Dirichlet conditions.

We consider global refinement after convergence of the multiple shooting method and restart
the multiple shooting method on the new mesh. This yields the convergence results for
the multiple shooting error estimator as shown in Table 7.1. The numerical computations
illustrate that with increasing refinement level, the error estimator converges to the correct
value of the functional error. In this case of identical, globally refined meshes on all intervals,
the projection error is due to the projection of u0 into the discretized space. We also consider
the error estimator for the case of locally refined meshes. Therefore, we apply the mesh
refinement techniques which will be introduced in Chapter 8. As expected, for locally refined,
intervalwise constant meshes the results are accordingly, as outlined in Table 7.2. In the
following, N is the total number of cells from all meshes (of all time steps), eh denotes the
correct error value, ηdisc denotes the estimate of the discretization error, ηproj is the estimate
of the projection error, and η is the estimate for the whole functional error eh. The so called
efficiency index Ieff := ηh/eh gives information on the accuracy of the error estimator and
on the development of the approximation. Ieff should converge to 1 for N →∞ if the error
estimator works well.
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Table 7.1: Errors and estimates for global refinement with intervalwise constant meshes for
Example 7.2 with functional value J(q, u) = 0.0553066.

N eh ηdisc ηproj η Ieff
1080 −1.669 · 10−01 −6.090 · 10−02 −6.167 · 10−11 −6.090 · 10−02 0.365
4320 −8.395 · 10−02 −2.006 · 10−02 −1.384 · 10−11 −2.006 · 10−02 0.239
17280 −2.824 · 10−02 −9.728 · 10−03 −1.152 · 10−12 −9.728 · 10−03 0.344
69120 −7.162 · 10−03 −5.519 · 10−03 6.500 · 10−12 −5.519 · 10−03 0.770
276480 −1.718 · 10−03 −1.933 · 10−03 1.396 · 10−13 −1.933 · 10−03 1.125
1105920 −4.225 · 10−04 −4.522 · 10−04 8.020 · 10−14 −4.522 · 10−04 1.070
4423680 −1.050 · 10−04 −1.073 · 10−04 1.981 · 10−15 −1.073 · 10−04 1.022

Table 7.2: Errors and estimates for local refinement with intervalwise constant meshes for
Example 7.2 with functional value J(q, u) = 0.0553066.

N eh ηdisc ηproj η Ieff
1080 −1.669 · 10−01 −6.090 · 10−02 6.166 · 10−11 −6.090 · 10−02 0.365
2052 −8.395 · 10−02 −2.006 · 10−02 −1.020 · 10−07 −2.006 · 10−02 0.239
4644 −2.824 · 10−02 −9.729 · 10−03 −1.714 · 10−07 −9.729 · 10−03 0.344
8532 −7.165 · 10−03 −5.521 · 10−03 −1.912 · 10−07 −5.521 · 10−03 0.771
17604 −1.721 · 10−03 −1.939 · 10−03 −1.916 · 10−07 −1.940 · 10−03 1.127
37044 −4.161 · 10−04 −4.323 · 10−04 −1.917 · 10−07 −4.325 · 10−04 1.039
77220 −1.809 · 10−04 −1.631 · 10−04 −1.917 · 10−07 −1.633 · 10−04 0.903
139428 −1.079 · 10−04 −1.092 · 10−04 −1.974 · 10−07 −1.094 · 10−04 1.013
291060 −5.213 · 10−05 −5.095 · 10−05 −1.974 · 10−07 −5.115 · 10−05 0.981

Local refinement with dynamically changing meshes yields different meshes within the process
of mesh adaptation. However, the error estimator η in this case converges to the correct
value eh as given in Table 7.3.

Table 7.3: Errors and estimates for local refinement with dynamically changing meshes for
Example 7.2 with functional value J(q, u) = 0.0553066.

N eh η Ieff
1080 −1.669 · 10−01 −6.090 · 10−02 0.365
1956 −8.395 · 10−02 −2.006 · 10−02 0.239
4152 −2.824 · 10−02 −9.730 · 10−03 0.345
8592 −7.168 · 10−03 −5.524 · 10−03 0.771
17412 −1.724 · 10−03 −1.938 · 10−03 1.124
35796 −4.282 · 10−04 −4.575 · 10−04 1.068
75612 −1.094 · 10−04 −1.114 · 10−04 1.018
165804 −2.966 · 10−05 −2.981 · 10−05 1.005
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As expected, by refinement with dynamically changing meshes we obtain better approxima-
tions of the functional at a smaller number of cells. We hint at the fact, that by choosing
a sufficiently large number of intervals, we can compensate this drawback for intervalwise
constant meshes.

To complete this section of numerical examples, we consider now an example constrained
by a nonlinear PDE with Neumann boundary control. We minimize a time distributed cost
functional and thereby approximate a time distributed function ū(t).

Example 7.3. (Neumann boundary control) We consider Example 2.4 on a spatial domain
Ω = (−0.5, 0.5)× (−0.5, 0.5) with initial condition u0 = 1 and desired time distributed state
ū(t) = t · cos(4πx) cos(4πy). For the regularization parameter we chose α3 = 10−4 and for the
time domain I = (0, 2). The number of multiple shooting intervals is chosen as m = 10, and
the time stepping scheme is initialized with a constant time step size of 0.01. Furthermore,
the intervalwise controls are requested to be constant in time, that is for j = 0, . . . , 10

Qj =
{
v ∈ L2(Ij , R)

∣∣∣ v(t) = cj ∈ R
}
⊂ L2(Ij , R).

As in the previous example, the results for Example 7.3 show an appropriate convergence
behavior of the error estimator for the distributed cost functional.

In this example, we consider only the case of intervalwise constant meshes. In Table 7.4 the
obtained error and the corresponding error estimator for the different steps of global mesh
refinement are presented.

For the sake of completeness Table 7.5 replays the analogous results for local refinement with
intervalwise constant meshes. In both cases the error estimator η converges to the correct
value eh with proceeding mesh refinement, and the efficiency index Ieff converges accordingly
to 1.

Table 7.4: Errors and estimates for global refinement for Example 7.3 with functional value
J(q, u) = 0.295083.

N eh ηdisc ηproj η Ieff
3360 2.299 · 10−02 2.020 · 10−02 0 −2.020 · 10−02 −0.879
13440 8.932 · 10−03 −4.174 · 10−04 0 4.174 · 10−04 0.047
53760 2.314 · 10−03 −2.184 · 10−03 0 2.184 · 10−03 0.944
215040 5.709 · 10−04 −5.787 · 10−04 0 5.787 · 10−04 1.014
860160 1.420 · 10−04 −1.427 · 10−04 0 1.427 · 10−04 1.005
3440640 3.534 · 10−05 −3.548 · 10−05 0 3.548 · 10−05 1.004

We have seen so far that the error estimators yield reliable estimates for the total functional
error. In addition to the correct approximation of the error, we are interested in appropriate
adaptive mesh refinement. The results presented above and below already indicate that local
mesh refinement for these examples yields better approximations of the functional error at
fewer cells than global mesh refinement. In general, we want to refine those cells with large
error contributions. Therefore, we need knowledge on the cellwise error distribution.
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Table 7.5: Errors and estimates for local refinement with intervalwise constant meshes for
Example 7.3 with functional value J(q, u) = 0.295083.

N eh ηdisc ηproj η Ieff
3360 2.299 · 10−02 2.020 · 10−02 −0.000 · 10−00 −2.020 · 10−02 −0.879
7644 1.154 · 10−02 3.663 · 10−03 −1.735 · 10−05 −3.661 · 10−03 −0.317
18480 6.665 · 10−03 −1.179 · 10−03 3.009 · 10−05 1.176 · 10−03 0.176
43176 2.339 · 10−03 −1.637 · 10−03 1.965 · 10−07 1.637 · 10−03 0.700
98112 8.231 · 10−04 −6.540 · 10−04 −4.217 · 10−08 6.541 · 10−04 0.795
225372 3.260 · 10−04 −3.163 · 10−04 −5.213 · 10−09 3.163 · 10−04 0.970
518448 1.385 · 10−04 −1.395 · 10−04 −1.876 · 10−09 1.395 · 10−04 1.007
1063776 5.960 · 10−05 −5.963 · 10−05 −4.521 · 10−10 5.963 · 10−05 1.000
2116128 3.095 · 10−05 −3.120 · 10−05 −5.949 · 10−11 3.120 · 10−05 1.008

The next chapter is first about the localization of the discretization error and second about
the process of mesh adaptation within the multiple shooting method.
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In this chapter, we present localization techniques for the error estimators developed in
Chapter 7 and an adaptive algorithm for the purpose of mesh adaptation. Mesh adaptation
plays an important role in the context of efficient solution techniques for PDEs and aims at
the determination of an optimal mesh in time and space with respect to the desired accuracy.
That is, we search for a preferably coarse mesh on which the solution is approximated such
that we reach a beforehand defined error bound for the cost functional.

We subdivide this chapter into two main parts. Section 8.1 is on the mesh adaptation for
the classical DWR error estimator in general. It is subdivided into Subsection 8.1.1 on
the details of the localization procedure for the error and Subsection 8.1.2 on the mesh
adaptation algorithm. Section 8.2 is engaged with the corresponding procedures for the newly
developed error estimator for the multiple shooting system from Chapter 7. It is analogously
partitioned into Subsections 8.2.1 and 8.2.2. The chapter is closed by substantiating the
obtained algorithms by numerical examples in Section 8.3.

8.1 Mesh Adaptation by the Classical DWR Error Estimator

8.1.1 Localization of the Error Estimator

We start this section by introducing some notation. The error estimators are generally
denoted by η with appropriate indices for the specification in the particular context:

ηh := 1
2
{ρ̃u(qσ, uσ)(Phzσ) + ρ̃z(qσ, uσ, zσ)(Phuσ) + ρ̃q(qσ, uσ, zσ)(Pdqσ)} ,

ηjh := 1
2

{
ρ̃ju(qjσ, ujσ)(Phzjσ) + ρ̃jz(qjσ, ujσ, zjσ)(Phujσ) + ρ̃jq(qjσ, ujσ, zjσ)(Pdqjσ)

}
,

and thus

ηh =
m−1∑
j=0

ηjh.

Furthermore the intervalwise error estimator ηjh is split into its subintervalwise contributions,

ηjh =
nj∑
l=1

ηjh,l,

with

ηjh,l = 1
2

{
ρ̃j,lu (qjσ, ujσ)(Phzjσ) + ρ̃j,lz (qjσ, ujσ, zjσ)(Phujσ) + ρ̃j,lq (qjσ, ujσ, zjσ)(Pdqjσ)

}
.
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Here ρ̃j,lu , ρ̃j,lz and ρ̃j,lq denote those parts of the residuals ρ̃ju, ρ̃jz and ρ̃jq which belong to the
time subinterval Ij,l.

With this notation at hand we proceed with the meshwise localization procedure. We want
to break up the error contributions ηjh,l into cellwise error indicators which correspond to the
cellwise contribution to the error of primal, dual, and control equation. For the latter, the
splitting can be performed rather simple by writing the scalar products within the residual
ρ̃j,lq as a sum over the cells of the triangulation T j,lh . Concerning the splitting of the primal
and dual residuals, our approach follows the one presented in [7]. We transform the residuals
ρ̃j,lu and ρ̃j,lz by cellwise partial integration of (∇ujσ,∇Phzjσ) and (∇zjσ,∇Phujσ) such that we
obtain

(∇ujσ,∇Phzjσ) =
∑

K∈T j,l
h

{
(−∆ujσ, Phzjσ)K + (∂nujσ, Phzjσ)∂K

}
,

(∇zjσ,∇Phujσ) =
∑

K∈T j,l
h

{
(−∆zjσ, Phujσ) + (∂nzjσ, Phujσ)∂K

}
.

We follow the arguments of Becker and Rannacher in [7] that Phujσ and Phzjσ have continuous
traces along the boundary ∂K of each cell K. Each inner face occurs twice within the sum
with changing sign of the normal derivative (c.f. Figure 8.1). Therefore, we obtain

(∇ujσ,∇Phzjσ) =
∑

K∈T j,l
h

{
(−∆ujσ, Phzjσ)K + 1

2
([∂nujσ], Phzjσ)∂K

}
,

(∇zjσ,∇Phujσ) =
∑

K∈T j,l
h

{
(−∆zjσ, Phujσ) + 1

2
([∂nzjσ], Phujσ)∂K

}
.

Here, we define [∂nujσ] on inner faces as the jump over the face Γ from K to the neighbor
cell K ′ and on outer faces as the outer normal derivative:

[∂nujσ]
∣∣∣
Γ

:= ∂nu
j
σ

∣∣∣
K

+ ∂n′u
j
σ

∣∣∣
K′

and [∂nujσ]
∣∣∣
Γ

:= 2∂nujσ.

K
n′

K ′
n

Figure 8.1: Adjacent cells and outer normal vector.

With the residuals transformed as described above and written as a sum over the cells of T j,lh ,
we are now able to consider the cellwise contribution ηjh,l,K of the cell K to the residuals.
Therefore, we write

ηjh,l =
∑

K∈T j,l
h

ηjh,l,K and ηh =
m−1∑
j=0

nj∑
l=1

∑
K∈T j,l

h

ηjh,l,K .
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Next, we want to discuss the process of mesh adaptation according to the cellwise error
indicators.

8.1.2 The Process of Mesh Adaptation

Whenever we decide to refine the spatial meshes after the evaluation of the error estimators,
we have to assign a criterion that allows us to distinguish between those cells, which will be
refined and those cells that will be kept the same. We wish to refine the mesh, such that the
error contributions from different cells are equilibrated,

ηjh,l,K ≈ const,

for all intervals Ij for j = 0, 1, . . . ,m− 1, all subintervals Ij,l for l = 1, 2, . . . , nj , and all cells
K ∈ T j,lh . For the sake of simplicity with respect to the notation, let us assume that we have a
total number of M cells K1, . . . ,KM with corresponding error indicators ηKn , n = 1, . . . ,M .
The process of equilibration is performed as follows. We sort the cell indicators in descending
order,

ηKπ1 ≥ ηKπ2 ≥ . . . ≥ ηKπM ,

where (π1, . . . πM ) denotes a permutation of (1, . . . ,M). Then we choose a fixed number
nref which denotes the fractional amount of cells which we wish to refine. Finally, we refine
this fractional amount of cells which have the largest error contributions. In algorithmical
formulation this procedure reads:

Algorithm 8.1 Spatial mesh adaptation for the classical DWR error estimator
Require: Set of initial meshes T j,lh .

1: Choose nref.
2: Evaluate solutions qσ, uσ, zσ .
3: Evaluate error estimators and retrieve cellwise indicators ηKi .
4: Sort error indicators: ηKπ1 ≥ ηKπ2 ≥ . . . ≥ ηKπM .
5: for n = 1 to M do
6: if n < M · nref then
7: Set refinement indicator on Kπn .
8: Refine meshes according to the cellwise refinement indicators.
9: Replace adjacent meshes on the nodes by common refinement.

The procedure presented above describes only one cycle of spatial mesh adaptation. Usually,
mesh adaptation is performed after each solution cycle of the optimality system. In the case
of multiple shooting, this means the evaluation of the error estimator and the refinement of
the cells after convergence of the outer Newton method. Furthermore, as already seen in
the previous chapter, the approach of the classical DWR error estimator is limited by the
assumption of equivalent adjacent meshes on the nodes. Therefore, a different refinement
strategy is applied in the case of the error estimator developed in Section 7.2.
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8.2 Mesh Adaptation by the Error Estimator for the Multiple
Shooting System

Before we begin with the description of the adaptation strategy, let us state a preliminary
assumption, namely, according to Chapter 5, we assume constant meshes on each of the
multiple shooting intervals.

8.2.1 Localization of the Error Estimator

The localization procedure for the error estimator is quite similar to the one presented in
the previous section. The error estimator for the multiple shooting system consists of two
different types of intervalwise residuals. First, we have the intervalwise residual terms due to
the discretization error on the intervals ρ̃ju, ρ̃jz, and ρ̃jq. Second, we have the residuals due to
the projection error on the nodes ρ̃js and ρ̃

j
λ. We use the same abbreviations ηjh and ηjh,l as

before for the discretization error estimates and additionally introduce an abbreviation for
the projection errors

ηjpu := 1
2
ρ̃js(ujσ, s

j
h)(P̂hλ

j
h),

ηjpz := 1
2
ρ̃jλ(z

j
σ, λ

j
h)(P̂hs

j
h).

The localization procedure for ηjh directly follows the approach for the DWR error estimator.
Integrating back by parts, and summing up over all cells, we obtain as before

ηjh =
nj∑
l=1

∑
K∈T j

h

ηjh,l,K .

The projection errors are easily localized to cellwise contributions ηjpu,K and ηjpz ,K on the
node mesh T τjh by

ηjpu =
∑

K∈T
τj
h

ηjpu,K and ηjpz =
∑

K∈T
τj
h

ηjpz,K .

Over all, we obtain

ηh =
m−1∑
j=0

nj∑
l=1

∑
K∈T j

h

ηjh,l,K +
m−1∑
j=0

∑
K∈T

τj
h

{
ηjpu,K + ηjpz ,K

}
.

Henceforth, considering the adaptation strategy, we have to define the choice of T τjh . As
mentioned in Chapter 7, we follow the approach which is used in the numerical experiments.
We have T τjh = T jh , that is, the node mesh on τj is equivalent to the trace mesh from the
right. Thus, according to (7.19), ρ̃jλ(zjσ, λ

j
h)(P̂hs

j
h) vanishes, and only the projection error for

the dual variable remains.
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8.2.2 The Process of Mesh Adaptation

In contrast to dynamically changing meshes, intervalwise constant meshes need the calculation
of appropriate cellwise error indicators not only out of the cellwise indicators in each time
step but also out of the additional projection errors. Our basic idea is to calculate the cell
indicator for a certain cell as the maximum absolute value over all time steps of the interval
and the projection error. Let the cell indicator for a cell K of T jh be denoted by ηjK , then

ηjK := max
{
|ηjpz ,K |, max

l=1,...,nj
|ηjh,l,K |

}
. (8.1)

As before we assume that we have a total number of N cells from the intervalwise meshes,
K1, . . . ,KN for which we calculate the final error indicators ηKi according to (8.1). In this
notation, the adaptive algorithm reads:

Algorithm 8.2 Spatial mesh adaptation for the multiple shooting error estimator
Require: Set of initial meshes T jh .

1: Chose nref.
2: Evaluate solutions qσ, uσ, zσ.
3: Evaluate error estimators and cellwise indicators for all time steps and projection errors.
4: Calculate cellwise indicators ηKi .
5: Sort these indicators: ηKπ1 ≥ ηKπ2 ≥ . . . ≥ ηKπM .
6: for n = 1 to M do
7: if n < M · nref then
8: Set refinement indicator on Kπn .
9: Refine meshes according to the cellwise refinement indicators.

We close this chapter by a consideration of two different example problems in the next section.

8.3 Numerical Examples

In this section, numerical examples with different types of cost functionals and controls are
investigated.
Remark 8.1. From the viewpoint of multiple shooting in the context of partial differential
equations, it is advisable to allow different meshes for states and control. This approach
consequently allows the reduction of the dimension of the control space, which is of crucial
importance for the efficiency of the multiple shooting method as outlined in Chapter 6. Due
to implementational aspects, we are not yet able to consider this case of mesh refinement,
such that in the following examples the meshes for states and control are equivalent.

First of all, we recall the formulation from Example 2.2 and consider two different time domain
decompositions in the following. This example serves well to demonstrate the properties of
local mesh refinement due to the chosen terminal time cost functional. For the resolution of
the singularity on the boundary at the terminal time point we can expect a thin boundary
layer of locally refined cells at the corresponding spatial mesh.
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8 Multiple Shooting and Mesh Adaptation

Example 8.1. (Distributed control of the heat equation) We choose the spatial domain
Ω = (−1, 1) × (−1, 1), the time domain I = (0, 2.5), and the parameter α = 10−3. The
optimal control problem of interest is given by

min
(q,u)∈Q×X

J(q, u) := 1
2
‖u(T )− 0.5‖2L2(Ω) + α

2

∫
I
‖q(t)‖2L2(Ω)dt (8.2a)

subject to the linear heat equation

∂tu−∆u = q in Ω × I,
u = 0 on ∂Ω × I,

u = cos
(
π

2
x

)
cos

(
π

2
x

)
in Ω × {0} .

(8.2b)

We want to minimize the terminal time functional constrained by the linear heat equation for
which the control acts as a source term on the right-hand side. The need for mesh adaptation
results from the choice of the goal, J1(q) = 1

2
∫
I‖u(T )−0.5‖2dt with inhomogeneous boundary

values while the solution is subject to a homogeneous Dirichlet boundary condition. We
choose a constant time step size of 0.01 and extrapolate the correct value of the functional as
0.0553066. The results of the computations with local mesh refinement for 10 intervals are
shown in Figure 8.2.

10−5

10−4

10−3

10−2

10−1

104 105 106 107

local refinement
global refinement

local dynamical refinement

Figure 8.2: Functional error for differently fine meshes, gained by different strategies of
mesh refinement for Example 8.1. (x-axis: log(N), y-axis: log(|eh|))

Additionally, Figure 8.3 illustrates the relation between the projection error estimate and
the error estimate for the discretization error on the intervals. Mesh refinement is performed
appropriately such that the projection error estimate does not become dominant. It stays
below the discretization error and decreases if necessary.
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10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

104 105 106

discretization error
projection error

Figure 8.3: Discretization error estimate and projection error estimate with proceeding mesh
refinement for Example 8.1. (x-axis: log(N), y-axis: log(|ηproj|) and log(|ηdisc|))

We see that local refinement due to both dynamically changing and intervalwise constant
meshes is by far better than global refinement. We need a larger number of cells for intervalwise
constant meshes to obtain a certain error bound than for dynamically changing ones. This
can be expected due to the less flexible spatial meshes, but nevertheless, this drawback can
easily be overcome by increasing the number of intervals.

To demonstrate this property, we recalculate Example 8.1 for 50 intervals. The results
presented in Figure 8.4 point out that a larger number of intervals yields significantly better
results, in this case even better than with dynamically changing meshes. However, we remark
that for further refinement, the curves will cross and refinement with dynamically changing
meshes yields better results than with intervalwise constant meshes. The obtained sequence of
locally refined meshes (see Figure 8.8 on page 128) underlines the assumption that refinement
is particularly important for the resolution of the singularity on the boundary at the terminal
time point.

In the following, we do not pursue the idea of dynamically changing meshes further on,
but restrict ourselves on the application of intervalwise constant meshes. In the following
example, we consider an optimization problem on a T-shaped domain (see Figure 8.5). We
chose Neumann boundary control and a cost functional distributed in time and space. In
this particular context of mesh adaptation, the choice of the domain, the control and the
cost functional suggests the assumption that refinement should occur, first at the control
boundary, and second at the inwards pointing corners. This is due to the control localized on
the boundary of the lower part of the T-shaped domain which must affect the solution on
the whole domain. Therefore, information must pass along the inwards pointing corners to
control the solution in the upper part of the T-Shaped domain.
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8 Multiple Shooting and Mesh Adaptation

10−5

10−4

10−3

10−2

10−1

104 105 106

local refinement
global refinement

local dynamical refinement

Figure 8.4: Functional error for differently fine meshes, gained by different strategies of
mesh refinement (calculated on 50 intervals for Example 8.1). (x-axis: log(N),
y-axis: log(|eh|))

Example 8.2. (Neumann control on a T-shaped domain) We consider the problem

min
(q,u)∈Q×X

J(q, u) = 1
2

∫
I
‖u(t)− ū(t)‖2dt+ α

2

∫
I
‖q(t)‖2Qdt

subject to the constraint

∂tu−∆u+ u3 − u = 0 in I ×ΩT ,
u(0) = 0 in ΩT ,

∂nu =
{
q on I × Γc,
0 on I ×ΩT \Γc

with ΩT a T-shaped domain (see Figure 8.5), u0 = 0, ū = t, α = 10−3, and I = (0, 1).

Γc

Figure 8.5: ΩT with control boundary Γc.

We consider the case of 10 intervals, the implicit Euler with step size 0.01, and obtain by
extrapolation the correct value of the functional as 0.0052103. In Figure 8.6 we compare
global and local refinement for intervalwise constant meshes.
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10−6
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10−4

10−3

104 105 106

local refinement
global refinement

Figure 8.6: Functional error for differently fine meshes, gained by different strategies of
mesh refinement for Example 8.2. (x-axis: log(N), y-axis: log(|eh|))

The outstanding performance of local refinement is illustrated by the steep descent of the
error value for the corresponding curve. The development of the different parts of the error
estimator is given in Figure 8.7. It shows even more clearly than in the example before,
that the estimate for the projection error decreases accordingly with the estimate for the
discretization error.
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Figure 8.7: Discretization error estimate and projection error estimate with proceeding mesh
refinement for Example 8.2. (x-axis: log(N), y-axis: log(|ηproj|) and log(|ηdisc|))
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8 Multiple Shooting and Mesh Adaptation

The visualization of the meshes obtained by the procedure of local refinement at times t = 0,
t = 0.2, t = 0.4, t = 0.6, t = 0.8 and t = 1 is given in Figure 8.9 at the end of the chapter on
page 129. It illustrates the reason for the good performance of local refinement in comparison
to global refinement: the singularities at the corners are resolved by locally refined meshes.

Now, we have the mesh adaptive multiple shooting method at hand and proceed in the next
section with the consideration of the solid fuel ignition model in the context of multiple
shooting.

(a) t = 0 (b) t = 1.5

(c) t = 2 (d) t = 2.5

Figure 8.8: Intervalwise constant meshes at t = 0, t = 1.5, t = 2, t = 2.5 for Example 8.1.
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8.3 Numerical Examples

(a) t = 0 (b) t = 0.2

(c) t = 0.4 (d) t = 0.6

(e) t = 0.8 (f) t = 1

Figure 8.9: Intervalwise constant meshes at t = 0, t = 0.2, t = 0.4, t = 0.6, t = 0.8 and
t = 1 for Example 8.2.
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9 Application to the Solid Fuel Ignition
Model

This chapter focuses on the application of mesh adaptive multiple shooting to the optimal
control of the solid fuel ignition model. We introduce the solid fuel ignition model in Section
9.1 and briefly review the theoretical background in Section 9.2. Finally, in Section 9.3 we
consider the optimal control of the model for different configurations and different types of
cost functionals.

9.1 The Solid Fuel Ignition Model

The solid fuel ignition model originates from combustion theory for rapid exothermic chemical
reactions. We consider the one-step irreversible reaction

νFF + νOO → νPP

which describes the oxidation of a fuel F with the oxidant O to the product P of this
combustion process. In this connection, the stoichiometric constants νF , νO, and νP describe
the absolute parts in which the reactants and products interact, and we additionally introduce
the corresponding mass fractions of all species, yF , yO, and yP . If both reactants F and O
are available in correct proportions and the initial stock yF0 and yO0 is of the same order of
magnitude then both species are consumed entirely during the process. Therefore, the reaction
rate depends strongly on the mass fraction yF0 and yO0 which makes the mathematical
description of the process unfortunately rather complicated. However, if we assume that
the fuel F is available in excess, that is yF0 � yO0 , the mass fraction of F does not change
significantly during the chemical process and can be assumed to be constant. With this
simplifications at hand, the process reduces to a single species reaction determined by the
development of yO during the process of combustion. The derivation of the mathematical
formulation of the reaction process is more elaborated and is performed by a step by step
application of different conservation laws (that is the conservation of mass, the conservation
of species, the conservation of momentum and the conservation of energy). We do not intend
to give the explicit derivation here, but refer to the textbook of Bebernes and Eberly [2].
The so obtained equations describing the system are of a complex structure and incorporate
not only the mass fractions, but also the density, the species velocity, the pressure, and the
temperature. Since we are interested in the consideration of a solid fuel, which we assume to
be a non deformable material of constant density, the equations simplify. First, the species
velocity vanishes to zero, second the density can be assumed to be constant equal to 1. With
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9 Application to the Solid Fuel Ignition Model

some additional minor simplifications we obtain the mathematical description of the solid
fuel combustion with temperature T , time interval I = (0,∞), and fuel mass fraction y as

∂tT −∆T = εδyme
T−1
εT in I ×Ω,

∂ty − β∆y = −εδΓyme
T−1
εT in I ×Ω

with initial value and boundary condition given by

T (0, x) = 1, y(0, x) = 1 in Ω,

T (t, x) = 1, ∂ny(t, x) = 0 on I × ∂Ω.

Here, β ≥ 0, Γ > 0, and δ > 0 is the so called Frank-Kamenetski parameter. For the fuels of
interest, ε is small. Simplifying the model by the asymptotic first order approximation of
temperature and mass fraction through

T = 1 + εθ and y = 1− εc

yields the reduced model

∂tθ −∆θ = δ(1− εc)me
θ

1+εθ in I ×Ω,

∂tc− β∆c = −δΓ (1− εc)me
θ

1+εθ in I ×Ω

with initial value and boundary condition

θ(0, x) = 0, c(0, x) = 0 in Ω,

θ(t, x) = 0, ∂nc(t, x) = 0 on I × ∂Ω.

For ε� 1 the equations decouple and we are left with the consideration of the temperature
θ only. This simplified system (9.3) is finally denoted as the solid fuel ignition model and
describes under these assumptions the thermal reaction of a rigid material during the ignition
period of the process.

∂tθ −∆θ = δeθ in I ×Ω (9.3a)

with initial value and boundary condition

θ(0, x) = 0 in Ω,

θ(t, x) = 0 on I × ∂Ω.
(9.3b)

The thermal single species reaction develops due to the energy which is set free during the
reactive process and the equilibrating conduction of energy. Whenever the heat dissipation is
sufficiently large compared to the released energy, an energetical equilibrium of the system can
settle during the process of combustion. In this case the system does not heat up significantly
because enough energy is conducted from the system due to cooling. However, if cooling does
not provide an accordingly high heat dissipation, a localized temperature rise occurs and and
the reaction is accelerated noticeably in this region. As a result, in this strongly localized
high temperature region, the fuel is burned rapidly in an explosive reaction. Consequently
the solid fuel combustion allows a distinction of two cases:
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9.2 Theoretical Background

1. If the reaction settles into energetical equilibrium it is classified as subcritical or fizzle
event.

2. If the reaction results in an explosive burst of power generation we speak of a supercritical
or explosive event.

This classification is supported by theoretical results which provide information on the
whereabouts of the appearance of the blowup. We finally introduce the steady state solid fuel
ignition model which we need in the next section:

−∆ψ = δeψ in Ω,

ψ(x) = 0 on ∂Ω.
(9.4)

We give a short summary of the theoretical results mentioned above and review additionally
the theory on existence and uniqueness of solutions from the literature in the following
section.

9.2 Theoretical Background

We have explained so far that the solid fuel ignition model given in equation (9.3) has either a
solution over the whole time or otherwise the solution becomes unbounded at a time T <∞.
This blowup time is mainly determined by a critical parameter δc, that is if δ < δc the solution
is bounded for t ∈ (0,∞), otherwise for δ > δc the solution experiences a blowup at t = T .
We start this section with the discussion of the existence and uniqueness of the solutions,
before we proceed with some results providing an upper bound of the blowup time T in
dependence on δc. The theoretical investigation is sophisticated and needs an extensive
theoretical preparation. Therefore, we cite the essential results from [2] without proving
them. Let δc denote the (reaction dependant) critical parameter. Then the following two
theorems (Theorem 3.6 and 3.7 in [2]) hold:

Theorem 9.1. For δ < δc, problem (9.3) has a unique solution θ(t, x) ∈ C1,2(I × Ω) with
0 ≤ θ(t, x) ≤ ϕ(x), where ϕ(x) is the minimal solution of the steady state problem (9.4).

Remark 9.1. With the assumptions of Theorem 9.1 we obtain additional information on the
convergence behavior of the solution in time which is

lim
t→∞

θ(t, x) = ϕ(x).

Theorem 9.2. For each δ > δc, there is a T ∈ [1/δ,∞) such that (9.3) has a unique solution
θ(t, x) ∈ C1,2((0, T )×Ω). Moreover,

lim
t↗T

max
{
θ(t, x)

∣∣∣ x ∈ Ω̄ } =∞.

In other words, the solution θ(t, x) of (9.3) is globally existent and converges to the minimal
solution of the steady state problem (9.4) if the parameter δ stays below the critical bound
δc. Otherwise, the solution becomes unbounded in the L∞-sense as t↗ T .
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9 Application to the Solid Fuel Ignition Model

Further research allows not only to decide whether a system exhibits a blowup, but also to
determine for given δc the maximum time interval for which the solution exists. We cite
without proof from [2] the following two theorems and a corollary answering this question.
The basic idea is to find an ODE initial value problem whose solution exhibits a blowup in
time and is a lower bound for the solution to the solid fuel ignition model:

Theorem 9.3. (Theorem 3.9 from [2]) Let u(t) be the solution of the initial value problem

u′ = δeu − λ1u, t ∈ (0, T ) and u(0) = 0

where λ1 is the first eigenvalue of −∆ϕ = λϕ, x ∈ Ω and u(0) = 0, x ∈ ∂Ω. Let θ(t, x) be
the solution of (9.3) on [0, T )× Ω̄, then

u(t) ≤ sup
{
θ(t, x)

∣∣∣ x ∈ Ω̄ }
for t ∈ [0, T ).

It is easy to verify that the solution u only exists on the time interval [0, T0) where u(t)→∞
for t↗ T0. The maximum time T0 is determined by the identity

T0 =
∫ ∞
0

dz

δez − λ1z
.

Consequently, T0 <∞ if δ > δ∗ := λ1/e, and in this case the blowup occurs in finite time as
stated in the corollary below.

Corollary 9.4. (Corollary 3.10 from [2]) If δ > δ∗ = λ1/e, then T0 <∞ and

lim
t↗T0

sup
{
θ(t, x)

∣∣∣ x ∈ Ω̄ } =∞

where T < T0. That is, the blowup occurs in finite time.

We substantiate this result by means of a numerical example. ConsideringΩ = (−1, 1)×(−1, 1)
we obtain for the smallest eigenvalue of the Laplacian λ1 = π2

2 and for the parameter
δ∗ = 1.815. Furthermore, the critical parameter is given by δc = 1.734. We can now
investigate for different parameters δ > δ∗ the quality of the upper bound T0 for the blowup
time T . Figure 9.1 shows the behavior of predicted and numerically computed blowup time
for different reaction parameters δ. The corollary states that for δ > δ∗ > δc the solution
exhibits a blowup in finite time and further more gives an upper bound for the blowup time.
For the numerical example considered in the next section, we ensure that δ > δ∗ and choose
the time interval I = (0, T ) such that (0, T0) ⊂ I. For the sake of completeness, we finally
present results for the blowup time for those remaining parameters δ ∈ (δc, δ∗). Bebernes
and Eberly derive for this case the following theorem:

Theorem 9.5. (Theorem 3.13 from [2]) If δc is in the spectrum of (9.4) and if δ > δc, then
the unique solution θ(t, x) of (9.3) blows up in finite time T where

T <

√
2π2

δc(δ − δc)
.
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Figure 9.1: Predicted and calculated blowup time for different parameters δ with δ∗ = 1.815
and δc = 1.734. (x-axis: log(δ), y-axis: log(t))

With the theoretical results at hand, we are able to construct an example whose solution blows
up in finite time. Against this background, our applications tend to control this explosive
system by controlling the heat dissipation. That is, we choose the control as a source term
on the right hand side of equation (9.3a).

9.3 Optimal Control of the Solid Fuel Ignition Model

Optimal control of the solid fuel ignition model is of practical relevance in chemical engineering.
We consider here the 2-dimensional case on a squared domain with distributed control for
different cost functionals.

Example 9.1. (Distributed control of the 2-dimensional solid fuel ignition model) Let
Ω = (−1, 1)× (−1, 1) ⊂ R2 be given, and chose δ = 2.5 for the fuel ignition model. By means
of Theorem 9.3 and Corollary 9.4 we obtain that in this configuration the solution exhibits a
blowup at T < T0 = 0.929. We define the time dependent discontinuous function

θ̄(t, x, y) :=


t · cos

(
π

2
x

)
· cos

(
π

2
y

)
for t < 1,

t · cos
(

3π
2
x

)
· cos

(
3π
2
y

)
for t ≥ 1,

the time dependent continuous function

θ̂(t, x, y) := t · cos
(

3π
2
x

)
· cos

(
3π
2
y

)
,
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and the time independent function

θ̃(x, y) := 0.5.

In the following, we consider three different cost functionals:

1. A time distributed cost functional of the structure

J(q, θ) := 1
2

∫
I
‖θ(t)− θ̄(t)‖2dt+ 10−3

2
‖q(t)‖2Q. (9.5)

2. A terminal time cost functional

J(q, θ) := 1
2
‖θ(T )− θ̃‖2 + 10−3

2
‖q(t)‖2Q. (9.6)

3. Another distributed cost functional given by

J(q, θ) := 1
2

∫
I
‖θ(t)− θ̄(t)‖2dt+ 1

2

∫
I
‖eθ(t) − eθ̄(t)‖2dt+ 10−3

2
‖q(t)‖2Q. (9.7)

We obtain the optimal control problem of interest as

min
q∈Q

J(q, θ)

such that
∂tθ −∆θ − δeθ = q, in I ×Ω,

θ(0, x) = 0 in Ω,

θ(t, x) = 0 on I × ∂Ω.

First of all, let us consider the forward simulation of the problem, that is the solution of
problem (9.3) on the given domain Ω for q = 0. The calculation breaks down at t = 0.715,
and the development of the solution towards this point is shown in Figure 9.2. The solution

(a) t = 0.706 (b) t = 0.709 (c) t = 0.712 (d) t = 0.715

Figure 9.2: Solution for the forward simulation of Example 9.1.

blows up at approximately t = 0.715. A forward simulation with q = 0 and several other
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tested initial controls on the whole time interval is not possible, and therefore common
solution techniques which require the solution of the problem on the whole time interval I
for the calculation of the control update can not be applied. As outlined in the introduction,
multiple shooting overcomes this difficulty and allows the calculation of piecewise solutions.
For the cost functional (9.5) we apply multiple shooting on the time interval I = (0, 2) with
40 multiple shooting intervals each consisting of 5 time steps of length 0.01. The solution
at different timepoints is given in Figure 9.3. All meshes are refined locally, such that the
solutions on different intervals are computed on differently fine discretizations. Additionally,
we show the control at the same timepoints and thereby the corresponding meshes in Figure
9.4.

(a) t = 0.5 (b) t = 0.9

(c) t = 0.95 (d) t = 1.0

(e) t = 1.05 (f) t = 2.00

Figure 9.3: Solution for Example 9.1 with cost functional (9.5).

Extrapolating the exact minimal value of the functional as 0.775194, we can compare the
efficiency of local and global refinement. The choice of local refinement is for this example
of less importance than in those examples considered in the previous chapter. In fact, no
singularities or traveling fronts have to be resolved such that local refinement yields only a
slight improvement for this example as illustrated in Figure 9.5.

This is different for the case of the terminal time cost functional (9.6). We consider the
time interval I = (0, 1) for which a multiple shooting time domain decomposition of 10
subintervals each consisting of 10 time steps of length 0.01 is chosen. As expected, due to
the Dirichlet boundary data, local refinement takes place mainly on the last time interval.
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(a) t = 0.5 (b) t = 0.9

(c) t = 0.95 (d) t = 1.0

(e) t = 1.05 (f) t = 2.00

Figure 9.4: Control and meshes for Example 9.1 with cost functional (9.5).

It results in a thin boundary layer of refined cells. The exact functional value is obtained
from extrapolation as 0.10116413 for which we compare the performance for local and global
refinement in Figure 9.6. The solution at different time points for this optimization problem
is shown in Figure 9.7, and as before the control and mesh are given afterwards in Figure 9.8.

Finally, we consider the problem for the third cost functional (9.7). In this case, we decompose
I = (0, 1) into 10 multiple shooting intervals and apply as before the implicit Euler time
stepping scheme with step size 0.01. We obtain an approximation of the exact functional by
extrapolation as 0.09053600. As in the first configuration, local refinement yields only slight
improvements of the efficiency. This result is shown in Figure 9.9. The obtained solution and
control at different time points are shown at the end of this chapter in Figures 9.10 and 9.11
in which the structure of the refined meshes is outlined.
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Figure 9.5: Functional error for differently fine meshes, gained by local and global mesh
refinement for Example 9.1 with cost functional (9.5). (x-axis: log(N), y-axis:
log(|eh|))
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Figure 9.6: Functional error for differently fine meshes, gained by local and global mesh
refinement for Example 9.1 with cost functional (9.6). (x-axis: log(N), y-axis:
log(|eh|))
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(a) t = 0.25 (b) t = 0.5

(c) t = 0.75 (d) t = 1.00

Figure 9.7: Solution for Example 9.1 with cost functional (9.6).

(a) t = 0.25 (b) t = 0.5

(c) t = 0.75 (d) t = 1.00

Figure 9.8: Control and meshes for Example 9.1 with cost functional (9.6).
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Figure 9.9: Functional error for differently fine meshes, gained by local and global mesh
refinement for Example 9.1 with cost functional (9.7). (x-axis: log(N), y-axis:
log(|eh|))

(a) t = 0.25 (b) t = 0.5

(c) t = 0.75 (d) t = 1.00

Figure 9.10: Solution for Example 9.1 with cost functional (9.7).
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(a) t = 0.25 (b) t = 0.5

(c) t = 0.75 (d) t = 1.00

Figure 9.11: Control and meshes for Example 9.1 with cost functional (9.7).
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10 Conclusion and Outlook

In this thesis we developed multiple shooting approaches for optimization problems constrained
by partial differential equations. Additionally, we investigated the application of a posteriori
error estimation and spatial mesh adaptation in the context of multiple shooting.

Starting from the multiple shooting approach for ordinary differential equations, we extended
the direct and indirect multiple shooting approach to problems constrained by partial
differential equations. In this context, we also outlined the relation between direct and
indirect multiple shooting. Consequently, the development of the approaches also involved
discussing the general differences between the ODE and the PDE constrained case. We
concluded that the PDE case has several limitations with respect to the efficiency. While
the ODE case exploits efficient derivative generation techniques together with fast explicit
assembling of the system matrices, the PDE case does not allow this procedure. The reason
for this restriction is the extremely high dimension of the system matrices due to fine spatial
discretizations. In this context, possible extensions might lead into the direction of reduction
techniques. On the one hand, exploiting a priori information on the problem might yield a
reduction of the control space and, on the other hand, a coarser problem suited discretization
of the control might reduce the dimension of the control space even further. These ideas
might therefore allow to accelerate the condensed approach further.

We discussed that optimization problems with highly unstable PDE constraints do not permit
the solution over the whole time interval. These problems cannot be solved by standard
solution techniques. Multiple shooting as a time domain decomposition technique is a suitable
solution approach for the solution of such problems as we saw for the explosive system given
by the solid fuel ignition model.

We considered different solution techniques applied to direct and indirect multiple shooting.
We started from Newton’s method for the solution of the system of matching conditions,
proceeded with a preconditioned GMRES method for the linearized system, and finally
concluded with the investigation of different solvers for the intervalwise problems. These
problems comprised linear and nonlinear initial value problems as well as linear and nonlinear
boundary value problems. We discovered, that most of the computation time is spent on the
generation of the directional derivatives needed for the iterative solution of the linearized
system. Numerical tests indicated that preconditioning is inevitable but increases the
numerical effort noticeably. Condensing techniques were introduced as a possible alternative
to save computational effort and time. Promising topics for further research seem to
be preconditioning techniques for the condensed approach and additional preconditioners,
preferably parallelizable, for the direct approach.

Furthermore, we studied the combination of multiple shooting with a posteriori error esti-
mation: first the application of the standard approach, and second the development of an
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error estimator suited for the needs of multiple shooting with different adjacent meshes on
the multiple shooting nodes. Further future developments in this area of research might lead
into the direction of time adaptive strategies. On the one hand, a posteriori error estimation
can be applied for the temporal error, and mesh adaptation in time follows straightforward.
On the other hand, an appropriate splitting of the multiple shooting intervals would not
only allow the reduction of the temporal error, but also the reduction of the spatial error in
the case of intervalwise constant meshes. The idea of finding a diagonal sequence of spatial
meshes within the outer Newton method should also be investigated. This procedure performs
mesh refinement whenever the error due to the Newton residual becomes smaller than the
discretization error. Thus, the number of Newton steps needed during the solution procedure
might be reduced.

Finally, after having understood the general features of multiple shooting with mesh adaptation
for PDE constrained optimization problems, the application of the developed multiple shooting
approach to sophisticated application problems is advisable.
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