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Summary

Calcium signaling in neurons is a key regulator of gene expression and plays an im-
portant role in memory formation, learning and survival. One major route on which
synapses and the nucleus of the neuron communicate, is through calcium waves that
propagate from NMDA receptors – either synaptic or extra-synaptic – to the nucleus
where they activate the transcription factor CREB.
Novel mechanisms were recently unveiled at the IZN in Heidelberg, that are respon-
sible for nuclear plasticity. The morphology of nuclei undergoes changes in time,
regulated by calcium influx through NMDA receptors. Changes in the nuclear mor-
phology could affect the communication pathway between synapse and nucleus.
This thesis presents a novel inertia-based image processing filter that allows us to
reconstruct the geometry of hippocampal nuclei from raw confocal microscopy data.
A data base of reconstructed nuclei shows, that cell nuclei from hippocampal neu-
rons contain deep infoldings of the nuclear envelope which increase nuclear surface
size, minimize diffusion distances for calcium ions in the nucleus and form structural
micro domains inside the nucleus.
In order to mathematically assess the function of these complex nuclear structures,
a three dimensional model for calcium signaling in the nucleus, based on the recon-
structed nuclear geometries, was developed. This model was fully implemented in
the simulation environment UG, which offers multi-grid solvers for the model equa-
tions. Simulation results show, that the nuclear morphology in fact influences the
way calcium signals propagate inside the nucleus. The infoldings of the membrane
shorten diffusion distances, therefore calcium can reach more distal sites faster.
Furthermore, infolded nuclei show higher levels of activity and are more adept at
resolving signals at high frequencies.
In addition to the three dimensional model for calcium signaling a method for es-
timating the diffusion coefficient of nuclear calcium was developed. This method
makes use of numerical optimization techniques with data from laser-assisted cal-
cium uncaging experiments. Data driven simulations describe nuclear calcium to be
in a buffered state, which is represented by an active diffusion coefficient of approx-
imately 36 µm2/s.
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Zusammenfassung

Kalziumsignale in Neuronen sind ein zentraler Regulator für Genexpression und
spielen bei der Gedächtnisformation, dem Lernen und dem Überleben einer Zelle
eine wesentliche Rolle. Ein bedeutender Kommunikationsweg zwischen Synapse
und Zellkern basiert auf dem Transport von Kalziumionen, von synaptischen oder
extra-synaptischen NMDA Rezeptoren zum Kern, wo diese den Transkriptionsfaktor
CREB aktivieren.
Am IZN (Heidelberg) neu entdeckte Mechanismen sind verantwortlich für Zell-
kernplastizität. Die Morphologie von Zellkernen unterläuft zeitliche Veränderungen,
die von Änderungen der zellulären Kalziumkonzentration durch NMDA Rezeptoren
reguliert werden. Es besteht die Möglichkeit, dass die Kernmorphologie den Kom-
munikationsweg zwischen Synapse und Kern beeinflusst.
Diese Arbeit präsentiert einen neu entwickelten Trägheits-basierten Bildfilter, der es
uns ermöglicht die Zellkerngeometrie von Neuronen aus dem Hippocampus aus kon-
fokalen Mikroskopiedaten zu rekonstruieren. Eine Datenbank von rekonstruierten
Zellkernen zeigt, dass diese Zellkerne tiefe Einfaltungen der Kernhülle aufweisen,
welche die Kernoberfläche vergrößern, Diffusionsstrecken für Kalziumionen im Kern
minimieren und strukturelle Micro-Domänen im Kern bilden.
Um die Funktion dieser komplexen Kernstrukturen mathematisch zu untersuchen
wurde ein dreidimensionales Model zur Beschreibung der Kalziumsignalverarbeitung
in Zellkernen entwickelt, basierend auf den rekonstruierten Kerngeometrien. Dieses
Modell wurde vollständig in die Simulationsumgebung UG implementiert, welche
Mehrgitter-Löser für die Modellgleichungen zur Verfügung stellt. Die Simulations-
ergebnisse zeigen, dass die Morphologie der Zellkerne in der Tat die in den Kern ein-
dringenden Kalziumsignale beeinflusst. Einfaltungen der Kernmembran verringern
Diffusionsstrecken, wodurch Kalziumionen entferntere Stellen im Kern schneller er-
reichen können. Zudem weisen eingefaltete Kerne höhere Aktivität auf und sind
besser in der Lage hochfrequente Signale aufzulösen.
Zusätzlich zu dem dreidimensionalen Modell der Kalziumsignalverarbeitung wurde
eine Methode zur Schätzung des Diffusionskoeffizienten von Kernkalzium entwick-
elt. Diese Methode verwendet Techniken der numerischen Optimierung zusammen
mit experimentellen Daten, welche aus laserunterstützen Kalzium-uncaging Experi-
menten stammen. Diese datenunterstützten Simulationen beschreiben Kernkalzium
in einem gepufferten Zustand, der von einem aktiven Diffusionskoeffizienten von ca.
36 µm2/s beschrieben werden kann.
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Introduction

The brain constantly changes. It grows, forms and breaks connections between its
cells and computes information passed on through a great network of cells. One of
the brain’s optimization tools is, that it can change its form, the branch structure of
single cells and the connectivity between cell-networks. That way, information can
be passed from one point to another faster or can be blocked entirely. It has been
shown, that neurons undergo strong structural alterations under specific activation.
We have been investigating the possibility, that not only cells themselves can change
their form, but also their cell organelles, for example the cell nucleus. Each neuron
has a cell nucleus that contains the DNA and is surrounded by a double-layered
membrane, each built in a bi-lipide structure. Inside the nucleus, gene expression –
the biochemical transformation of DNA into specific amounts of certain proteins –
is activated depending on the signal passed on to the nucleus.
One of the most pronounced ways the cell communicates information to its nucleus
is by calcium ion signals. These can be synaptic NMDA- or extra-synaptic NMDA-
gated calcium signals. NMDA (N-methyl-D-aspartate)-induced calcium signals are
essential for long-lasting responses, that play an important role in memory forma-
tion and learning.
Experiments carried out at the Interdisciplinary Center for Neurosciences (IZN) in
Heidelberg revealed novel structures inside the neuron’s nucleus. Questions about
these structures, whether the form of the nucleus can undergo morphological al-
terations and how these might affect the communication pathway between neuron
synapses and the nucleus, arose. In an interdisciplinary effort the department SiT
(IWR Heidelberg) together with the IZN began addressing these questions from a
mathematical and neurobiological point of view.
The development of an inertia-based nonlinear anisotropic diffusion filter allowed
us to create three-dimensional reconstructions of nuclei from hippocampal neurons
from raw microscopy image stack recorded with a confocal microscope. We began
setting up a data base of reconstructions to investigate the nature of the newly dis-
covered morphological features of nuclei. At the same time, Hilmar Bading’s lab at
the IZN was able to show that the impressive forms of nuclei were in fact regulated
by NMDA receptors and that nuclei undergo structural changes in time. This nu-
clear plasticity, resulting in strong infolding of the nuclear envelope might influence
the relay of information in and out of the nucleus.
This prospect led us to develop a mathematical model which can simulate signal pro-
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cessing in nuclei, based on the newly won three-dimensional reconstructions. Since
the model includes the actual form of single nuclei which is never the same (think of
a fingerprint), we were in a position to investigate the morphological effect on the
relay of information.
Our project revealed that nuclei are highly plastic and depending on their form
minimize diffusion distances for calcium, separate the nucleus into structural and
functional micro-domains that make it possible for the nucleus to interpret calcium
signals in different ways depending on the location in the nucleus. Infolded nuclei
are more adept at resolving high frequency signals and show overall higher levels of
activity compared to spherical nuclei.
In order to have a more detailed picture of the propagation of calcium signals in
nuclei we further developed a method, based on numerical optimization techniques
for parameter estimation, to calculate the degree of calcium buffering in the nucleus
which is revealed in the diffusion coefficient embedded in the data-driven model for
nuclear calcium signaling. A. Eder from the Bading lab provided data from laser-
assisted calcium uncaging experiments that completed a mathematical model for
the estimation of the calcium diffusion coefficient.
This thesis is divided into three main parts. Following a short introduction into the
neurobiological basics needed to understand the principles of the developed mathe-
matical models, we present a novel inertia-based image filter in Chapter 2. In the
second part, Chapter 3 will give a detailed presentation of the development of a
data-driven, three dimensional model for signal processing in nuclei, along with a
number of evaluation tools for interpreting the model results. The mathematical
model, which is based on partial differential equations and multi-grid solving meth-
ods, was implemented in the simulation environment UG. A short introduction of
UG is further given.
In Chapter 4 a data-driven model, also implemented in UG, with which the diffu-
sion coefficient of nuclear calcium can be estimated, is introduced. Finally, results
of three dimensional reconstructions and tests of the underlying inertia-based filter
as well as modeling and parameter estimation results are presented in Chapter 5.
The thesis concludes with a discussion of the developed methods and their results
and an Appendix containing an excerpt of the 3D-data base of hippocampal neuron
nuclei.



Chapter 1

The Neurobiology of Hippocampal
Neurons

1.1 The Hippocampal Neuron Nucleus
1.2 Signaling Cascades through NMDA Receptors
1.3 Information Processing via Calcium Oscillations
1.4 The Nuclear Morphology: A lot more than just

a Sphere
1.5 Evaluation of Experimental Data
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1.1 The Hippocampal Neuron Nucleus

The nucleus of hippocampal neurons might be described as the brain of the single
neuron cell, interpreting incoming signals and producing outgoing ones. Although
seemingly important, until now little is known about detailed functionality of the
nucleus.
The nucleus is a cell organelle surrounded by a double lipide membrane separating
it from the cytoplasm. The diameter of the nucleus lies at approximately 10 µm,
contained in the nucleus is the nucleoplasm and vast amounts of chromosomal DNA.
The bi-lipide nuclear envelope is perforated by pore complexes, several thousands
evenly distributed on the nuclear envelope. The pore complexes are almost 100 nm
in diameter, although only the innermost part of the complex functions as a passive
pathway for the exchange of small, medium sized and even macro-molecules, [27, 25].
The outer membrane extends into the endoplasmatic reticulum (ER), whereas the
inner membrane is connected to a protein grid called the nuclear lamina. Aside from
recent findings about divers functionality of the nuclear lamina, it is considered to
be the form-stabilizing component of the nucleus, [22].
The nucleus carries out a number of tasks, the two major functions are the synthesis
of RNA and the synthesis and repair of DNA, [15].

1.2 Signaling Cascades through NMDA Recep-

tors

Cell functions are finely regulated by changes in the concentration of molecules
which interact, promote or inhibit steps in a signaling cascade that result in most
divers products. These processes are so sensitively tuned as from where the signal
originated or which molecular binding partners were released simultaneously, that
every task the cell needs to carry out can be represented by this highly combinatorial
set-up.

1.2.1 The Glutamate Receptor NMDA

NMDA (N -methyl-D-aspartate) receptors act as cation channels and are regulated
by the glutamate-neurotransmitter. One feature of NMDA channels is, that they
are blocked by magnesium ions. So in order for these channels to be activated, the
magnesium block needs to be alleviated by depolarisation of the cell. Therefore,
NMDA channels are highly inert at base-level activity of the cell and only become
active channels, especially for calcium ions, when the right molecules are present at
the right time, [59]. NMDA receptors are found to be a vital mediator of signals
responsible for long-term potentiation (LTP) and long-term depression (LTD). These
two processes are part of a memory formation and learning system, [9]. NMDA-
receptors are found at different locations, at synaptic and extrasynaptic sites, [3].
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Figure 1.1: Extrasynaptic vs. synaptic NMDA receptors: calcium gated through
extrasynaptic channels results in cell death, while synaptically NMDA-gated calcium
influx results in cell survival (Image by M. Wittmann (IZN)).

1.2.2 Cell Death or Cell Survival?

The fate of a cell is closely related to the origin of cellular signals. As the result
of extrasynaptic NMDA receptor activation, a calcium wave propagates into the
mitochondria. This process generates reactive oxygen species that lead to cell death,
[34, 67]. The same process – NMDA activation producing a calcium signal – but
this time passing through activated synaptic NMDA receptors results in cell survival,
[34, 67], Figure 1.1.
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1.3 Information Processing via Calcium Oscilla-

tions

1.3.1 Calcium Waves: From Synapse to Nucleus

There are two major pathways for calcium ions to reach the nucleus. One is a direct
calcium wave propagation through the cytosol which enters the nucleus through its
nuclear pores. This calcium route is a fast signaling path, since no further molecules
are involved, which means that no reaction lag-time occurs. A slower pathway is
one that involves ERK1/2 and RSK2 activation, [7], Figure 1.2. In this case it is
ERK1/2 that enters the nucleus via its nuclear pores.

Figure 1.2: Synapse-to-nucleus communication: Two major routes are important
for communication between synapse and nucleus, a direct calcium wave generated at
synaptic NMDA sites enters the nucleus and calcium induced ERK1/2 de-localization
towards the nucleus (Image by M. Wittmann, IZN).

1.3.2 Protein Synthesis in the Nucleus

What happens when calcium enters the nucleus? Calcium binds to calmodulin and
this complex activates CaM Kinase IV. This induces CREB phosporylation and
CREB-dependent gene expression. CaM Kinase IV then does three things, [33]:

1. Phosphorylation of CREB on Ser133.
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2. Activation of CBP.

3. Stimulation of CREB/CBP-mediated transcription.

The activated CBP and phosphorylated CREB together produce the code for CREB-
dependent gene transcription. The second ERK1/2 pathway is not able to activate
CBP, but it can phosphorylate CREB on Ser133, raising the probability for the first
pathway to result in gene transcription, [33, 12].

1.3.3 Governing Parameters of the Calcium Code

A rise in calcium ion concentration at a synaptic NMDA site can result in the tran-
scription of CREB-dependent genes. And not only is it vital to the outcome if
calcium is released from synaptic or extrasynaptic NMDA channels: The calcium
wave itself carries information for the cell about if or if not to induce gene tran-
scription. And if yes, how long and how much? These decisions are thought to be
encoded in the cytosolic calcium signal that enters the cell nucleus.
The key for differential gene expression control lies in the different calcium signals
that are produced by different neuronal firing patterns, [5]. Neuronal firing patterns
produce calcium waves with distinct duration and distinct amplitude. Dendritic
action potentials (dAPs), depending on their duration, elicit low to high calcium
transients, which are responsible for short-lasting or enduring plasticity of the ner-
vous system, [5]. Aside from duration and transient amplitude a third parameter,
the transient frequency, regulates the efficiency and specificity of gene expression.
Using a calcium clamp technique, Ricardo E. Dolmetsch et. al. from the Depart-
ment of Molecular and Cellular Physiology at Stanford University showed, that
the frequency of calcium oscillations altered the calcium threshold for activating
transcription factors, [19]. Fast calcium oscillations stimulate transcription factors
better than a constant calcium signal when both signals have the same amplitude.
Governing parameters for coding information in a calcium transient are therefore:

1. Transient-duration,

2. Transient-amplitude and

3. Transient-frequency.

Calmodulin plays an apparent role in resolving frequency-coded calcium signals in
the nucleus, [46]. Changes in the response of Calmodulin are regulated by factors
such as amplitude, duration and frequency of individual calcium spikes and result
in distinct amounts of kinase activity, [41, 46].



1.4 The Nuclear Morphology: A Lot More than Just a Sphere 9

1.4 The Nuclear Morphology: A Lot More than

Just a Sphere

Text book depictions of cell nuclei typically show a nucleus having a spherical shape.
This is not always the case. Deformation of the nuclear membrane has been observed
in several cases. Membrane creases of the nucleus can be witnessed in nuclei from the
visual cortex, [11], in Hela cells the membrane forms tubular structures, [23]. In both
cases, the outer and inner membrane are deformed uniformly. In other cells only
the inner membrane undergoes deformation, for example in nuclei from Drosophila,
[37]. The geometry of hippocampal neuron nuclei is controlled by NMDA receptor
signaling, [67, 68], and undergoes significant morphological changes.

1.4.1 First, there was EM

Recent electron microscopical studies by A. Hellwig from the Interdisciplinary Center
for Neuroscience (IZN) showed, that nuclei from hippocampal rat neurons contain
infoldings of the inner and outer membrane, Figure 1.3. The studies show, that

Figure 1.3: Examples of electron microscopy (EM) recordings: EM reveals infoldings
of the nuclear envelope (by A. Hellwig, IZN).
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nuclear pores are present at the site of infoldings, Figure 1.4. Questions about the
morphology of these infoldings in three dimensions and their biological purpose were
raised. In order to clarify the morphological question (infoldings or tubular) as well
as determining whether the membrane surface increases or nuclear volume decreases
compared to non-infolded nuclei, three dimensional reconstructions of hippocampal
nuclei were necessary. These reconstructions could be retrieved from confocal mi-
croscopy images.

Figure 1.4: EM close-ups: Electron microscopy proves that both the inner and outer
membrane of the nuclear envelope are infolded and that infoldings contain nuclear
pore complexes that allow diffusion of calcium ions into the nucleus (by A. Hellwig,
IZN).

1.4.2 Image Recordings for Reconstructions

Two major features for microscopy image recording for three-dimensional recon-
structions have to be fulfilled. A nucleus has to be recorded in the x-y-plane as well
as in z-direction, secondly signal-to-noise ratio has to be sufficient for certain image
processing steps. The first demand rules out recordings from electron microscopy
since the recording of a stack for a single nucleus bears significant technical problems.
This leaves confocal fluorescence microscopy. Staining of the nuclear membrane as
well as staining of the nuclear lamina was tested, [67]. Staining of the nuclear
membrane proved to be technically difficult. Yet the staining of the nuclear lamina
showed the desired effect in cultured cells, Figure 1.5. A strong signal from the lam-
ina, combined with low background noise, produced sufficient images, [67]. Staining
in live recordings proved insufficient due to bad signal-to-noise ratios, Figure 1.6.
The nuclear lamina is the form-giving protein-grid for the nucleus and therefore
adequate as a representation of the nuclear geometry. Using a Leica SP2 laser scan-
ning confocal microscope, primary hippocampal neurons from rats stained with an
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Figure 1.5: Confocal fluorescence microscopy: LaminB staining visualizes the in-
folded envelope of nuclei with strong signal to noise ratio (by M. Wittmann, IZN).
Scale bars: 10 µm

Figure 1.6: Live recordings of cell nuclei lack necessary signal contrast for recon-
struction purposes (by M. Wittmann, IZN). Scale bar: 10 µm

Alexa488-labelled secondary antibody which binds to a primary laminB-antibody,
were recorded. Stacks consisting of up to 70 images with constant distance were
recorded.

1.5 Evaluation of Experimental Data

Stack recordings of single nuclei and calcium imaging data form two separate data
sets, which are used for mathematical reconstruction of the geometry of hippocam-
pal neuron nuclei and for verification of theories and results from mathematical
simulations concerning nuclear calcium dynamics.

1.5.1 Evaluating Single Nuclei and their Microdomains

For the evaluation of image sequences; recorded in equidistant time steps, the focus
lies on the global calcium concentration in single nuclei, as well as investigating
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special regions of interest (ROIs) within a single (infolded) nucleus. With ImageJ,
[38], single sequences in time can be evaluated by summing up gray value intensities
which then are calibrated, according to [26], delivering a parameter for the global
calcium concentration of the nucleus.
In order to evaluate regions of interest, a separate image of the nucleus, recorded
with a different marker (nuclear contrast is thus enhanced), serves as a visual aid
to distinguish and define ROIs within an infolded nucleus, Figure 1.7. Single ROIs,
using the ROI manager of ImageJ, can be evaluated and calibrated.

Figure 1.7: Selection of different sized micro domains using ImageJ’s ROI Manager.
Separate regions of interest can be evaluated with specially developed macros.

1.5.2 Measuring Nuclear Calcium Activity

Given the assumption, that molecular activation in the nucleus which initiates gene
expression is threshold dependent, this concept needs to be investigated from an
experimental and modeling side. Nuclear activity is defined as follows:

Nuclear activity is the percentage value of nuclear area above a given
threshold.

In order to measure nuclear calcium activity, a macro for ImageJ was developed. A
gray value threshold T is derived from a calibrated threshold t using the following
equation, [26]: [

Ca2+
]

=
F − Fmin
Fmax − F

.

Having chosen a threshold t yields:

t =
T − Fmin
Fmax − T

.
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The gray value threshold that is included in the ImageJ macro can be calculated
with the equation

T =
t · Fmax + Fmin

1 + t
. (1.1)

By segmentation of the entire image sequence using the threshold calculated by
equation (1.1), all pixels above threshold are set to value 1 (active area) and every
pixel below is set to 0 (inactive area). The Activity macro designed for ImageJ
calculates the ratio between active area and entire ROI area. The macro then saves
the activity data in each time step in a double rowed table, which can be plotted
with Gnuplot or other plotting tools.
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Chapter 2

Image Processing

2.1 Processing Data for Reconstruction of Hippo-
campal Nuclei

2.2 Generating Grids from Processed Microscopy Data
2.3 Measuring Hippocampal Nuclei
2.4 Visualizing 3D-Reconstructions
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2.1 Processing Data for Reconstruction of Hippo-

campal Nuclei

Processing raw microscopy data with high-end image processing tools is vital ground
work for morphological identifications of hippocampal nuclei as well as for simula-
tion purposes. The idea of applying a diffusion process on raw image data has been
realized in isotropic diffusion filters; the convolution of the raw image with the Gaus-
sian is one example. A major drawback is inadequate handling of intra-structures
of the image, such as edges and contours. This problem gave rise to anisotropic
diffusion approaches, P. Perona, J. Malik, [54], and J. Weickert, [66, 65], amongst
many others proposed an adaptive diffusion tensor instead of a scalar coefficient to
deal with substructures in image data.
Further steps in filter techniques were taken in the software project NeuRA, [49].
Based on concepts from Lenzen and Rumpf, [44], a powerful structure detection
mechanism for linear substructures, based on the local moments of inertia, was
added to the diffusion filter. This structure detection mechanism was designed to
identify linear, dendritic structures of hippocampal neurons, [10], and further devel-
oped in order to identify two dimensional, nuclear membrane sub-structures, [56].
This filter can be described as an inertia-based nonlinear anisotropic diffusion filter.
The combination of image filtering and image segmentation, [52, 56], defines the
first part of image processing of hippocampal neuron nuclei.
In a second step, structural information of the nucleus can be extracted using an
isosurface- and grid-generating software toolbox, developed by A. Heusel, SiT. Sur-
face and volume grids can then be measured and visualized, [56, 55], and exported
to a simulation environment.

2.1.1 Filtering with Nonlinear Anisotropic Diffusion Filters

Within the field of image processing, a broad spectrum of processing tasks for image
data created a broad spectrum of image filters to carry them out. In the case of
image data processing of hippocampal nuclei recordings from confocal microscopy,
the following aspects need to be fulfilled by the filter:

• Enhance signal-to-noise ratio in 3D data sets.

• Homogenize membrane structure: close gaps caused by low fluorescence bind-
ing in image recording.

• Maintain structural information, e.g. membrane diameters and filigreed in-
folding structures.

To clarify ”diffusion” of an image, one can imagine each gray value of a voxel as the
concentration of a substance. When diffusion is allowed (think of an ”adiabatic” wall
being lifted in a thermodynamic system) the ”gradients” in the image are resolved.
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After a certain time, the image would turn into a single gray value image. One
can stop diffusion after a sensible number of time steps and retrieve a blurred, but
homogenized image. Often, this is not enough. In order to maintain borders of
structures within the image, great effort has been made to add ”edge detection” or
”structure detection” to the filter.
Putting the above words into a mathematical formulation, a diffusion filter can be
characterized in the following way, [66]:

∂u

∂t
= div(D(∇uσ) · ∇u) on R+ × Ω (2.1)

u(x, 0) = raw microscopy data on Ω ∪ ∂Ω (2.2)

(D(∇uσ) · ∇u) · ~n = 0 on R+ × ∂Ω (2.3)

where u denotes the image’s voxel set and ~n the outer normal. The diffusivity tensor
D is dependent on uσ which is defined as

Kσ :=
1

2πσ2
· exp

(
−|x|

2

2σ2

)
, (2.4)

uσ := (Kσ ∗ ũ(., t))(x), σ > 0, (2.5)

ũ being the extension on Rn of u on Ω.
The key to directing diffusion in designated directions lies in the choice of the diffu-
sivity tensor D. In [65] three different types of diffusion filters are listed, which are
based on equations (2.1) – (2.3) and are defined by the choice of D:

Linear isotropic diffusion filters: A wide ranging technique which is equivalent
to a convolution of the original data set with the Gaussian is derived from
setting the diffusion tensor to the unit matrix

D(∇uσ) = I. (2.6)

The drawback of this method is the fact, that edges are blurred and vital
structure in the image is lost.

Nonlinear isotropic diffusion filters: Edges in the image are preserved, when
diffusion is blocked at the location of an edge. At the same time diffusion is
supposed to take place within an area defined by the surrounding edge. By
defining a decreasing function g ∈ C∞([0,∞), (0, 1]) which satisfies g(0) = 1
and g(s)→ 0 for s→ 0 the above criteria are fulfilled. In [65]

D(s) := g(s) := exp

(
− s5

5λ5

)
(2.7)

is proposed.
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Nonlinear anisotropic diffusion filters: By adding anisotropy to the nonlinear-
ity of the filter, using the eigenvectors and eigenvalues of the diffusion tensor,
an edge can be identified (nonlinear filter) and the direction of the edge ap-
proximated (nonlinear anisotropic filter). The Weickert-filter, [65, 66], uses
the diffusion tensor

D(∇uσ) := g(|∇uσ|). (2.8)

In [54] conduction coefficients – called edge enhancers – are introduced to add edge
sharpening to anisotropic diffusion. This method substitutes other ill-posed ap-
proaches of backward diffusion problems that often result in numerically unstable
designs. As an edge detector

g(s) :=
c

1 +
(
s
K

)1+α (2.9)

with constants c and K and a value α > 0 is proposed in [54].

2.1.2 Adding More Structure Detection to the Filter

The edge detector as a function (2.7) or (2.9) does not entirely suffice for the under-
lying problem, see Chapter 5. The need for additional structure identification for
gap closure and signal to noise ratio enhancement becomes obvious. The inertia-
based nonlinear anisotropic diffusion filter, [55, 56], is based on the physical moment
of inertia:

M2(x0) :=

∫
Bδ(x0)

u(x)(x−M1(x0))⊗ (x−M1(x0))dx (2.10)

with M0 being the ”mass” of the integration volume Bδ:

M0(x0) :=

∫
Bδ(x0)

u(x)dx (2.11)

and M1 the center of mass

M1(x0) :=
1

M0(x0)

∫
Bδ(x0)

u(x)xdx. (2.12)

The moment of inertia (2.10) is used instead of an edge detector. After applying
the principal axes transformation

TM2T−1 =

 λ1 0
. . .

0 λn

 , T tT = I (2.13)
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with eigenvalues λ1 ≥ . . . ≥ λn in R the diffusion tensor D is defined as

D := T t

 λ1 0
λ2

0 λ3

T (2.14)

Since the nuclear membrane is a two-dimensional substructure in the three-dimensional
raw image set, diffusion needs to be allowed in the two main directions (directions
with the largest two eigenvalues) and blocked perpendicular to the membrane struc-
ture (third eigenvector direction). For this purpose, the first two eigenvalues in
(2.14) are set to maximum diffusion value 1 and the third eigenvalue to a near zero
value ε:

D(u) := T t

 1 0
1

0 ε

T. (2.15)

The inertia-based nonlinear anisotropic filter has a dimension-independent imple-
mentation with semi-implicit time discretization and finite volume discretization in
space, [56]. This is an advancement of earlier nonlinear anisotropic diffusion ap-
proaches, which inherits the sensitivity to edges and border from other nonlinear
anisotropic filters, [54, 66], and adds advanced capabilities in gap closure and signal-
to-noise ratio enhancement.

2.1.3 Segmentation

Following image data filtering, the image stack is segmented. This means, that
based on a gray value threshold every voxel in the image stack is transformed into a
membrane voxel (white) or a background voxel (black). One of the most prominent
segmentation algorithms is the one of Otsu, [52]. Within a sub-volume that scans
the entire image stack, a local threshold is determined by maximizing the variance
of the overlapping parts of the signal and noise histograms. Based on this thresh-
old every sub-volume of the stack is segmented. Opposed to other segmentation
techniques (e.g. global thresholding), the Otsu segmentation algorithm closes gaps
in the membrane, yet at the same time preserves filigreed infolding and membrane
structure, Figure 2.1.
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A B

C D

Figure 2.1: Image processing steps: (A) raw microscopy data. (B) filtered with
inertia-based filter. (C) segmented with Otsu-method. (D) second pass of inertia-
based filter.



22 2. Image Processing

2.2 Generating Grids from Processed Microscopy

Data

The purpose of the image processing steps in Section 2.1 is to transform the mi-
croscopy raw data in order to extract a closed and smooth surface grid as a repre-
sentation of the nuclear membrane. Based on such a surface grid, a volumetric grid
of the nucleus can be derived, both grids form a discretization of the nucleus for the
mathematical model.

2.2.1 Surface Grids

A surface grid is a discrete representation of the nuclear membrane, to be more
specific, a representation of the recorded nuclear lamina. An isosurface-generating
software toolbox, developed by A. Heusel and S. Reiter (SiT), is used to compute
triangular surface grids from processed microscopy data. Based on a chosen gray
value, a cube divided into five tetrahedra scans the image stack, Figure 2.2. The

Figure 2.2: Interpolation scheme: Cube is divided into 5 tetrahedra. Along tetrahe-
dral lines gray values are interpolated linearly (by A. Heusel, SiT).

corners of each tetrahedra contain the corresponding voxel values, between which
the program interpolates values along the tetrahedra edges linearly. The determined
position of the predefined gray value in saved and added to the grid as a grid node.
Later, all grid nodes are connected to form a triangular and closed grid, i.e. every
node has at least four neighbor nodes. Due to scattering of the laminB marker,
the grid generating program will produce an ”outer membrane grid” and an ”inner
membrane grid”.
Of interest is the inner membrane, since it contains the infolded structure, Figure
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A B C

Figure 2.3: Optimizing surface grid: (A) In-homogeneous fine surface grid. (B)
First coarsening and homogenization of grid. (C) Second step in optimizing surface
grid.

2.1. This is not because the outer membranes is not infolded – because it is (see
Section 1.4) – but because the resolution of confocal fluorescence microscopy is lower
compared to electron microscopy and therefore not capable of tracing the infolding
of both membranes separately. The grid that is generated using a modified marching
tetrahedra algorithm still contains both inner and outer grid. By applying a Dijkstra
graph search algorithm, [16], both grids are separated and the inner grid can be
further processed.
Further processing means optimizing the triangular surface grid. The ”raw” grid still
contains a large number of triangles, often with strongly varying size. This leads to
rough and ”spiky” parts in the infoldings. To smoothen the surface structure (this is
not an artificial alteration of the nuclear geometry, rather a convergence towards its
original form), minimize the number of triangles while also minimizing the variance
in triangle size, S. Reiter (SiT) has developed grid optimization tools, which can
be applied, see Figure 2.3. The inner surface grid is then ready to be exported for
volume grid generation.

2.2.2 Volume Grids

In analogy to surface grids, a volume grid has to be a sufficient representation of the
volumetric structure of the nucleus. The software tool Ansys ICEM CFD, [2], offers
the necessary procedures to create a volumetric tetrahedral grid derived from the
surface grid generated in Section 2.2.1. Filters designed by A. Hauser (SiT) are used
to transform the surface grid file into the file format used by ICEM CFD. The first
tetrahedral grid can be coarsened in ICEM CFD, if the grid is used for simulation
purposes in UG (UG has its own multi-grid refinement tools).
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2.3 Measuring Hippocampal Nuclei

When investigating the phenomenon of the infolding of nuclear membrane in time,
two theoretical scenarios are conceivable. Either the cell activates a protein integrat-
ing process which adds membrane to the existing nuclear envelope, thus enlarging
the nuclear surface; or the process is comparable to a deflating soccer ball, meaning
the membrane surface stays constant, while the infoldings express nuclear content
into the cytosol. In the first case an increase in membrane surface size should be
observable, while at the same time the nuclear volume stays constant, in the sec-
ond case, membrane surface would stay constant, at the same time nuclear volume
would decrease. To examine these hypotheses, a measuring tool for neuron nuclei
was developed, [56]. Realized in Perl script, the nuclear volume and surface size can
be evaluated based on the surface and volume grids generated according to Sections
2.2.1–2.2.2.

2.4 Visualizing 3D-Reconstructions

The novel morphological features of nuclei from hippocampal neurons had first been
observed in microscopy studies, see Chapter 1. Since the visualization in that case
is of single slices in two dimensions, it is hard to anticipate the three-dimensional
structure of membrane infoldings. Having obtained 3D-grids of nuclei, these can be
visualized. In early stages of the project, the Visualization Toolkit VTK was used,
as the state of the art application an in-house visualization tool ProMesh, developed
by A. Heusel (SiT), is used. Examples of novel 3D-visualizations of hippocampal
neuron nuclei are demonstrated in Figure 2.4 and the Appendix. Unlike other cell
types, e.g. HeLa cells, it becomes obvious, that the infoldings in hippocampal nu-
clei are not tubular, but actual infoldings that can extend deep into the nucleus.
One can observe various infolding structures, from single to multiple, branched or
unbranched infoldings.
Having identified, reconstructed, measured and visualized the morphologies of nu-
clei from hippocampal neurons, the next objective, in the following chapter, is to
investigate the morphological influence on calcium signaling in neuron nuclei.
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Figure 2.4: Examples of three-dimensional reconstructions: Infolded nuclei contain
single or multiple infoldings.
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3.1 Modeling Nuclear Calcium Signaling

In Chapter 1 major communication routes between synapses and cell nucleus were
introduced, in particular those, that have controlling influence on the morphology of
the nucleus. The pathway that is driven by calcium ion diffusion activates Calmod-
ulin kinase IV. The activated CaM kinase complex then diffuses to sites in the
nucleus where further processes, as mentioned in Section 1.3.2, are activated. Since
the nuclear membrane allows free passage of calcium ions and no active transporta-
tion pathways for calcium are present within the nucleus, the driving physical force
for calcium is that of diffusion.
The parameters influencing this diffusion process are the buffering intensity of cal-
cium ions as well as diffusion distances calcium has to pass before reaching vital
biological sites. Especially diffusion distances are affected by changes in the form
of the nucleus. The stronger the membrane of a nucleus is infolded, the shorter
diffusion distances for calcium become, the faster calcium can reach its destination.
Another aspect worth investigating is the reorganization of micro organelles in the
nucleus due to infolding of nuclear membrane. Organelles in the nucleus are not
randomly distributed in the nucleus, but are located in specific regions. It might be
vital for the cell to give different calcium signals to different micro-domains of the
nucleus.
A mathematical model offers the necessary surrounding for systematical evaluations
which can not be realized in an experimental setting, where too many parameters
are not controllable. Chapter 2 dealt with the extraction of the three dimensional
geometry of neuron cell nuclei. Combining these geometries with the mathematical
model of nuclear calcium signaling is the task of this chapter.

3.1.1 Signal Transduction in the Nucleus

Before deriving the specific equations for the characterization of signal transduction
within the nucleus, the axiomatic structure of thermodynamics of irreversible pro-
cesses is outlined. From this the basic equations of diffusion can be formulated and
finally – with the specific knowledge of the biological system – adapted to the case
of calcium diffusion in the nucleus.
Following [42], the first three (of six) axioms for thermodynamics of irreversible
processes can be described in the following way:

Classical thermodynamics apply: The presumption of classical thermodynam-
ics, that a system reaches equilibrium after finite time in an isolated state,
applies to irreversible processes. An added assumption is, that the scales of
the system are small compared to long range exterior forces, so that these can
be neglected in the observation of the system.

Local and instantaneous equilibrium: It is assumed, that a system that is not
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in equilibrium can be subdivided into volume elements – infinitesimally small
from a macroscopic point, large enough from a microscopic point (number of
molecules in the volume element is large enough for a deterministic claim)
– where each volume element is in local equilibrium. This assumption im-
plies continuum theory in thermodynamics of irreversible processes. In non-
equilibrium states of such a system, gradients between physical sub-volumes
exist, that activate gradient driven processes (such as the one of signal trans-
duction in nuclei).

The balance equations: Based on empirical facts, the third axiom of thermody-
namics for irreversible processes states, that a set of balance equations can
be formulated in respect to quantities such as mass, energy, momentum and
electrical charge. With the knowledge, that an extensive property changes in
a defined sub-volume of the system, when either there is a flux across the bor-
ders of this sub-volume or it is produced within the volume, the flux theorem
can be formulated.

This is done in Section 3.2 since the flux theorem also motivates the numerical
procedures chosen for the discretization of the mathematical and physical concepts
derived in these sections. With the basics of classical thermodynamics and thermo-
dynamics for irreversible processes, the biological context of nuclear communication
as described in Section 1.3 can be formulated with the help of physical theorems.

Nuclear calcium communication: Electrical signals transmitted from synapses
to the cell soma activate NMDA gated calcium channels through which a
calcium wave propagates towards the cell nucleus. This signal propagates
through local up-take regions within the cell soma. The following statements,
based on neurobiological research, form the physical concepts implemented in
the mathematical model for nuclear calcium communication.

1. Local up-take regions in the soma create an integrated signal at the nucleus it-
self. Therefore, local calcium up-take regions need not be incorporated directly
into the mathematical model, but are represented as an integrated calcium
wave that enters the nucleus.

2. The calcium wave entering the nucleus is the vital process for information
processing within the nucleus (it indirectly activates CBP and CREB, see
Section 1.3), the information coming from electrical signals from the dendrites.

3. Calcium can diffuse freely into and out of the nucleus through its nuclear pores
located on the nuclear membrane. It is assumed, that no active calcium pumps
exist on the inner nuclear membrane, that can create a calcium flux between
the endoplasmatic reticulum and the inner volume of the nucleus.
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4. Information processing in the nucleus is a concentration gradient driven pro-
cess, due to the fact that no active pumps exist between cytosol and nucleus
(see point 3).

In the given context, signal processing in nuclei can be characterized by Ficks’ law
which states that a mass gradient ∇u in a force-free system tends to zero in reverse
to a flux φ:

−∇u = φ (3.1)

The law of conservation of mass states

−
∫
∂V

φ · ~nds =

∫
V

∂u

∂t
dx (3.2)

with V a defined volume element, ∂V the boundary surface and ~n the corresponding
surface normal, or

∂u

∂t
= −divφ (3.3)

The signal equation for nuclear calcium can therefore be stated as

∂u

∂t
= div(D · ∇u) (3.4)

This equation defines the modeling equation which will be included in the math-
ematical model in addition with equations that complete a well defined numerical
model. In the following section, the diffusion coefficient D that appears in equation
(3.4) will be addressed.

3.1.2 Diffusion Coefficients in Hippocampal Neuron Nuclei

Signal transduction in hippocampal nuclei relies on changes in calcium ion concen-
tration which are mediated through opening of voltage-gated calcium channels in the
membrane, receptor binding which results in channel opening on internal calcium
stores or the activation of ryanodine-receptor channels, [1]. Depending on the form
in which calcium ions are present, free or in a buffered state, the range of messenger
action changes as well as the speed at which a calcium-regulated signal propagates
through the cytosol or the nucleus. It has been shown, that free calcium has an
effective action range of 0.1 µm, [1], comparatively small to ranges of buffered cal-
cium systems. In most of the cases calcium is released from internal stores that are
sensitive to Inositol 1,4,5-triphosphate (IP3), [64], a second messenger to calcium
which increases the effective action range to approximately 24 µm. In between, the
action range for buffered calcium is stated at 5 µm.
The ”trade-off” for longer effective action ranges is a decrease of the diffusion coeffi-
cient which is a measure for the signal transduction speed. Local up-take regions for
calcium in the cytosol are regulated by immobile or slowly moving second messen-
gers decreasing the effective diffusion coefficient of calcium, [1]. A table listing the
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Messenger Diffusion Time scale (s) Range (µm)
coefficient (µm2/s)

Calcium
Free ion 223 3 · 10−5 0.1
Buffered 13 1 5

Inositol
1,4,5-trisphosphate 280 1 24

Table 3.1: Estimated range and time scale of messenger action of Ca2+ and inositol
1,4,5-trisphosphate, [1].

diffusion coefficients, time scales and effective action range for the different messen-
gers, based on experiments done in a cytosolic medium from Xenopus laevis oocytes,
see Table 3.1, is presented in [1]. In the case of calcium signaling in the nucleus,
most of the calcium ions are present in buffered form. Depending on the rise of
calcium concentration caused by one of the three possibilities mentioned above, the
diffusion coefficient for buffered calcium differs in the range of 13 – 65 µm2/s. This
interval will be used as the choice of the diffusion coefficient for buffered calcium in
the mathematical model based on the diffusion equation (3.4) and will be verified
by methods presented in Chapter 4.
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3.2 Numerical Methods for Nuclear Signaling

Putting all physical and biological concepts and all experimental data derived in Sec-
tion 3.1 about information processing in the nucleus into a mathematical framework
is the task of this section. The mathematical theory of partial differential equations
(PDE) deals with mathematical formulations of an approximation of ”reality”, e.g.
a physical process, an engineering task or observations in nature. Here, this means
the mathematical formulation of a model which describes information processing
in the nucleus. Following a brief introduction of PDE, a mathematical model for
information processing in the nucleus is stated, a numerical approximation of this
model is derived and methods for solving this numerical problem are presented.

3.2.1 Introduction to Partial Differential Equations

Partial differential equations consist of an unknown function of two or more variables
and a number of the unknown function’s (partial) derivatives. A kth-order partial
differential equation can be defined on a subset Ω ⊂ Rn as:

Definition 1 An equation of the form

F (Dku(x), Dk−1u(x), . . . , Du(x), u(x)) = f(x) (x ∈ Ω) (3.5)

is called a kth-order partial differential equation, where

F : Rnk × Rnk−1 × · · · × Rn × R× Ω→ R

and
u : Ω→ R

is the unknown function.

To solve a partial differential equation means finding a function u that fulfills equa-
tion (3.5), perhaps under additional restrictions. Not always does the PDE have a
solution. Therefore, a PDE is called well-posed, [21], if

1. the PDE has one and only one solution.

2. the solution of the PDE depends continuously on the data in the PDE-problem.
This is a requirement of stability for the posed problem.

PDE can be categorized into several types of equations, where each type has different
properties and different demands must be made for certain types of equations. The
general second-order partial differential equation has the form

a(x, y)uxx+ 2b(x, y)uxy + c(x, y)uyy
+ d(x, y)ux + e(x, y)uy + f(x, y)u+ g(x, y) = 0.

(3.6)



34 3. Modeling Calcium Signaling in Hippocampal Neurons

Convention: In some cases it is more convenient to write ux or uxx instead of
∂u
∂x

or ∂u
∂x2 ; both expressions are equivalent.

Definition 2 Equation (3.6) is called

1. an elliptic PDE, if
a(c, y)c(x, y)− b2(x, y) > 0; (3.7)

2. a hyperbolic PDE, if

a(x, y)c(x, y)− b2(x, y) > 0; (3.8)

3. a parabolic PDE, if

ac− b2 = 0 and Rank

(
a b d
b c e

)
= 2 (3.9)

for all (x, y) ∈ Ω ⊂ R2.

Not every PDE can be assigned to one of the three types of partial differential
equations. Yet recalling the PDE equation (3.4)

∂u

∂t
= div(D∇u), (3.10)

it can be assigned to the type of parabolic PDE. To demonstrate this, one can
consider the diffusion equation (3.10) in one dimension and in time. It has the form
(following expression (3.6))

1 · uxx + 2 · 1 · uxt + 1 · utt + 1 · ut = 0 (3.11)

with
a(x, t) = 1, b(x, t) = 1, c(x, t) = 1, e(x, t) = 1,
d(x, t) = f(x, t) = g(x, t) = 0

and therefore

ac− b2 = 0 and Rank

(
1 1 0
1 1 1

)
= 2.

Parabolic PDE are sufficiently characterized, meaning they fulfill the above well-
posedness criteria, when initial value and boundary conditions are defined. In this
case the set of equations

∂u(x, t)

∂t
= div(D · ∇u(x, t)) on Ω ⊂ R3×1 (3.12)

u(x, t0) = u0(x) (3.13)

u(x, t) = f(t) on ∂Ω ⊂ R3 (3.14)

are solved by one and only one function u. The definition of the boundary function
f(t) in a biologically sensible way will be addressed in Section 3.4. The following
section gives rise to numerical methods for the implementation of the set of equations
(3.12) – (3.14).
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3.2.2 Discretization of the Signaling Equation

Where the theory of partial differential equations forms a link between ”reality”,
i.e. biological and physical observations, and the ”mathematical reality”, numerical
mathematics forms links between mathematical models and numerical models. And
where a mathematical model is a simplification or an abstraction of observational
reality, a numerical model is a finite mathematical description of a mathematical
model. The last statement is the definition of discretization: Turning a mathemat-
ical model in an infinite subset of Rn into a finite problem on a discrete subset
Ωh ⊂ Rn. In order to derive a numerical discretization of the model defined by
(3.12) – (3.14) some definitions are made.

Definition 3 A discretization of a region Ω ⊂ Rn is the replacement of Ω with a
finite set Ωh made up of points ωi ∈ Ω. The set Ωh is called a grid (or triangulation)
of Ω.

Definition 4 A triangulation τ := {T1, . . . , Tt} with triangles Ti of Ω is called valid,
if the following points are fulfilled, [29]:

1. Ti are open triangles.

2. Ti ∩ Tj = ∅ for i 6= j.

3.
⋃

1≤i≤t T̄i = Ω̄.

4. For i 6= j there are three possibilities for T̄i ∩ T̄j:

(a) T̄i ∩ T̄j = ∅.
(b) T̄i ∩ T̄j contains one common side.

(c) T̄i ∩ T̄j contains one common corner of element Ti and Tj.

After having defined a discrete form of the region Ω in which the PDE is to be
solved, the discretization being a triangulation of Ω with its nodes (corners of triangle
elements), the PDE can be solved at the nodes of the triangulation. Here, various
methods exist for discretization of a PDE on a discrete subset Ωh. One concept, the
method of finite differences, relies on the approximation of derivatives of u in the
PDE by the difference quotient (in one dimension)

u′(xi) ≈
ui+h − ui−h

2h

where h is the distance between neighboring nodes in an equidistant grid and the
approximation of u with a numerical solution uh, where uh is element of a defined
space, e.g. uh ∈ C2(Ω̄). As long as one deals with simple and structured geometries
the finite differences method is easy to apply, yet hard to realize on unstructured
geometries, which is the case for hippocampal nuclei.
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More sophisticated methods that can handle complex geometries and have positive
physical properties demand the search for a numerical solution of the PDE in spaces
other than, say C2(Ω̄). The theory of finite elements and finite volumes offers, with
concepts from functional analysis, ”weak” solutions of u in Sobolev -spaces Hk(Ω),
[29]. The necessary basics of functional analysis for discussing finite volume methods
are found in [29]. The finite volume discretization of (3.12) – (3.14) is as follows.

Finite Volume discretization:

The ”weak” formulation of

∂u(x, t)

∂t
= div(D · ∇u(x, t)) (3.15)

is derived by integrating both sides of the equation:∫
Ω

∂u

∂t
=

∫
Ω

div(D · ∇u). (3.16)

Applying Gauss’s theorem ∫
V

divFdV =

∫
S

F · ~ndS (3.17)

with F a continuously differentiable vector field, V a volume element, S a surface
element and ~n the corresponding normal, which states that the change in volume V
is equal to the flux over the volume surface, equation (3.16) can be written as

∂

∂t

∫
Ω

u =

∫
∂Ω

D · ∇u · ~n (3.18)

with ∂Ω the bounding surface of Ω. Now, in finite volume discretization, a dual

Figure 3.1: Constructing a dual grid: Centers of mass of each element are linked
together to form a dual mesh.

mesh is constructed from the original triangulation. Here too, different methods
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are applicable, one of them is linking center points of edges and centers of mass of
the triangles to an integration volume bi, Figure 3.1. Thus, a dual triangulation⋃m
i=1 bi = Ωh, m = # volume elements is created, which is valid in the sense of

Definition 4.
The right hand side of equation (3.18) can now be written as∫

∂Ω

D · ∇u · ~n =
m∑
i=1

∫
∂bi

D · ∇u · ~n (3.19)

For reasons of stability the preferred choice is implicit time discretization:

∂u

∂t
=
u(tk+1)− u(tk)

∆t
+O(h). (3.20)

The left hand side of equation (3.18) can be approximated by the above difference
quotient. The approximated weak formulation on a single box element bi with
equations (3.18) – (3.20) yields∫

bi

u(tk+1, xi)dx−
∫
bi

u(tk, xi)dx = ∆t

∫
∂bi

∑
j

u(tk+1, xj)D∇ξj(γ)~nidγ. (3.21)

Numerically, ∇u is approximated by a choice of Ansatzfunctions ∇ξj, e.g. linear

Figure 3.2: Regular dual grid: Depiction of numerical discretization components, in
transparent gray the triangulation, with its hexagonal dual grid (white).
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finite elements, [29], defined at integration points γ. In a last approximation step,
the integrals in equation (3.21) can be approximated numerically:

|bi| (u(tk+1, xi)− u(tk, xi)) = ∆t
∑
j,l

|∂bi ∩ ∂bl|u(tk+1, xj)D · ∇ξj(xil) · ~nil (3.22)

Figure 3.2 shows the schematics of the components in equation (3.22) on a regular
dual grid. The finite volume discretization is applicable to PDE embedded in highly
unstructured grids, since it is based on grid independent mathematical theory. An
additional advantage to finite differences or finite elements is the fact that the phys-
ical flux theorem is valid for each element of the dual grid Bh :=

⋃
i bi, [42], (in three

dimensions bi is a tetrahedra). Equation (3.22) poses a system of equations in the
variables xi for each time step ∆t. Finally, solving the diffusion equation for signal
processing in nuclei is reduced to solving a system of equations. The method for
solving the system defined by (3.22) is addressed in the following section.

3.2.3 Solving the Discrete Model Equation

During the search for mathematical solving-techniques of the discretized PDE, two
major guidelines are that the PDE is defined on random unstructured grids and
the model is three-dimensional. The first point calls for a solving method that is
highly independent of grid structure, the second poses large computational effort
that needs to be addressed for the solution to be calculated in a reasonable time
span.
The well established concepts of multi-grid methods address exactly these points.
The general approach of multi-grid methods outlines the mathematical concept in
a problem-independent way and contains various multi-grid components that are
then chosen according to the individual problem. Following an introduction of the
multi-grid approach, multi-grid components for the solution of the model equation
(3.12) – (3.14) in the discrete form (3.22) are given.

Multi-grid method:

Equation (3.22) represents a system of equations, the number of equations defined
by the number of grid nodes and can be written as

K · u = f (3.23)

where K is the system’s matrix defined by the applied finite volume discretization
scheme, u the solution and f a predefined – in this case predefined by the biological
context – right hand side. For the multi-grid method one defines a hierarchy of
grids Ωl ⊃ Ωl−1 . . . ⊃ Ω0 and on each grid level a grid-dependent system of equa-
tions Kl · ul = fl is formulated. Now, instead of calculating an approximation of
the solution u on one grid, multi-grid methods smooth the system’s defect until the
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algorithm reaches a base level on which the defect is calculated. Then, moving up
again in the grid hierarchy the solution of the PDE is corrected iteratively on each
grid level until the highest level is reached.
For this method, three components need to be chosen in a problem-dependent mat-
ter:

1. Smoother: Classical iterations, such as the Jacobi-iteration can be used as
a smoother S in multi-grid methods. They have the effect of eliminating high
frequency parts of the defect at each grid transfer and thus ”smoothing” the
defect.

2. Restrictor: A restriction procedure r defines the routine with which all nec-
essary components can be formulated downwardly in grid hierarchy.

3. Prolongator: The prolongation p defines an inverse routine to the restriction,
with which all components are transferred upwards in the grid hierarchy.

Algorithm 1 shows the scheme of a multi-grid procedure applied on level depth l.

Algorithm 1 Given a system of equations by Klul = fl derived from finite volume
discretization on grid level l, the multi-grid method mgm can be formulated as

mgm(l,u,b) {
if l == 0 then u=solve(l,K0, d)
else {
u=smooth(l, nu1, u, b);
d=defect(l, u, b);
d=restriction(l, d);
v=0;

for i = 0 to γ do mgm(l-1,v,d);

u=u-prolongate(l − 1, v);
u=smooth(l, nu2, u, b);
}
}

As a smoother, the usage of the Gauß-Seidel smoother showed to be ideal for the
implementation of the described model.

Gauß-Seidel smoother:

In order to solve a given equation system

Ku = f (3.24)

with K being a sparse matrix the objective is to invert K. Since an exact inversion
of K surpasses computational power quickly (the model is three-dimensional with a
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1  16  2  17  3

4  18  5  19  6

7  20  8  21  9

10  22  11  23  12

13  24  14  25  15

Figure 3.3: Checkerboard ordering of grid nodes.

very large number of grid nodes) an approximation of K−1, namely a pre-conditioner
M−1 is chosen. This matrix M must be chosen in such a way, that inverting it is
simple in computational terms.
The Gauß-Seidel method proposes

M = L+D, (3.25)

with L a strictly lower sparse matrix and D a diagonal matrix. The iteration rule
given by this method is

u(i+1) = u(i) −M−1(Ku(i) − f) (3.26)

and offers highly effective smoothing of the defect d := Ku(i) − f for symmetric
and positive definite matrices, [28]. Since the Gauß-Seidel smoothing method is
dependent on the numbering of the grid nodes, a choice has to be made. In [28]
different numbering schemes are introduced. In order to leave the opportunity to
parallelize the discretized model equations, it is necessary to apply red-black ordering
(also known as checkerboard ordering), see Figure 3.3.

Time solver:

A backward difference formula can be applied by the time solver. Approximation of
∂u
∂t

is done with
∂u

∂t
≈ u(t+ ∆t)− u(t)

∆t
(3.27)

and is effectively implemented using a nonlinear Newton-solver. The implementation
of the discrete model is done in the simulation software package UG, which is content
of the next section.
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3.3 The Simulation Software UG

As the development of a mathematical model for nuclear information processing in
Sections 3.1–3.2 already shows, the simulation of processes, particularly in neuro-
sciences, makes use of the theory of partial differential equations which are solved
numerically with the well established concept of multi-grid methods. Next to mathe-
matics and applicational sciences, a third discipline is involved in the successful real-
ization of scientific simulations, scientific computing. Implementation of all methods
used in Section 3.1 and 3.2 is a very large task; a task realized in the software de-
velopment project UG.
Since UG is implemented in such a way to address flexible data structures for highly
unstructured geometries and simulations in three dimensions and incorporates a wide
range of solving techniques based on the multi-grid concept, it presents itself very
useful for the realization of the simulation of information processing in nuclei of
hippocampal neurons.

3.3.1 The UG Concept

The UG project began in the early nineties with the goal of developing a software
environment to solve partial differential equations. While the problems to be solved
are specific, the basic structure of UG was to remain problem independent and
is therefore a platform for varying problem definitions. The UG hierarchy can be
divided into three levels, the UG kernel, containing problem independent library
components, the problem class level, in which discretizations, solvers etc. for spe-
cific PDE are included and into the application level, where concrete problems are
defined. Schematics of this structure is visualized in Figure 3.4, adapted from [8].
UG ’s data types can be categorized into geometric data types and algebraic data
types. Geometric data types control large and complex grids, where the algebraic
ones are used to handle algebraic structures needed to store vectors and matrices,
as well as numerical solutions of the underlying PDE-problem. Basic data types of
UG are listed in Table 3.2.

3.3.2 Implementing the Nucleus Model

Implementing the ”nucleus model” takes place on the problem class level, where the
discretization of Section 3.2 is made available and on the application level where
grids from either test geometries or from real 3D-data of hippocampal neuron nuclei
are included. Both solver- and grid-procedures are defined in script files that are
executed by UG.

UG-script files:

UG script files are written in a UG scripting language, offering the user the possibil-
ity to make fix definitions of problem specifications, solver specifications, evaluation
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Figure 3.4: UG-structure: The simulation environment is designed in a hierarchical
order, from library to application level.

Data Type Description

Geometric MULTIGRID Bundles all the information of problem
Data Types GRID Contains data concerning one grid level

ELEMENT Component of finite volume grid
NODE Grid level dependent mesh node data
VERTEX Grid level independent mesh node data
LINK List of neighbor nodes
EDGE Connection between two nodes

Algebraic VECTOR Data storage for defined geometric objects
Data Types MATRIX Matrix data structure

Table 3.2: Important basic data types of UG: Data types in UG are separated into
geometric and algebraic data types.



3.3 The Simulation Software UG 43

tool commands and also graphical output specifications.

3.3.3 Grid Integration for Modeling

UG contains two different domain models, meaning two different ways to include the
geometry of the object on which the PDE is to be solved. These can be user-defined
objects in two or three dimensions, structured or unstructured grids, test geometries
or ones retrieved from microscopy data.
Where the standard domain model is useful for implementing structured geometries,
the linear grid model (lgm) is designed to handle unstructured geometries that can-
not be expressed in mathematical function terms.

Standard domain model:

The standard domain model requires the definition of the geometry’s borders with
piecewise continuous functions, and can also contain user-defined inner grid nodes.
As the requirements of the standard domain model show, it is easy to use when
dealing with geometric objects that can be defined by mathematical functions, such
as circles in two dimensions, cubes or spheres in three dimensions.
Having defined the border segments of a geometric object with the standard do-
main model, it can be included into UG, where refinement tools build and refine
a volumetric grid that, with refinement, converges to the borders of the standard
domain model. The geometry-border is defined together with the problem in UG, a
sample excerpt of the definition of a unit circle in two dimensions – made up of two
segments, an upper halve circle and lower halve circle – is shown in Figure 3.5.
Furthermore, boundary and inner nodes of the volume grid can be defined in the
UG-script file (see Figure 3.6 for an example of a nucleus test-geometry further ad-
dressed in Section 3.6). Here, boundary nodes are defined in their relative position
to a given boundary segment, inner nodes are defined by their absolute coordinates.

Linear grid model (lgm):

When the boundary of an object is random, i.e. abides to no piecewise continu-
ous mathematical function, it is advantageous to use the lgm-model as a means of
describing the surface of an object. Rather than implementing the boundary in-
formation in UG, it is imported from an .lgm-file and included into the multi-grid
components of UG.
A linear grid model file contains point-, line-, and triangle-information about the
surface area of an object, describing the surface of a three dimensional object as
a triangular grid with defined triangle orientation. An example .lgm-file is shown
in Figure 3.7. The lgm-path requires the generation of a separate volumetric grid
which is stored in a .ng-file. This filetype contains all volumetric information of the
geometry, in three dimensions this would be point information and the connectivity
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Figure 3.5: Example of a standard domain implementation of a unit-circle.
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Figure 3.6: Example of a standard domain definition of a volume grid of an infolded
circle on script level.
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between these points that form a tetrahedral mesh. Furthermore, the information
about points, lines, and sides being either inner or boundary components is stored
and passed on to the grid manager of UG.

Generating a .ng-file:

There exists a number of filters, developed by A. Hauser (SiT), that were designed
in such a way to incorporate the CAD-meshing tool ICEM CFD into UG. A list
of useful filters are given in Table 3.3. ICEM CFD’s volumetric data is stored in

Name of filter Description

lgm2tetin Translates .lgm-file into the ICEM CFD format .tin
projectPts Projects inexact boundary points of ICEMs .vrt-file

onto lgm surface
lgm+star2ng Translates the ICEM CFD volumetric files together

with the lgm into a .ng-file

Table 3.3: Filters for UG-grids: Three main filters allow the use of ICEM CFD for
volume grid generation and import of these grid into UG as lgm- and ng-files.

the file-formats vrt, cel and inp, which contain point and tetrahedral information.
Several solvers for the volumetric meshing are offered by ICEM CFD. The filters
from Table 3.3 are written to incorporate the ”star-CD”-solver of ICEM CFD. For
more information, see [2].
The filter lgm2tetin is used to translate the linear grid model into the ICEM CFD
geometry file-format tin. After having generated a volumetric grid, the data is
written into the above files using the star-CD solver. Since ICEM CFD lacks the
necessary precision in floating point representation of boundary point data, the filter
projectPts projects the boundary points onto the lgm-surface so UG can identify
them as such. In a third step, lgm+star2ng translates vrt, cel, inp, and lgm into
one ng-file. Both lgm and ng carry all the information for UG to incorporate the
surface- and volume-model into the multi-grid solving process of calcium diffusion
in hippocampal nuclei.
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Figure 3.7: Example of an lgm-file of a unitsquare.
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3.4 Cytosolic Calcium Transients as Boundary-

Conditions for PDE

To complete the mathematical model based on a diffusion equation for calcium ions
in the nucleus combined with test- or real 3D-geometries of neuron nuclei, the bound-
ary conditions for the diffusion equation need to be defined. Rather than applying
mathematical boundary conditions, it is necessary to model the effect of local up-
take regions for calcium from cytosolic calcium stores which generate an integrated
calcium signal to the nucleus. The cytosolic calcium signal cannot be modeled as
direct onset of calcium concentration to a given concentration value followed by an
instantaneous offset to base level calcium concentration. Experimental data shows
the variety of cytosolic calcium transients (CCTs), which are differentiable by pa-
rameters such as duration, amplitude and frequency of the CCTs.
In order to represent these parameters in a mathematical model, the general struc-
ture of a cytosolic calcium transient was investigated and modeled by mathematical
functions. These mathematical representations stand for either single or multi-
ple CCTs which can be manipulated systematically for evaluation purposes and
prognoses of the behavior of nuclei under different stimuli. An additional devel-
opment finally offers the possibility of incorporating experimentally measured cy-
tosolic calcium transients into UG for modeling signal processing in nuclei on real
3D-geometries as well as with real CCT data as boundary conditions for the model.
A C++ program was written to generate the above types of CCTs with a set of
parameters with which the form of calcium transients can be manipulated. The
structure of the program Burstfunction is such, that it can be directly exported to
UG.

3.4.1 Single CCT Bursts

The integrated signal of a single burst in a cytosolic calcium transient can be de-
scribed by a rapid linear increase of calcium concentration followed by an exponential
decay. Figure 3.8, (A), taken from [31], depicts a typical spike train originating in
the cytosol and entering the nucleus. The parameters for manipulating the form of
a single CCT are listed in Table 3.4. The mathematical function is formulated as a

Parameter Description

tau Regulates form of exponential decay
t stop Defines peak time of CCT
y intercept Shift in base level of calcium concentration
Amp Amplitude of CCT

Table 3.4: Parameters for generating and manipulating single cytosolic calcium tran-
sients.
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Figure 3.8: Cytosolic calcium transients: (A) Experimentally measured dendritic
and nuclear calcium transients. (B) Mathematically designed single CCTs.
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piecewise continuous function with linear rise and exponential decay:

CCTs :=

{
r · x+ yintercept for x ≤ p
r · p+ yintercept · exp(p−x

τ
) for x > p

(3.28)

with x the simulation time in the model, p the peak time regulated by t stop and
τ the decay parameter tau. In Figure 3.8, (B), mathematically generated burst
functions, simulating different types of single cytosolic calcium transients are plot-
ted. Depending on the parameters, transient length and rise/decay speed can be
influenced. Not shown is the regulation of the amplitude by Amp.
An adjustable implementation of single calcium bursts is vital for systematic inves-
tigations on the effect of different boundary inputs for the signaling results in nuclei.
The present implementation is designed to be responsive to the variance in CCTs in
biological systems with changing burst durations, intensities and rise/decay speeds.

3.4.2 Multiple CCT Bursts

A further mathematical transient design was constructed to mimic the repetition
of single bursts within a released calcium signal. As can be seen in Figure 3.8,
(A), multiple bursts of increasing calcium concentration in the cytosol followed by
a rapid exponential decay, form a calcium signal that enters the nucleus. Next to
amplitude and single burst duration, the frequency of the calcium signal oscillation
becomes a further parameter in the control of mathematically generated calcium
transients. This parameter, in the program Burstfunction, is defined as parameter
k, the frequency regulator.
The multiple burst function is based on function (3.28) and can be written as:

CCTm :=

{
r · x+ yintercept for s · π < x ≤ s · π + p
r · p+ yintercept · exp(p−x

τ
) for s · π + p < x ≤ (s+ 1) · π (3.29)

with s = 0, 1, 2, . . . and period length π.
Figures 3.9 and 3.10 contain examples of different multiple calcium oscillations, that
can be used as boundary conditions in the mathematical model. To test the effect
of spike trains with different frequencies, the frequency is adaptable, see Figure 3.9,
as well as the duration of single bursts, see Figure 3.10.
Not only spike trains with the distance between single burst large enough for the
signal to decay to base level concentration are observed experimentally. If the in-
duction of CCTs is strong, a rapid spike train can be measured, where the bursting
intervals are so small, that the signal does not retract to base level but is overlapped
by the following burst, see Figure 3.10, (E).

3.4.3 Importing Experimentally Recorded CCTs

While the two boundary functions of single and multiple burst sequences are math-
ematical functions, which approximate experimentally recorded cytosolic calcium
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Figure 3.9: Mathematically generated multiple CCTs: (A)-(D) Variation of the fre-
quency parameter generates different types of multiple CCTs.
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Figure 3.10: (A)-(D) Manipulating the peak time t stop generates different types of
CCTs. (E) Calcium ripples can be induced.
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Figure 3.11: Different types of experimentally measured cytosolic calcium transients.

transients, and are ideal for systematic evaluations of the effects on signaling out-
comes caused by changes in the parameters mentioned above, the third approach for
defining boundary condition functions is driven by the idea of constructing a most
realistic scenario.
Not only can the model be based on realistic three-dimensional geometries that are
accessible from a nucleus data base (Appendix and [55]), it can also incorporate ex-
perimentally measured calcium transients. For this purpose, a file reading function
was integrated into UG, that can access specially formatted CCT-data files. These
files consist of a two-columned array, the first column containing the time step val-
ues, the second the calcium concentrations.
Experimental data was recorded at the IZN Heidelberg by A. Eder and M. Wittmann
as part of this project. This data was used to create a realistic simulation environ-
ment, some results of these simulations can be found in [68]. In Figure 3.11 some
examples of experimentally recorded cytosolic calcium transient data are depicted.
At this point, the mathematical model has been sufficiently described, meaning PDE
with initial and boundary conditions are formulated.
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3.5 Several Evaluation Tools for Nuclear Informa-

tion Processing

As the simulation environment for calcium signaling in nuclei is fully described in a
mathematical sense and all accessible biological data was exploited for constructing
a realistic model of the present biological context, the next objective is to retrieve
vital data from simulation runs, and also retrieve data that is not accessible from
the experimental side. Where in experiments only calcium load (summed calcium
concentration in a pre-defined region of interest) in slices from hippocampal neuron
nuclei can be evaluated, the model can go further into the analysis to make prognoses
for calcium signaling effects, which can lead the way for further biological research.
It is necessary to assess current knowledge and hypotheses from biological research,
which can then be used as the basis for the developed simulation environment.
In this section, tools for evaluating simulation data are introduced. Each tool was
developed on the basis of current biological hypotheses as well as knowledge of
calcium signaling in hippocampal neuron nuclei, and implemented in the simulation
software UG.

3.5.1 General Implementation

The evaluation tools were included at two UG-locations:

1. In commands.c: located at UG/ug/ui/

2. In disctools.c: located at UG/ug/np/udm/

In commands.c the routines described in this section, which are implemented in
disctools.c, are made known at UG-scripting level with the names vmean, activity,
regionalact, saveVolPreprocess, saveVolume and centernuccal. Further sub-routines
are addressed in the following sections. Figure 3.12 depicts the schematics of the ex-
ecution of the evaluation routines at scripting level. The command names in Figure

Script commands:
vmean activity regionalact

commands.c
call up eval-tool

:

disctools.c:
execute tool

centernuccal

Figure 3.12: Implementation structure of the evaluation tools in UG.
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Figure 3.13: Using the evaluation tools: Example of UG-script implementation of
centernuccal, vmean, activity and regionalact.

3.12 can be included on script-level according to Figure 3.13, their call-up routine
is implemented in commands.c and finally the algorithmic routine implemented in
disctools.c. Having outlined the general implementation of the evaluation tools,
the following sections address the biological background of each tool as well as the
translation to UG.

3.5.2 Calcium Load

The calcium load measuring tool computes the calcium concentration within the
nucleus. The concentration level of calcium plays a vital role in the signaling re-
sults in respect to fluctuations in the cytosolic calcium concentration. To cite a few,
[32, 41, 19] address the influence of calcium waves on fate and reaction of hippocam-
pal nuclei. It is to be noticed, that pathologically high or pathologically low levels
of NMDA receptor activity are cell death-promoting, and thus define an activity
interval for NMDA receptor activity in which cell survival is promoted, [32].
Furthermore, the frequency of a calcium signal seems to play an additional role for
information processing in the nucleus. Calmodulin, a receptor for calcium ions, see
Section 1.3, is sensitive to calcium wave frequency, [41]. Depending on the frequency
of calcium waves, Calmodulin varies in its activity. Higher frequencies in calcium os-
cillations lower the activity threshold for calmodulin, [41]. Even different outcomes
in the expression of genes could be observed, depending on the form of the calcium
signal, [19].
This shows the importance to measure calcium concentration in the nucleus as a
measure for nuclear fate and the influence of nuclear morphology on the concen-
tration levels and distribution within the nucleus. With the script name vmean,
a routine is implemented to measure calcium concentration in each element of the
finite volume discretization of the nucleus at each time step of the simulation. The
concentration levels can be either read out at specific points in the nucleus, or as the
sum over all nodes in the grid normed with the volume of the nucleus. The latter
method represents the evaluation method of calcium load in biological experiments.

User information: The output of vmean is tagged with the string ”VMEAN” and
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Figure 3.14: Evaluation of mean nuclear calcium concentration: Different options
are offered by vmean for evaluating calcium dynamics.

can so be piped into a .dat-file for data evaluation and visualization:
grep VMEAN log/nucleus3d.log > dummy.dat

Furthermore, vmean has the option of integrating the graph of calcium load in time.
This value is used in this project as a measure for the state of a nucleus. This
state represents the influence of the nuclear morphology on the calcium dynamics in
the nucleus over a given time span. Figure 3.14 shows an overview of the possible
applications of vmean.

3.5.3 Calcium Activity

The concentration of calcium ions in the nucleus is dependent on the ability of pass-
ing on cytosolic calcium signals into the nucleus. This happens by passage through
nuclear pores that line the nuclear envelope. That means the more nuclear pores
are located on the envelope or the larger the envelope itself is, the faster calcium
can enter and leave the nucleus. Measuring the calcium load as described above, is
a representation of the size of the nuclear envelope, and the number of pores on it,
in relation to the overall nuclear calcium concentration.
It becomes clear, that the actual morphology of the nucleus only influences enve-
lope size and the number of nuclear pores. Yet an increase in envelope size and
pore number would also be generated by a larger spherical structure with increased
diameter, compared to a smaller spherical nucleus. The question, why the nuclear
envelope forms complex infolded structures can only be answered by a further bio-
logical observation, which can be included into the mathematical model by means
of the measuring tool calcium activity.
In Section 1.3 different pathways for calcium entry into the nucleus are described,
as well as the different functions calcium carries out in the nucleus. The fine reg-
ulation of biological processes – if a process is activated and which of the different
processes are addressed by a calcium signal – is controlled by activation thresholds
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Figure 3.15: activity allows the user to evaluate threshold dependent nuclear pro-
cesses, either globally or at designated locations.

for calcium, [18, 19]. In [18] it is proposed, that the two governing, calcium induced
processes of CREB phosphorylation through calmodulin activation and the MAPK
pathway induction are regulated by a calcium threshold.
The data indicates, that if the calcium concentration exceeds a biological threshold,
the first of the mentioned processes is activated, whereas the second one predom-
inates when the calcium concentration drops below the threshold. Therefore, not
only the global calcium concentration, regulated by the number of pores, is vital for
the fate of the cell, but also the local signals, meaning the areas within the nucleus
that are above a given threshold at a certain time. This is the point, where the
actual geometry of the nucleus comes into play.
Where the size of a spherical nucleus can influence the global calcium concentration,
spherical nuclei with varying diameters cannot directly regulate local areas above
threshold. On the contrary, nuclei with an infolded nuclear envelope reduce diffusion
distances without needing to reduce the size of the nuclear envelope and therefore
are prone to increase the area inside the nucleus that is above threshold and will
be more dynamic in interpreting biologically relevant signals, [19]. Calcium waves
from the cytosol will enter the nucleus from adjacent sides and will therefore overlap
faster.
In order to evaluate the effect of the nuclear morphology on the percentage of re-
gion above and below a given threshold, the tool with the script name activity

was implemented in UG. The tool activity is derived from vmean with additional
threshold and ”active volume” to volume ratio evaluation. activity loops over all
grid elements of the current UG grid and calculates the entire volume of the grid as
well as the summed volume of those elements, whose calcium concentration values
lie over a given threshold. The ratio between the active volume elements and the
nuclear volume is called nuclear activity at a given time step. Activity graphs in
time can thus be retrieved from simulation runs. A further option is the integration
of the current activity graph which offers a scalar value for each nucleus with which
nuclei with different geometries can be compared directly.
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User information: The output of activity contains the string ”ACTIVITY” and
can be directed into a file with the shell command:
grep ACTIVITY log/nucleus3d.log > dummy.dat.

Figure 3.15 shows the different components of activity which can be used for
nuclear activity evaluation in a simulation run.

3.5.4 Concentration Minimum and Nuclear Center

A further option for measuring minimum and maximum calcium concentration val-
ues in the nucleus are included as a subprocess of vmean. Especially the location
and value of the concentration minimum plays an interesting role in threshold- and
regionally-dependent processes, [18, 19]. Measuring the concentration minimum al-
lows systematic geometry investigations, especially on test geometries (see Section
3.6). This additional parameter is directly linked to the geometry of a nucleus.
Shortened diffusion distances by infolding of the nuclear envelope shifts the location
of the minimum and the value of the minimum.

In order to retrieve information about the inertness of a nucleus, this being the
ability to react to a given cytosolic calcium input, the evaluation of the calcium
dynamics within the center of a nucleus showed to be prosperous. The center area
of a nucleus is furthest away from the nuclear envelope, therefore the most inert
area of the nucleus. To find the center of the nucleus, the application loops over
inner nodes of the grid with a distance check to boundary nodes and identifies the
inner nodes furthest away from the boundary elements and therefore farthest away
from the nuclear envelope.

3.5.5 Splitting the Nucleus Into Micro-Domains and Mea-
suring Compartments

Chapter 5 will show that infolding of the nuclear envelope has the tendency to
separate the nucleus into micro-domains within the nucleus. To investigate the
ability of the changes in nuclear morphology to produce subdivisions within a single
nucleus that can act as independent units, a method for splitting the nucleus into
subdivisions was developed. It is then furthermore possible to evaluate separated
subunits of the nucleus independently in respect to their calcium dynamics.
The process of separating and evaluating regions within a nucleus is done in four
steps:

1. Visualizing the nucleus in a three dimensional way.

2. Identifying the separating plane for subunits.

3. Separating the grid into multiple pools of nodes and elements.

4. Evaluating calcium dynamics in defined groups of nodes and elements.
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Visualizing the nucleus with VisIt and identifying the separation plane:

In order to identify the separation planes, a procedure was introduced in UG to
write visualization output for the open source visualization tool VisIt, [63]. The
data is written in the vtk-format and can thus be imported as a vtk-stack into
VisIt. This open source tool offers the opportunity to define planes in a three
dimensional space. This plane can be positioned in such a way, that it is aligned
with a membrane infolding of the nuclear envelope. In addition, the plane’s normal
vector is delivered by VisIt and can be used in UG. Figure 3.16 shows a nucleus
visualized with VisIt with its separating plane.

Separating the nucleus into subunits and evaluating nuclear sub-com-
partments:

With the coordinates of a point on the separation plane and the normal vector of
the plane, the grid nodes and elements can be separated into a group ”left” and
”right” of the plane. Figure 3.17 illustrates the following mathematical check for a
node being ”left” or ”right” of the plane. With ”right” the half space is defined,
in which the normal vector of the plane points into, with ”left” the opposite. We
define a random node ~v, a point on the plane ~g and the normal ~n. From vector
analysis, one can apply the equation

cosϑ =
~g · ~n
|~g| · |~n|

(3.30)

for defining the angle between the two vectors ~g and ~n. To check whether a node is
on the right or left side, the angle between the reference vector ~g−~v and the normal
vector is calculated:

cosϑ =
(~g − ~v) · ~n
|~g − ~v| · |~n|

. (3.31)

If the angle is larger than π
2
, the node lies on the left side of the plane, otherwise on

the right side. With cos π
2

= 0 it follows

0 =
(~g − ~v) · ~n
|~g − ~v| · |~n|

⇒ 0 = (~g − ~v) · ~n. (3.32)

The second equation stands, since it is guaranteed that (0, 0, 0) lies outside of the
nucleus. It can be concluded

~g~n− ~v~n ≥ 0, ~v lies on right side.
~g~n− ~v~n < 0, ~v lies on left side.

(3.33)

The ”left/right”-check for separation of grid nodes and elements equips each node
and element with an appropriate tag. In the end, all evaluation tools described
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Figure 3.16: Defining the separation plane of different micro-domains using the
visualization tool VisIt.
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plane

Figure 3.17: Vector structure for evaluating whether node is ”left” or ”right” of the
plane.

in this section are also applicable to single sub-compartments of the nucleus. Cal-
cium load and activity in single sub-compartments can be measured, as well as
minima/maxima and concentrations in the centers. Figure 3.18 demonstrated the
structure and applications for nuclear sub-compartment evaluation.

3.5.6 Adaptability to Experimental Measuring Techniques

Aside from measuring calcium load and nuclear activity in subdomains of the nu-
cleus, a further aspect needs to be addressed. In all described cases, calcium load
or activity is measured in every node of the nucleus or subcompartment. This also
includes boundary nodes. Yet when considering the way biological experimental
data for subcompartments is evaluated, special care is taken in the region of the
nuclear membrane.
In experiments both membrane and calcium are tagged with a fluorescent. To avoid
mistaking membrane fluorescence as a calcium signal, regions of interest are chosen
in such a way, that they are slightly drawn away from the nuclear membrane, see
Figure 3.19. This will cause an evaluation effect not yet modeled in the simulation
environment.
In order to synchronize experimental and model evaluation of calcium dynamics, a
final add-on can be activated, which offers different modes of adapting simulation
evaluation to fit experimental data evaluation. By neglecting the membrane-nearest
parts of the nucleus in the evaluation, inertia effects caused by different nuclear
morphologies become visible the way they do in experimental evaluation. Different
modes can be chosen for that type of evaluation:
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Center of domains

Regional
evaluation

Split geometry

vmean activity

Figure 3.18: Implementation structure of the evaluation tool Regional evaluation.

Figure 3.19: Example of region of interest definition in microscopy data.
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1. Measure only inner nodes (not boundary nodes) in grid.

2. Measure only second level of inner nodes and below. This means that boundary
nodes as well as the neighboring inner nodes are exempt from evaluation.

3. Measure nodes within a defined spherical or cubical area within subcompart-
ments.

These different evaluation modes are outlined graphically in Figure 3.20. The above
adaptability modes are implemented in the function centernuccal which can be ex-
ecuted within the UG-script. Figure 3.18 can thus be expanded with extra modes,
shown in Figure 3.21.



64 3. Modeling Calcium Signaling in Hippocampal Neurons

A

B

C

Figure 3.20: Modes of evaluation: (A) All inner nodes except those that are neighbors
to boundary nodes. (B) All nodes inside a defined sphere. (C) All nodes within a
defined cuboid.
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Figure 3.21: Regional evaluation with the added adaptation option to experimental
evaluation.
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3.6 Diffusion Models on Test Geometries

Controllable test geometries allow systematic testing of the implemented mathe-
matical diffusion model as well as evaluation procedures. Furthermore, the test
geometries were designed in such a way to produce biologically relevant modeling
prognoses, concerning the geometric structure of cell nuclei. Since the reconstructed
three-dimensional data of hippocampal neuron nuclei show a specific form of mem-
brane infolding, this type of infolding was included in test models, where different
parameters are variable, such as size and position of infoldings.

3.6.1 2D-Test Models

In a first approach, two dimensional geometries were developed and integrated into
a diffusion test model. The need for starting with simulations in two dimensions
was mainly for computational reasons, allowing fast simulation runs with broad
flexibility in investigating the effect of different set-ups, thus guiding the way for the
following, more ”expensive” three dimensional simulations.
For the 2D-model the following components were included:

1. Discrete diffusion model from Section 3.2.

2. Spherical and infolded geometries.

3. ”Continuous” and ”pore” boundary conditions.

4. Two-dimensional infolded test geometry in the standard domain model (Sec-
tion 3.3.3).

Boundary conditions for the 2D-model can be chosen from the list presented in Sec-
tion 3.4. In addition, two different modes of boundary conditions were implemented.
The first mode can be called a continuous mode, where all boundary nodes are given
the same input, be it a constant cytosolic calcium feed or an oscillating signal. The
second mode was designed in such a way, that cytosolic calcium intrusion occurs
through nuclear pores. This means, that in designated pore regions on the bound-
ary the boundary condition is a Dirichlet condition, outside the pore region the
boundary is sealed with Neumann boundary conditions.

Pore- and continuous mode boundary condition:

Connected to the boundary of the 2D-model is a sinusoidal function

P (x) := sin(c · x) (3.34)

where c ∈ N is a parameter which regulates the number of pores on the membrane,
x defines the location on the boundary. With a threshold t the pore-region size can
be defined, see Figure 3.22:
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Figure 3.22: Defining nuclear pore complexes in the standard domain model: A
modifiable sinusoidal function is linked to the boundary conditions. Boundary area
above a certain threshold is pore area, everything below is nuclear membrane.

P (x) ≥ t ⇒ Boundary condition is Dirichlet
P (x) < t ⇒ Boundary condition is Neumann

(3.35)

The continuous mode sets the entire boundary to Dirichlet boundary conditions
with a constant signal or cytosolic calcium transients from Section 3.4. Graphical
depictions of the effect of the two different modes are presented in Figure 3.23.

2D-test geometries:

Two-dimensional test geometries were designed to model nuclear forms, exemplarily
depicted in Figure 3.24. One is a sphere with two parts, upper and lower halve of a
sphere, the second consists of 8 separate parts which are implemented in the most
adaptable form. Parameters, that can be chosen by the user are:

1. Center m1 (= (0, 0)) of geometry.

2. Radius r1 (= 1) of sphere.

3. Length parameter t (= 1.4) for part 1 and 7 of geometry.

4. Radius r2 (= 0.1) of infolding dip.

5. End point n (= −0.564 +m
(2)
1 ) of infolding.

The 8 parts of the geometry shown in Figure 3.25 are defined in the following way:
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Figure 3.23: Two types of boundary conditions: The left image depicts a continuous
boundary condition, where the entire envelope is surpassable, the right image shows
a nuclear pore complex boundary condition.

Figure 3.24: Left: Spherical standard domain geometry. Right: Infolded standard
domain geometry.
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Figure 3.25: Parts of the standard domain geometry: 8 components define an in-
folded geometry in the standard domain implementation.

Parts of test geometry:

1.
x = m

(1)
1 + cos(l) · r1, (l = [0, t])

y = m
(2)
1 + sin(l) · r1

2.
x = m

(1)
2 + cos(k) · r2, (k = [π

2
, π]), m

(1)
2 := m

(1)
1 + cos(t) · r1 − cos(π

2
) · r2

y = m
(2)
2 + sin(k) · r2, m

(2)
2 := m

(2)
1 + sin(t) · r1 − sin(π

2
) · r2

3.
x = (m

(1)
1 + cos(t) · r1 + cos(π) · r2) =: rk

y = [m
(2)
1 + sin(t) · r1 − sin(π

2
) · r2, n]

4.
x = m

(1)
1 + cos(m) · ri, (m = [π, 2π])

y = m
(2)
1 + n+ sin(m) · ri, ri := cos(t) · r1 + cos(π) · r2

5.
x = rk − 2 · ri
y = [m

(2)
1 + sin(t) · r1 − sin(π

2
) · r2, n]

6.
x = rk − 2 · ri − r2 + cos(p) · r2, (p = [0, π

2
])

y = m
(2)
2 + sin(p) · r2

7.
x = m

(1)
1 + cos(q) · r1, (q = [arccos(

rk−2ri−r2−m
(1)
1

r1
), π])

y = m
(2)
1 + sin(q) · r1

8.
x = m

(1)
1 + cos(u) · r1, (u = [π, 2π])

y = m
(2)
1 + sin(u) · r1
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A B

C

Figure 3.26: Three dimensional test geometries: (A) Ellipsoid without infolding.
(B) Ellipsoid with infolding adjustable in horizontal direction. (C) Ellipsoid with
infolding adjustable in vertical direction.

The above test models with standard domain geometries are implemented in UG
under UG/sc/appl2d/scalar2d.c.

3.6.2 3D-Test Models

In analogy to the two dimensional test geometries, three dimensional geometries were
generated, one to represent the ellipsoidal morphology of nuclei without infoldings,
and one to represent an infolded nucleus in three dimensions. For this purpose,
test geometries were developed with the software tool NeuRA, [49]. In NeuRA,
three dimensional tiff-stacks can be generated as a basis for the construction of a
linear grid model (lgm). Figure 3.26 shows the ellipsoid and infolded ellipsoid test
geometries on which signal processing can be simulated.
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4.1 Introduction

Signal propagation in nuclei of hippocampal neurons is described as a diffusion pro-
cess, based on diffusion laws from thermodynamics of irreversible processes. The
diffusion coefficient D in the mathematical equation 3.4 is dependent on the biolog-
ical context. In Section 3.1.2 well integrated literature is cited, that deals with the
diffusion coefficient of calcium ions in buffered and free states.
Yet experimental data is retrieved under entirely different circumstances from the bi-
ological context presented in this project. While the values for diffusion coefficients
for calcium in [1] are good guidelines, the objective of this chapter is to develop
a data driven inverse model, based on the model from Chapter 3 and experimen-
tal data in order to mathematically verify the accuracy of the diffusion coefficients
stated in current literature and investigate whether they are applicable to diffusion
of calcium ions in hippocampal nuclei. An optimization algorithm is developed and
implemented in the simulation software UG. The package that contains the param-
eter estimation implementation is named scPE and located at UG/scPE.

4.1.1 Numerical Optimization

The field of numerical optimization covers a broad spectrum of research fields that
are concerned with optimization, ranging from risk management in the financial
world, form-optimization in the car industry to identifying parameters in biological
systems. In all cases, an objective is defined, which is object to an optimization
procedure. This objective is dependent on one or more parameters. The task of an
optimization algorithm is to identify the value of these parameters that minimize or
maximize the objective.
Parameters of the objective can be unconstrained or constrained. In the case of
constrained parameters, additional demands are made for the objective. The mathe-
matical formulation of any kind of optimization problem can therefore be formulated
as

min
p∈Rn

F (p) subject to (s.t.)
ci(p) = 0, i ∈ Ie
ci(p) ≥ 0, i ∈ Iie

. (4.1)

The optimization problem consists of three parts:

• The objective function F , which is to be minimized or maximized.

• A set of parameters p on which the objective function depends. These are the
unknowns to be identified by the optimization procedure.

• Constraints ci, these can be equality or inequality constraints which need to
be fulfilled by the parameter set p.

In order to solve an optimization problem one needs to find an Optimization Al-
gorithm, which is an iterative procedure that converges towards a solution for the
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optimization problem (4.1). Furthermore, a good optimization algorithm fulfills the
following criteria:

• Efficiency: Ideally, convergence rates for the algorithm should exceed linear
convergence.

• Robustness: The algorithm ideally does not depend on the choice of a start-
ing point and is applicable to a broad range of problems.

• Accuracy: The algorithm should converge towards the solution of the op-
timization problem without being strongly influenced by initial errors in the
input data or errors caused by exceeding computational accuracy.

Under consideration of the above criteria and the biological context, and the study
of fundamental methods in numerical optimization described in Section 4.2, an opti-
mization algorithm for the presented objective is developed in Section 4.3 and finally
implemented in UG.

4.1.2 Biological Context

In [1] experiments in xenopus laevis oocytes were made to retrieve the diffusion co-
efficients of buffered and unbuffered calcium. It can be assumed, that these data are
representative for the context of hippocampal neurons. Until now, no experiments
were carried out directly in actual hippocampal neurons. Instead of setting up ex-
periments to measure diffusion coefficients in hippocampal neurons, a new approach
is taken in this project. A parameter estimation model is developed in order to
minimize the ”distance” between model and experiment in respect to the diffusion
coefficient of calcium.
Experimental data needs to be recorded in such a way, that is can be included into
the mathematical model. Work done by A. Eder (IZN, Heidelberg), [20], where the
function of the nuclear envelope as a diffusion barrier for calcium is investigated
offers the basis for experiments made in this project. Detailed information about
the experimental set-up is given in Section 4.3.6.
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4.2 The Fundamentals of Parameter Estimation

in PDE

Two main algorithmic strategies in optimization algorithms are well established,
line search and trust region methods. Their basic concept is to compute a new
parameter set of the objective function in each iteration starting with a chosen (or
calculated) initial parameter set. A successful algorithm defines an iteration that
converges towards a set of parameters that optimizes the objective function. Giving
a general introduction into these main strategies, they can then be modified for the
application to PDE-based optimization problems.
The trust region methods operate similarly to line search methods in that they calcu-
late a stepping direction and a step length in the algorithm. The objective function
in both cases can be approximated by a quadratic function. For this quadratic ap-
proximation a trust region is chosen, dependent on this region a minimizer function
is calculated which delivers a step direction and step length simultaneously. Each
time the trust region changes, so does step direction and length. Line search meth-
ods choose a stepping direction according to some algorithm and then calculate ideal
stepping lengths afterwards.
The latter method proved to be ideal for the purpose presented here. For an elab-
orate description of trust region methods, see [50]. In the following, a brief intro-
duction to line search methods is given, which will be used for the estimation of the
diffusion coefficient for nuclear calcium.

Line search method:

In order to minimize a function F

min
p∈Rn

F (p) (4.2)

it is substituted by an iterative process

min
α>0

F (Dk + α∆Dk) (4.3)

with a line search direction ∆Dk and a given step length α > 0. Minimizing (4.3) in
respect to α yields an optimal step length in the direction ∆Dk. It depends on the
current problem how precise the step length should be calculated. Precision comes
at the cost of computational time. This needs to be put in relation to the effect of
the accuracy on the convergence of the algorithm. It might be sufficient to calculate
a rough estimate of α for the effective convergence of the algorithm.
In [50] conditions are defined for which a step length α will resolve in a convergent
algorithm. Given a search direction ∆Dk, ideally the steepest descent direction
−∇Fk, the Wolfe conditions can be stated as
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Definition 5 Wolfe Conditions

F (Dk + αk∆Dk) ≤ F (Dk) + c1αk∇F T
k ∆Dk (4.4)

∇F (Dk + αk∆Dk)
T∆Dk ≥ c2∇F T

k ∆Dk (4.5)

with 0 < c1 < c2 < 1.

The first condition demands, that the reduction of F be proportional to αk as well as
∇F T

k ∆Dk. The second condition, the curvature condition, couples the value of the
slope of F (Dk + α∆Dk) with the step length α. This condition indicates whether a
great change in F can be expected or not, and adjust α accordingly. The following
Lemma states the existence of a step length satisfying the Wolfe condition.

Lemma 1 Suppose that F : Rn −→ R is continuously differentiable. Let ∆Dk

be a descent direction at pk, and assume that F is bounded below along the ray
{pk + α∆Dk|α > 0}. Then if 0 < c1 < c2 < 1, there exist intervals of step lengths
satisfying the Wolfe condition.

For proof of this lemma, consult [50]. A similar set of conditions are the Goldstein
conditions, which state

F (pk) + (1− c)αk∇F T
k ∆Dk ≤ F (pk + αk∆Dk) ≤ F (pk) + cαk∇F T

k ∆Dk (4.6)

with 0 < c < 1/2. A Backtracking Line Search is proposed in [50], which eliminates
the second of the Wolfe condition (4.5) and can be formulated as

Algorithm 2 (Backtracking Line Search)
Initial step length α̃ > 0, ρ ∈ (0, 1), c ∈ (0, 1); Set α← α̃;
repeat until F (pk + α∆Dk) ≤ F (pk) + cα∇F T

k ∆Dk

α← ρα;
end (repeat)
Terminate with αk = α.

This backtracking approach enforces the sufficient decrease condition, choosing α as
a fixed value or dynamically to fulfill condition (4.4), and shows to be applicable
with Newton methods with steepest descent conditions (of which will be made use
of later). An optimization algorithm is ideally globally convergent. For it to be
so, certain demands must be made for the search direction ∆Dk of the line search
objective function. It can be shown, that the steepest descent method, i.e. choosing
the step direction −∇Fk, is globally convergent and also all search directions that do
not deviate far from the steepest descent direction. This can be put into a geometric
argument, when considering the angle ϑk between ∆Dk and −∇Fk

cosϑk =
−∇F T

k ∆Dk

‖∇Fk‖‖∆Dk‖
. (4.7)

The following theorem guarantees that, as long as the search direction does not
converge towards the normal of the gradient of F , global convergence is given.
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Theorem 1 Consider any iteration of the form pk+1 = pk +αk∆Dk, where ∆Dk is
a descent direction and αk satisfies the Wolfe conditions (4.4) and (4.5). Suppose
that F is bounded below in Rn and that F is continuously differentiable in an open
set N containing the level set L := {p : F (p) ≤ F (x0)}, where p0 is the starting point
of the iteration. Assume furthermore that the gradient ∇F is Lipschitz continuous
on N , i.e.

∃L > 0 ‖∇F (p)−∇F (p̃)‖ ≤ L‖p− p̃‖, ∀p, p̃ ∈ N . (4.8)

Then ∑
k≥0

cos2 ϑk‖∇Fk‖2 <∞. (4.9)

A proof for the above theorem is given in [50]. From the theorem one can immedi-
ately follow, that

cos2 ϑk‖∇Fk‖2 → 0. (4.10)

Now, under the assumption that the search direction does not converge towards the
normal of ∇Fk, which means

∃ϑ > 0 cosϑk ≥ ϑ, ∀k, (4.11)

it follows, that
lim
k→∞
‖∇Fk‖ = 0. (4.12)

In particular it follows that the method of steepest descent, ∆Dk := ∇Fk, is globally
convergent.
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4.3 The Least Squares Problem

In this section an optimization model will be defined, that brings together a mathe-
matical model for calcium diffusion and experimental data from calcium propagation
in hippocampal neurons. The goal is to identify the diffusion coefficient of calcium
in this cell type using an inverse modeling approach with a Least Squares Problem.

4.3.1 Introduction

The objective function of a least squares problem defines the distance (the deviation)
between the mathematical model and experiment. With deviation dj, the objective
function can be written as

F (D) :=
m∑
j=1

d2
j(p). (4.13)

The least squares problem can be a constrained or unconstrained, linear or nonlinear
problem, depending on the origin of the underlying objective. Figure 4.1 illustrates
the concept of solving a least squares problem, i.e. finding a function that minimizes
the squared distance between simulation data and experimental data.

Figure 4.1: Example of a least squares solution for experimental data points.
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4.3.2 Definition of the Optimization Objective

The optimization objective of identifying the diffusion coefficient of calcium ions can
be formulated as a least squares problem. The objective function of this problem is
defined by

F (D) :=
N∑
i=1

M∑
j=1

(uij(D)− ĉij)2 (4.14)

with ĉij being the experimentally measured values at N different locations in the
neuron and at M different times. uij are the values of the simulation at the same
locations and times as the experimental data (Figure 4.2). As the simulation data is
derived from the model from Chapter 3, the constraint to the minimization problem

minF (D) (4.15)

is, that the minimizing function is a solution of the diffusion model for calcium.
This yields a constrained minimization problem

minF (D), s.t. u(D) ∈ B, (4.16)

with B the solutions of the diffusion model.

Figure 4.2: Time course of data recording: At times t1 . . . tN the calcium data at
different points are recorded.
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4.3.3 A Steepest Descent Algorithm for the Diffusion Model

One way to solve the minimization problem

min
D

F (D) :=
N∑
i=1

M∑
j=1

(uij(D)− ĉij)2 (4.17)

is applying a steepest descent iteration. This process requires the calculation of a
step direction ∆D in each iteration, which is defined as the derivative of the objective
function F (D). In Section 4.2 the backtracking line search algorithm shows to be
convergent for the steepest descent direction. In Figure 4.3 the concept of the

Figure 4.3: Contour lines of objective functions and steepest descent direction.

steepest descent method is outlined.
An approximation that can be made is the local representation of the nonlinear
objective function F (D) by a linearized quadratic function. With the iteration
parameter q the linearized minimization problem yields

min
∑
i,j

(
uij(D

(q))− ĉij +
∂uij
∂D(q)

·∆D(q)

)2

(4.18)

by applying a Taylor-development to equation (4.14) and including the first order
term and

∆D(q) := D(q+1) −D(q). (4.19)

Deriving the linearized quadratic objective function, and calculating ∆D for which
the derivative is zero, defines the steepest descent direction for each iteration step in
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the algorithm which converges towards a minimal deviation between modeled and
experimental data. The linearized quadratic objective function is defined as

F̃ :=
∑
i,j

(
uij(D

(q))− ĉij +
∂uij
∂D(q)

·∆D(q)

)2

. (4.20)

The derivative of F̃ in respect to D is

∂F̃

∂D(q)
=
∑
i,j

(
4

(
uij(D

(q))− ĉij +
∂uij
∂D(q)

·∆D(q)

)
· ∂uij
∂D(q)

)
. (4.21)

When setting ∂F̃
∂D(q) to zero, one can retrieve the steepest local descent direction

∆D(q):

∂F̃
∂D(q) = 0

⇔
∑

i,j

(
4
(
uij(D

(q))− ĉij +
∂uij
∂D(q) ·∆D(q)

)
· ∂uij
∂D(q)

)
= 0

⇔ 4 ·
∑

i,j

(
∂uij
∂D(q) · uij(D(q))− ĉij

)
+
∑

i,j

((
∂uij
∂D(q)

)2

·∆D(q)

)
= 0

⇔
∑

i,j

(
ĉij − ∂uij

∂D(q) · uij(D(q))
)((

∂uij
∂D(q)

)2

·∆D(q)

)
=

=
∑

i,j

(
ĉij − ∂uij

∂D(q) · uij(D(q))
)

...

⇔ ∆D(q) =
P
i,j

“
ĉij−

∂uij

∂D(q)
·uij(D(q))

”
P
i,j

“
∂uij

∂D(q)

”2

(4.22)

With the step direction

∆D(q) =

∑
i,j

(
ĉij − ∂uij

∂D(q) · uij(D(q))
)

∑
i,j

(
∂uij
∂D(q)

)2 (4.23)

the new diffusion coefficient D(q+1) can be calculated exploiting the following equa-
tion:

∆D(q) = D(q+1) −D(q)

⇔ D(q+1) = D(q) + ∆D(q) (4.24)

With the step direction defined, a parameter estimation algorithm for the diffusion
coefficient D of calcium can be formulated.
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Algorithm 3 (Parameter estimation for calcium ions)
Initialize D(0) as the initial diffusion coefficient according to Section 3.1.2.
Import experimental data.
repeat until F (D(n)) ≤ ε, ε > 0 and q = 0 . . . n
Calculate ∆D(q) according to Eq. (4.23).
D(q+1) ← D(q) + ∆D(q);
end (repeat)
Terminate with D := D(n).

Several components need to be calculated for the above algorithm. In the follow-
ing sections, the calculation of these components within the framework of UG is
addressed.

4.3.4 Calculating Simulation Data

In order to calculate equation (4.23), the solutions uij of the diffusion model are
required. This means, that in each iteration of the parameter estimation the simu-
lation of calcium diffusion needs to be carried out until time M is reached. At each
measuring time the values at the N measuring points need to be stored. The PDE
that is solved for the simulation of calcium diffusion in nuclei is

∂u(x, t)

∂t
= div(D · ∇u(x, t)). (4.25)

In its weak formulation (see Section 3.2.2)∫
Ω

∂u

∂t
=

∫
Ω

div(D · ∇u), (4.26)

the diffusion equation is discretized using flux conserving finite volume discretization
and implicit Euler time discretization. With numerical integral approximation this
yields the equation (see Section 3.2.2):

|bi| (u(tk+1, xi)− u(tk, xi)) = ∆t
∑
j,l

|∂bi ∩ ∂bl|u(tk+1, xj)D · ∇ξj(xil) · ~nil. (4.27)

The solution u(tk+1, xj) is calculated on each finite volume element and stored at
each grid node of the volumetric grid. If tk+1 and xj happen to be a parameter
estimation time and location, the solution uij of (4.27) is needed in the algorithm.

4.3.5 Calculating Derivatives

The second component that needs to be calculated is the derivative ∂u
∂D

. Instead
of deriving the analytical diffusion equation (4.25) one can derive the discretization



4.3 The Least Squares Problem 83

(4.27) of the PDE and transform it back to an analytical expression.
Deriving (4.27) with respect to D yields:

|bi| ∂
∂D(q) (u(tk+1, xi)− u(tk, xi)) =

∆t
∑

j,l |∂bi ∩ ∂bl|
(

∂
∂D(q)u(tk+1, xj) ·D(q) + u(tk+1, xj)

)
∇ξj(xil)~ni

⇔
|bi|
(

∂
∂D(q)u(tk+1, xi)− ∂

∂D(q)u(tk, xi)
)

=

∆t
∑

j,l |∂bi ∩ ∂bl|
(

∂
∂D(q)u(tk+1, xj) ·D(q) + u(tk+1, xj)

)
∇ξj(xil)~ni (4.28)

In an iterative manner the needed derivatives can be calculated by solving the above
equation

|bi|
(

∂
∂D(q)u(tk+1, xi)− ∂

∂D(q)u(tk, xi)
)

=
∆t
∑

j,l |∂bi ∩ ∂bl|
(

∂
∂D(q)u(tk+1, xj) ·D(q) + u(tk+1, xj)

)
∇ξj(xil)~ni.

(4.29)

Defining g(tk, xj, D
(q)) := ∂

∂D(q)u(tk+1, xj) yields

|bi|
(
g(tk+1, xi, D

(q))− g(tk, xi, D
(q))
)

=

∆t
∑

j,l |∂bi ∩ ∂bl|
(
g(tk+1, xj, D

(q)) ·D(q) + u(tk+1, xj)
)
∇ξj(xil)~ni. (4.30)

The right hand side sum can be separated into two parts:

∆t
∑

j,l |∂bi ∩ ∂bl|
(
g(tk+1, xj, D

(q)) ·D(q) + u(tk+1, xj)
)
∇ξj(xil)~ni =

∆t
∑

j,l |∂bi ∩ ∂bl| g(tk+1, xj, D
(q)) ·D(q)∇ξj(xil)~ni

+∆t
∑

j,l |∂bi ∩ ∂bl|u(tk+1, xj)∇ξj(xil)~ni.
(4.31)

The first sum on the right hand side now defines div(D∇g(x, t)) and the second
yields div(∇u(x, t)). Equation (4.29) is therefore a discretization of

∂g(x, t)

∂t
= div(D∇g(x, t)) + div(∇u(x, t)) (4.32)

Solving the discretization of (4.32) at parameter estimation time and locations con-
cludes the computation of a single iteration of the parameter estimation algorithm.
A detailed description of how equation (4.29) is solved is given in Section 4.4.

4.3.6 Data from Local Uncaging Experiments

The parameter estimation problem requires experimentally measured data which
suits the design of the proposed method. The idea is to simulate calcium diffu-
sion inside nuclei from hippocampal neurons. The mathematical diffusion model
demands initial conditions, as well as the time course of the calcium signal injected
into the nucleus. Furthermore, the time courses of calcium concentration in several
points in the nucleus are needed. To produce these sets of data, experiments with
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Figure 4.4: Schematics of uncaging experiments (from A. Eder (IZN)).

laser-assisted uncaging of calcium in a defined area and measurements at defined
distances of the uncaging area were done by A. Eder (IZN, Heidelberg). These ex-
periments are based on [20].
For this purpose, hippocampal neurons were loaded with calcium indicator Fluo-4,
[48], and a calcium caging compound, [20]. By applying a UV-laser beam to the
caging compound in a restricted area, calcium is released (uncaged) in the specific
area where the UV-laser is directed. The experimental set-up was modified in re-
spect to the above model requirements. Local calcium release needs to be recorded
as input data for the inverse model. In the experiment, the uncaging parameters
were set in such a way, to guarantee that the fluorescence signal actually comes from
calcium release itself and not from the laser beam. Thus, calcium release dynamics
can be recorded as input data for the developed model.
After uncaging calcium at a defined spot, Figure 4.4, the reaction can be measured
at different locations within the nucleus. In order to use maximum recording speed
for the concentration time course in specific locations, the calcium distribution was
recorded in a three pixel wide band. Since it was verified, that calcium diffuses
radially within the nucleus, [20], this experimental structure poses no problems.
Nuclei from hippocampal neurons were loaded with Fluo-4, the calcium indicator,
with the caging compound NP-EGTA, AM, and with MitoTracker Deep Red 633 in
order to distinguish cyto- and nucleoplasm, [20], and excited with a UV laser line.
This method presents the needed structure:

• Calcium is released locally.

• The time course of this release can be recorded.

• Calcium concentration can be measured at known distances along a band in
time.

This data can be included in the parameter estimation model presented in this
chapter.
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4.4 Implementing the Least Squares Problem in

UG

4.4.1 General Definition of a Boundary Value Problem in
UG

UG makes use of a class-oriented implementation of numerical procedures for solv-
ing mathematical boundary value problems. Such a class, which in C-based UG is
called a numproc (numerical procedure), is designed in such a way to carry out all
methods for computing each component of a PDE. For example, a flow and trans-
port problem which can consist of parts such as viscosity, density, permeability etc.
has each of these components described in a numproc and passed on to the dis-
cretization.
All numprocs in UG are derived from a general class NP BASE, which adds three main
methods to each class, Init(), Display() and Execute, see Figure 4.5. These meth-

Figure 4.5: UG-implementation of struct np base.

ods initialize a set of parameters, display the current status and execute a defined
action. When all components of the model are described in a numerical procedure,
derived from NP BASE, they are calculated and assembled within a discretization
and assembly routine, which needs to be implemented separately. In that way, the
central multi-grid structure is linked to boundary value problem data and numerical
routines. The connectivity between different UG-components is graphed in Figure
4.6.
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Figure 4.6: Connectivity graph of components for the standard implementation of a
boundary value problem in UG.

4.4.2 Setting up a One-Way Coupled System

In preprocessing steps, the components for the calculation of the steepest descent
step direction in the least-squares problem are derived. Recall equation (4.23)

∆D(q) =

∑
i,j

(
ĉij − ∂uij

∂D(q) · uij(D(q))
)

∑
i,j

(
∂uij
∂D(q)

)2

for which components uij(D
(q)) and

∂uij
∂D(q) need to be calculated. This is done by

solving a system of partial differential equations within a defined geometry and
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defined boundary and initial conditions:

∂u(x, t)

∂t
= div(D · ∇u(x, t)) on Ω ⊂ R3×1 (4.33)

∂g(x, t)

∂t
= div(D∇g(x, t)) + div(∇u(x, t)) on Ω ⊂ R3×1 (4.34)

u(x, t0) = g(x, t0) = u0(x) (4.35)

u(x, t) = g(x, t) = f(t) on ∂Ω ⊂ R3 (4.36)

In this system, equation (4.34) depends on the first equation (4.33). The solution
of (4.33) defines the ”known” side for the calculation of g. Since (4.33) does not
depend on g, both equations are coupled only in direction (4.33) → (4.34). In their
finite volume discretization both equations are identical, except for modified right
hand sides. The discrete form for (4.33) can be stated as

|bi| (u(tk+1, xi)−u(tk, xi))−∆t
∑
j,l

|∂bi ∩ ∂bl|u(tk+1, xj)D ·∇ξj(xil) ·~nil = 0, (4.37)

with a zero right hand side. In the case of the discretization for the PDE defining
g, the right hand side is modified by the solution u:

|bi|
(
g(tk+1, xi, D

(q))− g(tk, xi, D
(q))
)
−

∆t
∑
j,l

|∂bi ∩ ∂bl| g(tk+1, xj, D
(q)) ·D(q)∇ξj(xil)~ni (4.38)

= ∆t
∑
j,l

|∂bi ∩ ∂bl|u(tk+1, xj)∇ξj(xil)~ni

Gradients of Ansatzfunctions ξj and normal vectors ~ni are retrievable within the
finite volume routines and need to be multiplied with solution uij in each grid node
ij.
In ordinary schemes of UG for solving boundary value problems, the existence and
definition of PDE-components are defined in BVP (see Figure 4.6). In a ”one-way”
coupled system of equations of the sort described above, the right hand side of
two PDE vary and need to be redefined in each parameter estimation time step in
order to solve both equations. For the purpose of solving one-way coupled equations
systems a new method was developed in UG. The implementation of (4.33)–(4.35)
in UG is outlined in the following section.

4.4.3 Modifying the BVP Structure for the Least Squares
Problem

Recalling Figure 4.6 the PDE-components are defined in BVP, vector descriptors
are at disposal to store the solution of the partial differential equation, and bound-
ary conditions are also passed on to BVP. When more than one equation is solved
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in each time step, static definitions of PDE-components in BVP need to be made
dynamic.
Therefore, the connection to the boundary value problem initiation which the multi-
grid structure of UG retrieves from BVP is cut and a new, dynamic storage possi-
bility of BVP-data is included. To that end, a number of modifications are made in
the general structure of implementing a boundary value problem in UG.

1. Define a numerical procedure, that contains the necessary components for re-
alizing dynamic PDE-components. This is done in format.h of the parameter
estimation package located in UG/scPE.

2. Modifications to the finite volume discretization component stdfv.c located
in UG/scPE/pclib.

3. Changes in UG/scPE/nucleus3d/nucleus3d.c where the parameter estima-
tion problem is generated.

4. Adaption of the script file to carry out a ”double time step” in each time step
of the parameter estimation algorithm with changing right hand sides of the
PDE, located in
UG/scPE/nucleus3d/scripts.

5. Implementing the parameter estimation algorithm in disctools.c.

The numproc np nucleus param in format.h is shown in Figure 4.7. The flag
computeDerivative that is defined in this numproc is used to switch between a
zero right hand side and the right hand side ∆t

∑
j,l |∂bi ∩ ∂bl|u(tk+1, xj)∇ξj(xil)~ni

which is used to calculate the derivative ∂u
∂D

. Figure 4.8 shows an excerpt of how a
switch with computeDerivative is integrated in stdfv.c.
In nucleus3d.c all specifications of the parameter estimation problem are made and
the problem is initiated. Figure 4.9 shows the constructor function in nucleus3d.c

which retrieves all necessary components from the numproc np nucleus param, de-
fines base functions and parameter estimation problem functions (nucleus problem
functions).
Finally, the steepest descent algorithm is implemented in disctools.c, located at
UG/ug/np/udm, and can be executed by the script with the command

DiffusionCoefficient $sol sol $deriv deriv $t @TIME;

in a post-processing step of the time stepping routine.

Modifications to the general structure:

The above changes and implementations offer a new structure for implementing the
underlying coupled system of equations. The connection to BVP is substituted by
a numproc that dynamically defines PDE-components. The changes in the general
structure are shown in Figure 4.10.
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Figure 4.7: Implementation of the numerical procedure for the parameter estimation
program.
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Figure 4.8: Modification in the definition of the ”right hand side” in the discretiza-
tion of the parameter estimation model.

Figure 4.9: Constructing the parameter estimation problem in UG.
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Figure 4.10: The modified structure of the parameter estimation function.
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5.1 Biological Results

In close collaboration with the Bading lab of the IZN (Heidelberg) the morpholo-
gies of hippocampal neuron nuclei were investigated. In microscopy experiments,
both fluorescence microscopy (M. Wittmann) and electron microscopy (A. Hell-
wig),membrane structures inside many nuclei became visible, Figure 5.1. The elec-

A B

Figure 5.1: Hippocampal neuron nuclei contain infoldings of the nuclear envelope:
(A) Electron microscopy evidence for nuclear pore complexes on the infolded enve-
lope (A. Hellwig). (B) Confocal recordings of laminB marked infolded nuclei (M.
Wittmann).

tron microscopy data shows, that not only the inner membrane, but also the outer
membrane of the nucleus follows these infoldings. This contradicts theories of the
existence of a ”nucleoplasmic reticulum” which would be formed if only the inner of
both membranes was infolded.
After verification of the existence of infolded structures of the nuclear membrane,
further experiments were carried out by M. Wittmann, [67]. The question of the
underlying biological processes responsible for the formation (and possible decom-
position) of nuclear infoldings was assessed. A first result was that toxic levels of
extra-synaptic NMDA induced in the cell led to a rapid change in the morphology
of nuclei. Within a time span of approximately 15 minutes, infolded nuclei lost their
structure and swelled up to a spherical form, Figure 5.2.
The contrary effect was demonstrated when activating synaptic NMDA. The mea-
sured base-level of infolded nuclei lies at approximately 30% of cells. Activation of
synaptic NMDA channels raised the count of infolded nuclei to about 70%, Figure
5.3. After eliminating other possibilities that might be responsible for the 40% in-
crease, it could be verified that solely synaptic NMDA receptors were responsible
for the new formation of infoldings, [67].
Next, the stability of the 40% newly formed infoldings was assessed. To that ex-
tent, two different experiments were done, first neurons were treated for 1h with
bicuculline following immediate blockage of synaptic activity with TTX, in a second
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experiment they were treated for 1h with bicuculline and, following a 40h pause,
addition of TTX. Direct application of TTX led to rapid decay of infoldings within
approximately one hour. Yet in the second case, the 40h pause before applying TTX
stabilized the infoldings, that even after the application of TTX levels of infolded
nuclei stayed high, [67]. These experiments show, that neuronal activity (only in the
second experiment) is necessary for stabilizing newly formed nuclear morphologies.
After a number of days, nuclear infoldings have stabilized entirely, which is an
indication for a transcriptional or translational mechanism responsible for the sta-
bilization. Therefore, a specific – still unknown – set of genes might be responsible
for the morphological changes of the nucleus.
One of the changes due to reorganization of the nuclear geometry is a change in the
number of pore complexes on the membrane. Nuclear Pore Complexes (NPCs) are
the gateway for cytosolic molecules into the nucleus and are therefore a regulating
parameter for processes taking place in the nucleus. To test whether the number
of NPCs is affected by the formation of nuclear infoldings, densitometric analyses
of NPCs were carried out with infolded and non-infolded nuclei, [67]. The result
of these experiments was, that in unstimulated neurons the pore count of infolded
nuclei was approximately 15% higher than in spherical nuclei. That the formation
of NPCs takes a certain time is proven by the investigation of active neurons. Nuclei
with newly formed infoldings showed only an increase of 1.4% of NPCs compared
to spherical nuclei.
In [67] some cases were recorded where bicuculline-induced calcium spikes carried
much higher amplitudes in infolded nuclei compared to spherical nuclei. Since both
the nuclear and cytosolic signal were larger, this points to an increase of transcription
due to nuclear infoldings. Furthermore, patch clamp studies showed a correlation
between recurrent activity of neurons and their nucleus containing infoldings, as well
as a correlation between randomly active neurons and their nucleus being spherical,
Figure 5.4.

Figure 5.2: Toxic levels of extra-synaptic NMDA lead to loss of nuclear structure,
[67].
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Figure 5.3: Synaptic NMDA raises the infolded nuclei density from 30% to 70%
after one hour of activation, [67].

Figure 5.4: Active, bursting cells are more likely to have an infolded nucleus than
silent cells, [67].

5.2 Image Reconstruction of Neuron Nuclei

Image processing is part of the preprocessing for simulating calcium signaling in
nuclei. Novel concepts in image filtering based on a diffusion equation equipped with
inertia-based directional filtering were developed in order to produce reconstructions
of the three-dimensional structure of hippocampal neuron nuclei.
Next to linear filters, numerous techniques in nonlinear anisotropic diffusion filtering
were developed, two prominent methods by Perona/Malik, [54], and J. Weickert,
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[66]. This section will present results from the inertia-based diffusion filter on test
geometries as well as applications on real microscopy data and comparisons with
the above state of the art nonlinear filters.

5.2.1 Inertia-Based Filter Optimizes Parameters Simulta-
neously

The inertia-based filter described in Chapter 2 was developed to filter two-dimensional
substructures, i.e. the nuclear envelope. By defining a diffusion filter with the equa-
tions

∂u

∂t
= div(D(∇uσ) · ∇u) on R+ × Ω (5.1)

u(x, 0) = raw microscopy data on Ω ∪ ∂Ω (5.2)

(D(∇uσ) · ∇u) · ~n = 0 on R+ × ∂Ω (5.3)

and adding structure detection with the inertia-based diffusion tensor

D(u) := T t

 1 0
1

0 ε

T, (5.4)

with T a transformational matrix and ε a near zero value, a nonlinear anisotropic
diffusion filter was constructed, see [55, 56] and Chapter 2, to optimally deal with
certain parameters.
The global objectives of closing gaps in the nuclear envelope, keeping the mem-
brane diameters constant and eliminating background noise was achieved best by
the inertia-based filter. To verify this statement, a number of tests were carried out.
Recall the two anisotropic filters with their defined diffusivity functions g(s):

1. Perona/Malik diffusivity: g(s) := cPM
1+(s/λ)α+1

and parameters cPM , α > 0 and λ.

2. Weickert diffusivity: g(s) := 1− exp
(

cW
(s/λ)m

)
and constants cW , m and λ.

In a first test, the capability of these two filters to close gaps in respect to keeping
diameters constant and reducing background noise was tested. To this end, the free
parameters λ, m, cPM , cW and α were varied and the effect of the filters recorded
in order to find ideal settings for the Perona/Malik and Weickert filter.
For parameter tuning of the Weickert filter, λ was varied while keeping m fixed, in
a second series, m was varied while λ was fixed. The parameter cW was set to −1.
Varying cW has the same effect as varying λ, so it can be neglected in the optimiza-
tion series. Tables 5.1 and 5.2 show the results of varying the free parameters in the
Weickert diffusivity function.
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λ 10−4 0.1 0.3 0.7 1.0 Inertia-based

minimum gray value 22 23 24 59 51 80

diameter [pixels] 9 9 8 15 20 9

Table 5.1: Results of Weickert filter on gap and membrane diameters in respect to
the choice of λ, while m = 4 and cW = −1 compared to inertia-based filter. The
minimum gray value was measured in the gap to be closed by the filter. Best results
are achieved when maximizing the minimum gray value.

m 1 2 4 Inertia-based

minimum gray value 49 47 24 80

diameter [pixels] 13 10 8 9

Table 5.2: Results of Weickert filter when changing the parameter m; λ is set to 1
and cW = −1.

The minimum gray value refers to the minimum when plotting the profile of the
gap. The diameter is measured by a profile plot perpendicular to the membrane of
the test geometry, which is a sphere with holes of different diameters.
What becomes clear from Tables 5.1 and 5.2 is that the inertia-based filter is ca-
pable of optimizing minimum gray value and diameter at the same time, while the
Weickert filter can be tuned is such a way to optimize the minimum gray value, but
only at the cost of broadening the diameter. This effect occurs when tuning the
parameter λ (Table 5.1) as well as when tuning m (Table 5.2).

Similar results are observed for the Perona/Malik filter. When fixing α = 1 and
cPM = 1, the parameter λ can be varied and the different results of the filter
recorded. Table 5.3 shows these results. Also when manipulating α, the Per-
ona/Malik filter cannot be tuned to optimize the given two parameters simulta-
neously, Table 5.4.
The values of the inertia-based filter in the above tables show, that structure de-
tection using the inertial tensor is a powerful method when trying to identify a
substructure in a 3D-image set that needs to be filtered without affecting its orig-
inal structure. Figure 5.5 (A) shows, that the three nonlinear anisotropic filters
tested have a similar effect on the membrane diameter and perform better than
linear filters, such as the Gaussian blur.
Setting the Perona/Malik and Weickert filter, so they do not broaden the membrane
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A

B

C

Figure 5.5: (A) Line plot perpendicular to membrane of the gray value profile of raw
data and after application of different filters. (B) Line plot parallel and across a
hole in the membrane of the gray value profile of raw data and after application of
three different nonlinear diffusion filters. (C) Background noise levels of different
nonlinear diffusion filters in respect to inertia-based diffusion filter.
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λ 10−4 0.1 0.3 0.7 1.0 Inertia-based

minimum gray value 33 18 30 51 52 80

diameter [pixels] 7 7 9 15 18 9

Table 5.3: Effect of Perona-Malik filter on gap and membrane diameters in respect
to variation of the parameter λ while α = 1 and cPM = 1.

α 1 3 5 Inertia-based

minimum gray value 30 33 31 80

diameter [pixels] 9 9 9 9

Table 5.4: Perona-Malik filter results in respect to changes in the parameter α with
λ = 0.3 and cPM = 1.

diameter more than the inertia-based filter, Figure 5.5 (B) demonstrates that the
inertia-based filter performs significantly better than the compared two nonlinear
filters.
Furthermore, one can witness a better reduction of noise when applying the inertia-
based filter, see Figure 5.5 (C). Both Perona/Malik and Weickert filters lack differ-
entiation between gaps and background noise. This means, that the minimum gray
values reached by those filters are in the range of the background intensity, therefore
make gaps indistinguishable from background for further segmentation processing.
A full image processing cycle consists of filtering the nucleus image stack with opti-
mal settings, see [55], segmentation of the data with an Otsu segmentation algorithm
and following that, a second pass of the filter. The results of these steps are seen in
Figure 5.6.
Starting with a raw data set, (A), the image is filtered with the inertia-based filter,
(B). For comparison, (C) shows the same image filtered with the Gaussian blur. Af-
ter filtering, the image is turned into a black and white image, therefore eliminating
background noise, (D). Finally, a second pass of the filter produced the final image
(E) which can be used to create surface and volume grids.

5.2.2 3D Image Reconstructions and Measuring Nuclei

After closing gaps in the membrane of the nuclei by applying filter and segmentation
techniques, an isosurface can be generated from the preprocessed image stack. As
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A B

C D

E

Figure 5.6: (A) Raw image. (B) Filtered with nonlinear anisotropic filter for sur-
faces. (C) Filtered with gaussian blur. (D) Filtered with anisotropic filter and seg-
mented with Otsu-method. (E) Second pass of anisotropic filter on segmented image.
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described in Chapter 2 a surface grid is generated from a defined gray value and by
meshing the calculated surface nodes to a closed triangulation. Examples of recon-
structed nuclei are shown in Figure 5.7 and the Appendix.
By applying grid optimization tools, the density of the surface grid can be manip-
ulated and grid nodes repositioned to produce minimal deviance between triangle
sizes. Zooming in on a nucleus mesh, Figure 5.8 demonstrates the effect of surface
grid optimization.
Having reconstructed a large data set of infolded and spherical nuclei, the surface
area and volume of these nuclei can be measured. This gives answer to the question
posed in Chapter 2, whether surface area increases when infoldings of the membrane
are formed, or if the nucleus reacts like a deflating ball, where surface area stays
constant and the volume of the nucleus decreases. Figure 5.9 shows the results of
52 nuclei measured, 31 infolded and 21 control (spherical) nuclei.
Where the volumes of infolded and control nuclei are about the same, significant
increase in the surface area of infolded nuclei can be measured. This indicates,
that during the process of forming new infoldings, the cell generates or recruits new
membranes for a morphological change.
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Figure 5.7: Examples of three dimensional reconstructions of nuclei from hippocam-
pal neurons.
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Figure 5.8: Results of grid optimization. Top right: before grid optimization, Bottom
right: after grid optimization.

Figure 5.9: Changes in surface and volume: Infolded nuclei have a larger surface,
while the volume of infolded and spherical nuclei is approximately the same.
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5.3 Calcium Signaling Depends on Characteristic

Morphologies

In this and the following section the core question of this thesis will be addressed,
namely the question of the influence of the nuclear morphology on calcium signaling
in the nucleus. The simulations and tests done in this section are based on test
geometries, infolded and spherical, where radius and infolding depth are adjustable.
This allows systematic investigation of the effect of different infolding depths, in-
creasing or decreasing number of nuclear pores, and the evaluation of calcium load
dynamics as well as threshold dependent processes under varying parameters. As
the title of this section states, the interpretation of a calcium signal in a nucleus is
dependent on the form and structure of the nuclear envelope.

5.3.1 Infoldings Minimize Diffusion Distances

As stated in Chapter 3, the propagation of a calcium signal in hippocampal neurons
is driven by the concentration gradient of calcium. Therefore, one vital parameter
for this process is the diffusion distance. The stronger the calcium signal is buffered
for instance, the shorter the active range for calcium becomes, thus possibly exclud-
ing biologically relevant sites. In order for the cell to regulate where a calcium signal
should be directed and also to be able to influence the amplitude and frequency of
the signal, it can regulate the diffusion distances that a calcium signal needs to
travel.
Intuitively, the nuclear membrane infoldings affect diffusion distances in the nucleus.
As a measure for the effect of a nuclear infolding, one can measure calcium concen-
tration at the most distal location from the membrane inside the nucleus. Figure
5.10 illustrates the dislocation of the measuring point depending on the size of the
nuclear infolding. It also becomes visible, that an infolding automatically changes
the entire characteristic of a nucleus. In a spherical nucleus, there exists only one
”most distal” point, whereas the moment the envelope is infolded, the nucleus con-
tains a ”band” of distal points where the minimum calcium load values are reached.

Simulation set-up and results:

Simulations are carried out on varying geometries, Figure 5.10. As boundary set-
tings for the model, the continuous mode is activated, see Section 3.6 and a single
CCT burst is chosen as the cytosolic signal. Following the time course after trig-
gering the CCT, the calcium concentration is measured at the most distal point in
the nucleus. In order to compare the effects of different nuclear morphologies on the
calcium dynamics in the nucleus, the calcium load at a specific time point is plotted
against the infolding length. In a second simulation the maximum value of calcium
concentration in the distal point is plotted against the infolding length, Figure 5.11.



5.3 Calcium Signaling Depends on Characteristic Morphologies 107

Figure 5.10: Change of maximum distance from the membrane due to the existence
and size of an infolding.

Next, the infolding length was decreased in each simulation, until reaching a spher-
ical structure. A last simulation was done on a spherical geometry with its radius
set to a value that produces the same circumference as the infolded geometry, with
a 25% surface increase compared to Circle 1, Figure 5.12.

The results show, that with increasing infolding size, the amplitude of the cal-
cium signal at the distal point (which is the minimum of the calcium concentration)
increases, Figure 5.11. Once the center of the nucleus is reached by the infolding,
the amplitude of the calcium load minimum stays constant because the maximal
diffusion distances in the nucleus are not changed by the infolding from that point
on.
In Figure 5.12 the time course of a calcium signal in the nucleus at the distal nuclear
site as a result of a CCT burst is depicted. Depending on the size of the infolding
of the envelope, the amplitude of the signal is affected with a more that threefold
difference between a spherical structure and one with an infolding extending to the
center of the nucleus.
In conclusion to this study, infoldings of the nuclear envelope decrease diffusion dis-
tances in the nucleus, therefore raising the overall amplitude of the calcium signal
and optimizing the nuclear structure so that distal regions of the nucleus are stronger
addressed by an incoming calcium signal.
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Figure 5.11: Changes in the length of an infolding affect the calcium load minimum.
Once the infolding extends into the center of the nucleus, a steady state is reached.
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5.3.2 Calcium Load Dynamics Controlled by Number of
NPCs

Calcium load is defined as the global amount of calcium in the nucleus at a given
time. In the model, calcium load can be measured by summing the concentration
values of calcium in each grid node, and norming it with the volume of the nucleus.
Measuring calcium load along a given time course gives a measure for the dynamics
of different nuclear morphologies.
In this simulation experiment, an infolded geometry is compared to a spherical one,
stimulated with different single CCT bursts. The calcium load is then measured
in each time step of the simulation and plotted in time, Figure 5.13. The figure
indicates, that due to an infolded structure the nucleus shows faster rise and decay
times than a spherical one. This also results in a change of the signal-amplitude.
Variation of the primary stimuli shows, that the ratio between the calcium load
amplitude of infolded and spherical geometry is largely independent of the length of
CCT-input, Figure 5.14. The different types of single CCTs are specified in Section
3.4.
Yet when considering the definition of calcium load, the presented results are not
directly linked to the actual morphology of different neurons, but are rather an indi-
cation of varying numbers of NPCs due to varying nuclear surface size. A spherical
structure with the same surface size and number of NPCs as an infolded structure
elicits similar calcium load dynamics.
Derived from these simulation results, the calcium load dynamics of a nucleus are
independent from actual morphological features of the nucleus, but directly coupled
to the surface size and number of NPCs located on the nuclear envelope. Infolded
nuclei will offer faster passage for calcium into the nucleus.

5.3.3 Threshold-Dependent Biological Processes are Great-
ly Influenced by the Nuclear Morphology

Biochemical processes are activated fully or only to a certain degree if the inducing
signal is above or below a certain threshold. In the case of nuclear calcium signaling,
calmodulin plays a vital role in the relay of information. The degree of calmodulin
activation in the presence of target enzymes depends on the strength of the cal-
cium inducing signal. A calcium transient in the micro-molar range fully activates
calmodulin, signals in the nano-molar range (≈ 200 nm above basal level) hardly
affect the state of calmodulin.
Taking this information into consideration, threshold-dependent calcium activity
was simulated in the test environment. Calcium activity is determined by means of
Section 3.5.3, where a threshold is defined manually and the volume above threshold
is normed with the entire nuclear volume. As it is unknown where this biological
threshold actually lies, the threshold was varied within a broad range, in order to
estimate the tendencies of the morphological influence on calcium activity. Further



110 5. Results

Figure 5.13: Simulation of calcium diffusion on two dimensional models: Infolded
nuclei show higher amplitudes of calcium load than spherical ones.

Figure 5.14: Independent of the length of the cytosolic calcium transient the fold
difference between the load amplitudes of infolded and spherical nuclei stay nearly
constant.
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Figure 5.15: Activity measurements in 2D simulations: Depending on the duration
of the CCT infolded nuclei show up to six fold activity differences (for short CCTs).

interest lay in the effect of different lengths of single CCT bursts on the calcium ac-
tivity. Therefore, simulations were carried out with varying thresholds and varying
CCTs, depicted in Figures 5.15–5.17.
Figure 5.15 shows the activity curves over a given time course with a fixed threshold
(90% of the concentration maximum) and varying CCTs. When comparing spher-
ical and infolded structures, one notices a larger difference in the nuclear activity
when input signals are short (CCT 1 is the shortest input and length is doubled
for each following CCT, see Section 3.4). Figure 5.16 plots the fold difference of
threshold-dependent activity as a quotient of infolded activity and spherical activity
in respect to the triggering CCT. This activity value is defined as the integral of the
activity graphs, e.g. the ones seen in Figure 5.15.
A six fold difference in activity can be witnessed for CCT 1, and decreasing to CCT
5 the curve shows, that both geometries elicit nearly identical nuclear activity for
longer CCTs. This shows, that the infolding of nuclear membrane enhances nuclear
activity, especially for shortly induced signals.
Next, the input signal was fixed and the threshold varied in order to determine
whether the effect of the nuclear geometry on activity-related processes is depen-
dent on the biological threshold. Figure 5.17 contains information about the effect
of a varying threshold on the fold difference in activity, again as a quotient of in-
folded and spherical activity. Simulation results are shown for the application of
CCT 1, 2 and 3 where the threshold was varied in the range of 50% to 90% of the
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Figure 5.16: Fold difference in threshold dependent activity: When the cytosolic
stimulation is short (CCT1) infolded nuclei show 6 fold higher activity than spherical
ones. The longer the stimulation is, the more infolded and spherical nuclei react the
same.

concentration maximum in the nucleus.
Nuclear activity for longer ranging CCTs (e.g. CCT 3) is nearly independent of the
nuclear morphology yet the shorter the input signals are, the greater the influence
of the morphology is. For low thresholds and induction of CCT 1, the infolded
geometry shows twice the activity as the spherical structure. This ratio rises to a
six fold difference when setting the threshold to 90%. In conclusion to these sim-
ulations, infolded nuclei are activity optimized for high thresholds, or to turn the
argument around (a high threshold symbolizes a weak input), infolded nuclei are
activity optimized for weak inductions.

The measure of nuclear activity, because it includes a threshold, is coupled directly
to the morphology of a nucleus. This was not the case for calcium load simulations
in the section above. An infolding, aside from changing the membrane surface size
and number of NPCs, shortens diffusion distances and allows calcium entrance into
the nucleus from opposing and closer sites which cause faster rise of the local calcium
concentration, therefore increasing above-threshold nuclear volume.
Simulations of activity-dependent processes on test geometries yield the following
results:

1. Nuclear calcium load is independent of the actual nuclear morphology, but is
regulated by the membrane surface size and the number of NPCs located on the
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membrane. Infolded nuclei, having an increased number of NPCs compared to
spherical ones, show faster rise and decay times, as well as larger amplitudes
in the calcium signal.

2. Nuclear activity, a measure of threshold dependent biochemical processes, is
linked directly to the morphology of a nucleus.

3. Infolded nuclei optimize nuclear activity, especially for shortly induced signals
as well as for high thresholds.

4. Infolded nuclei have an optimal form for activating biochemical processes with
weak signals.

Figure 5.17: Changing the threshold affect the activity of nuclei. Infolded nuclei are
more adept at activating biochemical processes at high thresholds.
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5.4 Simulations on Real 3D Geometries

The core novelty of this thesis lies in the inclusion of three dimensional geometry
data into a simulation framework. This geometry data is not generated artificially,
but retrieved from confocal microscopy of nuclei from hippocampal neurons. There-
fore it is possible to directly evaluate different morphologies of nuclei in respect to
the decoding of information within these nuclei.
More abstract studies on two dimensional test geometries in the section above
showed, that the form of the nucleus influences the dynamics of calcium load and
nuclear activity, depending on the signal intensity or biological thresholds. This
section will demonstrate, that these statements hold for simulations on real three-
dimensional morphologies. The differences between spherical and infolded nuclei
will be investigated systematically. In addition, 3D simulations showed, that not
only spherical and infolded nuclei function differently, but also that infoldings of
the nuclear membrane separate the nuclear interior, forming subunits of the nucleus
that can function more or less independently from one another, depending on the
degree of membrane infolding.
A further point for understanding signal processing in nuclei is the morphological
effect on signal frequency decoding. The last part of this section will address this
aspect.

5.4.1 The Difference Between Spherical and Infolded Nuclei

General differences between spherical and infolded nuclei are found in surface size
and surface/volume ratios. These parameters affect calcium load dynamics and ac-
tivity dependent processes. Infoldings of the membrane shorten diffusion distances,
which affects the inertia of the nucleus and can be represented by calcium dynamics
in the center of a nucleus. Multiple simulations were carried out by stimulating
different nuclei, infolded and spherical, with varying single CCT bursts and varying
thresholds. These simulations followed the objectives:

1. Differences in calcium load dynamics due to varying nuclear morphologies.

2. Morphological effects on threshold dependent processes.

3. Morphological effects on inertia of the nucleus.

In this section infolded and spherical nuclei are compared, see Figure 5.18. Signal
transduction is recorded in time, Figure 5.19, and evaluated in respect to the above
points.

Differences in calcium load dynamics:

Different CCTs activated the model, resulting in different calcium load behavior.
Yet the differences between the tested geometries show to be independent of the
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A B

Figure 5.18: Example of three dimensional test geometries of (A) an infolded nucleus
and (B) a spherical nucleus.

duration of the CCT, Figure 5.20. As seen on two dimensional test geometries,
there is a visible shift in the amplitude of the calcium concentration together with
faster rise and decay times of the signal. As mentioned earlier, this observation is
correlated with an increase in surface size and a change of the surface/volume ratio.

Threshold dependent processes:

For the purpose of seeing what the influence of an infolded nuclear membrane has
on threshold-dependent biological processes, these being biochemical reactions that
take place or are only fully activated when the local calcium level exceeds a certain
concentration, the nuclear activities of infolded and spherical nuclei were recorded
with varying thresholds, Figure 5.21. Stimulating nuclei with a single CCT (CCT
1), infolded nuclei show higher levels of activity. This is the case for any chosen
threshold. The higher the threshold is, the bigger the activity ratio between infolded
and spherical becomes.
Figure 5.21 demonstrates, that for low thresholds (or strong signals) both spherical
and infolded nuclei are capable of transforming the incoming signal into nuclear
activity. The higher the threshold is (or the weaker the signal is), infolded nuclei
are more adept at activating the nucleus. Spherical nuclei show nearly no activity
at high threshold levels (or for weak signals), Figure 5.21 (D,E).

5.4.2 Infoldings Form Nuclear Micro-Domains

The three dimensional reconstructions of nuclei showed, that each nucleus has an
individual form, somewhat like a nuclear ”fingerprint”. In all of the cases where
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Figure 5.19: Example of a time course of calcium diffusion into (A) an infolded
nucleus and (B) a spherical nucleus.
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Figure 5.20: Simulation of calcium diffusion in infolded and spherical nucleus: Cal-
cium load amplitudes are higher in infolded nuclei, independent of the CCT (reaction
to CCT1-CCT3 depicted).
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A B

C D

E

Figure 5.21: Infolded nuclei are more active than spherical ones: With increasing
threshold (from (A) to (E)) the difference between infolded and spherical nuclei be-
comes more prominent.
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the nuclear membrane is infolded, one can witness the formation of two or more
compartments, meaning areas of the nucleus that are spatially separated by the de-
formation of the nuclear membrane.
Depending on the depth of the infolding, these ”micro-domains” are more or less
isolated from one another. This observation gave rise to the idea, that the deforma-
tion of the nuclear membrane might form not only spacial micro-domains, but also
functional micro-domains. This would enable the nucleus to decode a signal coming
from the cytosol in different ways.
The focus lies on investigating signal processing within infolded nuclei, and rather
than comparing them to spherical nuclei, comparison takes place between spatially
separated micro-domains. In order to make the model as realistic as possible, the
nuclei were stimulated with calcium transients that were recorded experimentally.
This model option is discussed in Section 3.4.

5.4.3 Activity of Micro-Domains

When activating infolded nuclei with CCTs from experimental data, micro-domain
activity of the nucleus can be evaluated according to Section 3.5. Regulated by the
size of the micro-domains and their surface to volume ratios, each domain expresses
different responses to a CCT which enters the nucleus.
This was observed in experiments, Figure 5.22, as well as in simulations, Figure
5.23. Small micro-domains show higher activity than large ones, especially when the
incoming signals are weak or the activation threshold is high. In all reconstructed
nuclei, only one nucleus could be found that had symmetrical infoldings, meaning
nearly every infolded nucleus is made up of different sized micro-domains, Figure
5.24.

5.4.4 Morphology Influences Signal Frequency Decoding

Since the frequency of calcium signals is an information encoding parameter for
the cell, it is important to know how well the frequency in the nucleus is resolved.
Simulations with different input frequencies show, that infolded nuclei are better at
resolving higher frequency signals than spherical ones. Furthermore, the frequency
of an incoming signal is better resolved in small compartments within single infolded
nuclei. Figure 5.25 shows the effect of CCTs with different frequencies.
The faster cytosolic calcium transients oscillate, the harder it becomes for spherical
nuclei and large compartments to resolve the full amplitude of the signal. Changing
the frequency of an experimental CCT demonstrates, that at approximately 1 Hz
spherical nuclei fully lose their ability of resolving single bursts and go into a plateau
state, whereas infolded nuclei still resolve each burst within a calcium transient, Fig-
ure 5.26.

To address the point of frequency decoding, simulations and experiments were car-
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A
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C

Figure 5.22: Experimentally measured nuclear activity: With increasing threshold
(from (A) to (C)) small compartments show higher activity than large ones.
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Figure 5.23: Simulation of nuclear activity: (A) Time course of cytosolic calcium
transient. (B) - (C) Activity of small and large compartment with increasing thresh-
old.
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A B

C D

Figure 5.24: Examples of the diversity of infolding structures.
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ried out at 5 Hz input signals. P. Bengston (IZN) stimulated cells electrically and
recorded nuclear reaction with a CCD-camera. Simulations were also done at 5
Hz stimulation, Figure 5.27. In simulations as well as experiments, smaller micro-
domains are more adept at resolving high frequencies (Figure 5.27 (A) and (B)).
In a power spectral density plot (C), both model and experiment show a distinct
amplitude at 5 Hz and the small nuclear compartment produces a higher peak at
5 Hz. This might play an important role for the cell, when relaying information to
biochemical processes involved in gene transcription.
Simulations and experiments finally show, that the form of a nucleus from hippocam-
pal neurons influences the dynamics of calcium signals. The amplitude of signals,
the frequency and activity level depends on the way the nuclear envelope is folded.
Deep infoldings form structural and functional micro-domains, and enable the nu-
cleus to interpret cytosolic calcium signals differently, depending on the location.
Spherical nuclei, or large compartments of infolded nuclei, are more able to integrate
incoming signals, while small compartments are tuned to resolve small changes in
calcium concentration and fast oscillating signals.
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A

B

C

Figure 5.25: High frequencies are better resolved by infolded nuclei, especially in
small compartments of infolded nuclei: (A) 0.1 Hz frequency. (B) 0.2 Hz frequency.
(C) 0.5 Hz frequency.
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Figure 5.26: Starting at 1 Hz, spherical nuclei begin to go into a plateau state,
incapable of resolving high frequencies: (A) 0.1 Hz (B) 0.5 Hz (C) 1.0 Hz
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Figure 5.27: Small nuclear micro-domains are tuned to resolve fast oscillating sig-
nals: (A) Experimental data of calcium-load time course after stimulation of the cell
at 5 Hz. (B) Simulation of 5 Hz stimulation of the cell. (C) Power spectral den-
sity plot, which shows a defined peak at 5 Hz in both model and experiment. Small
compartments express a higher amplitude.



5.5 Estimating the Diffusion Coefficient of Nuclear Calcium 127

5.5 Estimating the Diffusion Coefficient of Nu-

clear Calcium

Until now, literature does not provide expermental data for the diffusion coefficient
of calcium-ions in hippocampal neurons except for [1]. These experiments were
carried out under laboratory conditions. Diffusion coefficients were measured in a
cytosolic extract from Xenopus laevis oocytes, [1], which serves as an experimental
model for neuron nuclei. As mentioned in Chapter 3 the interval for buffered cal-
cium ions measured in [1] was stated as Dcalcium ∈ {13− 65µm2/s}.
In order to validate the data of diffusion coefficients under those laboratory condi-
tions, laser-assisted uncaging experiments were carried out in hippocampal neurons
(Chapter 4).
Together with a parameter estimation algorithm developed for calculating the dif-
fusion coefficient of nuclear calcium based on experimental data, see Chapter 4, the
data stated in literature could be validated for nuclei from hippocampal neurons.
The program was implemented in the simulation environment UG, tested on artifi-
cial data and finally applied to experimental data.

5.5.1 Testing the Parameter Estimation Program

Estimating the diffusion coefficient for nuclear calcium could be reduced to mini-
mizing the objective function

F (D) :=
N∑
i=1

M∑
j=1

(uij(D)− ĉij)2 (5.5)

where ĉij denotes the experimental data, uij(D) the simulation data for a specific
coefficient D, at location/time-points ij. The proposed algorithm for solving this
minimization problem is stated in Chapter 4. In order to test whether and how fast
the solution converges, tests on artificial data were carried out.
In order to generate ”experimental data”, the diffusion coefficient was set to the di-
mensionless value 100.0 and the calcium concentration at different points recorded
when simulating nuclear diffusion. This data was then used as ĉij in the parameter
estimation program. The program was then executed with varying initial coefficient
values D(0), Figure 5.28.
The results show quadratic convergence to the expected value, independent of the
initial value D(0). The program can be carried out until a defined number of iter-
ations were carried out, or until the change in the coefficient value ∆D is smaller
than a value ε.

5.5.2 Adding Experimental Data

Experimental data was recorded according to Chapter 4 and Figure 5.29. Since
the uncaging location and measurement points are all located inside the nucleus,
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Figure 5.28: Convergence tests of parameter estimation algorithm
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Figure 5.29: Experimental set-up for retrieving data for parameter estimation: The
uncaging source is recorded as well as points with varying distances from the source.
Each point is recorded three times in order to retrieve a mean value.
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A B

Figure 5.30: (A) Cube in which the parameter estimation problem is defined. (B)
The uncaging source is located at the center of the cube.

the actual morphology of the nucleus plays no role. It is sufficient to carry out
simulations on an abstract geometry. The mathematical setting is the following:

Mathematical model: Defined on a cube, discretized with a triangular surface
grid and a tetrahedral volume grid, is the diffusion equation with a source
term in the center of the cube, representing the uncaging location of calcium
ions, Figure 5.30:

∂u(x, t)

∂t
= div(D · ∇u(x, t)) on Ω ⊂ R3×1 (5.6)

u(x, t0) = u0(x) (5.7)

u(x, t) = f(t) on ∂Ω ⊂ R3 (5.8)

u(xCenter) = S(t) (5.9)

with S(t) denoting the experimentally measured uncaging source data and
the first three equations the model derived in Chapter 3. Designated grid
nodes that have the same distance to the uncaging site as the experimental
measurement sites are calculated and the time course of calcium concentration
in these points forwarded to the parameter estimation algorithm.

Results of the data-driven parameter estimation are shown in Figure 5.31. For the
experiments and simulations which were carried out, the diffusion coefficient for
nuclear calcium lies in the previously measured interval for buffered calcium in [1]
at approximately 36µm2/s.



130 5. Results

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

No. of Iterations

D
if

fu
s
io

n
 C

o
e
ff

ic
ie

n
t

D_0 = 1.0

D_0 = 20.0

D_0 = 50.0

D_0 = 100.0

D_0 = 150.0

Figure 5.31: Data-driven parameter estimation of the nuclear calcium diffusion co-
efficient with different starting points: Independent of the starting point the solution
converges towards the value D ≈ 36µm2/s.
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6.1 The Role of Calcium Signals

Electrical signals generated by synaptic activity propagate to the cell body, where
calcium influx through NMDA receptors triggers vital biochemical processes. Phos-
phorylation of CREB in the cell’s nucleus is one reaction triggered by a calcium
signal diffusing into the nucleus and results in the expression of certain genes.
Work done by M. Wittmann (IZN) showed, that the origin of a calcium wave is
vital for the cells fate, [67]. Where extrasynaptic NMDA-gated calcium influx led
to cell death, synaptic NMDA-gated calcium propagates cell survival. Furthermore,
during these studies, novel morphological features of the nucleus were discovered,
[68]. Validated by electron microscopy (EM) studies by A. Hellwig (IZN), confocal
fluorescence microscopy revealed fine structures traversing the nucleus. EM-data
proved these structures to be the infolding of both the inner and outer membrane of
the nuclear envelope, thus creating higher connectivity between the cytoplasm and
the nucleus.
The cell nucleus contains the DNA and is the location where protein synthesis in the
cell takes place. Biochemical processes that are responsible for learning, memory
and survival are regulated by calcium signals, [6, 33, 5]. The observed structures
in the nucleus cause a change in the connectivity between cytosol and the nucleus,
which affects the central signaling pathway between synapse and nucleus.

6.2 The Inertia-Based Filter

To investigate the morphological novelties, a method to reconstruct the nuclear
geometry from raw microscopy data was developed. Data was recorded by M.
Wittmann (IZN) and A. Eder (IZN) by staining the nuclear lamina with a fluores-
cence indicator. Since raw data contains noise and discontinuities in the structure,
a surface generating algorithm would not succeed in constructing a continuous iso-
surface of the nuclear envelope. An adequate image filter should process raw data in
such a way that it dampens background noise, enhances the signal to noise ratio, and
closes gaps in the membrane. State of the art nonlinear anisotropic diffusion filters,
[54, 66], produced the wanted directional diffusivity for filtering two-dimensional
substructures, yet this takes place at the cost of losing nuclear features.
In this project, a novel inertia-based, nonlinear, anisotropic diffusion filter was de-
signed to filter two-dimensional substructures with minimal effect on important nu-
clear features. Directional diffusivity is regulated by calculating eigenvalues of the
inertia tensor, [56]. Fine structures of the nucleus can therefore be preserved, while
background noise is reduced and the membrane structure of the nucleus is made con-
tinuous. When setting parameters of the Perona-Malik and Weickert filter, [54, 66],
to ideal values for keeping membrane diameters constant and closing gaps in the
membrane, tests showed, that the inertia-based filter, developed for reconstructing
nuclei, performed nearly three times better when comparing minimum gray values
in membrane gaps.
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Combined with the segmentation algorithm by Otsu, [52], the inertia-based filter
produces image stacks that can be used for three-dimensional reconstructions. In
order to create a surface triangulation of the nuclear envelope, a software toolbox
developed by A. Heusel (SiT) and S. Reiter (SiT) was used. Three-dimensional re-
constructions (see Appendix for an excerpt of reconstruction images) of hippocampal
neuron nuclei revealed, that the fine structures in the nucleus observed in confocal
fluorescence microscopy and EM, are in fact infoldings into the nuclei. By generat-
ing a 3D-image data base (at the moment consisting of 102 nuclei), it can be stated,
that the morphology is a nuclear fingerprint.

6.3 Functionality of the Nuclear Morphology

In an attempt to investigate the function of these morphological novelties, an in-
terdisciplinary project of the department Simulation in Technology (SiT) of the
Interdisciplinary Center for Scientific Computing (IWR) and the Interdisciplinary
Center for Neurosciences (IZN) was brought to life. Detailed mathematical mod-
eling and experimental work was to investigate calcium signaling in the nucleus in
respect to its geometry. A data-driven model, based on the three-dimensionally
reconstructed nuclei and experimental data, was developed and implemented into
the simulation environment UG, [8]. Surface grids for mathematical modeling were
retrieved with the developed method described above and presented in [56]. Vol-
ume grids, needed for multi-grid solving methods for partial differential equations
used by UG, were constructed using the software Ansys ICEM CFD. In a first step
of modeling calcium diffusion under morphological consideration, two dimensional
models of spherical and infolded nuclei were designed for systematic investigations.
This preliminary data indicated, that due to reduced diffusion distances, nuclear
infoldings have a visible effect on the dynamics of nuclear calcium signals.
Three-dimensional modeling on real nuclear morphologies was guided by two main
aspects. The comparison between infolded and spherical nuclei and the comparison
of structural micro-domains within single infolded nuclei. Reconstructions of nu-
clei showed that diffusion distances are minimized by nuclear infoldings and deep
invaginations into the nucleus form structural sub-compartments in nuclei. The
parameters investigated were the dynamics of the nuclear calcium load, nuclear ac-
tivity and signal frequency. Calcium load and activity are strongly influenced by the
form of a nucleus. Infolded nuclei show higher calcium signals than spherical ones,
they are more active and more adept at resolving high signal frequencies and weak
signals. Spherical nuclei carry out a more integrating task. They are less sensitive
to small and fast fluctuations in the calcium code.
The morphology of a nucleus might be a way for the cell to regulate the signal
that reaches transcriptional sites in the nucleus. Infoldings not only form structural
compartmentalization, but also functional micro-domains, see Chapter 5. This ob-
servation made from mathematical models could also be shown in the laboratory,
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[68, 67]. Experimental data from M. Wittmann (IZN) was able to prove, that in
the active state 70% of cells contain infolded nuclei. Furthermore the count for in-
folded nuclei was higher in cells that are more active than others. This leads to the
assumption, that the form of the nucleus changes under active conditions, making
the nucleus more dynamic in its response to repeated and perhaps weak and/or fast
signals.
The conclusion that can be made at this point, is that the nuclear morphology in
most cases is not spherical, but contains deep invaginations in the nuclear envelope.
The form of the nucleus influences the calcium code that is generated at synap-
tic NMDA sites and changes, depending on the state of activity of the cell. The
fine structures of the nucleus are an optimization method for the cell, in respect to
synapse to nucleus communication.

6.4 Properties of Nuclear Calcium

The diffusion model based on real three dimensional geometries includes a diffu-
sion coefficient for nuclear calcium. This parameter has been investigated under
laboratory conditions, [1]. While data presented in literature seem to pin-point
the behavior of buffered calcium well, an attempt at validating this data, by using
a data-driven inverse model was made. Implementing techniques from numerical
optimization for parameter estimation in UG, together with experimental calcium
uncaging experiments, [20], by A. Eder (IZN) completed a mathematical model with
which the diffusion coefficient for nuclear calcium could be estimated. Results of
the parameter estimation state, that nuclear calcium is in fact in buffered form, and
has an active diffusion coefficient of approximately 36 µm2/s.

The developed methods from mathematical image processing deliver novel recon-
structions of nuclei from hippocampal neurons, which show stunning morphologi-
cal features. Numerical modeling and mathematical optimization techniques could
identify the nuclear geometry as a regulating parameter for the cell’s communication
between synapse and nucleus, as well as validate, from a modeling perspective, the
diffusion properties of nuclear calcium.
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Figure 6.1: Excerpt 1: Example of reconstructed nucleus
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Figure 6.2: Excerpt 2: Example of reconstructed nucleus
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Figure 6.3: Excerpt 3: Example of reconstructed nucleus
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Figure 6.4: Excerpt 4: Example of reconstructed nucleus
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Figure 6.5: Excerpt 5: Example of reconstructed nucleus
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Figure 6.6: Excerpt 6: Example of reconstructed nucleus
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Figure 6.7: Excerpt 7: Example of reconstructed nucleus
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ner Studienbücher: Mathematik, 1986.

[30] W. Hackbusch. Iterative Lösung großer schwachbesetzter Gleichungssysteme.
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