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Zusammenfassung 
 
In der Entwicklung eines multizellulären Organismus werden verschiedene Zelltypen 
durch unterschiedliche Transkriptionsprogramme spezifiziert, die durch das 
Zusammenwirken von Promotoren, genregulatorischen Elementen und 
Transkriptionsfaktoren entstehen. Die Identität der Zelltypen wird durch ein spezifisches 
Genexpressionsmuster definiert und dieses wird über die Zellteilung hinweg an die 
Tochterzellen weitergegeben. Bei diesem Prozeß des "zellulären  Gedächtnisses" spielen 
epigenetische Mechanismen eine wichtige Rolle. 
In Eukaryoten wurden verschiedene chromatinbindende Proteinkomplexe identifiziert, 
insbesondere das System der Polycomb- (PcG) und Trithoraxgruppen (trxG) Proteine. 
Diese hochkonservierten Proteine sind in der Lage die Expression ihrer Zielgene durch 
lokale Chromatinmodifikationen zu kontrollieren. Die PcG und trxG Proteine binden als 
multimere Proteinkomplexe an bestimmte regulatorische Elemente in der Nähe ihrer 
Zielgene, welche PREs (polycomb regulatory elements) genannt werden. Ein PRE kann  
demnach als ein epigenetischer Schalter verstanden werden, auf den die PcG und trxG 
Proteine eine einander entgegengesetzte reprimierende (PcG) bzw. aktivierende (trxG) 
Wirkung haben. 
Bisher konnten nur wenige verschiedene PcG Komplexe biochemisch identifiziert 
werden, aber es konnte mehrfach in vivo gezeigt werden, daß die Zusammensetzung der 
Proteinkomplexe an PREs sich je nach untersuchtem Zielgen oder -gewebe stark 
unterscheidet. Außerdem unterschied sich die Zusammensetzung der aufgereinigten 
Proteinkomplexe je nach verwendeter Aufreinigungsmethode und untersuchtem 
Zeitpunkt in der Entwicklung. In allen Fällen aber wurden Extrakte aus ganzen 
Embryonen der Fruchtfliege Drosophila melanogaster oder Insekten- und 
Säugetierzellinien verwendet. Daher repräsentieren die identifizierten Komponenten nur 
den Durchschnitt an Proteinkomplexen, die an die verschiedenen Zielgene gebunden 
waren. Bisher ist es noch nicht gelungen eine Methode zu entwickeln, die es ermöglicht, 
Proteinkomplexe in einer spezifischeren Weise zu isolieren und zu charakterisieren. 
Das Ziel dieser Arbeit war die Entwicklung eines Systems zur Untersuchung der 
Proteinkomposition nativen Chromatins in einer lokus-, zeit- und gewebespezifischen 
Weise. Hierzu wurde eine Methode aus vier Komponenten entworfen, die die Affinität 
des Tet Repressors zu seiner Zielsequenz auf der DNA dazu benutzt, die 
Proteinkomponenten eines spezifischen transgenen PREs aufzureinigen. Die Expression 
dieses Proteinköders kann nun mit Hilfe des Gal4/UAS Systems gewebe- und 
zeitabhängig reguliert werden. Ein weitere Regulationsmöglichkeit bestand in der 
ebenfalls induzierbaren Expression des Enzyms, das den hier verwendeten bio-tag zu 
Proteinaufreinigung in vivo erkennt und biotinyliert. 
Alle Komponenten wurden als Transgene in Drosophila melanogaster eingebracht und 
das so konzipierte System funktionell getestet. Während der Aufreinigung der 
Proteinkomplexe traten verschiedene methodische Probleme auf, welche die Effizienz 
des Systems an mehreren Stellen beeinflußten. Jedes Problem wurde separat in einer 
Serie von Experimenten untersucht, um ein verbessertes Aufreinigungsprotokoll zu 
entwickeln. Das so optimierte System war trotzdem bisher nicht in der Lage, PRE 
gebundene Proteinkomplexe in ausreichender Menge spezifisch anzureichern. Dennoch 
konnten durch die in dieser Arbeit durchgeführten Experimente zur Optimierung der 
Methoden die wichtigsten Schritte solcher Aufreinigungssysteme identifiziert werden. 
Zukünftige Alternativen für einzelne Schritte des hier entwickelten Systems werden auf 
den Erkenntnissen dieser Arbeit beruhen. 



 
 
 
   

 

 



   

   

 

Summary 
 
During development many cell types are generated by specific transcription programs 
that involve activation of gene expression at the level of promoters, enhancers and 
transcription factors. The identities of these different cell types are characterized by 
distinct sets of active and inactive genes, and need to be maintained through cell 
division. To achieve this, the cell type specific expression pattern has to be stably 
transmitted to the daughter cells. Epigenetic “cellular memory” mechanisms are often 
involved. In eukaryotes several chromatin-associated protein complexes have been 
identified, one of these systems comprises the Polycomb group (PcG) and the trithorax 
group (trxG) complexes. These widely conserved proteins act by locally modifying 
chromatin to maintain the transcriptional status of their target genes. The PcG and trxG 
bind as multi-protein complexes to regulatory elements called PREs (Polycomb response 
elements) in or near their target genes. A PRE can thus be considered an epigenetic 
switchable element upon which the PcG and trxG act antagonistically to maintain either 
silencing (PcG) or activation (trxG). Until now only a few distinct PcG complexes have 
been biochemically identified, but there is ample in vivo evidence that the composition of 
the PcG is different at different target genes and in different tissues. In addition, the 
purified complexes composition varies in some extent at different developmental times 
and depending on the protocol used for the purification. In all cases, biochemical 
isolations of complexes were performed using whole Drosophila embryos, Drosophila 
cell lines or mammalian cell lines; thus the purified complexes represent an average of 
all complexes at all target genes. Altogether, the memory system seems to be much more 
complicated than previously thought. Additional factors that come in to action at certain 
points in development might exist, giving a degree of specificity to Pc/TrxG action. So 
far, little has been done to establish procedures for the differential isolation and 
characterization of tissue specific, developmental time specific, or locus specific PcG or 
TrxG complexes. 
The aim of this thesis work was to design a system to look at the components of 
chromatin when still bound to the DNA in a locus, time and tissue specific manner.  
During this work a four-component system was developed based on the utilization of a 
protein bait and its binding site in the chromatin to co-purify proteins bound to 
transgenic PRE, giving locus-specificity to the system. To control time or tissue 
specificity, the protein bait expression was induced by Gal4. One more level of control 
was introduced by tagging the bait with a Bio-tag recognized and in vivo biotinylated by 
an enzyme that is also inducible expressed. All system components were introduced in 
D. melanogaster flies and the generated system was tested proving to be biologically 
feasible. When tested for protein purification many methodological problems were 
encountered that affected the efficiency of the system at various levels. Each problem 
was confronted separately and many experiments were conducted to find a better 
solution for each experimental step that would lead to a better output. However, protein 
pull-downs after system optimization resulted in no quantitative enrichment of PRE 
bound proteins. Nevertheless, thanks to the characterization and system optimization 
performed in this work, critical steps for functioning of this type of systems were 
identified. Alternative solutions to some aspects of the system designed will be based in 
the future on the findings of this work. 
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3 

1. Introduction 

One of the most remarkable characteristics of a multicellular organism is that each and 

every single cell contains exactly the same genetic information and yet there are many 

different cell types. From the moment of fertilization, the development of an adult 

organism requires the specification of distinct cell types all originated from a single cell. 

This generation of cellular diversity, known as differentiation, is achieved through the 

establishment of characteristic patterns of gene expression initiated by specific 

transcription factors.  

The changes in cellular biochemistry and function that occur during differentiation are 

preceded by the commitment of the cell to a certain fate. At this point, even though the 

cell does not differ phenotypically from its uncommitted state, its developmental fate has 

become restricted. Once a cell has reached this determined condition, the characteristic 

gene expression profiles must be maintained and passed on to the daughter cells for 

many cell divisions. The maintenance relies on epigenetic “cellular memory” 

mechanisms (Paro and Harte 1996), which involve changes at the chromatin level, 

through histone modifications, DNA methylation, and binding of protein complexes to 

the DNA. Although great progress has been made in the past years, many questions 

remain unanswered regarding the molecular mechanisms underlying this epigenetic 

memory.  

The fruit fly Drosophila melanogaster is one of the most valuable of organisms in 

biological research, particularly in genetics and developmental biology. It has been used 

as a model organism for research for a century and many of the genes involved in 

epigenetic regulation have been originally described in the fly. Furthermore, a broad 

variety of genetic and molecular tools to influence gene expression exist in Drosophila, 

making this fly an excellent model organism to study the molecular aspects of the 

cellular memory mechanisms. 

1.1 Early Drosophila development: the specification of embryonic 
cells 

Following fertilization, mitosis begins; however in the early Drosophila embryos mitosis 

is not accompanied by cytokinesis, but instead results in the formation of a syncytial 

blastoderm. Cellular membranes do not form until after the thirteenth nuclear division, 

and all the nuclei share a common cytoplasm where material can diffuse throughout the 
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embryo. This common cytoplasm is not homogeneous; on the contrary, different 

morphogenetic protein gradients are established across the embryo that are responsible 

for the specification of cell types along the anterior-posterior (A-P) and dorsal-ventral 

(D-V) axes.  

The specification of individual cell fates begins already before fertilization, in the oocyte 

(Ingham 1988; St Johnston and Nusslein-Volhard 1992). The nurse cells of the ovary 

deposit mRNA in the developing oocyte, and these mRNAs are allocated to different 

regions of the cell (Frigerio et al. 1986; Berleth et al. 1988). Critical for the 

determination of the A-P axis are bicoid (bcd) and hunchback  (hb) mRNAs, for head 

and thorax formation; and nanos (nos) and caudal (cad) mRNAs, for abdominal 

segments formation. The products of these maternal effect genes reside at the top of four 

genetic hierarchies that control the regional specification and result in the subdivision of 

the embryo into fourteen distinct parasegments (PS) (Figure 1.1). 

In the fertilized embryo the maternal mRNAs are translated into proteins. These proteins, 

mostly transcription factors, are responsible for the activation of the gap genes, the first 

class of segmentation genes. Bicoid protein, forms a gradient in the anterior half of the 

embryo, where it represses the translation of caudal mRNA needed for posterior 

specification (Rivera-Pomar et al. 1996; Chan and Struhl 1997) and activates the 

transcription of the embryonic hunchback (Driever and Nusslein-Volhard 1988; Driever 

and Nusslein-Volhard 1989; Struhl et al. 1989), also a transcription factor. Together 

Bicoid and Hunchback activate the gap genes necessary for anterior formation (Figure 

1.1). 

Similarly, the posterior is defined by the activity of nanos gene (Lehmann and Nusslein-

Volhard 1991; Wang and Lehmann 1991; Wharton and Struhl 1991). Nanos protein 

forms a gradient that is highest at the posterior end and it functions by inactivating 

hunchback mRNA translation. In addition, Caudal functions as transcription factor at the 

posterior to activate posterior-specific gap genes.  

During early development the Drosophila embryo is metamerized into parasegments. 

The gap genes divide the embryo into broad regions, each containing several 

parasegment primordial (Driever and Nusslein-Volhard 1989; Struhl et al. 1989; Gaul 

and Jackle 1990; Rivera-Pomar et al. 1995). The proteins products of these genes interact 

with neighbouring gap gene protein products activating the transcription of pair-rule 

genes. In turn, the pair-rule gene products subdivide the broad gap gene regions to 
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originate fourteen parasegments (St Johnston and Nusslein-Volhard 1992; Rivera-Pomar 

and Jackle 1996; Huang et al. 2002). Finally, the segment polarity genes, which encode 

besides transcription factors many proteins constituents of signal transduction pathways, 

reinforce the parasegmental periodicity and establish the boundary between anterior and 

posterior compartments (Martinez-Arias and Lawrence 1985) (Figure 1.1).  

 

 

Figure 1.1. Four genetic hierarchies during embryonic specification. After fertilization the 
products of maternal effect genes, first hierarchical step, are translated into proteins that form 
gradients in the embryo. Bicoid and Nanos (among others) regulate the expression of the 
embryonic Gap genes in specific regions of the embryo. The Gap genes, mainly transcription 
factors regulate the expression of the Pair rule genes (even skipped, fushi tarazu and others), 
which divide the embryo in fourteen parasegments and regulate the Segment polarity genes, such 
as engrailed and wingless. These constitute the last step of the hierarchy and reinforce segmental 
periodicity. Gap and Pair rule genes activate expression of homeotic genes that determine 
segment identity. (Adapted from flymove; http://flymove.uni-muenster.de/) 

 

In the Drosophila adult, these fourteen parasegments will form the three head, the three 

thoracic and the eight abdominal segments. Although they are similar in number, 

segments and parasegments are shifted relative to another; each segment is composed of 

the posterior part of a parasegment and the anterior portion of the next one. The identity 

of these segments is determined by the homeotic selector genes, which are regulated by 

pair-rule and gap genes products (Lewis 1978; Qian et al. 1991; Zhang et al. 1991; 

Muller and Bienz 1992; Shimell et al. 1994; Maeda and Karch 2006). Once the 

expression patterns of the homeotic genes have become stabilized, the transcription 
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factors regulating them disappear (Frasch et al. 1987; Gaul et al. 1987; Tautz 1988) but 

the homeotic genes transcriptional states become “locked” by epigenetic cellular 

memory mechanism (Ingham and Whittle 1980; Mc Keon and Brock 1991; Simon et al. 

1992; Maeda and Karch 2006) (Figure 1.2). 

 

 

 

Figure 1.2. Bithorax complex regulatory regions. Homeotic genes specify segment identity via 
differential expression along A-P axis of Drosophila embryo. The pattern of expression of the 
homeotic Antennapedia and bithorax complexes is shown. The regulatory regions of the BX-C 
are shown in detailed. Interspersed in the complex are PS-specific enhancers (abx/bx, bxd/pbx 
and iab 2-9), which are responsible for establishing homeotic gene transcription in response to 
segmentation gene products during early embryogenesis. The maintenance of the expression 
patterns after transcription factors have disappeared is regulated by PcG and TrxG of proteins 
through binding to PREs (bx, bxd, iab2, iab3, Mcp, iab6, Fab-7and iab8; iab9 is a putative PRE) 
indicated with red arrows in the bithorax complex. (Adapted from Gilbert 2003). 
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1.2 Maintaining cell identity:  the cellular memory components 

Cellular memory is the system responsible for the maintenance of the transcriptional 

state of the homeotic genes and many other genes involved in cell proliferation, 

signalling and cell cycle progression. The main components of the cellular memory are 

the Polycomb group (PcG) and the Trithorax group (TrxG) proteins, which were first 

genetically characterized in Drosophila. Mutations in PcG genes lead to the ectopic 

expression of homeotic genes, resulting in posterior transformations of segments and 

body structures. This suggested that the PcG genes are part of a specific repressor system 

that maintains the target genes in the silent state (Lewis 1978; Struhl and White 1985; 

Glicksman and Brower 1990; Jones and Gelbart 1990; Simon et al. 1992). The TrxG acts 

antagonistically to PcG and is responsible for the maintenance of the active 

transcriptional state (Kennison and Tamkun 1988). Mutants of this group of genes show 

mostly anterior transformations, caused by reduced expression of homeotic genes. Both 

group of proteins exert their function through specific cis-regulatory DNA elements; the 

Polycomb/Trithorax response elements (PRE/TRE), which have dual potential for 

epigenetic maintenance of both active and silence states (Busturia et al. 1989; Simon et 

al. 1990; Simon et al. 1993; Chan et al. 1994; Chiang et al. 1995). For simplification 

these elements will be referred to as PREs.  

1.2.1 PcG, TrxG and their Protein Complexes 

The Polycomb group and the Trithorax group of proteins bind their target genes as multi-

protein complexes. The biochemical purification and characterization of these complexes 

and the studies of the physical and regulatory interactions between them and their target 

genes has contributed greatly to the understanding of how the cellular memory system 

works. For instance, it has been found that many of the proteins in these complexes have 

enzymatic activities responsible for modifying the chromatin at the target sites. These 

findings shed light on the molecular mechanisms involved in PcG and TrxG regulation. 

A. Polycomb group repressive complexes 

Polycomb group silencing involves at least three kinds of multi-protein complexes that 

work together, the Polycomb Repressive Complexes type 1 and type 2 (PRC1 and PRC2) 

and, most recently purified, the Pho Repressive Complex (PhoRC) (for review see 

Ringrose and Paro 2004; Schwartz and Pirrotta 2007). All three complexes contain 

multiple protein subunits and are crucial for Hox gene silencing. The PRC2 complex is 
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well conserved in evolution; components of this complex are found in plants and 

animals, but not in fungi S. cerevisiae and S. pombe (Schuettengruber et al. 2007). 

However, PRC2 components are also present in N. crassa, showing that these proteins 

might have an ancient function in transcriptional repression. In contrast, PRC1 core 

component genes are not found in fungi and plants (Springer et al. 2002), and although 

they have originated very early en animal evolution, many genes have alternately been 

lost from some species of the animal kingdom (Schuettengruber et al. 2007). Pc itself is 

missing in many species. It is probable that in these species other, jet unidentified 

factors, perform PRC1 function. In plants, for instance, LIKE HETEROCHROMATIN 

PROTEIN 1 (LHP1) is necessary for the maintenance of the epigenetically repressed 

state of some euchromatic genes (Mylne et al. 2006; Sung et al. 2006), and could be the 

factor replacing PRC1.  

The PRC1 complex 

The PRC1 complex from Drosophila is composed of four core PcG proteins found in 

stoichiometric amounts: Polycomb (Pc), Posterior sex comb (PSC), Polyhomeotic (Ph) 

and Drosophila Ring1 (dRing1) (Shao et al. 1999; Saurin et al. 2001; Levine et al. 2002) 

(Figure 1.2). In addition to the core proteins, the 1-2MDa complex has been found to be 

associated to more than 30 other polypeptides, among them are Sex combs on midleg 

(SCM), Zeste TBP (TATA-box binding protein)-associated factors, and several 

transcription factors like TAFII 250, TAFII110, TAFII85 and TAFII62 (Francis et al. 

2001; Saurin et al. 2001). The fact that TBP and transcription factors can be purified 

with PRC1, and that Pc has been found to co-localize with TBP at the promoters of the 

PcG regulated genes in Drosophila SL2 cells, suggest that this complex might silence its 

targets by direct inhibition of the transcriptional machinery. Furthermore, in vitro 

experiments have shown that the PRC1 complex can block transcription by RNA POLII 

and the sliding of nucleosomes on chromatin templates mediated by human SWI/SNF 

ATPase complex (Shao et al. 1999; Francis et al. 2001; King et al. 2002; Levine et al. 

2002). Curiously, the SWI/SNF complex is homologue of the Drosophila BRM 

complex, known to be necessary for TrxG dependent activation (Shao et al. 1999; 

Francis et al. 2001). The remodelling inhibiting function can be reconstituted in a 

recombinant complex of PSC, Ph, Pc and dRing1, showing that these 4 proteins form a 

functional PRC1 core complex that can mediate gene repression. The addition of Zeste to 

the core complex enhances the inhibition of transcription and the binding to Zeste target 
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sites present on PREs (Mulholland et al. 2003) suggesting a possible role for associated 

factors that might modulate PRC1 activity. Although PRC1 core complex can block 

nucleosomes remodelling, it has no preference for a particular DNA sequences. In vivo, 

the specific binding to PREs is probably assisted by other proteins such as Zeste, GAF, 

PHO, DSP1, GRH and Pipsqueak (PSQ), which have been shown interact with PRC1 

(Sato and Denell 1985; Poux et al. 2001; Mahmoudi et al. 2003; Huang and Chang 2004; 

Dejardin et al. 2005; Blastyak et al. 2006). Finally, PRC1 core complex can also induce 

in vitro condensation of polynucleosomal chromatin templates, as assayed by electron 

microscopy (Francis et al. 2004). 

Another functional feature of PRC1 is given by the chromodomain of Pc protein, which 

binds in vitro to trimethylated lysine 27 of a Histone H3 tail peptide (H3K27me3) 

(Fischle et al. 2003). This mark is deposited in the chromatin by the PRC2 complex. 

Additional domains also found in PcG proteins confer these proteins enzymatic activities 

that are important for silencing. The CHRASCH complex (Chromatin-associated 

silencing complex), a PRC1-type complex purified from Drosophila culture cells, 

contains histone deacetylase activity, provided by HDAC1 (Figure 1.3). This activity 

could contribute to condensation of nucleosomes by increasing the positive charge of 

histones allowing better interaction with negatively charged DNA molecules. In addition, 

Ring1 protein contains a Ring domain shown to function as E3 ubiquitin-ligase that 

mono-ubiquitylates lysine 119 of Histone H2A (H2AK119ub1) (Wang et al. 2004a; Cao 

et al. 2005). This modification is crucial for silencing of Drosophila and mouse Hox 

genes, although the molecular mechanism involved is still unknown.  

Other modulators of PRC1 activity might be the orthologues of PcG genes. These could 

function as alternatives in different tissues, developmental stages or even at different 

target genes in the same cell. For example, there are two ph genes, encoding 

Polyhomeotic proximal (PHP) and Polyhomeotic distal (PHD) proteins, the functions of 

which have not yet been clearly differentiated (Dura et al. 1987). Similarly, PSC and 

Suppressor of zeste 2 (Su(Z)2) are closely related and are thought to have partially 

overlapping functions (Wu and Howe 1995; Beuchle et al. 2001). Pleiohomeotic (PHO) 

and Pleiohomeotic-like (PHOL) (Brown et al. 2003) and Extra sex combs (ESC) and 

Extra sex combs like (ESCL) (Wang et al. 2006) are two other pairs of PcG genes with 

partially overlapping functions. In the same way, the mammalian PRC1 can be 

composed of alternative orthologues to the core proteins. Purified complexes include 
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HPC1, 2 and 3, HPH1, 2 and 3, RING1A and RING1B, BMI and potentially its 

homologue MEL18. No orthologues of Zeste and PSQ are found associated with 

mammalian complexes (Levine et al. 2002; Lavigne et al. 2004; Wang et al. 2004a). 

The PRC2 complex 

The core components of the PRC2 complex in Drosophila are Enhancer of zeste (E(Z)), 

Extra Sex Combs (ESC), Suppressor 12 of zeste and Nurf55 (Figure 1.3). The key 

element of the complex is the SET domain of E(Z), responsible for the histone 

methyltransferase (HTMase) activity of the complex.  E(Z)  alone has no methyl-

transferase activity, but when assembled in the complex it trimethylates H3K27 (Cao et 

al. 2002; Czermin et al. 2002; Kuzmichev et al. 2002). This methyl mark is characteristic 

of PcG target genes (Cao et al. 2002; Schwartz et al. 2006). E(Z) is also responsible for 

wide spread of mono and dimethylation of more than 50% of H3K27 in the D. 

melanogaster genome (Ebert et al. 2004) and it can also methylate H3K9 in vitro, but the 

roles of these marks remain unknown. 

The non-catalytic units of PRC2, Su(Z)12 and Nurf55, are essential for nucleosome 

binding and ESC is crucial for enhancing the enzymatic activity of E(Z) (Ketel et al. 

2005; Nekrasov et al. 2005). In mammals Su(Z)12 is also needed for the HMTase 

activity (Cao and Zhang 2004; Pasini et al. 2004). Different isoforms of EED, the 

vertebrate homologue of ESC, have been found associated with the mammalian E(Z) 

resulting in several PRC2-type complexes with  different enzymatic specificities. The 

mammalian PRC3 complex methylates H3K27 while PRC2 and PRC4 have preference 

for Histone H1K26 (Kuzmichev et al. 2004; Kuzmichev et al. 2005).  

In flies, different approaches and purification schemes have resulted in purification of 

protein complexes with slightly different compositions. They all share the four core 

components and have HTMase activity, but they differ in molecular weight and in the 

presence of some additional proteins (Figure 1.3). The most prevalent complex is the 

600KDa PRC2 purified from Drosophila embryos (Ng et al. 2000; Cao et al. 2002; 

Czermin et al. 2002; Kuzmichev et al. 2002; Muller et al. 2002). A 1MDa complex 

found in early embryos contains PCL, a protein required for Pc silencing of homeotic 

genes and found at Pc sites on polytene chromosomes (Tie et al. 2003; Papp and Muller 

2006). Other larger complex appears at later developmental stages and contains SIR2, 

the homologue of yeast SIR2 Nad+ dependent Histone deacethylase (Furuyama et al. 

2003; Furuyama et al. 2004). This complex is in the 4 MDa range and contains the 
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members of PRC2 and other additional, still uncharacterized proteins. Curiously this 

complex does not contain ESC.  RPD3 protein, also a histone deacetylase, has been 

reported to co-purify with some of the larger complexes (Figure 1.3)(Czermin et al. 

2002; Tie et al. 2003; Furuyama et al. 2004). 

 

Figure 1.3. Polycomb Repressive Complexes and associated proteins. Three distinct 
repressive complexes have been purified in Drosophila. PRC1, PRC2 and PhoRC. In different 
tissues other PcG and non-PcG proteins are found associated with the complexes; among them 
many specific DNA binding proteins with binding sites on PREs. The main enzymatic activities 
for each complex and their roles in repression are described in the main text (question marks 
represent unidentified components of the complexes.  
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Association of RPD3 with PRC2 is disputed (Cao et al. 2002; Kuzmichev et al. 2002; 

Muller et al. 2002), however in mammals the PRC2 complex was shown to contain 

HDAC activity (van der Vlag and Otte 1999). Furthermore, mutations in RPD3 enhance 

PcG mutant phenotypes (Chang et al. 2001) and disrupt PcG mediated silencing of a 

PRE-containing transgene. SIR2 and RPD3 might aid the action of TrxG activating 

complexes through their HDAC activities.  

An important protein also found to be transiently associated to PRC2 is PHO. This 

interaction is mediated by the Set domain of E(Z) and might play an important role in the 

recruitment of the complex to the PREs (Poux et al. 2001; Satijn et al. 2001; Wang et al. 

2004b). 

Pho-RC complex 

There are only a few members of the PcG that can bind directly to DNA. Pleiohomeotic 

(PHO) and Pleiohomeotic-like (PHOL) have a DNA-binding domain that can bind a 

specific DNA motif present on PREs. Although PHO has been found to associate 

transiently with PRC1 and PRC2 by immunoprecipitation experiments and GST pull-

downs (Poux et al. 2001; Mohd-Sarip et al. 2002; Wang et al. 2004b), it is not present 

among the core components of the repressive complexes 1 and 2 (Ng et al. 2000; Saurin 

et al. 2001; Muller et al. 2002).  

Recently, two distinct PHO complexes have been purified from Drosophila embryos 

(Klymenko et al. 2006). The Pho-dINO80 complex that contains the INO80 nucleosome 

remodelling complex and the Pho-RC complex composed of the Drosophila Scm-related 

gene containing four mbt domains (dSFMBT) protein (Figure 1.3). These complexes can 

be separated by glycerol gradient sedimentation showing that they exist in vivo as 

separate entities. In Drosophila, PHO and PHOL function redundantly to maintain Hox 

genes silencing (Brown et al. 2003), in agreement with this, both proteins are found to 

co-purified with both complexes indistinctly.  

Surprisingly, the dPho-INO80 complex is not found at Drosophila PREs (Klymenko et 

al. 2006), suggesting that PHO has an additional function independent of PcG silencing. 

In addition, PHO has been described to occupy extended chromatin domains over the 

coding region of transcriptionally active genes. Immunostainings on polytene 

chromosomes revealed that PHO might play a general role in gene regulation, probably 

helping to re-repress induced genes (Beisel et al. 2007). 
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The dSFMBT protein present in the Pho-RC complex, binds to PREs and its binding is 

greatly diminished in PHO mutant background. In addition, removal of dSFMBT in 

imaginal discs clones causes wide miss-expression of Ubx and Scr (Klymenko et al. 

2006). This phenotype is as severe as the one caused by other PcG mutants (Beuchle et 

al. 2001). Even more, tethering of dSFMBT to DNA as a fusion protein that contains a 

DNA binding domain, produces transcriptional repression of a reporter gene. 

The Pho-RC complex can also bind selectively histone tails. Four MBT domains present 

in dSFMBT are responsible for the recognition of H3 tail peptides that are mono- or di- 

methylated at K9 and H4 tails mono- or di-methylated at K20 (Klymenko et al. 2006). 

Thus, it combines a sequence-specific DNA binding activity through the PHO subunit 

with a methylated histone binding activity through dSFMBT. Importantly, Pho-RC is 

specifically targeted to PREs in a manner that depends the presence of PHO binding sites 

on the DNA, suggesting that binding of dSFMBT to methylated histones is not required 

for Pho-RC targeting but is needed for repression. 

B. Trithorax group complexes 

All PcG target genes that have been studied are also known to be positively regulated by 

Trithorax group proteins. Contrary to PcG, the proteins present in TrxG complexes have 

enzymatic activities that help to activate transcription by modifying the chromatin at 

target sites. Many of these proteins are not only involved in TrxG regulation but also in 

general transcription processes. 

At least four different TrxG complexes have been linked to Trithorax function. A 2MDa 

BRM complex composed of Brahma (BRM), Moira (MOR), OSA and SNR1 (Papoulas 

et al. 1998) (Figure 1.4), functions as nucleosome remodelling complex powered by the 

ATPase activity of BRM (SWI2/SNF2 in yeast). In vitro, BRM remodelling complex 

facilitates transcription from nucleosomal templates (Kal et al. 2000).  

The 2MDa and 500KDa complexes, containing ASH1 and ASH2 (absent, small and 

homeotic) proteins respectively, which contain histone methyltransferase activity 

required for the maintenance of Hox gene expression. ASH proteins have SET 

(Su(var)3-9, Enhancer of Zeste, Trithorax) domains that thrimethylate lysine residues 4 

and 9 of histone H3, and lysine 20 of histone H4 (Beisel et al. 2002; Byrd and Shearn 

2003; Klymenko and Muller 2004).  
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Figure 1.4. Trithorax Group complexes and associated complexes involved in 
transcriptional activation. All the components of TrxG complexes, ASH1, ASH2, TAC1 and 
BRM, and their enzymatic activities involved in transcriptional activation. The enzymatic 
activities and their roles in activation are described in the main text. Other non-TrxG complexes, 
like NURF and ACF, are involved in chromatin remodelling and might assist TrxG in their 
function (question marks represent unidentified components of the complexes). 

 

The TAC1 complex (Trithorax Acetylation Complex) of 1MDa contains Trithorax 

(TRX) protein, which contains histone methyltransferase activity specific for lysine 4 of 

histone H3. In addition, CREB binding protein (dCBP) and antiphosphatase Sbf1 (Petruk 

et al. 2001; Smith et al. 2004) have been also described to be part of TAC1 (Figure 1.4). 

dCBP is a histone acetyltransferase that has also been associated to ASH1. The 

interaction with ASH1 together with its presence in TAC1 suggests that these two 

complexes act in concert to maintain active transcriptional states. Both complexes may 
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act by combining the histone acetylation function of dCBP with H3K4 trimethylation 

activity of TRX and ASH.  

In addition to BRM, two other general chromatin remodelling complexes might 

contribute to Trx function. Both complexes contain ISWI protein as ATP dependent 

chromatin remodelling engine. In one complex ISWI is associated with several NURF 

proteins (Badenhorst et al. 2002) and in the other with ACF protein (Figure 1.4) 

(Fyodorov and Kadonaga 2002; Fyodorov et al. 2004). Interestingly, in some assays this 

complex also shows PcG-type functions, suggesting same complex might act as a 

cofactor of TrxG and PcG (Fyodorov et al. 2004). 

There are many other proteins that have been classified as Trithorax group based on 

genetic behavior and are not found as components of the TrxG complexes. Two factors 

greatly involved in PcG/TrxG regulation are GAGA (GAF) and Zeste (Z). Although 

classified as TrxG proteins, these factors are also associated with silencing. GAF is 

required for PRE dependent repression of reporter genes (Hodgson et al. 2001) and it can 

stimulate PRC1 nucleosomal remodelling blocking (Mulholland et al. 2003). The same 

holds true for Zeste, which has been found to interact with PRC1 in addition to recruiting 

Brahma (Kal et al. 2000; Dejardin and Cavalli 2004). Both proteins seem to have also a 

more general role in transcription; the DNA binding sequences of GAF and Z are also 

found in the promoters of many non-polycomb target genes (Pirrotta and Brockl 1984; 

Pirrotta et al. 1985; Bevilacqua et al. 2000; Ringrose et al. 2003). 

1.2.2 PREs: DNA sequences with memory  

Polycomb group response elements (PREs) are cis-regulatory DNA elements necessary 

for recruitment of PcG and TrxG complexes to their target genes and for the inheritance 

of the determined transcriptional state through mitosis. 

Many PREs have been identified in Drosophila melanogaster, but most of what is 

known about their function is through the characterization of a few specific PREs 

belonging to the well-studied homeotic genes (Figure 1.2). For instance, the Bithorax 

complex (BX-C) PREs were the first ones to be discovered and characterized (Simon et 

al. 1990; Busturia and Bienz 1993; Simon et al. 1993; Chan et al. 1994; Christen and 

Bienz 1994; Busturia et al. 1997).  The BX-C is composed of three homeotic genes, 

Ultrabithorax (Ubx), abdominal-A (abdA) and Abdominal-B (AbdB) (Lewis 1978; 

Maeda and Karch 2006). These genes are expressed in a specific pattern along anterior 

posterior axis of the Drosophila embryo defining the identities of PS 5-14 (Figure 1.2). 
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As mentioned before, the homeotic genes are controlled in early development by the 

products of the gap and the pair rule genes through binding to cis-regulatory elements in 

the DNA. Several enhancers present in the BX-C are responsible for the specific 

expression patters of the homeotic genes of this complex. In this way, abx/bx enhancer 

controles Ubx expression, iab2-4 regulate abdA and iab5-9, AbdB (Mihaly et al. 1998). 

After the gap and pair rule proteins disappear, the expression patterns of the BX-C genes 

are maintained by the cellular memory system. The PcG and TrxG proteins exert their 

function through binding to bx, bxd, iab2, iab3, Mcp, iab6, Fab-7 and iab8 PREs and 

also to a putative PRE in the iab9 region (Figure 1.2) (Gyurkovics et al. 1990; Busturia 

and Bienz 1993; Chan et al. 1994; Christen and Bienz 1994; Chiang et al. 1995; Busturia 

et al. 1997; Barges et al. 2000; Beisel et al. 2007). These PRE are essential for the 

maintenance of the original transcriptional state of the BX-C genes. 

Other PREs have been also identified at various homeotic and non-homeotic loci, 

including the engrailed (Kassis 1994), polyhomeotic (Bloyer et al. 2003), hedgehog 

(Maurange and Paro 2002) and even the Cyclin A (Martinez et al. 2006) loci. In addition 

to the genetically identified PREs, the binding pattern of PcG and TrxG proteins on 

polytene chromosomes reveals the existence of many, yet uncharacterized, PREs.  

PREs are compound elements of several hundred base pairs. Many PREs contain clusters 

of GAGAG motifs, which bind GAF and PSQ and can also contain binding sites for 

PHO, PHOL and Zeste (Rastelli et al. 1993; Hagstrom et al. 1997; Strutt et al. 1997; 

Fritsch et al. 1999; Mishra et al. 2001; Huang et al. 2002); these binding motifs were 

found to be highly clustered. An algorithm based on these motifs allowed the in silico 

prediction of potential PREs on a genome-wide scale (Ringrose et al. 2003). This 

bioinformatics approach, in combination with experimental verification, identified many 

new target sites of PcG and TrxG proteins. The identified genes for the predicted PREs 

covered a wide rage of cellular functions, including regulation of cell cycle progression, 

cell fate determination and development. Recently, genome-wide mapping of PcG 

distribution using ChIP (Chromatin IP) or DamID approach and analysis on genomic 

tiling microarrays, revealed many more PcG target sites (Negre et al. 2006; Schwartz et 

al. 2006; Tolhuis et al. 2006). These new sites, missed by the prediction, could reveal the 

existence of still uncharacterized features in PREs, like motifs for other DNA binding 

proteins. For instance, DSP1 (dorsal switch protein 1) has been found to be involved in 

the function of Fab-7 and engrailed PREs (Dejardin et al. 2005). DSP1 protein binds to a 
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broad range of DNA motifs (Brickman et al. 1999) and it extensively co-localizes with 

PcG on polytene chromosomes. A dual function has been also attributed to DSP1since it 

has been shown to behave as TrxG protein at other homeotic PREs (Decoville et al. 

2001; Rappailles et al. 2005; Salvaing et al. 2006). Like DSP1, other additional DNA 

binding proteins might exist that regulate alternative PREs, giving specificity to Pc/TrxG 

function. 

No mammalian PRE has been identified to date, although it is clear that mammalian 

homeotic genes and many other loci are under PcG/TrxG control (Boyer et al. 2006; 

Bracken et al. 2006; Lee et al. 2006). One possibility is that mammalian PREs are more 

extensive or diffuse, and therefore more difficult to identify. A second possibility is that 

mammalian PREs do not exist and PcG proteins are recruited to their target genes by a 

different mechanism. The lack of vertebrate homologues for Zeste, GAGA and PSQ 

points into this direction (Levine et al. 2002; Lavigne et al. 2004; Ringrose and Paro 

2004; Wang et al. 2004a).  

1.3 Chromatin marks linked to silence and activation 

The epigenetic regulation by PcG/TrxG of proteins leaves a track on the chromatin. The 

enzymatic subunits of the complexes deposit histone marks that are indicative for 

silencing or activation. The PRC2-type complexes posses H3K27-specific trimethylase 

activity (Cao and Zhang 2004) and several TrxG complexes have H3K4 trimethylase 

activity (Byrd and Shearn 2003; Dou et al. 2005; Wysocka et al. 2005).  

Recent genome-wide analyses of the distribution of H2K27 and H3K4 trimethylation has 

help to understand the relationship between these marks, the binding of PcG/TrxG 

proteins, and the transcriptional state of the targeted genes. The components of the PRC2 

complex in flies, mouse and human are found to colocalize with regions that are 

trimethylated at H3K27 (Boyer et al. 2006; Lee et al. 2006; Schwartz et al. 2006; Tolhuis 

et al. 2006). In contrast, H3K4 methylation is present at most active promoters in the 

genome. Other epigenetic mark associated with transcriptionally active euchromatin is 

histone acetylation, whereas inactive heterochromatin domains are consistently 

hypoacetylated (Jenuwein and Allis 2001).  

A report using quantitative ChIP analysis of the inactive Ubx gene showed that while 

PcG and TrxG proteins bind a more constrained area at the PRE, the H3K27me3 mark is 

present throughout an extended 100 kb domain that spans the whole inactive gene (Papp 
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and Muller 2006). More over, H3K9me3 and H4K20me3 were also found to be present 

at the inactive Ubx gene (Ringrose et al. 2004; Papp and Muller 2006). Interestingly, no 

specific enrichment of H3K27-me3 was found at the PRE, rather a reduction of H3K27-

me3 signal consistent with the reduced H3 signals detected at these sites. A similar 

pattern of H3K27me3 distribution was observed in separate genome wide study on 

Drosophila culture cells (Schwartz et al. 2006).  

In the active Ubx instead, presence of this methyl mark is restricted to the upstream 

control region only, at the PRE. The absence of H3K27me3 in part of the gene correlates 

with the binding of Ash1 immediately downstream to the promoter, which induces 

trimethylation of H3K4 that spreads through the coding region of the gene. PcG remains 

bound at the PRE also in the active state. 

The PRC1-type complexes also contain an evolutionary conserved histone modification 

activity leading to ubiquitylation of lysine 119 of histone H2A (de Napoles et al. 2004; 

Wang et al. 2004a), which is required for PcG-mediated silencing of Drosophila Ubx 

gene (Wang et al. 2004a). A putative “reader” of this histone mark remains to be 

identified.  

Although no direct link to PcG and TrxG complexes has been found so far, increasing 

evidence suggests also a role for histone variants in marking the active and silent states. 

Histone H3.3 is found prominently at sites of abundant RNA pol II and methylated 

H3K4 throughout the Drosophila genome. Interestingly, this mark was also found far 

upstream and downstream of transcribed regions, probably due to intergenic 

transcription since the mechanism of H3 replacement by H3.3 is coupled to the 

transcriptional process it self (Ahmad and Henikoff 2002; Mito et al. 2005; Schwartz and 

Ahmad 2005). Moreover, a recent work in Drosophila SL2 cells revealed enrichment of 

H3.3 at the functional boundaries of several proximal-to-distal cis-regulatory domains 

that regulate abd-A and Abd-B (Mito et al. 2007). Histone H2A might also be involved in 

marking specific chromatin states, however, it is not clear whether it is silence or in 

activation (Allis et al. 1980; Meneghini et al. 2003; Rangasamy et al. 2003; Fan et al. 

2004). Finally, histone MacroH2A is found on the inactive X chromosome in mammals 

(Costanzi and Pehrson 1998). 

1.4 Molecular mechanisms of the cellular memory 

What are the roles of all these histone modifications and are they sufficient to explain 

PcG-mediated silencing and Trx-mediated activation? Trx TAC1 and ASH1 complexes 
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methylate histone H3. This H3K4me3 mark is recognized by the PHD finger domain of 

the Nurf-301 protein (Li et al. 2006; Wysocka et al. 2006). The NURF complex tethered 

to TrxG responsive promoters might facilitate the recruitment of the transcriptional 

machinery via ATP-dependent nucleosome remodelling (Figure 1.5). The BRM complex 

can also move nucleosomes along the DNA. Via their activities NURF and BRM may be 

involved in the formation of an “open” chromatin structure that might help activators and 

transcription factors in reaching their target sites. H3K4me3 might also stimulate 

transcriptional elongation. In particular, H3K4me3 and ASH1 are found downstream of 

the Ubx promoter when the gene is active (Papp and Muller 2006). TRX has also been 

shown to facilitate transcriptional elongation at heat shock genes (Smith et al. 2004) and 

more recently, the Drosophila TAC1 complex has been proposed to play a global role in 

transcriptional elongation (Petruk et al. 2006) (Figure 1.5). Consistent with this, the 

mammalian TRX homologue MLL is associated with the promoters of expressed genes 

(Guenther et al. 2005). The MLL complex is closely related to the yeast COMPASS 

complex, which contains SET1 and binds to RNA POL II during transcriptional 

elongation.  

In addition, proteins such as dCBP, part of TAC1 complex, have histone acethylase 

activity. This activity may help destabilize higher order chromatin structures and recruit 

bromodomain-containing transcription factors, such as TAFII250, that recognize 

acetylated lysines (Dhalluin et al. 1999; Jacobson et al. 2000) (Figure 1.5). Although 

ASH1 and TRX are both histone methyltransferases, it seems that they are not redundant 

in function. Loss of either protein leads to dramatic loss of Ubx expression, both in 

embryo and in larval imaginal discs, due to silencing by PcG complexes (Klymenko and 

Muller 2004). This shows that PcG silencing can be re-established at any stage of 

development if ASH1 or TRX are absent. Furthermore, in PcG/TrxG double mutant 

embryos, Ubx is missexpressed outside of its usual domain, demonstrating that ASH1 

and TRX are not required for Ubx de novo activation. All together, this results support 

the idea that TrxG function as anti-repressors, rather than as transcriptional co-activators, 

and their presence is essential to counteract PcG silencing throughout development. 

The enzymatic activity of E(Z) is required for silencing (Muller et al. 2002), but what 

role does the H3K27m3 mark exactly play? A possibility is that the PRC1 complex is 

responsible for the repression activity and that the methyl mark merely recruits this 

complex to the target sites via the chromodomain of Pc protein (Fischle et al. 2003; 
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Lachner et al. 2003). However, since Pc is constitutively bound to PREs in early 

embryogenesis, such a model requires that PRC2 would be recruited to all PREs before 

Pc. There are several lines of evidence that indicate that this is not the case (Muller and 

Kassis 2006; Ringrose and Paro 2007), and that rather the methylation is part, cause or 

mere consequence, of the system directly responsible for the silencing or a downstream 

event after PcG recruitment (Mutskov and Felsenfeld 2004). First, quantitative ChIP 

analysis suggests that PREs are in fact depleted of nucleosomes (Papp and Muller 2006; 

Schwartz et al. 2006), and then the relative amounts of H3K27m3 at this sites are 

actually reduced. Second, it was shown with in vitro assays that Pho and PRC1 can be 

co-assembled on naked PRE DNA templates in the absence of nucleosomes (Mohd-Sarip 

et al. 2002); and finally, chromodomain swapping experiments have shown that the 

chromodomain itself is not sufficient to direct a heterologous protein bearing the 

chromodomain to the sites where its target histone modification is enriched in vivo, 

strongly suggesting that targeting of PcG and TrxG is not dependent on histone tails 

modifications (Platero et al. 1995; Ringrose et al. 2004). 

An alternative option is that H3K27me3 represses transcription directly, for instance by 

inhibiting some step involved in transcriptional activation or by preventing the 

deposition of histone marks associated with gene activation, such as acetylation, 

ubiquitylation of histone H2B or trimethylation of H3K4. The action of the methyl mark 

could be reinforced by PRC1 repression ATP-dependent nucleosome remodelling (Shao 

et al. 1999). Moreover, TBP-associated factors have been found to interact with PRC1 

(Breiling et al. 2001; Saurin et al. 2001), suggesting that PcG proteins might contact 

promoters. In this way, PRE-mediated silencing does not necessarily prohibit recruitment 

of RNA POLII, but may interfere with transcription initiation or elongation (Figure 1.5) 

(Dellino et al. 2004).  
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Figure 1.5. PcG and TrxG mechanisms. PcG and TrxG act in protein complexes, which 
contain enzymatic activities involved in silencing and activation. In the active state, PcG and 
TrxG are both found at the PRE and so is H3K27me3 mark. TrxG complexes are also found on 
the promoter and at distinct peaks in the gene. H3K4me3 active mark is spread and nucleosome 
remodelling complexes facilitate transcription. In the silent state TrxG proteins are still found at 
PRE. The repressive H3K27me3 mark imposed by PRC2 spreads in the gene body. Looping of 
chromatin by PRC1 might facilitate spreading. RNA PolII is found at promoter but there is no 
transcription elongation. Other repressive marks like H2AK119Ub are also found at the 
chromatin.  

 

If the role of H3K27me3 is not the recruitment of PRC1 then the function of the 

chromodomain of Pc could be to facilitate transient, long range interactions between the 

PRE and their target promoters, mediated by the looping of PREs (Wang et al. 2004a; 

Comet et al. 2006; Muller and Kassis 2006; Lanzuolo et al. 2007; Schuettengruber et al. 

2007; Schwartz and Pirrotta 2007). This kind of interaction could be responsible for the 

wide spreading of H3K27me3 mark. Consistent with this, Pc it self is usually found to be 

spread over wider regions than other PRC1 and PRC2 components (Papp and Muller 

2006; Beisel et al. 2007), this could be due to transient interactions during PRE looping 

that are “fixed” during ChIP experiments. In addition, PRE looping could allow PcG 
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proteins bound at the PRE to establish specific contacts with promoter-bound 

components of the transcription machinery (Figure 1.5). 

Finally, the PhoRC complex could also be involved in PRE looping since the dSFMBT 

protein has binding preference for mono and dimethylated H3K9 and H4K20. This 

complex could sense the surrounding chromatin for this marks and then help bring the 

chromatin into contact with the HMT of the PRC2 (Klymenko et al. 2006). Such a 

function could also be important during DNA replication, where newly incorporated 

nucleosomes must be modified accordingly to maintain the silent chromatin environment 

Histone deacetylation by HDACs (Kouzarides 1999) associated to PcG complexes could 

also contribute to erase the activation mark imposed by the TrxG proteins on the target 

genes. In an opposite way, histone demethylases could contribute to erase the silencing 

mark. Recently, the first histone demethylating activity was described (Shi et al. 2004) 

and since then, more demethylases have been characterized. In the last year the activity 

of some of these enzymes has been linked to PcG silencing (Sanchez et al. 2007; Swigut 

and Wysocka 2007) suggesting that they might also be important for the cellular 

memory. 

Noncoding RNAs (ncRNAs) might also be involved in PcG and TrxG regulation, but 

different studies have produced contrasting results. Early work has shown that ncRNAs 

produced from the regulatory regions of Hox genes may counteract PcG dependent 

silencing. Non-coding transcripts in the BX-C of Drosophila expressed in patterns that 

correspond to the domains of activation of homeotic genes were observed (Bender and 

Fitzgerald 2002; Hogga and Karch 2002; Rank et al. 2002). This non-coding 

transcription was shown to come from PREs and it was suggested that they could 

contribute in switching PREs to the active state (Schmitt et al. 2005; Sanchez-Elsner et 

al. 2006). Furthermore, bxd transcripts were found to recruit Ash1 to Ubx, inducing 

transcription of the Ubx gene in larval tissues (Sanchez-Elsner et al. 2006). However, 

these results contrast with recent work that shows that in embryos, Ubx is not transcribed 

in the same cells as bxd, and that embryonic bxd transcripts may participate in PcG-

mediated silencing rather than activation of Ubx (Petruk et al. 2006).  Examination of 

this conflicting results by taking developmental timing into account, contributed to 

clarify some of the contradictions (Lempradl and Ringrose 2008).  In summary, ncRNAs 

are likely to play a role in regulating PcG silencing at a subset of the target genes, but 
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more work is required in order to clarify their function and understand their molecular 

mechanisms of action.  

1.5 Genome-Wide distribution and biological functions of PcG/TrxG 
proteins 

Genome-wide distributions of PcG proteins and histone methylation marks have been 

mapped recently in mouse and human cells and in Drosophila (Boyer et al. 2006; 

Bracken et al. 2006; Lee et al. 2006; Negre et al. 2006; Schwartz et al. 2006; Tolhuis et 

al. 2006). Although the comparison is not straightforward because different cell types 

and PcG proteins were analyzed, and also different mapping methods were used (ChIP 

and DamID), these studies clearly indicate important similarities as well as differences 

between vertebrates and flies. In all species, binding of PcG proteins seems to be highly 

correlated with H3K27me3, which can be found sometimes in domains that are hundreds 

of kilobases in size. However, there are remarkable difference in the binding pattern of 

PcG proteins between vertebrates and flies. Most of mammalian PcG proteins binding 

sites are located close to proximal gene promoter elements, within 1 kb of transcription 

start site (Boyer et al. 2006; Lee et al. 2006), while in Drosophila the binding sites can 

be located near the promoter or more frequently, many several of kb away (Negre et al. 

2006). In addition, in vertebrates PcG proteins are found to bind restricted peaks at the 

genes promoters but also, in some genes including the Hox clusters, they spread over 

larger regions covering the hole transcription unit (Bracken et al. 2006; Lee et al. 2006). 

In Drosophila there is discrepancy on whether these proteins binding patters correspond 

to sharp peaks at the PREs or to large domains. Differences between studies are very 

likely explained by the methodology employed in the analysis. Pc is though to mediate 

long-range interactions via binding to methylate H3 tails. It is probable that such 

transient interactions are reflected in the broader binding domains detected by the 

DamID technique (Tolhuis et al. 2006), which are not detected by ChIP assays (Negre et 

al. 2006; Ringrose 2007; Schwartz and Pirrotta 2007). 

As for the target of the Polycomb group proteins, there is only 30 % of overlap in the 

genes identified in different studies (Ringrose 2007). These differences might reflect 

differential regulation of PcG target genes in different tissues and developmental times.  

In spite of these differences, a remarkable similarity is found in all species, PcG proteins 

preferentially regulate genes encoding transcription factors, including many 



Introduction 
  

24 

homeodomain-containing genes. Many of these TFs are involved in developmental 

patterning, morphogenesis and organogenesis, supporting the idea than PcG mediated 

epigenetic mechanisms play a global role to coordinate many pathways necessary for the 

development of a multicelullar adult organism. 

Finally, although most of the PcG targets are found to be silent, there is minority of 10-

20% that is transcriptionally active (Bracken et al. 2006; Schwartz et al. 2006; Ringrose 

2007). These genes might represent targets that are to become silenced upon appropriate 

cell signals; additional proteins from the TrxG might be found at the promoter and 

coding regions of these genes facilitating transcription (Papp and Muller 2006). 

Curiously, the binding pattern of TrxG proteins has not yet been studied thoroughly on 

genome wide scale. In Drosophila Hox genes, TRX is found at PREs even when the 

target gene is silent (Papp and Muller 2006; Beisel et al. 2007). It would be interesting to 

analyze on a more global scale, how the binding of these proteins relates to PcG and to 

the methylation patterns. 

1.6 Gene regulation by PcG/TrxG, other players come to action  

A simple indication that PcG complex composition might vary at different loci comes 

from studies in the binding pattern of these proteins on Drosophila polytene 

chromosomes. Although PSC, Pc and Ph are core components of the PRC1 complex 

(Ringrose and Paro 2004), it has been observed that some loci are only bound by PSC 

protein whereas other loci only by Pc and Ph (Rastelli et al. 1993). Purification of PcG 

complexes from different sources and different times in development has resulted in the 

identification of many interacting factors, which are not always associated with the 

complex and might be related to PcG function only at certain times or tissues. For 

instance, multiple TBP associated factors (TAFs) have been co-purified with this 

complex (Breiling et al. 2001; Saurin et al. 2001). However, it is very unlikely that these 

general transcription machinery factors that are involved in many aspects of gene 

regulation, are an integral part of PRC1 (Otte and Kwaks 2003). Another example is the 

DNA binding protein Zeste that was purified as part of PRC1 from Drosophila embryos 

(Saurin et al. 2001); however the reconstituted PRC core complex inhibits chromatin 

remodelling without the need of Zeste protein, arguing that this protein might not be part 

of the core complex but might constitute an associated factor needed for directing PcG 

complexes to certain targets. As Zeste, other DNA binding proteins, such as GAGA, 

PSQ, DSP1 and GRH that interact, either genetically or in co immunoprecipitation 
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assays, with PcG/TrxG proteins (Sato and Denell 1985; Poux et al. 2001; Mahmoudi et 

al. 2003; Huang and Chang 2004; Dejardin et al. 2005; Blastyak et al. 2006) might also 

be responsible for helping recruiting Polycomb repressive complexes to their targets. In 

addition to these proteins other, not yet identified, factors might contribute to the 

dynamics of the binding during developmental processes.  

In the case of PRC2, the composition of the purified complex varies according to the 

developmental stage used for the purification or the purification protocol. Two different 

PRC2 complexes one of 600kDa and another of 1MDa have been purified from embryos. 

The 1MDa complex contains in addition to the core components the histone deacethylase 

RPD3 (Tie et al. 2003). In larvae, a 4MDa complex is found, which contains also a 

histone deacethylase, the SIR2 protein (Furuyama et al. 2003). However, it is hardly 

understandable that the ubiquitous HDAC proteins that participate in many 

transcriptional processes belong to the core PRCs (Otte and Kwaks 2003).  

In addition to tissue and developmental differences in purified complex composition, 

large variation has also been observed in the binding patterns of PcG/TrxG proteins to 

their targets at different times in development (Negre et al. 2006), suggesting high 

degree of dynamics in the gene regulation by cellular memory mechanisms. In their 

work, Negre and collaborators studied the distribution of three PRE associated proteins, 

Pc, PH and GAF on Drosophila chromosomes 2 and X by ChIP on chip comparing 

embryo, with pupae stages and adults males with females. The comparison showed that 

while many Pc and PH binding sites are maintained throughout development, many 

present major variations. Some new binding sites appear only at late stages, while some 

of them, present in embryos, disappear during late development. In the case of GAF, the 

developmental profiles vary little from one stage to the next, indicating different 

behavior of different proteins involved in the epigenetic regulation. Furthermore, in 

mammals the expression levels of PcG/TrxG proteins vary from one cell line to another. 

These differences between cell types indicate existing differences among the tissues 

from where these cells originate. More evidence supporting this idea comes from recent 

reports of genomic scale profiling of PcG targets performed on different cell types 

(Boyer et al. 2006; Bracken et al. 2006; Lee et al. 2006), where only limited agreement 

on the mapped target sites is found. Moreover, Human tissues stained for different PcG 

proteins, showed that within a specific organ, the composition of PcG complexes differs 

extensively in different cell types (Gunster et al. 2001). Remarkably, in various 
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developmental stages of the fetal kidney PcG members were found differentially 

expressed with some components of the PRC1 core complex missing at some points in 

development. In Drosophila some core components the repressive complexes are also 

expressed in different levels at different stages (Paro and Zink 1993; Hodgson et al. 

1997; Furuyama et al. 2003). 

Altogether, sufficient evidence has accumulated to support the idea that the complex 

composition changes at different cell types and developmental times (Otte and Kwaks 

2003). In this respect, it is highly probable that different interacting factors, and proteins 

modifications fine-tune the cellular memory mechanisms at the level of individual loci.  

1.7 Aims of the thesis 

In Drosophila, three distinct PcG complexes and four TrxG complexes have been 

identified (for review see Ringrose and Paro 2004; Grimaud et al. 2006; Schwartz and 

Pirrotta 2007). However, many more proteins have been recognized that somehow 

interact with PcG and TrxG complexes, but for which it remains unclear how they fit 

into the picture. In addition, there is considerable discrepancy between different studies 

regarding the proteins found associated to the different complexes. One reason for this, is 

that the biochemical isolations of the complexes were performed using whole 

Drosophila embryos, or cells. Thus, the isolated complexes represent an average of all 

complexes at all target genes, and any tissue-gene-specific differences are lost in the 

purification procedure. So far, little has been done to establish procedures for the 

differential isolation and characterization of tissue specific and developmental time 

specific complexes. Furthermore, the biochemical purifications of nuclear complexes do 

no distinguish between complexes found at the chromatin and those that might have a 

function somewhere else in the nucleus (Chen et al. 2005). 

In addition to this, there is ample evidence from in vivo studies that the composition of 

the PcG is different at different target genes and in different tissues (Zink and Paro 1989; 

Rastelli et al. 1993; Strutt and Paro 1997; Otte and Kwaks 2003; Negre et al. 2006). 

However, despite many insights from ChIP and correlative studies, we still do not 

understand even for a single locus, how activation and silencing works, nor how it is 

passed from one generation to the next. A prerequisite for this is to characterize the 

complexes and chromatin modifications at a single locus. Such an approach is vital to 

understand the molecular mechanisms of epigenetic regulation.  
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The aim of this thesis was to develop a transgenic system for the un-biased purification 

of PcG/TrxG complexes bound to a specific locus, in tissue and developmental time 

specific manner. This thesis describes the fundaments of system design and the 

development and characterization of the system. 

In the first part, the mechanism of the system is illustrated. The second part of this work 

describes the generation of the transgenic system, production of transgenic flies, 

characterization of the expression of the different transgenic proteins and generation of 

proper control lines for protein purification. In the third part, the performance of the 

system is characterized by chromatin and protein purifications and the fourth part is 

dedicated to test the system efficiency at different steps involved in the experimental 

procedure, which influence the system performance. Finally, the last sections are 

dedicated to the optimization of the different steps and testing of the system performance 

after troubleshooting.  
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2. Results 

Polycomb (PcG) and Trithorax (TrxG) group of proteins take part in epigenetic cellular 

memory mechanisms that ensure that their target genes maintain their activation or silent 

state over many cell divisions. The Polycomb group response elements (PREs) are the 

regulatory elements through which the PcG and TrxG proteins exert their function. The 

silencing/activating complexes are recruited to their target genes via binding to their 

PREs.  

Many developmentally important genes, which are expressed differentially in different 

tissues and at particular times in development, have been found to be PcG and TrxG 

regulated; but until now only few distinct PcG complexes have been biochemically 

purified. However there is ample evidence that the composition of the PcG and TrxG 

complexes varies from gene to gene and in different tissues (Breiling et al. 2007). This 

raises the question of whether a particular PRE might be regulated by alternative 

complexes at different situations or if a particular complex might regulate different 

groups of PREs. In this scenario there might be also different, yet unknown factors that 

determine which complex is to be found where and when. 

A direct way to assess these questions is to generate a system that allows examination of 

the protein complex composition in a locus specific manner. Avoiding the “mixing” of 

the complexes produced by classical biochemical purification of soluble complexes from 

a tissue or a mix of tissues. 

2.1  A transgenic reporter system to study the PcG and TrxG 
composition at different PREs 

A system composed of four transgenic elements was design to purify proteins (PcG and 

TrxG) that bind to a specific transgenic PRE by means of a protein bait that binds in the 

vicinity of the PRE. The four-element system was composed of: 

-A PRE element and the Tet Operator (TetO) sequence. The TetO constitutes a specific 

binding site for the TetR protein, which constitutes the systems bait. Both elements, 

TetO and PRE, are placed nearby in the same transgenic construct. 

 -A bait protein, the TetR, which carries a biotinylation tag (Biotag) recognized by the E. 

coli BirA ligase. 

-The BirA ligase, enzyme that specifically biotinylates the Biotag. 

-A Gal4 Driver that induces the expression of the transgenic proteins, TetR and BirA. 
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Figure 2.1 shows how the four component system functions. The expression of TetR and 

BirA proteins is controlled by Gal4 (1), which can be induced with different drivers. In 

this way, expression of TetR and BirA proteins is restricted to the tissues and time where 

Gal4 is induced (Fischer et al. 1988; Brand and Perrimon 1993; Rorth 1998). Thousand 

of drivers have been reported in the literature for expression of Gal4 allowing the 

expression the transgenic proteins in many different developmental profiles (Duffy 

2002). Upon expression, the TetR is biotinylated in vivo by the BirA ligase in the 

cytoplasm of the cell (2). The biotinylated TetR translocates to the nucleus where it 

binds its target sequence, the TetO site, in the vicinity of the PRE (3).  Proteins and DNA 

are cross-linked in vivo (4) and the chromatin purified and sheared in smaller fragments 

(5). Streptavidin is used to pull-down the chromatin fractions via the interaction with the 

biotinylated TetR (6), and after reversal of cross-links the chromatin components, DNA 

and associated proteins, can be analyzed (7).  

In this manner, the system is design to analyze PcG, TrxG proteins and factors that might 

interact with them at the level of a single locus, allowing tissue and time differential 

analysis and comparison of different loci. 
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Figure 2.1. Functioning of the transgenic system. (1) TetR and BirA are under control of a 
UAS region. Transcription of Gal4, controlled by a specific driver, induces the expression of 
TetR and BirA proteins. (2) BirA enzyme biotinylates the BioTag on TetR protein. (3) 
Biotinylated TetR translocates to the nucleus, recognizes and binds its target site, TetO, on the 
transgene. (4) Protein and DNA are covalently cross-linked by in vivo formaldehyde treatment. 
(5) Chromatin is extracted and sheared into smaller fragments. (6) Biotinylated TetR bound to 
TetO site is used as bait for Streptavidin pull-down of the transgenic locus. (7) After reverting 
the cross-link protein and DNA are recovered for analysis.  
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2.2 Establishing the transgenic system 

2.2.1 DNA Constructs 

A. Fab-7 and vestigial PRE constructs 

For the present work two different Polycomb Response Elements were selected. The 

well-characterized PRE Frontoabdominal-7 (Fab-7), which is part of the homeotic 

bithorax complex and serves as a role model for PRE function (Zink and Paro 1995; 

Cavalli and Paro 1998); and a predicted PRE, vestigial (Ringrose et al. 2003) 

subsequently confirmed as a bona fide PRE element in the laboratory of  Prof. Renato 

Paro (Lee et al. 2005).  

The PRE constructs were integrated into a pCasper4 vector. This element carries as 

transformation marker the miniwhite gene; this gene is composed of the white gene 

coding region but with a minimal version of the white promoter. The activity of the 

miniwhite gene confers the flies the typical red eye phenotype. A feature of a PRE is that 

when is placed in the vicinity of the reporter gene it can silence its expression 

(Fauvarque and Dura 1993). In this way when a PRE is placed near to the miniwhite  

gene, in a white (-) background, the miniwhite gene is silenced and the eyes of the fly 

turn light orange or white. This constitutes a powerful tool that allows the activity of the 

PRE to be followed phenotypically. 

The degree of miniwhite expression and PRE mediated silencing is highly influenced by 

the genomic location of the inserted transgene, for this reason is necessary that in all 

control lines, the transgene element is placed in the same genomic location. For this, 

LoxP sites were included flanking the PRE sequence, so that a ΔPRE control line can be 

generated by crossing this flies to flies expressing the Cre recombinase. 

Finally, seven repeats of the TetR binding site, TetO, were included in the construct, to 

use TetR as bait in the pull-down. FRT sites were included flanking the TetO site in 

order to in vivo excise the region by using FLP recombinase to generate a ΔTetO control 

line. 

Four different versions of the PRE construct were generated for Fab7 and two for 

vestigial PRE. The TetO site was placed in the generated constructs in different 

positions, up-stream or downstream, and at different distances of the PRE. The aim was 

to create from the beginning different constructs in case that binding of TetR to the TetO 

would interfere greatly with the PRE function. Figure 2.2 shows all generated constructs.  
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Figure 2.2. Scheme of generated Fab7 and vestigial PRE constructs. Four different constructs 

were generated differing in the position of the TetO site and the distance to the PRE. In all cases, 

the TetO is flanked by FRT sites and the PRE by LoxP sites. A miniwhite reporter gene was 

placed immediately downstream of PRE. a) pC4Fab7-6 is the construct present in flies used for 

pull-down experiments.  
 

Many fly lines were generated for Fab7 as well as for vestigial PRE, which differ in the 

insertion site of the transgene. A small number of fly lines were chosen based on PRE 

behavior; meaning that they showed at least one of the following characteristics: 

silencing of miniwhite, paring sensitivity or variegated eye phenotype (Fauvarque and 

Dura 1993; Kassis 1994; Tillib et al. 1999). The Fab7 construct where the TetO site is 

410bp upstream of the PRE was first selected for testing the system. 

B. TetR constructs 

The coding sequence of  TetR protein was amplified by PCR from pUHD142- 1 (kindly 

provided by Prof. Hermman Bujard, ZMBH) and cloned in the pUASTy vector, which 

contains the yellow gene as a transformation marker. The cloned TetR contains a Nuclear 

Localization Sequence (NLS) for the transport of the expressed protein into the nucleus. 

A biotinylation tag, 5’gga gcc gcc ggc gtt cga gcg cca ctc cat ctt ctg gga atc cag gat ctg 

gcg cag cga gga ggc 3, was added to the 3’ or the 5’ end of the TetR. This biotinylation 

tag (BioTag) codes for a 22 aminoacids peptide that is specifically recognized and 
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biotinylated by the BirA ligase enzyme (de Boer et al. 2003). Figure 2.3 shows a diagram 

of the resulting vectors. 

 

 

Figure 2.3. Scheme of generated TetR constructs. Two constructs were generated. In both 
constructs TetR is tagged with a biotinylation tag (BioTag), pUYTetR5’Bio has the tag in the 
amino-termini and pUYTetR3’Bio in the carboxyl-termini of the protein. pUYTetR5’Bio is the 
construct present in the flies used for pull-down experiments. 

As mentioned above the expression of the TetR protein in this system is inducible and 

under the control of a Upstream Activating Sequences (UAS) element (Brand and 

Perrimon 1993). The transcription of the TetR gene depends on the presence of the Gal4 

factor and it can then be targeted in a temporal and spatial fashion. This feature is 

intended to allow the purification of the transgenic locus from a specific tissue or at 

specific time in development. 

C. BirA construct 

Flies carrying the BirA construct were previous generated in the Paro laboratory by 

Christian Popp (de Boer et al. 2003). In this construct the BirA expression is also under 

the control of the UAS region and thus controlled by binding of Gal4.  

2.2.2 TetR expression and in vivo biotinylation 

A. TetR is expressed and in vivo biotinylated in Drosophila SL2 cells 

In order to test the protein expressing constructs before embryo injection and to verify 

the in vivo biotinylation of the TetR protein by the BirA enzyme, Drosophila SL2 cells 

were transfected with the TetR constructs. pUYTetR3’Bio or pUTYTetR5’Bio were 

transfected alone or in combination with the BirA construct. A Cu+2 inducible Gal4 

expressing vector was co-transfected to drive the expression of both TetR and BirA 
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proteins that were under the control of an UAS element. Three days after transfection the 

CuSO4 was added to the media and 48 h later the cells were harvested. The expression of 

TetR was analyzed by Western Blot using TetR monoclonal mix antibody (MoBiTec) 

and the biotinylation was followed using Streptavidin-HRP. As shown in figure 2.4 TetR 

protein is expressed and in vivo biotinylated in SL2 cells (lanes 3). Transfection with 

TetR vectors and/or BirA vectors alone without Gal4 showed no leaky expression of 

these constructs (lanes 2 and 5 N-Tagged and 4 and 5 C-Tagged). The expression of 

TetR protein in the TetR3’BioTag transfected cells (lane 2 in C-Tagged) was very low 

compared to the TetR3’BioTag / BirA (lane 3) transfected cells probably due to a low 

transfection efficiency in this well. TetR3’BioTag expressing cells showed the expected 

28KDa band and in addition a smaller specific band that was also biotinylated. The 

TetR5’BioTag construct generated only the expected 28KDa band.  

Expression of BirA alone did not produce a detectable increase in the amount of 

endogenous biotinylated proteins. 

This result demonstrate that TetR protein is expressed in SL2 cells and that it is 

specifically in vivo biotinylated by BirA ligase in Drosophila cells. Nor the 

overexpression of TetR neither of BirA have a toxic effect on the cells. 

 

 

 

Figure 2.4. In vivo biotinylation of TetR in SL2 cells. Total lysates from cells co-transfected 
with TetR, BirA and inducible Gal4 plasmids analyzed by SDS-PAGE and Western Blot with α-
TetR, to detect TetR expression and Streptavidin-HRP to detect biotinylation. N- and C- tagged 
constructs are compared. TetR protein is indicated by an arrow. (*)Smaller specific band 
detected in the carboxyl-tagged protein. 
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B. TetR is expressed and in vivo biotinylated in flies 

The tested constructs, pUYTetR3’Bio or pUTYTetR5’Bio, showed efficient expression 

and biotinylation of TetR in SL2 cells so they were next injected in Drosophila yw 

embryos. The resulting TetR transgenic fly lines were detected by their transformation 

marker, yellow, and crossed to obtain homozygotes. In order to test the expression of the 

TetR, these flies were crossed to GlassGal4 driver flies, which drives the expression of 

Gal4 in the eyes of the fly, and the expression of the TetR protein was analyzed directly 

in fly head extracts by Western Blot. Flies of the yw line were used as negative control. 

(Figure 2.5). 

 
Figure 2.5. TetR  is expressed 
in flies. TetR transgenic fly 
lines crossed to Glass-Gal4 
driver line at 25°C. Protein 
extract was isolated from 10 
fly heads from each cross and 
subjected to SDS-PAGE and 
Western Blot. Fly lines 3.3, 3.5 
and 3.2 (lanes 2, 6 and 7) 
constitute different insertion 

sites of the pUTetR3’Bio construct carrying the Bio-Tag on the carboxyl termini of the protein. 
Fly lines 5.3, 5.5 and 5.4 (lanes 3,4 and 5) constitute different insertion sites of the 
pUYTetR5’Bio construct carrying the Bio-Tag on the amino termini of TetR. Flies from yw line 
were used as negative control (lane 1). TetR (lane 8) is 10ng of  recombinant TetR protein 
(MoBiTec). 
 

Selected positive TetR expressing lines 5.4 and 3.3 were recombined to BirA lines and 

crossed to homozygotes. The generated lines, 5.4 (2) and 5.4 (3) that originated from 5.4 

and 3.3(3) that originated from 3.3, carrying both TetR and BirA transgenes on the same 

chromosome were tested for expression of TetR and in vivo biotinylation in flies. For 

this, the TetR-BirA flies were crossed to GlassGal4 driver flies and the expressed 

proteins were detected from fly heads by Western Blot (Figure 2.6). 

Flies carrying the TetR and BirA constructs but not the Gal4 driver were used as 

negative control. As shown in figure 2.6 the general levels of expression of TetR and 

biotinylation seemed to be lower in flies than in cells (compare to fig. 2.4). TetR protein 

expression was observed in all three generated lines (lanes 3, 5 and 7) but biotinylation 

levels appear to be higher on line 5.4(2) and 3.3(3) (lanes 3 and 7) than in 5.4(2) (lane 5). 

As observed in SL2 cells, the expression of the carboxyl tagged protein (TetR3’) in flies 

generated a specific smaller band that was also biotinylated as detected by TetR antibody 
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and streptavidin-HRP (lane 7). Altogether this results show that TetR protein is 

expressed and in vivo biotinylated in Drosophila flies. 

 

 

Figure 2.6. TetR is biotinylated in flies. Fly lines expressing TetR (5.4 TetR5’Bio-tag and 3.3 
TetR3’Bio-Tag) were recombined to BirA flies. The generated lines, were crossed with a Glass-
Gal4 driver line at 25°C. For each cross, protein extract was isolated form 10 fly heads and 
subjected to SDS-PAGE and Western Blot. The 5.4 line was used as control for (+) TetR 
expression and (–) Biotinylation (lanes 1 and 2).  Recombination of 5.4 TetR5’Bio-Tag with 
BirA originated 2 lines with different recombination points, 5.4 (2) (lanes 3 and 4) and 5.4 (3) 
(lanes 5 and 6). Recombination of 3.3 line generated 3.3 (3) line (lanes 7 and 8). Recombinant 
flies with no Gal4 driver were used as control. 10 ng of TetR recombinant protein (MoBiTec) 
was loaded as positive control (lane 9).  

 

2.2.3 Mapping of the PRE transgenes 

Generation of transgenic flies by P-element mediated germ line transformation of 

Drosophila melanogaster may result in the insertion of several copies of the transgenic 

construct in the genome. Since the generated PRE lines were to be used for purification 

of chromatin bound proteins in a specific locus, it was necessary to obtain lines carrying 

only one transgene copy. 

To check the number of inserted elements, the generated PRE lines were subjected to 

Southern Blot. A miniwhite probe was generated by EcoRI digestion of pC4Fab7-6 

plasmid and purification of the 4.6 kb fragment containing the miniwhite gene-coding 

region. This probe can also hybridize with part of the endogenous white gene still present 

in the yw flies used for the injection of the transgenes, giving a background band.  

DNA from the different Fab7 and vestigial lines was digested with EcoRI and subjected 

to Southern Blot. As shown in figure 2.7 the 6.1 Fab7 line (lane 2) and the 10.7 vestigial 
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line (lane 3) have only one insertion site while the 10.25 vestigial line (lane 4) contains 3 

insertion sites, indicated by the three additional bands. Fab7 PRE, line 6.1 and vestigial 

PRE, line 10.7 were selected from all tested lines (data not showed) for further 

experiments. 

 

 
Figure 2.7. Number of insertion sites of PRE lines.  Southern Blot of fly lines carrying Fab7 
and vestigial PRE to determine the number of transgene insertions. DNA extracted from PRE 
lines was digested with EcoRI. A probe expanding the miniwhite gene was used for hybridization 
of the Blot, this probe can also recognize the endogenous white gene resulting in the presence of 
a background band (upper band in all lines). yw flies, were used as (-) control (lane 1) . 6.1 Fab7 
line and 10.7 and 10.25 vg lines were analyzed (lanes 2-4). The number of hybridizing bands 
shows the number of transgene copies inserted in the genome.  
 
 
The site of the transgene insertion of the 6.1 Fab7 line, used in system optimization, was 

further mapped by DNA-FISH on polytene chromosomes of larval salivary glands. For 

this, a 2.5 kb DNA probe that hybridizes with the Fab7 PRE region was generated. 

Figure 2.8 shows that the pC4Fab7-6 transgene was located to chromosome 2L, more 

specifically at position 25F. 

With this, one Fab7 and one vg PRE lines, 6.1 and 10.7 respectably, carrying a single 

copy of the transgene in the genome were selected from all obtained transgenic lines, for 

further crosses. 
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Figure 2.8. Mapping of pC4Fab7-6 transgene insertion site on polytene chromosomes. DNA 
FISH using a probe specifically hybridizing with the Fab-7 fragment resulted in a distinct band 
on chromosome arm 2L (C) absent in the yw control (A). Insertion site of pC4Fab7-6 mapped to 
position 25F (B and D). DNA: blue; Fab-7 DNA FISH: red. 

 

2.2.4 Generating the correct controls for the 4 elements system 

As mentioned above, a PRE silencing capability is influenced by the genomic location 

where the transgene is inserted. If the PRE lands in heterochromatin the silencing of the 

reporter gene is greater than if it lands close to a highly transcribed region. This effect is 

probably caused by factors already present in the chromatin that influence the silencing 

by the PRE by activating or repressing transcription and may also be affected by other 

PREs nearby (DeVido et al. 2008). The aim of this work was to purify protein complexes 

and associated factors bound to chromatin whose presence depends on the presence of a 

PRE. For this it was absolutely necessary to design a strategy to determine which are the 

background proteins that are bound in the locus were the transgene landed regardless of 

the presence of the PRE. At the time of design of these experiments, the simplest way to 



Results 
 

42 

generate such a proper control for a ΔPRE line was to excise the PRE from the locus in 

vivo once the transgene was inserted in the genome.  

The PRE removed from the transgene in vivo by Cre recombination as described in 5.5.7. 

For this, transgenic males were crossed to virgins expressing the Cre recombinase; males 

hatching in the first generation, bearing the transgene (P (w+)) but not the CyO marked 

Cre recombinase were selected and crossed to a balancer line.  

Males hatching in the second generation back-crossed to the balancer flies in single pair 

mating (fig. 5.3). In the third generation, successful PRE excision was confirmed by 

single fly PCR  (figure 2.9 B). For the PCR analysis three primers were used; as showed 

for the control line 6.1 if the PRE was still present, no recombination, the primer pair 1-3 

generated a PCR band of 660bp. If the recombination was successful the primer pair 1-2 

generated then a PCR band of 410bp. The efficiency obtained for Cre recombination was 

very high, over 90%, as indicated by the proportion of PRE excised lines vs. total 

analyzed lines. Line 6.1 (14) was chosen for further crosses. 

Excision of the PRE by Cre recombinase activity reverted the silencing of the reporter 

gene. As expected, the generated flies showed a darker eye phenotype (figure 2.10) 

resulted from de-repression of  the miniwhite gene.  

To control for background proteins during the purification procedure a ΔTetO line was 

generated by FLP recombination (see 5.5.6 and fig. 5.2). Because in this line the TetR 

binding sites, TetO, are missing, no TetR binding is expected, therefore all proteins 

purified from this line should correspond to unspecific proteins that bind to the beads, 

e.g. endogenous biotinylated proteins. 

FLP recombination was not as efficient as Cre, resulting in about 40% positive lines. As 

showed in figure 2.9 (C), PCR with primer pair 4-5 resulted in a 415bp band in the lines 

where the excision was positive and, because PCR through TetO is not efficient under 

the conditions set for the experiment, no amplification band was obtained in the control 

6.1 and in the FLP negative lines. The line 6.1(55) was chosen for further experiments.  

TetO excision was confirmed by Southern Blot (figure 2.9 D). For this, genomic DNA 

was digested with PstI, separated by electrophoresis and hybridized to a probe generated 

by PCR amplification with CreFw and Fab7Rv (Pst1) primers using pC4Fab7-6 as 

template. This probes hybridized partially to the endogenous Fab7, present in all lines 

(see lane 1). In the 6.1 original line containing TetO, the probe hybridized with a 3kb 
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fragment containing TetO and Fab7 (lane 2), while in the 6.1(55) ΔTetO line this 

fragment was smaller, 2.7 kb (lane 3), confirming the TetO excision.  

 

 

Figure 2.9.  Cre-mediated and FLP-mediated excision of Fab7 and TetO. A) Scheme of the 
pC4Fab7-6 construct with the positions of the primers used in the PCRs indicated by the black 
lines underneath. B) CRE recombination test: 6.1 control flies, (-) recombination, yielded the 
expected 660bp product in the PCR using primers 1 (PreCreTest Fw), 2 (PreCreTest Rv) and 3 
(Fab7X up). In (+) Cre recombination lines (ΔFab7), the PCR yielded the expected product of 
410bp. C) FLP recombination test: 6.1 control flies, (-) recombination, PCR using primers 3 and 
4 (TetOflptest) yielded no amplification product. In (+) FLP recombination flies (ΔTetO) the 
PCR yielded the expected 415bp product. D) Southern blot with a Fab7 probe to confirm the 
excision of TetO. yw control line showed the endogenous Fab7 band. 6.1 flies, (-) recombination, 
showed an additional specific band of 3kb and 6.1(55) flies, (+) recombination, showed a band of 
2.7kb, the expected size after TetO excision. In red, lines selected for further experiments. 

Elimination of TetO site showed no effect on the expression of the miniwhite gene in 

flies where no TetR protein was expressed (Figure 2.10 A). However, when the TetR 

construct was brought in the ∆TetO-Fab7 flies and the protein was expressed, a slightly 

higher repression of miniwhite was observed in the ∆TetO-Fab7 line than in the TetO-
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Fab7 indicating that the presence of the TetR in the chromatin has a mild activating 

effect (Figure 2.10 B). 

The same procedure was followed to obtain the controls lines for Fab7 6.25 line and for 

vestigial 10.7 transgenic line (data not shown). 

The generated PRE fly lines were crossed to flies carrying TetR and BirA transgenes, 

and the offspring screened for recombinants in which the three transgenic elements were 

recombined in the same chromosome. Once the flies were made homozygous they were 

crossed to DaGal4 flies, to drive the expression of the TetR and BirA proteins (See 7.2). 

This line was chosen because it drives ubiquitous expression of Gal4 in the Drosophila 

embryo and could constitute a good starting material for system optimization since 

embryos are relatively easy to collect and protein purification protocols for embryos are 

already available. By crossing to DaGal4 the following lines were generated:  

-6.1 Fab7-TB-DaGal, 6.1.14.3ΔFab7-TB-DaGal, 6.1.55.2ΔTetO-TB- DaGal 

-6.25 Fab7-TB-DaGal, 6.25ΔFab7-TB-DaGal, 6.25ΔTetO-TB- DaGal 

-10.7 vg-TB-DaGal, 10.7 Δvg-TB-DaGal, 10.7 ΔTetO-TB- DaGal 

Generation of these fly lines took several fly generations, in the mean time, for some 

experiments the FBT line was used. This line was generated through a simple cross 

between Fab7 6.1 and TetR-BirA 5.4 lines (3) and it is heterozygous for all elements 

(yw; TetO-Fab7/ TetRBirA). 

6.1 Fab7 line and its corresponding control lines were selected for the optimization of 

the system. Genomic DNA from these lines was used as template for PCR with different 

pairs of primers to confirm the presence of the 4 transgenes. Figure 2.11 shows the 

obtained results for the PCRs in different fly lines. The expected results are described in 

table 2.1 
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Figure 2.10. Generation of ΔFab7 and ΔTetO controls. A) Left: Scheme of the pC4Fab7-6 
transgenic construct, and the resulting constructs after Cre or FLP recombination. Right: Eye 
colour before and after excision of Fab7 or TetO in fly lines that do not express TetR. B) 
miniwhite expression levels determined by photometric pigment measurements in fly lines  
recombined to TetR/BirA constructs and expressing Gal4. In these lines the TetR protein is 
expressed and can bind to the TetO site in the chromatin. 

 

Altogether, control lines for the purifications were generated by excision of TetO and 

PRE sites by in vivo recombination. The generated lines were recombined to fly lines 

carrying the other system components, TetR, BirA and Gal4, generating fly lines that 

contain all four components of the system. 

heterozygous line crossed to DaGal4 flies to drive the expression of proteins in the 

embryos. 
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Figure 2.11. Fly lines containing all four system elements. PCR to confirm the presence of all 
the proper constructs in the final fly lines. a) PCR with primers PreCreTest Fw and Fab7X up  
yielded the expected 660bp product only in PRE + lines (lanes 1 and 3). FBT (+) control line 
showed weaker band as expected for a heterozygous line (lane 4). b) PCR with primers 
PreCreTest yielded the expected 410bp band for the only in the ΔFab7 line (lane 2). c) PCR with 
primers TetOflptest yielded the expected 420bp product in the ΔTetO line (lane 1) while the 
others showed no product. d-f) PCR with Gal4-1, TetR5’ and BirA primers yielded the expected 
340bp, 130bp and 700bp products in all generated lines (lanes 1-3). 5.5(8)TetR-BirA, the 
heterozygous FBT and DaGal4 flies were used as (+) controls and yw flies as (-) controls. 

 
Element tested 

Fly line 
Fab7 (a) ΔFab7 (b) ΔTetO (c) Gal4 (d) TetR (f) BirA (g) 

∆TetO-Fab7 
6.1.55.2 

+ 
(lane 1) 

_ 
(lane 1) 

+ 
(lane 1) 

+ 
(lane 1) 

+ 
(lane 1) 

+ 
(lane 1) 

TetO-∆Fab7 
6.1.14.3 

_ 
(lane 2) 

+ 
(lane 2) 

_ 
(lane 2) 

+ 
(lane 2) 

+ 
(lane 2) 

+ 
(lane 2) 

TetO-Fab7 
6.1 

+ 
(lane 3) 

_ 
(lane 3) 

_ 
(lane 3) 

+ 
(lane 3) 

+ 
(lane 3) 

+ 
(lane 3) 

FBT + 
(lane 4) 

_ 
(lane 4) 

_ 
(lane 4) 

_ 
(lane 4) 

+ 
(lane 5) 

+ 
(lane 5) 

5.5 (8) 
TetR-BirA 

   _ 
(lane 5) 

+ 
(lane 4) 

_ 
(lane 4) 

DaGal4   _ 
(lane 5) 

+ 
(lane 6) 

 _ 
(lane 6) 

yw  _ 
(lane 5) 

_ _ 
(lane 6) 

_ 
(lane 7) 

_ 
(lane 6) 

_ 
(lane 7) 

 
Table 2.1. Expected PCR products in generated lines.  Generated fly lines containing all four 
system elements were tested by PCR for the presence of the transgenes. The expected PCR 
results for each line tested in figure 2.11 are shown.  
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2.3 Testing the system’s performance 

2.3.1 Biotinylated TetR is located to the nucleus of fly embryos 

Recombination of all transgenes in one line takes several fly generations. During this 

time, expression and biotinylation of TetR in fly embryos was tested using the FBT 

To determine whether the biotinylated TetR was translocated to the nucleus, protein 

nuclear extracts from the FBT-DaGal4 line were compared with total head lysates of 

flies carrying TetR and BirA crossed to GlassGal4 (see fig. 2.6). For this 0-12 h embryos 

from FBT-DaGal4 line were analyzed by SDS-PAGE and Western blot. 

Figure 2.12 shows that TetR protein was also expressed under the control of DaGal4 

driver in embryos (lane 1, α-TetR blot) and the protein was in vivo biotinylated and 

translocated to the nucleus of the cell (lane 1, Streptavidin-HRP). This result shows that 

biotinylated TetR is found in the same cellular compartment than the transgene with the 

TetO binding site, giving the bases for bait dependent pull-down of a chromatin 

fragment. 

 

 

2.3.2 Efficient Chromatin IP using TetR as bait 

ChIP experiments were conducted to determine whether TetR is bound to the TetO and if 

the PRE locus could be pulled-down using the biotinylated TetR as bait.  

The principle of this technique is to precipitate formaldehyde cross-linked and sheared 

chromatin with antibodies specifically recognizing a protein of interest, in this case 

Figure 2.12 Biotinylated TetR is present 
in the nucleus. FBT fly line was crossed to 
DaGal4 to drive expression of TetR and 
BirA in embryos. Nuclear extract was 
prepared form 0-12 h embryos and the 
presence of biotinylated TetR was analyzed 
(lane 1). For (+) control fly heads extract 
from 5.5(8) (TetR-BirA x GlassGal4) was 
used (lane 2). NE from wt embryos was 
included as (-) control (lane 3). 
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Streptavidin binding to biotinylated protein. Subsequently, the precipitated DNA is 

purified and quantified. 

For this, protein-chromatin nuclear extract (pc-NE) was prepared from formaldehyde-

cross-linked embryos from transgenic fly lines carrying the Fab7 PRE and its 

corresponding controls; TetO-Fab7, TetO-∆Fab7 and ∆TetO-Fab7 (6.1 Fab7-TB-

DaGal, 6.1.14.3ΔFab7-TB-DaGal, 6.1.55.2ΔTetO-TB- DaGal). 

After precipitation of chromatin with streptavidin beads or antibodies, the cross-link was 

reversed and the DNA recovered and used as template for semi-quantitative PCR. A 

fragment within the bxd locus served as positive control for a Pc regulated locus in 

embryonic material (Orlando et al. 1997), and fragment within the g6pdh gene was used 

as negative control, both for Pc (Roustan-Espinosa 2005) and Streptavidin binding.  

Primer pairs PR4 (Chip2Fw-Chip1Rv) and PR5 (Chip3Fw-Chip3 Rv) were used to 

amplify specifically the transgene (Figure 2.13A). The PCR products were quantified 

using AIDA software from an agarose gel. 

The ChIP experiments confirmed the presence of the TetR at the TetO site. The 

transgene was enriched in the streptavidin pull-down in those lines where the TetO site is 

present. In the ΔTetO line there was no enrichment of the transgene, confirming that the 

pull-down is specific for the locus where the TetR binding site is located (Figure 2.13A). 

As expected, Pc was bound to the transgenic PRE in both lines carrying Fab7 but not in 

the ΔPRE line, showing that PcG binding is PRE mediated.  

The absence of error bars in the graphic is due to the permanent lost of one of the 

transgenic fly lines so that the experiment as such could not be repeated.  

ChIP experiments were repeated with TetO-Fab7 and ΔTetO-Fab7 lines and the results 

are shown in figure 2.13 B. In this case ChIP with anti Trithorax antibody was also 

included. The results obtained were consistent with those of the first experiments. In case 

of Trithorax protein, the enrichment at the transgene seems to be less significant than for 

Polycomb. 

The results obtained by ChIP experiments show that pulling of a locus using an external 

bait is possible indicating that the system is biologically functional.  
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Figure 2.13. Locus specific pull-down using TetR-BioTag as a Bait. ChIP analysis on 
protein-chromatin nuclear extracts with Stretpavidin, α-Pc and α -Trithorax antibodies. A) 
Left: quantification of immunoprecipitated material after PCR amplification. Right: scheme of 
locus with expected binding proteins and position of the PCR amplification products for each of 
the three fly lines. B) Quantification of immunoprecipitated material after PCR amplification in 
recovered lines. Results are expressed as percentage of input. Enrichment on BXD locus was 
used as (+) control for Pc and Trx ChIP and g6pdh gene as (-) control; PR4 amplifies a specific 
region of the transgene between TetO and Fab7, which is present in all 3 fly lines; PR5 amplifies 
a region that includes Fab7 PRE, absent in the ΔFab7 line. Results are expressed fold enrichment 
over input (A) when a linker-mediated PCR amplification step was performed and as percentage 
of input (B) when enrichment was evaluated directly without a pre- amplification step.  
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2.3.3 Protein pull-down from protein-chromatin nuclear extract 

A protocol for protein pull-down of a biotinylated protein and its interacting partners 

from Drosophila nuclear extract has been optimized in the Paro laboratory (Gero 

Strübbe, unpublished results). This protocol, with some modifications, was followed 

with the aim of purifying PcG and TrxG proteins bound to the transgenic Fab7 PRE 

using biotinylated TetR as bait. For this purpose, 5mg of protein of a protein-chromatin 

nuclear extract (pc-NE), prepared by sonication of Drosophila embryo nuclei (see 5.2.2), 

was incubated over night with Streptavidin Beads as described in 5.3.9. After several 

washes the bound proteins were recovered by incubating the samples for 30 min in SDS-

sample buffer and analyzed by SDS-PAGE and Western Blot. ΔPRE and ΔTetO lines 

were used as controls; in these lines TetR enrichment was expected, since the protein is 

expressed, but no PcG-TrxG proteins should be co-purified since the PRE or the bait 

binding sites were missing. 

Blotting with Neutravidin-HRP showed that TetR protein was nicely enriched by the 

pull-down, indicating that the pull-down of the biotinylated bait from Drosophila pc-NE 

was possible (figure 2.14, upper panel). 

Previous ChIP experiments (figure 2.13) have shown enrichment of Pc in the Fab7 

transgenic locus. To determine whether this protein was co-precipitated with TetR, the 

membrane was probed with α-Pc antibody (fig. 2.14, middle panel). Pc protein was not 

enriched in the pull-down. One possibility could be that the generated chromatin 

fragments were in average not big enough to contain the TetO and the PRE in the same 

fragment. If this would be the case then histones from nucleosomes should still be 

present in the same fragments with TetO-TetR if the chromatin is at least 150 bp long. 

For this reason the membrane was stripped and incubated with α-Histone H3 antibody 

(fig. 2.24, lower panel). There was also no enrichment of histones in the pulled-down 

sample. 

This experiment shows that the protocol for streptavidin pull-down was functional and 

TetR protein purification via the biotinylated tag possible. The fact that Pc protein was 

not co-purified with TetR suggests that the system might be saturated by soluble non-

chromatin bound TetR that binds to the streptavidin beads and dilutes out the chromatin-

bound fraction decreasing the amount of Pc that can be co-purified. 
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Figure 2.14. Protein pull-down 
using streptavidin. Cross-linked pc-
NE from transgenic lines, TetO-
Fab7, TetOΔFab7 and ΔTetO-Fab7, 
were used for Streptavidin pull-
down. Inputs and pull-down proteins 
were reversed cross-link by heating 
at 95°C and analyzed by SDS-PAGE 
and Western Blot using Streptavidin-
HRP, α-Pc and α-H3 antibodies. The 
expected specific bands are pointed 
by an arrow.  

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4 Testing the efficiency of each step 

2.4.1 Formaldehyde cross-link, is it really reversible? Can the efficiency be 
improved? 

Formaldehyde is a high resolution (2 Å) cross-linking agent capable of producing 

protein-DNA, protein-RNA, and protein-protein cross-links in vivo (Varshavsky et al. 

1974; Solomon and Varshavsky 1985). Addition of formaldehyde to living cells results, 

within minutes, in the formation of cross-linked networks of biopolymers and prevents 

the redistribution of cellular components. Formaldehyde cross-linking has proved to be a 

very useful tool to study the distribution of proteins at high resolution over extended 
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chromosomal regions by ChIP (Orlando et al. 1993). In this kind of approach mild cross-

linking conditions are applied and the cross-link is easily reverted by incubation at 65°C 

and complete digestion of chromatin-bound proteins by Proteinase K allowing the 

recover of the molecule of interest, the DNA. However, little is known about the 

efficiency of the reversal of the cross-link when no protease is used and when the bound 

proteins must be preserved for further analysis. Previous work (Jackson 1978) describes 

two different protocols that allow selective reversal of either histone-DNA or histone-

histone cross-links. Mild conditions are used for protein-DNA complexes that are 

incubated for 2 days at 37°C in 1% SDS, resulting in recovery of some histones 

monomers but also higher molecular weight histone dimers. If histones are directly 

cross-linked to each other, this protocol seems to be inefficient for the complete reversal 

of protein-protein cross-links. For this, samples are adjusted to 0.5 M 2-mercaptoethanol 

and heated at 95°C for up to 60 min. In order to determine if similar experimental 

conditions would be suitable for reversal of formaldehyde cross-link of chromatin 

preparations from Drosophila embryos a reversal of cross-link experiment was 

performed. For this, Drosophila embryos were in vivo cross-linked as described in 5.2.1. 

With the aim of increasing protein cross-link to be able to detect larger differences 

between cross-linked and uncross-linked samples, different cross-link times were 

performed (15, 30 and 60 minutes). Subsequently, an aliquot of each sample was 

reversed cross-link in a similar way than described for ChIP samples, at 65°C for 5 h 

with 1% SDS, or not reversed (un-treated sample). SDS-sample buffer containing ß-

Mercaptoethanol was added to all samples. Of each sample, reversed and no reversed, 

half was incubated at 95°C previous to loading on an SDS gel and the other half of the 

sample was loaded directly on the gel with no incubation. In this way for each cross-link 

time four samples were compared, reversed cross-link (65°C 5h) + 10 min at 95°C, no 

reversed cross-link + 10 min at 95°C, reversed cross-link (65°C 5h) + no further 

incubation and no reversed cross-link + no further incubation; this last sample was never 

exposed to high temperatures. Embryo extracts from non cross-linked embryos were 

used as control. 

Figure 2.15 (A) shows that all samples treated at 95°C showed the same pattern on a 

coomassie stained gel (see chromatin reversed vs. no reversed  samples). On the contrary 

when samples were not treated at 95°C, differences between  samples heated at 65°C and 

non treated samples were detected (B). In the no reversed samples, all proteins of high 
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molecular weigh were missing from the gel. Comparison between figures 2.15 A and B 

indicated that incubation of samples 10 min at 95°C was sufficient to reverse 

formaldehyde cross-links and retrieve proteins to the soluble fraction. In addition, there 

were no notorious differences between samples incubated for different times with 

formaldehyde suggesting that the chosen cross-link conditions were rather mild.  

 

 

 

Figure 2.15. Reversal of cross-link by incubation at 95°C. Embryos were cross-linked for 15, 
30 or 60 min. Protein-chromatin nuclear extracts were prepared from all samples. Each sample 
was divided in two and reversal of cross-link was carried out only on one of the samples by 
incubation at 65°C for 5 h in presence of 1% SDS. Both samples, reversed cross-link (Chr. 
Reversed) and no reversed cross-link (Chr. No Rev.) were further divided into two samples, and 
only one was heated 10min at 95°C previous loading on a gel, while the other was loaded 
directly. For each cross-link time 4 samples were generated, Chr. Reversed: 5 h at 65°C + 10 min 
at 95°C; Chr. No Rev: 10 min at 95°C (gel A); Chr. Reversed: 5 h at 65°C; Chr. No Rev: no 
heating (gel B). Total Embryo extract from un-cross-linked samples was used as control. All 
samples were subjected to SDS-PAGE and Coomassie Blue staining.  

 

To determine whether the TetR protein can be cross-linked with formaldehyde and if this 

cross-link can be reversed; purified TetR protein (MoBiTec) was incubated with 

formaldehyde for 30 min at RT. Reversal of cross-link was carried out for 2, 5 or 10 min 

at 95°C or 5 h at 65°C in presence of SDS-sample buffer. Figure 2.16 shows that TetR 

protein was efficiently cross-linked into dimer, tetramer and higher molecular weight 

species. This could be reversed by incubation at 95°C, in 10 minutes the reversal was not 
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yet completed. Longer incubation time at 65°C resulted in protein loss probably due to 

precipitation or degradation. 

Altogether, these experiments confirm that protein-protein interactions can be stabilized 

using formaldehyde and that the cross-link can be reversed by incubation in the presence 

of sample buffer, containing SDS and β-mercaptoethanol, for times longer than 10 

minutes. 

Figure 2.16. TetR is 
reversibly cross-linked 
by formaldehyde. 10 ng 
of TetR recombinant 
protein was cross-linked 
with formaldehyde and the 
reversal of cross-link was 
carried out for 2, 2, 5 and 
10 min by incubation at 
95°C in SDS-sample 
buffer. 10 min incubation 
at 95°C partially retrieved 
the cross-linked protein. 5 
hour at 65°C incubation 
resulted in lost of protein 
due to precipitation.  

 

2.4.2 In vivo biotinylation of TetR: How efficient is it in Drosophila? 

It has previously been shown that biotinylation of a transcription factor carrying a small 

(<23aa) artificial tag by E. coli BirA ligase is an efficient process; when the enzyme is 

expressed in mammalian cells an efficiency close to 100% was reported (de Boer et al. 

2003). In mice there are very few naturally biotinylated proteins, thus the background is 

very low. To determine the amount of biotinylated proteins in Drosophila, whole 

embryos protein extracts (EE), embryo nuclear extracts (NE) and SL2cells extracts were 

compared using Streptavidin-HRP to develop Western Blots (Figure 2.17 A). In 

Drosophila the amount of endogenous biotinylated proteins was found to be higher than 

described for mouse. Most of these proteins seem to be cytoplasmic, since the level of 

background was reduced in the NE preparation. For this reason purifications were 

performed using protein-chromatin nuclear extract (pc-NE) instead of whole embryos as 

starting material (see 5.2.2). 

In order to analyze the biotinylation efficiency in Drosophila, a streptavidin-shift 

experiment was performed. For this, pc-NE from the TetO-Fab7 line was subjected to a 
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streptavidin pull-down as described in 5.3.9 to enrich for biotinylated TetR. Aliquots of 

Input, pull-down material and unbound fraction were incubated in sample buffer to 

reverse the cross-link and cooled down to room temperature. Streptavidin was then 

added to half of each sample (see 5.3.5) and all samples were loaded on an SDS-

polyacrilamide gel and analyzed by Western Blotting.  

 

 

Figure 2.17. Biotinylation in Drosophila melanogaster. A) Whole embryo extracts and nuclear 
extracts from wt flies and cell extracts were compared for the amount of endogenous biotinylated 
protein by coomassie staining and WB with streptavidin-HRP B and C) Streptavidin shift 
experiment with Streptavidin pulled-down material from TetO-Fab7 line. 8 µg of Streptavidin 
were added to half of input, Pull-down and unbound samples previous to loading in the gel. The 
band shifts were detected by Western Blot with α-TetR antibody (B) and Neutravidin-HRP (C). 

 

As shown in figure 2.17 B, lane 2 the TetR protein in the input fraction with no 

Streptavidin ran as a double band with very small size difference between the two. 

Addition of streptavidin (lane 1) caused a super shift of the upper band only, indicating 

that the upper band constituted the biotinylated TetR while the lower one was TetR 

protein that was not biotinylated. As expected, in the pull-down material most of TetR 

present in the sample was shifted by addition of streptavidin (lane 3). There was a small 
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portion of un-biotinylated TetR that also present in the pull-down sample. This un-

biotinylated TetR was probably pulled with the streptavidin beads through its interaction 

with biotinylated TetR molecules due to TetR dimer formation. In the unbound fraction 

there was still biotinylated TetR protein present (lane 5), indicating that the efficiency of 

the pull-down was also lower than expected. 

Previous experiments had shown that streptavidin shift is very efficient producing the 

shift of all biotinylated proteins present in the sample. To confirm this, the blot was 

stripped and incubated with Streptavidin-HRP. In this case, no TetR band or any other 

biotinylated protein could be detected in the samples where streptavidin was added (fig. 

2.17 C, lanes 1, 3 and 5) indicating that all biotinylated proteins had been shifted and that 

all un-shifted TetR corresponds to the un-biotinylated fraction (fig. 2.17 B, lanes 1, 3 and 

5). 

Quantification of the bands with Aida software revealed that 23% of Total TetR protein 

was biotinylated and 9.5% of the biotinylation fraction was precipitated. Of total TetR, 

biotinylated and non-biotinylated, 2.2% was pulled-down.  

2.5 How to improve the efficiency of the system?  

All previous experiments performed to test the system revealed that although the system 

is biologically manageable and in principle the locus specific pull-down via the protein 

bait viable (see 2.3.2), there are several steps where the system efficiency could be 

optimized and as a result initial efforts to purify PcG-TrxG proteins bound to the PRE 

failed (fig. 2.14). Different approaches were implemented to try to optimize these steps 

and new protocols were included to improve the effectiveness of the purification. 

2.5.1 Addition of DSP and DTBP, protein-protein cross-linkers   

Cross-link tests have shown no great difference between samples cross-linked for 15 

minutes with those of 60 min, (Figure 2.15) this supported the idea that formaldehyde 

cross-link is relatively mild. Increasing the proportion of cross-linked proteins could be a 

way to improve the pull-down performance. One method to do is would by including a 

protein-protein cross-linker to help stabilize protein interactions. 

DSP is a water insoluble, homobifunctional N-hydroxysuccimide ester (NHS-ester). It 

has a spacer arm of 12 A° and its NHS-ester reacts with primary amines to form covalent 

amide bonds (Carlsoon 1978; Partis 1983). DSP cross-link is reversible under reducing 

conditions; by simply adding SDS-sample buffer with DTT or ß-Mercapthoethanol to the 
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sample the proteins can be recovered. It was chosen among many other protein cross-

linkers because it has one of the longer spacer arms and is commonly used for mass spec 

applications. 

1.25mM of DSP was added to the cross-link buffer in addition to formaldehyde and  

these embryos were compared to embryos cross-linked with formaldehyde alone. After 

cross-link, protein-chromatin nuclear extract was prepared and analyzed by SDS-PAGE. 

To reverse cross-link the extracts were treated with sample buffer with ß-

Mercaptoethanol combined with 30 min at 95°C; and to prevent the reversal and 

conserve the cross-links, sample buffer with Iodoacetamide was used combined with no 

heating of the sample. Addition of DSP to the embryos resulted in no obvious 

improvement of cross-link as detected by Coomassie Blue staining, figure 2.18 (A).  

 

 

Figure 2.18. DSP and DBTP, protein-protein cross-linkers. A) Coomassie Blue stain of SDS-
PAGE of protein-chromatin total extract from embryos cross-linked with formaldehyde alone 
(FA) or formaldehyde and DSP (FA + DSP). Reversal of cross-link was carried out by addition 
of ß-Mercaptoethanol sample buffer (ß-ME) and heating at 95°C. For the un-reversed samples, 
Iodacetamide sample buffer was used and heating was avoided. B) Protein pull-down of DTBP 
treated samples. Nuclei from FA cross-linked embryos were treated with DTBP, shared and the 
protein-chromatin NE was used in a streptavidin pull-down. The Western Blot was developed 
with Streptavidin-HRP and α-Histone H3 antibody. 
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This could be due to lack of diffusion of the cross-linker into the embryos and into the 

nucleus. For this reason a second experiment was performed in which isolated nuclei 

from already formaldehyde treated embryos were incubated with a protein cross-linker. 

For this experiment a second cross-linker was tested; this time water soluble one. DTBP 

is a membrane permeable, homobifunctional imidoester, also reversible with addition of 

reducing sample buffer (Hand and Jencks 1962; Mattson et al. 1993). DTBP was added 

to nuclei at 10 mM concentration and incubated for 2 h at 4°C. After washing, the nuclei 

were sheared and the protein-chromatin NE was used for Streptavidin Protein pull-down. 

As shown in figure 2.18 (B), incubation with DTBP did not increase the efficiency of the 

pull-down, which was equivalent to previous pull-downs using only formaldehyde as 

cross-linker (figure 2.14). 

These experiments show that incubation of embryos or nuclei with protein-protein cross-

linkers had no effect in the performance of the system, probably due to poor penetration 

of the cross-linking reagents in the nuclei of the cell. Another possibility is that 

formaldehyde efficiency is already at a level that could not be further increased by an 

additional cross-linker. 

2.5.2 Shearing the chromatin at the right size 

The chromatin fragment size could have a large influence on the performance of the 

purification. Since the system relies on the purification of proteins bound to a PRE via a 

bait, and the connection between the bait and the PRE is the DNA fragment between the 

two, it is necessary to shear the chromatin in fragments of about 3 kb, which are large 

enough to contain both TetO and PRE. 

To investigate whether the chromatin could be digested with restriction enzymes to 

generate a chromatin fragment of the correct size, purified nuclei from cross-linked 

embryos were re-suspended in restriction enzyme and sonicated for three short cycles 

(10 sec, medium power  with a microtip sonifier) to break the nuclei open without 

shearing the chromatin (see 5.2.5). The protein-chromatin NE was then incubated with 

NotI and SalI that have restriction sites at the transgene producing a 4.3 kb fragment 

(figure 2.19). 

Previous experiments had shown that incubation of a chromatin sample at 37°C resulted 

in partial digestion of the sample by endogenous endonuclease (data not shown). For this 

reason, to determine the extent of the endonuclease activity, the extract was incubated 

with restriction enzymes (figure 2.19, lane 1) and without restriction enzymes (lanes 2 
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and 3); in presence of EDTA to inhibit  endogenous endonuclease activity (lane 2) or  

without EDTA (lanes 1 and 3). For negative control an aliquot of extract was kept frozen 

(lane 4). As shown in figure 2.19, incubation of the extract at 37°C without addition of 

restriction enzymes resulted in total shearing of the chromatin to fragments of around 1 

kb size (compare lanes 3 and 4). Addition of EDTA to the sample inhibited the 

endonuclease activity to some extent, however shearing of the chromatin was still 

observed (lane 2). Incubation with restriction endonucleases had no visible effect due to 

sample shearing by the endogenous nucleases.  

 

Figure 2.19. Chromatin digestion with Restriction Enzymes. A) Agarose gel of pc-NE 
incubated in different conditions.  Lane 1, SalI-NotI digestion at 37°C; lane 2, incubation at 37°C 
with EDTA to inhibit Endonuclease activity and no RE; lane 3, incubation at 37°C without 
EDTA and no RE; lane 4, starting sample used in different treatments, aliquot kept at -20°C to 
avoid any degradation. B) Chromatin obtained after shearing by sonication as described in 5.2.2. 
After treatments all samples were reversed cross-link and loaded on agarose gel. 

 

Southern blot analysis using an specific probe to detect the fragment containing the 

transgene revealed a slight enrichment of the desired fragment on the restriction enzyme 

treated sample (data not shown), indicating that restriction enzymes are active on cross-

linked samples and cable of digesting the sample to some degree. 
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In summary, these experiments indicates that restriction nuclease digest is not feasible 

due to the presence of endogenous endonucleases that shear the chromatin 

unespecifically resulting in fragments of small size.  

Subsequently, in order to produce a sample enriched for chromatin fragments of around 

3 kb size needed for pull-down experiments, a sonication procedure was optimized to 

obtain the desired fragments. Figure 2.19 B shows an example of a sonicated chromatin 

sample using the optimized protocol (see 5.2.2 for description of sonication conditions). 

2.5.3 In vitro-biotinylation using recombinant BirA ligase 

As described in section 2.4.2, in vivo biotinylation of TetR in Drosophila resulted less 

efficient than expected. Poor biotinylation might affect the efficiency of the pull-down 

since transgenic locus carrying the majority of un-biotinylated TetR bound to TetO 

might fail to bind the streptavidin beads and thus be lost during purification.  

In order to improve the biotinylation of TetR, protein-chromatin nuclear extracts from 

cross-linked Drosophila embryos were incubated in the presence of recombinant BirA 

produced in E. coli (kindly provided by Dr. Christian Beisel). The incubation was carried 

out at 30°C for 1h in the presence of Biotin and ATP. As observed by Western Blot 

developed with Neutravidin-HRP, incubation of the protein-chromatin NE with BirA 

resulted in an increase of the degree of biotinylation of proteins (figure 2.20A); this 

increase was proportional to the amount of biotin used in the assay. The recombinant 

BirA, self –biotinylated appeared in the Western Blot as a prominent band of approx. 37 

kDa. Since this incubation increases also the background, this approach would be useful 

to improve the amount of biotinylated TetR only in combination with an efficient 

method to separate chromatin. 

A Chromatin IP experiment was performed to test whether pre-incubation with 

exogenous BirA would increase the efficiency of the system. For this, protein-chromatin 

NE from the TetO-Fab7 transgenic line (6.1.4 Fab7-TB-DaGal) was incubated for 1h 

with BirA in the presence of 1 mM biotin as described above. In this case the 

concentration of BirA added was approximately 20x lower than in the previous 

experiment to test conditions feasible with large amounts of extracts needed for protein 

purification. As control an extract was incubated at 30°C for 1h without addition of BirA 

and biotin. After the incubation the extracts were subjected to CsCl gradient purification 

to eliminate biotinylated proteins, soluble TetR and added BirA. The obtained chromatin 

was used for ChIP. Both extracts, (+) BirA and (-) BirA, were used for Streptavidin 
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ChIP, and a third ChIP with α-TetR antibody on the (-) BirA chromatin and was 

included to compare efficiency between TetR antibody and streptavidin. The ChIP 

samples were analyzed by PCR and quantified using Aida software. The transgenic line 

6.1.4 (TetO-Fab7) used in the experiment contains all the 4 elements of the system so 

biotinylation also occurs in vivo, and the locus should be pulled-down with streptavidin. 

Primers against the g6pdh gene were used as (-) control and primer pairs PR4 (Chip2Fw-

Chip1Rv) and PR5 (Chip3Fw-Chip3 Rv) (see fig. 2.13) were used to evaluate the 

enrichment of the transgenic locus. 

As shown in figure 2.20 B pre-incubation with BirA and Biotin had no positive effect on 

the efficiency of the pull-down, in contrast, the amount of immunoprecipitated chromatin 

was about half of the one from the sample that did not contain exogenous BirA. 

 

 
 

Figure 2.20.  In vitro biotinylation of Drosophila extracts. A) pc-NE from TetO-Fab7 was 
incubated in the presence of 10µg of BirA and increasing concentrations of Biotin. After reversal 
of cross-link the samples were separated on a 15% polyacrilamide gel and analyzed by Western 
Blot with Neutravidin-HRP. B) Pc-NE from 6.1.4 (TetO-Fab7) was incubated in the presence or 
absence of BirA and Biotin. Next, the chromatin was purified by CsCl gradient and used in a 
ChIP experiment with Stretpavidin and α-Tet antibody. The graphic shows the quantification of 
immunoprecipitated material after PCR amplification. The g6phd locus was used as (-) control. 
PR4 and PR5 pairs were used to specifically amplify the transgene. PR4 amplifies the region 
between TetO and Fab7 while PR5 expands also a fraction of the Fab7 PRE (see fig. 2.13) 

 

The enrichment of the transgenic locus obtained with the α-TetR antibody was also 

lower than the Streptavidin ChIP on the (-) BirA sample. These results suggest that 

although there is an increase in the degree of biotinylation proteins when smalls amounts 
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of extracts are incubated in presence of large amounts of BirA, this effect is not 

detectable in ChIP experiments where larger samples are used and the concentration of 

BirA is reduced. 

2.6 Chromatin purification, separating the DNA bound proteins from 
the unbound 

The expressed TetR protein has a NLS that allows the protein to be located at the nucleus 

to be able to bind the TetO site in the chromatin. However, since there are only seven 

TetO sites per transgene only a few molecules of TetR can bind per nucleus, seven 

dimers per chromosome, fourteen per nuclei. On the other hand, the protein is over-

expressed, therefore there is a high amount of unbound free nuclear TetR. In addition to 

the free TetR, there are in the nucleus some endogenous biotinylated proteins that are 

more abundant than the amount of TetR that is bound to TetO. Altogether, these soluble 

biotinylated proteins can compete with the chromatin-bound TetR for the interaction 

with streptavidin beads resulting in a great dilution of the pulled chromatin. Thus, the 

efficiency may be improved by including a chromatin pre-purification step to separate 

this fraction from nuclear soluble proteins. 

2.6.1 Separation of nuclear extract and nuclear pellet with salt extraction 

Chromatin is a large molecule; although in the nuclei it is soluble, slightly changing the 

buffer conditions in a test tube might result in its precipitation. This phenomenon is used 

routinely when preparing nuclear extract; high concentrations of salt are used to extract 

the chromatin bound proteins and precipitate the DNA separating it from the proteins 

that remain soluble.  

This principle was used to separate chromatin with its cross-linked proteins from free 

nuclear proteins. The aim of this experiment was to precipitate the chromatin with salt 

separating it from the soluble proteins to then recover the purified chromatin by bringing 

it back in solution with a buffer containing low salt concentrations. Precipitation of 

chromatin with this method would allow elimination of soluble TetR, biotinylated 

proteins and in addition endogenous endonucleases, allowing further incubation of the 

recovered chromatin with specific restriction enzymes to generate chromatin fragments 

of the adequate size. Alternatively, sonication could also be employed for fragmentation 

of the chromatin after the purification. 
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For this, nuclei from cross-linked embryos were prepared and treated as described in 

5.3.10.  400 mM of NaCl were added to un-sheared chromatin (total nuclear content) at 

4°C. As expected, addition of salt to the sample was sufficient to precipitate the 

chromatin. After centrifugation, the supernatant was separated and the chromatin pellet 

was washed several times, one short (10 sec) sonication pulse was used to resuspend the 

pellet in the wash buffer. After several washes, the washed chromatin pellet was 

resuspended in a low salt buffer with a short pulse of sonication. After this, the sample 

was centrifuged to analyze what proportion of the sample was successfully brought in 

solution and what proportion remained un-soluble. All fractions were reversed cross-link 

and analyzed by agarose gel electrophoreses; some of these fractions are shown in figure 

2.21. Lane 1 shows an aliquot of the input chromatin, showing that most of the starting 

material was of high molecular weigh, some degree shearing was observed produced 

probably during mild sonication to break the nuclei open. Lane 2 represents the soluble 

fraction after the first wash, as shown in this lane some chromatin was brought into 

solution during washes consisting mainly of chromatin sheared to fragments smaller than 

2 kb. Lane 3 represents the pellet fraction after the first wash. The chromatin pellet was 

washed two additional times and it was finally sonicated for resuspension. Lines 4 and 5 

show the soluble fraction and what remains un-soluble after the final sonication. In the 

soluble fraction (line 4) only fragments smaller than 1 kb are found while the un-sheared 

chromatin (line 5), which should constitute the input material for restriction enzyme 

digest, remains un-soluble. This experiment indicates that in order to resuspend the 

precipitated chromatin, it would have to be sheared by sonication to fragments of about 1 

kb.    

The pull-down of the proteins bound to a PRE using the TetO as bait depends on both 

elements remaining in the same chromatin fragment. The tested protocol for separation 

of chromatin from soluble proteins resulted in chromatin fragments that are too small to 

contain both elements; therefore this approach resulted not applicable to the system. 
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Figure 2.21. Chromatin separation by salt extraction. 
Chromatin was precipitated from pc-NE prepared from cross-
linked embryos by addition of 400mM NaCl. The pellet was 
washed several times by short sonication pulses. Input 
material (lane 1), supernatant after salt precipitation (lane 2), 
first wash (lane 3) and final soluble and pellet fraction (lanes 
4 and 5 respectively) were reverse cross-link and loaded on 
agarose gel.  

 

2.6.2  Vivaspin ultrafiltration spin columns for chromatin separation 

Since chromatin has a high molecular weight, another possibility was to separate it from 

soluble nuclear components by means of its size. Vivaspin ultrafiltration spin columns 

are designed for rapid concentration and/or purification of biological samples. They are 

suitable for sample volumes up to 20 ml and are available with a choice of membranes 

with a rage of different pore sizes. Two different MWCO (molecular weight cutoff) were 

selected, 300 and 1000 (the biggest available). Protein-chromatin NE from cross-linked 

Drosophila embryos from the ∆TetO-Fab7 line were diluted and centrifuged in Vivaspin 

centrifugation devices (see 5.3.11) with the aim of filtering through the membrane all 

molecules small enough to diffuse through pores and retain the chromatin and those 

nuclear protein complexes that are larger.  

Since TetR is only 28KDa it was expected that this molecule would be able to pass 

through the membrane pores and thus, a reduction of the total TetR protein present in the 

pc-NE after centrifugation would be observed. As shown in figure 2.22 the amount of 

TetR in the sample before and after centrifugation was the same. There was no obvious 

depletion of TetR in the centrifuged samples even with the 1000 MKCO device. In 

addition, comparison of DNA and protein concentration in all the samples showed that 

there is extensive chromatin and protein precipitation during centrifugation probably due 

to fast concentration of the samples. The first minutes of centrifugation produced also a 

film of precipitated materials on the surface of the membrane impairing the flow through 

the pores. Thus, ultrafiltration devices are not suitable for samples containing chromatin 

probably due to the instability of this macromolecule in solution, where small 
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perturbations in the sample caused by concentration of solutes or volume reduction 

results in chromatin to precipitate. 

 

Figure 2.22. Ultrafiltration of chromatin. Protein-
chromatin NE was centrifuged on ultrafiltration spin 
columns. 300KDa and 1000KDa MWCO membranes were 
compared. After centrifugation samples were reversed cross-
link and equal protein amounts analyzed by SDS-PAGE and 
Western Blot using α-TetR antibody. TetR recombinant 
protein (MoBiTec) was used as control for blotting and 
antibody detection procedure. 

 

 

 

2.6.3 High molecular weight cutoff dialysis 

Contrary to centrifugal devices used in 2.6.2, the changes of sample volume and salt 

concentration during dialysis are very gradual. This could help avoid sample 

precipitation and blocking of the membrane pores observed during ultracentrifugation. 

To test in which conditions precipitation could be avoided or minimized, protein-

chromatin NE aliquots from Drosophila cross-linked embryos from TetR and BirA 

expressing flies, were subjected to dialysis using a Spectra/Por Cellulose Ester 

membrane with a MWCO of 300 KDa, the largest commercially available (see 5.3.12). 

An aliquot of input material was saved for further analysis. One sample was dialyzed for 

6 h with a starting NaCl concentration of 1 M that was decreased over 3 buffers changes 

to 250 mM. A second sample was dialyzed over night with no addition of salt and a third 

sample was dialyzed over night with starting 1M NaCl concentration and diluted to 

125mM after 4 buffer changes. After dialysis, the samples were centrifuged and 

supernatant and pellet analyzed after reversal of cross-link. To determine if the 

chromatin was retained inside the dialysis membrane and how much of it remained 

soluble, the samples were analyzed by agarose gel electrophoresis. As showed in figure 

2.23 (A) the chromatin fraction was retained by the dialysis membrane and in the shorter 

incubation time in the presence of salt very little chromatin precipitated  (lanes 1-3). 

Overnight incubation with NaCl produced more precipitation and no addition of NaCl 

resulted in high chromatin precipitation (lanes 4-7). 
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Although incubation of the samples in the dialysis tube in the presence of NaCl resulted 

in some degree of sample precipitation (figure 2.23 A) a second experiment was 

performed in the same way, in which dialysis was carried out for a longer period, 24 h, in 

the presence of salt and with 2 extra changes of dialysis tubing during the incubation. 

The tubing changes were included to avoid the blockage of the membrane pores by 

precipitating material as occurred during ultracentrifugation (see 2.6.2). 

After dialysis the sample was recovered and centrifuged to separate precipitated material. 

Figure 2.23 (B and C) shows analysis of aliquots of input (lane1), soluble material after 

dialysis (lanes 2 and 3) and precipitated material  (lane 4) after SDS-PAGE and Western 

Blot with neutravidin-HRP and α-TetR antibody. Although precise quantification of the 

proteins bands present in 2.23 B is difficult because some of the lower bands in lane 1 

have suffer some distortion, comparison between the intensity of the higher protein 

bands (high MW) and the lower ones  (low MW) reveals that low molecular weigh 

proteins were depleted at some extent, from the chromatin sample (fig. 2.23 D). 

However, a considerable fraction of TetR and biotinylated proteins were retained inside 

the dialysis tubing. In addition, quantification of protein concentrations in total input, 

soluble after dialysis and pellet fractions revealed that at least 1/3 of the protein 

precipitated while 1/3 was retained soluble inside the tubing and the rest had presumably 

diffused through the membrane into the dialysis buffer. 

Altogether these results indicate that the dialysis technique was effective in some extent 

to separate the chromatin from soluble nuclear proteins. However, the efficiency in the 

separation achieved by this protocol is not sufficient to enrich the chromatin fraction to 

the level needed for the functioning of the system. Furthermore, higher molecular weight 

biotinylated proteins are not depleted from the extract.  



  Results 

 

67 

 

Figure 2.23. Dialysis of chromatin.  Pc-NE was dialyzed using a 300 KDa MWCO tubing. A) 
Samples were dialyzed for different times (6 hs vs O/N) in presence or absence of 1M NaCl. 
After dialysis the samples were centrifuged and pellet and soluble fraction were analyzed by 
agarose gel electrophoresis after reversal of cross-link and DNA recovery. B-C) Pc-NE was 
dialyzed for 24 h in presence of NaCl with two changes of dialysis tubing. After dialysis the 
sample was centrifuged and soluble fraction and pellet analyzed by Western Blot using 
Neutravidin-HRP (B) and α-TetR antibody (C). Input 15µl=52µg protein (lane 1); soluble 
fraction after dialysis, dialyzed 15µl=25.5µg protein (lane 2), dialyzed 30µl=51µg protein (lane 
3); precipitated fraction after dialysis 50µg of protein (lane 4). D) Quantification using Aida 
software of protein bands present in B, input (lane 1), dialyzed (lane2) and precipitated (lane 4).  

 

2.6.4 TetO DNA beads to deplete extracts from soluble TetR 

Previous experiments to pre-purify chromatin based on the physical and chemical 

properties of this molecule failed to deplete the chromatin fraction from TetR and 

biotinylated proteins. For this reason, a different approach was tested based on the high 

affinity, specific interaction between TetR and its binding site TetO. 
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In order to deplete pc-NE from over-expressed soluble TetR, beads carrying TetO sites 

were produced. For this, a double stranded DNA oligo carrying a single TetO site was 

coupled to SulfoLink® coupling gel (Pierce) as described in 5.3.13. Approximately 

30.000 pMol of DNA were used in the coupling reaction with 2 ml (50% slurry) of 

SulfoLink beads. Efficient coupling was determined by measuring DNA concentration in 

input, supernatant and bead washes after coupling reaction. Approximately 80% of the 

input DNA was coupled to the beads. The generated TetO beads were then used for 

depletion experiments.   

The TetR-TetO interaction has been previously exhaustively studied as inducible 

tetracycline expression systems were designed (Hillen et al. 1982; Kleinschmidt et al. 

1988; Wissmann et al. 1988; Berens et al. 1992; Gossen and Bujard 1992; Deuschle et al. 

1995; Orth et al. 2000). Hillen and collaborators have described the ideal conditions for 

the TetR-TetO interaction (Hillen et al. 1982; Kleinschmidt et al. 1988; Wissmann et al. 

1988); these conditions were used in the binding experiments. 

First, binding of pure commercial TetR to the TetO beads was tested (Figure 2.24 A). 

For this, 12 ng of TetR protein (0.44 pmol) were incubated in the presence of Mg+2 with 

50 µl of TetO beads (1200 pmol TetO). As control 12 ng of TetR protein, input material, 

were incubated in the same condition with beads buffer. After 30 min incubation at 30°C 

the beads were centrifuged, and the unbound fraction was separated (lane 2). The beads 

were then washed several times with buffer, resuspended in sample buffer and boiled for 

10 min to elute the bound fraction (lane 3). All samples were analyzed by SDS-PAGE. 

As shown in figure 2.24 (A) TetR protein was successfully bound to the TetO beads 

since no TetR remained in the unbound fraction (lane 2). However comparison between 

input material (lane 1) and bound fraction eluted from the beads (lane 3) indicates that 

there was some TetR eluted from the beads during washes or, more unlikely, that TetR-

TetO interaction was not disrupted completely via incubation of the beads for 10 min at 

95°C in presence of SDS-sample buffer.  

Subsequently, the same experiment was performed using pc-NE from TetO-Fab7 cross-

linked embryos.  In this case two aliquots of 1.75 mg of pc-NE containing between 150-

300 ng of TetR protein (5-11 pmol) as estimated by Western Blot, were incubated with 

100 µl of TetO beads (2400 pMol of TetO) as described in 5.3.13. One aliquot was used 

to check whether the chromatin remains in the unbound fraction or if it binds un-

specifically to the beads during incubation, and the other was used to determine whether 
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TetR is depleted from the extract and retained bound to the TetO beads. After binding 

reaction, unbound fraction, washes and beads were analyzed. 

 
 

For DNA analysis the samples were reversed cross-link and DNA was purified by 

phenol-chlorophorm extraction. Figure 2.24 (B) shows that the chromatin fraction 

present in the samples remained soluble after incubation (compare input, lane 1, with, 

unbound fraction, lane 2) and did not bind to the sulfolink beads (lanes 3 and 4). 

For protein analysis the samples were incubated with sample buffer at 95°C for 40min 

for reversal of cross-link and analyzed by SDS-PAGE. Contrary to commercial TetR, no 

fraction of the TetR protein present in the pc-NE remained bound to the TetO beads 

(Figure 2.24 C, lane 3) and the majority of TetR protein was found in the unbound 

fraction (lane 2). Although in this case, the ratio TetO molecules/TetR molecules was 

around 6-12 times smaller than for pure TetR, it was expected that a fraction of TetR 

Figure 2.24. TetR depletion 
experiments. A) Commercial TetR 
protein (MoBiTec) was incubated 
with TetO beads. Input, unbound and 
bound samples were analyzed by 
SDS-PAGE with α-TetR antibody. 
B-C) pc-NE was incubated with 
TetO beads. Input, unbound, beads 
washes and bound material were 
analyzed by agarose gels and SDS-
PAGE with Neutravidin-HRP. 
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would be retained. These results suggest that the presence of chromatin or cross-linked 

molecules in the sample somehow interferes with the interaction between TetR and TetO 

site and thus it is not possible to deplete the pc-NE sample from soluble TetR by using 

TetO beads. 

2.6.5 Cesium Chloride density gradients partially solve the chromatin 
separation problem 

Cesium Chloride (CsCl) density gradients have been commonly used in the past for 

purification of DNA. CsCl has a remarkable characteristic. If a solution of CsCl is 

centrifuged long enough at a sufficiently high speed, a higher concentration of the heavy 

salt collects at the bottom of the tube and the density continuously decreases to the top of 

the tube so that a gradient is formed. Because proteins, DNA and RNA can be 

distinguished by means of their densities, these gradients were used for DNA 

purification. However, for effective separation, centrifugation times of several hours are 

required; for this reason this technique has been replaced in present-days for simpler and 

faster ones. 

Unlike the current methods that separate naked DNA, CsCl gradient centrifugation 

allows the separation of chromatin (DNA and associated proteins) from non-chromatin 

bound (soluble) proteins, naked DNA and RNA (Orlando et al. 1997). For this reason 

this method was applied to protein-chromatin nuclear extracts. For this, CsCl was added 

to pc-NE and the sample was loaded in a centrifuge tube as previously described 

(Orlando et al. 1997). After 40 h of centrifugation, fractions were collected from the 

bottom of the tube using a peristaltic pump. An aliquot of each fraction was desalted 

using Micro Bio-Spin P-30 columns (BioRad), reversed cross-link and analyzed by 

agarose gel electrophoresis to determine which were the fractions containing the 

chromatin. Figure 2.25 (A) shows the typical distribution of chromatin among the 

fractions obtained after a gradient.  

Chromatin containing fractions were pooled and dialyzed over night to eliminate the 

CsCl, aliquotted and frozen. Protein and DNA concentration measurements of the 

chromatin fraction obtained by CsCl gradient showed that extract had been depleted 

from great part of nuclear proteins (data not shown). However the chromatin was greatly 

diluted and much material was lost.  

In spite of the drawbacks of this method, it constituted the most effective approach to 

purify chromatin, for this reason CsCl purified material was used in proteins pull-downs.  
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In addition, this methodology also provided a powerful tool to verify the efficiency of 

the formaldehyde cross-link of the pc-NE samples. Chromatin (pc-NE) from embryos 

cross-linked with half the amount of formaldehyde (1.8%) normally used in this work 

(Figure 2.25 B) resulted in poor separation of the chromatin fraction, as evidenced by 

even distribution of the DNA between fractions and presence of high amounts of 

uncross-linked material (fractions 1 and 2). Altogether, comparison between a normal 

sample and a poorly cross-linked one, provided evidence of efficient cross-link of the 

working samples. 

 

 

Figure 2.25. CsCl gradient profile of cross-linked chromatin. Protein-chromatin NE, shared 
by sonication, was fractioned by a cesium chloride gradient. Twelve gradient fractions were 
collected starting from the bottom of the tube and desalted. The DNA was purified after reversal 
of cross-link and loaded on agarose gel. A) Gradient fractions from pc-NE from embryos cross-
linked with 3.6% of formaldehyde. B) Gradient fractions from pc-NE from embryos cross-linked 
with 1.8% of formaldehyde.  

 

2.7 Protein pull-down with optimized conditions 

After testing several different protocols to try to optimize the system’s efficiency and the 

purification procedure, the optimal conditions were selected for a final purification 

protocol. For this, formaldehyde cross-linked, sonication-sheared chromatin was pre-

purified by a CsCl gradient.  

An approximate estimation, considering number of TetR binding sites per cell, number 

of cells per embryo, number of TetR molecules per ng of protein, indicated that 9.5 

grams of embryos would be needed to produce 5 ng of TetR bound to chromatin, amount 

easily detected by the α-TetR antibody 
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Considering that the calculated efficiency of the system is low (see 2.4.2), more material 

should be used as input. However, there are other factors that set limits, among others, 

sample concentration, sample volume, amount of beads, beads concentration and elution 

volume. Therefore, in a final attempt to purify locus bound complexes, 30 grams of 

embryos were used as starting material for protein purification. 

For this, pc-NE was prepared from TetO-Fab7 and∆TetO-Fab7 (6.1 Fab7-TB-DaGal 

and 6.1.55.2ΔTetO-TB- DaGal lines, respectively) as described in 5.2.2, 30 grams of 

embryos resulted in a total volume of 90 ml of pc-NE which were centrifuged for 40 h in 

a CsCl gradient to separate the chromatin from soluble proteins. Two rounds of 

centrifugation per transgenic line were needed to purify the 90 ml of pc-NE. After 

centrifugation, the chromatin containing fractions of the gradient were pooled and 

dialyzed overnight to remove the cesium chloride, resulting in a total volume of 65 ml / 

fly line. The purified chromatin extracts were used for the protein purification. Each 

sample contained approximately 25mg of total protein. 

For the pull-down, 32.5 ml of chromatin extract from each fly line was incubated with 

500 µl of streptavidin sepharose beads (50% slurry). After 12 h incubation, the tube was 

centrifuged to settle the beads and the supernatant (unbound) was replaced by another 

32.5 ml of chromatin that was further incubated for 12 h over night. The next day, the 

second supernatant was removed (unbound fraction), and the beads transferred to an 

eppendorf tube and washed thoroughly. Finally the pulled-down proteins were eluted 

from the beads as described in 5.3.14 by incubation with formamide, concentrated by 

TCA precipitation and analyzed by SDS-PAGE. Aliquots of input and unbound fractions 

were also precipitated with TCA and included as controls. 

Figure 2.26 shows a Western Blot analysis of the generated samples. The pull-down 

protocol included many complex steps with sample loss, such as elution from beads and 

TCA precipitation, thus direct quantification of bands on the blots would not be 

informative. For instance, input samples subjected to TCA precipitation contained 

equivalent amounts of protein (lanes 1 and 4 in blots A and B), however the recovered 

amount of protein was higher in the ∆TetO-Fab7 line (lane 2). 
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Figure 2.26. Protein pull-down of chromatin complexes. Chromatin purified by CsCl gradient 
from TetO-Fab7 and ΔTetO-Fab7 lines was subjected to Streptavidin pull-down. The pulled 
material was eluted from beads with formamide; Input, pull-down and unbound material were 
precipitated with TCA to concentrate the samples, resuspended in SB and analyzed by SDS-
PAGE and Western Blot with α-TetR (A) and α-Pc (B) antibodies to detect the bait protein 
(TetR) and PcG proteins bound to the Fab7 PRE.  

 

Qualitative analysis of the blot developed with α-TetR antibody (blot A) reveals that the 

TetR protein was successfully purified from the chromatin extracts by streptavidin pull-

down (lane 2). The amount of TetR protein present and precipitated in the input and 

unbound fractions (lanes 1 and 4, and lanes 3 and 6 respectively) was smaller than 10 ng, 

as revealed by comparison with TetR control (lane 7). Contrary to expectations, 

comparison between TetO-Fab7 line (lane 2) and ΔTetO-Fab7 line  (lane 4) showed 

only a small difference in TetR concentration between the two samples, although in the 

∆TetO-Fab7 line there is no TetR binding site in the chromatin. This result indicates that 

some soluble proteins remained in the sample even after the CsCl gradient purification. 

To determine whether PcG proteins were enriched in the TetO-Fab7 line versus the 

ΔTetO-Fab7 control line, the blot was incubated with α-Pc antibody. This protein was 

chosen as one of the most characterized PcG members normally present at transgenic 

PREs, and because it was found bound to the transgenic PRE by ChIP (see 2.3.2). 
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Comparison of TetO-Fab7 vs. ΔTetO-Fab7 line gave no clear result; although Pc 

appeared to be slightly enriched in the TetR-Fab7 line, small differences between 

samples may have been caused by loss of material during precipitation.  

As shown by these experiments, formamide elution and TCA precipitation had a direct 

effect on the recovery of the samples, suggesting that a more direct approach should be 

implemented for the analysis of the pulled samples. These two steps, elution and 

precipitation, were necessary to recover the pulled proteins from the large volume of 

streptavidin beads (500 µl) used for the precipitation. Using such large volume of beads 

was necessary because the input material was diluted to 65 ml during CsCl purification, 

and using a smaller amount of beads would result in loss of beads during purification. 

The amount of beads determined then the volume of elution, which had to be sufficient 

to cover the beads bed. Ideally, qualitative and quantitative differences in sample 

composition could be detected by mass spectrometry analysis. However, in this approach 

elution of the purified proteins in a large volume resulted in very diluted samples, which 

were not suitable for analysis with mass spectrometry techniques and had to be then, 

analyzed by Western Blotting. In order to do so, the samples had to be precipitated with 

TCA and resuspended in a minimal volume with SDS-sample buffer, which is also 

incompatible with mass spectrometry. Furthermore, the results obtained in this 

experiment suggest that even when the proteins bound to the beads could be eluted 

directly in a small volume of buffer, the sample would not be concentrated enough for 

mass spectrometry analysis. However, increase of the sensitivity of mass spectrometry 

techniques in the future might provide a way to analyze the purified samples. 
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3. Discussion 

Polycomb and Trithorax group of proteins are part of a memory system that ensures the 

faithful transmission of cell identities through cell division. They operate as part of 

multimeric protein complexes. Core components of these complexes have been purified 

and contain a defined number of PcG/TrxG of proteins. In addition, many other proteins 

also involved in gene regulation, have been genetically identified or found, by 

immunoprecipitation or ChIP approaches, to interact with Pc and Trx group proteins 

(Sato and Denell 1985; Poux et al. 2001; Mahmoudi et al. 2003; Huang and Chang 2004; 

Dejardin et al. 2005; Blastyak et al. 2006). However, the fact that these interactions do 

not survive complex purifications procedures suggests that they are weaker that the ones 

among the core components of the complexes, supporting the idea that they might 

constitute transient interactions resulting from regulatory functions. During development 

and cell differentiation, there are dynamic changes in the composition of purified 

complexes. Moreover, the composition of proteins bound at certain target genes is 

different in different tissues (Zink and Paro 1989; Rastelli et al. 1993; Strutt and Paro 

1997; Otte and Kwaks 2003). Genes that are silenced may become activated and vice 

versa. Altogether, the memory system appears to be more complicated that the simple 

static binding of complexes to a PRE. Additional factors that come in to action at certain 

points in development might exist, helping direct the binding of the complexes to certain 

genes and not to others. These factors might help differentiate one locus from the others, 

and one tissue from the rest. In support of this, many PcG proteins have alternative 

isoforms some of which are expressed in different tissues (Dura et al. 1987; Wu and 

Howe 1995; Beuchle et al. 2001; Brown et al. 2003; Wang et al. 2006).  

So far, the question of the composition of Pc and Trx group complexes has been 

addressed in a quite general manner. Purification of protein complexes from soluble 

extracts from whole embryos or cells, may give just an oversimplified view of the real 

components of the cellular memory.  

The aim of this thesis work was to design and test a system to analyze the components of 

chromatin when still bound to the DNA; in other words, to produce a snapshot of the 

chromatin composition of a locus at certain tissue and time in development. Such a 

system should allow the purification of DNA and proteins bound to it in an un-biased 

way.  
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During this work the system was developed, all its components were introduced in D. 

melanogaster flies and it was shown that the pull-down of a specific locus using external 

bait is possible. The performance of the system for protein purification was tested, 

however many methodological problems were encountered that affected the efficiency of 

the system at various levels. Each problem was confronted separately and experiments 

were conducted to find a better solution for each experimental step that would lead to a 

better output.  

Although the system proved to be biologically possible, protein pull-downs after system 

optimization resulted in no quantitative enrichment of PcG proteins, as revealed by 

Western Blot techniques. The current development of sophisticated mass spec 

technology might allow in a near future accurate quantification of the obtained samples 

without necessity of further improvements; in the mean time direct analysis of the pull-

down samples to detect qualitative differences on sample composition, by comparison 

between the generated control lines, might be possible after modification of some aspects 

of system design.  In this respect, the characterization and system optimization 

performed during this work, has helped to identify the critical steps for functioning of the 

system. Alternatives to some system components are discussed in more detail giving an 

overview of what aspects should be modified if the system were to be re-designed to 

improve its function.  

3.1 Single locus analysis: any other options? 

The system was based on the use of a external protein bait, meaning that the pulled-down 

protein is not involved in the biological process under investigation, and its binding site 

is also separated from the binding site of the proteins of interest. This gives the 

possibility to purify all proteins bound to a locus and not just the ones interacting with 

the bait. Other approaches used for protein purification have included tagging one of the 

proteins involved in the studied process. The biggest drawback in this kind of method is 

that it only allows purification of the proteins interacting directly with the tagged bait or 

strongly with other components of the complex. In the case of chromatin interacting 

factors, all those proteins that bind chromatin independently from the tagged bait or that 

have weak interactions with it, are lost. In addition, this kind of approach does not 

distinguish between chromatin bound and free complexes.  

So far, the only approach that allows the analysis of chromatin composition at a 

particular locus is Chromatin IP (ChIP), which also depends on the antibody used in the 
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purification. ChIP is a directed search that can answer a Yes or No question: Is this 

particular protein present at this locus? This method always depends on the previous 

knowledge of a protein interaction with a particular locus or a protein function, but does 

not allow identification of new factors. Moreover, when applied to embryo material, 

ChIP gives an average of binding to a target in all cells, abolishing tissue specific 

differences. 

Although these techniques have brought many insights into PcG/TrxG regulation, they 

are not able to answer other types of questions that need to be answered in the PcG/TrxG 

field. Which proteins are bound to a PRE? What are the differences between different 

silent loci?  Is the protein composition of a locus different in different tissues? What 

happens during cell differentiation? The system was designed to look for answers to 

these questions.  

Introducing an inducible external bait, the TetR protein and its binding site TetO to the 

system, gives also the possibility to purify proteins from a particular tissue or time in 

development by differential expression of the bait. Using the Gal4 system the bait 

expression can be tightly controlled, and there are already many Gal4 drivers available 

specific for different tissues (Fischer et al. 1988; Brand and Perrimon 1993; Rorth 1998).  

The “BirA in vivo biotinylation” element was introduced for two reasons. First, to give 

an extra level of conditionality to the system; the BirA gene was placed under the control 

of Gal4 so its expression is coupled to the expression of TetR, but eventually it could be 

uncoupled from the bait by placing it under control of a conditional promoter derived 

from heat shock inducible genes (Lis et al. 1983), or a binary expression system such as 

LexA/(LL)4  (Szuts and Bienz 2000) providing another point of control. In this way, the 

TetR could be expressed only in certain tissues and the BirA only at certain times in 

development resulting in the restricted presence of biotinylated TetR to a particular 

tissue in a particular time. The second reason was that the interaction of streptavidin and 

biotin is very strong (Kd= 10-15, several orders of magnitude stronger than that of 

antibodies), allowing stringent washing conditions, after cross-linking, to eliminate 

background. In addition, others have been successful in purification of Bio-tagged 

proteins that are biotinylated in vivo using a single step purification protocol which 

constitutes also an advantage over other protein purification protocols (de Boer et al. 

2003; van Werven and Timmers 2006; Sanchez et al. 2007).  
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Two Polycomb Response Elements were selected for the analysis, Fab7 and vestigial. 

The first one was selected because it is one of the best characterized PREs and has been 

extensively used in the Paro laboratory in transgenic assays (Zink and Paro 1995; Cavalli 

and Paro 1998; Cavalli and Paro 1999; Rank et al. 2002; Schmitt et al. 2005). The 

second one, was selected from many predicted PREs (Ringrose et al. 2003) because it 

has been genetically characterized in the Paro laboratory (Lee et al. 2005) and because it 

belongs to a gene outside the Antennapedia and bithorax complexes and might represent 

a different class of PRE that could be used for comparison with Fab7.  

Only a Fab7 PRE line and its derived control lines were used to test the functioning of 

the system. The control lines were generated by Cre and FLP recombination of PRE and 

TetO sites resulting in TetO-ΔFab7 and ΔTetO-Fab7 lines (fig. 2.9). Excision of Fab7 

resulted, as expected, in activation of the expression of miniwhite reporter gene (Brand 

and Perrimon 1993), confirming the PRE has silencing activity (Zink and Paro 1995). 

Excision of the TetO had no effect on the miniwhite expression in those lines where the 

TetR protein was missing (fig. 2.10 A). However, expression of TetR protein had a small 

effect on the PRE silencing. Pigment measurements of all three lines showed a slightly 

stronger repression of miniwhite in the ΔTetO-Fab7 line compared to the TetO-Fab7 line 

(fig. 2.10 B) in flies expressing TetR protein, indicating that binding of TetR to the 

transgenic locus has a small activating effect. This mild effect was also observed in 

another Fab-7 line where the insertion site in the genome is different, and also in a vg 

transgenic line, arguing that the effect is independent of the insertion site and of the 

identity of the PRE, and probably produced by recruitment of other factors to chromatin. 

In this case, the additional factors could be identified by comparison between TetO-PRE 

and TetO-∆PRE lines. Only those proteins purified in the presence of the PRE and 

absent in the ∆PRE sample are specific and the others constitute the background proteins 

recruited to the locus by TetR or by other insertion site dependent factors. Moreover, de-

repression in the ΔFab7 line in presence of TetR was very strong, showing that the PRE 

is still functional and exerting repressive activity also in presence of TetR. Altogether, 

the slight activation effect caused by TetR binding should not give false positive results 

on the identification of PRE bound factors.  
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3.2 Pulling from the bait: the proof of principle 

Although previous work has shown that in vivo biotinylation of a tagged substrate by 

E.coli BirA enzyme is possible (de Boer et al. 2003; van Werven and Timmers 2006; 

Sanchez et al. 2007), this has not previously been undertaken in flies. Therefore, it was 

important to test whether the BirA was functional when expressed in Drosophila 

melanogaster. The TetR was found to be biotinylated in Drosophila culture cells (fig. 

2.4) and also in fly heads when TetR and BirA ligase were co-expressed using a 

GlassGal4 driver, which drives strong expression of Gal4 in the eye (fig. 2.6), showing 

that biotinylation also occurs in this species and that the system is also applicable to flies 

(Popp 2004). Biotinylated TetR was also found in fly embryo nuclear extract (fig. 2.12), 

showing that the biotinylated protein is correctly located in the nucleus where it can meet 

its binding site. 

The functionality of the system was also verified by ChIP experiments (fig 2.13). 

Biotinylated TetR protein was found bound at the TetO site, and the Fab7 PRE was also 

enriched in the streptavidin pull-down, showing that purification of the PRE via 

chromatin linkage to the bait is possible. This enrichment was dependent on the presence 

of biotinylated TetR on the chromatin since there was no PRE enriched in samples from 

the ΔTetO-Fab7 line. 

Polycomb protein was found at the transgenic Fab7 and the recruitment of this protein 

was PRE specific since the binding was abolished in the TetO-ΔFab7 line (fig. 2.13). 

Trithorax protein, known to bind the endogenous Fab7 in embryos already at cellular 

blastoderm stage (Orlando et al. 1998), was also found at the transgenic Fab7, but in 

lower amounts than in the bxd control locus (fig. 2.13 B). This effect might be caused by 

absence of additional regulatory factors in the transgene since a moderate binding of Trx 

was also observed for a transgenic Fab7 in a similar experimental set up (Schmitt et al. 

2005). 

3.3 Ineffective protein pull-down: a matter of bait abundance or low 
efficiencies? 

Although this was a very ambitious project the initial quantitative estimations showed it 

could be possible to purify proteins from a single locus. Taking into account molecular 

weight of TetR, number of TetR binding sites included per locus, genomic dosage, 

number of cells per embryos and weight of a Drosophila embryo (See table 3.1), it was 
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calculated that in order to obtain 5 ng of TetR protein bound to chromatin, around 9.5 

grams of embryos would be necessary.  

 

TetR size 28KDa = 28.000gr/mol  

n° cells x embryo (stage 12 approx.) 10.000 cells 

n° copies of transgene x cell 2 

n° TetR molecules x locus 14 (7 TetO repeats/transgene, TetR 

binds as dimer) 

n° TetR molecules bound to Chromatin 

per embryo (approx.) 

280000 molecules 

n° of TetR molecules in 5 ng 5ng=1.78x10-13  mol= 

1.075x1011molecules 

n° of embryos needed for 5 ng TetR 383928 

Grams of embryos for 383929 embryos 

(approx.) 

9.5 gr 

Table 3.1 Calculation of TetR molecules present in Drosophila embryos. Number of cells in 
Drosophila embryo estimated based on Ashburner (1989) and Foe (1989) (Ashburner 1989; Foe 
1989). Number of embryos per gram from Dr. L Ringrose (personal communication).  

 

Since Streptavidin-Biotin interaction is so strong, it was expected that the pull-down 

efficiency would be considerably higher than for other methods such as antibody pull-

downs. Thus, it was estimated that quantities of embryos containing only 1-5 ng 

chromatin bound TetR should be sufficient starting material for the purifications. 

The first pull-down experiment was performed on material originating from 5 grams of 

embryos. In this experiment, total nuclear extract containing all soluble proteins and 

chromatin (pc-NE) was used as input material for the pull-down. The TetR protein bait 

was purified with streptavidin beads, but no Polycomb protein was co-purified with the 

bait (fig. 2.14), showing that the overall efficiency of the system was lower than 

estimated.  

ChIP experiments showed that Pc and Trx are bound to the transgenic locus, so if these 

proteins were not co-purified in the protein streptavidin pull-down it was due to 

experimental problems. Factors that could affect the protein purification efficiency are: 
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-Cross-link efficiency, if it is low, the protein-chromatin-protein bridge would be lost 

and proteins, including TetR, would come out of chromatin during purification. In this 

case enrichment of non-chromatin bound TetR would still be expected but not of other 

chromatin bound proteins. The enrichment of Fab7 transgene in samples subjected to 

ChIP with streptavidin suggests this is not the case (fig. 2.13), and that, at least to some 

extent, there are cross-linked molecules in the sample. However, during ChIP 

experiments there is an amplification step of the precipitated DNA samples, and it could 

be that the cross-link efficiency is very low but still sufficient to give a positive signal in 

ChIP but not high enough that the majority of transgene molecules are cross-linked to 

proteins with the concomitant decrease in pull-down efficiency. 

-Reversal of cross-link, in standard reversal of cross-link protocols used for ChIP 

experiments, total proteins in the sample are digested with Proteinase K and only DNA is 

recovered. For protein purifications, proteins must be preserved so different conditions 

for reversal of cross-link must be used.  If the reversal of cross-link is not complete, a 

fraction of the chromatin bound proteins would be lost, resulting in lower efficiency of 

the purification. 

-DNA fragment size, a key point for a successful purification with a bait is that both 

TetO site and PRE are contained in the same chromatin fragment at the moment of the 

pull-down. If the chromatin is sheared in fragments that are too small then TetO and 

Fab-7 would be in separate fragments and TetR purification would be still successful but 

not of PRE associated proteins. Although ChIP experiments suggest this is not the case, 

it could again be the case that a minority of right size fragments are enough to give a 

positive enrichment after PCR but not on a protein pull-down.  

-Biotinylation efficiency, if most of TetR molecules bound to chromatin are not 

biotinylated then the number of locus molecules that bind the streptavidin beads would 

be reduced. 

-Unbound TetR and other biotinylated proteins, free protein that is not bound to the 

chromatin can interfere with the purification by saturating the system. If the proportion 

of  free protein to chromatin bound protein is high, then it could be that all streptavidin 

binding sites on the beads get saturated by binding of free TetR and other biotinylated 

proteins and the proportion of bound (purified) TetR that is attached to chromatin would 

be very low. This would prevent a detectable enrichment of the locus of interest. This 

seemed to be the case, since there was no difference in the amount of TetR pulled down 
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from the lines containing TetO site in the chromatin with the one that has no binding site 

(fig 2.14), indicating that most of pulled TetR was free in the nucleus.  

Having identified the possible causes for the lack of Pc in the pull-downs, several 

experiments were conducted to try to improve each step.  

3.4 Problems associated to working with lines carrying many 
transgenes 

In order to purify proteins from Drosophila a large quantity of embryos had to be 

collected. To do so, the fly lines generated had to be continually amplified to set up fly 

cages for embryo collection. Transgenic lines are often less viable than wt flies. Having 4 

transgenes inserted in the genome seemed to be very disadvantageous; the generated 

transgenic flies were weak, they did not lay many eggs and they were often smaller than 

wt. After some months of continuous amplification, the transgenic lines ceased to 

produce TetR protein. PCR analysis of the lines showed that all transgenic elements were 

still present in the flies and yet these flies expressed no TetR. These flies also gave more 

progeny and grew faster than the original flies, indicating that they could overgrow the 

original fly stock almost completely in a very short period of time.  

It is not clear how these flies originated. It could be that chromosomal re-arrangements 

caused the lost of expression without loss of the transgenes elements from the DNA. 

Alternatively, it is possible that the expression of Gal4 or of TetR protein became 

epigenetically silenced. In both cases, the flies would lose TetR and become able to out-

compete the TetR expressing phenotype. This phenomenon affected all 3 transgenic lines 

(TetO-Fab7, TetO-ΔFab7 and ΔTetO-Fab7). For two of the lines, flies containing all 

transgenes and still expressing the transgenic proteins were found mixed with flies that 

have ceased to express TetR. By separating and crossing these flies, the lines could be 

rescued and re-amplified. This was not the case for ΔPRE line where the transgenic line 

could not be recovered, not even from the small stocks kept at 18°C. For this reason, 

many experiments were carried on with TetO-Fab7 line and only one control, the 

ΔTetO-Fab7 line. 

3.5 What could and could not be done to increase efficiency 

Several experiments were conducted to measure chromatin shearing, cross-link, reversal 

of cross-link, biotinylation and chromatin shearing efficiencies and try to increase them.   
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3.5.1 Cross-link and reversal of cross-link 

In Drosophila embryos, different cross-link times with formaldehyde resulted in minor 

changes in running pattern of proteins on SDS-Gels giving the indication that the 

observed proteins might correspond to the uncross-linked fraction of the sample (fig. 

2.16). To increase the proportion of cross-links other protein cross-linkers were tested. 

Although the only available chemical cross-linker able to produce DNA-Protein cross-

links is formaldehyde, the addition of a protein-protein cross-linker could help stabilize 

protein-DNA complexes by fixing together proteins of a same complex or to histones 

present in the chromatin. DSP and DTBP, two protein-protein cross-linkers were tested. 

Addition of DSP directly to embryos had no effect on overall protein cross-link levels 

(fig. 2.19A). DSP is a widely used cross-link in studies of protein-protein interaction but 

it has the drawback that it is water insoluble so it is normally used directly on protein 

extracts.  When used for in vivo cross-link it could be that the cross-linker did not 

penetrate the embryo into the cell nuclei. For this reason a similar cross-linker, but water 

soluble, was tested. Addition of DTBP directly to nuclei had also no effect on the cross-

link efficiency as shown in a pull-down experiment (fig. 2.19B).  

This approach was tested because it was thought that using a different cross-linker than 

formaldehyde could help to increase the stability of chromatin via cross-link of proteins 

to histones. However, no improvement was observed in the pull-down efficiency. It 

might be the case that cross-linking proteins to histones does not affect the overall 

efficiency of the pull-down or it might be that the cross-linking is not taking place. 

Histones and other proteins might simply not be physically close enough to be cross-

linked. In addition, there is increasing evidence that PREs are depleted of nucleosomes 

(Papp and Muller 2006; Schwartz et al. 2006) and this might also be the case at the TetO 

site.  

Although no differences were observed when cross-linking with formaldehyde for 

different times, this chemical efficiently cross-linked pure TetR protein and the reversal 

of the cross-link was achieved by incubating the proteins in sample buffer for over 10 

min (fig. 1.17). More over, chromatin from formaldehyde crossed-link embryos showed 

the typical fraction distribution on CsCl gradients for cross-linked chromatin (fig. 2.25). 

For these reasons, cross-links were continued with formaldehyde.  
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3.5.2 Chromatin shearing 

The chromatin fragment size could have a large influence on the performance of the 

system. Fragments that are too small (less than 2-3 kb) will not contain TetO and PRE in 

the same fragment resulting in failure of PRE bound proteins to co-purify with the bait. 

The ideal method to obtain a homogeneous chromatin population of defined size 

fragments, which contains both, TetO and PRE, would be to digest the chromatin with 

restriction enzymes. These enzymes are usually used for digestion of naked DNA, which 

has been pre-purified and contains no bound proteins. In this case, the material to be 

digested was cross-linked chromatin, which contains many fixed proteins, so there was 

the possibility that the restriction sites were not available to the enzymes. When tested, 

the chromatin was digested, but with low efficiency. In addition, there were endogenous 

endonucleases that further digested the chromatin un-specifically into fragments around 

500bp size (fig. 2.20 A). Normally, adding EDTA to the chromatin buffer inhibits the 

activity of endonucleases, but restriction enzymes are also inhibited, so EDTA could not 

be used. Moreover, a restriction enzyme digest of the extracts would be quite 

complicated because the amount of sample to be digested (around 60 ml), and it would 

require incubation for several hours at 37°C, which might be deleterious for the proteins, 

making this approach worth implementing only if the efficiency of the digest would be 

very high and it would give a clear advantage over sonication, which was not the case. 

Instead, the sonication procedure, which is much more rapid, with no need of incubation 

at 37°C was optimized to obtain an average fragment size of 3 kb (fig. 2.20 B). 

3.5.3 Biotinylation 

Using a biotinylated tag is an attractive approach for protein complex purification due to 

the very high affinity of avidin/streptavidin for biotinylated templates. Biotinylation can 

occur either by the cell endogenous protein-biotin ligases or through the co-expression of 

an exogenous biotin ligase. In mammalian cells or even in mouse embryo the 

biotinylation of tagged transgenic proteins by a transgenic BirA ligase seems to be a very 

efficient process (de Boer et al. 2003). In addition, previous work performed in yeast 

showed that the use of biotin tagged transcriptions factors is an efficient approach to 

increase the sensitivity of ChIP experiments (van Werven and Timmers 2006). 

Biotinylation was shown to take place in Drosophila (fig. 2.12), but with what 

efficiency? To answer this question, a streptavidin band shift experiment was performed 

in the eluted material from a streptavidin pull-down. The reason for using pull-down 
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material was to first enriched on biotinylated protein, since previous experiments on total 

nuclear extract have shown no detectable band shift (results not shown), this experiment 

indicated that the biotinylation was lower than expected. Quantification of TetR protein 

in the different samples confirmed that the biotinylation efficiency is only around 23%. 

Previous work in mammalian MEL cells reported a biotinylation efficiency of about 

100% (de Boer et al. 2003). In addition the efficiency of the pull-down is also lower than 

expected, resulting in only 2.2% of total TetR in the extract being purified. This means 

that in order to pull-down 10ng of TetR bound to chromatin, the starting input material 

should be around 420 gr of embryos. Using so many embryos was not feasible within the 

scope of this project since there were other factors that set experimental limits;, for 

instance embryo collection of unhealthy stock, sample volume, beads amount, beads 

elution volume, amount of protein that can be loaded in one well in a SDS-PAGE, 

among others; scaling up to this level would require new optimization of each step and 

finding other experimental alternatives to cope with large amount of materials.  

The TetO site in the transgene is composed of seven TetR binding sites. 23% 

biotinylation efficiency means that out of fourteen TetR molecules expected to be bound 

at the TetO site, only 3.2 molecules are expected to be biotinylated. It could be possible 

that the presence of only three biotinylated TetR molecules out of fourteen bound to the 

locus would be sufficient to bind the fragment to streptavidin. In this case increasing the 

biotinylation efficiency would have no effect on the pull-down efficiency. However, 

there is also the possibility that three molecules is not sufficient and that by increasing 

biotinylation the pull-down efficiency would also be increased.  

In vitro incubation with recombinant BirA did not produce an increase on Streptavidin 

ChIP efficiency. The BirA enzyme showed little activity and in order to produce 

noticeable biotinylation it had to be added in large amounts to the pc-NE, which 

exceeded the amounts available given the kind of volumes of extract that were to be 

handled. In addition, Biotin also had to be added exogenously. In this case, both BirA 

and Biotin, had to be eliminated from the pc-NE before the pull-down (ChIP) since they 

would saturate the system. It was shown by ChIP that addition of an in vitro biotinylation 

step actually reduced the efficiency of the system probably due to remaining enzyme and 

biotin in the sample after CsCl gradient (fig. 2.21). The degree of biotinylation obtained 

was probably insufficient to make a difference on the biotinylation levels of the TetR or 

maybe the chromatin-bound TetR was not available for biotinylation. 
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3.5.4 Soluble TetR and biotinylated proteins 

The expressed TetR protein has a NLS that allows the protein to be located at the nucleus 

to bind the TetO site in the chromatin. However, since there are only few TetO sites per 

transgene only a few TetR molecules, seven dimers per homologous chromosome, can 

bind per nucleus. On the other hand, the TetR protein is over-expressed; therefore there 

is a high amount of unbound free nuclear TetR. In addition to the free TetR, there are in 

the nucleus some endogenous biotinylated proteins that are quite abundant if compared 

to the amount of TetR present in the chromatin. Altogether, these soluble biotinylated 

proteins can compete with the chromatin-bound TetR for the interaction with 

streptavidin beads resulting in a great dilution of the pulled-chromatin. Thus, it was 

expected that the efficiency of the pull-down could be improved by including a 

chromatin pre-purification step to separate this fraction from nuclear soluble proteins. 

Several approaches were tested in order to purify chromatin based on different physical-

chemical properties of this macromolecule. Solubility, precipitation with high salt was 

effective, however the precipitated chromatin could not be re-solubilized in mild 

conditions (fig.2.20); the only possibility was to shear the chromatin by sonication in 

very small fragments which were then solubilized. However, this approach was not 

compatible with the system that requires chromatin fragments of about 3 kb. Molecular 

weight, chromatin is a macromolecule of a size, which is several orders of magnitude 

bigger that protein complexes that are present in the nuclei, and certainly much bigger 

that the 28KDa TetR thus, in principle, it could be separated by size exclusion. Two 

similar methods were tested, based on the use of semi-permeable membrane with pores 

of sizes that let molecules up to 300 KDa and 1000 KDa go trough and, in principle, 

retain chromatin. First Centricom like devices and second dialysis membrane were 

tested. In both cases the soluble proteins did not diffuse through the pores of the semi-

permeable membranes and were retained with the chromatin (fig. 2.21 and 2.22). A 

similar effect was observed when trying to separate the chromatin by charge using ion 

exchange resins. In this case all soluble proteins remained in the unbound fraction with 

chromatin (data not shown). This effect was unexpected since ion exchange matrixes 

with opposite charges were tested and it could be expected that some proteins bind to at 

least one of them. However, all biotinylated proteins present in the sample, regardless of 

their isoelectric point, behaved the same way and remained in the same fraction than 

chromatin.  
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A complete different approach was next tested consisting on using the specific 

interaction between TetR and TetO binding site to separate TetR protein from pc-NE. 

Although this approach was effective for separation of pure TetR, which was retained in 

the column via interaction with TetO DNA, it failed to separate the TetR protein from 

the chromatin fraction when pc-NE samples were tested (fig 2.24); giving the indication 

that it was something present in the pc-NE sample, which interfered with the interaction. 

All together, these negative results clearly show that is the nature of the sample, and not 

the methods as such that interfere with the different tested purifications. Many could be 

the reasons that act together to cause this behavior: First, allosteric effects of chromatin 

intercepting the interaction of the soluble proteins with the different beads and matrixes. 

Second, a mater of solubility or free diffusion, the pc-NE containing chromatin are quite 

concentrated; the chromatin is in a very unstable solution, freezing and thawing, 

centrifugation or changes in salt concentration lead to precipitation of chromatin. It could 

also be that in this dense solution proteins are not free to diffuse so easily. Moreover, the 

chromatin is cross-linked, and also are many of the soluble proteins, this could also 

influence the diffusion of proteins. It might be that cross-links itself, produces aggregates 

of proteins that cannot fit through the pores of the dialysis membranes and cannot bind 

charged resins. All these possible factors are linked to the characteristics of the sample, 

cross-linked chromatin, but it is exactly this type of sample that the system relies on, and 

cannot be changed or modified. Using native chromatin purification could help to 

overcome problems caused by the presence of over cross-linked proteins. However, in 

this case, stringent washes conditions would wash away low affinity interacting proteins. 

It would only be possible to use native chromatin by reducing the stringency of the pull-

down conditions and thus abolishing the main advantage of using the biotin streptavidin 

interaction. In addition, it might be the nature of chromatin it self and not the cross-link 

what interferes with the above mentioned methods.  

Separation of chromatin by centrifugation on a density gradient was the only method that 

achieved higher degree of separation. In this kind of gradients the chromatin was 

separated from the free proteins and also from un-cross-linked DNA (fig. 2.25). The 

main disadvantage of this approach was that the sample had to be greatly diluted, 

resulting in volumes that were very difficult to handle. In addition, chromatin material 

was also lost during the purification procedure. Another disadvantage was that the 
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method is time consuming and that the extracts had to be centrifuged for two days at RT 

and dialyzed over night after centrifugation, increasing the risk of protein degradation.  

Streptavidin protein pull-down was performed on chromatin samples after CsCl 

purification (fig. 2.24). For this experiment the maximum possible amount of embryos 

was used as starting material. The results indicate that the amounts of TetR and 

biotinylated proteins present in the sample after CsCl gradient separation were still quite 

high, since no differences were observed between the TetO-Fab7 line, which contains 

the TetR binding site on the DNA, and the ΔTetO-Fab7 line, which does not. However, 

even in this case, the ratio chromatin-bound / soluble TetR should be much higher than 

previous to the gradient, so if there would be enough chromatin bound protein in the 

sample, and the efficiencies of the pull-down would be high enough, it could be expected 

that chromatin bound proteins were also pulled-down and a difference of enrichment of 

PRE associated proteins could be detected between sample and control. Theoretically 

there are about 16ng of TetR bound to chromatin in 30 gr of embryos, but taking into 

consideration that the efficiency of the pull-down resulted about 2.18%, then very little 

TetR was expected. It is not know what the stoichiometry of PcG proteins at PREs is, 

then it was not clear how many molecules of Pc to expect per each TetR molecule. The 

obtained results show that there was not sufficient protein to see a difference between the 

two fly lines.  

3.6 The future of locus-specific factors identification 

The system designed in this work, for locus specific analysis of regulatory proteins 

showed to be biologically functional, however the identification and quantification of 

specific proteins proved to be difficult due to several experimental limitations that were 

not anticipated during the design phase of the system. Substantial effort was put into the 

detailed analysis of each step involved in the system. This analysis revealed which were 

the incorrect assumptions made during system design and the important features that 

should be improved if one is to use this system for locus specific purification of proteins. 

Altogether, this work has given precious information to answer important questions for 

the future of “locus specific”:  What lessons have we learned? What could be done with 

the system as it is? What could be modified in the system to improve its performance? 



Discussion 

 

91 

3.6.1 What is to be done: other possible applications of the system 

As mentioned above ChIP analysis revealed that the system is biologically functional 

and the locus is pulled-down when using the TetR bait (fig. 2.13). Differences in proteins 

bound to the PRE at different times in development or different tissues could be studied 

directly with this system by sequential ChIP (Loh et al. 2006). This technique would 

allow performing a first ChIP using the TetR bait and streptavidin beads to purify the 

transgenic locus from tissues where the TetR is expressed giving tissue specificity, 

eluting the chromatin from the beads using biotin, and performing a second ChIP on the 

purified chromatin using a specific antibody, using chromatin from different species as a 

carrier (O'Neill et al. 2006). This methodology would allow the investigation of the 

presence of specific factors bound to the chromatin in different situations. However, it 

would not be possible to find new, previously unidentified factors, since the second pull-

down is based on the choice of antibody. Nevertheless, it could provide valuable 

information about differences at the same locus between tissues where the corresponding 

regulated gene is active or inactive or it could be used to study kinetics of PcG/TrxG 

binding by targeted TetR expression at different developmental times. Eventually, a real 

powerful methodology would be to incorporate the TetR binding sites on the endogenous 

locus via homologous recombination allowing analysis of the PRE in the context of all 

endogenous enhancers and regulatory regions.  

3.6.2  What is to be modified: re-design of the system 

During this work steps of the purification that performed with low efficiency were 

detected and some could be modified to increase efficiency. However, there were some, 

identified as critical parts of the system, that could not be modified because they were 

part of the system design it self. For this reason, in order to improve the performance of 

the system several aspects of the system design should be adapted. 

-Lower expression of TetR. The bait should be expressed in lower amounts in order to 

increase the proportion of biotinylated protein. It was observed that only 23% of 

expressed TetR is biotinylated (fig. 2.18), lowering the levels of TetR in the cell might 

increase the fraction of total TetR that gets biotinylated and hence, the amount of 

biotinylated TetR bound to the TetO site. 

-Nuclear localization sequence on the BirA; adding a NLS on the BirA would allow the 

enzyme to translocate to the nucleus and further biotinylate TetR in this compartment. In 

this case, proper controls should be carried out to discard the possibility that inclusion of 
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BirA in the nucleus would also increase background levels. In this work, it was shown 

that incubation of pc-NE with recombinant BirA in presence of increasing amounts of 

biotin had also an effect on the degree of biotinylation of endogenous proteins (fig. 

2.21). However, it was not clear whether this effect was caused by endogenous ligases or 

by BirA. Although this enzyme has been reported to be specific for the Bio-tag (de Boer 

et al. 2003), this test was performed in mammalian cells. It remains then to be tested in 

Drosophila whether some nuclear endogenous proteins are targets of this enzyme.  

-Use of tandem tags on TetR; as an alternative to BirA system tandem tags could be 

included for the bait purification. For instance a combination of a Strep-tag with a His 

tag could be implemented (Skerra and Schmidt 1999; Skerra and Schmidt 2000). The use 

of tandem tag approach would allow elimination of endogenous biotinylated background 

proteins by performing a first pull-down with streptavidin and re-purifying the pulled 

material via the His tag. Addition of a Tev cleavage site between tags would allow 

eluting the specific pulled material from streptavidin beads by protease cleavage leaving 

behind the biotinylated proteins. The Strep-tag is a short peptide that binds directly to 

streptavidin without need of biotinylation (Schmidt et al. 1996). Thus, by excluding the 

BirA from the system the biotinylation efficiency problem would also be solved. A draw 

back of this approach would be the loss of one level of control over the system, since the 

uncoupled expression of BirA allows time specific purifications in addition to tissue 

specific ones. In addition, this would not eliminate the problem of non-chromatin bound 

TetR (see 2.6) for which a chromatin purification step, like CsCl gradient, would still be 

needed. 

-More TetO sites; arrays of many TetR binding sites could be included to increase pull-

down efficiency (Robinett et al. 1996; Vazquez et al. 2006). It was shown that although 

biotinylation efficiency is 23%, pull-down efficiency is only 2.18 %. Adding more TetO 

sites to the transgene could have a positive effect on the pull-down efficiency. However, 

it should be tested whether the presence of so many TetR molecules on the chromatin 

does not affect PcG/TrxG function since in this work it was shown that binding of TetR 

to the transgenic locus has a slightly activating effect on the expression of the miniwhite 

reporter gene (fig. 2.10 B). 

-Higher number of PRE transgenes in the genome; purification of locus specific 

complexes relays in the purification of two copies of the locus per cell. One option to 

increase the amount of proteins purified would be to increase the number of copies of the 
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transgene by including tandem repeats inserted in the same locus. A disadvantage of this 

approach could be that PcG/TrxG function might be enhanced by close proximity of 

more copies of the same PRE.  

-Use of recombinases to generate chromatin fragments of proper size; in this work Cre 

and FLP recombinases were used to generate the proper controls by in vivo excision of 

TetO and PRE (fig. 2.9 and 2.10). Recombination sites for a third recombinase could be 

included flanking the whole PRE transgene. An enzyme such as the Kw recombinase 

(Ringrose et al. 1997) could be added in vitro to pc-NE for specific excision of the 

desired fragment. In this work, it was shown that restriction enzyme digest is not 

efficient to produce homogeneous fragment size containing the transgene and although 

sonication proved a better solution, it produces a smear of fragments with sizes around 2 

kb (fig. 2.20). Using recombinases might help to solve the problem of fragment size. In 

addition, this method would also constitute an advantage for further purification of the 

transgene from the chromatin since the excised chromatin fragment is circularized and 

much smaller than the residual chromatin and it could be separated, for instance, by size 

exclusion methodology. Due to the presence of endogenous nucleases in the chromatin 

preparation (fig. 2.20) it would be necessary to test for activity of these enzymes on the 

circular substrate, which would be digested only by endonucleases but not by 

exonucleases.  

-Optimization in cell culture; the general tests to examine system performance should be 

carried out first in cell culture, since cells are easier to handle and large amounts of 

material are easier produced by cell culture. For this, one single cassette containing all 

transgenes would be transfected into Drosophila cells and stable cell lines would be 

obtained. Expression of TetR protein would be placed under control of a Cu+2 inducible 

promoter.  

-In flies, all different transgenes should be included in the same insertion site; inclusion 

of all transgenes, TetR, PRE and BirA in the same cassette, in same locus, could 

contribute to generate more stable fly lines, since inclusion of several transgenes inserted 

in different sites in the genome in the same fly line, can constitute a great disadvantage 

producing sick flies that do not grow well as it was detected in this work  (see 3.4). 

Altogether these modifications in the system design should help improve the efficiency 

of the system, which constitutes to date probably the only option to analyze the protein 

composition of a specific locus.  
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3.7 Conclusion and outlook 

In summary, a system was designed to purify proteins bound to a specific locus using 

external bait. Each transgenic element of the system was brought into flies and all the 

elements recombined to generate one fly line. Each step in the purification scheme was 

tested and their efficiencies determined. Unfortunately, the efficiencies of the most 

critical steps were considerably lower than expected.  

During this work, a detailed analysis of each experimental step involved in the system 

was performed. This analysis enabled the improvement of the steps and the identification 

of key features of system design that should be modified in the future for successful 

chromatin bound protein purification. All the information collected in this work was 

used to propose possible applications of the current system and most importantly to 

suggest alternatives to different components of the system that might function more 

efficiently.  

In addition to re-designing some aspects of the system, improvement in the sensitivity of 

current available techniques or development of new techniques for protein analysis will 

also have great influence on the feasibility and performance of this type of systems. For 

instance, it is possible that in the near future, mass spectrometry techniques will develop 

higher sensitivity allowing analysis of single cell proteomes (Woods et al. 2004; 

Rubakhin and Sweedler 2007; Tsuyama et al. 2008). In fact, micro-devices for single cell 

manipulation and for extraction of material of one cell are already being developed and 

implemented in basic biological research (Andersson and van den Berg 2004; Hellmich 

et al. 2005; Chen et al. 2008). In this scenario, analysis of very small differences between 

samples, the kind this system could deliver, may prove to be experimentally possible. 

Until then, the question of PcG/Trx group locus specific regulation and of other factors 

assisting in the specificity of the cellular memory remains open. 
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4. Materials 

4.1  Antibodies 

Antibody Source From Dilution 

   Western  Polytenes ChIP 

α-DIG Mouse Roche 

(Nr.11333062910) 

 1:200  

α-Polycomb Rabbit Britta Kock 1:10000 1:100 10 µl 

α-Trithorax Rabbit Inhua Chen-Muyers   35 µl 

α-PHO Rat Christian Beisel 1:1000   

α-TetR Mouse MoBiTec 

(Tet02) monoclonal mix 

1:1000  10 µl 

α-rabbit-

Alexa488 

Goat Molecular Probes  1:200  

α-rabbit-

Cy3 

Goat Jackson 

ImmunoResearch 

 1:200  

4.2 Molecular Weight markers 

1 kb DNA ladder New England Biolabs (NEB) 
100 bp DNA ladder. NEB 
Low Range PFGE Marker NEB 
Protein Standard Broad Range NEB  
SeeBlue Plus 2 Prestained Invitrogen 

4.3 Enzymes 
Benzonase Merk 
Calf intestinal alkaline phosphatase (CIP)   Merck   
Klenow enzyme          Roche   
Polynucleotide Kinase    NEB 
Proteinase K           Roche   
High Fidelity Polymerase          Roche   
Restriction enzymes         NEB   
RNAse A  Roche  
RNAse H Gibco  
Taq Polymerase          Qiagen   
T4 DNA ligase          NEB / Roche   

4.4 Oligonucleotides 

All oligonucleotides were purchased from Sigma, MWG or  Biomers. 
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4.4.1 Oligos and Primers for PRE constructs 

 

Oligo 

PAZKpn 

sense  5’ AGCTTGGTACCCAGCTCGAGG 3’ 
 

Oligo 

PAZKpn 

antisense 5’ GATCCCTCGAGCTGGGTACCA 3’ 

OligoBsiWI sense 5’ GTACACGTACGACGCGTGTCATGACCGGTAT 
GCA 3’ 

OligoBsiWI antisense 5’ TACCGGTCATGACACGCGTCGTACGT 3’ 

LOXP sense 5’AGCTTACTAGTGCGGCCGCATAACTTCGTATAAT
GTATGCTATACGAAGTTATGAATTC 3’ 
 

LOXP antisense 5’ TCGAGAATTCATAACTTCGTATAGCATACATTA 
TACGAAGTTATGCGGCCGCACTAGTA 3’ 

PREFab7 Fw 5’ GACTAGTGATGCTATCGCGTTCGATTGTTG 3’ 

PREFab7 Rv 5’ ATAATTTAGCGGCCGCTGTGGACTTTTCTTTTA 
ATGAGCTG 3’ 

OligoBsu sense 5’ TCGAGACCGGTCTGACCCTGAGGGCCGGCG 3’ 

OligoBsu antisense 5’ GATCCGCCGGCCCTCAGGGTCAGACCGGTC 3’ 

4.4.2 Oligos and Primers for TetR constructs 

3’BioTag sense 5’ TCGAGT TAGGAGCCGCCGGCGTTCGAGCGCC 
ACTCCATCTTCTGGGAATCCAGGATCTGGCGCAG 
CGAGGAGGCG 3’ 

3’BioTag antisense 5’ GATCCGCCTCCTCGCTGCGCCAGATCCTGGATT 
CCCAGAAGATGGAGTGGCGCTCGAACGCCGGCGG 
CTCCTAAC 3’ 

5’ BioTag sense 5’ GGCCGCATGGCCTCCTCGCTGCGCAGATCCTGG 
ATTCCCAGAAGATGGAGTGGCGCTCGAACGCCGG 
CGGCTCCATGCCAAAGAG CCCAGACCCT 3’ 

5’ BioTag antisense 5’ CTAGAGGGTCTGGGTCTCTTTGGCATGGAGCCG 
CCGGCGTTCGAGCGCCACTCCATCTTCTGGGAATC 
CAGGATCTGGCGCAGCGAGGAGGCCATGC 3’  

TetR Fw 5’ATAAGAATGCGGCCGCCGGCGGCTCCATGCCAAA 
GAGACCCAGACCCTCT 3’ 

TetR Rv 5’ CCGCTCGAGTTAGGATCCACTTTCACATTTAAG 
TTGTTTTTC 3’ 

4.4.3 Oligos for sequencing of plasmids and cloned fragments 

Operator.seq  5’ CGTGACGTCTAAGAAACC 3’ 

pC4TetOFRT  5’ CAACACTATTATGCCCAC 3’ 

pUASTetR3  5’ GAACTCTGAATAGGGAAT 3’ 

pUASTetR5  5’ CACACCACAGAAGTAAG 3’ 
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4.4.4 Primers used to test Cre/loxP and Flp/FRT recombination 

PRECreTest Fw 5’ GCTGGCGTAATAGCGAAGAG 3’ 

PRECreTest Rv 5’ CAGAGAAGGAGGCAAACAGC 3’ 

∗Fab-7-X-Up Rv  5’ GGCAGACCGAAACACTTTAGCAA 3’ 

TetOflptest Fw 5’ ACCTCGAGACCGGTACAGTT 3’ 

TetOflptest Rv 5’ ATCGAACGCGATAGCATCACTA 3' 

FLP2 Fw 5’ GTAAACTCGAGGGATCCGAAG 3’ 

ChIP5 Rv 5’ GATCGCCGGATCAGCATCT 3’ 

 

4.4.5 Primers used to make probes for Southern Blot  

PRECreTest Fw 5’ GCTGGCGTAATAGCGAAGAG 3’ 

Fab7pstI  

(Fab7 probe) 

Rv 5’ CAATTGGGAAAGAAACCCATT 3’ 

∗WhitepromUp 

(miniwhite probe) 

Fw 5’ ACCCATCTGCCGAGCATCTGAA 3’ 

 

Miniwhite-primer3 

(miniwhite probe) 

Rv 5’ GCTGCTGCTCTAAACGACGCA 3’ 

4.4.6 Additional primers used to check fly stocks 

Gal4-1 Fw 5’ GAAGGAACACCCTTGGCTATC 3’ 

Gal4-1 Rv 5’ GTGCGGTCTCGTTATTCTCAG 3’ 

Gal4-2 Fw 5’ ATGCCGTCACAGATAGATTGG 3’ 

Gal4-2 Rv 5’ CGTCGCCAAAGAACCCATTATT 3’ 

BirA3 Fw 5’ ACGTGACTGTGCGTTAGGTC3’ 

BirA1 Rv 5’ AGCCTGCTGGTATTCTGCAAT 3’ 

TetR5’-1 Fw 5’ GATTCCCAGAAGATGGAGTGG 

TetR5’-1 Rv 5’ CCTTCGATTCCGACCTCATTA 3’ 

4.4.7 Primers used in ChIP  

ChIP-1 Rv 5’ CCCTCAGGAAGATCGCACT 3’  

ChIP-2 Fw 5’ GTTACCCAACTTAATCGCCTTG 3’ 

ChIP-3 Fw 5’ CGCAGCCTGAATGGCGAAT 3’ 
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ChIP-3 Rv 5’ TCCCTAGTACACCCGTCAACAA 3’ 

A-G6PDH Fw 5’ CGCCCTGGATCTCATAATCA 3’ 

A-G6PDH Rv 5’ CCCAAAGATGACGAACGTGT 3’ 

∗Bxd-Up Fw 5’ GACGTGCGTAAGAGCGAGATACAG 3’ 

∗Bxd-Low Rv 5’ GCACTTAAAACGGCCATTACGAA 3’ 

24mer  5’ AGAAGCTTGAATTCGAGCAGTCAG 3’ 

20mer  5’ CTGCTCGAATTCAAGCTTCT 3’ 

∗Kindly provided by Dr. Sabine Schmitt. 

4.4.8 TetO oligos for beads coupling  

̃1TetO_ColFw  5’ ThiolC6-TCCCTATCAGTGATAGAGA 3’ 

1TetO_ColRv  5’ TCTCTATCACTGATAGGGA 3’ 

4.5 Plasmids 

pBKSII Cloning vector. Invitrogen 

pCaSpeR4 Vector for P-mediated transformation in Drosophila. 

Carries miniwhite as transformation marker (Pirrotta 

1988). 

pSVPAZ11 Contains direct repeats of  the FRT sequence 

separated by 1.1 kb insert and is based on the plasmid 

pBS (Buchholz et al. 1996) kindly provided by Dr. 

Leonie Ringrose. 

pUHD142-1 Contains the coding sequence of Tet repressor protein 

with a Nuclear localization sequence on the amino 

termini (Gossen and Bujard 1992) kindly provided by 

Prof. Hermman Bujard. 

pUC13-3 Contains seven repeats of the TetO sequence. (Gossen 

and Bujard 1992) kindly provided by Prof. Hermman 

Bujard. 

pUZFab-7 pUZ vector carrying Fab7 PRE. Kindly provided by 

Dr. Sabine Schmitt. 

 

pUZvg pUZ vector carrying vestigial PRE between NotI and 
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SpeI sites (Lee et al. 2006). 

pSVPAZ-TetO-FRT Vector containing the TetO cassette flanked by FRT 

sites. This work. 

pC4TetOSsp pCasper4 vector containing TetO-FRT cassette 1.7 kb  

downstream of the end of the miniwhite gene. This 

work. 

pC4TetOLsp pCasper4 vector containing TetO-FRT cassette 3.1 kb  

downstream of the end of the miniwhite gene. This 

work. 

pBKS-LOXP Contains 2 direct repeats of the LOXP sites with 

HindIII, SpeI and NotI cloning sites in between. This 

work. 

pC4TetOSsp-Lox pC4TetOSsp with LoxP sites. This work. 

pC4TetOLsp-Lox pC4TetOLsp with LoxP sites. This work. 

pC4LoxP pCasper4 vector containing 2 direct repeats of the 

LOXP sites upstream the miniwhite gene. This work. 

pC4Fab7-2 pCasper4 vector containing the Fab7 PRE flanked by 

LOXP sites upstream the miniwhite gene and the 

TetO site flanked by FRT sites 6.8 kb downstream the 

miniwhite gene. This work. 

pC4Fab7-7 pCasper4 vector containing the Fab7 PRE flanked by 

LOXP sites upstream the miniwhite gene and the 

TetO site flanked by FRT sites 5.3 kb downstream the 

miniwhite gene. This work. 

pC4Fab7-4 pCasper4 vector containing the Fab7 PRE flanked by 

LOXP sites upstream the miniwhite gene and the 

TetO site flanked by FRT sites 156 bp upstream the 

Fab7 PRE. This work. 

pC4Fab7-6 pCasper4 vector containing the Fab7 PRE flanked by 

LOXP sites upstream the miniwhite gene and the 

TetO site flanked by FRT sites 410 bp upstream the 

Fab7 PRE. This work. 

pC4vg-1 pCasper4 vector containing the vestigial PRE flanked 
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by LOXP sites upstream the miniwhite gene and the 

TetO site flanked by FRT sites 6.8 kb downstream the 

miniwhite gene. This work 

pC4vg-10 pCasper4 vector containing the vestigial PRE flanked 

by LOXP sites upstream the miniwhite gene and the 

TetO site flanked by FRT sites 410 bp upstream the 

vg PRE. This work. 

pUASTy Vector for Gal4 induced expression of Proteins in 

Drosophila. Contains the yellow gene as marker 

(Brand and Perrimon 1993). 

pBKSTetR Vector containing the TetR coding sequence. This 

work. 

pBKSTetR3’Bio Vector containing the TetR coding sequence and the 

biotinylation Tag coding sequence on the 3’ end of 

the TetR (protein amino termini). This work. 

pBKSTetR5’Bio Vector containing the TetR coding sequence and the 

biotinylation Tag coding sequence on the 5’ end of 

the TetR (protein carboxyl termini). This work. 

pUYTetR3’Bio pUSTy vector carrying TetR and amino termini Bio 

tag sequences under UAS control region. This work. 

pUYTetR5’Bio pUSTy vector carrying TetR and amino termini Bio 

tag sequences under UAS control region. This work. 

pUChsΔ2-3 Help vector for P-element mediated transformation. 

Codifies for expression of P-Transposase. Kindly 

provided by Dr. Stefan Schoenfelder. 

pUST(GFP)-MycBirA pUST vector carrying the coding sequence of BirA 

biotin ligase enzyme. The protein is myc tagged.  

(Popp 2004). 

pMTGal4 Gal4 expression vector inducible by Cu++. Originally 

provided by Dr. Peter Soba. 

4.6 Bacterial cell lines 

SURE 2 e14–(McrA–) ∆(mcrCB-hsdSMR-mrr)171 endA1 supE44 thi-1 gyrA96  
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relA1 lac recB recJ sbcC umuC::Tn5 (Kanr) uvrC [F« proAB lacIqZ∆M15 

Tn10 (Tetr) Amy Camr], Stratagene  

XL1-Blue  E. coli recA - (recA1 lac - endA1 gyrA96 thi hsdR17 supE44 relA1 { F’  

 proAB lacIq lacZDM15Tn10} ), Stratagene  

4.7 Drosophila culture cells 

SL2 SL2 Schneider cell line derived from primary culture of Drosophila  

melanogaster embryos. 

 

4.8 Fly Lines 

4.8.1 General Fly stocks 

Donor 

Genotype donor  y[1]w[1118] Paro lab Stock collection 

YTD: y[1]w[1118]; + ; TMSb/Dr Dr.  Leonie Ringrose  

YCS: y[1]w[1118]; CyO/Sp  Dr. Leonie Ringrose  

y[1]w[1118]; BcGla/CyO   Dr. Stefan Schoenfelder    

y[1]w[1118]; TM2,Ubx/MKRS   Dr. Stefan Schoenfelder 

4.8.2 Gal4 driver lines 

Daughterless:  y[1]w[1118]; P{da-Gal4.w-} Paro lab Stock collection 

Glass (GMR): w[*]; P{w[+mC]=GAL4-ninaE.GMR}12 Bloomington Stock Center 

4.8.3 Transgenic lines expressing site-specific recombinases 

y[1]w[67c23]; noc[Sco]/CyO, P{w[+mC]=Crew}DH1 Bloomington Stock Center, 

No. 1092  

P{ry[+t7.2]=hsFLP}12, y[1] w[*]; noc[Sco]/CyO Bloomington Stock Center, 

No. 1929  

4.8.4 Biotin Ligase (BirA) expressing flies 

Y[1]w[1118];P{BirA-myc, GFP}    Christian Popp  

Y[1]w[1118];+;P{BirA-myc, GFP}    Christian Popp  
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4.8.5 Generated fly lines 

 

Fab7 PRE lines  

6.1 Fab7 
Contains the p-element pC4Fab7-6 inserted in the II 

chromosome, y[1] w[1118]; P{ FLP-TetO, FRT-Fab7, w+}. 

6.1.14 ΔFab-7 
Is 6.1 Fab7 after excision of PRE by Cre  recombination: y[1] 

w[1118]; P{ FLP-TetO, FRT, w+}. 

6.1.55 ΔTetO 
Is 6.1 after excision of TetO by FLP recombination:   

y[1] w[1118]; P{ FLP, FRT-Fab7, w+}. 

6.1.4 Fab7-TB-

DaGal 

(TetO-Fab7) 

Is 6.1 Fab7 recombined with 5.5 TetR-BirA. Carries on II 

chromosome three P-elements. And on III chromosome 

Daughterless Gal4 driver. y[1] w[1118]; P{ FLP-TetO, FRT-

Fab7, w+}, P{TetR5’Bio, y+}, P{BirA-myc, GFP}; 

DaGal4/TMSb. 

6.1.14.3 ΔFab-7-

TB-DaGal 

(TetO-ΔFab7) 

Is 6.1 ΔFab7 recombined with 5.5 TetR-BirA. Carries on II 

chromosome three P-elements. And on III chromosome 

Daughterless Gal4 driver. y[1] w[1118]; P{ FLP-TetO, FRT, 

w+}, P{TetR5’Bio, y+}, P{BirA-myc, GFP}; DaGal4/TMSb. 

6.1.55.2 ΔTetO-

TB-DaGal 

(ΔTetO-Fab7) 

Is 6.1.55 ΔTetO recombined with 5.5 TetR-BirA. Carries on 

II chromosome three P-elements. On the III chromosome 

Daughterless Gal4 driver. y[1] w[1118]; P{ FLP, FRT-Fab7, 

w+}, P{TetR5’Bio, y+}, P{BirA-myc, GFP}; DaGal4/TMSb. 

FBT 

Is 6.1 Fab7 crossed to 5.4(3)TetR-BirA 

Y[1]w[1118];P{ FLP-TetO, FRT-Fab7, w+}; P{TetR5’Bio, 

y+}, P{BirA-myc, GFP} 

FBT-DaGal4 
Is FBT crossed to DaGal4. Is not balanced so the cross was 

made when needed for control experiments, it was not kept. 

6.2 Fab7 
Contains the p-element pC4Fab7-6 inserted in the X 

chromosome, y[1] w[1118], P{ FLP-TetO, FRT-Fab7, w+}. 

6.2 ΔFab-7 
Is 6.1 Fab7 after excision of PRE by Cre recombination: y[1] 

w[1118], P{ FLP-TetO, FRT, w+}. 

6.2 ΔTetO Is 6.1 after excision of TetO by FLP recombination:   
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y[1] w[1118], P{ FLP, FRT-Fab7, w+}. 

6.25 Fab7 

Contains the p-element pC4Fab7-6 inserted in the III 

chromosome, y[1] w[1118];+; P{ FLP-TetO, FRT-Fab7, 

w+}. 

6.25 Fab7-TB-

DaGal 

Is 9.25 Fab7 recombined on chromosome III with 

Daughterless Gal4 driver. 

6.25ΔFab7-TB-

DaGal 

Is 9.25 Fab7-DaGal after excision of PRE by Cr  

recombination and Crossing in the TetR-BirA Chromosome 

on II.  

 y[1] w[1118]; P{TetR5’Bio, y+}, P{BirA-myc, GFP/Cyo ;   

P{ FLP-TetO, FRT, w+}, DaGal. 

6.25 ΔTetO-TB- 

DaGal 

Is 9.25 Fab7-DaGal after excision of TetO by FLP 

recombination and crossing in the TetR-BirA Chromosome 

on II   

y[1] w[1118]; P{TetR5’Bio, y+}, P{BirA-myc, GFP/CyO;       

P{ FLP, FRT-Fab7, w+}, DaGal . 

2.1 Fab7 
Contains the p-element pC4Fab7-2 inserted in the II 

chromosome, y[1] w[1118]; P{ FLP-TetO, FRT-Fab7, w+}. 

2.5 Fab7 

Contains the p-element pC4Fab7-2 inserted in the III 

chromosome, y[1] w[1118];+; P{ FLP-TetO, FRT-Fab7, 

w+}. 

4.1 Fab7 

Contains the p-element pC4Fab7-4 inserted in the III 

chromosome, y[1] w[1118];+; P{ FLP-TetO, FRT-Fab7, 

w+}. 

7.2 Fab7 
Contains the p-element pC4Fab7-7 inserted in the II 

chromosome, y[1] w[1118]; P{ FLP-TetO, FRT-Fab7, w+}. 

7.6 

Contains the p-element pC4Fab7-2 inserted in the III 

chromosome, y[1] w[1118];+; P{ FLP-TetO, FRT-Fab7, 

w+}. 

 

vg PRE lines  

10.7 vg 
Contains the p-element pC4vg-10 inserted in the II 

chromosome, y[1] w[1118]; P{ FLP-TetO, FRT-vg, w+}. 
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10.7 vg-TB 

Is 10.7 vg recombined on II chromosome with 5.5(8)TetR-

BirA. 

y[1] w[1118]; P{ FLP-TetO, FRT-vg, w+}, P{TetR5’Bio, 

y+}, P{BirA-myc, GFP} 

10.7vg-TB-DaGal 

Is 10.7 vg-TB crossed to DaGal4 driver. y[1] w[1118];        

P{ FLP-TetO, FRT-vg, w+}, P{TetR5’Bio, y+}, P{BirA-myc, 

GFP}; DaGal4/TMSb 

10.7Δvg-TB-

DaGal 

Is 10.7-TB after FRT mediated recombination and crossing a 

DaGal4 driver. y[1] w[1118]; P{ FLP-TetO, FRT, w+}, 

P{TetR5’Bio, y+}, P{BirA-myc, GFP}; DaGal4/TMSb 

10.7ΔTetO-TB-

DaGal 

Is 10.7-TB after FLP mediated recombination and crossing a 

DaGal4 driver.  

y[1] w[1118]; P{ FLP, FRT-vg, w+}, P{TetR5’Bio, y+}, 

P{BirA-myc, GFP}; DaGal4/TMSb 

1.5 vg 
Contains the p-element pC4vg-1 inserted in the II 

chromosome, y[1] w[1118]; P{ FLP-TetO, FRT-vg, w+}. 

1.8 vg 
Contains the p-element pC4vg-1 inserted in the III 

chromosome, y[1] w[1118];+; P{ FLP-TetO, FRT- vg, w+}. 

TetR lines  

5.5 TetR 
Contains the p-element pUYTetR5’Bio inserted in the II 

chromosome. y[1] w[1118]; P{TetR5’Bio, y+}. 

5.4 TetR  
Contains the p-element pUYTetR5’Bio inserted in the III 

chromosome. y[1] w[1118];+; P{TetR5’Bio, y+}. 

5.5(8)TetR-BirA 

Is 5.5 TetR recombined with BirA transgenic fly. Both P-

elements are on chromosome II. 

Y[1]w[1118]; P{TetR5’Bio, y+}, P{BirA-myc, GFP} 

5.4(3)TetR-BirA 

Is 5.5 TetR recombined with BirA transgenic fly. Both P-

elements are on chromosome III. 

Y[1]w[1118];+; P{TetR5’Bio, y+}, P{BirA-myc, GFP} 

5.11 TetR 
Like 5.5, contains the p-element pUYTetR5’Bio inserted in 

the chromosome X  

3.1 TetR 
Contains the p-element pUYTetR3’Bio inserted in the II 

chromosome. y[1] w[1118]; P{TetR3’Bio, y+}. 
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3.3 TetR  
Contains the p-element pUYTetR3’Bio inserted in the III 

chromosome. y[1] w[1118]; P{TetR3’Bio, y+}. 

3.1(2) TetR-BirA 
Is 3.1 TetR recombined with BirA transgenic fly. 

Y[1]w[1118]; P{TetR3’Bio, y+}, P{BirA-myc, GFP} 

3.3 (3) TetR-BirA 
Is 3.1 TetR recombined with BirA transgenic fly. 

Y[1]w[1118];+; P{TetR3’Bio, y+}, P{BirA-myc, GFP} 

 

4.9 Technical Devices 

4.9.1 Microscopes 

Microscopes   Olympus BX60    
 Leica DMRXA 
Stereomicroscopes    Leica MS5   
 Leica MS7,5   
 Leica MZFLIII   
Software    OpenLab 1.7.8   

4.9.2 Microinjection 

Femtotips   Eppendorf   
Microloader tips    Eppendorf   
Microinjector   FemtoJet  Eppendorf   
Micromanipulator   Leitz   
Microscope   Leitz Labovert   

4.9.3 Agarose Gel electrophoresis 

MUPID agarose gel chamber and powers supply (Helix) 

4.9.4 SDS-PAGE gel electrophoresis and Western Blotting 

Protean II BioRad 
X-Cell Sure Loc Invitrogen 
Mini Trans Blot BioRad 
Transfer chamber ZMBH workshop 
Voltage source   Pharmacia EPS 500/400  

4.9.5 Data processing  

Computer   Apple G4, Apple MacBook Pro 
Software    Adobe Illustrator CS2   
 Adobe Photoshop CS2   
 Endnote X.0.2 
 Microsoft Excel   
 Microsoft PowerPoint   
 Microsoft Word   
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 AIDA 
 DNA Strider 1.4 
 Gene Construction Kit 

Biology Workbench 3.2 (SDSC: San Diego 
super computer center) 

4.10 Further Materials 

Centrifugation devices Vivaspin, Sartorius 
Centrifuges   Beckmann J2-MC, Thermo Sorvall Wx 

Ultra, Thermo Sorvall RC6 plus  
Concentrator Eppendorf Concentrator 5301 
Coverslits   Menzel   
DAPI   Sigma   
Dialysis tubing Snake-skin pleated, Pierce 
Dialysis tubing Cellulose ester, SpectraPor 
Double-sided sticky tape   Scotch 3M   
Embryo Homogenizer Yamato LSC  
Filters (0.2 µm, 0.45 µm)   Schleicher & Schuell   
Filter paper   Whatman, 3 mm   
Fly cages    ZMBH fine mechanics workshop   
Forceps  A. Dumont & Fils   
GeneAmp PCR System 9700   Applied Biosystems   
Highspeed Plasmid Midi Kit   Qiagen   
Micro Bio-Spin P-30 columns Biorad 
Horizontal shaker   GFL – Gesellschaft für Labortechnik   
Magnetic stirrer  Ikamag   
Micropestle   Eppendorf   
PCR machine Applied Biosystems GenAmp 9700 
Pipetman    IBS Integra Biosciences   
Pipettes (1 ml, 200 µl, 10 µl, 2 µl)  Gilson   
Petri dishes  Greiner  
pH meter   inoLab  
E-Box gel documentation system PeqLab 
QIAquick Gel Extraction Kit   Qiagen   
QIAquick PCR Purification Kit    Qiagen   
Rotator  Heidolph   
Slides   Menzel   
Spectrophotometers Witec Nanodrop, BioRad SmartSpec 3000 
Sonifier Branson 250, Bioruptor Diagenode 
Syringes  BD Biosciences   
Table top centrifuge   Eppendorf   
Thermomixer   Eppendorf   
U.V crosslinker Stratagene 
Vortex NeoLab  
Waterbath   Julabo EcoTemp EW, Julabo   
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4.11 Chemicals 

Acetic acid   AppliChem   
Amonium persulfate AppliChem 
ATP AppliChem 
Agarose ultra pure   GibcoBRL   
Aprotinin AppliChem 
Bromophenol blue   Serva   
BSA Serva 
Cesium Chloride Sigma  
Citric Acid Merk 
D-Biotin AppliChem 
DMSO   AppliChem   
dNTPs   Peqlab  
DTT   Merck   
DSP Pierce  
DTBP Pierce 
ECL Western Blot Detection reagent GE Healthcare 
EDTA   Merck   
EGTA   E. A. Thomas   
Ethanol  AppliChem   
Ethidium bromide   AppliChem   
Formamide   AppliChem   
37% Formaldehyde solution   Sigma 
Glycerol  AppliChem   
Glycine  AppliChem   
Hepes   AppliChem   
Isopropanol  AppliChem   
KCl   Merck   
KH2PO4  Merck   
L-Cystein Serva 
Leupeptin Hemisulfate AppliChem 
LiCl   Sigma   
Maleic acid   Fluka   
Methanol    AppliChem   
Milk powder   AppliChem 
MgCl2   Merck   
NaCl   Merck   
Na-Deoxycholate   Sigma   
Na2HPO4    Merck   
Na-hypochlorite  E. A. Thomas  
n-heptane    Riedel-de Haën 
Nipagin  Merck   
NP-40   Sigma   
Orange G    Sigma   
Pepstatin A AppliChem 
p-Formaldehyde    Sigma  
Phenol-chlorophorm-Isoamylalcohol AppliChem 
PMSF   AppliChem 
Poly(L)lysine   Sigma   



Materials 
  

110 

Propionic acid   Merck   
Protein A Sepharose GE Healthcare 
SDS   Sigma 
Sodium citrate   AppliChem   
Streptavidin Sepharose GE Healthcare 
Sucrose  AppliChem 
Tris   AppliChem   
Triton X-100   Merck   
Tween-20   Sigma  
Western Blot Stripping Buffer Pierce
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5. Methods 

5.1 Molecular methods 

5.1.1 Phenol-chloroform extraction of DNA 

An equivalent volume of phenol:chloroform:isoamylalcohol (25:24:1) was added to a 

DNA solution and vortexed thoroughly for 30 sec. The emulsion was centrifuged for 8 

min at 13.000 rpm at RT (Eppendorf table top centrifuge). The upper aqueous phase 

containing the DNA was carefully transferred to a new tube. One volume of chloroform 

was added, vortexed for 30 sec and centrifuged for 8 min at 13.000 rpm at RT. The upper 

aqueous phase was transferred to a new tube, and the DNA precipitated with ethanol.  

5.1.2 Ethanol precipitation of DNA 

1/10 volume of 3.5 M sodium acetate pH 5.2 was added to the DNA solution and mixed, 

if small amounts of DNA were to be precipitated then 1 µl of glycogen (20 mg/ml, 

Roche) was added as a carrier. Next, 2.5 volumes of 100% ethanol cooled at -20°C were 

added to the sample, mixed, and incubated for at least 1 h at -20°C or for 20 min at           

-80°C. The precipitated material was centrifuged for 25 min at 13.000 rpm at 4°C. The 

supernatant was removed and the precipitated DNA was vacuum-dried and resuspended 

in Tris-HCl buffer pH 8.0 or ddH2O. 

5.1.3 Analysis of DNA fragments by agarose gel electrophoresis 

Agarose gels 0.5-2% (w/v) were used depending on the size of the DNA fragments to be 

separated. Ethidium bromide was added in the gel to a final concentration of 0.5 µl/ml. 

Samples were supplemented with DNA sample buffer, loaded on gel and electrophoresis 

was conducted at 100-150V for 30 min. After separation, the gels were analyzed using a 

transilluminator with UV light and photographed. For preparative gels, the fragment of 

interest was cut out under UV light and the DNA was purified.   

Buffers:  0.5x TAE buffer:    20 mM Tris-acetate   

0.5 mM EDTA pH 8.0   

Ethidium bromide stock:   10 mg/ml   

6x DNA sample buffer:  0.25% (w/v) OrangeG 

 30% (w/v) glycerol   

0.1 mM EDTA   
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5.1.4 Gel Extraction/ PCR purification 

For the purification of DNA from agarose gels, the QIAquick gel extraction kit (Qiagen) 

was applied as described in the manufacturer’s manual. The DNA was eluted in 30-50 µl 

ddH2O. To purify DNA following PCR reaction or prior to restriction endonuclease  

digestion,  the QIAquick PCR  purification  kit  (Qiagen) was  used according to the  

manufacturer’s  protocol. The DNA was eluted in 30-50 µl ddH2O.  

5.1.5 Restriction Endonuclease digestion of DNA 

For analytical digests, 100-300 ng DNA were  digested with 1-10 U of restriction 

enzyme  (New England Biolabs) with its corresponding buffer according to the 

manufacturer’s protocol in  a volume of 20 µl. In general, the digests were incubated for 

1 h at 37°C.  For preparative digests, 5-10 µg DNA were incubated with 10-40 U of 

restriction enzyme. The digestion were incubated for 1-4 h up to overnight at 37°C. For 

some reactions, digestion was followed by a phosphatase treatment to prevent re-

ligation. Afterwards, the digested DNA was purified using the QIAquick PCR 

purification kit or isolated by preparative agarose gel electrophoresis.   

Digestions with two different restriction enzymes were performed sequentially with one 

purification step by agarose gel electrophoresis after each digest.   

5.1.6 Phosphatase treatment of DNA fragments 

To prevent re-circularization of a digested vector DNA in the ligation reaction, the DNA 

was treated with Calf Intestine Phosphatase (CIP, Roche) to remove the 5’ end phosphate 

group of the DNA. Phosphatase treatment was typically performed  directly following a 

restriction  digest in the same buffer, 1 unit of enzyme per 100 pmol of protruding 5’ end 

termini was added, incubated for 15 min at 37°C, and the reaction was stopped by adding 

EDTA to a final concentration of 5mM. The enzyme was heat inactivated at 75°C for 10 

min. Finally the DNA was purified by agarose gel electrophoresis, spin column 

purification using the PCR  purification kit or  phenol-chlorophorm extraction.  

5.1.7 Ligation of DNA fragments 

Ligation reactions were prepared with 300 ng vector DNA and a 3 fold molar excess of 

insert  DNA in 10 µl with 1 U T4 DNA ligase (Roche) according to the manufacturer’s 

instructions.  The reaction was incubated overnight at 16°C.  For quick ligation steps the 
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Quick Ligation Kit (New England Biolabs) was used and the ligation was incubated 5 

min at RT. 

5.1.8 End-filling of DNA protruding ends 

1 µl of Klenow fragment (2 U/µl; Roche) and 5 µl 2.5 mM dNTP mix (dATP, dTTP, 

dCTP, dGTP) were added to 50µl restriction endonuclease digestion reactions, followed 

by a 15 min  incubation at  30°C. Subsequently, the DNA was  purified  using the 

QIAquick PCR  purification kit (Qiagen).  

5.1.9 Annealing of DNA oligos 

DNA oligos were resuspended in ddH2O at 100 pmol/µl as stock solutions. For cloning 

oligos were diluted to 10 pmol/µl. 5 µl of  3’ oligo and 5 µl of  5’ oligo were mixed with 

1 µl of T4 PolyNucleotide Kinase (New England Biolabs) and 5 µl of 10X Ligase buffer 

as ATP source, in a total volume of 50 µl. The reaction mix was incubated at 37°C for 1 

h. To stop the reaction EDTA was added to a final concentration of 10 mM and 

incubated at 70°C for 15 min. The reaction was slowly cooled down to room temperature 

by switching off the heat block and placing it in the cold room. For cloning purposes 1 to 

5 µl of this mix were used in molar excess over vector. 

5.1.10 Preparation of agar plates 

For agar plates,  1,5% Bacto-Agar was added to the LB medium. After autoclaving, the 

appropriate antibiotic was supplemented to a final concentration of 100 µg/ml for 

Ampicillin, and 34 µg/ml for Chloramphenicol.   

LB (Luria-Bertani) medium:   1% (w/v) Bacto-tryptone   

0.5% (w/v) yeast extract   

1% (w/v) NaCl  pH 7   

Ampicillin stock:     100 mg/ml   

Chloramphenicol stock:    34 mg/ml   

5.1.11 Freezing of bacteria stocks 

760  µl of an overnight bacterial culture were added to an eppendorf tube containing 240 

µl of sterile glycerol and immediately vortexed, shocked-frozen in liquid nitrogen and 

stored at -80°C.    
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5.1.12 Production of E. coli chemo-competent cells 

XL1-blue or SURE E.coli cells were inoculated into 20 ml LB medium and incubated 

overnight at 37°C under vigorous shaking. The next day, the culture was diluted in 450 

ml of LB medium, supplemented with 0.1% glucose and grown at 37°C in a 3 l 

Erlenmeyer flasks until a density OD600 0.4-0.5 was reached. All the following steps 

were conducted at 4°C using pre-cooled material. The culture was centrifuged for 7 min 

at  5000g. The sedimented cells were resuspended in 50 ml of Solution I, left 20 min on 

ice and re-centrifuged. The cells were then resuspended in 50 ml of Solution II, 

incubated on ice for 30 min and centrifuged . Finally, cells were resuspended in 5 ml of 

Solution III, aliquotted into sterile 1.5 ml Eppendorf tubes, and shock-frozen in liquid 

nitrogen. Competent cells were stored at -80°C.   

Solution I:   100 mM MgCl2   

Solution II:   100 mM CaCl2   

Solution III:   86 mM CaCl2 

 12.3% Glycerol 

5.1.13 Transformation of chemo-competent E. coli cells 

Competent cells were thawed on ice. The DNA (50-100 ng for a re-transformation, or  2-

10 µl of a ligation reaction) was added to a 100 µl cell aliquot and incubated on Ice for 

30 min. Cells were heat-pulsed for 80 sec at 42°C and cooled on ice for 2 min. 900 µl LB 

medium was added and cells were incubated for 30 min at 37°C for recovery on a roller 

shaker. Different aliquots of transformed cells (50 µl – 1 ml) were plated on LB agar  

plates supplemented with the appropriate antibiotic and incubated  overnight at  37°C.  

5.1.14  Isolation of Plasmid DNA from bacteria by alkaline lysis method 

A. Small scale DNA preparation (Mini Prep) 

A single colony was inoculated into 3 ml LB medium supplemented with the  

appropriate antibiotic and incubated overnight at 37°C under vigorous shaking. 1.5 ml of 

the  overnight culture was transferred into a 1.5 ml Eppendorf tube and centrifuged for 1 

min at  13.000 rpm (Eppendorf table top centrifuge). The supernatant was discarded and 

another 1.5 ml of overnight culture were added, and the centrifugation step was repeated. 

The cell pellet  was resuspended in 150 µl buffer P1, and then 150 µl of buffer P2 were 

added. After gentle  mixing, cell lysis was allowed to proceed for 5 min at RT. Then 150  
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µl buffer P3 were added  and after gentle mixing, the tubes were incubated on ice for 10 

min. The bacterial lysate was centrifuged for 10 min at 13.000 rpm at 4°C and the 

supernatant was transferred into a new tube. The DNA was precipitated by adding 0.7 

volume of 100% isopropanol and  pelleted  by centrifugation at  13.000 rpm for  25 min 

at  4°C. To wash the DNA  pellet, 1 ml 70% ethanol was added and the samples were 

centrifuged for 10 min at 13.000  rpm at 4°C. The DNA pellet was vacuum-dried and 

resuspended in 30-50 µl ddH2O.  All buffers used were from Qiagen. 

Buffers: P1:   50 mM Tris-HCl pH 8.0 

          10mM EDTA 

         100 µg/ml RNase A 

 P2:    200 mM NaOH 

  1% SDS 

 P3:    3 M potassium acetate pH 5.5 

   

B. Large scale DNA preparation (Midi Prep) 

 The Highspeed Midi kit from Qiagen was  used to isolate larger  quantities  of  pure 

DNA  according to the manufacturer’s protocol. The DNA was eluted in ddH2O.  

5.1.15 Polymerase Chain Reaction (PCR) 

The DNA was amplified by PCR using Taq polymerase (Qiagen) for semi quantitative 

purposes or High Fidelity Taq/Pwo-polymerase (Roche) for cloning purposes. Specific 

sense and antisense oligonucleotides primers were designed, in general, using Primer 3 

tool from the Biology Work Bench (http://seqtool.sdsc.edu). 

A typical PCR reaction was prepared as follows: 

1-100 ng of Template DNA 

5 µl of 10x reaction buffer 

5 µl of  2.5 nM dNTP mix (dATP, dTTP, dGTP, dCTP; Peqlab) 

5 µl of 3 µM sense primer  

5 µl of 3 µM antisense primer 

1 U of  Polymerase 

add to 50 µl ddH20 

 

The following PCR  parameters  were  adjusted  to  the  appropriate  conditions,  
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depending  on the primer, the size of the fragment to be amplified and the desired 

amount of DNA.  

5 min 94°C 

30 sec   

30 sec 

30 sec-1min  

94°C 

54-62°C                x 15-35 cycles 

72°C 

10 min 72°C 

5.1.16 Colony PCR 

Colony PCR was used for fast screening of large number of transformed E. coli colonies 

for positive clones.  PCR  reactions  using  primers  within  the cloned  fragment  and  

the  appropriate  flanking  site  of  the  vector  were  prepared.  Single colonies  were  

picked  with  a  sterile  toothpick  and  dipped  in  the  PCR  reaction.  The  toothpick was  

used  to  inoculate  in  parallel  1.5 ml of  liquid  cultures.  These  cultures  were  grown 

overnight in LB-medium containing the appropriate  selection antibiotic for isolation of 

plasmid DNA.  The  PCR  reaction  was  boiled  at  95°C  for  5  min  prior  to  the  PCR  

in  order  to  lyse  the cells  and  release  plasmid  DNA.  PCR products  were  analyzed  

on  an  agarose  gel,  only positive clones showed PCR products.  

5.1.17 Isolation of genomic DNA (Quick Fly Genomic DNA Prep) 

In a standard  procedure,  30 flies were anesthetized,  collected in eppendorf tubes,  and 

frozen at -80°C. The flies were  homogenized  with  a  micropestle  (Eppendorf)  in  100 

µl  Buffer  A.  An  additional  100 µl Buffer  A  was  added  and  grinding  continued.  

After addition of another  200 µl  Buffer  A, grinding  was continued  until only cuticles  

remained.  The homogenate  was incubated  at 65°C for 30 min. 800 µl of freshly 

prepared LiCl/KAc solution was added, mixed, and left on ice for at least 10 min. After 

centrifugation at RT/13.000 rpm for 15 min, 1 ml of the supernatant was transferred  into  

a  new  tube,  avoiding  floating  crud.  Following  another  centrifugation  and 

supernatant  transfer  step,  DNA  was  precipitated  by  addition  of  600 µl  isopropanol, 

centrifuged at RT/13.000 rpm for 15 min, washed twice with 70% ethanol, and speed 

vacuum dried  for  2-3  min.  To  prevent  any  shearing  of  the  DNA,  150 µl  ddH2O  

was  added  and  the solution  was  left  overnight  at  4°C  to  dissolve. The following  

day,  the  DNA  was resuspended  by carefully  pipetting  up and down and incubation  at 



Methods 

 

119 

65°C for 15 min. The DNA was then stored at –20°C. If a different number of flies was   

used, all volumes were adjusted accordingly.  

 Buffer A: 100 mM Tris-HCl pH 7.5  

 100 mM EDTA  

 100 mM NaCl  

 0.5% SDS  

 LiCl/KAc:  mix 1 part 5 M KAc with 2.5 parts 6 M 

LiCl just before use  

5.1.18 Single fly PCR 

Single flies were squashed in 50 µl Gloor and Engel’s extraction buffer (Gloor et al. 

1993) in a 1.5 ml Eppendorf tube using a 200 µl pipette tip. The homogenate was  

incubated for 20 min at 37°C, and then for 2 min at 80°C to inactivate the proteinase K. 

The DNA was stored at  4°C. Typically, 4 µl of DNA isolated from whole flies, or 5 µl 

of DNA  isolated from single heads was used in a standard PCR reaction.   

Gloor and Engel’s extraction buffer: 10 mM Tris pH 8.2   

  1 mM EDTA   

  25 mM NaCl   

200 µg/ml proteinase K (20 mg/ml stock, 

added freshly)   

5.1.19 Southern Blot 

Probe synthesis and test hybridization  

For probe production, the DIG High Prime DIG labelling kit (Roche) was used according 

to  the manufacturer’s instructions. Briefly, 1 µg  of template DNA in an  18 µl  volume 

were  denatured by boiling for 10 min, then quickly chilled on ice. 4 µl of DIG High 

Prime mix  were added. The reaction was mixed, centrifuged  briefly, and then incubated 

at  37°C overnight. The  next  day, the labelled DNA  probe was  purified  using the 

QIAquick PCR  purification kit, and eluted in 50 µl ddH2O.  The efficiency of probe 

synthesis and labelling was tested by spotting 1 µl of serial dilutions  of the probe, 

starting from 1:50 to up to 1:100.000, onto a positively charged nylon membrane  

(Amersham Bioscience). The DNA was cross-linked to the membrane twice at  1200µJ  

using an UV  Stratalinker (Stratagene). Detection was performed as described below.   
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Preparation of DNA, restriction endonuclease digestion, and gel electrophoresis   

Genomic DNA from flies was isolated as described above. 20 µl of DNA were used  

which corresponds to 12 flies. The DNA was  digested with Restriction enzymes for at 

least 4 h at 37°C in 75 µl volume. The DNA was ethanol-precipitated for  at least 1 h at -

20°C as described, with 1 µl glycogen (Roche, 20 mg/ml) added as a carrier,  and 

resuspended in 20 µl ddH2O.  

Embryos genomic DNA was obtained by homogenizing 2 gr of embryos in 5 ml of  

Restriction Enzyme buffer. The embryo extract was filtrated through 2 layers of 

miracloth, alicuotted in Eppendorf tubes, transferred into a pre-cooled ultrasound 

sonicator (Bioruptor UCD-200, Diagenode) and sonicated for 3 cycles 30 sec ON, 30 sec 

OFF at maximum power (H). After mild shearing to make the chromatin soluble the 

samples were centrifuged and an aliquot of 90 µl of the supernatant was used for 

Restriction Enzyme digest. 

The DNA samples supplemented with loading buffer were  loaded on a 0.8% agarose gel 

and run overnight at 30-40 V and 4°C.   

Denaturation, neutralization, and transfer   

To prepare the agarose gel for the transfer to a nylon membrane, the gel  was submerged 

in 0.25 M HCl for 10 min on a shaker at RT and rinsed with ddH2O prior to  the 

incubation for 2x 15 min in denaturation buffer. After shortly rinsing in ddH2O, the gel  

was incubated for 2x 15 min in neutralization buffer, followed by an additional rinse step 

and  10 min incubation in 20x SSC buffer. For the capillary transfer to the membrane, 

the gel  was placed upside down on Whatman paper (Schleicher & Schuell) on a glass 

plate, with its  left and right ends  hanging in  20x SSC  buffer. The positively charged  

nylon membrane  (Amersham Bioscience) was moistened with 20x SSC buffer and put 

on the upper side of the gel. Three layers of Whatman paper and a layer of 

approximately 10 cm of apura paper were put on top of it and fixed with a weighted 

glass plate. Transfer was allowed to proceed overnight. The next day, the positions of the 

gel and the lanes were marked on the membrane using a pencil. Then the membrane was 

washed for 5 min in ddH2O prior cross-linking of the DNA with UV light. Cross-linking 

of the wet membrane was first performed twice on the upper nylon membrane side, then 

twice on the lower side at  1200 µJ. The blot was either  used  directly for  hybridization 

or sealed in a nylon bag and stored at 4°C.   
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Solutions: Denaturation buffer: 0.5 M NaOH   

  1.5 M NaCl   

 Neutralization buffer:   0.5 M Tris-HCl pH 7.5   

  3 M NaCl   

 20x SSC:    3 M NaCl   

  300 mM Sodium citrate pH 7.0   

Hybridization  

The DIG Easy Hybridization solution (Roche) was prepared according to the 

manufacturer’s  instructions and pre-warmed to 40°C. The nylon membrane was blocked 

by incubation in Hybridization solution for 30 min at 40°C. The DIG-labelled DNA 

probe was denatured by boiling  at  95°C for 5 min and immediately  put  on ice to  

prevent renaturalization. After addition  of  denatured  probe  (in  general  50 µl) to  8 ml 

DIG Easy Hybridization solution, the  blot was  hybridized at 40°C overnight with gentle 

agitation. The membrane was first washed twice for  5 min in a large volume of wash 

buffer 1 at RT, then twice for 15 min in wash buffer 2 at  68°C, both steps under constant 

agitation.   

Buffers:  Maleic acid buffer:   0.1 M Maleic acid   

  0.15 M NaCl  

  adjust to pH 7.5 with NaOH pellets   

 Wash buffer 1:  1x SSC   

  0.1% (w/v) SDS   

 Wash buffer 2:  0.1x SSC   

  0.1% (w/v) SDS   

Detection   

After transferring the membrane into a flat container, it was rinsed 2-5 min in washing 

buffer  and incubated for 30 min in 100 ml freshly prepared blocking solution, 1% (w/v) 

blocking  reagent (Roche) in washing buffer, according to the manufacturer’s 

instructions. The α-DIG-AP conjugate was  diluted to  75 mU/ml  (1:10.000) in  20 ml  

blocking solution. Antibody  incubation was done for 30 min at RT, then the membrane 

was washed twice for 15 min in  100 ml washing  buffer and equilibrated for 2-5 min 

with  20 ml  detection  buffer. For  detection, the membrane was transferred into a 

hybridization bag, 1 ml CSPD (Roche) was  added and left for 5 min at RT. To activate 
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the CSPD, the hybridization bag was sealed and  incubated for 10 min at 37°C. The 

membrane was then exposed to a film (Roche) for 15-30  min.   

Buffers:  Washing buffer:  0.1 M Maleic acid   

  0.15 M NaCl   

  0.3% (v/v) Tween-20  

  adjust to pH 7.5   

 Detection buffer:    0.1 M Tris-HCl pH 9.5   

  0.1 M NaCl   

  50 mM MgCl2   

5.2 Chromatin methods 

5.2.1 In vivo formaldehyde cross-link of  Drosophila embryos 

Embryos were collected  for 12 h on acetic acid agar plates and dechorionated (see 

5.3.3).  After extensive washes with tap water, excessive liquid was removed and 2 g of 

embryos  were transferred into a 50 ml Falcon tube. After washing once in 0.01% Triton 

X-100 / PBS,  the embryos were cross-linked for 15 min in 10 ml Cross-linking solution 

in the presence of  30 ml n-heptane. During the incubation time, the samples were 

shaken vigorously on a roller.  Cross-linked embryos were spun down for 1 min at 500 g, 

and the reaction was stopped by exchanging the supernatant with Stop solution. After 

spinning down, the supernatant was exchanged by 10 ml Wash A buffer and the embryos 

were incubated for 10 min on a roller. To remove the Wash A buffer, the embryos were 

centrifuged again for 1 min at 500 g, resuspended in 10 ml Wash B buffer and incubated 

another 10 min on a roller. After centrifugation, the supernatant was discarded and the 

tubes snap-frozen in liquid nitrogen.  

Buffers:  PBS:   137 mM NaCl   

  2.7 mM KCl   

  10 mM Na2HPO4   

 2 mM KH2PO4   

    0.01% (v/v) Triton X-100 / PBS   

 Cross-linking solution:  50 mM Hepes pH 8   

  1 mM EDTA      

   0.5 mM EGTA   

  100 mM NaCl   
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3.6% formaldehyde, add just before cross-

linking   

 Stop Solution:  125 mM glycine / 0.01% (v/v) Triton 

   X-100 / PBS   

 Wash A:  10 mM Hepes pH 7.6   

  10 mM EDTA 

  0.5 mM EGTA   

  0.25% (v/v) Triton X-100   

 Wash B:  10 mM Hepes pH 7.6   

  200 mM NaCl   

  1 mM EDTA  

  0.5 mM EGTA   

  0.01% (v/v) Triton X-100   

5.2.2 Protein-Chromatin nuclear extract (pc-NE) 

20-30 gr of cross-linked embryos were thawed in a water bath at 10 °C in the cold room. 

The embryos were then resuspended in 5 ml/gr of RB buffer and homogenized by three 

passages through a Yamato homogenizer at 1000 rpm. The homogenate was filtered 

through 2 layers of Miracloth (Calbiochem) and centrifuged for 15 min at 10.000 g. The 

supernatant was discharged and the walls of the tubes carefully cleaned with a precision 

wipe. The nuclei pellet was resuspended in a total of 30 ml of sonication buffer per 10 gr 

of embryos and aliquot in 15 or 30 ml per falcon tube. 

To shear the chromatin to an average size of 3 kb, the Falcon tubes were transferred into 

a bicker containing ice and ethanol to keep them cool and sonified with a microtip 

sonifier for 4-5 cycles (30 sec ON- 90 sec OFF) at max output level avoiding foaming. 

The sheared protein-chromatin samples were then centrifuged for 10 min at 

approximately 3000 g and the supernatant snap-frozen. 

Buffers: RB buffer:   15 mM Hepes 

      10 mM KCl 

      5 mM MgCl2 

      0.1 mM EDTA 

      0.1 mM EGTA 

      350 mM Sucrose 

      pH 7.6 
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 Sonication buffer: 10 mM Hepes  

  1 mM EDTA   

  0.5 mM EGTA  

  150 mM KCl 

  pH 7.6    

5.2.3 Chromatin Immunoprecipitacion (ChIP) from Drosophila embryos 

Chromatin was prepared as described above. Before centrifugation of sheared chromatin 

0.5% N-lauroylsarcosine was added.  

To check the quality of the chromatin, a 100 µl aliquot  of each sample was extracted 

and  analyzed by agarose gel electrophoresis. First, to digest the RNA, DNase-free 

RNase was added to each aliquot at a final concentration of 50 µg/ml, followed by a 30 

min incubation at 37°C.  Then,  proteinase K was added to a final concentration  of  500 

µg/ml, and SDS to a final  concentration of 1 % (w/v). To partially reverse cross-link, the 

samples were incubated  for  1  h at  56°C  and the DNA was extracted with  phenol / 

chloroform, and  precipitated  with ethanol, using glycogen as a carrier (see 5.1.1 and 

5.1.2). Finally, the DNA was resuspended in ddH2O, and 3-5 µg were loaded on an 

agarose gel and concentration was checked with a Nanodrop spectrophotometer.  

A. ChIP using antibodies 

100 µl Protein A Sepharose (Amersham) slurry per sample were pre-blocked for 2-3 h at 

4°C on a rotating wheel using 1 mg/ml BSA and 1 mg/ml herring sperm DNA 

(Invitrogen) diluted in RIPA buffer. To remove the blocking solution, the samples were 

centrifuged for 2 min at 3000 g at 4°C. After 3x 5 min washes in RIPA buffer at 4°C, 

100-150 µg of chromatin per sample were thawed on ice and adjusted to RIPA 

conditions:   

 x µl (=100 µg) chromatin 10 µl 1M Tris pH 8   

  28 µl 5 M NaCl  

  10 µl 10% Triton X-100   

  1 µl 10% SDS   

  1 µl 10% Na-Deoxycholate   

10 µl 100 mM PMSF  

 ad. 1 ml ddH2O   

1 ml of RIPA-adjusted chromatin was added to 50 µl of pre-blocked Protein A 
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Sepharose and  incubated for 2 h at 4°C on a roller for pre-clearing. After centrifugation 

(2 min 5500 rpm at  4°C), the pre-cleared chromatin was transferred into a new tube. 

One aliquot per sample was  saved as input control and stored at -20°C. 2-10 µg of 

antibody were added per IP. The samples were incubated  on a rotating wheel at  4°C  

overnight. To  isolate the antibody-chromatin complexes, 50 µl pre-blocked Protein A 

Sepharose per sample  were added and incubated for 3 h at 4°C on a roller. To eliminate 

non-specific interactions, the samples were then washed 5 x 10 min at 4°C in RIPA 

buffer, 3 x 10 min at 4°C in LiCl buffer, and 2 x 10min at 4°C in TE buffer. Between the 

washing steps, the samples were centrifuged for 2 min at 5500 rpm at 4°C. To  be able to 

remove the supernatants without loss  of sample,  1 ml syringes with  25  gauge needles 

were used.   

To extract the DNA, the Protein A Sepharose complexes were first resuspended in 100 

µl TE  buffer, then DNase-free RNase was added to each sample (including the input 

controls) to a  final concentration of 50 µg/ml. RNA digestion was allowed to proceed 

for 30 min at 37°C,  before the samples were adjusted to  0.5% SDS and  proteinase K 

was added to a final  concentration of 500 µg/ml. After overnight incubation at 37°C, the 

samples were heated to  65°C for  6  h to reverse the cross-link. Subsequently, the DNA 

was extracted  using  phenol /  chloroform (see 5.1.1). The lower phenol phase was back-

extracted using an equal volume of  50 mM Tris-HCl  pH  8. The aqueous  phases from 

the  phenol extraction and the  back-extraction were combined and extracted with 

chloroform. The DNA in the  upper aqueous  phase was ethanol-precipitated, using 

glycogen as a carrier (see 5.1.2). The DNA pellets were  resuspended in 50 µl ddH2O 

and stored at -20°C.   

Buffers:  RIPA buffer:   10 mM Tris-HCl pH 8   

  140 mM NaCl   

  1 mM EDTA   

  1% (v/v) Triton X-100   

  0.1% (w/v) SDS   

  0.1% (w/v) Na-Deoxycholate   

  1 mM PMSF (add just before use)   

  1 mM PMSF (add just before use)   

 LiCl:   10 mM Tris pH 8   

  250 mM LiCl   
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  0.5% (v/v) NP-40   

  0.5% (w/v) Na-Deoxycholate   

  1 mM EDTA   

 TE buffer:   10 mM Tris-HCl pH 7.4   

 

  1 mM EDTA   

B. ChIP using Streptavidin Agarose beads 

Streptavidin Sepharose beads were blocked as described for Protein A Sepharose.  

Chromatin was pre-cleared using Protein A Sepharose. An aliquot of pre-cleared 

chromatin (100-150 µg) was incubated with 80 µl of Streptavidin Sepharose 50% slurry 

overnight at 4 °C on a rotating wheel. Next day, the samples were washed twice for 10 

min at 4°C in FA buffer, twice for 10 min at 4°C LiCl wash buffer, three times for 8 min 

at room temperature in SDS buffer, and twice for 10 min at 4°C in TE buffer. Between 

the washing steps, the samples were centrifuged for 2 min at 5500 rpm at 4°C. Finally, 

the beads were resuspended in 100 µl of TE buffer and the cross-link was reversed as 

described above. 

Buffers: FA buffer: 50 mM HEPES-KOH, ph 7.5 

  150 mM NaCl    

  1 mM EDTA    

  1% Triton X 100   

  0.1% SDS    

  0.1% Na deoxycholate  

  1 mM PMSF (add fresh) 

 LiCl wash buffer: 10 mM Tris-HCl pH 8.0  

  1 mM EDTA  

  1% Na-deoxycholate 

  1% NP40 

  0.5 M LiCl 

  1 mM PMSF (add fresh) 

 SDS wash buffer 10 mM Tris pH 8.0 

  1 mM EDTA 

  3 % SDS 
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Linker mediated PCR to amplify sample 

In case of necessary, the immunoprecipitated and input DNA were amplified by PCR in 

a linear manner. For this 7 µl of ChIP material and 7 µl of 1/10 dilution of input material 

were ligated to  pre-annealed linker oligos (24mer-20mer) overnight at 16 °C . 

 Ligation reaction:  1 µl of  annealed oligos 

  7 µl IP 

  1 µl 10X ligase buffer 

  1 µl ligase (Roche) 

The next day the ligation mix was used as template in a 20 cycles PCR reaction using the 

oligo 20mer as primer. The PCR products were separated using QIAquick PCR 

Purification Kit and resuspended in 50 µl of  ddH2O. 

Analysis of IP material by semi-quantitative PCR   

Directly after ChIP or after linker mediated amplification, IP and input materials were 

used as templates for the specific PCR reactions. The PCR was adjusted to conditions 

under which the reaction was still in the linear range of amplification (usually 28-30 

cycles). To quantify the relative amounts of precipitated material, 20 µl of each 50 µl 

PCR reaction were loaded on a 1.5% agarose gel and scanned using a E-box gel 

documentation system (Peqlab). The intensities of PCR bands were  quantified using the 

AIDA imaging software. 

5.2.4 Chromatin purification by Cesium Chloride gradient 

Protein-chromatin nuclear extract was prepared as described before (5.2.2). After 

sonication of the chromatin, the sample was adjusted to 0.5 % N-lauroylsarcosine, 

rotated for 10 min at 4°C, and centrifuged 10 min at 2500 g to spin down the debris.  

For CsCl gradient, a volume of chromatin corresponding to 1.5 gr of embryos was 

adjusted to 11.5 ml by adding sonication buffer containing 0.5% of N-lauroylsarcosine. 

Slowly 7,8 to 7,952 gr of CsCl were added to the sample and the volume was adjusted to 

14 ml by adding sonication buffer. Next, the sample was loaded with a 20 ml syringe in 

polyallomer quick-seal centrifuge tube for the Beckman 70.1 Ti rotor. Up to 12 samples 

were centrifuged at 55000 rpm for about 40 hs at 20°C. 

After centrifugation, the sample was eluted in 700 µl fractions with a peristaltic pump 

from the bottom of the tube. An aliquot of 70 µl of each fraction was desalted with 
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Micro Bio-Spin chromatography columns (Bio-Rad), reversed cross-link as described 

above (5.2.3) and analyzed by agarose gel electrophoresis.  

The chromatin containing fractions were pooled and dialyzed overnight at 4°C against 

Dialysis buffer, changing the buffer repeatedly. 

 Dialysis buffer (DB): 10 mM Tris-HCl pH 8.0 

  4 % Glycerol 

  1 mM EDTA 

  0.5 mM EGTA  

5.2.5 Chromatin digestion with restriction enzymes 

Nuclei from Drosophila cross-linked embryos were prepared as described in 5.2.2. In 

order to break the nuclei open without shearing of the chromatin, the nuclei were 

sonicated with a microtip for 3 cycles of 10 sec at minimum input level and centrifuged 

to discard debris. The supernatant, un-sheared pc-NE containing the chromatin fraction 

was used for the digest. For this an aliquot of 90 µl of pc-NE, containing around 1 mg 

protein, was incubated at 37°C for at least 4 h in the presence of 10 U of Not1 and 10 U 

of SalI and 45 µl of restriction digest buffer. Control samples were generated by 

incubation at 37°C without enzymes in the presence or absence of 1.5 mM EDTA. In 

addition one aliquot was kept frozen at -20°C. 

  Restriction Digest buffer: 100 mM NaCl 

  (Buffer 3 NEB)  50 mM TrisCl 

      10 mM MgC1 

1 mM DTT 

pH 7.9 

After incubation the samples were reversed cross-link as in 5.2.3 and analyzed by 

agarose gel electrophoresis or southern blot.  

5.3 Biochemical methods 

5.3.1 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Tris-Tricine gels were prepared according to (Laemmli 1970). Generally, 12% gels were 

used and poured into SDS-PAGE gel chambers from Hoefer or Biorad. Electrophoresis  

was started at 150 V until  the  samples  reached  the  separating  gel  and  continued  for  

1-2  h  at  180  V.  Protein samples  were  supplemented  with  5x  SDS  sample  buffer  
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and  boiled  for 5 min at 95°C, followed by a 3 min spin at full speed and loading on the 

gel.  

Buffers: 5x Tris glycin SDS buffer: 15.1 g Tris-base  

 72 g glycine  

 5 g SDS  

 add ddH2O to 1 l  

 5x SDS sample buffer: 250 mM Tris-HCl pH 6.8  

 10% SDS (w/v) 

 50% (w/v) glycerin  

 500 mM b-mercaptoethanol or DTT 

 0.05% Bromophenol-blue  

 

5.3.2 Bis-Tris-HCl polyacrylamide gel electrophoresis 

Separation of proteins by electrophoresis was also carried out using precast 4-12% Bis-

Tris gels (Invitrogen) following the manufactures protocol.  

20x SDS running buffer  1 M Mes (2-(N-morpholino) ethansufonic acid)  

 1 M Tris-base 0.1% SDS  

 0.0205 mM EDTA  

5.3.3 Coomassie Blue staining of proteins 

Following  SDS-PAGE,  the  gel  was  incubated  with  Coomassie  staining  solution  on 

a horizontal  shaker  for  30-60  min.  Afterwards  the  gel  was  washed  several  times  

with destaining  solution,  until the nonspecific  Coomassie  background  was removed.  

The gel was  rehydrated  in  4%  glycerol  for  1-2  h and  then  dried  on  Whatman  

paper  in  a vacuum  gel dryer for 1.5 h at 70 °C.  

Coomassie staining solution: 0.1% (w/v) Coomassie Brilliant Blue R-250  

 45% (v/v) methanol  

 10% (v/v) acetic acid  

Destaining solution: 45% (v/v) methanol  

 10% (v/v) acetic acid  

5.3.4 Western Blot (wet blot) 

Proteins separated  by  SDS-PAGE  were  transferred  from  the  gel  to  a  Hybond  
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nitrocellulose membrane  (Amersham)  using  electrophoresis.  After  SDS-PAGE,  the  

gel  was  equilibrated  in transfer  buffer  for  2  min  and  all  other  components  were  

soaked  in  transfer  buffer.  The gel and the membrane were sandwiched between 

perforated plastic plates as follows:  

 

Anode (+), sponge pad  

3 Whatman sheets nitrocellulose membrane SDS gel 3 Whatman sheets sponge pad  

Cathode (-)  

 

The transfer was performed in a blotting tank for 2 h at 200 mA at 4°C.  

Transfer buffer:  39 mM glycine  

 48 mM Tris-base 

 0.0357% SDS  

 20% methanol  

Ponceau S staining  

Proteins  immobilized  on  a  membrane  can  be  reversibly  stained  with  the  Ponceau  

S  dye  to evaluate the efficiency  of protein transfer after Western Blotting.  The 

nitrocellulose  membrane was  stained  in  Ponceau  S  solution (Sigma) for  less  than  1  

min.  The  membrane  staining  could  be completely removed by incubation in PBS.  

Detection  

After Western Blot transfer of the proteins to the nitrocellulose  membrane, the 

membrane was blocked  for  1 h in  PBST / 5%  (w/v)  skimmed  milk or BSA.  The  

primary  antibody  was  diluted  in  PBST to  the  appropriate  concentration  and  the  

blot  was  incubated overnight  at  4  °C.  The  membrane  was  then  washed  three  

times  with  PBST  for  10  min. Incubation  of  the  blot  with  the  secondary  antibody  

conjugated  to  horseradish  peroxidase (HRP) was carried  out for 1-2 h at RT. The 

membrane  was washed  again for 3x 12 min with PBST  prior  to  detection.  For  this  

purpose,  the  membrane  was  incubated  with  the  ECL (Amersham)  reagent  for  1  

min  and  the  chemiluminiscent  signal  was  visualized  by  exposure of Hyperfilm ECL 

(Amersham) films. In the case of very weak signals, the blot was washed in PBST and 

incubated  for 3 min with SuperSignal  West Femto  Maximum  Sensitivity  Substrate 

(Pierce) before exposure was repeated.  

For detection of biotinylated proteins, the membrane was incubated after blocking with 
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Streptavidin or Neutravidin HRP in PBST 0.2% for 1h at RT.  The membrane was 

washed 3 x 12 min in PBST 0.2% and 1 x 12 min with PBST 0.2% NaCl 500 mM and 

the signal detected as described above. 

10x PBS (Phosphate buffered saline):  10 mM Na2HPO4  

 2 mM KH2PO4  

 137 mM NaCl  

2.7 mM KCl adjusted to pH 7.4 

(hydrochloric acid)  

PBST (PBS- Tween20): PBS  

 0.05%-0.2% Tween20  

Re-probing of western blot membranes  

Prior  to  re-probing  the membrane  with  different  antibodies,  the previous  antibodies  

had to be removed.  Therefore,  the  membrane  was  incubated  in stripping buffer 

(RestoreTM Western Blot Stripping Buffer, Pierce) on a horizontal  shaker  for  15  min  

at  37°C  and  extensively  washed with  PBS.  The blot  was blocked again for  1 h and  

a new  primary  antibody could be applied as described.  

5.3.5 Streptavidin-Shift 

Protein samples from pull-down material or pc-NE were incubated on SDS-sample 

buffer at 95°C to reverse cross-link. After incubation the samples were cooled to room 

temperature and 8 µg of Streptavidin were added to 40-50 µg of protein and incubated 

for 5 min at RT. Next, the samples were analyzed by SDS-PAGE and Western Blotting.  

5.3.6 Cross-link of Drosophila embryos with DSP 

Drosophila embryos were collected as described in 5.5.3. The embryos were cross-

linked for 30 min as described in 5.2.1 with addition of DSP. For this, a 5 mM stock 

solution of DSP in DMSO was prepared and diluted 1:4 in cross-linking solution 

containing formaldehyde. After cross-link the embryos were washed and stored as 

described above (5.2.1). The chromatin was prepared by direct shearing of the embryos 

with a sonifier without pre-purification of nuclei. Reversal of cross-link was carried by 

heating the samples to reverse formaldehyde cross-link and by addition of sample buffer 

with ß-mercaptoethanol to reverse DSP cross-link. The un-reversed controls were 
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prepared by avoiding heating and using 300 µM of Iodacetamide instead of ß-

mercaptoethanol in the sample buffer.  

5.3.7 Cross-link of Drosophila nuclei with DTBP and streptavidin pull-down 

Drosophila nuclei from formaldehyde cross-linked embryos were prepared as described 

in 5.2.2 and resuspended in 3gr of embryos / 3ml of buffer B.  DTBP solution was added 

to 2.5 ml of nuclei suspension and incubated for 2 hs at 4°C on rocking. To stop the 

reaction, 180 mM final concentration of Tris pH 7.6 was added. After that, the nuclei 

were recovered by spinning and washed with Buffer B. Finally, the nuclei were 

resuspended in Dialysis buffer and sonified to shear the chromatin.  

The streptavidin pull-down from DTBP cross-linked chromatin was performed as 

described in 5.3.11 

Buffer B:   10 mM Hepes 

    10 mM KCl 

    5 mM MgCl2 

    0.1 mM EDTA 

    0.5 mM EGTA 

5.3.8 In-Vitro biotinylation of nuclear extract  

Protein-chromatin nuclear extract was prepared as described before (5.2.2). For all 

biotinylation experiments, the extracts contained no EDTA.  

An aliquot of pc-NE (120 µg protein) was incubated in the presence of 10 µg of 

recombinant BirA enzyme (kindly provided by Dr. Christian Beisel), BirA buffer and D-

Biotin (up to 5 mM). The reaction was incubated at 30 °C for at least 30 min and the 

samples analyzed after reversal of cross-link by SDS-PAGE using Streptavidin-HRP. 

Buffers: 10 X BirA buffer: 10 mM Hepes pH 7.6  

  100 mM ATP 

  100 mM MgOAc    

 Biotin stock Solution: 50 mM D-Biotin 

For ChIP, 15 ml of pc-NE were incubated in the presence of BirA (250 µg) and 1mM D-

Biotin for 1.30 h at 30°C. After biotinylation reaction, the chromatin was purified by 

CsCl gradient and used in Streptavidin ChIP experiments as described in 5.2.3 and 5.2.4. 
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5.3.9 Protein pull-down using Streptavidin beads. 

Streptavidin Beads were washed in Dialysis buffer and blocked as described in 5.2.3 B. 

Pull-down experiments were performed by incubation of pc-NE or CsCl purified 

chromatin, with Streptavidin beads in Dialysis buffer O/N at 4°C in the presence of  

0.05-0.25% of NP40, complete EDTA free protease inhibitors and 1mM PMSF. The next 

day, the unbound fraction was separated by centrifugation and the beads were washed 

thoroughly with Dialysis buffer with 250mM of NaCl. After washing, the bound proteins 

were recovered by direct boiling of the beads with sample buffer o by elution with 

Elution buffer (see 5.3.14) 

5.3.10 Salt separation of chromatin from soluble nuclear proteins        

 Cross-linked embryos were homogenized and nuclei were prepared as described in 

5.2.2. An amount of nuclei corresponding to 5 gr of embryos, were resuspended in 15 ml 

of NB buffer and sonicated in mild conditions (3 cycles of 20 sec at middle output level) 

in a micro tip sonicator to break open the nuclei without shearing the chromatin. Next, 

the extracts were centrifuged 20 min at 13.000 rpm at 4 °C and the supernatant (nuclear 

proteins) separated from the pellet (chromatin). The pellet was then resuspended with a 

pipette tip in 15 ml of NW buffer and incubated 10 min in a rotator at 4°C. After that, the 

chromatin was pelleted by centrifugation. The washing step was repeated a second time 

with 10 mM Tris-HCl buffer pH 8.0. After washing, the chromatin pellet was 

resuspended in 3 ml 1X NEB buffer 3, sonicated 4 cycles of 15 sec (middle output level) 

and centrifuged producing a final pellet. Aliquots of all steps (pellets and supernatant) 

were analyzed, after reversal of cross-link, by agarose gel electrophoresis.  

Buffers: NB (Nuclear Break) buffer: 15 mM Hepes pH 7.6  

  400 mM NaCl 

  5 mM MgCl 

  0.1 mM EDTA 

  0.5 mM EGTA 

  10 mM KCl   

  25 % Glycerol 

  Protease inhibitors 

 NW (Nuclear Wash) buffer:  Equal to NB buffer without NaCl. 
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5.3.11 Ultrafiltration of pc-NE 

For Ultrafiltration two different molecular weight cut off (MWCO) devices were tested, 

Vivaspin 300kDa and Vivaspin 1000kDa (Sartorius). Before use, the centrifugation 

devices were rinsed with ddH2O and then loaded with pc-NE. The 300kDa has a capacity 

of 5 ml, thus it was loaded sequentially with 5 ml and 4 ml of pc-NE. The 1000kDa has a 

capacity of 20 ml, thus it was loaded sequentially with 10 ml and 5 ml of pc-NE. 

Centrifugation was carried out at 9°C for 2.45 hs and DB buffer (1 and 2 ml) was added 

to the devices to re-dilute the samples, which were then centrifuged for additional 30 

min. The final volumes were 3 ml and 5 ml that constituted 1/3 of input volume. Protein 

concentrations were determined in input material, flow-through and final sample. 

Aliquots of each sample were analyzed after reversal of cross-link by SDS-PAGE and 

Western Blotting with α-TetR antibody. 

5.3.12 Chromatin dialysis 

Protein-chromatin nuclear extracts were dialyzed in DB buffer  with 6% sucrose at 4°C 

using a Spectra/Por Cellulose ester membrane with a MWCO of 300 KDa. Before 

dialysis the tubing was rinsed in DB buffer. 2 ml of pc-NE were dialysed in 5 cm of 

tubing. In some cases the starting NaCl concentration of the extracts and dialysis buffer 

was adjusted to 1 M and the salt concentration of the dialysis buffer was decreased 

gradually with each buffer change. The buffer was replaced at least 4 times and the final 

NaCl concentration was 125 mM. For some experiments the tubing was replaced 2 times 

during dialysis. 

After dialysis the extracts were recovered and 2 aliquots were separated for chromatin 

and protein analysis. All the samples were centrifuged 10 min at 13.000 rpm at 4°C and 

pellet and supernatant were analyzed separately. 

5.3.13 Depletion of TetR protein by binding to TetO beads 

Preparation of TetO beads 

DNA oligos carrying a single TetO binding site (1-TetO_Col Fw and Rv) were coupled 

via a covalent link to SulfoLink® Coupling Gel (Pierce). For this, the Fw DNA oligo was 

synthesized with a Thiol group at the 5’ end. This free sulfhydryl group can react with 

iodoacetyl groups on the SulfoLink® gel forming a Thioether bond.  
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First, 2 ml of SulfoLink® Coupling Gel (50% slurry) were equilibrated with 4 gel-bed 

volumes of Coupling buffer. Next 30 µMoles of annealed double stranded oligo in 2 ml 

of Coupling buffer were incubated with 1 ml of gel-bed at RT for 15 min with shaking 

followed by additional 30 min without shaking. After that, the supernatant was removed 

and saved for DNA concentration determination and the beads were washed with 3 bed 

volumes of Coupling buffer. The coupling efficiency,  was determined by comparing the 

DNA concentration of the non-coupled fraction (supernatant) to the starting DNA 

sample. 

After coupling reaction, the nonspecific binding sites on the beads were blocked by 

incubation with one bed volume of Quenching Reagent for 15 min at RT with mixing 

and additional 30 min with no shaking. The beads were then washed with at least 6 bed 

volumes of Wash Solution followed by 2 gel volumes of Storage buffer and stored at 

4°C. 

 Coupling buffer:   50 mM Tris 

       5 mM EDTA-Na pH 8.5 

Prepare a volume equal to 20 times 

the volume of SulfoLink® Gel to be 

used. 

Quenching Reagent:  50 mM L-cysteine-HCl in Coupling 

buffer (prepare fresh)   

Wash Solution:   1 M NaCl 

Storage buffer:   PBS 0.05% Sodium azide 

 

TetR depletion experiment 

For TetR depletion from pc-NE, 140 µl of extract (12.5 ng protein / µl) were incubated 

with 100 µl of TetO beads, containing 2400 pMol TetO in the presence of 10 mM Mg+2 

and complete EDTA free protease inhibitors during 30 min at 30°C. Next, the beads 

were centrifuged and the supernatant (un-bound) was recovered. The beads were washed 

4 times 150 µl of buffer with no Mg+2 and resuspended in 140 µl of sample buffer. 

Sample buffer was added to all fractions and the samples were incubated 40 min at 95°C 

for reversal of cross-link after which they were analyzed by SDS-PAGE. 

As control, 12 ng of pure TetR protein were incubated with 50 µl of beads (1200 pMol 

TetO) in the same conditions as described above.  
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5.3.14 Elution of proteins from streptavidin beads and TCA precipitation 

For elution of pulled material, the beads were resuspended in 250 µl of buffer with 

benzonase and incubated 10 min at RT for DNA digestion. After that, the supernatant 

was removed and the beads incubated at 95°C for 30min with 250 µl of elution buffer 

containing 95% formamide. Next, the supernatant was recovered, and the beads washed 

several times with buffer. All the fractions were poled and the final volume divided in 3 

eppendorf tubes for TCA precipitation. At this point, an aliquot of input and unbound 

fraction were included. 

To precipitate the proteins the samples were incubated with 1:4 volume of TCA-DOC 

for 30 min on ice followed by centrifugation for 15 min at 4°C at 13000 rpm. The pellet 

was the washed with Acetone by sonication and incubation during 10 min at RT. Then, 

the samples were centrifuged and the washing procedure was repeated. Finally, the 

protein pellets were resuspended in sample buffer, pooled and reversed cross-link for 30’ 

at 95°C. After centrifugation, the supernatant was loaded on a pre-casted polyacrilamide 

gel. Proteins were analyzed by incubation with different antibodies. 

  Elution buffer:   95% formamide 

      10 mM EDTA pH 8.2 

  TCA-DOC   100% TCA 

      4 mg/ml Sodium Deoxycholate 

5.4 Cloning strategies 

All clones were checked by digestion with restriction enzymes for proper orientation and  

length  of  the  cloned  fragments  or  by  PCR with  appropriate  primers,  and   the final 

constructs were sequenced. Cloning was performed using XL1-Blue or SURE E. coli 

host cells.  

5.4.1 PRE constructs 

Many different constructs were generated bearing the Fab-7 PRE and the vg PRE. In the 

different constructs the TetO site was placed in different distances from the PRE, 

downstream or upstream of it. 

A. Generation of TetO-FRT cassette 

The TetO cassette consisting of seven repeats of the palindromic TetR binding site was 

obtained by restriction digest with XhoI and KpnI from the plasmid pUHC13.3 kindly 
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provided by Dr. Bujard. In order to generate a TetO cassette flanked by FRT sites, the 

pSVPAZ-FRT plasmid was digested with HindIII and BamHI and the annealed oligo 

OligoKpn was cloned in this site. The TetO cassette was then cloned in between XhoI-

KpnI sites, resulting in pSVPAZ-TetO-FRT. 

B. Cloning of TetO-FRT in pCaSpeR4 

The TetO-FRT cassette was cloned downstream of the miniwhite gene (mw) of 

pCaSpeR4. Two different constructs were generated which differ in the length of the 

spacing between the end of mw gene and the beginning of the TetO. 

To facilitate the cloning the OligoBsiWI was inserted into BsiWI-AgeI sites of the 

pCaSpeR4. Next, the TetO-FRT cassette was extracted from pSVPAZ-TetO-FRT by 

digestion with AgeI-MluI or with AgeI-BsiWI resulting in a 1.7 kb and 3.1 kb fragments 

respectively, and inserted in pCaSpeR4 generating the plasmids pC4TetOSsp and 

pC4TetOLsp.  

C. Insertion of LoxP sites  

The LoxP sequence was obtained as an oligo and cloned twice in tandem into pBKSII 

with BamHI-HindIII the first insert and  HindIII-XhoI the second, resulting in 

pBKSLoxP (see 7.1 Vector Maps). Next, the LoxP cassette consisting of two repeats was 

liberated from pBKSLoxP with SpeI-XbaI and cloned into pC4TetO (Lsp and Ssp) SpeI-

EcoRI site upstream of miniwhite reporter gene. 

D. Cloning of pC4Fab7-2, pC4Fab7-7 and pC4vg-1 

A 3.6 kb Fab7 PRE fragment was obtained by PCR amplification using preFab7 Fw and 

Rv plasmids and pUZ-Fab7 DNA as a template (kindly provided by S. Schmitt). The 

PCR product was digested with restriction enzymes and cloned into SpeI-NotI sites in 

the pC4TetO plasmids.  

The vestigial (vg) PRE, 3.2 kb, was obtained by restriction digest of the pUZ-vg plasmid 

(kindly provided by N. Lee) and  inserted into the pC4TetO plasmids as described above.  

Of the resulting plasmids, three were injected in embryos: 

pC4Fab7-2, pC4Fab7-7 and pC4vg-1 (See 7.1 Vector Maps) 

E. Cloning of pC4Fab7-6 and pC4vg-9  

To generate PREs constructs where the TetO is positioned upstream of the PRE, the 

pC4TetOLspLoxP was digested with AgeI-BsiWI and the TetO-FRT cassette was 
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liberated. The plasmid ends were filled-in and the plasmid was re-ligated generating 

pC4LoxP.  The oligoBsu was then introduced into XhoI-BamHI sites of this plasmid and 

the TetO-FRT cassette (from pSVPAZ-TetO-FRT) was re cloned in. The resulting 

plasmid, pC4TetOLoxP, contains 400 bp spacing between the TetO cassette and the 

PRE. The Fab7 and vestigial PREs were inserted as described in 5.4.1 D. 

The resulting plasmids, pC4Fab7-6 and pC4vg-9, were injected in embryos (See 7.1 

Vector Maps). 

F. TetR constructs, pUYTetR3’bio and pUYTetR5’bio 

The TetR DNA was obtained by PCR amplification using TetR Fw and Rv plasmids and 

pUHD142-1 plasmid (kindly provided by Dr. Bujard) as a template. The purified PCR 

fragment was digested with NotI and XhoI and cloned into pBKSII plasmid. The 

resulting plasmid bearing the TetR sequence was digested with XhoI-BamHI  or NotI-

XbaI to introduce the BioTag in the 3’ or 5’ end of the gene to generate pBKSTetR3’Bio 

and pBKSTetR5’Bio respectively (See 7.1 Vector Maps). 

The Bio-tagged TetR sequences were then introduced into XhoI-NotI sites of the 

pUASTy2 vector to produce the final constructs pUyTetR3’bio and pUyTetR5’bio that 

were injected in drosophila embryos (See 7.1 Vector Maps). 

5.5 Drosophila handling and genetic methods 

5.5.1 Drosophila handling 

Fly stocks were raised on standard fly food on  plastic vials (Greiner) and crossed at  

25°C with  60-70% relative  humidity. Fly stocks were maintained at 18°C with 60-70% 

relative humidity.  

Standard fly food: 10 l H2O   

  80 g Agar-agar   

  180 g dry yeast 

  100 g soy flour   

  220 g beet syrup   

  800 g corn meal   

24 g nipagin 

(methyl-4-hydroxybenzoate, Merck)   

62.5 ml propionic acid (Sigma)   
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Vials:  Small: 6.4 x 2.6 cm 

  Medium: 8.3 x 3.6 cm 

  Big: 10 x 5.3 cm   

5.5.2 Preparation of acetic acid agar plates  

33gr Agar-agar in 1 l ddH2O were autoclaved and allowed to cool  down to  

approximately 60°C. 14 g sucrose and 3 ml 100% acetic acid were added before the 

mixture  was poured into Petri dishes. After solidification, acetic agar plates were stored  

at 4°C.  

5.5.3 Drosophila embryo collection 

For embryo collection for injection, adult flies were transferred into medium-sized (9 cm 

diameter, 12 cm height) cages  sealed at the bottom with an agar plate. 

For collection of material for ChIP or biochemical methods, big-sized (50 cm long x 35 

cm wide x 35 cm high) cages were used. Typically 180-240 big vials of flies/cage were 

transferred into the cages containing paper to keep them dry and 8-10 agar plates 

(145/20) containing freshly prepared yeast to stimulate egg  deposition (figure 5.1). 

Cages were placed at 25°C with 30% relative humidity (figure 5.1). After  12 h of  

collection,  the  plates  were  replaced  with new ones.  The embryos  on the agar plate  

were flooded  with water  and transferred using  a  brush to a stack of sieves (1mm, 400 

µM and 100 µM stainless mesh) where  washing  with  water  was  continued. Excessive 

liquid was removed and embryos were dechorionated  by incubating them for 2.5 m  in a  

3% Na-hypochlorite / tap water solution. After thorough  washing in tap water, excessive 

liquid was removed. Using a spatula, embryos were  transferred into  Falcon tubes and 

weighed. 
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Figure 5.1 Drosophila cages for embryo collection. A-B) Each cage was filled with 180-240 
big vials of freshly hatched flies. C) 6-8 plates of acetic acid agar plates with yeast were 
introduced in the cages and exchanged every 12 hs. D) The cages were incubated at 25°C with 
30% relative humidity.  

 

5.5.4 Generation of transgenic flies by P-element mediated germ line 
transformation 

Transgenic flies carrying the construct of interest were generated by P-element mediated 

germ line transformation (Rubin and Spradling 1982; Spradling and Rubin 1982). The 

constructs for injection were prepared as follows: 9 µg of plasmid DNA together with 3 

µg of pUChsΔ2-3 in a final volume of 30 µl of  injection buffer. Prior to injection, the 

DNA mixture was centrifuged for 30 min at 13.000 rpm  (Eppendorf table top 

centrifuge) at 4°C, and 2.5 µl of the supernatant were loaded into a Femtotip needle 

(Eppendorf). The injection needle was submerged in oil to avoid clogging.   

Adult y1w1118 flies were transferred to medium size cages (9 cm diameter, 12 cm height) 
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and  were allowed to lay eggs on acetic acid agar plates for 25min at 25°C. Using a brush 

and tap  water, embryos were transferred into a sieve and washed extensively. After 

dechorionation by 2.5 min incubation in  bleach and extensive washing in tap water,  80-

100 embryos were  transferred onto a 1 cm x 3 cm block of acetic acid agar and aligned 

under a binocular. The  aligned embryos were then transferred onto a double-sided sticky 

tape (3M, Scotch) mounted  on a coverslip, with the  posterior  pole  pointing toward the 

edge  of the coverslip. Embryos  were  dehydrated in a closed chamber containing Silica  

gel for  7 min and covered with  Voltalef  10S  oil  (Lehmann & Voss & Co.). 

Microinjection  of DNA  dissolved in injection  buffer was performed under a 

stereomicroscope at 18°C with the Femtotip needle using an  Eppendorf FemtoJet 

Microinjector at 200-600 hPa injection pressure. In general, about 300-400 embryos 

were injected  per construct and were allowed to  develop in  oil in a  humid  chamber at 

18°C. Only embryos in which the pole cells were not yet visible were injected, all  

embryos older than stage 2 (Campos-Ortega and Hartenstein 1997) were discarded. 

Freshly  hatched first instar larvae were transferred into a vial containing standard fly 

food enriched  with yeast paste, and were kept at 25°C until the founder G0 generation 

hatched.   

 Injection buffer:  5 mM KCl   

  0.1 mM NaH2PO4, pH 6.8   

 PBS:   137 mM NaCl   

  2.7 mM KCl   

  10 mM Na2HPO4   

  2 mM KH2PO4  pH 7.4   

 Bleach:  3% Na-hypochlorite in PBS 

5.5.5 Establishing of transgenic lines and mapping of integration chromosome 

The hatched founder G0 generation flies were crossed to y1w1118 virgins or males  and  

progenies were then screened for the transformation marker miniwhite, i.e.  pigmented  

eyes or yellow, i.e. darker pigmented body. Depending  on the construct and the insertion 

site, the eye colour  varied from almost  white to orange, for yellow marker there were no 

differences on the body colour depending on insertion site. F1 generation transformants 

were then back-crossed twice to y1w1118; sp / CyO  flies and y1w1118 ; + ; TMSb / Dr  to 

map the chromosomal insertion site. 

After the chromosomal insertion site was mapped, homozygous fly lines were 



Methods 
  

142 

established. For this,  heterozygous  balanced flies were either crossed directly with  one 

another and  homozygous  individuals identified by the absence of  the dominant marker 

of the respective Balancer.  Single insertions were verified by Southern Blotting.   

5.5.6 Flp/FRT site-specific germ line recombination 

To excise the TetO site from the pC4Fab7-6 and pC4vg-9 transgenes, the  transgenic 

lines were crossed with a line expressing the Flp recombinase under the control of  a 

heat-shock promoter at 18°C (G0) (Chou and Perrimon 1996) (Figure 5.2). 

 

G0      yw hsFLP ; noc / CyO   ♀    X     w ; P (w+)    ♂ 

F1         yw hsFLP ; P (w+) / CyO   ♂   X    w ; sp / CyO    ♀ 

F2          w ; P (w+) / CyO   ♂   X    w ; sp / CyO   ♀   

F3           w ; P (w+) / CyO  ♂   X     w ; P (w+) / CyO   ♀ 

F4            w ; P (w+) 

Figure 5.2 Crossing scheme to excise the TetO by Flp/FRT specific recombination 

 

During the first 64 h of development, the Flp recombinase was induced in the F1 progeny 

by  heat-shocking for 2 h at 37°C. 24 h later, a second heat-shock was applied, and the 

embryos  were transferred to 25°C until adulthood. Males of the hatched progeny, 

carrying the hsFlp  transgene as well as the reporter construct (P (w+)) were crossed to 

Sp/CyO balancer  virgins. The males hatching in the next generation (F2, P* (w+)) were 

again crossed to Sp/CyO balancer virgins in single pair matting. Individuals of the F3 

generation were tested for  successful recombination by single fly PCR. Recombinants 

(P* (w+)) were crossed with each  other to establish homozygous stocks (F4).   

5.5.7 Cre/loxP site-specific germ line recombination 

To excise the Fab-7 PRE and the vestigial PRE from the pC4Fab7-6 and pC4vg-9 

transgenes, transgenic males were crossed to virgins expressing the Cre recombinase 

(G0) (Figure 5.3). 
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G0      yw ; noc / CyO Cre   ♀    X     w ; P (w+)    ♂ 

F1         yw ; P (w+) / noc   ♂   X    w ; sp / CyO    ♀ 

F2        w ; P (w+) / CyO   ♂   X    w ; P (w+) / CyO   ♀   

F3           w ; P (w+) / CyO   ♂   X     w ; P (w+) / CyO   ♀ 

F4           w ; P (w+) 

Figure 5.3: Crossing scheme to excise the Fab-7 or the vestigial PRE by Cre/loxP 

specific recombination 

 

The  hsp70-Mos1  promoter  driving the expression  of the Cre recombinase is active in  

both  somatic and germ line tissues (Siegal and Hartl 1996). Due to the strong maternal 

effect of Cre  recombinase expression, males hatching in the next generation (F1), 

bearing the transgene (P  (w+))  but  not the CyO-marked Cre recombinase, were crossed 

to sp/CyO balancer  virgins. Males  hatching in the F2  generation were again  back-

crossed to sp/CyO  balancer  virgins in single  pair mating. In the F3  generation, 

successful recombinants  (P*  (w+)) were identified by single fly PCR and homozygous 

stocks (F4) were established. 

5.5.8 Determination of eye pigment in adult flies 

Freshly hatched females were collected and left at  25°C to age for 24 h, 10 flies were 

then transferred into an Eppendorf  tube. For decapitation, the flies were  flash-frozen in 

liquid  nitrogen and  vortexed for about  20 sec. The  heads were isolated with a brush 

and  transferred into a fresh Eppendorf tube. For homogenization, 100 µl EPE buffer 

were added  and the heads were grounded  using an Eppendorf micropestle. Additional 

150 µl EPE buffer were used to wash the micropestle, and extraction was allowed to 

proceed in the dark at 25°C for 1  h. The samples were then centrifuged for 2 min at 

13.000 rpm (Eppendorf table top centrifuge) to remove the head debris. 150µl of clear 

supernatant were transferred into a new  tube; The centrifugation step was repeated and 

120 µl  of the supernatant transferred into a  new tube. The relative levels  of eye  

pigmentation were  determined  by measuring the  absorbance at 480 nm in a 

photometer. As a negative control, heads of w1118flies were used.   

EPE buffer:    30% ethanol (adjust to pH 2 with HCl) 

 

To photograph adult fly eyes, freshly hatched flies were left additional 24  h at 25°C and 

then either photographed directly or stored at -20°C.  
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5.6 Drosophila histological methods 

5.6.1 DNA FISH on larval polytene chromosomes 

Chromosome squashes   

This  protocol was adapted from  (Lavrov et al. 2004). Larvae were  grown  on standard   

Drosophila medium supplemented with  fresh yeast  paste in big vials not to crowded 

and at 18°C. 11-12 days after egg deposition wandering third instar larvae were collected 

in PBS on ice and the females were selected (generally, the salivary glands of females 

are bigger than those  of males). Two pairs of salivary glands were dissected in solution 

1, removing fat body cells as much as possible. Using forceps, the two pairs of salivary 

glands were transferred  into a drop (approximately 40 µl) of solution 2  on a slide. 

While continuously stirring, the  glands were homogeneously fixed for 10 sec. 

Subsequently, the glands were transferred into a  drop  of solution  3  on a  18 cm  x  18 

cm coverslip and left for  2 min  10 sec. Using a  poly(L)lysine coated slide, the  glands 

were taken  up and then  squashed  to spread the  chromosomes. To do this, a pencil was 

tapped onto the coverslip with moderate force  and constant moving of the coverslip (1-2 

mm). Excess liquid was removed by turning the  slide upside down and pressing it onto 

Whatman paper. The quality of the preparation was  examined immediately  under  

phase contrast. The  position  of the  coverslip was marked  on the slide using a  diamond 

pencil, before it was flash-frozen in liquid  nitrogen. The coverslip was removed using a  

razorblade and the slide was then stored in PBS  on ice  (for  storage up to one week, 

slides were transferred into a jar containing 100% methanol at 4°C). The slides were 

washed twice in PBS for  15 min with constant rocking. Subsequently, the  chromosomes 

were dehydrated by passing them through an increasing series of ethanol (2x 5 min 70%; 

2x 5 min 96%). Finally, the slides were air-dried and stored flat at 4°C at least  

overnight, as this markedly increased the adhesion  of the  chromosomes to the slide, and 

thus the quality of the DNA FISH signals.   

Buffers: Solution 1: 0.1% (v/v) Triton X-100 / PBS   

 Solution 2:   50 µl 10% (v/v) Triton X-100   

  400 µl PBS   

50 µl 37% p-formaldehyde; this solution 

must  be  prepared fresh  and can  be used 

for 2-3 h when  kept on  ice.   
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 37% p-formaldehyde stock: 1.85 g p-formaldehyde was weighed into a  

final  volume  of  5 ml  ddH2O, and  70 µl  

1N KOH were added to adjust to pH 7.4.  

The powder was dissolved by heating in a  

60-65°C waterbath. 100 µl aliquots were  

stored at -80°C. Before use, aliquots were  

thawed by heating at 60-65°C. If   

precipitates formed, the solution was  

discarded.   

 Solution 3:   50 µl 37% p-formaldehyde   

   200 µl ddH2O   

250 µl 100% acetic acid; this solution also  

has to  be  prepared  fresh every time and is 

stable for     2-3 h  when kept on ice. 

Preparation of the DIG-labelled DNA probe   

1 µg DNA (linear or circular plasmid DNA) was  used as a template in a standard 

labelling  assay according to the manual provided with the DIG-High Prime labelling  kit  

(Roche).  Briefly, the template DNA was dissolved in a volume of 16 µl and denatured 

by boiling for  10 min. The DIG-High Prime labelling mix was mixed thoroughly and  4 

µl added to the  denatured DNA. After short centrifugation, the reaction was incubated 

overnight at 37°C. The  reaction was stopped by adding 2 µl of 0.2 M EDTA (pH 8) or 

heating for 10 min at 65°C, the  DIG-labelled DNA was ethanol-precipitated and 

resuspended in 20 µl TE buffer (pH 7.4). 200  µl hybridization buffer were added and the 

probe was stored for several months at -20°C.   

 Hybridization buffer:   50% formamide   

  2x SSC   

  10% dextran sulfate   

400 µg/ml herring sperm DNA (Invitrogen)  

pH 7 store at -20°C   

Pre-treatment and Hybridization   

Just before hybridization, the slides were put into a Coplin Jar containing 2x SSC at RT. 

The  jar was then transferred into a 70°C waterbath and incubated for 40 min. Next, the  
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slides were dehydrated by passing through ethanol series (2x 5 min 70%; 2x 5 min  96%) 

and air-dried. To denature the chromosomes, they were incubated for in 0.1 M NaOH  

for  10 min and then washed three times  (1 min,  1 min,  5 min) in  2x SSC, followed  by  

dehydration and air-drying. One aliquot of DIG labelled DNA probe (in hybridization 

buffer,  around 15 µl per sample) was denatured by heating for 5 min at 80°C, then 

quickly chilled on ice, pre-warmed to 37°C, and pipetted onto a 22 mm x 22 mm 

coverslip. The slide covered  with polytene chromosomes was turned upside down to 

take up the coverslip with the probe.  To  prevent liquid evaporation, the coverslips were 

sealed with Fixogum and the slides were  hybridized overnight in a humid chamber in a 

37°C waterbath.   

 20x SSC: 3M NaCl   

  300mM  sodium citrate  pH 7   

Washing and detection   

After hybridization, the slides were immersed in pre-warmed 2x SSC to loosen the 

coverslips  and the fixogum was removed with forceps (during the post-hybridization 

washes, cooling down of the samples should be avoided). The slides were then 

transferred into a Coplin Jar and washed 3x 5 min in 2x SSC at 42°C, then once for  5 

min in 2x SSC at RT with rocking. Next, the slides were washed 5 min in TNT buffer on 

a  shaker, then 100 µl of TNB buffer were pipetted onto each slide which was then 

covered with a  24 mm x 44 mm coverslip and incubated for 30 min at RT. The 

coverslips were removed by immersing the slides in TNT  buffer. Mouse α-DIG 

antibody  (Roche) was  diluted in TNB  buffer to a final concentration of 1:200, and 20 

µl were then pipetted onto a 22 mm x 22 mm  coverslip. The slide was turned upside 

down to take up the coverslip, then laid down flat and  incubated in a humid chamber for 

90 min at RT or overnight at 4°C. After 3x 5 min washes in  TNT  buffer  on a shaker, 

the secondary antibody  (goat α-mouse-Cy3, JacksonImmunoResearch) was diluted 

1:200 in TNB buffer, and 20 µl were pipetted onto a  22 mm  x  22 mm coverslip, which 

was then taken up by turning the slide  upside  down. The slides were incubated 60-90 

min in a humid chamber at RT in the  dark. To  prevent  bleaching  of the  fluorophore, 

all following steps were also carried out in the dark. After 3x 5 min washes with  TNT 

buffer on a shaker, the DNA was counterstained  with DAPI 1 µg/ml diluted in TNT 

buffer, 10 min incubation at RT in the dark. The slides were washed once for 5 min in 

TNT  buffer, and mounted in Mowiol or  Fluoromount G (SouthernBiotech). 
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Buffers: TNT buffer: 100 mM Tris-HCl pH 7.4   

  150 mM NaCl   

  0.05% (v/v) Tween-20   

 TNB buffer: 100 mM Tris-HCl pH 7.4   

  150 mM NaCl   

  4% BSA   

5.7 Handling Drosophila Cells 

5.7.1 Cultivation of Schneider SL2 cells 

The  cells  were  cultivated  in  T-75  cell  culture  flasks  (Cellstar)  with  20  ml  growth  

medium.  At 80-90%  confluency,  the  adherent  SL2  cells  detach  and  proliferate  in  

suspension  and  have  to be passaged.  Cells  were  resuspended  until  a single  cell  

suspension  was present,  an aliquot (1:10-1:50)  thereof  was  transferred  into  a  new  

flask  containing  20  ml  fresh  medium  and equally distributed. Cells were cultivated at 

25 °C under normal atmosphere.  

 Culture Medium: Schneider´s Medium (Invitrogen)  

  1% Penicillin/Streptomycin  

  10% FCS  

5.7.2 Freezing of cells for long term storage 

Cells at 70-90% confluency were resuspended and transferred into 15 ml Falcon tubes 

with 10  ml of fresh medium. The cells were sedimented at 300g for 5 min and 

resuspended in 3-4.5  ml 10% (v/v) DMSO in growth medium with 20% FCS. 1.5 ml 

aliquots were transferred into  cryotubes (Nunc) and incubated on ice for 1-1.5 h. The 

vials were stored overnight at -80°C  and then transferred into a liquid nitrogen tank for 

long-term storage.   

5.7.3 Thawing of frozen cells 

Cells frozen in liquid nitrogen were thawed quickly in a  37°C waterbath. Cells were  

transferred into a 15 ml Falcon tube with 10 ml of fresh medium and centrifuged for 5 

min at  300g. The cells were resuspended in  5 ml  normal  growth medium and 

transferred to  9 cm  culture dishes containing 10 ml growth medium. 
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5.7.4 Transient transfection of SL2 cells with Effectene 

S2 cells were plated in 6 well dishes at 30-50 % confluency the day before transfection. 

2-3 h before  transfection,  the  growth  medium  was  replaced  with  1.6  ml  fresh  

medium,  and  cells were transfected with Effectene (Qiagen) according to the 

manufacturer’s protocol as follows:  

1 µg DNA (1µg each plasmid: pmtGal4, pUASp(EGFP)BirA, 

pUYTetRBio3 or pUYTetRBio5 )  

200 µl Enhancer buffer  

16 µl Enhancer (Enhancer:DNA = 8:1)  

The  mixture  was  vortexed  for  1  sec  and  incubated  for  5  min  at  RT.  25 µl  

Effectene  was added by pipetting up and down five times and incubated for 10 min at 

RT. 580 µl S2 growth medium was added, the mixture  was pipetted  up and down twice, 

directly  added drop wise  to the  cells  and  incubated at 25 °C. Expression  was  induced 

72 h after transfection by adding  CuSO4 (0.5 M stock in ddH2O) to a final concentration 

of 500 µM. Cells were generally analyzed 48 h after induction. 

 

5.7.5 Cell Lysis for western blot analysis 

Cells  were  scraped  by  pipetting  up  and  down  with  a  1  ml  pipette  tip, transferred  

into  a 15 ml falcon tube and  centrifuged at 800x g for 10 min at 4°C . Next the cells 

were washed once with  cold  PBS, resuspended  in 1 ml of  PBS supplemented with 

protease inhibitors (complete EDTA free protease inhibitors, Roche)  and stored at -

20°C. For SDS-Page analysis 100 µl of cells were centrifuged and resuspended in 20 µl 

of  2x SDS sample buffer. 0.5µl bezonase was added and the samples were first 

incubated 5 min at RT and then heated for 5 min at 95°C. 
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7. Appendix 

7.1 Vector maps 
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7.2 General crossing scheme for generation of transgenic lines 

A- Generation of TetR/BirA flies:  

-Y[1]w[1118]; P{TetR5’Bio, y+}, P{BirA-myc, GFP} 

 

G0      yw ; TetR (y+) / TetR (y+)   ♀    X    yw ; BirA (GFP+) / BirA (GFP+)  ♂  
 
F1         yw ; TetR (y+) / BirA (GFP+)   ♀     X    yw ; sp / CyO    ♂ 
 
F2          yw ; TetR (y+), BirA (GFP+) / CyO  
 

B-Generation of PRE/TetR/BirA flies: 

- y[1] w[1118]; P{ FLP-TetO, FRT-PRE, w+}, P{TetR5’Bio, y+}, P{BirA-myc, GFP}   

-y[1] w[1118]; P{ FLP-TetO, FRT, w+}, P{TetR5’Bio, y+}, P{BirA-myc, GFP} 

-y[1] w[1118]; P{ FLP, FRT-PRE, w+}, P{TetR5’Bio, y+}, P{BirA-myc, GFP} 

 

 

G0      yw ; PRE (w+)  ♀    X    yw ; TetR (y+), BirA (GFP+) ♂ 
 
F1         yw ; PRE (w+)  / TetR (y+), BirA (GFP+)   ♀     X    yw ; sp / CyO    ♂ 
 
F2                  yw ; PRE (w+),TetR (y+), BirA (GFP+) / CyO    
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C-Generation of PRE/TetR/Bir;DaGal4 flies: 

- y[1] w[1118]; P{ FLP-TetO, FRT-Fab7, w+}, P{TetR5’Bio, y+}, P{BirA-myc, GFP}; 

DaGal4/TMSb. 

-y[1] w[1118]; P{ FLP-TetO, FRT, w+}, P{TetR5’Bio, y+}, P{BirA-myc, GFP}; 

DaGal4/TMSb. 

- y[1] w[1118]; P{ FLP, FRT-Fab7, w+}, P{TetR5’Bio, y+}, P{BirA-myc, GFP}; 

DaGal4/TMSb. 

 

G0   yw; PRE (w+), TetR (y+), BirA (GFP+); Dr/TMSb  ♀    X    
          yw ; CyO/Sp; DaGal4  ♂ 

 
F1       yw; PRE (w+), TetR (y+), BirA (GFP+)/ CyO; DaGal/ TMSb  
 

7.3 Abbreviations 

7.3.1 Genes, chromosomal markers, proteins and protein domains 

abdA Abdominal-A 
AbdB Abdominal-B 
ANT-C Antennapedia Complex 
Antp Antennapedia 
ASH Absent, small and homeotic 
Bcd bicoid 
BRM Brahma 
BMI1 BMI1 polycomb ring finger oncogene 
Bx Bithorax 
CHRASCH Chromatin associated silencing complex for  homeotics 
dCBP Drosophila CREB-binding protein 
Cre Causes recombination 
DSP1 Dorsal switch protein 1 
dTAFII Drosophila TFIID associated factor 
en Engrailed 
ESC Extra sex combs 
Ey eyeless 
E(Z) Enhancer of zeste 
EZH2 Enhancer of zeste 2 
EED Embryonic ectoderm development 
Fab-7 Frontoabdominal-7 
Flp  flipase  
FRT  Flp recombination target  
GAF  GAGA factor  
GFP  Green fluorescent protein  
HAT  histone acetyltransferase  
HDAC  histone deacetylase  
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hb  hunchback  
hh  hedgehog  
HMTase  histone methyltransferase  
Hox  Homeobox  
iab  infraabdominal  
LHP1 Like Heterochromatin Protein 1 
loxP  locus of crossing over (x), P1  
Mcp  Miscadestral pigmentation  
MLL  Mixed lineage leukemia  
MOF  Males absent on the first  
MOR  Moira  
mw  miniwhite  
nos  nanos  
PC  Polycomb  
PCL Polycomb like 
PcG  Polycomb group  
PH  Polyhomeotic  
PHD Polyhomeotic distal 
PHO  Pleiohomeotic  
PHP Polyhomeotic proximal 
PHOL Pleihomeotic-Like 
PRC  Polycomb group repressive complex  
PRE  Polycomb group response element  
PSC  Posterior sex combs  
PSQ  Pipsqueak  
RNAPII  RNA polymerase II  
Su(Z)12  Suppressor of zeste 12  
SCM Sex Comb on midleg 
TBP TATA-box binding protein 
TAF Transcription factor 
TetR Tetracycline Repressor 
TetO Tetracycline Operator 
TRX  Trithorax  
UAS  upstream activating sequence  
Ubx  Ultrabithorax  
3’UTR  3’ untranslated region  
vg vestigial 
wg  wingless  
yw yellow-white 
Z  Zeste  

 

7.3.2 Others  

aa  amino acid  
Amp  ampicillin  
AP  alkaline phosphatase  
A-P  anterior-posterior  
ATP  adenosine-5’-triphosphate  



Appendix 
 
 

177 

bp  basepair  
BSA  bovine serum albumin  
ChIP Chromatin Immunoprecipitation 
CIP  calf intestinal phosphatase  
cm  centimeter 
CsCl Cesium Chloride 
DB Dialysis buffer 
ddH2O Double distil water 
DEAE Diethylaminoethyl  
DMSO  dimethylsulfoxide  
DNA  deoxyribonucleic acid  
DNase  deoxyribonuclease  
dNTO Deoxynucleotide triphosphate 
DOC Sodium Deoxycholate 
ds Double-stranded 
DSP Dithiobis[sulfosuccinimidylpropionate] 
DTBP Dimethyl 3,3’-dithiobispropionimidate-2HCl 
DTT Dithio-DL-threit(ol) 
D-V  dorsal-ventral  
E.coli  Escherichia coli  
EDTA  Ethylendiaminotetraacetic acid  

EGTA Ethylene glycol-bis-(β-aminoethyl ether)-N,N,N',N'-
tetraacetic acid 

Fig  Figure  
FISH  fluorescent in situ hybridization  
g  gravitation  
h  hour  
Hepes  N-(2-Hydroxyethyl)-piperazin-N’(2-ethansulfonic acid)  
hPa Hectopascal 
HRP Horseradish peroxidase 
kb  kilobase  
kDa  kiloDalton  
LB  Luria Bertani  
Lsp Long spacer 
M  Molar  
min  minute  
ml  milliliter  
mm  millimeter  
mM  millimolar  
MWCO Molecular weight cut off 
NB Nuclear break buffer 
NE  Nuclear extract 
NEB New England Biolab 
NP-40  Nonidet P-40  
nt  nucleotide  
NW  Nuclear wash buffer 
OD  optical density  
PAGES Polyacrilamide gel electrophoresis 
PBS  phosphate-buffered saline  
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PBST PBS-Tween 
pc-NE Protein chromatin nuclear extract 
PCR  polymerase chain reaction  
PMSF  Phenylmethylsulfonylfluoride  
RNA  ribonucleic acid  
RNase  ribonuclease  
rpm  revolutions per minute  
RT  room temperature  
SB sample buffer 
SDS Sodium duodecil sulfate 
sec  second  
SP Sulphopropyl 
ss  single-stranded  
TAE  Tris-acetate-EDTA  
TCA Trichloroacetic acid 
TE  Tris-EDTA  
U units 
UV  ultraviolet  
V voltage 
v/v  volume per volume  
w/v  weight per volume  
µJ microjoule 
µg  microgram  
µm  micrometer 
µM  micromolar  
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Erratum 
In the Results section, on page 49 of the present manuscript “Locus specific analysis 
of PcG/TrxG proteins using Bio-tagging technology” in Figure 2.13 A, TetO-ΔFab7 
and ΔTetO-Fab7 charts are interchanged. 
The correct figure follows. 
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