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Eindimensionale Wenig-Bosonen-Systeme in Einzel- und Dppl-Topffallen. Gegenstand dieser Ar-
beit sind eindimensionale Systeme weniger Bosonen in @irffarmonischen und Doppeltopf-Fallen.
Dabei liegt der Schwerpunkt auf dem Ubergang von schwachech®élwirkungen hin zum Grenz-
fall starker AbstoBung, in dem das Bose-Gas auf ein ideaeniFGas abgebildet werden kann. Zur
Beschreibung diesd®rmionisierungdJbergangs dient eine hier entwickelte Exakte Diagoreiisig
und eine numerisch exakte Quantendynamik-Methode (MCTDE!) Ubergangs-Mechanismusfiir den
Grundzustandbesteht in der Ausbildung eines Zweiteilchen-Korrelationhes und der anschlieRenden
Lokalisierung der einzelnen Teilchen, sobald diese sidheithend stark absto3en. Dies schlagt sich
nieder in der Verringerung der Koharenz. Es wird gezeigt,aieir konkrete Verlauf des Fermionisierungs-
Ubergangs abhangt von der Fallen-Geometrie, der raunnlibtelulation der Wechselwirkung sowie
der Teilchenzahl. Dariiber hinaus untersuchen wir die igetimAnregungeries Systems. Deren Ver-
sténdnis erweist sich als wesentlich fur die Untersuchwangdnnel-Dynamikveniger Bosonen. Diese
andert ihren Charakter mit zunehmender Wechselwirkunggteilchen-Tunneln hin zu fragmentier-
tem Paar-Tunneln. Durch eine zusatzliche Potential-Bffe zwischen den Topfen lassen sich zudem
einzelne Tunnel-Resonanzen ansteuern. Dies ermdgliekbditrollierte Enthnahme einzelner Atome.

*kkkkkkkkk

One-dimensional Few-boson Systems in Single- and DoublesivTraps. This thesis studies the
one-dimensional Bose gas in harmonic and double-well tirgps a few-body perspective. The main
emphasis is on the crossover from weak interactions to ttmid@ization limit of infinite repulsion,
where the system maps to an ideal Fermi gas. To explore thetste as well as the quantum dy-
namics throughout that crossover, we both develop an alagtnalization approach and resort to a
multi-configurational time-dependent method (MCTDH). Toesic mechanism of the fermionization
crossover for thground statels shown to consist in the formation of a correlation holeha two-
body density, which culminates in a localization of the indiial particles for strong repulsion. This
is accompanied by a reduction of coherence. We demonstoatete concrete pathway depends on
the trap geometry, on the shape of the interaction, as walhabe atom number. By extension, we
also investigate the lowesixcitations whose understanding is a base for studying the impact of the
fermionization crossover on thtenneling dynamicén a double well. In symmetric wells, a pathway
from single-particle to fragmented-pair tunneling shoyss By energetically offsetting the two wells,
tunnel resonances become accessible, which may be usetldotaingle atoms.
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Introduction

In recent years, the research field of ultracold atoms hasnbedighly popular, with an out-Ultracold atoms
reach extending far beyond atomic physics [1-3]. This isbee ultracold atoms by now are
an incredibly flexible toolbox. For one thing, it has becomegible tocool atoms (chiefly, but
not only, alkali gases) down to the regime of nano-Kelvin genatures, where the de-Broglie
wavelength exceeds the inter-particle distance to theneittat the quantum-mechanical wave
features become crucial. This has been done drawing on aicaticn of different techniques
such as laser or evaporative cooling [1, 4]. Moreover, akplpthe atoms’ interaction with
electromagnetic fields, both theixternalandinter-particle forces may be designed experi-
mentally. For instance, the atoms can be stored in trappingaaments such as the textbook
harmonic potential; but also the seeming toy model of a singped trap has been realized [5].
By extension, it is possible to generate “optical latticeis!' lasers, or to make the trap strongly
anisotropic so as to confine the system to lower dimensioikewlise, the effective interactions
nowadays can be tuned almost at will via Feshbach resonfdice® one can go all the way
from switching off interactions completely to artificialtyeating strongly correlated systems.

This impressive toolbox has been applied to a variety oflprab. A central aspect is that
of quantum simulators, where the atoms are used to realiziganatic quantum systems.
The seminal example here is Bose-Einstein condensatid) 4]1;- not only as it had been a
longstanding prediction of statistical quantum mecharias also because the route toward its
experimental realization opened up the door to exploringynaher effects. Currently, cold
atoms often serve as some kind of Rosetta stone for puzzigingpfrom condensed-matter
physics (e.g., superfluidity, superconductivity, magratiand disorder), nonlinear optics, and
fundamental quantum problems (like vortices or tunneling) name but a few [7]. Other ap-
plications, such as sensoring via matter-wave interfetgn8] or, somewhat more visionary,
gquantum-information processing [9], draw on the high degrecoherence of Bose-Einstein
condensates.

Bose-Einstein condensates—the core piece of most expasmeare typically producedFew vs. many atoms

with large particle numbers, say ~ 10°. By contrast, recent years have seen a trend toward

the study of few-atom systems. For one thing, margerimentdave undergone persistent

miniaturization, so studying only few atoms is becoming alistic perspective. Today there

is a broad range of techniques allowing for the extractiba,dontrolled one-by-one transport

and positioning of atoms via laser fields [10, 11] and stosntall ensembles on a so-called

atom chip [12]. It is also feasible to image them with up to mogcopic resolution, bot

situ (via fluorescence imaging [10] or impact ionization [13], ex the signal may also be

enhanced simply by producing an array with many differepie® of the system as in [14]) or

1
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in time-of-flight measurements. On the other hand, studfemgbody systems is fascinating
from atheoreticalstandpoint. Apart from often being surprisingly rich inithewn right—
as exemplified in the exotic three-body Efimov states [15-4f6v-body systems provide a
“bottom-up” perspective on processes also underlyingelasgstems. This is facilitated by the
fact that small systems are more amenablakidnitio calculations, which do not rely on any
uncontrolled approximations, or in a few instances evesrdf@nalytic solutions, as in the case
of two atoms in an isotropic [17] and, more generally, am@gut harmonic trap [18].

One example where the combined potential of ultracold feamasystems as quantum
simulators has proven particularly expedient is the omeedisional (1D) Bose gas. Since the
old days of quantum mechanics—well, not quite the Paleolitather the Middle Ages—this
model system has allured researchers for its sometimeserminitive features. We are used
to thinking of bosonic and fermionic particles as very dispa — bosons are often said to be
“sociable” in allusion to the fact that they tend to condeimse the same single-particle state at
low temperatures, whereas fermions are in a way more aldbbirthey obey Pauli’'s exclusion
principle. Strikingly, in 1D there is a way to actually corhéhese two very different pictures
— that is, to make bosons behave almost like fermionsjaa versa More precisely, already
in 1960 it has been proven by Girardeau that bosons with iefjniepulsive point interactions
map one-to-one to an ideal Fermi gas [19]. In particular,gtmind state is given simply by
the absolute value of the fermionic one, the Slater detexmimvith all orbitals filled up to
the Fermi edge. This makes it tempting to think of the exdgirinciple as mimicking the
effect of the hard-core repulsion, which is why this limitésmedfermionization That general
theorem was confirmed later on by Lieb and Liniger [20], whieet the special problem of the
homogeneous Bose gas with periodic boundary conditioas ¢n a ring of lengthl) exactly
for arbitrary interaction strength in the thermodynamigiti(V, L — oo with n = N/L fixed).
The Lieb-Liniger solution was able to reproduce the ferridation prediction by letting the
interaction strength tend to infinity.

Thrilling as it was as a theoretical conception, this femization limit long remained an
exotic toy model. It was not before the availability of uttedd atoms that its experimental
realization came within reach. A cornerstone was set byaighwho suggested that bosons
under strong cylindrical confinement—such that the trarsgvenotion were essentially frozen
and the particles could move only in the longitudinal dil@et—would experience an effective
1D interaction strength that might depend very strongly lwm ttansverse confinement [21].
This so-called confinement-induced resonance opened ymrdispect of tuning the effective
coupling so as to reach the fermionization limit. That twamhp prediction was complemented
by estimates of the parameter regimes necessary for itgatah in a many-body system,
requiring, amongst others, low densities and temperatsmesl compared to the transverse-
excitation energy [22—-24]. In 2004, eventually experirakmividence of fermionization was
given virtually simultaneously by two groups [14, 25]. Sgad also by this experimental re-
alization, there has recently been a proliferation of wddaising on that topic. Altogether
these have given a fairly broad image of fermionized bosimetding their ground state in a
harmonic trap [26,27] and in a periodic potential [28], th#-similar expansion and breathing
dynamics [29-31], fermionized dark solitons [32, 33], theherence in interference experi-
ments [34], Bragg reflections off optical lattices [35], arah-exponential decay behavior [36]
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— a list which is nowhere near exhaustive.

Compared to that, little is known about the ex#rensition between the two borderlineCrossover to
cases of the familiar weakly interacting Bose “condensatef the above fermionization limitfermionization
of infinite repulsion. As insinuated above, the thermodyitaneb-Liniger solution in princi-
ple describes the entire crossover and is consistent vétBdse-Fermi map. While their semi-
nal paper was concerned solely with the energy spectrurasisérved as a base for some closer
considerations on the crossover [22,23]. A first step to taaeaccount finite-size effects was
taken via Monte-Carlo simulations [37] and later by extegdihe analytic Lieb-Liniger ap-
proach to finite systems [38]. However, in experiments,qatici boundary conditions are hard
to impose. This naturally brings up the question of the imp&external traps, which render
the system nonintegrable except in the simple case of twosato a harmonic trap [17, 39].
Here, a first indication of the onset of the characteristimfen-like density profile upon con-
fining the 3D system to quasi-1D was given by Monte-Carloist{0, 41]. Soon after, the
fermionization transition was revisited from a multi-addimean-field perspective, which sug-
gested to interpret it as a crossover from a “condensate&igvhll particles occupy the same
delocalized single-particle state) to Anfold “fragmented” state, in the sense that each particle
resides in a localized orbital [42]. However, by the timestitiesis was started, the understand-
ing of the crossover to fermionization was still somewhatpg and it has only been very
recently that a complete picture has started to emerge (J3-5

The goal of this thesis is to contribute to a systematic picaf the crossover to fermion-This thesis
ization in trapped few-body systems. To tackle this nunadictwo approaches have been
pursued (Ch. 2): First, an exact-diagonalization apprdachrapped bosons has been de-
veloped. However, most results in this thesis have beeringlatavia the numerically exact
multi-configurational time-dependent Hartree method, @atde scheme well known for its
efficiency in wave-packet-dynamics applications.

To understand the basic mechanism of the fermionizatiossoner, we start out in Ch. 3 by
studying the ground state in dependence on the atom nuMpeith a focus on the interplay
between external and inter-particle forces [46, 47]. Ts tmd, both the reference case of a
harmonic trap as well as a double-well trap are investigdtedlatter being a paradigm model
for fundamental quantum effects like interferences or éling. Moreover, the role of the
interaction is illuminated by considering also the sitoativhere the interaction potential is
inhomogeneous, in that the coupling constant is spatiatidutated between the left and the
right-hand side of the trap.

Chapter 4 extends that investigation to the low-lying eatimins [48]. This way it bridges
the gap between the ground state and the quantum dynamdisdstin Ch. 5, which deals
with the impact of the fermionization crossover on the tdimgedynamics in double-well traps
[49,50].

To keep this thesis largely self-contained, the readertisdiiced to the theoretical back-
ground in Ch. 1. After reviewing some basic concepts andtiooim of many-body quantum
mechanics, the effective model Hamiltonian for the ulttdcouasi-1D Bose gas is derived.
This is complemented by a concise introduction to the amalysmany-body states in terms
of correlation functions, as well as an overview of someesdlsoluble models in the context
of the 1D Bose gas.



INTRODUCTION



Chapter 1

Theoretical background

The objective of this thesis is a theoretical study of ulilddew-atom systems in traps. Here
our focus is not on the structure of the individual atoms hbutlee interplay ofinteratomic
andexternaltrapping forces. After giving a concise but coherent revigwthe mathematical
language of many-body physics and its Fock-space fornomldti Sec. 1.1, we will set out
to model the system. To this end, both the interaction of atwiith external electromagnetic
fields (Sec. 1.2.1) and between atoms (Sec. 1.2.2) needsticbded in an effective Hamilto-
nian. Furthermore, in Sec. 1.2.3 we derive an effectiverg@sm for quasi-one-dimensional
systems, which arise in the limit of strong transversal cmufient. After an interlude on den-
sity matrices (Sec. 1.3), which constitute an important towisualize correlations in many-
particle systems, in Sec. 1.4 we present three simple mdolelshich there exist analytic
solutions. This provides a link to the investigation of cate many-body systems.

1.1 Fock-space formulation of many-body physics

The subject of this thesis are systems of few interactingfmsDespite the worfibw (in this
context signifyingN < 10), we are actually interested in treating the particle nunasgjust
another parameter, rather than exploita@riori that our system contains exactly two atoms
(or perhaps three or four) and tailor our treatment to accéoamjust that fact. In light of
this remark, the appropriate language is thanaiy-bodyphysics—the so-called Fock-space
formulation of quantum mechanics, also referred to as aquarfield theory. Reviewing its
concepts and, along the way, introducing some widely uséatinas will be the goal of this
section.

Here we will follow the standard route in the contextnain-relativisticfield theory, which
goes by the name @&econd Quantizatigrindicating that it takes a detour over the ‘first quan-
tization’ of one-bodyobservables. Starting from the corresponding one-bodgsstthe many-
body states will be constructed ‘on top’, as it were. This iggy constructive and technical
scheme, as opposed to the canonical approach that stanta ttassical field theory and quan-
tizes it directly.
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1.1.1 Identical particles

To begin with, let us recapitulate the quantum mechanicé/dflentical particles [51, 52].
The indistinguishability postulate demands that, under @egrmutation of the particles =
1,..., N, every physical stat& should change according to

UP)U = (+1)E) g

Here P € Sy is a member of the symmetric group, with its representatioon the Hilbert
space andnv(P) denoting the minimum number of transpositions into whieltan be de-
composed.U(P) is an invariant of the system, as it commutes with the Hamito /' (and
with every observable, for that matter); hence its eigaresimay be used to classify the cor-
responding eigenspaces: Particles obeyingittsign are calledosons while the alternating
representation refers fermions Given that consideration, the above requirement asdets t
¥ lives only inthosesubspaces of the full (direct-product) spéﬁ%N that are invariant sub-
spaces under the fully (anti-)symmetric representatidr$yg U (P). In symbolic form,

UeHE ={V|S.0 =T},

where S = % > Pesy (il)i“V(P) U(P) denotes the orthogonal projectors onto the sub-
spaces.

As an illustration, consider the (manifestly permutatgymmetric) single-body Hamilto-
nian H, = Zf\il h(p;, z;), with eigenstatesh—e, )¢, = 0. Were the particles distinguishable,
the Hilbert space would most naturally be constructed as

H?N = span{Pq = ¢g, @ -+ @ Pap }-

The product stat@, (using the convenient multi-index € Z") describes a configuration
where particle#: occupies orbitaby,,. Symmetrizing it amounts to averagiagover all per-

mutations,
(I)j: X S1®,

mT [Sad,|]

1 inv
N DIES DRARRK Jy (1.1)
U PeSn

This needs some clarification: As we have wiped out the merobmyhich particle sits in
whichorbital, the only information we are left with is thow manyparticles each orbitad; is
occupied:

N
ny = #{i|a; =b} = Zé%b.
i=1

Theseoccupation numberfor all orbitals {¢;} are again collected in a multi-index =
(no,n1,. .. ), which thus unambiguously characterize tbecupation-)number state;:. The
latter ones are normalized to one,

<(I)f:rtu ‘CI);D = 5n’,n7

'We abide by the usual notation! = [], n.! and|n| = 3°_ n,.. Clearly|n| = N by conservation of the
particle number.



1.1. FOCK-SPACE FORMULATION OF MANY-BODY PHYSICS 7

which is secured by retainingS.®,||> = &n!in (1.1).

1.1.2 Fock-space formulation

By now, it has become apparent that this procedure, on togiofjtsomewhat cumbersome,
is unsatisfactory from a fundamental standpoint: For aesgstith a symmetry/(P), we first
create some symmetry-broken —i.e., unphysical— solusoielf asb,,), and then go to great
lengths to reinstate that symmetry by averaging over aliveégnt solutions. This is highly
redundant. Drawing on our key insight that we need not kesggktof individual particles, but
rather what states are occupied, we now devise a more effabdsaription encoding just that
information.

The essential idea how to do this is to treat the particle rarbnot as ara priori param-
eter of the system, but solely as an observable, this wayeramthe whole problem formally
N-independent. As so often, a problem is solved by lookingfabi a higher (and seemingly
more complicated) ground: A state now lives on the Fock space

F:= @ Hy , with Hy = C
NeNg

as opposed to the ‘smalle’’-body Hilbert spacé. Note that the trivial zero-body Hilbert
space, spanned by thiacuum|0) € Hiy, is included for completeness. Concordantly, any
Fock-space vector now is a denumerable colleclién= (¥, w1 ) of states withV =
0,1,... particles. Endowed with the canonical scalar product

(UF|@F) == (o),
N

IF can be promoted to a Hilbert space.

Representing states

The task now is to express states as well as operators on pack.sHere one resorts to a
basis-specific construction: Choosing an arbitrary ordytimasisH; = span {¢, }, we found
thatH y can be spanned by the symmetric product states (1.1) labelely by the occupation
numbersn,. Embedded in Fock space, we will now refer to these numbesstsn) € F.
However, irrespective of their physical meaning, the nunskeges have the same mathematical
structure as those of a simple harmonic oscillator: Thdse, @l states were enumerated by a
simple numbern = 0,1,... —which could be recovered as an eigenvalue of some ‘number
operator'n defined as the absolute squared of a non-hermitian laddeatopé Recalling that

this was footed on a very general algebraic structure amg@liadetached from the details of
the harmonic oscillator, it is appealing to introduce jlstttstructure in our conteXtSo define

2For now we suppress the superscepiand, for simplicity, focus on the bosonic sector. There idass of
generality, as only some signs differ, such as later on irfah&-)commutation relations (1.2).

30bviously, the difference here is that we have many occapatimbers:,, instead of just one. Owing to the
orthonormality of the one-body basis, though, the definitiarries over to all modesseparately
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theannihilation operatorfor mode#a
caln) = Vialn —ea), gy cl] = dapl, (1.2)
where for convenience we have introduced the shorthand
(€a)p = Gap-

The familiar relations from the harmonic-oscillator moded obvious corollaries of this; just
to touch on a few:

e thecreation operatorch|n) = v/ng + 1|n + e,)
e thenumber operator, := clc, > 0, with Na|N) = ngln)

e the vacuumg,|0) = 0.

Most importantly, this puts us in a position to algebraicabnstruct arbitrary number states
(and thus a basis for the whole Fock space) via

) = (H ﬁ_a!(cm"a) 0).

In particular, the one-particle states can be embeddefl|@s= 1|1,) ~ ¢4, and by iteration
this goes for arbitrarily complicated:.

Before moving on, let us state that a unitary basis transdtion ¢, = " (da|¢p) ¢
—invoking the above identification?'g |0) = |1p) ~ ¢p» —induces a unitary transform for the
mode operators,

Cy = Z <‘Pb‘¢a> Ca,

a
which by unitarity leaves the commutation relations ingati Academic though it may sound,
this opens the door to a more intuitive description resemgtifie conventional field-theoretical
one: Take the continuum limjto,) = |x), then this defines thigeld operator

P(x) = Zqﬁa(x)ca, or ¢, = /dx¢2(x)¢(x), (1.3)

which obeys the continuum commutation relati¢m§,¢l,] = §(x — x').% Its meaning be-
comes clear from)T(x)|0) ~ |x): it is responsible for creating (destroying) a particle at
positionx. The corresponding number operator becomes a density inafignuum limit,
n(x) = 1T(x)y(x), which is normalized to the total number operalér= [T, Togeta
feeling for its appeal, consider the many-body positioreegiate

i, x) = 90 (xa) - (x)[0).

“Mathematically, this defines an operator-valued distidnuvia y[¢] := [ dx ¢* (x)(x) = (]t), S0 strictly
the ensuing commutation relations make sense only upogréatten.
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Applying the density operatas’ (x)i(x) yields, after some straightforward commutator alge-
bra,

N
n(x)|X1,...,XN) = Zé(x — X;)|X1,. .., XN).
i=1

This makes it tempting to think of the particles as pointighes (represented by the field, a
notion that would seem somewhat awkward from the usual guaimbechanics perspective of
‘smeared-out’ wave packets. Of course, these are but ti@relift viewpoints of one and the
same quantum theory: After allj(x) etc. are operators, and only their expectation values are
meaningful—this is where the field theory links to standandrgum mechanics.

Representing operators

After having found a natural description of many-ba&igteson Fock space, let us seek repre-
sentations obperators Of course, any operator dfiy; can be trivially embedded iR; more
generally a Fock-space operator can even be a suN+bbdy operatorsA” = N AN In-
deed, this is the special case if it commutes with the partidmber[AF, N], in which case all
N-body sectors can be treated separately. Still there isyagameral expansion theorem for
any operator in terms of the mode operatprs} (tacitly assuming a certain one-body basis):

.I.

N N’
AF = 303 AN (H cih_) I1< | - (1.4)
i=1 j=1

N,N’ a,a’

This seemingly monstrous expression becomes clearer wiptie@ to some prototype opera-
tors. Aside from the trivial examples$” = 1 or ¢,, these ar@-body operators ofly (n < N)

with .
1702+ Fin
Here A operates irf,,, each term acting only on particles ... ,i, € {1,...,N}. Then one

can show that the expansion coefficients are diagonsil, iAlea’fV') = %5N,n5N,7n(<I>a|A|<I>a,>,
and relate directly ta-body integrals

<(I)a‘A‘(I)a/> = <a1 .. an’A’CLIl .. a/n>

As an illustration, let us consider the two by far most fragjueases.

One-body operators Imagine a one-particle operatéf; = . h(p;, x;), with h operating
in H;. Expanding it in terms of some badig,, }, the corresponding Fock-space operator takes
the form

HY = Z<a|h|b>czcb.

ab

If the basis diagonalizes, this becomes simplyf; = > €,7,. This has a simple meaning:
If we think of h as a one-particle Hamiltonian with spectrdmy, }, then the eigenstates of the
corresponding many-body operator will consist of numbatest{n) of the one-body eigen-
statesp,; so the many-body spectrum is easily constructed by cogihitinv many particles,,
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are in orbital#a. We have thus obtained nothing but the analog of the Hilbeaice operator
Hy =3, h(pi,xi).

Two-body operators Along these lines, let us now consider the operatoon H,, which
can be embedded Hy via Hy = 3, V(x;,x;) = %Zi# V(x,,x;).° Following the
prescription leads to
1
H: = 3 Z (ab|V|cd>clczcdcc,
ab,cd
where(ab|V]ed) = [ dxidxa¢)(x1)d) (x2)V (x1,X2) . (x1) P (x2).
The one-body basiég, } we had chosen is arbitrary. If we make the particular chofce o
the localized continuous basfig) with field operators)(x), then theN-body Hamiltonian
H = H, + H, becomes

1 =[xl (e, x)0x) + 5 [ dxidxan! () o)V Gt e b)) (L)

This suggests an intuitive interpretation: If we were t@tre as a classical field, with density
o = [¢]?, then the first term would simply be the integral over the enelensity, [ oh, while

3 [ dx1dxV (x1,%2)0(x1)0(x2) is reminiscent of the self-interaction energy of a cladsica
charge distribution. This formulation makes it temptinghimk of our system of point particles
as a continuous matter-wave field which spreads out over all space and interacts with itself,
much like a classical electromagnetic field substituting discrete point charges. Its beauty
lies in the fact that this description is formally independef NV, with its whole complexity
hidden in the many-body stat@sneeded to compute observable quantities. In appealingsto th
ideology, we have glossed over two qualifications. One, thatter-wave field) is complex
and thus not a proper classical field; in fact, OW has the (commonplace) interpretation of
a probability field. This makes clear why we haven't startethaith a classical field theory and
then quantized it in the first place, though this was reakyhistorical route to relativistic field
theory. Second, the field is not classical but quantizedclwihianifests itself in uncertainty
relations going by the name gliantum fluctuations

1.2 Modeling the system

Solving a system of trapped interacting atoms from firstqgiples may seem an exercise in
futility: Strictly speaking, the constituents of each at¢émucleus and electrons) interact not
only with each other, but by construction with those of alatatoms. On top of that, the
whole system couples to the electromagnetic quantum fieldspite of this slightly gloomy
perspective, it is actually possible to deduce some kindffettive model that not only de-
scribes central aspects of the physics very well, but whi@ttually amenable to computation.
The key is a scale separation characteristic of the physiatracold atoms which, roughly
speaking, allows one to discard many details of ridistic system and retain only a highly
reduced description. To anticipate our results, this detsen will comprise

*To avoid inessential notation, let us assume fhas a (symmetric) operator functiori(x:, x2) without loss
of generality.
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1. an effective one-body potenti&l(r) corresponding to the energy shift of a (two-level)
atom due to the electro-magnetic field (Sec. 1.2.1), and

2. atwo-body point interactiol’ (r; — ry), encoding the effect of low-energy scattering on
the wave function (Sec. 1.2.2).

Finally, in this thesis we will focus on quasihe-dimensiona(lD) systems, whose transverse
degrees of freedonr () are assumed to be energetically well separated so thatctireype
integrated out, yielding an effective 1D description. THisiensional reduction will be laid
outin Sec. 1.2.3.

1.2.1 Trapping potential

One can think of two ways to trap atoms via electromagnetidgiausing the interaction with

e a magnetic fieldB — which was the method of choice in the earlier experiments on
Bose-Einstein condensation and still underlies the sieatatom chipsetup;

e an electric (mostly: laser) fiell — a flexible tool many current experiments rely on,
in particular the whole subfield dedicated to creatipgical lattices(viz., periodic trap
potentials).

Both are covered extensively in the literature (see, €lg4]]. While the technical details are
not vital for the understanding of this thesis, we would li&gjive a rough idea of how trapping
is achieved on the example optical traps. In either case, since atoms are charge neutral, the
key is thedipoleinteraction with the field (or, in principle, higher multies). This leads to an
energy shift of the (internal) atomic levels, which may bieipreted as an effective potential
U.

As a simple model, consider a single atom with just two irdetevelse;— ; and a single
laser modeE(r,t) = Re(e£(r)a), coupled in thedipole approximatiorby the termV =
—er - E(r,t).% Expanding the coupled atom-laser Hamiltonian

H = Hatom + Hr, +V
in terms of theatomicSU(2) basis
1= [0)(0] +[1)(1], oy = [1)(0] =0t, o5 =[1)(1] —]0)(0]
leads to
H= %wmag +wala+g(r)(oy +o_)(a+al), g(r) = —e&(r)(0le - x|1).

The individual matrix elements of the dipole interactionyn@e thought of as transferring
the atom from, say, state — 0 (oc_) while annihilating a photona{, and so on. From this
heuristic standpoint, the terms_a, o a' only correspond twirtual processes and thus are
commonly discardedrdtating-wave approximation The resulting Hamiltonian, written out

in the photonicbasis|n) = \/% (at)"|0), has the graceful feature that

5This model is valid as long as (i) the laser frequencis quasi-resonant with exactly one atomic excitation
frequency, herexy = €1 — e, and (i) the wavelength di is large compared with the atom size.
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e H. + Hiy, is trivially diagonal (in the product basjg|n))

e V =g(r) (c4a' 4+ o_a) couples only pairs of statés)|n) and|0)|n + 1);

hence the truncateHd decouples into tridiagonal submatrices

1 A 2gv/n+1
H, =nwl+ - )
2\ 2gvn+1 —A

with thedetuningA = wy; — w. These can be readily diagonalized bySn(2) transform to
the dressedinteracting) statef),,:

( 10)n, ) _ ( cos?, sind, ) < |0)|n) )
1), —sintd, cosv, |1)n) /)’

2gv/n+1
— A

with
tan 29,, =

Most importantly, the interacting energies are

1
E;,.(9) = nw £ 5\/A2 + (2gvn +1)2.

This simple formula is just what we were looking for: It telis that the non-interacting ground
state is shifted in the presence of the light field by an eneidggse nontrivial part is, for large
detuningsA > ¢+/n, proportional tdg(r)|* /A. Despite the nontrivial considerations above,
recall that this is nothing but the dynamic ‘Stark shift’ irmbd by a spatially varying electric
field. In pictorial terms, the field induces an electric dgpotoment. The energy shift depends
on position parametrically througBE(r), and may thus be regarded as an effective potential
AE; ,[g(r)] =: U(r) for each atom.

This conservativegpart of the interaction is dominant for not-too-small detigs; for A —
0 in turn, dissipative processes like absorption and spewotas emission of photons become
relevant. Although they can be included phenomenologidayl adding an imaginary part
—iI"/2 to the energy—accounting for the finite lifetimes of excitedels—this is not essential
in the framework of this thesis. Suffice it to claim that, fonéscales smaller than the lifetime
1/T, the conservative potential is indeed a very good desoripti

1.2.2 Effective interactions

As pointed out before, accounting for the full interactidwe$ween allN atoms with each other
(as well as with electromagnetic fields in the presence gis)rés essentially impossible to
handle. It is thus desirable to derive a reduced descrigfotne interatomic forces which
captures th&eyfeatures specific for the low energies and densities coresida the context of
ultracold atoms. This has the advantage of being not onlyeraorenable to computation, but
also offers a significantly more intuitive view of the essalmhysics. The detailed road toward
such an effective interaction is indeed highly nontrivied, opposed to the eventual result, so
we will only sketch the conceptual steps involved and theomgto focus only on théwo-body
potential interaction.
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As a first step, we shall ignore the effect of the electromagrield and comment on its
implication later on. At that stage, we are left with a set o€lei surrounded by electrons,
which altogether Coulomb-interact with all other atoms.ela their very different masses,
however, the kinetic-energy scales governing the comstisl motions are well separated, as
are the time scales. It is therefore rather legitimate tegrdte out the fast electronic motion in
the spirit of theBorn-Oppenheimeapproximation, which leaves us with an effective Hamil-
tonian for theinternuclear coordinates only, depending on the internal degrees ofifree
only parametrically. This formulation in terms of interati@ coordinates already takes us very
close to representing the atoms as point-like particlesceNdoecisely, if we restrict the many-
atom system to just two atorfiswe will obtain some interatomic potentifl(r = r; — ro)
which should be computed for any atom spediebvidually. Even though it may be arbitrar-
ily complicated—in fact, it is only for very simple atomsk@d H) that this can be done to a
satisfactory precision—the general structure is unilersa

e Forshort distanced/ is expected to behave wildly, incorporating the detailedrgction
physics. There will be both an attractive part that supplootsnd states (signifying the
formation of molecules) and a repulsive coreras: 0 due to the fermionic nature of its
constituents.

e At larger separationg/ (r) falls off very quickly such that the atoms will be asymptoti-
cally free, almost as if the potential were box-like.

However, intuition tells us that the detailed structureudtidoecome more and more irrele-
vant for low collision energies, when the de-Broglie wawnglth of the scatterer is too large
to probe theshort-rangebehavior of the true interaction potential. In that limhetresults
are expected to beconshape independernd can be wrapped up in just a small number of
parameters which in turn can be determined experimental classic example is that of a
Lennard-Jones potential, whose qualitative behavior ideteal on that sketched above, but
whose coefficients remain to be fitted. Still, any sufficigsthort-ranged” may be approxi-
mated in asystematiavay in terms ofé functions point interactiony, which allow an explicit
identification of differenpartial wavescontributing to the scattering, but also facilitate analyt
approaches to the many-body problem.

Derivation of Huang’s pseudopotential

The point interaction in the framework of quantum mechaigassually introduced in the fol-
lowing fashion. Suppose there is some short-ranged twg-imberactiof 1 whose asymptotic
effect on the relative wave function is concealed in thetedagy amplitudef; (or the phase

shifts, alternatively): [53]
ikr

fk:(er)' (16)

"Strictly speaking, one would resort to an expansion in tesfmsbody interaction potentials. Here we restrict
ourselves to the case of two-body interactiams<{ 2), which correspond to elastic collisions. Three-bodyisihs
(n = 3, and higher collision orders) in turn may describe inetastocesses such as recombination. In fact, the true
ground state of alkali atoms near zero temperature is a safieér than a gas (viz., a Bose-Einstein condensate).
However, for low enough densities, higher-order collisiame suppressed. Hence the gas phase is metastable and
may be modeled reliably by the effective two-body inter@tipresented below.

8For simplicity, we shall restrict the discussion to isoftopotentialsV (r = |r|), so that angular momentum is
conserved.

P(r) ~ o(r) +

T
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This holds asymptotically (for > R if the rangeR is finite). Thezero-rangeor pseudopo-
tential is now introduced by extending this asymptotic behavioR#3{0} and defining the
pseudopotential as the potential with support at zero taegtes this asymptotic form.

The most common, if perhaps not the most natural approacbwteehergy effective in-
teractions is via partial waves. Huang’s derivation [54, &arts from the asymptotic wave
function in its partial-wave expansion. To delve into a &etlt it actually does not draw on the
asymptotic expansion itself, but rather constructsetkectsolution of a hard-sphere potential
of rangeR which reproduces the scattering length of the interaction,a:

b= (Ulw) @ Yy,
l

with the unitary transforr{U R)(r) := r R(r).° Inside, Dirichlet boundary conditions apply

and<)[y,0) = 0. The solution in terms of the Hankel functidn(q) = —i(—q)' (4 )" =4
then reads
Ulw(r) = b (kr) + Si(E)h(kr)], (S =€) (1.7)

whereJ; is thel-wave phase shift. The idea now is to seek a zero-rangedniafeoperator
(apseudo-potentidlsuch thaty; is an eigenfunction of the pseudo-potential Hamiltoniaalin
of R3\ {0}, that is, including the actual scattering zone. This is@ad using

!
q (20 —=1)N
and exploiting the distribution identity [56]
1 o(r)
12 _ _

Then the radial Hamiltoniaﬁ{l(o) applied tou; about zero formally yields the messy expression

1 ; —i (2l =) — (20 +1)6(r
(E—Hl(o))ul(r)Nicl(—l—l—e%’(k)) (kl+1 ) ’ ( Tl+1) v

=: vy (r),

whose right-hand side defines thevave pseudopotential;. To manifest that it is a linear
operator (in a distributional sense), note that the Hankattion has a pole about zero and the
radial function in that neighborhood can be written as

UTU,[(T) =art + 5/rl+1 = g(r)/rl+1; g(r) = ar?*! 4+ 5 being regular

Hencel = ¢(0) anda = =g+ (0), which by (1.7) implies

@+1)!
gy i@ .
a(-1+e I)T = ll—%r w(r), or equivalently
: k! 1
1 26, -k 20+1 { ! ] _
all+ ) G T T

°The unitary transforni/ : L?(Ry,r%dr) — L*(R.,dr) merely serves to get rid of the volume-integration
weight 2 so as to ‘map out’ the radial functions. It is introduced for notational consistency only and shioul
simply be thought of as multiplicator .



1.2. MODELING THE SYSTEM 15

In this sense, theéwave pseudopotential takes on the form

%M (1st version)
1—(20+1)é(r) tan & (k)
2

S E2+1

v =

(20 — D292+l (2nd version) (1.8)

adding up to the total pseudopotential
Vi =D (Utut) 1.
l

Remarks

1. While the first form is simpler and more natural to arrivethe second one is what is
usually cited in the literature [55] (despite the missingtda of (21 4 1)~!.) This is
possibly due to the fact that the factor

tan 9;(k)

IS +O0(k?)

allows for a simple interpretation of tHewave scattering length; as the ‘interaction
strength’ (at low enough energies.) This has led peopleegalspf the full series as the
energy-dependent scattering len@®7] —a;(k).

2. In practice, the pseudopotential turns out to be expédidy for s-waves, in which case

the second version reads

(Uvoo)(r) = £ X =0 5 ) 6(0) 2rag < Bk, (1.9

2 r2 k
=y
where g is the interaction strength angl. is referred to as aegularization operator.
Applied to the total s-wave functiony(r)/r, it amounts tod,(ri), which takes care
of the 1/r singularity of the asymptotic wave; it is merely the identithen it acts on
regular stateg.

3. Thevalidity of the s-wave pseudopotential depends on how the wave &un(te., the
scattering amplitudef;) is reproduced. This generally applies if {[}(Q2) ~ fo(k)
—which is to say that no highdr contribute significantly—and (ii) even fdr = 0,
tan dp (k) =~ —kay, justifying the parametrization solely in terms of the sedng length.

Of course (i) depends on whether one is in a low-energy regitere s-wave scattering
indeed dominates. (Otherwise, higlfgpseudopotentials have to be included, which are
considerably more cumbersome.) Criterion (ii) in turn istmveen the termO(k?) in

the expansion of, can be neglected. In terms of th#fective range [58], this reads

k2rg < lagt|?

This amounts to demandingay| < 1 if both parameters, o are comparable. In case
ro < |ag|, then the weaker constraifitrg| < 1 suffices.

4. Let us comment on the role played by the presencextdrnal forcessuch as in the
presence of electromagnetic fields. One might jump to thelasion that the effect
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should be drastic, since the trap will not only break thediaional invariance of the
interaction, but actually undermines the concept of sdategheory as a whole: After
all, it makes no longer sense to speak of incoming and ougg@iontinuum) states if the
whole spectrum is rendered discrete in the presence of emnént. However, the length
scale of the short-range physies, is typically much smaller than that of the trapping
potential L. In this sense, the actual scattering physics feels onlycallio constant
trapping potential/ (r). To lowest order ini/L, it is therefore legitimate to retain the
bare interaction. [59]

5. So far, we have dealt with the two-particle problem. Thesnmatural way to link this to
themany-bodycase consists in setting up the interaction pat as j Vop(ri —1r;), with
the mass now referring to the reduced mass.

Interpretation: Analogy to multipole expansion

In this paragraph, an illustrative alternative perspeatinn point interactions is presented, which
also casts light on the relation betweetnue interaction and its associated pseudopotential. As
a motivation, recall that the asymptotic behavior of thetecig wave,%kr fr(e;), is nothing

but Green’s functioriz (with an angular modulation), which in turn is an eigenfiumetof the
pseudopotential Hamiltonian (withdr) potential):

(E — Ho)G = 6.

If we reverse our point of view, then the delta-type pseutlmttal is just that potential which
generates this asymptotic behavior in@@ctmanner. This is reminiscent of the multipole
expansion in electrostatics (but also in the dynamical)cdke true, unknown charge density
(p=V1 here) is replaced by a point source (a point charge, a pgiielietc.) designed to
generate the same electric potential asymptotically, fiee.from the source. Let us take a
closer look at this analogy.

In electrodynamics, the densipyobeys the Poisson equation for the desired poteditjal
—V2d = p, whose solution is given B} & = G « p, in terms of the well-known Green

function
1

—V2G=6=G(r) = gt
The interpretation is commonplacé: is the potentiakb, of a point charge ab, and thetrue
potential can be acquired by summing over the potentialdl gfoint charges in the domain
of interest. It comes as no surprise that for distances maigiet than the diameter of the
support ofp, this can be fairly simplified: the asymptotic behavios> 7’ is given (in standard

multi-index notation) by

N (=1)lel w 1 v 1, /3rer—r%\ "\ ?
47TG(r—r)—47rza:T(8 G)(r)r =3 —|—ar- — r'+0 ) -

100nly the particular solution is regarded here.
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Carrying out the convolutio® = G x* p yields

_1)lal T
o) =4r 3 ;3 (0°G)(x )/drp 24—,

e e

=)

The point is that all the information ip(r) is encoded in a set of multipole moments €
{a(aj=0) = | P, P(aj=1) = [ pr,...} (Monopole, dipole, etc.)—few of which are ever used.
This asymptotic series is solely based on Taylor-expaniiagsreen function. One can reverse
this idea and arrive at the same result by expandioiy~ (the point-charge potential) but the
density itself, namely writing

3(r) = <q—p-V+%V-QV+...>5(r).

It goes without saying that this effective multipole depsiontains all the information on the
total (integrated) density wrapped up in the momeiats}, despite its acting only at zero.

These remarks draw a natural line between multipoles angsigdopotential: in our case,
the ‘electric potential’ is but), while the ‘density’ (source ) iself-consistentlgiven by V).
The exact solution is now obtained by convolving the exaen&ity’ V') with the point-source
solutionG(r) = —%. As before, of course, we are interested only in the soluféon
outside the source, so one would attempt to exgatad—r’) for » > /. Here the second fun-
damental difference enters: in scattering theory, the asytic Green function usually isot
derived as a Taylor series as above, but rather approxinbgtéte more convergent expression

G(r—1/) "X ————ether

To make the analogy conclusive, let us proceed by expandiagystematic fashion,

Gr—r) =31 a?la (0°G) (r)r™ = —Z:T {1 4 (—% —H‘k:) e’ + O (%)2} .

«

In that case, ignoring convergence, the convolution yields

(G*Vi)(x) =Z%<80‘G>< )/dr (Vo) ('™ = —Z ) fo
where the full sourcd’+) has been similarly condensed into a set of ‘scattering danuas’
fo € {fo=—% [V f=—& [dr'Vi(r')r, ...}, where the monopole term is the low-
energy scattering amplitud® = limy_.q f%, f the low-energy gradientVy fi, and so on. The
monopole solution) is then the low-energy limit of the usual expansion, follovey a dipole
and higher terms reminiscent of multipole radiation.

One can then proceed as in the electrostatic case and putrtheéore the horse: Defining
a zero-range potential

1)l
(Vopt) (x) = —QWZ( 3 Fad%0(r) = (fo—£-V +...) (),



18 CHAPTER 1. THEORETICAL BACKGROUND

we generate the same result in the Lippmann-Schwinger diy. egpanding Green’s function.
Note that it is not cast in the same form as (1.8), but rathaoislocal iny by construction.
Also, it is not restricted to a rotation-invariant intetiaat In this familiar case, however, we
can identify the first coefficient as the scattering length= —aq.

Dimensionality aspects

We have so far proceeded on the standard assumption of gleatmR?, d = 3. In this thesis,
we are concerned with the cage= 1, whose peculiarities are discussed below. (An argument
how one can embed this mathematical limit realisticallyrfra three-dimensional perspective
will be given in the next subsection.)

Scattering in 1D is conceptually different from that in 3Dhilé the 3D-scattering wave
is a radial one and is usually decomposed into angular-mtumerigenstates, scattering in
one dimension can simply go back and forth. This is why onallyswrites the asymptotic
solution as

() ~ (eikr + 7y - e‘”‘“) O(—z) + ty - e**O(x)

in terms of the reflection and transmission coefficiéntsand|t|2, respectively. The essential
difference with respect to 3D is that the “unit sphere” ig jiln@ disconnected s¢f2 = ﬁ =
+1}. The above asymptotics can be recast into the standard ¢haf)efamiliar from 3D
scattering: Inserting the 1D-Green function

G(z) = —%eiklxl (1.10)

in the Lippmann-Schwinger eq: = ¢ + G *x V) yields

P(x) ~e® 4 Q) - Ml 14 £ (1) =ty fr(—1) =7, (1.11)

where the scattering amplitude is

fuln) = =1 [ da'em = (V@)
The asymptotic form (1.11) can be attairedctlyby the simple pseudo-potential

Vpp(x) = 95(1’),

which imposes a boundary condition éfy = —%%:
$'(0%) —4'(07) = 2g9(0) . (1.12)
“"’.kf
=tk [k

The discontinuity iny)’” introduced forg # 0 is of course an unphysical feature of the effective
interaction. This comes as no surprise, given that the coptatential merely serves to get the
asymptoticbehavior right; at distances smaller than the range of theititeraction it should
not be taken at face value. A way to make that non-analytjgiysible is to imagine finite-
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range interaction, which at = + R imposes some boundary condition. Letting the potential
shrink to a single pointR — 0, while patching the wave function atR, naturally produces a
cusp iny(0F).

We already argued that the scattering solution has simplydim of G(z) = —£e?*I#l by
construction. The bound state can be found by analytic woation to negative energies: In
fact, applying the boundary condition (1.12) yields

k= _Zg7
viz., after normalization there is a bound state

Y(x) = \/iae—lxl/a with @ := —3 (1.13)

ltisin L2(R') for a > 0 only (i.e.,g < 0); the point spectrum then takes on the universal form
{—1/2a?}. Irrespective of its signg = —1/¢ is referred to as the one-dimensiosahttering
length Be aware that, in contrast to 3D, this means that the irtierastrength is zero only for
a — oo, which takes some getting used to. Note in passing thatigoscasts the 1D-scattering
amplitudef, = —%gw(o) into a suggestive shape: Computing)) in (1.11) yields

1 1 -1

—, hencef;, =

fk:_EglJrEg 1+ ika

(1.14)

1.2.3 Effective one-dimensional description

We have so far been concerned mostly with a truly three-daeal system. The main focus
of this thesis, though, rests on quasi-one-dimensiondaésys Here the motion is essentially
restricted to one direction (tHengitudinal one||), while thetransverseg_L) motion is “frozen”
because the energy available is much smaller than the esgsexcitation gaps. This situation
is encountered, e.g., in “cigar-shaped” traps with streagdverse confinement.

Under these circumstances, it is desirable to integratehasutransverse degrees of free-
dom so as to attain an effective one-dimensional descniptior the trapping potential, this
is straightforward and yields a one-dimensional poteritial: R! — R. For the two-body
interaction, this is more intricate since the (radially syatric) interaction couples transverse
and longitudinal modes. However, Olshanii constructed dehwhere this can be done ana-
lytically, which shall be presented below [21]. Its idealizsetup is modeled by the following
Hamiltonian for therelative motion,

H:hH—l-hJ_—l-V,

where the realistic three-dimensional system is sepaiatedo a free motiorparallel to the
guide’s axisz, and a harmonic-oscillator (HO) potential acting in geFpendiculardirection:

1

1 1
gl b= gl +guedrl  (w=M/2),

hy = 5 5
W

while the interaction—modeled by the 3D point interactisn= ¢4 (r)0,r—couples those
degrees of freedom. Note that the perpendicular trap freyue | sets the energy scale
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sﬁ/th = N + 1 of the 2D-transversal oscillator eigenstates(r ); accordinglya; =

h/uw, defines the length scale.
The asymptotic behavior follows straight from the Lippm&Btchwinger equation

Y =0+ (E—h —h)) 'V,

where¢ = [N, k) = pn @ |k)) denotes the homogeneous—non-interacting—solution. This
readily yields
Y(r) = ¢(r) + G(r,0) X g(drr¢)r—o,

but now the Green functiot¥(r,r') = (r|(E — hj — hy)"*[r’) is not —¢’*" /277 as in the
isotropic (unconfined) case. Nonetheless it can be computeskpanding the resolvent in
terms of the non-interacting states

G(I‘, I',) = Z/d/q(r\(E— hH — hJ_)_l\Nk||><Nk||\r/>
N

= Z ‘p*N(r/J_)QDN(rJ_)gE_gﬁ (z — z/),

N

HereG, = (e — hH)‘1 denotes the 1D-Green operator at energit this stage, what is left is
to make the solution comparable to the purely 1D scatterasg @s in (1.11). Assuming that
the incident waves(r) = py—o(r,)e’I* is in the transversal-H@round state and that its
longitudinal energy is too small to excite any transveysedcited states! then we can extract
thelongitudinal wave function usingox (0) = 1/a | /7 andG—yz2 9, (2) = —Leill:

Qll)(zez) = Leiknz + M __Z‘eikH|z| + Z __ieikN|Z|

2
a\/m a“ T k k
1V 1 I o£Ne2N N

The first term in the bracket\( = 0) gives the purely 1D contribution, while the remainder
stems from summing overirtual states withky_zo = \/2u(E —ex) = iy /2uNhw, — kﬁ
reflecting the underlying 3D nature of the system. The la&ens vanish asymptotically, but
still leave an imprint on the 1D term vi@, r)o, for which a tedious calculation yields

1/y/may
(Orrip)o = , (C=1]¢(L)]=146...).
’ —M(;—Hl—i-%—l—O(k‘ﬁ))

2
(lJ_T('

This admits the asymptotic form to be cast into the familizape

|z] =00 € I +fk el -1
¢(Zez) ~ a \/|7I_T ! Wherefkl\ - . C a®n 3y
L1 1+Zk”(7—ﬁ)+0(k}”)

What does this signify when compared to the one-dimensierptession (1.14)? For
sufficiently low longitudinal momenta, this indeed reseeshihe 1D scattering amplitude with

2
%—“}j—g’r = : a;p. Practically speaking, we can then model an effective 1&ationg,pd(z),

1By symmetry, only transitions to symmetric staf¥sc 2N, are allowed. Hence the conditigh) < €7 —
ey = 2 is required for quasi-one-dimensionality. Note that thiglaes even if the transverse motion is frozen in
some excited stat® # 0.
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in which the coupling strengtihp = —h?%/pa1p encodes all the relevant information not only
on the interaction itselfg), but also on the transverse system that has been integnattéd, 9.
If the motion along: is slowed furthermore{kﬂam\ < 1, the transmission coefficient

Itk 1> = 11+ fr, > =0

vanishes: the system becomiespenetrable This case corresponds to an infinitely strong
repulsiong;p — oo, known as thelonks-Girardeadimit, which plays a central role in 1D
many-body systems (cf. Sec. 1.4.1).

1.3 Visualizing many-body states: Density matrices

Our goal is to computéV-body stateal € H . No matter if these are stationary states or if we
are interested in their time evolution, they are quite cax@ntities already for few particles.
This makes it even more vital to make these vectors amenabléerpretation and relate them
to physical observables. This is where the conceplenisityoperators (or matrices) enters the
stage.

1.3.1 Definition and basic properties

As is well known, the knowledge oF is equivalent to that of its density matrixy = Pg =
|T)(¥|,12in the sense that for any operatar

(A)y = tr(pnA).
By constructionpy constitutes the operator counterpart of a classical pibtyatistribution:

e Itis clearly non-negativepy > 0 (and even positive unless restricted to the orthogonal
complement ofpan{V}).

e Itis normalized to unity. More precisely, density operatbelong to the trace cla%s=
{p | tr(p) < oo}, which can promoted to a Banach space via the ngwiy. = tr |p|.
Since|| V|| = 1, we naturally havé{p|; = (V|¥) = 1.

Its real utility derives from the fact that, if we deal with lgran n-body operatord, =
% Eh#,,,#n Ali,..4,, then its expectation value can be boiled down toérody expression
via

N
(An) = <n>t1" (pnA), wherep, :=tr,11. ~n(pN)

defines thaeducedn-body density matrix by integrating out all degrees of freadexcept
1,...,n.t2 In particular, to the extent that we study at most two-bodgenbables, it already

20ne of the commonplace advantages of the density-operatmiafism is that it readily extends to the case
where the system is in an ensemble of stdtes, }, each with probability..., as would be the case for non-isolated
systems. Here we consider an isolated system, though.

BTrivially, po = 1, while p,,—y reproduces the full density matrix. Choosing specific ‘jsitnumbers”
1,...,nis of course purely conventional owing to permutation syrnmméVoreover, please note that this concept
of tracing out naturally extends to any system decompodedsihsystems, whatever their physical meaning.
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suffices to consider the two-particle density operatoe trs n|¥)(¥|, whose diagonal ker-
nel

p2(x1,x2) = (x122|p2|T122)

gives the probability density for finding one particle ladtatz; and any second one aj.
For this reason, it is also termgaiir-distribution or two-body correlation function

For any one-particle operator, it would even be enough tewthe one-body density matrix
p1 = traps. As an application, observe that the exact many-body enefigy = >, h; +
> _i<; Vij for any ¥ may be written as

N(N —

D).

E = Ntr(p1h) +

Similarly to ps, p(x) = (x|p1|x) represents the probability density for finding a singleipkrt
atx. By contrast, the off-diagonal integral kernal(z, 2') = (z|p1|2’) = p1(2’, z)* will be
complex in general. It is therefore certainly not an obdalesan its own right. Nonetheless, it
is of some interest as it gives us access to all one-particatiies, also non-local ones such as
the one-body momentum distributigitk) = 27 (k|p1|k), which can be related to the density

matrix via
p(k) = /dx/dx'e_ik(x_xl)pl(w,x').

It can be understood as the Fourier transform of the intedraif-diagonal’ density matrix
) = [ dre (),

with gy (r) := [ dRpy(R + 5, R —§). ™

Itis common to consider the spectral decomposition of tkeen(litian) one-particle density
matrixt®

PL= Y nalda)(dal- (1.15)

By non-negativity, alln, € [0,1], while normalization requires thatp; = Y n, = 1.
Eachn, is said to be the (relative) population of thatural orbital ¢,. If all N, = n,N €
Ny, then the density may pertain to the (non-interacting) nemsate| Ny, N1, ...) based on
the one-particle basi&p, }; for non-integer values it extends that concept. In thiktlighe
natural orbitals provide us with sort of an effective onetipgbe picture which proves helpful in
understanding complex interacting situations.

At this point, it is worthwhile to mention the relation to tteecasionally encountered/igner function
W(R,k) = [dre * pi(R + 5, R — %), which simply replaces the off-diagonal spatial varialiiepi by
momentum. It is normalized t¢ dR [ g—’fW(R, k) = 1, which has led people to consider it as some kind of
(non-classical) phase-space density, glossing over théHfat it is complex-valued and thus not a probability.

SSimilar considerations apply to any density matrix, evesugh usually the spectral decomposition is carried
out only forp;. Note that the expansion (3.2) has the same mathematioetgte as a density matrix in thermody-
namics representing a mixture of sta{es, }. There, theeduceddensity matrix of some systep is not in a pure
(eigen-)state because thél system contains correlations betweérand some “environment” systeffi Tracing
out 5 naturally yields a superposition of states. In our cased = H,, comprises particles, . .., n; in case of a

coupling to the other particles, a “mixed state” of type [&&erges.
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1.3.2 Fock-space perspective

We have seen in Sec. 1.1 that the natural language for diegcriany-body physics is that of
Fock space. With this in mind, let us reformulate the fewybddnsity matriceg,,. Recall that
the field-operator expansion (1.4) asserts that the expmttaalue of anyn-body operatoid,,
could be expressed as

) = oy / AXAX(XAX )Y (@1) - 6T @n)dla’n) - (@), X = (@1, ).

Comparing this with the standard formuld,,) = (]X) tri,.n(pnA), this suggests the natural
identification
(N —

oo, X = ER (i) gt @ptata) - vt

as theF representation of the density matrix (in position spac#jevit loss of generality). Note
that p,,(X, X') in turn is the expectation value of the Fock-space operatoe,) - - - ¥ (z'1),
which we might come by directly by applying the operator exgian (1.4) to theH,, operator
pn = | X)X,

Forone-bodyoperatorsy, = 1, we recover the number-density operator

i(x) = Y1 (2)e(z)

already found in Sec. 1.1 by simple considerations. Now weatso assign a meaning to the
off-diagonal terms. Taking the average in any stateve get

(|t ()i (2")|0) = (¥(2) V()| T).

From this perspective, the off-diagonal density matrilstak the “cross-correlation” between
stateWw with, on the one hand, a particle removedra&nd, on the other hand, one particle
removed at:’. Put differently,

Q@) V|@E)¥)  plz,a)

R ET ~ /o@ee) (116)

cosa(x,r') =

quantifies how different both “hole” states are in a Hilbgpace sense, reflecting the correlation
inherent inl betweenr andz’. This motivates the jargon @bs a(z, ') =: g1 (z, 2’) being the
one-body correlatiorfunction. Note that, by the Cauchy-Schwartz inequaligy| is bounded
by +1 from above 1 = |¢0)(¢po|, With p = |¢0|2).16 It is also referred to as thiirst-order)
coherencdunction and relates to the “visibility” in interferencemiments [2].

For two-body operatorswe recover théwo-body densityor two-body correlation func-

tion
) 1

p2(z1,22) = m

(¥ (@) (w2)(@a)(an) ) -

%This equality is also achieved for a “classical” field, wher@:) is simply a multiplication operator. However,
this should be taken with a grain of salt. The field operatahisys a destruction operator and thg)(z)¥) = 0
for any number-conserving state. However, for large octtops of a certain statejo, the above replacement may
be understood as a lowest-or@dg@proximation For photons, however, particle number is not conservedsaod a

“coherent state(v)(x)) = 1(z), is a reasonable assumption for a clasdmserfield.
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From this, we can read off two important properties:

o po(xy,m9) = m l[4h(22)1 (1) W||* is given by the norm off upon subsequently

removing particles at1, z-.

e Using the commutation relation, we can relateto the density-density correlations

(W (1)t (@) (w2)tb(21)) = (A(a1)R(22)) — 6(x1 — z2)n(21),

which tell us the fluctuation of the atom number in a certaiatispregion over repeated
measurements.

As a final remark, it is interesting to note again the différeanception behind the Fock-
space formulation: Rather than starting with thi density matrixp and then step by step
integrating out the other particles (“degrees of freedomw® start with the simplest operator
product () and iteratively go to higher powers to compute higher-otarelations. Of
course, this is only a difference in spirit. For aNybody system, both approaches are entirely
equivalent.

1.4 Soluble models

Endowed with an amenable model for our many-body systemwaifidthe appropriate lan-
guage at hand for describing and analyzing it mathemajcatk now have the basic equip-
ment to tackle the physics of few ultracold atoms in trapdl, efore delving into arbitrarily
complex systems, it is expedient to first look at simple bdime cases so as to acquire some
intuition for the key mechanisms, which help us understanderimvolved systems. Plus, some
of these model examples presented below have become semairka often referred to in the
literature, which makes it even more vital to make their aigtance.

To classify these simplsolublemodels, let us regard the general (for concreteness, one-
dimensional) Hamiltonian

N

H =" hipiz;) + > _V(wi — ),

i=1 i<j

whereh(p,z) = %p2 + U(x) is the one-body Hamiltonian including kinetic energy and an
external (trapping) potentidl (z), while V (z) = gdé(x) is the one-dimensional effective inter-
action with couplingg > 0.17 The following borderline cases should now appear obvious:

e The interaction in the limitg — 0 andg — oo: The former limit is the trivial ideal gas,
in which all bosons condense into the lowest eigenstatk, @fy. (This single-orbital
picture may be carried over to small but nonzgrin a mean-fieldspirit. That leads
to the Gross-Pitaevskii equatiotouched upon later on in Sec 2.1.) The nontrivial limit
g — oo in turn corresponds to a gas of bosons witird-core interactions, which is
integrable for any trafy by exploiting theBose-Fermimap (Sec. 1.4.1).

"To be fair, there are indeed a few soluble many-body modeitenihere that dmot assume point interactions
but either other types of interactions or simply encode titeraction directly in the field-operator structurefdf
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e As for the trapping potential, the natural candidates avedlusual suspects where either
U reduces to a pure boundary condition (theb-Linigermodel examined in Sec. 1.4.2)
or it is of quadratic form, in which case it may be solved Mr= 2 atoms (Sec. 1.4.3).

1.4.1 Bose-Fermi map

The premise of the so-calldBlose-Fermimapping is a system of 1D hard-core bosons in an
arbitrary trap, a so-calle@onks-Girardeau gas Formally, this amounts to taking — oo,
even though a more rigorous description is to impose hare-boundary conditions on the
many-body wave function

=0, 1< J. (2.17)

v,

Thus we are left with a single-particle Hamiltoniaky = ), h;, with the additional constraints
of bosonic permutation symmetry and (1.17). The trick notoigecognize that the hard-core
boundary condition leads to the same zeroe s for (spin-polarized) fermions governed by
the same Hamiltonian, only that the cause there is simplgxickision principle. In fact, one
can establish the following theorem first proven by Giratdg#].

Theorem Bose-Fermi map) For any fermionic solution of the Schrodinger equatidh—
Hy)¥_ =0, the state

U, =Av_, AX) = Hsgn(wi —xj),

has bosonic permutation symmetry and satisfies Schrodnemuation with hard-core bound-
ary conditions (1.17).

Proof: Let us first consider the fundamental domain
D={XeRV |z <m< - <an}.

If we can show that, on the closuf® V¥, is continuous (i) and solves Schrodinger’s equation
(ii), then we are solely left to demonstrate that it has bas@ermutation symmetry when
extended to all of configuration space (iii).

(i) ¥ is continuous irD sinceV _ is. On the boundaryD, ¥ _ vanishes by the exclusion
principle, which proves the continuity df , .

(i) In the interior, ¥ also solves Schrddinger’s equation sintés constant there. The
correct boundary condition is warranted again by Pauli&esion principle.

(iii) Under transpositionP;» of any two particlesy . transforms as

PV, = PoAPL P V_ = PyAP; PV =40,
A v
=1 - T

where the antisymmetry oA has been used. This result ensures the bosonic permutgtien s
metry on the whole configuration space. O
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There is a number of neat corollaries of that simple yet powéneorem, just to name a
few:

e The ground state of the hard-core bosons is given simply éyatbsolute value of the
non-interacting fermionic ground sta@,(f) = ‘\I'(_O)‘ This makes it tempting to think
of Pauli’'s exclusion principle as emulating the effect @& tepulsive interactions (or vice
versa), which is why the limiy — oo is commonly referred to af®rmionization Just
like fermions, the two particles cannot reside on the sameapy longer, although for
physically different reasons.

e While being less intuitive, the theorem equally applies xoited states and to time-
dependent states. In fact, it even makes a statement abcitdtiex energies: Given
some fermionic occupation-number stat&), Vi, ...)_ in terms of the single-particle
orbitals (h — ¢,)¢, = 0, the correspondindgposonicstate will have an energyy =
> a Nata-

e SinceA? = 1, all local quantities will coincide with those computedrfrdghe fermion
state. Specifically, this is the case for the dengity= ]\Il]Q and any derived quantities,
such as the reduced densitigs:) or p2(x1, z2). Nonlocal quantities however, particu-
larly the momentum distribution, may differ dramaticallprn the fermionic ones.

What makes the Bose-Fermi map so useful is the fact that aféregionic state is simply
a “Slater determinant”, that is, an (antisymmetrized) picicbf single-particle orbitals. This
reduces a strongly correlated many-body state single-particleproblem. In the rare case
where the single-particle orbitals are known analyticalhe solution may even be written
down explicitly, such as for the ground state/thard-core bosons in a harmonic trap [26]:

U, (X) x e~ 1XI?/2 H |z — xjl.
1<i<j<N

This result nicely illustrates the interplay of the tragpfiorces and the two-body interactions:
The asymptotics are dominated by the (harmonic) trap, vaisetiee short-range forces add
cusps at all points of collision;; = ;.

Remarks:

1. The Bose-Fermi map is restricted doe dimension. The reason is somewhat hidden
in the succinct statement that it is sufficient to consider ftmdamental regio®, for
configuration space breaks down into disjoint regions alethiby permutations dp.

In dimensiond > 1 the boundary{z; = z; | i < j} actually fails to give disjoint
regions. This line of reasoning links to the fact tift>! is not ordered, so there is no
well-definedunit antisymmetric functiont.

2. The one-to-one correspondence can in fact be extendeg@utsive point interactions of
finite strength. The basic idea is to relate a Bose gas gvithR to a Fermi gas with a
nonlocal ‘6’” interaction, which leads to a discontinuity &f rather than its derivative
[60Q]. Itis less useful in practice, though, since generaljther solution is known in
closed form.
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3. The mapping above relies explicitly on the concept of ayrHaody wave function? (X).
However, an alternative Fock-space formulation has beepgsed [61], constituting a
map between fermionic and bosoffield operators

Yy (z) = exp [iﬂ/dw’@(ac — 22| ().

This relation is somewhat less intuitive. Indeed, the upitgperator merely serves to re-
produce the factorszn(z; — ;) in the wave function, which are obtained when products
of the creation operator are built.

4. As a side note, the map has also been extended to includeresof different particle
species [62] and spinful bosons [63].

1.4.2 Lieb-Liniger model

The Bose-Fermi map introduced above has the advantage \oflip® a closed-form solution
for a strongly interacting problem, which in principle hsltbr any external potential. There
is one flaw, however: It refers only to the (somewhat unréa)isimit of infinite repulsion
while failing to make a statement about intermediate coggliy. The only model that may
claim to have overcome this difficulty is the celebrataeb-Liniger theory, which deals with
anuntrappedsystem U = 0) with periodic boundary conditions

(The periodicity for multiples of. and other coordinates; follow by induction and by sym-
metry, respectively.) Physically, this is the somewhattiexsituation of particles enclosed on
a ring of circumferencd., which finds its justification in two rationales: (i) it can belved,
(ii) the exact boundary conditions do not matter much fomdimite system—in the thermody-
namic limit—which was the original motivation in the semlipaper by Lieb and Liniger [20].

To proceed, the key is again to go to the fundamental dorfaia {0 < 27 < --- <
xy < L}, where the full Schrodinger equatiqd — H)¥ = 0 reduces to that of a free
system unconstrained by permutation symmetry (which srmely when extended to the full
configuration space). The periodicity requirement (1.18) ¢he contact interaction (1.12)
enter as boundary conditions 6®:

o \I’]IFO = On \I']IN:L (1.20)
U(0,z9,...,2y) = ¥Y(xo,...,xN,L),

where the permutation symmetry has been exploited wheretranslation by, would lead
out of D. We are now ready to state the solution:
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Theorem (Lieb-Liniger gas) The solution of Schrodinger’s equationZinobeying the bound-
ary conditions (1.20) is given by ttgethe ansat?

U= > a(P)U(P)Ty, (1.21)
PeSn

where

o dp(X) =[], e is a direct product of plane wavgs ) determined implicitly by

LA (*5*)
I # (")

e the coefficientsa(P) for some permutatiol® = [], T;
transpositiond’;;) must meet

a(P) = H (_eiewa> , 0;; = —2arctan <%> , (1.23)

«

(mod2r), with H(z)zii_zz (1.22)

(kj+1 — k}])L =1iln

(decomposed in terms of

aJa

where by convention(1) = 1.

Proof: As the formulas above suggest, the proof is rather techaiwless instructive. Since
none of its steps are in any way vital for this thesis, let udfioe ourselves to the very essence:
Irrespective of all the fine print, Bethe’s ansatz (1.21)sibally an expansion in terms of plane
waves, a most hatural approach given that, in the interid,gflane waves are eigenstates of
Hy with total momentun¥ = |k| and energyt = £ > k2.

The physics is captured in the boundary conditions only—eWlig why this model is solu-
ble in the first place. Specifically, these are the discoittireondition (1.19), equivalent to the
rule fora(P) in (1.23), and the periodicity condition dn (1.20), which lead to

N
—e kil — H(—ew”’) = k;L=— Zﬂij(mod%r).
i=1 7
Combined with the expression for t§é;;} obtained before, one infers the implicit equation
system (1.22). O

Thefull wave function (and likewise the complete spectrum) agdiovie from that in the
fundamental region by permutation symmetry, and it can Ipdoéed to compute in principle
any observables so long as the algebraic equations for taepéers:; can be solved. This job
surely is tedious, but it has been proven feasibleNor O(10) [38]. In fact, the Bethe ansatz
has even been extended to derive the ground state with hatdeundary conditions [43].

In their seminal paper, Lieb and Liniger did not bother taually solve thefinite system
(except forN = 2), but proceeded directly to ththermodynamic limitV, L — oo with
n = N/L fixed!® It turns out that in this limit, the dimensionless coupling= g/n will be the

18Bethe’s ansatz (1.21), first used in [64], has been a veryfiituiool in a wide range of one-dimensional
problems, mostly in the original context of lattice systems

%Note that due to translational invariance (conservatioi pfthe density is constant for amy even though of
coursep; as well as the correlation functign will exhibit interaction effects.
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only intensive quantity remaining [20]. The ground statergg £y = Nn?e(y) thus depends
on g only through some universal functiefry), which in turn is computed via a Fredholm-type
integral equation not displayed here. Most importantlgpimnects the borderline cases

e(0) =0  (free bosong
711:130 e(y) =72/3  (fermionizatior).

The key reasons why this analytic result has become immepsellar even in the seem-
ingly very different context ofrappedatoms is that one assumes a separation of length scales.
Should the density of the#appedatoms vary slowly (in the neighborhood of some paiiit
compared with the length scale of the short-range coreglsgfiit is plausible thdbcally one
may take the Lieb-Liniger solution. The trap would then beluded only for theenvelope
of the density. Thidocal-density approximatioiis usually carried out by replacing the Lieb-
Liniger chemical potentiaj,y by a local potentialu(z) = po — U(x). Itis clear that this
approach ought to work well wherever the density) is large compared with its change
n'(z), which is typically the case where the trap forces are zemoh(ss in the center of a
homogeneous trap), while it fails whemn¢x) ~ 0.

1.4.3 Two bosons in a harmonic trap

While the Lieb-Liniger model has the invaluable advantafeffering an analytic access to
the Bose gas, it would be desirable to also have such a te# tieel case ofrappedparticles.
As it turns out, even for the textbook model of harmonic caarfient, the external forces break
the integrability of therelative motion for N > 2 atoms. However, already the toy model of
two bosons contains the key feature inherent in any trapmet/shody system—the interplay
between interaction and confining forces—which is what raahis soluble model so essential.

We begin our review with a general observation: In any systei identical particles with
homogeneous two-body interactiofi§ (z; — z;)} and harmonic confinemebt(z) = % |z 2,
the center of mass (CM) separates from the relative motiahid(¥or 2 € R?, in principle).
This is easy to see by computing the equations of motioifer % EiNzl x; and its conjugate
momentumP = ), p;, which follow from the CM-transformed Hamiltonian

2
P 1
H = hev + Hia, hovm = ﬁ + §NR2-

One can therefore decompose the Hilbert sgdce Hcoy ® H,ep SO as to write theV-body
wave function and its energy as

U = @pn @ VYrel; E:(N+%)+Erel>

where¢ s is the HO orbital with quantum numbév” = 0,1,... . While H,, and thus the
equations of motion for thév — 1 relative coordinates will in general be highly coupled and
resist an analytic solution, the two-body case reduces teffaative one-body problem for
r=x1 — 2.

1
H,q=—0°+ Zﬁ + go(r).
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This may be viewed as a harmonic potential split into halnethe center, i.e., at the point of
collision = 0,2 where the delta function imposes the boundary condition

¥'(0%) = 4'(07) = g (0). (1.24)
This suggests a well-known procedure:

1. InR"\{0}, expandy in terms of the standard solutions of the unperturbed diffeal

equation
d? 1,
i (7)o
Explicitly, these are catalogued in [65] as therabolic cylinder functions
U(—e,r); V(—e,r).

2. Impose the correct asymptotic behaviorids— oo, which secures thap € L?(R!).
This filters out thdJ function:

Ye(r) = cU(—e,r). (1.25)

3. Apply boundary condition (1.24). Inserting the usefuhfiolas [65]

U (—€,0%) = —— 1ﬁ1
250 (1 9)
U(—¢,0) = VT

leads us to an implicit equation fetg). For pure convenience, let us recast this in terms
of the effective quantum numbetg) = €(g) — 5 € R,

P ()

e

4. Finally, the normalization constantis fixed by ||1)|| = 1. This step is conceptually

v(g) € £,1(0) s fylv) =22 +g. (1.26)

irrelevant and omitted here.

Equations (1.25) and (1.26) determine the solution of treearticle problem. To get a better
understanding of its physical significance, let us detanesof its features.

Asymptotics of ¢

For any value ofg, the wave function’s behavior at = 0 is determined by the boundary
condition (1.24), which imposes a kink, i.e., a discontiyiin +/’. For positiveg, this amounts
to a “dip” atr = 0 (see Fig. 1.1a), reflecting the particles’ tendency to repeh other. In
the attractive case < 0, in turn, the dip flips into a peak shaped like!9"!/2 (Fig. 1.1b,c) —

Ot is clear that a perturbatiofi(r), having support only at = 0, has no effect on fermionic states. There the
exclusion principle demands thet —r) = —«(r); in other words, these states would have negative parity. We
consider bosonic, that is, even functions.

2l what follows, the subscript “rel” will be dropped for caenience.



1.4. SOLUBLE MODELS 31

Figure 1.1: Relative wave function),, () (in arbitrary units).

(a) Ground state for repulsive interaction$he g = 0 orbital (v = 0, thin line) acquires a dip at= 0for g > 0
(cf. v = 0.2, dashed). Ag — +oo (v = 0.95, thick line), this notch reaches almost zero, and the waretfon
becomes practically indistinguishable (in modulus) frine fermionic ground state; () o r e /4 (dotted line).
(b) Excited states for attractive interactianghe first bosonic excitation/(= 2, thin line) picks up a cusp at zero
for g < 0 (cf. v = 1.7, dashed). Ay — —oo (v = 1.1, thick line), this cusp becomes sharper but, at the same
time, is damped out more and more until the wave function’duies equals the fermionic state(r) o e T/
(dotted line).

(c) Ground state for attractive interaction¥ he Gaussian ground state<£ 0, thin line) becomes peaked for< 0
(cf. v = —0.3, dashed). Unlike before, this does not saturate but tendsi&ita function ag — —oco (v = —3,
thick line).

the bound state (1.13) of the pseudopotential in free spabgsically, this corresponds to a
molecule strongly localized for very strong attractigh

Forr — oo, the wave function falls off like)(r) ~ ce= /gy [65]. Not unexpectedly,
the asymptotics is given by that of the HO orbital, but with generalized quantum number
From this, the following picture emerges: An unperturbed leel is “notched” at- = 0 (for
g > 0), but the effect remains essentially local. Asymptotigathe state behaves almost as if
unperturbed, except for the fact that the dip causes the fuaation to spread. This reflects
in the non-integer exponent¥), leaving an asymptotic imprint of the interaction similathe
concept of phase shifts in scattering theory.

Dependence ory

Equation (1.26) implicitly determines(g) = v(g) + % via the zeroes off,. However, it is
instructive to get an explicit understanding of how the gpdevels evolve ag is varied.
Clearly, atg = 0, fy(v) = 0 only if the denominator has a pole,;5 € —N. Hence the
non-interacting limitv(g = 0) € 2N is recovered: thevenHO levels.
The complementary borderline cage— +oo is reached forr € 2N — 1. In fact, the
solution of (1.26) reveals that these limits are linked diees (Figs. 1.1, 1.2):

e Starting from a non-interacting level0) = 2n, a small interactiory shifts the energy
levels upward (downward) depending on the sigr:dfL7]

1 g [n— l) 9
=2+ 5+ —%—= 2 ) +0(g°),
elg) =2n+3 Tw< . (9%)
a result which may be obtained from perturbation theory.

e As g tends totoo, the next levellim, .., v(g) = 2n + 1, is reached, corresponding to
the upper nextermioniclevel. This is a neat illustration of fermionization (Sect.1):
An even oscillator orbital (say = 0) is notched in the center fgr > 0 until the dip
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Figure 1.2: Spectrum{e, } of the relative motion as a function of the interaction sgtery (Here plotted over
1/ap = —g/2. The plot is taken from [17].)

reaches down t@(0) = 0 in the limit of fermionization (Fig. 1.1a). In that limit, ¢
wave function equals the firetdd (fermionic) orbital in density,) = |u,,—1|, whose node
atr = 0 translates to a dip. The correct bosonic symmetry is restoyemultiplying
the unit antisymmetric functiotd(r) = sgn(r), which forn = 0 amounts to taking the
absolute value.

e Conversely, for infinite attraction, the non-interactimyéel 2n = 0 will be lowered to
lim,—._o v(g) = 2n — 1. Note that this matches exactly the fermionized level isigrt
from v (0) = 2(n — 1) —indeed, all energies periodically connect the limgits> oo from
below to the casg — —oo. This may be interpreted as some type of fermionization,
different from the conventional sense: An unperturbed ésesl 2 # 0 picks up a kink
atr = 0 (Fig. 1.1b), which becomes ever sharper and smalleg for —oo until it goes
over to the dipped fermionized orbital correspondin@te — 1).

For the ground state = 0, such a mechanism simply is not available: The unperturbed
Gaussian:g will be turned into a single peak19"1/2 (Fig. 1.1c).

Dimensionality aspects

Finally, let us mention that the solution of the two-atomlgemn in a harmonic trap is not
restricted to dimensiod = 1. In fact, it had been solved originally for the realistic €as
d = 3 [17] (and later also for an anisotropic trap [66]) by expansin terms of the free
solutions. Rather than indulging in details, let us sta#e the 1D case connects to the solution
in arbitraryd via

1 v11
U(_EE _[V—i_%]?T) = 2,//26 /4U <_§7§7§r2>7

wherelU (a, b, ¢) is the confluent hypergeometric function [65]. This is aliythe general form
of the solution in any, with the numerical constants in the arguments depending. dfor
instance, the 3D s-wave function for the radial coordinats the form
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U,(r) = ce_r2/2F(—1/)U <—1/, g,r2> .
This is quite remarkable, since it represents differentspisy In 3D, the full wavel (r) =
u(r)/r (u being the regularadial wave function) exhibits a singularity at points of collisio
for any g # 0. This mirrors the behavior of the Green functiGr) oc ¢*" /r. A similar
solution exists for 2D.
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Chapter 2

Many-body methods for ultracold
bosons

Technically speaking, the goal of this thesis is of coursgpsy to solve the few-boson Schro-
dinger equation
[i0, — H(t)]V(t) =0 (2.1)

subject to the initial condition? (0). Its formal solution read(t) = Te~iJo H()ds iy (),
whereT denotes time ordering. In the case of time-independent kamidns, this reduces to

U(t) = e w(0) = > e Pric, Uy,
m

in terms of the stationary states
(B, — H)U,, = 0. (2.2)

Since, for stationary Hamiltonians, Eq. (2.1) is equivaterknowing the eigenstates and their
corresponding eigenfrequencies, one thus has the choitaekiing it directly as an initial-
value problem or via diagonalizing . Still, this is easier said than done. In fact, there are only
very few, rather idealized, borderline cases in which thayvtaody problem is solved in closed
form (see Sec. 1.4). While these may be useful in undersignali even constructing more
complicated many-body solutions, one generally has tatrésmumerical algorithms, whose
essence is to boil down a single unsolvable problem (Eqi&d)finitely) many feasible ones.

In Sec. 2.1, we attempt to give a coarse overview of some rdsthadely used in the
context of ultracold bosons. One part of this thesis is toetigy anexact diagonalization
which is presented in Sec. 2.2. However, most results intti@sis have been obtained by a
time-dependent methodulti-Configuration Time-Dependent Hartrd®CTDH), a concise
description of which is given in Sec. 2.3.

lWe assume a discrete spectrum since we are interested petraoms.
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2.1 Overview of some approaches

Even though the method of choice in this thesis is MCTDH (dbsed below in Sec. 2.3),
it is worthwhile to review some common approaches in the fiéldr one thing, it gives an
insight into some very general concepts behind many-bodads, and how they relate to
one another. More importantly, though, the key ideas ugiohgrithese methods already contain
a whole lot of physics, which helps us get a new perspectivéhersystem and, conversely,
understand what kind of information we discard when we mak&am approximations.

Although the numerical schemes may be very different intgracall methods more or
less fall into either of the following categories:

1. Methods that approximate trs®lution numerically. Theseab initio approaches have
the common feature that they make some essengalytrepresentation of the solution
which is cut off so as to make the algorithm feasible (i.eitd)n That cutoff may be
varieda posteriori,giving a handle on the convergence to the exact solution.

2. Methods that approximate tpeoblem In other words, one invests some physical knowl-
edge of the system under consideration argtiori replaces the full problem by a sim-
plified one.

To make this distinction clearer, we will now give some ex@apvith a focus on ultracold
(here zero-temperature) bosons.

2.1.1 Abinitio methods

Exact diagonalization and multi-configurational self-corsistent methods The key idea of
exact-diagonalizatiompproaches lies so much at the heart of quantum mechantdstimng

it a “many-body method” of its own seems a bit of a mouthfulfdat, it is certainly the most
straightforward scheme, applicable to any stationary lpral(2.2): By expanding the exact
solutionW¥ € H in terms of some (known) orthonormal basis,

U > oy, C=(c,,... cx) €CK, (2.3)
k<K

with an arbitrary cutoff’ (X — oo recovering the exact wave function), the problem readily
maps to a matrix problem ofi:

(E1— H)C =0, with (H),, = (®),|H|®,). (2.4)

This is nothing but the well-known isomorphy of ahy-dimensional Hilbert space (ovér)
with CK, which ensures thatl = (Hy,) = H' is also diagonalizable and yields the same
spectrum — nothing new so far. The gist is that a matrix prabtan be solved numerically
using standard routines, providédly;) is known and not too large — a succinct statement,
which in practice proves highly explosive. In fact, the enfec. 2.2 is more or less dedicated
to just that little “catch”.

Apparently, the scheme outlined above makes no referenatsadver to the many-body
nature of our problem —in fact, it defines a fairly genetaksof many-body methods. Mostly,
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when we talk abouéexact diagonalizationthe following fine print is understood: The basis
vectors are assumed to be number states

B = ) = <H w%(ci)”@) 0 @5)

in some convenient one-body bagis,}. The physical picture is that the true—generally
correlated—many-body state is replaced by a superposifosingle-particle state®, =

Ga; @ -+ @ ¢q, Or, conforming to the permutation symmetry required foniital particles,
symmetrizectonfigurationsS ®,. Of course, nothing stops us from using different basis vec-
tors which already carry explicit correlations [e.g., donsting ¢, from two-body functions
f(x1,x2)], except that it makes life more complicated (cf. Sec. 2.2).

A different version consists in usirgglf-consistenbne-particle functiong, to build the
basis vectors (2.5). This means that, rather than tredting as fixed, the orbitals arepti-
mizedsubject to a variational principle. In the spirit of our lagwremark above, this approach
is a trade-off: Optimizing the basis is likely to keep the dimsion K small (filtering out
the “physically relevant” subspace Hf), while it complicates the computation of the Hamil-
ton matrix(Hy;). One representative of such multi-configuratioself-consistentethods is
MCTDH, which will be explained in detail in Sec. 2.3. It combinesiaionally optimized
basis functions with an inherently time-dependent appgrdaave-packet propagation

Density-Matrix Renormalization Group ~ Thedensity-matrix renormalization groufpM-
RG) essentially also pertains to the class of exact-didgatian methods. While its details are
somewhat gory [67] and omitted here, the key idea is worthtimeing, which is to efficiently
decimate the Hilbert space to a relevant subspace. The ggesithat the Hamiltonian is
defined on a real-space 1-D lattie= {z; € R! | s = 1,..., S}, or can be mapped to oRe.
The procedure now is as follows, here illustrated for thaigtbstate:

1. One picks some site < S and decomposes the lattice into the union of that site with
two sublatticedeft (L;) andright (R) of s: £ = {2;};2] U {as} U {z,}2_,,,. Fora
fixed many-body basis s¢ta(*))}5_, on L, (and{|3*))}}_, on R., respectively), the
wave function is expanded in terms of these as

= Y Ol N,
aiIB7NS

where N, denotes the occupation number of the single-particle kiatdized on sites.

2. Variationally optimizing this state with respect @*) = (ng) leads to an effective
matrix-eigenvalue probleniH ) — 1E)C) = 0. Solving this for the ground state
yields thereduceddensity matrix for the subsystel, U {x,}, p(®) = trg, (|¥)(¥|) by
integrating out the right sublattice.

3. A spectral decomposition pf*) = 3~ p§5>y¢§5>><q>§5>\ reveals the weightﬁ((f) of each
contributing eigenstatégf) on the reduced lattice. The key step now is to keep only the

20f course, this is not a serious restriction, since many outiflike MCTDH in Sec. 2.3) essentially work on a
spatial grid. However, in DMRG this is hardwired into the diamental algorithm and not introduced for technical
convenience alone.
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most relevant terma < K , whereas higher terms are discarded. (This tacitly assumes
that the weight distribution falls off sufficiently fast \mitv.)

4. Substitute the old basig*); N,) on L,,; = L, U {z,} by a more efficient one,
namely the (truncated) eigenstat@és) =: ]a(s+1)>. Likewise, this can be done for
Rs = {zs+1} URs41. In this sense, the “bookmark” sitehas been shifted to the right
by one site, and on the updated lattice decomposifioa L1 U {zs+1} U Rs41, the
wave function can be written as

v = Z CO]:;SHW(SH);Ns+1;5(s+1)>-
a,3,Ns+1

Now proceed at step (2.) with+ 1 — s, until the sweep hits the right lattice boundary,
i.e.,s =S — lis reached. After that, the whole sweep goes on from rigteftoénd so
on until convergence is achieved.

This defines a procedure to iteratively selestraallsubspace of the full Hilbert space, keeping
only the most relevant terméiére for the ground state) — where relevance in each step is
defined with respect to the momentary sublatiige

From this angle, it is also plausible that this approachfescéfely limited to one dimen-
sion: Apart from the technical difficulties in defining an appriate sublattice—and consis-
tently expanding it—the working hypothesis that the systam be split into different subsys-
tems which are not too strongly entangled is questionabtesdnor even three spatial dimen-
sions. It goes without saying that the concept sketchedeatamitly assumes zero temperature;
in fact, this is when DMRG is at its best. Nonetheless, for-dimensional systems, DMRG
has proven quite useful in treating both static and dynarbigdoblems. Its efficiency even
for strongly correlated systems with upAd ~ 100 particles [45] essentially derives from the
fact that it is based on gpatial grid and makes no explicit reference to the particle numdeer,
opposed to the basis pérticle configurationemployed in the exact-diagonalization methods,
which covers highly redundant regions of the Hilbert space.

It is worth mentioning that the modern viewpoint on DMRG deéthout the above pre-
scription of extending the left lattice site by site. Ratheis interpreted as a variational op-
timization of the wave function within the class wiatrix-product states that is, making the
ansatz

b Y (A a0
n

wheren = (Ny,...,Ng) (Ngs = 0,..., Nnax) denotes the occupation numbers of each site’s
orbital, andAgNS) is a K x K matrix that serves to parametrize the expansion coeffiient
Note that this is a restriction: An arbitrary stabe= ) cp|n) is described by Nyax + 1)°
numbers, whereas for the matrix-product state this scalearly with the number of sites,
K?(Npax + 1) x S. Now ¥ is variationally optimized with respect td, = (AENS)) for
some fixed sites, which eventually yields an effective matrix-eigenvaluelgem of type
(H®) —1E)A, = 0. Since the Hamiltonian implicitly depends on &l,}5_,, this asks
for an iterative optimization. This is carried out by swewpthrough alls, each time improv-
ing on the coefficientsr (A}) e A(SNS)). This procedure is exactly equivalent to the tradi-
tional algorithm above, (1.—4.), even though it is not olbgio Likewise, it is far from trivial
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in what situations the matrix-product expansion is goo@yiafpom the exact-diagonalization
limit when K — oo.

Quantum Monte Carlo While the former approaches in some way still aspire to campu
the system’s wave functiodr, Quantum Monte Carlanethods (QMC) essentially exploit the
Monte Carlo integration technique to calculate many-badogeovables directly [68]. To illus-
trate the basic idea, consider some expectation value

wszmWMwZHmmm
X

whereX = (zy1,...,zy)' denotes a point in configuration space, alfe(X) = dXo(X)

is a given probability distribution. In the last step, we @aliscretized the integral into an
(ultimately finite) sum over vector§X}. The key idea now is to carry out amportance
samplingof the configurations{Xk}le, i.e., to pick these such that the relative frequengy
of an element reflects its physical probability, ~ P(X}). In that case, the above sum simply
translates into an arithmetic average

()~ 2 ST Ay,
k

so one is solely left to sum up the local averagesidt certain configurations. In principle,
for large enough samplgsX}, the results become exact up to statistical errors, whichlmea
controlled by doing several simulations.

Of course, the problem has only been “outsourced” to geingrach a properly dis-
tributed sequencé€Xy }. However, this mathematical problem is well understoodiardnta-
mount to setting up Markov chainX — X’ — - .. complying with the following criteria for
the transition probabilities:

1. W(X - X)>0VX, X
2. x WX —-X)=1VvVX (completeness)
3 x PX)WX - X')=PX) VX (P is fixed point of V).

A somewhat handiesufficientcondition often replacing (3.) is that afetailed balance
PX)/PX') = WX — X)/W(X — X'). One scheme that respects this criterion and
which is widely used to construct such a sequence istbeopolis algorithm[69].

The basic idea sketched above is applicable to all kinds efyAbady integrals. Indeed,
QMC comes in different flavors. Only to name a few which arentéiiest for low-temperature
properties of bosons:

e Variational Monte Carlocomputes the ground stalg, of some Hamiltonian by making
an ansatzb, in terms of some parameter set= (ay,as,...). By the variational
principle, (H), > Ej, this gives an upper bound to the true ground-state enefgyy. T
bound can be lowered by making an intelligent guess for tlsatarand subsequently
varyinga so as to minimize the energy/ )¢, , which is evaluated using Monte Carlo. In
principle, this extends to excited states, although thatiercs rarely pursued in practice.
Not only is it cumbersome, but it also crucially depends omecurate ansatz state.
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¢ Diffusion Monte Carlas tailored to the ground state, using the equivalence dstteo-
dinger equation inmaginary timer = it—for which the evolution operator becomes
the non-unitarye~7— with the diffusion equation. For — oo, this converges to the
true ground state upon renormalization.

e Path-integral Monte Carldakes a somewhat different approach. It makes use of the path
integral representation of the partition function, whidlowas to extract all observables.
Approximating the path integral by a standard, usually fdghensional, integral, the
same machinery as above can be used to sample that integral.

The advantages of QMC are obvious: By doing a random samgfitite configuration space,
one has an essentially exact method while permitting a itigkible form of the wave func-
tion. This way, one is not restricted to certain expansiortgims of product states, such as in
the previous methods, which permits the treatment of evgelastrongly correlated systems
(up to N ~ 100) in arbitrary dimensions. This comes at a price: Excitatjosnd this way
guantum dynamics, are not easily accessible since, iniplinall the knowledge about the
zeroes of the exact wave function must be built into the seepriori. The very same issue
makes it troublesome to treat fermionic systems or, by exten mixtures: The antisymmetry
imposed by the Pauli principle usually needs to be incotgdrin the scheme (the so-called
“sign problem”) .

2.1.2 Approximative methods

As might have become transparent in the previous subsetiieristinction between “exact”
and “approximative” approaches is really betweammtrolled and uncontrolled approxima-
tions. A priori restricting an essentially exact expangioronly a few modes leaves us with
some well-known simplified models, some of which shall befbyiderived below to raise the
awareness of their range of validity.

Gross-Pitaevskii  The by far simplest “many-body” method is linked to the faarilpicture
of anideal Bose gas, the historical context of Bose-Einstein condimsfl]. Below a critical
temperature near absolute zero, a phase transition ocbick has all (hon-interacting) bosons
condense into the lowest single-particle eigensfgtef the single-particle Hamiltoniah. The
many-body ground state (defined’&s— 0) thus readsl, = q&%’N . Equivalently, in the Fock-
space language, it is a number state in the single-partasés bp, } of h: |[Ng = N, Ny =
0,...) — actually, this “macroscopic” occupatio(ni%> T2 N is the textbook signature of
Bose condensation.

Needless to say, this is no longer true for interacting 0, simply because the true eigen-
state fails to be a (single-particle) eigenstat@ﬁ1 h; but contains correlations. Nonetheless,
the concept of condensation can be generalized in the folipsense: We know from Sec. 1.3
that the concept of occupation-number stdt¥g, Ny,...) extends to arbitrary states with a
one-body density matrix; = trp_ . npn, Whose eigenvalues, =: N,/N can be thought
of as “occupation numbers” of the corresponding eigenveetg (so-callednatural orbitals).
From this standpoint, an eigenvalug ~ 1 has been accepted as a generalidefinition of
Bose-Einstein condensation [70].
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Assuming Bose-Einstein condensatidn,= ¢®, the matrix Schrédinger equation (2.4)
simply boils down to a single equation

N1

E = (¢"N|H|¢®N) = N(¢|h|¢) 5

(622 |V[9%?)
—_———
=[dz1 [ drag*(z1)p* (x2)V (21,22)¢(x1)P(2)

This can be interpreted simply as the energy functional

Bnolosd) = N [ oo @)no)(o) + T [ [anavienen) oot

In view of the variational principle, this gives an upper hduo the exact ground-state energy.
That bound can be improved by minimizing it on the unit spHefg = 1, which is done by
looking for an extremum oFy 4[¢*, ¢] — Nu(||¢||* — 1). For the special casé (1, ) =
g6(z1 — x9), this yields theGross-Pitaevskiequation (GPE)

(h+ (N = 1)g19*) 6 = no,

which automatically guarantees a minimumiof; ,. Note that the GPE takes the form of a
single-particle Schrodinger equation witmanlinear interaction term governed only by the
scaled couplings = (N — 1)g rather thanV, ¢ individually. For\ — 0, it simply recovers the
single-particle case. In the complementaityomas-Fermiimit A — oo, in turn, the potential
termsU (z) + \|¢(z)|> overwhelm the kinetic energy [1], allowing for the triviablation
[¢(x)]* = max{[u — U(x)] /A; 0}

The GPE can be shown to become exact in the limit [72]

N — o0, g — 0,with A ® Ng = const.

From this point of view, significant deviations are expedtadmall atom numberd’ or strong
interactionsg.* The validity of the GPE may be better understood by takirfgpek-space
viewpoint. Consider the mode expansion of the field operéor 1.3)¢(z) = ¢o(z)co +
> a0 Pa(®)ca. The “condensate™mode operator acts on number states as

C(]|N0,...>:\/N0|N0—1,...>.

Assuming condensation ady ~ N > 1, one can make the heuristic assumption tiyat-
1V N, thus ignoring particle annihilation/creation in mode= 0. In that case, the above
decomposition reads

Y(@) & VNG () + Y pal@)ca =: (Y(x)) + 5(x).
a#0

3The derivation presented here applies to the ground stateever, there also exists a time-dependent version
of the GPE, tantamount to replacing the right-hand sidéday. Its proof of validity is far from trivial, though,
since during the evolution dynamical excitations mightenmine the premise of a condensate [71].

4The situation is more difficult in 1D [73], where Bose condaitn at7 > 0 is strictly forbidden inhomo-
geneoussystems. In traps, however, there still ig@asicondensate with small density but non-negligible phase
fluctuations [74].
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We have ascribed an expectation value to the field oper&isnmay introducing anean field
(1) = VN¢y. The above decomposition impligs, N, ~ N + > a0 N,, which amounts
to allowing for particle-number fluctuations reminiscehtte grand-canonical ensemble. The
idea now is to think of this as aexpansiorof the true field operator about itdassicalvalue
(the mean field). Plugging this into the second-quantizechiianian (1.5) yields

2
H =N [ dego(x)heo(z) + NTQ/dw g0 ()] * 4+ O(69)2.
To zeroth order, and foN? ~ N(N — 1), this is nothing but the energy functionaly
encountered in the derivation of the GPE. The proceduresifjlaisig a mean value to a field
operator is completely analogous to the modelingatierent states quantum optics — sim-
ilarly, the GPE is said to describe coherent or classicaéstadncluding the next order i)
yields a Hamiltonian that is quadratic ¢p..o, i.€., describes an effective single-particle Hamil-
tonian. Its diagonalization leads to the so-calogoliubov equation$l], which describe
smallquantum fluctuationgn(x1)n(x2)) — n(xz1)n(x2) about the (classical) mean field.

Hartree-Fock vs. Multi-orbital mean field The mean-field methods introduced above as-
sume (almost) complete Bose-Einstein condensation,one. ,dominant single-particle mode
¢o. While this is justified for weak enough interactions in agjt@mogeneous trap, there are
situations when this breaks down. These include, of costeang interactions, but also having
two or moreweakly coupledondensates such as in a multi-well trap. Similarly, thigliag to
multi-component condensates like spinors or mixtures.

An obvious way to extend the above mean-field scheme is thenfiolg. As pointed out
above, the GPE describes the variationally optimal numiag¢e|sVy = IV, ... ) with all bosons
in modeg,. The most straightforward generalization in terms of alshparticle state would
be to search the variationally best number state= Ny, ..., N4) in the multi-orbital basis
{pa<a}, with acutoffA +1 < N. ForA+ 1 = N, i.e., allowing for possibly just as many
orbitals as patrticles, this recovers the (bosonig)tree-Fockmethod known from electronic-
structure theory. A slight modification is achieved if thawher of orbitals included ia priori
fixed to A + 1 < N: This implies that the wave function should be searched éncthss of
functions

= \/gs—k{(%@”'®¢0®"'¢A®"'®¢A}a
No % N x

whereN, bosons reside in orbital,. These orbitals are governed bhulti-componentmean-
field equations foep = (¢o,...,$4) ", analogous to Hartree-Fock [75]. The difference is that,
in addition to the orbitals, also the occupation numh®gsmay be varied so as to minimize
E[¥]. This multi-orbital mean-fieldapproach has been applied to a variety of physical situa-
tions where interactions make it energetically favorablebiosons to occupy different orbitals
rather than a single one (such as modes localized on diffsite:s in a multi-well trap§. Note
that, just as for the GPE, this readily extends to the timgeddent case.

5The wordmean fieldshould be taken witttum grano salis Hartree-Fock and its derivates arean-field
methods in the sense that they do not account for physitet-particle interactions. Rather, each particle feels
only an effective single-particle “mean-field potentiaBy contrast, they go far beyond the concept of a “mean
field” (1)) = v/N¢ as is typically understood in the context of quantum fielatkie
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2.2 Exact Diagonalization

The basic concept of thexact diagonalizatiorscheme, as has been laid out in the previous
section, is wrapped up in Eq. (2.4): The time-dependentd@lthger equation is mapped to a
(finite) matrix-eigenvalue problem by expandifgin terms of occupation-number states),
provided some fixed single-particle basis §¢}}. The matrix problem is then solved using
existing numerical routines. The following technical pedare naturally suggests itself:

1. Choose an appropriate basis (Sec. 2.2.2)

2. Compute the Hamilton-matrix elements (Sec. 2.2.3)
(@) Break down the many-body matrix elemeiis|H |n) into primitive (one- and
two-particle) matrix element&:|h|b), (ab|V|cd)
(b) Compute(alh|b), (ab|V|cd)

3. Build up the Hamilton matrixHy,), i.e., mapn) to a single matrix index (Sec. 2.2.4)
and diagonalizeéd numerically

4. Analyze the results, that is, compute the reduced desgiti(Sec. 2.2.5)

Here we will concentrate on the fundamental case of a hawertoap, U (z) = %x2. Before
going into the details, let us revisit the foundations of tfiethod so as to gain a better under-
standing of its strengths and limitations.

2.2.1 Preliminary remarks

It is instructive to look at the exact-diagonalization nuettirom a different angle. Itis common
wisdom that Schrodinger’s equatidil — H)¥ = 0 follows from a variational principle, i.e.,
the minimization of the functional

Fg[¥*, V] .= (V|H|V) — E(V|P),

equivalent to seeking the minimum energy on the unit sph¢re|| = 1}. What we do is
essentially to look for thdest approximatiorof ¥ € H on some finite-dimensional subset
S C H —wherebestis defined as having the smallest distance flnExplicitly, we look for
T € S fulfilling

It — || = min & — .

———
=dist(S,¥)

A well-known theorem states that, given tHdtis a unitary vector space (endowed with a
scalar-product nornn\If||2 = (¥|¥)), such a best approximation always exists uniquely. The
key is to see that, in this case, minimizationfdk) := ||(T + s¢) — ¥||* ats = 0 (for some
@ € S)is equivalent to

(T — Wjp) = 0Vp € S.

In other words: The difference vectff' — V) is orthogonal taS, signifying that the error can
only be improved by going out &f.
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An explicit construction can be attained by setting= ¢, equal to the (orthonormal)
basis vectors spannin§, which yields the intuitive resul{®;|Y) = (®,|¥). In our pre-
vious notation, this is of course nothing but our initial azsY = >, ¢, ®; leading to the
matrix-eigenvalue problem (2.4 ). This ensures that ouraaagh of directly diagonalizing the
Hamilton matrix takes us as close to the true solution ast#,dbat is, within the subspace
S = span{®,}. Since these vectors are usually number states in soimétive basis not
related directly to the full Hamiltonian, one may have toat&kquite large.

The above standpoint is very abstract; in fact it makes nereete whatsoever to the type of
system (i.e., thdd). Actually, general statements on the convergence speexikot diagonal-
izations are rare. To get an idea of this, let us be more @kdlicour simple yet not uncommon
case, we consider a Hamiltoni&h = H, + V' consisting of a single-particle operatty (the
easy part) and an interactidn, where our basis set will be constructed as unperturbecdh-eige
states(E,(f) — Hj)®;, = 0 (see Sec. 2.2.2). Then the full Schrédinger equation caavetten

in terms of the resolver® = (E — Hy)~! as a variant of th&ippmann-Schwingeequation

v =GVU.

A straightforward expansion i, yields the exact, if implicit, expansion (2.3):

U= @’“'V"I’ ch@k (2.6)

For few rare cases where the matrix elements @an be boiled down to a simple expres-
sion, this may actually be employed for an analytic solufiery., in [17]). But even in the
general case when this does not apply, that relation cand&eome insight into the accuracy
of our ansatz. Of course, we want the coefficiept— 0 to fall off fast enough — ideally,
they should vanish for some tolerable cutbff- K. Naively,|c;(E)| < 1 should hold when
|E — E | — 00, i.e., when the basis states are expected to give smallilzgindns in an
energy range far fronky. However, there are two qualifications: For one thing, thesig of
states in the energy range abdtishould not be too large. On top of that}ifcouples¥ very
strongly to many (possibly highly excited) eigenstabes (®|V'|¥) will become large, which
makes for poor convergence. Even though these considesadie limited to a primitive basis
set which is not at all adapted to the interactions presetitarsystems, it casts a light on the
general difficulty involved in exact-diagonalization apaches.

2.2.2 Choice of basis
Many-particle basis set

As already insinuated before, we opt to expand the many-btashgiltonian in a basis of num-
ber states
|n) = |No,...,Na), |In| =N,

based on some single-particle orbitdls, } < - This amounts to distributing alV particles
over A + 1 single-particle states (including multiple occupation fosons). The number of
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such combinations determines the dimension of the Hilhdr$jgaceS C H:

K=Y 1:(‘4;]\7). 2.7)

|n|=N

For large N, this grows likeN4. This exponential growth of the Hamilton matrix makes it
practically impossible to treat more than just a few paggofV < 10) by brute-force diago-
nalization, unless one restricts to a very small singleigarspace (sayd = 1).

One way to handle this would be to use iterative diagonadinaechniques (see Sec. 2.2.4).
By contrast, a way to reduce the basis-set size woulddbéo takeall possible combinations
(full Configuration Interactiol, which include unlikely contributions such & ..., N4 =
N), but only single and double excitations out of a referenegesfsay,|[Ny = N)). A
more rigorous procedure, in the spirit of our remarks in Se2.1, would be to introduce
an energy cutofft,,x such that only basis states Wi(ﬁﬂ@k < FEnax are picked (this
amounts to setting,(F) = 0 for states with mean energy above that cutoff). Neither of
these schemes has been implemented in the program, howev@nother remedy often em-
ployed is to choose an altogether different basis set exaticitly correlatedone ®,3(X) =
St (]‘[f\il ba; (ac,—)) (]‘[Kj I, (@i — acj)). As this ansatz has the power to include correla-
tions already in a&ingleconfiguration (which otherwise would have to be mimicked byes-
imposing many number states), it is intelligible that thagneerges by orders faster in practice
(e.g., see [76]). Again, there is no such thing as a free luibk numerical costs do not vapor-
ize but rather shift from the basis size (number states)rgpeing matrix elements (correlated
states).

One-particle basis set

After having settled for a number-state basis|set we still need to fix the set of orbitals,
it should be constructed from. In an ideal world, these oughtomply with the following
criteria:

1. ConvenienceThe matrix elements should be easy to compute.

2. ConvergenceFor a given number of orbital&’, as few vectorsn) as possible should
be necessary to achieve a given accuracy.

3. Flexibility: The choice should be adapted to any Hamiltonian, rather tiaad-picking
a basis set each time the system is changed.

There are different choices fép, } that leap into mind, but obviously each involves a trade-off
with respect to the demands above. The by far simplest optird be to take the eigenstates
of the one-particle Hamiltoniar{e, — h)¢, = 0. For the prototype case of a harmonic trap,
these are known analytically. In this case, all matrix eletae&an even be computed exactly
(although this may not be the most efficient choice). In viéwwr considerations in Sec. 2.2.1,
the fulfilment of (2.) is certainly questionable for strong®eractions. Furthermore, it is not
entirely flexible: For pretty much anything but a harmongptr{¢, } is not known in closed
form, soh would have to be diagonalized brute force, possibly by edjmanit in the oscillator
basis.
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Despite these drawbacks, the HO basis has been adoptedbhi#ré.is worth touching on
a few alternatives:

e A common way is to take plain (normalized) Gaussians whoskthsir, and centers
x, are parameters that may be adjusted to the geometry undsidetation. This
way, typically all primitive matrix elements can be solvaethitically. The downside
is, clearly, that this basis set is notthonormal. In other words, the positivaverlap
matrix S = ({¢q|¢s)) ceases to be the identity. This needs to be taken into agcount
either in the computation of the many-body matrix elementsydancluding a numerical
pre-orthogonalization.

e One option would be to takemean-fieldorbitals which already include interaction ef-
fects. Rigorously speaking, this amounts to minimizifigiot only with respect to the
coefficientse,, (leading to the standard matrix-Schrédinger equationi),also varying
the single-particle functio,, used to construct the vectois, (yielding Hartree-Fock-
type equations). This is essentially the approach embarkdry MCTDH, as described
in Sec. 2.3. This is as good as it gets within an uncorrelatesistset |f2)), at the cost of
having to solve a set of nonlinear equations on top.

e In an ideal world, it would be preferable to haweo-particle functionsf,(x;, ;). Such
a choice would open up the possibility of explicitly accangtfor two-body correla-
tions — i.e., to reconstruct the exact behavior near poihtolision, ¥ o f(z; — x;).
While this may drastically reduce the basis-set size, itemat the price of highly in-
volved primitive (few-particle) integrals. This methodres a top ranking in technical
sophistication.

2.2.3 Matrix representation

Having settled our basis-set issues, we are left to acteallgpute the Hamiltonian matrix
(n'|H|n). To this end, the many-body matrix elements are first brokemndto one- and
two-particle primitive integrals, which in turn can be calculated by combining wied! and
numerical techniques.

Matrix elements (n’|H|n)

Let us now compute the many-body matrix elemept§ H|n). Since we expand the state
vector in terms of Fock states constructed from the singléigle basis{¢,} C Hjy, it is
obvious to do the same for the system Hamiltonian. Pastingesults from Sec. 1.1.2, this
reads

H= Z<a|h|b>clcb + % Z (ab|V|cd>clc}:cdcc. (2.8)

a,b ab,cd

Postponing to the next paragraph the numerical evaluafitimegorimitive one- and two-body
integrals

wEmwwz/M@mmmu>
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which encapsulate the concrete geometry and interactitampal, we are left with the follow-
ing density-matrix elementsn’|chc,|n), (n’|c};c£cdcc|n>. An explicit calculation yield$

(n'|cheyn) = { No (a=0) w=n (2.9)
VNIN, (a#b) n'=n+e,—e
VNINI —DN(No.—1) (a=bc=d)  n'=n+2e,—2e.
(n/|cTchdcc|n> _ V/NL(N, — 1)NNy (a=bc#d n'=n+2e,—e.—ey
¢ V/N/N/N.(N. — 1) (a#bc=d n'=n+e,+e—2e.
V/NIN[N.N, (a£bc#d n'=n+e,+e,—e.—ey

Proof: This follows from the iterative application of the anndtibn (creation) operators to
In) (Jn’)), using the standard rutg |n) = /N,|n — e,), where(e,), = d,, denotes the unit
multi-index (cf. Sec. 1.1.2). Note that, for more than oneilitated index, this requires a case
distinction whether or not an index, sayis annihilated twiced = d) or just once ¢ # d).
Eventually, the matrix elements boil down to overlaps oftiipe (n' —e, —ey|n —e. —ey) =
On/ mteate,—e.—ey . BE aware that, so far, case distinctions have been madenathiy the
index setsd, b) and(c, d). O

At this stage, in order to compute’|H |n), we are left with performing the sum over all
indicesab (abcd) in EQ. (2.8). To anticipate the result, the Hamilton matrastihe following
structure:

(n/|H|n) =
> a [haaNa + Vaaaa%Na(Na D]+ X, Vab{aby NaNb n' =n
hap/ (N + 1)N,, + D ktab Vka{kb} \/me-l-
+Vaaab N/ (Na + 1)Np + Vaaba —1)Ny(Ny — 1) n'=n+e, —ep
5 Vaace v/ (Na + 1) (Nq + 2)NC<NC —1) n' =n+ 2e, - 2e,
VaaCd\/(Na+1)(Na+2)NcNd n' =n+2e, —e.— ey
Vibeer/(Na + 1)(Np + 1)No(N, — 1) n =n+e,+e,—2e,
Vabfeay v/ (Na + 1)(Ny + 1) NNy n=nite, ey e —ey

with the shorthand /(.1 = Vabed + Vabde- (Any two indicesa, b are understood to assume
different values herey £ b.)

Proof: Again, let us focus on the principal procedure. As statemvapall we need to do is
to carry out the sums over the density-matrix elements. li@ophe-particle terms, this reads

n/|Hy|n) Z hab X (n/|ches|m)
=0 m0abNa+t0p/ 1 eq—ep (1=0ab) /NG Ny
B { > haaNa n' =n
hap/NINy n' =n+e,— e

BAll terms other than those listed vanish. Quite generatlyahyn-particle operatord (involving a product of
n annihilators anch creators), the matrix elemefit’| A|n) vanishes if both vectors differ by more tharsingle-
particle occupationsy ., [No, — N,| < 2n. This is a physically sensible statement, sincexgparticle operator
can only couple two states viabody excitations. This saves us from having to inclatiepossible Hamiltonian
matrix elements — rather, fdv > 2 particles, our matrix becomes more and more sparse.
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where, by constructionN, = N, + 1 in the last line. For the two-particle Hamiltonian, the
basic strategy is the same, if more tedious. Consider thefgpeasen’ = n + 2e, — 2e., SO
that only(a = b, ¢ = d) contribute above: Then we have

<",|CLCECcCc|"> :5n’,n5acNa(Na - 1)+
5n’,n+26a—26c(1 - 5110)\/N(,1(N(,1 = DNe(Ne — 1).

Upon summation, this leaves us with

> Vaaaaz Na(Ng — 1) n=n
WaaeeVV(Na + 1) (N + 2)No(N, = 1) n' =n +2e, —2e,

1
5 O Vanceln!|elclececln) = {
a,c

Analogous case distinctions must be made for all otherioglatetweem’, n. O

Primitive matrix elements h,, Vaped

After having expressed the matrix elements of our many-béamwiltonian in terms oprimi-
tive one- and two-body integral§h,, } and{V.q4}, we shall now compute these. In general,
this necessitates some numerical integration. Howeveouimcase of a harmonic trap, all
single-particle orbitals,, € L?(R) are known analytically in terms of the Hermite polynomi-
als i, (in dimensionless units):

Ua(2) = coHy(z)e™™ /2, ¢y = 1/4/ /720l

This simplifies matters a whole lot. In fact, the one-bodggnals are trivial:

1
hap = <¢a’h‘¢b> = 6aéaba €q = <CL + §> .

The real challenge thus lies in the two-body matrix elements

Vabed = (ab|V|ed) = /dxl /dxgua(xl)ub(wg)V(xl — xo)uc(x2)ug(xs).

For one-dimensional systems, we have seen in Sec. 1.2.théheffective low-energy interac-
tion is of the formV (z) = go(z). For numerical reasons, we will argue later in Sec. 2.3.8 tha
it is convenient to mollify the contact potential with a Gsias of widtho:

1
0y(z) = 27106_:02/202'

Even though this slightly complicates things, it does netriet the numerical evaluation of the
integrals.

Symmetries Before proceeding, let us rewrite the integrals in a tedlyidhandier notation,

‘/(ac)(bd) = /d%/d(ﬂ/ (uauc)(w)(ubud)(ac’)V(m — x/)7

and read off a few generaymmetries
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1. Permutation symmetry = PfQVPm = Viae)va) = Vivd)(ac)

2. ParityV = II'VII = Vigoypa) = (=1 V0 40y (= 0 Unlessa + b + ¢+ d is
even)

3. Adjoint symmetryV = V1 = V(,0)pa) = Viayan) = Viea)(d)
4. Complex-conjugation symmetty, = us = Viue)(bd) = Vica)(vd) = Viac)(db)
Symmetries (1.—4.) assert that there is a high level of rédney in theull index set{a, b, ¢, d}.

In fact, it suffices to kn0V\V(ac)(bd) in, say, the restricted index sgt > ¢, b > d}, which sug-
gests to wrap up each patic) in asingleindex

a(a+1)
2

(a,c) := +c [a > (]

running from(00) = Oup to(AA) = (A + 1)(A + 2)/2. By extension, note that by (1.) even
the two pairgac) and(bd) are interchangeable as a whole, so we can encode théawgpd)
to the single-index object

((a,c), (b,d)) (a,c) > (b,d). (2.10)

Analytic solution It should be noted that, for our special case of harmonidiatwr orbitals
and Gaussian interaction, the two-body integrals may bgemrdown in closed form. The key
is to rewrite them in center-of-mass and relative coordisat; 2 = R+r/2,

27952
€T/2U

Viee)ba) = / dR / dr (uqtc) gz (Uptia) p—z

2ro

This integrand is known as a productdsdcenteredscillator orbitals [77]. Adapting the nota-
tion, the final result may be cast as

a+c b+d pi1+p2

Viae)bd) = CaCclbCd Z Z Z X

p1=0p2=0 p=0

w2 (9) (;)u)kmmm)x

i,k|i+k=a+c—p1

e < ) (‘f) ) Hy p2<o>) .

yl\j—i-l b+d—po

_ 1 AR
2(p1+p2)/ m n Up14pa—pWp;

m n|m+n =p

where

va_/dRH (2R)e —(2R)?2 { \/_(a/2 o € 2Ny

0 else

o?—1 p/2

p!
w E/dr Hp(7’)e_7"2/26_7"2/2"2 = { 27TO'(P/?)! (o241)01HP)/2 p € 2No .

0 else
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The proof exploits an expansion pfoductsof decentered oscillator orbitals in termssafigle
oscillator orbitals. To go into the details here would be sereise in futility, though, since the
above formula is a prime example of a closed-form soluti@t toesnot necessarily imply a
simplification when it comes to practical evaluation. Thieelawould involve a sixfold sum
with mostly alternating signs—Iet alone the myriads of adisénctions and binomial factors—
which could hardly be less favorable as far as numericalilétals concerned. In practice,
we have resorted to an algorithm which takes advantage akthesion relations known for
harmonic-oscillator functions, as presented now.

Recursionrelation The following recursion formula holds for two-body intelgraf harmonic-
oscillator orbitals?

1 b 1 d
Viaoywd)y = Via-1,00-1.4) 30107 \/; + V(a_1,c)(b,d_1)72(1 o) \/; +

1+20% Jc 1 a—1
V(a—l,c—l)(b,d)m Pl V(a—2,c)(b7d)2(1 Vo

Proof: Using the harmonic-oscillator recurrence

un—l—l V’I’L—le n

we can split the integral into two parts,

2 r e~r/20° a—1
Viae)(bd) = \/;/dR/dT (R + 5) (Va—1Ue) g (Uptia) Rz - Via—2,¢)(b.d)-

2ro a

T Un— 1( (n>0), (2.11)

The second piece we know already from a previous iteratiep, sthile the first integral can
be converted via partial integration. To see that, notetti@integrand is proportional to

—r2(irL)
(Hom1He) gz (HyHy)pze (5+77) 22
Hence we can substitute the multiplicatdtsr by

orr Lo ope 1 2(14L) 1 ~r?(3+515
Re ——ZﬁRe P 5e <2 2 ) 72(1—#0—2)87“6 <2 2 )

Integrating by parts, this allows us to express the firstegialbove as the derivative of the
Hermite-polynomial products. Applying the well-known tative of Hermite polynomials to
our case,

3)

) = ian_l(Rig),

OrHn(R
0, H, (R +

) = 27”LHn_1(R:|:

l\DI%[\D =

and picking up the prefactef, = ¢,—1/v/2n S0 as to recast everything in terms{af, }, then
the first integral above reduces simplyZox 3 V() -type integrals. The last step involves

A similar relation has been derived for the contact intécatin which caser — 0 [F. Deuretzbacher, private
communication].
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simply cleaning up the notation a bit, by combining the déf# prefactors stemming from the
R (r) derivative,1 + 1, into a single factor. O

The above formula can be neatly coded: Given the startinge¥aho) o) = 1/V27v1 + 02,
and trivially setting to zero all integrals involving b, ¢, d < 0, one can scan through all of the
restricted index set (2.10). The arréy,.q)) Mmay be stored in a file and—for not too large
cutoffs—read into some arrdy[ i | .

2.2.4 Computational Scheme

After having obtained explicit expressions for all matrieraents(n’|H|n), we are now all
set to diagonalize the Hamiltonian. almost. To build up an actual matrif,;) € RE*K

—K = (*1") being the dimension of the Hilbert subspace spanned|hy}—the single
indexk € N has to be mapped to the multi-index

n=(No,...,Na) € NI with |n| = N.

This is a technical yet salient issue. A straightforwardrapph would be to simply enumerate
the vectors by generating an excitation out of some referetate for each increase of the
single indexk, such as:

|(N)0>v |(N_ 1)0>1a1>7 |(N_2)0>1a1>1a2>7"'7|1a171a27"'>1a1\r>>

where{1,..., A} > a, > a,—1 Vn S0 as to avoid double counting. The algorithm imple-
mented here proceeds as follows: One starts withjal - = ay = 0 (i.e., Ng = N). A
given configuratioru is then updated in the following way:

1. Count down the auxiliary index = N, ..., 1, keeping track of the number of excited
particles.
(a) Ifa; < A, increase:; by 1. Break loop at current value ¢f
(b) If a; = A, continue.

2. Seta; = a; fori > j.

This scheme works for theompleteset{|n)}. As insinuated above, it ought to be adapted
to a more economicatruncatedbasis set, where an additional criterion applies — such as
filtering out states that are energetically too far off. Mawer, in a preliminary version, the
“black-box” diagonalization routindspevx from the open-access LAPACK library has been
used. It essentially performsfall diagonalization of the matrikHy;). For numerically more
demanding purposes, more sophisticaterhtive schemes should be employed.

Finally, let us mention that the symmetries 8f can be exploited in a diagonalization:
In our case, the total parityf1¥)(X) := ¥(—X) commutes with the Hamiltonian, and thus
each eigenstate should have definite pditfy = +¥. In each of these orthogonal subspaces
(I = £1), the Hamiltonian can be diagonalized separately, empippnly basis vectors of
appropriate parityil|n) = (—1)2a%Na|n) = +|n). Analogous considerations apply to any
symmetry — in particular also to the total particle numbérThe latter is trivially conserved,
which is ensured by including only basis vectors with eqhiah) = N|n).
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2.2.5 Analysis aspects

Upon a successful diagonalization, we obtain the eigesairandC™ = (<™., c%”) )’
for specific eigenstates. As discussed in Sec. 1.3, the reduced density matricegdgrawnat-
ural way to relate the full wave function to observable qitest Specifically, let us focus on
the two simplestliagonaldensities:

e the one-body density (or density profile):) = (' (2)y(z))y /N

e the two-body densitys(z1, x2) = (1 (21)07 (22)¢(x2) ¢ (1)) w /N (N - 1).

One-body density

The density operatoi = 11, being a one-body observable, is relatively straightfodia
compute. Expand(z) = > u,(z)c, in terms of the oscillator annihilation operatdrs, },
and plug in¥ = %" cn|n):

(W (@)p()) e =Y wa(@)up(@){cler)w,
a,b

where in turn
(chey)w = Z e Cn (N |clcyn)

n,n’

boils down to the density-matrix elements computed in (Z8)we obtain

(chep)w = > Nalen|” (a=10)
¢ zn;n’ CnCn/y/ N(/J,Nbén/,n-‘rea—eb ((I 7£ b)

The procedure is then as follows: First build the ma(r(xlcbh,). Then loop over all points
x and, for eachu > b, multiply the density-matrix element with the oscillatarnttions
uq(z)up(z). As a technicality, the harmonic-oscillator orbitals at#ained via the recursion
relation (2.11) [requiring the input af, andw4], which is numerically advantageous to a com-
putation directly from their explicit Hermite-polynomiegpresentation.

Two-body density

The calculation here is conceptually similar but techtjcedore challenging. In analogy to
above, we obtain

(W ()0 (@) (@) (1)) w = Y (atte) (1) (upua) (v2){che}cace)w,

a,b,c,d

where (cchcdcc>q, =D cn/cn<n’]clc£cdcc\n> again reduces to the matrix elements de-
rived in Egs. (2.9). Even though symmetry considerationsagoe way to reducing the quadru-
ple sum oveRabed}, this is by far the most time-consuming analysis step.
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2.3 Multi-Configuration Time-Dependent Hartree

In the previous section, we have pursued the approach obulgdiging the Hamiltonian in
some basis set aincorrelatedstates constructed from single-particle functions. Frbm t
time-independent perspective, the essential differehtieeanulti-configurational time-depen-
dent Hartreemethod (MCTDH) is simply to takeariationally optimal i.e., self-consistent
single-particle functions rather than primitive orbitals before. Despite this close analogy,
the MCTDH approach in its original form is explicitiyme dependentand we shall see be-
low that the computation of stationary states is more or éeky-product. Moreover, it is
designed for the treatment of distinguishable particlgsneghough in recent years derivates
have been put forward that are inherently adapted to iddrdgicantum particles (aptly termed
MCTDHF [78] and MCTDHB [79] for fermions and bosons, resjat). Here we will give

a brief introduction to the general theory of MCTDH (Sec..2)&s well as its implementation
(Sec. 2.3.2). This is complemented by a discussion of how BIETan be applied to treat
ultracold few-boson systems.

2.3.1 Principal idea

The underlying idea of MCTDH [80] is to solve the time-depentddSchrodinger equation (2.1)
directly as an initial-value problem by expandidit) in terms of direct (or Hartree) products

b=V o el
U(X, 1) =Y As(t)®s(X,1). (2.12)
JeJ
Here N denotes the number of degrees of freedom, and the multkidde (ji,...,jn) runs
over the set7 = {(j1,...,j~n) | 7« < n.}. Note that, in this truncated expansion, both

the coefficientsd ; and the basis vecto®; are time dependeft.In the spirit of Sec. 2.2.1,
this is again an approximation problem on the (implicit) sethpan{®;} C Hy. The best
approximate solutio® can be found by requiring variatiodd’ to be orthogonal to the “error”
[i0, — H(t)]¥ (),

(0W[[:0p — H(t)]W(t)) = 0,

known as theDirac-Frenkel variational principle[81]. This leads to the following equations
of motion:

iy = Y (@,H®L) AL, (2.13)
L
-1
ic,b(”) _ <1_p(f€)) (p(ﬁ)> <H>("‘)<p(“). (2.14)

8Needless to say, this is ambiguous: For each térrany factor can be absorbed eitherAn or in ;. This
can be made unique by demanding that

@)y (1)) = 851 V.

Upon time differentiation, this is equivalent ((p:;”)(t)“bf")(t)) = (¢§“)(t)|gof")(t)). A clearly sufficient condi-

tion is to requireig\™ (t) = g™ (t) on span{cpg“)};fgl for some arbitrary, hermitian operatgt®). It is this
constraint that is implemented in MCTDH so as to make thelprolwell defined .
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This needs some explanation: The coefficient vectigrfulfill the standardmatrix Schrodinger
equation, as they would in the time-dependent formulatib(2al). What is new is that the
single-particle function$o§’:) —here collected in a convenient multi-orbital vectpf®) =

-
(cpg'i), . ,gpﬁf)) —arenot fixed but obey an effective Schrodinger equation governethby

K

mean-field HamiltoniarfH) (%)

()Y = (0P|, (2.15)
defined in terms of thiole functionst{™) := (o[ |¥) € ®,,, H{"” (the notation indicating
that thex-th degree of freedom is integrated out). These mean fietsféective one-particle
operators acting solely on the one-particle spﬁé@ and are analogues of the well-known
mean fields irHartree(-Fock)theory. Likewise, the mean-field equations (2.14) are neali
Schrodinger-type equations and must be solved self-dendizg Moreover, the right-hand
side is multiplied by the inverse of the reduced one-bodysitgmatrix in the basis of the
single-particle functions,

A= Iy = (o607 |01, (2.16)

as well as the projector on the orthogonal complement ofitiggesparticle space, with
P =% 1oy e
7j=1

Equations (2.13-2.14) constitute a differential-equasgstem that can be integrated iteratively
starting from the initial conditio (0) = > ; A;(0)® (-, 0), this way giving us access ®(t)

via (2.12). Its efficient numerical integration is techiiigaontrivial and beyond the scope of
this thesis; for further reading see [80].

Remarks

e As implied above, the single-particle basis functimjé) (t) are variationally optimal at
each time step. In the light of our remarks in the previous section, theyonporate in-
teraction effects already on a single-particle mean-fealdll Thus our basis séb ;(t)}
is thebestpossible direct-product basis, which is important nunadiycas it allows us
to keep the basis size—given by.—small. Needless to say, this cannot account for
realtwo-bodycorrelations of typef (z; — z;), for which it is necessary to superimpose
different one-body configurations;.

e A word on the numerical scaling is in order: Assumg = n Vx (as is the case for
identical particles, see Sec. 2.3.3). Then the number digimations that need to be
included is>" ;1 = ], n, = n”. For small particle numbers, this is similar to that
of identical bosons (Eq. 2.7, with = n + 1).° In fact, for largerN >> 1, this blows
up exponentially, a prohibitive feature shared by both apphes. However, since the
single-particle basis can be kept small due to variatiopdhtdzation, the base is typ-

°0One should stress that MCTDH double-counts configurationistware permutationally equivalenb; «
®p(yy, see Sec. 2.3.3. For larger particle numh¥rs- 10, this redundancy becomes more and more inefficient.
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ically by an order smaller than in primitive approaches,chifalleviates the exponential
scaling.

e It may be instructive to apply Egs. (2.13-2.14) to the casa sihgle orbitak,pg.’:) =
(n. = 1Vk). Inthat caseW (t) = 1 x ¢(t)®" and the equations of motion reduce to the
time-dependent version the Gross-Pitaevskii equationwertered in Sec. 2.1.29,p =
[h + (¢|V]¢)] ¢. Here the mean-field Hamiltonia(rﬂ>é’3) = h+ (¢|V]p) (for all k)
consists of the single-particle Hamiltonian plus an imippotential (¢|V |¢) — g |¢|>.

2.3.2 Implementation

Although the general theory of MCTDH has been set up nowsetlage some core aspects
concerning its numerical implementation which are vitalewldealing with the method (cf.
[80, 82] for details).

Discrete variable representation The equations of motion for the single-particle functions
(2.14) constitute a system of partial differential equagio To solve these, the orbitals have
to be represented numerically. MCTDH handles this by exjpanthem in terms of a time-
independentdrimitive) set of functions

Ny
) =S (ul. 2.17)
=1

Typically, these primitive functions,; are weighted polynomials such as harmonic-oscillator
functions or Legendre polynomials. To simplify the evailo@atof matrix elements, one goes
one step further by introducing a so-callddcrete variable representatiofDVR). Here one
picks alocalizedbasis set obtained by diagonalizing the position operaiarthe basis{u; }:

Q- 1a =0, (@)= (u|zlul™).

The y; arediscreteanalogues of position eigenstates (x) = d(x — 2’); their domain is
the grid {qk}ivgl determined by the primitive basis set. In fact, DVR may beutit of as
an interpolation or Gaussian quadrature, where a functipris replaced by its grid values

{f(qr)} [80].

Product representation of the potential Solving the MCTDH equations provides the knowl-
edge of the MCTDH wave function, which is the key to the sys$etime evolution. How-
ever, their exact solution is complicated by the fact tha¢duires the matrix elements of the
Hamiltonian,(® ;(¢)|H|®(t)), and the mean fields at each time step. Th€ser (N — 1)-
dimensional numerical integrals have to be avoided. The M&TDH manages that is, in
essence, to boil these integrals down to one-dimensiores wia the requirement

s N
HY =3 ¢ H,, withH, =Qh,
k=1

r=1
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enforcing that the Hamiltonian be written as the suns @roducts of one-particle operators
(direct-product form). The remaining integrals are muchreraccessible for numerical inte-
gration. This is of course a drastic assumption fortthe Hamilton operator, since we know
that interaction terms likd (x; — x;) generally are not separable. However, just as in the
wave-function expansion (2.12), this ought to be regardealfih to the exact Hamiltoniaii/,
such that| 7 — H'®)|| becomes minimal in an appropriate operator norm [80, 83\84]

Relaxation method: Stationary states The general MCTDH theory as laid out above is
inherently time dependent, thus circumventing the detear the time-independent formalism
for energy-conserving problems. Still, it is sometimesirdéde to compute stationary states,
be it to obtain general insights into the system (e.g., itaigd state) or to better understand
the dynamics. The conceptually simplest way to implemestiththe MCTDH framework is
by reformulating the eigenvalue problem for stationarystates(E — H)¥ = 0, in terms of
the asymptotic limit of goropagationin imaginary time,r = it — i.e., using the non-unitary
evolution operatoe=#". For an initial stateV(0) = >, ¢,,¥,, with nonzero overlap with
thetrue ground statel, this damps out exponentially all contributions but thet@mning from
the exact ground state,

e—HT\I’(O) T 200 Coﬁ_EoT\IIQ |:1 + O(e—(Em—Eo)T)] 7

where renormalization to unity ensures thaxationto the ground statel,.

By extension, if the initial state is kept orthogonal to amgerlying eigenstates, i.e,, =
0 Vm < n, this converges to an excited stdtg. However, this is not the most stable algorithm.
In practice, one relies on a more sophisticated scheme teiimmaroved relaxation85, 86],
which is much more viable especially (but not only) for eatiins. Here again one starts
from the conventional, time-independent variational gipte, whereE[¥V] = (V|H|¥) is
minimized with respect to both the coefficientg and the orbitals»;. This leads to

1. astandard eigenvalue problgi — H)A = 0 for
(H) i = (®s|H|Pk),

which yieldsA = (A ) as eigenvectors
(%)

2. amean-field (self-consistent) “eigenvalue problem’”tfmorbitals,pj ,

Nk Nk

0= () =) ol = (1= P@) 3.

=1 =1

Up to the inverse op®), this eigenvalue problendefines the stationary points of the
imaginary-time evolutioof the orbitals under (2.1492;5“) =0.

The procedure is then as follows: For an initial sta@) = >~ ; A;(0)®;(0), one first diago-
nalizes(H ;i) for (A ) with fixed orbitals. Then one “optimizes{'cpg.“)} by propagating them
in imaginary time over a short period. That cycle will thenrbpeated.

10ysing the code documented in [82], this is done ahead of a atatipn for each non-separable term of the
Hamiltonian using the programd@FiT, and the fitted potentials are included in an MCTDH run.
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2.3.3 Application of the method

Up until now, we have outlined the MCTDH method in all genigyalHowever, there are two
peculiarities that set this problem apart from those tyigicackled via MCTDH. For one thing,
this is the requirement of bosonic permutation symmetrg demanding that the true wave
function reside in the symmetry-restricted Hilbert spate = {¥ ¢ H?Y | S, ¥ = ¥},
where S, denotes the symmetrization operator over all permutatiofise second issue is
that the effective interaction potenti®l(z) = gd(z) introduced in Sec. 1.2.3 does not vary
smoothly but rather has distribution character. Here wd sbenment on how MCTDH can
be applied to the problem of ultracold bosons.

Permutation symmetry The fact that MCTDH is designed for distinguishable pagtcie-
flects in the MCTDH ansatz (2.12) for the wave function,

U(t) =Y Aj0)s(-t),  Dy=j @ Dy
7

Note that permutation symmetry df clearly requires the set of single-particle functions
{cpj}?zl to beidentical for each particle. Even so, the basis vectdrs are generally not
symmetric, as would be an obvious demand when dealing wihbrisd! This is not a concep-
tual problem, though, since one may just as well keep thdicmefts symmetricA; = Ap ).
While this is highly redundant falv > 1, it works reasonably well for small systems. In prac-
tice, it is rarely necessary to explicitly project ortb,, the reason being that a symmetric
initial state will not lose its symmetry under (real or imaay) time evolution.

However, this comes with a catch: When numerical instadslicome into play, the permu-
tation symmetry may indeed be lost, as can be checked byctirgjeontoH . . However, this
has been encountered only when not enough basis functiomsim@uded. To give a plastic
example: Asg — oo, in which case bosonic arférmionic states become degenerate by the
Bose-Fermi map, only a small numerical perturbation sudftoedrive theémproved relaxation
algorithm into a fermionic eigenstate, ..., 1) o« S_{p1®---®@pn} ifonly n ~ N orbitals
are included.

Modeling the interaction The second issue does not impose a serious restriction.cth fa
while the point interactioryd(z) is convenient as an analytic tool and for perturbative ap-
proaches, it is only one specific effective potential. At lemough energies, any model poten-
tial may be chosen so long as the low-energy scattering pessnare reproduced. Actually,
for exact many-body calculations, thdunction is not an overly practical choice as it imposes
discontinuities on the derivative df, which is an unphysical consequence of the zero-range
limit. We opt to mollify the delta function by a more realistcaussian

1
b () = %6_:(:2/202,

Yindeed, one might employ the symmetrized verssand s, viz., number statepi1, ns, ... )+ in the single-
particle basis, as we did in the exact diagonalization.
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which converges té(x) in the distribution sense for ranges< 242 /M |g| smaller than the
1D scattering length. However, only the weaker constrdifteing short-ranged compared to
the average inter-particle distance is vitalkg L/N (L being the system’s spatial extension).
On the other hand, the range ought to be at least on the ordkee @frid spacing),, so that
the details ofi” are sampled sufficiently. Concordantly, the number of gamhis N, ~ L/A,
must be high enough — in our case, typicaly ~ 150. This corresponds to a harmonic-
oscillator DVR{Xk}fjjl spanning a grid of lengtf. ~ 2 x 4 (i.e., |x| < 4 typically). Thus
the grid is sufficiently fine for an interaction of width= 0.05q (in terms of the 1D oscillator
length). In addition to the high number of single-partiad@dtionsy; needed to describe very
strong correlations correctly (for our purposes;- 15 typically suffices), this naturally limits
the application of MCTDH to as few as five atoms.

Technical aspects: Excited states and propagation Whereas the convergence to the ground
state viaimproved relaxationis practically bulletproof, matters are known to get trakfor
excited states (see [86]). This should come as no surprigejagl that one cannot just seek
the energetically lowest state but should remain orthogtmany neighboring vector¥,,.
That is why, at bottom, the convergence turns out to be higéhgsitive to the basis size—that
is, ton—even for small correlations: The lower states simply mestdpresented accurately
enough. For practical purposes, the most solid procedwetaaen to be the following. In the
non-interacting casg, = 0, we construct the eigenstates as number states: | N, N1, ...)

in the single-particle basi§p, }. Starting from a givenn), the eigenstat@,, for g # 0 is
found by an improved relaxation while sieving out the eigeanar closestto its initial state
|n).12 The resulting eigenstate will then in turn serve as a sivint for an even largey
value, and so on.

Let us mention here two empirical observations concernif@TIH. In some cases, it
may become extremely difficult to converge to quasi-degapegigenstates in a conventional
improved relaxation, unless the basis is enlarged suliaigntin these cases, a simultaneous
block relaxationof a whole set of these eigenstates may help bypass thigdives. A related
problem concerns the time evolution if the initial stdté)) is close to a superposition of two
guasi-degenerate states. It often occurs that MCTDH aatific*equilibrates” in the sense
that, from some time step on, MCTDH deviates from the exaut &volution and rather seems
to get locked in some spurious state unless a huge basidugléc(in some cases as large as
n ~ 50). Quite generally, MCTDH tends to violate energy conseovatiuring a propagation
involving sufficiently strong short-range interactionshidis due to the fact that, in that case,
the interaction energy becomes very sensitive to very naimtersections{z; = x;} in con-
figuration space. To sample this area accurately, a veryl emal tolerance needs to chosen
for the integration, typically < 10~5.

2Technically, this is ensured via the keywardl axat i on = | ock [82].



Chapter 3

Ground state: Mechanism of the
fermionization crossover

The general aim of this thesis is to study the interacting bdeBgas from a few-body perspec-
tive. We have seen that, for infinitely repulsive point iaigions, the bosons can be mapped to
an ideal Fermi gas. While this fermionization limit is a methatical borderline case, we would
like to explore the mechanism of tikeossoverfrom noninteracting bosons to the strongly cor-
related fermionization limit. In this chapter, we will fogwn theground stateof such trapped
bosons. In Sec. 3.2, we will first analyze the nature of theatdition in the prototype case
of a harmonic trap, mainly from the perspectiveladal densities. A key aspect will be the
interplay between interatomic and trapping forces, whichHluminated by comparing to the
fermionization crossover in a double-well trap. In Sec, %8 go one step further and study
how this depends on the interaction potential. Specifically consider a setup where the in-
teraction isnhomogeneoys.e., the inter-particle forces depend on the position cbléision,
too. Section 3.4 rounds off the investigation of the grouiatiesby looking into the role played
by nonlocalproperties throughout the fermionization crossover, i§ipadly the (off-diagonal)
one-body density matrix and, closely related, the systemomentum distribution.

3.1 Model and scales

In this thesis, we investigate a system of few interactingplpg in a quasi-1D trap. As we have
seen, this system can be descibed by the effective 1D Haniaitto

N
H= Zh(pz',xz) + ZV(ﬂci —x5),
=1 i<j

where the one-body Hamiltonian(p, ) = ﬁzﬁ + U(x) entails kinetic plus trapping en-
ergy (to be specified below), while the effective interattimay be written as a contact in-
teractionV(z) = ¢gipd(xz). For the case of transverse harmonic confinement with length
a, = \/W this can be related explicitly to the system parameterg [21

2h%ay < a0>_1 ICG)I
- 1-c2) =15 396,
91D Ma?% a; V2

59
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wi/2rHz  ag(Na)  gip  ap(Rb)  gip
10? 1.9-107% 039 5-107% 1.1

103 6-1073 1.3 1.6-1072 4.1
10* 1.9-1072 52 5-1072 38
10° 6-102 95 1.6-1071 —24

Table 3.1: Values of the scaled coupling strenggh, for Sodium and Rubidium for different trap frequencies
w”/27r andaﬁ_ =.1.

For technical reasons already detailed in Sec. 2.3.3, wdifyntle contact interaction by
a Gaussian of widtly small compared to the inter-particle distanc® (z) = ¢gipds(x).
Throughout this thesis, we focus on repulsive forges, gip > 0.

3.1.1 Scaling

For reasons of universality as well as computational aspea will work with a Hamiltonian
rescaled to the length scale of the 1D-longitudinal systemMore specifically, we carry out
a global coordinate transfordi’ := X/a |, with X = (z1,... ,zn)T, which leads to

1
H(X)/hwy =" <—§ag2 + U’(x;)> + ) V(@ — ).
_— i<j
=:H'(X’)
Herew| = h/Maﬁ defines the energy scale, abid(z') := U(x = 2'a))/hw) etc. denotes
the rescaled potential deprived of any dimensionful patareeH’ naturally lends itself as a
convenient working Hamiltonian, and we will skip all primiesm here on.
As an illustration, for a harmonic trag(z) = %Mwﬁxz, settinga| = |/h/Mw), we are

simply left with U’(z') = $2'2. The 1D point interaction in turn reduces to

M 2d ap\
V(@) = gipd(2)), dip = gipy|5— = <1 - C—O> - (3.1)
( ) 1D ( ) 1D hgw” a/f a/J_

The only relevant parameter is thus the scaled interactiength, which in turn requires only
the knowledge of the (scaled) scattering lenggh= ap/a and the transverse confinement

a| =ay/a.

3.1.2 Parameter regimes

As mentioned above, two parameters enter our Hamiltonign:= ao/ay anda’, = ay/a).
Both of course depend on

e the 1D length scale| = ,/7/Mw (due to scaling)

e the scattering lengthy < a of the atomic species considered (of order 100 a.u. for
alkalis; only positive values are considered here).

e the transversal length scate < a). Of coursea; > ay is required unless the validity
of the ‘bare’ pseudopotential is put into question.

According to (3.1)gip does not depend linearly e, but rather tends te-co asag — a, /C
from below. In other words, the system becomes stronglyetatied when the scattering length
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Figure 3.1: Sketch of the model potential(z) = %xQ + héw(z), consisting of a harmonic trap plus a normalized
Gaussian of widthv = 0.5 and barrier strengthls = 0, 5, 8.

approaches the transverse-confinement scale, no matier3txt system was strongly interact-
ing to begin with. Table 3.1 illustrates the range of values;dor different (longitudinal) trap
frequenciesy, and whaty], they correspond to for Na/Rb (at fixetf = 0.1).

3.2 Basic mechanism

In this as well as in the following two sections, we considez ground-state properties of
bosons in a double-well trap modeled by

Ulz) = %gﬂ + hdu ().
This potential is a superposition of a harmonic oscillatd®], which it equals asymptotically,
and a central barrier splitting the trap into two fragmelig(3.1). The barrier is shaped as a
normalized Gaussiah, of width w and ‘barrier strengthh. Asw — 0, the effect of the barrier
reduces to that of a mere boundary condition (siige— J), and the correspondingne-
particle problem can be solved analytically (see Appendix A, whictoakviews some basics
on double-well potentials). Although this soluble borderlcase presents a neat calibration,
the exact widthw does not play a decisive role, as long as it is larger than titespacing
andw < 1 so as to confine the barrier’s effect to the central region.ciMmsew = 0.5 as a
trade-off.

Forh = 0, the case of interacting bosons in a harmonic trap is regextiun Sec. 3.2.1, we
witness the transition from a simple, weakly interactingridensate”{ — 0) to the Tonks-
Girardeaulimit (¢ — o0). As h — oo, the energy barrier will greatly exceed the energy
available to the atoms, and we end up with tisolated wells Higher g then affect only the
fragmentatiorwithin each of these wells. In between, there is an interestingpilate between
the barrier forcesi) and the inter-particle forceg). We study this intermediate regime on the
example ofh = 5in Sec. 3.2.2.

3.2.1 Harmonic trap

Density profiles To get a feeling for what happens when we go from the nonictieig case
(¢ = 0) to the strongly correlated fermionization limjit— oo, let us first look at the one-body
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Figure 3.2: Fermionization of bosons in a harmonic trap: One-body densic) for N = 4 (left), N = 5 (right)
for different interactiong;. Note how the profile changes from a weakly interacting gne=(0.2) to a flattened
one due to fragmentation, and finally to a fermionized prd&eturing N humps ¢ > 15).
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Figure 3.3: Two-body density.(z1, z2) for N = 5 bosons in a harmonic trap. Shown are the interaction stiengt
g = 0.4, 4.7, 15 from left to right.

density profilep(x), giving the probability density to find one particle at pwsitz. Figure 3.2
visualizes the crossover fof = 4,5 atoms: Neap = 0, all bosons reside in the single-particle
ground state of the harmonic oscillatdr, = qS%’N, which is broadened due to repulsion. For
stronger interactiongy(= 4.7), however, the profile already deviates visibly from the &an
shape [40,43,44]. For very large= 15, in turn, a structure olV peaks in the profile emerges.
Physically, this means that, if we were to measure the posdf a boson, it would be likely to
find it at IV discrete spots, and not so likely to detect it anywhere iwben. Thidocalization
effect has a simple intuitive explanation: If the bosonsteach other very strongly, — oo,
they try to isolate each other so as to pay less interactierggnHowever, they cannot do that
indefinitely as they are confined in a trap. As a consequeheg ténd to be pinpointed to more
or less discrete positions. Note that this is the same pafideobtains for an ideal fermion gas,
in which the ground stateVy = 1,..., Ny_1 = 1)_ is given by filling up the one-particle
levels up to the Fermi edge, so that the fermionized dersiiniplyp = Zivz_ol \%!2. There,
the seeming localization comes about because of the eanlgsinciple, which prevents the
fermions from occupying the same point in space. By contthst effect here is caused by
the ultrastrong repulsion. Note that this “localizatiofifased with noninteracting fermions is
a true few-body feature; fav > 1 the peaks become ever tinier modulations on the envelope
density, which for a harmonic trap can be computeg(ag = 2N — 22 /N [87].

Two-body correlations To better understand the underlying mechanism, let usiteiies
fermionization from the perspective of the two-body catieins. Figure 3.3 depicts the evo-
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Figure 3.4: Fermionization of bosons in a double-well trdp £ 5): One-body density(x) for N = 4 (left),
N = 5 (right) for different interactiong.

lution of the two-body densitys (x4, x2), which tells us the probability density of measuring
one particle as positiom; and any second at,. In the absence of correlations, @at= 0,

p2 = p1 ® p; factorizes. This leads to the symmetric Gaussian densilityistble for smaller
interactionsg = 0.4 (Fig. 3.3). To be sure, minor imperfections of the Gausstzape are
already anticipated here — these become even clearer whga teehigher values oj = 4.7.
Apart from a significant broadening due to repulsion, whatsee here is aorrelation hole
on the diagonalz; = 2}, signifying a depression of the two-body density. This islyfa
intuitive: If the particles repel each other, it will costa bf energy for any two atoms to sit on
top of one another, so such a configuration is avoided. Thassis clear from the interaction
energytr(V p2) 7Y g [ dzps(z,z). Note that this correlation hole is an inherent two-body
picture; in the one-body densify = [ dzaps(-, x2) it is smoothed out and only reflects in a
smeared-out profile.

When this is taken to extremes, yet another effect emergasy E 15, Fig. 3.3 reveals
the formation of a checkerboard pattern, which is alreadyyfalose to the fermionization
limit [26]

p2(w1,22) = m 0<Z;<N [Pa(z1)dp(22) — Pp(21)da(22)] -

This corresponds to the density wiggles seen in the one-piotlyre near fermionization. Here
it has the following interpretation: Suppose we measuresaarticle at, sayy; ~ 2. Then,
of course, the probability to find any second oneat- z; is zero, while the remainingy — 1
particles can be found & — 1 more or less “discrete” spots,. Note that this feature cannot
be understood from the two-body picture alone, but ratharngnifestation of the hard-core
boundary condition®|;,—,, = 0.

3.2.2 Double well

We now introduce a central barrier of height= 5, this way turning the harmonic trap into a
double well. In this case there is a competition betweendhdedncy to distribute the particles
over the two wells so as to save potential energy, and to ectihécinteraction energy by trying
to isolate the particles ag— oc.



64 CHAPTER 3. GROUND STATE

Figure 3.5: Two-body densitypz(z1,z2) for N = 5 bosons in a double-well trafh = 5). Shown are the
interaction strengthg = 0.4, 4.7, 15 from left to right.

Density profiles Figure 3.4 depicts the evolution of the density profi(e) asg is increased
throughout the fermionization crossover. Ewenatom numbers)N = 4, the general picture
looks fairly similar to the single-well case. Near= 0, all atoms are in the single-particle
ground statep,, which now is delocalized over the two wells. As we switchgorthe atoms
repel each other, leading to a broadened density in each(efelly = 4.7). Toward the
fermionization limit, the bosons again arrangeNnmore or less discrete paositions, given by
density maxima, although of course with a strongly redudesdihood atz = 0.

The situation differs foodd numbers, se& = 5. For very largegy = 25, we see onlyV —
1 = 4 wiggles, which makes it tempting to say that the extra, fifthtigle is now delocalized
over the two wells rather than pinned down as in the harmaaig. t This is fairly intuitive
because if an odd number of bosons are distributed disgretel the trap, by symmetry, one
boson should reside at = 0. However, this is strongly suppressed energetically duéeo
central barrier; so as a trade-off, the extra atom is smeauredbout the barrier region.

Thought of as an ideal Fermi gas, the ground state for &verone with allN lowest bands
(i.e., doublets) fiIIed:|1(()0), 1§0); co lgN/2_1), 1§N/2_1)>_ (Wherelflg) denotes occupation of
the symmetric {3 = 0) or antisymmetric ¢z = 1) orbital in bandg; cf. Sec. A.1). These
filled bands correspond exactly to the situation above wlithVafermions pinpointed taV
maxima. If we now add another particleM + 1, this will delocalizeover the next upper,
previously empty ban@ = N/2. In this light, the even-vs.-odd distinction ought to pstsi
for all IV, tacitly assuming that the energetically highest atomilisb&low the barrier energy
and not in the classical region. Of course, as before theitgtavsillations will shrink to tiny
modulations on the envelope A5— ~c.

Two-body correlations As in the reference case of the harmonic trap, the two-bodgles
tions p, reveal some of the underlying fermionization mechanisrhédouble well. Figure 3.5
shows that, at smal) = 0.4, the N = 5 atoms are coherently distributed over the two wells.
Thus it makes little difference as to whether two particles ia the same well (the diagonal
peaksr; ~ x9) Or in opposite onesi ~ —xs). For stronger repulsiory = 4.7, the familiar
correlation hole builds up. Moreover, the density peaksvaibly smeared out and distorted
due to on-site repulsion. As we approach the fermionizatioit (¢ = 15), again a character-
istic checkerboard pattern emerges. However, comparde tsimple harmonic case displayed
in Fig. 3.3, it strikes that now, upon measuring the firstipkt there are notv — 1 = 4
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Figure 3.6: Energy E(g) for the caseN = 3. Note the slightly different effect of the interaction, nseeed by
the slope ay = 0, for different barrier strengths = 0 (harmonic trap) an@ = 2, 5. The saturation ag — oo
corresponds about to a fermionized state.

maxima for finding the four remaining particles. Rather, tigsing peak expected at= 0
is smeared out over the central-barrier region, which isthettwo-body perspective on the
interpretation given above.

3.2.3 Ground-state energy

Our previous analyses are in a way wrapped up in Fig. 3.6, wtiépicts the ground-state
energiedy(g) as a function of the coupling strength. Invoking the Bosesftenap, the ground-
state energy may be interpreted as connecting the free lsogmoe, E(g = 0) = Ne¢g, and
the free fermionic value, corresponding to the saturafign — oo) = Eflvz‘ol €, (in terms of
the respective single-particle levdls, }).
The effect of the interaction gt= 0 can be measured by the slope
dE N(N —1) om0 N(N —1)

T 0 = 220005 (a1 — ajo0) = = fan(a)lt

given by the density overlap of two atoms in the non-inténgcground state. The centered
harmonic-oscillator orbitab;;o by construction has a low curvature (i.e., kinetic energy)s
producing a rather high density overlap. It is thus more ejpiiole to the onset of interactions.
By contrast, the presence of a central potential-energyidnah, — oo) evokes an orbital
¢pw delocalized in both wells. Its density overlap in turn wid bmaller, which can be seen
schematically by assuming for a moment thaky () ~ &= [¢no (*7%) + ¢no ()]

is built from a HO orbital centered in both minimax, and rescaled by the well width.
Neglecting the density overlap between the right- andHeftd contributions,[ |ppw|* ~
ﬁ [ 1¢nol*, suggesting that in a double well with not-too-large sqiregzhe atoms will feel

a slightly lesser effect when interactions are turned ons Tan be seen in Fig. 3.6.

The above formula also tells us something about the depeadanthe particle numbéy.
The relative increase gt= 0" will scale with the number of paird’(N — 1)/2 as opposed
to the single-particle energy, thus the perturbative imjEmexpected to rise with large.
Note that the harmonic-trap fermionization enelfy= >",_y(a + 3) = N?/2 exceeds
the ground-state energy at= 0 by a factor of N, which is also indicative of the growing
influence of the particle number. A little more informatiomyrbe gained by comparing to the
thermodynamic limit solution given in Sec. 1.42,= Nn?e(y = g/n), where the number



66 CHAPTER 3. GROUND STATE

densityn(z) = Np(xz) now becomes position dependent. From that standpointetiime of
strong (and likewise weak) interactions is universallyegiby~ > 1 or g > n(z). Given
that, in the harmonic case, the fermionized density(8) = v2N /7 (cf. Sec. 3.2.1), this
asserts that convergence to the fermionization limit shbel slowed down by a factor @f N
for larger particle numbers, an effect which is hard to seeifieall atom numbers.

3.3 Inhomogeneous interactions

Up to now, we have analyzed the fermionization crossovehn wifocus on the interplay be-
tween inter-particle forces with different external fasand the role of the atom number. In
this section, we would like to indicate how this depends @nititeraction potential itself. So
far, we have assumed point interactions which are fully @efioy the coupling constant One
way to go beyond this would be to regard differshapesof V. However, we have argued in
Sec. 1.2.2 that, in the low-energy limit, the physics of sihange interactions should become
shape independent. (The field of long-range forces releeamt in dipolar systems [88, 89] is
beyond the scope of this thesis.)

Still, one can think of this in yet another way. We have so &ied on the assumption
of homogeneouswro-particle forces. These are invariant under globaldlieions and thus
depend onz; — x; alone. While this premise is most natural from a fundamepoaht of
view, we should keep in mind that our description is ndtiléy microscopic one, even if we
ignore the internal structure of the underlying atoms. Bati is an effective model stripped
not only of the transverse degrees of freedom, but of coussecd the electromagnetic fields
that manipulate both external and inter-particle forcegh\this in mind, it appears legitimate
to conceive situations where the strength of the interaai&pends in addition on tlabsolute
positionwhere the collision takes place, as was done in a mean-fiahdevork in Ref. [90]
(see also citations therein). This may be induced by meaaskafshbach resonance, tuning
ap(B) by adding a spatial dependence to the magnetic field. In aesdomensional setting, it
seems even more convenient to exploit the parametric depeadn the transverse subsystem,
and modifya , locally so as to imprint a spatial dependencegon

Without reference to the specific experimental realizatisa now perform a case study
whereg takes on different values on both sides of the trap. This inwidkebe presented in
Sec. 3.3.1. The interplay of that dynamical inhomogeneiith whe external forces will be
studied for a harmonic (Sec. 3.3.2) and a double-well trag.(S.3.3).

3.3.1 Model interaction

Whereas modeling a position-dependent interaction in anrfield description (as in [90]) is
straightforward, since one only has an effective one-glarfroblem, one faces a conceptual
problem when using a many-body framework. In general, thploog would depend on both
participantse;, x;, which is technically possible if somewhat awkward. Fooittake sense
intuitively, we require that its modulation length scale eich larger than the ‘radius’ of
collision, o.

With this is mind, it is natural to model our interaction inres of the respective relative
coordinater := x; — x; (for fixed 7, j) and—in order to keepy” formally symmetric— the
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Figure 3.7: Our model of the position-dependent couplin@?)/go = 1 + atanh (%) The relative modulation,
herea € {0.2,0.5,1} , determines the asymptotic difference from the averageeval, while the modulation
length L = 1 shall remain fixed.

center of mas8R := x; + x;.
V(r, R) = g(R)do(r).

There are various possibilities just what scenario shoaléXxamined, be it some kind of
collision-enhanced tunneling or dynamical self-trappj@@]. We concentrate on a specific
model whereg is essentially imbalanced between the right- and left-hsidds of the trap
(Fig. 3.7):

9(R) = g0 [1 + atanh (%)] .

This signifies that fofrR| > L, the coupling takes on the asymptotic values

= I — go(1 +
g+ R—lgzloog(R) go(1 £ a),

while it changes on a scale 6fnear the trap’s center aboyt. The parametet regulates both
the relative difference between the asymptotic strengtidstizeir ratio:

Ag = |9+ — 90|l = goa,
9+ _ 1+«
g— 1—a

The above criterion thaj vary slowly can be met if. > o«, which is effortlessly fulfilled if
we choosd. = 1 for convenience.

3.3.2 Harmonic trap

Assuming that we start with a weakly interacting ensemhbleground state of atoms immersed
in a harmonic trap will be centered at the trap’s bottom. Hehe modulation of the coupling
strengthg(z) beyondxz = 0 will pass them largely unnoticed. It is only for strong enbug
repulsive interaction that the density profile will startsforead and shift partly outward, thus
experiencing an asymmetry.

This picture is supported by our calculations, as demotesiran Figure 3.8 forN = 5
atoms. For low enough average interaction strengthss 0.4, the harmonic profile is barely
altered from the homogeneous case= 0. An imbalance is noticed for mediugy = 4.7:
The atoms are now able to sample the modulation of the cauptiength and find it cheaper
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Figure 3.8: One-particle densitieg(x) for a harmonic trapy' = 5) in the case of inhomogeneous interactions,
herea = .5. The profile features an imbalance for smaller interactignsvhere the wave packet is centered too
much to sample the modulation @fR). When fragmentation sets in, the profile splits and the asgtnnbecomes
more distinct. In the fermionization limit, the energy ef an imbalance become too large to keep it up.
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Figure 3.9: Two-particle density for a harmonic trap in the presencanbbmogeneous interactiond’ (= 5). (a)
For go = 0.4, the packet is localized about the center, thus widely igigothe modulation. (b) Fogo = 4.7,
it starts to delocalize and consequently shiftdo< 0. (c) Toward fermionizationg, = 15, the imbalance is
destroyed.

to locate in the less repulsive zofie < 0} (governed byy_). However, this effect ceases as
the repulsion becomes largef, (> 15). This may be interpreted as follows: the energetical
costs for concentrating several particles near one spatcaieng, and thig total eventually
outweighs theelative energy savings reached by an imbalance.

A look into the two-body correlations,(x1, z2) in Fig. 3.9 helps us clarify what happens.
For the inhomogeneity to become effective, clearly the ijgmsust be spread out enough on
the diagonalz; = x5} in order to sample the spatial modulatigf?). This is not the case for
small interactions. Indeed, fgy = 0.4, the packet is localized about the center, thus widely
ignoring the modulation. Yet for mediugy = 4.7 (Fig. 3.9b), the repulsion-driven broadening
has become distinct enough for the ground states to exbifit deft-right asymmetry. Near the
fermionization limit, the correlation diagonal in turn iglly depleted §, = 15), so obviously
the atoms can no longer realize the modulation and thus alenger displaced. It should be
emphasized that, in the ultimate lingitR) — +oo, the hard-core boundary conditions (1.17)
apply, and thus the mapping to ideal fermions from Sec. lbdcbmes exact, irrespective of
the actual modulatiop(R).

The above findings are nicely wrapped up in Fig. 3.10, shownaghs of(x) = tr(p1x)
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Figure 3.10: The ground-state displacemen{z) as a function of the average interactign(.N = 5). Its universal
behavior is an increase up to a maximum value followed by & slecay. The increase gt = 0 is strongly
enhanced in the presence of a barfier 0, while for the purely harmonic trag(= 0), it is rather slow. Of course
the maximum itself is much more pronounced for higher mdituia o, while being absent in the homogeneous
casex = 0.

as a function ofgy for N = 5. Fora = 0, and of course fory, = 0, no modulation exists
and, by symmetry{z) = 0. Notably, the same goes fgs — oo, when the correlation hole
is pronounced as delineated above, even though the dispatavill vanish only very slowly.
There is a trade-off in between for whigh) becomes extremal. The value where this occurs,
g5 (), depends only weakly on the relative modulatier-despite the fact that the maximum
ground-state displacement(x)* will of course increase monotonically with

3.3.3 Double well

In the presence of a sufficiently strong barrier, the sitiais a different one. To begin with
(90 = 0), the atoms are not centered as before but rather coheristhibuted over the two
wells. Hence, upon switching on the inhomogeneous interacthey can immediately feel
the full impact of its modulation on both sides. For finite rir strengthh, they can then
re-distribute so as to find a compromise between minimumisapuand potential energy.

The above process is illustrated in Fig. 3.11, which evidenan immediate shift from
the right well to the left one, where the repulsion is weak&his still corresponds to the
Gross-Pitaevskii regime of a single dominant orbital: Ehix no correlation hole; in fact
the probability density of finding both particles in the lafell, po(—z¢, —z¢), may even be
larger than that for separatiopy(+zo, Fxo). As the interaction passes a critical strength,
fragmentation sets in, somewhat more pronounced on thehgid side (Fig. 3.11b). Note
how the diagonalz; = 2} is being emptied, signifying the incipient destruction bét
imbalance.

This reflects in the one-particle density displayed in Fig23 The density is almost ‘in-
stantaneously’ shuffled from the right to the left. In theveufor go = 4.7, it becomes appar-
ent that the fragmentation essentially kicks in separdt®yoth wells, where only the right
well exhibits the typical repulsion-induced split-up. Assarted already for the harmonic case
(h = 0), the modulation becomes marginal in the fermionizationitli At least for an even
numberN = 4 (Fig. 3.12a), this may also be discerned here. By contragt 3EL2(b) conveys
an impression how slow the convergence to the fermionizdiinit is for odd N = 5. Even
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Figure 3.11: 2-particle density fotV = 5 bosons in a double-well traf (= 5) and with inhomogeneous interac-
tions (@ = 0.5). (a) Already forgo = 0.2, the probability of finding any two atoms in the left well iggificantly

enhanced. (b) Ayo = 4.7, the diagonalz: = x2} is starting to deplete, which is even more pronounced for
go = 15 (C)
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Figure 3.12: One-particle density for a double welt (= 5) and modulated coupling strength & 0.5): Even
atom numbersV = 4 (a) versus odd numbers = 5 (b).

for utterly largegy = 74, the “spare” particle is still practically accommodatedhe left well
rather than delocalized over both wells, as expectegdoer oco.

The nature of the ground-state displacement is again suizedain the graph of-(z)
(Fig. 3.10). While the harmonic system turned out to be rathesponsive tgy, the displace-
ment now exhibits a dramatic increase with raisgggas laid out above. It finds a maximum,
which corresponds to the trade-off between localizing al#it well and maximum spreading.
As before, the modulation does not so much alter the critigg(«), but of course makes for a
stronger maximum displacemefitx)*. The displacement decreases again slowly beyond that
point. A notable side effect is that the displacement in ttes@nce of a central barrier may in
fact dropbelowthe one without it, although of course this can only happéndfmodulationx
was smaller to begin with. That is simply because the doulelé ¥avoring the delocalization
of the atoms, not only supports the modulation’s effect,disb accelerates fragmentation and
hence—eventually—destruction of the asymmetry.



3.4. ONE-PARTICLE CORRELATIONS 71

3 -2 14 0 1 2 3 3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

X X X

Figure 3.13: One-particle density matrip (z, 2") for N = 5 bosonsTop row harmonic trapbottom row double
well (barrier height, = 5). Results are shown for the interaction strengths 0.4, 4.7, 194 from left to right.

3.4 One-particle correlations

In the previous sections, we have explored the fermiominatrossover from the perspective
of local quantities derived fron¥(X)|? = (X|pn|X), such as the reduced densities. From
what we have seen thus far, one might jump to the conclusiat) ith the course of fermion-
ization, the system actually beconfesmionic This is of course not true: The atoms still keep
their bosonic permutation symmetry, which reflect:anlocal properties. The simplest case
where this can be seen is on the one-body level, which is aatripldescribed by the one-body
density matrixp; (cf. Sec. 1.3). In this section, we seek to revisit the ferization crossover
from the perspective of nonlocal one-body correlationasthaining a complementary view-
point on its mechanism. We focus on different angles, whasmection will become clear
soon:

e In Sec. 3.4.1, we study the off-diagonal density mafrixz,z’) = (z|p1|z’), which
relates to the question of off-diagonal long-range order.

e Section 3.4.2 studies the spectral decompositiop;0f= > n4|¢q) (04| in terms of
natural orbitals and their occupations, which is often usecharacterize the interacting
system through effective single-particle states.

e Section 3.4.3 makes the link to the experimentally relewamnentum distributiop (k) =
2m (k| p1| k).
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3.4.1 One-particle density matrix and long-range order

The one-body density matrix contains all the information about the single-particleeasp

of the system, and it serves as a good measure for the degeebearence. In this subsection,
we will analyze it from the most immediate perspective, e investigate its integral kernel
p1(x,2") = (z|p1]2’) = p1(a’,2)*. Since any density matrix is non-negative, so is the one-
body densityp(z) = p1(z, x). As opposed to that, the off-diagonal part will even be caxpl

in general (although, in this paper, a real representati@miployed). It is therefore certainly
not an observable in its own right, although it is indirecbcessible via interferometry experi-
ments [2]. Nonetheless, it gives us access to all singléefmguantities, in particular nonlocal
ones such as the momentum distribution

plk) = 27T<k‘p1’k> = /dl’/dx/e_ik(l’—x’)pl(x7x,)-

Itis reflection symmetric ip; is real symmetric. Moreover, it can be understood as thei&our
transform of the integrated ‘off-diagonal’ correlatiomfiion [2]

) = [ dre (),

with py(r) := [ dRp1(R+ %, R — %). Note thatp, is again generally complex and reflection
symmetric, and it is normalized f@ (0) = 1. From this, it becomes clear that the off-diagonal
behavior ofp; (encoded irnp;) has a 1-1 correspondence to the momentum distribution.

More specifically, the short-distance behavior determiheshigh4 asymptotics, which
for a point interactionV (z) = ¢d(x) in the limit ¢ — oo has been shown to display the
universal decay(k) = O(k—*) [91]. Conversely, the off-diagonal asymptotics- oo relates
to the low# regime. This, however, depends on the nature of the ext@atential. For
a homogeneous system (as in Sec. 1.4.2), it has been argateBabe condensation were
equivalent tooff-diagonal long-range orderi.e. p;(r) = O(1) [92]. By contrast, in the
limit ¢ — oo, it has in turn been shown that () = O(r~'/2), which implies an infrared
momentum divergencg(k) ~ ¢/Vk ask — 0[93].

In Figure 3.13, the fermionization transition as reflecteghi(z, 2’) is visualized forN = 5
bosons in a harmonic trag (= 0, top row) and a double well of barrier strength= 5
(bottom). In the harmonic case, the system stargs-at0 with a direct-product staté = qﬁ(?N ,
i.e., with a density matriy, (z, ') = ¢o(z)5(2') o e R e~*/*in terms ofr = 2 — 2/ and
2R = z + 2’. From this point of view, the system does not exhibit genwifieliagonal long-
range order, which is simply rooted in the fact that it is &gt bounded. Of course, it is
nonetheless in a coherent state and thus featueaklong-range order in thai (x, —z) ~

p(x)p(—z) asx — oo. This property persists so long as the correlations indimgethe
interactions are weak enough for the system to remain inasaigle-particle state (the Gross-
Pitaevskii regime), such as fgr= 0.4. To make this point even clearer, Fig. 3.14 plots the
one-body coherence (or correlation) function as definedjin(E16)

g1(z,0) =
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Figure 3.14: One-particle coherence functign(z,0) = p1(z,0)/+/p(x)p(0) for N = 5 bosonsLeft harmonic
trap, right: double well. Results are shown for the interaction stiesigt= 0.4 (—), g = 4.7 (---), andg = 194

(——-).

which in a way filters out the effect of the trapping potentidbte that, forg = 0.4, g1(z,0)

does not drop below unity. Far = 4.7, however, the symmetry i® andr breaks up. The
density profilep(x) = pi1(x, z) flattens, and one can see that the off-diagonal range is some-
what extended, too. However, ass increased further, the support@f(z, 2') will concentrate
more and more in the diagonal regién = z’}, where the typical fermionized profile is recov-
ered (cf.g = 194). By contrast, the off-diagonal contributions will be waslout, indicating

the reduced coherence of the system. Still it is notewortlay €ven in this limit, a rest of
coherence is preserved in a faint checkerboard pattern.

For the double well/f = 5; bottom row in Fig. 3.13), the situation is slightly diffeie As
before, the system exhibits coherence at 0.4, only that the orbital is now delocalized in both
minima+x, and may be written agg(z) = %[w(m —x0) +w(z +x0)]. Unlike the harmonic
case, the off-diagonal range is not initially increasedditéctly destroyed upon switching on
g. While for g = 4.7 the density matrix; (z, 2") may still be thought of as pertaining to two
separate subsystems, it eventually reaches the Tonksd€&aalimit ¢ = 194), where the only
obvious difference towarfl = 0 consists in the density suppressionzat’ = 0.

3.4.2 Natural orbitals and their populations

While, in principle, thefull density matrixp; (x, 2’) as studied in the previous section contains
all the information at the one-particle level, it is somewlas amenable to intuition. A handier
criterion is offered by its spectral decomposition

P11 = Zna|¢a><¢a|> (3.2)

wheren,, € [0, 1] is said to be the population of tmatural orbital ¢,. If all N, = n,N € N

(3=, Na = N), then the density may be mapped to the (uncorrelated) nustdte| Ny, Ny, .. .)
based on the one-particle basis, }; for non-integer values it extends that concept. In partic-
ular, the highest such occupation,, may serve as a measureranfragmentation, a crite-
rion put forward by Penrose and Onsager [70]. kgr= 1, a simple condensate is recov-
ered. This is the well-known borderline case of the Grosaewgkii equation: Ag — 0,

p1 — |do) (o] [73] andps = p1 ® p1, SO that the interaction above can be replaced by a mean
field V = tr(p1V). In this sense, the natural orbitals and their populatiefisus how close

the system is to a pure one-orbital state.
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Figure 3.15: Natural populations:,(g) (a < 13) for N = 4 bosons in a harmonic trap (a) and in a double well
with barrier heighth = 5 (b) , h = 10 (c).

Natural populations as a measure of fragmentation

Figures 3.15(a-c) show typical plots of the natural popoitest as the interaction is increased,
{na(g)}, for four bosons and < {0,5,10}. Starting fromn, = 1 for the non-interacting
case, the lower lines rise steeply until they end up sahgati a fermionized state gt— oc.
Note that this pattern is roughly detached from the spedifape of the trap, i.e, from what
the underlyingorbitals look like. This indicates why the sét,, } lends itself as a criterion for
fragmentation. The details of the system are essentiatlgaad in (i) the exact sequencerqf

in the Tonks-Girardeau limit, and (ii) in the transition Wween the two extreme regimgs= 0
andg — cc.

For the harmonic oscillatorh( = 0), the plot reveals a relatively simple hierarchy. The
value ofny decreases smoothly to its Tonks-Girardeau limjit~ 1/v/N [26, 27]. All the
remaining populations increase dramatically up ugti- 10, and accumulate in a more or
less equidistant spacing (on a log scale). But even thetoeddminant weight.; is nowhere
near the ‘condensate’ fractiomy; the obvious gap between these two reflects the difficulty to
observe fragmentation in the harmonic oscillator as coegpéwh > 0. Note that the group
of lines{ng,...,ny_1} reveals a faint yet discernible separation from the lindevbheThe
accumulation of points,, (g)—in other words, the slow decay of, asa — oo—makes for an
utterly slow numerical convergence for large

For a barrier heighty = 5, a little more structure can be identified in the line seqgeenc
nq(g). The accumulation persists, but at least the more poputateithls #a seem to come
in groups of two. This will become clearer when looking inte ihatural orbitals. Even more
striking is the behavior of the second orbital’s populatian. It increases witly much more
rapidly than all the others, and it becomes comparable mjtalready for modesg ~ 5. This
scale separation between the pajy; and the rest is in sharp contrast to the HO case. It gives
a qualitative justification of the two-mode approximatioidaly used in double-well systems,
which assumes that the system can be described in terms dd¢aized orbitalsuy, r ( [94],
see also Sec. A.2). To make this more evident, we have plttedesults for a much higher
barrier,h = 10. Heren, ‘jumps’ to a value of orde% almost instantaneously (for < 1),
whereas the remaining occupations only catch up only mueh (for g ~ 5). Itis in that
regime that the two-mode model works brilliantly.

The reason why fragmentation is facilitated when the cébagier is raised is intuitively
clear. The particles’ tendency to separate due to repulsiasually obstructed by the higher
costs of kinetic and potential energy. The potential-epdayrier creates an additional incen-
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Figure 3.16: Natural orbitalsp, for different interaction strengthg (N = 4 atoms). Top row Harmonic-trap
orbitals¢, (a) andg, (b) . Bottom Double-well orbitalsp, (¢) ande, (d).

tive for the bosons to fragment. This has also been arguedava quantitative grounds (see,
e.g., [95]). In a naive single-particle picture, the eneggp A, in a double well between anti-

and symmetric state)s (z) = —=[w(z — z¢) + w(z + x¢)], vanishes ag — oo. It is thus

V2
far easier for the interaction to bridge that gap for largariers, in particular compared to the

gap for the harmonic trag,—o = 1.

Natural orbitals

Even though the natural orbitag, ) are not of direct physical importance, they are a valuable
tool to gain some insight into the process of fragmentatiathey determine both the spatial
density matrixp; (z, 2') as well as the momentum densjiyto be discussed in the following
subsection. In the uncorrelated case- 0, the system is in a number stdt¥,0,...) and
thus the natural orbitals coincide with the single-pagtielgenstates. Sindé is a continuous
perturbation, the orbitalg, will be continuously distorted in the course of increasingrFor
small enoughg—i.e., in the Gross-Pitaevskii regime—that modifiggl will suffice for an
accurate description. Conversely, if correlations aréicgehtly influential, many orbitals will
contribute top;, and studying their interplay will illuminate our resulta the density matrix
and the momentum distribution.

Harmonic trap For the harmonic trap (Figs. 3.16a,b), the initial HO fuoitip, is only
slightly flattened in the Gross-Pitaevskii regime (¢f.= 0.4). The onset of fragmentation
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not only smears out the lowest orbital, but also admixes disyanmetric HO-type orbital
¢1. In the fermionization limit, it is astonishing that alrgag, exhibits all the features of the
fermionized density profile(x), that is,N wiggles mirroring the spatial isolation of the atoms.
This is intelligible given thaty, still has adominantweight, which ought to be contrasted with
the philosophy of multi-orbital mean-field schemes [42] enénthat pattern is produced By
spatially localized orbitals adqualpopulationN,.n = 1.

Interesting as the orbitals may be in their own right, thesogrove helpful in clarifying
the diminished coherence found in Sec. 3.4.1. The onseagfifentation, as fay = 4.7, leads
to a broadened diagonal profite(x, z), but not equally so for the off-diagonal part. That is
simply because the, have alternate parity—1)“, and thus the admixture of another orbital
leads top; (z, —x) = >, (—1)"ng |¢a(2)|*. Hence the fragmentation into different orbitals
tends to deplete the off-diagonal as compared to the didglemaity. Forg = 4.7, this effect
is still tiny asn; ~ 0.1 only, and therefore outweighed by the altogether extendpgst
of ¢g. However, as more and more orbitals are mixed, as is the oate ifermionization
limit (seeg = 74), this reduction of coherence attains its full impact. Wmaek that the
faint checkerboard pattern (Fig. 3.13) is still rooted ie tiominance of the lowest orbital,

’I’LONI/\/N

Double well In the case of a central barrigr & 5; see Figs. 3.16¢,d), the natural orbitals in
the non-interacting limit will again be the single-partictigenstates, approximately the (anti-
)symmetric linear combinations above. For high enoughidxarany of these two should be
guasi-degenerate, which shines a light on why their weightsended to come in doublets
(Fig. 3.15). In the Gross-Pitaevskii regime &€ 0.4), the lowest orbital is only marginally
flattened due to interactions. However, the minor admixtdrine antisymmetrie; leads to

a slight reduction of the off-diagonal peaks(xo, —x¢) observed in Fig. 3.13. Fgr = 4.7,
fragmentation has set in, not only smearing out the orbitgls —and thus the (diagonal)
density—but along the way washing out much of the off-diadang-range order. As em-
phasized before, the fermionization pattern tends to bergefor differenth, which reflects
both in the density matrix as well as in the natural orbitals.

3.4.3 Momentum distribution

The discussion so far focused on rather abstract aspede afe-body correlations. Yet it
can help us cast a light on an experimentally more amenalaletity) the momentum density

pk) = 2m(klp1|k) = 3, nal da (k).

Harmonic trap For this case, the momentum distribution has recently beswpated ( [44];
see also Ref. [37]). We plot it in Figure 3.17 for comparisdhevolves from a Gaussian
p(k)/2m = = 1/2eF* atg = 0 (with a maximum ap(0) = .35....) to a slightly sharper peak,
here depicted foy = 0.4. This squares with the broadened natural orbjain that regime,
as found in Sec. 3.4.2. By virtue 6A\p)* = (p?), the narrower momentum distribution leads
to a decreaseof kinetic energy, which has been shown to be a signature ehtban-field
regime [44].
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Figure 3.17: Momentum distributiors(k) for N = 5 bosons in a double-well trap of barrier heightLeft » = 0,
right: h = 5. Shown are the interaction strengihs= 0.4, 4.7, 15.

Forg = 4.7, in the intermediate regime between “condensation” anahifamization, the
peak atk = 0 is even more pronounced, whifgk) has also developed a long-range tail.
Both observations are easily accounted for. Ehe 0 behavior, for one thing, was argued to
correspond to the off-diagonal long-range behaviopdf:, 2’) in Sec. 3.4.1. This fits in with
our observation that the off-diagonal range was indeedneei in thatg-regime, as seen in
Fig. 3.13. The asymptotids — oo is in turn determined solely by the short-range interagtion
which is known to culminate in the—* tail in the fermionization limit [91].

This latter consequence is in fact confirmed here (see15). Moreover, notice that the
k = 0 peak is bound to diminish. In other words, the momentum specis redistributed
toward higherk, in accordance with the reduction of off-diagonal longgarorder. This fact
stands in marked contrast to the homogeneous system, whibk iTonks-Girardeau limit had
an infrared divergencg(k) = O(k~'/2) [93]. The seeming contradiction is owed to the fact
that we deal with a bounded system, which cannot displayltngrange order.

Double well The momentum spectrum for a double wéll£ 5) looks quite different from
the start § = 0.4): It exhibits two sidelobes. This can be explained by themtnic orbital
do(x) = %[w(m — x0) + w(z + )], which leads to a cosine-type modulation/oflue to
do(k) = V2 cos(kzo)@(k). These sidelobes are most distinct for= 0 and tightly localized
w.

With increasing repulsiory(= 4.7), there are two competing effects. On the one hand, the
orbitals are flattened a little, which should result in atglig sharper momentum distribution.
It turns out, though, that the effect of fragmentation otfqrens the former one even for tiny
interactions: Admixing an anti-symmetric orbital adds asin(kz()-type modulation, thus
washing out the sidelobes as well as the central peak. I @tbeds, the signature of the
Gross-Pitaevskii regime in the harmonic trap—the initisdrpening of the: = 0 peak—is
lost in the case of a sufficiently pronounced double well.

Along the lines of the remarks in the previous paragraph, wetion that the behavior for
large interactiong is again universal as far as tke* tail for k — oo is concerned. It also
has a reduced peak for zero momentum, in accordance witledvetion of long-range order

found in Sec. 3.4.1.
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Chapter 4

Excitations

By now, we have obtained a thorough understanding of thengkstate mechanism of the
crossover from weak to strongly repulsive interactionsthia chapter, we seek to extend that
study to the (low-lying) excited states of trapped few-bosgstems. An understanding of
these is interesting not only from a fundamental perspecgiven the richness of the ground-
state crossover. It is also vital for the control of few-bo®ystems, since in principle the
knowledge of the system'’s excitations both gives accessitefiemperature effects and also
builds a bridge to the quantum dynamics studied in Ch. 5.

In Sec. 4.1 we will look into the low-lying spectrua(H) = {E,, }, whose corresponding
eigenstate¥,,, will be analyzed in detail (Sec. 4.2). As the spectral proesiin the cases of a
single and a double well will turn out to be quite differethte tquestion as to how they connect
naturally arises. That crossover will be the subject of 4.3.

4.1 Spectrum

In this section, we study the evolution of the lowest eigeargiesE,,(g) asg passes from
the non-interacting to the fermionization limit. Figured 4.3 convey an impression of this
transition forN = 3,4,5 bosons in a harmonic traf (= 0) and in a double well/{ = 5),
respectively. Before dwelling on the details, let us firgitaae some general features of the
spectra.

In the uncorrelated limity — 0, the energies are simply given by distributing the atoms
over the single-particle levelg, starting fromN,—, = N (the Bose ‘condensate’):

E=Ntr(pih) =Y  Naea. (4.1)

In particular,Ey = Ne¢g; hence the ‘chemical potentigly = E(()N“) — E((]N) = ¢, as usual.

Note that Eq. (4.1) implies degeneracy if two single-p&etienergies are commensurate, i.e.,
Sy (No — Ny)e, = 0 for twon # n.

In the Tonks-Girardeau limit, on the other hand, the spetthecomes that of a free
fermionic system. Thus one can find some (auxiliagylyith N, € {0,1} such that

lim E(g) = Z Nyéq. (4.2)

g—0o0
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Figure 4.1: Lowest energie€,,, in a harmonic trap/{ = 0) for N = 3,4, 5 bosons. (The lines connect the data
points to guide the eye.)

In the ground state, the particles can therefore be thoughd 6lling the energy ladder up to
the Fermi edges, < ey = un. For a harmonic confinement, the chemical potential wilkthu
bex N,soEWN) = O(N?).

It should be pointed out that, in the spirit of the Bose-Femmaip, the borderline cases of
no and infinite repulsion may be perceived as one and the samadrfteracting) system, their
sole difference being the ‘exchange symmetry’ emulatiregeffiect of interactions. Therefore
the same type of energy spacings and (quasi-)degenerdcakl appear at both ends of the
spectrum.

4.1.1 Harmonic trap

For a single well, the one-particle spectrdry = a + 1} is known analytically, which readily
equips us with the full spectrum for both the non-interagtmd the fermionization limit. First
consider the casg¢ = 0. ThenE, = N/2, while all other levels follow with an equal spacing
of Ag = 1. Owing to that equidistance, the degree of degeneracy goesith each step,
measured by the average occupatién = >, N,a. Explicitly, while both¥,,—, ; are non-
degenerate, the eigenspace pertainingte-= F5 = N/2+2 is two-dimensional (see Fig. 4.1),
etc.

To understand this degeneracy and how it is lifted, let ualrétat, in a harmonic trap with
homogeneous interaction§(x; — x;), the center of mass (CMj := Zf\il x;/N is separable
from the relative motion. Hence one can decompose the HidipaiceH = Hey ® H, SO as
to write

U= §Z5N ® ¢rel; E(g) = (N+ %) + Erel(g)'

This signifies that for every level for thelative motion, €,1(g), there is a countable set of
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Figure 4.2: Single-particle spectrurfe, } in a double well with barrier height = 5.

copies shifted upward by = 1,2,... . Forg = 0, 1. is a harmonic eigenstate as well,
SO e§§1>(0) = v+ ¥-! for somev, and several different combinations (@¥', ) may coincide.

Switching ong > 0, however, breaks that symmetry, leaviguntouched while pushing each
level ¢”) upward—which materializes in different slopes

rel

dE
dg

d
= —€ 1
0 dg re.

0

This fact is nicely illustrated on the example8f= 2 atoms (Sec. 1.4.3), where

L — 166 ) = [ (O)2

0

Since|v, (0)|* decreases monotonically with higher excited relative states ‘feel’ the interac-
tion less. This fits in with our findings in Fig. 4.1: The twotstsn = 2, 3 break up, the lower
curve— in light of the reasoning above—pertaining to highégrnal excitation.

Apart from that, the spectral pattern does not give an airedrfidp overly intricate but fol-
lows the general theme known from the two-atom case. Alllgefiest rise quickly in the
linear perturbative regime, but start saturating once #regr the strongly interacting domain
(g ~ 10). As insinuated, the fermionization limit is known exactiyhich endows us with a
helpful calibration. Since the limitg — 0(co) can be regarded simply as bosonic (fermionic)
counterparts of the same non-interacting system, the tax@sdxactly the same energy scales,
Ao = 1. Indeed, building on the ground-state enefgy= > _y €. = N2/2, all levels again
follow in equal stepg\y. This fact, effortless as it may come out of the theory, isergt state-
ment, for it implies that the very interaction that drivesnedegenerate lines apartgat 0 is
also responsible for gluing them together again if it geti@gantly repulsive. An indication
of this effect may actually be observed in Fig. 4.1.

4.1.2 Double well

As opposed to the purely harmonic trap, the (low-lyismigle-particlespectrum of the double
well (Fig. 4.2) is not that simple but rather has a doubletcitire (cf. Appendix A). These dou-
blets orbandss = 0,1, ... correspond to (anti-)symmetric orbitals of the txp&%’zo,l(x) =

NG (W (2 + z0) £ w? (2 — z)], wherew® is some localized functions, and which are

separated in energy only by the tunnel splitthé@ — e((]ﬁ) = AP <« Ael® small compared
to the gap to the next band. The non-interactingny-bodyspectrum{£,, = > Nye,} will
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Figure 4.3: Lowest energies,, in a double well i = 5) for N = 3, 4,5 bosons.Inset: Level adhesion for the
statesn = N — 1, N (counted from below ag = 0).

then be composed of a lowedtisterof states within thé N + 1)-dimensional subspace
span{]NéO), N1(0)> =|N —m,m)}pm=o,. N, With E,,, = Ey + mA©,

The next group—obtained by removing one particle from tineekst Ievel&fl%)—is then shifted
upward byAe(©),

The situation gets slightly more involved in the fermioniaa limit ¢ — oc. Here the
spectrum is generated by (fictitious) fermionic staies_ with Néfj) € {0,1}, so E,, =
Zﬁ as N(ﬁ eaﬁ) Clearly, the ground state is given by filling up the Fermirggdadder up to
the Fermi edge = 1, with the lowest excitations obtained by removing pardtem right
below the Fermi edge to the next higher band. &aenN, this yields the following ground
statem = 0, followed by exactly four single-particle excitations:

State|n)_ m
|1((]0)1§0) 1(N2 1)1(N2 1), 0((]N 2)0§N 2)> 0
‘180)1(0);.”7 (N/2 1)0(N/2 1)’1(()N/2)0§N/2)> 1
|1((]0)1§0)-... O(N/2 1 (N/2 1. 1(()N/2)0§N/2)> 2
‘180)1(0);. (N/2 1)0(N/2 1)’08N/2)1§N/2)> 3
‘180)130);.” O(N/2 1 (N/2 1. OSN/z)lgN/2)> 4

In Fig. 4.3, this basic structure is visible féf = 4, if somewhat blurred by the occurrence
of two other, only slightly higher, lines. These are not vagparated in energy since, for the
higher-band orbitals involved in these excitations, thietstioublet structure gets lost.

Forodd numbers, there is only one major qualification, which hadaaly been implied in
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Sec. 3.2.2: If we now add another particleV#+ 1, this will now go to the previously empty
bands = N/2 above. This way, that band is only half filled, andiatra-band excitation
will only cost a small energyA(V/2), This explains why the ground state for odftl= 3,5 in
Fig. 4.3 is always accompanied by another, very close level.

The two ends of the spectrum in Fig. 4.3 connect in a highlytmoal way. As can be seen
in the insets, the reordering of the spectrum already kicKsri fairly smallg < 1, when the
N + 1 lowest-band states are still well separated from the nepeupluster, so we can focus
on these for the moment. What happens is thahighest excitedevels virtually glue to one
another so as to form doublets, which —even on the zoomee sttie insets—are practically
impossible to resolve. A qualitative explanation for theésdl adhesion can be obtained by
resorting to the lowest-band two-mode model [94] (or Bosdsibard model, cf. Appendix A):
If the on-site repulsion enerdy(?) dominates the tunnel couplingy“), then the number states
N, =, Na = N — v) in the leftrightiocalizedorbitals ), = - (¢50> =S ¢§°)) become
eigenstates off, at least to zeroth order iA(?). Of course, the eigenstates should obey parity
symmetry, so we really have linear combinations of the typ&v — v) + [N — v,v). The
on-site repulsion is particularly dominant for the highestitations,|NV,0) + |0, N), which
correspond to the sharp doublets observed in the insetsomyast, the ground state will have
minimum on-site interaction (e.g., of the typ&/2, N/2) for even N) and thus will have a
non-negligible share of kinetic energy.

This lowest-band picture ceases to be qualitatively coassoon as crossings with states
emerging from the next cluster come into play, as, e.g.Met 3 atg ~ 3. As a consequence,
not only are the quasi-degenerate doublets broken up, $mtadramatic rearrangement of the
level structure toward the fermionization limit takes @ac

4.2 Excited states

As yet, we have looked into the spectrum and its evolutiomftbhe weakly to the strongly
interacting regime. We now aspire to get a deeper insighbt tim underlying state¥,,,>1,
which may be also beneficial for studying the dynamics inriiapplications.

Generally speaking, the non-interacting limit is desailie terms of number statds)
in the respective one-particle basis. Owing to the asyrwatibt harmonic confinement, we
thus have an overall Gaussian profiler) o exp (—2?), which is modulated by the central
barrier as well as the degree of excitation. At least for dve-lying states, the length scale is
therefore about that of the harmonic confinement= 1. Being single-particle states, they
are essentially devoid of two-body correlations, refleated, = %(1 + P12)p1 ® p1 (with the
permutation operataP;s).

When interactions are added, some extra interaction eﬁ&éyi)tr (V' p2) must be paid.
Hence, the system will respond by depleting the correladiagonalps(x1, 2o = x1), roughly
speaking. Ag; — oo, this culminates in the system’s fermionization. In paiée, the den-
sity profilep = ", \%12 becomes broader, with a length scale of or¢@N [87], while
the strongly correlated nature is captured in the fermidwic-body densityps(x1,x2) =
(p(ml)p(mg) — |p1 (21, xg)\Q) /2, which vanishes at points of collision.

For an extension of this mechanism to a two-band picture[9&e
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Figure 4.4: Density profiles ofV = 4 bosons in a harmonic trap (= 0) for the excited states: = 1, 2, 3 (from
left to right).

4.2.1 Harmonic trap

A look at the one-body density(x), shown in Fig. 4.4 for different states = 1,...,3,
suggests that essentially the same mechanisms as for thiedgstate are at work. The non-
interacting density profiles have a Gaussian envelope.riaisbe seen in the plot fgr= 0.2,

the somewhat peculiar shape for the states= 2, 3 stemming from the fact that, gt = 0,

the affiliated number state® — 1,0, 1) and|N — 2,2,0) are degenerate, which is why the
perturbationH; = >, . V(x; — x;) selects linear combinations that are CM and relative-
motion eigenstates. This is also illustrated in the twoybdensityp» (Fig. 4.5).

Upon increasing), the density is being flattened, reflecting the atoms’ ramelbne an-
other. Eventually, a fermionized state is reached, feagucharacteristic humps in the density.
As in the ground-state case, these sigtifgalizationin the sense that it is more likely to find
one atom at discrete spats However, here the fermionization pattern eludes an olsviiater-
pretation, since these are excited rather than equilibstates. In particular, now the number
of humps need not equal, as can be seen fan = 1.

A look behind the scene is offered by the two-body dengitdisplayed in Fig. 4.5, which
recovers the density profile= [ dzsps(-, z2) by averaging over the second atom. Itillustrates
nicely how the interaction imprints a correlation hole{ai = x-2} at mediatey = 2.2, which
relates to the washed-out profile in Fig. 4.4. A complex fragtation of thdx;, z2) plane can
be witnessed as we go to largewhich is different from the very obvious checkerboard gratt
of the ground state encountered in Sec. 3.2. The latter amaéded a simple interpretation,
namely that the atoms are evenly distributed at discretigiguos over the trap (up to a Gaussian
density modulation), but with zero probability of findingdwatoms at the same spot. Here the
atoms are apparently more localized in the center. On topatf if one atom is fixed at some
x1, one cannot unconditionally ascribe definite positionstfierN — 1 remaining particles as
before.

4.2.2 Double well

Figure 4.6 summarizes the evolution of the lowest excitatest densities folv = 4. For
large but finite barrier heights, the lowest excitationg; at 0 will be formed by the two-
mode vectorsNéO), N — NO(O)>. All of these will exhibit similar density profiles singgx)
only differs significantly near the trap’s center; specificaw(0) = ng |¢0(0)|2. This quasi-
noninteracting behavior can be verified fpe= 0.05. As the interaction is turned og,= 0.2,
we argued in Sec. 4.1.2 that the higher states (here: 3,4) tend to form doublets of left-
right localized states as a consequence of on-site repulgithile this barely affects the density
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Figure 4.7: Two-particle densityz(x1, x2) for N = 4 bosons in a double-well traf» = 5). From top to bottom
excited staten = 1, .. .,4; shown are the interaction strengths- 0.05, 0.2, 2.2, 25 from left to right.

profiles in Fig. 4.6, the change in the two-body densityx,, x2) is hard to ignore (Fig. 4.7):
The statesn = 3,4 become virtually indistinguishable and have stratiggonal peaks at
1 = T2, SUpporting our hypothesis that these could be thoughtsifjgsrpositions dbcalized
stateg4r,, Or) £ |01, 4g). This effect is less pronounced for the lower-lying states- 1, 2.

For stronger repulsion;, = 2.2, Fig. 4.7 nicely illustrates the characteristic correlathole
imprinted in py, signaling the crossover to fermionization. On the oneybledel (Fig. 4.6),
this is accompanied by a broadening of the density profilésctweven acquire some wiggly
structure. This saturates as the fermionization limit iprapched ¢ = 25), where again a
trademark checkerboard pattern can be witnessed. In tiategthe diagongs (z1, 2 = 1)
is fully depleted, which comes along with the break-up of tfuasi-degenerate level pairs
observed for weaker repulsion.
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Figure 4.8: Evolution of the natural orbitalg, ash — oo for the caseéV = 3 (¢ = 0.2). Top The first symmetric
orbital ¢¢ is notched at: = 0. Bottom The antisymmetric onef ) is barely altered.

4.3 Crossover from single to double well

We have come a long way studying in depth the spectral priepest a single and a double
well. As opposed to the ground-state case, the link betweenwo is far from obvious. In
the harmonic trap, the fermionization transition was yatdme, while in the presence of a
fixed barrierh = 5, there not only seemed to be a strikingly different levalcture to begin
with, but also the onset of a zoo of crossings and quasi-gggeies. On that score, it would
be desirable to get an understanding of the crossover fromgéego a double well. To this
end, we will again borrow some inspiration from the simpledeloof a point-split traphd(z)
(see [33] and Appendix A.1).

First consider the borderline cage= 0. Then the one-particle occupationsre conserved
for any parameteh, so we can assume number stdtesas eigenstates (up to degeneracies).
Let us start with the harmonic trap & 0), where the spectrum is arranged in stepAgf( =
1 according taE,, = >, N,(a+ 1) and the particles are distributed over the oscillator afbit
¢q. Now let us switch on a central barriér > 0 peaked att = 0. Then each even orbital
a € 2Ny will be notched at: = 0, until its density]qﬁa\2 will equal that of the next, odd orbital
da+1. Figure 4.8 gives an illustration of this by displaying treural orbitalsp,/; atg = 0.2.
Along that line, the energies will evolve continuously fregito ¢,.1 = ¢, + 1. On the other
hand, granted that the barrier is supported exclusively at 0, the odd orbitals themselves
will remain completely untouched. Hence, in the lirhit— oo, we would end up with a doubly
degeneratsingle-particlespectrum (or, more realistically, a level gag < 1), which readily
translates to a shift AAE,, = > ony Na X 1 =: Neven With respect toh = 0, depending on
how many even orbitals were populated to begin with. Althggtas the barriek is run up,
the spectrum{N/2, N/2 + 1,...} ath = 0 is expected to transform into one with a lowest
cluster ofl + N (quasi-)degenerate levels pertaining &y, N — Ny)} at energied ~ 3N/2,
followed by another one & ~ 3N/2 + 2.

A realistic reasoning should take into account the finiteibawidth (w = 0.5), but the
above toy model provides us with a rough picture to undedstha crossover computed for
g = 0.2in Fig. 4.9(a). Note that the sketched metamorphosis ialljitbrings about cross-
ings between different levels @ — oo since, for instance|0, N) is barely altered while
|No,0, N — Np) is shifted by abouAE ~ N.

The above approach may be readily extended to the fermigorizimit. All we need to
do is construct auxiliary fermion statégn)_ | N, = 0,1} and apply the same machinery.
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Figure 4.9: Crossover of the lowest energigs, () with varying barrier strength for N = 3 bosons at interaction
strengthyy = 0.2 (a); g = 15 (b). (The line styles are assigned so as to distinguish tifierelnt level groups at
h=0.)

However, a look at Fig. 4.9(b)y(= 15) makes clear that the rearrangement of the levels is
not as wild as as in the non-interacting case. That is simpbabse the ‘fermions’ can only
occupy a level once; hence /at— oo the lowest group is made up of one or two states only
(for even/odd numbers, respectively), followed by a clustdéour levels regardless of the atom
number.?

For intermediate values @f in turn, one cannot use the same line of argument since there
is no simple single-particle description, andis no longer a good set of quantum numbers.
Still, the knowledge of the limiting cases highlighted ab@ies a guideline for the crossover.
Generally speaking, changirigfor any g will affect the energy via

d

%E = Ntr[p16w(x)] = Np(0),

i.e, the coarse-grained densjy= p * é,, about the center will be reduced so as to minimize
the energy costs. This will determine the fate of each stéternvehanging over from a single
to a double well, thus completing our picture of the lowedditexions in double-well traps.

2You might notice that the second band emergingias> oo is not perfectly bunched & '(h = 10) ~ 11,
but really has a runaway #@(h = 10) ~ 10.7. This can be traced back to the inclusion of a higher orhigain
the fermionic state: in such higher regions, the spectruaseto be perfectly doublet-like, foiling our previous
considerations.



Chapter 5

Tunneling dynamics

Thus far, we have gained an understanding of the fermidaizatrossover for the stationary
states. Itis natural to ask how this affects the quantum mhjcegof few-boson systems. Specif-
ically, the double-well potential we have focused on soda paradigm model for one of the
most fundamental quantum effects — tunneling. Using ulchbosonic atoms, it has become
possible to study this system at an unprecedented levelegigion and control. This has
led, e.g., to the observation ddsephson oscillationsf Bose-Einstein condensates [94,97,98]
and the complementanyonlinear self-trappingeffect [97, 99, 100]. In the case of Josephson
oscillations, the atoms—initially prepared mostly in onellw-simply tunnel back and forth
between two potential wells in analogy to a current in a Josep junction. However, above
a critical interaction strength, the atoms essentiallyaientrapped in that well for the experi-
mental lifetime even though they repel each other. Whilseteffects have been observed for
macroscopic coherent matter waves, the recently obsetability of repulsively bound atom
pairs moving in a lattice [101], whose first- and second-otdaneling dynamics have later
been evidenced directly [102], indicates that akin sitratialso exist on thi2w-bodylevel.

All of these effects are confined to the regime of relativelyal interactions, where the
dynamics can be understood qualitatively by means of a vergls two-mode model. Here
we want to investigate the case where a few atoms are loattedrie well and explore how the
tunneling dynamics changes as we vary the interactiongttidrom zero up to the fermioniza-
tion limit. This is done for a symmetric double well in Secl Sirst for the case of two atoms
(Secs. 5.1.1-5.1.3), where the extension to higher atonbarsiis discussed in Sec. 5.1.4. In
Sec. 5.2, we illuminate the effect of tilting the double welhich makes it possible to tune
specific tunnel resonances.

5.1 Symmetric double well

In this section, we investigate the tunneling dynamics iryraraetric well as we pass from
uncorrelated tunnelingg(= 0) to tunneling in the presence of correlations and finallyht® t
fermionization limit § — oo). The preparation of the initial stat&(0) with a population
imbalance—in our case, such that almost all atoms resideimght well only—is sketched in
Fig. 5.1. We make that site energetically favorable by agldilinear external potential](x) —

d - x, (with sufficiently larged ~ 0.1 — 1, depending oV andg) and let the system relax to its

89
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Figure 5.1: Sketch of the setup: At= 0, atoms are prepared in the ground state of the doubletifel) — d - =
tilted to the right (green). The asymmetry is then rampedrdaanadiabaticallyd(¢) — 0, thus triggering the
tunnel dynamics in the symmetric double well.
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Figure 5.2: Two-atom dynamics in a double well.

Top Density evolutiorp(x; t) for g = 0, 0.2, andg = 25 (from left to righ)

Bottom Population of the right-hand well over timgg(t), forg = 0(—),g = 02 (---), g = 4.7 (---), and
g=25(—"-).

ground stateIfgd> 9 The asymmetryl will be ramped down tel(t) — 0 nonadiabatically (we
typically choose a ramp time ~ 1). By extension, it is possible to take any final asymmetry
lim;_. d(t) # 0, which allows us to look at the case where one well is energiéti offset
(Sec. 5.2). Itis natural to first look at the conceptuallyacést situation wherd& = 2 atoms
initially reside in the right-hand well (Sec. 5.1.1), with @ye toward the link between tunneling
times and the few-body spectrum (Sec. 5.1.2) as well as tleeofotwo-body correlations
(Sec. 5.1.3). With this insight, we tackle the more compédadynamics ofV = 3,4,...
atoms in Sec. 5.1.4.
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5.1.1 From uncorrelated to pair tunneling

At g = 0, the atoms simplyRabi-oscillate back and forth between both wells (Fig. 5.2, top).
This can be monitored by counting the percentage of atontwinight well,

Pr(t) = (O(2))uy = /0 " plast)de (5.1)

(p being the one-body density) or, correspondingly, the patmrn imbalance = pr — pr, =
2pr — 1. Figure 5.2 botton) confirms thaipr harmonically oscillates between 1 and 0.

If we switch on repulsive interactions, ¢f.= 0.2, one might naively expect the tunneling
to be enhanced. By contrast, Fig. 5.2 reveals that, for $lmoets, there is just a minute oscil-
lation, while complete population transfer occurs on a mociger time scalel(/2 ~ 300).

A look at the population dynamics confirms that the tunnetingillations have become a two-
mode process: There is a fast (small-amplitude) osciliatinich modulates a much slower
one in which the atoms eventually tunnel completely & 0). In caseg is increased further
to g = 1.3 (not displayed here), we have found that the tunneling pdsecomes as large as
2 x 10%. What remains is a very fast oscillation with only a minutepditnde — this may be
understood as the few-body analog of quantum self-trappisgvill be discussed in Sec. 5.1.2.
As we go over to much stronger couplings (gee 4.7), we find that the time evolution be-
comes more complex, even though this is barely captureckirettiuced quantityr (Fig. 5.2,
botton).

Remarkably, near the fermionization limit (sge= 25) again a simple picture emerges:
The tunneling, whose period roughly equals that of the Radillations, is superimposed by a
faster, large-amplitude motion. This states that the gtyorepulsive atoms coherently tunnel
back and forth as ragmented pairlmost like a single particle.

5.1.2 Spectral analysis

To gain a better understanding of the very different timéescavolved throughout the crossover,
let us analyze the evolution of the few-body spectruf),(¢)} asg is varied (Fig. 5.3a). The
discussion will lean upon that in Ch. 4; however, we will kétegelf-contained.

In the noninteracting case, the low-lying spectruni\of= 2 atoms is given by distributing
all atoms over the symmetric and antisymmetric singleiglarbrbital of the lowest doublet
egyl (illustrated in Fig. 5.3b). This yields th&¥ + 1 energies

{Ep, = Eg+mA® |m=0,...,N},

whereA© = 0 eg)) is the energy gap between these two orbitals or, in other sydhe
width of the lowestband Assuming that for sufficiently smal still only N + 1 = 3 levels
are populated inb(t) = Y e~ Fmic,, U, then the imbalancé(t) = (9(x) — ©(—z))y )
(and likewisepgr) can easily be computed to be

5(t) = 60 cos(wort) + 612 cos(wiat), (5.2)

wherew,,, = E,, — E,, andd("™") = 4(¥,,,|0(x)|¥,,)cmc, is determined by the participating
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Figure 5.3: (a) Two-particle spectrum as a function of the interactivergthg. Inset Doublet formation with
increasingg. (b) Corresponding single-particle spectrum of a doubl# wi¢h barrier heighth = 8.

many-body eigenstates. Note that the tdrmm) = (02) vanishes since, by antisymmetry,
only opposite-parity states are coupled.¢gAt 0, due to the levels’ equidistance, only a single
mode with Rabi frequencyy; = w12 = A contributes. Fovery smallinteraction energies
compared ta\(9), the equidistance is slightly lifted, so that the Rabi datiins are modulated
by a tiny beat frequenayy; —w12 (not shown). However, as the interaction is increased éuyth
the two upper lined”; » virtually glue to one another to form a doublet, whereas #yetg £
increases (Fig. 5.3a, insét).

With these considerations on the weak-interaction behawimind, Eq. (5.2) asserts that
for timest < Ti2 = 27 /w12, we only see an oscillation with peridt; < T}2, offset by
6(12) which on a longer timescale modulates sf@vtunneling of periodl},. For small initial
imbalances, we havg®V) /52| o |e/es| > 1; so for short times we would observe the
few-body analog of Josephson tunneling. In our case of anstloomplete imbalance, in turn,
|6012)| dominates, which ultimately should correspondstsf-trapping viz., extremely long
tunneling times. These considerations convey a simplalyénitio picture for the few-body
counterpart of the crossover from Rabi oscillations to-s8albping.

It is obvious that the two-frequency description above ksedown as the gap to higher-
lying states melts (see Fig. 5.3a), even though for two atemactual crossings with higher
states occur, as opposed¥o> 3 (Sec. 4.1). The consequences for the spectrum are twofold:
(i) the quasi-degenerate doublet will break up again, dhdtéites emerging from higher bands
will be admixed. For the imbalance dynamics, (i) implies tha “self-trapping” scenario will
give way to much shorter tunnel periods again, while (iipgigs a richer multi-band dynamics.
This most clearly manifests toward fermionizatign= 25.

1This level adhesion, already calculated fr = 3,...,5 in Sec. 4.1, may be understood from a naive
lowest-band two-mode model (see [94] for details): As$s increased, the on-site interaction energy eventu-
ally overwhelms the tunneling energy(®’, and the eigenstates evolve from number stam(;?), Nfo)) in the

delocalized(anti-)symmetric orbitals¢51°:)m1 into superpositions of number state§r,, Nr) in the left/right-

IocalizedorbitaISwé()()R) = % ( éo) F ¢§°>). It goes without saying that any two such degenerate nuntagrss

v, N —v) # |N —v,v) violate parity symmetry and only serve to form a two-dimensi energy subspace, which
for nonzeroA () corresponds to the doublets in Fig. 5.3(a).
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In the limit g — oo, the system also becomes integrable again via the Bose-Fepping
(Sec. 1.4.1). As an idealization, assume that at 0 we put two (noninteracting) fermions
in the right-hand well, where they would occupy the lowest two orbitals, nameif), b =
0, 1. Expressing this (fermionic) number stalt¢0) = (]‘[5:0’1 C’I(f)yr |0) through the single-

particle eigenstates: = (Nég)»_ via the annihilation operato“fl(f) = i(céﬁ) + cgﬁ)) leads

V2
to

1
ViE=0)=5 > L),

ag,a1€{0,1}

Wherelgg) denotes occupation of the symmetrig; (= 0) or antisymmetricdz = 1) orbital in
bandg. The frequencies, ,» = E, — E,, contributing to¥(¢) follow in a straightforward

fashion:
= 3 ) (NG = NO) =3 a0 (NP - N[ (5.3)
B,ap Jé; ——
=0,+1

Moreover, let us focus on the imbalance dynamics. S#E&) £ 0 only for opposite-parity
statesn,n/, the sum must contain only asdd number of terms. For the special case of
two atoms, we obtain the simple result that the only pariiig frequencies ard©) (the
lowest-band Rabi frequency, corresponding to the longereling period) and\ (V) (the larger
tunnel splitting of the first excited band). This links theosigly interacting dynamics to the
noninteracting Rabi oscillations.

5.1.3 Role of correlations

In order to unveil the physical content behind the tunnetigygamics, let us now investigate
the two-body correlations. Noninteracting bosons simphynel independently, as is reflected
in the two-body density,(z1,22). As a consequence, if both atoms start out in one well,
then in theequilibrium pointof the oscillation (wherey, g (t) L %) it will be as likely to find
both atoms in the same well as in opposite ones. This isrdlted in Fig. 5.4, which exposes
snapshotg, (1, z9; t,) at the equilibrium points and visualizes the temporal emtuof the
pair (or same-sitgprobability

p2(t) = (O(21)O(x2) + O(—21)O(—22))¢
= p2(x1, o t)dxydas.
{z1-22>0}
As we introduce small correlations, the pair probabilityeslanot drop td).5 anymore — in
fact, atg = 0.2 it notably oscillates about a value near 100%. This signtfies both atoms
can essentially be found in tleamewell in the course of tunneling, which is apparent from
the equilibrium-point image op-. In plain words,they tunnel as paits At this point, it
is instructive to revisit the eigenstate analysis above:il&he g = 0 eigenstatesl, , are
delocalized at intermediatgy = 0.2 they have basically evolved into superpositiong, =
2, Ngr = 0) = |0,2) of pair statedocalized in each well In this light, the dynamics solely
consists in shuffling the population back and forth betwéesé two pair states.

Figure 5.4 in hindsight also casts a light on the fast (smplitude) modulations gfg
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Figure 5.4: Top Snapshots of two-body correlation density(z1, z2; t.) at equilibrium pointst., forg = 0
(t« = 44), g = 0.2 (t. = 128), andg = 25 (¢. = 53) from left to right Bottom Probabilityp2(t) of finding two
atoms in the same well far = 0, 0.2, 25.

encountered in Fig. 5.2(a), namely by linking them to terappreductions of the pair number
po. Thus it is fair to interpret them as attempted one-body éling. Along the lines of the
spectral analysis above, this relates to the contributtomfthe ground state, in which the
two atoms reside in opposite wells and which doesjoin a doublet. Sinc@®(x1)O(z2) +
O(—x1)O(—x2) is parity symmetric, only equal-parity matrix elementstcitmite tops, which
yieldspy () ~ 1 — 2p(9?) sin? (woot /2).

It is clear that, as before, the time evolution becomes mvelved as the interaction
energy is raised to the fermionization limit (¢f.= 25). The two-body density pattern is fully
fragmented not only when the pair is captured in one wellrésponding, e.g., to the upper
right cornerzy, x5 > 0), but also when passing through the equilibrium poiat 53. These
contributions from higher-band excited states also reftethe evolution ofps(t), which is
determined by the two modes. = A + A, Over time,p, passes through just about
any value froml (pair) to almost zero (complete isolation). In analogy &effermions, it is
again tempting to understand this involved pattern as twmifins tunneling independently
with different frequencies.

5.1.4 Higher atom numbers

Although having focused on the case/f= 2 atoms so far, the question of higher atom num-
bers is interesting from two perspectives. For one thingtranger interactions many results
become manifestlyV-dependent, including distinctions between even/odd atambers, as
seen in the preceding chapters. On the other hand, in aniegrgal setup consisting of a
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(the longer period) angl = 4.7. (Observe the different time scales in both insets.)

whole array of 1D traps like in [14, 25, 103], number fluctuations may audtically admix
states withV > 2.

Complete initial imbalance

For N > 3, the weak-interaction behavior does not differ conceptuahn fact, Eq. (5.2)
carries over,

i) = Z 5 cos(wmnt),

m<n

but with the sum now running ovér < m < n < N. Strictly speaking, the dynamics is thus
no longer determined by two but rather in princiVé N + 1) /2 modes(mn) — although about
half of these fail to contribute by symmetry. Nonetheleks, iasic pattern can be understood
from the two-atom case, as will become clear in a moment.

Forg = 0, assume an ideal initial state with all atoms in the riglialized orbitakwg =
75 (60 + ¢1) of the lowest band. The weight coefficients(No) = (No, N — No|¥(0)) with
respect to the eigenstatgs,, N;) have a binomial distribution

1 /N\ Noo i
|CN(NO)|2:2,—N< >N~ dAN, (No — No)

No

which for largerN' asymptotically equals a Gaussian, with a sharp peaky = /N /2) near
No = N/2. In this light, only these few states should contribute. iAgéhe equidistance of
the levels guarantees a simple imbalance oscillation wifi. For interaction energies small
compared taA(?), the Rabi oscillations will again be modulated by beats,lainto the case
N =2.

As we move to larger valueg ~ 0.2, the higher-lying of theV + 1 levels have again
merged into doublets (Ch. 4). In particular, the highesteggate pair was conjectured to be
roughly of the form|N;, = N, Ny = 0) £ |0, N) (in the limit ». — o0). The idealized state
distribution should be peaked at just these two vectors selemergy splitting in the bare two-
mode model has been estimatedias 2NU©) /(N —1)! x (2A©) /U0)N [104], where/ ©)
denotes the on-site interaction energy. Thus the tunnilgirexpected to grow exponentially
asN — oo, atrend which may be roughly extrapolated from Fig. 5.5dfis)s Ultimately, this
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should connect to the condensate dynamics valid\fas- 1 (N g fixed) [94, 104—106], when

tunneling becomes inaccessible for all intents and pugpd3écourse, realistically, neighbor-
ing states will also be excited, which makes the time evotuticher. However, the separation
of time scales leads to the characteristic interplay of, fastall-amplitude oscillations (re-
lated to attempted single-particle tunneling) and a muetvest tunnel motion, as observed in
Fig. 5.5.

Things become more intricate if we leave the two-mode regochey = 4.7. As demon-
strated in Ch. 4, (anti-)crossings with higher-lying sta@hich connect to higher-band states
atg = 0) occur for N > 3. Given our experience of the two-atom case, one might agaect
a simplified behavior as we approach the fermionizationtlitdowever, we will argue below
that this has to be taken with a grain of salt because anlistdge with/N hard-core bosons in
one well is highly excited.

In the spirit of the Bose-Fermi map, an idealized state wWitliermions prepared in one
well will have contributions from all excitationg{>); 15; . s 15V (a5 = 0,1 ¥3) in
the N lowest bands, which is proven by induction 6h = 2. In view of (5.3), many more
frequencies are expected to be present: Besides the indiidnnel splittingsA(®) for each
band, these should in principle be all four combinatidd® + AM + A® for N = 3, and
4 x 4 combinations{A®) £ A(™) £ A | 0 <1 < m < n < N}for N = 4 etc, taking
into account parity-selection rules. However, in the femization limit with the idealized
initial state above, things simplify even further. Sinde, = >, C{'C —the Fock-
space representation 6f(z) in Eq. (5.1)— is a one-particle operator, an eigenstate is
coupled only to “singly excited” states of the type)_ = agﬁ)Taéﬁ)m)_ (for somef), with
an excitation frequencyy, ,; = AP, This yields an imbalance of

N—-1
o(t) = % Z cos AP¢ (g — o0),
3=0

which relates to the intuitive picture @¥ fermions tunneling independently in thé lowest
bandsg, each with Rabi frequencix ().

This simple formula should be contrasted with the surpgisiomplexity of the fermion-
ization dynamics already for atom numbers as smalVas- 3,4, as shown in Fig. 5.5 (cf.
g = 25). To be sure, for finitgy and using a realistic loading scheme, a few more modes
contribute, thus naturally rendering the dynamics mowgintar. But even the innocuous for-
mula above can account for the seemingly erratic patter$gn5.5: The key to see this is
to consider the distribution of frequenci¢A(®}. In the unrealistic limit than(®) ~ A(©)
Vf3, the imbalance would be a neat Rabi oscillation for @hys(t) ~ cos A©t. However,

a realistic barrier likely has a Gaussian-type shape andta fieight; hence the splittings of
higher bands tend to grow monotonically. As a consequemndg tioe lower-bandfrequencies
AB) will contribute to the tunneling, whereas the higher-baplitttngs make for much faster
modulations, which average out on a larger time scale. Tétegythat forV > 1, those few
lowest-band modes only have a weight®f1/N), which leads to quasi-equilibration around

pr = 1/2.
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Figure 5.6: Partial-imbalance effects in the fermionization limjt£ 25). (a) Small-imbalance oscillations (Sce-
nario 1.) forN = 3,4 atoms. Plotted is the population of the right-hand well(¢). Bottom Density evolution
p(z;t) for N — 1 = 2 (b) andN — 1 = 3 atoms (c) initially in the right-hand well if exactly one atds present
on the left (Scenario 2.).

Partial imbalance

While we have so far assumed that all atoms are prepared iwelhgt is natural to ask what
the effect ofincomplete imbalancesg (0) < 1 would be. For simplicity, we will focus on the
fermionization limit (hergy = 25). Two scenarios are conceivable, in principle:

1. Smallimbalanceggr ~ 1/2, i.e., small perturbations of the ground state;

2. Preparing, sayy — 1 atoms in one well and one in the other.

Case (1.) is plotted in Fig. 5.6(a) fa¥ = 3,4. We clearly observe Josephson-type oscilla-
tions in each case, but with markedly different time scaldss may be understood from the
spectral structure near fermionization (cf. Sec. 4.1): &@mn /N, the fermionic ground state
]1(()0), 1&0), s 1(()N/2_1), 1§N/2_1)>_ has all bands filled, so that the lowest excitation is created
by moving one atom from band = N/2 — 1 to 5 = N/2. Thus the “Josephson” frequency
wo1 = e(()N/Q) — egN/z_l) is a largeinter-bandgap, which forN = 4 gives a period ofy; ~ 4.
For odd N, by contrast, the mechanism is a different one: Here thengratate leaves the
highest band onlgingly occupied, so that the lowest excitation frequency is thellsimiza-
band splitting wg; = AX=1Y/2_ In Fig. 5.6(a) (V = 3), this may be identified as the rather
long periodTy; ~ 40.

Scenario (2.), paraphrased in the case-= 3, is the question of the fate of an atom pair if

the target site (the left well) is already occupied by an atdhe striking answer, as evidenced
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in Fig. 5.6(b), is that the process can be viewed as single+&iinneling on the background of
the symmetric two-atom ground state. The tunneling frequem the fermionization limit is
AW =~ 27 /40, which has the intuitive interpretation of a fermion whiclifted to the band
6 = 1—tunnels independently of the two lowest-band fermionsoni-that point of view, it
should come as no surprise that adding another particleogesthat simple picture. In fact,
Fig. 5.6(c) reveals that if we start witN — 1 = 3 atoms on the right, then the tunneling
oscillations appear erratic at first glance, and a configaratith three atoms per site becomes
an elusive event (see, e.@.~ 22,44 or 72). In the fermionic picture, this can be roughly
understood as superimposed tunneling of one atom in theficited band 4 ) and another
in the second band\(? ~ 27/15), while the remaining zeroth-band fermions remain inactiv

5.2 Asymmetric double well

We have so far used the tilt of the double well merely as a tool to load the atoms into one
well. The question naturally arises whether the actual élimscillations can be studied in
asymmetriovells so as to manipulate the nature of the tunneling. Spadifj we consider

a setup similar to Sec. 5.1: Two atoms are prepared in the vigh (i.e., in ground state
\I'(()d“)with a large initial asymmetryly). Subsequently, the asymmetry is ramped down to a
final valued # 0, thus triggering the tunnel dynamics.

5.2.1 Tunneling resonances

In symmetric wells, pair tunneling is always resonant in sease that an initial state with
all atoms on one site is equal in energy to one with all atontsiénopposite well [96, 102].
Conversely, single-atom tunneling should only be likelyl@ag as the repulsive interaction
does not shift the pair state’'s energy off resonance withgetastate of only aingle atom
on the left. This squares with our finding that the pair praligbp, (Fig. 5.4) drops to 50%
in the equilibrium points foly = 0, while in the correlated casg (= 0.2) it does not vary
considerably from unity. To condense this insight into @k&rquantity, let us define

pr = max{l —py(t)}

as the (maximumgingle-atom probabilityrelating to the event of finding the atomsdifferent
wells.

Figure 5.7 shows how; changes when the final asymmettpetween the wells is varied.
Forg = 0, p1(d) has a plateau fad < 0.011. This relates to the transition from coexistence
of single-atom and pair tunneling (ét= 0) to the point where the right-hand well is lowered
such in energy that the initial pair state energeticallyanes a state with exactiyneatom on
the left. From the perspective of the two-body density in Bid, thefinal stateatd = 0.011
corresponds to thequilibrium-pointsnapshot foel = 0. For larger values ofl, the energy
difference between both wells is too large to transfer atsultisl fraction of the population to
the other well.

By contrast, aty = 0.2 the repulsion is sufficiently strong to drive the singlerattun-
neling off resonance at = 0 (Fig. 5.7). Lowering the right well so as to compensate fer th
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Figure 5.7: Maximum single-atom probability; as a function of the tilt parametér Solid line: uncorrelated
tunneling,g = 0; dashed line correlated tunnelingg = 0.2. Inset Near the fermionization limity = 25. Note
that the resonances are not symmetrid owing to the unsymmetric initial stat&(0).

interaction-energy shift leads to a dramatic increase @fttinnel amplitude neafr = 0.038.
The value ofp; ~ 1 confirms that this is pure single-atom tunneling: After lzléinnel period,
both atoms are found precisely in opposite wells, until tretyrn to the pair state on the right
site.

Despite the more convolved dynamics that emerges as we ferhigteractions, the one-
atom tunnel resonance persists. However, in the fermitaizdimit ¢ — oo, yet another
resonance emerges@t= 0 already (Fig. 5.7). As in the uncorrelated case, this sigsitio-
incident single-atom and pair tunneling. This resonanogédver, is much more sensitive to
symmetry breaking, which is intelligible from the pictureteo fermions hopping simultane-
ously in different bandg = 0, 1. Skewing the double welki(> 0) thus attenuates both one-
and two-atom tunneling until another, pure single-atonomesce is hit at/ = 0.58. Con-
versely, energeticalliifting the right-hand well{ ~ —0.5) makes tunneling texcitedtarget

states accessible.

5.2.2 Spectral analysis

To better understand the dependence of the tunnel dynamidkeotilt d, let us consider
the two-body spectrur{E,,(d)} at fixed couplingg. Since both the noninteracting and the
fermionization limit can be deferred from the single-padipicture, we will first stop to re-
view the spectrum of the tilted double well.

One-body spectrum

Figure 5.8 displays the spectrufa,(d)} of the double wellU (z) = 12?4+ héy(z) — d - x

for variable asymmetried. To get some insight, let us resort to a simple model (App)A.1
and expand the one-body Hamiltoniatp, ) = 1p* + U(z) in terms of two modesv,_y,y)
localized on the left (right) site (tacitly assuming a fixemhlated bands). We denote by

e (wslh|lws) = € £ /2 the energies pertaining teolatedwells, where the left site has an
energy offset

e |(wp|hlwr)| = A/2 the tunnel coupling.
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Figure 5.9: Two-body spectrum{ ., (d) } in a tilted double welllJ (z) — d - z. (&)g = 0, 0.2 (b) g = 25.

Then a straightforward diagonalization yields

bac < A-wp+[s £ A(S)] wr (a=0,1)
€ac = €F %A(C)

whereA(s) = VA2 + ¢2 is the energy gap in the presence of the tilt. In the symmete,
the states are simply given by the (anti-)symmetric orbital.—o oc (wr, + wr), with the
usual tunnel splittingA (0) = A. As we switch on a tilt > 0, parity is broken and the once
delocalized states break up into one decentered on thegleft«( w;,) and one on the right
(¢o ~ wr) asc > A. This goes along with a level repulsion gf; . abouts = 0, where the
¢ state pinpointed on the left site is energetically liftedg &ice versa. As the states decouple
for ¢ > A, the energy approaches that of the isolated subsystem € F ¢ /2.

The above picture holds for each bafidndividually, provided their levels are well sep-
arated. In fact, Fig. 5.8 confirms that scenario for tilts Broampared to the interband gap,
¢ < &P+ — &P For strong enough asymmetriésthough, states emerging from different
bands mix, and new avoided crossings are observed in the plot

Two-body spectrum

Noninteracting limit  In the uncorrelated systerp,= 0, the many-body spectrufiF,, =
> o Na€a } is obtained from the number statgs) of the single-particle eigenstates. The
energy shift of the leveld,,(d) with respect tal = 0 thus depends on the balance between
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contributions from symmetric orbitalﬁéﬁ ) and antisymmetric ones. Specifically, tlhe= 0
ground state exhibited in Fig. 5.9(a) is a coherently symimstate|20) = [¢((]0)]®2. Con-
sistently, for perturbationd > 0 it localizes on the right, with its level shifting downward —
contrary to the second excitatiobR) = [¢§O>]®2. In between|11) is a compromise between
these two borderline cases in that both partial energyssb#hcel out, leaving delocalized
state. This gives us a new perspective on the tunneling digsaneflected in Fig. 5.7. Imagine
we start with all atoms prepared in the right well, viz., tmeund state"[/éd_’oo), and then ramp
downd(t) — 0 so as to trigger the tunneling. If we follow the ground-stetesl nonadiabat-
ically, then atd = 0 it finds three closely packed levels,,— 1 2(0) it can couple to — in the
sense that

V)~ > em(t)Tm,

m=0,1,2

so that a nontrivial dynamics becomes possible. In fact{ at 0, these correspond to
Rabi oscillations. If we were to choose a final asymmeltry. 0.01 (in the notation above,
< < A) roughly the same levels would be available, confirmingplaéeau encountered
in Fig. 5.7. However, for final valueg > 0.01, the levels decouple, and no longer are there
any target states at disposal for tunneling.

Intermediate regime These elementary thoughts also help us explore the naitdyham-
ics for intermediate couplings, as shown foe 0.2 in Fig. 5.9(a). Thel = 0 ground state, in
the limit A(®) — 0, has the Mott-insulator forriy, 1) and should be insensitive to symmetry
breakingd > 0. By contrast, the quasi-degenerate excited |2aibr ) +|0r,2r) only requires a
minute perturbation to break up into two localized statess. plain to see that, at ~ 0.04, the
lower excited curve anti-crosses the ground state, anduvhetates are virtually swapped. In
the language of the simple two-mode model, the (avoidedjsimg occurs for tilts(®) = U(©)
matching the on-site repulsion energy.

The bearing this has on the tunnel dynamics is evident: Apamt the self-trapping sce-
nario atd = 0, there is a fairly broad tunnel resonancel at 0.04, where the fully imbalanced
initial stateWw(0) couples to that with one atom on each sjig,1z). This is but the one-body
resonance encountered in Fig. 5.7. To come by a crude estiorathe critical valuei,., as-
sume that the energy of initial and final states matéh,_.); = (Hg, )s. Modeling the initial
pair state by the ground stam%d()) (at the initialdy > 0), and the final state with a single atom
on the left by\If(()O), yields the estimate

do = do — (B = E{™)) /N (@)

in terms of the ground-state energies at the inifig@l> 0 andd = 0, respectively, and the
elongation(x) at timet = 0.

Fermionization limit  Figure 5.9(b) shows the spectrum near fermionizatips; 25. The

d = 0 ground state turns out to be widely robust against pertiostwhich can be understood
from the fact that its fermionic counterpamgo)lgo)L has balanced populations of right- and
left-localizing orbitals. The only way to obtainraght-localized ground state is to lower one
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Figure 5.10: Visualization of the hopping processes in the fermionidyie. Left Single-particle resonance for
an asymmetryl = 0.6. Right Suppressed two-particle tunneling as a sum of two highhreffonant one-body
processesd ~ —0.3).

well enough for it to hit a localized state from the upper bahe 1.2 This is what happens
atd ~ 0.6, where the tilt energy") /2 = é) — &0 compensates the inter-band gap. That
crossing marks exactly the one-body resonance seen in Figtd ~ 0.6. In the fermionic
picture invoked above, it may be thought of as ereitedfermion tunneling to théowestlevel

on the left (illustrated in Fig. 5.10eft).

If we follow the localized state nonadiabatically, thendat= 0 we recover the mixed
single-atom/pair resonance laid bare in Fig. 5.7. Furthping up the right well td ~ —0.3
(where the spectrum is mirrored @t= 0), we see yet another crossing. A closer look reveals
that the partner state is entirely localized onléfe so that one might expect a pair resonance.
However, as both states are localized in disjoint regidmsy &are not coupled by the pertur-
bation (-d - x), and in practice no tunnel resonance is observed. It majluminating to
look at this from the fermionic perspective. Rér~ —0.3, the initial state on the right is
U(0) ~ \1&0); 1&1)>_, while the partner state emanating fraf{0) ~ 8 in turn is given by
|180); 1(()2)>_. In this light, the tunneling “resonance” in question refew the following situa-
tion, shown pictorially in Fig. 5.10(ght): Two fermions simultaneously hop from the zeroth
(first excited) level on the right down to the zeroth level (oo the second level) of the ener-
getically lower left site. While both processes individuare off resonance, the total energy
is conserved. This reflects in the one-body spectrum (R&), Where no avoided crossing is to
be observed at ~ —0.3 — rather, there is an accidental crossing of the sligs= >, N,e,.
However, atd =~ —0.6, anotheravoidedcrossing emerges, which—in the fermion language—
corresponds to multiple one-body resonances with the figisacond excited level in the left
well.

2In fact, this is what makes it so easy to prepare definite atombers in each well, as done in Sec. 5.1.4.



Chapter 6

Conclusion and outlook

In this thesis, we have studied few-boson systems in oneftiional harmonic and double€onclusion
well traps throughout the crossover from the non-intengcto the strongly repulsivieermion-
izationlimit. This was done from aab initio perspective so as to capture few-body effects. To

that end, we have both developed an exact-diagonalizapproach—based on an expansion in

terms of harmonic-oscillator states—and resorted to thkiHzenfigurational time-dependent

Hartree method.

In order to understand the basic mechanism of the fermitaiz&ransition, we have looked
into the ground state in a simple harmonic trap. Its pathvemds via the formation of a
correlation hole, signifying the reduced probability ofding two atoms at the same position,
to a checkerboard pattern in the two-body density chaiatiteof the fermionization limit.
Here each particle can be thought of as taking a discreteiguossolated from all others — a
feature that also reflects in the averaged one-body densitiep if washed out for larger atom
numbersN. Furthermore, the fermionization crossover reduces thesdeof coherence in the
system, as indicated by the attenuation of the off-diagtoal-range order in the one-body
density matrix. Concomitantly, much of the zero-momentusakpsignaling Bose-Einstein
condensation is redistributed toward higher momenta, ioatimg in a characteristic long-
range tail of the momentum distributiop(k) ~ c/k*.

In general, the crossover depends nontrivially on the eatgrotential. For a double-well
trap, the coherence is reduced already for weak interactioe to on-site localization of the
bosons. Toward fermionization, the interplay betweenriatemic and external forces leads
to a qualitative difference between even and odd atom nwnldesr evenN, the expected
localization persists, whereas an additional particlé aélocalize over the two wells.

The role played by interactions has been illuminated byrdigg an inhomogeneous in-
teraction potential, in the sense that one side of the trami® repulsive than the other. While
the Bose-Fermi map remains valid for infinite repulsionsipossible to displace the ground
state to the less repulsive region for rather small inteyast especially in a double-well trap.

That investigation of the fermionization mechanism hasnb@dended to the low-lying
excitations. In a harmonic trap, the initially equidistamid multiply degenerate levels split up
according to the degree of relative excitation. Near thefenization limit, the lines merge
again to the excitation spectrum of an ideal Fermi gas, siggea more regular dynamics
for strong enough interactions. In a double well, the lomdynon-interacting spectrum is
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given by distributing all atoms over the lowest single-fgdetband. Increasing the interaction
first leads to two-fold quasi-degeneracies associatedomitkite localization of the underlying

excited states. These are broken up again as higher-baed ate admixed for larger repul-
sion, making for a complex level structure. However, a sifigal pattern emerges toward the
fermionization limit, which we have interpreted in termsfigfe fermions filling up the lowest

bands up to the Fermi edge, and excitations thereof.

The understanding of the excitations has provided a bashdanvestigation of the few-
boson tunnel dynamics in a double well. We have demonstthtdhe tunneling first changes
over from the familiar Rabi oscillations, in the uncorreldiimit, to a few-body counterpart of
nonlinear self-trapping, where collective tunneling i®sgly delayed and modulated by fast,
small-amplitude oscillations interpreted as attempteetoody tunneling. As the fermioniza-
tion limit is approached, a fragmented atom pair has beewstio tunnel coherently back
and forth between the wells almost like a single-particlbisphenomenon has been analyzed
in terms of multi-band Rabi oscillations of fermions, whgemulation imbalance is expected
to quasi-equilibrate for largei. Finally, by tilting the double well so as to compensate the
energy offset due to on-site interactions, one-body tungelan be tuned to be resonant.

While the investigation into the basic mechanism of the femzation crossover can be re-
garded as more or less complete, there still is much unchgetdtory in the area of ultracold
few-atom systems. Even in the setup studied in this thesasyynmtriguing time-dependent
problems still await a solution. To name but a few examplese Tunneling resonances in
biased double wells suggest a promising procedure of giigasingle atoms experimentally;
but also periodic modulations of the wells or nonadiab#ifiaamping the central barrier may
reveal much new insight. This readily extends more compgkttice-type setups or higher
spatial dimensions, which would be numerically far morellehging, but also equally richer
physically. An open question as of yet is the link to othemarsuch as quantum information,
which may help illuminate longstanding issues from a fewlybperspective.

While we have only considered repulsive short-range iotemas, currently efforts are
underway to study attractive interactions in few-bosortesys. On the other hand, it may
be interesting to explore the effect of long-range, e.@oldir interactions, which are nontrivial
even in reduced dimensions. Finally, an up-and-comingdfmesearch goes beyond the simple
Bose gas — either by studying mixtures of different bosomid/@r fermionic species, or via
including spin degrees of freedom. A first step into thatatiom is under preparation, and it
surely will be part of a longer journey.



Appendix A

Simple models for double-well
potentials

Nothing gives such weight and dignity to a book as an appefidixRK TWAIN)

In this appendix, we shall review some basic propertiedoafble-wellpotentials, i.e., single-
particle potentiald/(z) characterized by two minima (for simplicity assumed to basetric
about the origin,+x() separated by a sufficiently high energy barrier. This is l@men-
tary model for the abstract situation of two distinct syssehmt are somehow coupled, and it
represents the simplest nontrivial case of a (finite) lattecs commonly regarded in solid-state
physics. Borrowing from this picture, we will discuss thengeal structure of the single-particle
problem (Sec. A.1) and, based on that, proceed with a simale/shody description, the two-
site Bose-Hubbard model (Sec. A.2).

A.1 One-body problem

To get some intuition about the physics of a double-wellaysfand, by extension, multi-well
potentials), we shall first resort to a solvable toy model damonic well split by a central
o-function barrier. Equipped with this insight, we will makewo-mode expansion valid for
double-well potentials of rather arbitrary shape.

A soluble model

Consider the following archetype of a double well: a harmdrap split by a central barrier
shaped as a delta peak [33]:

U(x) = 5o + ().

This model has the appealing feature that it recovers thbldewell model used in this thesis

in the limit of an infinitely narrow barrierny — 0, and thus shares many basic features. There
is yet another graceful property: We have already diagpedlihe corresponding one-body
Hamiltonianh(p, z) = $p® + U(x) in Sec. 1.4.3, in the slightly different context of treda-

tive motion of two atomsh,..(p,r) = p? + %7“2 + ¢é(r), interacting via a contact potential.
Therefore, we can simply recast Egs. (1.25-1.26) in termsafr/\/2 , h = g//2. For the
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evensolutions, this yields

dule) = e U (‘3 %””2>

v(h) € £,710) : fulv) = f(%”)

while the odd eigenstates are simply given by the harmosodiator statesps,+1 = uan+1
(n € Np) for any barrier value.

From this viewpoint, the process of continuousplitting a harmonic trap into two isolated
wells (h — o) corresponds exactly to the relative motion of two partickhile increasing
their interaction strengthg — +oo (and likewise for attractive interactions, not considered
here). It is instructive to make that analogy explicit:

e To begin with, theodd states are completely unchanged by the central barriess i$hi
obvious since the barrier is supported solely: at 0 (cf. Figs. 1.1, 1.2), where the odd
states are trivially zero. That relates to the problem ferd#tative motionr, where odd
parity translates to permutationahti-symmetry, reinstating the common wisdom that
fermionsdo not feel contact interactions.

e At h = 0, theevenstates simply coincide with the harmonic-oscillator alsity, ) =
usn,. AS h is increased, they acquire a dipat= 0, signifying their expulsion from
the central-barrier region. As — oo, this notch reaches down t,(0) — 0. More
generally, in that limit the quantum number tends to the h@tterodd value:

lim v(h) =2n+1,

h—oo

while
hllrrgo bu(ny = Augny1, A(z) =sgn(z).

From the perspective of the pertingstative problem, this is nothing but thiermion-
ization of bosonic states for infinite repulsion.

Connecting the dots, we wind up with the following pictures e ramp up the central barrier
h, the initially equidistant harmonic spectrun = v + % gradually acquires the structure of
doublets These consist of (i) the even states, which are more and nocded at: = 0 and
(ii) the (unchanged) odd oscillator orbitals. Both becoregaherate in the limik — oo, at
energies, =n + % (n € Np), and are separated from the next level pair by theyap= 2.

Two-mode description

The essence of the toy model treated above is as follows:i§remough barriers, the double-
well spectrum arranges in isolated doublets, correspgniipairs of anti-/symmetric orbitals.
This comes as no surprise: After all, in the strict limit ofiafinite barrier, the whole system
decouples into twasolatedsubsystems “L” and “R”, whose configuration space is givdalgo
by {z < 0} ({z > 0}, respectively). Itis only for finite barriers that these tar@ somehow
coupled, which eventually leads to tunneling between tlewells.
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We will now put the cart before the horse and extend the olasiens above to an expansion
applicable to generic two-well systems. To this end, letdepathe notation a little. Rather
than counting all eigenstates= 0,1, ..., consider individuabandsg = 0,1, ... consisting
of a pair of symmmetricdg = 0) and antisymmetricaz = 1) eigenstatesa;b,(lg). Let us now
look at afixed (and well-isolated) band, and consider the orthogonal transform

1

Ws=L(R) = 5 (o £ 1),

yielding unsymmetric states which are ntaalizedin the left (right) well, respectively.
We will now expand the one-body Hamiltonidtp, 2:) of a general double well in terms
of these two localized orbitals and parametrize it by

e (wslh|lws) = € + ¢/2 the energies pertaining fsolatedwells, where the left site may
have an energy offset

e (wr|h|lwgr) = —A/2 the coupling between two wells.

Then a straightforward diagonalization yields

bac X A-wp+ £ A(Q)]wr (a=0,1)
€ac = €EF %A(g)

whereA(s) = VA2 + ¢2 is the energy gap in the presence of the tilt.

In the symmetric case (= 0), the states are simply given by the (anti-)symmetric atbit
$a,c=0 X wy, = wr, With the usuatunnel splitting

€1,0 — €0,0 = A(O) = A.

As we switch on a tilt > 0, parity is broken and the once delocalized states breaktap in
one decentered on the left;() and one on the rightg) as¢ > A, in which case the energy
approaches that of the isolated subsystems,~ € F ¢/2. The above picture holds for each
band individually, provided the bands are well separatee. e(3+1) — &),

A.2 Many-body problem

Let us now apply the above two-mode expansion to the Fockesggresentation of the many-
body Hamiltonian:

1
H =" "(alh|b)ccy + 5 > (ab|V]ed)clcheace,
a,b ab,cd

"We use the terrbandin reference to the language of gene$asite lattices with periodic boundary conditions
known from solid-state physics [107]. There, the generhltems ¢>ff) areBloch wavegparametrized in terms of
the conserved quasimomentuymwhile the orbitalsw!” localizedon each sites = 1,...,S are termedNannier
functions. However, here we shall focus on two wels £ 2), and we are not restricted to periodic boundary
conditions.
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where the single-particle basis is ndwy = |3, s) = w@L r- With the nomenclature above,
and for simplicity focusing on the symmetric case, thisgsel

H= ﬁz £ONB) _ ; AORe (cfen ) + ; ;d (ab|V |ed)el el cqce.

Now the (two-modeBose-Hubbardnodel makes the following assumptichs:

1. Only the lowest bang = 0 is included above. For the ground state, this is plausible if
the energy to add a particle is small compared to the interlgap,;: < ) — (),

2. Only on-site interactions are considered, i.e., of aéraction integrals onI;VL(E)LL =
Vé%) rr =: U is retained. This is justified in the limit of an infinitely Higoarrier,
when thedensity overlaetweenwy, andwg tends to zero.

Obviously, the Bose-Hubbard model requires very small@lnoupling and sufficiently weak
interactions, so that virtual excitations of higher bands strongly suppressed. Under these
premises, though, this buys us the charmingly simple magetd a constant shift)

H = —AORe(clc —I—EU(O) cl 2032
(den) + 50 3 ()
(0)
H/UO© = —%Re(cicR)+ ;L:R%NS(NS—l).

This way, the whole Hamiltonian can be parametrized via #i® A /U0 between the
tunnel coupling and the on-site interaction energy. It Byda read off the two limiting cases:
For negligible interaction energA(?) /U(®) > 1, delocalized eigenstates are favored, which
are simply number states in the (anti-)symmetric orbitaidaBy contrast, for dominant on-
site interactionsA() /U0 « 1, N,_1,r becomes a conserved quantity, so eigenstates tend to
localize on each site.

A more elaborate discussion on this can be found in Ref. [@h]ch considers the two-
mode model in the hermitian operator basis

Ji = % (c};cR — CTLCL) , Jo=—Im (c};\cL) , J3=Re (CRCL>

satisfying the angular-momentum algeta, J3| = icg,J. This leads to a Hamiltonian of
the form (up to constants)
H=-AOJ34200 ;2

2The general Bose-Hubbard model [108, 109], and likewisdrtiitional fermionic Hubbard model [107], is
derived in a totally analogous way, with the only additioassumption that only nearest-neighbor tunneling occurs,
which is trivial in a two-site system. The extension to ady dimensions! > 1 is straightforward.
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List of abbreviations

The following list contains somabbreviationsrequently used in this work:

nD n-dimensional
CM Center of mass

DVR Discrete variable representation, a method to represeve Wwiactions and operators in
a discrete basis

HO Harmonic oscillator

MCTDH Multi-Configuration Time-Dependent Hartree, a wave-pagkepagation method
(cf. 2.3)

Moreover, some mathematicabtationsare summarized below:

e @: direct sum

®: tensor productdlso: direct product)

(4): binomial coefficient of: overb

(f *g)(z) = [ f(x — y)g(y)dy: convolution of two functionsf, g

rT—00

~, ~  etc: denotes asymptotic equivalence

e a=(ay,...,ay) € Z": multi-index, with the following notations for “absolutae”
la| := Zj\f:l a;, factoriala! = []; a;!, exponentiationX® = jx;j and derivative
o
0* =TI, (%) "for X = (21,...,2n) € RN
® J,(z) = ﬁe‘ﬁ/?‘#: normalized Gaussian of width

e Hy: N-particle Hilbert space
e |n) =|Ny, Ny, ...): occupation-number (Fock) state
e Re(A) = (A + Af), Im(A) = (A — A"): (anti-)hermitian operator decomposition

e O(-), 6(-): Heaviside’s step function, and Dirac’s ‘delta functionin{ess otherwise
noted)

e try (-): (partial) trace over some subspace

o uy(z) = Hy(x)e /2 /\//m2%a): harmonic-oscillator eigenfunctions
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