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Abstract. This thesis presents a statistical imaging theory for photo-activation localization mi-
croscopy with independently running acquisition (PALMIRA). In this type of sub-resolution mi-
croscopy the switching of the fluorescence capability of macromolecules reduces imaging to the
high-precision localization of individual fluorescent molecules. The point-spread function and the
imaging equation of a PALMIRA imaging system are calculated and stochastic expressions for the
measurement time and the confidence level of the image as a function of the spatial resolution are
provided. Different localization schemes like astigmatic imaging, multi-channel defocus imaging,
4pi imaging and a multi-point setup using photo-diodes are analyzed. The theory for multi-color
and polarization-resolved measurements is addressed and estimators for data evaluation procedures
are provided. The role of background noise in producing artefacts is studied. Finally, it is assessed
whether the quality of images can be augmented by a suitable deconvolution procedure.

Furthermore, stochastic methods are applied to solve a couple of persistent problems in fluores-
cence correlation spectroscopy (FCS). The development of computational methods for the simulation
of FCS experiments necessitates the analytical description of the architecture of a multiple-lag-time
correlator that is used to estimate autocorrelations from intensity time traces. Recently, FCS has been
combined with stimulated emission depletion (STED) focal volumes. The general phenomenology
of STED-FCS correlation curves is studied as a function of the STED beam intensity. It is shown
that the quality of a measurement is mainly determined by the fraction of signal originating from the
focal plane. Then, an improved fit model taking into account the exact spatial dependency of inter-
system crossing rates is presented and tested on synthetic data. Finally, the influence of second-order
correlations among the points of the FCS curve on the determination of fit parameters is studied.

Analytical results are provided wherever possible. Otherwise, Monte-Carlo computations are
performed.

Zusammenfassung.In dieser Arbeit wird eine statistische Theorie zur Bildentstehung in der
PALMIRA-Mikroskopie vorgestellt. Die Schaltbarkeit der Fluoreszenz passender Makraine ekt
den Effekt, mikroskopische Bildentstehung auf das Lokalisieren von Einzeliilelekutickfihren
zu kdnnen. Dabei kann die Abbesche Beugungsgrémeswunden werden. Die Punktabbildungs-
funktion sowie die Bildgebungsgleichung werden berechnet. Zudem werden stochastiscliekeaisdr
fur die Aufnahmezeit und die Konfidenz des Bildes als Funktionaentichen Aufdsung hergeleitet.
Verschiedene Methoden zur dreidimensionalen Positionsbestimmung von Fluorophoren - astigma-
tische, defokussierte und 4pi-Abbildung - und ein zweidimenionaler Mehrpunktaufbau aus Photo-
dioden werden analysiert. Die Theori@ Mehrfarben-Messungen undrfpolarisationsaldngige
Mikroskopie wird entwickelt und die Rolle von Hintergrundrauschen bei der Objekterkennung wird
diskutiert. Eine Entfaltungstrategie wird vorgestellt.

Weiterhin werden stochastische Methoden eingesetzt, um Probleme auf dem Gebiet der Fluores-
zenz-Korrelations-Spektroskopie zu behandeln. Die Entwicklung von numerischen Verfahren zur
Simulation von FCS-Experimenten erfordert es, die Theorie eines multi-lag-time Korrelators ana-
Iytisch zu formulieren. FCS wurdellkzlich mit den gbssenreduzierten Fokalvolumina der STED-
Mikroskopie kombiniert. Die Plmomenologie von STED-FCS Korrelationskurven wird in Abig-
keit von der STED-Intensit studiert. Hierbei zeigt sich, dass die Qualder Messung entscheidend
durch die Gosse des Signals aus der Fokalebene bestimmt ist. Weiterhin wird ein verbessertes Fit-
modell fur Ubergangsraten in die Triplet-Mannigfaltigkeit, das den exakten geometrischen Fokalver-
lauf beficksichtigt, vorgeschlagen und an synthetischen Daten getestet. Schliesslich wird untersucht,
inwieweit die nicht-diagonale Kovarianz von FCS-Korrelationskurven das Fitergebnis von Standard-
verfahren verdlscht und ob ein detaillierteres Fitverfahren hier Abhilfe schaffen kann.

Wo immer noglich werden analytische Resultate hergeleitet, andernfalls empirische Monte-
Carlo-Rechnungen verwendet.
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Introduction

Statistical methods have gained a constantly increasing importance in the quantitative sci-
encesl[l] 2]. Both exact analytical results from probability theory and stochastics, as well as
numerical computation abilities, have found widespread applications.

High-resolution fluorescence microscopy techniques overcoming Abbe’s diffraction bar-
rier [3] are no exception to this rule. The statistical aspects are more decisive the smaller
the size of the ensemble of recorded fluorophores becomes because ensemble averaging is
gradually eliminated [4]. The extreme case consists of just a single isolated fluorescing
molecule. A convenient way to activate single molecules out of dense ensembles of large
size is the use of fluorophores with a fluorescence transition that can be switched on and off
by light. Originally, this type of molecules has been introduced into fluorescence imaging
in the realm of stimulated emission depletion microscopy (STED)![5, 6] while recently it
has turned out that the switching of fluorophores permits to reduce imaging to localization
of individual molecules. A new type of sub-diffraction microscopy that sequentially reads
out stochastic sequences of single molecules has been developed over the last two years [7].
Thereby, the image is built up by a histogram of individual fluorophore positions that are re-
trieved with sub-diffraction accuracy from non-overlapping images of single molecules that
are activated at constant rate at random positions. The method has been denoted as photo-
activation localization microscopy with independently running acquisition (PALMIRA). It
involves a multitude of inherently stochastic variables: the random positions of activated
molecules, delivered photon numbers, detected numbers of photo-electrons, recorded back-
ground noise levels and the total number of times a molecule might be switched before it
finally bleaches irreversibly. Also, the creation of the image as a histogram of absolute fre-
guencies from a limited number of statistical samples is genuinely stochastic. An imaging
theory for PALMIRA microscopy should encompass an imaging equation, a point-spread-
function (PSF), a resolution measure, some measure of the degree of confidence of the image
obtained after a finite measurement time and a quantitative treatment of generalizations like
multi-color imaging. In the first part of this thesis, such a statistical imaging theory for
PALMIRA microscopy is presented. This theory has provided foundations for a number of
successful experiments [7,/8, 9, 10].

In PALMIRA microscopy the molecule under consideration is assumed to be fixed over
at least a couple of successive image frames. This assumption is abandoned in fluorescence
fluctuation techniques like fluorescence correlation spectroscopy (FCS). There, the fluores-
cence time trace originating from molecules diffusing through an excitation spot and possibly
undergoing photo-chemical transformations is subjected to an autocorrelation analysis. Fit-
ting the resulting correlation curve yields the time constants of these processes and geomet-



rical parameters like the size of the fluorescing ensemble. FCS is a well-established method
[11]. However, some new developments necessitate further theoretical treatments. Firstly,
it has almost always been assumed that the focal volume might be modeled by a Gaussian
shape. The Gaussian model implies certain interpretations of the correlation curve of FCS
like the one that the amplitude is inversely proportional to the size of the volume of excited
molecules. Here, it is assessed to which degree this interpretation can be maintained for FCS
measurements using the differently shaped STED focal volumeé [12, 13]. Secondly, in many
data interpretations the spatial variation of photo-chemical transformation rates has been as-
sumed to be constant. This is not the case in reality where, for example, the inter-system
crossing rate between the fluorescent singlet system and the non-fluorescent triplet state of
a molecule is strongly dependent on the shape of the excitation beam [14]. An optimized fit
model is needed. Thirdly, fitting the FCS correlation curve is prevalently done by using the
Gaussian least-squares procedure. This assumes that different points of the correlation curve
are statistically independent. The assumption is questionable in real applications since the
correlation curve at different lag time values is estimated from the same data trace. A better
noise model taking into account the coupling between different lag times leads to a higher
guality of the fit results. The second part of this thesis is devoted to the study of these topics.

In the following the thematic background is presented in more detail and the content of the
thesis is outlined briefly.

PART I. The wave-nature of light leads to diffraction. For decades this has been viewed as an
obstacle to the ability to discern different emitters. In a classical work Abbe calculated the
resolution barrier, the lowest distance at which particles could be discerned in a lens-based
instrument[[3]. Following Abbe the minimum lateral distanggat which two objects might

still be discerned by an imaging system reads

A

" Onsina’

- (0.1)

The value\ denotes the wavelength of the lightthe refractive index and the half-aperture

angle of the system. Since Abbe’s work, many efforts have been undertaken to lower the
limit r.,,. These methods can be separated into two classes. The first class which will be
termedconservativen the following tries to achieve the aim by optimizing the values of

A, n anda. Typical representatives are x-ray [15] and electron microsdogy [16]. The for-
mer uses electromagnetic radiation of a wavelength 1..5 nm, the latter electron matter
waves with a de-Broglie wavelength af ~ 10~2 nm. However, these methods are prob-
lematic in biological imaging since they require fixation procedures that a living cell could
not survive. 4pi-microscopy making use of two opposed lenses augments the aperture angle
« and thereby mainly increases axial resolutionl [17]. Of course, the aperture cannot exceed
sina = 1. Furthermore, the simple method of employing the embedding medium with the
highest refractive index should be mentioned. In contrast to these conservative methods are
the methods calledrogressivan the following. These try to create experimental schemes
that add further parameters to Equation](0.1). The first far-field method of this class has been
STED microscopyi[5, 18, 19]. In this technique a fluorescence microscaope [20] is equipped
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with a second, red-shifted laser beam that features a zero intensity node in the center of the
beam. This is achieved by a characteristic phase retardation using a phasé mask [21]. As
a result, the fluorescence volume is depleted by stimulated emission at the outer regions of
the doughnut around the zero value. Such a reduced-size optical 'sensor’ is then scanned
across the sample. Although the STED beam is diffraction-limited the resulting focal vol-
ume may be much smaller in width than the classigaldue to the high nonlinearity in the

rate equation kinetics of stimulated emission [22]. The parameter governing the resolution
is the ratio{ = Isep/ I Of the STED beam intensitf, and the saturation intensify, that
describes the strength of stimulated emission. The resulting resolution equation is then of

the following form [23]
A 1

Tmn = onsin VI+(¢
It is seen that by raising the STED intensity, arbitrarily low values gfcan be reached.
Typical values can be as low as, ~ 20 nm [24]. The maximum achievable resolution
depends crucially on the photo-fatigue properties of the dye with respect to the STED beam
[25]. It should be mentioned that STED is just one realization of a wider category of re-
versible saturable optical fluorescence transitions (RESOLFT) methods [4] that rely on a
dual-state system with a detectable statend an inactive stat®, for instance a complex
macromolecule featuring a switching transitioh [6] or a ground-state and a triplet state [26].

The switching of molecules also lies at the heart of a second class of progressive sub-
diffraction methods. Thereby, a sample, possibly densely packed with switchable fluo-
rophores, the conventional images of which would overlap if they were activated all at the
same time, is stochastically activated at only a few positions that are separated by a dis-
tance exceeding the classiegl. Then, the molecules are localized and their center position
is stored. This process is repeated until enough position estimates have been calculated to
estimate the true molecule distribution from these statistical samples. The main physical in-
sight is that molecular switching can be used for a temporal un-mixing of dense samples. In
contrast to STED, where the number of photons is stochastic and the scanning determinis-
tic, PALMIRA features both a stochastic photon number and a stochastic molecular 'sensor’
position.

The fact that sub-diffraction accuracy of position estimates can be achieved by deter-
mining the center-of-mass of single-molecule images containing many photons was already
noticed by Heisenberg 80 years ago when he calculated the momentum transfer in a quantum-
mechanical analysis of the optical measurement process [27]. The task has become techni-
cally feasible since the advent of high-quality CCD cameras in the 1980s.

PALMIRA has some predecessors. Temporal un-mixing by irreversible bleaching was
proposed in 2004 [28]. However, with bleaching the image frames are of different quality
since the number of active molecules decreases with time. The first image frame contains
much more active fluorophores than the last. Hence, the first frames have the tendency to be
useless for sub-diffraction localization of single molecules. Subtracting later image frames
from earlier ones is possible but is strongly degraded by background noise. The original
idea of stochastic temporal un-mixing by molecular switching is credited to Eric Betzig
who, in 2006, termed the method photo-activation localization microscopy (PALM) [29].
Hereby, every frame contains the same number of active molecules on average. Soon after-

(0.2)
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wards, several different groups proposed very similar methods such as fluorescence photo-
activation localization microscopy (FPALM) [30] and stochastic optical reconstruction mi-
croscopy (STORM)[[31]. However, the acquisition time of the experiment can amount to
up to 10 h which requires extremely stable samples. The problem has been solved by in-
troducing the concept of asynchronous activation where molecules are not only activated at
the beginning of an acquisition frame but constantly with a certain rate [7, 8]. This leads
to typical acquisition durations of a few minutes. In PALMIRA microscopy the entry and
the exit point of newly activated molecules are stochastic while in PALM and STORM only
the exit point is stochastic while the entry point is deterministic. Multi-color STORM [32],
multi-color PALM [33] and a generalization to three dimensians [34] have been published in
2007 and 2008, respectively. However, these are experimental considerations and no theoret-
ical foundations are provided. For instance, multi-color data acquisition is done sequentially
for each color there and not like it is considered in this thesis in parallel for all colors with
the distinguishability of molecules relying on the difference in emission characteristics.

In PALMIRA the photon number effectively follows a geometric distribution whereas
the position is a random number drawn from the molecule distribution under consideration.
The photon number is the quality index giving the credibility level of each position esti-
mate, much as the STED intensiky, is the fluorescence ensemble size index in STED
microscopy. Mathematically, PALMIRA is equivalent to a decomposition of the underlying
molecule distribution into wavelets of stochastic widths and positions [35]. The basic wavelet
is the single-molecule diffraction pattern, the Airy-function or its generalizations. The de-
tection mode of PALMIRA is called stochastic readout as opposed to targeted readout of
scanning techniques like STED [4]. Stochastic readout displays the property of importance
sampling, since it addresses different regions of space directly proportional in weight to the
number of molecules residing in the volume in question. In PALMIRA only such events with
a photon number exceeding a certain threstiolere accepted. The photon numbers above
threshold feature a shifted geometrical distribution. In this thesis the resolution formula for
PALMIRA microscopy is derived from such considerations and reads

o (@)
" Insina N+1 ’

T (0.3)

Here, N denotes the mean photon number of a moledis,the total photon number thresh-

old that each event is subjected to ahdenotes a special function, Lerclpstranscendent,

which describes the stochastic spread that still remains in the accepted photon values. The
function ¢ plays the same role in PALMIRA microscopy as the Airy function in classical
microscopy or the depletion doughnut in STED microscopy. Again, it is seen that a new
dependency on the photon numBéand on the lower quality bourifl is added to Equation

(0.7). By inspectingy it is found that the resolution can be arbitrarily squeezed down by
increasing the thresholf or the photon numbew.

The text of the first part is organized as follows. In Chapter 1 the imaging process of
PALMIRA microscopy is formulated mathematically and the important parameters are de-
fined. A proof-of-principle Monte-Carlo simulation for dual-color PALMIRA imaging is
presented. Algorithms for data generation and evaluation are described. Chapter 2 is de-
voted to the calculation of the effective point-spread function and the imaging equation of
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PALMIRA microscopy. The resolution equation is derived. Like all sub-diffraction methods
developed so far, PALMIRA gains spatial resolution at the cost of temporal stability of the
sample. This effect is quantified by calculating an expression for the measurement time as
a function of the recognition threshold. Then, it is assessed to what degree an image can be
termed credible after a finite measurement time. Chapter 3 studies the quality of different
localization algorithms for single molecules with a focus on full three-dimensional position
estimation. Different experimental setups that include multichannel defocusing, astigmatic,
4pi and multi-point imaging using photodiodes are investigated. The analysis employs the
basic statistical tool of Fisher information as well as empirical simulations. Chapter 4 dwells
on the recognition of objects. Itis assessed in what way pixel thresholding methods influence
the frequency of recognition of objects. The full probability for an event to be recognized
in the presence of background noise is derived. Multi-color or polarization-dependent mea-
surements add a new degree of freedom to the analysis. It is shown that three- or more
color imaging is possible with only two channels and a very simple but efficient estimator
is presented. The accuracy with which the polarization of the emitted light may be deter-
mined is investigated. The last Chapter 5 applies Wiener filtering to the task of deconvolving
PALMIRA images. In a classic PALMIRA image event positions are tabulated disregard-
ing their photon number. This neglects available information. Events with a higher photon
number have a higher level of credibility and should be privileged over events with a lower
quality in the final object reconstruction. This is accounted for by deconvolving each event
with an individual PSF depending on the photon number.

PART Il. Fluorescence correlation spectroscopy is a technique that uses a correlation anal-
ysis of the fluorescence time trace to unravel molecular dynamic¢s [11]. These dynamics
can stem from different processes like translational and rotational diffusion, conformational
changes or photochemical transitions between states of different molecular brightness. The
method is closely related to dynamic light scattering methods in solid-state physics [36] and
was initially applied to investigate the binding of molecules onto strands of DNA [37]. By
combining FCS with confocal microscopy a variety of applications and extensions have been
achieved|[38].

Monte-Carlo simulations were originally developed in the field of statistical mechanics
in order to compute partition sums of spin systems [39, 40] but have gained importance in
almost all areas of science where the system is too complex to permit an analytical solution
but sufficiently elementary to be transformable into algorithmic form. Monte-Carlo simula-
tions in FCS are well established [41] 42]. The main hurdles here are the correct treatment of
boundary conditions, the calculation time and the correlation algorithm. Linear correlation
is easily done by Fourier transformation but causes severe memory problems if a large range
of lag times is to be covered. A way out of this dilemma is multiple lag time correlation
[43,/44] that uses a progressive correlator bin size at higher lag times. Although the principle
has been stated in the literature and commercial systems are available a comprehensive math-
ematical treatment that provides clear formulas for all computed variables is still missing and
is therefore provided here.

The combination of FCS with STED focal volumes is conceptually new and has been
investigated experimentally for the first time with the fluorophore MR121 and the use of a



Xiv

circular phase mask which leads to a strong axial resolution incriease [12]. Even more recent
work focuses on the application of STED-FCS to two-dimensional membrianes [13]. There,
new insights are expected when the size of the reduced focal volume becomes comparable
to the particle size and when it is no longer averaged over nanoscale dynamics like trapping
of molecules.

Assuming a Gaussian-shaped focal volume leads to fit artefacts if the real focal volume
does not display this shape. This is already the case for a simple diffraction limited focal
volume and has been investigated experimentally [45]. A similar effect follows from the
assumption of spatially constant inter-system crossing rates. In this case too, wrong assump-
tions about the spatial shape of the excitation volume lead to systematic errors in the fit
results for inter-system crossirig [14] and photo-bleaching ratés [46]. In practice, it has been
tried to correct for this by replacing the excitation profile by a constant profile with smaller
height. Here, it is shown that this still causes characteristic errors, especially in the case of
pulsed excitation.

Once the question of the fit model has been assessed it is necessary to inquire whether the
noise model is correct. The fluctuation of the correlation curve as a function of the molecular
brightness and the measurement time has been studied thoraughlyi[47, 48]. Higher-order co-
variance on correlation curves has been considered in dynamic light scattering in connection
with the relaxation time spectrum [49]. A multivariate fit model has been proposed [50, 51].
However, the concrete situation of FCS with a fluorescence signal being degraded by diffu-
sion, blinking and detection noise has either been neglected or the study did not investigate
the quality of fit results and merely described the correlation.

The text of the second part is organized as follows. In Chapter 6 the mathematical and the
algorithmic framework is outlined. The correlation curve is expressed as a double-integral
over brightness functions times a propagator. The two special cases of a single diffusing par-
ticle and a fixed particle undergoing inter-system crossing are treated. The algorithm for a
Monte-Carlo simulation of the molecular ensemble of FCS is described. There, itis of impor-
tance to construct the right boundary conditions in order to suppress typical artefacts. Then,
a mathematical description of multiple-lag-time correlation and its algorithmic implementa-
tion is provided. In Chapter 7 the developed computation capabilities are applied to FCS of
particles diffusing in three dimensions through a STED focal volume. Thereby, emphasis is
placed on the dependence of the focal volume on the STED intensity and on possible artefacts
due to non-correlated background for the case of non-ideal STED point-spread-functions. It
turns out that artefacts could be minimized by working in two dimensions only. In Chapter
8 a new fit function considering the exact spatial dependency of inter-system crossing rates
is presented. The model is tested on Monte-Carlo generated FCS data for the fluorophore
Rh110 in continuous-wave and pulsed excitation mode and is shown superior to the standard
procedure. In Chapter 9 the assumption of non-correlated noise on autocorrelation curves
is relaxed and a generalized multivariate fit is formulated. First the covariance is estimated
from an ensemble of correlation curves. Then its effect on fit outcomes is examined using ar-
tificial correlation data following exactly the assumed statistics and more realistic data from
Monte-Carlo computations. Again the more sophisticated model yields results of higher
quality.
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METHODOLOGY. All problems treated in this thesis have the same underlying structure:
they are estimation problems. This applies equally to whether one searches for the proba-
bility of a single-molecule image given a molecule position or whether one aims at under-
standing the dependency of the correlation curve on the STED intensity. The problem is
completely formulated once the conditional probability

p({=}{y}) (0.4)

to obtain the datdx} provided the parametefg } are known is specified.
(i) Often one is interested in the mean d4tig resulting from certain parameters. If
p({z}|{y}) is complicated, the transition

{y} — {2} (0.5)

will be performed by a computer simulation. Otherwise expectation values are calculated
directly by integration or summation.

(i) Equally often, some measured ddta} is given and the parameters are to be esti-
mated. The transition

{2} — {y} (0.6)

is often performed as a maximum-likelihood argument.

A large variety of different effects considered in this thesis is describable by basic dis-
tributions like the binomial, the multinomial, the Poisson and the Gaussian distribution and
associated distributions such as waiting time distributions. Further information can be found
in canonical texts on probability theory and statistics [52, 53].
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1 The Principles

In the subsequent the measurement protocol of PALMIRA microscopy is formulated in math-
ematical terms and the method is exemplified with a simulation example. At first, qualita-
tively different steps of the experimental procedure are isolated. Notations are defined. Sta-
tistical models corresponding to the experimental steps are identified. Then, the PALMIRA
method is cast into algorithmic form and the results of a Monte Carlo simulation for dual-
color PALMIRA imaging are presented.

1.1 Description of the Imaging Process

Classical fluorescence microscopy relies basically on a single fluorescent electronic transi-
tion, ensemble averaging of the signal over the focal volume and deterministic scanning of
the sample space. In contrast, PALMIRA microscapy [29,/ 30/ 31, 7] requires at least two
sufficiently independent molecular transitions, works properly on single molecules only and
entails stochastic scanning.
The molecular design of the fluorophore used for PALMIRA usually follows a scheme

like in Figure [1.1): an optically accessible switching transition (A) enables a fluorescent
readout transition (B). For later calculations each transition is characterized with the mean

fsw
D S F kfl N | T
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Figure 1.1: The structure of the state-space of PALMIRA fluorophores. The molecule is required to possess a
switching transition (A) which is used for scanning and a fluorescence transition (B) which is used for readout.
S denotes the mean number of switching cycles until irreversible photo-bleachNirige mean number of
photons until spontaneous return to the dark state. The former determines the sampling degree of the image,
the latter its resolution. The excitation rateand the lifetimes- are indicated.

number of associated cycles before its deactivation, the lifetimes and the excitation rates.
N denotes the mean signal photon number until switching back spontaneously to the non-
fluorescent stateS is the mean number of switching cycles until the molecule undergoes
irreversible photo-bleaching., is the lifetime of the on-state (F) of the switching transition,
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7, is the lifetime of the excited fluorescent state k., (r) is the excitation rate of the swigch-
ing transition and:, (r) that of the fluorescence transition. The mean number of phdtons

is given by
N 7 7_SW

N=—>=

T + 1/kfl(r)
i.e. the mean number of photons that can be observed equals the mean number of fluores-
cence cycles per lifetime of the fluorescent state $H¥ given independently.

A typical PALMIRA experiment is composed of a sequence of cycles of which Fig-
ure (1.2) sketches the temporal structure. A constantly running activation laser leads to a

(1.1)

Figure 1.2: Temporal diagram for PALMIRA cycles. New molecules are constantly activated at random
positions by an activation laser (red). The fluorescence of the activated molecules is recorded on a number of
camera frames (blue). The length of the readout interva} isAfter having contributed a random number of
photons to the image frames the molecules switch back spontaneously or undergo bleaching. The entry and
exit points of fluorophores are random.

stochastic activation of the fluorescent state of random molecules. The fluorescence transi-
tion is probed over several intervals of len@ihand the resulting image frames are recorded.
After having contributed a random number of total photons the molecules switch back to the
dark state spontaneously. The entry point and the exit point of new molecules is stochastic
in PALMIRA microscopy. It is important to notice that the mean numbéfsand S, do
measure the fatigue properties of the transitions, the total lifetimes in units of correspond-
ing cycles. In contrast, the actual occurrence of the switching transition or the fluorescence
transition are determined by the excitation ratg$r) and k,(r), respectively. These are
determined by the laser power, the molecular cross-sections and the pulse length. A simple
rate equation analysis yields the following probabilities for activation of either the switching
transition,P,,(r), or the fluorescence transitiofi,(r), during a laser pulse duratiaT’

P.(r) = 1—exp[—ka(r)AT] (1.2)
Pi(r) = 1—exp[—ky(r)AT].

Uniform excitation facilitates the image reconstruction but is not strictly mandatory.
With sufficient knowledge of the functioris,(r) andk,(r) sampling inhomogenities could
be corrected for in an adequate way. It is merely necessary to kejain # 0 andk;(r) # 0
in regions where fluorophores may exist. In order to simplify the analysis these functions
are assumed to be made as spatially constant as possible by physical preparation of the ex-
periment, e.g. uniform illumination or scanning schemes. This achieves a homogeneous
sampling of the configuration space of molecule positions. Also, the excitation probabilities
have to be low enough to make multi-molecule events with overlapping diffraction patterns
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sufficiently improbable in order for a single-molecule analysis to be applicable. Image seg-
ments with considerable overlap of single-molecule optical patterns will be called higher-
order events in the following. Data with non-negligible amount of higher-order events is not
worthless as such, but the mixing of sources inevitably leads to a loss of information.

A PALMIRA experiment may be subdivided into the following parts.

(i) Activation of molecules. Whereas the number of activated molecules follows a bino-
mial distribution the distribution of their positions is multinomial. This may be justified as
follows. A physical sample is a distribution 8f molecules at one, two or three-dimensional
positions{r;},i = 1..M. Since the spatial extent of molecules is far below resolution lim-
its the molecules might be considered as point-like objects leading to the subsequent object
fluorophore distribution,

LM
o(r) = i Z d(r —r;). (1.3)

The excitation of the switching transition in activation cygleads to a stochastic activation
of molecules at random positiods? } ,i = 1..E; with the number of activated molecules
E,; being a random number following the distribution

M.
p (5, M, P,) = ( )PEPME (1.4)

E

J

Here M, is the number of molecules which could still be switched and have not undergone
photo-bleaching, yet. In other words, the stochastic activation sites of g’:yc{lej}, are
a random sample without double occurrences of stochasticigizrut of the set of fixed
fluorophore positiongr; }.

(if) Total number of photons per molecule during the active period. The scheme of Figure
(1.7) featuring a binary decision between two alternatives+£ £ or S, < S;) allows the
use of the binomial model also for the modeling of the switching and the fluorescence tran-
sition. For instance, the photon numbémuntil switching off is a random variable following
a geometric distribution

NN
PIN) = iy = Pl — o), (1.5)
with the mean photon numbé¥ implying a certain probability
por = (L+ N)™* (1.6)

of switching off spontaneously. The geometric distribution is simply the waiting time dis-
tribution for this process to occur for the first time. From Equatjon| (1.1) the probability to
switch back from F to D spontaneously is given by

Dog = Th + 1/kfl(r)
o T+ ]-/kfl(r) + Tsw'

Likewise, the dichotomy of the switching process leads to a geometric distribution of the
number of switching cycle§ a molecule can support until irreversible photo-bleaching.

(1.7)
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(iii) Observed photon numbers per frame. Once the total number of photons being emit-
ted by the molecule before it switches off is given it is still not clear which fraction of it is
recorded in a single image frame. If the frame tifijas long all photons will be read-out
during one frame whereas if it is short the photons will be distributed among several frames.
Moderate frame times are described by an interpolation between these two extreme cases.
The photon numbelV recorded per frame is then distributed as

o= | {ppwwﬂ) T (1 - ;pm(nrfvﬂ)) } a9

Here, the Poisson distribution [52] with meanms defined by
1
Pooi(12|\) = EA%—A. (1.9)

A study of Equation[(1]8) interpolating between the geometric and the Poisson distribution
can be found in the appendix. The main point in the derivation is that after having radiated
N photons there can be two processes: either the frame is filled or the frame is not yet filled
but the molecule has switched back. The mean photon number per ¥afoea molecule
with an infinitely long-lived state Fr{, = o0) is given by

Voo

! Th + 1/kfl(r>

and equals the mean number of fluorescence cycles that can take place during one image
frame.

(iv) Position and molecule type estimation. Localization of activated molecules yields
estimates of molecule positions and photon numbers

(1.10)

{¥/,N/},i=1.E; (1.11)

These position estimates follow a distribution very similar to a Gaussian centered around
the real position and featuring a variance inversely proportional to the photon number. For
spectrally resolved multi-channel imaging additionally the molecule typas to be inferred

from the distribution of the signal among the channels. Polarization-sensitive measurements

add another degree of freedom to the analysis.

Such cycles consisting of activation and readout are repeated either until all molecules have
bleached or the required number of position samples has been reached. In the end,the result
is a set of stochastic estimates for the position, the photon number and the types of the
molecules,

{¥/,N/,t]},j=1.E;i=1.M, (1.12)
with ¢ being the deterministic index of the molecule agnthe index of the stochastic total
number of event&; sampled from the molecule over all frames. Here, the values of Equation
(1.11) have been reordered in such a way that the leading index is the moleculé.irtidex
does not matter in which activation cygléhe molecule showed up. These positions then are
subjected to a histogram representation. All steps are studied in more detail in the remaining

chapters.
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1.2 Algorithms and Forward Monte-Carlo Simulations

In order to perform a numerical simulation of a PALMIRA experiment the different steps
of the preceding chapter have to be cast into algorithmic form. Figure (1.3) displays a flow
diagram for the image generation algorithm of a single activation cycle for a single molecule.
For simplicity it is assumed that activation takes place at the beginning of an imaging frame
only. The algorithm comprises the activation step (i), the generation of the total photon num-
ber (ii) and the observed photon number per frame (iii) as well as generation of the stochastic
image including background noise. Firstly, a random molecule is chosen by drawing a multi-
nomial random number following the molecule distribution under question. This distribution
can be artificial, but easy to interpret like just two molecules at a certain distance that may be

start

y

activate a molecule
(multinomial distribution)

}

draw total photon number Nyt
(geometric distribution)

li=0

draw number of photo-electrons N; of this frame
(Poisson distribution)

yes @ no

radiate N; photons radiate Nyt photons
Niot = Niot - Nj Niot = 0
(multinomial distribution) (multinomial distribution)
i=i+1 next activation

Figure 1.3: Flow diagram for one switching cycle of a single molecule for the Monte-Carlo PALMIRA image
generation algorithm. For steps involving the generation of a random number the associated distribution is
reported in red. Firstly, a random molecule is activated. Its stochastic position is given by a multinomial
random number drawn from the spatial fluorophore distribution. Next, the total photon nivgptrat the
molecule contributes to the current switching cycle is determined. This is a geometric random number of mean
N. In a third step, these photons are distributed among the camera frames until the next activation takes place.
The actual numbeN; of detected photo-electrons in a frame is distributed according to a Poisson with mean
Ny where Ny is the mean number of photo-electrons detected in a frame for a fluorophore radiating without
being deactivated of Equation (1]10). The photon-electrons are distributed multinomially according to the
detection PSF until either their sum attains the total photon nuiWienn this case the molecule just radiates

the remaining photons. Then the molecule switches off and can be activated again.
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well below the optical wavelength. However, the fluorophore distribution can also be more
complicated and closer to reality. Next, the total photon number contributed by the molecule
during its activation period is determined by sampling a geometric random number. Then,
the corresponding image frames are constructed. The candidate photon number radiated by
the molecule in the current frame is given by a sample of a Poisson distribution. Now, two
different situations can happen. Either the current Poisson sample is smaller than the photon
number that can still be delivered by the molecule before switching back spontaneously or
it is larger. In the latter case the molecule radiates the rest of its photons and is deactivated.
In the former case it radiates a photon number equal to the Poisson candidate sample and
the remaining photons are lowered by this value. For multi-color imaging random num-
bers are drawn to specify the spectral channel into which the photons are radiated. In all
cases, the photons are distributed among the image pixels by drawing multinomial random
samples from the detection PSF of the molecule. The process is iterated until the radiated
photons attain the total photon number. Then the molecule can be activated again. Too high
an activation rate may lead to a growing population of molecules in the active state. This
is undesirable as far as higher-order events are concerned. In contrast, too low an activa-
tion rate leads to many frames staying empty without any molecules activated. Here, the
measurement time is raised without need. The optimum condition is in between these two
cases.

Once the images have been generated stochastically the molecule positions are estimated
from their optical patterns. Figurg (1.4) presents the flow diagram of a typical localization
algorithm that is applied to each image frame. Firstly, the image is smoothed by a Gaussian
filter in order to suppress background noise. The width of the filter is chosen well below the
width of the detection PSF. Next, the brightest pixel of the image is searched for. If it does not
exceed a threshold the whole image frame is useless and the nextimage frame is evaluated. If
it does exceed the threshold the region around this pixel defines a segment and an algorithm
retrieving the pattern center position is started with the brightest pixel as initial value. In
two-dimensional PALMIRA the localization algorithm is frequently a centroid algorithm
calculating iteratively the center-of-mass of properly weighted data [55]. Alternatively, it is
possible to directly use minimization of the least-squares deviation between a theoretical or
measured PSF and the segment data. A third possibility is maximum likelihood-estimation
relying likewise on a model PSF and additionally on a more sophisticated statistical model
for the pixel statistic than the one underlying the least-squares fitting. If the localization
algorithm converged, the position and the photon number of the event are saved in a list,
otherwise discarded. In both cases, a theoretical PSF properly scaled to contain the segment
photon number is subtracted from the image. In such a way the pixel values in the segment
become smaller than the threshold which marks this area of space as processed. The whole
algorithm is called recursively with the altered image until no pixel is above threshold. Then,
the next frame is evaluated.

Subtracting a theoretical signal from a measured image in order to create a segmentation
effect is closely related to theLEAN algorithm frequently used to evaluate astronomical
images of far galaxies [54]. To achieve image segmentation it would also be possible to use
a simple segmentation routine which always attributes the area around the maximum pixel
to a single object. TheLEAN procedure is superior to the latter routine as far as proper
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start
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smooth with a Gaussian
filter (FWHM 40nm)
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max > threshold ?

l yes

50 centroid iterations
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discard save position
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}

| subtract theoretical PSF
|

Figure 1.4: Flow diagram for the image evaluation algorithm used for PALMIRA. Objects are identified by
subjecting the image to a pixel thresholding procedure. Then, the position of the molecule is determined. In
two-dimensional PALMIRA the most frequent method is a centroid algorithm yielding the-center-of-mass of
the optical pattern. Three-dimensional localization requires more complicated procedures. If the iteration did
not diverge the position and the associated photon number are stored and the theoretical signal is subtracted
from the image. If the iteration did diverge the position is discarded but nonetheless the theoretical signal
centered at the starting position is subtracted. The algorithm is repeated until all pixel are below the threshold.
The procedure is closely related to HogbomissAN algorithm in astronomy [54].

treatment of partially overlapping events is concerned. As long as the overlap is not too
strong thecLEAN algorithm differentiates the objects while the simple segmentation always
assigns the segment to one object.

In the subsequent a proof-of-principle for dual-color two-dimensional PALMIRA imag-
ing is presented. Therefore, a Monte-Carlo simulation using the above algorithms has been
performed. For further information on the particle type estimation the reader is referred to
Chapter (4.4). In order not to complicate the experiment one and only one molecule is acti-
vated per frame. The frame length is long enough for practically all molecules radiating their
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photons in one frame. The test distribution, Figyre](1.5, A), consists of an equally spaced
array with lattice constant = 50 nm. At each lattice point an assembly of fluorophores is
placed. In mathematical terms, the object distribution is a function as follows

o(r) = sin*(7z/a) sin*(7y/a). (1.13)

In order to have more than one spatial frequency in the object the sinus-functions are taken
to the power of 4. The FWHM of the peaks turns out to be roughty~ a/3 ~ 17 nm.

Two lattices with fluorophores that feature emission characteristics as in Figure (4.7) are
combined at a distance af= 35 nm. The separation wavelengihbetween the two color
channels is taken ag = 592 nm to achieve a realistic sorting matrix like in Equatipn (4.23).
The wavelengths for the optical PSFs differ according to the type of fluorophore and are
A = 575 nm and), = 620 nm. The mean photon numberis = 250, the event threshold

is T = 250. Figure (1.5, B) displays the reconstruction of the molecule distribution by
formation of a histogram of relative occurrences of the estimated molecule positions. The
histogram bin size i nm x 1 nm. The number of samplesid = 1 - 10° per molecule

type. It is obvious that features smaller than the optical wavelength by almost a factor of
ten can be discerned without effort. The peaks are slightly broadened due to the error in
position estimation. Localization errors for the object indicated in red are slightly larger
than those for the object in blue since the wavelength of the latter is smaller,\,. This
manifests itself in the width of the distributions of the PALMIRA histogram. The estimation

A) C)

Figure 1.5: Results of a Monte-Carlo simulation for dual-color two-dimensional PALMIRA imaging of a
hypothetical lattice object. The object is composed of peaked distributions of two molecules arranged on arrays
with a lattice constant of = 50 nm (A). The peaks of different fluorophores have a distanaé ef 35 nm.

The wavelengths for the optical PSFs ate= 575 nm (indicated in blue) and, = 625 nm (indicated in red),
respectively. The reconstruction of this distribution from the PALMIRA position stack is shown in the middle
(B). The classical wide-field images for the two channels are shown on the right (C). Obviously, features of
several orders of magnitude smaller than the optical wavelengths might be discerned in the PALMIRA image
whereas they stay unnoticed in the conventional image. Despite of the considerable crosstalk between the
two channels 35% of the 'blue’ photons end up in the 'red’ channel - both sublattices can be discerned with
certainty.
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of the molecule type is sufficiently good for the two sublattices to be distinguished properly.
The classical wide-field images, Figufe (1.5, C), exemplify that PALMIRA microscopy is
capable of revealing details that wide-field microscopy ignores completely. Strong crosstalk
between the spectral channels cannot be circumvented in wide-field microscopy because
the molecules are not recorded transiently in time and space. This creates 'ghost’ images
in the channels. For the concrete simple distribution used here, this effect is present but
not predominant because the distance of the ghost images is just the sublattice distance

35 nm which is small compared to the wavelengths involved. The effect may be predominant
for objects with stronger spatial separation of the different types of molecules. This would
even more degrade the quality of the conventional image. In PALMIRA microscopy crosstalk
can even be an advantage because molecules are distinguished according to their crosstalk
characteristics. Crosstalk need not to be absent but merely sufficiently distinct. For the
simulation presented here the channel signal sorting characteristics are 0.1:0.9 (red emission)
and 0.65:0.35 (blue emission). Even more colors are feasible without changing the setup. For
instance, three-color imaging with only two channels is possible in PALMIRA microscopy
for crosstalk characteristics 1:0, 0:1 and 1:1. The latter is as suitable for PALMIRA as the
other two although it would be useless in classical microscopy with non-individual readout.



2 Mean Field Theory of the PALMIRA
Technique

In this chapter a mathematical discussion of single-molecule image formation in PALMIRA
microscopy is provided. Essentially, PALMIRA marks a shift of interpretation as to how
an image is formed: although photons continue to play an important role, the basic entities
are the single fluorophore positions. PALMIRA allows to draw direct statistical samples of
the spatial molecule distribution to be investigated. These samples are of different quali-
ties depending on its associated photon numbers. The most suggestive way of forming an
image from spatial samples is a histogram of absolute occurrences. This treats every posi-
tion sample irrespective of its quality in the same way and thereby disregards the degree of
freedom linked to the event photon number. Imaging theory of PALMIRA incorporating an
averaging over this degree of freedom will be termed mean field theory in the subsequent in
order to distinguish it from deconvolution methods that take into account the photon degree
of freedom.

In the subsequent the mean PSF of PALMIRA microscopy is calculated and its properties
are studied. It is investigated how spatial sub-diffraction leads to a higher extension of the
experiment in the temporal domain. The question of the level of confidence of the PALMIRA
image is addressed.

2.1 The Mean Point-Spread-Function of PALMIRA

If the frequency of occurrence of overlapping optical patterns of different molecules is suf-

ficiently low in a single image frame so that molecules can be imaged independently from
each other. In that case, it is possible to restrict the discussion to the imaging of a single
molecule. At first the localization properties at fixed photon number will be treated, then the

discussion progresses on to an incorporation of photon thresholding into the theory.

2.1.1 Point-Spread-Function at Fixed Photon Number

In general, the distribution of photons in an optical image is a two-dimensional spatial multi-
nomial probability distribution with probabilities given by the diffraction integsét, y|z)
[56,/57,58]. Here, the optical point-spread-functigin: — =,y — yo|z — 2¢) describes the
probability to receive a photon at positidn, y) in an detection plane if the fluorophore
resides af(xo, vo, 20). In scalar diffraction theory for a circular aperture, the focal part
h(z,y|0) is just the well-known Airy-function while the out-of-focus point-spread-function
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is described by Lommel functions [57]. Vectorial diffraction theory incorporating the polar-
ization properties of the light and theories for high-numerical aperture lenses (Sommerfeld
approximation) make the analysis more complex, but essentially do not change the overall
character of the PSF as a Fourier pattern of the aperture displaying pronounced oscillations
as a result of electromagnetic interfererice [59].

All localization procedures, e.g. fitting or a center-of-mass analysis, have a strong ten-
dency to produce results following a Gaussian distribution. The structural fact responsible
for that is the data reduction inherent in retrieving the pattern position: many different pho-
ton positions are reduced to one center position. This makes applicable the central limit
theorem. For the case of a centroid localization procedure that simply calculates the center-
of-mass of Gaussian-weighted datal [55] this fact is most obvious. At this place, the discus-
sion is restricted to one radial dimension. For instanceYleandom photon positionge; },
originating from a fluorophore aty, be given. Then, the mean value (center-of-mass)

T = %in (2.1)

follows a distribution-(z|z,) given by the N-fold self-convolution of the detection PSF

r(zlzg) = Nhxhx..xh]((N(Z — xg)). (2.2)
~—_——
1.N
This is a direct consequence of the fact that the probability density of a sum is the convolution
of the densities of the summands. The progressive smoothing with increasing photon number
N makes the convolution more and more Gaussian, Figurg (2.1, A). The error is propagated
according to the standard result [53] 60, 61]

(V) = 2 (2.3

o = N .

with the variances? given by the well-known Rayleigh result for the radial width of the
detection PSH[57],

0.22\
nsina’
where\ denotes the optical wavelength the index of refraction and the semi-aperture

angle of the lens system. As long as the photon numbesr high enough it makes sense to
approximate Equatiofi (4.2) by a Gaussian and therefore assume the probability to obtain the

centroid positione given an original molecule position, to be

_ . 1 ((Z’ —ZL’0)2
p(Z|xo, N) = mexp {_W} : (2.5)

In the case of axial localization the square-root law for the error and the Gaussianity of its
distribution survive, but the dependency®f on the radial moments of the detection PSF
gets more complicated. This just reflects the fact that a simple centroid analysis is no longer
possible in thez— dimension.

(2.4)

0g ~
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Figure 2.1: Distribution of the center-of-mass of an optical pattern. The exact distribution (solid) of Equation
(2.9) is shown here together with its Gaussian approximation (dotted) of Equatipn (2.5) for different photon
numbersN = 1 (black), N = 10 (blue), N = 50 (green) andV = 150 (red). The more photons an image
contains the more the distribution of the center of the optical pattern approaches a Gaussian (A). The degree
of similarity between these two distributions might be quantified using a distance measure (B). The distance
approaches zero &é increases.

A quantification of the degree of similarity between the two distributions, the exact dis-
tribution of the center-of-mass in Equatign (2.2) and the Gaussian in Equation (2.5), may
be obtained by making use of the Kullback-Leibler distance of two probability distributions
p(z) andr(z) [62]

Dl pl = — / p(x)In [%] da. (2.6)

Figure [2.1, B) shows the results of the Kullback-Leibler distance as a function of the number
of photons.

2.1.2 Point-Spread-Function in the Presence of Thresholding

In order for the localization error of every event to be lower thgnwith probability one, the
detected events are subjected to a thresholding procedure. Exclusively events with photon
numbers exceeding the threshold

7=20 (2.7)
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are taken into account while the others are rejected. This leads to a truncation of the geomet-
ric distribution of Equation[(1]5). The distribution of accepted photon numbees|T’, o]

now reads B
_ NN-T
p(N|N,T) = — ——.
[N +1]"

The geometric distribution is scale-invariant and thus retains its shape. To obtain the photon-
averaged PSF taking into account the thresholding effect it is necessary to sum Equation
(2.5) over the accepted photon numbatrs> 7'

(2.8)

p(Elre, N, T) = ) p(t|re, N)p(N|N, T). (2.9)
N=T

The localization PSF with the worst accuracy, that with= T', experiences admixtures of
narrower, but less probable PSFs. The result is a mean PSF which is reported hére for
dimensions to cover the casesdof 2 andd = 3 ate the same time,

_ o b(F,ro)T = 0N Y
p(r|,ro,N,T)—(N+1)de?:1aiNZ:0(N+T)d/ [N_'_lb(r,ro)} . (2.10)

with the abbreviation
2
b(F, o) Hexp < 1‘01) ) (2.11)

ando; being the width of the detectlon PSF in dimensiolince the bracket term in Equa-
tion (2.10) is strictly< 1 the series converges and might be expressed with the help of a
special function, Lerch'g-transcendent [63, 64],

oo
$Sa :E

s.

(2.12)
1=0
o b(E, 1) N J
— N, _ r,Tro — ¢
p(Tlrg, N, T) = (]\74-1)\/%6[1—[?:1 Uigb(N_i_lb(r,ro), Q,T) . (2.13)

This is the PSF of PALMIRA microscopy. Thefunction plays the same role in PALMIRA
microscopy as the depletion doughnut beam in STED microscopy and the Airy function in
classical microscopy. The properties of this function will be studied in Chapter (2.2).

2.1.3 Data Representation and the Imaging Equation

In this paragraph it is shown that the assumption of independent recording of fluorophores,
a sufficiently high number of activation cycles per molecule and translation symmetry of the
localization accuracy result in an imaging equation in the form of a convolution.

Two approaches of representing the stochastic{:@d\fj } Equation), have been

reported in the literature so far: (i) the sortingrgfinto a histogram of relative occurrences
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and the (ii) formation of a sum of localization distributions as in Equafior] (2.5) centered at
t/ with a width determined by the photon numbgf. The latter will be referred to as the
'Gaussian view'[[29], the former as ’histogram view’.

For a simple histogram view (i) with a finite number of excitatid)sof moleculei the
final imageb(r) is a function constructed as follows

1 s 1 -
r :FZZEP(ﬂri,NiJ)- (2.14)

i=1 j=1

as long as all molecules are imaged independently from each other. Here the summation
is over all moleculeg and their excitation cycleg taking into account that each retrieved
pattern position fluctuates around the real fluorophore positi@s described by Equation
(2.5). At this stage, the image is still 'unstable’ in a stochastic sense since the number
of samples from moleculg E;, and the photon number from moleculin samplej, N/

are random numbers and hence the imigge is also a random field. Instead of summing
stochastically over observed photon numbers, one could also sum over all possible photon
numbersN using a counting measuré,;(N) of the photon numbeN. Then, Equation

(2.14) reads

_ 1 H;(N) _
o) = =55 N ), (2.15)
If the number of eventd’; is sufficiently high the relative frequencies of photon numbers
approach the distribution in Equatidn (2.8). Thus, it is obtained
H;(N)

for all s and the imaging equation, Equatijn (3.15), becomes

— p(NIN,T) (2.16)

ZZP rlr;, N)p(N|N,T) = /p(r!n N, T)o(r)dr. (2.17)

leO

Here, Equationd (1].3) and (2]13) were used. If the variances of the effective PSF, Equation
(2.13), are not position-dependent it is obtained

p(Ele, N, T) = p(s — 1, N, T), (2.18)

and the imaging equation turns out to be a convolution of the object distribution and a point-
spread-function as in classical confocal microscopy,

b(r) = p(r, N, T) * o(r). (2.19)

For the Gaussian view (ii) the situation is similar: stochastic scanning takes place in the
original fluorophore coordinate, a fluctuating estimate is returned. In contrary to (i) a
localization Gaussian is centered aroun@hich leads to the imaging equation

Z/{/ (r|r”, N (r//’r/7N)dr"}p(N|N,T)0(r/)dr’. (2.20)
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The inner convolution can be performed analytically and yields again a Gaussian as in Equa-
tion ), but with higher variance? — 202. The summation over the photon number
reproduces the mean PDF of Equatipn (2.13).

In summary, the Gaussian view features the disadvantages of a broader effective PSF and
the mixing of position information and accuracy information. It is not obvious whether an
image value(r’) # 0 originates from a localization event or the outer part of a 'credibility’
Gaussian. Especially, the events with a poor quality of position estimation are stretched outin
space very strongly. The Gaussian view pretends too high a degree of sampling. Nonetheless,
it is a first attempt towards taking into account properly the accuracy information. This point
will be discussed further in Chapter (5).

2.2 Measure of Resolution

The width of the PSF, Equation (2]13), is a measure of the attainable resolution since it
describes how strong a single point of the object is spread out in the image. Here, the
discussion is resumed in one dimension. As above, it is necessary to sum over different
contributions above the threshold. The varialiééN, T', o) of the effective mean PSF then
reads

2/ N — 90 NNT
PN.Too) = ) FFy v

S \N
2 o0 ,L
oh N+1

B N+1Z N+T

N=0

2 N
= — - 1,7 ). 2.21
N+1¢(N+1” ) (2.21)
Thus, the standard deviatiot NV, T, o) of the single molecule PALMIRA-PSF givel

photons on average, a thresh@lénd a standard deviatier of the single molecule photon
distribution is given by

— . oy) N
(N, T, 00) = m\/qﬁ (—N — 1,T>. (2.22)

Figure ) shows this function for different compared to the square-root law for the
fixed photon number case, Equation {2.3). As a result of the admixture of narrower states
to the local PSF alV = T the effective standard deviation is always smaller than the value
given by the square-root law,

_ o)
(N, T,00) < —. 2.23
It is instructive to compare the resolution formula in Equatjon (2.22) to the resolution
formula of STED microscopy [4, 23] that is also given by a standard deviation,

00

V1+1/1,

ESTED(L Isab 00) = (224)
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Figure 2.2: The standard deviatioR(N, T, o) of the PALMIRA-PSF as a function of the threshdltifor

different mean photon numbe$ (solid lines) in comparison to the square-root law for fixed photon number
1/+/T (dotted). From top to bottom the photon numbers are increasing 25, 50,100 and200. Due to

the admixture of narrower states the effective standard deviation lays always below the square-root result. The
resolution might be raised by both increasifigor 7. Super-resolution might be achieved even with vanishing
thresholdl” = 0 if N is sufficiently large.

Here, I, denotes the saturation intensity of the quenched molecular transitiod #rel

actual STED beam intensity. The saturation intenéifydepends on the orientation of the

dye, the molecular cross-section, the wavelength, the temporal structure and the slope of
the doughnut-shaped STED light. Just as Equafion |2.24) is a correction to the classical
Abbe formula due to saturation effects, Equation (R.22) is a correction to single molecule
localization accuracy due to photon thresholding.

The localization error at fixed photon number needs not always to follow a simple square
root law as Equation (2.3), but can lead to more complicated dependencies if effects of pixe-
lation or background noise are incorporated. For instance, including readout and background
noise Equation (2]3) is replaced by

of +a?/12 N 4y/Todb? a

- . (2.25)

o*(N) =

with a denoting the pixel length antithe mean background per pixé€l [55]. In this case
Equation [(2.2R) is changed into

_ 24 a2/12 N 4 3p2 N

All summations over a truncated geometric distribution times a polynomial terms can be
expressed as@function.
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2.3 Temporal Extent of a Measurement

In classical microscopy the statistical sampling degree of a pixel is determined by the number
of photons falling into that pixel. In PALMIRA microscopy this role is adopted by the
number of accepted position estimates of the molecule to be imaged. If the measurement
time or the maximum number of switching cycles is limited PALMIRA microscopy suffers a
conflict of objectives between resolution and statistical sampling. If the threshold is lowered
the number of available position estimates increases. That leads to better stochastic sampling
but worse spatial resolution. If the threshold is increased localization is made better but the
number of events being available to build up the image is lowered. In other words: spatial
resolution is gained at the cost of a certain temporal stationarity of the image. This is a
demand both on (i) the fatigue properties of the switching transition of the molecule and (ii)
on the timescale on which the image might change over time. Both, the number of reversible
switching cycles and the stationarity time interval of the image have to be large enough in
order to collect sufficiently many stochastic samples.

This effect is quantified by establishing a functional relationship between the mean pho-
ton numberN, the recognition threshol@ and the mean waiting tim@’ for an event pro-
ducing a photon number above threshold. The number of saripleguired per molecule
for gaining a good estimate of the single-molecule spatial distribution is assumed to be given.

The cumulative distribution for the geometric distribution of Equatjon|(1.5), i.e. the
probability for the photon number to be contained in the intefdal NV, ], is given by

N No N Ni+1
([No, N1]) NN — | = . 2.26
o= 3= () - () (2.20

N=Ny

The state space of the problem in question is made up by the two evVent$ and N > T
with the probabilitiesP([0, 7" — 1]) and P([T, >c]), respectively. The dichotomy again leads
to the binomial model. For that case, the probability of obtairif@lures given- successes
inn = r 4+ k samples is described by the negative binomial distributioh [52]

E+r—1Y\ ,
it = ("7 T -y @227
with the mean B
k=r/p—r. (2.28)
For the problem under consideration, we have
p = P[T,oq]
r = S
k= W-=S (2.29)

Together with Equatior (2.26) the probability distribution of the waiting tifridor S events
being above the thresholdreads

N TS Y wW-S
p(W|S, T, N) = (va: ;) (NLH) (1 - NLH) (2.30)
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with, of courseJ// > S. For the mean waiting time it is obtained from Equation (P.28)
_ _ 1\7"
W(S,T,N)=S (1 + ﬁ> . (2.31)

This equation may also be used in backward direction to obtain the threshold attainable
T(W, N, S) if the mean number of switching cycles is prescribed. In that case, the threshold
compatible with the structure of the events is given by

InW —1InS

T(W,N,S) = —— —.
(W, N.5) In(N+1)—InN

(2.32)

| L L
600 800 1000

n L |
0 200 400
T

Figure 2.3: The waiting timelV/ (S, T, N) in numbers of switching cycles for one evefit= 1, to exceed the
thresholdI” given the fluorophore yieldd” photons on average (red). In addition, the resolution augmentation
factor at threshold,/T, is shown (dotted). The smaller the mean photon nunibehe longer the waiting

time for an event to be above threshold. Spatial resolution is gained at the cost of temporal stationarity. The
hyperbolic dependency of the rate in Equation (.31) manifests itself in a pronounced increase of the slope as
N decreases.

Figure [2.8) shows a plot of the functid’(S, T, N) for some realistic values oV
together with the resolution reduction factoffafior S = 1. The waiting time for other values
of S is directly proportional to that fo§ = 1. Essentially, the waiting timé&/ (S, T, N)
depends exponentially on the thresh@ldvith a rate proportional to the logarithm of the
inverse of the mean photon numb¥r The hyperbolic dependency of the base in Equation
(2.31) onN is striking. The smaller the mean photon numbérthe more severe is the
growth of the mean waiting timB” when going to an infinitesimally higher threshald

Equation [(2.3[1) assumes that one and only one molecule gets activated. In reality, the
specimen containd/ molecules which are switched on with a probabilRy, i.e. in each
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step a mean numbell = M P,, of molecules is activated. 1§ samples are to be drawn
from M molecules there may also occur events in parallel and the waitingtimeeasured
in activation cycles reads

_ 5 1\" s 1\"
T NM)=—=(1+=) =P '(1+=] . 2.
Equation|(2.3B) is equivalent to inquiring for the mean waiting time for a molecule to be ac-

tivated AND to yield a photon number above threshold. The probal#litef this statistical
event is simply

= T
N
P,=P,=——]) . 2.34
\ ( = 1) (2.34)
The fractiony of the sample numbe¥ relative to the number of moleculég,
S

= — 2.35
V=9 (2.35)

defines a sort of observance fraction of the molecules. For instance=dreach molecule
is seen for one time on average. The waiting time in Equaltion|(2.33) depends crucially on
and on the probability’, .

2.4 Level of Confidence of a Measurement

After having studied how many switching cycldshave to be attended on average to achieve

a number of sampleS from a single molecule it is interesting how many of these samples are
required to achieve a certain level of confidenaaf the final image. Of course, this will de-
pend on the object molecule distributiofr): an object consisting of a few molecules might

be mapped authentically with much lower a number of samples than a more complicated
object. The focus is put here on the degree of convergence of the final image. With a finite
number of samples the final imagér) is approximated by a histogram of relative occur-
rences. With infinitely many samplés— oo this histogram converges against the function
b(r) given in the imaging Equatioh (2.20) just as the classical image in confocal microscopy
acquires stability when the photon number goes to infinity. The theoretical PALMIRA-PSF
of Equation ) is dependent on the mean photon numbethe threshold’ and the

width of the underlying detection PSF and plays a decisive role here. The question is to
which extent the relative frequencies of the PALMIRA histogram do approach the final im-
age density(r). The imagey(r) can assumed to be given in discrete forr{&$. The{b;}

form a normalized probability. The probabilipyf.S;|b;, S) to receiveS; molecule positions

in the pixel: when.S samples have been collected is given by the binomial distribution

S

In a standard PALMIRA histogram the valagis estimated by the relative frequency esti-
mator

>bfi(1 S (2.36)

bi(S;) = =~ (2.37)
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The crucial question is how large the number of sampléss to be in order fob; having a
relative error= smaller thare,, with probability of at least.. Mathematically, it is inquired
from which S > S,,, on the probability of the statistical event

l;,(SZ) € [max{0,b; — bic/2} , min {1, b; + bic.a/2}] (2.38)

is larger thanv. This is equivalent to finding with

S min{1,b;+b;erel/2}

P(S, €, b)) := > p(Si|bi, S) > « (2.39)

Si=S max{0,b; —bierel/2}

with the limits of summation defining the lower and upper tolerable fluctuation of the ab-
solute number of position estimates falling into the pixel. The limits of the summation
are rounded to the nearest integéf. > 20 is a convenient choice as long &s> 0.01.
P(S,e.,b;) is the probability thatS position estimates lead to a relative error smaller than
Erelr

Fortunately, Equatior] (2.89) can be transformed into a relationship of special mathe-
matical functions that is suitable for numerical computations. A non-approximative result is
required here since no restrictions should be made on the the pixel probaptityo, 1].
The function

P(m,n;b;, S) = Zp 1bi, S) (2.40)

occurring in Equation (2.39) describes the cumulatlon of the binomial distribution of total
sample numbef§ and probabilityb; over the intervalm, n] and is given by([65]

P(m,n;b;,S) = K(bj;ym,S —a+1)— K(bi;n+1,5 —n) (2.41)

with the functionK (p; m, n) defined by a quotient of beta functions

K(p;m,n) = %. (2.42)
Here, the beta functions are [66]
B(p;m,n) = /Op ™1 —s)"ds (2.43)
and . .
Blm.n) = " = +)n(’:)') . (2.44)

Figure [2.4) evaluates the probabilif}(S, ¢, b;) of Equation [(2.3P) for different val-
ues ofS, the errore,, the error levekr and the pixel probability; to be estimated. The
probability P(S, ., b;) to have a tolerable error approaches one for growing sample number
S irrespectively of the pixel probability;. At fixed sample numbef this probability is
higher for largem,. This makes sense since the relative spread of the binomial distribution
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Figure 2.4: The probability P(S, ., b;) to have a relative errar < e, as a function ofS and the pixel

mean value$; is displayed as an explicit plot for differett ande, = 0.1 (A) and as an implicit plot for the
credibility levela = 0.9 for differente,, (B). The left figure reveals that in a natural way the probability to have

a bearable error is increasing with increasing number of sanspl@he moreb; approaches zero the smaller
becomes this probability. The right figure points out how many samples are needed to achieve a prescribed
error at90% probability. Of course, this number is smaller for a higher relative error.

\/Sb;(1 — b;)/b; in Equation ) diverges &s — 0. For this configuration fluctuations
are most likely to fall outside the tolerance interval given in Equafion [2.38). The implicit

plot on the right provides the number of samples needed for a confidence )&k dbr
different error strengths,,.

A concrete example is the imaging of just two molecules at a distaree0 nm with
mean photon numbe¥ = 250 and threshold” = 50. Then, the width of the PSF is about
16 nm and the objects are not overlapping in the PALMIRA image. Using a pixel of 3 nm the
two peaks of the image can be shown tobpe= 0.02 by using the PSF in Equatioh (2]13).
From Figure[(2.}4, B) itis seen that fér > 2.5 - 10* samples the relative erroris, < 15%
with more tharf0% probability. Since both molecules reside at sub-diffraction distance the
switching probabilityP,, has to be low enough to switch on one molecule only. From Figure
) it is seen that for the values the waiting timdlis= 1.22 - S ~ 3 - 10* if in every
cycle one and only one object is switched on. The high number of cycles is due to the small
pixel-size of 3 nm. Using a pixel-size of 30 nm would resulbjin= 0.125 andS = 2000.



3 Localization Methods and their
Performance

The task of measuring the position or tracking the path of molecules has been investigated
since the advent of high-quality CCD cameras in the 1980s. Early investigations focus
strongly on optimization of the pixel size or on statistical fluctuations of the light field
[67,168]. The biophysical literature reports systematic examinations of particle tracking
[55, [69] and radial localization of entirely focused objects with idealized detection PSFs
[70]. Statistical models based on Poisson pixel statistics and Gaussian object functions have
been considered thoroughly in the related but different field of electron microscdpy [71, 72].
All these authors discuss radial localization only. In the last years, single-particle tracking
has brought with it the experimental implementation of three-dimensional localization proce-
dures like defocused imaging [[73,/74] and encoding of the axial information in asymmetries
of the detection PSF using an astigmatism [75]. A detailed study of a maximum-likelihood
estimator for the full three-dimensional position has been given recently [76]. However,
the authors restrict their theory to aberrated detection PSFs modeling the diffraction of light
traversing a cover-slip before entering the sample.

Here, full vectorial-diffraction theory detection PSFs are employed. In first instance,
the imaging model and the way of its statistical analysis is introduced. Next, the theory
is applied to localization via multi-channel defocused imaging (i), astigmatic single- and
double-channel imaging (ii), use of a 4pi-microscope (iii) and a multi-point setup using pho-
todiodes instead of CCDs to obtain a better temporal resolution (iv). The last two methods
have not been described in the literature so far.

3.1 Theoretical Framework

In the subsequent the coordinate system is defined, the stochastic model for description of
the imaging process is set up and the general method of its information theoretic analysis is
presented.

3.1.1 The Stochastic Image Model

Let the image consist @f channels with\/, x M, pixels recording transversal cross-sections
of the detection PSF(zx,y, z) at axial positions{z;},/ = 1..C. Then, the mean value of
photo-electrons in pixelj of channel may be denoted by

N’ilj(x’y7 Z) = Nh(xl —L,Yi — Y,z — Z) + b, (31)
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whereN is the mean total photon numbéris the mean background, y, z are the emitter
positions and z;, z; } the pixel centers. Alt values are measured relative to the focal points
in the image and the sample space, respectively. Figurg (3.1) shows a plot clarifying the

Y

Zy < A > Z4

Figure 3.1: Definition of the coordinate system used for the Poisson double-channel imaging model. The
typical case of two acquisition planes of distarkeat zy andz; = —zg is shown. The molecule is located at
z. The red lines indicate the beam radius. The detection PSF is centered axially at

coordinate system used. The shifted PSF defines sorting probaliifities that depend on
the absolute spatial positiarof the fluorophore,

The detection PSF is assumed to be normalized so as to assure that it is guaranteed that

My, My

> i) =1 (3.3)

ijl
forall z, y, z. In the simplest case, the photons are distributed equally amordg¢hannels.

Assuming Poisson statistics, see Equatjon]|(1.9), for the photo-detection signal of each
pixel [71] the overall probability for the image of a single molecule r@ds

pUNGHr) = TT T oy [V 1Yo 50, (35)
o g

with {ij} being the photon numbers recorded in pikebf channel.

! An alternative image model featuring a fixed photon numienstead of the mean numbaf is given by
the multinomial distribution

N! NL
N = =——TT P4, 0] ™™ . (3.4)
p({N};}Ir) Hilegj!g[ )]

Superposition of such a multinomial signal and Poisson background noise would be consequent in terms
of rigorousness but unnecessarily complicated. The reality of experiments is fully captured by the Poisson
model that allows straightforward incorporation of background noise.
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3.1.2 Fisher Information and Cramer-Rao-Inequality

The characterization of estimation procedures requires the systematic investigation of errors,
i.e. of the variance of the methods applied. Given a statistical madeét) for the data

o conditional on the parameterits information content can be measured using the Fisher
information!(x) [53,77,78[ 79, 80],

I(z) = E, l%ﬁf'x)r _ / l%jﬁomr p(ola)do (3.6)

Here,E,|] is the expectation value taken with respect to the stochastic paraséfathe-
matically, Fisher information measures the variance of the derivative of the likelihood func-
tion and quantifies its dependency on the parameter to be estimated. The variance of any
unbiased estimatat(o) of x is bounded from below by the inverse Kfr),
1
var|z > — 3.7

[#(0)] = 75 (3.7)

This is the well-known Cramer-Rao-uncertainty|[53,/81, 82].
The expectation value in Equatidn (8.6) may be calculated without much effort for the

case of basic distributions like the Gaussian distribution or the Poisson distribution. For the
latter case, let the distribution given by

plolf () = = [f(x)]°e™® (3.8)

ol

with the meanf(z) depending on a parameterunder consideration. For this case, the
Fisher information is essentially a measure of the first derivative of the mean relative to the

mean, )
1 [9f(x)
1 = — . .
For the optical model of Equatioh (3.5) the functiffx) is provided by Equation (3,1)
and the Fisher information on the coordinateith the other coordinategandz, the optical
parametersV, b and the setup parametersgiven reads

_ _ — 2
ON! (x,y,z,l\ﬂb)] (3.10)

]x(%yaZanb):ZZ%[ - 8:1:
Loy oY

The additivity stems from the combined effect of the logarithm in Equafion (3.6) together
with the product in Equatiorj (3.5). The Fisher information for the Poisson single-particle
multi-channel imaging model of Equatidn (B.5) becoffies

[NOLhL (2,9, 2)]?

— —. (3.11)
Nhi(z,y,2) +b

Ix(x,y,z,N,B):Z

il

2Fisher information is equal for the multinomial model of Equat{on](3.4) and the Poisson model of Equation
) in the absence of noise. This might be shown by computing the covariafiea, ). Additional
Poisson background noise will even more favor the Poisson model.
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With a sufficiently large support the summation ovef leads to a vanishing of the, y—
dependence af,(z,y, z, N, b). The remaining free parameters are the mean photon number
N, the background nois the axial positiorr and the detection mode parameters, i.e. the
number of channel€’ , the focal plane position§z;} and the concrete PSF. For the other
spatial coordinateg and: the expression is analogous. The derivative is always with respect
to the coordinate under consideration.

3.2 Position Estimation Methods

In the following the information theoretic framework of the preceding paragraphs is applied
to different position estimation methods. It is studied to which precision the full three-
dimensional position can be retrieved using a defocus, an astigmatic or a four-channel 4pi-
setup. Special emphasis is put onto estimation of the axial coordinate. Additionally, a planar
multi-point setting consisting of several photo-diodes is examined.

3.2.1 Defocus

A standard diffraction detection PSF shows reflection symmetry with respect to the focal
plane. Consequently, the image originating from a particle dislocated out of the focus does
only depend on the relative distance to the focal plane. It is obtainedhthay, z) =
h(z,y,—z). This symmetry has to be broken if the full three-dimensional position is to be
inferred unambiguously. In principle, it would also be possible to work with off-focus exci-
tation and to use only the positivebranch of the detection PSF to obtain a non-ambiguous
axial position estimate. Nonetheless, it may be desirable to work close but symmetrically
to the focal plane in order to achieve good radial localization. For that reason, a double-
channel defocus setup as indicated in Figire] (3.1) may be used. Higyre (3.2) shows radial
cross-sections of the expected image for different positions of the molecule. The channels

Onm

-600nm -300nm

Figure 3.2: The expected mean images at different moleeyesitions for a two-channel defocus setup. The
channels are focused at 300nm and -300nm, respectivelyz Eof, both channels display the same image
since the detection PSF is symmetric under reflection at the focal plane. Moving out of the focus leads to
images of increasing width in one channel, while the other channel is more strongly focused initially and after
all will also get defocused.
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are focused at-300 nm, respectively. The choice of a focus distadce= 600 nm will be

justified in the subsequent. At= 0 nm both channels display the same slightly defocused
image. Moving away from zero defocuses one channel while the other is temporarily fo-
cused more heavily and reaches the same degree of defocusing not until at a higher value of
zZ.

The defocusing behavior is exemplified in more detail in Figure (3.7, 1) describing the
FWHM of the images as a function of This figure is presented later in the text to allow a
direct comparison with the widths of the astigmatic PSFs. In general, there is a conflict of
objectives between axial and radial localization: while axial localization draws upon changes
in the geometry of the image, radial localization requires this geometry to be as narrow as
possible. Unfortunately, such a change in the geometry usually may only be achieved as an
increase of the width of the pattern. However, this can often be tolerated since axial position
estimation is more critical in terms of the measurement error than radial estimation.

The performance of position estimation depends strongly on the focus digkarkig-
ure (3.3) presents the Cramer-Rao bounds resulting from Equatior} (3.11) for #ddjal
and axial estimatiow,(z) as a function of the axial positionfor different focus distances
A = 200 nm, 400 nm, 600 nm and800 nm. The mean photon numberé = 250 as has
been stated for Rh6B derivativés [83]. The pixel-length of the caméf@iam with a mean

o/(z) [nm]

0z(z) [nm]

20 L—
-600 -500 -400 -300 -200 -100 O

100 200 300 400 500 600

z [nm]

Figure 3.3: Cramer-Rao bounds for radial(z) (A) and axial estimatiorv,(z) (B) for different camera
distancesA = 200 nm (black),400 nm (light grey),600 nm (red) and800 nm (grey). The photon number is
N = 250 and the background noise= 1. Radial localization has an optimumat= +A /2 for A > 200 nm
while axial localization can feature a single error maximum at 0 for A = 200 nm as well as double error
peaks at ~ +A/2 for largerA. A = 400 nm is a convenient choice for comparatively homogeneous axial
error properties over a large suppert [—600 nm, 600 nm|. A = 600 nm is an option when axial position

estimation is to be as accurate as possible on an even smaller sugppr200 Nm, 200 nm|.
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background = 1 as is frequently observed in experiments [7]. High-resolution numerical
detection PSFs were re-sampled to this size via smoothing with a square function in order
to take into account the coarse-graining of the CCD. Radial localization is optimal-dt

for the comparatively small distance = 200 nm. For increasing\ two secondary minima
appear attA /2 while precision worsens directly at= 0 due to the increase of the width

of the PSF. Axial position estimation at low distanse= 200 nm features two optimum
regions at: ~ £375 nm but a maximum in the error at= 0. This error decreases with
increasingA while the outer optimum regions turn into regions of maximum error. Itis seen
that A = 400 nm produces an axial error that is quite homogeneous over the-fulinge

while smaller and larger distancéslead to stronger variationsA = 600 nm leads to an

even smaller error of average 30 nm on the support € [—200 nm, 200 nm| and shall

be used in the subsequent. Supports of such a length can generally be tolerated since ax-
ial localization is to be of highest quality directly at the center of symmetey 0 of the

setup because the activation beam will possess a maximum at this place and consequently
the majority of fluorophores will be detected in the plane 0.

Therefore, the canonical choicef&f= 600 nm might further be justified by studying the
behavior ofs,(z = 0) as a function ofA. Figure [3.4) demonstrates this for all parameters
being the same as above. Obviousty,approaches a broad minimum beginningMat~
600 nm that extends up to higher valuas~ 900 nm. Indeed, not too high a value of is
tolerable in order for radial localization to be affected minimally. Thence, the minichum
leading to a sufficiently constant has been chosen.
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Figure 3.4: Cramer-Rao bounds, (red) ando, (black) at z=0 for different camera distancAs Clearly,
A = 600 nm marks the onset of a broad minimunvgfthat extends up to much higher distances: 900 nm.
Nevertheless, the smalleiton this plateau is desirable in order not to affect the quality of radial localization.

The localization procedure depends crucially also on the number of observation planes.
Figure [3.5) imparts the evaluation of the Cramer-Rao-bound of Equétiorj (3.11) for a two
and a three-channel setup with observance plane8@i nm and0, 300 nm, respectively.

Both, radial and axial localization accuracies are in the range of a few tens of nm which is
far below the Rayleigh length of typically several hundreds of nanometers. The Fisher infor-
mation bounds still retain signatures of the differential properties of the underlying detection
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Figure 3.5: Cramer-Rao bounds;(z) for radial (black) and,(z) for axial localization (red) in the defocus
setup for a mean photon numh&r = 250 and a mean backgrourtd= 1. The solid lines display the results

for two acquisition planes at300 nm while the dashed lines represent those for three imaging planes at
0, 300 nm (dashed blue vertical lines). Using a higher number of channels worsens the signal-to-noise ratio
locally, but leads to a higher degree of homogeneity of the localization properties.

PSF. For instance, radial localization is optimum when one channel is maximally focused
because then its image has reached the highest possible degree of radial contraction. In con-
trast, axial localization is of low quality at that point since thderivative of the detection

PSF is zero at focus. Introducing a further acquisition plane at 0 nm decreases the
signal-to-noise ratio but leads to a higher degree of homogeneity which is advantageous in
terms of the translation symmetry of the estimation properties. The transition to full three-
dimensional detection could be studied by introducing more and more image planes.

3.2.2 Astigmatism

The necessity of breaking the reflection symmetry of a standard detection PSF can also
be achieved by means of an astigmatic aberration. In this case, just a single acquisition
channel is already sufficient to retrieve the full axial information which is desirable as far as
the signal-to-noise ratio is concerned. Nonetheless, this is gained at the expense of higher
complexity in radial localization sinceandy are no longer equivalent. Therefore, it presents
itself to study also double-channel astigmatic imaging analogous to the preceding chapter.
Such an approach restores not the rotational symmetry but the interchangeabhilana
if the second channel is rotated by2 with respect to the first.

Figure [3.6) delivers the expected mean single-channel images for two astigmatisms
of different strengths. The axial position is encoded in the ratio of the horizontal width
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Figure 3.6: The expected mean images at differefior a weak (A) and a strong astigmatism (B) in a single-

channel setup. The image is invariant under a reflection at the focal plane in conjunction with a rotation by
/2.

> Z

to the vertical one. These detection PSFs were calculated employing vectorial diffraction
theory with a suitable apodization function. The diffraction integrals to be solved are a
generalization of vectorial diffraction theof$€ and are defined in the appendi The
aberration functionl'(¢, #) for the case of astigmatism is [57]

1 —cos?0

U(¢,0) = exp <ZS—2 cos(2¢)) (3.12)

sin” «

with o being the semi-aperture angle. The weak astigmatism (A) has stréhgthl,
the strong one (BY = 3. The S-values were adjusted to yield PSF widths typically for
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Figure 3.7: The FWHM of the PSF for double-channel defocus imaging (1) is strongly differing for channel

1 (black) and channel 2 (red) and amountd@6 nm..1500 nm. Single-channel astigmatic imaging (II) uses a
weak (A) or a strong astigmatism (B). The widths are in the same range as for the case of the defocus but the
axial information is achieved at the cost of an asymmetry (black) andy (red).
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fluorescence experiments. The behavior of the widths over the-&ujpport can be found

in Figure [3.7, II) and might be compared to those of the defocus setup of the preceding
paragraph. The fact that the differences in widths can amount up to several hundreds of
nanometers constitute a realistic situation and have frequently been observed [34].

Radial and axial localization are discussed here in two steps. Figuie (3.8) presents the
Cramer-Rao bounds for axial localization for single-channel and double-channel astigmatic
imaging for the weak and the strong astigmatism. Again, the photon number=s250
with the background = 1. The defocus result is added to allow a quantitative comparison
with the method of the preceding section. Apparently, the resulting precision eutye

-A) - -B)

20 20
-600 400-200 O 200 400 600 -600-400-200 O 200 400 600
Z [nm] z [nm]

Figure 3.8: Cramer-Rao bound,(z) for axial localization using astigmatic aberrations for single-channel
imaging (black) and double-channel imaging with a rotated second channel (blue). The results for the two-
channel defocus setting are shown as a reference (red). (A) is the weak astigmatism, (B) the strong one. Of
course, double-channel astigmatic position estimation is always inferior to single-channel astigmatic estimation
because the signal is split among two channels and thereby the signal-to-noise ratio is lowered.

may have large similarity with the one for the defocus like in (B) or be related to it by a
simple transformation, for instance a horizontal reflection, for (A). Nevertheless, the weak
astigmatism is less optimal than the defocus in the internval[—200, 200] nm by a factor
up to 1.4..1.6 for both configurations, the single- and the two-channel setup. The weak
astigmatism features better results-at=350 nm but usually this is of minor use since radial
localization is less precise here. The results for the strong astigmatism are only slightly
different from the defocus.

Eventually, Figure[(3]9) contributes the Cramer-Rao bounds:fandy. The weak
astigmatism outperforms the defocus setting on the central intergaD, 200] nm in both,
the one- and two-channel variants and in bathndy. Relative amelioration amounts up to
afactor of1.5 atz = 0. Outside this interval the astigmatism leads to a strongly deteriorating
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Figure 3.9: Cramer-Rao bounds,(z) andoy(z) for radial localization using astigmatic aberrations for single-
channel imaging (black) and double-channel imaging with a rotated second channel (blue). The results of the
double-channel defocus setting (red) are added to facilitate a comparison. The first row originates from the

weak astigmatism (A), the second from the strong one {Bdndy are displayed in the first and second
column, respectively.

accuracy which is due to the strong beam divergence. This difference can grow up to a factor
2 atz = +400 nm. In contrast, the strong astigmatism does never outperform the defocus in

x andy at the same time. In summary, the astigmatic methods do not outperform the defocus
setup inx, y or z at the same time.
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3.2.3 4pi-Scheme

Conventional fluorescence microscopy collects merely the signal being radiated into one
half of the solid angle. By using a second lens opposed to the other lens the signal photon
number can be almost doubléd[17]. Interfering the two beams vitfi@as0%-beamsplitter
produces a constructive and a destructive detection[PSF [84]. The constructive detection PSF
is usually used for imaging and leads to images which are in need of deconvolution due to
axial side-lobes. Fortunately, the central node has an axial width that is far below the one
of confocal microscopy. Just as 4pi - microscopy was combined with STED microscopy
to benefit from the advantages of both techniques$ [85] a combination of the 4pi-concept
with PALMIRA can be aimed at. In the defocus and the astigmatism scheme radial position
estimation was superior to axial in terms of precision. At this place, an extension of the
4pi-setup is presented that reverses this order and privileges axial localization over radial
localization. The physical effects responsible are (i) the increased number of signal photons
on the grounds of the enlarged solid angle and (ii) the stcemgpdulation of the interference
detection PSFs.

OoL1

OL2

Figure 3.10: An extended 4pi-setup with four identical%-50%-beamsplitters and two phase retardation
plates.Ay;, = 7/2 leads to interference patterns with a relative phase shiftof2, = and3x /2, respectively.
The effective detection PSFs are so strongly dependentloat unlike the preceding methods the precision of
z—estimation becomes superiorioy—estimation.

Figure displays the experimental setup. A standard 4pi-setup with two opposing
objective lenses OL1, OL2 and one beam-splitter creates the usual constructive and destruc-
tive electric fields. These waves are then transmitted by another two beam-splitters leading
to the measured fieldB; andE,. One of the reflected parts is retarded Ay, and then
recombined with the second reflected wave. The constructive and deconstructive part of this
process are measuredBs andEg. The second beam-splitter and the associated channels
E5; andEg serve to eliminate undesired ambiguities in the determination of-{b@sition
that still reside in the first two channdis andE,. A wave tracing analysis has to take into
account that each reflection implies a phase shift &f and thatE, arises fromE; by a

3The figure is courtesy of Dr. A. Séhle, MPI f. Biophysical Chemistry, @tingen.
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reflection atz, i.e.

EQ,:E(Imyu Z) = Elw(x?y’ _Z)
E2,y<xvy7 Z) = ELZU(:vaa _Z>
EQ,z(flf,y, Z) = _El,z(xayv _Z)

(3.13)

After careful tracking of the phases the resulting figlanay be compared to the standard

form .
E =E, + ¢“?E,

to yield the following relative phase shifts

Aps = Ap,+7/2
Apy = Ap,+31/2

and
iA
oiles  _ Li(Dpa—3m/2) € e~ —1
et + 1
iA
GAGe _ ilBpas/z LT T
1 — etden’
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(3.14)

(3.15)

(3.16)

Figure 3.11: Axial cross sections for the 4-channel 4pi-setup with, = 0 andAy, = 7/2. The channels
with relative phase shift8 (Eg) andn (E5) are symmetric with respect to = 0. Those with relative phase

shiftsw/2 (Es) and3w /2 (E4) are symmetric if interchanged.
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SettingAy, = 7/2 results in

Aps; = Ap,+7
Aps = Apg. (3.17)

From now on,Ayp, = 0 is used. Figure[(3.11) displays axial cross sections for the
associated detection PSFs at different positieng he four channels display strong vari-
ations and show symmetry properties under reflection at 0 and reflection combined
with interchange if necessary. Meanwhile, Figure (B.12) reveals the behavior of the center
of the four detection PSF&;(z = y = 0,2) and the widthw;(z) = 2v2In20(z) over
the full z-support. The multi-path interference leads to pronounced axial oscillations in a
single detection PSF with a period of roughly2. The maxima of the different channels
are alternating during this period. Furthermore, for the double beam-splitter setup the first
ambiguity in widths arises at, ~ £120 nm while it occurs already at = 0, ~ £120 nm
for the one beam-splitter scheme where only channels 3 and 4 are used. The ambiguity in
widths can jeopardize axial localization if - while featuring the same width - the shape of
the PSF is not different enough. This is likely to be the case for the one beam-splitter setup

Teemmm ==

-300 -150 0
z [nm]

Figure 3.12: Full z—trace of the pointt = y = 0 (A) and the widthsw;(z) as a function ofz (B) of

the 4pi-setup wittAp, = 0 andAyp, = /2. The different relative phase shifts abgsolid black), /2
(solid red),n (dotted black) and= /2 (dotted red). Characteristic oscillations are occurring. The different
channels alternate in providing the maximum peak. The PSFs for the phase0shiitsr are symmetric
with respect taz = 0, those forr/2 and3x/2 are invariant under reflection and interchange. Certain axial
positionsz; lead to a full symmetry of the widths (dotted blue lines). Although the widths are eqttal; dhe
details of the PSF&, , andhs, /o, may be different. This is seen by prolonging the lines to the upper graph:
hppa(ex =y =0,2=—2) = hgzpo(x =y =0,2 = z).
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atz = 0,~ £120 nm, see Figurg (3.12, A, red lines). The double beam-splitter scheme
supports two times larger a localization support. In addition, the two beam-splitter scheme
avoids simultaneously vanishing derivatives of PSFs and widths, i.e. diverging local Cramer-
Rao bounds.

Finally, Figure [(3.1B) renders an account for the Cramer-Rao bounds of the four-channel
4pi-setup in comparison to the two-channel defocus setting. It is taken into account that the
photon number is doubled in the case of the 4pi-settiig; 500, whereas it stayd’ = 250
for the case of the defocus. The background noise is assumed as uslialhe 4pi-setting
outperforms the defocus in all categories : (i) radial localization is ameliorated by a factor
of 2, (ii) axial localization rises even by a factor of 8 and (iii) radial and axial estimation
feature a higher degree of spatial homogeneity. Already a standard 4pi scheme using merely
a single beam-splitter would have yielded qualitatively related results but with a much lower
degree of spatial homogeneity. In the 4pi scheme axial localization is privileged over radial
localization.

50

40

defocus

o;.0, [Nm]

0 | 1 | |— | .-n. ‘I - ‘: ~ -I'— |‘ ] I |- | ”-n | 1 |

-600 450 -300 -150 0 150 300 450 600
Z[nm]

Figure 3.13: Cramer-Rao bounds,(z) for radial (black) and,(z) for axial localization (red) for the four-
channel 4pi-setup witl\p, = 0 and Ay, = 7/2. The photon number i& = 500 for the 4pi-setting to
account for the doubled solid angle whereas it stslys 250 for the defocus. The 4pi-setup not only achieves
higher precision but leads to smaller spatial variations of the localization properties. A standard 4pi scheme
featuring only one beam-splitter would yield two images with higher photon number but with much more
strongly varyings,(z) (red, dotted).

3.2.4 Multi-Point Scheme

The methods presented so far rely on the use of a CCD camera. Typical CCD frame rates are
of the order of 500 Hz. This implies a temporal resolution of about 2 mis [7, 8]. In contrast,
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Figure 3.14: The arrangement of the APD foci for a multi-point setup. Both, an equilateral triangle (A) and a
rhombus (B) are investigated. The center of mass coincides with the origin of the coordinate system. The only
free parameter is the side-lengttof the triangles (thin black lines) joining the APD positions. For simplicity,

a = 1 has been chosen for this figure. A typical value is 200 nm.

APDs allow integration times in the range of a few tens;f rendering possible a much
higher temporal sampling. Here, the Fisherian method is used to study the precision of a
position estimation setup consisting of an array of APDs. Fidure](3.14) sketches the two
versions of this setup. Arrangement of the APDs on an equilateral triangle (A) as well as on
a rhombus (B) are considered. The coordinate system is chosen in such a way that its origin
coincides with the center of mass of the detector setup. The single free geometric parameter
is the side-lengtla which is typicallya = 200 nm.

The statistical model for the photon signal on the different APDs is formulated in close
analogy to Equations (3.1) and (B.5). The detection RSfr) giving the probability to
detect a photon emitted by a molecule at positigithe detection efficiency is 1 is assumed
to be normalized in such a way thak(r = 0) = 1. When denoting the APD centers by
{r;},i = 1..A, the detection efficiency by, the mean background Ibyand the mean photon
number byN the following mean signal numbé¥;(r) is obtained for the diode

Ni(r) = nNhge(r —1;) + . (3.18)

In other words, the probability to be detected by APB nh(r — r;) while

A
pos(r,n) =1—n Z hoa(r — 1;) (3.19)
i=1

is the probability to be overlooked by all APDs. To avoid unphysical resutigs to be
chosen in such a way to guarantee(r,n) > 0 for all r. The Fisher information for
x—localization with all other parameters given reads

A - 2
_ Z [nN@xhdel(r — rl)}
[(x) B Uthet(I“ - ri) + b

=1

(3.20)
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Here, it has been assumed that the number of photo-electrons fluctuates with the number of
photons being radiated onto the detector according to a Poisson distr{ﬂau"ﬂbe expres-
sion fory is analogous. Equation (3]20) displays a pronounced dependency on the radial
coordinates:, y. This is different from Equation (3.11) where a large image support leads to
translational invariance df(z) in the radial direction.

The setup, Figure (3.14), suggests that the mean photon siyitajsallow for a one-
to-one determination of the molecule positmnHowever, the numbed of recording sites
is quite low. Usually, small numbers of observables frequently lead to ambiguities due to
an inherent reduction in dimensionality. To show that such ambiguities can effectively be
excluded here the vector of sign®&r) is investigated in the following.
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Figure 3.15: Signal tracesN(yp) as a function of the polar angle for a molecule moving along a circle of
radiusr = 200 nm withn = 0.25, N = 250 andb = 4. Both, for the three-point (A) and for the four-point-
setup (B) these traces display an unambiguous mapping between the particle pdsiji@nd the signals

N(p).

Figure [3.15) displays the signal vectdifr) as a function of the polar angle for a
molecule located on a circle of radius= 200 nm. The trajectory starts at= (0, —r) and
then proceeds counter-clockwise. The total signal is distributed in a characteristic manner
among the detectors. The 3-fold rotational symmetry of (A) and the double mirror-symmetry
of (B) is evident. Detectors that can be mapped onto each other by these operations are called
equivalent. Equivalent detectors feature signals with similar but shifted functional shape
over ¢. For instance, the graph belonging to configuration (A) display a uniform relative
shift of 2 /3. The assignment(y) — N(¢) is always invertible to yield an angle from

4A multinomial image model can be discussed on the same grounds as in connection with Eon (3.11).
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observationdN. This fact remains valid as long as the radius is not too large in order to
collect enough signal in all detectors.

While Figure [3.1p) showed that ambiguities do not occur in the polar angligure
(3.18) clarifies this point as far as the radiuis concerned. The figure presents the implicit
plots of the mean signal curd () of the three-point setup for two circles of radii=
100 nm andr = 200 nm, respectively. The angle now plays the role of the arc-length of
the signal curves. The total signal is gradually shifted from one detector to the other. Larger
radii decrease the maximum signal experienced by a single detector. In the limit-afo
the curves shrink down to the poifit, b, b) and no inference about the position is possible
any more. Nonetheless, the curves do not intersect for different radii as long as they are in
a range of a few hundreds of nanometers. This behavior may be reproduced for different

combinations of two radii.

Figure 3.16: Implicit signal traceN () for the three-point setup with particle trajectories on circles of radii

r = 100 nm (blue) and- = 200 nm (red), respectively. Optical parameters@are 0.25, N = 250 andb = 4,

as above. Naturally, the small radius features a higher maximum signal since the particle gets closer to the
detector centers in this case. For- oo the trajectories shrink to the poift, b, b) and no inference about the
position is possible any more. For moderately small radii of the order of some hundreds of nm both curves do
not intersect. Estimation of the position from intensity vectors is then free from global ambiguities.

Once it is established that the measured observables do not have global ambiguities
the local behavior of the likelihood function may be studied using the Fisher information
expression of Equatiof (3.20). Figufe (3.17) displays two-dimensional plots of the Fisher
information/,(z,y) and,(z,y) associated withk— andy—localization, respectively. The
optical parameters = 0.25, N = 250 andb = 4 have been chosen as before. The highest
values of/;(x,y) correspond to Cramer-Rao bounds for any unbiased position estimator of
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Figure 3.17: Fisher informatior/, («,y) andI,(z,y) for z— andy—localization, respectively, for the three-

point (A) and the four-point-setup (B). The photon numbeNis= 250, the mean background noise of the
individual detectob = 4. The detection efficiency directly at the center of the detection spptis).25. At
maximum, the information reaches values corresponding to a Cramer-Rao bound of 12 nm. The fdpctions
and I, show pronounced spatial variations with a distinct area of high estimation quality in the center of the
scheme (yellow, white). It is worth noting that the Fisher information can approach extraordinarily low values
close to detector sites as for instance fgr(A). This implies that unbiased estimators may have diverging
variance although the fluorophore might be located close to a detector. Nonetheless, biased position estimators
may exist in this region that have a variance well below the Cramer-Rao bound of the unbiased estimators.

about 12 nm. Irrespective afor y and of the setup (A) or (B) the Fisher information fields
feature regions of high localization quality before decaying of to zero. The comparatively
low number of detectors leads to strong spatial variations with a characteristic geometric
shape. This was not the case for the CCD camera setups of the preceding chapters because
the number of pixels was high and edge effects could be neglected. It is worth noting that
the Fisher information value may be extraordinarily small even close to detector sites as for
instance forl,(x, y) of the three-point setup. This leads to very large error bounds. At a first
sight, this is astonishing since high-quality estimation is expected at positions of maximum
signal-to-noise ratio. Nevertheless, these two points are compatible when being aware of
the fact that biased estimators need not follow the unbiased Cramer-Rao bound of Equation
(3.7). Although there need not exist unbiased estimators meeting the expected accuracy,
there may exist biased estimators with variances well below the unbiased Cramer-Rao bound.
Quantitatively, if an estimatoi of the parameter with biasb(x)

b(x) :=(2) —x (3.21)
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is given the Cramer-Rao inequality replacing Equation| (3.7) becames [78, 80]

L+ ()

Y@ (3.22)

varz| >

Thus, a biased estimator mapping a certain interval of the parametea constant value,
can even decouple the variance from Fisher information sifige= z, — = is obtained for
this case. The variance is then simpty — x)2. In other words, if the unbiased Cramer-Rao
bound is super-parabolic in an important region it is always good practice to stick to a simple
biased interval estimator instead of using a necessarily bad unbiased point estimator. For the
Fisher information/ () and an unbiased estimator given an artificial bias could be designed
by optimizing a parameterized bias functign, p) over the parameterto yield a minimum
mean biased Cramer-Rao bound in an interesting interval.

Nevertheless, unbiased estimators too may have Cramer-Rao bounds as small as those
for the estimation settings of the preceding chapters in large regions of space. Figure (3.18)
displays the behavior of the unbiased Cramer-Rao boupa$ ando,(r) for both radial
directions along the abscisgéa y = 0) and the ordinatér = 0; y). Unbiased radial position
estimation in the multi-point setup is capable of yielding the same maximum quality as for
the defocus and astigmatism settings.

Cramer-Rao-bound [nm]
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Figure 3.18: One-dimensional Cramer-Rao-boundsr) (black) ands,(r) (red) forz— andy—Ilocalization

for the three-point (solid) and the four-point-setup (dashed) along the abéejssa 0) (A) and the ordinate

(z = 0;y) (B). It is seen that the unbiased position estimators of the multi-point setup feature errors in center
regions as low as those of the defocus or astigmatism methods of the preceding chapters.
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3.3 Performance under Realistic Conditions

Once, the Cramer-Rao bounds have been established it is of interest to assess the question
whether estimators employed with stochastic data are efficient, i.e. reach this bound. Fur-
thermore, a systematic bias should be revealed. For an estimator given in explicit form the
mean and variance might be calculated directly by evaluating expectation values. For es-
timators that are known merely implicitly a Monte-Carlo simulation could be employed to
generate a sufficiently large amount of samples from which the interesting values are esti-
mated. Here, the maximum-likelihood estimator is studied. Since the radial dimensions have
been studied thoroughly in the literature [69] the focus is put on the axial coordinate

3.3.1 Defocus-, Astigmatism- and 4pi-Scheme

The channel methods using defocused, astigmatic or 4pi-imaging are characterized by the
fact that a huge number of measured values, the pixel photon nur{wgl}sper channel,

are reduced to a few three-dimensional position vectors. Typical reduction factors are of the
order of 20, i.e. about 60 measured values are compressed into a single three-dimensional po-
sition. This makes it complicated to state the maximum-likelihood estimator [86] explicitly.
Given the positionr Equation ) states the probability to measpméj}. The associated
maximum-likelihood estimata,, ({/N/;}) is the solution of the equation

Vep ({N;}r) = 0. (3.23)

Defocus- and Astigmatism-Scheme

Figure [3.19) delivers a plot of the mean axial position estimated from a Monte-Carlo sim-
ulation using the maximum-likelihood estimator. The mean photon numh&T is 250

and the background noise amountste 1. 400 image samples per—position featuring a
camera pixel size of00 nm are drawn from the image model in Equatipn](3.5). The axial
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Figure 3.19: Mean axial position(z) for the defocus (blue)as well as the weak (orange) and strong astigma-
tisms (red) estimated from a Monte-Carlo simulation making use of a maximum-likelihood fit. The methods
are bias-free and fluctuate merely marginally around the line through origin (black).
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sampling step i\z = 5 nm. The maximum-likelihood estimate is determined by employing
a Nelder-Mead downhill simplex algorithrn [87] to search the minimum in Equafioh (3.5).
The fititeration is initialized radially with they-maximum pixel(zy),... and axially with the
maximum positior,,,, of the likelihood with(zy) = (zy).. fixed. The stopping criterium

of the fit is to feature consecutively more than 10 times a spatial<stepmm. The defocus
and astigmatism methods are bias-free.
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Figure 3.20: Standard deviation (z) for the defocus (A), the weak (black) and strong (red) astigmatisms (B)
retrieved from a Monte-Carlo simulation for the maximume-likelihood fit. The unbiased Cramer-Rao bounds
calculated in the preceding chapter are shown as dotted lines. For the case of defocus as well as astigmatism
the standard deviation approaches the Cramer-Rao bound in the central region.

Figure [3.2D) states the standard deviations estimated from the same simulation. The un-
biased estimators for the defocus and the astigmatisms are bound from below by the Cramer-
Rao bound and even almost approach this bound in the central region arcand. In
the outer regions the experimental error is approximately twice as large as the Cramer-Rao
bound.

4pi-Scheme

For the 4pi setting the mean photon number amounfs te 500 to account for the larger
aperture. All other values remain the same as in the foregoing paragraph. Figufe (3.21)
shows the distributiop(Z|z) of estimated axial positionsconditional on the original posi-

tion z. The pixel-size i$ nm, i.e. a value op in the histogram means that a fractiprof

all estimates falls into a single interval of sizexm. The method is bias-free and of small
standard deviationg.(z) ~ 7 nm, for all axial values. This is mirrored by the similarity of

the distribution to the line through origin and its widthlof- 2 pixels. No anomalies occur

at the positionstz; of global ambiguities of the widths in Figure (3]12).
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Figure 3.21: The distributionp(z|z) for the retrieved value$ as a function of the original axial coordinate

z in the 4pi-setup. The distribution is a bisecting line through origin. Thus, the method is bias-free at all
positions. The width of the line describes the variance and leads to waluesr nm. This is in accordance

with the Cramer-Rao results of Figufe (3.13) where the lower boundrwass nm.

3.3.2 Multi-Point-Scheme

The multi-point setup has been studied theoretically in section (3.2.4). Here, a lookup-
estimator to retrieve the particle position is evaluated experimentally for the three-point setup
of Figure , A). The estimator assumes the mean photon nuwbed the background

b to be known. Then, the mean signdlgr) follow from Equation [(3.1B8) and the positian

is estimated using the estimator

3
r({N;}) = min {Z [N; — Ni(r)f} ‘ (3.24)
=1
Thus, the positionr leading to a minimal euclidian distance between the measured vector
N and the expected ond (r) is taken. Figure](3.22) presents the results of Monte-Carlo
simulation. The bia$,(x,y) andb,(z,y) as well as the standard deviationgz,y) and
o,(x,y) are estimated from00 samples at eacfr, y)—position on al50 x 150— grid of
length 750 nm x 750 nm. As before the mean photon numbeNs= 250, the detection
efficiencyn = 0.25 and the background noige= 1. Events with too low a photon number

are excluded by accepting only events V\}(ij.‘lz’lj\ngg}é > 7.5. The bias is of considerable
strength. In regions where a significant signal is distributed among the three channels the bias
carries signatures of the geometry of the setup. In regions where the setup records almost
exclusively noise the bias is almost linearior y. This results from the fact that in this case
every position is equally probable. The standard deviation reaches minimum values as low
as20 nm directly at the detector centers and grows cylindrically around these positions. As
an effect of the strong systematic bias the similarity with the Fisher results of Fjguré (3.17)
vanishes almost entirely. This is possible and reflects the lower bound in Eqiiatign (3.22).
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Figure 3.22: Bias b(z,v),b,(z,y) (A) and standard deviations,(z, y), o, (z,y) (B) estimated during a
Monte-Carlo simulation of the three-point setup, see Fidure(3.14, A). Signal triples yielding geometric mean
values smaller thafi.5 have been discarded to exclude events consisting purely of noise. The bias is shown
for different color maps: the first rojv-125 nm, 125 nm| to investigate the overall behavior, the second row
[—25 nm, 25 nm| to indicate the regions of comparatively small bias. The standard deviations show clear sig-
natures of the geometry of the setup and are on the ord#&r i with minima of20 nm directly at the APD

foci. This might compared to the Fisher results of Figures (3.17)[and|(3.18).
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The analysis in the preceding chapters has assumed that recognition of molecules is ideal in
the sense that fluorophores featuring a signal photon number higher than a certain thresh-
old are detected while those with lower signals are rejected with absolute certainty. Real
experiments are more complicated. Pixel thresholding methods create a spatial dependency
of the effective threshold value. Background noise contributing to measured signals can be
over- or underestimated leading to events misinterpreted or overseen, respectively. Spatial
overlap of optical patterns originating from more than one fluorophore puts into question a
single-molecule analysis. Furthermore, molecules can be detected depending not only on
their position but also either on the spectral properties or of the state of polarization of their
fluorescence. Thereby, further degrees of freedom are added to the analysis.

4.1 Pixel Thresholding and the Homogeneity of
Space

All scanning methods require a systematic sampling of the space in which the molecules
can reside. In standard scanning confocal microscopy the total number of excitation cycles
is kept constant for each pixel. In principle, similar ensembles of molecules in different
pixels should give similar signals. Although scanning is stochastic for PALMIRA it is no
exception to this rule. A molecule in different regions of space has to be given the chance to
be recognized equally frequently in order for the PALMIRA image to be a credible estimate
of the real fluorophore distribution.

Generally, one has to distinguish between the value of the maximum pixel of the optical
pattern and its total photon content. In two dimensions these two values are merely multiples
of each other. In three dimensions a fixed pixel thresfigldeads to az—dependent total
event threshold?,(z). Their relationship is dictated by the detection F&F),

Tpix . hmax(z)
th(z) - Zij hij(z)

The last equality sign holds since the PSF is normalized radially fat #the pixel thresh-

= R 2). 4.1)

old T, is given the effective event threshold reads
T
Tu(z) = —2—. 4.2
(Z) hmax('Z) ( )

For the case of the two-channel defocus setup an event is considered to be relevant if in
at least one of the two frames the maximum signal excdgg®. Using half the value
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takes into account that the signal is split equally among the two channels. For two channels
focused at = +z, the effective total threshold follows as

: T 7 ix
Tw(z) = min { oo — 7)ol £ 20) } ) (4.3)
Figure [4.1, A) displays a plot of Equatioris (4.2) and](4.3) for the two-channel defocus
and the single-channel weak astigmatism setup of Chapter (2.2). The event threshold is
considerably homogeneous in intervals of length 200-300 nm for the single-channel setup but
displays stronger variations for the two-channel scheme. Consequently, a space-dependent
event threshold leads to a space-dependent probability of recognizing an object. [Figure (4.1,

12— T T 711 — T T T T 1
| A)

———— 0.8

100 | -

To(@
Pdet(z)

B)

0L~ . . +— 0.0
-600 400 -200 O 200 400 600-600 400 -200 O 200 400 600
z [nm] z[nm]

Figure 4.1: (A) Effective event threshol,(z) as a function ot for the two-channel defocus (red) and the
one-channel weak astigmatism setup (black). For the two-channel setup an event is considered to be relevant
if on at least one of the two images a pixel exce@ls/2. The pixel threshold},, has been set to unity. To

resolve all regions statistically equitably it is necessary to introduegcanning or to correct numerically for

the space-dependent detection probability. (B) Effective detection probahilify) as a function otz for

the two-channel defocus (red) and the one-channel weak astigmatism setup (black). The photon number is
N = 250 and the pixel threshold},, = 7. The maximum detection probability for the defocus is slightly
larger than the one for the astigmatism since the astigmatism is never focused as tightly as the non-aberrated
detection PSF and therefore the detection PSF features a higher center value in the focal plane.

B) gives the associated detection probability(z) for a mean photon valug = 250 and

a pixel thresholdl,, = 7. It is given by the probability to exceed the threshold in the
current image frame. Here it has been assumed that the detection process is ideal in the
sense that all photons are observed and no noise is present. Then simply Euatjon (2.26), the
cumulative sum of the geometric distribution, might be used. As has already been obvious
from Figure [4.2) scanning schemes have to be employed if regions where the threshold is
position-dependent in a relevant way are to be mapped.
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4.2 Recognition in the Presence of Noise

The interplay of the real photon signal and the background noise leads to subtle effects.
Background noise may be underestimated which causes objects being recognized although
they have a signal photon number below the threshold. Poisson fluctuations of the number
of measured photo-electrons can yield values lower values than the actual signal which leads
to objects being omitted though their signal exceeds the photon threshold. Here, these ef-
fects are studied quantitatively. It is assumed that thresholding is a one-stage process during
recognition and that no secondary thresholding rejecting already recognized events accord-
ing to their total photon number takes place. The discussion is restricted to two dimensions.
Hence, the event threshdld, and the pixel threshold,, may be used interchangeably. The
standard detection PSF used in this thesis and an assumed pixel size of 100 nm x 100 nm
induces thaf;, ~ 107,,.

In a first instance, the probabilit,.( N, T,,, b) for an event to be detected as a function
of the the photon numbéy, the threshold’,, and the background valuds studied. So far,
this has been assumed to be a simple step function,

0 N <Tq

1 N>T, (4.4)

PideaI(N7 T;ota 6) = {

Now, this ideal shape is altered due to the effects of the background noise. The problem is
equivalent to inquiring for the probability for all pixels being below the thresfigldecause

one and only one pixel above threshold suffices for an event to be recognized. Hence, the
probability to be detected;,. (N, T,,, b), reads

Pdet<N7 Tpixal;) =1- H ( Z p<Nij|Nij)) ) (4.5)

ij N;j=0

with the mean value of pixelj

andp(N;;|N;;) being a Poisson distribution. The cumulation in Equa (4.5) may be sim-
plified further to obtain

Pdet(N7 Tpixv Z_)) =1- H Q(Tpix7 NZ]) (47)

with the cumulative Poisson distribution

T(T +1,))

T (4.8)

Q(T,\) =

['(T + 1, A) denotes the generalized gamma function defined as [52, 88]

O(T+1,)\) = / tfetdt. (4.9)
A



50 Recognition of Objects

10+

08|

0.6 |

Pdet

04}

02}

0.0}

Figure 4.2: Detection probabilityPy( N, Ti,:, b) according to Equatio@.?) in the presence of pixel back-
ground noisé = 1 as a function of the photon numba¥ for different values of the total photon threshold

Tt = 20, 40, 45, 50, 60, 70 and90 (from left to right). Noise leads to non-ideal recognition: the probability to

be detected is larger than zero for< T, (overestimation) and smaller than one /r> T (underestimation).

The former effect is several orders of magnitude stronger than the latter. The graph belonging to the threshold
valueTi = 60 is highlighted (black) and the idealized detection probability of Equafion (4.4) is added for this
case (dotted).

Figure ) deliversP,(N, T, b) as a function of the photon numbar for a variety
of different total thresholdg,. The background noise has been set te 1 as is typical
for high-quality CCDs. It can clearly be seen how objects are overestimated in regions with
N < T, where the probability is unequal zero and underestimated in regions Wherd,,
where the probability is smaller one.

It is of considerable importance to notice LNV, Ty, b) is not a probability distribu-
tion for the photon numbeW. The full distribution to yieldV photons and being detected is

p<N|Na 7ﬁ'fota B) - Pdet(N7 ﬂoh B)p(N|N) (410)

with p(N|N) given by the geometric distribution of Equatidn (1.5). Then, four alternatives
can be discerned of which the first two are desirable and the other two are not:

1. N > T, and the object is recognized,

Pl (N7 67 7—lot) = Z Pdet(Nu 77t0t7 l_))p(N|N>7 (411)
N:Ttot
2. N < T, and the object is not recognized,

Trot—1
Py(N.b,To) = > (1= Pae N, T, D))p(N|N), (4.12)

N=0
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3. N > T, and the object is not recognized,

P3(N7 Z_)v 7—éct) = f: (1 - Pdet(N7 7—;ma l_)))p(N”v)? (413)

N=Tiot

4. N < T, and the object is recognized,

Tiot—1
P4(N7 67 ﬂot) - Z Pdet(N7 ﬂon B)p(N‘N) (414)

N=0

To classify for which types of fluorophores, characterized by their mean photon number
N, the recognition process is error-prone Fig(4.3) shows a plot of these probabilities as a
function of the mean photon numba&tfor a realistic value of the event threshdlg = 100.
The pathological case of exceeding the threshold but not being detected (3) is weaker by an
order of magnitudé - 10~* and therefore does not play any practical role. At mean photon
numbersN close to zero practically no event is recognized, the case of correct rejection
(2) is dominating. At high mean photon numbers desired recognition (1) dominates. The
probability to be detected without wanting to do so, case (4), approaches zero for large
photon numbers. For mean photon numbers close to the threshold this pathological case

1-Og'|'|'|'|'|'|'|'|'|
0.9
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Figure 4.3: ProbabilitiesP;(N, b, T,,) for the different detection modes of Equations (4.11/4.12]4.14) as

a function of the mean photon numbat. This graph allows to categorize fluorophores with differant
according to their affinity to produce a recognition error. The desired configurations (1) and (2) are displayed
in blue, the pathological one (4) in red. Configuration (3) is weaker by a factor* and therefore practically
non-existent. Recognition is represented by solid lines, non-recognition by dotted lines. The event threshold
is T, = 100, the background noise s = 1. To facilitate a comparison, the dashed black line shows the
probability to be below threshold for the noise-free case. For a further explanation see the text.



52 Recognition of Objects

displays a maximum. In this case up2@’ of all events are pathological. It is also worth
noting that at moderately low photon numbé¥s~ 40 undesired recognition dominates
over desired recognition. As a comparison, the probability to be below threshold for the
ideal case without any background noise is added. This describes what type of event the
molecule originally offers.

The event detection theory developed so far does describe experimental data in sufficient
detail. Figure ) shows a comparison of a measured photon his@geamded under
realistic biophysical condition$|[7] and the theoretical prediction of Equafion](4.10). The
fluorophore is the fast reversibly photo-switching protein rsFastLime [89], a variant (V157G)
of the reversibly switchable fluorescent protein Droripa [90]. The molecule was attached to
a-tubulin inside intact PtK2 cells. The data was recorded by analyzing 60,000 frames. The
overall image acquisition time was 120 s (500 frames/s) and the light intensity (488 nm)
was increased stepwise from 3.5 kWFctn 5.0 kW/cn? in order to keep the number of
activated molecules sufficiently stable in spite of photo-bleaching. The same experimental
data will be used in the following whenever theoretical results are to be compared to the
experimental reality. For instance, in the later Chapter (5.2.2) it will be subjected to a point-
wise deconvolution scheme suitable for PALMIRA.
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Figure 4.4: Comparison of a measured photon histogram (black) and the prediction of the detection theory
according to Equatiorj (4.10) (red). The fluorophore is the fast reversibly photo-switching fluorescent protein
rsFastLime embedded in an intact mammalian cell. Model parameters heke-arg0, b = 1 andTyx = 9.

The background value was extracted from a pure-noise measurement of the setup. The mean photon num-
ber coincides with the geometric mean of the measured histogram for v&lues100 where the detection
probability has effectively reachd@,, = 1.

1The measurement is courtesy of C. Geisler, MPI f. Biophysical Chemisirtyir@en.
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4.3 The Problem of Higher-Order Events

In the last sections the recognition of events has been studied as far as spatial variations or the
role of background noise are concerned. Thereby, it has been assumed that all molecules are
imaged independently from each other. Higher-order events are events for which the optical
patterns of more than one molecule overlap. Here, the focus is laid on the effect of neighbor-
ing molecules. Can molecules really be imaged independently from each other ? How can
the independence of molecules be quantified? How strong is the effect of information loss
for overlapping single-molecule images? At first, attention is turned to the independence of
molecules.

In the subsequent the probability for higher-order events as a function of the excitation
probability of the switching transitio®,, is calculated. It is important to notice that one
image frame might contain a huge number of activated molecules at the same time. The
only necessity is that the associated patterns do not overlap. The critical area which defines
the onset of higher order events is the Airy disc. The number of molecules being activated
and sharing an Airy disc at the same time must not be higher than one for independent
single-molecule imaging to apply. Therefore, it makes sense to characterize the fluorophore
distribution under investigation by the maximum numBérof molecules being distributed
on any arbitrary area as large as the optical Airy disc. Then the probafiitity\/) for n
molecules to be switched on in this area in one cycle is distributed binomially as Equation

@3).
pn ) = () i (4.15)

whereP,, denotes the switching probability. The probabiliy, (P,,, M) to have a higher-
order event then reads

Poy(Py, M) = i p(n, M). (4.16)

The cumulation of the binomial distribution is given by beta functions, see Equftion (2.40),
and may be expressed in a simple polynomial form here since the summation limits are
trivial,

Poy(Py,M)=1—-(1-P)M - MP,(1 - P,)M . (4.17)

Figure ) delivers a plot aP.,(P,., M) as a function of the molecule numhéf for
different values of the switching probabilify, = 1-1073..6-1072 in steps ofi - 10~3. Lower
switching probabilities lead to a higher number of molecules tolerable in an Airy disc. High
switching probabilities require samples of low fluorophore density in order for higher-order
events to occur sufficiently rarely.

Once the probability for higher-order events is known it is of considerable interest to
quantify the information loss inherent in these events. The overlap of optical patterns of
molecules entails a loss of knowledge about the separation of the molecules. This loss is
more severe the closer the objects become. Again, Fisher information lends itself as a mea-
sure of this process. For two molecules of equal mean photon nuMtzerd separation
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Figure 4.5: The probability for higher order events.; (M, P.,) as a function of the molecule numh&f and

the switching probabilityPs,. From the left to the right the switching probability is decreasing and takes the
valuesP,, = 6-1073,5-1073,4-1072,3-103,2-10~3 and1-10~3, respectively. The order of magnitude of the
molecule numbeh/ is appropriate for conventional biological samples. Clearly, lower switching probabilities
lead to a higher tolerable number of molecules in one Airy disc.

distanced the mean signaV;; in a pixel indexed by, j is given by
Nij = Nh(z; — d/2,y;) + Nh(z; + d/2,y;) + b, (4.18)

whereh(z,y) is the normalized detection PSE, y; are the CCD pixel center coordinates
andb the mean background noise. Assuming Poisson pixel statistics the Fisher information
measure for the particle distanédollows in close analogy to Equatiop (3]11),

1) = Y Nt d/2o) — Wl d2)l (4.19)
i 4 Nh(xl — d/2,y]) + Nh(l’l + d/2, yj) + b
The derivative is with respect to the-coordinate, here. The spatial distribution of the two
molecules could be chosen arbitrarily since the detection PSF is rotationally symmetric when
averaging over equally-distributed orientations of the emission dipole.

Figure [4.6) represents this Fisher information measure for different mean photon num-
bersN = 50,150 and250 at a background level df = 1. As usual, the CCD pixel size
amounts td 00 nm squared. The standard detection PSF with 575 nm is employed. The
molecule distance is varied in an interdga¢ [0, 1000] nm. Perfectly overlapping molecules
are not discernible. For increasing particle distasfitiee Fisher informatiot (d) grows and
stabilizes on a plateau fat > 300 nm. This plateau corresponds to Cramer-Rao bounds
for unbiased distance estimatorsiaf 16 and32 nm, respectively. Small variations on the
plateau are residuals of the oscillating spatial behavior of the detection PSF. FFigiire (4.6)
provides a measure as to what extent algorithms treating higher-order events likethe
algorithm of Figure[(1}4) could be successful in discerning double objects. Predictions of a
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Figure 4.6: Fisher information for the distance of two equally bright molecules as given by Equiatioh (4.19)
with N = 50, 150 and250. The pixel size of the CCD is 100 nm, the mean background noise perpixdl.

The molecule distance is chosen at 100 equally spaced points in the intesvil, 1000] nm. Entirely over-

lapping molecules are not discernible. For increasing particle distance Fisher information grows and stabilizes
on a plateau fod > 300 nm.

Fisherian analysis for the estimation accuracy of the inter-particle distance have already been
stated for the simpler case of the PSF given by a Gaussian or an Airy furiction [91] and been

verified experimentally [92]. The above findings using the more realistic PSF are consistent

with these results.

4.4 Spectrally Resolved Molecule Recognition

Use of molecules with different emission characteristics that are recorded in different spectral
channels enhances the level of complexity of the analysis by adding a particle type degree of
freedom. In statistical terms, the problem is again described by a multinomial distribution.
Assume thatl different types of molecules with spect{&;(\)},! = 1..L give the mean
photon signalg{n;},/ = 1..L and are recorded o' different channels with wavelength
supports{/.},c = 1..C. Then, the mean signal in the channeis

¢=Kn (4.20)

with theC' x L sorting matrixK given by
Ky = / Si(A)dA. (4.21)
I

K is the probability that photons originating from a molecule of typall be detected in
channek. The normalization

C
Y Ky=1 Vi (4.22)
c=1
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Figure 4.7: Typical spectra of two dyes,a RhB-derivative (1) and a Rh590s variant (2), with sufficiently distinct
emission characteristics for use in dual-color PALMIRA microscopy. The more blue-shifted fluorophore has an
emission peak at; = 575 nm, the more red-shifted dye & = 625 nm. The spectra are normalized such that

the integral yields unity. The channel separation wavelengts 592 nm leading to a maximum occurrence

of correct assignments is shown as a dotted line. There is considerable crosstalk between the two channels.
Nonetheless, statistical estimation procedures can heavily profit of the fact that the crosstalk is quantitatively
different for the two molecule types.

is assured for all moleculdsas long as the channels cover the whole emission wavelength
support without overlap.

Figure ) presents an exanﬁ)fer the spectra of a RhB-derivative (1) and a Rh590s
variant (2) [83]. The channel intervals are choserfjas= [0, \,] and o = [\, o] with
A¢ = 592 nm. In this special case, the sorting matkxtakes the values

0.65 0.1
K= ( 0.35 0.9 ) ' (4.23)

Given a stochastic signal sampi¢he probabilityP(c|l) of the channel signal configu-
ration assuming that it originates from molecukeads

N! . .
where the total measured signélis given by
C
N=> ¢ (4.25)
j=1

Equation [(4.24) just reflects the process of sortighotons inC' channels with multiple
occurrences being allowed. This is the standard model leading to a multinomial probability

2The measurement is courtesy of dllfag, MPI f. Biophysical Chemistry, Gitingen.
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distribution. The associated maximum-likelihood estimatai) giving the molecule typé
for which the observed datahas the highest probability may be constructed as

L(c) = max {P(c|l),l =1..L} . (4.26)

The estimatori(c) is extraordinarily simple for the case of just two chanr@ls= 2.
Then, the setup is characterized by the probabilii&s}, ! = 1..L to end up in the channel
1 and the estimator is just

A

L(cy, o) =max {K* (1 - K;)®,l=1..L}. (4.27)
This is equivalent to finding the maximum of the log-likelihob-;, c,|1)
L(c1,eoll) = e1 In(K)) + c2In(1 — K)). (4.28)
Interestingly, maximizing Equatiof (428) is equivalent to minimizing the entéépy
H(K)) = —K;In(K;) — (1 — K;)In(1 — K (4.29)
subject to the constraint that the channel mean values

& = NK,
& = N(1-K) (4.30)

are fixed tocy, co. In other words, the molecule type is chosen in such a way that it leads to
the most pronounced, i.e. minimum entropy, distribution effect while maintaining the correct
mean values. Neglecting a scaling factor the likelihood in Equdtion|(4.28) solely depends on
the the signal fractiony

— (4.31)

Co

Hence, maximizind.(c, c2|) is equivalent to maximizing the function
L(K,v) =~vIn(K) + In(1 — K). (4.32)
The maximumk,..(v) given+ is determined by

Kmax
]- - Kmax

= 5 (4.33)

and describes the type of fluorophore, characterized by the sorting probdbilitythat
maximizes the probability of the observed data.

Figure [4.8) displays a plot df( X, ) for different values of the signal fraction The
function displays a unique maximum At,.(v). This value describes that molecule spec-
trum for which the data is maximum probable. If a choice has to be made among a finite
discrete se{ K} of sub-optimal sorting probabilities there might exist ambiguities. For in-
stance, if the measurement would yield the same signal in both channels], and the
probabilities would be given a&; = 0.3 and K, = 0.7 it could not be inferred whether the
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Figure 4.8: Likelihood L(K,~) as a function of the channel sorting probabilityfor different values of the
signal ratioy. The valuesy = 0.11 (black) andy = 1.86 (light grey) are the mean ratios obtained for the
sorting probabilities (vertical lines) associated with the spectra in Fifjure (4.7). Thewalue(grey) is added

to cover the symmetric case. The functib(k, v) always features a single maximum which gives the sorting
probability K that leads to a highest probability of the observed data. The ¢hiyg(v), Lmax(7y)] covering

the maxima of the likelihood is added (red). This is the trajectory of the most probable sorting with the arc
length given byy. Multi-color imaging with only two channels is rendered feasible because the maximum of
the likelihood covers a broad range i&sis varied.

signal originated from the first or the second molecule type sIié¢€, v = 1) is symmetric
aroundK = 0.5. Fortunately, sub-optimal are less frequent since the meanya$ propor-
tional to K, /(1 — K;), see Equatior] (4.80). Additionally, the curve of maximum likelihood
[KnadY)s Lnax(7y)] IS displayed. This is the trajectory of sorting optima. The arc length on
this curve measured from the origin yields the medor a givenK. Multi-color imaging
using two channels is possible because the maximum of the likelihood spans a broad range
askK is varied.

Provided shot noise is dominating the performance of the estimator of Eqyatioh (4.26)
is characterized by the transformation maffikK , C, N)

Ty(K,C,N) ZP cll) { 1 ﬁgg;; (4.34)

whereT; (K, C, N) describes the probability that a molecule of typeill be recognized
as of typei. T'(K,C, N) depends on the sorting matri, the total number of photon¥
and the channel numbér only. In Equation[(4.34), the probabilities for all configuratians
leading to the assignmeht— ¢ are accumulated. The trace Bf K, C, N),

L
Q(K,C,N)=> Ty(K,C,N), (4.35)
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is a figure of merit for the goodness of the estimator since it measures the frequency of correct
assignments. A maximization 6f()\,) for the spectra of Figur¢ (4.7) yields = 592 nm.
Typical examples for the transformation mat#iX/V) at N = 5 or N = 50 photons are

0.92 0.06
T(N=5)= ( 0.08 0.94 ) (4.36)
and .
1 <1-10"
T(N =50) = ( < 1.10-5 1 ) ) (4.37)

In real measurements the signal is polluted by background hoBigure ) renders
a Monte-Carlo simulation of the transition matfik (V) that has been performed in order to
clarify this point. The experimental spectra of Figyre|4.7) have been employed and the sort-
ing signalc has been degraded with Poisson background noise of meanival®s. This
is motivated by the fact that each optical pattern extends over rodghly pixels if a pixel
length 100 nm is used. Then, the mean noise value has been subtracted and the estimator
of Equation [(4.2B) was used on the corrected data. For signal photon vélues where

10
09} i
08| '
ozl i
061 '
05|

041 N e
1 10 100

N

Figure 4.9: The transition matrixZ;; (V) for correct assignments as a function of the photon nuniber
calculated by a Monte-Carlo simulation of noise-degraded data. The experimental spectra of Figure (4.7) and
a background ob = 27 per channel have been used. At higher photon numNetrs 50 object recognition is
practically error-free. At lower signal photon numk€rmis-assignments are encountered more frequently. In

this case, the background noise tends to make the signals equal in both channels. Thus, the fluorophore (1) with
the more equilibrated sorting; = 0.65 is preferred over the molecule (2) with the more asymmetric sorting

Ky =0.1.

the sorting effect dominates the results are not different from the noise-free case in Equation
(4.37). At low signal-to-noise rati&V < 50 erroneous assignments take place and the re-
sults are worse than those in Equation (4.36). The background noise inclines to equalize the
signals in both channels. Consequently, the fluorophore with the more equilibrated sorting
K1 = 0.65 is privileged over the more asymmetric molecule with = 0.1.

In summary, with moderate photon numbéfs> 50 and a simple estimator it is possible
to discern the molecule types to almost absolute certainty. Unlike in classical microscopy
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crosstalk in PALMIRA microscopy is of no disadvantage as long as the crosstalk character-
istics, i.e. the columns ok, are sufficiently different [93]. The method has been shown to
work in an experiment [10].

4.5 Polarization Resolved Molecule Recognition

Fluorescence may be detected depending on the state of its polarization. Thereby, the elec-
tric field vector is projected onto certain spatial directions. At first, the distribution of photon
numbers is studied for a random projection of the electric field on a plane formed by two
orthogonal detected polarizations. Secondly, the connection of pixel thresholding and sam-
pling rate of different polarization angles is elaborated. In a third step, a Fisherian analysis
of the estimation error of the polarization angle is presented and the results are compared to
a Monte-Carlo simulation using a common polarization estimator.

Usually, the electric field vectdt of the emitted fluorescence light depends on the orien-
tation of the emission dipole and can point in any direction of space unless special properties
of the sample force this vector into a preferred direction. Here, it is assumed that the emis-
sion dipole is static during acquisition. The fluorescence signal is recorded in two channels
corresponding to the polarization pointing into the orthoganalandy—direction, respec-
tively. The plane spanned by these two vectors is referred to as projection plane. Figure
(4.10, A) provides a definition of the coordinate system for the problem. The azimuthal an-
gle v is formed byE together with thee—direction. Thery—projection ofE is given byE,
and defines the polar angteformed together with the —direction.
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Figure 4.10: The coordinate system (A) is given by a conventional three-dimensional cartesian system. The
electric field vectoE of the emitted fluorescence is shown in red, its projection on the detection Bjaine

dotted red. The azimuthal angle with theaxis is¥, the polar angle formed between the- y—projection

and thex—axis isy. The projected signal®’, (¢) and N, () for a unit vectorE, are shown on the right (B).

The signal is split among the channels proportionallyds? (o) andsin?(y) for () and ¢), respectively.

In the subsequent, it is assumed that the absolute squadtetbht is the total photon
number, is distributed geometrically with meahaccording to Equatiorj (1.5) and that all
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azimuthal angleg are equally probable. Then, the photon numNean the projection plane
given a certain azimuthi is conditionally distributed as
_ N sin?(¥9) N
p(N’N,ﬁ) — [ 9 } N+1 (438)
[V sin®(9) + 1]

and the azimuth angle itself is equally distributed as
p(0) = sin(V) (4.39)

such that the integral ¢f()) is normalized to unity. The—component oE is not observed
experimentally and therefore the distributian( V| V) of in-plane projections reads

_ /2 _
Pa(N|N) = / P(N| X, 0)p(9)do. (4.40)

Figure [4.11) shows a plot of the functig,(N|N) for a mean photon valud/ =
250. A geometric distribution featuring the same mean value is given as a comparison. The
difference between the former and the latter function is positive for valies 120 and
negative for valuesv > 120. This reflects the fact that probability is shifted down towards
smaller values ofV. If all azimuthal emission dipole orientations can be assumed to occur
equally probable in the sample the problem is effectively two-dimensional with the photon
distribution given in Equatiorj (4.40).
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Figure 4.11: The effective distributiom.:(/N|N) of in-plane projections of the emitted electric field for an
equally-distributed azimuthal angte(red). A geometric distribution featuring the same mean value is added
(black). The difference opes(IN|N) andpgeo( N|N) is positive for smallN and negative for larger values
(dotted). Smaller values a¥ are more frequent than larger values since projection always shortens the field
vector.
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In real experiments the image frames of different channels may be misaligned because
their light follows different optical paths. If the geometric transformation between the chan-
nels is not known it is advantageous to firstly localize the events of both channels separately
and then calculate the alignment transformation by using the most probable regrouping of
the event positions. This entails subjecting the images ofth@r y—channel to an indi-
vidual thresholding procedure during object recognition which is equivalent to introducing a
polarization-dependent total event threshold. No disadvantage follows as long as the highest
effective total threshold is below the minimum total threshold that is required for the subse-
guent image analysis. To affirm the validity of this assumption it is of interest to study the
effective event threshold as a function of the polarization apgl€he discussion is closely
related to the one of Chapter (4.1) where thdependency has been treated. Assume that
an event is accepted if the photon number in at least one of the two channels is higher than
T'. This number is called individual threshold in the following. The effective event threshold
T'(y) is then given by

1) =min{ s it | 4D
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Figure 4.12: The factor between the effective total thresh@lfy) and the individual threshol@' during

object recognition as a function of the polarization angle becanfies = 45° (A). The associated detection
probability for an individual threshold = 100 and a mean photon numbaf = 250 drops by a factor of
aboutl.5 in this case (B). To achieve a homogeneous sampling of the polarization space the retrieved events
have to be subjected to a second thresholding procedure with total thr@&hotdRT.

A plot of the threshold is given in Figure (4]12, A) for an individual thresiolet 1. The
threshold is one for the pure polarizations= 0°,90° and rises up to two when approaching
¢ = 45°. Clearly, the graph is symmetric with respectte= 45°. Making use of Equation
(4.40) the probability’s.(, N, T) for a molecule to be detected during one switching cycle
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may be calculated as

Pulp, N,T) = > pu(NIN). (4.42)
N=N(p,T)

Here, capital letters are employed to distinguish probabilities from probability densities. This
equation replaces Equatidn (2.26) which was valid for the case of a pure geometric distribu-
tion. Figure, B) present3.(p, N, T) for the reasonable valuds= 100 and N = 250.
Itis seen that events with a polarizatipn= 45° are about 1.5 times less frequently observed
than the events with pure polarizations. Therefore, to achieve a homogeneous sampling of
the polarization spacép = 0°..90°} it is necessary to subject the final retrieved events to
a second total signal thresholding with, > 27". Otherwise, pure polarizations will be
over-represented.

Analogous to all estimation problems treated so far it is of considerable interest to study
the information content of the measured data and the performance of employed estimators.
The discussion is restricted to two dimensions, projection effects from the third unobserved
dimensionz are assumed to have been treated as in the first paragraph. Thus, the signal in
the detection planey, can assumed to be known. The numbers of photo-electvond’, in
the polarization channels then follow a double Poisson distribution, compare Eqiiatjon (1.9),
like

p(Nx,Nth, N7b) = H DProi (N1|Nz) (443)
1=,y

with the mean values

Na(¢) = Ncos’(p)+b
N,(¢) = Nsin*(p)+b (4.44)

and the mean background givenbyThis distribution models the photo-detection pro@ess
The Fisher informatior (¢) associated with the angleaccording to Equatiori (3.9) reads

_ N2 | Ny(e)?

I(p) = : (4.45)
No(p) — Ny(p)
Hence, the information measure is given by
I(p) = 4N?sin?(p) cos*(p) L = + L = (4.46)
Nsin*(p) +b  Ncos?(p) +0b) '

Figure ) contributes a plot #fy) and the associated Cramer-Rao bouhg/ /()
for different signal photon numbes = 25,50, 100, 150 and a background df = 27.
This is a typical value taking into account a characteristic mean noise value of one per pixel
and assuming the single-molecule image to extend over a pixel figlda$ pixels. Both,
the Fisher information measu¥éy) and the size of the interval centeredgaat= 45° over
which the Cramer-Rao bound is essentially constant are increasing with increasing photon

3Again, a multinomial image model can be discussed on the same grounds as in connection with Equation

GID.
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Figure 4.13: Fisher informatior/ () (A) and the associated Cramer-Rao bouig/I(,) on the lower error

of unbiased estimators of the polarization angle (B) for different photon nuners25, 50, 100, 150 and a
background valué = 27 per channel. In the left image photon numbers are increasing from the bottom to the
top whereas on the right side it is vice versa. The background has been chosen in such a way to account for
typical single-pixel noise values and typical numbers of CCD camera pixels over which the single-molecule
image extends. It is seen that the error in any unbiased determinatiprisoét the least on the order of a

few degrees with a constant region aroyne= 45° increasing in size proportionally to the number of signal
photons. The pure polarizationsgat= 0°,90° cannot be determined without bias and with finite error at the
same time since both signak, () and N, () have zero derivative at these points and the Fisher information
consequently is zero, compare Figure (#.10, B).

numberN. The bound for the minimum standard deviation of any unbiased estimator is of
the order of a few degrees for polarization values on the plateau but divergegpasoaches
0° or 90°, respectively. Nonetheless, biased estimators may exist that feature errors smaller
than the unbiased Cramer-Rao bound. This has already been clear from an inspection of
the generalized Cramer-Rao inequality for biased estimators, Equption (3.22), where the
derivative of the bias with respect to the parameter increasingly eliminates the influence of
Fisher information on the minimum error the more it approachesFluctuation errors may
be squeezed down at the expense of rising systematic errors. Or in other words, interval
estimation may be superior to point estimation as far as the estimation error is concerned.

A Monte-Carlo simulation of the process of determining the polarization state confirms
this finding.5 - 10* different realizations ofV, and N, were drawn from the distribution of
Equation[(4.4B) for each value ¢f The polarization estimatgr was taken as

N, —b

_ 4.47
N3 (4.47)

p = arctan

The mean background noisavas assumed to be known and has been subtracted. Samples
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leading to a negative or a diverging radicand were discarded.
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Figure 4.14: Results of a Monte-Carlo simulation modeling the estimation of the state of polarization
from double-channel intensities. The expectation valge (A) and the resulting standard deviatietiy)

(B) were estimated fror - 105 random samples at each valugfThe signal photon numbers were taken as

N = 25,50, 100, 150 and the noise ds= 27. The bias becomes stronger the mpmmoves away frord5° and
decreases with increasing sigriélas does the standard deviation. As a comparison, the Cramer-Rao bounds
for the unbiased estimator of Figufe (4.13) have been added (dotted black). In the regiond&fowhere the

bias is nearly zero the erref() is bound from below by the unbiased Cramer-Rao bound. Closer to the pure
polarizationsy = 0°,90° the erroro(¢) undercuts this bound while the estimated mean polarization shows a
deviation from the line through the origin. Directly @t= 0°,90° the unbiased Cramer-Rao bound diverges
while the derivative of the bias approaches. These two processes lead to a finite etrgp = 0°,90°).

Figure [4.14) delivers the resulting mean outcofpe and the standard deviatior{¢)
that were estimated from the statistical samplesifot0® equally spaceg—values. Both,
the bias and the standard deviation decrease with increasing $ignéhe error is bound
from below by the unbiased Cramer-Rao bound in regions where the bias is nearly zero.
The estimator approaches the Cramer-Rao bound from above for increasing signal photon
number. In regions closer to = 0°,90° the bias increases while the error falls below the
unbiased Cramer-Rao bound. Directlyqat= 0°,90° the errora(¢ = 0°,90°) is finite
although the unbiased Cramer-Rao bound diverges. These two effects are compatible since
the bias approaches a derivativd at this point, the mean of the estimator is horizontal
there. This can also be seen from Equatjon (3.22).
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In the following a deconvolution theory for PALMIRA images based on local Gaussian point-
spread-functions is formulated. Such a procedure is desirable for two reasons. On the one
hand, it circumvents the loss of information inherent in averaging over the photon number
when sorting events into the same histogram irrespectively of this degree of freedom. On the
other hand, deconvolution narrows the spatial distributions of events and therefore allows to
work with a smaller threshold while still yielding the same resolution. This is advantageous
because less events that are in principle recognizable have to be discarded. The theory is
applied to stochastically generated images of two equally bright particles and experimental
data of stained microtubuli.

5.1 Deconvolution with Local Point-Spread-Functions

It has been shown in Equatidn (2]17) that the imaging process for the mean image consists
in the sum over partial imaging processes at fixed photon nusiber

b(r) = > b(x|N), (5.1)
N
with the image at fixed photon number given by
b(r|N) = h(r|N,N,T) * o(r) (5.2)
and the local PSFs by B B
h(r|N,N,T) = p(r|N)p(N|N,T). (5.3)

Here,p(r|N) is the Gaussian of Equation (.5) ap@dV|N, 7)) the truncated geometric dis-
tribution of Equation[(2)8). The local PSF is just the localization estimation distribution at
fixed photon number weighted by the probability of such a photon number to occur. This
is important to properly account for the fact that events with higher photon number are of
higher localization quality but show up much less frequently. The faetdr| N, T) will
enhance their contribution in the right way. Without this prior frequency factor the events
with lower photon number would be equipped with too high an importance.

The imaging process for the mean image, Equafionj (5.1), entails a loss of information
since the photon number as a quality-index for the position estimation is discarded com-
pletely. This has already been obvious in Chapter (2.1) where the expected mean PSF has
been calculated. The construction of the mean PSF by superposition of fixed-photon number
localization PSFs weighted by the geometric distribution of the photon number as in Equa-
tion (2.9) is reminiscent of the construction of the density operator as a statistical mixture
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of pure quantum states [94]. There, the associated mixing entropy measures the similarity
of the process under consideration to a pure state. Here, the equivalent of the pure state is
fixed-photon number localization and the statistical mixture is characterized by the geometric
distribution. The mixing entropy for the PALM-PSF follows as

S(N) = =) _ p(NIN,T)Inp(N|N,T)
(N4 1)In(N+1)— Nln N (5.4)

and does not depend on the photon threstidldue to the self-similarity of the truncated
geometric distribution in Equatiof (2.8) at all scales. The relative mixing strength is always
the same irrespective of the minimum photon number taken into account.

Figure ) delivers a plot of the entrogy( N, T) as a function of the mean photon
numberN. The higher the mean photo numh&rthe more the geometrical distribution

0 50 100 150 200 250 300 350 400 450 500

0 N 1

N

Figure 5.1: Mixing entropyS (V) as a function of the mean photon numbéfor the mean PSF as constructed

in Equations[(5.2) of (2]9). The summation over fixed-photon number localization distributions entails a loss of
information about the photon number. The more different the localization distributions contributing to the full
PSF are the higher is this loss of information. The truncated geometric distribution of EqQiafjon (2.8) decides on
which fixed-photon number localization distributions contribute to the image. Therefore, its associated entropy,
guantifying the similarity of the mean PALMIRA PSF to a fixed-photon number localization PSF, provides a
guantitative measure of the information loss inherent in displaying localization events of different accuracy in
the same image. Deconvolution can circumvent this loss of information.

stretches out in space and the less similar is the PALMIRA imaging process to a fixed-
photon number localization. The lower the photon number the narrower is the distribution
and the less different fixed-photon number localization processes contribute to the final mean
image. The loss of information grows strongly for photon numbErs< 100 and then
progressively stabilizes. Even at moderate photon numbersNike 50 for the protein
Dronpa [90] the mixing process has a strong effect and it seems to be worth to seek for
methods circumventing it. Linear deconvolution of multiple images with local PSFs is the
simplest approach and will be developed in the following.
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In the subsequent, functions in Fourier space will be denotef{ky = FT(f(r)). A
Fourier transformation of Equatiop (5.2), application of the convolution theorem, multipli-
cation byh* (k| N, N, T)) and summation oveW yields

S BRIV (6IN, N, T) = 6(k) 3 [h(k|N', N, 7) C (5.5)
N N/

Backward Fourier transformation and use of the convolution theorem leads to the estimated
objecto(r)
o(r) = > b(r|N)* H(x|N,N,T) (5.6)
N

with the deconvolution function

h*(k|N, N, T)
~ _ 2
S |MEKIN, N, T)| + X

H(r|N,N,T) := FT* (5.7)

Here, the real-valued regularization parametdras been introduced in order to avoid di-
vision by zero. Equatior (5.7) defines a variant of the Wiener filtef [95]. Fidure (5.2)
shows a one-dimensional plot of this function for a FWHM of the underlying detection PSF
F = 250 nm, the local photon numbe¥ = 100, a mean photon numbé¥ = 250, a thresh-

old T = 50 and a regularization parameterof= 1 - 10~°. The function features a strong
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Figure 5.2: The deconvolution waveldf (z;y = 0| N, N, T') according to Equatio.?) for a photon number

N = 100, a mean photon numbé¥ = 250, a threshold” = 50 and a regularization parameter)of= 1-10~°.

The FWHM of the underlying optical PSF I8 = 250 nm. The central peak is narrower than the associated
localization accuracy. The negative side-lobes have the effect of contracting the function with which it is
convolved. Statistical images have to feature a sufficiently high degree of sampling when deconvolution with
this function is to be meaningful in a probabilistic sense.
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similarity with asin(x)/z-function. The central peak amplifies the image directly at the re-
trieved molecule positions. The negative oscillations beneath this peak lead to a narrowing
of the distribution of neighboring events. The introduction of the regularization parameter

is necessary in order not to amplify background noise too strongly but entails a systematic
alteration of the imaging process. The resulting imaging process might described as follows.
Combining Equationd (5.2) anf (5.6) the estimated ohjéck is related to the real object

o(r) in the following way

1

o(r) = FT* -
h(k|N',N,T)

* o(r). (5.8)

1+ Y I

The imaged(r|N) are composed ol/ localization events at positiorfév with j =
1..My. Thatis,b(r|N) is given by

My
b(r|N) = Za (r—t). (5.9)

Thus, from Equation (5/6) it is obtained that the deconvolution process consists merely of
a sum over the deconvolution wavelgt(r, N|N,T) centered at the estimated molecule
positions

My
o(r)=>_Y H(r—r) NINT). (5.10)
N j=1
The calculation of the deconvolution wavelé(r|N, N, T') of Equation [(5.F) poses a
certain computational difficulty since the Fourier-transformed Gausaiand/’, N, T') have
to be known for all photon numberé’ in order to calculatél (r| N, N, T) for just one photon
value N. Therefore, an algorithm would proceed in the following way:

1. sort the events according to their photon numbers (photon lookup-table),

2. calculate the denominator in Equatign {5.7) with only the observed photon numbers
contributing a Gaussian to the sum, i.e. estimate the prior photon distribution from the
experimental data,

3. perform the deconvolution sum of Equatipn (5.10) piecewise for all events of the same
photon number. Repeat this step until all photon numbers are covered.

In step (2) it is reasonable to use the observed distribution of photons instead of a theoretical
geometric distribution for several reasons. Firstly, the point of interest here is the experi-
mental occurrence of different photon numbers and not the similarity of their distribution to

a theoretical geometric one. Using a theoretical distribution in Equdtioh (5.7) would mean
that the sum in the denominator would contain many more different Gaussians than were
observed in the experiment. The degree of completeness of the sampling of the photon dis-
tribution is not to be captured here. Secondly, the use of a theoretic distribution would imply
an error-free knowledge of the mean photon num¥ef hirdly, numerical calculation times

are shorter here since not every photon number has to be summed over.
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5.2 Practical Examples

In the following sections the deconvolution strategy of the foregoing paragraph is applied
to stochastically simulated PALMIRA images of two equally bright objects of different dis-
tances and to experimental images of stained micro-tubuli.

5.2.1 Deconvolution of Equally Bright Objects

In a first instance, the performance of the deconvolution theory is studied for two equally
bright objects at positions = +d/2 for different values of the inter-molecule distance

d. This is of course an idealization since real images will inevitably contain objects which
might on average be optically equally bright, i.e. they have the same mean photon number
N, but contribute a different number of switching cycl&s during their lifetimes before
photo-bleaching and not being seen any more. Nevertheless, two molecules yielding the
same number of position estimates is the most simple model for two objects to be discerned
in the field of PALMIRA microscopy. This model is closely analogous to the one used by
Sparrow in classical optics [96].

Figure [5.8) shows typical stochastic images for different distadces 25,20, 17.5,
15,12.5,10 nm and a number of position estimatdés = 500 sufficiently high to obtain
stable images. The deconvolution paramateas been setindividually in such a way to push
inevitable negative values of the deconvolved image to approximéié&yof the maximum

A) B) C) A) B) C)

25nm 15nm
20nm 12.5nm
17.5nm 10nm

Figure 5.3: Typical stochastic realizations of the conventional image (A), the deconvolution using the mean
PSF of Equatior{ (2.13) (B) and the point-wise-deconvolved image (C) for two equally bright objects at different
vertical distanced. The number of position estimates per objectds= 500, the mean photon numbé&f =

250, the threshold” = 50 and the FWHM of the detection PSF= 250 nm. The point-wise deconvolution
always features results superior to or equally good as the deconvolution with the mean PEE BE6mm

the deconvolved image (C) clearly displays two objects which cannot be discerned in the mean image (A) and
which can hardly be distinguished in (B).
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value. It is important to notice three points: (i) The point-wise deconvolution scheme (C)
is always of equal or superior quality as the deconvolution with a mean PSF (B). (ii) At
a distanced = 15 nm the two objects are clearly discernible in the deconvolved image
(C) while they are undistinguishable in the conventional PALMIRA image (A). Here, the
distancel approaches the approximate FWHM of the PALMIRA-PSH6 nm. (iii) From

a certain maximum distance on even the deconvolved image does not allow to discern the
objects (iii). The first point demonstrates that deconvolution in PALMIRA microscopy is
more than a post-experimental smoothing of the data since it avoids an information loss.

5.2.2 Deconvolution of Experimental Data

When applying linear deconvolution to real data care has to be taken that the number of
position samples per molecule is high enough for the procedure to be statistically meaningful.
The theory is applied to the same experimental data originating from rsFastLime-stained
mircotubuli [7] that was used to evaluate the object recognition theory in Figure (4.4). At
this occasion, the physical parameters of the measurement have already been stated. Figure
(5.4) presents the results. The regularization parameter has been chdsenlasl0— in

order to prevent negative values from becoming stronger th&nof the maximum value.
Several single peaks at distanees0 nm are revealed by the deconvolution algorithm.

150nm

Figure 5.4: Linear deconvolution of experimental PALMIRA data using local PSFs. (A) shd@usrax 1um

image of rsFastLime-stained microtubuli (top) and its deconvolved counterpart (bottom). (B) shows two regions
in which the deconvolution reveals details that are hidden in the mean conventional image. The peaks which
can be identified have a minimum distanc&@hm. This is roughly twice the FWHM of the mean PALMIRA-
PSF~ 26 nm like in the theoretical study with two equally bright objects. The number of position samples per
object is about 00.
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6 Preliminaries

In this chapter a short introduction to mathematical aspects of fluorescence correlation spec-
troscopy and to the way of its stochastic simulation is provided. A concise expression for
the calculation of the correlation curve is given and relevant parameters entering the calcu-
lation are discussed. Next, the algorithm for the Monte-Carlo generation of fluorescence
time traces is stated and the design of the estimation procedure for the correlation curve is
presented.

6.1 Fluorescence Correlation Spectroscopy

The un-normalized fluorescence correlation cuyize in FCS measurements is defined by

g() = {a(®)q(t + 7)) (6.1)
with ¢(t) being the fluorescence signal recorded athe normalized variant is
t)g(t +7
o(r) = {g(D)g(t + 7)) 6.2)

(*(1))
The brackets indicate a temporal average. Theoreticglty, of Equation [(6.]1) has to be
calculated by the following double integral

g(1) = Z//dVdV’qj(r’)qi(r)ci(r)piqj(r,r’,T). (6.3)

The numbers and; are the particle type indices. The summation and the integration extend
over both the initial and the final configurations, ;) and(r, j), respectively. Herey;(r) is
the fluorescence brightness of molecule tyge positionr. p;_.;(r,r’, 7) is the propagator
and describes the differential probability to be in the statej) att = ¢, + 7 if the starting
state at = ¢, was(r,:). p,—;(r,r’,7) encodes the different paths along which the system
can evolvec;(r) is the concentration of speciésThere are several cases in which Equation
(6.3) might be simplified considerably. It is assumed that particles are independent from each
other.

(i) Assuming a single freely diffusing species Equatijon](6.3) reduces to

o) = [ [ avavawyawetmpe .o (6.4
with the diffusion propagator [97]

, 1 (r—1')?
p(r,r’ 7) = (27)3/2 (2DT)3/2 exp {_W} ) (6.5)
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Here, the propagator just describes the distribution of diffusion stepsr with a diffusion
constantD and a time step of. This is a Gaussian with mean= 0 and variance?> = 2Dr.
If the brightnesg(r) has also a Gaussian shape,

;U2 +y2 22
q(r) = gexp (— 22, - 2w§) ; (6.6)
the integral yields

go(T) = N¢? (1+ 7'/7,3)71 (1+ 67'/7,3)71/2 (6.7)

for the un-normalized correlation curve and

1 _ _

go(T) = N(1+T/TD) 1(1—1—67/7'[,) 1/2 (6.8)
for the normalized one) is the average number of molecules in the detection volupe
Vier = Wg/szywz, (6.9)

andr;, is the time a molecule takes to diffuse through the focus laterally and given by
To = w2, /4D (6.10)

with D being the diffusion constant. The constant «?, /w2 accounts for the elongation
of the detection volume along the optic axis.

(i) For a stationary molecule that alternates between a $tati¢h brightnessy; (r) =
¢(r) and and a dark statewith ¢.(r) = 0 it is obtained from Equatiot (6.3)

g(1) = /quQ(r)cl(r)plﬂl(r,T) (6.11)
because due to the stationarity the propagator factorizes into
p1—>1(r7 rla T) = pl—»l(r7 T)(S(I' - I',). (612)
If the alternation rates are given As(r) andk,; (r) the propagator reads
k‘gl (I') (l{lQ(I‘) )
_a(r,7) = —(k k 1). 6.13
p1—1(r,7) For (1) + a0 \Joon (1) exp [—(ki2(r) + ka1 (1)) 7] + (6.13)

This formula is found by solving the rate equations for a two-level system. Under the initial
condition to reside in state 1 the probability to remain in this state after astimgiven by
P11 (I', T)-

The propagators(r’, r, 7) for diffusion of Equation[(6]5) ang_.(r, ) for two-level
type conversion of Equatiof (6/13) are the key distributions from which stochastic samples
are drawn during a Monte-Carlo simulation.

6.2 Algorithms for the Monte-Carlo Simulation

A Monte-Carlo experiment of fluorescence correlation spectroscopy mainly involves two
steps: the generation of the time trage) and the estimation of the correlation curye)
from the time trace. Both points are described in the following.
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6.2.1 Generation of Time Traces

A Monte-Carlo simulation of the fluorescence time tra¢e) progresses as follows. At

first, a uniformly distributed initial distribution of particlgg; «} is generated. Next, these
particles are relocated by drawing Gaussian random numbers of the propagator in Equation
(6.5). Then, molecule type transitions are performed by drawing random numbers from the
reaction propagator in Equation (6]13). Finally, the expectation value for the fluorescence
signalq is read out for every particle and a Poisson random number is drawn to account for
the photo-detection process. Figure [6.1) displays the flow diagram for one time step of the
Monte-Carlo simulation. The process is repeated until the required trace length is reached.

. create a ghost entity : {rg }
R, (equipartition)

| l

create new positions : {Ig ; newt
(Gaussian distribution)

create new positions : {rg ; newt
(Gaussian distribution)

delete particle
from list

create new type {tg ; nu?
(equipartition)

create new type ‘{tg; out
(equipartition)

delete particle
from list

|

|

set new values :

{rRi=rRinewt
{tr =triinew?

set new values :
{re=rg}
{tG,i:tG,i,new}

l

create fluorescence signal
(Poisson)

{rR, i, next} q

Figure 6.1: Flow diagram for one time step of the generation of the fluorescence intensity time series by a
Monte-Carlo simulation. For stochastic steps the related probability distribution is highlighted in red. Essen-
tially, the time evolution of two entities of particles has to be followed stochastically: that of the real fluorescing
particles with initial positiongr; s} and that of a ghost entitjr; ¢} of similar size to account for boundary
effects related to the finite size of the simulation volume. The ghost entity has to be newly initialized in each
step. Then, candidates for the new positifns: new; I's,.c.new} @re stochastically drawn. Real particles diffusing

out and ghost particles staying inside the simulation volume are discarded. Next, it is determined whether a
particle type transformation takes place. Accepted ghost particles are restored at the inverse of their initial
position—r; ¢. Finally, the fluorescence signais read out at every particle position. The procedure models
properly the random flux across the simulation volume boundary. Periodic boundary conditions would lead
to an artefact in the correlation curve at the lag time that corresponds to the mean diffusion time through the
simulation volume.
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The most important aspect is to account properly for the boundary conditions. Using pe-
riodic boundary conditions where a particle leaving the simulation volume at one side enters
it again at the opposite side is possible but leads to a pronounced artefact in the correlation
curve. A clear signature will be seen on the time scale on which a particle traverses the
whole simulation support. Important details of the correlation curve may be disturbed by
this artefact. The problem can be avoided by making the stochastic particle flux across the
simulation support boundary a part of the simulation [98]. Particles leaving the simulation
volume disappear while new particles randomly show up inside the simulation volume in
order to keep the number of active particles on average stable. The random appearance of
new particles is achieved by newly creating a 'ghost’ entity of particles in each step that has
the same mean number as the real particles. This ghost entity is relocated in the same way as
the ordinary active particles. The difference is that ghost particles not leaving the simulation
volume are discarded while those leaving the volume are restored at minus their initial posi-
tions. In other words, those ghost particles leaving the volume supply the newly appearing
real particles.

The influx boundary method may be justified mathematically as follows. Let the simula-
tion volume be denoted bly. Let the probability for a particle to resideabe constant and
given byp,(r) = po. Thus, a uniform distribution is assumed. Then, the probahility)
that a particle from the outsidé“ will show up atr is given by

pn(r) = /Cp(r,r’,r)podr' (6.14)

with p(r,r’,7) = p(r — r/, 7) from Equation[(6.5). Here, the integration extends over all
positionsr’ in the complement’© that could contribute to the process. Changing the inte-
gration variabler” — —r’, taking into account that(r,r’, 7) depends o — r’ only and
assuming a simulation volunié that is symmetric around the origin it is obtained

() = /cp(r + 1, T)podr’. (6.15)

If the probability that a particle is allowed to be putrats also given byp,(r) = p, the
probability p,.(r) that a particle at leaves the volume is defined as

Pou(T) = / p(r' — v, 7)podr’ (6.16)
Comparing Equation$ (6.[L5) arjd (6.16) it follows
Pin(T) = Dou(—T). (6.17)

The process of getting a new particleraby diffusion from the outer volume equals the
probability that a particle from the inside atr disappears. In the argumentation it has
been crucial that the probabilities(r) to be removable from a certain point apdr) to
be accepted at a certain point are equal. Furthermore, the simulation vblums to be
symmetric arouna = (0,0, 0).

A typical FCS simulation requires a variety of parameters ranging from diffusion con-
stants across photo-chemical rates to full point-spread functions to be supplied.| Tgble (6.1)
assembles these in one place.
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Name Parameter \ Typical value
D diffusion constant 3-10"%cm?/s
c particle concentration 15 pm=3

Vv simulation volume 2 uMm X 2 pm x 2 pm
At time step 0.1 us

s simulation loops 1-107

Kise inter-system crossing rate| 1.1 us™*

k+ triplet relaxation rate 0.49 us!

Iy excitation peak intensity | 1 MW/cn?

o excitation cross section | 5-107% m?
Qo molecular brightness 1-10* MHz
I(r), her) | excitation, detection profile -

Table 6.1: The input functions and parameters of the Monte-Carlo simulation. Typical values are provided in
the third column. In many simulations the molecular brightngsis much higher than for real fluorophores.

This leads to fast convergence of the correlation curve and is used when fluctuation properties of the curve are
to be suppressed.

6.2.2 The Estimator for the Multi- 7-Correlator

Once, the fluorescence signal time sefigg,i = 0..M — 1 is given the autocorrelation of
Equation[(6.R) is to be estimated. In general, the correlation curves measured by FCS display
a maximum close to- = 0 and decay off to zero in a characteristic way for largefThe
main interesting features can be found at comparatively low lag tinveélsereas the varia-
tions of the correlation curve become more and more less pronounced for higher lag times.
For a linear correlator relying on FFT the correlator would have to possess as many bins as
the time trace is long in order to cover the largest lag time possible. Coarse-graining proce-
dures work with multiple lag times and achieve higher lag times with less numbers of bins at
the expense of averaging in higher bins. In such a way it is possible to cover extremely large
lag time with a limited number of bins. Furthermore, intensity fluctuations get averaged out
at lag times large compared to the timescale of these fluctuations. Such a quasi-logarithmic
scheme has been proposed in the literature([43, 44]. Hereby, the authors also introduce the
symmetric normalization scheme that achieves a reduction of the estimator noise by suppres-
sion of contributions of boundary effects originating from the beginning, and the end
q-..qn—1 Of the time trace. Nevertheless, the published work gives a concise mathematical
formulation only for linear correlation. A precise mathematical formulation of multiple lag
time correlation is given in the following.

Firstly, the relevant parameters are defined and the resulting lag times are calculated.
The multi-r-correlator is characterized by specifying the following variables

1. N :the number of octaves,
2. {k;},i=0..N — 1 :the number of bins per octave

3. {fi},i=0..N — 2 : the bin width augmentation factor at the end of octave



80 Preliminaries

As a convention the octaves will be numerated by0..N — 1 and the binj = 0..k; — 1 of
octavei by (i, 7). Then, the widthv; of the elementary bin of octavés given by

i—1
wi=wo [ [ fi (6.18)
=0

It has simply been used that each transition into a new octave is accompanied by an augmen-
tation factor. Once, the bin widths are known they might be summed up to yield the absolute
time positionT; of a multi-r-bin at(i, j) as

i—1
T = whk + jw. (6.19)
=0

To get the right result foi = 0 in Equations[(6.1]8) andl (6.[L9) the convention is introduced
that backward-running indices in sums and products yield the neutral element,

ﬁ ~- 1 (6.20)
=0
= 0. (6.21)

=0

Figure [6.2) sketches the structure of a simple multiple lag time correlator with three similar
octavesN = 3, augmentation factorg = 2 and three bins per octave= 3.

f0=2 f1 =2

wo=1 l “—01=2— l wy=4

D — k0=3 -_— k1=3 k2=3

Figure 6.2: Binning scheme for a multi-correlator. The characteristic parameters of this special correlator
are the number of octavé$ = 3, the numbers of bins per octay&; = 3},7 = 0, 1, 2 and the octave factors
{fi = 2},7 =0, 1. The widths of the elementary bins of the octaves then folloy.a$,: = 0, 1, 2 given by
Equation[(6.1B). The end of the octaves is highlighted (red).

Secondly, the un-normalized correlation function is calculated. The time trace is put
piecewise into the correlator. Thereby, a compressed time trace is built up. Each bin of the
compressed time trace experiences a correlation after a certain numbeof time trace
pieces has been supplied.shall be called the filling number in the following. For instance,
with wg = 1 (no averaging in zeroth octave) the first bin0) is correlated at filling numbers
m = 1,2,.., M for at total M times, the second bif0, 1) at filling numbersm = 2,.., M
for at total M/ — 1 times sincelY = 1 and7y = 0 and so on. This can be formalized further.
Given a trace of lengtli/ the bin(z, j) will be correlated at the filling numbers

m e Ki(M) == {T},,, T}, .., M} (6.22)
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with the number of correlations’ (/) being the integer division

Ki(M) := M- (6.23)

[

K(M) is nothing else than the cardinal number of the set of correlation ithes! ).
The compressed time track(m) for bin (i, j) assuming that an elementary trace of
lengthm has been supplied to the correlator reads with brackets denoting indeXjng,q;,

w;—1
Sim) ==Y qm—1-T;—1]. (6.24)
=0
Centered at the base tirﬁ§ the average is formed over, elementary time bins. Not sur-
prisingly, the first bin(0, 0) always holds the 'freshest’ elementary Bif\m) = ¢,,_;.

Each bin of the compressed trace is correlated with an earlier bin of the same compressed
trace. The earlier time trace is separately encoded in the so-called zet(bin for the
octave: and again depends on the filling numberof the correlator. The content in the
zero bin transverses through the correlator and becomes the first binitf thetave of the
compressed trace exactlyj steps later. Hence, it follows

Z'(m) = Si(m + T¢) (6.25)
and it can inferred from Equatiop (6]24) that
wi—1
Z'm)=> qm-1-1. (6.26)

=0
The content of the un-normalized correlation functidf{)/) after the full time trace has
been supplied then reads

CiM)= > Si(m)Z'(m). (6.27)
mGK;(M)

Here, Equationg (6.22), (6.24) and (6.27) have been used. Each bin of the compressed trace
is correlated with its corresponding zero bin. Summation is over all filling numbers at which
correlation takes place.

Thirdly, normalization is considered. To perform a symmetric normalization the sum of
the counts having passed ki j) as well as the sum of counts having passed the zero bin
of octavei since bin(z, j) had been correlated for the first time has to be known.
(i) The sum of counts passed through biry), R;i(M), IS given by

R(M) = Y Si(n)

= ZZq[m—l—T;—l}
m =0 '
= q0]+q+..+q[M—-1-T}
MflfTJ?'

- Y (6.28)
=0
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(i) The sum of counts having passed the zero WM), is given by

Lon = Y Zim)

meK: (M)

SD 9 WISy

m =0
= q[T}] +q[T}+1] + ...+ q[M —1]

M—-1
= > a (6.29)

l=T]ﬂ‘

These are just the sums of the individual factors in Equafion(6.27). To avoid redundancy
one could take advantage of the fact that the zero bin is the same for every bin in an octave
provided it already takes part in the correlation. Therefore, it is a computational advantage to
'freeze’ the counts having passed the zero bin of octau#il bin (7, j) had been correlated

for the first time. The zero bi’(M) is created for the first time when the zeroth bin

(i, = 0) is correlated for the first time, i.e. &Y. The bin(, ) is correlated for the first

time at77;, . Hence, the freeze variable should be defined as

T
F; = Z Z'(m)
m:Tf,Tf—i—wi,..
w;—1
- T dm-1-1
m l 0 A
= q[Ti] +q [Ty + 1]+ ... +q[T) — 1]
Ti-1
= > a (6.30)
=T}

F? does not depend any more on the trace-leddthnce every bin of the correlator has been
filled for the first time,M > T; If F; is subtracted from the sum of values having passed
the zero binZ’ (M) with

ges

Z) =Y Zm)

m=T¢ T¢+w;,..
M-1
= > (6.31)

I=T¢

Equation|[(6.20) is recovered immediately. Compared to Equation (6.29) it is less consuming
to keepZ;.(M) up to date oncé’; has been established since it does not deperyd on
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Finally the symmetrically normalized correlation from Equatidns (6.27), [6.£8),](6.30)
and [6.31) is computed as

U()
M) {Zg{M) = Fj}

In the subsequent the special example of the zeroth octave is discussed to further shed
light on the formalism. Here one hag = 1, TJQ = 7,7 = 0...kg — 1. Hence, the correlation
factors, Equations (6.28) arld (6129), are given by

Gi(M) =

(6.32)

SAM) = q[M—1-j
Z°%(M) = q[M —1]. (6.33)

The correlation times of Equatioh (6]22) are given by
={T, T} + 1, M}y ={j+1,..,M}, (6.34)
and the number of summands of Equation (6.23) is
0 0 .
KY(M)=M—T) =M —j. (6.35)

The correlation curve of Equatiop (6]27) becomes

M

CHM) = > 8m)z°m) (6.36)
m= j+1

= Z glm—1-jlqim—1] (6.37)
J\m4j1tj

= D Gnlng (6.38)
m=0

The normalization constants, Equations (6.28) and [6.29), are

M-
R?(M) = Z @
=

0
M-1
LyM) = ) aq. (6.39)

I=j

As it should be, these are the results for a linear correlator.

The implementation of the correlator is most adequately done with a shift register.
Thereby, the basic entity is the octave which is equipped with a trigger algorithm that man-
ages the compressed trace, the correlation and the normalization sums. The octave has to be
provided with a seed valugand the zero sur*~! of the preceding octave. At initialization
Z~! = qis taken. This is the linear correlation. The trigger function of the first octave is
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freeze F

l update zero bin Z' l no yes
l filled octave ?
A 4
yes
filled octave ? l reset current octave |

trigger higher octave
i+1, g = end sum
reset current octave

I

!

correlate, manage memory,
set begin sum, set end sum

Figure 6.3: Flow diagram for triggering the octaveof a multi-r-correlator. The algorithm is a shift register

calling recursively the trigger routine for higher octavesi until the first octave.« that is not yet ready

for correlation is reached. The recursive call is highlighted (red). While ascending to higher octaves the
compressed time trace is built up. Then, the algorithm descends back fromeanwhile performing the
correlation. Bookkeeping the signal that flows into and out of the octave ('begin sum’ and 'end sum’) is
necessary. Just after correlation of an octave its waiting time until the next correlation has to be reset. Apart
from the standard recursive call with subsequent correlation several special cases have to be covered. (i) The
maximum nesting depth is reached finally when arriving at the last octave. (ii) When octaves get filled for the
first time the freeze variable has to be set.

called and the path descends down into higher octaves as long as the octaves are ready to be
correlated. Thereby, it has to be monitored how large a signal is entering the octave (begin
sum) and exiting the octave (end sum). Higher octaves, are called with the end sum of the
next lower octave as a seed. Then, the correlations are calculated backwards from higher to
lower octaves. In other words, the compressed time trace is built up when ascending from the
first octave to lower octaves and the correlation is done when descending again. [Figure (6.3)
shows the corresponding flow diagram. In addition the standard pathway calling recursively
higher octaves care has to be taken when arriving at the last possible octave. Furthermore,
when filling an octave for the first time the freeze variable has to be kept. In the end, each
correlated octave is shifted one bin to the right since the last bin flows to the next octave.
This provides space for a new value to be supplied from the outside data series.



7 Fluorescence Correlation
Spectroscopy with STED Focal
Volumes

Recently, experimental work has been presented that aims at a combination of FCS and
focal volume reduction by the STED method [12] 13]. With decreasing focal volume the
relative intensity fluctuations due to single molecules diffusing out of the focus increase.
The smaller the focal volume the smaller the mean intensity over which the fluctuations
are superimposed. This follows from the fact that the mean intensity signal stems from the
whole fluorophore ensemble in the observance volume. Hence, by using smaller volumes
higher maximum fluorophore concentrations can be supported before reaching the detection
limit. Further, nanoscale details in molecular pathways such as trapping are revealed that are
otherwise averaged out in conventional detection.

In the following the signatures of the volume reduction as observed by FCS are studied.
Firstly, the STED measurement scheme is outlined. The construction of the effective PSF
is discussed and properties of the correlation curve that can already be inferred analytically
are discussed. Then, results of a Monte-Carlo simulation of an FCS measurement with free
particles diffusing in a STED-focus are presented and compared to experimental results.

7.1 Motivation and Analytical Study of the Focal
Volume

STED microscopy [19,!5, 18] was first implemented as an extension of confocal microscopy
[99]. Similarly to confocal microscopy, the fluorophores are excited with a laser beam of a
diffraction-limited profileh,,(r). Next, the molecules are de-excited by a second doughnut-
shaped beam of a profiless(r) with a more red-shifted wavelength than the excitation
beam in order to assure de-excitation by stimulated emission and to avoid re-excitation. The
molecules are de-excited over the whole periphery of the beasair) and stay unaffected
at the center wherégo(r = 0) = 0. Although hse(r) is diffraction-limited like every
other far-field optical pattern the resulting de-excitation probabilii) may be much nar-
rower than,,(r). This originates from the strong non-linearity inherent in the rate equation
kinetics of stimulated emission. Figuﬁ)’splays a typical STED setup.

In order to calculate the de-excitation probability, /) the system of rate equations
describing the photo-kinetics of the dye has to be solved. For pulsed de-excitation the de-

The figure is courtesy of B. Harke, MPI f. Biophysical Chemistritiigen.
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STED Excitation Detection

—

Ti:Sa H .| Diode APD

Trigger

phase
mask yx 0L
sample

Figure 7.1: A typical STED setup. At a dichroic mirror (DM2) the excitation beam(r) (yellow) is over-

layed with a doughnut-shaped de-excitation béamy(r) (red). Both pulses are electronically synchronized

by a trigger feedback loop. The doughnut shape is achieved by directing the STED beam on a phase mask.
The overlayed beams are focused in the sample by an objective lens (OL). The fluorescence light (orange) is
coupled out at another dichroic mirror (DM1) and recorded on an APD. The sub-resolution performance of
STED relies decisively on the non-linearity of the photo-kinetics of the dye in conjunction with the fact that
the STED beanhsrep(r) features a zero value where the excitation béapir) has a maximum.

pletion factorn(r, Isrep), i.€. the probability to be be de-excited by stimulated emission at
positionr, is obtained as

77(1°a ISTED) = exp {_%hSTED(r)} . (7.1)
sat

Here, the saturation intensify, is characteristic of the dye and depends on the de-excitation

cross-section, the rotational properties of the molecule, the polarization, the pulse length, the

pulse duration and the slope of the STED beam [23]. The funétigp(r) can be calculated

by vectorial diffraction theory using characteristic phase mask apodization functians [21].

Assuming the excitation, de-excitation and detection process to be independent the effective

PSFh(r) of the STED microscope reads [100]

h(r7 ISTED) = 77(1'7 ISTED)h'exc<r) [hdet(r) * @(I‘)] (7.2)

This is just the confocal imaging equation [59] scaled by the depletion fa¢igr ©(r) is
the transmission function of the confocal pinhole placed into the detection path described by
Pae(r).
Afirst idea of the behavior of the normalized correlation cure Ise) as a function of
the STED intensity<, can be gained by considering the zero value of the cyyt&,) =
g(T = 0, Isep) separately. From Equatiorjs (6.1) ahd[(6.3) it follows that

1
I TED) — ~vr/ T N 7.
gO( S ) CV(ISTED) ( 3)
with the concentratiod’ and the effective focal volumg (/s,) defined by
h(r, Iseo)d?r]”
V() — AT Lol (7.4)

[ R2(r, Isiep)dPr
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Figure 7.2: Effective volumeV (Isrep) (A) and signal factory(Istep) (B) as a function of the STED intensity

Istep- Results using a STED-PSF featuring a perfect zero point-at 0 (red) are opposed to those of an
imperfect STED-PSF with a value at the origin featuring2% of the overall maximum (black). For the
perfect STED-PSF the effective volume decreases monotonically with increasing STED intensity whereas it
firstly decreases, then reaches a minimum and finally diverges for the imperfect STED-PSF. The process of
decreasing effective volume is accompanied by an increase of the fraction of the signal stemming from the
focal plane. Conversely, an increasing effective volume means more signal from the non-focal regions.

In mathematical terms, the valyg(/sre,) measures the peakedness of the REFE I«rep),
i.e. the degree of sensitivity to squaring of the PSF.

Figure ) presents a plot of the effective volum@s:.,) for both an ideal STED-PSF
and a STED-PSF with imperfect zero valuerat= 0. Moderate non-ideal zeros are fre-
guently encountered in experiments. The phase mask was taken as a two-ring phase mask
that consists of a circle of phase retardatiosurrounded by a circular ring of phase retar-
dation0. The azimuth angle separating the two zone$ is 39° for the perfect zero value
andvy = 43° for the imperfect one. The imperfect zero node feature®% of the maxi-
mum peak intensity of the full STED-PSF. Such a two-ring phase mask is commonly used in
STED microscopy to achieve axial resolution increaseé [21]. The wavelengths of the PSFs are
Aexc = 640 NM, Ay, = 673 NM, \s1ep = 780 Nm. The parameters are typical of the fluorophore
MR2121 [101]. The pinhole has radius= 25 xm. The magnification in the detection path
is M = 100. Obviously, the focal volume decreases steadily with increasing STED power
with a perfect STED-PSF as opposed to the imperfect STED-PSF where the volume first
decreases, then reaches a stable value and in the end grows without bounds. These processes
are accompanied by a characteristic behavior of the fraetidge,) of signal originating
from a slice of thickness 10 nm centered at the focal plgneelative to the total signal,

f I‘ [STED d’r
V(ISTED) = }/I (7.5)
1%

I‘ ISTED dBr

An increase in the focal volume is always linked to an increase of the off-plane signal frac-
tion. A decreasing effective volume implies a larger amount of signal from the focal plane.
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7.2 Phenomenology of STED-FCS Measurements

In the foregoing paragraph it has been found that the correlation curve of STED-FCS(at
is fully determined by the effective focal volume of Equatipn(7.4). Here, a Monte-Carlo
simulation is presented that delivers the correlation curve for different STED intensities
and non-zero values of the lag time This is of interest because in principle STED could
be responsible for qualitative changes of the correlation curve that are not captured by the
STED-intensity dependence of the amplitude. For instance, it could be possible that features
will show up at certain non-zero lag times that equal the mean diffusion time from the central
zero value to some adjacent secondary zero node of the STED beam. The Monte-Carlo
simulations should reveal such effects.

Figure [7.B) presents the results using a STED-PSF featuring a perfect zero node. The
wavelengths are the same as in the preceding paragraph. The diffusion congbart is
2.8 -10°% cnm?/s, a typical value for molecules in water. The time stefiis= 0.1 us leading
to a mean relocation of 8 nm. The number of simulation stepssis= 3 - 107, the bright-
ness isy = 1 - 103. The molecule concentration amountstto= 15/ um? with a support
2 um x 2 um x 2 um. The growth behavior of the correlation curve and the decrease of the
mean diffusion time through the focal volume are consistent with a monotonically decreasing
effective volume with increasing STED intensity. As it should be, the amplitude follows di-
rectly the inverse effective volume of Figufe (7.2). The curves are decreasing monotonically.
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Figure 7.3: Normalized correlation curvegr, Istep) for STED-FCS generated by a Monte-Carlo simulation

with a STED-PSF possessing a perfect zero point. The original correlation curves (A) and those normalized to
unity (B) are shown. The STED-intensity covers the following valuésgs = 07, (magenta) Jsrep = 5lsa

(cyan) Istep = 101g4 (blue), Istep = 25154 (green),lstep = 5015y (red) andlsrep = 1007, (black). On the

left the growth in amplitude is fully consistent with the behavior of the effective volume in Fifjure (7.2). On
the right it is seen how raising the STED intensity gradually lowers the mean diffusion time through the focal
volume.
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Figure 7.4: Normalized correlation curvegr, Istep) generated by a Monte-Carlo simulation with a STED-

PSF featuring an imperfect zero point (top row) and high-quality experimental STED-FCS measurements on
the fluorophore MR121 (bottom row). The standard correlation curves (A) and the curves normalized to unity
are shown (B). For the calculations, the STED-intensity assumes the following vdlies+= 0/, (magenta),

Istep = 5lsa(Cyan)Isrep = 10155 (blue), Isrep = 2515t (green),Isrep = 4015y (red) andlsrep = 50154 (black).

For the experiment, the time-averaged poutof the STED-pulse was increased frahmW to 35 mW in

equal steps (cyan, blue, green, red, black). Obviously, even the most sophisticated experimental measure-
ments are influenced by off-axis fluorescence. A purer STED effect might probably achieved by confining the
experiment to two dimensions where fluorescence originating from non-focal regions is suppressed [13].

Figure [7.4) gives the corresponding Monte-Carlo simulation for a STED-PSF featur-
ing a non-ideal zero point together with experimental curves measured on the fluorophore
MRlZﬂ In the experiment the same phase mask geometry as for the calculations was used.
The signal-to-noise ratio of the correlation curves decreases with increasing STED-power
since the recorded signal decreases due to fluorescence depletion. This is stronger than in
Figure [7.3) because the imperfect zero node does lead to additional depletion. The exper-
imental measurements and the results of simulations coincide as far as the decrease of the
diffusion time with increasing STED power is concerned. The volume effect is reproduced
qualitatively. For 3D STED-FCS measurements with a circalgghase mask the volume
reduction effect is anti-proportional to the fraction of off-axis fluorescence.

2The measurement is courtesy of L. Kastrup, MPI f. Biophysical Chemistiitjrgen.
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In practice, molecules often do not fluoresce at constant brightness but undergo state changes
that affect their detectability such as bleaching or inter-system crossing into a dark triplet
state. FCS is frequently used to determine the rates of these processes. The discussion is
restricted to triplet state dynamics in the following but the results are equally applicable to
any such process. The standard analysis of correlation curves assumes position-independent
inter-system-crossing and triplet rates between the singlet and the triplet manifold, respec-
tively. In reality, this assumption is violated because inter-system crossing rates are strongly
dependent on the excitation profile. Here, a fit model is developed that concisely takes into
account the spatial variations in the rates.

At first, the relevant photo-physical level schemes are introduced. The probabilities to
reside in the singlet statg€, are discussed for continuous-wave and pulsed excitation. A
Monte-Carlo simulation is presented that clarifies the effect of spatially dependent rates as
opposed to constant rates. Then, an analytical expression for the correlation curve for dif-
fusion and position-dependent inter-system crossing rate is given. Stochastically simulated
data is fitted with this curve and the resulting outcome is compared to the result of the stan-
dard procedure.

8.1 Photochemical Schemes and their
Phenomenology in FCS

The triplet dynamics of typical fluorophores like Rh6G or Rh110 have been studied in a
number of experiments [14, 102]. From that it is known that the quantum-mechanical energy
structure might by described by a simple three-level scheme involving a singlet ground state
Sp, an excited staté; and a triplet stat€’. The Jablonski diagram for this model is shown

in Figure [8.1, A). The fluorescence signals from the three stateg ateq; = 0 for the
ground state and the triplet state, respectively, and

q1(r) = qhee(r) Pi(T) (8.1)

for the excited state&;. ¢ measures the molecular brightnesg,(r) is the collection effi-
ciency function modeling the detection process &n@) describes the probability to reside

in the excited stat&; and is related to the excitation intensityr) in a way characteristic

for the excitation mode. The signal(r) depends on the position of the molecule. The exci-
tation intensity/ (r) is position-dependent. The excitation cross-section and the fluorescence
rate are given by andkg, respectively. The inter-system crossing riateand the triplet
relaxation rate:,, are physical parameters of the molecule.
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Figure 8.1: Photo-physical three-level scheme valid for typical fluorophores like Rh110 or Rh6G (A). The
singlet system is driven with a position-dependent excitationaate) and theS, -state has a lifetime dffol.

The inter-system crossing ratesandk;s are constant in this model. The populatiBn(r) of the stateS; is
position-dependent due to the variation of the excitation intedsity. The model on the left is equivalent to a
two-level model with position-dependent inter-system crossingiate) (B).

The three-level model in Figurg (8.1, A) is equivalent to the two-level model of Figure
(8., B) with a position-dependent inter-system crossing rate given by

kist:(r) = kP (I‘) (8.2)

The effective inter-system crossing ratg(r) is position-dependent because the triplet state
can only be populated through the path — 7'. In this way, the position-dependency of
Py (r) is propagated into that d@f..(r). For the case of the three-level model above the triplet
relaxation rate:; stays constant. However, this parameter would also depend on the position
if triplet relaxation were stimulated by the excitation liglit). For simplicity, a constarit,
is used for all further simulations but all analytical calculations explicitly mention possible
position dependencies in order not to restrict the discussion unnecessarily.

The probability for the molecule to reside #i depends on the excitation mode. In the
simple case of continuous wave excitation the probabifityr) in the steady-state reads

ol(r)

= 5T +

(8.3)

This is fully analogous to the two-level molecule-type conversion probability of Equation
(6.13). For excitation with rectangular pulses of lengjrand repetition period’. > T, the
meansS;-probability has to be replaced by the formula [103]

_ollr) T,
O'_[(I‘) + klO Tr

[U[(r)]2 [efklo(Trpr) _ 1] [e*("'](r)+k1o)Tp _ 1}
[01(r) + k1o]® kioT3] [L — e—FaoTr—hoiTy]

Pl(I') =

(8.4)

Here, the time-dependent rate equations have been solved piece-wise on the excitation inter-
valt € [0,7,] and the relaxation intervale [T}, T,] for everyr. Then, the mean probability
has been calculated by temporal integration. Clearly, Equdtion (8.4) reduces to Equation
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(8.9) forT, = T.. ForT, < T, the formula of Equatior] (8}4) describes to which degree the
molecule gets excited during the pulse inteff@all;,] and how complete the relaxation takes
place after the pulse in the intervdl,, T ].

Once, the excitation probability; (r) is known a Monte-Carlo simulation can be per-
formed to contrast the position-dependent model of Figurg (8.1, B) withkrate) with
the standard model having a position-independentkateFigure [8.2) presents the results
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Figure 8.2: Correlation curveg)(r) estimated by a Monte-Carlo simulation for no triplet (black), space-
independent inter-system crossing (blue) and space-dependent inter-system crossing (red). The excitation mode
is continuous wave and the peak rates lage= 1.1 us~! andk; = 0.49 us—t. The diffusion constant is

D = 2.8 -10°% cm?/s as for Rh6G in water. The curve for the steady-state effective signal of Eqn (8.5)

is shown as a comparison (dotted black). The two-component shape of the correlation curve - triplet term at
low 7, diffusion term at higher - is visible for both the space-dependent and the space-independent case.
Nevertheless, it is clear that a fit of the red curve with the standard model assuming spatially constant rates
would underestimate the value bf, andk-.

for the case of no triplet, constant inter-system crossing rate and space-dependent inter-
system crossing rate according to Equation|(8.2). The excitation mode is continuous wave
with intensities far away from saturation/, = k;,/10. The excitation wavelength reads

Aexc = 488 NM. The peak rates afe. = 1.1 us~! andk; = 0.49 us~! as has been measured

for Rh6G [14]. The time step iat = 0.1 ps. This leads to a mean diffusion relocation step

of ~ 8 nm. The brightnesg is set tol - 10° to speed up the convergence of the simulation.
After 3 - 107 steps the correlation curves were practically noise-free. The correlator has oc-
taves with16, 8, .. bins at a relative factor of 2. The correlation curves with triplet transitions
feature a two-component shape irrespectively of whether thekgaie space-dependent or

not: the triplet term dominates at lowy the diffusion term at higher. However, the standard

fit using space-independent rates of the curve for the space-dependent rates would strongly
underestimate the rates. Not surprisingly, the diffusion part of this curve might be recovered
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by a triplet-free simulation using the following effective sigpalr),

k

= W;Pl(r)(h(r)‘ (8.5)

Qeﬁ(r)
This is just the triplet-free signal (r) of Equation|(8.]L) scaled by the steady-state probability
to reside in the singlet system.

8.2 An Improved Model for Triplet Effects

An explicit fit model is required in order to be able to evaluate measured correlation curves.
The standard argumentation progresses as follows. Assuming (i) a diffusion cdnstaat-

fected by the state change, (ii) no fluorescence detected from a molecule in the triplet system
and (iii) spatially constant ratds andk,, it is straightforward to show that the correlation
curveg(r) calculated from Equatiof (6.3) is given by [38]

9(1) = go(7)gr(7) (8.6)
with the mean particle numbeé¥, the triplet term,
gr(T) =1+ Aexp(—1/7), (8.7)

and where the parameters

Kise 1
A= k_T and 7 = .
are constants describing the amplitude and the decay time of the triplet part of the correlation
curve. g,(7) is the correlation curve for ordinary diffusion of Equatipn {6.8).
Assumption (iii) is not met in real experiments. Usually, the error originating from a
violation of this assumption is heuristically corrected by using half the maximum intensity
Iy/2 to relate the cross-sectien the peak intensity, andk,, yielding

(8.8)

-
o(r) = a6l) |1+ AT/ exp (—— )| 8.9

To describe the situation more adequately, rates with spatial dependence have to be in-
troduced into the model. Assuming that the diffusion tirpés much larger than the triplet
timescalemax{7(r)} the molecules can be considered quasi-stationary in the time regime
of triplet dynamics. Thus, triplet dynamics can be studied independently from the diffusion
dynamics. Such an assumption is reasonable as long as the tripletratieas a sufficiently
high constant component such thaf(r) = 0 at any pointr does not lead to a divergence
of 7o. The correlation curve for a stationary two-component system one of which is dark
has already been stated in Chapter (6.1). Defining the fundtidn) as the steady-state
probability to reside in the singlet system

Po(r) = (8.10)
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Equation [(6.1]1) transforms into
9(7) = g’ / higol(0) P (1 (x)) P (I (x)) g (7, 1 (x))d’r (8.11)

The functiong:(r,r) is the individual triplet correlation curve of Equatidn (8.7) that de-
pends on the lag time and on the position through the intensity-dependent rates. The local
brightnessy(r) is given by Equation[(8]1) and is essentially described by the product of
the probability to be excited (r) times the probability to be detectéq,(r). It has been
used that the concentration of molecules in the singlet systém is related to the total
concentration,, in a simple way

o(r) = coPs(I(r)). (8.12)

Remarkably, the integrand in Equatign (§.11) does depend explicitly on the position
only through the detection probability,(r). All other spatial dependencies are medi-
ated through the spatial variation of the excitation profile). Thus, it is advantageous
to rewrite this equation in a form that replaces the full three-dimensional space-integral by a
one-dimensional integral over the relative brightness|0, 1],

/m x)Ps(x1o)* Py (x1o) g+ (7, 1o )dz, (8.13)

with I, being the peak excitation intensity and the weight given by
m® (z) = / d*rd (I(r)/ Iy — ) [heulr)]". (8.14)

The functionm® () is simply a measure of the size of the volume of constant relative
brightnessz conditioned on the detectability of signals originating from positions in this
volume. It only depends on the detection efficiency functiQ(r) and the form of the
excitation patterri (r)/I,, not on any of the other parameters!”) (z) is a purely geometric
factor and can therefore be pre-calculated before fitting the model reducing numerical effort
from a three-dimensional to a one-dimensional integral.

Figure [8.3) displays:(") (z) andm® (z) for typical excitation and detection PSFs with
Aexe = 488 Nm, A\, = 515 nm, confocal pinhole radius = 10 pm, magnificationV/ =
35, lens refractive index. = 1.33 (oil immersion objective) and half aperture angle=
64.5°. Both functions show clear signatures of the oscillatory structure of the underlying
PSF. Lower values of feature a higher weight. The functien®) () is roughly one order
of magnitude smaller than the functiem ¥ (x). This results from the squaring éf.(r) in
the integrand.

Using these functions:”) () the normalized correlation curve turns out as

9(1) = L (14 7/7) " (1 + e7/70) 2 gu(7) (8.15)

Ciot

with the diffusion term of Equatior (6.8);(7) from Equation|(8.1)3) and the normalization
factorn given by

([ mW (2)p: (x1o)dx }
[[ m® (2)p1 (x1o)2dz] [ [ mD(z (x[o)pl(xlo)dx]2

n= (8.16)
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Figure 8.3: Measurem(?(z) of the size of volumes of constant relative brightneder the detection order
parametet = 1 (A) andi = 2 (B). Naturally, values of lower relative brightnessare equipped with higher
weights. Both functions show clear signatures of the oscillations of the associated®3Ks) is about one
order of magnitude smaller than*) (z) due to the squaring dfy(r) in the integrand of Equatio4).

so that Equatiorf (8.15) reduces properly to Equafion (8.6) for the case of spatially constant
rates.n~! plays the role of an effective volume. In the next section the performance of the
improved model is contrasted with that of the standard model.

8.3 Results of Computations

In this section the evaluation of correlation curves obtained by Monte-Carlo simulations with
the classical fit function of Equatiof (8.9) and the space-averaged fit function of Equation
(8.18) are compared. Both, cw and pulsed excitation schemes leading $¢-population
distributions of Equation$ (8.3) ard (B.4) are considered.

Figure [8.4) presents the results. The dye is modeled with intersystem crossing rate
ke = 1 us™!, triplet ratek; = 0.2 us!, excitation cross section = 2.6 - 1072° m? and S, -
lifetime k5 = 3.6 ns. This is typical of Rh110[102]. In addition to the chemical kinetics the
dye exerts Brownian motion with a diffusion constdnt= 3 - 1075 cm?/s. The simulation
run contained - 107 relocation and intersystem crossing steps of ledgth= 0.1 us. Since

AT < 1/(kr + kige) (8.17)

it is reasonable to consider only one-fold inter-conversion processes during a time step. If
the triplet rates would be much higher one would have to chose a smaller timé\step

or would have to include multiple inter-conversion terms. The simulated fluorescence time
trace is correlated using a multipteeorrelator with 12 octaves of bin lengthé, 8, 8, .. and
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Figure 8.4. Mean fit results for the intersystem crossing rteand the triplet raté using simulated cor-
relation curves for continuous wave excitation (A) and pulsed excitation (B) at different peak excitation rates
oly. The results of the standard fit model of Equatfon]|(8.9) are denoted by open symbols, those of the more so-
phisticated model of Equati015) by the painted ones. The originalkates1.1 us~! andkr = 0.2 us™*
assumed in the calculation are indicated by horizontal lines. The excitatiorksatesrrespond to mean exci-

tation powers up t@.8 mW. The advanced method features a systematic errth%. The standard method
shows an underestimation kf. that grows with the intensity,. The deviation can reach up 68% for this

case. The bias is even worse for pulsed excitation as compared to cw excitation. The initially constant rate

is retrieved properly with both methods.

octave factor®. As usual, the brightnesg = 1 - 10® was chosen high enough to yield
a stable quasi-noise-free simulation result. This is reasonable since the interest lays on the
systematic bias and not on the fluctuations here. The final fit of the data was done on 10
independent correlation curves per intensity using the Gaussian least-squares method with
equal weights[[104]. The zero pointr = 0) of the correlation curve was excluded from
the fit since the photon shot noise does not obey the assumption of symmetric errors of the
Gaussian likelihood. The relative errors of the mean fit outcomes for the rates were smaller
than5% in all cases. Clearly, both methods achieve a correct retrieval of the constait rate
The advanced model returns a more correct value,ods the standard model. This effect
is more pronounced for higher intensities. Systematic errors of the classical model are up to
30% for cw excitation and up t60% for pulsed excitation. The systematic error of the more
sophisticated model is 10% for both excitation modes.

In the standard fit the inter-system crossing ratecould only be retrieved properly in
the limit of vanishing excitation intensitlyy — 0. However, for low excitation intensities the
triplet effect is weak and measurement errors are high. This problem is circumvented by the
new method which allows bias-free extraction of the rates at high excitation intensities.



O Statistical Properties of the
Correlation Curve

To retrieve parameters of interest the measured FCS correlation curve has to be fitted with a
theoretical model like in the last chapter. Mostly, this is done by a classical least-squares fit.
This assumes that the errors of the measured correlation curve are independently Gaussian-
distributed. The signal-to-noise ratio of the correlation curve at fixed lag time, i.e. the
variance vafg(7)| has been studied theoretically [105| 47,/48,106] as well as experimentally
[107] for decades. Only in the last few years correlations between values of the correlation
curve at different lag time values have been studied. However, the argumentation is partially
refined to the estimation of the relaxation time spectrum in dynamic light scattering [49] or
does not address the question to which accuracy parameters of interest can be retrieved [51].
A multivariate fit is proposed in [50]. Nevertheless, the whole work done so far assumes the
correlation curve to be a single exponentigt) ~ exp(—7/7,) and does not account for the
special situation of FCS. In this chapter, it is assessed whether the assumption of a diagonal
covariance of the correlation curve can be maintained for FCS correlation curves.

The first section investigates the covariance matrix of the correlation curve for the simple
model of free diffusion in a Gaussian focal volume. The second section develops a multi-
variate least-squares procedure for fitting correlation curves and elaborates on the influence
of the non-vanishing covariance on the fitting of the diffusion time and the particle number.

9.1 Covariance of the Correlation Curve

Let the correlation curve aVv discrete lag timeg$r;},7 = 1..N be given adyg;},i = 1..N.
Then the covarianckg,;; between the valueg andg; is defined as [86]

Yij = (g = (9:)) (95 — (93))) - (9.1)

The brackets indicate the ensemble average over different stochastic realizations of the cor-
relation curve. The correlation coefficiefif; of the curve{g;} is defined as the normalized
covariance

> (9.2)

0;0;

Cy =

with o7 = X;; being the ordinary variance of the random variapleC;; measures the cor-
relation independently of the strength of individual fluctuations whe¥gasaptures both.
Consequently, one h&s,; = 1. It can be shown that

1<0; <1 (9.3)
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Figure 9.1: Some typical correlation curves (A) out of the ensemble of &ize 2048 that has been generated

by a Monte-Carlo simulation to estimate the correlation coefficiéht } (B). The particles are diffusing freely

in a Gaussian volume of full-widths-at-half-maximuf , = 190 nm andF, = 470 nm. The diffusion time
amounts tory*¥Y = 11 us and7Z = 66 us. The different realizations (red) of the correlation curve fluctuate
around the exact result (black) given in Equat{on](6.8). There are strong positive correfatiohfor both lag

times< 30 us while the correlations decay off to zero for at least one of the lag times beBtgus. This is

due to the progressive smoothing of fluctuations at larger lag times. The octave transitions are visible as slight
oscillations along the linéi, 7).

Negative values indicate anti-correlation and positive values correlation. In the former case,
two values tend to fluctuate in opposite directions while in the latter case they deviate in the
same direction.

If a set of K of realizations of the correlation curve is provided{g&},i = 1..N, k =
1..K the covariance matriX;; may be estimated with the standard estimator

. 1 & ) )
Y= > (g -3) (dF—a)- (9.4)
h=1

Here, the ordinary meag) is as usual given by

1K
0; = — k
Ji % kEZI gi. (9.5)

Figure [9.1) presents the results of estimating the correlation coefficient using Equation
(9.4) from an ensemble of correlation curves generated by a Monte-Carlo simulation for
freely diffusing molecules. In this case, the expected mean correlation curve is given by the
product of the hyperbolic functions of Equatidn (6.8). In the calculation, the focal volume
has assumed to be the Gaussian of Equafion (6.6) with= 80 nm andw. = 200 nm.

The diffusion constant i) = 6 - 105 cm?/s and the time step\t = 0.1 us. Thus, the



9.2 Multivariate Gaussian Fit Method 99

mean diffusion relocation step amountsiionm. The diffusion times arg)”¥ = 11 us and
72 = 66 us. The fluorophore concentrationis= 15 um~3 yielding an amplituded = 1.12
of the normalized correlation curve. The simulation volume jsm x 2 um x 4 um with
influx boundary conditions. A mult—correlator featuring 12 octaves at width& 8, 8, ...
and augmentation factors 2 is used. Thus, the last bin has lagrtime3072 us. The
brightness of the molecule was takenggs= 50 kHz [11] and the number of simulation
steps was = 6 - 107, i.e. 6 s. The ensemble sizeAis = 2048S.

The correlation curve features strong positive correlations if both lag times aoeus.
For at least one lag time increasing ab@veus the correlation approaches zero. Low-lag-
time bins are highly correlated while higher-lag-time bins are not. This is consistent with the
fact that fluctuations are averaged more strongly at larger lag times in thervadtirelation
scheme. Along the line through origfn ) there persist signatures of the transition between
the correlator octaves.

9.2 Multivariate Gaussian Fit Method

Once it has been established that the covariance matakthe correlation curve contains
significant off-axis elements it is necessary to investigate to which degree the correlation
has an effect on the results of different fit procedures. Here, standard least-squares is judged
against least-squares with correlated errors. Firstly, the error distribution is introduced. Then,
the effect of the correlation on fitting synthetic data following exactly this distribution is
studied. In a third step, it is assessed whether the assumption of a multivariate Gaussian is
justified for the error distribution of FCS correlation curves and the performance of both fit
schemes is evaluated on the realistic data.

9.2.1 The Statistical Models

For a maximume-likelihood fit a model of the data conditional on the parameters is needed.
Here, the parameters are the diffusion timgeand the amplitude of the correlation cur¥e

in Equation[(6.B). The data is a measured vegtof length N describing the points of the
experimental correlation curve. Assuming that the error fluctuates around the exact result in
a Gaussian way with covarian&ethe distribution ofg reads|[86]

1 1 T w—1
p(glp,X) = exp{—— g—u) X g—u} (9.6)
Here, the meam (7, A) is the exact correlation curve and depends on the parameters. For
standard non-correlated least-squa¥eis diagonal and Equation (9.6) becomes a product
of independent Gaussians. The likelihabg,(g|u, X) associated with Equatioh (9.6) reads
with constant summands omitted

Low(glp, X) = —% (g-m)'S ' (g—p). (9.7)

The negative inverse of the covariance matixs the metric under which the likelihood
becomes the euclidean length in the space of data values. This should be contrasted with the
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likelihood L(g|u, o) for non-correlated Gaussian errors of varianggs- 3;;

RSN
Luglp, o) = =5 : (98)

2 - ag;

=1

Fit results stemming from maximizing the likelihoods, (g|x, >) and Ly(g|u, o), respec-
tively, will be compared in the subsequent.

9.2.2 Significance of the Effect of Off-Axis Correlations

It is not a priori clear that FCS data follows a multivariate Gaussian. To study whether the
correlations can in principle have a considerable impact it is advantageous to work with
data of a known type of distribution. Thus, a first artificial ensemble of correlation curves
was generated by degrading the exact curve with multivariate Gaussian noise according to
Equation [(9.5). The covariance matiixwas prescribed and was estimated from the same
ensemble of real FCS curves that provided the correlation matrix in Figuie (9.1, B). The
histograms of relative frequencies for the fit results are shown in Figure (9.2). One million
correlation curves have been fitted by a simplex maximization of the likelihood functions
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Figure 9.2: Relative frequencies of fit resulig ) andp(A) for FCS-curves suffering from multivariate
Gaussian noise. The covariance mathas been estimated from the same ensemble of correlation curves

as the correlation matrix in Figur@.l, B). 10° correlation curves have been fitted with the multivariate
least-squares method (red) and the standard least-squares method (black). For that, the likelihood functions of
Equations[(9]7) and (9.8) have been maximized. The true values are indicated as vertical lines (blue). Clearly,
the Gaussian fit neglecting the correlations but taking into account properly the single-point variances yields a
less credible result. This is more pronounced for the diffusion time than for the amplitude.
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L...(g|p,>) and Lyy(g|p, o). The fit has been initialized with the true values and has been
terminated if the change in the least-squares sum normalized to unity{talue) has

been smaller thaf.05 for 20 times. In general, this was the case afte?5 iterations. The
different fit results for the diffusion time and the amplitude have been tabulated according
to their occurrence. Obviously, the correlation has a significant influence. The results of the
multivariate fit are always narrower than those for the standard least-squares procedure that
neglects the off-axis correlations but takes properly into account the individual variances.
Furthermore, the distributions are symmetric for multivariate fitting whereas the standard
fit result displays a slight asymmetry of the distribution of the diffusion time. Also, the
normalizedy?-values indicate a higher level of credibility for the multivariate fit than for the
least-squares fit. This will be discussed in more detail in the following section.

9.2.3 Performance on Typical Stochastic Data

Before fitting real FCS correlation curves it is necessary to investigate whether their errors
are of multivariate Gaussian type. It is possible to de-correlate data values that follow a
multivariate Gaussian distribution [86]. The transformed data vajuwefined by

Gg=x"(g—p) (9.9)

are non-correlated and independently normally distributed with @z variancé. Here,

»1/2 denotes the Cholesky decomposition of the covariance ma&triXhe distribution of

the de-correlated values can be examined by a probability-probability plat [108]. Thereby,
the cumulative densitie®,(g) and P,.(g) for the experimental fluctuation and the the-
oretical expectation are plotted in the same diagram. The de-correlated fluctuation value
g € [—o0, 00| is the arc-length parametgrof the resulting curveéP,.(g), P.s(g)]. For the

case of the Gaussian with mean 0 and variance 1 the theoretical cumulative density is given
by the error integral [52]

Pooli) = [ =exp (=s2/2) ds. (9.10)

The experimental cumulative densii,(g) is estimated from the valugg by first sorting

them in ascending order and then counting the relative frequencies of values smallgr than

Here, it is of importance to notice that after the transformation according to Equatibn (9.9) all

fluctuations have the same distributidi{0, 1), i.e. each curve yieldd Gaussian deviates.

It can be shown that the slope of the PP-curve is proportional to the quetiémt when

testing a Gaussian against another Gaussian with different mean ualygsand variances

o1, 09. The difference in the mean values affects merely the edge regions of the curve.
Figure [9.8) displays the PP-plot for fluctuations stemming from several correlations

curves. The curves used for the plot are different from the curves employed to estimate the

covariance matrix and therefore statistically independent of the latter. Obviously, no severe

deviations from a straight line can be recognized. The assumption of multivariate Gaussian

noise on FCS correlation curves is reasonable.
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Figure 9.3: Probability-probability plots for some realizations out of an ensemble of FCS correlations curves.
The data has been transformed according to Equ (9.9) and its experimental cumulativeFig(jtis

plotted against the theoretical cumulative dengity,(g) for a Gaussian of mean zero and variance one. The
de-correlated fluctuatiop € [—oo, 0] is the arc-length parameter on the curve. The extreme fluctuations
contribute to the end points of the curves while moderate values affect the center. If the de-correlated data
is independently Gaussian distributed the PP-plot has to yield a line through the origin. This seems to be the
case. The data traces used for the plot are independent from the traces which were used for estimation of the
covariance matrix.

Using the de-correlated data valyg# follows from Equations[(9]6) andl (9.9) that the
likelihood L,,.(g) is given by

N | —

g'g=—

DO | —

N
Low(g) = — ng- (9.11)

Since—2L,,(g) is a sum ofN squares of normak N(0,1) variables it should follow a
x4-distribution with N degrees of freedom [86]. Thes -distribution has a mean value of

N. Usually, they?-value used as a goodness-of-fit parameter is defined as the normalized
sum of squared deviations, i.e. as

1 N
=) g 12

This value should be distributed around 1. A mean value smaller than 1 indicates that the fit
is too good compared to what the knowledge of the error statistics lets expect.

Figure [9.4) presents the distributions of the fit resultsrfand A according to the two
methods for realistic FCS correlation curves. Thie= 2048 correlation curves have been
generated by a Monte-Carlo calculation analogous to the one used for the estimation of the
covariance matrix so that the covariance is givensbiput the estimatok. is statistically
independent from the correlation curves. In general, the multivariate fit is always of the
same or higher quality as the standard least-squares fit. The diffusion time is retrieved by
the standard least-squares algorithm with a systematic erree @fs while the systematic
error is—1 us for the multivariate fit. The amplitudes are retrieved at equal quality but with
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Figure 9.4: Relative frequencies(rs) andp(A) of the fit results for FCS correlation curves suffering from
diffusion-noise and photo-detection shot noise. The results of the standard least-squares fit (black) are judged
against those of the multivariate least-squares method (red). The original values are indicated (blue). The
distribution of the experimental normalizgd-residuum and the theoreticgf-distribution function forN =

102 (dotted red) andV = 75 (dotted green) are shown. As in Figufe {9.2) with the theoretical noise the
multivariate fit retrieves the diffusion time with less spread than the least-squares fit. The amplitude fit is
of the same quality for both methods. Both fit procedures tend to slightly underestimate the diffusion time
and to overestimate the amplitude. The normalizdealue is distributed around 1 as it should be for the
multivariate fit and by a factor 0.5 too low on average for the standard least-squares. This favors the credibility
of the multivariate fit. However, there seem still to be hidden correlations in the data since for the number of
degrees of freedon¥ = 75, which is lower than the expected = 102, the theoreticak % -distribution better

fits thex2-residuum.

a small bias 0f+-0.05. It makes sense that an overestimationdofs accompanied by an
underestimation of, because for higher amplitude the correlation curve has to decay off
stronger to reach the same final value. The distribution oftheesidua is reported together

with theoreticaly?, -distributions forN = 75 and N = 102 degrees of freedom. The latter

is just the number of data points, i.e., the length of the correladtor= 104, minus the
number of fit parameters. The standard least-squares fit features ayean.5 which is

too low to be acceptable. The multivariate fit yields the expected méan 1. However,

the experimental distribution of?-values is better described by)d-distribution with a
number of degrees of freedom = 75 that is lower by about 25 than the expected degree

of freedom/NN = 102. Hidden correlations seem to exist which are not captured adequately
by second order covariance. It is astonishing that the PP-plot nevertheless has yielded such a
good agreement with a multivariate Gaussian for which higher-order correlations are entirely
determined by second-order correlations. The multivariate fit delivers results superior to the
standard least-squares procedure that is commonly used in the analysis of correlation curves.






Conclusion

The gradual elimination of ensemble averaging from fluorescence imaging by focal volume
reduction has led to an increasing importance of statistical concepts in this field. In this
thesis analytical and numerical stochastic methods have been used to model mathematically
the imaging process of PALMIRA microscopy for the first time and to develop advanced
methods for the computation and evaluation of fluorescence time traces in complicated focal
geometries. Thereby, more adequate data evaluation procedures and the quantitative descrip-
tion of several effects which had been described merely qualitatively have been gained.

It has been found that the point-spread-function of PALMIRA can be expressed with the
help of Lerch’s¢-transcendent in closed form and that the imaging equation is given as a
convolution like in confocal microscopy as long as molecules are imaged independently and
as long as the localization accuracies are translation invariant. The resolution, the temporal
stretch of the readout and the level of confidence of an image have been expressed using
simple formulas as a function of the mean photon number, the photon cut-off and the sam-
pling degree. A variety of different position estimation schemes - multi-channel astigmatic,
4pi-, defocus and multi-point imaging - have been investigated using the tool of Fisher in-
formation and Cramer-Rao bounds in addition to numerical calculations. The recognition
of objects has been analyzed quantitatively with respect to the spatial variation of sampling
frequencies due to thresholding effects, the distribution of detected photon numbers in the
presence of background noise, the occurrence of multi-molecule events with overlapping
optical patterns and the discernability of objects according to their color and polarization.
A deconvolution procedure taking into account the event photon number as a quality index
for the position estimate has been introduced, tested on synthetic and experimental data and
shown superior to a simple occurence histogram neglecting the photon degree of freedom.

Furthermore, it has been confirmed that the strong focal volume reduction achieved by
stimulated emission using a doughnut-shaped depletion beam (STED) can be detected con-
veniently by fluorescence correlation spectroscopy. Analytical expressions as well as Monte-
Carlo simulations with varying STED intensity have yielded that the reduction effect is pro-
portional to the amount of signal originating from the focal plane and that un-correlated
off-focus noise has to be minimized when a STED effect as pure as possible is to be ob-
served. An improved fit model for triplet state dynamics relying on a concise treatment of
the spatial dependency of the inter-system crossing rate has been shown to be superior to the
standard model using space-independent rates and a mean excitation intensity. Moreover,
a multivariate noise model taking into account the non-vanishing covariance of correlation
curves has been formulated. The quality of the associated maximum-likelihood fit has turned
out to be superior to the common Gaussian least-squares procedure.






A Richards-Wolf Vectorial Diffraction
Theory

It is necessary to document properly the way in which the ordinary as well as the astigmatic
PSFs employed in this thesis have been calculated. Since high-numerical aperture objectives
are employed standard diffraction theary![57] has to be generalized. This has been done in
the work of Richards and Wolf [56, 109]. The point where the concrete physical structure of
the setup enters the calculation is the apodization funckigh ¢). This function describes

the phase and amplitude changes due to the aperture. For a simpl&{eng) models
merely the finiteness of the optical aperture. The apodization function in Equation (3.12)
describes an astigmatic aberration. Again different apodization functions have to be used for
the phase mask filter creating the doughnut-shaped STED bheam [21]. The integral for the
electric fieldE to be evaluated is given by Equation (2.26) in the canonical work of Richards
and Wolf [56]

E, = / / Vcosfsin 6 (cos® + (1 — cos 6) sin® ¢) " “dhd¢
E, = / / v/cos 0 sin 6 (1 — cos @) cos ¢ sin pe™ <dhd¢p
E, = / / Vcos 0 sin? § cos ge™ 5 dfde (A.1)

with r, ¢, 6 being spherical polar coordinates of the aperture with the polarfaxs0 in
the z-direction, k the wavenumber andan angle defined in Equation (2.20) of [56]. The
integral stated above has been calculated numerically by Gauss-Legendre integration.

wavelength A =488 nm or575 nm
refractive index n = 1.515

semi-aperture angle a = 64.5°

integration support | [4000 nm, 4000 nm, 2000 nm|
integration grid (201,201, 401)

number of Legendre
polynomials 80

Table A.1: Typical parameters for the calculation of PSFs by high-numerial aperture vectorial diffraction
theory. If not stated otherwise, these parameters have been used for all PSFs employed in this thesis. Detection
PSFs are calculated by averaging several PSFs of linear excitation covering the whole soljd, anglie 24

equal steps.



B Distribution of Event Photon
Numbers

This sections aims at deriving the probabilit/\'), Equation [(1.B), to record photons in

a single frame. The parameters are the mean photon number until switchiNgawitl the
mean number of photo-electrong per frame for a fluorophore that is constantly active.
The idea here is to measure the length of the frdmm units of excitation cycles of the
fluorescence transitio®y;. In Equation ) is has been shown that these two values are
proportional to each other. If the fluorophore is practically infinitely long-liv&d;> N,

the molecule radiates always over the entire time and the distribution of photo-electrons
is the Poisson distribution of Equatign ([L.9). If the fluorophore switches off after a short
fraction of the image framey < N,, many frames will see the whole fluorescence cycle
of the molecule and the photon distribution is geometric like in Equaftion (1.5). Figure (B.1)
sketches these two cases.

F I I I I I

Figure B.1: Different realizations of the distribution of photon humber among image frames (F). The two
extreme cases are either an switched-on state of the molecule long-lived compared to the frame duration,
Tew > Ty (A) or alifetime of the switched-on state very short to the frame time Ty (B). This corresponds

to mean photon numbers per switched-on sfstenuch larger or smaller than the mean number of photo-
electronN; in a frame,N > N; or N < Ny, respectively. For simplicity, it has been assumed that one and
only one switching takes place per frame.

If one assumes that one and only one switching takes place per frame the probability
p(INV) is can be directly written down,

o) = | {ppwwﬂ) T (1 - ;pmmw) } B

because the logical structure is obviously
XY ALYV (=X AY)}. (B.2)

It has simply been used that the joint probability of independent events is the product of the
individual probabilities and that the probability for the union of two evetiendY obeys

P(XUY) = P(X)+ P(Y) = P(XNY). (B.3)
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In other words, logical AND corresponds to multiplication and logical OR to addition. The
different events arising are

event| content probability

X emission of a photon NLH

—X | bleaching in this emission cycle'

Y, | theframe is filled Pooi( N|N,)

Y, the frame is not yet filled > o n Poai(1| Ny)

Figure [B.2) presents a plot of this probability as a functioVdbr the fixed mean value

N = 100 and different frame length®,. It should be mentioned that the case of more than

one switching per frame is much more complicated since the number of possible switchings
depends on the history of the radiated photon number. Roughly, this can be accounted for
with a higherNV since the individual contributions are added over a frame.

004 I | | T T
0.03 _
Z oo2r _
=1
0.00 . I
0 100 150 -
N

250

Figure B.2: The distribution of photon numbers per framp@V) for a mean photon number until switching
back of N = 100 and several mean frame lengthg = 50 (black), Ny = 100 (red), Ny = 150 (blue) and

Ny = 200 (green). Radiation cycles longer than one frame are split up into smaller units with average length
Nj . This is the more pronounced the smallégrbecomes.



Abbreviations and Conventions

Names

PSF
STED
RESOLFT
PALM
PALMIRA

CCD
APD
FWHM
FFT
PP-Plot
cw

isc

Variables

MZ'Z

point-spread-function

stimulated emission depletion

reversible saturable optical fluorescence transitions
photo-activation localization microscopy
photo-activation localization microscopy with
independently running acquisition
charge-coupled device
avalanche-photo-diode
full-width-at-half-maximum

fast Fourier transform

probability-probability plot

continuous wave

inter-system crossing

photon number
mean photon number
variance

position

position estimator
estimated position
correlation curve
intensity profile

peak intensity
excitation PSF
detection PSF
STED-PSF

STED intensity
saturation intensity
inter-system crossing rate
triplet rate

diffusion constant
molecular brightness
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