
Dissertation 
Submitted to the 

Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-

Carola University of Heidelberg, Germany 

For the degree of  

 

Doctor of Natural Sciences 

 

 

 

 

 

 

 

 

Protein Complexes Structure Prediction by 
Combination of Binary Interactions Derived 

by Homology 
 

 

 

 

 

 

 

 

presented by 

 

Graduate Engineer: Matthieu Pichaud 



 

 



Dissertation 
Submitted to the 

Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-

Carola University of Heidelberg, Germany 

For the degree of  

 

Doctor of Natural Sciences 

 

 

 

 

 

 

 

 

 

 

 

 

presented by 

 

Graduate Engineer: Matthieu Pichaud 

Born in: Nantes, France 

 

Oral examination: ________________ 

 

 



 

 

 

Protein Complexes Structure Prediction by 
Combination of Binary Interactions Derived 

by Homology 
 
 
 
 
 
 
 
 
 
 
 
 

Referees:   Dr. Elena Conti 

Prof. Dr. Irmgard Sinning



 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Willst du ins Unendliche schreiten, 

Geh nur im Endlichen nach allen seiten. 

Johann Wolfgang von Goethe 



  Table of contents 

 i 

Table of contents 

Table of contents.................................................................................................... i 

Acknowledgments.................................................................................................iv 

Publications ...........................................................................................................v 

Zusammenfassung.................................................................................................vi 

Abstract................................................................................................................. 1 

Introduction .......................................................................................................... 3 

1. The protein complex, one level of biological organization .......................... 3 

2. Protein structures ........................................................................................ 3 

2.1. Tertiary structure .................................................................................. 3 

2.2. Quaternary structure............................................................................. 5 

3. Determining protein structure...................................................................... 6 

3.1. Protein over-expression ........................................................................ 6 

3.2. X-ray crystallography............................................................................ 7 

3.3. Nuclear Magnetic Resonance (NMR) .................................................... 8 

3.4. Electron Microscopy (EM)..................................................................... 9 

3.5. Small-angle Scattering (SAS) ................................................................. 9 

3.6. Electron tomography........................................................................... 10 

3.7. Hybrid approaches ............................................................................. 10 

4. Towards a structural determination of protein complexes .......................... 11 

4.1. Determination of the composition of a protein complex...................... 11 

4.2. Prediction of protein structure............................................................. 21 

4.3. Detection of domains ......................................................................... 23 

4.4. Prediction of the structure of a protein assembly ................................. 25 

5. The problem ............................................................................................. 33 

Material and Methods ......................................................................................... 34 

1. Overview of the method ........................................................................... 34 

2. Collecting interaction templates ................................................................ 36 

2.1. Comparison of interaction templates using iRMSD.............................. 36 

2.2. Inventory and selection of interaction templates ................................. 37 

2.3. Database schema ............................................................................... 38 



  Table of contents 

 ii 

2.4. Maintenance ...................................................................................... 40 

3. Getting annotated structures for each domain ........................................... 41 

3.1. From sequence to structural models.................................................... 41 

3.2. Assigning domains to a protein ........................................................... 42 

4. Program.................................................................................................... 43 

4.1. The basic search procedure ................................................................ 43 

4.2. Making the best use of prior information............................................. 54 

4.3. Looking for specific features ............................................................... 55 

4.4. Exploring and understanding the predictions....................................... 59 

5. Benchmark sets ......................................................................................... 61 

5.1. Comparison of multi-domain structures .............................................. 62 

5.2. Triplets ............................................................................................... 63 

5.3. Sets of complexes of known structure that can theoretically be built 

from pieces .................................................................................................. 67 

6. Potential applications in unsolved complexes ........................................... 67 

Results ................................................................................................................ 70 

1. Evaluation of the procedure – Benchmark ................................................. 70 

1.1. Results from the triplet dataset ............................................................ 70 

1.2. Evaluation of known complexes that can presumably be built from 

pieces .......................................................................................................... 74 

1.3. Multidomain polypeptide chain: Gelatinase A .................................... 78 

1.4. Dimerisation: EF-Tu/EF-Ts................................................................... 79 

1.5. Creation of interactions not in original structure: CDK6/cyclin 

D/INK4 complex.......................................................................................... 81 

1.6. Highly symmetrical structures............................................................. 83 

2. Applications.............................................................................................. 87 

2.1. Estimation of the applicability of the method at different time points... 87 

2.2. Predictions ......................................................................................... 88 

Discussion ........................................................................................................ 103 

1. Summary of the results ............................................................................ 103 

1.1. Results.............................................................................................. 103 

1.2. Application....................................................................................... 104 



  Table of contents 

 iii 

1.3. Comments ........................................................................................ 104 

2. Comparison with combinatorial docking................................................. 111 

3. Other potential uses of protein interactions ............................................. 114 

3.1. Prediction of interfaces ..................................................................... 114 

3.2. Limiting the number of structural determinations required for 

predicting assemblies ................................................................................. 114 

3.3. Spatial constraints............................................................................. 115 

3.4. A glimpse at the stoichiometry of any complex ................................. 118 

4. Conclusion ............................................................................................. 119 

References ........................................................................................................ 120 

 



  Acknowledgments 

 iv 

Acknowledgments 

First of all, I would like to thank Dr. Rob Russell, my supervisor, for introducing me 

to the fascinating world of protein structures. His vast knowledge, his enthusiasm 

for emerging ideas and his encouragements contributed immensely to the success 

of this Ph.D. 

 

Many thanks to all the members of the Russell group for their great support, 

interesting discussions, inspiring advices and mainly for making the atmosphere so 

nice and stimulating. It is hard for me to know what I will miss the most from this 

time in room V115: “Privet”, “Sacrebleu” or “La Java Bleue”. 

 

I am very grateful to the members of my Thesis Advisory Committee, Prof. Dr. Irmi 

Sinning, Dr. Elena Conti and Dr. Carsten Schultz for their invaluable help and care, 

not only scientific. 

 

Thanks also to Prof. Dr. Kummer and Dr. Anne-Claude Gavin for making me the 

honor of joining my Thesis Defense Committee.  

 

I would like to thank the people who kindly spent a great amount of their time 

reading and enriching this essay of their comments, Mirana, Julie, Stu, Erik, 

Damien, Victor, Matthew, Chad and Rob. More than connections, I have learned a 

lot from their remarks (‘for that’ is now banned from my speech). 

 

Last but not least, I would like to thank my family, my ‘family’ from Heidelberg, 

Isabelle and my friends for their warm and kind support. Without them, the task 

would have been even harder and these years far less fun.  



  Publications 

 v 

Publications 

 

Publication 1: 

A structural perspective on protein-protein interactions. Russell RB, Alber F, Aloy P, 

Davis FP, Korkin D, Pichaud M, Topf M, Sali A. Curr Opin Struct Biol. 2004 Jun; 

14(3):313-24. Review. 

 

Publication 2: 

Protein complexes: structure prediction challenges for the 21st century. Aloy P, 

Pichaud M, Russell RB. Curr Opin Struct Biol. 2005 Feb; 15(1):15-22. Review. 



  Zusammenfassung 

 vi 

Zusammenfassung 

 

Proteine spielen eine Schlüsselrolle in den meisten, wenn nicht sogar allen, 

zellulären Prozessen. Sie üben ihre Funktion jedoch selten für sich allein aus und 

für gewöhnlich formen sie multimolekulare Komplexe. Die strukturelle 

Beschreibung der Bildung solcher Komplexe vermittelt viele Details über die 

biochemischen Prozesse, die schlussendlich zur Funktion des Komplexes führen. 

Da die Bestimmung der Bildung solcher Komplexe experimentell anspruchsvoll ist 

und bleibt, gibt es nur einen kleinen Teil bekannter Proteinekomplexe, die 

strukturell aufgeklärt sind. Somit werden alternative Methoden gesucht um 

Proteinstrukturen und ihre Komplexierung zu erschließen. 

 

In meiner Arbeit habe ich ein Programm entwickelt, dass die Komplexierung von 

Proteinen anhand ihrer Struktur und der Struktur ihrer Untereinheiten vorhersagt. 

Dieses Programm sammelt die Vorhersagen der gekoppelten Anordnung der 

Untereinheiten, die von homologen Interaktionsvorlagen abgeleitet sind. Alle 

möglichen Anordnungen der Untereinheiten werden aus einem Graphen 

ausgelesen, der das Problem wiedergibt. Die Vorhersagen werden hinsichtlich der 

Sequenz- und Strukturhomologien der Untereinheiten mit den Vorlagen 

ausgewertet oder anhand der interagierenden Grenzflächen der Vorhersagen 

verglichen. Die Methode bezieht sich auf Drei-Domänen Komplexierung bekannter 

Strukturen und auf neun vollständige Strukturen, die auf unterschiedliche Weise 

aus ihren Untereinheiten zusammengesetzt werden können. Als Ziel der Arbeit 

wurde versucht, die Komplexierung der RNA Polymerase I und die Struktur des 

CDC48/Ufd1/Npl4 Komplexes aus dem Ubiquitin-Proteasom-Weg vorherzusagen. 

 

Diese Vorgehensweise scheint angemessen wie die Ergebnisse, auf die sich meine 

Arbeit bezieht (auf denen meine Arbeit gründet), zeigen. Wir konnten die 

Orientierung derjenigen Untereinheiten der RNA Polymerase I vorhersagen, die 
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homolog zu den Untereinheiten der RNA Polymerase II sind. Dies zeigt, dass 

Strukturen mit direkter Homologie leicht vorherzusagen und zu bestimmen sind. 

Für den Cdc48/Ufd1/Npl4 Komplex zeigen wir drei Vorhersagen, die weitere 

Untersuchungen lohnenswert erscheinen lassen. 

 

Dieses Programm kann für jedwede Art von Proteinkomplexen verwendet werden 

und ist im Besonderen nützlich, wenn sich die Strukturen experimentell schwer 

bestimmen lassen. 
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Abstract 

Proteins are key participants in most cellular processes. However, they rarely 

function in isolation and usually they form multimolecular assemblies. The 

structural description of such an assembly provides critical details about the protein 

function. As the determination of such structures remains a great experimental 

challenge, only a small fraction of known protein complexes are currently 

available. This has created a need for alternative, predictive methods that can 

bridge the gap between complexes that are known to exist in the cell, and those for 

which structural information is available. 

 

This thesis presents a program to predict the structure of protein assemblies from 

the structures of their subunits. The method combines predictions of pairwise 

arrangements derived from homologous interaction templates to consider all 

possible assemblies. The problem of finding the best arrangement is modeled as a 

graph to allow fast graph traversing algorithms to be exploited. Individual 

predictions are evaluated by sequence identity or structural similarity between the 

subunits and the templates or by evaluation of the interfaces in the predictions. The 

method is benchmarked on three-domain assemblies derived from known 

structures and on nine complete structures that could possibly be re-assembled in a 

non-trivial fashion from previously determined structures. The method was also 

applied to complexes determined from high-throughput complex determination 

procedures, including RNA polymerase I and the Cdc48/Ufd1/Npl4 complex from 

the ubiquitin-proteasome pathway. 

 

The benchmark demonstrates that the approach can often work on small 

assemblies. For larger complexes, certain details can be predicted, and 

occassionaly large parts of the complex, though currently a lack of suitable 

templates limits applicability. Nevertheless, the method can now be applied to any 

protein complex and should be particularly useful when structures are difficult to 
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obtain by experiments, and where additional information, such as pairwise 

interactions or stoichiometry, is available.  
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Introduction 

1.  The protein complex, one level of biological organization 

Living organisms are highly organized and consist of complex structures at many 

different resolutions. From the atomic level to the macroscopic there are many 

organizational interactions and processes: several chemical interactions form 

biomolecules (e.g. DNA, RNA, proteins, peptides) that eventually organize in 

assemblies (protein complexes, cell wall) and arrange further in sub cellular 

compartments (nucleus, proteasome, lysosome). Cells and organs finally 

collaborate to form the organism. Each level of organization is generally studied at 

specific resolutions that embrace their inherent specificity. 

 

Protein complexes, or assemblies, are organizations of particular importance. They 

participate in all biological functions and are usually made of several proteins 

arranged in space via specific protein-protein interactions. The best descriptions of 

the structures of protein complexes come when a high-resolution structure is 

available by X-ray crystallography or Nuclear Magnetic Resonance, though key 

insights can also come from lower resolution structures that are increasingly 

available from electron microscopy. These techniques, however, remain time 

consuming meaning that there is now a large gap between complexes that are 

known in the sense that the proteins composing them have been determined, and 

those for which a 3D structure is available. 

2.  Protein structures 

2.1. Tertiary structure 

Proteins are the expressed form of genes. They are made of a chain of amino acids 

(or residues) that is a functional translation of the information encoded in the 

corresponding piece of deoxyribonucleic acid (DNA). Each of the 20 amino acids 
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has particular chemical properties: polar, non-polar, charged, extended, small, 

structurally constrained or flexible. To accommodate those amino acids in an 

energetically favorable manner in the context of the biological medium (the 

solvent, the cytosol, the membrane, etc.), the protein usually folds and acquires a 

precise tertiary structure in space. The primary structure of the protein refers to the 

sequence of amino acids, and the secondary structure consists of stretches of 

amino-acids that organize in helices called α-helices or in strands called β-sheets. 

To best satisfy their environmental preferences, hydrophobic residues in soluble 

proteins are normally buried at the core of the structure, whereas hydrophic 

residues normally prefer to be exposed to solvent. Different preferences apply to 

membrane proteins, where, for example, hydrophobic residues often reside in the 

membrane. 

 

 

Figure 1: Protein domain, tertiary and quaternary structures (illustrated on the 
exosome) 
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Domains have been defined either as compact regions in a protein structure 

(Richardson 1981), segments of residues that conserve properties during evolution 

(Bork 1989) or parts of the protein that fold independently (Wetlaufer 1973). Today 

domains are generally referred to in the context of protein function, being discrete 

units that are normally performing a particular sub-function of the protein. For 

example, a catalytic domain will perform an enzymatic function, complemented by 

regulatory domains that might be responsible for substrate specificity, or 

localization. Because they are autonomous and often functional structural units, 

domains are often seen and used as basic functional and evolutionary entities of 

proteins (Apic et al. 2001; Copley et al. 2002; Vogel et al. 2004; Bornberg-Bauer et 

al. 2005). 

 

Domains usually consist of about 150 amino acids. These normally come from a 

continuous fragment of the protein chain, but sometimes they span over several 

fragments. Most proteins are multi-domain, containing several domains (Murzin et 

al. 1995; Orengo et al. 1997) normally performing discrete sub-functions. It has 

long been observed that proteins can adopt a similar 3D structure even in the 

absence of clear sequence similarity. This ultimately led to the idea that nature was 

somehow limited in the number of folds that could be adopted by proteins. The 

number of domain folds is normally estimated to be limited to a few thousand 

(Chothia 1992; Blundell and Johnson 1993; Govindarajan et al. 1999; Koonin et al. 

2002; Orengo et al. 2002) and indeed they are commonly re-used in several 

proteins with some variations (Bork 1991). 

2.2. Quaternary structure 

Proteins often act together to form stable, functional complexes, sometimes referred 

as protein assemblies. This spatial organization of different proteins chains is the 

quaternary structure of a protein. Polypeptide chain surfaces complement each 

other to support the formation of specific atomic interactions (hydrogen bonds, Van 
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der Waals, salt bridges) and favorably accommodate residues at the inter-subunit 

interfaces. 

 

Frequently, several identical polypeptide chains assemble into homo-multimers, or 

assemblies made of several copies of the same protein chain. The most common of 

which is the homo-dimer that contains two copies of the same chain (Orlowski et 

al. 2007). These structures built on the repetition of the same proteins tend to be 

symmetric. Other assemblies are heteromeric, with two or more different proteins 

acting together. 

3.  Determining protein structure 

The knowledge of the structure of a protein or a complex greatly aids the 

understanding of molecular function. The more precise the structure determination, 

the better the determination of the modus operandi.  

 

Various biophysical methods can be used to determine protein tertiary or 

quaternary structure. The main differences between each method are the state and 

quantity of protein required and the resolution attainable (the ability to capture 

molecular details of the structure). High-resolution methods (<5Å) like X-ray 

crystallography and Nuclear Magnetic Resonance (NMR) are difficult because they 

require high quantities of highly purified homogeneous protein, which can be 

difficult to obtain and which is often unstable over the course of the experiment. 

Other techniques can operate on easier to obtain samples, but these normally 

provide only low-resolution structures. 

3.1. Protein over-expression 

Even if crucial for most cellular functions, most proteins are present in very small 

amounts in the cell. Moreover, in its natural state, it is impossible to distinguish the 

protein of interest from the others. Thus, a step of sample preparation is required in 

the two high-resolution structure determination methods. When working with X-ray 
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crystallography and NMR, the protein of interest is usually over-expressed and 

purified. An expression vector – usually a plasmid – designed to produce large 

amount of mRNAs coding for the protein of interest is transfected into a host cell 

(bacteria, yeast, insect or mammal). Once expressed, the protein is extracted from 

the lysed cell by normal chromatography or by affinity chromatography when the 

protein of interest was engineered to display a specific tag to help the purification 

step. 

3.2. X-ray crystallography 

In X-ray crystallography, the protein is first crystallized, meaning that specific 

chemical conditions are found in which the protein molecules arrange themselves 

into a regular lattice in space and form a crystal. This usually requires high 

concentrations of very pure protein (>97% purity at 2-50 mg/ml). This crystal is 

thereafter bombarded by X-rays, which are scattered by the molecules in a 

diffraction pattern captured on a photographic plate or recorded by other methods. 

 

Only the amplitude of diffraction maxima can be read from the diffraction patterns 

and the phase that is crucial for the determination of the structure has to be 

determined by other means. Molecular Replacement is efficiently used when the 

structure of a homologous protein (>25% sequence identity) is known and can be 

used to get an initial estimate of the phases. However, it tends to bias the model 

obtained towards the structure of the homologue. Alternatively, the diffraction 

pattern can be disturbed by soaking heavy-atom derivatives in the native crystal 

(Multiple Isomorphous Replacement) or choosing radiation wavelengths that 

correspond to the absorption edge of certain atoms (Multiple Anomalous 

Dispersion) and phases can be determined by the comparison of several such 

spectra. Upon determination of good enough phases, an electron density map is 

calculated in which the main-chain of the protein and the side-chains are carefully 

fitted.  
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The quality of the crystal is crucial as it strongly influences the resolution at which 

the protein structure is solved and the difficulty to fit residues into the density map. 

X-ray crystallography may reach resolutions below 1Å and can cover molecules 

that have a wide range of molecular weights when the right conditions are found to 

crystallize the molecules. Sometimes during the formation of the crystal, proteins 

pack closely together in a manner that does not reflect any physiological affinity 

(crystal packing). Attempts have been made to detect such dubious interactions and 

identify the ones that do not to complete a symmetrical assembly (PQS (Henrick 

and Thornton 1998)). 

 

X-ray crystallography has proven to be a very powerful technique and accounts for 

87% of the structures solved to date. The structures of the ribosome (Ban et al. 

2000), RNA polymerase II (Cramer et al. 2001), the exosome (Lorentzen et al. 

2005; Liu et al. 2006) and the proteasome (Groll et al. 1997) are amongst X-ray 

crystallography’s great achievements. 

3.3. Nuclear Magnetic Resonance (NMR) 

With Nuclear Magnetic Resonance, experimentalists work with high concentrations 

of proteins directly in solution. Atomic nuclei react differently to an 

electromagnetic field depending on their nature and their environment. Nuclear 

magnetic resonance from protons (1H) and isotopically labeled molecules (usually 
13C or 14N) is determined. Upon collection of the NMR spectrum, the peaks of 

resonance must be assigned to pairs of reactive atoms from the molecule in order 

to obtain their relative position. While X-ray crystallography determines one single 

structure for the sample, NMR usually provides an ensemble of atomic coordinates 

(20-30) since several structural arrangements may satisfy the spatial constraints 

derived from the spectra. NMR is usually applied to small molecules of less than 50 

kDa because of the difficulty interpreting NMR spectra and the difference in 

reactivity of large samples (Yu 1999). NMR accounts for 13% of the molecules 

solved at a high-resolution. Despite difficulties with large molecules, some 
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relatively large complexes were solved such as that between GroEL and GroES 

(Fiaux et al. 2002). 

 

When it is not possible to meet the requirements of high-resolution methods, 

techniques like electron microscopy (EM), small angle scattering (SAS) and electron 

tomography can be used to obtain lower resolution structures.  

3.4. Electron Microscopy (EM) 

In EM, a biological specimen is illuminated by electrons. Several projected images 

of the specimen are taken, aligned and cross-correlated in order to reconstruct the 

structure. Sample preparation is crucial for success. The specimen is usually 

stabilized to resist the high vacuum in the microscope column, stained to increase 

the contrast and sectioned to facilitate the penetration of electrons in the specimen. 

The main limitation of electron microscopy is the irradiation damage that inevitably 

affects and distorts the sample. More recent Cryo-EM methods decrease beam 

damage by collecting data at low-temperature and reduce the damage caused by 

removal of water from the specimen.  

 

Although EM can reach resolutions around 8Å, which is much higher than the 

resolution obtained by light microscopy, it still provides far less structural details 

than X-ray crystallography or NMR. At this resolution, the position and the 

conformation of the residues cannot be determined precisely. Single particle EM 

was applied successfully on the 50S ribosomal subunit (7.5Å – (Matadeen et al. 

1999)) and on the structure of GroEL (~10Å – (Ludtke et al. 2001; Ranson et al. 

2001)). 

3.5. Small-angle Scattering (SAS) 

In small-angle scattering (SAS), neutrons or X-ray radiation are emitted and 

scattered by the sample, which does not need any special preparation (Svergun and 

Koch 2002). The resulting scattering pattern contains information about the 
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geometry of the sample. SAS was used for the determination of the structure of 

cAMP-dependent protein kinase (Tung et al. 2002). 

3.6. Electron tomography 

In electron tomography, an electron beam passes through the sample at different 

angles of rotation. The images are collected and a structure is reconstructed. 

Electron tomography achieves resolution of 30Å. At this resolution, neither the 

secondary structure elements nor the tertiary structure elements can be precisely 

localized. The representation obtained can still be informative as those of the 

Nuclear Pore Complex (Stoffler et al. 2003; Beck et al. 2004), virus assemblies 

(Grunewald et al. 2003), or even entire cells (Medalia et al. 2002; Hoog et al. 

2007). 

3.7. Hybrid approaches 

The precise determination of a protein structure is a difficult exercise restricted to 

X-ray crystallography and NMR. Still, detailed structural insights into a protein 

complex can be obtained by fitting high-resolution structures into a low-resolution 

envelope. 

 

When the EM structure of a complex is determined, it can be used as a framework 

to constrain the placement of its constitutive subunits if they are available 

individually (Topf et al. 2005). The problem consists in optimizing the fit of high-

resolution structures in the low-resolution EM structure of the complex (Volkmann 

and Hanein 1999; Rossmann 2000; Chacon and Wriggers 2002; Ceulemans and 

Russell 2004; Topf et al. 2005). Such approaches have been successfully applied to 

the determination of E. coli 30S ribosomal subunit (Malhotra and Harvey 1994), the 

yeast exosome (Aloy et al. 2002) and S. cerevisiae 80S ribosome (Spahn et al. 

2001). Moreover, similar approaches are used to determine the structure of single 

protein chains: Baker et al. determined the structure of the capsid protein of 

Herpesvirus VP26 (Baker et al. 2006) and Topf et al. developed Moulder (Topf et al. 
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2006), a method to optimize the prediction of protein structures by fitting in 

CryoEM pictures. 

 

In a similar manner, small-angle scattering can be used to help determining high-

resolution structures of large assemblies of a few kDa up to hundreds of MDa. Data 

obtained by SAS have for example led to the location of the subunits in the low-

resolution structure (Krueger et al. 2000; Wall et al. 2000; Sun et al. 2004; 

Petoukhov and Svergun 2005) and was used for the prediction of the structure of 

cAMP-dependent protein kinase heterodimer (Zhao et al. 1998).  

4.  Towards a structural determination of protein complexes 

When the experimental methods to determine the structure of the complex are 

either not available, or prove too difficult, then computational predictions can be 

considered. The prediction of the structure of a complex then requires knowledge 

of the constituents of the complex, the structure of the each of them (determined or 

predicted), the protein domains that are likely to serve as binding anchors and a 

mean to assemble separate constituents into sensible interactions. This process can 

also be aided by knowledge about how the subunits interact by non-structural 

techniques such as the two-hybrid system. Here only large-scale approaches are 

considered, as we search a method that can apply to as many complexes as 

possible.  

4.1. Determination of the composition of a protein complex  

4.1.1 Determination of protein interactions 

Proteins usually achieve their various functions by interacting with other proteins. 

The number of interactions between two proteins in yeast has been estimated to be 

around 30 000 (Kumar and Snyder 2002; von Mering et al. 2002). When put in the 

perspective of the number of protein in the yeast proteome (~6200), it indicates 

that on average, one protein has 9 protein partners (Sali et al. 2003). Because of the 
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importance of protein neighborhood, extensive efforts have been carried to identify 

and characterize protein interactions and complexes. 

4.1.1.1 Experimental methods 

The yeast two-hybrid system (Y2H) 

In yeast two-hybrid experiments, the potential interaction between two proteins is 

studied and reported by hijacking a transcription factor (Figure 2). The protein of 

interest is fused to one part of a split transcription factor, and potential interacting 

partners are fused to the other part of the transcription factor. If there is an 

interaction between the two proteins that are tested, the two parts of transcription 

factor are brought together leading to the activation of a reporter gene, which is 

then detected. If the two proteins investigated do not interact, the transcription 

factor remains split, the reporter gene is not transcribed and therefore no signal is 

detected. The ‘bait’ is the protein investigated and is usually tested against a library 

of potential binding partners, or ‘prey’ molecules. 

 

Two extensive studies of protein interactions in Saccharomyces cerevisiae have 

been conducted (Uetz et al. 2000; Ito et al. 2001) and revealed 691 and 841 

putative interactions respectively. Surprisingly, the two experimental sets did not 

overlap much and only 135 interactions were common to both sets (Ito et al. 

2001). Large-scale experiments have also been performed using proteins from H. 

pylori (Rain et al. 2001), C. elegans (Li et al. 2004), D. melanogaster (Giot et al. 

2003) and humans (Rual et al. 2005; Stelzl et al. 2005). 
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Figure 2: The two main methods for large-scale detection of protein interaction: 
Yeast Two-Hybrid and Tandem-Affinity Purification with Mass Spectrometry 
(adapted from (Cho et al. 2004)) 
Left: Description of the Yeast Two-Hybrid experiment. TF 1/2 and TF 2/2 are the 
two parts of the transcription factor. X and Y are the two proteins tested for 
interaction. BS is the binding site of the transcription factor. If X and Y interacts, the 
two parts of the transcription factor are close enough to trigger transcription. 
Right: Description of the Tandem-Affinity Purification setting. The Protein of 
interest (1) is fused to a tag and fished out of the cell with its interacting partners 
(only one purification step is shown). 

Tandem-affinity Purification followed by Mass Spectrometry identification (TAP-MS) 

Another strategy consists of fishing for the protein of interest and the proteins in 

contact with it by two rounds of purification and then identifying all the proteins 

that purify together. The first step is called tandem-affinity purification (TAP) and 

the identification step is tackled usually by mass spectrometry (MS) (Figure 2). 

Theoretically, one purification reveals all the binding partners of the protein of 

interest. However, proteins are sometimes involved in several complexes and thus 

direct inference of the components of a complex from a purification is uncertain. 

Moreover, only 70% of proteins are retrieved in the two sets when a purification is 

repeated (Gavin et al. 2002) and all the binding partners of a protein may not be 

retrieved in one purification. Thus, the method is applied on a large scale and most 

proteins are tagged and purified. The data from purifications are finally combined 

to determine the composition of the complexes. This approach was used to study 

the interactome (the space of interacting proteins) at large-scale in yeast (Gavin et 

al. 2002; Ho et al. 2002; Gavin et al. 2006; Krogan et al. 2006). 
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Direct determination of complex architecture by Mass Spectrometry 

Alternatively, a novel approach consists of preserving the protein interactions in the 

gas phase that comes before mass spectrometry detection (Hernandez et al. 2006) 

so that complexes and subunits can be detected. It provides information about the 

composition of the complex, its stoichiometry and even the composition of the 

complex subunits. Mass spectrometry determination of intact complexes was 

successfully applied to the bacterial 20s proteasome (Sharon et al. 2007), p97-

Ufd1-Npl4 (Pye et al. 2007) and the eukaryotic exosome (Robinson C, in 

preparation). 

4.1.1.2 Bioinformatics methods 

In parallel with experimental methods, bioinformatics, mostly using genomic data, 

contributed to a better understanding of protein interactions. Phylogenetic profiling 

groups together those proteins that occur in the same set of organisms, since this 

implies that they may tackle a common function and may also have the same 

binding partners. Obviously, this method does not apply to genes essential to the 

cell maintenance of the cell because they are present in most organisms. It 

indicates a probable co-evolution and a putative common function but does not 

indicate direct contact between proteins (Gaasterland 1998; Pellegrini et al. 1999). 

Bacterial genomes are organized in functional clusters called operons. Two 

proteins homologous to proteins from the same bacterial operon are likely to 

participate in the same function. More generally, conservation of the proximity of 

two genes may indicate a common function (Dandekar et al. 1998; Overbeek et al. 

1999). Also, when two genes in one organism are fused in another organism, it 

often indicates that their gene products interact (Enright 1999; Marcotte et al. 

1999). More interactions are detected by co-evolution of conserved regions (Pazos 

et al. 1997; Kann et al. 2007). The problem is then to distinguish functional co-

evolution from the simple co-evolution in (Pazos et al. 2005; Sato et al. 2005). 
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Other methods compile the information from various sources and evaluate 

interactions by cross-validating several experiments. STRING (Search Tool for the 

Retrieval of Interacting Proteins (Snel et al. 2000; von Mering et al. 2007) for 

instance integrates results from the methods mentioned above with data from 

protein co-expression, literature and text mining. The combination of all the 

methods enables stronger assertions about the relationship between two proteins. 

 

Gene evolution is another good indicator of protein functionally relationships. 

However, the information is mainly functional and cannot compare to details 

achieved by biophysical methods. 

 

InterPreTS (Aloy and Russell 2003) or MULTIPROSPECTOR (Lu et al. 2002) are 

methods that use information derived from known structures to assess the 

interaction between proteins homologous to those in the known structure. More 

specifically, InterPreTS consists of threading two sequences in the structure of the 

two domains of an interaction and evaluating the likelihood of the interface created 

by comparing it to the likelihood of the interface formed with the same structure 

and a random sequence. 

4.1.1.3 Repositories 

Protein interaction data from various sources (experiments, literature mining, 

computational predictions) are collected and organized in dedicated databases 

(DIP (Xenarios et al. 2000; Salwinski et al. 2004), BIND (Alfarano et al. 2005), 

MPact (Guldener et al. 2006), IntAct (Kerrien et al. 2007), BioGRID (Stark et al. 

2006), STRING (von Mering et al. 2003), MINT (Zanzoni et al. 2002), HPRD (Peri 

et al. 2003)). Similarly, structures of protein interactions are stored and annotated in 

several databases (3did (Stein et al. 2005), PIBASE (Davis and Sali 2005), SCOPPI 

(Winter et al. 2006), iPfam (Finn et al. 2005), SNAPPI-DB (Jefferson et al. 2007), 

PROTCOM (Kundrotas and Alexov 2007)). Most of these databases list interactions 

between protein domains from protein structures deposited in the Protein Data 
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Bank based on domain assignments from SCOP (Murzin et al. 1995) or Pfam 

(Orengo et al. 1997) whereas some attempt to detect similar interactions based on 

common orientation (3did, SNAPPI) or residue contacts and other interface specific 

features (PIBASE).  

4.1.2 Difference between datasets – Error assessment 

TAP-MS experiments do not reveal the direct binding of two proteins contrary to 

most yeast two-hybrid experiments (exceptions revealed by structural analysis are 

found in (Aloy and Russell 2002a)) Thus, models have to be used to extrapolate 

direct interactions from TAP-MS results and usually one of the two extreme models 

is adopted. In the ‘spoke’ representation, only the direct interactions between the 

bait and its preys are considered whereas in the more permissive ‘matrix’ model, 

the interactions between all the proteins co-purified are considered. The reality 

must lie somewhere between those two extremes but it was shown that the spoke 

model is three times more accurate than the matrix model (Bader and Hogue 

2002). Even if the information about direct, physical interactions is not available as 

it is in the yeast two-hybrid system, TAP-MS experiments provide as well 

information about protein-protein interactions. Specifically, they provide 

collections of proteins that act together, of which some pairs invariably are in direct 

physical contact. 

 

Major efforts have been made to evaluate the quality of large-scale interaction 

datasets and several types of false results can be studied. Within an experiment, 

interactions that do not exist to the same extent in the biological medium are 

sometimes detected because some proteins engage in non-specific interactions in 

the experimental framework (like heat-shock and ribosomal proteins (Gavin et al. 

2002)). Such proteins are detected in a large number of purifications and are 

usually discarded. Moreover when experiments are repeated, the outcome is partly 

reproduced (~70% for TAP-MS (Gavin et al. 2006; Krogan et al. 2006), 80% for 
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Y2H (Rual et al. 2005)). It is usually assumed that the proteins detected repeatedly 

are correct when the others correspond to false detections (false positives).  

Several studies have attempted to estimate the false-positive rates of these methods. 

For instance, genome-wide yeast two-hybrid scans were compared to more reliable 

individual experiments (Mrowka et al. 2001) and Von Mering et al. (von Mering et 

al. 2002) compared the ratio of interactions between proteins involved in different 

functions to their expected ratio. Overall, these studies estimate a false positive rate 

in interaction data around 50%. 

 

It is also possible for interactions to be missed during a screen (false negatives). 

These can arise for multiple reasons: the complex may be transient, insoluble or 

disrupted by the modifications required to perform the experiments (Aloy and 

Russell 2002b). Moreover, each technique performs differently depending of the 

type of interaction (Aloy and Russell 2002a), the cellular localization (Yook et al. 

2004) and the abundance of the protein (von Mering et al. 2002; Gavin et al. 2006; 

Krogan et al. 2006). For instance, membrane proteins are rarely retrieved in TAP-

purifications and proteins involved in translation are hardly detected in yeast two-

hybrid assays. 

 

Another particularity is that most of the information collected about protein 

interactions and complexes does not account for spatial or temporal aspects of 

complex formation and existence. Only the superposition of all the possible 

interactions in which protein is engaged is detected. For instance, Cdc48, an 

ATPase, has various cellular functions which depend on the adaptor proteins it 

interacts with: it is involved in spindle assembly with the help of Ufd1 and Npl4 

(Cao et al. 2003) and plays a role in ubiquitin-dependent protein degradation with 

another adaptor, Shp1 (Johnson et al. 1995). TAP purification data (Gavin et al. 

2006) indicates clearly that Cdc48 binds the three adaptors. But from the sole 

purification of Cdc48, it is not possible to separate the two variants of the Cdc48-

complex. This example illustrates the temporal integration achieved in TAP 
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purification experiments and large-scale studies in general: they circumvent the 

composition of complexes at one time-point and one place and everything that 

binds a protein at one point or one place is retrieved with little distinction. 

 

Usually, interaction data are crossed with spatial and temporal data to clarify the 

definition of complexes. Spatial integration is untangled usually by the use of 

protein localization annotations (GO terms for instance (Ashburner et al. 2000)). 

Similarly, time-dependent expression data are used to reveal the dynamic aspect of 

complex formation (Jensen et al. 2006). Finally, the structure of one protein cannot 

always accommodate simultaneously the structures of all the complexes in which it 

is involved, and this information can also be used to untangle the effective 

composition of protein complexes (Kim et al. 2006). 

 

The best way to work with a reliable set of interactions is to combine data from 

several experiments, even if this impacts the coverage (von Mering et al. 2002). 

More recent studies directly cross-validated their results with protein localization 

data and functional data (Gavin et al. 2006; Krogan et al. 2006) in order to filter 

dubious interactions and improve the detection. Still one must bear in mind that 

these methods almost always detect a mixture of multiple protein states. Moreover, 

the datasets normally used to filter for differences in space and time are themselves 

quite error-prone, and thus represent only a partial solution. 

 

4.1.3 General characteristics of biological networks 

When a set of protein interactions is known, they are usually represented in a graph 

in which the nodes represent proteins and the edges represent interactions. Many 

of the first analyses of these, and many other biological and real-world networks, 

revealed the recurrence of many network properties, the most common being 

‘small world’ and ‘scale-free’. 
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A ‘small world’ network (Watts 1999) is one in which most of the nodes are not 

direct neighbors and nevertheless remarkably few edges are needed to create a 

path from any node to any other node. The concept was introduced at the middle 

of the 20th century (Milgram 1967) in social networks where nodes and edges 

represented individuals and relationships between them. This concept has since 

been used to describe the internet, hence the word “hub” is used to define critical 

nodes that are involved in multiple interactions.  

 

In the graphs derived from protein interactions, most proteins are involved in few 

interactions and few proteins are involved in many. All studies agree on this 

property, but they sometimes disagree on what mathematical distribution best 

describes the graph. Distributions suggested to date include scale-free (Barabasi 

and Albert 1999; Yook et al. 2004), hierarchical (Ravasz et al. 2002), and 

geometric random (Przulj et al. 2004). The yeast two-hybrid protein-protein 

interaction networks from Ito (Ito et al. 2001) and Uetz (Uetz et al. 2000) seem to 

follow a scale-free topology, but the portion of the interactome covered by those 

experiments is insufficient to extrapolate the scale-free property to the whole 

interactome (Han et al. 2005; Pereira-Leal et al. 2005).  

 

The study of the interaction graph reveals the importance of certain nodes. ‘Hubs’ 

are particular proteins in the network that are involved in many more interactions 

than average. They tend to be long multi-domain proteins enriched in binding-

associated domains (Ekman et al. 2006). The removal of such a protein is critical to 

cell survival (Jeong et al. 2001). Vidal and co-workers sub-divided hubs into two 

overlapping classes: ‘party’ hubs that interact with their different partners 

simultaneously and ‘date’ hubs that bind their partner at different time points or 

locations (Han et al. 2004). The distinction makes some biological sense: party 

hubs are often central components of large complexes, making several 

simultaneous interactions, whereas date hubs often correspond to enzymes such as 

kinases that act on many different substrates, but never at the same time (Aloy and 
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Russell 2006; Kim et al. 2006) The distinction between ‘date’ hubs and ‘party’ hubs 

is debated (Batada et al. 2007). Still it illustrates the various means of action of 

proteins, from high-specialization to promiscuity. 

4.1.4 Mining interaction data to define protein 

complexes 

One might expect interaction discovery experiments to uncover complexes 

unambiguously, but the interaction networks normally reveal fuzzy balls. 

Therefore, several methods are used to search and extract complexes from such 

data. 

 

Complexes usually form dense regions in the network because proteins in direct 

contact or in the same complex are more prone to come together in experiments. 

In contrast, proteins are less likely to interact when they belong to different 

complexes. Methods from graph theory can directly be applied to search such 

dense regions that would correspond to a protein complex and are robust enough 

to be implemented successfully in this kind of noisy context (Bader and Hogue 

2003; Spirin and Mirny 2003; King et al. 2004; Arnau et al. 2005). Markov 

clustering is currently amongst the best of these methods (Brohee and van Helden 

2006).  

 

In order to improve the detection of protein complexes, most recent analysis used a 

two-step approach (Gavin et al. 2006; Krogan et al. 2006). Gavin et al. devised a 

socio affinity score to estimate the propensity of two proteins to interact. Proteins 

are clustered iteratively using this score and can contribute to protein complexes in 

three manners (Dezso et al. 2003): ‘Core’ proteins are proteins found in the same 

set of purifications and for this reason, are likely to belong to the same complex, 

whereas ‘attachments’ proteins are found only in a subset of purifications. Finally 

‘modules’ are groups of proteins shared by several complexes. This approach led to 
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the determination of 491 complexes. Krogran et al. estimated the confidence for 

each interaction by machine learning and then used a Markov clustering algorithm 

to delimit 547 complexes. Due to slight differences in the protocols, the two sets do 

not overlap and are complementary (Gagneur et al. 2006; Goll and Uetz 2006). 

The performance of such methods is usually assessed by comparing the complexes 

predicted to a set of manually curated complexes. The two methods recall around 

275 complexes defined in MIPS (Mewes et al. 2000). More than a mere data-

mining exercise, the problem is to capture the subtle variability in protein 

complexes and their various modes of organizations (Devos and Russell 2007).  

 

Deriving definitions of complex from interaction data is made difficult by the lack 

of large-scale error-free data and the great complexity of protein complex 

arrangements. However, with the better coverage achieved by recent studies, the 

definition of complexes become more accurate and precise.  

4.2. Prediction of protein structure 

The difficulties in determining protein structure experimentally long ago prompted 

attempts to predict protein structure from sequence information. This field has now 

matured to the point where many approaches can be applied more or less 

systematically to make useful predictions (Pieper et al. 2004). The best way to 

predict protein structure is to exploit the fact that proteins sharing similar sequences 

most often adopt a similar 3D structure. When the structure of a protein homolog 

(i.e. a protein that diverged from the same ancestor) is known, the structure of a 

protein can be predicted from the structure of the homolog, called template. The 

accuracy of these models depends on the degree of sequence similarity between 

the two proteins, and the quality of the alignment between them. The best 

predictions are obtained when the conformation of residues is directly deduced 

from the structure of the template using the alignment. Weak similarities between 

the template sequence and the model and unaligned residues make the predictions 

more error-prone. When two protein sequences share more than 30% sequence 
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identity, the prediction of the structure is accurate (the difference between the 

structure and the prediction is around 4Å Root Mean Square Deviation (RMSD)) 

(Sternberg et al. 1999), whereas the predictions using templates with less than 

about 20% identity are likely to contain many more errors. 

 

When no protein of known structure is homologous to the protein of interest, 

another method called fold recognition or threading can be used. It is based on the 

idea that the number of folds taken by protein structures is limited to several 

thousands (Chothia 1992) of which around 1100 are determined at the moment 

(Greene et al. 2007). When compared to the number of proteins of known structure 

(40000 in August 2007), it is clear that one fold must account for many hundreds or 

thousands of structures. Fold recognition exploits the idea that there is a very high 

chance that a certain protein adopts the fold of a protein of known structure. The 

protein polypeptide chain is computationally threaded into several possible folds 

and an energy function evaluates the “goodness of fit” (Jones et al. 2000; Zhang et 

al. 2005) i.e. the suitability of the fold to accommodate the protein residues. Recent 

improvements the fields of homology modeling and threading methods are limited 

and in both cases it is rare that the model predicted is closer to the real structure 

than the template (Tress et al. 2005). 

 

Both homology modeling and threading methods use known protein structures to 

predict the structure of new proteins. When none of these methods provide 

satisfying results (i.e. when no homolog is found or when no fold accommodates 

accurately the protein), other methods can be tried to predict the protein structure 

with information about a complete structure that can be used as reference. Rosetta 

(Rohl et al. 2004) is the most successful amongst such methods (Vincent et al. 

2005). It is based on the fact that short peptides are limited in the number of 

conformations they can take and that the same structure of small peptide fragments 

is used in several proteins. Thus, given a library of small peptide conformations, the 

Rosetta method explores combinations of fragments using a Monte-Carlo procedure 
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to search for compact and energy favorable conformations. In their current state, 

these methods are limited to small peptide fragments (Dill et al. 2007) and 

predictions are still often far from the right answer. 

4.3. Detection of domains  

4.3.1 Methods for the detection of protein domains 

Since domains are protein segments that have been conserved during evolution, 

they can often be detected and identified using protein sequence comparison and 

in fact, the first detections of protein domains were based on sequence consensus 

(Bork 1991). Direct alignment of two protein sequences is informative but rarely 

sufficient and it is always better to use multiple sequence alignment in the 

detection of common ancestry (e.g. (Altschul et al. 1997; Eddy 1998)). The most 

conserved residues are almost always the most informative during the alignment 

process. More refined methods are complemented by the use of secondary 

structure information to detect more remote similarities and achieve better 

alignments (Soding 2005). In the case of domain assignment, a protein is carefully 

aligned to all the known domains. If a successful alignment is found, a domain can 

be assigned to the protein. 

 

Protein structures, of course, allow for a much more rational way to deduce 

domains. There have been a number of automated approaches to assign domains 

from structure (e.g. DomainParser (Guo et al. 2003) and PDP (Alexandrov and 

Shindyalov 2003), reviewed in (Holland et al. 2006)). These mostly attempt to 

partition the structure into fragments that have the characteristics of domains in 

terms of compactness, length and radius of gyration. Efficient structure alignments 

methods on the other hand can be used to compare a structure to those of known 

domains (SSM (Krissinel and Henrick 2004) or fastSCOP (Tung and Yang 2007)), 

and the principle of domain recurrence has been systematically incorporated into 

many domain detection schemes (e.g. (Holm and Sander 1998)). A good structural 
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alignment indicates a new instance of the domain. However, since such methods 

only apply to known protein structures, new domains cannot be discovered, save 

for those compact regions that are distinct and do not resemble any known 

structure. 

4.3.2 Database of protein domains 

The information relative to protein domains is usually stored in repositories (Pfam 

(Sonnhammer et al. 1997), SMART (Schultz et al. 2000), ProDom (Corpet et al. 

1998), Conserved Domain Database (CDD) (Marchler-Bauer et al. 2005), Prosite 

(Mulder et al. 2003), InterPro (Apweiler et al. 2001)). Domains are manually 

annotated or retrieved from the literature and multiple sequence alignments are 

used to infer new domains. 

 

There are three main collections of domain structures: FSSP (Families of Structuraly 

Similar Protein (Holm and Sander 1994)), CATH (Class, Architecture, Topology and 

Homologous superfamily (Orengo et al. 1997)) and SCOP (Structural Classification 

Of Proteins (Murzin et al. 1995)). Hierarchies within all of these classifications 

reflect the different degrees of similarity between domain or protein structures. 

 

The SCOP classification is built manually with support from automated tools. At the 

fold level, domains have the same secondary structure arrangement with the same 

connections between secondary structure elements. Domains with the same 

superfamily, the next category, are thought to have a common ancestry despite 

little sequence identity is (usually below 30%). The evolutionary relationship is 

deduced by the presence of common structural or functional features unlikely to 

arise by convergence. At the family, domains share a clear evolutionary 

relationship usually with detectable sequence similarities. 

 

In CATH, structures are first divided into domains automatically or by experts in 

ambiguous cases. They are then classified in an hierarchy with 4 main categories. 
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The Class-level, which is the highest category, describes the secondary structure 

composition of the domains. The second category is the manually determined 

Architecture-level that relates the domain secondary structure to known 

architectures (e.g. beta-propeller). The third level, the Topology level, accounts for 

the connectivity between secondary structure elements. Finally domains with the 

same Homology assignment have been grouped because they are thought to have a 

common ancestor (as evaluated by a high sequence identity or a high structure 

comparison score). 

 

FSSP is a fully automated and discontinued database of protein folds based on a 

hierarchical clustering of structures superimposed using Dali (Holm and Sander 

1997). The main difference is that FSSP is based purely on automatic structural 

comparisons of domain structures when CATH and SCOP are annotated by experts. 

 

These databases of protein domains can be used as references to find domains in 

proteins that lack domain annotation. 

4.4. Prediction of the structure of a protein assembly 

Different experiments contribute to a better understanding of the composition of 

protein complexes and also reveal the interactions within them. This information 

can be used for the prediction of structural features of a protein complex. 

4.4.1 Predicting the structure of a protein-protein 

interaction 

4.4.1.1 Predicting sites of protein interaction 

In order to predict the structure of a protein interaction, it is sensible to locate the 

parts of the protein that mediate it. Several methods have been developed to do 

this, which typically exploit the specific properties of known interfaces. 
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Protein binding sites usually involve large surface areas (several hundreds of square 

angstrom) which are either contiguous or which span several patches of residues 

(Janin and Chothia 1990). Although some protein binding sites are flat, most of the 

interactions between proteins occur either in large cavities on the protein surface 

(Hubbard et al. 1994) or at protruding loops (Jones and Thornton 1996). To favor 

space and charge complementarities, such interfaces tend to have on average more 

hydrophobic groups exposed than the rest of the protein surface (Ringe 1995). 

Some in silico methods search locations on the surface of a protein structure with 

interface-like topological features (Goodford 1985; Miranker and Karplus 1991) 

while others probe for positions on the surface predisposed to the binding of 

protein (Silberstein et al. 2003). However structural and chemical considerations 

are often not enough to pinpoint the site of interaction. 

 

As one would expect, the residues of a protein involved in binding are more 

conserved (del Sol Mesa et al. 2003). As a consequence, when an interaction 

involving homologous proteins is known, the binding sites can be transferred since 

it is likely to occupy the same position in the homologs (Bork et al. 1998). The 

evolutionary trace method looks for similarities that are conserved within a family 

but which differ from other families in the same superfamily. This can help to 

determine interaction-specific residues that are characteristic of a family (Aloy et al. 

2001; Landgraf et al. 2001; del Sol Mesa et al. 2003). Moreover, it is possible to 

display conservation data directly on the structure of a protein and thus locate the 

binding site on the molecule and assess visually the quality of the interface 

between two structures (Consurf (Landau et al. 2005), ProFunc (Laskowski et al. 

2005), Evolutionary Trace Viewer (Morgan et al. 2006)).  

 

Hot spots are particular residues on a surface that are critical to an interaction. 

They are alternatively defined as surface residues in an unfavorable environment 

(Elcock 2001), high-energy surface residues (Clackson and Wells 1995; Bogan and 

Thorn 1998) or residues that disrupt the binding of the protein when mutated. Hot 
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spots are enriched in Tryptophane, Tyrosine and Arginine and usually surrounded 

by a hydrophobic ring (Bogan and Thorn 1998). Energy calculations are used to 

determine the position of hot-spot residues, often given the structure of the protein-

protein interactions. The problem is in estimating the importance of a residue on 

the stability of the interaction. The stabilizing effect is evaluated by the energy of 

side-chain/side-chain interactions (Li et al. 2006) or the disruption induced by 

substituting the residue for an Alanine (Verkhivker et al. 2002; Kortemme et al. 

2004), alternatively any other residue (Guerois et al. 2002) or the evaluation of 

shape specificity and biochemical contacts (Darnell et al. 2007)). Another 

approach consists in searching the protein surfaces for spots where binding 

affinities are the highest (Gao et al. 2004). 

4.4.1.2 Prediction of the structure of protein-protein 

interactions 

The prediction of the structure of a complete protein assembly usually begins with 

the prediction of the interaction between two proteins. In the two methods 

presented here, two structures are given and means to put them together are 

sought. 

 

Docking is a procedure that searches for a conformation in which the arrangement 

of two structures optimizes some criteria. To be successful, the search has to be as 

exhaustive as possible and the criteria have to be accurate. Every configuration 

cannot be studied due to the expensive computation it would require. Various 

criteria are used to evaluate the binding (e.g. shape complementarity, free energy, 

interface assessment). The backbone of the structures is usually not rearranged (in 

rigid body docking), but in cases where structures are modified upon interaction, 

computer-expensive flexible docking is applied. The knowledge of the possible 

location of the interface (called ‘modes’) on each of the two structures is used to 

limit the search space and contributes to the achievement of better predictions 

(Korkin et al. 2006).  
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The applications of docking are unlimited and it is employed to predict the 

structure of the interaction between any pair of structures. However it cannot 

discriminate at the moment real interacting proteins from artifacts, structures of 

interactions that are not real. The performance of docking methods is steadily 

increasing as reported during the CAPRI meeting (Critical Assessment of Predicted 

Interactions (Mendez et al. 2005)). For the time being, it is most successfully 

applied to binary interactions between small proteins with known monomer 

structures, proteins, with high affinity one for each other or with no conformational 

change upon binding (Gray 2006). It is also not currently possible to use docking to 

say whether proteins interact or not. Instead, it is normally applied in situations 

where an interaction is known, and a conformation is sought. 

 

When domains are similar (in sequence or structure), they tend to interact the same 

way (Aloy et al. 2003). It is thus feasible to predict the arrangement of two domains 

when they are homologous to two interacting domains for which the structure of 

the interaction has been solved. Although the method is limited by the number of 

interaction templates currently available, the quality of such a prediction is high 

when performed in the right conditions. 

 

Docking can be generally applied to all structures and is particularly efficient with 

small tightly-bound structures. The number of templates available limits homology-

based modeling, but the quality of predictions can be accurately evaluated by 

homology between the structures and the templates. A hybrid approach has been 

developed where docking is constrained by the knowledge of binding regions 

derived by homology (Korkin et al. 2006). 
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4.4.1.3 The variety of protein-protein interaction 

structures 

In order to estimate the variety of protein-protein interaction structures, a measure 

that captures the structural differences between two protein-protein interactions 

was derived previously (Aloy et al. 2003) from which the relation between protein 

sequence and interaction similarity could be deduced. As this measure is used 

extensively in this thesis, it is discussed here in further details. 

 

iRMSD (Aloy et al. 2003) is a measure of the structural similarity between two 

protein-protein interactions. The two interacting domains must share enough 

structural resemblance that it is possible to superpose the two protein structures 

using the trace of their backbone (e.g. with STAMP (Russell and Barton 1992) or 

DALI (Holm and Sander 1993)). Assume that we compare the interaction A1-B1 

and the interaction A2-B2 with A1 and A2 being two instances of the 

protein/domain type A and B1 and B2 being two instances of protein/domain type 

B. Each protein/domain is represented by a set of 7 coordinates: the center of mass 

and one point +/- 5 angstroms along the X, Y, and Z axis. A2-B2 is transformed in 

A2’-B2’ by superposing A2 on A1 and in A2’’-B2’’ by superposing B2 on B1. 

iRMSD is the root-mean-square distance between the coordinate sets of A2’-B2’ 

and A2’’-B2’’ (Figure 3). It accounts for both translational and rotational differences 

between the interactions. Below 10, the structural similarity of the interactions is 

good; above 10, the similarity is difficult to see by eye. Above a threshold of 20-

30% sequence identity, domains are likely to interact in the same way, whereas 

below this threshold, they are more likely to interact differently. Finally, if domains 

belong to the same family, whatever the sequence identity, the structures of the 

interactions are often similar. Obviously, there are exceptions, whereby highly 

similar sequence interact differently (e.g. different antibodies to the same lysozyme) 

and those where seemingly unrelated protein pairs sharing only a common fold 

show a similar interacting structure. Many of the former exceptions, such as lectins 
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(Prabu et al. 1999), bacterial chemotaxis-related proteins (Park et al. 2004) and 

domains from different families (Kim and Ison 2005) have been highlighted in the 

literature. 

 

 

 

Figure 3: Interaction RMSD (from (Aloy et al. 2003)) 
 

As more and more proteins are discovered, the number of ways in which proteins 

could interact could in principle become enormous. However, in a study similar to 
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that of Chothia who estimated the number of possible protein folds (Chothia 1992), 

a study of 7 datasets across 4 species showed that the number of possible structures 

of protein-protein interactions would likely be around 10000 (Aloy and Russell 

2004). Thus, the repertoire of protein folds and the repertoire of protein-protein 

interaction structures are finite and it is meaningful to list them. However, 

according to the same study, two decades will have to pass before we get structural 

knowledge of all the interactions. A systematic comparison of all protein-protein 

interaction structures revealed that there are currently 5677 distinct interfaces 

(Jefferson et al. 2007).  

4.4.2 Prediction of the structure of protein complexes 

When no biophysical methods apply, all the information available on a protein 

complex can help for the prediction of its structure. At the moment, only two such 

strategies have been developed. 

4.4.2.1 Serial docking 

Inbar et al. (Inbar et al. 2005) have designed the first method to predict the structure 

of a protein assembly using only the structures of its constituents. They show that 

the problem is NP-hard, a class of unsolved mathematical problems, and cannot be 

solved without some heuristic. First, they try to dock all the structures of all 

possible pairs of components. They then iteratively assemble the structures of the 

binary interactions to generate the structure of the most complete and accurate 

models. The solutions are then re-ranked to estimate the geometrical and 

biochemical fit of each interaction in the model. They developed two methods 

based on the same principles: one for combining intra-chain structures, the other 

for inter-chain structures. Their benchmark set consists of 5 structures of protein 

complexes selected from the Protein Data Bank that they separate into subunits 

(from three to ten) before attempting to predict the structure of the assembly. 

Moreover they tried the same exercise with structures of homologous subunits. 
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They could predict near-native structures (RMSD<5) and best predictions were 

amongst the 10 first structures predicted in all the cases.  

 

They show that their method that combines several structures at once outperforms 

methods that combine domains in a pairwise manner. Thus, Inbar et al. 

demonstrate the validity of their new bottom-up approach for the prediction of 

structures of protein complexes. 

4.4.2.2 Homology based prediction 

In another attempt to predict the structure of protein complexes, Aloy et al. (Aloy et 

al. 2004) combined interaction templates inferred by homology to predict the 

structure of new interactions. They assessed the quality of the structure of the 

interactions predicted by considering sequence similarity between the proteins of 

interest and the templates, the quality of the interface (determined by InterPreTS) 

and conservation of functional classes. They could arrange most of the domains for 

the exosome (Aloy et al. 2002), the RNA polymerase II with two interactors TFG2 

and SPT5, the Ski complex, the CCT chaperonin in complex with a phosducin 

(PLP2) and G protein {gamma} homolog (VID27) and the POP complex. 

 

In the case of the exosome, the overall structure was predicted correctly by 

homology but the arrangement of the proteins within the exosome ring was 

incorrect. The two proteins that could be bound on RNA polymerase II could not 

be seen in the available EM map and thus, no assessment of the prediction was 

possible. The overall shape of CCT could be predicted and was confirmed by EM. 

Afterwards, the structure of the two proteins was added to the CCT using the EM 

grid without any homology inference. Finally despite some minor clashes, two 

remote templates could be used to accommodate the 3 proteins from the Ski 

complex. 
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5.  The problem 

Biophysical methods are the most reliable means to achieve detailed structural 

determination of protein assemblies. However the larger the protein assembly, the 

harder the resolution of a high-resolution structure and alternatives have to be used 

to compensate for the limited application of purely biophysical methods. Hybrid 

approaches where high-resolution sub-complexes are fitted in low-resolution 

templates for larger complexes are valuable and when the composition of the 

complex is known and the structure of its parts known or predicted, iteration of 

docking can be used to predict the structure of the complete assembly. However, 

docking approaches do not exploit the potential structural similarity of interactions 

between homologous proteins. 

 

Here we use homology modeling, a fast and reliable method for the prediction of 

the structure of protein interactions. The method automatically combines 

homology-predicted interaction structures to assemble the structure of complexes 

as inspired by the pioneering work of Aloy at al (Aloy et al. 2004). 

 

The procedure is benchmarked using elementary arrangements of three domains 

and few complete structures that are predicted from pieces. Potential applications 

of the method are sought amongst complexes. We show how it fares on two large 

assemblies and propose three possible candidates for one of them. 
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Material and Methods 

1.  Overview of the method 

The procedure takes as input a set of sequences from a complex that is the target 

for prediction. A series of sequence comparisons using HHsearch (Soding 2005) 

identifies all possible matches to known structures as determined by biophysical 

methods. These matches are then parsed for those that permit two or more parts of 

the target proteins to be modeled in an interaction (interaction templates). 

Interaction templates are collected and stored in a database. Some redundancy is 

removed from the set of templates by comparing the interactions using an 

interaction-specific distance (iRMSD) and keeping the distinct ones within each 

structure.  

 



Material and Methods 

 35 

 

Figure 4: Global description of the procedure 
 

The templates are used to predict the orientation of putatively interacting protein 

domains. Then, orientations are represented as a graph, and a graph searching 

algorithm is used to find combinations of interaction templates that can 

accommodate as many domains as possible in a single structure (Figure 4). Each 

combination represents a candidate structure for the assembly that is evaluated by 

three alternative criteria: (i) the sequence or (ii) structural similarity between the 

domains assembled and the domains from the templates or (iii) by evaluating the 

interface of each interaction predicted. The performance of the procedure is 

demonstrated on several benchmark sets derived from previously solved complex 

structures.  
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2.  Collecting interaction templates 

Interaction templates from solved structures are used to predict possible 

orientations of domain pairs from the target complex. First all possible interaction 

templates are collected from solved protein structures and organized in a database. 

Then within each structure, redundant interactions are filtered using an interaction-

specific distance, the iRMSD. 

 

The filtering step is important, as structures sometimes contain many copies of the 

same interaction. For instance, viral capsids form football-like structures made of 

many domains, and like footballs subunits are combined in the same way to form 

the final structures. Thus, despite numerous interactions in the structures, most are 

redundant and only the few non-redundant interaction templates are kept by this 

procedure.  

 

2.1. Comparison of interaction templates using iRMSD 

iRMSD is a measure for comparing the structures of two interactions. It is used to 

detect the similarity of two interaction templates so that only single representatives 

are kept. The procedure assumes that each interaction in the pair being compared 

consists of similar domains or proteins in contact. That is, to compare the 

interaction A1-B1 and A2-B2 it must be the case that one can structurally 

equivalence domains/proteins A1 & A2, and B1 & B2. 

 

Here a matrix interpretation of the iRMSD computation is presented. A 

transformation in space that conserves distances and oriented angles, as is the case 

when finding the optimal transformation from one structure to another, is defined 

by a rotation and a translation. The inverse transformation is:  

 

! 

(ri,ti) = (r
"1
,"r

"1
.t)  
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Then, iRMSD is computed by the following procedure: 

 

• Call (rA, tA) the rotation and translation from domain A in structure 1 to domain 

A in structure 2. (rB, tB) are named analogously.  

 

• Compute a set of 7 coordinates for each of domain A and B in structure 1 as 

explained in Aloy et al. (Aloy et al. 2003) and collect them in 3x7 matrices 

called modelA and modelB 

 

• Compute iRMSD directly by applying the following formula that is a matrix 

form of the procedure described originally by Aloy et al: 

 

! 

(rAi,tAi) = (rA
"1
,"rA

"1
.tA)  

! 

(rBi,tBi) = (rB
"1
,"rB

"1
.tB)  

! 

(r1,t1) = (rA.rBi,rA.tBi+tA) 

! 

(r2,t2) = (rB.rAi,rB.tAi+tB) 

 

! 

iRMSD(A1" B1,A2 " B2)= max(
RMSD(r1.modelA+t1,modelA)

RMSD(r2.modelB+t2,modelB)
)  

 

Here the set of 7 coordinates of the two interacting domains and the two 

superpositions of the domains from one interaction to the domains from the other 

are sufficient to compute iRMSD. This matrix formulation of iRMSD is the one used 

throughout this work, in particular when comparing interaction templates to filter 

the database. 

2.2. Inventory and selection of interaction templates 

Here is the procedure to go over each protein structure, extract interactions 

between domains and select those that are most distinct: 

 

• Assign domain types to each structure from the Protein Data Bank (PDB) using a 
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manually curated database of protein domains (SCOP preview version 1.71 - 

with curated domain assignments for structures released before January 2005 

and automatic assignments for structures released between January 2005 and 

April 2006).  

• In each structure, search and list interacting domains, or those that have more 

than 5 residues within 10Å. 

• Keep only one template amongst redundant interactions of the same type 

(iRMSD<1Å) within one structure 

 

The structures that are not classified in the most recent version of the database of 

protein domains are not used. In addition, domain types that do not belong to real 

classes of domains are discarded (e.g. small proteins, peptides, low resolution 

structures, designed proteins). We treat intramolecular (within one protein chain) 

and intermolecular (between protein chains) domain interactions the same way in 

the procedure. 

 

In general, we limit the number of interaction templates by removing redundant 

interactions in each protein structure: within one structure we compare all the 

interactions between proteins of the same family type by computing the iRMSD 

score. When the iRMSD score is below 1Å, the two interactions are similar and 

only one is kept in the database. 

2.3. Database schema 

To retrieve the information related to interaction templates, all the data are 

collected and stored in a MySQL database represented in the following schema 

(Figure 5). 
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Figure 5: Description of the database 
 

Domain definitions are updated regularly according to the SCOP version (SCOP 

version 1.71 was released in October 2006, the previous version, SCOP version 

1.69, was released in 2005) and with each update, new structures are annotated 

and some annotations from the previous version are changed, created or removed. 

As such, this database is robust to any modifications of the domain definitions 

(SCOP and Domain tables) and preserves the information already computed about 

domain interactions (Interaction table). Data about superpositions of domains and 

comparison of protein interactions are stored as well (superposition data are stored 
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in the Transfo_Done, Transfo_Score and Transfo_Score tables and the comparison 

of protein interactions is stored in the Interaction_Compare table). 

 

The current version of the database (based on SCOP pre-release from 2006) 

contains information about 99779 domains, amongst which 95737 interacting pairs 

are found. There are 3705 different types of domain family to domain family 

interaction. Some types of interactions are not well represented whereas some 

others are observed frequently. For instance, the interaction between the alpha 

chain (b.34.4.3) and the catalytic beta chain (g.36.1.1) of a ferrodoxin thioredoxin 

reductase is only seen in one structure (PDB code: 1dj7)), whereas the interaction 

between an antibody variable domain-like (b.1.1.1) and an antibody constant 

domain-like (b.1.1.2) occurs 1556 times.  

 

After removing repetitions of the same orientation of interacting domains within 

each structure, 65561 interactions remained. Again, some interaction types are 

represented many times, whereas some others are unique. Antibody-related 

domains are seen very often in comparison to other interactions. Consequently, to 

orient some pairs of domains, few interaction templates, if any, are available, while 

for other pairs there are many hundreds. The number of templates influences the 

number of predictions possible for the orientation of a given pair of domains and 

does not relate to the quality of the prediction: a good template may not be found 

amongst many interaction templates whereas sometimes the correct orientation is 

the only possible one. 

2.4. Maintenance 

In order to keep the database updated with data from new structures, the following 

steps are followed: 

 

-Update the tables containing the definitions of domain ranges (Scop and 

Domain tables) 
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- Search domains that have more than 5 residues within 10Å 

- Compare pairwise interactions of the same type 

- Update the list of interaction templates with non-redundant interactions in the 

Interaction table 

3.  Getting annotated structures for each domain 

The composition of protein complexes can be determined by experiments 

independently of the structures of proteins and subunits contained in it. In our 

attempt to predict the structure of protein assemblies from individual proteins, 

models are first determined for each component that lacks a structure and domain 

types are assigned to components whose structure is known. 

3.1. From sequence to structural models 

In order to get structures for all the domains whose structure has not been solved 

the following procedure is applied: 

 

- Search for homologues amongst proteins of known structure and/or protein 

domains of known structure using a fine-grained profile hidden Markov Model 

procedure (Soding 2005) 

- Upon success, clean and format the alignment to use MODELLER (Sali and 

Blundell 1993) (as predicting the structure of unaligned residues is prone to 

error, stretches of residues where more than 5 residues from the sequence of the 

protein of unknown structure are not aligned are removed from the alignment 

and residues are renumbered so that they match in the alignment and in the 

structure)  

- Run MODELLER to generate an interaction model 

 

When the alignment between the protein and the potential template is poor (E-

value >0.1), the chance of achieving a good model prediction for the whole 

structure or part of the structure is low and such models are ignored. 
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We do not expect the accuracy of the models to impact greatly on the accuracy of 

the procedure, since none of the methods currently used to assess structure quality 

are drastically affected by typical limitations of homology modeling, such as loops 

or side-chain orientations. In the future, however, this might become a more 

critical part of the procedure. 

3.2. Assigning domains to a protein 

When the domain composition of a protein is not known, several options are 

considered to locate domains on the protein structure. 

3.2.1 Sequence-based 

We attempt to align the protein sequences to domain sequences of domains of 

known structure, as done when predicting homology models. With a good match 

(E-value<0.001), we can confidently assign a domain to a portion of the protein 

encompassed in the alignment. Ambiguous cases, where part of a protein matches 

several distinct domain types, are rare. 

3.2.2 Structure-based 

Assigning protein domains to a structure can be done using the SSM server 

(Secondary Structure Matching) (Krissinel and Henrick 2004). It superposes a 

protein structure to any set of protein structures, in particular, structures of protein 

domains. If part of the structure of the protein superposes well to the structure of a 

known protein domain, that part is assumed to be another instance of the domain. 

 

In favorable cases, the structure is known to be homologous to a protein whose 

structure is solved and whose domain composition is already determined. The 

assignment of protein domains is then done by superposing the two structures and 

assigning domains by eye. 
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4.  Program 

4.1. The basic search procedure 

Given a set of components forming a complex (e.g. as determined by an 

experimental procedure such as a TAP purification), we obtain all known or 

predicted structures for all domains in each component as mentioned above. Next 

suitable templates are searched in the database of interactions and eventually used 

to predict possible orientations of domain pairs. This is achieved by superposing 

structures for each pair of separate domains from the complex onto those from 

each possible template. Finally, those orientations are combined using a graph 

representation of the problem in an attempt to find the best spatial arrangement of 

all protein domains. 

4.1.1 A reference structure is needed for each domain 

Structure prediction is error-prone, especially when the protein shares little 

homology with a protein of known structure. To account for this, the program uses 

a reliable SCOP representative structure for each domain when determining 

conformation is critical.  

 

For instance, when comparing the domain structure to that of a potential template, 

the two structures are superimposed. When using a model for the protein structure, 

the superposition score drops because the model is imperfectly predicted and 

structural changes penalize the superposition score. In such a situation, the SCOP 

referent is used instead of the model as it represents a real structure that is most 

similar to the structure of the protein. 

4.1.2 Searching for interaction templates 

Possible interaction templates to accommodate each pair of domains are searched 

in the database or directly used when provided. Domains in the SCOP 

classification are assigned a family, a superfamily and a fold. Each level 
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corresponds to a degree of structural similarity. When searching for interaction 

template candidates, candidates amongst interactions of domains with very similar 

structures (structures with the same family) are searched through first, if not 

templates are found, the search is extended to structures of interactions with more 

remote features (structures with the same superfamily). 

 

Different scoring schemas can be applied to evaluate the fit between two domains 

and an interaction template. Here three scoring schemas were considered. The 

default schema accounts for the accuracy of the superposition of each putative 

interacting domain on its counterpart in the interaction template. In the STAMP 

package (Russell and Barton 1992), the sc score evaluates the quality of fit between 

two structures. This score ranges from 0 to 10. Above 3, structural similarities 

between two structures are strong enough to achieve a good fit. Below 3, limited 

structural similarity is found and the superposition is dubious. When the two 

domains are superposed on corresponding domains in the interaction template, the 

worst sc score is kept to score the interaction template. 

 

The similarity in sequence between the proteins in the query and the proteins from 

the interaction template was also used. In this case, the template is scored by using 

the worst sequence identity obtained when aligning the sequences of the two 

domains on the corresponding domains from the interaction template. 

 

Finally, the likelihood, or goodness of fit, for the new interface built when using 

each template can be scored. Given the structure of an interaction between two 

domains and two sequence alignments between the sequences of the domains and 

the query domain sequences, InterPreTS (Aloy & Russell, 2002) uses pair potentials 

to assess the possibility that the structure accommodates also the two proteins from 

the query. The evaluation is made by comparing the affinity of the domains in the 

original structure to the affinity of the domains when the query proteins are 

threaded onto the template structure.  
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Whereas the first two scores (sc and sequence identity) evaluate the resemblance 

between the two query domains and the two domains from the interaction 

template, in terms of structure and sequence respectively, and disregard the 

resulting interaction, the InterPreTS score evaluates the quality of the interface 

generated when an interaction template is used to model the orientation of the two 

query domains. These three scoring schemas are evaluated using arrangements of 

three domains. 

 

While for certain pairs of domains, interaction templates are abundant, in some 

other cases there are few. In order to limit and keep control of the number of 

combinations generated, the number of interaction templates used for each pair of 

domains is limited (with a user-defined parameter, default value 3).  

 

Some interaction templates are redundant (in the database, interaction templates 

are clustered within a structure and not across structures) and consequently less 

informative. In order to select only relevant interaction templates, they are ordered 

according to the score chosen, from best to worst, then each interaction template is 

compared, using iRMSD, to candidates already selected and removed from the set 

if the it is not sufficiently distinct from those already selected. Thus, a limited best-

scoring set of interaction templates is obtained for each pair of interacting domains. 

 

When a potential orientation for a pair of domains has been determined by other 

means, for example by successful application of docking, it can be added to the set 

of interaction template candidates. Any structure of interaction can be used to 

complement the data from the interaction database. Finally, when the orientation 

between two domains is known, no search is made and the orientation is used 

directly. 

 

Overall, interaction templates are searched as follow: 
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Iteration 

For each pair of domains: 

- Use the known orientation, if any: 

 

     OR 

 

- Search potential interaction template candidates in the database or in user-

suggested structures 

- Score each interaction template using superposition score, sequence 

identity, and InterPreTS 

- Sort interaction templates by means of score 

- Keep the x best-scoring distinct interaction templates (the difference 

between interaction templates being estimated by iRMSD) 

 

4.1.3 Modeling the problem as a graph 

Once all potential interaction templates are collected, the problem is modeled as a 

graph in which nodes represent domains and edges represent interaction templates. 

Edges are undirected and an edge weight is the score of the corresponding 

interaction template. Note that not all pairs of nodes are connected by an edge in 

the graph as there may be no suitable interaction template candidate for a pair of 

domains. On the contrary, some pairs of vertices may be connected by many 

edges, as when there are several possible orientations for a pair of domains. 

 

In order to search combinations of interaction templates that can be used to 

accommodate the domains, all the spanning trees of the graph are explored. 

Spanning trees are minimum sets of edges that connect all vertices. In this case, 

they correspond to minimum sets of orientations that can be used to model the 

structure of the assembly. 
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Although we translate the problem into a graph, we record the edges in the graph 

that use the same interaction templates and the edges in the graph taken from the 

same structure. This information will be used when searching arrangements with 

specific features. 

4.1.4 Solving the spanning tree problem 

4.1.4.1 Feasibility 

We determine first if it is possible to find a set of edges that connects all vertices of 

the graph. If not, either only a single subset of vertices can be connected or several 

subsets of vertices are connected independently. In the former case, we search 

spanning trees for the set of vertices that can be connected, while vertices that 

cannot be connected are discarded. In the latter case, the program indicates to the 

user the different subsets of vertices that can be formed and it proceeds with the 

search for spanning trees in the largest subset. If the largest subset is not the one of 

interest to the user, the procedure can be run again with domains of interest. 

Finally, the procedure stops when no possible connections are available. 

4.1.4.2 Estimating the number of solutions 

Here we address the problem of the number of possible spanning trees generated 

for a given problem. A precise calculation is difficult since many spanning trees 

correspond to bad models that cannot be detected by considering the graph alone. 

Thus, we evaluate the maximum number of spanning trees found in a given graph. 

 

The real number of possible spanning trees for a graph can be computed by 

iterations of a deletion-contraction step where, given an edge e, two simpler graphs 

are produced: one where the edge e is removed, the other where the vertices 

bound by the edge e are merged. The procedure is time-consuming: it generates 
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and counts all the spanning trees in the graph. Thus, the method is inappropriate 

for estimating the number of spanning trees. 

 

We assume that there are n domains to orient and that whenever it is possible to 

model an interaction between two pairs of domains, there are systematically k 

interaction templates available. Thus, the corresponding graph is made of n vertices 

and there are k edges between each pair of vertices which there are templates for. 

 

 

Figure 6: Three types of graph 
For an acyclic graph, the number of spanning-tree is 1; for a complete graph, the 
number of spanning-tree is given by Cayley’s formula; for any graph, the number of 
spanning-tree is attained using the Kirchhoff’s theorem 

 

If the graph contains no cycle of any kind (Figure 6 top), the number of spanning 

trees can be computed directly: t(G)=kn-1 While for a complete graph (Figure 6 

middle) where the n domains are all directly connected and spanning trees most 

numerous (for a graph containing n nodes), the number of spanning tree can be 

estimated by adapting the Cayley’s formula: t(G)=kn-1.nn-2 
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When the graph is not acyclic or complete (Figure 6 bottom), the number of 

spanning trees is constrained between those two values. Let G’ be the graph with 

the same vertices as G and one edge between two vertices, if they are connected in 

G. The number of spanning trees in G’ is given by the Kirchhoff’s theorem: 

 

Let A be the admittance matrix of graph G’, and v1, …. vl be the non-null 

eigenvalues of A, then: t(G’)=(v1.v2. … vl)/n  

 

Finally, t(G)= kn-1.t(G’) 

 

In this approach, computing the number of spanning trees of the graph amounts to 

computing eigenvalues in a n by n symmetrical matrix.  

 

The three estimations of the number of possible arrangements increase at least 

exponentially with the number of vertices. In fact, Inbar et al. demonstrated that 

this problem is NP-hard (Inbar et al. 2005) and developed a heuristic to generate 

solutions to the problem.  

 

Returning to the problem of complex assembly predictions, this complexity means 

that the number of possible arrangements of domains increases at least 

exponentially with the number of domains and that a good trade-off must be found 

between the number of domains in the assembly and the number of possible 

interaction templates allowed. 

4.1.4.3 Algorithm 

To search for spanning trees in the graph, an adaptation of Kruskal's algorithm is 

used. The main difference is that the original algorithm searches the minimum 

spanning tree of a given graph, while this adaptation searches all possible spanning 

trees and builds them with the best-scoring set of edges first (Figure 7).  
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Initialization 

- Create a forest F (a set of trees) where each vertex is in a separate tree 

- Order edges by score from greatest to least and list them in S 

 

Iteration 

If S is empty: (in the case where the set of edges is not explored further) 

- Roll back to the previous state of the set of edges and forest, if any, else 

end the search procedure 

- Remove from S the first available edge with maximum score 

- Continue the search 

Else:  

- Pick the edge with maximum score from S 

- If the edge connects two distinct trees, remove the two trees and add to the 

forest the tree resulting from the combination of the two trees 

- If not, discard the edge from S  

 

This procedure enables the determination of all possible spanning trees in the 

graph in an order where spanning trees built with the highest-scoring edges are 

retrieved first. Moreover, preliminary constructions can be controlled at any step, 

meaning that the study of the set of edges can be continued or aborted if necessary. 

Here, the set of edges is translated into a model that is tested and, depending of the 

validity of the construction, the set of edges is explored further. 
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Figure 7: Spanning-tree search procedure 

4.1.5 Converting sets of edges into transformations 

To translate a set of edges into a spanning tree, the following steps are taken: 

 

Initialization 

- Each domain from the query is assigned a transformation that tracks the 

transformations undergone by the domain whenever an interaction template 

is used. Each transformation is initialized with the identity transformation 

(i.e. 3x3 identity matrix for the rotation, 3x1 null matrix for the translation).  

- Each domain is assigned an island, an island being a set of domains 

oriented in the same coordinate system. All domains start in separate 

islands. 
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Iteration 

For each edge in the set: 

- Identify the two domains oriented by the transformation 

- Apply the transformation represented by the edge to all domains that are in 

the same island as the domain being oriented by the transformation 

- Update islands for the domains that were transformed 

 

Ending 

The procedure ends when there are no more edges in the list. Each domain 

is assigned a transformation to place it into its final orientation and domains 

oriented in the same coordinate system are listed. 

 

Upon completion of the procedure, there is one island left only when there were 

enough edges to orient all the domains (i.e. ndomain-1 edges). When there are several 

islands, then it is not possible to group all the domain structures in one single 

structure and each island corresponds to a subset of coherently oriented domains. 

4.1.6 Evaluating the predictions 

When we search for spanning trees, the first models predicted are the models built 

using the best scoring interaction templates. As a consequence, the first model is 

expected to be the most accurate. 

 

It is possible that some interaction templates in the graph mutually exclude each 

other. For instance, given a domain A and two domains B’ and B’’, it is not possible 

to use the same interaction template to model A-B’ and A-B’’ as it would result in 

B’ and B’’ occupying the very same place. So, before proceeding to any test 

involving the structure of the prediction, the set of edges is checked for validity. 

 

To test the models quickly before proceeding to their combinations, a simple 

representation of the structure is obtained as follows: each domain is abstracted as 
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a sphere centered on the center of mass of the domain with a radius that is the 

radius of gyration of the domain. We apply the transformations to the center of 

mass of each domain and check that the distance between two centers of mass is 

higher than 0.2 times the sum of the radii of gyration of the two domains 

considered. This criterion was determined by studying all the interactions 

contained in our dataset: 99% of the interactions obeyed this simple rule. With this 

procedure, we detect, before construction, cases where domains should overlap 

each other. 

 

Upon success of the quick validation procedure, the transformations computed are 

applied to the domains in order to build the prediction. It is possible that several 

separate structures are created due to the fact that the set of edges may not connect 

all the domains together and, therefore, belong to separate islands. The procedure 

checks that all the domains in each island of the prediction are interconnected and 

that there is no obvious close contact (or bump) between the domains. Optionally, 

it computes an InterPreTS score for all the interactions in the structure. If the 

structure is valid, the set of edges is further explored; if not, it is skipped and the 

search is continued with the next set of edges. 

 

The validation process and its influence on the spanning tree search are 

summarized as follows:  

 

- Obtain a set of edges from the spanning tree search procedure 

- Check that edges used are compatible 

- Check that the spherical abstraction of the structure is valid 

- Use the set of edges to assemble the structure 

- Check that the structure is valid 

- Report to the spanning tree search procedure to continue or skip the study 

of the set of edges 
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4.2. Making the best use of prior information 

4.2.1 Information about direct contacts 

As mentioned previously, various experimental techniques can be used for the 

determination of direct interactions between proteins (the yeast two-hybrid system, 

FRET, etc.). Such information can be used to guide the search procedure and limit 

the combinations explored to those that are the most relevant. More generally, the 

program can account for any prior information related to the organization of the 

complex as it restricts the search space to the most accurate predictions. 

 

If two proteins are known to interact directly, the user has two options to constrain 

the program. In the first, interaction templates that bind the two domains are 

favored (the score is scaled-up), the program runs normally, predicts all the 

possible structures that accommodate the set of proteins and checks after each 

prediction if the structure generated satisfies the constraints. If not, the arrangement 

is not further explored. Obviously, such constraints can only be checked after the 

two proteins known to interact are oriented in the same coordinate system (i.e. they 

have to belong to the same island). In the second setup, the user forces the program 

to bind the two domains directly from the search procedure, i.e. all predictions will 

be made with an interaction template to accommodate the two domains. This 

constraint of being much more stringent and restrictive increases the speed of the 

search, as the variety of combinations explored is reduced. The direct connections 

specified by the user are also checked in the predictions, as in the first procedure. 

 

Sometimes, all the constraints cannot be satisfied at once. For instance, if three 

domains form a ring 1-2-3-1 and the user forces the program to use interaction 

templates to connect directly 1-2, 2-3 and 3-1, the graph search procedure will not 

be able to satisfy the three constraints at once (as two interaction templates are 

sufficient for the orientation of three domains, three interaction templates will never 

be used at once in this case). Thus, a routine breaks down user-defined constraints 
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into attainable constraints. In the example, because of the constraints, 1, 2 and 3 

are directly bound. Whenever a set of edges from the graph will somehow arrange 

1, 2 and 3, the program checks that two (3 (i.e. the number of nodes) – 1) 

constraints are satisfied ensuring that the constraints are as satisfied as possible. 

4.3. Looking for specific features 

4.3.1 Structure largely similar to another structure 

In a situation where there is a remarkable similarity between the set of domains 

from the query and the domains in a solved structure, the program finds the 

structure that is most similar to the query and maps directly the domains from the 

query to their putative corresponding domains in the solved structure. This is done 

as follows: 

 

- Describe each structure from the Protein Data Bank as a collection of 

domains 

- Search amongst structures those that contains more than three domains of 

the same type as the domains from the query 

- Map domains from the query onto domains from the candidate structure 

- When several domains have the same assignment, report them as being 

ambiguous 

- Compute sequence identity between each domain from the query and the 

domain it is mapped to from the structure 

- Keep the mapping that involved the most domains and where the 

sequence similarity between the query domains and the domains from the 

structure are the greatest 

- Create the corresponding set of constraints 

 

One domain from the query can sometimes be mapped onto several domains from 

the solved structure. For instance, if the query contains 2 family-A domains and a 
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structure contains 3 family-A domains, there are 6 (3x2) possible correspondences 

to draw from one set to the other. In such a case, we try all possible arrangements 

and keep the arrangement with the best fit as scored using the sequence identity 

between two corresponding domains. Domains that were assigned ambiguously 

are reported. 

 

This procedure enables the quick recognition of similar structures that can 

accommodate the query domains. However, it comes with several drawbacks: 

when several mappings have scores in the same range or when one domain is 

ambiguously assigned, one map from the set of domains to the structure is 

arbitrarily kept when the others are possibly relevant. So even if this procedure is 

quick, it is used with caution. 

4.3.2 Untangle the search procedure by preprocessing 

Many structures in the PDB contain several occurrences of one sub-complex (for 

instance, the CDK-cyclin complex PDB code: 1g3n contains two copies of a sub-

complex composed of three identical chains). All domains from each sub-complex 

usually adopt the same conformation. For a quick estimation of the number of 

structures contained in the PDB that form potentially multimeric organizations of 

sub-complexes, the domains contained in each structure are listed, grouped by 

type, and we assess if it is possible that such a set of domains forms a multimer of 

sub-complex structures. More specifically, the greatest common divisor (i.e. the 

largest positive integer that divides both numbers without remainder) of the number 

of occurrences of each domain is computed, which gives an indication of the 

number of times a sub-complex can be repeated in the structure. Amongst the 

structures that contain more than two domains, 15849 have a domain whose 

domain composition is compatible with such repeated patterns, 3006 do not. Even 

though, this is a rough estimate, it indicates a clear tendency for such multimeric 

assemblies. 
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The disadvantage of using our implementation of the spanning tree search is that it 

treats all potential sub-complexes in a structure independently (Figure 9). For 

instance, if there are two distinct interactions between a domain A and a domain B 

in the complex, the default procedure searches an interaction template to model 

the interactions between the first (A, B) pair, then independently searches for an 

interaction template for the second (A, B) pair. However, it seems more relevant to 

treat the two (A, B) pairs as potential sub-complexes and use the same interaction 

template to model each of the two interactions. Because repetitions of sub-

complexes are very frequent, we implement a method to account for those cases 

(Figure 8): 

 

Initialization 

- When encoding the graph representing the interaction templates, list the 

edges where the same interaction is used as a template more than once (for 

several pairs of domains) 

- For each such list, search valid combinations of edges: the basic seeds 

  

Iteration 

- Search the cases where seeds can be combined in principle 

- Combine the seeds from two sets of seeds, keep the valid ones and add 

them to the set of seeds 

 

Ending 

- When possible combinations of seeds are exhausted, rank seeds by 

number of edges and number of distinct interaction templates 

 

In principle, each seed contains the set of transformations needed to create all the 

sub-complexes of a structure. Seeds are then used as starting points in the 

spanning-tree search. Best seeds (those that span over the greatest number of 
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domains with the minimum number of groups) are used first and the search is 

stopped when a seed is successfully used. 

 

 

Figure 8: Procedure to search for seeds 
Seeds are combinations to beginning the search for spanning-trees with where the 
same interaction templates is used to model several interactions 

 

Similarly, the program can search for models built using interaction templates from 

few structures. Then, the same procedure applies, the only difference being that in 

this situation we use groups of edges representing interaction templates from the 

same structure file instead of groups of edges representing the same interaction 

templates as used in the symmetry-search method. 

 

Even if the two seed searches do not account for the same properties, they do not 

seem easy to combine and they cannot be run simultaneously in the current 

implementation.  
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Figure 9: Comparison of the spanning-tree search without and with search for 
seeds 

4.4. Exploring and understanding the predictions 

The more domains in the query, the more possible arrangements there are. In order 

to be able to distinguish very dissimilar arrangements from variations around the 

same arrangement, we designed a procedure that directly compares the 

transformations and clusters them. This procedure operates as follows: 

 

- Collect the transformations of all valid predictions 

- Compare the predictions one by one by computing iRMSD for each pair of 

domains and keep the worst iRMSD score to evaluate the difference 

between two structures 

- Cluster predictions that are close enough (by default the cutoff is1Å) 

- Collect iRMSD scores in a lower-rectangular matrix 

- Perform a single-linkage clustering of models 
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- Describe the hierarchy of clusters in a tree format (here, Newick format – 

such tree can be displayed using dedicated programs like iTOL 

nora.embl.de/ivica/). 

 

With this procedure, information about the degree of similarity between the 

predictions is obtained. It is important to notice that the evaluation is made on final 

assemblies and not on the interaction templates used to build them. One could 

think that comparing interaction templates used to predict a model is sufficient to 

compare models, though it is not: if the sets of interaction templates used in two 

predictions are similar, the predictions will also be similar. The inverse assertion 

does not hold: all similar predictions are not built from similar interaction 

templates.  

 

To illustrate this point, let us consider a structure in which three domains A, B and 

C are arranged at the three corners of a triangle. It is possible to predict the 

assembly with an interaction template for A-B and an interaction template for B-C. 

It is also possible to arrange the domains with an interaction template for A-B and 

an interaction template for C-A. The two predictions could be the same, even if the 

set of interaction templates used are not similar. This shows why it is necessary to 

use final transformations to compare the predictions and why the study of 

interaction templates is not enough. 

 

At this stage, all the assemblies have been searched and related transformations 

have been computed. Models can be created upon request. But providing the 

structure is not enough and it is necessary to inform the user about the constitutive 

interaction templates and the resulting structure. 

 

Therefore, for each model output, a file is created with details about the interaction 

templates used, the score of the templates, other evaluations (sequence identity, 

individual superposition scores, possibly the InterPreTS score of the resulting 
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interaction) and information about the structure it comes from. Moreover this file 

contains information about the resulting prediction that consists of the scores 

obtained during the evaluation step, i.e. a check that all the domains are connected 

and do not bump each other, the number of connections in the prediction (possibly 

greater than the number of interaction templates used) and InterPreTS scores for 

each interaction, if required. 

 

Finally, a procedure can be used to generate a picture describing the assembly 

process that led to the prediction. The model is oriented by the user and the 

program generates the pictures of the prediction with each domain in a different 

color, the pictures of the oriented interaction templates in the context of their 

original structure with the same color schema, and finally the structure of each 

domain separately and oriented using the PyMol ray tracing function (DeLano, 

W.L. The PyMOL Molecular Graphics System (2002) http://www.pymol.org). If the 

prediction is to be compared to another structure (e.g. for benchmarking, where the 

prediction is compared to the native structure), the first domain of the prediction is 

used to orient the other structures and domains are colored again with the same 

color schema. 

5.  Benchmark sets 

To benchmark the method, two datasets are employed: first an abstract and large-

scale set where three-domain assemblies are isolated from all the complex 

structures and the program tries to see how many of those triplets could be 

predicted from parts using information from other structures. Second and more 

concretely, complete structures that can be built from parts were used. The 

predictions were compared to the original structure using a method that compares 

two structures by comparing all the interactions from one structure to the 

interactions from the other. 
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5.1. Comparison of multi-domain structures 

This method is used when comparing predictions to native structures during the 

benchmark and can be used to compare two structures in general to evaluate how 

similar they are. 

 

 

Figure 10: Procedure to compare the structure of two multi-domain assemblies 
 

The method runs as follows: 

- List the domains in each structure with their SCOP family and list 

interactions in each structure 
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- Search all possible sets of correspondences between domains from one 

structure and the other (a correspondence is drawn when a domain from 

structure 1 has the same SCOP classification as a domain from structure 2, 

they possibly correspond to one another in the two structures) (Figure 10) 

- For each set of correspondences, compute iRMSD on all interactions  

- Score each set of correspondences by the worst value of iRMSD computed 

amongst interactions 

- Compare all the set of correspondences and keep the one with the least 

score  

 

Beyond a mere evaluation of the structural similarity between two complex 

assemblies, the method also determines which domain from one structure 

corresponds to that from the other.  

5.2. Triplets 

Assemblies of three interacting domains are the most elementary complexes. Two-

domain assemblies are simply interactions. From three domains on, the problems is 

to combine the correct pair of interaction templates to predict the assembly of the 

trimer. Interesting triplets are listed as follows: 

 

- Collect all assemblies of three domains from known structures (219166) 

(Figure 11) 

- For each triplet, list domains and keep track of the domain that binds the 

other two, the ‘pivot’ (if three domains are interconnected, there are three 

triplets, each with a different pivot) 

- Group triplets by category (i.e. the list of the family of each domain and the 

family of the ‘pivot’) 

- Search structures that can contribute to model an interaction from the 

triplet in which the pivot is involved 
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- If there are such potential interaction templates for the two interactions 

from the triplet involving the pivot, the triplet is added to the benchmark set 

- Compare triplets of the same category and group similar triplets 

 

 

Figure 11: Extraction of triplets from structures 
Domains are represented as dots and interactions are represented by lines. Two 
triplets are shown (dark blue, purple) and larger dots represent the ‘pivot’ for each 
triplet, i.e. the domains that where the domain common to the two interactions in 
the triplet. 

 

425 such triplets were found and used to test the procedure. The information from 

identical triplets, identified by computing iRMSD on triplets of the same category, 

is masked along with interaction templates that are 90% sequence identical to the 

domains from the query. We varied several parameters to test their influence on the 

success of the construction: the lower limit for sequence identity between domains 
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and domains from the template was varied from 10% to 90%; the lower 

superposition score limit was varied from 2 to 10; and finally the standard 

deviation of the InterPreTS score for the structure predicted for the interaction was 

varied from -40 to 7.5. 

 

Predicting assemblies while varying the three parameters enabled us to draw 

receiver operator characteristic (ROC) curves for each case. Those plots are broadly 

used to characterize the performance of a classifier. Here the goal of the procedure 

is to separate relevant predictions from those that are likely to be incorrect. In such 

a test, the results can be classified in four categories: 

 

  Reference result 

 Positive Negative 
Positive True Positive (TP) False Positive (FP) 

Test result 
Negative 

False Negative 

(FN) 
True Negative (TN) 

 

Sensitivity (TP/(TP+FN)) is displayed on the Y-axis of the ROC plot. It represents the 

capacity of the test to identify the true assemblies as such. On the X axis, 1–

specificity (1-TN/(FN+TN)) is displayed. Specificity represents the capacity to reject 

incorrect assemblies. 

 

In this work, we attempt to detect good models. We consider the outcome of the 

method to be positive when the prediction is less than 20Å iRMSD distant from the 

original structure of the triplet. The different categories are counted as follow: 
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Figure 12: ROC categories assignment 
On top, the line represents all the possible assemblies that can be achieved with 
interaction templates. Below, the assemblies in the range of detection with the 
parameter value are represented by the thick line and those rejected are 
represented by the dashed line. 

 

When all triplet cases are considered together, there are a certain number of good 

and bad assemblies that can be constructed from the interaction templates (Figure 

12). For each value of the parameter, we assess how many assemblies of each type 

are generated and deduce the number of True Positive, True Negative, False 

Positive and False Negative. Sensitivity and Specificity in the ROC plot. 

 

When given a set of numerous predictions, one may wonder how many good 

predictions there are amongst them. For a perfect classifier, there are as many good 

predictions as items in the set of predictions. In contrast, for a bad predictor, there 

will be only incorrect predictions. The False Discovery Rate (FDR) evaluates this 

notion. It estimates the enrichment of good predictions within the set of 

predictions. It is equal to: FDR = (FP/(FP+TP)). We estimate the value of this 

parameter for different values of the parameters. When only good predictions are 

made, FDR=0. 



Material and Methods 

 67 

5.3. Sets of complexes of known structure that can theoretically 

be built from pieces 

In order to illustrate how the method performs on complete concrete structures, the 

Protein Data Bank was browsed for a non-redundant set of structures that could 

potentially be built from parts as follows: 

 

- List interactions in every structure and identify the type of each interaction 

(i.e. the SCOP family of each of the two interacting domains) 

- Discard structures that contain only one interaction 

- Compare structure interaction types one by one, this reveals four 

situations: 

no interaction type in common 

several interaction types in common 

one structure contains all interaction types from the other 

the two structures have the same interaction types 

- Discard structures that are included in one another and those identical 

- Compare interactions from the 174 remaining structures to interactions 

from other structures by means of sequence identity 

- Keep the structures in which at least 70% of the interactions can be 

modeled using interaction templates with sequence identity between 30% 

and 70% 

 

All the possible examples were studied manually and dismissed when the 

structures could be built with the sole use of interaction templates from a single 

structure. Nine structures remained after this subjective selection procedure.  

6.  Potential applications in unsolved complexes 

To estimate how applicable the method is on complexes of unknown structure, we 

considered the complexes found in a large scale complex screen of the Yeast 
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genome using TAP (Gavin et al. 2006). Those complexes are made of three types: 

‘core’ proteins belonging only to the complex, ‘attachments’ are proteins seen in 

other complexes as well and ‘modules’ are sets of proteins present in several 

complexes. Here complexes were defined by their core, attachment and module 

components. This definition of complex is the most permissive of all. However in 

this study, it is relevant because the list of interaction templates is scarce and there 

may be cases where the interactions between two domains cannot be modeled 

directly. However, a third protein can sometimes be used to bridge the two 

domains together; an idea similar to the third-party mediation discussed in (Aloy 

and Russell 2002a).  

The following procedure is used to estimate the proportion of a complex that can 

be predicted: 

 

- Assign SCOP domains to each protein of each complex 

- Search putative interaction templates from known structures 

- Compute sequence identity between domains from the complex and 

domains from the interaction template candidate 

- Estimate the ratio of interactions needed to build the complex that can 

possibly be modeled (ratio between the number of domains that can be 

oriented together – 1 on the number of interactions needed to orient all the 

domains (ndomains - 1)) 

 

The data are represented in a boxplot. A boxplot is an informative way to display a 

distribution of discrete data. The thick bar in the middle of the box represents the 

value of the median (i.e. the middle value in a list of ranked numbers). The two 

parallel lines delimiting the box represent the first quartile and third quartile value 

respectively (the first quartile cuts-off 25% of the data, the third 75%). The 

InterQuartile Range (IQR) is the difference between the value of the third quartile 

and the first. Extreme values are values that are higher than the third quartile + 1.5 

IQR or less than the first quartile – 1.5 IQR. The short horizontal line indicates the 
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lowest/highest value that is not extreme. This graph shows how values are 

distributed: if the first quartile and the median are at 0, it means that for 50% of the 

samples, the value is 0. Still, some samples may perform better as shown by the 

third quartile and the points representing the extreme values. The boxplot is more 

informative than the mere mean and standard deviation values as it captures the 

repartition of the values and reveals extreme cases. An example of these plots can 

be found in Figure 19. 
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Results 

1.  Evaluation of the procedure – Benchmark 

1.1. Results from the triplet dataset 

Three domain assemblies are the minimal units to test the procedure, as two 

domains form only a single interaction that is not sufficient to test the assembly 

procedure. We devised a simple benchmark consisting of the 425 distinct triplets 

that can presumably be predicted using information from other structures out of the 

219166 arrangements of three interacting domains (Methods). We then tested the 

approach using only templates lacking very close sequence similarity (sequence 

identity <= 90%). We varied 3 parameters in order to test the ability of the method 

to retrieve the right arrangement in different setups: two parameters account for the 

similarity between the domains from the query and the domains in the template 

(sequence identity and superposition quality), while the last parameter estimates 

the likelihood of the interaction surface formed (InterPreTS score (Aloy and Russell 

2003)) This reflects the real situation when, given a set of domains, there is a 

limited set of interaction templates from which to derive orientations, and we want 

to estimate the predicted model. A good model is a model for which the worst 

predicted interaction is less than 20Å iRMSD different from the original structure (at 

around 10Å or less the similarity between two interactions can be seen by eye). 

The results of the prediction ability of each parameter are summed up in ROC plots 

(Figure 13). 

 

For low sequence identity, the method is sensitive but poorly specific (e.g. 

sequence identity: 15%, sensitivity: 97% and specificity: 12% (1-0.88)). In this 

setting, few interaction templates are filtered out (sequence identity has to be more 

than 15%) and most of them are tried in the assembly process. In this case, the 

chance of assembling a good model is high (high sensitivity) but many wrong 
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models are produced (low specificity). On the contrary, when the sequence identity 

cutoff is high, only templates with high sequence identity are used, the method is 

highly specific but not sensitive (e.g. sequence identity: 70%, sensitivity: 2% and 

specificity: 90% (100-10)). In this setting, only the very best interaction templates 

are selected, so few predictions are made and many interactions are rejected (low 

sensitivity) but the method is specific (the few interaction templates used are good). 

Using sequence identity as a criterion to select good interaction templates is 

relevant but not sufficient (the ROC plot is distant from the ideal curve close to the 

top-left corner). 

 

Similarly, the structural similarity between the domains from the query and the 

domains in the interaction templates is estimated and used as a score (sc score 

developed in STAMP (Russell and Barton 1992)). The sc score ranges from 0 to 10, 

10 being a perfect superposition. Above 3, the structural similarities are good 

enough that an accurate superposition can be achieved. In this analysis, the cutoff 

for the sc score was varied from 2 to 10 with 0.4 increments. Results are similar to 

those obtained with sequence identity and actually the two evaluation methods 

perform very similarly. Again, the ROC curve shows the impact of different values 

of the parameter on the success of the method. The better the structural similarity, 

the fewer and more accurate predictions. 
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Figure 13: ROC plots using three different parameters to assess the quality of 
predictions 
The three parameters used to assess the quality of the models are: 

1. The sequence identity between the domains from the query and the 
domains in the interaction templates (upper left) 

2. The structural similarity between the domains from the query and the 
domains in the template ((Russell and Barton 1992)) (upper right) 

3. The likelihood of the interface assessed by InterPreTS ((Aloy and Russell 
2003)) (bottom) 

 

The last parameter estimates the confidence in the resulting interface as computed 

by InterPreTS. This study shows that assemblies built using interaction templates 

selected by the InterPreTS score of the resulting interface are not better than 

predictions made by picking interaction templates at random. The results are often 

deceiving, and the way it is currently used and implemented, InterPreTS does not 

provide any useful information regarding interaction templates to use for better 

predictions. 
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parameter value FDR  param. value FDR  param. value FDR 

InterPreTS -40 0.86  Seq.Id. 0 0.86  Superposition 2 0.86 

InterPreTS -37.5 0.86  Seq.Id. 0.05 0.86  Superposition 2.4 0.86 

InterPreTS -35 0.86  Seq.Id. 0.1 0.86  Superposition 2.8 0.86 

InterPreTS -32.5 0.86  Seq.Id. 0.15 0.82  Superposition 3.2 0.86 

InterPreTS -30 0.86  Seq.Id. 0.2 0.78  Superposition 3.6 0.86 

InterPreTS -27.5 0.86  Seq.Id. 0.25 0.79  Superposition 4 0.85 

InterPreTS -25 0.87  Seq.Id. 0.3 0.78  Superposition 4.4 0.84 

InterPreTS -22.5 0.87  Seq.Id. 0.35 0.76  Superposition 4.8 0.81 

InterPreTS -20 0.87  Seq.Id. 0.4 0.75  Superposition 5.2 0.81 

InterPreTS -17.5 0.87  Seq.Id. 0.45 0.68  Superposition 5.6 0.77 

InterPreTS -15 0.87  Seq.Id. 0.5 0.69  Superposition 6 0.75 

InterPreTS -12.5 0.87  Seq.Id. 0.55 0.53  Superposition 6.4 0.76 

InterPreTS -10 0.87  Seq.Id. 0.6 0.48  Superposition 6.8 0.77 

InterPreTS -7.5 0.87  Seq.Id. 0.65 0.32  Superposition 7.2 0.79 

InterPreTS -5 0.87  Seq.Id. 0.7 0.32  Superposition 7.6 0.79 

InterPreTS -2.5 0.85  Seq.Id. 0.75 0.10  Superposition 8 0.68 

InterPreTS 0 0.90  Seq.Id. 0.8 0.08  Superposition 8.4 0.63 

InterPreTS 2.5 0.93  Seq.Id. 0.85 0.08  Superposition 8.8 0.66 

InterPreTS 5 0.88      Superposition 9.2 0.51 

InterPreTS 7.5 1.00         

Table 1: False Discovery Rate for different cut-off values of the three parameters 
 

The ROC plot is the typical means to assess the performance of a predictor. Here 

we evaluated the False Discovery Rate (FDR) (Table 1) as a means to evaluate how 

the set of predictions can become enriched in ‘good’ predictions with different 

values of a parameter. If all the predictions are bad, FDR is 1 while FDR is 0 if all 

predictions are good.  

The FDR for InterPreTS is high and almost constant (FDR=0.8), meaning that more 

stringent InterPreTS score cutoffs do not contribute to enrich the set of predictions 

with good predictions. However, using the superposition score (sc) has an impact 

on the FDR: for the most stringent value (sc=9.2) the FDR is 0.5 whereas for less 
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stringent values of Sc, the FDR is above 0.80. Thus, the use of more stringent sc 

score cutoffs helps to enrich the set of predictions with good predictions. Finally, 

when the cutoff for Sequence Identity is raised above 50%, the enrichment in good 

predictions increases very rapidly until FDR reaches 0.01 (i.e. there are on average 

9 good predictions out of 10 predictions) for sequence identity 85%. Thus, 

Sequence Identity is the most efficient parameter to increase the ratio of good 

predictions. 

 

With the ROC plots and the FDR values, it is possible to tune the parameters used 

by the program to obtain sets of predictions with specific characteristics: we 

decided not to use InterPreTS to evaluate interaction templates as the version used 

does not seem help making good predictions. Instead, the superposition score was 

used to estimate and rank interaction templates. For each analysis, if interaction 

templates with good superposition scores are available then we keep only these 

high-scoring templates and expect good predictions to be made, while for cases 

where interaction templates are scarce, we may allow the use of interaction 

templates with more structural differences and subsequently evaluate the 

constructions individually. Obviously, these parameters can be changed to satisfy 

specific requirements. 

1.2. Evaluation of known complexes that can presumably be 

built from pieces 

Maximal structures are defined as those that contain more than three domains 

reported in SCOP and that are not included in any structure when structures are 

abstracted to the list of interaction types they contain (Methods). Amongst a list of 

55 maximal structures, we searched for those that can be reproduced with a clear 

and detectable fidelity (sequence identity between 30% and 70%) using interaction 

templates from other structures.  
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In some cases, no interaction template could be found within the range of 

sequence identity to reproduce the structure or, alternatively, all the interaction 

templates came from the same structure (thus, there is no combination of templates 

from different structures that can be used to assemble models and direct mapping 

of domains on domains of the similar structure suffices). For instance, there are 10 

domains in four protein chains in the structure of the flavocytochrome C sulfide 

dehydrogenase (PDB code: 1fcd). They arrange themselves in a dimer of dimers. 

Without any filter, there are interaction templates to accommodate 6, 2 and 2 

domains in separate structures with interaction templates from one structure for 

each group (three ’islands’). If we filter out interaction templates with the sequence 

identity criterium, there is no interaction template left for the prediction. 

 

In other cases, part of the structures can be modeled on one existing structure and a 

few interaction templates could theoretically be used to complement the trivial 

structure. If the procedure fails to use those interaction templates (e.g. it is not 

possible to superpose efficiently one domain to its template), we are left with a 

trivial prediction. The structure of G-protein receptor kinase 2 with Galpha-q and 

Gbetagamma subunits (PDB code: 2bcj) is made of 7 domains. There are 24 

structures that can be used to model the interaction between the transducin alpha-

subunit and the G-protein domains but there is only one (the structure of the 

complex between G protein-couples receptor kinase 2 and G protein beta 1 and 

gamma 2 subunits, PDB code: 1omw) that helps to accommodate the PH-domain 

of the kinase with the WD40-repeat domain from the transducin. If the latter 

template cannot be used (e.g. when the domains cannot be superposed to the 

domains from the templates), the example becomes trivial and is discarded from 

the benchmark set because one structure template is enough to accommodate the 

structures of the subunits. 
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Description code 

No. 

tmpl. 

used 

No. int.  

<=10Å 

No. int. 

>10Å 

greatest 

iRMSD  

original Vs 

predicted 

Gelatinase A 1ck7 5 4 2 26.9 

Gelatin binding domain of 

Fibronectin 
1e88 2 0 2 17.8 

Elongation factor EF-Tu/EF-Ts 1efu 11 10 5 47.6 

Tissue facor + coagulation 

factor VIIa 
1fak 5 2 3 41.6 

CDK6/Cyclin/INK4 1g3n 7 5 3 20.3 

POU/HMG/DNA  1gt0 2 0 2 33.2 

Bovine factor Xa 1kig 2 2 0 5.3 

Blood coagulation factor Xa + 

Ecotin 
1p0s 7 7 0 6.7 

G-protein coupled receptor 

Kinase 2  

+ Galpha-Q and Gbetagamma 

subunits 

2bcj 3 1 2 70.7 

Table 2: Results obtained when assembling the structures of nine known 
complexes using non-trivial templates 
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Figure 14: Results on six of the nine constructions 

Each domain is colored differently. In each case, one structure is superposed in the 

prediction and in the original structure to make the comparison easier. 



Results 

 78 

There were 9 complexes that matched our selection criteria. These structures are 

listed in (Table 3) together with details of how the predictions fared. In the 9 cases, 

we were able to predict structures that accommodate most domains of the original 

structure. In most cases, two structures provided enough interaction templates to 

build theoretically a prediction. However using the interaction templates contained 

in two structures did not necessarily lead to the best assembly. 

 

The results are shown briefly in a gallery (Figure 14). Some examples are studied in 

more details because they show how the method performs with interactions of 

different kinds: intra- chain interactions (gelatinase A – PDB code: 1ck7), a dimer of 

dimers (PDB code: 1efu) and a dimer of trimers (e.g. CDK6/Cyclin D/INK4 – PDB 

code: 1g3n). 

1.3. Multidomain polypeptide chain: Gelatinase A 

Gelatinase A is an extra-cellular matrix metalloproteinase (MMP). It degrades type 

IV collagen (a component of basement membranes) and denatured collagen. The 

structure of gelatinase A was solved by X-ray crystallography at 2.8Å (Morgunova 

et al. 1999). 

 

Gelatinase A is a single protein chain made of 6 domains: a MMP N-terminal 

domain, a MMP catalytic domain split in two parts, three Fibronectin type II 

domains, and a Hemopexin-like domain (beta-propeller). This simple example 

illustrates how the method performs on multi-domain chains. 

 

Gelatinase B is used for the orientation of 5 of the 6 domains of Gelatinase A 

(Figure 15). Domains from one structure are very similar in sequence to domains 

from the other (sequence identity: 66%, 62%, 59%, 54%, 39%) and the two 

structures are 1.85Å RMSD apart. The missing Hemopexin-like domain is modeled 

in the structure with a template from the structure of proMMP-1 (RMSD: 1.5Å, 
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sequence identity: 51%, 38%). The worst interaction modeled in our prediction is 

26.9Å iRMSD distant from the original interaction. 

 

 

Figure 15: The reconstruction of Gelatinase A 
On the left, the interaction templates used for the reconstruction; in the middle, the 
structure predicted; on the right, the structure of the original complex. 

 

Assuming domains are in contact within the chain, the procedure can model the 

structure of multi-domain proteins. 

1.4. Dimerisation: EF-Tu/EF-Ts 

EF-Tu is a G protein (guanine-nucleotide-binding protein) and is involved in a wide 

range of metabolic processes. EF-Ts, a guanine-nucleotide exchange factor recycles 

inactive EF-Tu-GDP in active EF-Tu-GTP complex. The structure of the EF-Tu/EF-Ts 

complex was solved at 2.5Å resolution (Kawashima et al. 1996). 
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The structure is a dimer of sub-complexes and each sub-complex contains 6 

domains. This example shows how the procedure deals with multimers of 

multimeric structures. 

 

Figure 16: The reconstruction of EF-Tu/EF-Ts 
On the left, the interaction templates used for the reconstruction; in the middle, the 
structure predicted, on the right, the structure of the original complex. 

 

The prediction that is the closest to the original structure and contains no bumps is 

47.6Å iRMSD distant from the native structure (Figure 16). Each sub-complex is 

built in parallel using interaction templates from the structure of three different 

complexes: the complex EF-Tu EF-Ts from Thermus thermophilus (PDB code: 1aip, 

sequence identity: 52%, 71%, 71%, 31%, 66%, 71%), the mitochondrial factor 

Tu/Ts complex from Bos taurus (62%, 19%) and elongation factor Tu in complex 

with aurodox in T. thermophilus (PDB code: 1ha3, sequence identity: 67%, 68%). 

Once the two sub-complexes are built, they are assembled using another template 
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from the structure of EF-Tu EF-Ts from T. thermophilus (sequence identity: 31%, 

31%). The dimerisation in the prediction occurs via the elongation factor's Ts (EF-

Ts) dimerisation domain. However, in the real structure the dimerisation is made by 

the EF-Tu/eEF-1alpha/eIF2-gamma C-terminal domain, explaining the difference 

between the predictions obtained and the original. We searched for predictions 

where the dimerisation structure resembles the original. The first complete 

assembly that we found uses an interaction template from elongation factor TU in 

complex with aurodox (sequence identity: 71%) to orientate the two EF-Tu/eEF-

1alpha/eIF2-gamma C-terminal domains. It is 13.8Å iRMSD from the original 

structures and was rejected in the first place for containing bumping domains. 

 

1.5. Creation of interactions not in original structure: 

CDK6/cyclin D/INK4 complex 

Cyclins bind and activate cyclin dependent kinases (CDKs). There are also a 

number of other molecules affecting CDK function, including the inhibitor INK4 

(Review (Sherr and Roberts 1999)). A ternary complex of CDK6, the INK4 inhibitor 

and a viral D-type cyclin was solved by X-ray crystallography (Jeffrey et al. 2000). 

The structure assembles in a dimer of trimers and the two substructures interact at 

the level of the kinase domains. 

 

We can assemble the 8 domains of the structure and obtain a prediction that is 

20.3Å iRMSD distant from the original structure (Figure 17). Each subunit is 

accurately predicted (iRMSD 14.0Å). The structure of the subunit is predicted using 

interaction templates from 3 structures: the structure of an INK4-inhibited cyclin-

dependent kinase (PDB code: 1bi8, sequence identity: 90%, 45%), the structure of 

CDK6 in complex with a flavonol inhibitor (PDB code: 1xo2, sequence identity: 

26%; 96%) and the structure of the viral cylin from Herpesvirus saimiri (PDB code: 

1bu2, sequence identity: 25%, 37%). Finally, the two sub-complexes are 
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assembled via the CDK domains using a template from glycogen synthase kinase 3 

beta (PDB code: 1h8f, sequence identity: 25%). 

 

When no information is provided about the direct contacts between chains, the 

best prediction is ranked 13 amongst the complete predictions (i.e. predictions that 

contains all domains from the query) that do not contain any bumps, and it is the 

268th node explored during the search procedure. However, the rank of the best 

prediction can be improved by adding constraints to the procedure and binding the 

two subunits via the two CDKs. In this context, the same prediction ranks 3rd 

amongst complete predictions with no bumps and is the 6th combination 

considered during the graph exploration. 

 

 

Figure 17: Reconstruction of the CDK6/cyclin D/INK4 complex 
On the left, the interaction templates used for the reconstruction; in the middle, the 
structure predicted; on the right, the structure of the original complex. 
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These three cases showed firstly that the procedure works alike on inter- and intra- 

chain domains as long as they are in direct contact, secondly that structures with 

higher order of organization (multimer of multimers) can be accurately constructed, 

thirdly that accurate structures are sometimes rejected because they fail some 

validation tests by narrow margins, and finally that constraints can increase the 

speed and accuracy of the prediction. 

1.6. Highly symmetrical structures 

1.6.1 Eukaryotic exosome 

The exosome is a protein complex involved in the degradation of mRNAs. The 

structure of the archaeal exosome core (Lorentzen et al. 2005) was first solved by 

X-ray crystallography and recently the structure of the human exosome was 

determned by Liu et al. (Liu et al. 2006). 

Before the structure of the exosome was solved, our group attempted to predict its 

structure (Aloy et al. 2002) using the best template available at the time (the 

bacterial PNPase complex), negative stain EM and a battery of computational 

procedures (which including InterPReTs and methods of active site prediction). This 

study met with mixed results when compared to later two-hybrid data (Raijmakers 

et al. 2002), and most recently to the crystal structure of the human exosome (Liu et 

al. 2006). Although the overall model was broadly correct in shape, specific details 

of the assembly were not predicted correctly as later revealed by experiments using 

the yeast two-hybrid system (Raijmakers et al. 2002) and mass spectrometry 

(Hernandez et al. 2006). 

 

The exosome ring is composed of 6 proteins of two different kinds (with three 

proteins each) and simple combinatorics shows that there are 120 possibilities to 

place 6 proteins in a ring.  

 



Results 

 84 

The only interactions in the structure are interactions between two proteins of 

distinct kinds and there are two different orientations for such interactions that have 

been determined previously. Assuming that the proteins are evenly arranged in an 

alternation of proteins of each type, 24 possible arrangements of the proteins are 

left. Moreover, if two proteins are known to interact directly, there are 16 

possibilities and if two such direct interactions are known (i.e. involving three of 

four proteins), there are 4 or 6 possible arrangements. 

 

Thus, the addition of constraints untangles drastically the number of possible 

arrangements covered. On the other hand, using bad constraints will ensure the 

production of bad predictions. In the work of Aloy et al. (Aloy et al. 2002), the 

alignments produced did not capture the real separation of the 6 proteins in two 

classes and from then on it was impossible to generate the right assembly. 

 

The exosome is a valuable case to comprehend various aspects of the method: the 

final structure being a ring, is it possible, using a method that arranges two 

structures, to retrieve this higher-level of organization? The ring of the exosome is 

built with a succession of subunits of similar structures. Do we retrieve all the 

possible combinations given constraints? Can we separate good constructions from 

bad? Does the method perform the same with the structures of the subunits and 

with models? 

 

When combining binary interaction templates with no memory of those used in the 

previous steps of the construction, we predict several buckled-up assemblies 

regularly (i.e. in the models we predict, the interactions between proteins of the 

same type are not always identical). We used the protocol to search specifically for 

regular assemblies (i.e. structures built with several uses of the same interaction 

template – structures in which a sub-complex is repeated as in the case of 1efu 

(Elongation factor EF-Tu/EF-TS ) and 1g3n (CDK6/Cyclin/INK4) described earlier). In 

a first test, the six real subunit structures from Human exosome were assembled 
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into models based on multiple usages of two interaction templates from PNPase 

(PDB code: 1e3h) for predicting the orientation of the chains. The program was 

forced to directly bind Rrp45 with Ski6 and Rrp42 with Mtr3 as it was known from 

yeast two-hybrid experiments at the time of the prediction made by Aloy et al. With 

the default parameters (3 interaction template candidates per interaction to model), 

the procedure generated 32 models of which 24 were built with interaction 

templates that score remarkably better (sc score of 9 vs 5). Those 24 models 

corresponded to all the possible regular ring arrangements of 6 structures of two 

different sorts. However, amongst all these predictions, we could not detect the 

native-like arrangement because we did not have any good mean to distinguish the 

good interfaces from the false ones.  

 

We then tried to model the exosome ring using structural models predicted for 

each protein. The alignment method to find candidates for the modeling of the 

subunits does not separate correctly the 6 proteins into the two classes observed in 

the real structure (Ski6/Mtr3/Rrp46 and Rrp42/ Rrp43/Rrp45). Instead we obtained 

three groups derived from the SCOP domains aligned: (Rrp42, Ski6), (Rrp45, Mtr3) 

and (Rrp43, Rrp46). With the models derived from these alignments, we were able 

to accommodate only four of the six structures together. 

 

Sequence alignment reveals that three proteins bound to the ring (Rrp4, Csl4 and 

Rrp40) contained a Cold shock DNA-binding-like domain. We tried to add these 

three structures to one of the 24 ring structures predicted (Figure 18). With the 

default parameters, we were not able to add the three Cold shock-like (i.e. RNA 

binding) domains to the structure of the ring. However, when lowering the 

requirements for the superposition score, we generated 120 predictions. The cold-

shock DNA-binding-like domains can be orientated relative to the ribonuclease PH 

domain 1-like domain of each protein in the ring. Out of 120 predictions, only 12 

exposed the cold-shock DNA-binding-like domains on the same side of the ring 

and corresponded to all permutations possible. 
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Figure 18: Reconstruction of the Eukaryotic exosome 
Top: three models (out of 32) obtained using the seed search. Each model was 
obtained using two interaction templates multiple times. 

Bottom: three models (out of 120) obtained when adding of Rrp4, Csl4 and Rrp40 
to the ring of the exosome. Each protein can be placed on top or at the bottom of 
the ring given the current interaction templates. 

 

From the study of the exosome, we have shown that, when using binary interaction 

templates, we could still predict structures with higher-level of organization, that 

the program can achieve fewer, more reliable predictions when using a protocol to 

search for symmetrical assemblies and that the use of predicted models instead of 

the structure for each domain decreases the quality of the complex model. 
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2.  Applications 

2.1. Estimation of the applicability of the method at different 

time points 

We considered 615 complexes derived from high-throughput TAP-purification/ 

mass spectrometry experiments, along with their core components, their modules 

and attachments (as defined in (Gavin et al. 2006)). We estimated the fraction of 

the complex that can be assembled in the best-case scenario (i.e. when all 

interaction templates predicted are effectively suitable to model the interactions). 

We focused only on the interactions that are between inter-chain domains. The 

coverage at different periods was computed to appreciate how it changes as shown 

on Figure 19. 

 

With the data contained in the latest version of SCOP, it is possible to orientate 

30% of chains of the complexes. The portion of inter-chain interactions that can be 

modeled in the complexes varies greatly: for one fourth of the complexes, no 

interaction is modelable at all (c.f. value of the first quartile – see Methods for more 

details about the representation), whereas for more than half of the complexes, we 

can in principle predict more than 30% of the required interactions.  
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Figure 19: Box-plot representing the potential application of the method at 
different time points 
The box-plot indicates the distribution of the percentages of crucial interactions 
that can be modeled for each complex (Gavin et al. 2006) using interaction 
templates available at different times 

 

Our ability to predict interactions improves with each release of SCOP. However, 

after the rapid increase of in 2000, the trend seems to slow down. It suggests that 

even if the number of structures released steadily increases, the knowledge of the 

interaction structures increases at a slower pace.  

2.2. Predictions 

2.2.1 RNA polymerase 

RNA polymerases are essential enzymes involved in the transcription of genes into 

RNA and are found in all organisms and many viruses. While in bacteria, only one 

type of RNA polymerase is found, three variations of RNA polymerases co-exist in 
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eukaryotic cells. RNA polymerase I synthesizes a precursor ribosomal RNA (rRNA 

45S) that matures into three major RNA sections of the ribosome (Russell and 

Zomerdijk 2006). RNA polymerase II synthesizes precursors of RNAs and most 

snRNAs and miRNAs (Sims et al. 2004). RNA polymerase III synthesizes tRNAs, 

another ribosomal RNA (rRNA 5S) and small RNAs found in the nucleus and 

cytosol (Haeusler and Engelke 2006). The structures of both, bacterial RNA 

polymerase and RNA polymerase II, were determined and they share great 

structural similarity ((Woychik and Hampsey 2002; Borukhov and Nudler 2003) 

and (Chen and Hahn 2003; Chung et al. 2003; Bushnell et al. 2004) respectively). 

However, eukaryotic RNA polymerase II differs in that it misses domains to initiate 

transcription by itself and recruits general transcription factors. Moreover, in 

eukaryotic cells, RNA polymerase must deal with the typical DNA packing that 

does not exist to the same extent in bacterial RNA polymerase. 

 

SCOP 

I  

core 

I 

nocore 

II 

core 

II  

nocore 

III 

core 

III 

nocore 

PDB entry: 

1i50 

a.114.1.1       SPT5       

a.143.1.2   RPAB2   RPAB2   RPAB2 F 

a.177.1.1   RPC7           

a.4.11.1   RPAB5   RPAB5   RPAB5 J 

a.4.5.15     T2FB         

a.60.8.2     RPB4     RPC9   

a.8.3.1   MAN1           

b.15.1.1   HSP42           

b.30.5.6   MAN1           

b.40.4.5 RPA43   RPB7   RPC8     

b.40.4.8   RPAB3   RPAB3   RPAB3 H 

b.43.4.1   MET10           

b.65.1.1     T2FB         

b.69.4.1   SNI1           

c.25.1.4   MET10           
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c.36.1.8   MET10           

c.37.1.19   DHH1 (x2)           

c.45.1.1   CDC14 (x2)           

c.48.1.3   MET10           

c.52.3.1   RPAB1   RPAB1   RPAB1 E:1-143 

c.6.2.1   MAN1           

c.64.1.1   MET10           

d.181.1.1 RPAC1   RPB3   RPAC1   C:42-172 

d.230.1.1 RPA43   RPB7   RPC8     

d.74.3.1 RPAC1   RPB3   RPAC1   

C:3-41, 

C:173-268 

d.74.3.2     RPB11     RPAC2 K 

d.78.1.1   RPAB1   RPAB1   RPAB1 E:144-215 

e.29.1.1   RPA2 RPB2   RPC2   B 

e.29.1.2 RPA1     RPB1 RPC1   A 

g.41.3.1 RPA12   RPB9 (x2)     RPC10 (x2) 

I:1-49 

I:50-122 

g.41.9.2            L 

Table 3: Comparison of SCOP domains from RNA polymerases I, II and III 
The three RNA polymerase complexes are defined as in Gavin et al. (Gavin et al. 
2006). The structure found in the Protein Data Bank under code 1i50 corresponds 
to one instance of the RNA polymerase II complex 

 

Each of the RNA polymerases I, II and III proteins were aligned to SCOP domains 

(Table 3). Domain assignments for each of these proteins were compared in order 

to obtain a domain map across RNA polymerases. The domains from the structure 

of RNA polymerase II were added (PDB code: 1i50) in order to show which part of 

the RNA polymerase structure is known. Strikingly, most domain types are present 

in the three RNA polymerases. Thus, whenever it is possible we will directly 

position the domains onto their equivalent in the known structure. However, the 

classification of complex proteins in core and not-core components seems difficult. 
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We built models for the components of RNA polymerase I and III and then sought 

interactions in each complex (core + attachment + module) that could in principle 

be predicted based on domain types. In order to limit superposition problems due 

to bad model predictions, we first tried to get a prediction using the SCOP domains 

reference for each domain. 

 

 

Figure 20: RNA polymerase I derived from RNA polymerase II with the addition 
of RPC7 
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Unfortunately, only one domain of RNA polymerase I could be added to the 

assembly derived trivially from RNA polymerase II structure (Figure 20). The 

domain corresponds to RPC7 and could be assembled onto the RNA polymerase 

beta-prime domain using an interaction template from Thermus thermophilus RNA 

polymerase holoenzyme (PDB code: 2cw0). However, the poor quality of the 

superposition of RPC7 on its template makes the prediction dubious (sc score: 2.44 

and 2.17) and several means were used to evaluate the quality of the prediction. 

InterPreTS was used to evaluate the likelihood of the interaction built and scored 

poorly when compared with the likelihood of the interaction in the template (-

36.56). We used Consurf (Armon et al. 2001) to map the conservation of residues 

onto the structures of the two interacting domains (Figure 21). The number and 

type of atomic interactions created was assessed using a derivative of Ligplot for 

domain-domain interaction (Wallace et al. 1995). When we compared the 

interaction pattern, obtained within the interaction we have predicted, to the 

original pattern, the difference is striking and we cannot have much confidence in 

our prediction. 
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Figure 21: Study of the interface predicted between RNA polymerase I and RPC7 
Left: Ligplot (Wallace et al. 1995) 2D-representation of the interface 

Right: the interfaces displayed with evolutionary information ((Armon et al. 2001))  

in the predicted structure and in the correponding interaction within the interaction 
template. The backbone in blue corresponds to RNA polymerase, the backbone in 
red to RPC7 and its homolog. Residues in red are more conserved and residues in 
blue are not. 

2.2.2 Cdc 48/Npl4/Ufd1 complex 

One complex identified as a potential modeling candidate in the above screen is 

the yeast Cdc48/Ufd1/Npl4 complex, consisting of 5 components: Ufd1, Npl4, 

Cdc48, YDR049W and Shp1. The AAA (ATPase associated with various cellular 

activities) ATPase p97, the well-studied vertebrate homolog of Cdc48 is involved in 

a broad variety of cellular activities, amongst which are ubiquitin-dependent 

protein degradation (Hetzer et al. 2001), spindle disassembly (Cao et al. 2003), 

Golgi preassembly, centromere targeting (Vong et al. 2005) and post-mitosis 

nuclear envelope reassembly (Johnson et al. 1995). Different proteins adapt to 

Cdc48 to achieve their functions. For instance, it requires Ufd1 and Npl4 to 
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participate in spindle disassembly at the end of mitosis (Cao et al. 2003). p97 forms 

a homo-hexamer (Peters et al. 1992; Zhang et al. 2000; Beuron et al. 2003; 

DeLaBarre and Brunger 2003; Huyton et al. 2003) on which the different adaptors 

bind. 

 

Protein #AA Sequence SCOP Hit E-value Pfam 

Ufd1 361 118-207 d.31.1.1 1e32A:118-207 0.037 UFD1 

    90-164 b.52.2.3 1e32A:15-84 0.028 UFD1  

Npl4 580 1-84 d.15.1.1 1v2yA:8-104 1.60E-05 Pfam-B 

Cdc48/p95 835 211-468 c.37.1.20 1e32A:201-458 0 AAA 

    117-207 d.31.1.1 1e32A:107-200 3.00E-07 CDC48 2 

    31-116 b.52.2.3 1e32A:21-106 3.30E-14 CDC48 N 

    481-757 c.37.1.20 1r7r:471-735 0 AAA 

UBX1/Shp1 423 355-421 d.15.1.2 1i42A:1-87 2.50E-29 UBX 

    226-299 d.245.1.1 1vazA:3-76 3.40E-22 SEP 

    1-45 a.5.2.3 1v92a:1-46 2.30E-16 Pfam-B 

YDR049W 632 338-562 d.211.1.1 1s70B:20-288 0   

Table 4: Modeling of the domains for each protein from the Cdc48/Npl4/Ufd1 
complex 
From left to right, protein name, number of amino-acids, part of the sequence that 
matches a SCOP domain, SCOP category of the match, description of the SCOP 
domain hit, E-value, corresponding Pfam classification. 

 

Each protein was assigned plausible SCOP domains using the described sequence-

based protocol (Material and Methods) with corresponding structural models (Table 

4). Interestingly, Ufd1 sequence ambiguously hits two SCOP domains found in 

Cdc48 (Golbik et al. 1999). TAP/MS experiments indicate that 5 proteins interact 

tightly: Shp1 (Ubiquitin Regulatory X), YDR049W (an hypothetical protein), Ufd1 

(Ubiquitin fusion degradation 1), Npl4 (Nuclear protein localization 4) and Cdc48 

(homolog of p97 in yeast) via 4 main interactions (Cdc48-Shp1, Cdc48-Ufd1, 

Cdc48-Npl4 and Ufd1-Npl4 (Figure 22)). With the sole study of these interaction 
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data we can consider two independent organizations: one with Cdc48-Ufd1-Npl4 

and the other with Cdc48-Shp1. 

 

 

Figure 22: TAP-MS characterization of the Cdc48/Npl4/Ufd1 complex 
Red lines describe tight links, pink and yellow line looser interactions. 

 

The monomer structure and the ring formed by 6 copies of protein Cdc48 were 

modeled on the structure of murine p97/VCP (PDB code: 1r7r). Then, one copy of 

proteins Npl4 and Ufd1 was attached to the structure of the ring. Only one copy of 

Npl4 and Ufd1 was added to reflect the stoichiometry of the complex (Pye et al. 

2007). To complete the study, we searched possible means to bind Shp1 or 

YDR049W to the structure. 

 

We found 3 distinct means to bind Npl4 and Ufd1 to the structure of the Cdc48 

ring (Figure 23), none of which could accommodate Shp1 or YDR049W. The 

difference between the 3 predictions lies in the orientation of the binding of Ufd1 

on Cdc48. The two first predictions were almost identical provided the 6-fold 

symmetry of the Cdc48 ring and in both predictions the interaction template for the 

interaction between Ufd1 and Cdc48 was found in the structure of the Cdc48 

homologue. The other prediction used a template from the amino-terminal domain 

of N-ethylmaleimide-sensitive fusion protein to model the interface between Cdc48 

and Ufd1 (PDB code: 1qdn). The interaction between Ufd1 and Shp1 was based 

again on the structure of p97 in complex with p47 (PDB code: 1s3s). 

 



Results 

 96 

 

Figure 23: The assembly process leading to the three predictions for 
Cdc48/Npl4/Ufd1 
First row: collected structures for the domains of Cdc48, predicted structures of 
Ufd1 and Npl4; second row: 1: assembly of Cdc48 domains; 2: assembly of the 
ring of six Cdc48; 3a, 3b, 3c the three templates used for the predictions m1, m2, 
m3 

 

The last model compares well with the negative stain EM image of the complex 

(Pye et al. 2007) (Figure 24). As shown on the picture of the negative stain EM, the 

Ufd1-Npl4 heterodimer binds on the side of Cdc48, not on top. 
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Figure 24: Comparison of the first model with a negative stain EM from 
Cdc48/Npl4/Ufd1 
 

The structure of Ufd1 was solved recently (Park et al. 2005). In our prediction, the 

orientation of the 2 domains of Ufd1 is close to the orientation they obtained by 

NMR structure despite the ambiguity in the domain assignment. 

 

Finally, we evaluated the models using purely bioinformatics methods. We 

assessed the likelihood of the interactions created with InterPreTS first and then by 

a combination of Ligplot (Wallace et al. 1995) and conservation study.  

 

In the two first models, the anchoring of Ufd1 on Cdc48 is made via an interaction 

that has a bad InterPreTS score. In the third, the interaction scores better. In order 

to confirm this evaluation, we first drew all the interactions (i.e. hydrogen bonds 

and hydrophobic contacts) using Ligplot (a tool to represent interactions between 

structures in two dimensions) (Figure 25). The bound between Ufd1 and Npl4 

being the same in the three predictions, we display only the interaction patterns 

between the Cdc48 ring and the Ufd1/Npl4 sub-complex. The third prediction 
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contains more connections between the ring and Ufd1/Npl4. Surprisingly, the 

interaction used to anchor the Cdc48 ring and Ufd1/Npl4 (between one Cdc48 

AAA ATPase domain from Cdc48 and the other of Ufd1) is not the one that 

generates the most interactions. The interaction between the other Cdc48 AAA 

ATPase domain from Cdc48 and Ufd1’s Cdc48 2-like domain is an interaction that 

is indirectly predicted and accounts for most of the interaction between the ring 

and the Ufd1/Npl4 subunit. We performed sequence alignments to locate on the 

interactions those that involve conserved residues (Table 5). The interactions in 

model 3 involve residues that are better conserved. 

 

Finally, even if it is difficult to assess the accuracy of these models, we think that 

the three models are worth further investigation: the two first models are built using 

interaction templates directly derived from the structures of the Cdc48 ring to bind 

the adaptors to the ring of Cdc48, whereas the last prediction is based on a remote 

template but supported by interaction and conservation studies. 
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Figure 25: 2D representations of the three interfaces predicted between the 
Cdc48 ring and the Ufd1/Npl4 complex 
 

 

a. data for model 1 

 

H Bond Donor Res Conservation Acceptor Res Conservation 

 THR G66 3 GLU M64 0 

        

Hydrophobic 

contact Atom1 Res Conservation Atom2 Res Conservation 

 ILE F20 6 LEU M196 0 

 TYR F47 6 THR M194 0 

 TYR F47 6 PRO M195 0 

 TYR F47 6 LEU M196 0 

 TYR F47 6 GLU M197 0 

 TYR F47 6 PRO M198 0 

 GLN F13 5 ASP T195 0 

 GLN F13 5 GLU T197 0 

 ASP G68 3 LEU M28 0 

 ASN G57 2 VAL M2 5 
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 THR F51 2 LYS M193 0 

 SER F46 1 LYS M193 0 

 ASN F48 0 LYS M193 0 

 ASN F48 0 THR M194 0 

 ASN F48 0 PRO M195 0 

 ASN F48 0 LEU M196 0 

 GLY F49 0 LYS M193 0 

 GLY F49 0 THR M194 0 

 GLY F49 0 PRO M195 0 

 LYS F50 0 LYS M193 0 

 LYS F50 0 THR M194 0 

 

 

b. data for model 2 

 

H Bond Donor Res Conservation Acceptor Res Conservation 

 THR OG1 3 GLU O64 0 

        

Hydrophobic 

contact Atom1 Res Conservation Atom2 Res Conservation 

 TYR F47 6 LEU O196 0 

 ASP G68 3 LEU O28 0 

 ASN G57 2 VAL O2 5 

 SER F46 1 LYS O193 0 

 ASN F48 0 THR O194 0 

 ASN F48 0 LEU O196 0 

 GLY F49 0 THR O194 0 

 

 

c. data for model 3 

 

H Bond Donor Res Conservation Acceptor Res Conservation 

 LYS F53 3 PRO O195 0 

 ASP O7 2 TYR F47 6 

 VAL G67 2 ASP S192 0 

 ASP S192 0 ASP G68 3 

 ASN F48 0 THR O5 1 

 ASN F48 0 THR O5 1 
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Hydrophobic 

contact Atom1 Res Conservation Atom2 Res Conservation 

 PHE F52 9 ARG O192 0 

 PHE F52 9 LYS O193 0 

 PHE F52 9 PRO O198 0 

 PRO F12 7 ARG O192 0 

 PRO F12 7 GLU O197 0 

 PRO F12 7 PRO O198 0 

 PRO F12 7 GLY O199 0 

 ILE F20 6 TRP O6 6 

 ALA F25 6 TRP O6 6 

 TYR F47 6 TRP O6 6 

 GLU F11 6 PRO O198 0 

 GLU F11 6 GLY O199 0 

 ILE F20 6 SER O185 0 

 ILE F20 6 ILE O186 0 

 ILE F20 6 ALA O189 0 

 ILE F20 6 THR O203 0 

 TYR F47 6 GLN O190 0 

 TYR F47 6 VAL O4 0 

 GLN F13 5 PRO O195 0 

 GLN F13 5 LEU O196 0 

 GLN F13 5 GLU O197 0 

 GLN F13 5 PRO O198 0 

 GLN F13 5 GLU O201 0 

 ASP G68 3 ALA S191 7 

 LYS F53 3 THR O194 0 

 LYS F53 3 PRO O195 0 

 LYS F53 3 LEU O196 0 

 LYS F53 3 PRO O198 0 

 ALA F80 3 GLY O199 0 

 THR G66 3 ASP S192 0 

 THR G66 3 ASP S192 0 

 THR G66 3 ASP S193 0 

 ASP G68 3 ASP S192 0 

 THR F51 2 ARG O192 0 

 THR F51 2 LYS O193 0 

 THR F51 2 THR O194 0 

 VAL G67 2 ASP S192 0 

 SER F46 1 LYS O193 0 

 ASN F48 0 TRP O6 6 

 ASN F48 0 LEU O187 1 
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 ASN F48 0 LEU O187 1 

 ASN F48 0 THR O5 1 

 ASN F48 0 ILE O186 0 

 ASN F48 0 ALA O189 0 

 ASN F48 0 GLN O190 0 

 ASN F48 0 VAL O4 0 

 GLY F49 0 GLN O190 0 

 GLY F49 0 LEU O191 0 

 LYS F50 0 ASN O188 0 

 LYS F50 0 ALA O189 0 

 LYS F50 0 GLN O190 0 

 LYS F50 0 LEU O191 0 

 LYS F50 0 ARG O192 0 

 LYS F50 0 LYS O193 0 

 LYS F50 0 GLN O222 0 

 

Table 5: Conservation of residues at the interface in the three models predicted 
for Cdc48/Ufd1/Npl4 
Consevation of residues at the interface in models “1”, “2” and “3” (corresponding 
tables a, b and c). The columns “Atom” and “Res” describe the residue, the column 
“Conservation” describes the level of conservation (0: poor). For each model, the 
first residue described belongs to the Cdc48 ring, and the second residue is from 
Ufd1/Npl4. Conserved interactions are shown in red. 
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Discussion 

1.  Summary of the results 

1.1. Results 

During this work, I developed a method to predict the structure of protein 

complexes. The problem differs from the prediction of the structure of protein-

protein interactions because the number of interfaces available for a set of subunits 

is limited and not all arrangements are sterically possible. 

 

The procedure searches for interaction templates from solved protein structures that 

can be used to predict the orientation of any pair of subunits of the complex. These 

pairwise orientations are represented in a graph and combinations of orientations 

are searched to form protein assemblies. The number of possible combinations 

grows at least exponentially with the number of subunits and thus it is rarely 

possible to generate all the models. To limit the predictions to the most significant, 

several complementary methods have been implemented: (i) subunits that have 

matches in a known structure are directly oriented, (ii) subunits known to be in 

direct contact constrain predictions and (iii) multimeric assemblies of multimers are 

searched directly. 

 

The method was benchmarked on 425 elementary complexes consisting of three 

domains in interaction. The influence of three parameters (sequence identity, 

superposition and InterPreTS score) on the quality of predicted assemblies was 

tested. Sequence identity and superposition score significantly improved the 

specificity and the ratio of ‘true positives’ predicted. Nine structures from a 

benchmark set that could be constructed using non-trivial templates from other 

structures were used to illustrate the performance of the method. Moreover, the 
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exosome, a circular assembly of 6 proteins arranged in a trimer of dimers was used 

to illustrate how the method handles such multimer of multimers assemblies.  

 

Yeast complexes on which the method could be applied were found. As more 

structures are solved, the number of interactions that can be predicted in 

complexes increases. In the specific example of RNA polymerase I and III, the 

method was successful in using the structure of RNA polymerase II as a template. 

However, no additional subunits could be fitted in a satisfying manner. Finally, 

three assemblies were predicted for Cdc48 with Ufd1 and Npl4. The predictions 

were compared to low-resolution structure and evaluated by a detailed study of the 

interactions formed. 

1.2. Application 

The database of interactions can be used to locate potential interfaces, find 

alternative modes of binding for two protein domains and in general detect the 

potential interacting proteins in a complex. 

 

The assembly method can be applied to a large number of protein assemblies when 

some structural information (determined or predicted) is available for the subunits. 

The ability to make a prediction depends on the interactions seen in solved 

structures but it can be extended with structures of protein-protein interactions 

determined by any other technique. The more information about the protein 

complex that is available, the better the prediction will be. 

1.3. Comments 

1.3.1 Domain issues 

In this work and the study of Inbar et al, protein domains are the basic structural 

units that are combined to form a prediction. Using domains is relevant, as they are 

elementary structural ‘blocks’ that constitute protein structures (Murzin et al. 1995; 
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Orengo et al. 1997). However, manipulating domains is not trivial. For instance, 

domain boundaries are sometimes difficult to determine, yet they are critical to the 

success of structure superposition attempts, or sometimes a single part of the 

protein is similar to several domains of different types, which makes the assignment 

ambiguous. 

 

Because of these limitations, one could consider that domains are not appropriate 

structural units for the prediction of such an assembly and that alternative structural 

units should be considered, for instance, complete structures. However, as most 

interactions involve protein domains, as domain structures re-occur more than 

complete protein structures and as domains are well characterized and classified, 

we consider that they are the most appropriate units to use.  

 

The SCOP classification of protein domains (Murzin et al. 1995) is central to this 

work: it is used for the assignment of a reference structure to each domain from the 

query, for building the database of interaction templates and for assigning domains 

before comparing two multi-domain structures. In our perspective, the SCOP 

classification suffers from two limitations: the database is not updated frequently 

(only once per year usually) and each update does not account for the most recent 

structures (in the worst case, structures solved during the last year and a half may 

be omitted, even in the automatically-determined SCOP pre-release). In addition, 

structural variations can be significant inside a single SCOP family (Suhrer et al. 

2007) and it is difficult to know what degree of structural similarities can be 

expected from two domains with the same SCOP classification. Thus, working with 

these categories contributes dramatically to the scarcity and obsolescence of 

interaction templates that can be used. Furthermore, assigning a SCOP family to a 

domain from sequence or structure is sometimes ambiguous and yet it is critical for 

the success of the approach, as the program will search amongst interaction 

templates involving domains of similar types only. 
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SCOP was used, as it is believed to be one of the most accurate classifications of 

domains. However, now that the program is prototyped, we can define better 

requirements for the classification of protein domains needed. The problem is not 

to use the most precise classification of protein domains, but a classification that 

fits best our need: it must be up-to-date in order to cover as many structures as 

possible, and it must provide good insights into the structural similarities between 

domains. It would be useful as well to be able to assign classifications directly from 

sequence.  

 

An FSSP-like approach seems the most convenient. Structures are automatically 

classified in a hierarchy that reflects their structural similarity and the content of the 

database is controlled and updated regularly. Expert-curated databases are too 

refined for our framework and delay the extraction of interaction templates from 

the most recent structures. For our method, good coverage of the domain space 

and correct estimates of the similarity between protein domains are more critical. 

Indeed, the accuracy of a template directly depends on the structural similarity and 

sequence identity between its domains and those in the query.  

 

Finally, assigning a single class to a protein domain remains difficult and prone to 

ambiguity. When modelling protein assemblies from the structure of subunits, there 

are two ways to circumvent such a problem: when domain types are assigned, one 

may bias the assignment to domains for which interaction templates are available, 

or, alternatively, one domain may be assigned several domains when its 

classification is ambiguous. Either of the two approaches would ensure that for a 

set of domains, all possible interaction templates are tried and that domain 

classification does not limit the set of orientations tried. 



 

 107 

1.3.2 Predicting the structure of complexes from binary 

interactions 

1.3.2.1 Prediction of binary interactions 

As seen above, it is very difficult to select a set of relevant interaction templates for 

the prediction of the orientation of two structures. In this work, three different 

approaches were assessed: (i) selection by comparing the sequences of the domains 

and the template domains; (ii) selection by similarity of domain structures; (iii) 

selection by InterPreTS score for resulting interface. Sequence identity and 

structural similarity performed similarly and helped to select good interaction 

templates. It could also be argued that both are quite similar, since there is a clear 

relationship between them (Lesk and Chothia 1980). However, InterPreTS did not 

perform well for the scoring of interfaces and was not used further.  

 

Despite the fact that comparing domain features from the query and the interaction 

template achieves good performance, an accurate method for the recognition of 

protein-protein interfaces seems intuitively more adapted to the problem. Several 

techniques can be used to achieve such an evaluation (Guerois et al. 2002; 

Verkhivker et al. 2002; Kortemme et al. 2004; Schymkowitz et al. 2005; Li et al. 

2006) and will be tested in the next version of the software. If such a method is 

found, it could be used to evaluate the quality of inter-chain interactions and help 

the selection of the best interaction templates; for the structure of intra-chain 

orientation, using domain-centered evaluation method prevails as the interfaces do 

not follow the same rules. 

 

However, the structures of the different components of a complex are rarely known 

and predicted structures often have to be used. With a high level of homology and 

therefore a good model for the components, the interface is likely to be preserved 

(Aloy et al. 2003) whereas for more difficult predictions the conformation of 
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residues at the interface is uncertain. Thus, “scoring” interfaces is even more 

difficult when the two interacting structures are not perfectly determined as in the 

case of protein models. This phenomenon has to be considered when choosing a 

method to evaluate interaction templates: the method used to evaluate interfaces 

has to be very robust to small changes in the orientation of residues at the interface.  

 

Moreover, predicting the structure of interactions by docking of two structures 

requires that the interfaces presented by each structure are accurately determined 

and that the complementarities between them can be evaluated. Consequently, the 

knowledge of the interface is critical in docking, whereas in homology modeling of 

interactions, the global structural features of the two domains are used for the 

prediction of the interaction and not the interface only. So the overall shape of a 

protein is sufficient for homology modeling of interactions but not for docking. This 

issue also illustrates the pertinence of using sequence identity and superposition 

score for the evaluation of the interaction template, because they accurately 

estimate the similarity between a domain and a possible template while not 

assuming that the interfaces are perfectly determined. 

 

Currently, the database of interaction templates is made of the collection of distinct 

interactions in each protein structure. Redundancies were purged within each 

structure but no comparisons or selections were made across structures. To 

increase the speed of the method, the set of interaction templates could be 

restricted. However, it must be done carefully to ensure that no information is lost 

in the process and from our point of view, it is not trivial.  

For instance, one could decide to compare all interactions of the same kind across 

structures using iRMSD and keep one representative for the whole set. The 

consequence would be that only one pair of interacting proteins is left to represent 

the whole set of similar orientations. Then when computing sequence identity or 

the structural similarity between a pair of structure from the query and the 

interaction template, these values will reflect only the match to the representative 
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selected and better matches with other similar structures will be discarded. Thus, 

comparing interaction templates against each other is not sufficient and more 

refined clusters of interaction templates have to be searched.  

1.3.2.2 Relevance of the final assembly 

Some drawbacks are inherent to the bottom-up strategy employed. When building 

protein assemblies by combining the orientations predicted for binary interactions 

with no record of previous orientations, the risk is to lose the higher-level structural 

features of the final assembly, i.e. structural features that encompass more than two 

domains. In this study, we illustrated this point by studying the ring structure of the 

exosome and the dimer of trimers structure of the CDK-cyclin complex (PDB code: 

1g3n). In these two cases, the naive application of the bottom-up approach 

consisting of the addition of structures with no memory of the orientations used 

previously in the construction is time consuming and generates many poor 

predictions. 

 

To tackle this re-occurring problem, we propose to use seeds consisting of sets of 

transformations used to predict the structure of several binary interactions in the 

structure. This approach favors the formation of higher levels of structural 

organization, as we illustrated in the case of the exosome where we could form the 

hexameric ring in an accurate fashion and generate a restricted set of predictions 

with all the possible variations of the ring, or in the case of the inhibited CDK-

cyclin complex for which we obtained few symmetrical predictions. The seed 

approach is easy to implement in the homology-based approach as interaction 

templates are picked from a finite set of orientations (the database of interaction 

templates) and pairs of domains where the same interaction templates can be used 

are easy to find. The method could still apply to docking approaches but needs 

some adaptation because the space of candidate interaction template is bigger and 

could be quasi infinite. 
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Finally, when the assembly process is complete, the prediction has to be evaluated. 

Currently, we evaluate the prediction by the score obtained for each prediction of 

interaction and ensure that all the subunits are connected and do not overlap. We 

count the number of interactions between elements in the prediction (to check how 

many indirect interactions were created) and optionally score the interfaces built 

using InterPreTS. The next versions of InterPreTS are indeed more accurate (Russell, 

personal communication). 

 

Other means to estimate the quality of the prediction can be considered: the 

interactions formed indirectly during construction can be scored and compared to 

the interactions from the database, or the energy of the overall structures can be 

computed and compared to the energies of the constituents separately.  

  

At the moment, the scoring of the complete predictions is imperfect: it remains 

difficult to score good assemblies better and to discriminate realistic structures from 

artifacts. We compensate for this lack by providing tools to efficiently explore large 

sets of predictions.  

1.3.2.3 Performance of the method 

As time goes by, more protein structures are solved and more interaction templates 

become available. At the same time, the quality of all the methods to predict the 

structure of protein-protein interactions improves and complexes will be known in 

more detail. Thus, we expect potential applications of the method to increase in the 

coming years and constraints to increase the success of the method to be more 

numerous. 

 

At the moment, the potential applications are quite limited and achieve mixed 

results. The task is complicated by the fact that we are integrating results from 

several error-prone studies. In the construction of the model for Cdc48/Ufd1/Npl4, 

for instance, we combined data from TAP-purification experiments and from 
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protein modeling. TAP-purification happened to reveal the superposition of two 

complexes (namely Cdc48-Npl4-Ufd1 and Cdc48-Shp1) and the modeling of Ufd1 

was hampered by difficulties in the alignment of target and template sequences. 

Obviously, combining results from different methods may increase the potential 

error, or the drawbacks can compensate each other and it may be possible to 

discard some errors from previous studies. In the case of Cdc48-Npl4-Ufd1, the 

structural study of the complex shows that the binding of Shp1 occurs at the same 

location and that the binding of Npl4-Ufd1 and Shp1 must be exclusive. 

2.  Comparison with combinatorial docking 

It is interesting to compare the method that we have developed to the other method 

for the prediction of assemblies developed by Inbar et al. The main difference lies 

in the prediction of the relative orientation of two structures: Inbar et al. use 

docking and we have used homology (Table 6). 

 

 Docking-based Homology-based 

Orientations explored Infinite  Finite – Limited to 

interaction of homologues  

Structuring element Interface Complete structure 

Comparison to native RMSD iRMSD across interactions 

Search method Heuristic search Kruskal adaptation 

Table 6: Differences between the docking-based approach and the homology-
based approach 
 

Docking enables one to search all possible orientations between two structures, 

which is an appealing feature. However, the search is computationally demanding 

and generates mostly false-positives. The correct answer, if present, might be lost in 

the noise. A compromise has to be found between the search space and the 

computing time required. Moreover, docking cannot be used currently to 

distinguish real interactions from artifacts and usually orientations are found for any 
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pair of proteins. In contrast, finding interacting homologues for a pair of domains 

happens seldom but the information provided is based on an existing interaction. 

 

Inbar et al. used the canonical root-mean-square deviation (RMSD) to assess 

structural differences between predicted assemblies and originals. RMSD is the 

measure used when comparing a real protein structure to a model (c.f. evaluation 

of structures predicted in CASP). We chose to evaluate the quality of a prediction 

by computing iRMSD between all the interacting pairs in the two structures and 

keep the highest value for a score. Basically, their scoring is based on the overall 

similarity of the structures, where ours compares the similarity of each interaction 

in the two structures. 

 

We think that an interaction-centric score is better than RMSD for the comparison 

of multi-domain assemblies predicted by arrangement of binary interactions 

(especially when comparing the model to the original structure during 

benchmarking). It does not seem to overreact to wrong interactions predicted: if 

one interaction is poorly predicted amongst many others, this interaction and this 

interaction only impacts the iRMSD score, whereas it may have a large effect on 

RMSD. This is because all the subunits bound to the domains involved in the 

interaction contribute to the final RMSD score (Figure 26). Still, when comparing 

two domains only, the two measures should be equivalent. 
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Figure 26: Comparison of RMSD and an iRMSD-based score as means to evaluate 
the difference between two assemblies 
First box: the effect of a bad prediction on RMSD and the iRMSD-based score. The 
former is penalized by the two displaced domains when only the bad interaction is 
detected by the latter. Second box: direct RMSD evaluation cannot account for 
swapped domains. 

 

In the case where a structure contains several distinct copies of the same subunits, 

computing RMSD of the two structures will not account for misplacement of the 

similar subunits, and they will all be treated the same. In contrast, our interaction-

based score carefully considers all the possible equivalences of domains from one 

structure to those in the other before it gives a final score.  

 

Thus, RMSD remains a good evaluation of the shape of the overall assembly. It 

seems more adapted to the method employed by Inbar et al, since their method is 

based on docking and since an obvious follow-up may use flexible docking. With 

flexible docking they will need an accurate estimation of the interactions predicted 
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between subunits and an estimate of the changes induced in the backbone of each 

subunit. RMSD measures both the differences in the interaction and the structural 

difference of each constituent. In our homology-based method, the flexibility of the 

subunits is not considered and the estimation of the quality of the interactions 

predicted is more important, thus using the highest value of iRMSD across 

interactions seems more appropriate here.  

3.  Other potential uses of protein interactions 

In this work, the structure of protein assemblies is predicted by combining several 

homology-based predictions of binary interactions, as we believe much can be 

learned from the structures already determined. Here, we present different benefits 

that can be derived from the knowledge of protein-protein interactions. 

3.1. Prediction of interfaces 

Usually, an experimentalist would compare his/her two proteins of interest to 

similar proteins that directly interact and for which the structure has been solved. 

Then the probable location of the interface can be derived by homology (Bork 

1989). Similarly, our method can contribute to the prediction of interfaces when 

there is no structure for a direct interaction between homologues and when it is 

possible to combine interactions to form new interactions. By considering 

complexes formed by several proteins, one multiplies the chances to be able to 

predict the conformation of an interaction.  

3.2. Limiting the number of structural determinations required 

for predicting assemblies 

When determining the structure of large protein assemblies, the program can be 

used to break the problem into pieces and to find subunits predicted to be in 

contact that lack structural information. If good homology to some other structures 

is detected, the structural biologist can focus on novel interactions and combine 

them with the known interactions using this program. 
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3.3. Spatial constraints 

As shown in this study, the spatial arrangement of protein structures is very 

constrained: not every structural arrangement of a protein chain is possible, the 

same is true for the structures of protein-protein interactions and possibly for 

protein assemblies. Knowing that structures are constrained provides a wealth of 

information. For instance, homology modeling, fold recognition and fragment-

based methods are based on the re-occurrence of some structural features 

(protein/domain structures in the first two cases, fragment structures in the third). 

Here, two possible applications of the re-occurrence of protein-protein interaction 

features are considered that can contribute to the determination of stoichiometry 

(the number of copies of each constituent of a complex). 

3.3.1 Repeating a pattern to form loops or helices 

Some structures contain several copies of the same subunit and in such cases, the 

study of sub-complexes is enough to obtain the complete structure. As we have 

seen, the assembly of symmetrical structures (multimers of multimers and protein 

rings) can be achieved with few data. The exosome for instance, consists of six 

chains and can be assembled with only two interaction templates (and appropriate 

constraints) when five interaction templates are theoretically needed. Amongst 

symmetrical assemblies, protein rings and macro-helices are the most repetitive; 

the difference being that rings close while helices can extend endlessly. 
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Figure 27: Prediction of the structure of circular or helical assemblies from binary 
interactions 
On top: three subunits arranges in a circle. The angle of the rotation from one 
subunit to the next is a fraction of 2π and all subunits are in the same plan. 

At the bottom: the angle of the rotation is not a multiple of 2π and the subunits 
cannot be arranged in a circle. However, it may be possible to arrange the subunits 
in a helical structures.  

 

3.3.2 Rings 

Every interaction does not form a circular assembly when repeated. For a ring to 

close, it is necessary (but not sufficient) that the rotation between two successive 
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subunits of the ring is a fraction of 2π (the rationale being that there is a finite 

number k of subunits placed evenly on the circle oriented in a regular manner). 

When these conditions are met (Figure 27), the subunit is moved back to its 

original orientation after applying the same transformation a finite number of times. 

In this case, the number of elements in the ring is a multiple of 2π. For instance, in 

the exosome, the subunit consists of two proteins (the exosome assembles in a 

trimer of dimers) and the rotation from one subunit to the next has an angle of 2π/3. 

Then the number of subunits in the ring is a multiple of 3 and we can try to repeat 

the transformation 3+1 times to see if the subunit is transformed back to its original 

position. Hence, the knowledge of the structure of the subunit and the 

transformation from one subunit to the next are sufficient to indicate the possibility 

to form a ring and the number of times the subunit is repeated in the ring. As a 

rough pre-study, we searched amongst all interactions between domains of the 

same type those that could form a ring and proved the interest of the approach by 

detecting accurately subunits that can be arranged in circles. This idea can 

obviously be applied to larger subunits to determine if they could form rings. 

3.3.3 Macro-helices 

To test whether multiple copies of a protein can arrange in a helix, one must know 

the structure of the subunit and compute the angle of the rotation from one subunit 

to the next one (all transformations that conserve distances in 3D-space can be 

decomposed in a rotation and a translation). Then, it is necessary to find how many 

repetitions k of the subunit are needed to cover more than 2π (Figure 27). If the 

assembly built by repeating the transformation 2k times is valid, one detects that it 

is possible to arrange two turns of the helix in a valid manner, suggesting that the 

helix is valid. 

 

Thus, with the help of some basic geometry principles, the structure of one subunit 

and the interaction between two subunits (only the interface matters) suffices to 
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recognize cyclic and helical macro-structures with obvious consequences on the 

stoichiometry of those assemblies. 

3.4. A glimpse at the stoichiometry of any complex 

The determination of protein complexes is usually limited to the list of its 

components. The stoichiometry is rarely known before the structure is solved. It is 

obvious that proteins are limited in the nature and number of contacts they can 

make: the number of interfaces per structure is limited and those interfaces are 

specific to few compatible binding partners. Basically, it means that given a list of 

proteins, not just any quantity of these proteins can form a structure: interfaces will 

be occupied and multiple copies of certain proteins can be required to achieve 

interactions.  

 

The same phenomenon occurs in chemistry: a molecule of water is composed of 

atoms of oxygen and hydrogen. This is the composition of a water molecule 

without information about the stoichiometry of atoms. In this case, oxygen has two 

interfaces available for hydrogen and hydrogen has one interface available for 

oxygen. Thus, the combination that best fills the interface consists of two hydrogens 

for one oxygen. A similar reasoning can be applied to protein structures: in this 

study we listed domains that form interactions (like the H-O bound in chemistry for 

example) and know the interactions that are seen simultaneously in a complex, 

which provides information about protein-protein interfaces (oxygen has two slots 

for an interaction with hydrogen in chemistry). This information can be used to 

predict the number of copies of each domain needed to saturate the interfaces and 

thus determine the stoichiometry of the complex. 

 

The knowledge of protein-protein interactions is crucial. As we showed in this 

work, it can be used for the prediction of the structure of protein assemblies and 

moreover it may apply to many other fields of research, in particular in the 
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determination of contacts between proteins or stoichiometry of proteins within 

complexes. 

 

4.  Conclusion 

In the present work, the structures of protein complexes were predicted by 

combining pairwise orientations of subunits predicted by homology. Finding the 

most accurate assembly from the mass of possible predictions is a difficult task, but 

some parameters can efficiently evaluate the quality of the predictions. Moreover, 

when the method is combined with interaction and structural data, the predictions 

are limited to those that are the most relevant. This approach is still at an early 

stage and many improvements are possible that will undoubtedly make the 

approach even more reliable.  
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