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ABSTRACT

In this work a model for the neuron network in the olfactory bulb is developed. The model includes
mitral and granule cells, modeled as point neurons with integrate-and-fire dynamics. The activity of
the network model is simulated and numerically analyzed using so-called equation-free techniques.
These techniques allow to investigate the macroscopic, coarse behavior of high dimensional systems
without deriving closed low-dimensional equations. The equation-free simulation tools are adapted
to the needs of investigating the coarse behavior of the olfactory bulb network model here: equation-
free Newton’s method, parameter studies and methods for traveling waves are introduced. By
interpreting the equation-free time-stepping scheme as an one-step method it is proven that the
numerical solution converges to the analytical solution as the length of the time step tends to zero.

Point neurons are sometimes not sufficient, i.e. the spatial expansion of a neuron has to
be considered to compare simulation results to results of imaging experiments. To simulate the
spatiotemporal activity of neurons we consider a finite-element approach based on the Hodgkin-
Huxley mechanism using adaptive grid control in space and time. For the adaptive grid control
a-posteriori error estimators are developed for passive signal propagation equations using a standard
duality based approach.

The presented simulation and analysis tools allow to investigate interesting biological questions.
Namely, how the time course of neuron dynamics and inhibitory activity influences the dynamics
of the neurons in the olfactory bulb. Using equation-free simulations for the point neuron model
the influence of network connectivity parameters on lateral inhibition and contrast enhancement
properties of the network are investigated. For odor discrimination tasks experimental results are
reproduced and long-term investigations show hysteresis effects, which stabilize the network output
with regard to small changes in the input. For these investigations the equation-free approach is
combined with numerical bifurcation analysis techniques. Finally, it is possible to determine when
traveling waves occur in the network and we are able to give explanations why traveling waves are
only seen in teleosts like zebrafish, not in mammals by using equation-free methods for traveling

waves on an discrete point neuron model.
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Z'USAMMENFASSUNG

In dieser Arbeit wird ein Modell fiir das Neuronennetzwerk im olfaktorischen Bulbus entwickelt.
Das Modell beinhaltet Mitral- und Kornerzellen, die als Punktneuronen mit “Integrate-and-Fire”
Dynamik modelliert werden. Die Aktivitdt des Netzwerkmodels wird mit so genannten “Equation-
free” Techniken simuliert und numerisch analysiert. “Equation-free” Techniken sind Simulations-
werkzeuge um das coarse Verhalten von hochdimensionalen Systemen zu untersuchen, ohne dafiir
geschlossene niederdimensionale Gleichungen herleiten zu miissen. Diese Techniken werden fiir die
Untersuchung des Netzwerkmodels vom olfaktorischen Bulbus weiterentwickelt: “Equation-free”
Newton Verfahren, Parameterstudien und Methoden zur Untersuchung von Traveling Waves wer-
den eingefiihrt. Indem das “Equation-free” Zeitschrittverfahren als Einschrittverfahren interpretiert
wird, ist es moglich ein Konvergenztheorem zu beweisen.

Punktneuronen sind u.U. nicht ausreichend wenn z.B. Simulationsergebnisse mit Imagingexpe-
rimenten verglichen werden sollen. Hier muss die rdumliche Ausdehnung der Neuronen beriicksich-
tigt werden. Um die Aktivitit einzelner Neuronen zu simulieren wird ein Finite-Elemente Ansatz
basierend auf dem Hodgkin-Huxley Mechanismus beschrieben. Bei diesem Ansatz wird adapti-
ve Gittersteuerung in Ort und Zeit benutzt. Dafiir werden a-posteriori Fehlerschétzer fiir passive
Signalausbreitung in Nervenzellen entwickelt.

Die hier prisentierten Simulations- und Analysewerkzeuge erméglichen es interessante biolo-
gische Fragestellungen zu untersuchen. Der Einflufs des zeitlichen Ablaufs von Neuronendynamik
und inhibitorischer Aktivitdt auf die Nervenzelldynamik im olfaktorischen Bulbus werden unter-
sucht. Mittels der “Equation-free” Simulationsmethodik fiir das Punktneuronenmodell kann der
Einfluff von Netzwerkparametern auf die laterale Inhibition und auf Kontrastverstarkungsverhal-
ten untersucht werden. Fiir Geruchsunterscheidungsaufgaben kénnen experimentelle Ergebnisse
reproduziert und Langzeituntersuchungen durchgefiihrt werden. Letztere zeigen Hystereseeffekte,
die zu einer Stabilisierung des Netzwerkoutputs fiir kleine Inputstérungen fithren. Fiir diese Un-
tersuchung wird der “Equation-free” Ansatz mit Techniken der numerischen Bifurkationsanalyse
kombiniert. Schlieflich kann angegeben werden, wann Traveling Waves im diskreten Netzwerkmo-
del entstehen, und es ist moglich eine Erklarung zu geben, warum Wellen in Experimenten mit

Knochenfischen entstehen, nicht aber bei Experimenten mit Sdugetieren.
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Chapter 1

INTRODUCTION

There is no certainty in science where not one
of the mathematical sciences can be applied.

LEONARDO DA VINCI

Sensory systems, i.e. the part of the nervous system responsible for processing sensory
information, consist of receptors, neural pathways and the parts of the brain involved in
sensory perception [84]. In the commonly recognized sensory systems like vision, hearing,
somatic sensation, taste, and olfaction the sensory pathways underlie several main prin-
ciples. Receptors detect the stimuli in terms of type or location, intensity, and duration.
After the detection of the stimuli, the information is processed in networks of neurons
which detect, discriminate, and convert large numbers of different inputs. In the human
olfactory system, for example, there are about 200 to 350 different types of olfactory re-
ceptors but we are able to smell between 4,000 and 10,000 different odors [59]. One of the
main principles in all sensory systems is to minimize the number of needed receptors, while
still being able to detect all stimuli that will be present during the life time of an organ-
ism. The common way of achieving this is to apply a quite small number of receptors and
use downstream neural mechanisms to process the incoming signal. For instance, contrast
enhancement is considered as a general property of all sensory systems [112, 124]. This
results in the ability to discriminate inputs that are close together in input space [55], see
Figure 1.1.

As an example for sensory processing the olfactory system is considered in this work. On
one hand, it is recognized as being an important model system for brain function [102, 106].
On the other hand, olfaction is of central importance for most species, as was pointed out
by the Nobel Assembly when the Nobel Prize in Physiology or Medicine was awarded
to Richard Axel and Linda Buck in 2004 for their discoveries of “odor receptors and the

organization of the olfactory system” [20].
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Input

Output

Figure 1.1: Inhibition in a network of neurons causes contrast enhancement: a typical effect
in sensory systems. Neurons ng, ny and ns are strongly excited (dark grey), neurons ny and
ng are weakly excited (light grey) from the input profile, which represents input from two
nearby stimuli. For simplicity, it 1s assumed that only strong excitation mediates inhibition
(red arrows). Neuron mg and ng are inhibited by Iy and Iy; ny is inhibited by Iy and I3,
while ng and ns are only inhibited by Io or Is. This leads to a sharpened output profile.

As a model system the olfactory system is attractive due to the easy control of the sen-
sory input, the experimental accessibility in animal studies and the relatively well defined
input for the network of neurons responsible for processing the sensory information. In
recent years a large body of experimental data has been accumulated for species ranging
from insects to humans. These point to some similarities in olfactory signal processing
[44, 45, 68]. The neuron network responsible for signal processing in olfaction is located in
the so-called olfactory bulb. The olfactory bulb network consists of several different types
of neurons that convey olfactory information to higher order olfactory structures and to
other brain systems. The activity is introduced to the network from receptor neurons
and results in spatiotemporal structures uniquely determined for each odor. Also much is
known about the dynamics of the olfactory bulb network, less is known about its connec-
tivity properties. Hence, the modeling, simulation and analysis of the dynamics of such
networks with respect to changing connectivity parameters is the main aim of this work.

To get a deeper understanding of the biological phenomena involved in sensory pro-
cessing we develop a mathematical model of the olfactory bulb neuron network, and use
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sophisticated simulation and analysis techniques to investigate its behavior. Early works of
Freeman (43| suggested that the spatiotemporal activity patterns of the olfactory bulb can
be interpreted within the framework of dynamical systems theory. It turns out that this is
indeed possible by using equation-free methods, such as developed in [48, 61, 62]. These
techniques allow to analyze the coarse behavior of systems described on a microscopic,
fine level, without deriving closed equations for the macroscopic dynamic. An example for
this situation is the model of the neuron network in the olfactory bulb. The microscopic
equations are for example a discretization of coupled Hodgkin-Huxley equations or an
integrate-and-fire network of point neurons. Principal and independent component anal-
ysis of calcium-sensitive dye imaging experiments in the olfactory bulb of rats show that
the network activity can be described with a small number of variables [95]. We show that
coarse descriptions of the network dynamics are possible by interpreting the PCA /ICA
variables as coarse quantities.

This work consists of three main theoretical parts. First, we develop a model of the
neuron network involved in sensory processing in the olfactory pathway. Based on published
biological data we introduce a model with point neurons. For their dynamics we use the so-
called Spike Response model, an integrate-and-fire model with refractoriness and external
input. This approach allows to simulate and analyze relatively large neuron networks. We
implement the model using the high-level programming language MATLAB [114].

Admittedly, point neurons are not sufficient for all applications. Therefore, we show in
the second main part of this work a possibility to perform simulations of neuron dynamics
for neurons where the spatial expansion is taken into account. We introduce error based
adaptive grid control in space and time for these applications. To be able to apply adaptive
grid control, we develop a-posteriori error estimators for the dynamics of branched nerve
equations using standard energy estimates.

The third part addresses so-called equation-free simulation and analysis techniques
which enables us to apply numerical bifurcation analysis for the olfactory network model.
We show, to our knowledge for the first time, under which conditions the equation-free
time-stepping is convergent and introduce several generalizations which are necessary for
the application in investigations of network models, i.e. equation-free Newton’s method,
parameter studies and equation-free methods for investigating the dynamics of traveling
waves. “Equation-free” maybe a misleading term: it does not mean that no model equations
are involved in the simulations. It means, that model equations are available on a fine,
microscopic level. These equations in general are formulated in a high dimensional space.
One assumes that the dynamics of the whole system is described only by coarse macroscopic
variables in a low dimensional space. Instead of deriving closed equations on this low-

dimensional space, one only evaluates the coarse variables numerically. This motivates
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the term “equation-free” simulation tools as it was introduced from I.G. Kevrekidis and
coworkers [62].

These three parts are finally brought together for simulations and numerical analysis
of the behavior of single cells and the whole network. First, we look at single cells with
spatial expansion and investigate the influence of synaptic activity on the dynamics of the
cell. Second, we investigate a network of point neurons: we validate our network model
by comparing it to known results in the context of lateral inhibition, odor discrimination
and traveling waves. By investigating the time course of the network dynamics by using
results from PCA /ICA of experimental data, we can, on one hand, show that equation-free
computations are reasonably applicable to simulate and analyze the behavior of our neuron
network model of the olfactory bulb network. On the other hand, we can use this setting
to show the limits of the equation-free method.

The equation-free method allows to perform parameter studies, i.e. we are able to
investigate how the connection parameters of the olfactory bulb network influence its dy-
namics. In simulations of lateral inhibition and contrast enhancement it turns out, that the
parameter with the most influence is the so-called radius of interaction. It describes how
large the spatial distance between two neurons can be in order to still form connections.
In the context of odor discrimination we perform a numerical bifurcation analysis of the
system. We are able to detect hysteresis and adaptation processes. For traveling waves we
can give a hypothesis why they are only detected experimentally in the olfactory system
of zebrafish but not in mammals.

A.s the main results of this work we can highlight the following points:

e We perform successful parameter studies of the network dynamics in the olfactory
bulb using a network model with a large number of neurons and realistic network
parameters.

e Numerical solutions of the model reflect experimental results.

e Additionally, we are able to give explanations for biological results, i.e. for traveling
waves simulated on a grid model of point neurons, which could not be found in
experiments yet.

These points are achieved by combining biological knowledge and mathematical modeling
to simulations and numerical analysis.
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; be conclude this introduction with short summaries of each chapter of this thesis.

CHAPTER 2: THE NEURON NETWORK OF THE OLFACTORY BULB

In this chapter we give the biological background of the neuron network of the olfactory
bulb (OB) underlaying our network model. With this knowledge we are able to state
a model of point neurons with Spike Response model (SRM) dynamics. In addition, a
model for neuron dynamics based on the Hodgkin-Huxley equations coupled to the cable
equation is introduced in order to simulate the behavior of single cells of the OB network
as their spatial expansion is taken into account. This chapter ends with a description of
the abilities of the network and a summary of earlier simulation approaches as they can
be found in the literature.

CHAPTER 3: ADAPTIVE COMPUTATIONS FOR NERVE EQUATIONS

To get realistic insights into the dynamics of neurons by simulations, it might be not
sufficient to consider networks of point neurons. In the frame-work of finite-element meth-
ods one is able to simulate the dynamics of neurons with spatial expansion based on the
Hodgkin-Huxley model. In this context, we introduce error based control for adaptive grids
in space and time. Error estimators used for this approach are developed here.

CHAPTER 4: EQUATION-FREE SIMULATIONS: INTRODUCTION & THEORY

In order to not only simulate but also analyze the behavior of neuron networks with respect
to changes in the connection parameters we apply equation-free simulation techniques. In
Chapter 4, we adapt them to the needs of the analysis of the OB network behavior and
give an overview of the literature available in this field. Additionally, we interpret the
equation-free methods as one-step methods and prove a convergence theorem.

CHAPTER 5: ADAPTIVE COMPUTATIONS FOR MITRAL CELLS

This chapter is devoted to the simulation of a single mitral cell with spatial expansion
using adaptive computations. First, we investigate the performance properties of the adap-
tive methods introduced in Chapter 3. Second, we look how synapses on the secondary
dendrites of mitral cells, one of the main cell types in the OB, influence the signal processing
in the cells.

CHAPTER 6: LATERAL INHIBITION AND CONTRAST ENHANCEMENT

;be use the equation-free methods developed in Chapter 4 to simulate the SRM net-
work of the OB introduced in Chapter 2. First we test these approach with regard to
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its performance properties for simulating the time course of the spiking dynamics of the
olfactory bulb network model. Then we validate our SRM-network of the OB by showing
that it reproduces experimental results of lateral inhibition qualitatively. We investigate
how these properties are influenced by the connection parameters in the network. Finally,
we investigate contrast enhancement properties of the network with equation-free analysis

techniques.

CHAPTER 7: ODOR DISCRIMINATION

In this chapter we investigate the ability of the network model to distinguish binary mix-
tures of odors, depending on the ratio of the mixtures. It turns out that experimental
results can be reproduced qualitatively. Furthermore, we can predict different discrim-
ination abilities depending on the connection parameters. We see that hysteresis and
adaptation effects occur in the network in the case of systems were the stimulus, i.e. the
input, changes during the long-term simulations.

CHAPTER 8: TRAVELING WAVES

In experiments with zebrafish, one can find traveling-wave-like dynamics of the olfactory
bulb neuron network. We investigate in this chapter under which conditions traveling waves
emerge in our point neuron network model and how their appearance is influenced by the
structure and the connectivity of the network. It turns out that, on one hand, the shape
of the boundaries of the network has influence on the shape of the waves. On the other
hand, we can show that the radius of interaction is the main parameter which influences
the traveling waves. Biological interpretation of these results conclude this chapter.

CHAPTER 9: CONCLUSIONS AND OUTLOOK

W close this thesis with drawing the main conclusions with regard to our findings, on one
hand, for the used simulation and analysis techniques, and on the other hand we interpret,
where it is possible, our results biologically and suggest new experimental settings where
they could be tested.



Chapter 2

THE NEURON NETWORK OF THE
OLFACTORY BULB

Smell is a potent wizard that
transports you across thousand of miles
and all the years you have lived.

HELEN KELLER

In this chapter we give the basic biological facts of the neuron network of the
olfactory bulb (OB), underlying our model for the mitral and granule cell network: a
model of point neurons with Spike Response dynamics. In addition, neuron dynamics
modeled by the Hodgkin-Huxley equations coupled to the cable equation is introduced
in order to simulate the behavior of single cells of the OB network. This chapter
ends with a description of the abilities of the OB network and a summary of earlier

simulation approaches as they can be found in the literature.

2.1 THE OLFACTORY SYSTEM

In the last two decades the olfactory system, and especially the network of neurons in
the olfactory bulb (see Figure 2.1), has become a model neuronal system. It is worth
investigating not only for its unique interests but also for the general principles and shared
mechanisms that may lead to a deeper understanding of the main principles of brain
functions [106]. The olfactory system is an attractive model system from the biological
point of view, due to its easy control of the sensory input and the experimental accessibility

7
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in animal studies. From the view point of a modeler, it is interesting because of the
relatively small number of neurons in the network and the relatively well defined input for
the network. Less is known about the network connectivity in the olfactory bulb network,
and modeling and simulation can help to make predictions. Hence, it is interesting to
investigate the olfactory system with interdisciplinary approaches connecting biological
knowledge and mathematical modeling, simulation, and analysis techniques to get a deeper
understanding of its functionality.

Figure 2.1: The olfactory bulb (OB). (a) Nerves of the septum of the human nose, right side.
The olfactory bulb is visible at the upper left. Reproduction of a lithograph plate from the
20th U.S. edition of Gray’s Anatomy of the Human Body, originally published in 1918 [53].
(b) A coronal section through the main olfactory bulb of an adult male mouse [120]. The
colors indicate the three main anatomical layers: blue - glomerular layer, red - external
plexiform layer and mitral cell layer, green - internal plexiform and granule cell layer. The
scale of this picture is ventral to dorsal about 2mm.

In the olfactory system, see Figure 2.1 (a), odor molecules are transduced by the ol-
factory receptor neurons (ORNs), which are first-order neurons located in the olfactory
epithelium within the nasal cavity [112]|. There are between 70 different types of ORNs in
zebrafish [8] and 200-350 different types in mammals |86, where every type is able to detect
a certain type of odor molecules [40]. A mathematical model for the calcium oscillations
in the cilia of ORNs was developed in [94]. The different types of ORNs are distributed
unsorted across the olfactory epithelium. ORN axons form the olfactory nerve and synap-
tically terminate in the olfactory bulb (OB). The region where these axons project is called
the glomerular layer of the OB. Axons from the same receptor type converge into the same
glomerulus [106]. That means a sorting process takes place during the axonal growth
from the epithelium to the OB. This process was modeled and analyzed in [57]. In the
olfactory bulb itself one finds a network of several different types of neurons that conveys
olfactory information to higher order olfactory structures and to other brain systems, see
Figure 2.1 (b). The activity introduced to the network by the glomeruli results in spa-
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tiotemporal structures uniquely determined for each odor. The modeling, simulation and
analysis of the dynamics of this network is the main aim of this work. We will describe
the morphology of the OB network in detail in the next sections.

In this chapter we introduce a biologically detailed model of the olfactory bulb. In
Section 2.2 the main building blocks of the network are introduced and their connection
properties are stated in Section 2.3. Section 2.4 gives an overview about models for the
neuron dynamics, including the classical Hodgkin-Huxley model and an integrate-and-fire
model: the Spike Response model. Section 2.5 gives the main results of this chapter: we
introduce our model for the neuron network of the olfactory bulb. In Section 2.6 we give an
overview about the abilities of the neuron network, including contrast enhancement, odor
discrimination and its capability to generate traveling waves. We conclude this chapter
with an overview over earlier simulation approaches for the neuron network in the olfactory
bulb in Section 2.7.

2.2 MAIN BUILDING BLOCKS OF THE OLFACTORY BULB NET-
WORK

In this section we describe the main building blocks of the neuron network in the olfactory
bulb (OB). The given data, if not mentioned otherwise, are taken from rats. The olfactory
bulb has a characteristic laminar organization. The major neuron types in the OB are
mitral cells (MCs), tufted cells, periglomerular (PG) cells, granule cells (GCs), and short-
axon cells. These cells are arranged in layers [90, 107|, see Figure 2.2. The first layer is
the glomerular layer (GL), where mainly PG cells and some short axon cells occur. The
input from the ORNs is given to the network here. The axons of the ORNs converge into
glomeruli and form synaptic connections to the mitral cells. The next layer is the external
plexiform layer (EPL) where one finds the tufted cells. In the following mitral cell layer
(MCL) the somata of the mitral cells are located and some granule cells can be found
here, too. But the layer where most of the granule cells are found is the granule cell layer
(GCL). The internal plexiform layer (IPL) is located in between the MCL and the GCL,
separating these two layers.

2.2.1 CELL TYPES INCLUDED IN THE MODEL

“fe will see that the mitral and granule cells are the fundamental building blocks of the
OB network. We can neglect the short-axon cells because they are presented in small
numbers compared with other cell types. That means their role may be small and it is
almost nothing known about their physiology [30]. The PG cells are involved in lateral
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Glomerulus layer
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Figure 2.2: Scheme of the olfactory bulb network, formed by mitral cells (MCs), tufted cells,

periglomerular (PG) cells, and granule cells (GCs). These are arranged in layers, from top

to bottom: glomerular layer (GL), where the azons of the ORNs converge into glomeruli
and form synaptic connections to the mitral cells, the external plexiform layer (EPL), and
the mitral cell layer (MCL). The last two layers are the internal plexiform layer (IPL) and
the granule cell layer (GCL). This scheme is based on a figure from [90].

inhibition at the level of the glomeruli [59]. Less is known about their physiology than
about mitral and granule cells. In evolutionary terms PG cells appeared late, i.e. they are
not presented at all in fish and are most numerous in mammals [35]. This suggests that
PG cells provide a refinement of the bulb’s fundamental computations which are supposed
to be performed by the mitral, tufted and granule cells. Hence, we do not include them in
our model.

Mitral and tufted cells are both output neurons of the bulb. The main differences
are in size, orthodomic response properties, axonal projection patterns to central olfactory
areas, distribution of secondary dendrites, and local axon collaterals. The differences in
distribution of secondary dendrites, together with the different dendrite branching patterns
of granule cell subtypes cause less communication between mitral and tufted cell popula-
tions than within them. This yields differences in axonal projection patters and hence
a functional separation of mitral and tufted cell populations [30]. Therefore, it can be
assumed that tufted cells do not have to be modeled explicitly to gain basic insights into
the olfactory bulb functions [82]. Hence, the cell types included in our model are mitral

and granule cells.
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2.2.2 MORPHOLOGY OF MITRAL CELLS

Based on the descriptions found in the literature we give the main properties of mitral
cells in this subsection. For an overview, a schematic picture of a mitral cell is shown in
Figure 2.3 (a). The somata of the cells have a transversal diameter of about 20um and a
vertical diameter of about 30um [106]. The cell somata lie in the mitral cell layer of the
olfactory bulb. They have primary and secondary dendrites and an axon [89]. The primary
dendrites extend more or less radially across the plexiform layer and enter the glomerular
formations in the superficial layer of the OB [35]. In the glomerular formation they branch
repeatedly. The distance from the origin of the cell bodies to the point where they enter
the glomerulie is about 200pum to 300pm [106]. The five to seven secondary dendrites
pass obliquely through the external plexiform layer, becoming more closely parallel to
the layer of mitral cells. These dendrites branch occasionally and can be seen to become
thinner. They have a length between 500um and 1000um [89] with a diameter of 1um
to 6pum [106]. In mammals the length of these dendrites comes up to 25% to 33% of the
bulb’s circumference [107]. The axon of the mitral cells consists of the axon hill and the
mitral segment with a length of about 15 — 20um. Then it suddenly narrows and becomes
myelinated.

In Chapter 5 we will focus on the simulation of the dynamics of single mitral cells. The
mitral cells form synapses with granule cells. We will especially investigate how synaptic
activity on the mitral cell’s dendrites influences the dynamics of the cell.

2.2.3 MORPHOLOGY OF GRANULE CELLS

W describe the morphology of the second cell type we consider, the granule cells, based
on published data here. See Figure 2.3 (b) for a schematic picture of a granule cell. The
perikarya of the granule cells, i.e. the part of the cell containing the nucleus, is round to
fusiform and very small. Its average diameter is 6m to 10um [90]. A long, stout processes
arise from the perikarya, beginning thick and is invariably directed towards the mitral cell
and external plexiform layers with a constant diameter of 1um to 3um and a length of
50um to 200pum [81, 106]. At the level of the mitral cells it branches repeatedly and then
ramifies among the mitral cell dendrites in the external plexiform layer [90, 107]. On the
dendrites of the granule cells one finds spine-like appendages. From the deep side of the
perikarya one to four dendrites extend towards the deepest layers of the bulb.

Granule cells appear to be electronically short [17, 106]; thus depolarization of any part
of the cell spreads relatively effectively to all parts of the cell. Granule cells can produce

spikes in response to activation by mitral cells.

2.2.4 PASSIVE PROPERTIES OF THE MITRAL AND GRANULE CELLS

In [17] one finds the passive properties of the MCs and the GCs of the mammalian OB.
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(a) (b) Flattened vesicles

Tuft: diameter 30 — 150um Dendritic arbor:
area of 100 — 200um

electronic length 0.4

— >
Primary dendrite: —
length 200 — 300um
diameter 2 — 10um
Spine-like
appendages
Cell body: diameter 15 — 30um Peripheral process:
constant diameter of 1 — 3um
Secondary /basal dendrites: ‘ length 50 — 200pum
length 500 — 1000um, i.e. ‘
25 — 33% of the bulb’s circumference
diameter 1 — 6um
Perikarya:

diameter 6 — 10um

Axon

Deep dendrites

Figure 2.3: Main building blocks of the OB network. (a) Mitral cell receives the input
to OB network at its tuft, and signal processing is performed at the secondary dendrites.
The axons project the network output to deeper brain regions. Mitral cells are reciprocally
connected through granule cells, shown in (b). Granule cells are a type of inhibitory nerve
cells without azxon.

They are reproduced in the following table.

MC GC
Membrane Capacity 1.0 (%‘; 1.0 C"WI;
Membrane Resistance | 100 kQem? | 120 kQem?
Axial Resistance 200 Qem 50 Qem

2.3 THE MITRAL-GRANULE CELL NETWORK

In this section we state the known connection properties of the network formed in the OB
by mitral and granule cells. In total we have in mammals approximately 5 x 10* mitral
and 5 x 10° granule cells [30]. In zebrafish we have about 600 to 700 MCs and about 5000
to 6000 GCs [107].
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(a) Glomeruli (b) (c)

Mitral Cell

Odor 1 Odor 2

Figure 2.4: Organization and activity of the OB. (a) Schematic figure of the olfactory bulb
with the inhibitory connections between mitral (MC) and granule cells. Shading in grey
shows the level of activity of a glomerulus. (b) and (c) show schematically how the activity
of the olfactory network results in an odor map. Shading indicates again the activity. For
two different odors it is possible that there are parts where the map is similar, while others

are clearly distinguishable.

The mitral-granule cell network is very dense, as the following consideration shows
[107]: about 25 mitral cells, with approximately 150 secondary dendrites, project into a
single glomerulus. If the secondary dendrites extend radially outward equally there is one
dendrite per 2.4 degrees. This means the distance between two dendrites in a distance
from 2mm of the center is about 80um. Hence, each granule cell could be connected to
dendrites of several mitral cells from each glomerulus.

Mitral cell dendrites of mammals extend up to one-third of the length of the olfactory
bulb and can, therefore, form synapses with many granule cells and influence the reaction
to the input of distant glomeruli [107]. This process may be dependent on dendritic
excitability, because simple cable properties cannot account for passive transmissions of
information at such a distance [112].

This situation is quite different in teleosts like, for example, in zebrafish [46]. They
have two types of mitral cells: unidendritic and multidendritic. The latter are comparable
to the MCs of mammals with respect to the scope of their dendrites. But these cells are in
the minority (about 31% of the MCs of a zebrafish). The majority are unidendritic MCs
which have a tuft at the end of their single dendrite with a diameter of about 20um. This
comes to a scope of only 10% of the OB [22]. We will see in Chapter 8 that this anatomical
difference between mammals and teleosts may give an explanation why traveling-waves-like
dynamics appears only in experiments with zebrafish, not with mammals.

2.3.1 SYNAPSES

In the network of the OB there exist only synapses between granule and mitral cells, not
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between cells of the same type [91]. The synapses are reciprocal and can be found on all
secondary dendrites of the mitral cells. In the olfactory bulb we have 10* synapses per
mitral cells. Secondary mitral cell dendrites are characterized by a high synaptic density,
while primary dendrites have only few or no synapses [89, 104]. The synapses between
granule and mitral cells have GABA j receptors, while the mitral-granule cell synapses
have AMPA and NMDA receptors [32]. The density of these synaptic interactions suggests
their fundamental importance to the functionality of the bulb [107].

2.3.2 NETWORK INPUT AND OUTPUT

The input to the network is given from the glomeruli. About 25 mitral cells receive input
from a single glomerulus [107]. Mitral cells associated with the same glomerulus receive
similar afferent input from olfactory receptor neuron axons and show more similar activity
patterns than mitral cells associated with different glomeruli [7]. This picture may be
different if intraglomerula inhibition is strong. However, since not much in known about
the activity on the glomerular level, we do not include the intraglomerula inhibition in
our model. Our model receives input from the glomeruli assuming that the intraglomerula
inhibition is included in the input signal. The knowledge of the spatial and temporal
characteristics of lateral inhibition and lateral excitation on the mitral and granule cell
level is critical for determining how the olfactory bulb circuits shape the fast and slow
patterns (see Figure 2.4, right part) of odor-evoked activity seen in the mitral cell network
[118] and is, therefore, included in the model.

The spiking activity of the MCs form the output of the OB network. The GCs are
responsible for the signal processing within the network. They do not contribute to the
output [107]. Nevertheless, in imaging experiments with voltage-sensitive dyes the dynam-
ics of the GCs are depicted as well [44], hence we will investigate their spiking activity in
cases where we compare the results to such experiments, too.

2.4 NEURON DYNAMICS

The spatiotemporal dynamics of the single neurons forming the neuron network is explored
in this section. There exist several models for the neuron dynamics in the literature: differ-
ent integrate-and-fire models and reaction-diffusion models like the models of Hodgkin and
Huxley [56] or of Fitz-Hugh and Nagumo [83]. We will use the Spike Response model [50],
which is described in Section 2.4.1 for our network model with point neurons.

All integrate-and-fire models are simplifications. If one wants to simulate neurons with
their spatial expansion, the standard model is the one of Hodgkin and Huxley. It describes
how action potentials in neurons are initiated and propagated [56]. It is a set of nonlinear
ordinary differential equations that approximates the electrical characteristics of excitable
cells coupled to the cable equation modeling signal propagation. Alan Lloyd Hodgkin and
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Andrew Huxley described the model in 1952 to explain the ionic mechanisms underlying
the initiation and propagation of action potentials in the squid giant axon. They received
the 1963 Nobel Prize in Physiology or Medicine for this work. In Chapter 5, we simulate
the dynamics of single mitral cells with spatial expansion using the model of Hodgkin and
Huxley, introduced in Section 2.4.2.

The Spike Response model (SRM) is a generalization of the leaky integrate-and-fire
model [50]. In the SRM the dynamics of the neurons depends among others on the time
since the last output spike. The model describes the membrane potential at time ¢ and
uses a threshold condition to determine when a spike occurs. The explicit dependence of
the membrane potential upon the last output spike allows to interpret the refractoriness
of a neuron as a reduced responsiveness after an output spike which results in an increase
in threshold after firing. Simple phenomenological spiking neuron models like the SRM
are highly popular for studies of neural coding, memory, and network dynamics. It is not
difficult to implement them and they need less computation time and memory then more
sophisticated neuron models, hence, larger networks of neurons can be simulated, see e.g.
the review [39].

2.4.1 SPIKE RESPONSE MODEL

The Spike Response model (SRM) is a model for point neurons including refractoriness
and external input. The introduction of this model follows [41, 50]. The numerical values
of the model parameters used in simulations can be found in Appendix A.2. The dynamics
of SRM networks takes place in discrete time steps. The neurons are considered as point
neurons, numbered with ¢ € {1,...,n}, and characterized by a spiking variable S;(t) €
{0,1} and the membrane potential h;(t) € R. The time the signal needs to travel across
the dendrites from neuron ¢ to neuron j is modeled by a delay A;-if”. The strength of the
interactions between single neurons, i.e. the synaptic strength, is described by the matrix
J € R™™. A positive entry J;; stands for an excitatory synapse between neuron i and
neuron j, while a negative entry represents an inhibitory synapse.

The dynamics of the model is based on firing events of single neurons, so-called spikes.
Spikes are stereotyped events which are assumed to be fully characterized by the firing
time. The spike width equals a basic time step At. If a spike occurs at neuron ¢ at time ¢
the spiking variable S;(t) is equal one, otherwise it is zero. Neuron ¢ will trigger a spike if
its membrane potential crosses a threshold € from below. This behavior is modeled by the
so-called threshold condition

1, if h(t) > 0, %i(1) > 0,
0, else.

Si(t + At) = { (2.1)

The membrane potential is modeled with four terms in the SRM

hi(t) = BV (8) + hy =R (t) + heH (L) + B (). (2.2)
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We have a look at the four components of the membrane potential (2.2) starting with the
synaptic contribution

N [e%s)
() =Y Ty e(T)S;(t — 7 — A, (2:3)
=1

j =0

with e(7) = 7—7;2 exp(—7) and the synaptic parameter 7.. Here, the influence of the spiking
activity of neuron j on neuron i is modeled by the sum of previous activities of neuron
J weighted by the synaptic strength J;;. The summands themselves are weighted by the
function e(7), which decreases the influence of the synaptic activity as it lies back in
time. This way of modeling the synaptic contribution allows to integrate over the last
pre-synaptic activities, as it is also done in neurons [51].

The self-inhibitory contribution hf*mh(t) is responsible for setting the neuron potential
back to its resting potential after firing. It reads

Tmax

B = ()it~ — AT,
7=0

with a delay A$~"" after which the self-inhibition is activated and 7(7) = 9inp exp(—%),
Ninh < 0. As in the case of the synaptic contribution, the spiking activity of the past
influences the self-inhibition. The influence is again decreased as the spiking activity lies
back in time. Hence, not only the last spiking events of a neuron but all events in [t —Tynaz, t]
influence its state. This effect can also be found experimentally [51].

Additionally, some external input h¢**(¢) can be included and the refractoriness of the
neuron is taken into account by

! 0, else.

Bt (1) { —R, it <t<t/ 47 R>1

tzf stands for the firing time, when the last spike was triggered for neuron i, 7.y is the
refractory time of the neurons and R is the amount the membrane potential is decreased
after a spike occurred.

A spiking neuron locking theorem can be proven for the SRM [52]. It shows when co-
herent oscillations are asymptotically stable in a spatially homogeneous network of spiking
neurons. This was generalized for a model of the locust olfactory system, the antennal
lobe, in [110].

2.4.2 HODGKIN-HUXLEY MODEL

Besides the point neurons, where the dynamics is modeled by the SRM we consider
also neurons that are resolved in space. We give here a basic description of the dynamics
happening at the membrane of a nerve cell. For more details we refer, for example, to
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the book [36]. It is known that neuronal signals travel along the cell membrane in the
form of a local voltage difference across the membrane. In the resting state of a neuron
the cytoplasm, i.e. the cellular fluid inside the neuron, contains an ionic composition that
makes the cell interior slightly negative in potential with respect to the outside. The
difference is about —50mV. As an action potential is triggered the potential difference
is raised to about —30mV to —20mV at some site of the membrane and the following
sequence of events occurs:

1. Sodium channels open, letting Na™' ions enter the cell interior. This causes the
membrane potential to depolarize further.

2. After a slight delay, the potassium channels open, letting K leave the cell. This
restores the original polarization of the membrane, and further causes an overshoot
of the negative rest potential.

3. The sodium channels close in response to the decrease in the potential difference.

4. Adjacent to a position that has experienced these events, the potential difference
exceeds the threshold level necessary to set step one in motion. This process repeats,
leading to spatial conduction of the spike-like signal. The action potential can thus
be transported down the length of the axon without attenuation or change in shape,
i.e. it forms a traveling wave.

Alan Lloyd Hodgkin and Andrew Huxley described a model for this process underlying
the initiation and propagation of action potentials in the squid giant axon [56]. We will
state their model here, for more details see e.g. [19, 36]. Let @ C R be an interval
modeling a piece of an axon of a neuron and 7" = [0, T¢,4] a time interval of interest. We
have the membrane potential v : € x T — R and the concentrations ¢, : @ x T — R
for k € C = {Na,K,L}. cnyo and cx denote the sodium and potassium concentrations,
while ¢, gives rise to a leakage current. Then the system of the Hodgkin-Huxley equations
coupled to the cable equation reads

ov o M
Yo T ox (Dmax) - %Ih(”’ck) = Li(v,1), (2.4)
% = op(v)(1 =) = Br(v)eg, VEeC. (2.5)

The system (2.4-2.5) consists of a parabolic partial differential equation, the cable equation
coupled to a reaction system. The currents I, and I are given by

Ing(v,c) = gNac‘})’VacL(v — UNa), (2.6)
Ix(v,e) = grecx(v—vk), (2.7)
In(v,e) = gr(v—wr) (2.8)

)
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and

The current (2.9) models the synaptic input and is not part of the original Hodgkin-Huxley
system. Nevertheless, we use this part to model the activity in networks of neurons [14].
The functions o and S in the reaction system are given by

ang(v) = 0.1exp((7gi§52)5/10)71 Bna(v) = 4exp(—v/28)
ag(v) = 0.01exp((7;ﬁg)0/10)71 Bna(v) = 0.125exp(—v/80)
ar(v) = 0.07exp(—v/20) Br(v) = exp((varl?)O)/lO)Jrl'

In the system (2.4-2.5) the potential v, currents Iy, and time ¢ are measured in mV, pA
and ms respectively. Cjs denotes the capacity of the neuron membrane. D,, is given
by 1/R; where R; is the intracellular resistivity. The constants gy, and gx are maxi-
mal conductances of the membrane for these ions, while g7, is the leak conductance that
corresponds to the passive membrane resistivity Rys. vna, Vi, and vy denote that part
of the resting potential that is due to the concentrations of sodium, potassium, and all
other mobile species. ggyn(t) is the time-dependent conductance given by a function that
is specific for an individual synapse type, and vy, is the reversal potential for the synapse.

The model given here describes the active propagation of the action potential along
the axon of the neuron. In the dendritic part passive signal propagation is often sufficient,
which is modeled by the cable equation above without the reaction part involving the
concentrations ¢, k € C.

2.5 OLFACTORY BULB NETWORK MODEL

After the considerations of the biological basics and the dynamics of single neurons, we
are able to state our model for the neuron network in the OB. The values for the parameters
used in simulations are stated in Appendix A.2.

We model the network as a planar, two-dimensional network with an uniform distri-
bution of n,, mitral cells. This makes sense, since the mitral cells are arranged in almost
a monolayer [107|. We arrange n, granule cells in the same manner in a plane. For the
positions of the granule cells, analyses of inter-cell distances show that there were no con-
sistent variations in the bulb [86]. For the dynamics of the single mitral and granule cells
we use the Spike Response model introduced in Section 2.4.1. The distance between the
MCs and the GCs are mapped to the model by delays in the signal traveling times.

The MCs get input from the glomeruli they form synapses with. To model this in the
point neuron case, the external input hez(t) of the MCs is set to non-zero values, compare
Equation (2.2).

The connectivity of the neurons in the model network has to be modeled in order to
map the synaptic structure of the OB network. We assume that the probability of a mitral
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cell forming a synapse at a given point depends only on the radial distance from the soma
and not on the direction [30]. This is an approximation since the dendrites project in
definite directions from the soma. But dendrites of the GCs branch repeatedly, so this
approximation appears reasonable. The probability of forming a synapse is zero outside
a certain radius determined by the length of the mitral cell secondary dendrites. We call
this maximal radius re.., the radius of excitation, since MCs excite the GCs they form
synapses with. It is chosen as a parameter in our model.

As mentioned above, the secondary dendrites of the mitral cells and the granule cell
peripheral dendrites are reciprocally connected by spike-triggered synapses. This is mod-
eled with the connection matrix J = (.J;;) € R" 1" x R"™m "9 compare Equation (2.3),
where n,, is the number of MCs and n, is the number of GCs. We define J as

Jexe, MC ¢ and GC j,d;j < Tege
Jij = —Jinh exp(——lr?i;j ), GC i and MC j,dij < rege (2.10)
0 else.

with positive constants r;,p, Jinh, and Jeze, and d;; denoting the euclidean distance between
neuron ¢ and neuron j. The strength of the inhibitory synapses in the OB, i.e. between
GCs and MCs, is about 2.5nS [71]. To our knowledge nothing is known about the strength
of the exhibitory synapses of the system. The ideas behind choosing J in the way described
in Equation (2.10) are:

e Inside the radius of excitation 7., each MC and each GC are assumed to form an
excitatory synapse. The strength of theses synapses does not depend on the distance
to the soma, i.e. equals J.ze.

e The excitatory synapses always come in pairs with inhibitory synapses. For the
signal coming back from the GCs to the MCs, cable theory has to be taken into
account, since passive signal propagation occurs on the dendrites. We model this by
an exponential decay of the synaptic strength defined by the strength of the inhibitory
synapses Jinp. The radius r;,, determines the strength of the signal decay due to
the conductivity of the MC’s secondary dendrites.

In our simulations we will investigate the network behavior depending on the connection
parameters Tege, Tinh, Jewe, and Jip. We conclude this section by a short summary of the
OB network model in Statement 2.5.1.

STATEMENT 2.5.1 (MODEL OF THE OLFACTORY BULB NETWORK) We model the
olfactory network including n,, mitral cells and ng granule cells as point neurons with
Spike Response dynamic described with Equations (2.1) and (2.2). The connectivity of
the network with its reciprocal connections between the different cell types is modeled by



20 SIMULATIONS OF THE OLFACTORY BULB NETWORK

the choice of the synaptic strength matriz J = (J;;) € R"*"e x R"m*"s described in
Equation (2.10). Since not much is known about the connections properties in the OB
network, this model depends on the following connection parameters: the radii of interaction
Teze aNd Tin and the strength of the synapses Jege and Jip -

2.6 ABILITIES OF THE NETWORK

Distributed patterns of activity in response to chemical stimuli are transmitted to the
OB via the axons of olfactory sensory neurons which terminate in the glomeruli of its
input layer. The OB is believed to filter and transform these incoming sensory data,
performing normalization, contrast enhancement, and similar operations before conveying
the processed olfactory information to several different secondary structures via mitral
cells [26]. In this section we give a short overview of the processing of olfactory signals in

the OB.

2.6.1 LATERAL INHIBITION AND CONTRAST ENHANCEMENT

The term contrast enhancement was first introduced for horizontal cells in the retina [112].
They mediate lateral inhibition and thereby sharpen the contour of the image transmitted
to the brain [63]. In the OB stimulus information is represented in the network by patterns
of activity across many neurons. A mitral cell responses to excitations from the glomeruli
on a time scale of hundreds of milliseconds [118|. Tuning profiles of mitral cells change over
time, becoming progressively more different from the initial profile [44]. The correlation
of different tuning profiles of the network compared to the initial one decreases steeply for
about 800ms and more slowly thereafter. Late tuning profiles are not simply sharpened
versions of the initial ones, but easier distinguishable odor maps. This process is called
contrast enhancement and can be found in the OB |7, 27, 80, 101, 112, 117, 124].

It is assumed that the lateral inhibition, a well known principle in neural systems
conveying sensory information is responsible for the contrast enhancement properties of the
OB. In Chapter 6 we test our model and show that it is able to reproduce lateral inhibition
and contrast enhancement, and we investigate how changes in the connectivity parameters
of the network influence its lateral inhibition and contrast enhancement properties.

2.6.2 ODOR DISCRIMINATION

Behavior experiments show that rats need more time to distinguish binary odor mixtures
the more similar the mixtures are [1]. We reproduce this result with our model and
investigate how the connection parameters of the network influence its abilities to perform

odor discrimination tasks in Chapter 7.
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2.6.3 TRAVELING WAVES

Besides the well known phenomena of contrast enhancement and odor discrimination
other phenomena are found in experiments. In [44] imaging experiments with voltage-
sensitive dyes show traveling-wave-like structures in the dynamics of the olfactory bulb
of zebrafish. These experiments measure the activity of the membranes of the cells. The
experiments show, that traveling waves emerge in the olfactory bulb of zebrafish in oscilla-
tory manner and that the propagation velocity and direction is nearly odor independent.
In Chapter 8 we investigate which network connectivity properties are needed for the ex-
istence of traveling waves, and show how the shape of the network boundaries influences
the shape of the traveling waves.

2.7 EARLIER SIMULATION APPROACHES

A.t the end of this chapter we give a short overview of simulation approaches for the
olfactory bulb network as they can be found in the literature. For more details we refer to
the review articles by Cleland and Linster [26] or de Souza and Antunes [31].

There are several publications dealing with the modeling and simulation of single cells.
To our knowledge, the most detailed model presently available, a compartmental model
for mitral and granule cells, was introduced in [17]. Based on published geometrical data,
the passive electrical properties were explored by comparing the model output with intra-
cellular potential from hyperpolarizing current injection experiments. The active channels
were modeled based on the Hodgkin-Huxley formalism.

Another class of publications are dealing with models describing the whole network in
the OB. In [27] non-topological contrast enhancement was investigated with a simple com-
partment model for small networks (10 glomeruli with one PG cell and one MC connected
to each glomerulus). In [37] a mathematical model for describing dynamic phenomena in
the olfactory bulb is presented. In a very simple network with point neurons (11 MCs
and 11 GCs) the nature of attractors and the bifurcation sequences in terms of the lateral
connections strength in the MC layer are studied numerically. A model for MCs and GCs
as point neurons was developed in [69, 70]. Here, the olfactory bulb and the olfactory
cortex are modeled in a feedback loop. The model of the olfactory bulb consist of 50 MCs
and 50 GCs. This model was modified by [85], where an oscillatory model of the OB is
given. In [110] a model of the antennal lobe (AL) of locusts is introduced. The AL is the
equivalent to the OB in insects. Using the SRM a network with 200 cells was simulated.

In [28, 29, 30| a biologically realistic model of the mammalian OB with mitral and
granule cells connected by dendrodendritic synapses was introduced. This model is one of
the most detailed, realistic, and throughly investigated models of the mammalian olfactory
bulb published. The single cells were modeled by four-compartment models which are
simplifications of the models introduced in [17|. The task of synchronization of firing
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patterns were discussed using this model. In networks with 25 to 100 mitral cells and
144 to 14,400 granule cells, several strategies were applied to reduce the complexity of the
model to be able to perform numerical simulations. One possibility is to reduce the number
of synapses and consider only a few hundred synapses per mitral cell. Another possibility
is to look at a single glomerulus only. The number of cells that have to be taken into
account are reduced by a factor of about 1,000, and if only one glomerulus is simulated the
problem of outside inputs in the network is removed (except for background activity). A
further strategy is to simulate only one mitral cell per glomerulus. The idea this strategy
is based on is that mitral cells innervating the same glomerulus tend to have synchronized
firing [104]. We will follow this strategy sometimes in the case of simulations with point
neurons.

In this work we simulate large networks with up to 900 mitral and 8100 granule cells.
This enables us to investigate the effects of network interactions more realistic than in small
networks. Additionally, we are able to investigate the network dynamics with respect
to changing connection parameters. Since not much about the connection properties is
detectable in experiments this approach allows to get insights in the functionality of the
olfactory bulb.

2.8 CONCLUSIONS OF CHAPTER 2: NEURON NETWORK OF
THE OLFACTORY BULB

In this chapter, we introduced a model for the neuron network of the olfactory bulb. It is
based on Spike Response dynamics for point neurons. The structure of the SRM is adapted
to the biological facts known about the OB network. Choosing a model with point neurons
allows us to simulate relatively large networks and get insights how the dynamics of the
network depends on its connectivity.

Even if a lot is known about the morphology of the cells in the network, less is estab-
lished about their connectivity. At this point we can use numerical simulation and analysis
to investigate which parameter ranges for the connectivity parameters are feasible. The
connectivity parameters are the radii of interaction r¢;. and r;,; and the synaptic strength
Jeze and Jipp.



Chapter 3

ADAPTIVE COMPUTATIONS FOR
BRANCHED NERVE EQUATIONS

From error to error one discovers
the entire truth.

SIGMUND FREUD

To get realistic insights in the dynamics of neuron networks by simulations, it
might be not sufficient to consider networks of point neurons. In the framework of
finite-element methods one is able to simulate the dynamics of neurons considering
their spatial expansion based on the Hodgkin-Huxley model. For passive signal prop-
agation, we develop error-based control for adaptive grids in space and time. Error
estimators used for this approach are derived by applying standard energy estimate

methods in this chapter.

In order to simulate the dynamics of large networks of neurons with their spatial
expansion with high accuracy, we use an accurate and efficient numerical method to solve
the Hodgkin-Huxley equations coupled to the cable equation, see Equation (2.4-2.5). This
method was developed in the Simulation of Large Systems Department at the University of
Stuttgart. It is based on a vertex-centered finite-element discretization in space and second
order operator splitting methods in time. It is implemented in NeuroDUNE, a module of
the toolbox DUNE (Distributed and Unified Numerics Environment) [11, 12, 13], which
was developed at the Universities of Stuttgart, Freiburg, Miinster, Heidelberg and at the
FU Berlin.

23
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NeuroDUNE solves signal propagation equations as they occur in the Hodgkin-Huxley
model for neuron dynamics numerically on an adaptive grid [14, 67]. The partial differential
equations of the Hodgkin-Huxley model are defined on a continuous part of space and a
continuous time-interval. To solve them numerically space, time, and the model itself have
to be discretized. This is done by error estimator based grid control, in order to discretize
the space by a non-equidistant grid refined only where it is necessary, coarsened where
it is possible. The chosen time-stepping scheme is Forward-Euler or Crank-Nicholson on
non-equidistant time intervals, and the model is discretized by a finite-element method [38].

To be able to apply adaptive grid control in space and time, we develop a-posteriori
error estimates, i.e. measures for the computation error based only on the numerical
solution itself. Furthermore, we use these estimates to refine our spatial and time grids, if
it is necessary, and use a coarse grid wherever it is possible. This approach makes sense,
since the activity of neurons is local, i.e. around synapses or propagating action potentials,
and there are areas where no activity takes place. It turns out that with this strategy we
are, on one hand, able to control the computational error of the simulations and, on the
other hand, we are able to speed up the simulations. This will be shown in Chapter 5.

This chapter is organized as follows: In the next section the considered geometry and
model equations are introduced. In Section 3.2 it is shown how the model equations are
discretized to be able to solve them numerically. This is done on non-equidistant grids,
which are the results of local grid refinement. The main principles of the approach of
local grid refinement are introduced in Section 3.3. To be able to determine where and
when the grids have to be refined and when they can be coarsened, one needs measures
for the inaccuracies done on a given grid and during a certain time step. These measures,
i.e. a-posteriori error estimates for the considered model equations, are developed, and an
implementation for an adaptive grid control is presented in Section 3.4.

3.1 PASSIVE SIGNAL PROPAGATION FOR NEURONS

In this section we shortly review the considered problems. We examine the equation for
passive signal propagation on Q C R? with given initial and boundary values (for details
see e.g. [19] and Section 2.4.2), which read

CnOv — Oy (D 0yv) + g(z,t)v = f(z,t)  in Qx[0,7]

v(x,t) = vP(z), xe€TpcCo, (3.1)
—(Dm8)w = J(z,t), x€ly=00\TIp, '
v(x,0) 00 ().

Hereby, v denotes the potential of the membrane, D,, is given as %, where R; is the
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Figure 3.1: Simulation area representing the geometry of a neuron with synaptic in- and
output. Black dots indicate the nodes of the coarsest possible discretization. Note that a
grid point is located at each intersection, at the synapses and at the boundary points of the
area of the neuron 2.

intracellular resistivity and C), represents the membrane capacity. The functions g and f
are given by

g(l‘,t) :gL+gs(xat)) f(‘rvt) :gs($,t)’l)3 +9LUL

where g¢(x,t) stands for the synaptic input, gz, is the leakage constant and v, vy, are rest
potentials. © C R? denotes the domain of the considered neuron, which is for numerical
simulations described by a graph, i.e. vertices V and edges £ C V x V with exactly
one path from one vertex to any other (see Figure 3.1 for an example). For the process of
numerically solving Equation (3.1), the derivatives with respect to x, d,, are approximated
by finite differences in the direction of the single edges of the graph, i.e. separate on each
discretization element, after the finite-element discretization as described in Section 3.2.
The single edges can be seen as discrete structures combined with boundary conditions.
Analytically, we embed the one dimensional manifold describing the neuron structure in R3
and interpret the derivatives with respect to x as directional derivatives along the edges.
On the boundary 092 = I'p U 'y we have Dirichlet boundary points on I'p and Neuman
points on I'yy. [0,77] is the time interval of interest. J; denotes the time derivative.
Passive signal propagation as described in Equation (3.1) is based on the Hodgkin-
Huxley equations (2.4-2.5) by omitting the reaction part involving the concentrations cg,
k € {Na,K,L}. Tt is often sufficient to investigate the dynamics of the dendritic part of
a neuron where passive signal propagation takes place. If one considers parts of a neuron
with active signal propagation, the complete Hodgkin-Huxley equations coupled with the
cable equation (2.4-2.5) have to be used. All ideas presented here can be generalized for
that case. The finite-volume discretization and the time stepping scheme for the complete
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Hodgkin-Huxley model implemented in NeuroDUNE are introduced in [14]. A second order
operator splitting method for the reaction and the diffusion part of the Hodgkin-Huxley
equations is introduced there.

3.2 FINITE-ELEMENT DISCRETIZATION ON NON-EQUIDISTANT
(GRIDS

To solve Equation (3.1) numerically, it has to be discretized. The basis of the discrete
formulation is a variational formulation of Equation (3.1). Let H}(Q) = {u € HY(Q) :
u(x) = 0Vz € T'p} denote the Sobolev space of functions that are zero at the Dirichlet
boundary points. Then the variational formulation of (3.1) reads:

(COpv,w) + a(v,w) = l(w;t) Vw € HY(Q), t >0, Vjy—p = 0, (3.2)

with (v, w) = [, uv dz denoting the Lo-inner product and

a(v,w) = (Dp0yv,0,w) + (gu,w), (3.3)
wst) = ()= 3 J(hw(o).
zel'y

Here, we assumed homogeneous Dirichlet boundary conditions v” = 0. Non-homogenous
Dirichlet boundary conditions can be considered as well (see any text book on the finite-
element method, e. g. [38]).

Following the “method of lines” approach [54] we discretize (3.2) in space by choosing
a finite-dimensional subspace S, C H{ (), e.g. piecewise linear and continuous functions.
The computational grid used for Sy, does not have to be equidistant. The resulting problem
is a set of ordinary differential equations (ODEs) or differential-algebraic equations (DAES).
Hence, we get

(Cm(‘)tvmw) + a(vh, w) = l(w; t) Yw € Sy, t >0, (Uh)|t:O = IhUO, (35)

with I;, denoting the nodal interpolation. The function vy (z,t) is continuous in time but
discrete in space. Choosing a basis @), = {¢1,...,¢n,} of S, we can write vp(z,t) =
Soik Vi(t)¢i(z). Inserting this into (3.5) results in a system of ordinary differential equa-
tions for the coefficient functions Vj(t).

Finally, we discretize the time interval [0, 7] into possibly non-equidistant intervals

0=t"<tl<...<thF<...<tV =T, =k kL

and replace dyvp, with a difference quotient. This results in a sequence of fully discrete

problems for U,]’i € Sp:
v) = 0, (3.6)

1 1 _
ﬁ(cmvﬁ,w)m(vﬁ,w) = z(w;t)+T—k(cmv’,j L w), (3.7)
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Figure 3.2:  Hierarchical grid refinement for a domain Q = (0,1). (a) The grid is con-
structed as follows: start with an intentionally coarse grid (level j = 0). Then, subdivide
each element into two elements of half size each, resulting in the grid on level j = 1. On
this level, only three of the four elements are refined (level j = 2), and then another two
out of siz elements are refined to obtain grid level j = 3. The leaf grid is indicated by bold
lines. (b) shows the global nodal basis function for the different levels of the refined grid.

for all w € Sy, and k > 0. This is equivalent to the implicit Euler method for the system
of ordinary equations. Inserting a basis representation vi(z) = Y VF¢;(z) into (3.7)
results in a system of linear equations for the vector of coefficients V*. This method is

second order in space and first order in time even on non-equidistant spatial grids [14].

3.3 LOCAL GRID REFINEMENT

An important step in the adaptive computations for nerve equations is constructing a
non-equidistant grid. This is done by hierarchical grid generation. Figure 3.2 illustrates
this process which is introduced briefly here. For more details see e.g. [15] and references
within. The initial grid is intentionally coarse. In the case of the discretization of neurons
only the branching points, the synapses and the boundary points need to be resolved. In
the example shown in Figure 3.2 the initial grid consists of two line elements and three
nodes, and we then recursively subdivide individual elements into smaller elements, which
leads to a tree structure. The elements on a given grid level j form a subdomain of 2. The
finest grid in the grid hierarchy is called leaf grid. It is formed by all elements which are
the leaves of their refinement tree. In Figure 3.2 the elements of the leaf grid are indicated
by bold lines.

After the grid is formed one defines the finite dimensional subspace Sy, of H{ () on
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the leaf grid formed by np elements ;, 1 <1i < np. The €; are defined as

Q; ={z;i} U{(zg,zp)|a =1V b=1i}, (3.8)
i.e. the region formed by all intervals incident to node ¢ and including the node itself.

For this discretization we approximate the potential v(x,t) to get the discrete problem
(3.6-3.7) by linear basis functions

np
vn(z,t) =D Vi(t)di(x), (3.9)
i=1
with
_ lz—ai]] ,
0 else
where || || denotes the euclidean distance in R?. In Figure 3.2 (b) the linear basis functions

corresponding to the grid hierarchy in Figure 3.2 (a) are shown to illustrate this approach.
This leads to Statement 3.3.1.

STATEMENT 3.3.1 (NON-UNIFORM DISCRETIZATIONS) Simulating the dynamics of
neurons with their spatial expansion described by the passive signal propagation equation,
see Equation (3.1), can be done by using finite-element discretization techniques. These
techniques allow to use non-uniform grids and time steps.

3.4 A-POSTERIORI ESTIMATES & ADAPTIVE GRID CONTROL

A.s result of the discretization in space and time as described in Sections 3.2 and 3.3
one obtains the discrete problem (3.6-3.7) which describes the behavior of the neuron
dynamics on non-equidistant finite grids. During these approximations inaccuracies occur,
i.e. there is a difference between the unknown analytical solution of Equation (3.1) and
the numerical solution of Equation (3.7) for given initial and boundary values. This error
depends on the structure of the problem, the grids, the discretization method and the time
stepping scheme chosen. For a given problem, it is a-priori not known how large this error
is. However, we want to control the error by refining the grids wherever it is necessary
and to speed up the computations by coarsen them whenever it is possible. Therefore, we
search for measures for the error based on the numerical solution on a given discretization
of the domain 2 and during a certain time step. Because we only evaluate the numerical
solution, these measures are called a-posteriori error estimates [4, 9, 92].



ADAPTIVE COMPUTATIONS FOR BRANCHED NERVE EQUATIONS 29

3.4.1 SPATIAL GRID CONTROL

“]e control the spatial and the time grid independently. Therefore, we introduce a mea-
sure for the difference between the analytical solution of (3.1) and the numerical solution
of (3.5) in each time step. We define the spatial error as e® = |[v(tF) — vF|. We will see
later, which norm is used here. In the following an estimate for this error is derived by a
standard duality based approach [38] using energy estimates for Equation (3.5). Following
the arguments in [121] we show that the residual is a good approximation for the error.
For the development of the error estimator, we will simplify Equation (3.1) by neglecting
the input from the synapses, i.e. g(z,t) =0, for all (x,t) € Qx[0,T]. This is feasible, since
the synapses are always demanded to be resolved in the grid, and we will see later that the
control of the time steps takes the synaptic activity into account. Furthermore, we consider
Dy, C,, and gy, to be constants. This is possible, since the error estimator will be evaluated
separately on each control volume. Additionally, we set for lucidity D,, = Cy, = g, = 1.
And finally, we consider only zero boundary conditions. Hence, the considered equations
read
ov—Av+v = f in Q x [0,7],
v = 0, zon I x [0,T], (3.11)
v(-,0) = %(z) in Q.

For the derivation of the error estimator we look at a single edge of the neuron (compare
Figure 3.1). Hence, no branching points occur. This can be done since the error estimator
will be evaluated locally, i.e. on each element, in order to decide which elements have to be
refined, respectively, can be coarsened. In the analytical derivation of the error estimator
one piece of the neuron is not seen as an one-dimensional object, but as a domain Q C R?
having a Lipschitz boundary I". This enables us to apply the standard techniques of
analysis. The final time T is arbitrary, but kept fixed in the following. For simplicity, the
right-hand side f is assumed to be measurable and square-integrable on Q x (0, 7] and to
be continuous with respect to time. vy is assumed to be measurable and square-integrable
on 2.

Analogously, as for the complete equation for passive signal processing, we can rewrite
Equation (3.11) in its variational formulation and discretize the solution in space and time
like in Equation (3.6-3.7).

We associate with the sequence of numerical solutions of (3.6-3.7) v,’j the function vy,
which is piecewise affine on the time intervals [t*, #**1], 0 < k < (N — 1), and equals v} at
times tk, 0<Ek<N.

Before deriving the error estimator, we state the notation used for function spaces and
norms, for more details, see e.g. [5]. By H"(Q), n € No, L*(Q) = H°(Q) we denote the
usual Sobolev and Lebesgue spaces equipped with the standard norms || - [l = [| - [ g~ (q)-
As usual HE(Q) denotes the space of all functions in H'(2) with vanishing trace on the
boundary I'. HE(Q) is equipped with the norm |- |; = ||V - [jop. The dual space of H}(f2)
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is denoted by H~1(€) and the corresponding duality pairing is (-, ).

Furthermore, we denote for any separable Banach space V' and any two numbers a <
b by L%*(a,b;V) and L*®(a,b;V) the spaces of measurable functions u defined on (a,b)
with values in V' such that the function ¢ — ||u(-,t)||y is square integrable, respectively,
essentially bounded. These spaces are equipped with the norms

1
b 2
lull ooy = ( / |ru<-,t>||2vdt>

lull oo (apsv) = €ss.8upgepepllul, )|y
As in [121] we introduce the abbreviation
X(a,b) = {u € L*(a,b; Hy () N L>®(a,b; L*()) : dyu € L*(a,b; H ()}

and equip X (a,b) with its graph norm

1
Hu”X(a,b) = {HuH%w(a,b;LQ(Q)) + HUH%%a’b;Hé(Q)) + ‘|atu”%2(a,b;H*1(Q))}2 :

By using these notations, the weak form of Problem (3.11) reads, find v € L?(a, b; H}(Q))
such that 9w € L%(a,b; H-1(Q)), v(-,0) = vo and for almost every ¢t € (0,7) and all
w e H(Q)

(O, w) + (Vo, Vw) + (v,w) = (f,w). (3.12)

We are now able to use v} to define the residual R(v}) € L?(a,b; H~1(£2)) by
(R(vp,), w) = (f,w) = (O, w) — (Vug, dpw) — (vg, w), (3.13)

for all w € HE(Q). Adding the variational formulation (3.12) with the analytical solution

v and choosing w = (v — v]) (-, t), we get
(@(v =), v —wvp) = (V(v = p), V(v = vp)) = (v = vp, 0 = o) = (R(vp,),v = vp) . (3.14)

Following the arguments given in [121], we get by choosing ¢ € (0, tx]
1d

(0:(v = vi) (- 1), (v = vp,) (-, 1)) 5%\\(1)—071)(%)!\3, (3.15)
(V@ =v)(1), V(o —=vp) (1) = [(v =) B, (3.16)
(v =v) (1), (0 =vp)(5 1) = [l —=o])( BB (3.17)

In addition, we can estimate

(R(vg) (-5 1), (v = vg) (-5 1)

IN

IREEC Bl 0~ ) 1)l
SIREDC IR,

3l =)Dl (318)

IN
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Using (3.15-3.18), we get

d T T T T
piChe VRGO + 11w = vR) GO + 2010 = o)) D1 < IR )12
We integrate from zero to ¢t and get

(0(t) =op)(O1F —  llvo — Tovollg
/ o =D olids + [ o=l
<NRO@D) G0 Z 20,4001 ()
Since t € (0,t*] was arbitrary, this yields
o = W2 sy < N0 — Tow0l2 + IREOR) 122001 (3.19)
and
o = 9722 gzt < 100 = Zovol? + I ROE) (0 0st1-1 a0 (3.20)
Additionally, we have
lo— UZH%2(Q¢I€;L2(Q)) < [lvo — Tovollg + HR(UDH%Q(O,t,c;Hfl(Q))- (3.21)
On the other hand, starting again with Equation (3.14) we get
18: (v = vp)[-1 < IR 121 + llo = o 1 + 2[lv = of [13.

Taking the square of this inequality and, as above, integrating from zero to t, and inserting
the estimates from above gives

1010 = V)12 ottty < 2o — Tovol3 + 4RO oo vy (3:22)
Combining the estimates (3.19-3.22) we proved the following theorem.

THEOREM 3.4.1 (ERROR BOUND) The error in solving Equation (3.11) can be bounded
from above by

1

lv =7 1% 0.ty < {Cleo — Towollg + CQ\|R(Uﬁ)\\%2(o,tk;f1—1(m)}2 : (3.23)
with constants Cq, Cs.

Equation (3.23) means, that the error in the computation can be estimated by evaluating
the residual defined in (3.13). Note that Theorem 3.4.1 is a direct generalization of the
error bound derived in [121]. There it was also shown, that the residual is not only a bound
but is equivalent to the error [[v — v] || x(o)-
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We use the knowledge developed in Theorem 3.4.1 to introduce a heuristic a-posteriori
error estimator for the spatial error e® = |[v(t*) — vF|| x(0,#) for branched nerve equations.
Since the residual is a bound for ||v — v} || X (0,tk), We evaluate the residual by evaluating it
for the numerical solution v}’f on each control element. We have

n, 1/2
ef <C <Z nf) (3.24)
i=1

with

i = hill f = (Crn0f o), — 82(Dimyof) + 9”5)”2,@': (3.25)
omitting the contribution of the start values, since we can not control them during the
computations. | - ||2; denotes the euclidean norm evaluated on the control element €;.
In the implementation one has to take care whether a linear control element or a control
element with a branching point is considered. h; denotes the length of the control elements.
For branched elements, we evaluate Equation (3.25) on each linear part of the element
separately. Both, the analytic and the numerical solution fulfill the Neuman boundary
conditions. Therefore, there are no boundary terms present in Equation (3.24). There are
no terms resulting from the jumps at the boundaries of the discretization elements due to
the fact that neurons are modeled by one-dimensional elements. dfvj, is an approximation
of the time derivative, meaning the difference quotient is used. By observing 05 (D,,0,v1) =

0 for linear elements one evaluates 7; as

Lok

1 = hillgs(vs — va) + go(vr — vn) — Con— (VF — v~ ") [l24- (3.26)

—k
T
We use the error estimate (3.24) and (3.26) to implement an adaptive grid control for
the spatial grid. In each time step we compute an estimate of the local error on each
element of the grid by evaluating Equation (3.26) only on the considered element. Using

this information the following steps are applied:

1. If the sum of the local errors (which is a measure for the global error) is not below
an user tolerance TOL, the 7y;,, percent of the grid elements with the largest errors
are refined until we reach the finest refinement maxj.,.; level allowed.

2. The Teourse percent with the smallest errors are coarsened until we reach the coarsest
refinement min;.,.; level allowed.

This leads to Statement 3.4.2.

STATEMENT 3.4.2 (ADAPTIVE GRID CONTROL) By using the result of Theorem 3.4.1
the error estimator for the spatial error is defined by Equation (3.24) and (3.26). The grid
control strategy used here achieves that each element in the grid contributes about the same
local error to the global error.



ADAPTIVE COMPUTATIONS FOR BRANCHED NERVE EQUATIONS 33

3.4.2 TIME STEP SiZE CONTROL

In addition to the spatial grid control we derive a new step length for the next time step,
depending on a measure for the error done in the previous time step. This error is called
temporal error E}. In each time step system (3.7) is solved for the vector of coefficients
V*. Hence, we use a simple error indicator based on them:

El ~ ||VF - VF Y. (3.27)

||.|lcc denotes the maximum norm of a given vector in R™~.
In the same manner as in the spatial grid control the right hand side of Equation (3.27)
is used as measure for the temporal error E} to implement a control for the length of the

next time step dt® =tk — tF=1.

1. If the time error (3.27) is larger than a bound Tlarge We decrease the next time step,
but not below a minimum time step dt™® (e.g. dtfT! = 0.5dt*).

2. If the time error (3.27) is smaller than a bound 7,4 We increase the next time step,
but not above a maximal time step dt™®* (e.g. dtFT! = 2dt*).

We chose 7jgrge > CTsmair, ¢ sufficiently large, to get an interval where the time step is not
changed at all.

STATEMENT 3.4.3 (ADAPTIVE TIME STEP CONTROL) By measuring the computa-
tion error of the previous time step as in Equation (3.27) an adaptive control of the size
of the simulation time steps is applied.

In addition to the grid control described above, another point which has to be taken into
account in the step size control are the synaptic activities. To resolve them an additional
step size control is implemented. The synaptic activity is always triggered from outside, i.e.
the time point when each synapse starts its activity is given. This point is always used as
a point of the time grid t*, and the length of the next time step is adapted afterwards due
to the dynamical properties of the synapses, dt = dt%¥", if the actual time step computed
by the error control is larger than dt*¥". Otherwise, the computed step size is used. By
always accessing the start point of synaptic activity, it is guaranteed that the solver is not
integrating past a synaptic activity without even noticing it.

3.5 CONCLUSIONS OF CHAPTER 3: ADAPTIVE COMPUTATIONS
FOR NNEURONS

To conclude this chapter we summarize the approach introduced above in Algorithm 3.1.
For the simulation of neurons with their spatial expansion and Hodgkin-Huxley dynamics
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Algorithm 3.1 Adaptive computations for branched nerve equations
1: Initialize: t = 0, dt = dts, k = 0, make grid & refine uniform to startjeye
2: while t < T,,,4 do
3:

4:  Compute discretized system on current grid
thtl gk

5.  Timestep + dt: use adequate time-stepping scheme (e.g. backward Euler

or Crank-Nicholson)

= vyt

6: Use current v,’j“ solution for error-estimation:
7

8:  Time: compute ||E} | using (3.27)
9: if HEZH > Tlarge then

10: dt = 0.5dt

11: if dt < dt;ni, then

12: dt = dtpin

13: end if

14: end if

15: if HEZH < Tsmall then

16: dt = 2dt

17: if dt > dt,,q: then

18: dt = dtmaz

19: end if
20: end if
21: if t <tgyn & (t+dt) > tey, then
22: dt = max{dtsyn,dt}
23: t=teyn —dt
24:  end if
25:

26:  Space: compute eg using (3.24) for each element of the actual grid

27: if Y es; > TOL then

28: Refine 7, percent of grid elements with largest errors (until max;eye;)
29:  end if

30:  Coarsen Teoqrse Percent of grid elements with smallest errors (until mine,e;)
31:

322 k=k+1
33:
34: end while
35:

36: Values for the parameters used in simulations can be found in Appendiz A.1.
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good simulation techniques are required. For an implementation of a finite-element solver
on non-uniform grids we showed a way to implement adaptive grid control in space and
time. The adaption process is based on a-posteriori error estimates. We introduced them
here for passive signal propagation on branched neurons.

The error estimator for spatial grid control is derived by a standard duality based
approach. It turns out that the residual is a good measure for the error in space. For the
step size control in time we introduced two parts. First, a heuristic measure for the error
which measures the changes in the solution in time was derived. Second, an adaptive step
size control for synaptic activities was introduced.

These adaptive grid controls in space and time allow efficient and accurate numerical
solutions for simulating the dynamics of complete nerve cells as we will show in Chapter 5.
But before we come to the simulations, we have a look at the third theoretical part of this
thesis in the next chapter: the theory of equation-free computation methods.
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Chapter 4

EQUATION-FREE SIMULATIONS:
INTRODUCTION AND THEORY

We think in generalities,
but we live in detail.

ALFRED N. WHITEHEAD

In order not only to simulate but also to analyze the dynamics of neuron networks
with respect to changing connection parameters we need sophisticated simulation
and analysis techniques. It turns out that equation-free methods are suitable for our
problems. We adapt them to the needs for the analysis of the behavior of the OB
network. Additionally, we interpret the equation-free time-stepping scheme new as
an one-step method and prove a convergence theorem. Finally, we introduce basic
techniques of numerical bifurcation analysis and show how they can be combined with

the equation-free simulation method.

In this chapter we introduce a method for coarse-grained multiscale computations
developed by I.G. Kevrekidis and coworkers: equation-free simulations [62]. The class of
problems this method was developed for are high dimensional dynamical systems with fast
components which are damped out after a short time, and slow components which are
still present in the solution. Fast components arise from eigenvalues with large negative
real parts. The active, slow components can arise from driving terms in non-autonomous
systems or from eigenvalues of small magnitude. That means, the considered systems

must have two sets of eigenvalues: one with very negative real parts and one close to the

37
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origin. It is now assumed that these two sets are in suitable large distance from each
other. This distance is called gap [113]. Normally problems of this type are solved by
using implicit methods, where the resulting coupled nonlinear equations are solved using
some approximation of the Jacobian of the system [47]. Equation-free simulation is, in
contrast, a method which does not require any approximation of the Jacobian or any
representation of its dominant subspace. A detailed introduction can be found in [62].
For more details on the theory of the method one may consider [48, 49, 61, 100|. This
method was already applied successfully to different application fields as it can be seen in
[58, 74, 75, 76, 78, 96, 105, 108, 115, 116]. A first application to neuron networks can be
found in [66].

This chapter is organized as follows. Section 4.1 gives the basic definitions, which are
necessary to use this method. Then we give an overview about the literature where meth-
ods to bridge the gap between different scales of the considered problems are treated in
Section 4.2. In Section 4.3 we describe the method of equation-free simulations consisting
of a coarse time-stepper and a projection step to integrate the dynamics of the consid-
ered system on a coarse, macroscopic level numerically. This passage follows [48, 62|. In
Section 4.4 we introduce a convergence theory for this numerical method and show assump-
tions under which the method converges to the exact solution for time-steps converging to
Zero.

In Section 4.5 and 4.6 we present an additional application field for the equation-free
simulation techniques. We re-interpret the approach, which enables us to use it to investi-
gate dependencies of macroscopic variables on independent parameters using equation-free
Newton’s method. This allows us to develop equation-free simulation techniques for trav-
eling waves in Section 4.7 and perform equation-free numerical bifurcation analysis as
introduced in Section 4.8.

4.1 BASIC DEFINITIONS

U be consider problems the dynamics of which is described mathematically by the following
fine or microscopic equations

= f(u), weR™ m>1, (4.1)

with a start value u(tg) = up. Additionally, we assume that a microscopic time-stepper
is given, which means we have a numerical solver for Equation (4.1) of order O(At*).
Although we talk in terms of ODEs here, equation-free simulations can also be used to
analyze problems arising from the semi-discretization of PDEs [48] or discrete time-stepping
models as our SRM network model for the olfactory bulb network.
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We assume that the long-term dynamic of (4.1) is described only by a few components
on a coarse, macroscopic level. Mathematically, this behavior can be interpreted using the
theory of initial manifolds [25, 42, 113|.

DEFINITION 4.1.1 Let H be a finite or infinite-dimensional Hilbert space.

o= f(u) (1.2)
is a dynamical system in H, with which we can associate the semigroup {S(t)}i>0, where
S(t) is the mapping S(t) : ug — u(t), u(-) denoting the solution of (4.2) satisfying u(0) =
ug. An inertial manifold of this system is a finite-dimensional Lipschitz manifold 1M
which enjoys the following properties:

1. IM is positively invariant for the semigroup, i.e. S(t)IM C IM ¥Vt > 0.

2. IM attracts exponentially all orbits of (4.2).

An inertial system for (4.2) is the system obtained by restricting (4.2) to IM.

Most criteria for the existence of inertial manifolds use so-called spectral gap conditions
[25, 77, 97]. One considers general evolution equations of the form

du

7 +Au+ f(u) =0, wveH (4.3)

where A is a positive operator with discrete spectrum and f is a nonlinear continuous
mapping. For such a system there exists a criterion for the existence of initial manifolds [25],
which we state here.

LEMMA 4.1.2 Let \; < Ao < ... denote the eigenvalues of A. Then it holds that if the
spectral gap condition

2M
S ((1 )N + A?V) . 0<qg<1, (4.4)

1s fulfilled for some N, then there exists an inertial manifold. We have 0 < 6 <1, M is a
positive constant independent of t and k = §° fooo £ 0eEdE for >0 and k=0 for 6§ = 0.

We assume that the long term dynamics of (4.1), i.e. the dynamics of the slow compo-
nents after the fast components are damped, can be described by a low dimensional inertial
manifold. By restricting (4.1) to this inertial manifold one obtains the inertial system

U=F({U), UeRM, (4.5)

with the so-called macroscopic or coarse variable U. We call the initial system (4.5)
macroscopic or coarse equation and assume M < m. This states the main requirement for
equation-free simulations:
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STATEMENT 4.1.3 In equation-free simulations of high-dimensional systems, with a long
term dynamics that can be defined in a low-dimensional space, explicit macroscopic equa-
tions are not needed, since the coarse dynamic is evaluated numerically. To be able to
do that, we have to assume that the long term dynamics of (4.1) can be described by a
low-dimensional initial system.

An example for that situation is a model of the neuron network in the olfactory bulb. The
microscopic equations are, for example, a Spike Response network of point neurons, as
described in Chapter 2. Principal and independent component analysis of calcium-sensitive
dye imaging experiments in the olfactory bulb of rats show that the network activity can
be described with a small number of so-called modes [95]. We will see in Chapter 6 that
one possibility to apply equation-free techniques for simulating the dynamics of the OB
network is to interpret these PCA /ICA modes as coarse variables.

4.2 OVERVIEW OF EXISTING METHODS

We will see in detail in the next section that the main point of equation-free simula-
tions is to bridge the different scales of the considered problems by “on demand” closure.
This is a mainstream approach in current research and there are several numerical mul-
tiscale techniques known. In the context of large scale reactive flow computations Maas
and Pope suggested the dimension reduction technique ILDM (Intrinsic Low-Dimensional
Manifolds) [72, 73]. The ILDM is a dynamical system based approach, which does not
require information concerning which reactions are to be assumed in partial equilibrium
nor which species are assumed to be in steady states. Based on local eigenvector analysis,
the method identifies the fast scales of the chemical reaction system. The only information
needed to be able to do this are the detailed kinetics mechanism and the number of degrees
of freedom required in the simplified scheme. In the original work the dimension of the re-
duction is kept constant throughout each computation. Deufelhard and Heroth suggested
a mathematically correct and nevertheless cheap dimension monitor for the chemistry
part 33, 34].

Philips and coworkers developed a quasi-continuum method in the context of material
sciences [87|. Kinematic-theory based solvers were proposed by Xu and Prendergast [123].
To get the Euler and Navies-Stokes solutions from gas-kinetic theory, they developed a
numerical approach to the Bhatnagar-Gross-Kook model [18] of the Boltzmann equations.

Chorin, Kast and Kupferman developed the optimal predictor method [24]: here the
average solution of problems that are too complicated for adequate resolution, but where
information about the statistics of the solution is available, is computed. The method
involves computing average derivatives by interpolation based on linear regression.

All these methods have in common, that special structures of the considered problems,
in addition to the existence of a low dimensional description of the dynamics, are required.
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Equation-free simulations only require the existence of a low dimensional description of
the system’s dynamics.

4.3 EQUATION-FREE SIMULATIONS IN TIME

The best available description of a system often comes at a fine level with fine, microscopic
equations describing the detailed dynamics of the system like in equation (4.1). This system
is assumed to include fast and slow components. The fast components are damped out
after a short time, while the slow ones are still present in the solution. It often occurs, that
a microscopic time-stepper for equation (4.1) exists, i.e. one has a numerical solver for the
fine dynamics. We assume in our theoretical considerations, that a one-step method

u(t + At) = u(t) + AtdS (t,u(t), a(t),...; At) (4.6)

of the order O(AtF), k > 1 with the operating function ®f is used. In many applica-
tions one wants to solve (4.1) for long or even infinite times, but applying the microscopic
time-stepper is very computation intensive, e.g. due to size of the problem or because
nonlinearities in the system require small time steps. And in many applications, even
if the best description of the dynamics is given at a fine level, the questions asked are
at a much coarser macroscopic level. Traditional modeling techniques start by deriving
macroscopic evolution equations from microscopic models. But in several applications a
closed form of the macroscopic equations is not available. We introduce an approach which
enables numerical simulations in that case: 1.G. Kevrekidis and coworkers developed and
validated a mathematically inspired computation technique that allows the modeler to per-
form macroscopic tasks acting on the microscopic models directly. This approach is called
“equation-free” approach, since it circumvents the step of obtaining closed macroscopic
descriptions [62].

One assumes that the long term dynamics of (4.1) can be described by a low-dimensional
inertial manifold. That means the dynamics of the slow components, as the fast compo-
nents are damped, can be described by a coarse variable U describing the dynamics on
the inertial manifold of the dynamical system (4.1). Its time course is described by the
inertial system (4.5), where the explicit form of the right-hand side function F' is in general
unknown, but we know /assume that it exists. Furthermore, we assume M < m. This is
the main point of this method: the macroscopic, coarse equation (4.5) is not derived in a
closed form, and neither a specific spatial structure of the underlying dynamical system
nor explicit macroscopic equations are needed. We only assume that the long-term dynam-
ics of (4.1) can be described by a low-dimensional initial system to evaluate it efficiently
numerically.

The following description of the equation-free simulation follows closely the report [62].
Given the situation described above we assume that it is to expensive to simulate the whole
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system (4.1), i.e. we have the following problem:

PROBLEM 4.3.1 We want to simulate the coarse equation (4.5) for large or infinite times,
but we are only able to simulate the fine system (4.1) for short times using the fine time

stepper (4.6).

4.3.1 COARSE TIME-STEPPER

To reduce Problem 4.3.1 we introduce two routines: lifting and restricting. They enable
us to derive macroscopic values U belonging to a microscopic value u via restricting. In
the case of lifting, consistent fine values are computed for a given coarse value. Lifting is in
general not unique and it is an important part of the modeling to choose a suitable lifting
routine for a given problem [61].

DEFINITION 4.3.2 Let | : RM — R™ be a L-continuous function. We define | in such a
way that for a given coarse quantity consistent fine quantities [(U(t)) = u(t) for the fine
system (4.1) are computed. This function is called lifting. Furthermore let r : R™ — RM
be a linear function, which gives the coarse quantity connected to a given fine value, i.e.
r(u(t)) = U(t). We call this routine restricting.

In order to make these routines reasonable, the following assumption has to hold.
ASSUMPTION 4.3.3 We claim that

rol=1d.

With the lifting and the restricting routines a so-called coarse time-stepper (see Figure
4.1) can be applied to reduce Problem 4.3.1. By applying lifting on a given macroscopic
start value we get a consistent fine value. We apply the given time-stepping scheme to
perform a small solution step on the fine level. Then we restrict the solution to the
macroscopic level, i.e.

Ut + At) = r (Z(U(t)) + At (U 1); At))

By connecting the coarse level to the fine level equations and time-stepping scheme, we
reduced Problem 4.3.1 to:

PROBLEM 4.3.4 We want to simulate the coarse system (4.5) for large or infinite times,
but we are only able to simulate it for short discrete times At.
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Figure 4.1: The coarse time-stepper. Since macroscopic equations are not available, lifting
is used to derive a consistent fine value in (a) for a given coarse value. (b) A small
simulation step is performed on the fine equations using the fine timestepper (4.6). By
using restricting in (c) the coarse variable is finally derived. This process can be seen as a

“black box” for performing small coarse time steps.

4.3.2 COARSE PROJECTIVE INTEGRATION

To solve Problem 4.3.4 we use the restricting procedure not only to evaluate U(t + At),
but also its derivatives needed to apply a time-stepping scheme, e.g. forward Euler, on the
coarse level. Therefore, we are able to perform a coarse projection step using an one-step
method of the order O(ATX)

U(t + At + AT) = U(t + At) + AT®C (t FAL U+ A, U+ A, ... AT) (47

with the operation function ®¢. In the case of an Euler step, we have U(t + At + AT) =
U(t + At) + AT - U(t + At). The important idea here is that U and U are not calculated
by evaluating (4.5) but by applying the restricting procedure r to calculate them based
upon the fine quantities u. That means, in the simple case of using forward Euler as course
time-stepping scheme, we get

(u(t + At + 7)) — r(u(t + At))

Ut + At + AT) = r(u(t + At)) + AT . T <A
T

by representing the derivative U (-) = %—l{() by finite differences. This leads to the following

statement, which summarizes the abilities of equation-free simulations.

STATEMENT 4.3.5 (EQUATION-FREE SIMULATIONS) The equation-free approach en-
ables us to simulate the coarse behavior of high dimensional systems by only evaluating

small bursts of the complete dynamics.
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We close this section with a remark on the wording used here. In the projection step
we perform an extrapolation of the coarse variables using evaluation of the microscopic
states. But nevertheless the method of projective integration should not be confused with
“extrapolation methods” [21], which is an unrelated class of numerical methods.

4.4 CONVERGENCE OF EQUATION-FREE SIMULATIONS

In the following, we investigate the convergence properties of the equation-free simulation
method. Therefore, we divide the solution interval of the coarse dynamical system (4.5)
[to, to + T into subintervals

o<t < - <tp<---<ty=tg+T. (4.8)

In each point t;, the exact solution of (4.5) is denoted by Uy = U (t,) and the solution of the
equation-free simulation is denoted by 7. The solution method consists of the following
four steps to perform a time-step starting at the numerical solution in the k-th step nx

1. Lifting: I(n)

2. Fine time step: I(ng) + At®/ (1(ny; At))

3. Restricting: r(I(nx) + At®7 (I(ng; At))) =: 7k
4. Projection: 7 + AT ®C(7; AT) =: Mjeg1-

We show that it converges to the exact solution U(t) of (4.5), i.e the error during the
integration tends to zero, if the integration steps At and AT converge to zero. To do so,
we show how the classical theory of one-step methods can be applied in the equation-free
context.

In numerical analysis one-step methods are a standard technique to solve initial value
problems numerically [93, 111]. We will interpret the equation-free method in this context
and use well known convergence results to derive a convergence theorem.

In order to solve a given initial value problem

ft,y), tel=lto,to+T]

4.9
y(to) = o, y € RY, (4.9)

with the exact solution y(t), one discretizes the time-interval I as in (4.8). On this time-grid
we are able to define an one-step method starting with 7y and

M1 = Mk + Atp®(tg, ni; Aty)

4.10
thr1 = tr+ Aty (4.10)
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with Aty :=tp — tr_1. In the equation-free context, it is convenient to split the operation
function ® in (4.10) in two parts, i.e.

M1 = Mk APt mi; Aty)
AT D2 (b, + Atg, mp + At ® (tg, 1 Aty,); ATy) (4.11)
=k
tki1 =t +Atg + ATy

For this “two-step” method one defines the truncation error, where one for simplicity sets
At = ATy, = 5L, vk =0,1,2,...,N — 1.

DEFINITION 4.4.1 For the two step method (4.11) the truncation error is defined as

At At At
T o= AU (Yryr — yk) — [q’l (tkuyk; 2) + ®° <tk + 5 Uk 2)] : (4.12)

with g = y(tr + %)

The truncation error shows how good the exact solution of (4.9) fulfills the equation of the
two-step method. This is a measure for the performance of the numerical method. Hence,
one defines:

DEFINITION 4.4.2 The two-step method (4.11) is called consistent, if

max ||7x|| — 0, for At — 0.
trel

There exists an simple criterion for consistency.

LEMMA 4.4.3 A two-step method is consistent, if and only if

Al%moq)(t,m;At) = f(t,x), Vtel,xe R?

with ®(t,z; At) = &' (t,a:; %) + @2 (t + %,x + %@%t,x; %); %)

Finally, we need an additional definition in order to be able to perform convergence analysis
for the equation-free method.

DEFINITION 4.4.4 A two-step method is called Lipschitz-continuous (L-continuous),
if the operation functions satisfy an uniform Lipschitz condition

[812(t, 2, At — @2(1,2, A1) | < Luglle — 3|, Va7 €Lt e L.

With this definitions we are able to formulate a convergence theorem for two-step
methods, based on the standard convergence theorem for one-step methods [93].
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THEOREM 4.4.5 Let a given two-step method (4.11) with the operation functions ®1 and
®? be Lipschitz-continuous with the constants L1 and Lo and consistent. In the case that

llyo — moll — 0, we get
max ||yx — || — 0, for At — 0.
trel

And the following a-priori error estimate holds

k
lye — x|l < o(2(L+5EL) (tk—to)) {HZ/O — ol + Atz |T,,H} 7

v=1

with L = L1 + Ly and L' = L1 L.
Proof We introduce a difference operator Dy, for the grid functions n = {n; }1<k<n by

(D) == At (g — 1) — @ (s iy A),

with ® as in Lemma 4.4.3. For two grid functions y = {yx}1<x<n and z = {2z }1<k<ny we
get by subtracting the two equations

(Dry)e = Aty — Y1) — P(tr, Y, At)
(th)k = Atil(zk — Zk—l) — q)(tk, 2k, At)

the equation
Uk — 2k = Yk—1 — 2k—1 + A {P(tk, yi, At) — P(ti, 25, At) + (Dpy — Dp2)i} -

Hence,
At
lyk — 2kl < llyk—1 — zu—1|| + At S (L + - L My — z&ll + |(Dry — Dp2)i||

with L = Ly + Ly and L' = Ly Ls. By applying this inequality recursively for v = k,...,1
one gets

k k
At
TL/) > Atllyy — 2]l + > At(Day — Duz)yll.
v=0 v=0

lyx = 2kll < llyo — 2oll + (L +

Now one applies the discrete Gronwall’s lemma and gets

k
At/ _
lye — 2| < €2EF2 L —t0) {Ilyo — 20 + > At|[(Dny — th)un} : (4.13)
v=0

We have
Dpy=7and Dpn=0, 7= {m}i<k<n

and by inserting this in Equation (4.13) the claim of the theorem is proven. |
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To apply Theorem 4.4.5 to the equation-free method, we have to show two properties:
first that the equation-free method is consistent and second that it is L-continuous. Before
we do so, we state the equation-free method in the nomenclature of one- or two-step
methods. For lucidity we omit the dependency of ¢; in the operation functions. We have

fine  U(ny) —  U(nga) + SEOS(I(nn); Aty)

7 !

At 4.14

coarse 1 T(l(nk)+7kq’f(l(77k);ﬁtk)) — T + AT (7; ATy) “14)
=Nk

with consistent and L-continuous one-step methods on the microscopic and on the macro-
scopic level. Now we are able to write the equation-free processing as

Mer1 = 7k + AT®(7; ATy)
T (l(nk) + At ® (1(n1); Atk)) + ATy @ (r; ATy,).

For the convergence analysis we choose Aty = ATy, = %At. By using that r(-) is assumed
to be linear, see Definition 4.3.2, and Assumption 4.3.3, it holds

1 1 1
Ner1 = Nk + At 5 (r((l)f(l(nk); §At)) + O°(M; 2At)), (4.15)

=P (ng,At)

with the operation function ®(ng, At). First, it is proven that ®(n, At) is consistent by
applying Lemma 4.4.3. We have

H(@®U(); 5 A0)  —  r(fm), for At =0

NigP) F(nk’t)7
(A1)

where the first step holds, since the one-step method used on the fine level is assumed to
be consistent. (A;) is an assumption, which will hold in praxis only approximately. At this
point the convergence of the microscopic state to a slow dimensional manifold, compare
Figure 4.2, comes into play: if the dynamics of the considered dynamical system (4.1) has
completely converged to the initial system (4.5) assumption (A;) holds. To achieve that,
we will perform in praxis several fine steps, which will lead to fast convergence, since initial
manifolds, if they exist, attract all orbits exponentially, compare Definition 4.1.1.

For the second term in Equation (4.15) we assume that the coarse one-step method
is consistent and we have 7y — g for At — 0, i.e. P(7; %At) — F(ng,t) for At — 0.
Therefore, we get

P (nk, At) — F(ng, t).
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AN = fast components
' —slow manifold

Figure 4.2: Convergence to the inertial manifold. To be able to use the equation-free
approach it is necessary that the dynamics of the complete system converge quickly to the
manifold described by the dynamics of the considered coarse variable as it is shown schemat-
ically here.

Hence, it is shown that the equation-free method is consistent.

In the next step, we show that the equation-free method is L-continuous in the sense
of Definition 4.4.4. We have ®!(ny; At) = r(®/(I(n); At)) and ®2(y; At) = OC(ny; At).
For ®! we get

1@ (5 At) — ' (y; At)|

(@ (I(z); At)) — r(@F (I(z); At)) |
L LiLj||z —yl|, Va,yeRY

A

since r and [ are L-continuous, see Definition 4.3.2 and ®7 is a L-continuous method on
the microscopic level. Furthermore, we get

9% (2; At) — D (y; At)| = || @°(w; At) — D(y; At)|
< LCHx - y”7

if the one-step method on the coarse level is assumed to be L-continuous. By applying
Theorem 4.4.5, we just proved the following convergence theorem for the equation-free
method.

THEOREM 4.4.6 (CONVERGENCE OF THE EQUATION-FREE METHOD) Consider the
equation-free method to solve an initial system

U=F(u), UeRM, (4.16)
belonging to the dynamical system

= f(u), uweR™, m>M.
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Apply the following time-stepping scheme to solve equation (4.16) with the start value
Uto) =Ug=mno, r: R™ = RM [ : RM — R™ as in Definition 4.3.2, and

1 1 1
et =+ 580 (@) 3A0) + 2 380,

with M = r(1(n) + 5L@7 (I(nk); At)). Assume ®F and ® to be consistent, L-continuous
operating functions of time-stepping schemes on R™ and on RM . If

T(f(l(nk)7tk)) :F(nk)tk)u VT]k,tk, k:071727"°7N7

we get
max |[Uy, — ]| — 0, for At — 0.
trel

The equation-free method, which we investigated theoretically here, will not only be
used for pure simulation but also to analyze the dynamics of coarse initial systems by
applying dynamical system theory. To be able to do so, we generalize the approach in the
next sections.

4.5 EQUATION-FREE NEWTON’S METHOD

In several applications we are interested in finding stationary states of the macroscopic
equations (4.5), i.e. U(t) = 0. There are two possibilities to determine the stationary
states in general: one can integrate (4.5) until the stationary state is reached. Or one
applies Newton’s method to solve

F(U) =0.

With the first approach one will find stable stationary states, but long computation times
must be expected and unstable stationary states will not be reached. The second approach
is also able to detect unstable stationary states and is due to the good convergence proper-
ties of Newton’s method fast, if good start values are available [111]. As in the case of the
coarse projective integration all necessary evaluations of the macroscopic variables U and
the derivatives will be done by integrating the fine system (4.1) for short bursts. The single
steps of this process are shown in Algorithm 4.1, where T'OL is a user defined tolerance for
which one wants to reach |[F(U¥)|| < TOL, i.e. the numerical test for F(U*) = 0. Note
again that U is not computed by evaluating a closed form of the coarse equation (4.5)
at the different points in time, but by restricting the connected fine states from the fine
equation (4.1).

STATEMENT 4.5.1 (EQUATION-FREE NEWTON’S METHOD) One is able to compute
stationary states of the coarse dynamics by evaluating only small bursts of the complete
equations of the system by applying Algorithm 4.1.
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Algorithm 4.1 Equation-free Newton’s method
1: Start: U°
2: while ||F(U*)|| > TOL do

3:  Perform a Newton step

oF

Ukt — ok
tou

(UH)TFU")
by approximating the Jacobian, in the one dimensional case as

OF F(U* + AU) — F(U")

au U~ AUF

F(U%) is approximated by using finite differences, i.e. F(U*) =
4: end while

U(tp+71)—U(tr)

4.6 DEPENDENCIES ON INDEPENDENT PARAMETERS

In the case of simulating neuron networks in the olfactory bulb we are not only interested
in the time course of the dynamics. Other interesting questions are how network parameters
influence the network dynamics. One purpose of the olfactory bulb network is to perform
contrast enhancement, to be able to discriminate similar odors. One wants to investigate
which parameters, like the strength of synapses or the radius of interaction between single
neurons, influence this ability. With this motivation in mind we develop a way to use
equation-free simulation techniques to explore the dependence of macroscopic variables
on independent parameters. The result of this development can be formulated as in the
following statement.

STATEMENT 4.6.1 (EQUATION-FREE PARAMETER STUDIES) The equation-free tech-
niques allow to perform parameter studies on the coarse level of the dynamics, if it exists.
The considered high-dimensional fine system has to be evaluated only for small bursts.

We are interested in the stationary state of the macroscopic dynamical system (4.5). To
find the stationary state, we use an equation-free Newton’s method (see Section 4.5).

First we consider one independent parameter. That means we have a coarse equation
U=FU,u), UecRM pecR (4.17)

with the independent parameter . The function F' can be highly nonlinear. The influence
of u in the fine dynamics is given by Equation (4.1), where f = f(u,u) depends also
on u. The equation-free simulation for investigating the dynamics in a parameter range
w € [p®, ] is described in Algorithm 4.2. Besides the projection step in time, one also
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performs a projection step in the parameter space. This leads to reasonable start values
for Newton’s method and, therefore, to good convergence properties.

Algorithm 4.2 Parameter study: one parameter
1 Start: pu = p°

2: while y < p® do

3:  Use Equation-free Newton’s method (see Section 4.5) to derive stationary state
U(p) and U(p + Ap) of the system (4.17) for p and p + Ap.

4:  Project: Perform a large step Afi using forward Euler (any other explicit numerical
method can be used):

Ui+ Ap+ Afi) = U+ Ap) + ApZHEF A0 =T

Ap
5. Set p=p+ Ap+ Ap.
6: end while
In the case of several independent parameters
U=FU,pi,pa,- - ptp), UeRM e R1<i<p (4.18)

we apply the techniques developed for one parameter, for each parameter. The resulting
procedure is linked to the gap-tooth scheme for equation-free computations in space and
time [62]. The single steps to explore the dependency of a coarse variable from two param-
eters in an area ui2 € [uig, ,u‘iQ] are shown in Algorithm 4.3. For more parameters this
approach can be generalized in higher-dimensional space directly.

Algorithm 4.3 Parameter study: two parameter
1: Start: py = pf, p2 = ps.
2: while pp < 1§ do

3:  Perform equation-free dependence analysis for p; € [uf, u§] for a constant po using
Algorithm 4.2.

4:  For each value U(u}, uo), where u¥ is a value where U (u¥, p2) was derived in step
(2.) perform a coarse step in g direction.

5. Update po = po + Apg + Afia.

6: end while

4.7 EQUATION-FREE METHODS FOR TRAVELING WAVES

In the olfactory system traveling-waves-like structures are found in experiments [44]. We
want to investigate which network parameters are responsible for this behavior. For this



52 SIMULATIONS OF THE OLFACTORY BULB NETWORK

ailm we use equation-free methods for traveling waves as introduced in this section. A
traveling wave solution of a dynamical system is defined as a function moving with constant
velocity in a constant direction while retaining a fixed shape [36].

4.7.1 TRAVELING WAVE VARIABLE

“76 introduce a method using homoclinic orbits to investigate traveling waves in the
following. This method is very well known in the context of dynamical systems [109]. We
assume that the coarse system (4.5) has a traveling wave solution for a given start value U.
Traveling wave systems are e.g. nonlinear reaction-diffusion equations like the Hodgkin-
Huxley equations introduced in Section 2.4.2. One reduces these systems by introducing a
traveling wave variable £. In the one-dimensional case, with the position variable xz and ¢
denoting time, & is defined as

E=x— M, (4.19)

where X is the propagation velocity of the traveling wave. The solution of Equation (4.5)
has now the form

Ulz,t) = U(€) = Uz — ).

It holds _ -
ou  _ QU9 _ _\OU
ot — ogat — T NoE
ou _ 9UoE _ U
or —  9€or . O9E-

By denoting ' = 8% and omitting the tilde, we get

-\U'=F(U,U,...). (4.20)

(a) (b)

Figure 4.3: A traveling wave (a) results in a homoclinic orbit (b) by introducing the traveling

wave variable £.

This means, a reaction-diffusion equation is reduced to an ODE-system. The traveling
wave solution of the PDE is given, after transformation to an ODE system (4.20), as a
homoclinic orbit, compare Figure 4.3. This can be seen by keeping t fixed and changing
x for changing £&. A homoclinic orbit is a stationary point connected by a trajectory with
itself. The trajectory is formed by the intersection of the unstable and the stable manifold
of this point. The development of the homoclinic orbit for changing parameters gives
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insights into the reasons why traveling waves emerge in certain parameter regions and why
they are not seen in other regimes.

Before we are able to use the equation-free methods to analyze the traveling wave
system we have to determine the traveling wave velocity A in order to be able to perform
the reduction described above. A way of doing this is the so-called template fitting [98].
Template fitting is a method that allows to remove variables associated with symmetries in
systems with continuous symmetries. Given an ensemble of data u(x,t), one first chooses
a template ug(z). After that one determines a symmetry variable ¢(t), so that

H%igl [|u(x — e(t),t) — uo(x)|]. (4.21)
c(t

That means u(z,t) is shifted by the amount ¢(¢) in a way that the data matches up best
with the preselected template. Let, for example, u(z,t) be a 2m-periodic function in z.
Equation (4.21) is then equivalent to

(u(z, 1), uo(z + ¢(t))) = 0, (4.22)

where (-,-) denotes the standard inner product on L?[0,27]. If ¢(t) solves (4.22), then
assuming differentiability, one has a critical point

Oc (u(x,t),up(x + ¢(t))) =0, (4.23)
which is equivalent to
(u(z,t), up(z +c)) =0, ie. (u(z—c,t),up(z)) = 0. (4.24)

Equation (4.24) is used to determine the shift amount ¢(¢) when template fitting is applied.
By dividing ¢(t) by t, we get the traveling wave velocity .

4.7.2 EQUATION-FREE TEMPLATE FITTING

To use template fitting in the equation-free context of one-dimensional traveling waves
we introduce a template ug(z), which is a snap-shot of the traveling wave. One should
choose a template where the shape of the traveling wave is fully developed. Otherwise,
artifacts can appear due to boundary effects. Furthermore, we introduce the template
fitting variable ¢(t) € R, which describes how much the state u(z,t) has to be shifted to
be in alignment with the template ug(x), as defined in Equation (4.21). We choose ¢(t) as
a coarse variable and apply the coarse time-stepper with a projection step as introduced
in Section 4.3.1 by performing Algorithm 4.4. This allows us to investigate traveling wave
systems without deriving the explicit traveling wave ODE like in Equation (4.20), but just
by determining the velocity of the traveling wave numerically.
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Algorithm 4.4 Equation-free Template Fitting

1: Perform (several) fine steps
= u(z,t),u(z,t + At).

2: Restricting: Compute the coarse variable ¢(¢) and c(t + At) by applying a template
fitting routine.
3: Perform a coarse step using forward Euler

= c(t+dt +dT) = c(t + At) +dT - é(t + At).
4: Lifting: Compute the new u(x,t) by

u(z,t) = up(x + c(t)).

4.8 NUMERICAL BIFURCATION ANALYSIS

A.s last part of this chapter, we state results of (numerical) bifurcation analysis, which we
will need for our numerical investigations later. The results are taken from [23, 65, 109].
One of the great advantages of the equation-free approach is that it can be combined
directly with the techniques introduced here [115]. Again the coarse quantities, e.g. U and
F(U), are derived numerically using restricting and lifting combinations. We consider a
coarse dynamical system, which is dependent on an independent parameter p

U=FU,pu), UcRM ucRP. (4.25)

For systems of this form so-called bifurcation points may occur. A bifurcation point is
defined in the following way.

DEFINITION 4.8.1 A dynamical system given by (4.25) is said to undergo a bifurcation
at a parameter value p = pg if in any neighborhood of pg € RP there is a p-value containing
dynamics that are not topologically equivalent to those at ug.

A bifurcation diagram is a plot of (some measure of ) the invariant sets of (4.25),
i.e. the subsets of phase space which are invariant under the dynamics of (4.25), against
a single bifurcation parameter u, indicating stability.

The Hartman-Grobman Theorem [23]| shows that hyperbolic equilibria are structurally
stable. But also the converse holds. Non-hyperbolic equilibria are not structurally stable
and hence generically lead to bifurcations. For p = 1 it can occur in Equation (4.25) that
the hyperbolicy of equilibria is violated if, on one hand, a simple real eigenvalue of Fy
approaches zero. In this case a saddle-node bifurcation occurs. On the other hand, it is
possible that a pair of simple complex eigenvalues of Fi; crosses the imaginary matrix while
the parameter p is changing. Then a Hopf bifurcation occurs.
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4.8.1 SADDLE-NODE BIFURCATION

The saddle-node or fold bifurcation has the following normal form

U=p+U*=F(U,p), UnpckR. 4.26)

(

At p = 0 the system (4.26) has a non-hyperbolic equilibrium at U = 0 with Fy;(0,0) = 0.
In the following we investigate under which conditions an one-dimensional system (4.25)
undergoing a saddle-node bifurcation with an equilibrium at U = 0 with Fy(0,0) = 0
can be transformed by smooth invertible changes of the coordinates and the parameters
into the form (4.26) up to and including second order terms. These systems are said to
have generic saddle-node bifurcations. We will see that some extra non-degeneracy and
transversally conditions must be imposed. These conditions will actually specify which
one-parameter system having a saddle-node bifurcation can be considered generic. We
show exemplary how the generity theorem is proven for saddle-node bifurcations.

THEOREM 4.8.2 (SADDLE-NODE BIFURCATION) Suppose U = F(U, ), U,pp € R, F
smooth, has an equilibrium at U = 0 and p = 0 and let F7(0,0) = 0. Assume the following
conditions are satisfied

F,.(0,0) #0 (4.27)

and 1
F3(0) = §FUU(0a0) # 0. (4.28)
Then there exist invertible coordinate and parameter changes transforming the system to
0= p+s1°+00p).
Proof We perform a Taylor expansion of F' in Equation (4.25),
F(U,p) = Fo(p) + FL()U + B(n)U? + O(U?). (4.29)

We have Fy(0) = F(0,0) = 0, due to the equilibrium condition and F;(0) = Fy;(0,0) = 0,
since we have a saddle-node bifurcation here. Then a new variable £ is introduced by the
following linear coordinate shift

E=U+9,

where § = 0(u) is an a-priori unknown function, which will be defined later. We insert the
coordinate transformation in to Equation (4.25) using Equation (4.29) and get

§ = U=Fo(w+F(u)E—0)+Fa(n)(—06)>+...
— (Bo(l) — Fi(w)d + Fa(n)® + O(5%))
+ (Fu(p) = 2F(n)6 + O(6%)) & (4.30)
+ (Fa(n)d — 0(5)) &2
+0(&%).
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By using Equation (4.28) there exists a smooth function 0(x) that annihilates the linear
term in Equation (4.30) for all sufficiently small ||, which follows from the implicit function
theorem. The condition for the linear term to vanish can be written as

F(p,8) = Fi(p) — 2F ()8 + 821 (1, 8) = 0,

with some smooth function ¢1. We have

F(0,0) = 0,

OF

7500 = 2RO £0,
OF ,
5,000 = —2F{(0) £0.

Therefore, it follows the (local) existence and uniqueness of a smooth function & = §(u)

such that 6(0) = 0 and F'(u,0(p)) = 0, with

_ F{(0)
2F5(0)

A+ O(u?).

d(p)
We plug that in into Equation (4.30) and get
€= (Fo(0)n+ O(1®)) + (F2(0) + O(n)) + O(E?). (4.31)
In addition to the coordinate transformation we introduce a new parameter o = (),
a = Fy(0)p + p*da(p)
with some smooth function ¢o. We have

a0) = 0
6(0) = F40) = Fu(0,0).

When Equation (4.27) holds, there exists locally an unique smooth inverse function p =
() with «(0) = 0. With this we can rewrite Equation (4.31) as

£=a+ba)e® +0(E,

where b(«r) is a smooth function with b(0) = f2(0) # 0. Finally, a scaling is done with
n = |b(a)|¢ and § = |b(a)|a and we get

0= 06+sn*+ 0",

where s = sign(b(0)) € {—1,1}. |}
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4.8.2 HYSTERESIS

The occurrence of two saddle-node bifurcation points connected by an unstable branch
leads to hysteresis effects. The term hysteresis is based on the greek word “hysteros” mean-
ing “deficiency” or “lagging behind”. A system with hysteresis exhibits path-dependency
in its dynamics. That means, for a certain control parameter more than one stable state
of the system is possible and the actual state of the system depends on which path it is
following.

Many physical systems naturally exhibit hysteresis. It occurs e.g. in magnetic and
ferromagnetic materials. When an external magnetic field is applied to a ferromagnet, the
atomic dipoles align themselves with the external field. Even when the external field is
removed, part of the alignment will be retained: the material is magnetized. If we look
the other way round and reduce the magnetic field linearly from a saturated material, the
magnetic flux density will follow a different curve as it has followed for a growing external
field. One obtains a S-shaped loop. The width of the middle part of the S describes the
amount of hysteresis, related to the coercivity of the material.

Besides the physical applications, hysteresis also occurs in biology. It is found in cell
biology [88] as well as in neuroscience [10]. In dynamical system theory hysteresis occurs

in a system with the normal form
U=pu+U-U? UpeR

with two bifurcation points where no branching but a change of stability takes place. We
have a system with two saddle-node bifurcations. A physical system will always presume
a stable solution, i.e. for small changes of u, the stable solution jumps from one stable
branch to the other (see Figure 4.4). The system will have different states, depending
whether p grows or diminishes.

—_—

Figure 4.4: A hysteresis formed by two saddle-node bifurcation points (black dots), con-
nected by an unstable branch (dashed line). A physical system with this dynamics will
perform jumps between stable branches (solid lines) indicated by the arrows when coming

to the bifurcation points.
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The presence of hysteresis in the dynamics of Equation (4.25) makes changes in the
system states stable for small fluctuations in the bifurcation parameter u. Therefore, the
system has two clearly defined stable states (Figure 4.4, upper and lower branches with
solid lines). As the system gets near a saddle-node point (black dots), it jumps suddenly
to the other stable branch. After the jump it is stable with regard to further fluctuations
of the parameter p, i.e. stays on the second branch.

The path-dependency is one effect that may occur in dynamical systems. There is
a wide range of other effects described by other standard types of local bifurcations for
one-dimensional systems like Hopf bifurcations, which have been mentioned earlier, trans-
critical or pitchfork bifurcations. These bifurcations do not occur in the simulations results
included in this work. Therefore, we do not go into detail for their description.

4.8.3 CUSP BIFURCATION

In the case of dynamical systems depending on two parameters, i.e.
U=FU,u), UEcR,pucR?
other bifurcations may occur. Having an equilibrium at g = 0 and x = 0 with
Fy(0,0) = 0 (4.32)

1
gFuu(0.0) = 0 (4.33)

a so-called cusp bifurcation takes place. Again there is a theorem describing the conditions,
when a cusp bifurcation is generic.

THEOREM 4.8.3 (CusP BIFURCATION) Suppose the dynamical system
U=FU,p), UeR,pueR?

with smooth F, has at u = 0 the equilibrium U = 0, and let the cusp bifurcation conditions
hold:
1
Fy(0,0) =0, §FUU(070) = 0.

Assume that the following generity conditions are satisfied

Fyuu(0,0) # 0
and
(Euy Fops — Fuy Fu, )(0,0) # 0.
Then there are smooth invertible coordinate and parameter changes transforming the system
mnto
i =61+ Ban £ 1° + O(n*).
In practical applications it is not only interesting to detect a bifurcation point, but also

to follow it for changing parameter values. In the next section we show, how this can be
done.
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4.8.4 PSEUDO-ARCLENGTH CONTINUATION

Numerical continuation in the case of bifurcation points, means to follow the path (U, )
for which a continuation condition

GU,p)=0, G:RxR™M - RM (4.34)

is fulfilled. In the case of saddle-node bifurcations of U = F(U, 1, pi2) we have G(X, ) =
(F(X,pn), Fx(X,p)), with X = (U, u1) and g = pa. Hence, we solve the condition for an
equilibrium and a zero eigenvalue of Fy; in tandem. The idea behind numerical continuation
lies in the implicit function theorem, which reads as follows.

THEOREM 4.8.4 (IMPLICIT FUNCTION THEOREM) If for some p = pg we can find
a solution of (4.34) U = Uy, then provided Gy (Uy, o) is nonsingular, a smooth path of
solutions U(p) can be continued locally, with U(ug) = Uy.

A numerical strategy for solving (4.34) will be introduced in the following. A very good
method for solving systems of nonlinear equations is Newton’s method, if a sufficiently
good initial guess is available.

Therefore, a predictor-corrector algorithm is applied to follow the solution curve in small
steps (Uj, i), i = 1,..., N which is possible if the implicit function theorem holds. We use
the solution at the previous parameter value u; to make a prediction Ui(_(i)l for the solution
at the new parameter p;+1. Then Newton’s method is used to correct the prediction.
Note, that this predictor-corrector method should not be confused with predictor-corrector
method for solving initial values problems [111].

There are several possibilities for predictors, trivial (Ui(—i(i)l = U;) or secant predictors to
mention two of them. We will use a tangent predictor

U = Ui — (i1 — 1) [Gu (Ui, 1)) ™" Gu(Uss i),

which is the same as applying Euler’s method.

For the corrector step we start from the predicted point U, (0)1 and compute a sequence

i+
of better approximations Ui(i)l, 7=1,2,... for fixed p = p;y1 by using Newton’s method.

Hence, .

Ui(flrl) = Ui(i)l - GU<Ui(i)1’Mi+1)] G(Ui(i)bﬂwrl)-
Since Newton’s method is expensive for high-dimensional problems, Quasi-Newton’s meth-
ods may be applied if necessary.

The drawback of the current method is that it fails if the implicit function theorem
fails, which is the case, for example, at saddle-node points. A solution is to parameterize
the solution curve not by u but by an approximation to the arclength s along the curve.
We then seek a solution curve (U(s), u(s)) and during the corrector stage we solve

GUkt1, pk+1) = 0 (4.35)
Ukt = Ur)* + (a1 — m)* = As™. (4.36)
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Corrector

Figure 4.5: Illustration of continuation approach. (a) Predictor-corrector algorithm using
a Newton-step as corrector. Using the initial value (Up, o) a tangent predictor with the
step length Ap is applied to compute (Ul(o),,ul). This point is used as the start value for
Newton’s method to solve Equation (4.34), i.e. to get (U1, u1). Since this approach does not
work as the implicit function theorem fails, pseudo-arclength continuation has to be used

as shown in (b). The corrector step is performed by additionally solving Equation (4.37).

Since linear equations are easier to solve numerically, it makes sense to replace (4.36) with
its linearized pseudo-arclength version

(Ui, Uigr = Us)) + (i (i1 — 1)) — As =0 (4.37)

where (U], 11;) denotes the tangent vector to the curve (U(s), pu(s)) at (Ui, i;), see Fig-
ure 4.5. This allows to follow solution curves of Equation (4.34) even if the implicit
function theorem does not hold. Note that a branching point has to be treated in a special
way. But we do not see them in our simulations, hence we refer to [23, 65] for more details.

4.9 CONCLUSIONS OF CHAPTER 4: EQUATION-FREE SIMULA-
TIONS

In the past chapter we introduced the method of equation-free computations. It turns out
that it is a technique suitable for the simulation and analysis of the dynamics of neuron
networks as they are present in the OB. This is the case, since macroscopic patterns emerge
in the network after odor stimulation as described in Section 2.3.
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We showed a convergence theorem for the equation-free method based on classical
convergence theory for one-step methods.

To be able to use the equation-free technique, we showed how an equation-free Newton’s
method can be applied, and how the dependence on independent parameters and traveling
waves can be investigated. Finally, we presented how equation-free computations and
numerical bifurcation analysis can be combined.

With this considerations we complete the theoretical part of this thesis. In the follow-
ing we turn our focus to simulations and numerical analysis of the olfactory bulb network
dynamics. We apply the equation-free techniques developed in this chapter to simulate
and analyze the olfactory network model with point neurons described in Section 2.3 in
Chapter 6 to 8. Before doing that we simulate single cells with taking their spatial expan-
sion into account in the next chapter. Here, we will see how the error estimates developed
in Chapter 3 can be used to speed up simulations.
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Chapter 5

ADAPTIVE COMPUTATIONS FOR
MITRAL CELLS

To make no mistakes is not in the power of man;
but from their errors and mistakes the wise
and good learn wisdom for the future.

PLUTARCH

This chapter is devoted to the simulation of a single mitral cell taking its spatial
expansion into account by using adaptive computations. First, we investigate the
performance properties of the adaptive computations. Second, we look how synapses

on the secondary dendrites influence the signal processing in the mitral cell.

In this section we simulate the behavior of a model of a mitral cell as they are present
in the mammalian olfactory bulb. Our test case is based on the description of the mitral
cell geometry found in the literature, see also Section 2.2.2. A mitral cell consists of a tuft,
receiving input from the glomeruli, and a primary dendrite, connecting the tuft to the cell
body. From the cell body several secondary or basal dendrites spread perpendicular to the
primary dendrite. These dendrites receive and give input from and to the granule cells. In
our example we have seven secondary dendrites with a diameter between 1um and 6um
and a length between 500um and 600um. On each secondary dendrite we have one or two
synapses. This number is not realistic, but it is enough to show the main properties of our
approach.

For the simulation results of the dynamics of synaptic input in the tuft and on the
secondary dendrites of a mitral cell see Figure 5.1. We show the development of the grid

63
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size in the adaptive simulation. Finer grids are used in the neighborhood of synapses and
near the cell body as the activity takes place here. A coarse grid is used where no activity
takes place, and this are the areas where our approach saves time compared to uniform
simulations, but does not lose accuracy.

(a)
%

Figure 5.1: Dynamics of synaptic inputs in the tuft and on secondary dendrites of a mitral
cell simulated with error based adaptive grid control. (a) shows the morphology of the
considered cell. (b)-(e) depict the development of the spatial grid during the computations.
Around the synapses the grid is finer as long as activity takes place there. After that the
grid is coarsened until minge,e;. There is one grid point at the beginning and and the end
of each linear part of the dendrite and at each synapse. Since we have a level 2 refinement,
an additional grid point is in between these points.

If the stepsize control based on the error estimator (3.27) is enabled, we achieve a speed
up, since only 71s are then needed for the computations compared to 91.5s without stepsize
control. As the synapses are active at the beginning of the simulation, the step sizes are

tmax

small. When their activity finishes, the steps are increased up to d . One can profit
from the adaptive approach, when one considers a problem where there are areas in space
and time where not much activity takes place. We will investigate this behavior in detail

in the following.

5.1 ADAPTIVE COMPUTATION IN SPACE

To investigate the performance properties of the error estimators, we use a simple test
case with a linear piece of a dendrite with one synapse on it. First we test the performance
of the spacial error estimator, see Statement (3.4.2). We use uniformly refined grids and
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evaluate the error estimator for different levels of refinement. Figure 5.2 shows the result

— = — CPU time [s]
—— llegll, -
10° F = -7 3

CPU-time / |les]|2

2 s 4 5 s 1 s o
Refinement level

Figure 5.2: Ewvaluation of the error estimator (solid line) and computation time (dashed

line) for uniformly refined grids from level 1 to level 9 for a linear piece of a dendrite with

one synapse. The computation time grows exponentially as the grid is refined more, but

the computation error gets smaller.

of these investigation. As it can be expected, the estimator gets smaller as the grid gets
finer, i.e. the error estimator (3.24) is a reasonable measure for the computation error.
Between level 6 and level 7 a strong decrease in the size of the error estimator happens.
The error estimator depends mainly on the difference in the solution function on different
boundary points of the discretization elements, compare Equation (3.26). Due to the
simple and small problem, these differences may get smaller between level 6 and 7 as the
computational precision for many discretization elements. Hence, these elements do not
contribute to the error es. The needed simulation time grows exponentially, which makes
sense, since the number of grid points is doubled if the refinement is increased one level.
In a second investigation we look how the adaptive computations perform. Since it can
be expected that the adaptive computations show their best performance properties when
the simulation area where no activity takes place is large, we increase the length of our
test dendrite, still having only one synapse on it. In Figure 5.3 we show, for different error
bounds TOL (see Algorithm 3.1), how the computation time needed for a increasing length
of the dendrite develops. In comparison to the uniform case (Figure 5.3 (a)), the adaptive
method achieves higher accuracy and is less computationally expensive, see Figure 5.3 (b).
In the adaptive case grid points are only added where it is necessary to get better accuracy.
This results in smaller grid point numbers as in a uniform grid, where points are added
everywhere. Hence, the adaptive strategy allows to save computation time. The amount
of saved computation time depends on the refinement level as well as on the considered
problem. It is larger when there are larger areas where less activity takes place, i.e. a long
dendrite in the model problem. This result can be summarized in Statement 5.1.1.
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Figure 5.3: Computation time for uniform (a) and adaptive (b) simulations for an increas-
ing length of the test dendrite. In the uniform case we show the results for different levels
of refinement, and in the adaptive case for different values of the error tolerance TOL. The
slope of the curves in the adaptive case shows that better accuracy is here less expensive

than in the uniform case.

STATEMENT 5.1.1 (PERFORMANCE OF ADAPTIVE GRID CONTROL) Compared to
uniform refinements, the approach of adaptive grid control allows to perform the computa-
tions with the same accuracy faster. The speed up is problem dependent.

5.2 TIME STEP S1ZE CONTROL

In a second series of tests we investigate the performance of the error based step size
control developed in Section 3.4.2. Again we use a linear piece of a dendrite with one
synapse, which is triggered once during the simulation time. Figure 5.4 shows the results
of this investigation. We first compare the computation times for equidistant time steps
dt = %, ! denoting the grid refinement level and evaluate the error estimator (3.27) for
these simulations. It turns out again, that the simulation time grows exponentially and
that the error estimator decreases for finer time steps, see Figure 5.4 (a).

Secondly, we directly investigate the performance of the stepsize control, starting with
dt = %, [ denoting the grid refinement level with different values of the user tolerance TOL
as defined in Section 3.4.2. It turns out, see Figure 5.4 (b), that the overall computation
time grows slower as in the equidistant case with comparable accuracy. It is remarkable
that for fine grids the computation time depends less on the tolerance T'OL then for coarse
grids. An explanation for this is that the computation error is already very small for
fine grids, and therefore the simulations can be always performed with large steps, i.e.
dt = dt™®*, with dt™** = 1.0ms in the simulations. In general this leads to a speed up.

The results of the investigation of the performance of the adaptive stepsize control are
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Figure 5.4: Adaptive stepsize control enables to perform simulations of neuron activity with
high accuracy and less computation time as compared to uniform stepsizes, if there are time

intervals where no activity takes place.

summarized in Statement 5.2.1.

STATEMENT 5.2.1 (PERFORMANCE OF STEPSIZE CONTROL) Adaptive stepsize con-
trol enables us to perform simulations of neuron activity with high accuracy and less compu-
tation time than with uniform stepsizes, if there are time intervals where no activity takes
place. As in the adaption of the spatial grid, the improvement depends on the structure of

the considered problem.

5.3 INFLUENCE OF INHIBITORY SYNAPSES

To conclude this chapter we apply adaptive computations to investigate the dynamics of
a mitral cells with inhibitory synapses. Olfactory bulb mitral cells get inhibitory feedback
from granule cells they form synapses with. In the following we investigate how this process
may result e.g. in the contrast enhancement properties of the network.

We investigate two aspects of the influence of inhibitory synaptic activity on the dy-
namics of mitral cells. A model of a mitral cell with seven secondary dendrites is used.
We simulate the following situation: the input from the primary dendrite is assumed to
trigger an action potential at the cell soma. This results, on one hand, in active transport
of the signals along the axon and, on the other hand, in passive signal transport along the
secondary dendrites as described in Section 2.3. During this process several interesting
situations may occur, as Figures 5.5 and 5.6 indicate. First, we see that active inhibitory
synapses repress the signal propagation along the secondary dendrites in Figure 5.5. There
are synapses between granule cells and the considered mitral cell all over the MC’s den-
drites. Hence, granule cells connected further away from the soma as the active inhibitory
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synapses will not be activated. This leads to a localization of the activity for the mitral
cell dendrites, i.e. the inhibitory synapses may repress the range of signal propagation in
the network. It can be understood that this leads to contrast enhancement in the olfactory
bulb network.

Figure 5.5: Synapses inhibit the signal processing along the secondary dendrites of a single
mitral cell. (a) Morphology of the cell. (b)-(e) Time course of the dynamics. In (d) and
(e) the repressing of the signals from the soma due to the activity of inhibitory synapses
(blue) is visible.

It has to be mentioned that this process is very sensitive to the course of the events as
Figure 5.6 shows. There the synapses are activated a little bit later as in Figure 5.5. It
turns out that the signal along the dendrite is already past the inhibitory synapse when it
gets active. That means, the signal is able to activate synapses further of the soma.

Since there are about 10* synapses per mitral cell in the olfactory bulb of mammals [90],
it can be assumed that inhibition is caused by several synapses every time. Therefore, the
exact course of time is maybe not that important and the large number of synapses per cell
leads to robustness of the system. Nevertheless, our investigations show that inhibitory
synaptic activity on the mitral cell secondary dendrites influences the signal processing in
the olfactory bulb network.

STATEMENT 5.3.1 (MITRAL CELL DYNAMICS) Inhibitory connections between gran-
ule and mitral cells influence the signal processing of mitral cells and can, therefore, mediate
contrast enhancement in the olfactory bulb network. The time course of the inhibitory ac-
tivity compared to the signal processing in the mitral cell is significant for the mitral cell
dynamics.
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Figure 5.6: Time course of firing and synaptic activity is important: late activity of a
synapse allows the signal to pass. (a) Morphology of the cell. The inhibitory synapses are
activated in (c), i.e. later as in Figure 5.5. (d) and (e) show, that the dendritic activation
1s already past the synapses and 1is, therefore, able to activate synapses that are further

away from the soma.

5.4 CONCLUSIONS OF CHAPTER 5

In this chapter we first showed that adaptive computations in space and time based on
the error estimators introduced in Chapter 3 lead to a speed up in computations without
loss of accuracy, when there are areas or time intervals where few or no activity takes place.

Secondly, we used the developed simulation tools to investigate the influence of in-
hibitory synapses to the signal processing in the network of mitral cells and granule cells
in the olfactory bulb. Inhibitory synapses can lead to a localization of the activity in the
network.

Further simulations of a network formed of mitral and granule cells may underline this
statement. At the moment, neuron networks with couplings between the axon of the presy-
naptic cell and a dendrite of the postsynaptic cell are implemented in NeuroDUNE [67].
But in the olfactory network synapses between dendrites of the pre- and the postsynaptic
cell are present. Hence, it is not possible to use this tool for simulating network formed
by mitral and granule cells. We solve this problem in the next chapters by investigating a

model network of point neurons introduced in Section 2.3.
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Chapter 6

LATERAL INHIBITION AND CONTRAST
ENHANCEMENT

Sometimes it’s good to contrast
what you like with something else.
It makes you appreciate it even more.

DaArBY CONLEY

In this chapter we test the equation-free simulation approach with regard to its
performance properties for simulating networks of point neurons. We validate the
equation-free approach by using results from Principal and Independent Component
Analysis of experimental data as simulation setting. Furthermore, we validate our
SRM-network of the OB by showing that it reproduces experimental results of lateral
inhibition qualitatively. We investigate how these properties are influenced by the
connection parameters in the network. Additionally, we investigate contrast enhance-

ment properties of the network with equation-free analysis techniques.

6.1 EQUATION-FREE SIMULATION OF SPIKING DYNAMICS

In [95] it was shown using Principal and Independent Component Analysis (PCA/ICA),
that the time dynamics of the olfactory bulb network can be reproduced by only a few
patterns. PCA/ICA uses decomposition of spatiotemporal data sets into simple spatial
patterns, so-called modes and the corresponding time course. That means the dynamics
of the whole network can be described by few variables. These variables represent in the

71



72 SIMULATIONS OF THE OLFACTORY BULB NETWORK

considered experiments activity of different neuron groups and blood vessels. The neuron
activity is periodic with a period coupled to the breath cycle of the animal. The blood
vessel activity is also periodic, but coupled to the heart beat. We will use these insights to
develop an equation-free simulation approach to speed up the simulations for the network.
In a SRM network with 100 MCs and 400 GCs we defined three “modes” M;, i € {1,2, 3}
of input from the glomeruli. These are implemented as external input for the SRM neurons

during the following time intervals (compare Equation (2.2)).

M;y: hEt=0.3 t=0-10 30-40 60-70  90-100 120-130
My: hES =10.3 t=10-20 40-50 70-80 100-110 130-140
Ms: hSE =0.3 t =20-30 50-60 80-90 110-120 140-150

For all other neurons and during the other time intervals we have h¢** = 0.0. This set-
ting models periodic glomerular input to different neuron groups as described above. In
equation-free simulations, we apply Algorithm 6.1. Note: in the SRM the dynamics of the
network is based on the evaluation of the spiking matrix S and the external input in each
time step. So only S has to be derived in the lifting routine. We choose dc = 0.2 in the
lifting routine of Algorithm 6.1 as threshold for spiking or not spiking, which turned out
to be a reasonable value because the coarse variable S¢ is a matrix that represents the
average spiking rate and due the refractoriness in the SRM the neurons have times of rest
between their spikes.

Algorithm 6.1 Equation-free simulation: Periodic input to the OB network

1: Start: t =10

2: while ¢ < t.,q do

3:  Fine step: Simulate the complete network from time ¢ to t + dt. Get the spiking
matrix S(t) € R(vm+ng)xt,

4. Restricting: Compute the mean value S¢ € R("n+79) over the last ten entries in
Sfort+dt and t+dt — 1, ie. Sci(t) = 5 Z?:O Sit—j, fori e {1,...,ny +ng}.

5. Projection: Derive S¢(t + dt + dT') using forward Euler scheme

Sc(t+dt+dT) = Sc(t+ dt) + dT(Sc(t + dt) — Sc(t + dt — 1)).
6:  Lifting: In the SRM we have S;(t) € {0,1} for all ¢ and ¢. We achieve that by

setting
0, if S¢; < d¢
Si = ’
(7) { 1, else.

7 t=t+dt+dT.
8: end while

Figure 6.1 shows the time course of the spiking dynamics for a direct (left part) and
an equation-free (right part) simulation. In the latter case we have dt = 20 and dT" = 5.



EQUATION-FREE SIMULATION OF SPIKING DYNAMICS 73

We see that the general dynamics is reflected in the equation-free case. It occurs that sets
of spikes in the GCs are not recognized (¢t = 40, 90, 145), or that the spiking takes place to
late (¢t ~ 80). But the overall impression is that the equation-free simulation reproduces
the rough dynamical properties of the modes and therefore of the network.

Spiking matrix S Spiking matrix S
direct equation-free
50+ - 7 - 7 - 7 - 7 - 4 50f
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Figure 6.1: Spiking dynamics of a network with 100 MCs (first hundred lines) and 400
GCs (lower lines). The networks gets input from three modes M;, i € {1,2,3}. Left: direct
simulation, right: equation-free simulation. Black entries indicate S;(t) = 1, while white
ones show Si(t) = 0. There is a good agreement, although some spiking activities are not
detected by the equation-free simulations due to large coarse steps.

One of the aims of applying equation-free simulation techniques is to speed up the
computations. And, indeed, the equation-free approach in Figure 6.1 is about 25% faster
than the direct simulation. Even more speed up can be expected, if one does not evaluate all
cells to compute S¢ but one only takes the cells activated by M;, i € {1, 2,3} into account.
These are the activated MCs and the GCs which are connected to them. The equation-free
computations achieve a speed up of about 28% compared to the direct simulations in this
case.

We applied the equation-free simulation techniques to speed up the simulations of a
SRM network, modeling the neuron network in the olfactory bulb. In Chapter 4 it was
pointed out that the microscopic variables are required to converge to a low dimensional
inertial manifold quickly, in order to apply equation-free simulations. We want to test this
behavior numerically. The test is established in the following way: after several simulation
steps, i.e. at t = 75, we disturb the lifting procedure by replacing Sc(t) with So(t) + A,
where we have

A=6-7, r€[-0.5.0.5 a random number.
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Figure 6.2: Influence of disturbances in the lifting step: spiking dynamics of a network
with 100 MCs (upper part) and 400 GCs. Black entries indicate S;(t) = 1. The network
gets input from three modes M;, i € {1,2,3}. Disturbed equation-free simulations where
a disturbance A = ér, r € [—0.5.0.5] a random number, is added to the spiking matriz
S(t) at t =75. (a) Spiking matrices for different disturbances. (b) Error during disturbed
simulations. Even for large disturbances the error tends to zero after mazimal 40ms, which
means two spiking cycles of a MC.

After this artificial disturbance we investigate how fast the simulations recover to the
undisturbed simulation. The main idea of the test is: if the dynamics of the microscopic
variables can be described by the macroscopic variables, the system will converge back to
the coarse dynamics even if the fine state is disturbed.

Figure 6.2 shows the result of this convergence test. We have the results for § =
0.1,0.3,0.5,5.0. In Figure 6.2 (a) we show the spiking matrices. Figure 6.2 (b) depicts
the mean difference in the spiking matrix between the disturbed and the undisturbed
simulations. It can be seen that the system recovers quickly for the small disturbances,
while it stays disturbed longer for larger 6. But even for § = 5 the error is zero after
40ms, i.e. maximal two spiking cycles of a MC, the refractory time of which is 20ms, see
Appendix A.2. Hence, the equation-free simulation techniques can be applied in the case
of simulating the time dynamics of a SRM network here. Later we will show a case where
it cannot be applied.

An improvement of the equation-free simulation techniques can be achieved by simu-
lating several fine ensembles in each fine step and averaging their results. The lifting step
is not unique, i.e. there exist several fine representations which fit to a given coarse state.
Hence, one lifts the system to several consistent fine states by varying dc = 0.2 + 0.01 - r,
with 7 € [—0.5,0.5] a random number, and simulates all these states in the next fine step.
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equation-free,
direct equation-free with 10 ensembles

Figure 6.3: Equation-free simulation with several ensembles: spiking dynamics of a network
with 100 MCs (upper part) and 400 GCs. Black entries indicate S;(t) = 1, while white ones
show S;(t) = 0. The network gets input from three modes M;, i € {1,2,3}. Left: direct
simulation, middle: simple equation-free simulation, Tight: equation-free simulation with
10 ensembles.

The results are restricted and one averages the coarse state afterwards. In Figure 6.3 we
depict the results of a simple equation-free computation (middle) and of a simulation with
10 ensembles (right). Compared to the direct simulations (left), we see that the simulation
with 10 ensembles gets the better results. The spiking activity for the GCs belonging to
the first mode around ¢ = 75 shows extra spikes in the equation-free simulation with one
fine state. This activity is not present in the direct simulation and in the equation-free
computation with 10 ensembles. So, the result is actually improved. But it is not perfect:
at t = 75,125,175 some spiking activities are not detected in the equation-free case. And
this remains the case even if we increase the number of fine ensembles. What happens
here is that the spiking would occur just after the projection step and is, therefore, not
detected. But the overall dynamics is reproduced by the equation-free technique.

6.1.1 LiMITS OF THE EQUATION-FREE TECHNIQUE

To conclude this section we show the limits of the equation-free approach. We look at
a setting that is a little different to the one used above: the network gets continual input
from the three modes M;, i € {1,2,3}. The input hl,, = 0.3 starts at different points
in time. I.e. mode M is active for t > 10, M is active for ¢t > 20, and M3 for t > 30.
The fine steps, lifting, restricting, and the projection step are the same as described in
Algorithm 6.1.

In Figure 6.4 we see the direct (left) and the equation-free (right) results for this
investigation. We used 50 ensembles in this simulation. We see that as the simulation
proceeds, the spiking activity for all three modes synchronize. This situation can not
be found in the direct simulations. We can not improve this situation by using more
ensembles. This problem shows the limits of the equation-free approach: the reason for
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Figure 6.4: A problem stetting, where equation-free simulation does not work. Spiking
dynamics of a network with 100 MCs and 400 GCs. The network gets continual input from
three modes M;, i € {1,2,3}, starting at different time points. Left: direct simulation, right:
equation-free simulation with 50 ensembles. In the equation-free simulation the system
“forgets” the different starting points and the activity gets in phase, which will not happen
in the direct simulations.

the phase delay in the spiking activity of the cells belonging to the different modes is that
their input starts at different times. These settings are “forgotten” during the equation-free
projection. After several time steps the rules governing the dynamics of the network do not
include the rules responsible for the phase shift anymore. Since the system is re-initialized
during the equation-free computations, only the dynamics belonging to the rule “continual
input for all modes” are simulated.

These investigations show the limits of the equation-free simulation techniques. If the
rules governing the coarse dynamics are not present any more, the system will converge to
the wrong macroscopic state. But the investigation above showed that there are problems
where this approach can be used in the case of simulating networks of SRM neurons.
We will use this knowledge to investigate the behavior of the network due to changing
parameters in the next sections.

This section investigated how equation-free simulation techniques can be used to sim-
ulate the spiking dynamics of a model of the olfactory bulb network. It turned out, that
the following statement holds.

STATEMENT 6.1.1 (EQUATION-FREE COMPUTATIONS OF SPIKING ACTIVITY)
Equation-free simulation techniques are able to reproduce the results of direct simulations
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in the case of on going periodic activation of the network. If the dynamics depends on
activities back in time, the equation-free method is not able to memorize these effects.

6.2 LATERAL INHIBITION

Like in several neuron networks of the nervous system, lateral inhibition is a main principle
according to which signals are processed in the olfactory network [6, 71]. We first define
this term [118].

DEFINITION 6.2.1 In sensory systems one observes an suppressed activity of weakly stim-
ulated cells if strongly stimulated cells are activated nearby. This process is called lateral
inhibition.

In the olfactory bulb, lateral inhibition is mediated amongst others by the MC-GC circuit,
which involve inhibitory connections between cells of different types [104, 117|. We follow
the ideas developed in [6, 30| to determine whether our model developed in Section 2.5
gives rise to lateral inhibition: we stimulate, i.e. A%’ = 0.5, a single MC in a 10 x 10
array of uniformly weak stimulated cells with 20 x 20 GCs. The background input is set
to h®" = 0.3. Since the spiking activity of MCs getting input from the same glomerulus
is correlated [103], this approach can also be interpreted as inhibition among glomeruli,
which can be seen experimentally [7].

In Figure 6.5 we plot the number of spikes which occur in the MC-array during a
simulation time of 500ms for different values of the connection parameters reze, Tinh, Jexe
and Ji,p. In Figure 6.5 (a) we have r;,, = 7.5 and J,;, = 0.5 and changing values rey.
and Jeze and in Figure 6.5 (b) the role of the excitation and the inhibition parameters are
exchanged with repe = 2.0 and Jeze = 0.5. For all parameter values we see clearly that
the spiking activity around the strongly activated MC is diminished. In Figure 6.5 (a)
the influence of rep. and Jeze is shown: as rep. grows, the radius of the inhibited area
grows. Since Tey. describes the radius of interaction where synapses between MCs and
GCs are formed, this observation was expected. The activated MC influences GCs which
are further away and, therefore, influence also more distant MCs. This leads to a larger
radius where lateral inhibition takes place. J.z. is not that much responsible for the size
of the simulation area but more for its structure.

The same holds for the influence on the other two connection parameters as it is shown
in Figure 6.5 (b). It can be seen that the influence on the size of the inhibited area is not
as large as in the case of rey.. The three parameters ri,n, Jeze and Ji, influence more
the structure of the inhibition, i.e. are all cells diminished homogeneously or is there a
structure that can be seen. Since in the case of homogeneous diminution the neighboring
MCs are spiking less as in the inhomogeneous case. The latter can be interpreted as less
inhibition than in the first case. That means we get an increase of inhibition as r;,p, Jezce
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Figure 6.5: Lateral inhibition is responsible for less spiking activity around an active cell.
In (a) we have 1y, = 7.5 and Jiypn = 0.5 and changing values reye and Jeye and (b) it
18 Teze = 2.0 and Jeze = 0.5. The influence of the connection parameters reze, Tinh, Jexe
and Jinp shows that the parameter which influences lateral inhibition most is rege, i.e. the
length of the secondary dendrites of the MCs. All other parameters do not influence that
much the size of the inhibition area but the structure of inhibition.

or Jiun grow. The results of this section are summarized in Statement 6.2.2.

STATEMENT 6.2.2 (LATERAL INHIBITION IN THE OB NETWORK MODEL)
Lateral inhibition is included in the network model of the olfactory bulb developed in this
work. Its range depends mostly on the length of the secondary dendrites of the mitral cells
modeled by the radius of excitation Tege.

6.3 CONTRAST ENHANCEMENT

Contrast enhancement is assumed to be a direct consequence of lateral inhibition [112].
It is defined in the following way [44]:

DEFINITION 6.3.1 Contrast enhancement means, that even if initial firing patterns
of MCs evoked by related odors are similar, after a few hundred milliseconds the firing
patterns will become distinguishable.

We introduce a method to investigate the contrast enhancement properties of a MC-GC-
network based on the geometric properties of the input and output signals, indicated by
the membrane potentials of the MCs.
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We look at the geometric properties of the network activity by monitoring two activity
centers in the MC layer of the network. As measure for contrast enhancement we choose the
distance between the centers A.. (compare Figure 6.6 (a)). It grows up to a stationary state
in the course of time. Figure 6.6 (b)-(d) show different stationary states for different values
of Jeze. Note that the network activity takes place in an oscillatory manner. Stationary
state is meant here in the sense that the amplitude of the oscillations is constant. The
idea behind this setting is the following: The easiest way to achieve that the initial firing
patters of MCs become more distinguishable during signal processing is to sharpen the
boundaries of nearby activity centers. This is seen in imaging experiments [45]. We map
this observation to our model by investigating how much the distance between two activity
centers grows in the course of time. It turns out that the distance reaches a stationary
state as discussed above.

Therefore, we compute the stationary state of the distance A.. between the activity
centers for different values of Jez. and rez. in a network with 100 MCs and 400 GCs. The
activity centers are implemented as external input h¢** = 5 for the SRM neurons in the
centers. The other MC have again a weak input h¢** = 0.3.
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Figure 6.6: Equation-free investigations of contrast enhancement in the OB network model.
(a) Schematic illustration of lifting procedure. (b)-(d) Spiking activity showing differences
in contrast enhancement, (b) Ace = 2, (c) Ace =4 and (d) Aqe = 8. (e) Convergence of
disturbed simulation (dashed lines) to undisturbed simulation (solid line).

(a) Lifting

—
\

8 A

4

6.3.1 EQUATION-FREE INVESTIGATIONS OF CONTRAST ENHANCEMENT

In the following, we use an equation-free approach, where we investigate the behavior of
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A by treating it as a coarse variable. This approach speeds up the simulations compared
to direct parameter studies. It is assumed to be described by a dynamical system

Ace(t) = Fce(Ace7 Texcs Jexc) (61)

the explicit form of which is unknown. Equation (6.1) is not derived in a closed form
analytically but evaluated by simulating the whole system and then deriving A.. numer-
ically. The restricting routine r, i.e. deriving A.. from a given state of the complete
system, means here measuring the distance between the activity centers. For example in
Figure 6.6 (b) we have 7(S) = A. = 2, in Figure 6.6 (c¢) A, = 4 and in Figure 6.6 (d)
A = 8.

When we are in a stationary state, i.e F,. = 0, we predict a new A, for changing
parameter values Jegze OF Tepe as described in Algorithm 4.3. As introduced in Section 2.4.1
the state of a SRM neuron network is described by the spiking matrix S. For a changing
macroscopic state, we adjust this state by a lifting procedure [. Here we set the spiking
history of the neurons in the gap between the two activity regions to zero, see Figure 6.6 (a).
Then the simulation is started for a new parameter value.

The benefit of this approach is that the system will reach its stationary state faster than
after starting the system anew for each parameter. We get a total speed up of about 40%
without loss of accuracy, since we are still computing directly until we reach the stationary
state. The lifted system reaches the same stationary value of A, as the direct simulations
for all values of 7¢ye and Jeze. This statement is underlined by Figure 6.6 (e). Here, we
disturb the macroscopic state, i.e.

Ace = A +6, 5€[-1,2]

at t = 50 after a lifting step (dashed lines). It can be seen, that after 40ms all curves have
converged to the undisturbed state (solid line).

In Figure 6.7 we show how changing network parameters influence the contrast en-
hancement properties of the network. For small values of Jege, i.€. Jeze € [0.15,0.3] the
contrast enhancement properties grow for changing r.,. until they reach a maximum at
Teze = 40% of the simulation area. After that A.. gets smaller again. This behavior can
be explained in the following way: as the radius of excitation grows more granule cells are
activated from the mitral cell activity. Hence, there is also more inhibition in the network.
Since the excitation is not strong, i.e. we have small values of J.;. in that regime, this
leads finally to a damping of the complete activity in the network. Hence, less contrast
enhancement can take place.

For large Jeye, i.e. Jeze > 0.3 the situation changes. Now the excitation is strong
enough to compete against the stronger inhibition as r.,. grows and, therefore, the contrast
enhancement properties grow for growing re... This observations lead to the following
statement:
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Figure 6.7: Equation-free parameter studies to investigate the dependence of Ace, the mea-
sure of contrast enhancement, on the connection parameters Teze and Jeze.

STATEMENT 6.3.2 (CONTRAST ENHANCEMENT IN THE OB NETWORK MODEL)
The contrast enhancement ability of the olfactory network model is influenced by its con-
nection parameters. For small values of Jeye there is an optimal length of the radius of
excitation where the network has its best contrast enhancement properties. Above and below
the contrast enhancement ability vanishes. For large Jeze the contrast enhancement ability

of the network grows as Tege grows.

6.4 CONCLUSIONS OF CHAPTER 6: LATERAL INHIBITION AND
CONTRAST ENHANCEMENT

This chapter consists of three parts. First, we investigated the performance properties of
equation-free simulations in the context of spiking neuron networks. We showed where the
limits of the approach are, but were also able to show that several cases exists where it
performs well.

Secondly, we tested whether our network model is able to reproduce lateral inhibition
properties. This was possible. For changing the connection parameters it turns out that
Texe describes how long the range of the lateral inhibition is. The other parameters, namely
Tinh, Jexe and Jiup, are responsible for the structure of the decreased network activity.

In the third part of this chapter, we investigated how 7., influences the contrast
enhancement properties of the network. It turns out that for small values of J.,. not only
very small radii of interactions but also large ones do not allow contrast enhancement.

Hence, it can be concluded, that the length of the MC dendrites, which are here modeled
by the radius of excitation r.,., has a major impact on the network dynamics. We will
follow this consideration in the next two chapters. r.,. is in mammals about one third of
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the size of the OB. For large values of J.,. we get good contrast enhancement properties
in that parameter region. For larger values much of the network activity is damped. For
smaller values of J.;. the contrast enhancement properties have their optimum for re..
in the range of one 30% to 40% of the of the simulation area. Hence, our results are
comparable to the experimental findings.



Chapter 7

ODOR DISCRIMINATION

If you believe that discrimination exists, it will.

ANTHONY J. D’ANGELO

In this chapter we investigate the ability of the olfactory bulb network model
with point neurons to distinguish binary mixtures of odors, depending on the ratio
of the mixtures. It turns out that experimental results can be reproduced qualita-
tively. Furthermore, we can predict different discrimination abilities depending on
the connection parameters of the network. We see that hysteresis effects occur in the
network dynamics in the case of systems where long-term dynamics with changing

input is investigated.

In Chapter 6 we investigated the contrast enhancement behavior of a Spike Response
network model of the OB with regard to the distance of geometric activity centers. In
this section we look at another biological question where contrast enhancement comes into
play: odor discrimination. In [1] behavior experiments with rats were used to investigate
the ability to discriminate binary odor mixtures. It turned out that animals need longer to
discriminate more similar mixtures than mixtures where one odor is more dominant. This
knowledge of the experimental results allows us to define the ability to discriminate odors
in the following way.

DEFINITION 7.0.1 The ability to discriminate which odor is more present in a mizture
of two odors is called odor discrimination ability.

Nearly similar binary odor mixtures evoke almost identical odor maps in the olfactory
bulb, which become more distinguishable in the course of time. This is believed to mirror

83
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the results of the behavioral test [1]. In these tests it is measured how fast a mouse is
able to detect the dominant odor in a binary mixture of two odors. It turns out, that the
animal needs longer to fulfill this task as the odor mixtures become more similar. The
mouse needs about 200ms for discriminating simple odors and it requires 70 — 100ms
more time to discriminate highly similar binary mixtures. It is generally hypothesized that
differences in activity maps reflect the animals ability to discriminate between different
odors in behavioral tests [79, 119]. Therefore, we want to explore the time-dependent
activity distribution in the network using inputs representing binary odor mixtures. We
define external input areas to the MCs in a network with 900 MCs and 8100 GCs. This
represents the input from the glomeruli to the network model. The different ratios of odor
mixtures are implemented in the SRM by setting h¢** = 0.5¢;, if MC i belongs to the
activity area of the first odor and h¢* = 0.5cy, if it belongs to the second activity center,
with ¢; + ¢ = 1. First, we investigate the network model behavior with two very simple
inputs — two squares, see Figure 7.1.

By looking at the spiking activities of the mitral cells, depicted in Figure 7.1, it can
be seen that differences in the two activity areas occur faster as the ration of two inputs
is more different compared to more similar odor mixtures. Hence, it can be assumed that
the animal would be able to discriminate the more different setting faster.

In the experiments in [1] the odors armyl acetate and ethyl butyrate were used. Pro-
jections of imaging results of the odor maps of odors are shown in Figure 7.2, first and last
line. These inputs are projections to the 900 MCs in the considered network model.

In Figure 7.2 the simulation results for the inputs modeling the two odors armyl acetate
and ethyl butyrate are shown. The sum of the spikes generated by the MCs up to a certain
point in time is again depicted in this figure. One again recognizes that the network needs
longer to discriminate more similar mixtures. We want to investigate this behavior in a
more formal way and define therefore a quantity that measures the time the system needs
to discriminate two odors in the next section.

7.1 DISCRIMINATION TIME

In order to investigate the odor discrimination ability of the network model, we define the
discrimination time, i.e. the time when the network is able to discriminate which odor is

more present in the following way.

DEFINITION 7.1.1 The time tq needed until a significant difference between the number
of spikes in the first activity area and the second area is defined as

ty = mint (7.1)

02

1 & N ,
Ol;SZ(t<t)—OQZSZ(t<t)

=1

s.t. > dg4.
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t = 100ms t = 150ms t = 500ms

Figure 7.1: Odor discrimination for two square inputs and different ratios of the binary
miztures (55%:45%, 60%:40%, 65%:35%). The sum of the spikes generated by the MCs up
to a certain point in time are depicted. It turns out, that the network needs more time to
discriminate the odors if the miztures are highly similar.

We call ty discrimination time, o; denotes the number of cells in the activity area 1,
ie{l,2}.

In the following we examine for square inputs and a network of 100 MCs and 400 GCs
how the discrimination time t; depends on the discrimination threshold d4 and on the
connection parameters of the network rege, 7inh, Jeze and Jinp, see Figure 7.3. One can
observe several points in this figure:

e For growing values of d4 the overall discrimination time grows simultaneously, see
Figure 7.3 (a). We choose §; = 5, which equals a spiking rate difference of about
20Hz, for the following simulations.

® 7., has the largest influence on the discrimination time. If the connection in the
network are too short or too long, the network is not able to discriminate the odors
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as fast as in an optimal area of connectivity length between 30% and 40% of the
network size.

e 7,1, has not much influence on the dynamics compared with the influence of re,.: it

only shifts the ¢4 curves in a small range, compare Figure 7.3 (b).

e Strong excitation of the granule cells damps the overall network activity and this leads
to an increase of t4 for large values of rey. and Jey., as can be seen in Figure 7.3 (c).

e The effects of less inhibition can be seen in Figure 7.3 (d). As Ji,, is small ¢4 only
gets smaller for relatively large values of reze.

One open question is whether the different discrimination times are due to the fact that
the odor ratio is different or due to the fact that the odor concentration of the odor with
the smaller ratio is not that large. If we change the total input weight he,r = %C cc1o. It
turns out that ¢4 keeps nearly the same (t4 € [132ms, 137ms]) for 6. € [0.8,1.4], ¢; = 0.6,
Teze = 35%, Tinn = 30% of the network size, and Jeze, Jinp = 0.5. Hence, the difference
of the odor discrimination times results indeed from the different odor ratios not from
the concentrations. This was also described experimentally [1]. We can conclude this
investigations of the odor discrimination ability of the OB network model with the following
statement:

STATEMENT 7.1.2 (ODOR DISCRIMINATION ABILITY) The simulation results in this
section show, that the odor discrimination ability of the OB network depends on its connec-
tion properties. The most influence has the radius of excitation rey.. There is an optimal
interval of its scope where the network is able to discriminate binary odor miztures fastest.
Below and above this area it needs longer to do so.



ODOR DISCRIMINATION 87

t = 100ms t = 150ms t = 500ms
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Figure 7.2: Odor discrimination for two inputs, defined based on the activity measured by
imaging experiments of ethyl butyrate (EB) and armyl acetate (AA) (top and bottom line).
Different ratios of binary miztures of these two odors (55%:45%, 60%:40%, 65%:35%)
show, that similar miztures need longer to be discriminated than more different mixtures.
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Figure 7.3: Behavior of tq depending on the discrimination threshold 04 and on the con-

nection parameters of the network rege, Tinh, Jeze and Jipn. In (a) the chosen parameter

values were Tege = 35%, Tinn = 30% of the network size and Jegyc, Jiny, = 0.5. For (b)-(d)

we have ¢1 = 0.6 and co = 0.4.
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7.2 EQUATION-FREE CONTINUATION OF SPIKING RATE DIF-
FERENCES

Mathematically it is interesting to investigate dynamical systems in terms of stationary
states and the behavior of the stationary states for changing parameters. Experimental
results also show that long term dynamics, i.e. 0.5s to a few seconds, can give rise to other
effects as those of the fast dynamics after about 100 to 200ms [45]. Therefore, we look not
only at the discrimination time t4 but also at the spiking rate difference Ay in the activity
centers of the different odors. It turns out that the system reaches the stationary states of
A; for long simulation times, see Figure 7.4 (a). In many biological systems prehistory of
the system is important, i.e. the new state of the system depends on the old state when
a system parameter is changed. Learning and hysteresis effects are examples for that.
Hysteresis is a phenomenon where a jump from one stable branch of equilibrium points
to another branch occurs for a small change of a parameter as described in Section 4.8.2.
We use equation-free pseudo-arclength continuation to follow a curve of equilibria points
for changing the mixture ration ¢;. The corrector step is performed by an equation-free
Newton’s method evaluating the unknown equation

As = F(A& Texcs Cl) (72)

numerically using a finite-difference approximation for A, as it was introduced in Sec-
tion 4.8.4. The restricting procedure r is defined here by evaluating the mean spiking
rate of the MCs in the two activity centers during the last 50ms, and computing the
difference between the rates in the two activity areas. After performing a Newton-step
Ay = A, — (OF (A, Tewe; €1)/00s) "L F(Ag, Tege, €1), one has to adjust S, i.e. the system
has to be lifted to a consistent microscopic state. This is done by, on one hand, keeping the
spiking activity in the first activity area and, on the other hand, by adjusting the spiking
frequency in the second activity area to get the spiking rate difference A;. Note that not
only F(As,reze, 1) is evaluated numerically but also OF(Ag, Tege, €1)/0As by computing
F(As + dAg, Teze, c1) and approximating the derivative by finite differences.

Before we perform the continuation process of the stationary states, we investigate
whether A is actually a variable that describes the macroscopic dynamics of the underlying
system. In Figure 7.4 (a) we depict the time course of Ay for ¢; = 0.7 derived by equation-
free time-stepping for a small network as used in Figure 7.3. It can be seen that the system
needs long, i.e. about 2.5s, until it reaches its stationary state. To test the equation-free
approach we disturb A; arbitrarily after a lifting step by

Ay=A,+6, §€0.050.4]

In Figure 7.4 (b) it can be seen that the disturbed states (dashed lines) converge to the
undisturbed state (solid line) in less than 120ms. Hence the equation-free approach can be
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Figure 7.4: Equation-free time-stepping for the spiking rate difference As. (a) Time-course
of As. (b) Convergence of disturbed states (dashed lines) to undisturbed simulation (solid
line).

applied here and we use the continuation approach combined with equation-free Newton’s
method as described above.

In Figure 7.5 (a) and (b) we show the result of continuation of equilibria of Equa-
tion (7.2) for two parameter values of 7ez.. In Figure 7.5 (c) a continuation of the bifur-
cation points detected in Figure 7.5 (a) for changing 7¢,. is depicted. In Subfigure 7.5 (a)
a hysteresis effect for e = 30% of the simulation area, which is 90um here, formed
by two saddle-node bifurcation points a7 and asg is shown. The equilibrium condition
F(Ag,Tege,c1) = 0 and the saddle-node bifurcation condition g—i(As, Texes€1) = 0 as in-
troduced in Section 4.8.1 hold at these points. At the saddle-node points, changes from
stable equilibria curves (solid lines) to unstable equilibria curves (dashed line) take place.
Therefore, the physical system performs a jump from one stable branch to the other when
coming to the bifurcation point.

In Subfigure 7.5 (b) we have reze = 75% of the simulation area, i.e. 225um, and
there are no hysteresis effects present. Adaptation takes place instead. By continuing the
bifurcation points of Subfigure 7.5 (a) for changing 7,. we can explain this behavior, see
Subfigure 7.5 (¢). The two branches of the bifurcation points come closer for growing values
of reze. During this process, the length of the unstable branch between the bifurcation
points comes to zero. At the point 8 where the two bifurcation points come together a cusp
bifurcation takes place. Again the equilibrium condition holds and aa—fs(As, Texes €1) = 0,
but we have additionally %(As, Tewe, C1) = %(AS, Texe,C1) = 0 and

2 2
gfl‘(As, Texc, cl)aAasaI:m(A& Texc, cl) - oF (As’ Texc, Cl)aisg‘cl

which are the condition for a cusp bifurcation as introduced in Section 4.8.3. Hence, the

(Asv Texc, Cl) 7é 07

OTexe
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Figure 7.5: Hysteresis and adaptation effect in a system with prehistory with 900 mitral
cells and 8100 granule cells. An equation-free continuation process is applied to follow
the equilibria in (a) and (b). For a small excitation radius hysteresis effects are present
for changing the mizture ratio of the input. For a large excitation radius the hysteresis
effect vanishes and adaptation occurs (b). In (c) the two saddle-node points a1 and cg are
continued. They move together forming a cusp-bifurcation at (3.

following statement holds.

STATEMENT 7.2.1 (HYSTERESIS IN THE OB NETWORK DYNAMICS) For systems
with prehistory, i.e. changes in the mixture ratio of the input c1, co take place but the spiking
matriz S is kept, a hysteresis can be detected using equation-free numerical bifurcation
analysis and pseudo-arclength continuation. For changes in the radius of excitation of the
network rez. the hysteresis descends to an adaptation effect at a cusp bifurcation point.

The hysteresis in Figure 7.5 avoids jumping between two states, represented by the
lower and the upper stable branch (solid lines). If the system is close to the saddle-node
points, some fluctuations in the concentration values make the system jump to the other
branch and after the jump it is robust to further fluctuations. In Figure 7.5 (b) fluctuations
around the turning point ¢ lead to jumps between the lower and the upper states.

Hysteresis effects occur in other neuron network models [60]. A model of a network
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of pyramidal cells in the prefrontal cortex for example shows a hysteresis effect in the
advantage population firing rate for changes in the connection strength of the network [10].

7.3 BIOLOGICAL INTERPRETATION

Our investigations showed that the odor discrimination time for a binary mixture depends
on the connectivity parameters of the network. But the region where ¢4 is at its minimum
is, for example, large for 7, (between 30% and 40% of the network size). For the synaptic
strength the minimal ¢4 is nearly independent of Je,. and J;,,. This leads to a robustness,
i.e. several realizations of the network are feasible. Therefore, nature is able to form a
network that is able to perform discrimination tasks fast and can still be optimized for
other tasks, too.

The hysteresis as we detected it plays a minor role for simple discrimination tasks,
since an animal does not have to wait until the stationary state of the network activity
is reached. It is in general able to decide earlier which odor is present. Nevertheless, if
similar odorants are present for long times, the animal may reach the stable states. The
hysteresis effect described in this chapter will then stabilize the behavior of the animal for
small changes in the input.

To conclude this section, we want to have a look at the time scales of the activities
related to odor discrimination, on one hand, detected in experiments [16] and, on the
other hand, found in our simulations. Note that there are many unknown parameters
in the network model, and not much is known about the actual connectivity properties
of the network between mitral and granule cells. Hence, all interpretation can be only
on the order of magnitude, not on the exact values. As described above, simple odor
discrimination tasks are performed fast in experiments, i.e. in about 100ms to 200ms [1].
We saw the same order of magnitude in our simulations shown in Figure 7.1 and 7.2. These
results exclude slow mechanisms such as attractor stabilization or slow decorrelation as
mechanisms responsible for odor discrimination [1]. Nevertheless, there is experimental
evidence, that e.g. winnerless competition models [68] based on slow temporal patterns
and specific inhibitory circuits, suggest that a time window of 500ms to several seconds
yields enhanced discrimination. In zebrafish a substantial decorrelation of activity patterns
was observed only after 0.8s to 1.5s [45]. In this time scale, we reach the stationary states
leading to hysteresis effects in the OB network model. Hence, it is supposable that in
difficult discrimination tasks hysteresis effects are actually present.

7.4 (CONCLUSIONS OF CHAPTER 7: ODOR DISCRIMINATION

A. mathematical investigation of odor discrimination properties of the OB network model
was performed in this chapter. We were able to reproduce the results of behavior experi-
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ments. There it was shown that animals need longer to discriminate more similar binary
odor mixtures.

The odor mixture results in two activity areas in the MCs of the network model.
By investigating the stationary states of the spiking difference we were able to apply the
techniques of numerical bifurcation analysis. In long-term simulations with changing input
ratios we have, depending on the excitation radius re;. hysteresis or adaptation processes.
At the transition between these two situations a cusp bifurcation occurs.

This means we predict measurable path dependencies in the case of relatively short
range MCs due to the hysteresis effect found by equation-free computations. For long
ranging MC dendrites we saw adaptation processes in our simulations. That means, no
path dependency can be expected in that case.
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Chapter 8

TRAVELING WAVES

Happiness is not a station you arrive at,
but @ manner of traveling.

MARGARET LEE RUNBECK

In experiments with zebrafish, traveling waves are detected in the olfactory bulb
neuron network. Using a SRM neuron network model, we investigate in this chapter
when traveling waves emerge and how their appearance is influenced by the structure
and the connectivity of the network. It turns out that, on one hand, the shape of the
boundaries of the network has an influence on the shape of the waves. On the other
hand, we can show that the radius of interaction is a main parameter which influences
the traveling waves. They are faster as the interactions have a wider range. Biological

interpretations of the simulation results conclude this chapter.

In [44] imaging experiments with zebrafish with voltage-sensitive dyes show traveling-
wave-like structures in the dynamics of their olfactory bulb. These experiments measure
the activity of the membranes of the cells. Since the GC produce the largest part of cell
membranes in the olfactory bulb it is more likely that the images show the GC activity.
The experiments show, that traveling waves emerge in an oscillatory manner and that the
propagation velocity and direction was nearly odor independent. We will investigate in
the following under which conditions we are able to detect traveling waves in the SRM

network model established in Section 2.5.

95
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8.1 INFLUENCE OF BOUNDARIES

In the case of boundary conditions, where no connections across the boundaries of the
simulation area occur, we recognize for a constant external input ht,, = 0.3 for i =
1,...,n,, traveling waves from the boundary to the center of the simulation area in the
MC and the GC layer. As in the experiments the traveling waves emerge in an oscillatory
manner. By introducing periodic boundary conditions at the boundary of the MC and GC
arrays different wave structures can be produced, see Figure 8.1.

(a) (b) (c)
. || | -1

Figure 8.1: Traveling waves in the OB network for different boundary shapes and homoge-

neous input.

In Figure 8.1 it can be observed that the shape of the boundary influence the structure
of the waves emerging in the OB, but the shape is constant as the shape of the boudary

does not change. From left to right we have:

(a) Quadratic simulation area with periodic boundary conditions in z-direction and no
connections at the upper and the lower boundary. This results in waves moving from
the top and the bottom to the middle of the simulation area.

(b) Quadratic simulation area with no connections at all boundaries. The waves travel
now from all four boundaries to the center of the network.

(c) Circular simulation area with no connections at the boundary. As in case (b) the
wave move from the boundary to the center of the network.

It is well known that lateral boundaries can effect traveling wave dynamics for example
in binary fluid convection [3]. Boundaries where no connections occur in one direction
are disruptions in a network where the rest of its structure is homogeneous. And these
disruptions are starting points of waves. The waves occurring in the model network of
the OB are actually waves of inhibition, i.e. the emerge first on the GC array and the
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inhibition on the MC array is followed by a excitation wave there. We will come to this
point again later.

8.2 INFLUENCE OF NETWORK PARAMETERS

To be not dependent on the boundary conditions, we search for another way to investigate
the existence of traveling waves. Suitable initial conditions, i.e. a spiking history of a wave
on the GC array followed by a wave on the MC array, result in oscillatory traveling waves,
too. To investigate this behavior in detail, we investigate a chain of mitral and granule cells
and the waves moving along this chain. In Figure 8.2 the first 25 plotted time steps show
the initialization after which oscillatory waves occur even for periodic boundary conditions
at the chain ends. The left part of Figure 8.2 shows the direct simulation of the waves in
a chain of 400 MCs and 400 GCs with an external input of hl,, = 0.5 for i = 1,...,ny.
We have rep. = 20, 755 = 100, Jope = 0.4 and J;,, = 0.01.

direct equation-free
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Figure 8.2: Traveling waves in a cell chain of 400 MCs and 400 GCs. Left: direct simula-
tion, right: equation-free simulation using template fitting. Upper row: membrane potential
of the MCs, lower row: spiking activity of the network. The red entries in the spiking matriz
indicate projection steps in the equation-free simulation.
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8.2.1 EQUATION-FREE INVESTIGATION OF TRAVELING WAVES

.A.s before we want to speed up the simulations by using equation-free techniques. In
the context of traveling waves we combine this approach with template fitting ideas as
described in Section 4.7. That means the coarse variable is the template fitting variable c.
We measure ¢ in the MC chain from the spiking matrix after simulating a few time steps.
This is the restricting process r here. Then we project the wave using the measured ¢ and
the old position of the wave. Then one has to lift the system — this is done by a projection
of the spiking activity, i.e. one sets S; = 1 for MCs and GCs where the traveling wave is
projected to be. The results of the equation-free simulations can be found in the right part
of Figure 8.2 where the projection steps are indicated by red entries in the spiking profile.

Figure 8.2 shows that the waves occurring in the OB network are actually inhibition
waves, i.e. we first have a wave on the GC chain, which than inhibits the MCc and after
this inhibition wave the actual excitation wave is able to propagate across the network.
This behavior is well known for example in epidemiology. In a model of a Hantavirus
epidemics [2] a situation was observed, where first a wave of susceptible species has to
emerge before a infection can occur. In the same manner the MCs are brought in a feasible
state that a wave can emerge due to the inhibition by GCs in the OB.

We can achieve a speed up between the equation-free and the direct computation
depending on the length of the simulation time: for 100ms simulation time we get a
speed up of 7%, for 1000ms we have a 10% speed up and for 10,000ms the equation-free
computations are 21% faster than the direct simulations.

Difference in S

L 1
40 45 50 55 60 65 70

Figure 8.3: Convergence of equation-free simulations of traveling waves in a cell chain of
400 MCs and 400 GCs. Difference in spiking matriz for disturbed states (dashed lines).

In Figure 8.3 we investigate as before how disturbances in the spiking matrix influence
the equation-free simulations. It turns out that the disturbed system (dashed lines) con-
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verges quickly to the undisturbed state (solid line). We show the mean difference in the
spiking rate. The oscillatory occurrence of an error is due to the oscillatory presence of
the traveling waves.
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Figure 8.4: Influence of the connectivity parameters on the amplitude of the traveling wave
in the OB network. (a) rege =100, 80, 60, 40, 20, 10, 5, 3, 2, 1, (b) Tinn =200, 150, 100,
10, 1, (¢) Jexe =0.8, 0.6, 0.4, 0.2, 0.1, 0.05, Jinp, =0.1, 0.81, 0.04, 0.02, 0.01 (from outer
orbits to the middle).

In previous investigations of the olfactory bulb network dynamics we saw that the
network connectivity parameters, especially 7z, have an influence on the behavior of the
network. It is again the case, that r.,. has the largest influence on the network dynamics
in the case of traveling waves. For very small parameter values the connections between
the cells are too weak. That means the cell activity of a single cell is not really influenced
by the network. For very strong connections and very wide ranging inhibition, GC activity



100 SIMULATIONS OF THE OLFACTORY BULB NETWORK

damps the activities of the MCs and, therefore, no waves can occur on this level.

We investigate two properties of the waves: their amplitude and their velocity. In order
to investigate the size of the amplitude we plot the homoclinic orbits, which are passed for
one traveling wave, in Figure 8.4. Note the larger the radius of the orbit, the larger is the
amplitude of the traveling wave. It turns out that the amount of excitation described by
Tere and Jegze has more influence on the amplitude than the inhibition described by 7,5
and Ji,p.

A different situation occurs for the traveling wave velocity. Figure 8.5 shows this: As
Teze Erows, the traveling wave velocity of the emerging wave grows much more then for
changing J;,, and Jez.. The value of r;,; has no influence on the traveling wave velocity
at all. This leads to the following statement.

STATEMENT 8.2.1 (TRAVELING WAVES IN THE OB) In the OB network model oc-
cur traveling waves due to boudary conditions or suitable initial settings. The amplitude of
them depends on Tege and Jeyze. Their velocity depends mainly on Tege.

8.2.2 BIOLOGICAL INTERPRETATION

To our knowledge traveling waves in the olfactory bulb are found in experiments only in
zebrafish [44] not in mammals. There are two main differences between zebrafish and mam-
mals. The first one is due to experimental settings: imaging experiments with zebrafish are
done without anesthesia, whereas in imaging experiments of rats or mice the animals are
anesthetized (see, e.g. [99]). As second difference comes because of anatomical differences
between the OB of fish and mammals: The mammalian MCs have very long dendrites,
with a length up to one third of the size of the OB [107|. The range of the dendrites of
the fish MCs is not that long, i.e. unidendritic MCs occur with a single primary dendrite
with one or more tufts and a short range compared to the size on the bulb [46].

Anesthesia damps neuron activity, it is therefore possible, that the network in anes-
thetized mammals is in a state, where no waves occur since the connections are to weak
to influence the activity of a single cell, i.e. the amplitude of the waves may get smaller,
which is the case for small values of J.... This can be one reason why waves are not de-
picted in mammals. Experiments with anesthetized fish could answer the question whether
anesthesia plays a role in the emerging of traveling waves.

The influence of 7. to the traveling wave velocity gives an other explanation for the
presents of traveling waves in zebrafish with regard to its physiological properties. Since
the connections are not as long as in mammals, traveling waves, if they emerge, may be
slow enough to be detected in imaging experiments. I.e. they are too fast to be detected
in mammals due to the wide range connections there.
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Figure 8.5: Influence of the connectivity parameters on the traveling wave velocity in the
OB network.

The influence of the boundaries to the emerging of traveling waves described in Sec-
tion 8.1 can give an explanation, why the waves detected in experiments are odor indepen-
dent. The olfactory bulb has a boundary at its rostral end. Hence, it is possible that the

waves emerge there relatively odor independent.

8.3 CONCLUSIONS OF CHAPTER 8: TRAVELING WAVES

A.s imaging experiment in zebrafish show, there are experimental settings where traveling
waves emerge in the OB. These waves are nearly odor independent. We show that wave
solutions in our model depend on the shape of the boundary of the network but are constant
when the shape of the boundary does not change. Therefore, the boundary of the olfactory
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bulb at its rostral end may be responsible for the wave.

Using equation-free methods for traveling waves, we are able to give an explanation
why the waves are only seen in zebrafish not in mammals. As the radius of excitation 7.
grows, the propagation velocity of the traveling waves grows, too. It is possible in the case
of very wide interactions between mitral and granule cells, as they occur in mammals, that
the traveling-wave-like structures move to fast to be detected.

On the other hand are the experiments with fish done without anesthesia and damped
synaptic strength reduces the amplitude of the traveling waves. This can give another
explanation why waves are not seen in mammals, which are always anesthetized during
imaging experiments at the olfactory bulb. Experiments with anesthetized fish could an-
swer the question whether anesthesia plays a role in the emergence of traveling waves.



Chapter 9

CONCLUSIONS AND OUTLOOK

But all endings are also beginnings.

MITCH ALBOM

W introduced a mathematical description for the dynamical activity of the olfac-
tory bulb (OB) neuron network in this work. We adapted the Spike Response model, an
integrate-and-fire model for point neurons. This leads to a network model with uniformly
arranged point neurons, representing mitral and granule cells, where the signal traveling
times are incorporated via delays.

For cases where point neurons are not sufficient, we stated a finite-element based sim-
ulation method. Here, it is possible to include the spatial expansion of the considered
neurons in the simulations. The dynamics is modeled by the Hodgkin-Huxley equations.
We developed a-posteriori error estimators for passive signal propagation. Based on these
estimators we adjusted adaptive grid and time-step control techniques for efficient and
accurate simulations of neuron dynamics.

Numerical tests showed that these methods are effective with regard to saving compu-
tation time without loosing accuracy compared to uniform computations.

In order to simulate and analyze the network dynamics of the OB network model with
regard to changing connection parameters of the network it turned out, that equation-free
simulation and analysis methods can be successfully applied. The motivation for using
these methods came from the observation that the network dynamics of the OB can be
described in a low dimensional space. We adapted the equation-free simulation techniques
to the needs of the investigations of the OB dynamics. Namely, we described equation-
free Newton’s method, parameter studies and methods for traveling waves. This allow
to combine the equation-free approach with numerical bifurcation analysis methods. Fur-
thermore, we interpreted the equation-free time-stepping scheme in the context of classical
one-step methods. This enabled us to use standard techniques from the numerical analysis
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to prove a convergence theorem for this method.

“]e combined these theoretical results in the second part of this thesis to perform
numerical analysis of the dynamics of, first, single mitral cells and, second, the OB network
model. In the case of single mitral cells we saw that the time course of cell activity and the
inhibitory synaptic input from the granule cells is crucial for the dynamics on the mitral
cell’s dendrites. This may lead to contrast enhancement in the OB network.

In the case of simulating the OB network model with point neurons, we showed in which
cases the equation-free computation method can be used, and when it does not make sense
to use it. Furthermore, we investigated the following biological questions: How is lateral
inhibition, contrast enhancement and the ability to discriminate binary odor mixtures
influenced by the connectivity parameters of the network, and under which conditions do
traveling waves emerge in the network.

In lateral inhibition and contrast enhancement it turned out that the ability to perform
these tasks depends strongly on the range of the connections, modeled by rez.. For odor
discrimination tasks we could reproduce experimental results. Furthermore, we investi-
gated the long term dynamics of the OB network and saw that hysteresis effects occur
here. These effects lead to a stabilization of the network output for small changes in the
input. Finally, we investigated traveling waves: it turned out, that the amplitude of the
traveling wave depends on the amount of granule cell excitation, modeled by 7. and
Jeze- This makes sense, since the waves emerging in the OB network model are actually
waves of inhibition on the granule cell level, which are followed by excitation waves on the
mitral cell level. The velocity of the traveling waves is determined mainly by the radius
of excitation re... This results gave two possible explanations why traveling waves are
only seen experimentally in zebrafish and not in mammals: on one hand, zebrafish are not
anesthetized during the experiments. Anesthesia reduces the synaptic strength, i.e. this
may prevent that traveling waves are seen experimentally in mammals. On the other hand,
have the mitral cells of zebrafish a smaller range compared to the mitral cells of mammals.
This could lead to slower waves, which are, therefore, detected in the experiments.

The presented model and the simulation results give rise to further interesting mod-
eling, mathematical and biological questions. The OB network model does not include all
mechanisms present in the OB. An interesting point could be to combine the MC-GC cir-
cuit with inhibition on the glomerula level. On one hand, one has to include periglomerular
cells to the model for this task. On the other hand, the glomeruli themselves have to be
modeled. To our knowledge not much data is available for the glomeruli activity. But as
soon as experimental data is available, this task would be very interesting, and helpful to
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get a complete picture of the OB dynamics.

For the simulations done in this work there was mostly constant network input used.
Interesting effects could occur for input signals modeling the breath cycle of a animal,
including sniffing and adaptation of the receptors. Our investigations of input modes
varying in time with equation-free simulation techniques showed that simulation tools
presented here can be used for this purpose.

A very interesting topic would be to combine the equation-free techniques and the
adaptive computations presented in this work. One would, on one hand, have to deal with
the special network structure in the OB, i.e. n-to-n connections between mitral cell’s and
granule cell’s dendrites. On the other hand, the evaluation of the coarse quantities has
to be adapted. In networks with spacious neurons not only the spiking activity has to be
taken into account, but also the dendritic activity. Only this enables to compare simulation
results to results from imaging experiments. Additionally, it would be interesting to model
the synapses between the mitral and the granule cells explicitly when neurons with spatial
expansion are considered.

Eom a mathematical point of view, there is one main question arising from the in-
vestigations of the traveling waves: is it possible to prove the existence of a traveling wave
solution for the OB network model analytically? Due to delays in the dynamics of the
network and not continuous spiking activities of the single neurons, this question is not
expected to be very simple to answer.

Elrthermore, the results of this work give rise to several biological questions that may
be answered by new experiments. First, we saw hysteresis effects after relatively long
periods of odor presentation. These effects, if they are actually present in nature, should
be found in imaging experiments with relatively long input times, where the presented
odors are changed slightly during the experiment. To our knowledge such experiments are
not done yet.

Second, we saw that anesthesia and anatomy could both give explanations why traveling
waves emerge only in zebrafish. Experiments with anesthetized fish could approve or
exclude anesthesia as reason why traveling waves are not present in mammals.
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Appendix A

LIST OF SYMBOLS & PARAMETERS

e GENERAL ABBREVIATIONS

OB
MC
GC

olfactory bulb
mitral cells
granule cells

e SPIKE RESPONSE MODEL

t, At
Si(t)a S(t)

number of neurons in the network

simulation time, basic time-step

spiking variable for neuron ¢ € {1,...,n}, spiking matrix for
the complete network

delay for signal propagation between cell 7 and cell j, ¢,j €
{1,...,n}

synaptic strength matrix

membrane potential of neuron i € {1,...,n}

synaptic contribution to membrane potential of neuron i €
{1,...,n}

self-inhibitory contribution to membrane potential of neuron

ie{l,...,n}
delay for activation of self-inhibition of neuroni € {1,...,n}
external input of neuron i € {1,...,n}

refractory part to membrane potential of neuron i €

{1,...,n}
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e HODGKIN-HUXLEY MODEL

Q area of neuron

0, I'p, I'y | boundary of €2, Dirichlet boundary points, Neuman bound-
ary points

CNa sodium concentration

CK potassium concentration

CNa leakage current

Cu capacity of neuron membrane

R; intercellular resistivity

Ry membrane resistivity

e OLFACTORY BULB NETWORK MODEL

N number of MCs in the network

Ng number of GCs in the network

Texe radius of excitation, i.e. length of secondary dendrites of
MCs

Tinh inhibitory radius, i.e. conductivity of the MC’s secondary
dendrites

Jeze strength of excitatory synapses

Jinh strength of inhibitory synapses

e ADAPTIVE GRID CONTROL

H™(Q), usual Sobolev, Lesbesguespaces
1),

L2(9)

Sh finite-dimensional subspace of H{ ()
I, nodal interpolation in S,

Un space discrete membrane potential
vk fully discrete membrane potential
vy piecewise affine interpolation of v¥
e’ spatial error

E! temporal error

TOL user tolerance for grid control
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e EQUATION-FREE SIMULATIONS

fine, microscopic variable, u € R™, m > 1
coarse. macroscopic variable, U € RM  m > M
operation functions of fine/coarse time-stepper
lifting routine

restricting routine

e SIMULATIONS OF THE OB NETWORK

ACC
C1, C2
2]

g

AS

measure of contrast enhancement properties
input strength for binary odor mixtures
discrimination time

threshold for discrimination

spiking rate difference

A.1 PARAMETERS USED IN ADAPTIVE SIMULATIONS

e ADAPTIVE SIMULATIONS

Name Meaning Value
Tfine number of refined elements 30%
Teoarse number of coarsened elements 30%
maXjeyel maximum level of grid refinement 7—9
mingeye; minimal level of grid refinement 1
dgmin minimal stepsize 0.1ms
dt™mer maximal stepsize 2ms

A.2 PARAMETERS USED IN EQUATION-FREE SIMULATIONS

o GENERAL QUANTITIES
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N'm

Mg

number of MCs in the network
number of GCs in the network

900
8100
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e SPIKE RESPONSE MODEL

Name Meaning Value Ref.
0 firing threshold 0.12 [41]
dij euclidean distance between neuron ¢ and j | in um comp.
dyro distance between two neighboring MCs 10 — 15um

A" delay of synapses 2ms [64]
Vden velocity of signal propagation in dendrites | 0.3m/s [122]
A?je" = % + Af]yn comp.
Aginh delay for activation of self-inhibition 0 [41]
Trefm refractory time of MCs 20ms

Tref, refractory time of GCs 20ms

R refractoriness of the MCs & GCs 10 [41]
Ty constant in rate function 6 [41]
Te constant in rate function 2 [41]
Ninh constant in rate function -2 [41]
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