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Ein Monte Carlo Modell für Jet Entwicklung mit Energieverlust

In dieser Arbeit wird das Monte Carlo Modell Jewel (Jet Evolution With Energy
Loss) vorgestellt. Es verbindet die störungstheoretische Entwicklung einer Parton-
kaskade im Endzustand einer harten Reaktion mit Wechselwirkungen in einem Me-
dium, wie sie in ultrarelativistischen Kollisionen von Atomkernen auftreten. Es ent-
hält ein mikroskopisches Modell für elastische Streuung, so dass in jedem Schritt
während der Entwicklung die Wahrscheinlichkeit für eine Verzweigung (splitting)
mit der für Streuung verglichen werden kann. Radiative Prozesse werden schema-
tisch durch eine Erhöhung der Verzweigungswahrscheinlichkeit behandelt. Die stö-
rungstheoretische Partonkaskade ist mit einem Hadronisierungsmodell verbunden,
das auch für Jets in nuklearen Umgebungen geeignet ist. In der Abwesenheit von
Mediumeffekten wird gezeigt, dass Jewel wichtige Messungen von Jeteigenschaf-
ten in e++e− Kollisionen reproduziert. Im Medium werden Modifikationen von Jet-
charakteristika durch elastischen und radiativen Energieverlust sowie jetinduzierte
Veränderungen des Mediums charakterisiert. Einige Jetobservablen, die eine Unter-
scheidung zwischen elastischem und radiativem Energieverlust ermöglichen sollten,
können gefunden werden. Die Verbreiterung von Jets durch Energieverlust ist auf
die Hadronisierung sensitiv, aber allgemein ist in Jewel nur eine geringe Verbreite-
rung zu beobachten. Schließlich werden Weiterentwicklungen des Modells skizziert.
Dazu zählen die Geometrie und Expansion des Mediums und eine mikroskopische
Beschreibung von inelastischer Streuung. Außerdem wird ein Verfahren vorgestellt,
wie die Unterdrückung von induzierter Gluonabstrahlung aufgrund eines Interfe-
renzphänomens (LPM-Effekt) in Monte Carlo-Modelle implementiert werden kann.

A Monte Carlo Model for Jet Evolution With Energy Loss

In this thesis the Monte Carlo generator Jewel (Jet Evolution With Energy Loss) is
presented. It interleaves the perturbative final state parton shower evolution with
medium interactions occurring in ultra-relativistic nuclear collisions. It contains a
microscopic model of elastic scattering so that the probability for scattering can be
compared to the splitting probability in each step during the evolution. Radiative
processes are included in a schematic way by increasing the splitting probability. The
perturbative parton shower is interfaced with a string hadronisation model that is
suited also for jets in a nuclear environment. In the absence of medium effects Jewel

reproduces important benchmark measurements in e++e− collisions. In the medium
the modifications of jet characteristics due to collisional and radiative energy loss as
well as the jet-induced modifications of the medium are characterised. A set of jet
observables that should allow to discriminate between elastic and radiative energy
loss is identified. Broadening of jets due to energy loss is sensitive to hadronisation,
but generally very little broadening is observed in Jewel. Finally, further develop-
ments of the model are outlined. This includes the geometry and expansion of the
medium and a microscopic model of inelastic scattering. Furthermore, a prescription
how to include the suppression of induced gluon radiation due to an interference
phenomenon (LPM effect) in a Monte Carlo model is presented.
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CHAPTER 1

Introduction

In collisions of ultra-relativistic heavy nuclei the produced matter is hot and dense
enough to form a state of deconfined quarks and gluons with restored chiral sym-
metry, the quark-gluon plasma (QGP). Due to the rapid expansion of the system
the QGP can only exist for a few fm/c before it undergoes a phase transition to
normal hadronic matter, which means that it cannot be observed directly. Thus
information about the properties of the QGP can only be inferred from indirect mea-
surements. Among other observables the energy loss of energetic partons due to
interactions with the medium, which leads to a suppression of high transverse mo-
mentum hadrons known as ‘jet quenching’, is used to probe the medium.

The interactions of a hard parton with the medium can be either elastic [1–9] or
inelastic [10–15]. In both cases energy is transferred to the scattering centre, but in in-
elastic collisions the main source of energy loss is the radiation of additional gluons.
The projectile parton hadronises with reduced energy, which leads – in combination
with the steeply falling partonic spectrum – to a suppression of energetic hadrons
relative to the expectations from proton-proton collisions. Experiments at the Rel-
ativistic Heavy Ion Collider (Rhic) at the Brookhaven National Laboratory support
this picture [16–19]. It is commonly believed that gluon bremsstrahlung is respon-
sible for the dominant part of the energy loss, but the microscopic mechanisms are
not entirely understood.

Due to the limited reach in transverse momentum the observation of jets at Rhic is
largely limited to leading hadrons. The suppression of single-inclusive hadron spec-
tra is rather well described by different models of radiative energy loss. There are,
however, good reasons to go beyond leading hadrons and study the distributions of
sub-leading fragments. Firstly, at the Large Hadron Collider (Lhc) at Cern a large
fraction of the jet fragmentation pattern will become accessible above the soft back-
ground from the medium [20–22]. Secondly, distributions of sub-leading fragments
are likely to be sensitive to the nature of the microscopic mechanism underlying par-
tonic energy loss and can thus help to discriminate between different models. This
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1. Introduction

will then also lead to a better characterisation of medium properties. And last but
not least the energy lost by the leading parton must be carried by associated particles
so that a model for the modification of the entire jet fragmentation pattern is nec-
essary in order to disentangle jets from background and understand the jet-induced
modifications of the medium.

Monte Carlo generators are widely used for the simulation of final state parton
showers in vacuum [23–25] where one has theoretical control over the dynamics.
An extended version of such a parton shower including medium effects can help to
understand jet quenching. In particular, it has the following advantages:

1. Parton showers correctly describe jet evolution and – provided they are supple-
mented with a suitable hadronisation model – hadronisation in vacuum thus
providing a sound baseline on top of which medium effects can be added.
Furhermore, conclusions from heavy ion data are usually drawn by compar-
ing them to a proton-proton baseline with jet evolution in vacuum and models
should be able to do the same.

2. Monte Carlo generators produce complete final states with exact energy and
momentum conservation. This is particularly important since sub-leading par-
ticles are sensitive to energy-momentum conservation and affected by trigger
conditions. Apart from that most of the analytical calculations of radiative en-
ergy loss are based on an interference phenomenon but do not conserve energy
and momentum exactly at each vertex. It is therefore interesting to investigate
the role of exact energy-momentum conservation.

3. In a Monte Carlo model it is relatively easy to implement different microscopic
descriptions of the interaction of a hard parton with the medium in the same
framework. One can thus directly compare and hopefully constrain different
mechanisms conjectured to underly jet quenching. Ideally, this would in the
end lead to a better understanding also of the medium and its properties.

4. Experimental cuts, trigger conditions and other constraints can easily be imple-
mented in Monte Carlo models thus facilitating the comparison between data
and theory. Furthermore, the final states produced by the parton shower can
be used in detector simulations and help to develop analysis strategies.

The most severe disadvantage of Monte Carlo implementations of parton showers
is that, since they are based on probabilistic iterations, they have no natural way of
including interference phenomena. There are, however, cases in which an effective
description suitable for Monte Carlo implementations can be found. Another prob-
lem is that interlinking the parton shower evolution in vacuum with medium effects
will involve model dependent assumptions. Thanks to the flexibility of Monte Carlo
models one can, however, try to quantify the uncertainties related to details of the
modelling.

In this work the first version of a Monte Carlo model for parton shower evolution
in a medium called Jewel (which stands for Jet Evolution With Energy Loss) is
presented. It is based on a parton shower ordered in virtuality where the shower
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evolution is interleaved with scatterings in the medium. The relative probabilities
for splitting and scattering are given by the lifetime of virtual states compared to the
mean free path in the medium.
It is related to the so-called ‘quenching weights’ [26, 27], which are energy loss
probabilities obtained by probabilistic iteration of gluon radiation or elastic scat-
tering which has also lead to modified DGLAP evolution equations [9, 28]. These
approaches have partly been extended beyond leading hadron spectra to include
jet broadening [29, 30], two particle correlations [31], the effect of collective flow on
jets [32,33], modifications of jet multiplicity distributions [29,34] and jet hadrochem-
istry [35]. A Monte Carlo model has the potential to advance this field due to its
flexibility and the advantages listed above.
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CHAPTER 2

Basics of Quantum Chromodynamics

This chapter briefly introduces basic concepts of Quantum Chromodynamics, which
is the theory of the strong interaction, with emphasis on jet physics, i.e. how jets
arise, how they can be characterised and how they can be described theoretically. It
follows to a large extent [36] and, to a somewhat lesser extent, [37]. Other standard
textbooks, that focus more on the theoretical framework, are [38–41].

2.1. Fundamentals of Quantum Chromodynamics

2.1.1. Symmetries

In the early days of investigations of the strong interaction it was noticed that
the hadrons form multiplets, which can be identified as irreducible representations
of SU(3). As an example, the light pseudoscalar mesons, which are the lightest
hadrons, are shown in figure 2.1. This class contains nine particles, that form a sin-
glet (the η′) and an octet. The η and the π0 occupy the same place in the S − I3
(strangeness-isospin) diagram, but the η is an isospin singlet while the π0 is part of
the isospin triplet. The pseudoscalar particles have vanishing total angular momen-
tum and odd parity.

There are more multiplets, a baryon octet and decuplet, for instance. This obser-
vation suggests that there are also particles that transform under the fundamental
respresentation of SU(3). These are the light quarks up (u), down (d) and strange
(s), which are also called the light quark flavours. The hadrons are combinations
of quarks and antiquarks. However, SU(3)flavour was found to be only an approxi-
mate symmetry of the strong interaction. Later three more flavours were discovered,
namely charm (c), beauty (also called bottom, b) and top (t), which are much heavier
and are therefore called the heavy flavours. The top is in fact so heavy that it doesn’t
bind into hadrons because its lifetime is very short.

So far the observation that not all representations of SU(3)flavour are realised can-
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η′

1

-1/2-1 1/2 1

-1

K+ (us)K0 (ds)

π+ (ud)

K− (su) K̄0 (sd)

π− (du)

S

η I3

π0

Figure 2.1.: S− I3 diagram of the light pseudoscalar mesons, S is the strangeness and
I3 the third isospin component.

not be explained. In particular, the fundamental representation is not observed. All
observed particles are either a combination of a quark and an antiquark or of three
quarks. This lead to the postulation of colour. The colour is the ‘charge’ of the
strong interaction, the corresponding symmetry group is SU(3)colour. The quarks
transform under the fundamental representation of SU(3)colour, the adjoint respre-
sentation is realised by the gluons. The colour charge can take the values red, green
and blue. The quarks carry one of the colours, the antiquarks carry the anticolour
and the gluons can be thought of as having a colour and an anticolour. There are
nine colour-anticolour combinations, but one of them is a singlet and would corre-
spond to a non-interacting gluon. Only colour neutral combinations of quarks and
antiquarks, which are invariant under SU(3)colour transformations, correspond to
observable particles. This means that two types of hadrons are allowed: the mesons,
which consist of a quark and an antiquark, and the baryons, which are a combina-
tion of three quarks. This also means that the quarks and gluons themselves are not
observable.

2.1.2. The QCD Lagrangian

The theory of the strong interaction, which describes the behaviour and interactions
of quarks and gluons, is called Quantum Chromodynamics (QCD). Its core is the
Langrangian density, which is given by

LQCD = Lclassical + Lgauge-fixing + Lghost , (2.1)

6
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with the classical Langrangian density

Lclassical = −1
4
FAαβF

αβ
A + ∑

flavours

q̄a(i /D−m)abqb . (2.2)

Indices a, b, . . . run over the three colour triplet charges of the quarks and antiquarks,
A, B, . . . denote the colour octet charges carried by gluons. D is the covariant deriva-
tive, qa are the quark fields with masses m and F

A
αβ is the field strength tensor, which

is related to the gluon field AAα via

FAαβ = ∂αAAβ − ∂βAAα − g f ABCABαACβ . (2.3)

f ABC are the structure constants of SU(3) and g is the coupling constant. The clas-
sical Lagrangian density describes the propagation and interaction of quarks and
gluons. The gluons are the so-called gauge bosons, which mediate the strong force.
Unlike in QED, where the photon carries no electric charge, the gluons carry them-
selves colour charge. This leads to the gluon self-interaction and gives rise to the last
term of equation (2.3) making QCD a non-abelian theory.
The Langrangian has a very important symmetry: It is invariant under local gauge
transformations, i.e. a local redefinition of the quark and gluon fields. However, in
order for quantisation to work out the gauge has to be fixed by adding the gauge-
fixing term Lgauge-fixing to the Lagrangian. This creates unphysical degrees of free-
dom, which have to be cancelled by the ghost term. The ghost fields do not corre-
spond to physical particles. The result of a calculation will not depend on the gauge
chosen, but there are usually clever choices which simplify the computations. Gauge
invariance requires the gluons to be massless, while the quarks can be massive. QCD
makes no prediction about the quark masses, they enter the theory as parameters.

The full theory is not exactly solvable, but in regimes with sufficiently weak inter-
actions perturbation theory is applicable. The interaction is then regarded as a small
perturbation of the free theory and useful results can be obtained from an expan-
sion around the free theory with the coupling constant as expansion parameter. The
contributions to the series can be constructed systematically order by order using
Feynman diagrams (figure 2.2). The lines represent freely propagating particles, the
interaction takes place at the vertices. In addition to the quark-gluon vertex, which
is analogous to QED, there is also the three-gluon and the four-gluon vertex, which
express the gluon self-interaction. Each vertex comes with a factor g (except the four-
gluon vertex, which is proportional to g2). For a given process, i.e. given initial and
final particles, all diagrams with the same number of vertices contribute to the same
order in perturbation theory. Figure 2.2 shows examples for diagrams of different
orders for elastic quark-quark scattering.

Higher order calculations contain diagrams with loops. The loop momentum is
unconstrained and has to be integrated giving rise to divergent integrals. In renor-
malisable field theories such as QCD [42, 43] the divergent parts can be absorbed in
a redefinition of the parameters of the theory (masses and coupling constants) to
all orders in perturbation theory. The observable quantities are the renormalised
ones, which are finite (implying that the unphysical ‘bare’ quantities are infinite).
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�
∝ g2

�
∝ g6

�
∝ g4

�
∝ g6

�
∝ g4

�
∝ g8

Figure 2.2.: Examples of Feynman diagrams contributing to quark-quark scattering;
straight lines stand for quarks, curly lines represent gluons.

The renormalisation procedure is not unique, but in any case it introduces a dimen-
sionful parameter, the renormalisation scale µ. One widely used renormalisation
scheme is the dimensional regularisation [44, 45], where the number d of space-time
dimensions is reduced such that the loop integrals become finite. In the limit d → 4
the singular part of the integral can be isolated and absorbed in the renormalised
parameters. The renormalisation scale µ is in this case needed to keep the coupling
dimensionless when d is changed. Different renormalisation schemes lead to differ-
ent renormalisation scales, the transformations of renormalised quantities when µ is
changed are generated by the renormalisation group [46]. Observable quantities must
be independent of the choice of renormalisation scheme, which is ensured by the
renormalisation group equations.

2.1.3. The Running Coupling

It is common practice to characterise the (strong) coupling strength in terms of

αs ≡
g2

4π
, (2.4)

which is analogous to the fine structure constant in QED.
A dimensionless observable O with a large scale Q2 can in fact only depend on the
ratio Q2/µ2 and the coupling, which also depends on µ. The renormalisation group
equation stating the invariance of the observable with respect to µ reads in this case

µ2
d

dµ2
O

(

Q2

µ2
, αs(µ2)

)

=

[

µ2
∂

∂µ2
+ µ2

∂αs(µ2)

∂µ2
∂

∂αs

]

O

(

Q2

µ2
, αs(µ2)

)

= 0 . (2.5)
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� �
Figure 2.3.: Leading order contributions to the β-function.

It is convenient to define

t = ln

(

Q2

µ2

)

and β(αs) = µ2
∂αs(µ2)

∂µ2
(2.6)

and to rewrite equation (2.5) as

[

− ∂

∂t
+ β(αs)

∂

∂αs

]

O(et, αs) = 0 . (2.7)

This equation can be solved by introducing a running coupling αs(Q2) via

t =

αs(Q2)
∫

αs(µ2)

dα′

β(α′)
. (2.8)

The scale dependence is then completely in the running coupling and O(1, αs(Q2))
is a solution of equation (2.7).

The β-function defined in equation (2.6) can be calculated in perturbation the-
ory [47, 48] and is of the form

β(αs) = −bα2s(1+ b′αs + b′′α2s + O(α3s)) . (2.9)

The diagrams contributing to leading order (one loop approximation) are shown in
figure 2.3. The result for b is

b =
33− 2nf
12π

, (2.10)

where nf is the number of quark flavours that can be excited in the quark loop
(figure 2.3).
In leading order equation (2.8) can be integrated directly. The integration constant

Λ2QCD is chosen such that it represents the scale at which the coupling diverges [49].

ln

(

Q2

Λ2QCD

)

= −
∞
∫

αs(Q2)

dα′

β(α′)
=

∞
∫

αs(Q2)

dα′

bα′2 =
1

bαs(Q2)
(2.11)

⇒ αs(Q
2) =

12π

(33− 2nf) ln
(

Q2

Λ2QCD

) (2.12)

9



2. Basics of Quantum Chromodynamics

The parameter ΛQCD cannot be calculated in QCD, but αs can be measured. The
experimentally found value is

ΛQCD ≃ 200MeV . (2.13)

The running of the coupling has important consequences for the phenomenology
of QCD, as will be discussed briefly in the next section.

2.1.4. Asymptotic Freedom and Confinement

The scale Q2 depends on the process under consideration. Elastic scattering, for
instance, is characterised by the momentum transfer while in the case of heavy quark
production one would rather chose the heavy quark mass. The coupling constant αs
decreases with increasing Q2 (equation (2.12)), i.e. the interaction gets weaker for
higher momentum transfers, which correspond to small distances. This behaviour
is called asymptotic freedom and is a consequence of the non-abelian nature of QCD.
Diagrams like the right hand side of figure 2.3 with gluon loops lead to the negative
sign of the β-function, which is responsible for asymptotic freedom. In QED these
kinds of diagrams are absent and the coupling increases with the scale. This can
be interpreted as screening of the electric charge due to polarisation of the vacuum
fluctuations. In QCD, however, there is no simple intuitive picture to explain the
anti-screening of the colour charge.
As a consequence of asymptotic freedom, perturbation theory is a meaningful con-
cept for processes with large scales (‘hard’ processes), where one can think of quarks
and gluons as individual objects. In regimes of small (‘soft’) scales perturbation the-
ory breaks down and the intuitive way of thinking in terms of Feynman diagrams
is not appropriate any more. Calculations become more difficult and less reliable.
Perturbation theory is expected to be applicable for scales larger than a few GeV.
In contrast to the weak coupling regime, where quarks and gluons are the relevant
degrees of freedom, they bind to form hadrons when the coupling becomes large. As
discussed already in section 2.1.1 hadrons are colour neutral combinations of quarks,
which carry the quantum numbers, and gluons, which are responsible for the quark
binding. The formation of colour neutral states as only observable objects is known
as confinement. Confinement – contrary to asymptotic freedom – is not a prediction
of perturbative QCD. It is currently not well understood due to the problems with
calculations in the strong coupling regime, but numerical solutions of QCD (lattice
QCD) suggest that confinement is in fact a property of the QCD Langrangian.

2.2. Jets and Jet Evolution

Confinement dictates that when quarks or gluons are produced or kicked out of
a hadron in an experiment they have to transform into hadrons. The process of
hadronisation must conserve energy and momentum. The hadrons stemming from
an energetic parton form a collimated spray, which is called jet. The production
of hard partons involves a large scale and is thus calculable in perturbation theory.
This fact together with the experimental signature makes jets an interesting tool for
testing and understanding QCD.

10
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�γ⋆/Z0

e−

e+

q̄

q

(a)

�γ⋆/Z0

e−

e+

q̄

q

(b)

�γ⋆/Z0

e−

e+

q̄

q

(c)

Figure 2.4.: Leading order diagram for e+ + e− → q+ q̄ and examples forO(αs) QCD
corrections (real and virtual gluon emission).

2.2.1. Electron­Positron Annihilation into Hadrons

The production of hadrons in e++e− collisions is a process, that is well suited for a
variety of QCD studies, because it has a well defined initial state and strong interac-
tions are only present in the final state. The electron-positron pair annihilates into a
virtual photon or a Z0 boson, which decays in leading order into a quark-antiquark
pair (figure 2.4 (a)). The relevant scale for this process is the centre-of-momentum en-
ergy

√
s of the electron-positron pair (assuming for the moment that the quarks are

massless). Confinement dictates that the quark and antiquark have to be converted
into hadrons. However, this happens at a lower scale ΛQCD. For sufficiently high en-
ergies

√
s the timescale 1/

√
s for the hard process is much smaller than the timescale

1/ΛQCD for the hadronisation so that the latter cannot influence the physics at the
hard vertex. Therefore, the cross section for e+e− annihilation into any hadronic
final state is given by the cross section for annihilation into a quark-antiquark pair
plus any number of gluons.
For values of

√
s that are much smaller than the Z0 mass (91.2GeV) the contribu-

tion from the Z0 can be neglected and life becomes much easier because there are
no complications due to weak interaction effects. The leading order (figure 2.4 (a))
cross section for the production of any quark-antiquark pair is then given by

σLO(e+e− → qq̄) = Nc∑
q

4πα2

3s
e2q = σ0Nc∑

q

e2q , (2.14)

where eq is the quark charge, Nc is the number of colours and α is the fine structure
constant. The only difference between the cross section for the production of hadrons
and the one for production of a muon pair is the charge. The ratio of the two is
therefore simply

R =
σLO(e+e− → qq̄)

σLO(e+e− → µ+µ−)
= Nc∑

q

e2q . (2.15)

The experimental results are consistent with Nc = 3 and 5 flavours with different
masses, that start to contribute at different beam energies (the top quark is too heavy
to be seen).

The quark or the antiquark can radiate a real gluon as shown in figure 2.4 (b)
giving rise to a next-to-leading order correction to the total cross section. Written in

11



2. Basics of Quantum Chromodynamics

terms of the variables x1 = 2Eq/
√
s and x2 = 2Eq̄/

√
s, i.e. the energy fractions of

the quark and the antiquark respectively, the cross section reads

σqq̄g = σ0 3∑
q

e2q

∫

dx1dx2
4

3

αs
2π

x21 + x22
(1− x1)(1− x2)

. (2.16)

The integrand has two kinds of singularities: When the gluon is soft (i.e. Eg → 0)
and when it is collinear with either the quark or the antiquark. These kinds of sin-
gularities are called infra-red singularities (in contrast to the ultra-violet divergences
that were taken care of by renormalisation) and are often encountered in perturba-
tive calculations. They are connected to the break-down of perturbation theory and
have to be removed in a physically meaningful way.

There is another kind of higher-order corrections called vertex corrections (fig-
ure 2.4 (c)). This diagram is also divergent but has the opposite sign. There are
two additional diagrams where the virtual gluon is emitted and absorbed by the
same (anti)quark line. When the real and virtual gluon corrections are added the
divergences cancel and the result for the total cross section is finite 1.

σNLO = σ0 3∑
q

e2q

(

1+
αs
π

)

(2.17)

This is so because the total cross section is an infra-red safe quantity, which means
that splitting a particle in two with one of them soft or collinear does not change the
outcome. In this case it is only required that at least one hadron is produced and this
result is not affected by additional gluons in the final state. There is a theorem stating
that perturbative results for suitably defined infra-red save and inclusive quantities
are always finite when the complete order in perturbation theory is calculated [50–
52].

2.2.2. Fragmentation Functions, Scaling Violations and the DGLAP
Equations

The cross section for e+e− annihilation into hadrons is an inclusive quantity in the
sense that it does not require a particular hadronic final state. In this case it was
not necessary to have any knowledge about the hadronisation. As soon as one is
interested in a particular hadronic final state one has to deal with the hadronisation
process, which is not calculable in perturbation theory. This section is devoted to
single-inclusive cross sections, where a certain hadron h is produced and the rest
of the final state is irrelevant. Generally, the calculations become more and more
complicated as the quantity gets more exclusive, i.e. a more detailed knowledge
about the hadronic final state is required.

The fragmentation function Dhi (x,Q
2) is defined as the differential probability for

a parton i (quark or gluon) to fragment into a hadron h taking a fraction x of the

1The virtual gluon corrections have infra-red and ultra-violet divergences, but the latter cancel and so
the O(αs) result is independent of µ.

12



2.2. Jets and Jet Evolution

parton’s energy. The cross section for the production of h with energy Eh in a process
a+ b→ h+ X can be written as

dσ

dEh
(ab→ hX) = ∑

i

∫

dEi
dσ

dEi
(ab→ iX)Dhi

(

Eh
Ei
,Q2hard

)

, (2.18)

where dσ/dEi is the differential cross section for the production of a parton i with
energy Ei and Q

2
hard is the characteristic scale of the hard process (e.g. s in the case

of e+e− annihilation). It is also useful to define a fragmentation function Dji for the
fragmentation of a parton i into another parton j.

The fragmentation functions are scale dependent, this effect is called scaling vio-
lation. An intuitive explanation can be given in terms of virtuality of the partons.
The partons, that are produced in the hard interactions, are virtual, i.e. E2 6= p2

(assuming massless partons). Such states are allowed by the uncertainty principle,
but can exist only for a short time. The virtuality quantifies the deviation from the
mass-shell and is usually chosen as the virtual mass squared E2 − p2. The initial
virtuality directly after production in the hard process is of order Q2hard. The par-
tons reduce their virtuality through radiation of gluons (gluons can also split into a
quark-antiquark pair) thus giving rise to the scaling violations. But the probability
for radiation of a soft or collinear gluon was already found to be divergent, so that a
perturbative calculation of the scaling violation seems at first sight to be impossible.
This divergence is of course not real but arises from an attempt to use perturbation
theory in a regime where it is not applicable. The factorisation theorem states that the
soft non-perturbative part can be separated from the perturbative one leaving two
finite pieces. The non-perturbative function is universal, i.e. it does not depend on
the hard process. It has to be measured, but once it is measured in one process it
can be used in any other to make predictions. It can also be measured for different
processes and compared, since QCD predicts the two to be equal this measurement
can be used as a test of QCD. Factorisation means for the fragmentation functions,
that they can be written in the form

D
j/h
i (x,Q2) = ∑

k

∫

dz Kki (z,Q
2,Q20)D

j/h
k

( x

z
,Q20

)

. (2.19)

The kernel Kki can be calculated, provided Q
2 and Q20 are in the perturbative regime,

and D
j/h
k (x,Q20) is the non-perturbative piece that has to be measured.

There are three possible splitting processes: q → q+ g, g → g+ g and g → q+ q̄.
The differential splitting probability for a parton of type a with virtuality Q2 is given
by

dP (a)
split(z,Q

2) = ∑
b

αs
2π
P̂ba(z)dz

dQ2

Q2
, (2.20)

where P̂ba(z) is the unregularised splitting function for the process a→ b+ cwith the
energy fraction z taken by b. The splitting functions have a perturbative expansion,

13
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Figure 2.5.: Diagrams for the fragmentation of i to h, (b) and (c) lead to scaling vio-
lations.

the leading order terms are

P̂qq(z) =
4

3

1+ z2

1− z (2.21)

P̂gg(z) = 3

[

z

1− z +
1− z
z

+ z(1− z)
]

(2.22)

P̂qg(z) =
1

2

[

z2 + (1− z)2
]

(2.23)

The change of the quark into h (or j) fragmentation function in a small virtuality
interval is given by

Q2
∂D
h/j
q (x,Q2)

∂Q2
=

1
∫

0

dz
αs
2π
P̂qq(z)

1
∫

0

dy D
h/j
q (y,Q2)δ(yz− x)

+

1
∫

0

dz
αs
2π
P̂gq(z)

1
∫

0

dy D
h/j
g (y,Q2)δ(yz− x)

−
1
∫

0

dz
αs
2π
P̂qq(z)D

h/j
q (x,Q2) (2.24)

=

1
∫

x

dz

z

αs
2π

{

P̂qq(z)D
h/j
q

( x

z
,Q2

)

+ P̂gq(z)D
h/j
g

( x

z
,Q2

)}

−
1
∫

0

dz
αs
2π
P̂qq(z)D

h/j
q (x,Q2) . (2.25)

The first term corresponds to figure 2.5 (b) and represents the probability for radi-
ating a gluon with subsequent fragmentation of the quark into h (or j). The second
contribution comes from a splitting process where the radiated gluon fragments into
h/j (figure 2.5 (c)). The last term is needed to conserve probability and comes from
the fact that a quark that has split in a quark and a gluon cannot itself produce the
hadron (figure 2.5 (a)). This expression is finite, since the singularity of P̂gq(z) at

x→ 0 lies outside the integration region and the singularity of P̂qq(z) at x → 1 is the
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2.2. Jets and Jet Evolution

same in both integrals. It is often convenient to make this explicit by defining the
regularised splitting functions as

Pba(z) = P̂ba(z)+ , (2.26)

where the ‘plus prescription’ is defined by

1
∫

0

dx
f (x)

(1− x)+
=

1
∫

0

dx
f (x) − f (1)

(1− x) and
1

(1− x)+
=

1

1− x for 0 ≤ x < 1 . (2.27)

Written in terms of the regularised splitting functions

Pqq(z) =
4

3

[

1+ z2

(1− z)+
+
3

2
δ(1− z)

]

(2.28)

Pgg(z) = 6

[

z

(1− z)+
+
1− z
z

+ z(1− z)
]

+
1

6
(33− 2nf)δ(1− z) (2.29)

Pqg(z) =
1

2

[

z2 + (1− z)2
]

(2.30)

equation (2.25) reads

∂D
h/j
q (x,Q2)

∂(lnQ2)
=

1
∫

0

dz

z

αs
2π

{

Pqq(z)D
h/j
q

( x

z
,Q2

)

+ Pgq(z)D
h/j
g

( x

z
,Q2

)}

. (2.31)

For the gluon to h/j fragmentation function one finds

∂D
h/j
g (x,Q2)

∂(lnQ2)
=

1
∫

0

dz

z

αs
2π

{

Pqg(z) ∑
q

(

D
h/j
q

( x

z
,Q2

)

+ D
h/j
q̄

( x

z
,Q2

))

+Pgg(z)D
h/j
g

( x

z
,Q2

)}

. (2.32)

These are the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equations [53–56]
for the Q2 evolution of the fragmentation functions. These equations resum lead-
ing logarithms of the form αns ln

n(Q2/µ2) to all orders, which can become large
even for small αs when the logarithm is large. Next-lo-leading logs of the form
αns ln

n−1(Q2/µ2) can be included by using next-to-leading order splitting functions.
The evolution equations contain only planar diagrams, where at each splitting the
scale is much smaller than in the previous one so that there is no interference be-
tween subsequent emissions. The DGLAP equations can be solved either by Mellin
transformation (which converts the convolution to a product) or by direct numerical
integration. The starting distribution at Q20 is usually parametrised and fitted to data.

The evolution equations can be formulated in a slightly different way with the
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help of the Sudakov form factor [57], which is defined as

Sq(Q2i ,Q2f ) = exp






−
Q2i
∫

Q2f

dQ′2

Q′2

∫

dz
αs
2π
P̂qq(z)







Sg(Q2i ,Q2f ) = exp






−
Q2i
∫

Q2f

dQ′2

Q′2

∫

dz
αs
2π

[

P̂gg(z) + P̂qg(z)
]






. (2.33)

Then the DGLAP equation for the quark (equation (2.25)) can be rewritten as

∂D
h/j
q (x,Q2)

∂(lnQ2)
=

1
∫

x

dz

z

αs
2π

{

P̂qq(z)D
h/j
q

( x

z
,Q2

)

+ P̂gq(z)D
h/j
g

( x

z
,Q2

)}

+
D
h/j
g (x,Q2)

Sq(Q2,Q20)
Q2

∂Sq(Q2,Q20)
∂Q2

, (2.34)

from which follows

∂

∂(lnQ2)

(

D
h/j
q (x,Q2)

Sq(Q2,Q20)

)

=

1

Sq(Q2,Q20)

1
∫

x

dz

z

αs
2π

{

P̂qq(z)D
h/j
q

( x

z
,Q2

)

+ P̂gq(z)D
h/j
g

( x

z
,Q2

)}

. (2.35)

Finally, this equation can be integrated yielding

D
h/j
q (x,Q2) = Sq(Q2,Q20)D

h/j
q (x,Q20)+

Q2
∫

Q20

dQ′2

Q′2 Sq(Q2,Q′2)

1
∫

x

dz

z

αs
2π

{

P̂qq(z)D
h/j
q

( x

z
,Q2

)

+ P̂gq(z)D
h/j
g

( x

z
,Q2

)}

.(2.36)

The Sudakov form factor can thus be interpreted as the probability that no split-
ting occurs between Q2i and Q

2
f . The first term in the above equation describes the

possibility that nothing happens between Q2 and Q20 and the integral contains all
contributions from splittings at an intermediate scale. This formulation of the evolu-
tion equations is suited for implementation in Monte Carlo event generators, where
configurations of subsequent splittings for the evolution from the initial hard scale
to the factorisation scale Q20 are generated according to their probability. Some of the
radiated partons will in turn split into new pairs so that a whole parton cascade or
parton shower evolves.

The DGLAP equations resum collinear enhanced splittings to all orders, but there
is also the divergence due to radiation of soft gluons, which have large emission
angles. A coherence effect, which is the QCD analogue of the Chudakov effect [58]
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(a suppression of soft photon radiation from an electron-positron pair) in QED, leads
to the phenomenon of angular ordering [59, 60]. This means that the emission angles
are strictly ordered and decreasing during the evolution leading to a suppression of
soft gluon emission. A qualitative explanation of the Chudakov effect is that photons
with emission angles larger than the opening angle of the pair cannot resolve the
charge and are thus suppressed.
This soft gluon suppression is not respected by the DGLAP equations, where the
z integration diverges for x → 0 meaning that they do not correctly describe the
low x region. But it can be shown that the suppression due to angular ordering can

be incorporated by making the replacement D
h/j
i (x/z,Q2) → Dh/ji (x/z, z2Q2) in the

evolution equations. The modified DGLAP equations predict, for instance, the right
dependence of the total multiplicity on

√
s.

2.2.3. Event Shape Variables and Jet Rates

The event shape variables are a set of observables that characterise the shape, i.e. the
energy flow of an event. One group of them is derived from the momentum tensor

Mαβ =
∑i piαpiβ

∑i |~pi|2
, (2.37)

where α and β run over the three spatial components and ~pi is the momentum of
hadron i. It has three ordered eigenvalues λ1 ≥ λ2 ≥ λ3 satisfying λ1 + λ2 + λ3 = 1.
The combination

S =
3

2
(λ2 + λ3) =

3

2
min
~nS

∑i p
2
i⊥

∑i |~pi|2
, (2.38)

where pi⊥ denotes the transverse momentum of hadron i with respect to ~nS, is called
sphericity. The unit vector ~nS minimising the numerator defines the sphericity axis.
S lies between 0 and 1, an event with S = 1 is perfectly spherical while S ≪ 1
corresponds to a two-jet-like configuration. The aplanarity, defined as

A =
3

2
λ3 , (2.39)

quantifies the energy flow out of the event plane. It is 0 for coplanar (and collinear)
and 1/2 for spherical events. The combination

P = λ2 − λ3 =
2

3
(S− 2A) (2.40)

is the planarity. These observables have a serious disadvantage: They are quadratic
in the momenta and therefore infra-red sensitive and cannot be calculated in pertur-
bation theory. Infra-red sensitive quantities can be very sensitive to hadronisation,
where the partons are replaced typically by several softer but essentially collinear
hadrons, and require careful modelling of the hadronisation in Monte Carlo models.
Variables, that are composed from linear sums of the momenta, have the benefit
of being infra-red safe. The most commonly used such quantity is thrust [61, 62]

T = max
~nT

∑i |~pi ·~nT|
∑i |~pi|

. (2.41)

17



2. Basics of Quantum Chromodynamics

The thrust axis~nT, which is the direction with the maximal longitudinal momentum,
can be used to define the jet axis. For a perfect pencil-like two-jet event T = 1 and
a spherical distribution has T = 1/2. Once the thrust axis is found the procedure
of finding the direction of maximal momentum flow can be repeated in the plane
orthogonal to ~nT. This quantity is called thrust major

Tmaj = max
~nmaj,~nT·nmaj=0

∑i |~pi ·~nmaj|
∑i |~pi|

. (2.42)

The fractional momentum along the axis orthogonal to ~nT and ~nmaj is thrust minor

Tmin =
∑i |~pi ·~nmin|

∑i |~pi|
, ~nmin = ~nT ×~nmaj . (2.43)

Other examples for infra-red safe event shape variables are spherocity [63]

S′ =

(

4

π

)2

min
~nS’

(

∑i |~pi ×~nS’|
∑i |~pi|

)2

, (2.44)

which is a measure for the flatness of an event, and the C-parameter [64]

C =
3

2

∑i,j
{

|~pi||~pj| − (~pi ·~pj)2/|~pi||~pj|
}

(∑i |~pi|)2
. (2.45)

Spherocity and the C-parameter are both 0 for a pencil-like and 1 for a spherical
event.
These variables are calculable in perturbation theory; thrust, for instance, can to
leading order be obtained from the e+ + e− → q+ q̄+ g cross section (equation (2.16))

1

σ

d2σqq̄ g

dx1dx2
=
4

3

αs
2π

x21 + x22
(1− x1)(1− x2)

. (2.46)

by integration with the constraint δ(T − max(x1, x2, x3 = 2 − x1 − x2)) over the
(x1, x2) plane. The resulting T distribution is

1

σ

dσ

dT
=
4

3

αs
2π

[

2(3T2 − 3T + 2)

T(1− T) ln

(

2T− 1
1− T

)

− 3(3T− 2)(2− T)
1− T

]

. (2.47)

The divergence at T → 1 reflects the soft and collinear singularities in the matrix
element. In the large T region the perturbative expansion has the form

1

σ

dσ

dT
∼ ∑
n

αns
ln2n−1(1− T)
1− T (2.48)

and has to be resumed to all orders.

Events can also be characterised by the number of jets they contain. This requires
an unambiguous and infra-red safe definition of a jet. There is no unique choice, a
suitable and widely used definition is the Durham algorithm [65], which belongs to
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the class of k⊥ clustering algorithms. It defines a distance measure for any pair of
particles or clusters as

yij =
min(E2i , E

2
j )(1− cos ϑij)

s
(2.49)

and a resolution ycut. The pair with the smallest distance is combined into a pseudo-
particle or cluster, provided that yij < ycut. This procedure is repeated until all
particles or clusters in the event have separations larger than the resolution. The
number of remaining objects is then the number of jets, which obviously depends
on ycut.
At large ycut the dominant contributions are from 2- and 3-jet events, higher jet
multiplicities are negligible. The jets are well separated and the 3-jet contribution can
be calculated by integrating the e+ + e− → q+ q̄+ g cross section (equation (2.46))
over the corresponding (x1, x2) region. The soft and collinear singularities lie outside
this region, since they would not give rise to a well separated jet. The 2-jet fraction
is given by the constraint that the two have to add up to unity.
At finer resolutions, however, higher jet multiplicities start to contribute, which are
related to large logarithms and the perturbative result has to be resumed. Physically,
these are the collinear enhanced emissions that give rise to the scaling violations in
the fragmentation functions and lead to the formation of the parton shower and the
resumed jet rates can be expressed in terms of the Sudakov form factor. But there
are also contributions from fixed order calculations of n-jet matrix elements. The two
have to be matched in order to avoid double counting.

2.2.4. Jets in Hadronic Collisions

Jets can also be produced in hadronic collisions. At large scales, in this case mo-
mentum transfers, the partonic structure of the hadrons is resolved and the relevant
processes are scatterings of the partons. The density of partons of type i in the
hadron with a fraction x of the hadron’s momentum is described by the parton dis-
tribution function (pdf) f hi and is dominated by non-perturbative physics. They have
in some respects the same properties as the fragmentation functions. Not only the
outgoing partons after the hard process are virtual, also the incoming partons have a
virtuality of the order of the hard scale. The partons acquire this virtuality by split-
ting processes, which have the known collinear and soft divergences. Consequently,
the Q2 dependence of the pdf’s is described by the same evolution equations as that
of the fragmentation functions. As in the case of the fragmentation functions the fac-
torisation theorem allows to separate the soft from the hard part and write the cross
section a factorised form. The total cross section for hard scattering of two hadrons
with momenta P1 and P2 is given by

σ(P1, P2) = ∑
ij

∫

dx1 dx2 fi(x1,Q
2) f j(x2,Q

2)σ̂ij(x1, x2, αs(Q
2)) . (2.50)

The factorisation scale is as usual chosen to be equal to the renormalisation scale
and the hard scale Q2. Quantities with hats generally refer to the parton level; the
partonic cross section, for instance, is denoted by σ̂. Figure 2.6 shows a few examples

19



2. Basics of Quantum Chromodynamics

����
Figure 2.6.: Examples for 2→ 2 scattering processes at O(αs).

|M|2/α2s
qq′ → qq′ 4

9
ŝ2+û2

t̂2

qq̄′ → qq̄′ 4
9
ŝ2+û2

t̂2

qq→ qq 4
9

(

ŝ2+û2

t̂2
+ ŝ2+t̂2

û2

)

− 8
27
ŝ2

ût̂

qq̄→ q′q̄′ 4
9
t̂2+û2

ŝ2

qq̄→ qq̄ 4
9

(

ŝ2+û2

t̂2
+ t̂2+û2

ŝ2

)

− 8
27
û2

ŝt̂

qq̄→ gg 32
27
t̂2+û2

t̂û
− 8
3
t̂2+û2

ŝ2

gg→ qq̄ 1
6
t̂2+û2

t̂û
− 3
8
t̂2+û2

ŝ2

gq→ gq − 49 ŝ
2+û2

ŝû − û2+ŝ2

t̂2

gg→ gg 9
3

(

3− t̂û
ŝ2
− ŝû
t̂2
− ŝt̂
û2

)

Table 2.1.: Invariant leading order matrix elements squared for the partonic 2 → 2
scattering processes [66]. Colour and spins are averaged (summed) over
the initial (final) states.

for possible partonic scattering processes. The kinematics of 2→ 2 processes a+ b→
c + d is best described in terms of the Mandelstam variables, which are Lorentz
invariant combinations of the four-momenta.

s = (pa + pb)
2 (2.51)

t = (pa − pc)2 (2.52)

u = (pa − pd)2 (2.53)

√
s is the centre-of-momentum energy and

√
t the four-momentum transfer. The

partonic cross section for a specific process can be written as

dσ̂

dt̂
(ab→ cd) =

π

ŝ2
|Mab→cb|2 . (2.54)

The leading order matrix elements for the 2→ 2 processes are listed in table 2.1.
A large momentum transfer implies that the partons have large scattering angles,
which usually means that the hadron breaks up. The coloured remnants (the scat-
tered partons and the hadron remnants) hadronise giving rise to jets.
The single-inclusive cross sections at high transverse momenta exhibit an approx-
imate scaling in the dimensionless variable x⊥ [67–69]

E
d3σ

d3p
≃ 1

pn⊥
f (x⊥) with x⊥ =

2p⊥√
s
. (2.55)
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In leading order one finds n = 4, but higher order effects like running of the coupling
and evolution of the parton densities and fragmentation function lead to a larger
exponent n ≃ 8 that becomes slightly p⊥ and

√
s dependent. Measured values are

between 5 and 8 for different beam energies, at Rhic n is found to be between 6 and
7.

2.2.5. Hadronisation Models

Instead of using single-inclusive fragmentation functions, one can also construct ex-
plicit hadronisation models. These are particularly useful in Monte Carlo generators,
because they can be turned in a prescription that generates the complete hadronic
state. Often, event generators simulate the perturbative evolution described in sec-
tion 2.2.2 and interface the result with a hadronisation model at the scale Q0. In this
section the most important hadronisation models will be introduced.

Lund String Fragmentation

A quark-antiquark pair produced in e++e− collisions is in a colour-singlet state. The
colour charges give rise to a (colour) field connecting the colour and the anticolour.
Due to the gluon self-interaction it does not fill the whole space as the electric field,
but formes a ‘colour flux tube’ with a transverse size of roughly 1 fm. The quark-
antiquark potential is of the form V(r) ∼ κr at large distances r, with κ ∼ 1GeV/fm.
As the separation of the quark-antiquark pair increases there will a point, when a
new quark-antiquark pair can be formed from the field energy and the pair breaks
up in two colour neutral systems. They can form mesons if their invariant mass is
small, otherwise more additional pairs will be produced.
In the Lund string fragmentation model [70–74] the field is described as a mass-
less relativistic string with energy density κ. A newly produced pair can classically
not be produced at the same point, because the energy needed for the mass and/or
transverse momentum relative to the string has to come from the string piece be-
tween the quark and the antiquark. The quantum-mechanical picture is that the pair
is produced at the same point thus conserving flavour locally and tunnels out of the
classically allowed region. This leads to an exponential suppression of the tunnelling
probability with transverse mass

P = exp

(

−πm2⊥
κ

)

= exp

(

−πm2

κ

)

exp

(

−πp2⊥
κ

)

, (2.56)

which leads to a Gaussian distribution in both components of the transverse mo-
mentum. The total p⊥ of the pair has to vanish due to momentum conservation.
Subsequent break-ups of the string are assumed to be independent. The Lund
model is covariant and symmetric with respect to the string ends. Thus, it can be
formulated as an iteration of the same process in the following way: Starting from
the quark a break-up is generated leading to a meson, which consists of the quark
from the end and the antiquark from the produced pair, and a remainder string.
This is repeated until there is no more energy available. The termination procedure
requires extra care in order to preserve the symmetry between the two ends.
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2. Basics of Quantum Chromodynamics

The flavour composition and the transverse momentum of the produced meson
are given by the flavour and p⊥ carried by the quark and the antiquark. The creation
of heavy quark pairs is suppressed by equation (2.56). Only u, d and s pairs are
produced with a ratio of strange to light quarks γs = ss̄/uū ≃ 0.3. The spin and
orbital angular momentum have to be assigned according to suitable probabilities
including, for instance, the degeneracy. The mixing of flavour-diagonal states also
has to be taken into account. When the meson species is chosen also the mass is
fixed. What remains to be determined is the longitudinal momentum or the energy.
In fact, it is convenient to let the meson take a fraction z of the E+ p‖ of the string.
This leaves

(E+ p‖)new = (1− z)(E+ p‖)old (2.57)

(E− p‖)new = (E− p‖)old −
m2⊥

z(E+ p‖)old
(2.58)

for the rest of the string. The z-distribution is described by a function f (z) which is
also called fragmentation function but should not be confused with the fragmenta-
tion function Dhi (x,Q

2) discussed in the section 2.2.2. The constraint that the result
should be independent of the choice from which end to start leads to the ‘Lund
symmetric fragmentation function’

f (z) ∝ z−1(1− z)a exp
(

−bm
2
⊥
z

)

. (2.59)

So far only the production of mesons, which is more natural in the string fragmen-
tation, was discussed. There are two scenarios for baryon production, the diquark
and the popcorn picture. The former assumes that in a break-up not only quark-
antiquark but also diquark-antidiquark pairs can be formed. The diquark, which
is a state of two quarks carrying anticolour, combines with the neighboring quark
to form a baryon. Baryon production is suppressed due to the larger mass of the
diquark. The distribution of three-quark states on the baryons is analogous to the
meson case. In the popcorn model a quark-antiquark pair that does not match the
string colour can be created. The string does not break in this case, but a pair car-
rying the third colour can be created inbetween. Then the three (anti)quarks are a
colour-neutral combination. In contrast to the diquark picture, where the baryon
and the antibaryon are always neighbours, the popcorn model allows mesons to be
formed between the baryon and the antibaryon. The suppression of baryons arises
in this scenario from the fact that a pair with the ‘wrong’ colour can only exist as a
quantum fluctuation.

When a gluon is radiated off one of the initial (anti)quark lines it lines up in the
string as a ‘kink’ carrying momentum, since colour has to be conserved at the vertex.
In the planar diagrams of the leading logarithmic evolution the colour structure is
such that neighboring partons have matching colour and the whole cascade can be
organised in one or several colour neutral systems (figure 2.7 (a)). The fragmentation
of such a system works in principle in the same way as described for the qq̄ string,
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Figure 2.7.: (a) String configuration in an e++e− event with final state parton shower.
(b) Example for a string configuration in proton-proton scattering with-
out parton shower.

but the details are complicated when many different string pieces or regions have to
be considered.

The Lund model is also applicable to jet production in hadronic collisions. In
proton-proton collisions only a part of the proton participates in the hard interac-
tion. The string configuration without the parton shower is slightly more compli-
cated than in e++e− collisions because there are now two colour neutral systems.
Figure 2.7 (b) shows an example where the hard subprocess is quark-quark scatter-
ing. When the scattered constituent of the proton is a gluon, the proton remnant has
to be split into a quark and a diquark. The scattered quarks (or gluons) develop a
final state parton shower in exactly the same way as in e+e− annihilation. Further-
more, as explained in section 2.2.4, the quarks also radiate gluons before the hard
process forming an initial state parton shower. Again, the showers can be incorpo-
rated in the string system.
The strengths of the Lund model are that it is Lorentz-invariant, infra-red safe,
conserves by construction energy, momentum and additive quantum numbers and
provides a fairly good description of data. A qualitative explanation for the infra-red
safety can be given in terms of the string motion. It turns out that the string of a qq̄g
system, for instance, looks ‘two-jet-like’ when the gluon is soft or collinear with one
of the quark lines, because it effectively gets ‘absorbed’. Because of these properties
the Lund string fragmentation depends only weakly on the factorisation scale Q20.

Independent Fragmentation

The independent fragmentation model [75–81] assumes that each parton hadronises
on its own, so that the hadronisation of a multi-parton event is the incoherent sum
of the fragmentations of the partons. The colour structure is thus ignored. The
hadronisation mechanism is essentially the fragmentation of a string that has only
one well-defined end. The qq̄ pair creation works as in the Lund model with local
conservation of flavour and transverse momentum. For the energy sharing the same
fragmentation function can be used. There is, however, a problem with small z
values: They correspond to backward moving hadrons (i.e. p‖ < 0) that are regarded
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2. Basics of Quantum Chromodynamics

as unphysical and have to be rejected.
Gluons are split into a quark-antiquark pair where the energy sharing can either
be described by the perturbative splitting function or one of the partners gets all the
energy.
While momentum and flavour are conserved in each break-up this is not the case
in the global balance. The hadronisation of each string is stopped when the par-
ton energy is used up leaving an unpaired (anti)quark behind. This means that in
general flavour, charge, energy, momentum etc. are globally not conserved. The
independent fragmentation model suffers from more conceptual weaknesses: It is
infra-red sensitive and not Lorentz invariant. The problem of frame dependence
is circumvented by the requirement that the hadronisation has to be carried out in
the global centre-of-momentum frame. But two collinear partons and a single one
with the same energy always behave differently. Because of this problem with the
infra-red instability the independent fragmentation is quite sensitive to the choice of
Q0.

Cluster Hadronisation

The cluster hadronisation [82–84] is related to the concept of preconfinement [85, 86],
which implies that neighboring partners in the parton cascade, that in planar config-
urations are colour connected, have an universal and steeply falling mass distribu-
tion. In a simple version of the cluster model a parton shower is generated down to
Q0. At this scale all gluons are split in quark-antiquark pairs resulting in a configu-
ration where each quark has an antiquark as neighbour with which it forms a colour
singlet. These clusters decay in two hadrons, the decay is isotropic in the cluster rest
frame.

Local Parton Hadron Duality

The concept of local parton hadron duality (LPHD) [87, 88] emerged from the ob-
servation that perturbation theory seems to work relatively well also at low scales
where one would not expect it, and that hadronisation does then not lead to major
redistributions. One thus basically runs a perturbative evolution down to a hadronic
scale and assumes that colour is neutralised locally so that the hadronic distributions
resemble the partonic results.
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CHAPTER 3

Jet Quenching in Heavy Ion Collisions

Jets that are produced in nucleus-nucleus collisions are altered as compared to jets
in elementary reactions due to interactions with the produced medium. These modi-
fications of jet characteristics may reveal important information about the properties
of the medium; the microscopic mechanisms are, however, not yet sufficiently well
understood. One of the most striking phenomena is a strong suppression of leading
hadrons, which is attributed to energy loss of fast partons in the produced medium
and is known as ‘jet quenching’. In the first section of this chapter a few aspects
of heavy-ion collisions that are important for jet propagation (mainly geometry and
space-time evolution) are introduced. In the next section an overview over impor-
tant experimental results concerning the phenomenology of jet quenching is given.
The last section is a summary of different attempts to theoretically describe partonic
energy loss.

3.1. Selected Aspects of Nuclear Collisions

Ultra-relativistic collisions of heavy nuclei have a very rich and divers phenomenol-
ogy. Here, only a brief introduction into those aspects that are important for this
study can be given, but this does clearly not do justice to the topic.

3.1.1. Collision Geometry: A Glauber Model

In Glauber calculations (or simulations) a collision of two nuclei is assumed to be an
incoherent sum of nucleon-nucleon interactions. They can be used to calculate cross
sections and to characterise the centrality of nucleus-nucleus collisions. In analytic
models like [89] the matter distribution inside a nucleus is assumed to be continuous.
It is described by the density distribution nA(r) satisfying

∫

d3r nA(r) = A . (3.1)
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3. Jet Quenching in Heavy Ion Collisions

Nuclei are rather well described by the Woods-Saxon distribution

nWSA (r) =
n0

e(r−RA)/d + 1
with n0 =

3A

4πR3A(1+ π2d2/R2A)
. (3.2)

The z-direction is chosen to be the beam axis, the impact parameter ~b lies in the
plane perpendicular to the beam and points from the centre of the beam nucleus
to the centre of the target nucleus. The magnitude of the impact parameter is a
measure for the centrality, 0 ≤ b < min(RA,RB) where b = 0 corresponds to a
head-on collision. Beam axis and impact parameter define the reaction plane.
A single nucleon passing through a nucleus at a distance b from the centre sees a
part

TA(b) =

∞
∫

−∞

dz nA(
√

b2 + z2) (3.3)

of the target. TA is called the nuclear thickness function. When the projectile is a
nucleus the overlap is characterised by

TAB(b) =
∫

d2b1 d
2b2 δ2(~b−~b1 −~b2)TA(|~b1|)TB(|~b2|) . (3.4)

The product σNNinelTAB(b), where σNNinel is the total inelastic nucleon-nucleon cross sec-
tion at the respective collision energy, can be interpreted as the mean number of binary
nucleon-nucleon collisions 〈Nbin〉 at impact parameter b. The total nucleus-nucleus
cross section is obtained by integrating σNNinelTAB(b) over b:

σABinel =
∫

d2b σNNinelTAB(b) = ABσNNinel (3.5)

Similarly, TAB(b) can be multiplied with any cross section to get the mean number
of events of a particular kind per A+ B collision at impact parameter b.

Another interesting quantity is the mean number of nucleons participating in the colli-
sion. It is given by

〈Npart(b)〉 =
∫

d2b1 d
2b2 δ(~b−~b1 −~b2)

{

TA(|~b1|)p(B)≥1 (|~b2|) + TB(|~b2|)p(A)
≥1 (|~b1|)

}

,

(3.6)

where p
(A)
≥1 (b1) is the probability that a nucleon passing through the nucleus A with

impact parameter b1 takes part in at least one interaction. It can be obtained from
the Binomial distribution:

p
(A)
≥1 (b1) =1−

(

A

0

)

(

σNNinelTA(b1)

A

)0(

1− σNNinelTA(b1)

A

)A−0

=1−
(

1− σNNinelTA(b1)

A

)A

≈1− e−σNNinelTA(b1) for large A .

(3.7)

Soft processes are expected to scale with the number of participants while hard
processes should scale with the number of binary collisions.
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3.1. Selected Aspects of Nuclear Collisions

3.1.2. The Ideal Quark­Gluon Gas

A non-interacting (ideal) gas of quarks, antiquarks and gluons is described by the
grand-canonical partition sum, since the particle numbers are not fixed1. One-
particle states are characterised by a set ~ν of quantum numbers, the occupation
number n(~ν) and the one-particle energy E(~ν). In the case of bosons the occupa-
tion number can take any value while in the case of fermions a state can be occupied
by at most one particle. A complete set of occupation numbers for all the states is
denoted by {n(~ν)}. The grand-canonical partition sum is given by

Ξ(T,V, µ) = ∑
all states

exp(−β(Etot − µN))

= ∑
{n(~ν)}

exp

(

−β ∑
~ν

n(~ν)(E(~ν) − µ)

)

= ∑
{n(~ν)}

∏
~ν

{exp(−β(E(~ν) − µ))}n(~ν)

= ∏
~ν

∞/1

∑
n(~ν)=0

{exp(−β(E(~ν) − µ))}n(~ν)

= ∏
~ν

1

1± exp(−β(E(~ν) − µ))

(3.8)

⇒ lnΞ(T,V, µ) = ±∑
~ν

ln
(

1± e−β(E(~ν)−µ)
)

, (3.9)

where β = 1/T, µ is the chemical potential and Etot and N denote the total energy
and number of particles in the ensemble. The plus sign applies to fermions and the
minus sign to bosons. When the energy levels are not discrete but continuous the
sum can be transformed into an integral yielding

lnΞ(T,V, µ) = ±
∫

d3qd3p

(2π)3
ln
(

1± e−β(E(~ν)−µ)
)

, (3.10)

where p and q are the momentum and spatial coordinates.
The mean occupation number of a state is given by

n̄(~ν) = − ∂ lnΞ

∂(βE(~ν))
=

1

eβ(E(~ν)−µ) ± 1 (3.11)

The central rapidity region in relativistic nuclear collisions is nearly baryon-free,
so that the chemical potential can be neglected. It is convenient to characterise the
one-particle states by their momentum, but then the degeneracy has to be taken
into account. The number of one-particle states with a given momentum is for a
(anti)quarks and gluons given by

gg = 2(polarisation) · 8(colour) = 16

gq = gq̄ = nf(flavour) · 2(spin) · 3(colour) = 6nf
(3.12)

1A detailed discussion of the thermodynamics of quantum gases can, for instance, be found in [90].
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The mean occupation number of the state with momentum p is given by

n̄p =
gg/q

eE/T ± 1 with E =
√

~p 2 +m2 (3.13)

The particle and energy density can only be calculated analytically for massless
particles and in the case of massive particles for temperatures that are large com-
pared to the masses. Neglecting the masses one gets

ng =
1

V

1

(2π)3

∫

d3qd3p n̄p =
gg

2π2
T32 ζ(3) ≃ 1.2 gg

π2
T3

nq =nq̄ =
1

V

1

(2π)3

∫

d3qd3p n̄p =
gq

π2
T3d(3) ≃ 0.9 gq

π2
T3

ǫg =
1

V

1

(2π)3

∫

d3qd3p p n̄p =
3gg

π2
T4 ζ(4) =

π2gg

30
T4

ǫq =ǫq̄ =
3gq

π2
T4 d(4) =

7π2gq

240
T4

(3.14)

with

ζ(ξ) =
1

Γ(ξ)

∞
∫

0

dα
αξ−1

eα − 1 and d(ξ) =
1

Γ(ξ)

∞
∫

0

dα
αξ−1

eα + 1
. (3.15)

Thus, the mean energy per particle is given by

〈Eg〉 =
ǫg

ng
= 3T

ζ(4)

ζ(3)
≃ 2.7 T

〈Eq〉 =
ǫq

nq
= 3T

d(4)

d(3)
≃ 3.2 T .

(3.16)

3.1.3. Space­Time Evolution: The Bjorken Model

The Bjorken model for the space-time evolution of the matter created in collisions of
relativistic nuclei in the central rapidity region [91] is based on the observation that
the rapidity density of produced hadrons (which can be related to the initial energy
density of the produced matter) is large and shows a plateau around midrapidity
and that the central rapidity region has a small net baryon number. The inferred
picture of the collision is that the nuclei are essentially transparent to each other.
This means that the baryon number is carried by the Lorentz contracted remnants
of the nuclei receding from the interaction point with nearly speed of light. They
leave the produced matter behind, which (for small times and distances from the
interaction point) expands longitudinally with velocity v = z/t (the collision takes
place at t = 0 and z = 0, where z is the longitudinal coordinate). The energy
density is high enough that fast thermalisation occurs and the system enters a phase
of hydrodynamic evolution shortly after the collision. The existence of the central
plateau implies that the collision looks the same in all centre-of-momentum-like
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Figure 3.1.: Space-time evolution of the matter undergoing boost-invariant longitu-
dinal expansion, figure from [91].

frames, which translates into a symmetry under boosts of the initial conditions for
the hydrodynamic evolution.
A system in local thermal equilibrium is described by a local energy density ǫ(x),
pressure p(x), temperature T(x) and four velocity uµ(x). In this case they do not
depend on the transverse coordinates and the dependence on time and longitudinal
distance is best described in terms of the proper time τ and space-time rapidity ys.

τ =
√

t2 − z2

ys =
1

2
ln

(

t+ z

t− z

)

t = τ cosh ys

z = τ sinh ys
(3.17)

The boost invariance implies that the initial conditions are independent of ys,

ǫ(τ0, ys) = ǫ0 etc.

uµ(τ0, ys) =
1

τ0
(t, 0, 0, z) .

(3.18)

This property is preserved during the hydrodynamic evolution. The space-time evo-
lution is shown in figure 3.1. The energy density, pressure and temperature are
constant on hyperbolas of constant proper time.

When viscosity and heat conductivity are neglected the energy-momentum tensor

Tµν = (ǫ + p)uµuν − gµνp (3.19)

is conserved:
∂Tµν

∂xµ
= 0 . (3.20)

Using the boost invariance this equation simplifies to

dǫ

dτ
= −ǫ + p

τ
. (3.21)

The conservation law
∂sµ

∂xµ
= 0 (3.22)
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Figure 3.2.: Rarefaction front travelling inwards from the surface of the matter, figure
from [91].

for the entropy density current

sµ =
S

V
uµ =

ǫ + p

T
uµ (3.23)

can also be derived from equation (3.20). With equation (3.18) this leads to

ds

dτ
= − s

τ
⇒ s(τ) = s(τ0)

τ0
τ
, (3.24)

which implies that the entropy per unit rapidity is conserved.
The time dependence of the temperature can be derived from equation (3.21):

dǫ

dτ
=
dǫ

dp

dp

dT

dT

dτ
= −ǫ + p

τ
= −Ts

τ
. (3.25)

With
dp

dT
= s and

dǫ

dp
=
1

vs
(3.26)

one arrives at
1

T

dT

dτ
= −v

2
s

τ
. (3.27)

In an ideal relativistic fluid the equation of state is ǫ = 3p and the sound velocity
is v2s = 1/3. Inserting this into equation (3.21) and equation (3.27) one finds for the
time dependence of the energy density and temperature

ǫ(τ) = ǫ(τ0)
(τ0

τ

)
4
3
and T(τ) = T(τ0)

(τ0
τ

)
1
3
. (3.28)

The picture of pure longitudinal expansion is strictly speaking only valid near the
centre of the medium. A rarefaction front is expected to propagate inwards from the
edges at the velocity of sound (figure 3.2). When the sound velocity is independent
of time the rarefaction front is described by

ρ(t) = R−

√
t2−z2
∫

0

dt′vs(t′) = R− vs
√

t2 − z2 (3.29)
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At transverse distances not yet reached by the front the matter expands only lon-
gitudinally because the information about the finite size of the matter has not yet
reached this region. Beyond the front, on the other hand, a more complex three
dimensional expansion leading to a faster cooling is expected.

3.2. Jet Quenching at RHIC

In terms of data the jet physics field is currently dominated by the four experiments
Brahms, Phenix, Phobos and Star at the Relativistic Heavy Ion Collider Rhic in
Brookhaven, which has a beam energy of up to 200GeV per nucleon. Due to the
enormous background and the steeply falling partonic spectrum these experiments
are largely limited to leading hadrons, although first results on reconstructed jets
have recently been presented [92–94]. This will be different at Cern’s Large Hadron
Collider Lhc, which also has a heavy ion program with lead ions at 5.5 TeV per nu-
cleon starting in 2009. Due to the higher beam energy and the larger kinematical
range reconstruction of jets with 100GeV energy and more using classical cone or
even k⊥-algorithms [95, 96] will be possible [20–22]. The Alice experiment is dedi-
cated to heavy ion physics, but Cms will also contribute to this field.

3.2.1. Single­Inclusive Spectra

High transverse momentum hadrons are believed to be produced solely from the
fragmentation of hard partons, which stem from a hard partonic scattering event
that falls in the perturbative regime. Hard processes are short-distance phenomena
with a resolution of the order 1/Q ≃ 1/p⊥, which is much smaller than the size of
a nucleon. The hard process itself happens on a very short timescale (O(1/Q)), i.e.
before the formation of a thermalised medium. Due to the factorisation of the cross
section the hard matrix element remains unaffected and only the parton densities
and the fragmentation functions can be modified in nuclear collisions. In the absence
of nuclear effects in the initial state a nucleus is the incoherent sum of its nucleons
and the production of high p⊥ partons scales with the number of binary nucleon-
nucleon collisions. The quantity used to characterise single-inclusive high-p⊥ hadron
production in nuclear collisions is the nuclear modification factor

RAB =

(

1

Nevt

d2NAB

dp⊥dη

)

·
(

TAB
d2σpp

dp⊥dη

)−1
, (3.30)

which is unity in the absence of nuclear effects. It contains modifications of the
initial and the final state. Soft particle production (p⊥ . 1GeV) is naively expected
to scale with the number of participating nucleons, which is larger than the number
of binary collisions. This leads to a decrease of RAB below unity for small p⊥ even
without nuclear modifications.

Charged particle spectra measured by the Phenix experiment in p+p collisions
exhibit x⊥ scaling (equation (2.55)) with a power n = 6.3 [16]. The π0 p⊥-spectrum is
found to be in good agreement with pQCD predictions. The π0 spectrum in Au+Au
collisions also scales with x⊥ and the same power 6.3 is found indicating that hard
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3. Jet Quenching in Heavy Ion Collisions

Figure 3.3.: Transverse momentum spectrum of neutral pions in central Au+Au colli-
sions compared to the p+p reference measurement scaled with the num-
ber of binary collisions in the 0− 10% centrality class [97].

processes as described by pQCD are the dominant source of high p⊥ neutral pions
in nucleus-nucleus collisions [16].

The π0 spectrum in central Au+Au collisions is shown in figure 3.3 together with
the p+p result scaled with the number of binary collisions. The shape is similar, but
the yield is significantly lower in Au+Au. This is better seen in figure 3.4, which
shows the nuclear modification factor in different centrality bins. There is a reduc-
tion of the π0 yield at intermediate and high p⊥ by roughly a factor 5 in central
gold-gold collisions as compared to the naive expectation from p+p collisions. The
suppression increases smoothly with centrality, there is no sign for a threshold be-
haviour. The high-p⊥ spectra scale neither with the number of binary collisions nor
with the number of participants. The centrality classes are characterised in table 3.1.

In order to disentangle initial and final state effects the nuclear modification factor
has also been measured in deuteron-gold collisions at the same energy (figure 3.5).
In this reaction nuclear modifications of the initial state are expected to be present
while there should be no effects on the final state. The absence of high-p⊥ hadron
suppression in d+Au collisions indicates that the strong modification in Au+Au can
be attributed to final state effects. It also implies that the initial state can (for high-p⊥
particle production at mid-rapidity) be viewed as the incoherent sum of the individ-
ual nucleons. This is further supported by direct photon and charm production in
nucleus-nucleus collisions, which scales approximately with the number of binary
collisions (figure 3.6). These observables are insensitive to final state effects since
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Figure 3.4.: Nuclear modification factor of neutral pions in Au+Au collisions for dif-
ferent centralities [98].

centrality 〈Nbin〉 〈Npart〉
0− 10% 955.4± 93.6 325.2± 3.3
10− 20% 602.6± 59.3 234.6± 4.7
20− 30% 373.8± 39.6 166.6± 5.4
30− 40% 219.8± 22.6 114.2± 4.4
40− 50% 120.3± 13.7 74.4± 3.8
50− 60% 61.0± 9.9 45.5± 3.3
60− 70% 28.5± 7.6 25.7± 3.8
70− 80% 12.4± 4.2 13.4± 3.0
80− 92% 4.9± 1.2 6.3± 1.2
min. bias 257.8± 25.4 109.1± 4.1

Table 3.1.: Centrality classes with the number of participants and binary collisions
as used by Phenix [99], the percent values characterising the centrality
classes give the fraction of the total cross section σAuAu = 6.9 b.
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Figure 3.5.: Nuclear modification factor of neutral pions in d+Au collisions mea-
sured by two different calorimeters compared to the central Au+Au re-
sult (Phenix data [100]).

Figure 3.6.: Nuclear modification factor of direct photons, π0 and η in central Au+Au
collisions [101].
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3.2. Jet Quenching at RHIC

Figure 3.7.: Nuclear modification factor of neutral pions in Au+Au collisions at√
sNN = 200GeV as a function of the angle relative to the reaction
plane [97]. The π0 yields are integrated in the region 5 < p⊥ < 8GeV.

photons do not interact strongly and final state modifications of charm affect only
the shape of the spectrum, not the yield. There is, however, room for a slight in-
crease of RdAu above unity. This has been interpreted as Cronin effect, which is
known from proton-nucleus and nucleus-nucleus collisions at lower energies and
denotes an increase of high-p⊥ particle production relative to binary scaling. This
effect is commonly attributed to multiple soft scattering of the incoming nucleon or
its partons prior to the hard interaction.

The strong suppression of high-p⊥ hadrons in nucleus-nucleus collisions is be-
lieved to arise mainly from induced gluon radiation off hard partons in the quark-
gluon plasma. The parton loses a significant fraction of its energy and fragments
into softer hadrons. There are several energy loss models which describe the mea-
sured RAA quite well (section 3.3.2). The role of energy loss due to elastic scattering
(section 3.3.1) in the QGP is currently under debate. In both scenarios, however,
the energy loss depends on the path length inside the medium. Different centrality

35



3. Jet Quenching in Heavy Ion Collisions

0 1 2 3 4 5 6 7 8 90

0.1

0.2

0.3 0-5%0-5%

0 1 2 3 4 5 6 7 8 90

0.1

0.2

0.35-10%5-10%

0 1 2 3 4 5 6 7 8 90

0.1

0.2

0.3 10-20%10-20%

0 1 2 3 4 5 6 7 8 90

0.1

0.2

0.320-30%20-30%

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3 30-40%30-40%

 (GeV/c)tp
0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.340-60%40-60%

2v

Figure 3.8.: Elliptic flow coefficient v2 for charged particles measured by Star [102]
in Au+Au collisions at

√
sNN = 200GeV as a function of p⊥. Open

and closed symbols correspond to different reaction plane determination
methods.

classes have different mean path lengths, but possibly also different energy densities.
A cleaner way to study the path length dependence is thus to measure the nuclear
modification factor in a given centrality class as a function of the angle relative to the
reaction plane. The reaction plane is defined by the beam direction and the impact
parameter. The diameter of the overlap region in the transverse plane is smallest in
the reaction plane and largest perpendicular to it. The data show in fact a variation
of the nuclear modification factor with the angle of the hadron relative to the reaction
plane (figure 3.7). This asymmetry also manifests itself in the azimuthal distribution
of particles. It is quantified by the second coefficient v2 in the Fourier expansion of
the particle spectrum

E
d3N

d3p
=
1

2π

d2N

p⊥dp⊥dy

[

1+
∞

∑
n=1

2vn cos(nϕ)

]

, (3.31)

which is called elliptic flow coefficient. It can be written as

v2 = 〈cos(2ϕ)〉 , (3.32)

where ϕ is the angle relative to the reaction plane. The azimuthal anisotropy ob-
served at low transverse momenta is caused by the collective flow of the expanding
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Figure 3.9.: Nuclear modification factors of non-photonic electrons in d+Au and cen-
tral Au+Au collisions measured by Star [103]. The lines give the results
of different energy loss models, the charged hadron RAA is also indi-
cated.

medium. It is not expected to influence hadron spectra at high transverse momenta
and can therefore not explain the large values of v2 found at high p⊥ (figure 3.8).
This observation is qualitatively in agreement with the energy loss scenario, but the
energy loss models cannot explain the large asymmetry in peripheral collisions.

Heavy flavours are at high p⊥ measured via the electrons from their semi-leptonic
decays. It has so far not been possible to discriminate between charm and beauty
decays due to missing vertex tracking capabilities. The inclusive electron spectrum
is at low p⊥ dominated by charm and at high p⊥ by beauty. The crossing point is
at p⊥ ≈ 4GeV with a large (theoretical) uncertainty. First attempts to experimen-
tally determine the beauty contribution on a statistical basis in p+p collisions are
consistent with theoretical expectations [104, 105]. The nuclear modification factor
of non-photonic electrons is shown in figure 3.9 to be the same as for light hadrons
at high p⊥. At face value this contradicts expectations from radiative energy loss
models, which predict a clear mass hierarchy of the energy loss. It has been argued
that collisional energy loss could explain the apparent equal suppression of light and
heavy flavours, but the kinematics of elastic scattering favours a smaller energy loss
of heavy projectiles [106]. Another explanation is that experimental and theoretical
uncertainties may be largely underestimated [107].

Another surprise is the finding that the suppression of neutral pions is stronger
than that of unidentified charged particles in the intermediate p⊥ region. This is con-
nected to an anomalously large proton to pion ratio, which increases with centrality
(figure 3.10). The picture that the fragmentation of a hard parton is described by
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3. Jet Quenching in Heavy Ion Collisions

Figure 3.10.: Proton to pion ratio as a function of p⊥ for p+p, d+Au, central and
peripheral Au+Au collisions [108].

a vacuum fragmentation function shifted by the energy loss is obviously too naive,
although the argument that energetic partons hadronise outside the medium due to
time dilatation effects is probably correct. The enhanced p/π ratio has been counted
as sign for recombination. This is an alternative hadronisation model that allows jet
fragments to pick up (anti)quarks from the medium to form hadrons [109–113]. On
the other hand, changes in the hadrochemical composition of jets may well be a nat-
ural consequence of radiative energy loss even if the hadronisation happens outside
the medium [35].

3.2.2. Dihadron Azimuthal Correlations

An alternative way of accessing energetic hadrons from jet fragmentation are di-
hadron correlations. In the original form used by the Star experiment an energetic
trigger particle is required. The azimuthal distribution D(∆φ) is defined as the dis-
tribution of azimuthal angles relative to the trigger of associated hadrons in a certain
p⊥ window

D(∆φ) =
1

Ntrig

dN

d(∆φ)
. (3.33)

In proton-proton collisions D(∆φ) reflects the geometry of two-jet events. It con-
tains a relatively narrow peak at ∆φ ∼ 0, which is the near-side jet to which the
trigger particle belongs, and a broader peak at ∆φ ∼ π, which is the away-side jet
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(figure 3.11). Because of the steeply falling p⊥-spectrum the requirement of an en-
ergetic trigger hadron strongly biases the trigger jets. It is much more likely to pick
up a lower energy jet with a leading parton carrying an anomalously large fraction
of the energy than a more energetic jet with a normal fragmentation pattern. The
away-side jet, on the other hand, is unbiased. Therefore, the width of the trigger jet
is significantly smaller than that of the away-side jet and nearly independent of the

trigger p⊥, while the away-side width decreases with p
trig
⊥ .

The azimuthal correlation measured in d+Au collisions resembles the p+p result
(figure 3.11), apart from a constant off-set. In non-central nucleus-nucleus collisions
there is an additional contribution from the elliptic flow

dNef
d(∆φ)

∝ 1+ 2v
trig
2 v

ass
2 cos(2∆φ) , (3.34)

where v
trig
2 and vass2 are the coefficients for triggers and associated particles, respec-

tively. The elliptic flow contribution has to be subtracted in order to obtain the jet-like
correlation. Figure 3.11 shows that in central Au+Au collisions the away-side jet dis-
appears while the trigger jet remains essentially unchanged. In nuclear collisions
there is an additional trigger bias which favours trigger jets that experienced an un-
usually small energy loss and look like jets in p+p collisions. The disappearance of
the away-side jet is again attributed to energy loss of fast partons in the QGP. As in
the case of single-inclusive hadron suppression this interpretation gets support from
a measurement of the dependence of the suppression on the angle relative to the re-
action plane. Here, a pair is defined to be in-plane if the azimuthal angle of the trig-
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3.2. Jet Quenching at RHIC

ger particles satisfies |φtrig − Ψ2| < π/4 or |φtrig − Ψ2| > 3π/4 where Ψ2 is the reac-
tion plane angle of the event. A trigger is out-of-plane if π/4 < |φtrig − Ψ2| < 3π/4.
The elliptic flow contribution is different for the two components:

dNinout
d∆φ

= B

[

1+ 2vass2

(

πv
trig
2 ± 2〈cos(2∆Ψ)〉

π ± 4vtrig2 〈cos(2∆Ψ)〉

)

cos(2∆φ)

]

, (3.35)

where 〈cos(2∆Ψ)〉 is the reaction plane resolution. The resulting in-plane and out-
of-plane contributions are shown in figure 3.12 for mid-central collisions. The sup-
pression of the away-side jet is clearly stronger out-of-plane (where the mean path
length in the medium is longer) than in-plane.

The energy of the away-side jet cannot disappear but has to show up at lower trans-
verse momenta. The associated yields can be reconstructed on a statistical basis with
low associated particle momenta (0.15 < pass⊥ < 4GeV). The associated hadron mul-
tiplicity and the transverse momentum distribution are similar to p+p data on the
near-side indicating that the near-side correlation is jet-like and not much affected
by the medium. This is further supported by the observation that the near-side cor-
relation is stronger for particles with opposite charge, which is a characteristic of
jet fragmentation. On the away-side, on the other hand, the associated multiplicity
increases with centrality and the p⊥ spectrum becomes softer. Figure 3.13 shows
that the mean transverse momentum of associated particles on the away-side de-
creases with centrality and approaches the value of the bulk matter. This is counted
as a sign for strong medium modifications and progressing thermalisation of the
away-side jet.

At high momenta of trigger and associated particles a jet-like structure emerges on
the away-side (figure 3.14). The yield is suppressed in agreement with expectations
from energy loss models, but the distribution is narrow in angle and the shape of
the transverse momentum distribution is similar to d+Au results and the near-side
yield. This reappearance of the away-side jet is interpreted as ‘punch-through’, i.e.
di-jets where either both have a short path length inside the medium and/or the
energy is high enough to survive a moderate energy loss.

The angular shape of the away-side yield changes dramatically at lower momenta
(figure 3.15). It develops a double-hump structure with maxima, that are shifted by
D ≃ 1 rad away from ∆φ = π. D is independent of the system size (i.e. the species of
the colliding nuclei) and the beam energy and nearly independent of centrality. The
most popular explanations are a Mach cone produced by a supersonic jet travelling
through the medium [118–123], Čerenkov gluons [124–127] and deflected jets [30,32,
128,129]. Recent measurements of three-particle correlations seem to favour a conical
emission pattern [130].

The near-side part of the azimuthal correlation also has a surprise in store that
becomes apparent if one looks at the correlation in pseudo-rapidity2. In central
Au+Au collisions the ∆η distribution of pairs with low momenta becomes very wide,
but at higher momenta it looks like the p+p result (figure 3.16). This phenomenon,

2The pseudo-rapidity is defined as η ≡ − ln tan(θ/2).
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which is called the ‘ridge’, is commonly ascribed to a medium modification of the
jet fragmentation that imprints the strong longitudinal flow of the medium on the
jet fragments leading to the ∆η broadening [32, 133–136].

The picture emerging from the study of dihadron correlations is that both the near-
and the away-side have a high-p⊥ component, which is essentially unaffected by the
medium, and a strongly modified low-p⊥ contribution, which shows characteristics
of the medium. The medium modifications are stronger for the away-side jet while
the near-side is more jet-like and closer to jets in p+p collisions due to the trigger
bias.
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3.3. Energy Loss Models

Partonic energy loss is attributed to elastic and inelastic scattering of the fast projec-
tile in the medium, where the inelastic processes are commonly believed to be the
dominant source of energy loss. This section briefly summarises the most prevalent
ideas and models how energy loss can be treated theoretically.

3.3.1. Collisional Energy Loss

The first estimate of collisional energy loss of a fast parton in a QGP was presented
by Bjorken [1]. He calculated the energy loss in perturbation theory from

−dE
dx

=
∫

d3k ρeff(k)φ
∫

dt ν
dσ

dt
(3.36)

with the effective plasma density

ρeff(k) =
2

3
ρq(k) +

3

2
ρg(k) , (3.37)

where the colour factors in the cross section have partly been absorbed in the den-
sity. Here, φ is the flux factor and ν = E′ − E the energy loss in a single scattering.
Keeping only the logarithmically enhanced part the scattering cross section is ap-
proximated as

dσ

dt
=

(

2

3

)±1 2πα2s
t2
, (3.38)

where the plus sign applies to projectile quarks and the minus sign to gluons, the rest
of the colour factor resides in the effective density. In the case of massless partons
and projectile energies that are large compared to the temperature the kinematics
simplifies to

s = 2kE(1− cos θ) (3.39)

ν =
E|t|
s

=
|t|

2k(1− cos θ)
(3.40)

φ = (1− cos θ) , (3.41)

where θ is the angle between the incoming partons in the laboratory frame. Then
the t integration in equation (3.36) can be carried out leading to

−dE
dx

=

(

2

3

)±1
πα2s ln

( |tmax|
|tmin|

)

∫

d3k

k
ρeff(k) , (3.42)

which is logarithmically infra-red divergent. The lower cut-off is related to colour
screening in the medium and has later been argued to be given by the Debye screen-
ing mass. Bjorken also realised that screening affects the scattering in the regime of
small momentum transfers, but chose

√

|tmin| = M ≃ 0.5− 1GeV. The upper in-
tegration limit is given by kinematic constraints, Bjorken chose νmax = E/2 because
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transferring essentially all the projectile energy to the target only exchanges the roles
of the two. This leads to

|tmax|
|tmin|

=
s

2M2
=
kE(1− cos θ)

M2
≃ kE
M2
. (3.43)

Finally, the integration over k can be carried out for an ideal gas of massless (anti)quarks
and gluons if a minimum momentum kmin ≃ M ≪ T is assumed and the variation
of k in the logarithm is neglected

−dE
dx

=

(

2

3

)±1
4π2α2s ln

( 〈k〉E
M2

)

∫

k
dk

(2π)3

(

2

3

12nf
ek/T + 1

+
3

2

16

ek/T − 1

)

=

(

2

3

)±1
2πα2sT

2
(

1+
nf
6

)

ln

( 〈k〉E
M2

)

.

(3.44)

This type of calculation has been repeated with different improvements [3,6,7,137,
138] like more accurate matrix elements, running of the coupling or more sophisticed
kinematic considerations. However, they all suffer from the infra-red divergence and
the heuristic arguments that have to be invoked to regularise the integral. Screening
can only be treated correctly in thermal field theory, which has its own problems
and complications (cf. [139]).

In the following the most important ingredients to the energy loss computations
in the framework of thermal field theory will be introduced3. Strictly speaking, they
are limited to a regime of weak coupling g ≪ 1 and high temperature, so that the
masses of thermal particles can be neglected. This allows for a separation of hard
(O(T)) and soft (O(gT)) scales.
In the imaginary time formalism of QCD at finite temperature the bare propagator,
which is the vacuum expectation value of the time ordered product of two fields
at different space-time points x and y in the zero-temperature theory, becomes a
thermal expectation value. For a scalar field theory, for instance, one gets

〈0|T {φ(x)φ(y)}|0〉 −→ 1

Z∑
n

〈n|T {φ(x)φ(y)}|n〉e−En/T , (3.45)

where En and |n〉 are the eigenvalues and eigenstates of the free Hamiltonian and
Z is the partition function, for instance the grand-canonical partition function at
vanishing chemical potential

Z = tr e−Ĥ/T =
∫

[dφ] exp



−
1/T
∫

0

dτ
∫

d3xLE(φ, ∂φ)



 , (3.46)

with the Lagrangian density in Euclidean space-time. The initial and final state
must be the same, which implies the boundary condition φ(0,~x) = φ(1/T,~x). Anal-
ogously, the partition function in QCD is

Z =
∫

[dAdqdq̄dcdc̄] exp

(

−
∫ 1/T

0
dτ
∫

d3xLQCD,E
)

, (3.47)

3The following discussion is based on [139].
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Figure 3.17.: Lowest order gluon self energy diagrams, dotted lines represent ghost

fields.

�
Figure 3.18.: Lowest order quark self energy.

where c is the ghost field. Due to the finite extension in temporal direction the
energies of the particles can only take discrete values, the Matsubara frequencies,
which are ωn = 2nπT for gluons and νn = (2n+ 1)πT for quarks. The measure of
loop integrals becomes

T∑
n

∫

d3k

(2π)3
. (3.48)

The free thermal gluon and quark propagators in momentum space are

Dµν(K) =
1

K2

(

δµν − (1− ξ)
KµKν

K2

)

S(P) =
1

−γ4νn + ~γ ·~p+m
,

(3.49)

where ξ is the gauge fixing parameter. Capital letters denote four-momenta, small
letters stand for three-momenta, greek indices run over the four space-time compo-
nents and latin indices over the three space-components.

Among the most important quantities in thermal field theory are the self energies.
The diagrams contributing to lowest order to the gluon self energy Πµν are given
in figure 3.17. From the transversality of the polarisation tensor it follows that Πµν

has only two independent components, which can be chosen as the longitudinal and
transverse component

ΠL(K) = Π00(K)

ΠT(K) =
1

2

(

δij −
kik j

k2

)

Πij(K) .
(3.50)

In the limit where the momenta in the loops are hard (& T) and large compared to
the gluon momentum analytic expressions for the gluon self energy can be derived.
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This hard thermal loop (HTL) limit is equivalent to the high temperature limit. The
leading term in the expansion is given by

ΠL(K) = −3m2g
[

1− ω

2k
ln

(

ω + k

ω − k

)]

ΠT(K) =
3

2
m2g

ω2

k2

[

1−
(

1− k
2

ω2

)

ω

2k
ln

(

ω + k

ω − k

)] (3.51)

with the thermal gluon mass

m2g =
g2T2

3

(

1+
nf
6

)

. (3.52)

The gluon self energy is related to the dielectric constants of the medium

ǫL(K) = 1− ΠL(K)

k2

ǫT(K) = 1− ΠT(K)

ω2

(3.53)

and can also be calculated in classical transport theory. The quark self energy can be
derived from the diagram in figure 3.18 and reads in the HTL limit

Σ(P) = − 1

4p2

[

4m2q − p0
2m2q

p
ln

(

p0 + p

p0 − p

)

]

Pµγµ

− 1

4p2

[

P2
2m2q

p
ln

(

p0 + p

p0 − p

)

− p04m2q

]

γ0 , (3.54)

where the bare quark mass is neglected and the thermal quark mass is

m2q =
g2T2

6
. (3.55)

Naive perturbation theory, which is formulated in terms of the bare Green’s func-
tions, fails because for some quantities it does not reproduce all contributions to a
certain order in the coupling. Braaten and Pisarski realised this incompleteness of
the naive perturbative expansion and developed a method to systematically gener-
ate all diagrams contributing to a certain order [140]. When the external momenta
are hard (O(T)) only the bare Green’s functions contribute, but when the external
momenta are soft (O(gT)) HTL diagrams contribute to the same order. The strat-
egy is thus to first identify the diagrams that are proportional to g2T2. In the next
step these have to be resummed into effective Green’s functions. Finally, the desired
quantities can be calculated using either the bare or the effective Green’s functions
in ordinary perturbation theory, depending on the momentum scales.

The effective propagators are defined by Dyson-Schwinger equations, the equation
for the gluon propagator is given diagrammatically in figure 3.19. The resulting
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Figure 3.19.: Dyson-Schwinger equation defining the effective gluon propagator (de-

noted by a curly line with a blob).
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Figure 3.20.: Effective three-gluon vertex.

� =� +� +�
Figure 3.21.: Effective two-quark-two-gluon vertex.

effective gluon propagator is

D∗−1
L (K) = k2 − ΠL(K) = k2 + 3m2g

[

1− ω

2k
ln

(

ω + k

ω − k

)]

D∗−1
T (K) = K2 − ΠT(K) = ω2 − k2 − 3

2
m2g

ω2

k2

[

1−
(

1− k
2

ω2

)

ω

2k
ln

(

ω + k

ω − k

)]

.

(3.56)

The effective quark propagator can be derived in an analogous way. In gauge the-
ories also the vertices receive HTL corrections, the effective vertices are found by
adding the HTL correction to the bare vertex (e.g. figure 3.20). In QCD all n-gluon
and n-gluon-plus-one-quark-pair amplitudes have to be corrected. This also gives
rise to an effective two-quark-two-gluon vertex which has no bare contribution (fig-
ure 3.21). Then the calculation of the desired quantities can be performed using
the effective Green’s functions whenever all attached momenta are soft. The result
is a complete order in the perturbative expansion in the coupling and it is gauge

48



3.3. Energy Loss Models

independent (for amplitudes on the mass-shell).

The energy loss of energetic projectiles in a plasma is one of the important appli-
cations of the Braaten-Pisarski method. It should be noted that except for the energy
loss of heavy quarks there is always some ambiguity in the definition of the energy
loss, because the scattering can produce energetic recoils that can contribute to the
jet or take over the role of the projectile.

There are several ways to access the problem of collisional energy loss. In classical
field theory the energy loss of a colour charge in a medium due to small momentum
transfer scattering can be understood in the following way: The current induces a
chromoelectric field in the medium which reacts back on the charge via the Lorentz
force and causes its energy loss. The energy loss is then determined by the dielectric
functions of the medium. For a quark one gets [2]

dE

dx
= −CFg

2

v

∫

d3k

(2π)3

{ω

k2

[

Im ǫ−1L (K) + (v2k2 − ω2)Im (ω2ǫT(K) − k2)−1
]}

(3.57)

With the help of equation (3.53) and inserting the HTL expression for the gluon self
energy (equation (3.51)) one arrives at a lengthy but infra-red finite expression for
the energy loss.

Im ǫ−1L (K) = −
3πm2g

2
ωk







[

k2 + 3m2g −
3m2g

2

ω

k
ln

(

k+ ω

k− ω

)

]2

+

[

3πm2g

2

ω

k

]2






−1

(3.58)

Im (ω2ǫT(K) − k2)−1 = −
3πm2g

4

ω(k2 − ω2)

k3






[

k2 − ω2 +
3m2g

2

ω2

k2

(

1+
k2 − ω2

2ωk
ln

(
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]2

+

[

3πm2g

4

ω(k2 − ω2)

k3

]2






−1

, (3.59)

where v is the quark velocity. The integral in equation (3.57) can only be evaluated
analytically in the leading logarithm approximation, which means that on the right
hand side of the Dyson-Schwinger equation for the effective propagator only free
propagators are entered and which amounts to setting mg = 0 in the denominator
of equation (3.58). Then the integral has to be cut off at an infra-red scale, for which
the Debye momentum kD =

√
3mg is chosen in [2]. The energy loss is then given by

dE

dx
=
4π

3
CFα

2
sT
2 ln

(

kmax
kD

)

1

v2

[

v+
v2 − 1
2
ln

(

1+ v

1− v

)]

(3.60)

The deviation from the full expression is roughly 10%.
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���
Figure 3.22.: Lowest order contributions to the imaginary part of the self energy of

a heavy and/or energetic quark in naive (left and middle) and effective
(right) perturbation theory.

This calculation only takes soft momentum transfers into account. The contribu-
tion from hard momentum transfers can be calculated using bare Green’s functions
and added to the soft part using the Braaten-Yuan prescription [141] . In this ap-
proach the soft and hard regime are separated by an arbitrary scale q∗ satisfying
gT ≪ q∗ ≪ T. The contribution from soft momentum transfers q < q∗ can be calcu-
lated using the Braaten-Pisarski method and the hard part for q > q∗ can be obtained
from ordinary perturbation theory with bare Green’s functions. Both contribution
depend logarithmically on q∗ such that the sum is independent of q∗.
The energy loss computation in this framework has been extended in [5, 7] to
include finite size effects.

The quantum field theoretical definition of the energy loss is in terms of the inter-
action rate Γ

−dE
dx

=
1

v

∫

dE′ (E− E′)dΓ(E, E′)
dE′

, (3.61)

where E and E′ are the energies of the incoming and outgoing projectile in the
medium rest frame, respectively. The interaction rate can be written analogously to
the zero-temperature case as

Γ(E) = ∑
i

1

2E

∫

d3p′

(2π)32E′

∫

d3k

(2π)32ω
ni(k)

∫

d3k′

(2π)32ω′
[

1± ni(k′)
]

× (2π)4δ(P+ K− P′ − K′)d〈|Mi|2〉 . (3.62)

P = (E,~p) (P′) is the incoming (outgoing) projectile momentum and K and K′ belong
to the scattering centre from the medium. ni(k) is the Bose-Einstein or Fermi-Dirac
distribution of scattering centres and [1± ni(k′)] accounts for corresponding Bose
enhancement or Pauli blocking of the scattered particle.Mi are the matrix elements,
i runs over all possible scattering processes and d is a degeneracy factor. The com-
putation of the hard momentum transfer contribution by Bjorken presented at the
beginning of this section is also of this type. If one wants to include also the soft con-
tribution it is advantageous to relate the interaction rate via cutting rules [142, 143]
to the self energy. In the case of quarks this leads to

Γ(E) = − 1
2E

(1− nF(E))tr
[

(Pµγµ +M)ImΣ(E+ iǫ,~p)
]

(3.63)
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with the quark mass M. The self energy takes a simple form when the quark is either
heavy (m≫ T) or has a high energy. The leading order contributions for this case are
given in figure 3.22. Again, for the hard momentum transfer it is sufficient to perform
the calculations in naive perturbation theory. Cutting the internal quark lines in
left diagram in figure 3.22 shows the equivalence to t-channel scattering of the fast
quark from a quark in the plasma. For the soft momentum transfer contribution the
effective quark self energy has to be computed. For the fast and/or heavy quark the
leading order contribution is given by the right digram in figure 3.22 which contains
the effective gluon propagator D∗

µν but bare vertices and quark propagator. The
effective self energy is then given by [144]

Σ∗(P) = iCFg
2
∫

d4Q

(2π)4
D∗

µν(Q)γµS(P′)γν , (3.64)

where Q is the gluon momentum and P′ the internal quark momentum. In the
general case one would have to include the effective vertices and quark propagator
as well. Inserting equation (3.56) finally leads to
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∣
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(
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(3.65)

with

Ql(x) =
1

π

[

− ln
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and Qt(x) =
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π

[
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1− x2
]

(3.66)

The integration over x can only be done numerically.
For the computation of the hard contribution from scattering matrix elements ap-
proximations have to be made. In [144] the cases E ≪ M2/T and E ≫ M2/T for a
heavy quark are treated. In the former case the total energy loss (soft and hard) is of
the form

−dE
dx

=
8πα2sT

2

3

(

1+
nf
6

)

[

1
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− 1− v

2

2v2
ln
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ln
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ET

mgM

)

,

(3.67)
where B is a smooth function of the heavy quark’s velocity. In the high energy limit
the energy loss becomes

−dE
dx

=
8πα2sT

2

3

(

1+
nf
6

)

ln

(

2nf/2(6+nf)0.920

√
ET

mg
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. (3.68)
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�
Figure 3.23.: Quark-quark scattering with effective gluon propagator in the t-

channel.

Then both expressions are extrapolated into the intermediate energy region and at
the point where both become equal one has to switch from one to the other.
For a fast light quark the soft contribution is again given by equation (3.65) with
v = 1. For the hard contribution a second separation scale q̃ is introduced in [137]
to separate the hard form the ultra-hard collisions. In the latter u- and s-channel
exchanges become singular, which corresponds to a transfer of essentially all the
projectile energy to the scattering centre. This regime is therefore excluded from the
energy loss calculations, but then the energy loss depends logarithmically on q̃. The
medium hard regime for light quarks corresponds to the high energy limit for heavy
quarks.

−dE
dx

=
8πα2sT

2

3

(

1+
nf
6

)

ln

(

2nf/2(6+nf)0.920

√

q̃T

mg

)

(3.69)

The calculation of the hard momentum transfer part has been improved in [7, 138]
beyond logarithmic accuracy.
An alternative approach is the computation of the energy loss from equation (3.62)
using effective propagators for the exchanged particles in the matrix elements as
shown in figure 3.23 for quark-quark scattering in the t-channel. This prescription
was shown to yield the same result as the ansatz using the self energy for the energy
loss of a muon in a QED plasma [144] and in [4] a complete calculation of the soft
and hard contribution to the energy loss of an energetic quark in a finite size QGP
was given. In this case the result was obtained numerically.

Most of the calculations of collisional energy loss lead to a mean energy loss of
the order −dE/dx ≃ 0.2GeV/fm for a 10GeV quark at temperatures in the range
T = 200− 250MeV [2–6, 137]. In [7] the authors report a somewhat higher value
(−dE/dx ≃ 0.6GeV/fm) and an even larger energy loss is found in [138], but in this
calculation also energy transfers of the order of the projectile energy are counted as
energy loss.

3.3.2. Radiative Energy Loss

The scattering of a projectile parton in a medium induces gluon radiation4. For the
phenomenology of bremsstrahlung induced by multiple scattering in QCD the ana-
logue of the Landau-Pomeranchuk-Migdal (LPM) effect in QED [147,148] was found

4For a review see [145,146].
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to be of great importance. The decoherence due to rescattering of the projectile-gluon
state on the scale of the gluon formation time suppresses gluon radiation and leads
to an effective 1/

√
ω gluon spectrum instead of the 1/ω bremsstrahlung spectrum

induced by a single scattering (ω is the gluon energy). This can be illustrated by a
heuristic discussion of the propagation of an energetic projectile through a medium
of length L in the multiple soft scattering limit [146]. It is assumed that the mean
free path is much larger than the range of the static screened scattering potentials.
The radiated gluon decoheres from the projectile when it has accumulated a relative
phase larger than unity. The phase difference built up by multiple scattering is given
by

ϕ =

〈

k2⊥
2ω

∆z

〉

≃ q̂L
2

2ω
=

ωc
ω
, (3.70)

where the transport coefficient q̂ is the average transverse momentum squared that
the medium transfers to the gluon per mean free path

q̂ ≃ ρ
∫

d2q⊥ q
2
⊥
dσ

d2q⊥
(3.71)

and ωc is the characteristic gluon energy

ωc =
1

2
q̂L2 . (3.72)

The requirement ϕ > 1 implies that only gluons with energies below the character-
istic energy can be radiated. The coherence time of the gluon is given by

tcoh ≃
2ω

k2⊥
≃ 2ω

q̂tcoh
⇒ tcoh ≃

√

2ω

q̂
(3.73)

and determines the number Ncoh = tcoh/λ of scattering centres acting coherently to
build up the gluon phase. The gluon energy spectrum per unit path length can be
estimated as

ω
d2 I

dωdz
≃ 1

Ncoh
ω
d2 I(1)

dωdz
∝ αs

√

q̂

ω
, (3.74)

which has the 1/
√

ω dependence characteristic for LPM suppression. The gluon
spectrum induced by a single scattering is d2 I(1)/dωdz ∝ αs/ω. The radiative energy
loss is obtained by integrating the gluon spectrum

∆E =

L
∫

0

dz

ωc
∫

0

dω ω
d2 I

dωdz
∝ αsq̂L

2 (3.75)

and has the characteristic quadratic dependence on the path length inside the medium.
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Figure 3.24.: Radiation amplitude induced by a single scattering; A, A′, B, B′, a and
b denote the colour indices, figure from [149].

BDMPS model

The BDMPS model [11, 149] for radiative energy loss also works in the multiple soft
scattering limit. It uses the Gyulassy-Wang (GW) model [10] for the medium, which
regards the medium as a collection of static scattering centres at locations ~xi with a
screened Coulomb potential

Vi(~x) =
g

4π

e−µD|~x−~xi |

|~x−~xi|
Ṽi(~q) =

g

q2 + µ2D
e−i~q·~x , (3.76)

where µD is the Debye screening mass, ~q is the momentum transfer and Ṽ(~q) is the
Fourier transform of the scattering potential. It is assumed that the range µ−1

D of
the potential is much smaller than the distance λ between the scattering centres, so
that successive scatterings are independent and radiation associated with scattering
off two or more scattering centres can be neglected. In this scenario the collisional
energy loss vanishes, because a static scattering centre does not recoil against the
projectile.
The BDMPS model works in the high energy limit, in which the projectile (in this
case a quark) energy E is much larger than the energy ω of the radiated gluons. In
this limit the longitudinal momentum transfer in the scattering vanishes. The gluon
spectrum induced by a single scattering (figure 3.24) is given by

ω
d3 I(1)

dωd2~k⊥
=

αs
π2

〈|~Jeff(~k⊥,~q⊥)|2〉
CFNc

(3.77)

with the emission current

~J(~k⊥,~q⊥) =
~k⊥
k2⊥

−
~k⊥ −~q⊥

(~k⊥ −~q⊥)2
and ~Jeff(~k⊥,~q⊥) = ~J(~k⊥,~q⊥)[Ta, Tb]BB′ . (3.78)

The Ta are the generators of the fundamental representation of SU(Nc), the colour
labels are indicated in figure 3.24. The emission current has to be averaged over
momentum transfers

〈|~Jeff(~k⊥,~q⊥)|2〉 ≡
∫

d2~q⊥
µ2D

π(q2⊥ + µ2D)2
|~Jeff(~k⊥,~q⊥)|2 . (3.79)

54



3.3. Energy Loss Models

The radiation amplitude for multiple scattering can be calculated in time-ordered
perturbation theory and reads

Mrad ∝
N

∑
i=1

2N−i

∑
r=1

~Jeff(~kir ,~qi)e
iϕir . (3.80)

The first sum runs over the scattering centres and the second over the 2N−i possi-
bilities (labelled by ir) for the quark-gluon system, where the gluon radiation was
induced by scattering centre i, to rescatter. Finally, the radiation spectrum induced
by N scatterings can be written as

ω
dI(N)

dω
=

αs
2π

∫

d2~k⊥

〈

N

∑
i=1

N

∑
j=1

~Jieff · J
j†
eff

NcCNF
ei(ϕi−ϕj)

〉

. (3.81)

For a qualitative understanding of the induced radiation spectrum it is instructive
to approximate the spectrum ignoring logarithmic factors and numerical factors of
order unity, which leads to

ω
d2 I

dωdz
≃




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



αs
λ ω < ωBH
αs
λ

√

λµ2D
ω ωBH < ω < ωfact

αs
L ωfact < ω

. (3.82)

In the soft regime ω < ωBH ≃ λµ2D the radiation is due to incoherent scattering
from the individual scattering centres (Bethe-Heitler regime). In the intermediate
regime the scattering becomes coherent and the LPM effect becomes important. Fi-
nally, at the highest gluon energies, the whole medium acts coherently as one effec-
tive scattering centre giving rise to the so-called factorisation contribution, which is
medium-independent. To logarithmic accuracy the total energy loss becomes

−∆E =
αsCR
8

µ2D
λ2g
L2 ln

(

L

λg

)

, (3.83)

where CR is the squared (projectile) colour charge and λg is the gluon mean free
path.

GLV model

In the GLV approach [14, 150, 151] the gluon spectrum is constructed by recursive
summation of the radiative gluon distribution. Diagrams are classified according
to their order in opacity χ = 〈n〉 = L/λ, which gives the number of interactions
in the medium. The zeroth order in opacity is the vacuum contribution, the first
corresponds to one interaction with the medium and so on. The GLV model is also
built on the GW model for the medium. The inclusive gluon distribution Pn in
the case of n interactions is written is terms of the amplitude Ai1 ...in describing the
propagation of the projectile-gluon system that experienced n scatterings

Pn(x,~k) = Āi1 ...in(x,~k, c)Ai1 ...in(x,~k, c) , (3.84)
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(b)(a)

Figure 3.25.: Amplitudes defining the direct (a) and virtual (b) part of the reaction
operator.

where x is the energy fraction carried by the gluon,~k its transverse momentum and
c is the colour matrix. The gluon distribution Pn can be constructed recursively from
lower opacity classes

Pn = Āi1 ...in−1 R̂nAi1 ...in−1 with R̂n = D̂†nD̂n + V̂n + V̂†n , (3.85)

where R̂n is the GLV reaction operator generating a scattering from scattering centre
n. The ‘direct’ and ‘virtual’ amplitudes defining D̂n and V̂n, respectively, are given
in figure 3.25. The recursion relation can be solved leading to

Pn(~k) = −2CRCnARe
n

∑
i=1

{

n

∏
j=i+1

(

ei(~qj·
~̂b) − 1

)

}

⊗ ~Bie
i~qi ·~̂be−iω0zi

×
{

i−1
∏
m=1

(

ei(ω0−ωm)zmei(~qm·
~̂b) − 1

)

}

⊗ ~H
(

eiω0z1 − eiω0z0
)

, (3.86)

where ~̂b = i∇~k
is the transverse momentum shift operator, zi are the positions of the

scattering centres, ωi the gluon energy after the scattering i, ~H =~k/k2 and ~Bi is the
Gunion-Bertsch amplitude for the radiation of a gluon in scattering i

~Bi =
~k

k2
−

~k−~qi

(~k−~qi)2
. (3.87)

Finally, the induced gluon number distribution valid to all orders in opacity can be
constructed, which is a very general but complicated expression. It turns out that
the first order in opacity gives the dominant contribution. The first order radiation
intensity is given by

dI(1)

dx
=
CRαs

π

(

1− x+
x2

2

)

E
L

λg

γ(π + 2γ lnγ)

1+ γ2
γ =

Lµ2D
4xE

, (3.88)

which in the limit γ ≪ 1 becomes
dI(1)

dx
≈ CRαs
4x

(

1− x+
x2

2

)

L2µ2D
λg
. (3.89)
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The resulting average energy loss is

−∆E(1) =
CRαs
4

L2µ2D
λg
ln

(

E

µD

)

. (3.90)

ASW model

An alternative approach is the path integral formulation [13, 152–155], which con-
tains the multiple soft and single hard scattering picture (or first order in opacity)
as limiting cases. The projectile can be viewed as a superposition of Fock states.
The quark wave function, for instance, is the bare quark state accompanied by a
Weizsäcker-Williams field f (~x) of coherent gluons

ψα
in = |α〉 +

∫

d~x f (~x)Tbαβ|β; b(~x)〉 f (~x) ∝ g
~x

x2
. (3.91)

In the eikonal approximation the transverse positions ~x of the projectile components
do not change during the propagation through the medium. The interactions with
the medium only lead to an eikonal phase acquired by the projectile, which is differ-
ent for the quark and gluon component and thus decoheres the incoming state. The
outgoing wave function becomes

ψα
out =W

F
αγ(~0)|γ〉+

∫

d~x f (~x)TbαβW
F
βγ(~0)WAbγ(~x)|γ; c(~x)〉 , (3.92)

whereWF andWA are the Wilson lines along the projectile trajectories in the funda-
mental and adjoint representation, respectively,

W(~x) = P exp
(

i
∫

dz− TaA+
a (~x, z−)

)

(3.93)

with the generator Ta in the corresponding representation. The projectile is chosen
to propagate in negative z direction and A+ is the target gauge field. As a conse-
quence of the decoherence of the projectile wave function the outgoing wave function
contains real radiated gluons. This component can be isolated by projecting out the
component of the outgoing wave function that is orthogonal to the incoming one

|δψα〉 = |ψα
out〉 − ∑

γ

|ψin(γ)〉〈ψin(γ)|ψout〉 , (3.94)

where γ runs over the quark colour index. The number spectrum of radiated gluons
is given by the expectation value of the number operator in the state |δψα〉

Ng(~k) =
1

N ∑
α

〈δψα|a†(~k)a(~k)|δψα〉 . (3.95)

This expression contains averages of products of Wilson lines over the target gluon
fields which require a specific model of the medium. A collection of static scattering
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centres with scattering potentials a+(~q), for instance, is characterised by the dipole
cross section

σ(~x−~y) = 2
∫

d2~q

(2π)2
|a+(~q)|2

(

1− ei~q·(~x−~y)
)

. (3.96)

The gluon number spectrum can be investigated in the two limiting cases (multiple
soft and single hard scattering), in which it takes a simple form. In both cases it is
proportional to the integral over the Gunion-Bertsch cross section for gluon radiation
in quark scattering. But while in the single hard scattering scenario the momentum
transfer comes from a single scattering potential it is in the multiple soft scattering
limit the entire medium that acts coherently as one effective scattering potential with
Gaussian momentum transfer. This is so because in the eikonal approximation the
momentum transfer from the medium to the projectile is small.

For the more general case where only parts of the medium act coherently and also
incoherent scatterings occur one has to go beyond the eikonal approximation and
allow for a transverse motion of the projectile. The Wilson line is then not along a
straight path any more and the motion of the projectile is described by a Green’s
function taking the scattering into account. Finally, the induced gluon radiation
spectrum is found to be

ω
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dω
=

αsCR
(2π)2ω2
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∞
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− 12
∞
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∂
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∂
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∫
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

i

ȳl
∫

yl

dξ
ω

2

[

~̇r2 − n(ξ)σ(~r)

iω

]



 . (3.97)

Here,~k⊥ is the transverse momentum of the radiated gluon, which can be restricted
by the integration limit χω so that the transverse momentum cannot be larger than
the energy and finite cone sizes can be implemented. The transverse coordinates are
~u, ~y and ~r and yl and ȳl are the longitudinal gluon emission points. The medium
properties enter through the longitudinal density n and the dipole cross section.

In the multiple soft scattering limit the dipole cross section can be approximated
by the first term in the Taylor expansion leading to

n(ξ)σ(~r) ≃ 1
2
q̂(ξ)r2 , (3.98)

where the medium is characterised by the transport coefficient. In the limit of a large
medium in the sense that L≫ λ the BDMPS result is recovered

ω
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π
ln
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√

ωc
2ω

− sin2
√

ωc
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)

≃ 2αsCR
π

{
√

ωc
2ω ω < ωc

1
12

(

ωc
ω

)2
ω > ωc

.

(3.99)
It shows the characteristic 1/

√
ω dependence and the suppression of radiation with

energies larger than the characteristic energy.
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The opacity expansion is obtained by expanding the path integral in equation (3.97)
in powers of the dipole cross section. In the limit of large L the gluon spectrum in
first order in opacity

ω
dI(1)

dω
=
2αsCR

π

L

λ
γ

∞
∫

0

dr
1

r+ γ

r− sin r
r2

≃ 2αsCR
π

L

λ

{

ln
(

ω̄c
ω

)

ω < ω̄c
π
4

ω̄c
ω ω > ω̄c

(3.100)

with

ω̄c =
1

2
µ2DL and γ =

ω̄c
ω

(3.101)

coincides with the findings in the GLV model. For large gluon energies the 1/ω
dependence is recovered, while there is a suppression of small energies. The gluon
spectrum is qualitatively similar in both limiting cases.

From Induced Radiation to Hadron Suppression

The relevant quantity for the energy loss is the quenching weight [27], which is
the probability P(∆E) that a certain amount of energy ∆E is carried by radiated glu-
ons. Assuming subsequent emissions to be independent of each other the quenching
weight is the normalised sum of the probabilities for radiating an arbitrary number
n of gluons with total energy ∆E

P(∆E) =
∞

∑
n=0

1

n!

[

n

∏
i=1

∫

dωi
dI(ωi)

dω

]

δ

(

∆E−
n

∑
i=1

ωi

)

exp

(

−
∫

dω
dI

dω

)

. (3.102)

It has a discrete part, which arises from the fact that for finite path lengths there is
a finite probability for no medium induced radiation, and a continuous part, which
contains the extra radiation.
In order to make contact with experimental data one has to calculate the effect of
energy loss on hadronic p⊥ spectra. This can, for instance, be done by calculating the
effect of energy loss on the fragmentation functions. This leads to medium modified
fragmentation functions of the form [156,157]

D
h (med)
k (x,Q2) =

1
∫

0

dǫ P(ǫ)
1

1− ǫ
Dhk

(

x

1− ǫ
,Q2

)

, (3.103)

where P(ǫ) is the probability for losing a fraction ǫ = ∆E/Ek of the incoming energy.
In this ansatz the contribution from the fragmentation of radiated gluons is neglected
because it is assumed to be soft.

Higher twist model

Additional gluon radiation can also arise from higher twist matrix elements. They
are suppressed by powers of the hard scale but there is a class of diagrams that are
enhanced in an extended medium. For jet production the leading twist (in this case
twist-two) process is the well-known tree level process, the next terms in the twist
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Figure 3.26.: Double scattering diagrams contributing to the final result. Figure
from [151].

expansion are twist-four processes. In the case of pure final state interactions there
are two important contributions: The fast parton is on-shell after the hard interaction
and exchanges a soft gluon with the target or it exchanges a hard gluon and radiates
a gluon to get back on the mass-shell. These processes are obviously enhanced by
the path length in the target [145].
The higher twist approach [15, 151, 158, 159] can be applied to energy loss in cold
nuclei as well as in a QGP. The former is best studied in the semi-inclusive hadron
production process e(L1) + A(p) → e(L2) + h(lh) +X in deeply inelastic scattering of
electrons off nuclei. The factorisation theorem allows one to write the cross section
for this process in the form

EL2Elh
d6σh

d3L2 d3lh
=

α2

2πs

1

Q4
LµνElh

dWµν

d2lh
, (3.104)

where Lµν = 1/2tr(γ · L1γµγ · L2γν) is the leptonic tensor and the semi-inclusive
hadronic tensor can to lowest order for a single γ∗ + q scattering be written as

dWSµν

dzh
= ∑

q

e2q

∫

dx f Aq (x,Q2)H
(0)
µν (x, p, q)Dhq(zh,Q

2) . (3.105)

Here, H
(0)
µν (x, p, q) is the leading order matrix element, p is the nucleon momentum,

q = L2− L1 is the momentum transfer. and f Aq the quark distribution in the nucleus.
The twist-four contribution accounting for double scattering including the four
surviving diagrams shown in figure 3.26 is given by

dW
D,q
µν

dzh
= ∑

q

∫

dx H
(0)
µν (x, p, q)

1
∫

zh

dz

z
Dhq

( zh
z

) αs
2π

1+ z2

1− z
∫

dl2⊥
l4⊥

2παs
Nc
TAqg(x, xL)

(3.106)
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It contains hard-soft and hard-hard processes and the interference between both,
which gives rise to the LPM suppression. The twist-four matrix element can be
approximated by

TAqg(x, xL) =
C

xA

(

1− exp
(

− x
2
L

x2A

))

×

×
[

f Aq (x+ xL)xT f
N
g (xT) + f Aq (x)(xL + xT) f

N
g (xL + xT)

]

(3.107)

with

xL =
l2⊥

2p+q−z(1− z) and xA =
1

MNRA
, (3.108)

where MN is the nucleon mass and RA the nuclear radius. Equation (3.106) can also
be written in terms of modified fragmentation functions

dW
D,q
µν

dzh
= ∑

q

∫

dx f Aq (x,Q2)H
(0)
µν (x, p, q)D

h(med)
q (zh,Q

2) . (3.109)

In principle, also the parton density should be replaced by a twist-four parton den-
sity including the effect of double scattering in the initial state. The modified frag-
mentation function satisfies a DGLAP-like evolution equation with modified split-
ting functions.

P
(med)
qq (z, x, xL, l

2
⊥) = Pqq(z) + ∆Pqq(z, x, xL, l

2
⊥)

∆Pqq(z, x, xL, l
2
⊥) =

2παsCA
l2⊥Nc f

A
q (x,Q2)

(

1+ z2

(1− z)+
TAqg(x, xL) + δ(1− z)∆TAqg(x,Q

2)

)

(3.110)

The solution can be written as

D
h (med)
q (zh,Q

2) = Dhq(zh,Q
2) +

Q2
∫

0

dl2⊥
l2⊥

αs
2π

1
∫

zh

dz

z

[

∆PqqD
h
q(zh/z,Q

2)

+ ∆PgqD
h
g(zh/z,Q

2)
]

(3.111)

The gluon fragmentation function can be derived analogously.

In a QGP undergoing longitudinal Bjorken expansion the twist-four matrix ele-
ment is estimated as

αsT
A
qg(x, xT)

f Aq (x)
∼ µ2D

∫

dy σgρ(y)

[

1− cos
(

y

τf

)]

with
ρ(y)

ρ0
=

τ0
τ

θ(RA − y) ,

(3.112)
where τf = 2Ez(1− z)/l2⊥ is the gluon formation time. The energy loss is given by
the energy carried by the radiated gluon and coincides with the result obtained in
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the opacity expansion.

〈∆zg〉(x,Q2) =
CAα2s
Nc

Q2
∫

0

dl2⊥
l4⊥

1
∫

0

dz
[

1+ (1− z)2
] TAqg(x, xL)

f Aq (x,Q2)

=
CAαs

π

1
∫

0

dz

Q2/µ2D
∫

0

du
1+ (1− z)2
u(1− u)

×
RA
∫

τ0

dτ σgρ(τ)

[

1− cos
(

(τ − τ0)uµ2D
2Ez(1− z)

)]

(3.113)

Assuming σg = CR2πα2s/µ2D and keeping only the dominant contribution one obtains
for the mean energy loss

−dE
dx

≈ πCRCAα3s
RA

RA
∫

τ0

dτ ρ(τ)(τ − τ0) ln

(

2E

τµ2D

)

(3.114)

Due to the expansion, which suppresses the energy loss, the energy loss does in this
case not depend quadratically on the path length. In cold nuclear matter, which is
static, the energy loss in found to depend quadratically on the size of the nucleus.

AMY model

In the AMY formalism [160–163], which is a thermal field theory approach to radia-
tive energy loss, the transition rates for the 1 → 2 processes are obtained from the
imaginary part of the HTL-resummed self energy.

d2Γ

dk dt
=

g2

16πp7
1

e−k/T ± 1
1

e−(p−k)/T ± 1 g(x)
∫

d2~h

(2π)2
2~h · Re~F(~h, p, k) (3.115)

with

g(x) =















4
3
1+(1−x)2
x3(1−x)2 q→ qg
nf
4
3
x2+(1−x)2
x2(1−x)2 g→ qq̄

3 1+x
4+(1−x)4
x3(1−x)3 g→ gg

(3.116)

and where p and k are the incoming projectile’s and the radiated parton’s momen-
tum, respectively, and x = k/p. The transverse momentum of the radiated parton
~h ≡ ~p×~k is assumed to be small. (e−k/T ± 1)−1 are the appropriate Bose enhance-
ment or Pauli blocking factors for the final state particles. ~F(~h, p, k) is the solution
of

2~h = iδE(~h, p, k)~F(~h) + g2
∫

d2~q⊥
(2π)2

C(~q⊥)

{(

Cs −
CA
2

)

[

~F(~h) − ~F(~h− k~q⊥)
]

+
CA
2

[

~F(~h) − ~F(~h+ p~q⊥)
]

+
CA
2

[

~F(~h) − ~F(~h− (p− k)~q⊥)
]

}

, (3.117)
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which describes the evolution of the states |p〉 and |p− k, k〉 due to elastic scattering
and their energy difference δE

δE =
h2

2pk(p− k) +
m2k
2k

+
m2p−k
2(p− k) −

m2p

2p
and C(~q⊥) =

µ2D
q2⊥(q2⊥ + µ2D)

. (3.118)

The transition rates enter the Fokker-Planck equation describing the evolution of the
gluon and quark plus antiquark distributions as they propagate through the medium

dPqq̄(p)

dt
=

∞
∫

−∞

dk Pqq̄(p+ k)
d2Γ

q
qg(p+ k, k)

dk dt
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d2Γ
q
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dk dt

+ 2Pg(p+ k)
d2Γ

g
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dk dt

dPg(p)
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=

∞
∫

−∞

dk Pqq̄(p+ k)
d2Γ

q
qg(p+ k, k)

dk dt
+ Pg(p+ k)

d2Γ
g
gg(p+ k, k)

dk dt

− Pg(p+ k)

(

d2Γ
g
qq̄(p, k)

dk dt
+
d2Γ

g
gg(p, k)

dk dt
Θ(2k− p)

)

.

(3.119)

The initial condition at t = 0 can be a single quark or gluon or a distribution obtained
from a hard matrix element.
From the parton distributions modified fragmentation functions can be constructed

D
h (med)
k (zh,Q

2;~r,~n) =
∫

dpf
z′

zh

{

Pqq̄/k(pf; pi)D
h
q(z

′,Q2) + Pg/k(pf; pi)D
h
g(z

′,Q2)
}

,

(3.120)
where z = ph/pi and z

′ = ph/pf. Pa/k(pf; pi) are solutions of equation (3.119), i.e.
they are the probability that a parton k with momentum pi evolves into a parton a
with momentum pf. They depend on the production point~r and the direction ~n of
motion of the initial parton. The fragmentation function thus has to be convolved
with the distribution of production points and directions.

All the different approaches to radiative energy loss describe the nuclear modi-
fication factor measured at Rhic equally well. However, the transport coefficients
needed are different reaching from 2GeV2/fm to 10GeV2/fm [164, 165]. These val-
ues are larger than what can be expected from perturbative QCD indicating that the
coupling may be large in the Rhic regime. In order to discriminate between the dif-
ferent models one has to go beyond leading particle distributions to more differential
observables.

3.3.3. Monte Carlo Models

HIJING

The Hijing Monte Carlo generator [166] simulates multiple jet and minijet produc-
tion in p+p, p+A and A+A collisions. For nuclear collisions modifications of the
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parton densities and initial and final state interactions are included. A string frag-
mentation model is used for hadronisation. The hard jets lose energy in the produced
medium via induced radiation of gluons. The mean energy loss is estimated as

−dE
dx

≈ 3αs
π

µ2DL
(

E

λµ2D
,
s

4µ2D

)

(3.121)

with

L(x, y) = ln x

(

ln x− 1+
1

x

)

+ ln y

(

1− x
y

)

and s ≈ 6ET . (3.122)

The gluon emission points are chosen according to

dP

dl
=
1

λ
e−

l
λ (3.123)

and a collinear splitting is performed with

∆E(l) = l
dE

dx
. (3.124)

This changes the colour topology and leads to a different string configuration result-
ing in jet quenching in the hadronic stage.

PYQUEN

In Pyquen [167] the jets including the hard matrix elements and the perturbative
parton shower evolution are produced by Pythia. The jet production points are
distributed according to the distribution of binary collisions in a nucleus-nucleus
collision. The longitudinal and transverse expansion of the medium is taken into
account. The scattering cross section defining the collisional energy loss is taken as

dσ

dt
= CR

2πα2s(|t|)
t2

E2

E2 −m2 (3.125)

with one-loop running coupling. This cross section also determines the mean free
path, which enters in the transport coefficient.

q̂ =
µ2D
λ

with µ2D = 4παsT
2
(

1+
nf
6

)

(3.126)

The energy of radiated gluons is determined by the BDMPS gluon spectrum

dI

dω
=
2αs(µ2D)λCR

πLω

(

1− x+
x2

2

)

ln | cos(ω1τ1)| (3.127)

ω1 =

√

i

(

1− x+
CR
3
x2
)

κ̄ ln
16

κ̄
with κ̄ =

µ2Dλ

ω(1− x) . (3.128)

τ is the proper time.
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The simulation procedure is to first determine the position of the next scattering i
according to

dP

dli
=

1

λ(τi+1)
exp



−
li
∫

0

ds
1

λ(τi + s)



 . (3.129)

Then the collisional and radiative energy loss is determined

∆Ei = ∆Ecolli + ∆Eradi =
ti
2m0

+ ωi (3.130)

with m0 = 3T, ti and ωi are determined by equation (3.125) and equation (3.127),
respectively. The transverse momentum kick received by the projectile is calculated
and the radiated gluon is added to the event. The procedure is repeated until the
projectile leaves the medium, the temperature drops below the critical temperature
or the projectile energy is reduced to the thermal energy. Finally, the event is hadro-
nised using the Pythia routine.

PQM

The Parton Quenching Model Pqm [168] is a Monte Carlo implementation of the
BDMPS quenching weights [27] (equation (3.102)). It is based on the factorised ansatz

d2σ

dp⊥ dy

∣

∣

∣

∣

y=0

= ∑
a,b,j=q,q̄,g

∫

dxa dxb d∆Ej dzj fa(xa) fb(xb)
d2σ̂ab→jX

dpin⊥,j dyj

∣

∣

∣

∣

∣

y=0

δ(pin⊥,j − (p⊥,j + ∆Ej))P(∆Ej;Rj,ωc,j)
Dhj (zj)

z2j
(3.131)

The initial parton p⊥-distribution is generated from LOmatrix elements using Pythia.
Then the energy loss ∆E is determined from the probability distribution P(∆E;R,ωc),
the information about the path length and the medium density along the path is en-
coded in the parameters R and ωc. The geometry is obtained from a Glauber model
and expansion of the medium is taken into account. The radiated energy ∆E is
subtracted from the initial p⊥ and finally the partons are hadronised independently
using KKP fragmentation functions.

Modified parton showers

There are also two attempts to include induced gluon radiation in the parton shower
evolution. In [169] it is assumed that the interactions with the medium increase the
virtuality of fast partons and thus lead to enhanced splitting. A standard parton
shower based on the Sudakov form factor is simulated. The lifetime of a state b
produced with virtuality Q2b in the decay of a mother a is estimated as

τb =
Eb
Q2b

− Eb
Q2a
. (3.132)

65



3. Jet Quenching in Heavy Ion Collisions

During this time the virtuality change is given by

∆Q2b =

τ0b+τb
∫

τ0b

dζ q̂(ζ) , (3.133)

where τ0b is the production time of the parton b. The transport coefficient is assumed
to be

q̂(ζ) = K2ǫ3/4(ζ)(cosh ρ(ζ) − sinh ρ(ζ) cosψ) (3.134)

where the energy density ǫ, the local flow rapidity ρ and the angle ψ between the
flow and the fast parton’s direction of motion are obtained from a hydrodynamic cal-
culation. In the end the cascade is hadronised using the Lund string fragmentation
model.

In [28, 170] a medium modified splitting function including induced gluon radia-
tion is constructed

Pmed(z,Q2) = Pvac(z) + ∆P(z,Q2) with ∆P(x,Q2) =
2πQ2

αs

dImed

dzdQ2
. (3.135)

The medium induced gluon spectrum is constructed by dividing the gluon spectrum
obtained from equation (3.97) in the multiple soft scattering approximation in a vac-
uum and a medium induced part. The energy sharing z and Q2 are related to ω and
k⊥ via ω = (1− z)E and k2⊥ = z(1− z)Q2. The modified splitting function has al-
ready been used in DGLAP evolution equations and a Monte Carlo implementation
of a parton shower based on Pmed called Q-Pythia is available [170].
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CHAPTER 4

Medium­Modified Fragmentation Functions

In section 2.2.2 it was outlined how branching processes lead to the Q2 evolution
of the fragmentation functions. In a medium elastic an inelastic scattering will also
influence the jet evolution. In this section a way how elastic collisions can be included
in the DGLAP evolution equations is presented [9].

The formation of the parton shower does not happen instantaneously, but needs
a certain time. As discussed on page 87 (section 5.2) the lifetime of virtual states
during the parton shower evolution can be estimated as

τ = E

(

1

Q2f
− 1

Q2i

)

⇒ dτ =
E

Q2
dQ2

Q2
, (4.1)

although this choice is not unique. The time the shower needs to develop to a cut-
off scale Q0 ≃ 1GeV can then be estimated by the time a parton needs to reduce its
virtuality from the starting scale Qi ≃ E to Q0. For high parton energies E/Q2i ≃ 1/E
is negligible and the lifetime becomes E/Q20 ≃ E, which is of the order of a few fm.
The QGP formation times are estimated to be of the order 0.2 fm at Rhic and 0.1 fm
at Lhc and the lifetime of the plasma phase is found to be several fm [16, 171].
Consequently the shower evolution overlaps in time with the plasma phase and one
has to consider the effect that a dense and hot medium can have on the parton shower
evolution. In this section a study of a parton cascade, that includes scattering from
the medium as only modification to the well known QCD evolution in vacuum, is
presented.

The scattering of partons in a quark-gluon plasma can be taken into account by
modifying the DGLAP evolution equations accordingly. The hadronisation at the
infrared cut-off Q0 is assumed to be unchanged so that the standard fragmentation
functions, which describe the hadronisation at Q0, can be used as input. In this
way one can separate the effects coming from the medium-induced modifications
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of the parton shower from others like energy loss of on-shell partons and modified
hadronisation at Q0.

In analogy to the unregularised splitting function, which is the splitting probabil-
ity density, a scattering function K̂ can be defined such that the differential scattering
probability can be written as

dPa, scat(z, Ep,Q2) = K̂a(z, Ep,Q
2)dz

dQ2

Q2
(4.2)

The scattering function depends on the parton energy. In a DGLAP-like equation it
is not possible to keep track of the energy of the parton. But the total jet energy can
be set and the parton must have at least the hadron energy xEjet after a scattering
and xEjet/z before. This lower bound is used as estimate of the parton energy.

Written in terms of the unregularised splitting functions P̂ the medium modified
DGLAP equations for the fragmentation functions take the form

∂D(x, E,Q2)

∂(lnQ2)

=

1
∫
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]

D
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q (x,Q2) (4.3)
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q
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+ D
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+
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αs
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P̂gg(z) + K̂g

(
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D
h/j
g
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−
1
∫

0
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[ αs
2π
P̂gg(z) +

αs
2π
P̂qg(z) + K̂g(z, xEjet,Q

2)
]

D
h/j
g (x,Q2) . (4.4)

The scattering function depends on the medium properties and the scattering cross
section. For the medium a relativistic ideal gas of quarks and gluons is assumed,
for the kinematics the scattering centre is taken to be at rest. This is justified for
large jet energies at intermediate and large values of x where the gluon energy is
large compared to the temperature. For small x this is not necessarily the case, but
in this region the DGLAP equations without soft gluon resummation are not an
accurate description of the shower evolution anyway. For the scattering cross section
a simplified and regularised form of the perturbative scattering cross section is used.

dσab
d|t| = Cab

2πα2s(Q
2)

(|t| + µ2D)2
, (4.5)
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where µD is the Debye mass and Cab the colour factor (Cqq = 4/9, Cqg = Cgq = 1,
Cgg = 9/4). This cross section is well behaved down to |t| = 0 although it cannot
be expected that perturbation theory makes sense in the this regime. Still, it may be
useful to see what effects one gets from this cross section.
For sufficiently small scattering cross sections and densities the mean number
of scatterings equals the scattering probability. The probability for scattering per
virtuality interval and z interval is then

dPab, scat(z, Ep,Q2) = nb(T)
dσab
dz
dz
Ep

Q2
dQ2

Q2
= K̂ab(z, Ep,Q

2)
dQ2

Q2
dz , (4.6)

dPa, scat(z, Ep,Q2) = ∑
b

K̂ab(z, Ep,Q
2)
dQ2

Q2
dz = K̂a(z, Ep,Q

2)
dQ2

Q2
dz , (4.7)

where the density of an ideal relativistic gas is given by (section 3.1.2)

nq+q̄(T) = 12 nf d(3)
T3

π2
ng(T) = 16 ζ(3)

T3

π2
. (4.8)

For a static scattering centre with mass ms one finds

t = 2msEp(z− 1) , (4.9)

where Ep is the energy of the incoming fast parton and z is the energy fraction that
the scattered parton takes.
Putting everything together one finds

K̂a(z, Ep,Q
2) =

(16 ζ(3)Cag + 12 nf d(3)Caq)T
34msE

2
pα2s(Q

2)

Q2π(2msEp(1− z) + µ2D)2
. (4.10)

For the scale of αs several choices are conceivable. Results are shown for a one-loop
running coupling αs(Q2), since the parton is virtual, i. e. does not have a full gluon
cloud and should therefore interact with a smaller cross section. This scattering
function has no singularities, but it is convenient to define a ‘regularised’ scattering
function Ka in analogy to the regularised splitting function and write the modified
evolution equations in a more compact form

∂Dq(x, E,Q2)

∂(lnQ2)

=

1
∫

0

dz

z

{[ αs
2π
Pqq(z) + Kq

(

z,
x

z
Ejet,Q

2
)]

D
h/j
q

( x

z
,Q2

)

+
αs
2π
Pgq(z)D

h/j
g

( x

z
,Q2

)}

(4.11)

∂D
h/j
g (x,Q2)

∂(lnQ2)

=

1
∫

0

dz

z

{

αs
2π
Pqg(z) ∑

q

(

D
h/j
q

( x

z
,Q2

)

+ D
h/j
q̄

( x

z
,Q2

))

+
[

2
αs
2π
Pgg(z) + Kg

(

z,
x

z
Ejet,Q

2
)]

D
h/j
g

( x

z
,Q2

)}

. (4.12)
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Figure 4.1.: Test function used to check the numerical integration routine and rela-
tive deviation of the numerical result from the analytical solution (105

steps in t′-integration, 100 x-points, ǫ = 10−4 precision in Runge-Kutta
integration).

These equations can only be solved be numerically. For this purpose it is advan-
tageous to further reformulate them

Dq(x, E,Q
2)

= Dq(x, E,Q
2
0) +

Q2
∫

Q20

dQ′2

Q′2

1
∫

0

dz

z

{[ αs
2π
Pqq(z) + Kq

(

z,
x

z
Ejet,Q

′2
)]

D
h/j
q

( x

z
,Q′2

)

+
αs
2π
Pgq(z)D

h/j
g

( x

z
,Q′2

)}

(4.13)

= Dq(x, E,Q
2
0) +

t′
∫

t′0

dt′′
1
∫

0

dz

z

{[ αs
2π
Pqq(z) + Kq

(

z,
x

z
Ejet,Λ

2
QCDe

t′′
)]

D
h/j
q

( x

z
,Λ2QCDe

t′′
)

+
αs
2π
Pgq(z)D

h/j
g

( x

z
,Λ2QCDe

t′′
)}

with t′ = ln

(

Q2

Λ2QCD

)

(4.14)

= Dq(x, E,Q
2
0) + lim

n→∞

n

∑
i=1

∆t′i

1
∫

0

dz

z

{[ αs
2π
Pqq(z) + Kq

(

z,
x

z
Ejet,Λ

2
QCDe

t′i
)]

D
h/j
q

( x

z
,Λ2QCDe

t′i
)

+
αs
2π
Pgq(z)D

h/j
g

( x

z
,Λ2QCDe

t′i
)}

. (4.15)

The t′-integral is approximated by the left Riemann sum and the z-integration is
performed using a quality-controlled fourth order Runge - Kutta integration [172],
which is suited for strongly peaked integrants. Because of the appearance of the
function Dhi in the integral this methods cannot be used for the t

′-integration.

The routine is tested with a simple test function that can also be integrated ana-

70



g
s

10−10

10−8

10−6

10−4

10−2

100

102

104

0 0.2 0.4 0.6 0.8 1

D
π
±
i

(x
,Q
2 0
)

x

u, d

Q2 = (100GeV)2 medium
Q2 = (100GeV)2 vacuum

10−10

10−8

10−6

10−4

10−2

100

102

104

0 0.2 0.4 0.6 0.8 1

D
π
±
g

(x
,Q
2
)

x

Q2 = Q20
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fragmentation function at Q0 and evolved to Q

2 = (100GeV)2 in vacuum
and in a static medium with temperature T = 500MeV using Ejet = Q =
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lytically:

f (x,Q2) =

t
∫

t0

dt′
1
∫

0

dz

z

( x

z

)−3 (
Λ4QCDe

2t′ − Λ2QCDe
t′
)

= x−3
1

3

(

Q2

2
−Q2 − Q

2
0

2
+Q20

)

. (4.16)

In figure 4.1 the numerical result is compared to the analytical solution for Q20 =
2GeV2 and Q2 = 100GeV2. The agreement is satisfactory, but a large number of
steps in the t′-integration is needed. Here one has to make a compromise between
precision and run-time. The numerical result is systematically too small, since the
t′-integral is approximated by the left Riemann sum and the test function f increases
with t′.

In the case of the evolution equations for fragmentation functions into light hadrons
a set of seven coupled equations including the three light quark flavours u, d and s,
the corresponding antiquarks and the gluon has to be solved. If instead the fragmen-
tation function into a hadron and its antiparticle is studied the number of equations
reduces to four because the contribution from an antiquark is the same as that from
the corresponding quark. The charged pion fragmentation functions are shown here
as an example. This combination is also symmetric under exchange of u and d so
that effectively only three equations are left. The input distributions at Q0 are a KKP
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Figure 4.3.: Left: Relative change of the medium fragmentation functions at Q2 =
(100GeV)2 (T = 500MeV static) after doubling the number of steps in the
t′-integration from 1000 to 2000. Right: Relative change due to changing
the precision in the Runge-Kutta integration from 10−4 to 10−5.

parametrisation [173] at Q20 = 2GeV2:

Dπ±
u (x,Q20) = 0.448 x−1.48 (1− x)0.913 (4.17)

Dπ±
d (x,Q20) = 0.448 x−1.48 (1− x)0.913 (4.18)

Dπ±
s (x,Q20) = 16.6 x0.133 (1− x)5.90 (4.19)

Dπ±
g (x,Q20) = 3.73 x−0.742 (1− x)2.33 . (4.20)

The fragmentation functions at Q0 are shown in figure 4.2 (left). At large x u and d,
which are the valence quarks, and the gluon dominate over the contribution from s
quarks. In the right panel of figure 4.2 the gluon part is shown at Q0 and evolved
to Q2 = (100GeV)2. In vacuum, the evolution to higher Q2 depletes the high x
region and enhances the low x part since the energy is shared among more and
more partons. For the medium functions a constant temperature of T = 500MeV
was used. The Debye mass is µD = 1.97GeV taken from the parametrisation in [174]
and the mass of the scattering centre is taken as ms = µD/

√
2. The scale, up to

which the fragmentation function is evolved, is Q2 = E2jet, i.e. the maximum possible
virtuality of a parton with energy Ejet.

The results in figure 4.2 were obtained with 1000 steps in the t′-integration, a
precision of 10−4 in the Runge-Kutta integration and 100 x-sampling points. The
choice of Nt’ = 1000 is essentially dictated by the requirement to have a reasonable
run-time. The resulting uncertainty is shown in figure 4.3, doubling the number
of steps leads to a relative deviation of up to 3.5% at large x. Compared to this
the uncertainty due to limited precision of the Runge-Kutta integration is negligible
(figure 4.3 right). The first and last x points have a large uncertainty due to the
strong variation of the fragmentation functions in these regions and termination
effects (figure 4.4). In the intermediate x region the accuracy is much better.

The scattering term acts in principle in the same way as the evolution in vacuum
shifting activity from large to small x, but since it does not keep track of struck scat-
tering centres it effectively removes energy from the jet. The fragmentation functions
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Figure 4.4.: Left: Relative change of the medium fragmentation functions at Q2 =
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in medium are thus always smaller than those in vacuum. This is better seen in the
ratios of the fragmentation functions in medium and in vacuum (figure 4.5), which
are always smaller than unity. There is a significant reduction of the fragmentation
functions due to elastic scattering in the medium.

The evolution equations can be modified such that they take the recoiling scatter-
ing centre into account. Since the scattering centres are assumed to be at rest, their
momentum comes solely from the scattering event. The fragmentation of a struck
scattering centre is described by the same fragmentation function as the jet partons,
the thermal mass is here ignored. The version of equations (4.11)–(4.12) that includes
the recoil reads

∂Dq(x, E,Q2)

∂(lnQ2)
=

1
∫

0

dz

z

{[ αs
2π
Pqq(z) + Kq

(

z,
x

z
Ejet,Q

2
)]

D
h/j
q

( x

z
,Q2

)

+
αs
2π
Pgq(z)D

h/j
g

( x

z
,Q2

)

+ K̂qq
(

1− z, x
z
Ejet,Q

2
)

D
h/j
q

( x

z
,Q2

)

+K̂qg
(

1− z, x
z
Ejet,Q

2
)

D
h/j
g

( x

z
,Q2

)}

(4.21)
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∂(lnQ2)
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+K̂gq
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(4.22)

The scattering cross section prefers small momentum transfers, the contribution from
recoiling scattering centres is thus only visible at small x (figure 4.5). In this region
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Figure 4.5.: Left: Ratios of the fragmentation functions in medium and those in vac-
uum for a static medium with T = 500MeV, the recoiling scattering
centre is not included (equations (4.11)–(4.12)). Right: The same with
the recoiling scattering centre (equations (4.21)–(4.22)).

the ratio of modified and vacuum fragmentation functions is larger than unity. The s
quark part shows a somewhat different behaviour: Here the fragmentation function
falls extremely steeply at large x so that a scattering with large momentum transfer
and subsequent hadronisation of the recoil with a large fraction of the energy taken
by the hadron is more likely than the direct hadronisation of the strange quark. This
leads to the strong enhancement at large x due to the recoil contribution.

In the framework of the evolution equations the time needed to develop down to
the infra-red cut-off scale Q0 is

ttot = Ejet

(

1

Q20
− 1

Q2

)

=
Ejet

Q20
− 1

Ejet
. (4.23)

This leads to a total evolution time of ttot = 10 fm for a 100GeV jet. There is no
scattering of on-shell partons, i.e. the splittings as well as the scatterings stop at Q0.
One can set a path length L inside the medium, which is related to a virtuality Q1
via equation (4.23) ,

Q1 = Q0

√

Ejet

Ejet − LQ20
. (4.24)

The scattering term can be included in the evolution only for virtualities larger than
Q1 to investigate the path length dependence and the effect of a finite size medium.
The result is shown in figure 4.6 for different path lengths. The suppression increases
in the intermediate x region linearly with the path length.
One can go one step further and use the information about the time, which corre-
sponds to each step in the evolution, to include a time dependence of the density. In
a Bjorken-like longitudinal expansion scenario the (proper) time dependence of the
temperature is given by (section 3.1.3)

T(τ)

T(τ0)
=
(τ0

τ

)
1
3
. (4.25)
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Figure 4.6.: Ratios of fragmentation functions for different path lengths in a static
medium with T = 500MeV (left: u and d quarks, right: gluons).
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Figure 4.7.: Comparison of medium modified fragmentation functions (left: u and d
quarks, right: gluons) in a static (T = 500MeV) to an expanding medium
(〈T〉 = 200MeV and 〈T〉 = 500MeV).

At mid-rapidity t ≈ τ and equation (4.25) can be used to determine the density.
At Lhc the formation time is estimated as τ0 ≃ 0.1 fm. For times smaller than τ0
the density is taken as the value at τ0. An initial temperature of T(τ0) = 3.2GeV
(1.3GeV) then corresponds to an average temperature of 〈T〉 = 500MeV (200MeV),
where the average is taken over the first 7 fm. Figure 4.7 shows that the suppression
in an expanding medium is stronger than in a static with the same average tem-
perature. The suppression observed in a static medium with 500MeV temperature
is the same as in an expanding medium with an average temperature of 270MeV.
However, these are still unrealistically high temperatures, an initial temperature of
750MeV leads to an average of only 116MeV, which translates into a weaker hadron
suppression.

The choice of Q2 as scale for αs is not unique. In fact, one usually takes the
momentum transfer |t| in scattering events. Furthermore, it is not clear how the cross
section should be regularised. These are only two examples for the uncertainties in
the formulation of the scattering function. The effect that a different choice of the
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Figure 4.8.: Modified fragmentation functions for different choices of the scale of
αs (the virtuality Q

2 or the momentum transfer |t|) and the infra-red
regulator µD (1GeV or 1.97GeV) (left: u and d quarks, right: gluons).

scale of the strong coupling and a different value for the screening mass have on the
medium modified fragmentation functions are shown in figure 4.8. Qualitatively, the
effect remains the same, but the magnitude depends significantly on the details of
the scattering function. Especially the infra-red regulator has a strong influence on
the total scattering cross section.

It is not surprising, that the suppression is not as strong as observed in data,
since the inelastic processes, which are believed to be the dominant source of energy
loss, are not included. However, the modifications of the fragmentation functions
due to elastic scattering show a significant suppression of energetic hadrons. The
details depend on the exact choice of the scattering function. Although the evolution
equations cannot do justice to the stochastic nature of the parton shower formation,
the modified evolution equations may serve as a reasonably simple tool to investigate
the effect of elastic scattering.
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CHAPTER 5

Jet Evolution With Energy Loss

In this chapter the Monte Carlo model Jewel for jet evolution with energy loss is
presented [175,176]. It simulates a final state parton shower in a medium. In the cur-
rent version it has a microscopic model for elastic scattering and a simplified model
of radiative energy loss, which will be replaced by a description based on inelastic
matrix elements in an upcoming version. The detailed microscopic modelling of
medium interactions during the parton shower evolution is a major difference to the
existing Monte Carlo models (section 3.3.3).

5.1. Final State Parton Shower in Vacuum

In this section, the baseline on top of which medium-effects are included is intro-
duced and shown to basically reproduce the observed QCD radiation physics of jets
in the vacuum. The evolution variable of a parton shower is not unique. The Jewel

parton shower is ordered in virtuality Q2, although modern parton shower imple-
mentations usually use the transverse momentum as evolution variable. This has,
for instance, the advantage that angular ordering is automatically included. The
virtuality, however, is better suited for the description of a shower evolution in a
medium, because then the evolution variable traces the lifetime 1/Q of the virtual
states, which facilitates the embedding of the parton shower in the spatiotemporal
geometry of a medium. The parton shower is interfaced with a hadronisation scheme
which implements the idea that colour neutralisation occurs locally during hadro-
nisation. However, the scheme invoked here is less sophisticated than the hadroni-
sation prescriptions used in modern event generators, in particular in that it does
not require knowledge about the event-specific colour flow in the parton shower.
This is a technical simplification, which - in contrast to standard treatments - allows
for a straightforward extension of the hadronisation mechanism in the presence of a
medium.
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5. Jet Evolution With Energy Loss

5.1.1. A Monte Carlo Implementation of Parton Evolution

A parton of initial energy E produced in a hard scattering process fragments into
a multi-parton final state. In the absence of a medium, the Jewel parton shower is
closely related to the mass-ordered shower in the Pythia 6.4 event generator [23].
The virtuality, which is the evolution variable, is interpreted as a virtual mass, i.e.
Q2 = p2 = E2 − ~p2. The kinematics of each a → b+ c parton branching is given in
terms of the virtuality of the parent parton, the momentum fraction z carried by one
of its daughters and the daughter virtualities. The four-momenta are chosen as

paµ = (Ea,~0, pa) with p2a = E2a −Q2a (5.1)

pbµ = (zEa,~k⊥, pb) (5.2)

pcµ = ((1− z)Ea,−~k⊥, pa − pb) . (5.3)

The conditions

pbµp
µ
b = z2E2a − k2⊥ − p2b = Q2b (5.4)

pcµp
µ
c = (1− z)2E2a − k2⊥ − (pa − pb)2 = Q2c (5.5)

lead to

pb =
2zE2a −Q2a −Q2b +Q2c

2pa
(5.6)

k2⊥ = −z2Q
2
aE
2
a

p2a
− zE

2
a

p2a

(

Q2c −Q2a −Q2b
)

−
(

Q2c −Q2a −Q2b
)2

4p2a
−Q2b (5.7)

When the energy of the partons is large compared to their virtuality the expression
for the transverse momentum simplifies to

k2⊥ ≈ z(1− z)Q2a − (1− z)Q2b − zQ2c ≈ z(1− z)Q2a . (5.8)

The last step make use of the strong ordering of the virtualities Q2a ≫ Q2b,Q2c (which
is a condition for the parton shower picture to be valid). In this approximation the
opening angle θa is given by

θa ≈
k⊥
pb

+
k⊥
pc

≈
√

z(1− z)Qa
zEa

+

√

z(1− z)Qa
(1− z)Ea

=
Qa

√

z(1− z)Ea
(5.9)

The Monte Carlo formulation of the parton shower is based on the Sudakov form
factor (section 2.2.2), which is the probability that no splitting occurs between an
initial and a final virtuality Qi and Qf, respectively.

Sa(Q
2
i ,Q

2
f ) = exp






−
Q2i
∫

Q2f

dQ′2

Q′2

z+(Q′2,Ea)
∫

z−(Q′2,Ea)

dz
αs(z(1− z)Q′2)

2π ∑
b

P̂ba(z)






. (5.10)

Here, P̂ba(z) are the standard LO parton splitting functions for quarks and gluons
(a, b ∈ {q, g}). The scale of αs is taken to be the transverse momentum of the splitting
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5.1. Final State Parton Shower in Vacuum

(equation (5.8)). This choice effectively includes higher order corrections [177, 178].
It also implies that the transverse momentum is larger than ΛQCD, in Jewel k⊥ ≥
f · ΛQCD with f = 1.1 is used. The z-integral is divergent due to the singularities
in the splitting functions, which arise from the break-down of perturbation theory.
One therefore has to define a scale up to which one wants to trust the perturbative
description. For the parton shower it is convenient to require a minimal virtuality
Q0/2 for the daughters of a branching (this prescription as also used in the mass-
ordered Pythia cascade). Solving equation (5.7) for z leads to

z =
1

2







1+
Q2b −Q2c
Q2a

±

√

(

Q2a +Q
2
b −Q2c

)2

Q2a

(

1

Q2a
− 1

E2a

)

− 4p
2
a(Q

2
b + k

2
⊥)

E2aQ
2
a







. (5.11)

With the requirements k⊥ ≥ f · ΛQCD and Qb,Qc ≥ Q0/2 this translates into the
allowed z range

z±(Q2, Ea) =
1

2
± 1
2

√

(

1− Q
2
0 + 4( f · ΛQCD)2

Q2

)(

1− Q
2

E2a

)

. (5.12)

This also implies that only partons with Qa > Qmin with

Qmin =
√

Q20 + 4( f · ΛQCD)2 (5.13)

can split, because the virtuality must be large enough to give the daughters the
minimal virtuality and transverse momentum.
With the no-splitting probability (equation (5.10)) the probability density Σa(Q2i ,Q

2)
for a splitting to happen at virtuality Q2 is given by

Σa(Q
2
i ,Q

2) =
dSa(Q2i ,Q

2)

d(lnQ2)
= Sa(Q

2
i ,Q

2) ∑
b

Wba(Q
2) , (5.14)

where

Wba(Q
2) =

z+(Q2,Ea)
∫

z−(Q2,Ea)

dz
αs(z(1− z)Q2)

2π
P̂ba(z) (5.15)

is the differential probability for the splitting a → b + c at Q2. Figure 5.1 shows
examples of the Sudakov form factor and the differential branching probability Σa.
The larger splitting probability of gluons leads to a smaller no-splitting probability,
which in turn means that gluons experience the next branching on average at a
higher virtuality than quarks.

Jewel is a stand-alone parton shower that does not include the hard process. The
species and energy of the parent parton of the shower has to be specified externally.
Its virtuality Qa is determined according to the probability density Σa(E2,Q2a), the
maximal possible virtuality is given by the parton energy. This is the natural choice
in e++e− collisions, whereas in p+p the transverse momentum with respect to the
beam axis seems more appropriate. In Jewel circumvents jets in hadronic (includ-
ing nuclear) collisions are produced at mid-rapidity so that p⊥ ≈ E. If the parent
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Figure 5.1.: Sudakov form factor and probability density Σa for quarks and gluons
with different initial virtualities, E = 100GeV and Q0 = 1GeV.

parton is a gluon, the type of branching has to be chosen according to Wba. The en-
ergy sharing is then found from the corresponding splitting function. Subsequently,
the daughter virtualities are determined with the help of equation (5.14), subject to
three constraints: The virtualities Qb, Qc of the daughters are required to be smaller
than their energy z E or (1 − z)E, respectively, and they must be larger than the
cut-off scale Q0/2. In addition, the virtual masses of the daughters satisfy the con-
straint Q2b + Q2c < Q2a. If z lies in the kinematically allowed range (equation (5.11)
the branching is accepted and the four-momenta are calculated assuming azimuthal
symmetry. Otherwise, a new pair of daughter virtualities is generated. It may be
very unlikely to find a pair of values that satisfies the kinematical constraints, so
that after a certain (large) number of unsuccessful attempts the whole shower is
discarded. Partons that do not split above Qmin are declared to be on-shell. The
procedure is iterated for the daughters until no virtual partons are left.
Mass-ordered parton showers have to leading order no angular ordering, which
has to be built in by hand. With the help of equation (5.9) the condition θb < θa for
the opening angles of subsequent branchings translates into

zb(1− zb)
Q2b

>
1− za
zaQ2a

, (5.16)

which can be viewed as an additional constraint on zb

1

2

(

1−
√

1− 4Q2b
1− za
zaQ2a

)

< zb <
1

2

(

1+

√

1− 4Q2b
1− za
zaQ2a

)

(5.17)

and Qb

Q2b ≤
zaQ

2
a

4(1− za)
. (5.18)

The latter can be respected when Qb is determined and zb can be chosen such that
equation (5.17) is fulfilled. Like this no extra rejection steps are introduced. For the
second daughter (particle c) za has to be replaced by 1− za in equations (5.17)–(5.18).
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5.1. Final State Parton Shower in Vacuum

This shower is essentially the ’global’ ’constrained’ evolution which is one of the
alternatives of the Pythia event generator [23].

5.1.2. Hadronisation

If one does not want to rely on Local Parton Hadron Duality to map the partonic dis-
tributions onto hadronic ones, the parton shower has to be interfaced with a hadro-
nisation model. The Lund string fragmentation model, although very successful in
describing a wealth of data, is not flexible enough to be used for the complex parton
states in heavy ion collisions. The reason is that it requires knowledge of the colour
flow and is only applicable to parton systems that are globally colour neutral. The
colour flow of jets in a nuclear environment is altered due to the interactions with
the medium and the question arises how recoiling scattering centres, that are colour
connected to the cascade, hadronise. One might also want to apply the hadronisa-
tion model only to some energetic part of the shower and assign the soft component
to the medium. In any case the cascade is not a well defined colour neutral system.
Independent fragmentation would work in this case, but is not used here because of
its infra-red sensitivity.
The hadronisation model implemented in Jewel is a variant of the Lundmodel [70–
74] (section 2.2.5) where the information about the colour flow is replaced by the as-
sumption of strong colour correlation of partons close in phase space. It has two
variants, one is inspired by jets in e++e− collisions and is used for testing the model
against e++e− data and to check the other version, which is adapted to hadronic
collisions.
In the e++e− version first the quark (or antiquark) with the highest energy has
to be identified. It is the endpoint of the first string, which is then stretched to
the parton which is closest in momentum space, subject to the only constraint that
quarks cannot be connected to quarks and antiquarks not to antiquarks. If the last
connected parton was a gluon the string is continued to the closest neighbour of that
gluon until a (anti)quark is connected. If (anti)quarks that are not yet organised in
strings are left in the event, the procedure is repeated for the remaining partons. If at
the end only gluons are left unconnected, they are built in an existing string, namely
next to their nearest neighbour among the already connected gluons. This proce-
dure obviously only works in events that contain an equal number of quarks and
antiquarks. Artificial systems of two gluons jets can be hadronised by splitting the
most energetic gluon in each jet into a quark-antiquark pair and applying the same
procedure. Finally, the strings are hadronised using the Lund string fragmentation
routine of Pythia 6.4, which also takes care of the decay of resonances.
The p+p inspired version also starts by finding the most energetic parton, but it
accepts also gluons (alternatively, the highest p⊥ may be used in hadron collisions).
If this parton is a gluon, it is split into a collinear quark - antiquark pair with the en-
ergy sharing given by P̂qg. The more energetic of the two is then the endpoint of the
first string. In the next step it is connected to the closest parton in momentum space
(with the only exception that a quark-antiquark pair from a single gluon splitting
is not allowed to recombine into a colour singlet). In contrast to the e++e− version
only partons in the same hemisphere as the endpoint can be joined in the string,
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5. Jet Evolution With Energy Loss

also the termination procedure is slightly different. The string ends when either a
matching (anti)quark is connected or there is none left in the same hemisphere. In
the latter case an endpoint is generated by adding the required quark or antiquark
with momentum in the beam direction to the event. It carries a few GeV momentum
in order to avoid strings with low invariant mass which upset the string fragmen-
tation. The whole procedure is repeated until all partons are connected in strings.
This approach is inspired by the fragmentation of jets in hadronic collisions where
the additional endpoints can be thought of as being part of the proton remnants,
to which the jet is connected by colour flow. The hadrons associated with this ad-
ditional parton endpoint tend to go along the beam direction so that they are well
separated from the jet. As long as the jet structure is analysed in a restricted rapidity
range of approximately |∆η| ≤ 1 around the rapidity of the parent parton, the result-
ing dependence of the model on this endpoint is negligible. There is the possibility
to set a maximum invariant mass of neighboring partons in a string, that could be
used to tune the routine to data. However, this possibility is not explored here. This
hadronisation mechanism has the advantage of being very flexible, it can be applied
also to jets in a nuclear environment since it does not require colour neutral systems.

To account for two-jet events, Jewel evolves the quark and the antiquark jet sep-
arately. The virtuality of the first one is determined according to the probability
distribution Σa(E2,Q2) (equation (5.14)). Then, there are different options for the
second jets: Its virtuality can be fixed to be the same thus conserving energy and
momentum at the hard vertex, or it can be chosen independently according to the
same distribution. In this case momentum is not conserved at the hard vertex, since
there is no reshuffling of momentum as performed by modern event generators in
order to conserve momentum. The differences between the two choices turned out
to be negligible for the observables under consideration here, so only results for the
second option with two completely independent jets are shown.

Figure 5.2 shows the Jewel results for e++e− - like events with two back-to-back
quark jets of the same energy, in this case 100GeV. The e++e− and p+p inspired
variants of string fragmentation lead to indistinguishable results for the thrust dis-
tributions, jet rates and the intra-jet distribution dN/dξ (ξ = ln(pmax/p)). The
results for independent fragmentation [75–81] (section 2.2.5) were obtained with the
Pythia 6.4. implementation in the default set-up. They differ clearly from the others
in that the jets are significantly softer and the events are less two-jet-like. The latter
is seen in the thrust distributions, which favour larger values of 1− T, Tmaj and Tmin
(a perfect pencil-like two-jet event has 1− T = Tmaj = Tmin = 0), and in the jet rates,
where all n-jet fractions are shifted to larger values of ycut, i.e. coarser resolutions.
While these problems can possibly be cured by a better tuning and matching of the
parton shower and the hadronisation, the sensitivity to Q0 (figure 5.3 right) will al-
ways remain. The string fragmentation variants, on the other hand, are practically
independent of the exact choice of Q0 because they preserve the infra-red safety of
the Lund string fragmentation model.

Since the results for the e++e− and p+p inspired variants are practically identical,
the p+p version is the default choice in this study.
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Figure 5.2.: Left: Thrust, thrust major and thrust minor distributions (Tr =
(T, Tmaj, Tmin)) of a system of two back-to-back (anti)quark jets with
100GeV energy each for three different hadronisation models: the e++e−

and p+p inspired hadronisation model and independent fragmentation
as implemented in Pythia 6.4, all with Q0 = 1GeV. Right: Jet rates of
the same fragmenting quark-antiquark system for the different hadroni-
sation models (Q0 = 1GeV).
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Figure 5.4.: The thrust, thrust major and thrust minor (Tr = (T, Tmaj, Tmin)) distribu-
tions for

√
s = 200GeV e+ + e− → q + q̄ → X collisions. Data of the

Aleph Collaboration [180] are compared to simulations of Jewel: i) par-
ton level after parton shower evolved down to Q0 = 1GeV, ii) hadron
level after parton shower evolution to Q0 = 1GeV followed by hadroni-
sation.

However, it should be noted that in the presence of a high-multiplicity environ-
ment, novel hadronisation mechanisms may play a role. For instance, hadron forma-
tion may occur via recombination of partons [109–113]. Studying the hadrochemistry
of jets [35,179] is likely to help characterising such novel hadronisation mechanisms,
but an investigation of this is beyond the scope of this study.

5.1.3. Comparison to Data

In this section, the final hadronic states from Jewel are compared to data on jets
measured in

√
s = 200GeV e++e− collisions at Lep by the Aleph collaboration [180].

To select the process e+ + e− → q+ q̄→ X at √s = 200GeV, these Aleph data were
taken with a veto on initial state radiation. They have been compared already [180]
very favourably to standard event generators such as Pythia and Herwig. The
purpose of the present data comparison is to validate the Jewel parton shower in
the absence of medium effects against a set of benchmark data on jets measured at
Lep, before studying the extension of the code to medium effects.

In figure 5.4, the thrust distributions, which characterise the overall energy flow
(section 2.2.3), from Jewel are compared to data. Since these are perturbatively cal-
culable, infrared-safe quantities, they are particularly suitable for testing the parton
shower implementation. As seen in figure 5.4, the final state parton shower provides
a reasonable description of these jet event shapes over most of the measured range.

Jewel does not contain a matching of the parton cascade to three-jet matrix ele-
ments, which could improve the QCD modelling of large angle radiation. This may
be the reason why the simulation gives fewer events with large 1− T, Tmaj and Tmin.
The comparison of other event shape observables like oblateness, sphericity, pla-
narity, aplanarity and total jet broadening to data are of a similar quality as the thrust
distributions. Figure 5.5 shows as an example sphericity and aplanarity.
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s = 200GeV on the parton level with perturbative evolution down to
Q0 = 1GeV and on the hadron level compared to Aleph data [180]

With these studies, it has been shown that Jewel accounts for global features of jet
energy flow with an accuracy which is sufficient to characterise (sufficiently large)
medium effects on top of it.

Figure 5.6 shows simulation results for the jet rates (section 2.2.3), which are more
sensitive to the discrete and stochastic nature of partonic processes underlying the
QCD jet fragmentation. One finds that hadronisation plays a negligible role for the
jet rates. They vary mildly with the size of the strong coupling on the partonic as
well as on the hadronic level. The choice of ΛQCD = 300MeV in Jewel leads to a
reasonably good description of the data, but the rate of three-jet events is understi-
mated, possibly also due to the missing matching to three-jet matrix elements.

In contrast to the measurements discussed so far, the modelling of single inclusive
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Figure 5.6.: The jet rates as a function of jet resolution scale ycut in
√
s = 200GeV

e+ + e− → q + q̄ → X collisions. Left: Simulation of Jewel with and
without hadronisation for evolution down to Q0 = 1GeV. Right: Data
of the Aleph collaboration [180] compared to simulations of Jewel with
hadronisation.
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Figure 5.7.: The inclusive distribution dNch/dξ (ξ = ln(pmax/phadron)) of charged
hadrons in e+ + e− → q+ q̄ → X events at

√
s = 200GeV. Data of the

Aleph Collaboration [180] are compared to simulations of Jewel: i) par-
ton level after parton shower evolved down to Q0 = 1GeV, ii) hadron
level after parton shower evolution to Q0 = 1GeV followed by hadroni-
sation.

intra-jet hadron distributions and multi-hadron correlations requires detailed knowl-
edge about the hadronisation mechanism. This is seen for instance in figure 5.7,
where results of the simulation are compared to data of the inclusive distribution
dNch/dξ of charged hadrons in e+ + e− → q + q̄ → X events at

√
s = 200GeV.

Irrespective of the scale Q0 down to which the parton cascade is evolved prior to
hadronisation, there is a marked difference between the hadronic and the partonic
distribution. In particular, the partonic distribution is very ’hard’, i.e. the yield of
high momentum (small ξ < 1) partons exceeds the observed hadronic yield by far.
Since high momentum partons are correlated in colour to softer partons, it is likely
that any colour neutralisation mechanism, i.e. hadronisation, which takes into ac-
count colour flow, will fill the momentum space between these partonic partners. As
a consequence, hadronisation is expected to soften the distribution for ξ < 1 con-
siderable. This is seen for the string hadronisation mechanism, which accounts for
the inclusive hadron distribution dNch/dξ to a level better than ∼ 20%. An even
improved agreement is likely to be achieved by a retuning of the hadronisation pa-
rameters in Pythia, which can be motivated by the new prescription for stretching
the string introduced here.

Within the uncertainties, which are mainly related to the modelling of hadroni-
sation, Jewel provides a reliable baseline for the characterisation of jet quenching
phenomena.

5.2. Medium Modifications of the Parton Shower

So far the parton shower was formulated in momentum space. For the introduction
of interactions with a medium the spatiotemporal structure of the cascade has to
be specified. Since the four-momenta of all partons in the shower are known, it is
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sufficient to estimate the lifetimes.
Unfortunately, little is known about the space-time structure of parton shower,
which is unobservable in showers that evolve in vacuum. One might therefore even
want to turn the usual perspective around and regard the medium as a probe of the
spatiotemporal evolution of jets.
In the Jewel parton shower the lifetime of partons in the showers is estimated
using a general argument based on the uncertainty principle. A virtual state has
a lifetime of order 1/|Q| in its own restframe, where Q is the virtuality. In the
restframe of the medium this time appears time-dilated and becomes E/Q2. In the
parton shower, however, the virtuality is not reduced in a single process, but via
a chain of intermediate states. The lifetime of these states can be expected to be
determined by the virtuality change. This means that a parton with virtuality Qf,
that is created from a parton with virtuality Qi, exists for a time

τ =
E

Q2f
− E

Q2i
. (5.19)

In the Monte Carlo model this is used as lifetime of virtual states. For the parent par-
ton, which is produced in the hard interaction, the lifetime is τ = E/Q2f − E/Q2hard.
According to equation (5.19) on-shell partons have infinite lifetime, but in practice
’infinity’ means in this case ’until hadronisation’.

5.2.1. Interactions With the Medium

The medium is regarded as a collection of scattering centres. The mass and momen-
tum distribution and density have to be specified. In this first study a simple model
is used, which treats the medium as an ideal relativistic gas of (anti)quarks and
gluons with a thermal mass ms = µD/

√
2, where µD ≃ 3T is the Debye screening

mass. The medium is then characterised by a single parameter, namely the temper-
ature T. The momentum distribution is given by the Fermi-Dirac or Bose-Einstein
distribution

dn

dp
∝

1

exp
(

√

p2 +m2s/T
)

± 1
, (5.20)

with the plus for (anti)quarks and the minus for gluons.

In addition, the cross section for the interaction of the jet with the medium has to
be given. Here, the leading order t-channel exchange

dσelas

d|t| =
πα2s
s2
CR
s2 + u2

|t|2 (5.21)

is used (CR = 4/9 for quark-quark, 1 for quark-gluon and 9/4 for gluon-gluon
scattering). Processes with s-channel singularities are neglected because their cross
section is small in the relevant kinematic regime and processes singular in u are not
considered because they tend to transfer all the energy from the projectile to the
target. These processes do not lead to significant energy loss, but simply exchange
the role of projectile and scattering centre.
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The perturbative scattering cross section diverges for vanishing momentum trans-
fer t and has thus to be regularised. There is no unique recipe how this should be
done, the most common choice for scattering from a thermal medium is to use the
screening mass as regulator. But even this leaves several possibilities. As in other
calculations, this problem cannot be avoided in Jewel, but it offers a possibility to
quantify the resulting uncertainties. Therefore, different variants of the regularised
cross section can be used, namely case I

σelasI =

|tmax|
∫

0

d|t| π α2s(|t| + µ2D)

s2
CR
s2 + (s− |t|)2
(

|t| + µ2D
)2
, (5.22)

which is the default, case II

σelasII =

|tmax|
∫

µ2D

d|t| π α2s(|t|)
s2

CR
s2 + (s− |t|)2

|t|2 , (5.23)

and case III, which is a version of case I with fixed coupling αs = 0.3

σelasIII =

|tmax|
∫

0

d|t| π α2s
s2
CR
s2 + (s− |t|)2
(

|t| + µ2D
)2
. (5.24)

Cases I and II have a one-loop running αs with a value of ΛQCD (here ΛQCD =
250MeV) that can be different from the one used for the splitting processes . For the
calculation of the total scattering cross section the scattering centres are assumed to
be at rest. Then s = m2p + m2s + 2msEp is a constant and the maximal momentum

transfer is given by |tmax| = 2msEp ≃ 3
√
2TEp, where Ep and mp are the incoming

projectile’s energy and (virtual) mass. The integrated cross sections are

σelasI =
πCR
s2

(

12π

33− 2nf

)2

×

×
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(
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Ei
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(
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(

|t| + µ2D
Λ2QCD
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(
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)

Ei
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(
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(
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(
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∣
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, (5.25)

88



5.2. Medium Modifications of the Parton Shower

σelasII =
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and

σelasIII =
πCRα2s
s2

[

−µ4D + 2sµ2D + 2s2

|t| + µ2D
+ |t| − 2(µ2D + s) ln(|t|+ µ2D)

]|tmax|

0

. (5.27)

The exponential integral

Ei(x) = −
∞
∫

−x
dt
e−t

t
(5.28)

has for positive arguments a series expansion

Ei(x) = γ + ln x+
∞

∑
n=1

xn

nn!
for x > 0 (5.29)

that can be used for numerical evaluation of the function [181].

For the explicit simulation of scattering events the scattering centre is assumed to
have an isotropic thermal momentum. The scattering angle is determined by the
momentum transfer t, in the centre-of-momentum frame it is given by

cos θcm =
t+ 2E2p − 2m2p
2(E2p −m2p)

. (5.30)

The scattering is symmetric in the azimuthal angle.

Medium induced gluon radiation is expected to be the main source of energy
loss. In principle, the Monte Carlo formulation allows for the inclusion of the in-
elastic 2 → 3 scattering process on the same footing as the elastic scattering. While
this is desirable because then elastic and inelastic energy loss are treated consis-
tently, the 2 → 3 process introduces additional complications. Therefore, the first
version of Jewel, where manageability is an issue and which is supposed to be as
straightforward as possible, does not include an explicit treatment of inelastic colli-
sions. Instead, it has the option to enhance the vacuum splitting function by a factor
(1+ fmed)

P̂ba(z) → (1+ fmed)P̂ba(z) (5.31)

as long as the splitting takes place inside the medium. This prescription has been
shown to catch main characteristics of radiative energy loss [34].

Elastic scattering is assumed to leave the projectile virtuality unchanged. The
cross section (equation (5.21)) is dominated by small momentum transfers, i.e. small
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angle scattering, which does not open phase space that could be used to reduce
the virtuality. This can be different for the inelastic scattering, where an additional
gluon is radiated. In the current framework without explicit 2 → 3 scattering the
virtuality degradation is governed by parton branching and is affected by a non-zero
fmed, but not by elastic scattering. The timescales are set by the splitting processes,
which produce two partons with known four-momenta and thus lifetime. With the
probability

Pno scatt(τ) = exp






−
tp+τ
∫

tp

dt′ σelas(~r(t′), t′)n(~r(t′), t′)






, (5.32)

where τp is the parton’s production time, the parton will not experience elastic scat-
tering during its lifetime and the next process will be the next splitting. In the
general case of an evolving medium both the cross section and the density depend
on position and time. The information about the parton trajectory is encoded in~r(t′),
which is the parton’s position at time t′.

~r(t) = tβ
~p

|~p| +~rp , (5.33)

where~rp is the production point of the parton.
The cross section can depend on the temperature through the infra-red regulator,
s and ms (which also determines the integration limit) and/or a temperature de-
pendent coupling. In the simpler case of a static and homogeneous medium equa-
tion (5.32) simplifies to

Pno scatt(τ) = e−σelasnτβ . (5.34)

With the probability 1− Pno scatt(τ) the parton undergoes elastic scattering at a time
τs < τ. In the Monte Carlo implementation the decision, whether the next process is
scattering or splitting, is made after each splitting according to Pno scatt. If the parton
scatters, the time τs of the scattering is determined according to

ps(τs) = σelasnβe−σelasnτsβ . (5.35)

Then, a scattering centre is generated with the type (quark or gluon) given by the
relative densities and a momentum from the thermal distribution (equation (5.20))
and the scattering is simulated with the momentum transfer given by the differential
cross section. The procedure is repeated for the remaining time τ − τs until the
parton lifetime is used up and the next splitting occurs.
Angular ordering is required for subsequent splittings, but is reset when a scatter-
ing occurs. Unfortunately, this prescription is not sufficient to specify in detail how
angular ordering in a medium is to be treated. The problem is that angular ordering
is only an effective way of including an interference phenomenon in a probabilisti-
cally iterated parton shower. Another problem is that rejection steps are dangerous
because they tend to bias the interactions with the medium. Therefore, the solution
chosen in Jewel is to always respect the constraint on the mass (equation (5.18))
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but only keep the condition on z (equation (5.17)) when the previous process was a
splitting. This procedure generates only splittings that can in principle obey angular
ordering when the daughters branch. The decision whether angular ordering has
to be fulfilled is made at the time of the daughters’ splitting depending on whether
the parton has scattered or not. There are thus no rejection steps and full angular
ordering in vacuum is naturally restored in the limit of vanishing density.

Of course, scatterings can only take place inside the medium. On-shell partons,
that are produced inside the medium, can undergo scattering until they leave the
medium. Concerning the fate of the recoiling scattering centres, Jewel provides two
options: The recoiling scattering centres can in turn experience multiple scattering
or propagate without interactions. The latter may not be a realistic scenario, but
the application of perturbation theory as description of the relatively soft recoils is
questionable and this option is very useful for disentangling different effects. For the
leading particles of the jet the treatment of the recoil should not be very important.

It is assumed that hadrons cannot form inside the medium so that hadronisa-
tion happens after all medium interactions and is not affected by the presence of
the medium. The jet is evolved perturbatively down to a scale Q0 ≃ 1GeV and
hadronised using the p+p inspired fragmentation model. After interactions with the
medium, however, the parton shower is not a well defined system any more, since
partons are colour connected to medium partons, scattering centres can be scat-
tered with considerable energy into the solid angle occupied by the cascade and the
shower has a soft component with momenta of the order of the thermal momenta.
In the Monte Carlo implementation one can distinguish between partons that were
produced in the parton shower and recoiling scattering centres, which is artificial
but useful. Jewel has, in its present form, two options, namely to hadronise only the
parton shower or to count the hit scattering centres towards the jet and hadronise
them together with the parton shower. It is also conceivable to hadronise the hard
component of the parton shower and the recoils using the string fragmentation and
invoke some other mechanism for the soft component, but this possibility has not
been explored so far.

The way in which medium effects are included in the jet evolution inevitably
involves model-dependent assumptions. The major sources of uncertainties will be
briefly discussed.

It is difficult to get a handle on the space-time structure of the shower. Even if the
lifetime is parametrically of the form of equation (5.19) the details may be designed
in a different way. One could, for instance, use an exponential decay law with half
life given by equation (5.19) instead of a fixed lifetime. In this case the scattering
events may be regarded as measurements that can stabilise the state and delay its
decay.

The choice of the scattering cross section also introduces uncertainties. The am-
biguity due to different regularisations has already been mentioned. The choice of
the regulator poses an additional problem. Using the screening mass is problematic,
since the interaction of a hard parton with a thermal parton from the medium is not
of thermal nature it is not clear why the propagator should acquire a thermal mass.
Furthermore, it is questionable whether the elastic scattering is adequately described
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Figure 5.8.: Average energy loss of an on-shell quark (left) or gluon (right) with en-
ergy E experiencing multiple elastic scattering in a static medium of tem-
perature T over a pathlength L = 1 fm for three different regularisations
of the elastic scattering cross section (equations (5.22)–(5.24)).

by leading order perturbation theory. Not all involved momenta are large and there
is evidence from Rhic data for strong coupling.
Enhancing the splitting function by a factor 1+ fmed does not do justice to medium
induced radiation. It may be sufficient to study generic features of radiative energy
loss, but it is desirable to include the full inelastic scattering process in a later version.
Little is known about hadronisation mechanisms and possible medium modifi-
cations in heavy ion collisions. The assumption of unmodified hadronisation may
be not well justified. The observation of changes in the hadrochemistry seems to
hint at a modification of the hadronisation. However, hadronisation in a nuclear
environment is to a large extent an unsolved problem.
Jewel alone is currently not in the position to resolve any of these issues. It
provides, however, a tool for their systematic study. As a first step it may help to
quantify uncertainties and identify observables that are insensitive to details of the
modelling.

5.2.2. Energy Loss Without Branching

The energy loss of an energetic on-shell parton in a medium is an extensively studied
problem [1–9] and offers a possibility to compare the elastic energy loss in Jewel to
other calculations. For this purpose the splitting is switched off and an on-shell
parton of a given starting energy is propagated through a homogeneous medium
with temperature T over a distance L. The scattering probability is then determined
by the temperature, the path length and the cross section. Figure 5.8 shows the
mean energy loss over a distance L as a function of the temperature for the different
regularisations of the elastic scattering cross section (equations (5.22)–(5.24)). In all
three cases the energy loss increases with temperature and projectile energy. The
magnitude differs by up to a factor of 2 between the different cross sections. As
expected, case I leads to the smallest energy loss; case II has a minimum momentum
transfer and in case III there is no suppression of large momentum transfers due
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Figure 5.9.: Distribution of energy loss ∆E after a pathlength L = 1 fm in the medium
for different parameter choices (top panels) and the probability for an
energy loss smaller than ∆E after passage through a medium of length L
(bottom panels).

to the running of the coupling. The energy loss of gluons is roughly twice that of
quarks due to the larger colour factor. The temperature dependence is consistent
with what was found in other calculations. On a quantitative level the three variants
lie in the range of other results [1–9] (section 3.3.1), the factor 2 difference is of the
same order as the differences between different computations.

For the suppression of steeply falling single-inclusive spectra the relevant quantity
is not the mean but the most likely energy loss. Figure 5.9 shows the distribution
of the energy loss ∆E for quarks, which is strongly peaked at 0. This is due to the
relatively long mean free path, which is O(1 fm), and the fact that elastic scattering
is dominated by small angle scattering, where the longitudinal momentum transfer
vanishes in the high energy limit. ∆E can also be negative, because there is a small
probability that a fast parton gains energy from the medium. The chances for losing
or gaining a significant fraction of the projectile energy increase with temperature.
There are marked differences between the regularisations I and II not only in the
normalisation, but also in the shape of the distribution. Case II, where the integral is
cut off at finite |t|, develops a characteristic double peak structure due to the minimal
momentum transfer, which is also a regularisation of small angle scattering. The
position of the secondary peak depends on temperature, because the Debye mass,
which is used as infra-red regulator, does.
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The scattering cross section (equation (5.21)) is at high energies only weakly s-
dependent. This is also reflected in the ∆E distributions (figure 5.9 top), which are
remarkably similar for 10 and 100GeV quark energy. The mean energy loss can still
be larger for higher energies, because the integral

〈∆E〉 =

∫ E
0 d(∆E) ∆E dNd∆E
∫ E
0 d(∆E) dNd∆E

(5.36)

extends to much higher energies. Contributions at large ∆E have a very small prob-
ability but a large weight. This illustrates again, that the mean energy loss is domi-
nated by rare events with very large energy loss [26].

The probability for losing an amount of energy less than some ∆E can by com-
puted from dN/d(∆E′) through integration up to ∆E and proper normalisation. As
can be seen from the lower panels of figure 5.9 the probability for no energy loss
at all after passage through 1 fm of a medium with a rather high temperature of
500MeV is about 65% for both projectile energies. After a path length of 3 fm still
roughly 25% of the quarks emerge without energy loss. It seems thus unlikely that
collisional energy loss alone can account for a strong suppression of singe-inclusive
hadron spectra.

5.2.3. Characterising the Recoiling Medium

The energy lost by a jet due to (elastic or inelastic) scattering from the medium
is carried by the recoiling scattering centres. Characterising the recoil can help to
disentangle elastic and inelastic energy loss and to understand the jet-induced mod-
ifications of the background. For the reconstruction of jets in nuclear collisions the
background has to be carefully subtracted, therefore the modifications of the back-
ground may be important. Furthermore, scattering centres, that are scattered into
the jet cone, will be identified as belonging to the jet.

In figure 5.10 the momentum distribution of recoiling scattering centres is com-
pared to the undisturbed distribution. The upper panels show the results for an
on-shell quark with 100GeV energy that propagates through the medium without
splitting, in the lower panels the splitting is included. The results are very similar in-
dicating that the recoil is not very sensitive to the projectile energy. In the left panels
p⊥ is the transverse momentum relative to the beam axis, the jet is at midrapid-
ity (η = 0). The undisturbed medium distribution shows the exponentially falling
p⊥-spectrum and isotropic momentum distribution expected for a thermal medium.
The p⊥-distribution of recoils, on the other hand, acquires a power-law tail at inter-
mediate and large momenta due to the shape of the scattering cross section. The
yield is, however, still mainly in the low p⊥ region (p⊥ . 2GeV). The recoiling scat-
terings centres move predominantly in the direction of the jet with a characteristic
maximum at ∆φ ≃ 0.8 nearly independent of the temperature.
For the understanding of the recoil distributions it is instructive to study a sim-
plified analytical model. It is assumed that an energetic projectile hits a parton
with a thermal distribution. The elastic cross section is approximated by dσ/d|t| ∝
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Figure 5.10.: Transverse momentum relative to beam axis and angle with respect to
jet axis of recoiling scattering centres as compared to the undisturbed
medium for different temperatures, with and without splitting of the
projectile (cross section I, Ejet = 100GeV, L = 1 fm). The jet is at mid-
rapidity (η = 0). Hadronisation is not included but may affect these
distributions significantly (see text for further discussion).

(|t| + µ2D)−2. In the rest frame of the medium the momentum transfer is related to
the energy of the struck scattering centre via

t = 2(m2s − EinEout) (5.37)

where Ein and Eout are the energies of the incoming and outgoing scattering centre,
respectively, and the average over the direction of the incoming scattering centre was
taken. The energy distribution becomes

1

σ

dσ

dEout
=
1

σ

2Ein
(2(EinEout −m2s) + 2m2s)

2
=
1

σ

1

2EinE
2
out

, (5.38)

where µD =
√
2ms (as in the simulation) was used.

The energy and scattering angle of the recoiling scattering centres are strongly
correlated. The most energetic recoils are closest to the jet axis. In the toymodel
the scattering angle is – again after averaging over the incoming scattering centre’s
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the Monte Carlo simulation (T = 500MeV, without splitting, L = 1 fm,
E = 100GeV) and analytical estimate (equation (5.39) for mean Ein).

direction – given by

cos(∆φ) =
Eout(Ep + Ein) − EpEin − E2in

pp
√

Eout −m2s
, (5.39)

where the subscript p stands for the projectile. This result is compared to the sim-
ulation in figure 5.11, where for Ein the mean thermal energy was used. The model
result gets the main features right, although there are deviations on a quantitative
level. The spread of the Monte Carlo result is due to the energy and angular distri-
bution of the scattering centres.

For the angular distribution the problem has to be further simplified, the scattering
centre is now assumed to be at rest. This leads to

|t| = 2ms(Eout −ms) (5.40)

cos(∆φ) =

√

Eout −ms
Eout +ms

Ep +ms
pp

=

√

|t|
|t| + 4ms

Ep +ms
pp

. (5.41)

When the scattering centre is at rest, cos(∆φ) has to be positive. The scattering
angle is shown in figure 5.12 as a function of the momentum transfer. The angular
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Figure 5.12.: Left: Scattering angle as function of the momentum transfer |t| (equa-
tion (5.41)) for a 100GeV projectile hitting a scattering centre with a
mass corresponding to a temperature of 500MeV, ∆φ is the angle of
the recoiling scattering centre relative to the incoming projectile. Right:
Angular distribution (equation (5.42) for µD =

√
2ms) for the same pa-

rameters, the cross section is approximated as dσ/d|t| ∝ (|t| + µ2D)−2

with µD =
√
2ms.

distribution becomes

1

σ

dσ

d cos(∆φ)
=
1

σ

d|t|
d cos(∆φ)

dσ

d|t|

=
µ2D(2msEp + µ2D)

2msEp

4m2s p
2
p2 cos(∆φ)

(Ep +ms)2 − p2p cos2(∆φ)

×
(

1+
p2p cos

2(∆φ)

(Ep +ms)2 − p2p cos2(∆φ)

)

×
(Ep +ms)2 − p2p cos(∆φ)

(4m2s p
2
p cos

2(∆φ) + µ2D((Ep +ms)2 − p2p cos(∆φ)))2

(5.42)

This distribution is qualitatively similar to the simulation result (figure 5.12 right),
but the details are different. Equation (5.42) and the Monte Carlo result have, how-
ever, one important feature in common: Both are not very sensitive to the tempera-
ture. In order to specify this observation one has to find the position of the maximum
of the angular distribution. Unfortunately, this leads only to implicit solutions. But
– given the shape of the distribution – the position of the maximum can be approxi-
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mated by the expectation value. This leads to

〈cos(∆φ)〉 =
1

σ

2msEp
∫

0

d|t| cos(∆φ)(|t|) dσ

d|t|

=
µ2D(2msEp + µ2D)(Ep +ms)

2msppEp

×





4m2s
µD(4m2s − µ2D)3/2

tan−1





√

4m2s − µ2D
√

2msEp

µD

√

4m2s + 2msEp





−
√

2msEp

√

4m2s + 2msEp

(4m2s − µ2D)(2msEp + µ2D)





(5.43)

For µD =
√
2ms and pp = Ep this simplifies to

〈cos(∆φ)〉 =
Ep +ms
E2p

[

2(Ep +ms) tan
−1
(√

Ep

2ms + Ep

)

−
√

Ep

√

2ms + Ep

]

(5.44)

Typically, the temperature is small compared to the projectile energy so that one can
expand equation (5.44) for small ms = 3T/

√
2

〈cos(∆φ)〉 ≃
(π

2
− 1
)

+
ms
Ep

(π − 1) =
(π

2
− 1
)

+
3T√
2Ep

(π − 1) , (5.45)

which illustrates the weak temperature dependence. The peak position is, however,
sensitive to the infra-red regulator. This can be seen by keeping µD and ms as inde-
pendent quantities and expanding equation (5.44) in µD around µD =

√
2ms. The

shift of the maximum is then found to be

∆〈cos(∆φ)〉 =〈cos(∆φ)〉(µD) − 〈cos(∆φ)〉(
√
2ms)

≃2
√
2

ms

Ep +ms
ppEp

[

(

2(Ep +ms) +ms
)

tan−1
(√

Ep

2ms + Ep

)

− 3
2

√

Ep

√

2ms + Ep

]

(µD −
√
2ms)

≃2(π − 3)µD −
√
2ms√

2ms
,

(5.46)

where ms was again assumed to be small compared to the projectile energy.

At face value figures 5.10–5.11 indicate that an energetic jet is accompanied by ad-
ditional particles with a characteristic angle. Recoils with high energy are close to the
jet axis, but typical momentum transfers tend to scatter the recoil to a relatively large
angle. The question, whether these structures are also visible on the hadron level,
depends on the hadronisation model. Models that assume each parton to hadronise
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Figure 5.13.: Angle relative to the jet axis of particles in a 100GeV quark jet (splitting
is active) without hadronisation at Q0 = 1GeV (left) and with hadro-
nisation at Q0 = 1GeV (right). The different energy loss models are
collisional energy loss, where the recoils are either removed from the
event or counted towards the jet, and the simplified version of radiative
energy loss (T = 500MeV, L = 5 fm, fmed = 3).

independently are likely to preserve the angular structure seen in figure 5.10, while
string fragmentation models smear the peak out if they connect the recoiling scat-
tering centres to partons in the parton shower. This is seen in figure 5.13, which
shows the angular distribution of particles in the jet before and after hadronisation.
In the former case the recoiling scattering centres lead to a second maximum in the
angular distribution. In the case of string fragmentation they are still visible as a
shoulder at ∆φ ≃ 0.8 and an increase out to the largest ∆φ. This is partly due to
string configurations where a recoil is connected to a ’remnant endpoint’ at large
rapidity. Details of this distribution should not be taken too seriously since they may
be affected by the |η| < 1 requirement for hadrons. These two examples highlight
conceptual difficulties of hadronisation in a nuclear environment. It is unclear what
the colour topology is and if it is relevant, because it is uncertain whether the colour
connections established in interactions with the medium survive or are destroyed or
randomised due to multiple gluon exchanges. These questions are beyond the scope
of this study.

5.2.4. Single­Inclusive Spectra

A different way of characterising the total energy loss is in terms of the nuclear mod-
ification factor, which describes the suppression of single-inclusive hadron spectra at
high transverse momentum (section 3.2). It thus shows the effect of energy loss on
the p⊥-spectrum. Jewel does not simulate the hard matrix element, which produces
the jets. But one can make use of the fact, that the p⊥-spectrum has an approximate
power-law behaviour

dσ

dp⊥
∝ p−n⊥ . (5.47)
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Figure 5.14.: Left: Jewel p⊥-spectrum of π0 and charged hadrons in vacuum (jets at
η = 0) compared to Phenix p+p data at

√
s = 200GeV. The simulation

result is scaled since Jewel includes no hard scattering cross section and
can thus not provide the normalisation of the spectrum. Right: Nuclear
modification factor (hadron level) for different energy loss scenarios in
Jewel (L = 5 fm, T = 500MeV, fmed = 3).

Strictly speaking, n is slightly p⊥-dependent. In the simulation the parent partons
are distributed according to equation (5.47). n is taken to be independent of p⊥,
the results shown here were obtained with n = 7. All jets are at midrapidity so
that p⊥ = E for the (massless) parent partons of the jets, the virtuality comes at the
expense of the momentum. Figure 5.14 (left) shows the resulting p⊥-spectrum of
neutral pions and charged hadrons in vacuum. It is in reasonably good agreement
with the π0 spectrum measured by Phenix in p+p collisions, although it it slightly
steeper.

The right hand side of figure 5.14 shows the nuclear modification factor for differ-
ent energy loss scenarios. The medium has a constant temperature of T = 500MeV
and the path length is L = 5 fm, which possibly overestimates the collisional energy
loss. Accordingly, the factor fmed, which controls the medium induced radiation,
is chosen to be relatively large ( fmed = 3). The medium effects may be somewhat
unrealistic, but for the investigation of general features of partonic energy loss it
is convenient to have sizeable effects. With the parameters chosen here the hadron
suppression is of the same order as observed at Rhic.

Collisional energy loss alone leads to a significant suppression of about a factor 2
at high transverse momenta (p⊥ & 7GeV), it is somewhat less if the recoiling scat-
tering centres are hadronised together with the parton shower. The purely radiative
scenario leads to a stronger suppression of roughly a factor 6 at high p⊥, which is
decreasing with p⊥. In this case the suppression on the parton level is practically
the same over the whole p⊥ range shown here. Adding the collisional energy loss
increases the nuclear modification factor at intermediate p⊥ showing the same char-
acteristic enhancement as the purely collisional model. At high p⊥, on the other
hand, the suppression is stronger than for radiative energy loss alone. Qualitatively,
the result for collisional and radiative energy loss looks like the incoherent sum of
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Figure 5.15.: Thrust, thrust major and thrust minor (Tr = (T, Tmaj, Tmin)) for a single
100GeV jet. The Jewel parton shower in vacuum is compared to two
scenarios including medium-induced parton energy loss. Left: Colli-
sional energy loss for a medium of T = 500MeV and in-medium path
length L = 5 fm (the recoil is hadronised with the medium). Right : Ra-
diative energy loss for fmed = 3 and L = 5 fm. For the plots in the lower
panel, only hadrons with energy above Ecut = 2GeV are included.

both effects. With the simplified description of radiative energy loss one cannot
make statements about the relative strength of the elastic and the inelastic contri-
bution. For this one needs a microscopic description of the 2 → 3 process, which
depends on the medium properties.

5.2.5. Medium Modifications of Jet Observables

In this section medium induced modifications of event shapes, jet rates and the ξ-
distribution will be investigated. The medium parameters are the same as in the
previous section, the jets are quark jets with 100GeV energy. Unlike in the vacuum
calculations of e+e− events there is now only one jet per event (also in the vacuum
reference calculation). The jets have a significant soft component and also the recoil-
ing scattering centres have relatively low energies, which cannot be identified in the
large background of a nuclear collision. Studying modified jets in a background free
environment is useful for the understanding of the mechanisms but is academic in
the sense that the low energy part of the jets is experimentally not accessible. The
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event shapes and jet rates are thus calculated for the whole jet as well as for the
energetic component only, where all hadrons with energy lower than a cut-off (here
Ecut = 2GeV) are not included.

Thrust, thrust major and thrust minor can be calculated also for a single jet or only
the hard component of a jet. They are then not infra-red safe any more, but they still
characterise the momentum flow in the jet. A broadening of the jet, which is expected
to arise from interactions with a medium, leads to wider distributions of T, Tmaj and
Tmin. This effect is indeed observed in simulations with a medium (figure 5.15). In
the case of collisional energy loss, however, this broadening is entirely due to recoils.
The kinematics of elastic scattering is such that energetic particles have small scat-
tering angles. When the recoiling scattering centres are removed from the event and
the parton shower hadronises alone the thrust distributions are practically indistin-
guishable from the vacuum. The recoils have mostly relatively low momenta and
those with high momenta have small angles relative to the jet, therefore the widen-
ing of the thrust distributions disappears when only hadrons with energies above
Ecut = 2GeV are considered. In the case of induced radiation, on the other hand,
the probability for large transverse momenta of the radiated partons is much larger.
Consequently, the broadening is also visible in the hard component.

The effect of elastic scattering on the jet rates is similar to the modification of the
thrust distributions. First, there is a broadening of the parton shower, which is small
due to the dominance of small momentum transfers and the kinematics of elastic
scattering which forces energetic particles to small scattering angles. This effect is
found to be negligible (figure 5.16). Second, the recoiling scattering centres can have
a large transverse momentum relative to the jet. This translates into a larger distance
yij between the recoil and jet partons so that the recoil will be counted as separate
structure at relatively coarse scales. However, due to the comparatively low energy
of recoils and the correlation between the energy and the angle, this effect can be
expected to be visible only at relatively small values of ycut, which are sensitive to
small energies. Furthermore, it dies out at larger hadron energies. This behaviour
is in fact seen in the simulation (figure 5.16). The larger transverse momentum of
radiated partons, on the other hand, leads to a shift of the jet fractions to larger values
of ycut in the case of radiative energy loss. This means that at a given resolution more
substructure is found in medium modified jets as compared to the vacuum. Again,
the effect survives also when a background cut is applied.

The jet rates are not very sensitive to the total jet energy, but an inaccurate deter-
mination of the jet energy is dangerous, because it also shifts the n-jet fractions. A
deviation of the reconstructed jet energy from the true value by 30%, for instance,
leads to a shift of log10(1.3

2) ≃ 0.23. This is of the same magnitude as the shift
due to the medium modifications. Thus, event shapes and jet rates may provide a
tool for disentangling collisional and radiative energy loss, but a careful treatment
of experimental uncertainties is still missing.

These results were obtained with the simplified model for medium induced ra-
diation. Given the small effects due to elastic collisions, however, one would not
expect a dramatically different behaviour of the full 2 → 3 process. The structure
of the radiation is similar and the recoil is found to have a small impact when the
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Figure 5.16.: Jet rates for a single 100GeV quark jet after hadronisation in vacuum
and with medium effects. Left: Collisional energy loss for T = 500MeV
and L = 5 fm. Recoil partons are either hadronised together with the
cascade (’all’) or they are not included in the hadronisation (’cascade’).
Right: Medium-induced radiation for fmed = 3 and L = 5 fm. In the top
row, all hadrons are included, while in the bottom row, only hadrons
with energy above Ecut = 2GeV are included.

background cut is applied.

Finally, figure 5.17 shows the modifications of the single-inclusive distribution
dN/dξ. The interactions with the medium lead to a softening of the distribution
on the parton as well as on the hadron level. Elastic scattering can only increase the
multiplicity if recoiling scattering centres are counted towards the jet. The increase in
multiplicity due to recoils or enhanced radiation is more pronounced on the parton
level due to the ability of the string fragmentation to recombine soft partons.

5.2.6. Transverse Momentum Broadening

Partonic energy loss is expected to lead to a characteristic broadening of the jet. Para-
metric estimates in the framework of radiative energy loss models suggest 〈k2⊥〉 ≃
q̂L/2. In models of collisional energy loss one also expects 〈k2⊥〉 ∝ L due to transverse
Brownian motion. In contrast to these parametric expectations, the strong suppres-
sion of leading hadrons observed experimentally is not accompanied by a visible
broadening of jet-like two-particle correlations [16, 19].
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Figure 5.17.: The single inclusive distribution dN/dξ for a single medium-modified
quark jet (Eq = 100GeV) before and after hadronisation (Q0 = 1GeV).
On the parton level (left), all partons are shown, but on the hadron
level (right), only charged hadrons are included. Collisional energy
loss is calculated for T = 500MeV and L = 5 fm, with recoil partons
either hadronised together with the cascade (’all’) or not included in
the hadronisation (’cascade’). Medium induced radiation is calculated
for fmed = 3 and L = 5 fm.
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Figure 5.18.: Transverse momentum relative to the jet axis of particles with energy
larger than Ecut = 2GeV in a 100GeV quark jet. In the collisional energy
loss scenario the recoiling scattering centres can be ignored (’cascade’)
or counted towards the jet (’all’) and they can themselves undergo mul-
tiple scattering (’with scattering of recoil’) or propagate without interac-
tions (’without scattering of recoil’). Left: Hadronisation with adapted
string fragmentation after perturbative evolution down to Q0 = 1GeV.
Right: parton shower evolution down to Q0 = 1GeV without hadroni-
sation (T = 500MeV, L = 5 fm, fmed = 3).
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Figure 5.19.: Mean transverse momentum relative to the jet axis of particles with
energy above the threshold energy, parameters and model variants as
in figure 5.18.

Figure 5.18 shows the transverse momentum distribution of particles with ener-
gies larger than Ecut = 2GeV in a 100GeV jet for two different hadronisation models,
string fragmentation and local parton hadron duality [87, 88] (section 2.2.5). When
the recoiling scattering centres are not included elastic scattering reduces the mul-
tiplicity because less particles pass the energy threshold, but does not lead to a
significant broadening. This is in line with the dominance of small angle scattering.
On the parton level the recoiling scattering centres are visible as prominent peak at
k⊥ ≃ 1.75GeV, which is the characteristic transverse momentum of scattering cen-
tres with 2GeV energy recoiling from a 100GeV projectile (section 5.2.3). When also
the recoils experience multiple scattering the shape of the transverse momentum
distribution remains unchanged. The (primary) recoiling scattering centres have al-
ready relatively low energy, so that a secondary recoil can only exceed the energy
threshold if the momentum transfer was large and this means that the angle be-
tween the primary and the secondary recoil is small. With string fragmentation, on
the other hand, including the recoils leads to a slight broadening of the distribution
but there is no strong increase in multiplicity. The same observation applies to radia-
tive energy loss in the string fragmentation scenario. Generally, string fragmentation
softens the partonic distribution thus pushing particles below Ecut and washes out
structures associated to relatively soft particles because it recombines soft partons
and produces hadrons everywhere along the strings. This means for the induced
radiation, which leads to a soft but wide shower at the parton level, that it does
not lead to a strong increase of hadronic multiplicity as compared to vacuum jets,
but the average transverse momentum increases slightly (figure 5.19). In the purely
partonic scenario one observes a quite different effect: Here the mean k⊥ decreases
because of the strong increase in multiplicity. This suggests that energy-momentum
conservation is an important constraint.
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5.3. Further Improvements of the Model

In this section developments beyond Jewel 1.0, that are only partly implemented,
are presented. Improving the description of the medium by including a realistic
geometry and expansion is a straightforward generalisation. The most important
improvement will be to include a microscopic model for radiative energy loss based
on 2→ 3 matrix elements. Following the idea outlined in section 5.3.2 such a model
can be obtained, which is by construction incoherent. Finally, in section 5.3.3 a
procedure how the LPM suppression can be implemented in Monte Carlo models is
presented.

5.3.1. Realistic Geometry and Expansion

The simulation can be equipped with a realistic geometry and a position and time de-
pendent density. Geometrical aspects are obtained from a simple Glauber model [89]
(section 3.1.1) with a Woods-Saxon potential, numerical values given in this sec-
tion are calculated for Au+Au collisions at σinelNN = 42mb corresponding roughly
to

√
sNN = 200GeV, but the results for Pb+Pb collisions at Lhc energies are very

similar.
Since the experiments characterise nucleus-nucleus collisions by their centrality,
i.e. the fraction of the total geometrical cross section covered, rather than the impact
parameter, it is convenient to do the same in the simulation. The cross section and
thus the centrality increase quadratically with impact parameter, for centralities up
to 90% the relation can be very well approximated by

b =
√

2.25 fm2 · centrality [%] . (5.48)

Only for very peripheral collisions the thinner edge of the nucleus becomes impor-
tant. A given centrality class translates into an impact parameter range, from which
the impact parameter for a specific event has to be chosen according to the cross
section. For centralities up to 90% one finds

dσ

db
= 6.28 · b . (5.49)

The coordinate system is chosen such that the impact parameter and thus the short
axis of the overlap region is in x direction.
Jet production is a hard process that scales with the number of binary nucleon-
nucleon collisions. Therefore, the transverse components of the production points
for the hard parent partons are distributed in the resulting overlap region according
to the number of binary collisions per transverse area

nbin(x, y) = TA

(

√

(x− b/2)2 + y2
)

· TA
(

√

(x+ b/2)2 + y2
)

. (5.50)

The nuclei appear strongly Lorentz contracted in the longitudinal direction and
therefore all parent partons are assumed to be produced at z = 0. The emission
directions are uniformly distributed in azimuthal angle.
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Figure 5.20.: Energy density profile at z = 0 for b = 4 fm at different times.

The energy production in the fireball, which is a soft process, is expected to scale
with the number of participating nucleons. The energy density in the medium is
thus assumed to have a transverse profile that is given by the transverse density of
participants. The model parameter ǫ0 regulating the density is the equivalent initial
density, which is the mean density at a proper time τ0 in a central (b = 0) collision.
For any centrality the density profile is then given by

ǫ(x, y, b, τ0) = ǫ0npart(x, y, b)
πR2A
2A

(5.51)

with

npart(x, y, b) = TA

(

√

(x− b/2)2 + y2
) [

1− e−σinelNNTA

(√
(x+b/2)2+y2

)]

+ TA

(

√

(x+ b/2)2 + y2
) [

1− e−σinelNNTA

(√
(x−b/2)2+y2

)]

. (5.52)

This means that the mean density increases with centrality.
Furthermore, the equation of state and the time evolution have to be specified. The
ideal gas equation of state was already used in the static case to relate the particle
density to the temperature. Here, it is supplemented with a Bjorken-like longitudinal
expansion [91] (section 3.1.3) leading to

ǫ(x, y, b, τ) = ǫ(x, y, b, τ0)
(τ0

τ

)
1
3

(5.53)

for τ ≥ τ0. For τ < τ0 the energy density is assumed to be the same as at τ0.
Interactions with the medium can only take place as long as the local temperature
is higher than the critical temperature. The critical density and the formation time
τ0 as well as the equivalent initial temperature, which replaces the equivalent initial
density, are the model parameters regulating the density. This simple model for
the medium can easily be replaced by a more realistic calculation, a hydrodynamic
evolution for instance. The temperature and density as a function of position and
time could be tabulated and used in the simulation.

Not only the density, also the scattering cross section depends now on position and
time through s, ms and µD. The cross section decreases with temperature while the
density increases, so that the resulting scattering probability depends only weakly
on temperature. For the no-scattering probability the integral in equation (5.32) has
to solved numerically.
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Figure 5.21.: Trigger bias in central (b = 0) nuclear collisions with only collisional
energy loss. Left: Normalised distributions of the radial coordinate of
the production points of jets that contain a trigger hadron compared
to the untriggered distribution. The trigger condition is at least one
hadron with energy larger than 10GeV. Right: Transverse momentum
spectrum of parent partons that produced a trigger hadron after jet evo-
lution in the medium compared to the triggered distribution after vac-
uum evolution and the untriggered distribution. The parent p⊥ can also
be viewed as the total p⊥ of the jet. The initial and critical temperature
are Ti = 500MeV and Tc = 170MeV, respectively, and τ0 = 0.2 fm.
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Figure 5.22.: Left: Mean collisional energy loss of an on-shell quark with E =
100GeV as a function of the emission angle for 40 − 50% centrality.
Also shown is the mean path length in the medium (the errorbars in-
dicate the spread due to the distribution of production points in the
overlap region), the path length of partons emitted from the centre of
the overlap region and the geometrical path length (again for emission
from the centre), which ignores the expansion and finite lifetime of the
medium, for a nuclear radius RA = 7.5 fm. Right: Nuclear modification
factor for collisional energy loss including the recoiling scattering cen-
tres in the 40− 50% centrality class for jets emitted in the reaction plane
(ϕ = 0) and out of plane (ϕ = π/2). The equivalent initial temperature
is Ti = 500MeV, Tc = 170MeV, and τ0 = 0.2 fm.
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The factor fmed in the simplified model for radiative energy loss does not contain
any dependence on medium properties and does not allow for induced radiation off
on-shell partons. Therefore, a study of effects of the geometry and expansion only
makes sense for the collisional energy loss.

With a model for the geometry and expansion one can study trigger bias effects
under realistic conditions. It is commonly believed that due to the energy loss in the
medium triggering on energetic hadrons biases the sample towards jets that were
emitted close to the surface and thus lost exceptionally little energy. But there is a
competing effect and that is the chance to escape with little energy loss even after
a considerable path length in the medium (cf. figure 5.9) and the vast majority
of the jets is produced more than one mean free path away from the surface. In
the simulation a significant but not very strong surface bias is observed for a set
of parameters that leads to a suppression of high p⊥ hadrons of about a factor 2
(figure 5.21 left).

A strong trigger bias would also imply that the triggered jets lost nearly no energy
so that the shape of the triggered p⊥ spectrum should be the same as in vacuum
while the rate decreases. A significant energy loss, on the other hand, would shift
the spectrum to higher momenta. In any case the effect is expected to die out at large
transverse momenta when the production of a trigger particle has more support
from the fragmentation function. Unfortunately, the result of the simulation for the
triggered spectrum in medium is not conclusive (figure 5.21 right). There seems to
be a shift of the maximum which could be interpreted as energy loss of the triggered
jet.

A signature of non-central geometry that is also observed in data (section 3.2) is
a dependence of the hadron suppression on the angle relative to the reaction plane.
The left panel of figure 5.22 shows the variation of the energy loss and the path
length with the emission angle for 40 − 50% centrality. There is a clear increase
of the path length with the angle, but the path length difference between in-plane
and out-of-plane emission is seen to be much smaller than the spread due to the
distribution of emission points in the overlap region. Also shown is the path length
of partons emitted from the centre of the overlap region, which is very similar to
the mean path length in the case of distributed emission points for small angles but
is somewhat larger at large angles. At larger angles the finite lifetime limits the
available path lengths. The geometrical path length, i.e. the path length in a static
medium, is considerably longer at large emission angles than the path length in an
expanding medium of the same size.

As expected, the collisional energy loss closely follows the path length, but here
the variance is even larger. In addition to the variation of the path length the energy
loss has a wide distribution already for a fixed path length and it is temperature
dependent. The larger mean energy loss of partons emitted out-of-plane translates
to a stronger suppression of hadrons in this direction (figure 5.22 right). However,
the difference between in-plane and out-of-plane emission is smaller than observed
in data.
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Figure 5.23.: Labelling of momenta in inelastic quark scattering, the double line rep-
resents the heavy quark.

5.3.2. First Steps Towards Inelastic Scattering

Implementing inelastic scattering on the same footing as the elastic process requires
knowledge of the inelastic cross sections. Among the many different possible pro-
cesses the inelastic scattering of a massless off a heavy quark has the advantages that
it is relatively simple and the mass is a parameter that can be used to regulate the
gluon radiation off the target. Furthermore, there exists a restframe of the medium.
The matrix element for this process,

q(p2) +Q(p1) → q(p3) +Q(p4) + g(k) , (5.54)

where q and g are massless and Q has mass m, is given by [182]

|MqQ→qQg|2 =

g6

4N2

{

(p1p3)
2 + (p3p4)

2 + (p1p2)
2 + (p2p4)

2 +m2
(

−p1p4 − p2p3 +m2
)

(p2 − p3)2 (p1 − p4)2
×

×
[

4(N2 − 1)2
N

(

p1p3
p1k p3k

+
p2p4
p2k p4k

)

+
4(N2 − 1)
N

(

2 p1p2
p1k p2k

+
2 p3p4
p3k p4k

− p2p4
p2k p4k

− p1p3
p1k p3k

− p2p3
p2k p3k

− p1p4
p1k p4k

)]

− (N2 − 1)(N2 − 4)
N

4m2

(p2 − p3)2 (p1 − p4)2
(

p3p4 + p2p4
p1k

− p1p3 + p1p2
p4k

)

+
4(N2 − 1)2
N

m2
[

− (p3k)2 + (p2k)2

(p1 − p4)4 p3k p2k

− 1

2 (p1 − p4)2
(

− 1

p1k
− 1

p2k
+
1

p3k
+
1

p4k

)

− 1

2 (p2 − p3)2
(

− 1

p1k
+
1

p4k
+
m2

(p1k)2
+
m2

(p4k)2
+

4

(p1 − p4)2
)

− 1

(p2 − p3)4

(

(

p1p3
p4k

+
2 p3k

(p1 − p4)2
)2

+

(

p1p2
p4k

+
2 p2k

(p1 − p4)2
)2

+

(

p3p4
p1k

+
2 p3k

(p1 − p4)2
)2

+

(

p2p4
p1k

+
2 p2k

(p1 − p4)2
)2
)]
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− (N2 − 1)
N

4m2

(p2 − p3)2 (p1 − p4)2
×

×
[

1− 2 p2p3
(p1 − p4)2

− m
2

p1k
+
m2

p4k
− (p3k)2 + (p2k)2

p1k p4k

− 2 (p1p2 − p1p3)
(p2 − p3)2

(

p1p3
p4k

+
2 p3k

(p1 − p4)2
+
p1p2
p4k

+
2 p2k

(p1 − p4)2
)

−2 (p3p4 + p2p4)

(p2 − p3)2
(

p3p4
p1k

+
2 p3k

(p1 − p4)2
+
p2p4
p1k

+
2 p2k

(p1 − p4)2
)]}

(5.55)

It has the usual singularities when one of the massless particles is soft, a pair of
massless particles is collinear or the momentum transfer to the heavy quark vanishes.
Formally, this amounts to 7 singularities. Apart from that the three-particle final
state is described by 5 independent variables, which makes a direct Monte Carlo
implementation of the process extremely difficult. Instead, one has to identify the
important properties and features.

The singularities associated with the radiated gluon are of the form 1/(p2k p3k),
so that the matrix element can be written as 1/(p2k p3k) times an expression that is

finite for all k = (ω,~k) [183].

|MqQ→qQg|2 =
1

p2k p3k

g6

4N2
×

×
{

(p1p3)
2 + (p3p4)

2 + (p1p2)
2 + (p2p4)

2 +m2
(

−p1p4 − p2p3 +m2
)

(p2 − p3)2 (p1 − p4)2
×

×
[

4(N2 − 1)2
N

(

p1p3 p2k

p1k
+
p2p4 p3k

p4k

)

+
4(N2 − 1)
N

(

2 p1p2 p3k

p1k
+
2 p3p4 p2k

p3k
− p2p4 p3k

p4k

− p1p3 p2k
p1k

− p2p3 −
p1p4 p2k p3k

p1k p4k

)]

− (N2 − 1)(N2 − 4)
N

4m2

(p2 − p3)2 (p1 − p4)2
×

×
(

(p3p4 + p2p4) p2k p3k

p1k
− (p1p3 + p1p2) p2kp3k

p4k

)
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+
4(N2 − 1)2
N

m2
[

− (p3k)2 + (p2k)2

(p1 − p4)4
− 1

2 (p1 − p4)2
(

− p2k p3k
p1k

− p3k+ p2k+
p2k p3k

p4k

)

− 1

2 (p2 − p3)2
(

− p2k p3k
p1k

+
p2k p3k

p4k
+
m2 p2k p3k

(p1k)2
+
m2 p2k p3k

(p4k)2
+
4 p2k p3k

(p1 − p4)2
)

− 1

(p2 − p3)4
(

(p1p3)
2 p2k p3k

(p4k)2
+
4 p1p3 p2k (p3k)

2

p4k (p1 − p4)2
+
4 p2k (p3k)3

(p1 − p4)4

+
(p1p2)

2 p2k p3k

(p4k)2
+
4 p1p2 (p2k)2 p3k

p4k (p1 − p4)2
+
4 (p2k)3 p3k

(p1 − p4)4

+
(p3p4)

2 p2k p3k

(p1k)2
+
4 p3p4 p2k (p3k)

2

p1k (p1 − p4)2
+
4 p2k (p3k)3

(p1 − p4)4

+
(p2p4)

2 p2k p3k

(p1k)2
+
4 p2p4 (p2k)2 p3k

p1k (p1 − p4)2
+
4 (p2k)3 p3k

(p1 − p4)4
)]

− (N2 − 1)
N

4m2

(p2 − p3)2 (p1 − p4)2
×

×
[

p2k p3k−
2 p2p3 p2k p3k

(p1 − p4)2
− m

2 p2k p3k

p1k
+
m2 p2k p3k

p4k
−
(

(p3k)2 + (p2k)2
)

p2k p3k

p1k p4k

− 2 (p1p2 − p1p3)
(p2 − p3)2

(

p1p3 p2k p3k

p4k
+
2 p2k (p2k)2

(p1 − p4)2
+
p1p2 p2k p3k

p4k
+
2 p2k p2k p3k

(p1 − p4)2
)

−2 (p3p4 + p2p4)

(p2 − p3)2
(

p3p4 p2k p3k

p1k
+
2 p3k p2k p3k

(p1 − p4)2
+
p2p4 p2k p3k

p1k
+
2 (p2k)2 p3k

(p1 − p4)2
)]}

(5.56)

In the soft gluon approximation, where all terms in the finite piece that grow with ω
are neglected and the quark momenta are assumed to be given by 2→ 2 kinematics,
the matrix element simplifies considerably to [182]

|MqQ→qQg|2 =
1

p2k p3k

g6

4N2

{

2 (p1p3)
2 + 2 (p1p2)

2 − 2m2 p2p3
(p2 − p3)4

×

×
[

4(N2 − 1)2
N

(

p1p3 p2k

p1k
+
p2p4 p3k

p4k

)

+
4(N2 − 1)
N

(

2 p1p2 p3k

p1k
+
2 p3p4 p2k

p3k
− p2p4 p3k

p4k

− p1p3 p2k
p1k

− p2p3 −
p1p4 p2k p3k

p1k p4k

)]

+
4(N2 − 1)2
N

m2
[

− 1

2 (p2 − p3)2
(

m2 p2k p3k

(p1k)2
+
m2 p2k p3k

(p4k)2

)

− 1

(p2 − p3)4
(

(p1p3)
2 p2k p3k

(p4k)2
+

(p1p2)
2 p2k p3k

(p4k)2

+
(p3p4)

2 p2k p3k

(p1k)2
+

(p2p4)
2 p2k p3k

(p1k)2

)]}
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=
1

p2k p3k
g2
g4(N2 − 1)
2N2

{

(p1p2)
2 + (p1p3)

2 −m2p2p3
(p2p3)2

×

×
[

N2 − 1
N

(

p1p3 p2k

p1k
+
p2p4 p3k

p4k

)

+
1

N

(

2 p1p2 p3k

p1k
+
2 p3p4 p2k

p3k
− p2p4 p3k

p4k

− p1p3 p2k
p1k

− p2p3 −
p1p4 p2k p3k

p1k p4k

)]

− N
2 − 1
2N

1

(p2p3)2

[

m2 p2k p3k

(p1k)2
(

(p1p2)
2 + (p1p3)

2 −m2 p2p3)
)

m2 p2k p3k

(p4k)2
(

(p1p2)
2 + (p1p3)

2 −m2 p2p3)
)

]}

=
1

p2k p3k
g2|MqQ→qQ|2

[

CF

(

2
p1p3 p2k

p1k
+ 2
p2p4 p3k

p4k

−m
2 p2k p3k

(p1k)2
− m

2 p2k p3k

(p4k)2

)

+
1

N

(

2
p1p2 p3k

p1k
+ 2
p3p4 p2k

p4k

− p1p3 p2k
p1k

− p2p4 p3k
p4k

− p1p4 p2k p3k
p1k p4k

− p2p3
)]

, (5.57)

where the matrix element describing the 2→ 2 quark scattering is given by

|MqQ→qQ|2 =
g4(N2 − 1)
2N2

(p1p2)
2 + (p1p3)

2 −m2p2p3
(p2p3)2

. (5.58)

In the soft gluon limit there is no radiation from the virtual gluon line. The singular
factor can be rewritten as

1

p2k p3k
=

1

ω2E2E3(1− cos ϑ2g)(1− cos ϑ3g)

=
1

ω2

(

1

1− cos ϑ2g
+

1

1− cos ϑ3g

)

1

(1− cos ϑ2g) + (1− cos ϑ3g)

1

E2E3
. (5.59)
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In the target rest frame, where p1 = (m, 0, 0, 0), the matrix element takes the form

|MqQ→qQg|2 =
1

ω2

(

1

1− cos ϑ2g
+

1

1− cos ϑ3g

)

g2|MqQ→qQ|2CF

× 1

(1− cos ϑ2g) + (1− cos ϑ3g)

×



2
(E4 −

√

E24 −m2 cos ϑ24)(1− cos ϑ3g)

E4 −
√

E24 −m2 cos ϑ4g

+ 2(1− cos ϑ2g)

−m
2(1− cos ϑ2g)(1− cos ϑ3g)

E4 −
√

(E24 −m2 cos ϑ4g)2
− (1− cos ϑ2g)(1− cos ϑ3g)



 . (5.60)

This expression is not symmetric between ϑ2g and ϑ3g due to the induced radiation
from the outgoing heavy quark. If the quark mass is large, this contribution becomes
small. It can be neglected by setting E4 = m in the last factor, which describes
the gluon radiation. Then the matrix element contains the contribution from the
massless quark lines, which look the same, and a part from the heavy quark which
has no collinear divergence.

|MqQ→qQg|2 =
1

ω2

(

1

1− cos ϑ2g
+

1

1− cos ϑ3g
− 1
)

g2|MqQ→qQ|2CF2 (5.61)

In this approximation the inelastic scattering cross section factorises into the elastic
cross section times a part that describes the gluon radiation and which has the same
structure as the perturbative 1→ 2 splitting.

σqQ→qQg =
1

2
√

λ(s,m2, 0)(2π)5

×
∫

d3p3
2E3

d3p4
2E4

d3k

2ω
δ(p1 + p2 − p3 − p4 − k)|MqQ→qQg|2 (5.62)

≃σqQ→qQ

(2π)3

∫

d3k

2ω

1

ω2

(

1

1− cos ϑ2g
+

1

1− cos ϑ3g
− 1
)

g2CF2 (5.63)

=
σqQ→qQ

2π2
CF

∫

dω

ω
sin ϑgdϑgdφg

(

2

1− cos ϑg
− 1
)

αs (5.64)

In the last step the symmetry of the integrand under exchange of ϑ2g and ϑ3g was
exploited. Ignoring the ϑg dependence of the coupling and expanding the integrand
one obtains

σqQ→qQg ≃σqQ→qQ

π
CF

∫

dω

ω

dϑg

ϑg
4αs (5.65)

≃σqQ→qQ

π
CF2

∫

dz

1− z
dQ2

Q2
αs , (5.66)
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where z is the energy fraction, that the quark takes in the splitting process,

ω = (1− z)E , (5.67)

and the gluon angle is

ϑ2g =
zQ2a

(1− z)E2 (5.68)

when the incoming projectile is off-shell and the daughters are produced on-shell
and

ϑ2g = −Q
2
b

E2
(5.69)

when the incoming projectile is on-shell and the outgoing projectile goes off-shell.
In this case Q2b is negative. E is in both cases the incoming projectile’s energy. In
this approximation only radiation from the massless quark lines is left, because in
expanding the integrand to leading order in ϑg the contribution from the heavy
quark, which is not singular in ϑg is dropped. The integral in equation (5.66) can be
interpreted as a splitting probability with a medium induced splitting function

σqQ→qQg = σqQ→qQ
∫

dz
dQ2

Q2
αs
2π
P̂
(med)
qq (z) with P̂

(med)
qq (z) = CF

4

1− z . (5.70)

The resemblance to the vacuum splitting process suggests to use k2⊥ as scale of αs also
in the case of medium induced radiation. Consequently, the minimum transverse
momentum k⊥ ≥ f · ΛQCD appears as a regulator. This means that the relative
strength of the inelastic process compared to elastic scattering is already fixed. In
this factorised form the cross section can be used in a Monte Carlo simulation.

The inelastic scattering process does not have to change the virtuality of the pro-
jectile. The internal quark line can be off-shell, which allows the radiated gluon to
carry transverse momentum. Although one could imagine that a virtual parton in
a medium reduces its virtuality not only through 1 → 2 but also through 2 → 3
processes, it is here assumed that inelastic scattering does not affect the fast parton’s
virtuality. This choice avoids extra modelling of the virtuality reducing scattering
and ensures that the inelastic scattering process is the same for virtual and real
partons. Furthermore, the elastic and the inelastic scattering then appear as two
contributions to the scattering process in the model and are formally treated equally.
The total scattering cross section is the sum of the elastic and the inelastic part

σscat = σqQ→qQ
(

1+
∫

dz
dQ2

Q2
αs
2π
P̂
(med)
qq (z)

)

. (5.71)

The t-channel contributions to the other inelastic processes with induced gluon ra-
diation can as a first approximation be mimicked by replacing CF by the appropriate
Casimir factor in equation (5.70) and the elastic cross section. The other processes
and medium induced splitting of gluons into quark pairs require a more careful
treatment.

The no-scattering probability in a static and homogeneous medium becomes

Pno scatt(τ) = e−(σelas+σinel)nτβ . (5.72)
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Once it has been decided that the next process will be a scattering the elastic or
inelastic process has to be chosen according to their contribution to the total cross
section. If the inelastic process is selected six variables have to be chosen: z and Q2

for the radiation from the medium splitting function, t for the elastic subprocess from
the elastic scattering cross section, two azimuthal angles from flat distributions for
the radiated gluon and the elastic part and it has to be decided whether the radiation
happens before or after the elastic scattering. Radiation from the heavy quark line
can also be reintroduced with a fraction of the inelastic cross section that has to
be determined from the full expression in equation (5.64). Then, the kinematics in
the elastic scattering and the radiation is constructed one after the other with the
virtuality of the internal line given by Q2. If the incoming projectile happens to be
off-shell this virtuality can be treated like a rest mass during the simulation of the
inelastic process. It will then emerge from the scattering with the same virtuality.

5.3.3. LPM­Suppression in a Probabilistic Monte Carlo Model

Analytic calculations of radiative energy loss indicate that the suppression of in-
duced gluon radiation due to destructive interference (LPM effect) dominates the
characteristics of radiative energy loss. These models work in the high energy limit
and do not conserve energy and momentum exactly. It is thus not clear what the role
of the LPM effect is at non-asymptotic energies with energy-momentum conserva-
tion. Monte Carlo models, on the other hand, can conserve energy and momentum
exactly but including interference effects in probabilistic formulations is notoriously
difficult. Existing Monte Carlo models circumvent the problem by generating in-
coherent emissions associated to single scattering centres from an effective radiation
spectrum including the LPM suppression (section 3.3.3). However, the interpretation
in terms of finite formation times sketched at the beginning of section 3.3.2 offers a
possibility to include the LPM interference in a Monte Carlo model without modify-
ing the single scattering radiation spectrum. This idea has been explored in a small
test set-up.

The medium is characterised by the transport coefficient q̂, the longitudinal density
nl along the projectile’s trajectory and its length L. The projectile radiates gluons
whose energy distribution is given by the spectrum associated to a single scattering

dI(1)

dω
∝
1

ω
. (5.73)

The maximum energy that can be radiated is given by the characteristic gluon energy
corresponding to the remaining path length l in the medium

ωmax = ωc(l) =
1

2
q̂l2 . (5.74)

The spectrum is cut off at a low energy ωmin to regularise the divergence. The choice
of ωmin does not influence the results but it is convenient to use a value that is smaller
than the energy ωc(λ) that can be radiated incoherently.
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fit: dI/dω ∝ ω−1.49±0.02
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Figure 5.24.: Gluon spectra for different path lengths in a continuous medium (q̂ =
0.5GeV2/fm, ωmin = 100MeV, nl = 1 fm

−1); fit for L = 10λ : dI/dω ∝

ω−1.49±0.02.

The radiated gluon has a formation time

tcoh =

√

2ω

q̂
. (5.75)

The next gluon can be formed at l − tcoh and so the radiation of a single gluon is
iterated until the projectile leaves the medium. The medium can either be thought of
as consisting of single scattering centres, which implies that tcoh has to be a multiple
of the mean free path λ. Alternatively, one can imagine that the medium continu-
ously transfers transverse momentum to the projectile, in which case tcoh can take
any value. At this stage there are no constraints due to a finite projectile energy,
the incoming energy Ei is taken to be large compared to the total amount of energy
that can be radiated during the passage through the medium. The resulting gluon
spectrum is shown in figure 5.24 for the continuous medium. It shows the

dI

dω
∝
1

ω3/2
(5.76)

shape characteristic for LPM suppression. The shape remains the same for all L (fig-
ure 5.24 right). The discrete medium (figure 5.25 left) leads to a stepwise suppression
due to the requirement that always a multiple of the mean free path is needed to ra-
diate the respective gluon. The shape of the spectrum is the same in both cases, but
the number of radiated gluon is somewhat smaller in the discrete case.

The energy loss is proportional to L2 in both cases (figure 5.25 right) as expected
from the shape of the spectrum. The number of radiated gluons, on the other hand,
grows only like

√
L.

With a finite initial projectile energy Ei the gluon energy cannot exceed this value,
which means

ωmax = min(ωc, Ei) . (5.77)
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L = 10λ incoherent
L = 10λ continuous medium
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Figure 5.25.: Left: Gluon spectrum for L = 10λ in a discrete and a continuous
medium and the incoherent spectrum (with ωmax = ωc(L)). Right:
Energy loss in a discrete (∆E ∝ L1.973±0.003) and a continuous medium
(∆E ∝ L2.045±0.001); (q̂ = 0.5GeV2/fm, ωmin = 100MeV, nl = 1 fm

−1).
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Figure 5.26.: Left: Power of the radiated gluon spectrum dI/dω ∝ ω−n with a cut-
off of 100GeV on the gluon spectrum induced by a single scattering
but without constraint on the total radiated energy, Lc = 9λ. Right:
Energy loss in the three cases explained in the caption of figure 5.27
(q̂ = 0.5GeV2/fm, ωmin = 100MeV, nl = 1 fm

−1).
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ωmax = min(ωc, E), Ei = 10GeV

fit: dI/dω ∝ ω−1.0139±0.0004
fit: dI/dω ∝ ω−1.49±0.01
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Figure 5.27.: Left: Gluon spectrum induced by a medium with length L = 100λ
with energy conservation (Ei = 10GeV) (dI/dω ∝ ω−1.49±0.01), with a
cut-off on the gluon spectrum induced by a single scattering (dI/dω ∝

ω−1.0139±0.0004) and without energy constraints (dI/dω ∝ ω−1.49±0.02,
figure 5.24 left). Right: Gluon spectra for different path lengths in a
coherent and an incoherent calculation with energy conservation for
Ei = 100GeV (Lc = 9 fm).

When the total radiated energy is left unconstrained (which is not realistic but in-
structive) a quasi-incoherent regime is reached for L > Lc with

Lc =

√

2Ei
q̂
, (5.78)

which is the path length needed to radiate the highest possible energy Ei. The power
n of the gluon spectrum dI/dω ∝ ω−n decreases smoothly from n = 3/2 for L≪ Lc
to n = 1 as for the incoherent spectrum for L ≫ Lc (figure 5.26 left). Correspond-
ingly, the energy loss increases quadratically with L below Lc and linearly above Lc
(figure 5.26 right). Unlike the power of the spectrum, which varies smoothly over a
large range in L, the energy loss shows a sharp transition from the coherent to the
incoherent regime at L = Lc.

Finally, energy conservation can be implemented by requiring

ωmax = min(ωc, E) with E = Ei − ∑
j

ωj . (5.79)

The sum runs over all gluons that have been radiated so far. This makes sure that
the total radiated energy is not bigger than the incoming projectile energy. This has
a similar effect as the finite path length in the scenario without energy constraints.
In fact, the shape of the resulting spectrum is the same (figure 5.27 left). The nor-
malisation, on the other hand, is different because the number of gluons is larger in
the energy conserving scenario. The energy loss is proportional to L2 for small L but
then in levels off to reach ∆E = Ei at large L (figure 5.26 right).

For large path lengths (L & 2Lc) the spectrum is dominated by the constraints due
to energy conservation and the coherence plays only a minor role. This can be seen
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5. Jet Evolution With Energy Loss

by comparing the coherent calculation with energy conservation to an incoherent
calculation that also conserves energy (figure 5.27 right). In the incoherent case
the spectrum looks for small path lengths very much like the incoherent sum of
radiations induced by individual scatterings without further constraints. For L ≈ Lc
there is already a strong modification due to energy conservation and for larger L
the spectrum approaches the coherent result.

One can thus conclude that the Monte Carlo implementation of the LPM effect
based on the formation time of radiated gluons reproduces the characteristic features
of LPM suppression. Furthermore, it can be supplemented with energy conservation,
which is found to dominate the spectrum for large path lengths L & 2Lc (or small
projectile energies).
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CHAPTER 6

Conclusions and Outlook

Monte Carlo models for hadronic and nuclear collisions are at the interface between
the theory of QCD and experiment. Depending on the class of measurements and
the status of the theory, they provide a bridge between QCD and data which involves
a varying degree of model assumptions.

In this work the Monte Carlo model Jewel for jet evolution in ultra-relativistic
nuclear collisions is presented. It the absence of medium effects it passes into a
standard parton shower evolution followed by a string fragmentation variant. It was
shown to describe event shapes, jet rates and the intra-jet distribution dN/dξ mea-
sured in e+e− collisions sufficiently well. In the presence of a medium, which is
in this study taken to be an ideal quark-gluon gas, the parton shower evolution is
interleaved with scattering in the medium. It contains a microscopic description of
elastic scattering, inelastic processes are at this stage included schematically using a
phenomenological model. Ambiguities related to the treatment of recoiling scatter-
ing centres and hadronisation in a nuclear environment are outlined but are found
to be of minor importance for event shapes and jet rates. Elastic scattering, although
leading to a significant suppression of single-inclusive hadron spectra, does not af-
fect these distributions when a soft background cut is applied. Medium induced
splitting, on the other hand not only softens but also widens the jet significantly,
which is reflected in the event shapes and jet rates. These quantities may thus be
able to distinguish between elastic and inelastic energy loss. No strong broadening
of the jet is observed, but the angular distributions are sensitive to hadronisation, in
particular in connection with the recoiling medium. There are indications that they
are largely constrained by energy-momentum conservation. Geometrical aspects and
trigger bias effect can also be studied, as an example it was shown that there is no
strong surface bias related to collisional energy loss.

Finally, a prescription how inelastic scattering can be included on the same footing
as the elastic processes was outlined. There may even be a natural way to treat the
LPM effect in the Monte Carlo model.
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6. Conclusions and Outlook

The microscopic mechanism(s) underlying jet quenching are not firmly established
and their theoretical description is incomplete. In view of the complexity of this
problem in heavy ion collisions, the Monte Carlo simulation method is particularly
suitable for a detailed treatment. Amongst the many open problems in the theory
and phenomenology of jet quenching, in particular the following points may be
accessible by further developments of Jewel:

Heavy flavour: The propagation of heavy quarks has recently attracted significant
attention [4–7, 106]. The strong suppression of heavy flavours seems to con-
tradict the conjectured dominance of radiative energy loss, which renewed
the interest in elastic energy loss. The generalisation to massive quarks is a
straightforward extension of Jewel.

Multi­particle correlations are attractive due to their larger sensitivity to the un-
derlying mechanisms. They are, however, also sensitive to hadronisation, as
could be seen in the k⊥ broadening. Therefore, although multi-particle correla-
tions are easily accessible in Monte Carlo models, more careful investigations
are needed.

Realistic description of the medium: In the extended version with geometry and
expansion the simple model for the medium can easily be replaced by a more
realistic scenario. This requires information about the position and time de-
pendent density and temperature that can be obtained from hydrodynamic
simulations [184–187].

Radiative energy loss: It is clearly desirable to have a microscopic description of
inelastic scattering so that elastic and inelastic processes can be treated on equal
footing. Future versions of Jewel will be equipped with such a description of
radiative energy loss in terms of 2→ 3 matrix elements, as outlined in section
5.3.2.

Interplay of strongly and weakly coupled regimes: While the splitting of highly
virtual partons and their hard interactions are well described by perturbation
theory this is not true for softer interactions and the propagation of soft parti-
cles through the medium. The uncertainties arising through the regularisation
of the perturbative cross section are symptomatic for the appearance of non-
perturbative physics. The same holds for the propagation and thermalisation
of softer fragments which is not well described by 2→ 2 and 2→ 3 processes.
This directly leads to the question how the parton cascade and the recoiling
scattering centres accompanying it hadronise in a high multiplicity environ-
ment. These processes may become a test laboratory for understanding how
a well-defined partonic projectile interacts and to what extent it thermalises
within a finite size medium. From a pragmatic point of view, a parton shower
may contribute to this issue by identifying the momentum scales at which a
perturbative description breaks down.

There are many other open issues for improving our understanding of jet quench-
ing in an interplay between theory and experiment. One of the most central ones
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may be how to best characterise a jet within a high multiplicity environment such
that unambiguous information about its medium modifications can be obtained.
Although it may not be able to resolve these issues, Jewel can contribute by iden-
tifying classes of jet observables, which are sensitive to medium effects but remain
sufficiently insensitive to operational uncertainties in the jet definition and theoreti-
cal uncertainties like hadronisation. By superimposing simulations of Jewel on top
of the simulated background of heavy ion collisions one can test the sensitivity of
different jet observables. On the other hand, by simulating the redistribution of
’background’ multiplicity due to the propagation of a jet, Jewel provides a means to
go beyond the simplifying assumption that the medium-modified jet is uncorrelated
with the underlying background. These features of Jewelmay contribute to establish
to what extent an operational procedure of characterising jet medium modifications
is suited to draw model-independent conclusions.
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APPENDIX A

Monte Carlo Techniques

The Monte Carlo method1 can be defined as representing the solution of a problem
as a parameter of a hypothetical population, using a random sequence of numbers to
construct a sample of the population, from which statistical estimates of the parame-
ter can be obtained [190] . Monte Carlo methods are not only applicable to problems
of probabilistic or statistical nature, although they typically amount to a straightfor-
ward simulation in these cases, but can also be used for perfectly deterministic or
analytical problems. In Monte Carlo simulations of probabilistic or statistical prob-
lems the hypothetical population corresponds to the physical states of the system
under consideration. Formally, all Monte Carlo calculations are equivalent to inte-
grations. The Monte Carlo estimate S(ri, . . . , rn) of the solution to some problem is a
function of the random numbers ri used in the computation. Usually, these random
numbers are distributed uniformly between 0 and 1. S is a Monte Carlo estimate of
the integral

1
∫

0

n

∏
i=1

dxiS(x1, . . . , xn) . (A.1)

Important ingredients of Monte Carlo calculations are random numbers, that will
be discussed later, and random variables. A random variable can take more than
one discrete or continuous value, the value that will be taken is unpredictable. The
probability, with which a particular value will be taken, is given by the probability
density function. For a single continuous random variable x the probability density
function g(x) is defined via

g(x) =
dG(x)

dx
with G(x) =

x
∫

−∞

dx′ g(x′) . (A.2)

1For a review of Monte Carlo techniques see also [23, 188, 189].
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G(x) is the probability to find a value smaller than x. Physicists often prefer to re-
gard g(x)dx as the probability that a value between x and x+dx is taken. In physics
probability densities need not be normalised to unity, in some cases the integral over
a probability density function has itself a physical meaning. In scattering experi-
ments, for instance, the scattering angle is a random variable and the probability
density function is the differential cross section. The integral over the probability
density is obviously the total cross section.
The expectation value of a function of a random variable is given by

〈 f 〉 =
∫

dG(x) f (x) =
∫

dx g(x) f (x) (A.3)

and the variance is

σ2( f ) = 〈 f − 〈 f 〉〉2 =
∫

dG(x) ( f (x)− 〈 f 〉)2 . (A.4)

The integral of a function f (x) in an interval [a, b] can be estimated by choosing
N values xi distributed randomly in [a, b], summing the function values f (xi) in
these points and dividing by N. According to the law of large numbers the Monte
Carlo estimate of an integral over a function f with finite variance converges (in the
statistical sense) to its exact value as the number of points approaches infinity

1

N

N

∑
i=1

f (xi)
N→∞−→ 1

b− a

b
∫

a

dx f (x) . (A.5)

Convergence in the statistical sense means that for every probability p and positive
number ǫ there is a k such that for all N > k the probability for the difference
between the left- and the right-hand side of equation (A.5) to be smaller than ǫ is
greater than p. The central limit theorem says that the Monte Carlo estimate is for
large N normally distributed. It is unbiased for all N, i.e. its expectation value is
given by the true value of the integral. The variance is for large N given by σ2( f )/N.
The speed, with which the Monte Carlo estimate converges, does not depend
explicitly on the number of dimensions (although other calculations in the algorithm
might take more time in higher dimensions). This means that for small number of
dimensions numerical quadrature will be much more efficient while the Monte Carlo
integration clearly wins for higher number of dimensions. Since the variance also
depends on the variance of the function f , the performance of the Monte Carlo
calculation can also be improved by reducing σ2( f ). A few of the most important
variance reducing techniques are described below.

Integration by Monte Carlo methods is closely related to the problem of generat-
ing random numbers distributed according to some probability density g(x). This
is the central tool in Monte Carlo simulations but it is also essential for generat-
ing the measure dG(x) = g(x)dx of an integral. Most random number generators
provide (pseudo-) random numbers that are uniformly distributed between 0 and
1. The simplest way of generating from this distribution values that are distributed
according to g(x) defined on an interval [a, b] is the hit-or-miss Monte Carlo. First an
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upper limit gmax ≥ g(x)∀x ∈ [a, b] of the function has to be found. Then a value
x from a flat distribution on [a, b] has to be generated, i.e. x = a+ R1(b− a) when
R1 is a random number from a flat distribution on ]0, 1[. The value is accepted with
probability g(x)/gmax, which means that a second random number R2 is generated
and the value is accepted if R2 < g(x)/gmax. Otherwise the x value is rejected and a
new one has to be tried. The advantage of this mathod is that it works for practically
all function g(x) without singularities. The disadvantage is that the efficiency, which
is given by

∫

dx g(x)

(b− a)gmax
, (A.6)

can be vary small when the function strongly varies. In such cases it is advantageous
to divide the interval [a, b] into a number of subintervals with smaller variance. Then
the sampling procedure has an additional step because before actually generating a
value a subinterval has to be chosen. The probability of each subinterval is given by
the fraction of the total integral over g(x) it covers.

The best efficiency is reached by the direct sampling method, which is, however,
only applicable to functions that have an invertible primitive function (which is a
serious constraint). The direct sampling makes use of the relation

x
∫

a

dx′ g(x′) = R

b
∫

a

dx′g(x′) = R [G(b) − G(a)] , (A.7)

from which one obtains

x = G−1 (G(a) + R [G(b) − G(a)]) . (A.8)

The importance sampling obviously needs no rejection steps which makes it the
most efficient method.

The efficiency can also be improved by generating more points in regions where
the function values are large. This method in known as importance sampling and
is also suited for functions that do not have an invertible primitive function. It is
mathematically equivalent to a change of integration variable

g(x)dx =
g(x)

h(x)
dH(x) where dH(x) = h(x)dx . (A.9)

In practice it works like this: First a suitable function h(x) has to be chosen. It has to
be as close to g(x) as possible, it has to be larger than g(x) on [a, b] and it should be
suited for importance sampling or a h-distributed random number generator should
be available. Then an x value is generated from h(x) and accepted with probability
g(x)/h(x). Importance sampling will improve the efficiency if σ2(g/h) < σ2(g), but
it suffers from the small number of available functions h.

For the simulations performed in Jewel a prescription that is a combination of
these methods has proven very useful. The problem is how to handle probability
densities that depend on many parameters and/or are calculated only during the
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g(x)

h(x)

a b
x

Figure A.1.: Example for a weight function h(x) constructed from an a priori un-
known probability density g(x) in an adaptive sampling algorithm.

simulation so that there is no a priori knowledge about them. Often the evaluation
of the probability density is costly in terms of run time because it involves numerical
integrations. In these cases a weight function can be constructed by testing the
function in a few points. For sufficiently smooth functions the prescription sketched
in figure A.1 can be used: The probability density g(x) is tested at a few points
and the function values are multiplied with a number that is somewhat larger than
unity. These points are connected by straight lines and this object is used as weight
function h(x) for importance sampling. Generating a value from h(x) involves two
steps, first the subinterval has to be chosen according to the integrals, then the value
is generated from the straight line in that subinterval using direct sampling.

The advantages of this algorithm are the good efficiency and its flexibility, it is ap-
plicable to practically any reasonably smooth function including functions that have
to be evaluated numerically or are tabulated. The danger is that the constructed
weight function can become smaller than the probability density, especially when
the latter varies quickly and/or has spikes that can be cut off. It is therefore advis-
able to monitor such problems and adjust the number of test points and the factor
multiplying the function values at these points.

Other adaptive methods for function sampling and integration are available [188].

For a successful Monte Carlo calculation good random numbers are crucial. True
random numbers are uncorrelated and unpredictable. They can only be obtained
from physical processes like radioactive decay, noise in an electronic circuit or the
time between the arrival of cosmic rays. Nowadays, true random numbers are rarely
used in Monte Carlo computations because of the difficulties that come with the con-
struction of devices that observe a suitable process being at the same accurate and
very fast. In fact, extended simulations consume huge amounts of random numbers,
so that great speed is required and reading in numbers that have been generated be-
fore the simulation and are stored on tape is no option. Instead of using true random
numbers Monte Carlo codes generate pseudo-random numbers from a mathematical
algorithm. Pseudo-random numbers are predictable because the algorithm is deter-
ministic and will, when initialised with the same state, always produce the same
sequence of numbers. This property is very useful in practice because it makes de-
bugging of Monte Carlo code a lot easier. Ideally, pseudo-random numbers should
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be uncorrelated; a requirement that can never be met. Pseudo-random numbers
always have some residual correlation, successive d-tuples of pseudo-random num-
bers generated by a multiplicative congruential generator 2, for instance, lie on a
finite (and sometimes quite small) number of hyperplanes [191]. This means that
pseudo-random number generators have to be tested and chosen with care and the
results obtained from Monte Carlo calculations have to interpreted using common
sense. Another important property of pseudo-random number generators is the pe-
riod. Due to finite machine precision any algorithm will at some point generate a
number that has occurred in the sequence before. Form this point on the sequence
will repeat itself and therefore be useless.
Jewel uses Pythia’s generator, which is based on the algorithm proposed by
Marsaglia, Zaman and Tsang [192] for a portable and machine independent gen-
erator. It has a period of over 1043 and almost 109 disjoint sequences that can be
selected at initialisation. The state of the generator can be saved to a file at the end of
the run and used to initialise the generator the next time so that a simulation can be
continued by another run and simulations requiring a lot of statistics can be divided
into different runs.

2Multiplicative congruential generators derive the pseudo-random numbers from the recursion re-
lation ri+1 = arimodm, where the ‘mod’ operation gives the remainder after dividing ari by m.
The algorithm has to be initialised with a seed r0. With suitable choice of the the modulus m and
the multiplier a the generator will produce a sequence of pseudo-random numbers between 1 and
m− 1.
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APPENDIX B

Short Manual of JEWEL 1.0

In this section a technical summary of the Jewel 1.0 program will be given, the in-
put parameters and the output format will be explained in somewhat more detail.
Version 1.0 contains the full parton shower simulation, elastic scattering in an ideal
quark-gluon gas and the effective model for induced radiation. The medium is ho-
mogeneous and isotropic and is entirely characterised by the temperature and the
path length.
The simulation needs the following information for initialisation. The energy unit
is GeV and times and lengths are measured in fm.

Filenames The simulation writes a log file with information about the status of
the run and error messages in the directory logs and a file with the results
in the directory data. Furthermore, the status of the pseudo-random number
generator is written to a file in the logs directory every time one hundredth of
the run is completed (including the end of the simulation). Every time a new
status is written the old one is deleted so that the file only contains the latest
status. These files have the same name but different extensions (log, dat and
ran, respectively), the filename has to be specified by the user.

Number of events This is the number of events that will be simulated. Some of
them may have to be rejected, the number of successfully simulated events is
written to the data file at the end.

Initialisation of pseudo­random number generator It has to specified whether
the generator is to be initialised with a status that is stored in a file in the
logs directory. If this is the case the filename has to be given. Otherwise the
default initialisation will be used.

Number of flavours The number of quark flavours is the same everywhere, i.e. the
number of flavours in the medium and in the cascade is the same (it is also the
number that enters αs). Since all quarks are treated as massless nf should not
be larger than 3.
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parameter type this study sensible range

output filename char. string < 80 characters
number of events integer ≤ 104
read in random num-
ber gen. status

logical true/false

random number gen.
status file

char. string < 80 characters

nf integer 3 0− 3
ΛQCD(splitting) double 0.3GeV 0.1− 0.5GeV
ΛQCD(scattering) double 0.25GeV 0.1− 0.3GeV with scatt. of recoils

0.1− 0.75GeV without scatt. of recoils
Q0 double 1GeV 0.3GeV−min(Ejet)
angular ordering logical true true/false

parent parton integer 1 1, 2, 3, 21
power of energy spec-
trum

double 7.0 1− 20

min. energy double > 2.5GeV
max. energy double < 200GeV with scatt. of recoils

< 500GeV without scatt. of recoils
temperature double 0.5GeV 0.1− 1GeV, > ΛQCD(scattering)/3
path length double 0, 5 fm 0− 6 fm with scatt. of recoils

0− 10 fm without scatt. of recoils
fmed double 0, 3 0− 5
scattering of recoils logical true/false

hadronisation logical true/false

hadronisation of recoils logical true/false

π0 decay logical false true/false

Table B.1.: Jewel parameters, the values used in this study and sensible ranges for
parameter values. These are more guidelines than strict limits.

Running coupling Two values of ΛQCD have to be given, one for the splitting and
one for the scattering processes. The value used for splittings also determines
the minimum transverse momentum. Good agreement of the vacuum parton
shower with Lep data was obtained with ΛQCD = 0.3GeV for the branching
processes. Results for jet evolution in the medium shown in this work were
obtained with ΛQCD = 0.25GeV for the scattering processes.

Infra­red cut­off Value of Q0, down to which the perturbative parton shower evolu-

tion is simulated. Note that the effective cut-off is given by
√

Q20 + 4( f · ΛQCD)2

(equation (5.13)).

Angular ordering Angular ordering can be switched on or off. In the medium only
subsequent branchings can be ordered, when a scattering occurred between
two splittings the second emission will not be ordered even when angular
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ordering is active.

Parent parton The type of the parton initiating the shower has to be given. Jewel

uses the Pythia system for labelling the particles. The numbers corresponding
to the quarks are 1 (down), 2 (up), 3 (strange), 4 (charm), 5 (beauty) and 6 (top),
the gluon has 21. Since no mass effects are implemented only light quarks or
gluons should be chosen.

Power of energy spectrum The energy of the parent parton is distributed accord-
ing to E−n, the power n has to be given by the user.

Energy range The minimum and maximum energy of the parent parton has to be
given. The minimum should be at least 2.5GeV but larger values are recom-
mended because the use of perturbation theory is better justified for higher
energies. Monoenergetic jets can be generated by setting the minimum and the
maximum to the same value.

Temperature The temperature of the medium determines the density of scatter-
ing centres (n ∝ T3) and the Debye mass that is used the regularise the scat-
tering cross section (µD = 3T is used in the simulation). Therefore, 3T >

ΛQCD(scattering) has to be satisfied in order to obtain a finite scattering cross
section.

Path length This is the path length L in the medium. To be precise, it is the lifetime
of the medium (which is better for practical reasons), which leads to a some-
what smaller path length for particles emitted at large angles relative to the jet
axis than, for instance, a rectangular geometry with the same length.

Enhancement of splitting The user has to specify the value of fmed, that will en-
hance the splitting functions by a factor (1+ fmed) inside the medium. Thus,
fmed = 0 reproduces the vacuum splitting.

Scattering of recoiling scattering centres Recoiling scattering centres can either
scatter in the medium or propagate without scattering.

Hadronisation Hadronisation can be switched on and off. If it is switched on the
user has to specify in addition whether recoiling scattering centres are to be
hadronised or not.

π0 decay The π0 decay can be switched off to save memory in the event record since
π0 are usually quite numerous and produce many daughters.

The parameters are listed in table B.1 together with the values used in this study
and the allowed ranges. Unfortunate choices of parameters can, however, upset
the simulation even if each value is within the allowed range. The most frequently
occurring problem is a lack of memory when the events contain too many particles.

All partons have vanishing rest mass. The shower is initiated by a parton with
a certain energy, this information is provided by the user. The first step of the
simulation is to assign this parton a virtuality, which is picked from the probability
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status code stage of simulation meaning

1 parton shower parton from the cascade that is al-
lowed to split or scatter

2 parton shower recoiling scattering centre that is al-
lowed to scatter

3 parton shower recoiling scattering centre that is
not allowed to scatter

11 parton shower parton that has branched
12 parton shower parton from the shower that has

been scattered
14 parton shower recoiling scattering centre that has

been scattered
16 preparation for hadronisation final parton of the shower that

was copied and arranged in strings
(was 1 and 3 before)

17 preparation for hadronisation intermediate partons of the shower
(was 11, 12 and 14 before)

18 predation for hadronisation gluon that was split into a quark-
antiquark pair during string find-
ing

22 preparation for hadronisation recoiling scattering centres when
they are not hadronised

23 hadron level hadron that was removed because
it has |η| > 1

Table B.2.: Status codes where they differ from the Pythia convention. In Jewel the
meaning of status codes may be specific to a certain stage of the simula-
tion.

distribution equation (5.14). For all practical matters the virtuality is treated as a
virtual mass of the parton. The virtuality of the parent parton comes at the cost of
the momentum, this is the only point in the simulation at which momentum is not
conserved (the energy is conserved). The parton shower evolution is described in
section 5. Jet evolution in vacuum is obtained by setting T = 0 and L = 0 (T > 0
and L = 0 will also do the job, but then the efficiency is worse). With T > 0, L > 0
and fmed = 0 only elastic scattering in the medium is active, fmed > 0 will produce
induced splitting in addition. Only induced splitting without elastic scattering can
be obtained by setting T = 0, L > 0 and fmed > 0. Partons that cannot split because
their virtuality is smaller than Qmin are put on the mass-shell (i.e. m = 0) but can
still scatter until they leave the medium (provided they were produced inside the
medium). Hadronisation happens after all splitting and scattering processes, i.e.
outside the medium.

The output is organised very much like the Pythia event record [23]. It can contain
up to 5000 particles and gives the complete history of the parton shower evolution.
The Jewel events can therefore be manipulated with Pythia routines. The first line
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in the event record is for temporary storage of particles and has no meaning. The
second line contains the parent parton already with virtuality followed by all other
intermediate and final partons in the parton shower. The event record only contains
the scattering centres after the scattering. If hadronisation is switched on, the final
partons of the shower are copied down in the record and rearranged into strings
that are then hadronised by the Pythia hadronisation routine. All hadrons and their
decay chains are listed in the event record. The lines of the event record contain
the following information: The status code (K(I,1)) is mainly as in Pythia, the
exceptions are listed in table B.2. The rest is exactly as in Pythia and will only be
shortly summarised here. The particle flavour code (K(I,2)) identifies the particles,
K(I,3) contains the line of the mother, K(I,4) the line of the first and K(I,5) the line
of the last daughter. P(I,1) to P(I,3) is the three-momentum, P(I,4) the energy
and P(I,5) the (virtual) mass of the particle. V(I,4) gives the production and P(I,5)
the decay time. This is only used for the parton shower simulation. All information
is given in the lab frame.
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