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ZUSAMMENFASSUNG 

Insulinanaloga wurden entwickelt mit dem Ziel den Blutzuckerspiegel bei Diabetikern besser 
zu kontrollieren. Insulinanaloga haben im Vergleich zu Normalinsulin eine veränderte 
Aminosäuresequenz. Dies hat Veränderungen in relevanten biochemischen Eigenschaften zur 
Folge, z.B. in der Affinität für den Insulinrezeptor (IR) und den Typ-I Insulin-like Growth 
Factor Receptor (IGF-IR), sowie in der Dissoziationsgeschwindigkeit vom IR. Das Ergebnis 
kann eine erhöhte mitogene Aktivität der Insulinanaloga im Vergleich zu Normalinsulin sein. 
Normales Brustdrüsenepithel zeigt eine starke Expression von IR und IGF-IR, und 
Brustkrebszellen zeigen häufig sogar eine Überexpression beider Rezeptoren. Aus diesem 
Grund ist das Brustdrüsenepithel ein empfindliches Zielorgan für Insulinanaloga und deren 
proliferationssteigernde Wirkung. In der Tat resultierte die Behandlung weiblicher Sprague-
Dawley Ratten mit dem Insulinanalogon B10Asp in einer signifikanten Zunahme der Inzidenz 
von Mammakarzinomen im Vergleich zu Normalinsulin. Von allen Insulinanaloga, die 
heutzutage therapeutisch eingesetzt werden, wurde nur für Insulin Glargin (Lantus®) eine 
standardisierte zweijährige Karzinogenitätsstudie durchgeführt. In dieser Studie zeigten 
Insulin Glargin und Normalinsulin keine signifikanten Unterschiede in der Tumorinzidenz. 
Allerdings wurde eine extrem hohe Mortalitätsrate bei allen behandelten Tiergruppen 
berichtet, was die Schlussfolgerung, dass Insulin Glargin das Krebsrisiko nicht erhöht, infrage 
stellt. Es gibt nur wenige in vitro-Studien zur proliferativen Wirkung von Insulinanaloga auf 
Brustzelllinien und diese sind wenig aussagekräftig. Auch wurde der biochemische 
Mechanismus der proliferativen Wirkung von Insulinanaloga nicht geklärt. Die vorliegende 
Arbeit hatte das Ziel, die proliferative Potenz therapeutisch eingesetzter Insulinanaloga 
detailliert in insulinresponsiven epithelialen Brustzelllinien zu untersuchen und zu vergleichen 
und den molekularen und biochemischen Mechanismus der proliferativen Wirkung 
aufzuklären. Die Rolle des IR und des IGF-IR und der entsprechenden Signal-
transduktionswege wurde analysiert für Normalinsulin und das Insulinanalogon, das den 
stärksten proliferativen Effekt zeigte.  

Aus einer Gruppe von sieben Zelllinien zeigten MCF7 Zellen (eine Tumorzelllinie) und 
MCF10A Zellen (eine benigne Zelllinie) die stärkste proliferative Antwort auf Insulin. In 
Proliferationsassays mit MCF10A Zellen zeigten die vier untersuchten Insulinanaloga (Insulin 
Aspart, Insulin Lispro, Insulin Glargin und Insulin Detemir) gleich starke Wirkung wie 
Normalinsulin (menschliches Insulin und Rinderinsulin). In Proliferationsassays mit MCF7 
Zellen induzierte Insulin Glargin jedoch eine signifikant stärkere Proliferation als 
Normalinsulin und die anderen drei Insulinanaloga. Dieser Befund wurde durch BrdU-
Inkorporationstests an MCF7 Zellen bestätigt.  

Die Aktivierung der beiden durch Insulin stimulierten Signalwege – PI3K und MAPK 
Signalweg – wurde durch Bestimmung des Phosphorylierungsgrads wichtiger Signalmoleküle 
(Akt und GSK3α/β für den PI3K-Weg und Erk1/2 für den MAPK-Weg) untersucht. In 
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MCF10A Zellen war die Phosphorylierung von GSK3α/β und Erk1/2 nach Behandlung mit 
allen Insulinanaloga und Normalinsulin gleich stark. Interessanterweise war jedoch die 
Phosphorylierung von Akt nach Insulin Glargin - Behandlung signifikant stärker als nach 
Behandlung mit Normalinsulin. In MCF7 Zellen verursachte Insulin Glargin eine sehr starke 
Phosphorylierung aller drei Signalproteine. Diese war signifikant stärker als bei Normal-
insulin und den anderen Insulinanaloga. Die Verwendung spezifischer Inhibitoren in 
Proliferationsassays ergab, dass Insulin Glargin in MCF7 Zellen hauptsächlich den MAPK-
Weg aktiviert.  

Um die Rolle von IR und IGF-IR bei der starken mitogenen Aktivität von Insulin Glargin zu 
klären, wurden IR und IGF-IR durch RNAi-Technik jeweils spezifisch herunterreguliert. Die 
Aktivierung der Signalwege und Proliferation unter Knockdown-Bedingungen ergab 
eindeutig, dass Insulin Glargin den IGF-IR aktiviert, während die anderen Substanzen den IR 
aktivieren. Daraus folgt, dass die erhöhte proliferative Aktivität von Insulin Glargin auf der 
Aktivierung des IGF-IR beruht. Immunpräzipitation des IGF-IR und anschließende Analyse 
des Tyrosinphosphorylierungsgrades zeigten eine wesentlich stärkere Phosphorylierung in 
Zellen, die mit Insulin Glargin behandelt worden waren. Dies erhärtet die Befunde aus den 
Knockdown-Experimenten. Weiterhin wurden die Expressionsspiegel von Cyclin D1, eines 
IGF-I Zielgens, durch quantitative RT-PCR bestimmt. Sie ergaben eine höhere Expression 
von Cyclin D1 in Insulin Glargin - behandelten Zellen im Vergleich zu Normalinsulin. Dies 
bestätigt noch einmal die Aktivierung von IGF-IR durch Insulin Glargin. 

Um zu klären, ob Insulinanaloga möglicherweise den bekannten Cross-talk zwischen IR/IGF-
IR und Estrogenrezeptor-α (ERα) aktivieren, wurde sowohl die Zunahme des 
Phosphorylierungsgrads von ERα an Ser118 als auch die Induktion der ERE-abhängigen 
Luciferasegenexpression bestimmt. Im Vergleich zu Normalinsulin induzierte Insulin Glargin 
eine signifikant stärkere ERα-Phosphorylierung an Ser118, aber nur eine leichte Steigerung 
der Luciferase-Aktivität. Da der ERα durch Insulin Glargin nur schwach aktiviert wurde, ist 
es unwahrscheinlich, dass dieser Mechanismus wesentlich zur starken mitogenen Wirkung 
von Insulin Glargin beiträgt. Zum Schluss wurde durch Wundheilungs-, Transwell- und 
Matrigel- Assays geprüft, ob Insulin Glargin tumorpromovierendes Potential besitzt. Die 
Tests ergaben eine ähnliche migrationssteigernde Wirkung von Insulin Glargin und 
Normalinsulin in MCF7 Zellen.   

Zusammenfassend lässt sich sagen, dass Normalinsulin und drei der untersuchten 
Insulinanaloga den IR und den PI3K-Signalweg aktivieren. Insulin Glargin aktiviert 
außerdem den IGF-IR und den MAPK-Signalweg und stellt ein starkes Mitogen in 
Brustkrebszellen dar, welche eine hohe IGF-IR Expression aufweisen. Möglicherweise birgt 
deshalb die Behandlung mit Insulin Glargin ein Risiko für Brustkrebspatientinnen und für 
Frauen mit bisher nicht entdeckten Tumoren oder Tumorvorstufen.  
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1 SUMMARY 

Insulin analogues have been developed with the aim to provide better glycaemic control to 

diabetic patients. They are generated by modifying the insulin backbone which, however, may 

alter relevant biochemical characteristics such as the affinity to insulin receptor and type I 

insulin-like growth factor receptor (IGF-IR), and the insulin receptor dissociation rate. As a 

result insulin analogues may exhibit stronger mitogenic potency than regular insulin. Normal 

mammary epithelial cells show high expression of insulin receptor and IGF-IR and mammary 

cancer cells frequently even show overexpression of both receptors, thus suggesting 

mammary epithelial cells to be a sensitive target for insulin analogue - mediated proliferation. 

Indeed, treatment of female Sprague-Dawley rats with the insulin analogue B10Asp resulted 

in strong increase in the incidence of mammary tumours. Of all the insulin analogues 

available nowadays for therapeutical use, a standard two-year carcinogenicity study has been 

performed only for Insulin Glargine (Lantus®). The study showed similar incidence of 

mammary tumours in rats treated with Insulin Glargine or normal insulin. However, this study 

reported a very high mortality rate in all experimental groups thus raising questions on the 

conclusions drawn. In vitro studies on the effect of insulin analogues on mammary cell lines 

are scarce and lack comprehensiveness. In addition, the biochemical mechanism of the 

proliferative effect of the insulin analogues has not been clarified. This thesis aimed to study 

and compare in detail the proliferative potency of insulin analogues available for therapeutical 

use in insulin responsive mammary epithelial cell lines and to clarify the molecular and 

biochemical mechanism behind the proliferative potency. The role of insulin receptor, IGF-IR 

and related signalling pathways was analysed for the insulin analogue showing the strongest 

proliferative effect in comparison to regular insulin. 

Among a panel of seven mammary epithelial cell lines, MCF7 (a tumour cell line) and 

MCF10A (a benign cell line) showed the strongest insulin response. Proliferation assays on 

MCF10A cells demonstrated equipotency of four insulin analogues (Insulin Aspart, Insulin 

Lispro, Insulin Glargine and Insulin Detemir) to regular insulins (human and bovine insulin). 

However, proliferation assays performed in MCF7 cells revealed that Insulin Glargine 

induced significantly stronger proliferation than regular insulin and the other three insulin 

analogues. This finding was corroborated by BrdU incorporation studies in MCF7 cells.  

Activation of the two insulin-related signalling pathways - PI3K and MAPK pathway - was 

determined by studying the phosphorylation status of key signalling molecules (Akt and 

GSK3α/β for PI3K and Erk1/2 for MAPK pathway). In MCF10A cells, all insulin analogues 
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were equipotent to regular insulin in inducing phosphorylation of GSK3α/β and Erk1/2. 

Interestingly, Insulin Glargine induced significantly higher phosphorylation of Akt in 

comparison to regular insulin in MCF10A cells. On the contrary, in MCF7 cells, Insulin 

Glargine induced strong phosphorylation of the three signalling molecules studied. The 

signalling potency of Insulin Glargine was significantly stronger than that of regular insulin 

and all other insulin analogues. Use of specific inhibitors showed that MAPK is the major 

proliferation pathway activated by Insulin Glargin in MCF7 cells.   

In order to determine the contribution of insulin receptor and IGF-IR to the strong mitogenic 

potency of Insulin Glargine, the RNAi technique was utilized to specifically target insulin 

receptor and IGF-IR. Study of signalling pathways and proliferation under knockdown 

conditions clearly demonstrated the activation of IGF-IR by Insulin Glargine whereas the 

other compounds activated the insulin receptor. Thus, the increased proliferative ability of 

Insulin Glargine in comparison to regular insulin is the result of IGF-IR activation. IGF-IR 

immunoprecipitated from cells treated with Insulin Glargine or regular insulin showed much 

higher tyrosine phosphorylation levels in the Insulin Glargine - treated cells, which 

substantiates the findings from the knockdown experiments. Moreover, analysis of expression 

levels of cyclin D1, an IGF-I responsive gene, by quantitative RT-PCR showed higher 

expression levels in MCF7 cells treated with Insulin Glargine than in cells treated with regular 

insulin, again corroborating the strong activation of IGF-IR by Insulin Glargine. 

In order to clarify the potential activation of the established cross-talk between insulin 

receptor/IGF-IR and estrogen receptor-α (ERα) by insulin analogues, we determined the 

activation of ERα by analysing the phosphorylation status of Ser118 at ERα as well as ERE-

dependent luciferase gene expression. In comparison to regular insulin, Insulin Glargine 

induced significantly stronger phosphorylation of ERα at Ser118 and slightly higher luciferase 

activity. However, since ERα was only weakly activated by Insulin Glargine, modulation of 

ERα activity is unlikely to play a strong role in rendering high proliferative ability to Insulin 

Glargine. Finally, the possible tumour-promoting potential of Insulin Glargine was studied by 

wound healing, transwell and matrigel assays. The assays demonstrated similar migration-

inducing potential of Insulin Glargine and regular human insulin in MCF7 cells.   

In summary, this study shows that different from regular insulin and other insulin analogues 

studied, which activate the insulin receptor and the PI3K pathway, Insulin Glargine activates 

the IGF-IR and the MAPK pathway too, and is a strong mitogen in breast cancer cells 

showing high IGF-IR expression. Insulin Glargine may therefore be of risk for patients with 

breast cancer or as yet undetected (pre-) cancerous lesions.  
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2 INTRODUCTION 

2.1 Insulin  

2.1.1 Function  

Insulin is a ~ 6 kDa polypeptide hormone secreted by β-cells of the ‘islets of Langerhans’ in 

the pancreas. Together with glucagon, a hormone secreted by α-cells of pancreas, insulin 

maintains glucose homeostasis in the blood. Insulin has been demonstrated to have multiple 

biological effects in virtually all tissues. Its actions can be broadly categorised as metabolic 

actions and mitogenic actions. Metabolic actions of insulin comprise increased uptake of 

glucose, amino acids and fatty acids by target cells, increased expression and activity of 

enzymes involved in synthesis of glycogen (e.g., phosphofructokinase-2 and glycogen 

synthase), proteins and lipids, and decreased activity of enzymes involved in degradation of 

carbohydrates, proteins and lipids (Saltiel and Kahn, 2001). These varied metabolic effects 

make insulin the most potent anabolic hormone known. The main target tissues for metabolic 

actions of insulin are skeletal muscles, cardiac muscles, adipose tissue and liver. In muscles 

and adipose tissue, insulin induces translocation of the GLUT4, insulin-dependent glucose 

transporter, to the plasma membrane. Skeletal muscles are responsible for 75% of insulin-

dependent glucose disposal whereas adipose tissue account for only a small fraction (Klip and 

Paquet, 1990). In liver cells, glucose is taken up by the activity of GLUT2, the high Km 

insulin-independent glucose transporter (Mueckler, 1994). Furthermore, in the liver insulin 

regulates the expression of glycolytic and gluconeogenic enzymes.  

In addition to metabolic actions, insulin has also been demonstrated to elicit mitogenic 

response. In fact, results from knockout mice indicate that insulin receptor is not required for 

glucose metabolism in the embryo but rather for proper embryonic development. Insulin 

receptor knockout mice show 90% size of the control mice at birth. A few days after birth 

they die due to diabetic ketoacidosis indicating the importance of insulin in post-natal glucose 

metabolism (Accili et al., 1996; Joshi et al., 1996). Recent studies have additionally suggested 

a role of precursor insulin molecules (preproinsulin and proinsulin) along with insulin in 

emryonic development (Perez-Villamil, 1994; Hernandez-Sanchez, 2005). Furthermore, 

during early stages of retinal development, the physiological cell death is regulated by locally 

produced insulin/proinsulin, thus alluding a role for insulin as a survival factor (Diaz, 2000). 

Insulin is required for the optimal growth of several normal and cancer cell lines. Moreover, 
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insulin has been demonstrated to be involved in proliferation and differentiation of B-

lymphocytes, T-lymphocytes and adipocytes (Spiegelman and Flier, 1996; Belfiore, 2007). 

The adipose tissue specific knockout mouse model of insulin receptor displays defective fat 

cell formation (Bluher et al., 2002). Interestingly, the recent study on fat cell-specific 

disruption of the insulin receptor gene demonstrated increased lifespan in these mice 

compared to control mice, suggesting a special role for insulin-signalling pathway of adipose 

tissue in longevity. Insulin and insulin receptor also play important roles in associative 

learning (Zhao and Alkon, 2001). Interruption of insulin production and insulin receptor 

activity results in learning and memory deficits. Hyperinsulinemia has been demonstrated to 

be one of the risk factors for Alzheimer's disease (Kidd, 2008). Insulin has been shown to be 

involved in modifying neurotransmitter release at synapses and in modulating the activities of 

both excitatory and inhibitory postsynaptic receptors such as NMDA and GABA receptors, 

respectively (Zhao and Alkon, 2001). In summary, insulin has pleiotropic effects on various 

tissues. This thesis is mainly concerned with the mitogenic effect of insulin.  

2.1.2 Insulin synthesis  

The primary product of the insulin gene is a 110 amino acid long preproinsulin molecule (Fig. 

2.1). Preproinsulin contains an amino-terminal signal sequence that is required for the 

precursor hormone to pass through the endoplasmic reticulum (ER). After entering the ER, 

the signal sequence is proteolytically removed to form proinsulin. Proinsulin is first processed 

by ‘protein disulfide isomerase’ to form three disulfide bonds in the molecule. This process 

has been demonstrated to occur in ER (Dodson, 1998). Thereafter, proinsulin is sequestered 

within Zn2+ and Ca2+ rich secretory vesicles of the Golgi apparatus, wherein proinsulin forms 

hexameric complexes with Zn2+ and Ca2+ ions (Dunn, 2005). Proteolytic enzymes like Ca2+ 

dependent prohormone convertases (PC1 and PC2; Bailyes, 1991) and exoprotease 

(carboxypeptidase E) act on proinsulin molecule to form the mature insulin molecule of 51 

amino acids. Like proinsulin, mature insulin is present in Golgi secretory vesicles as 

hexameric complexes containing Zn2+ and Ca2+ ions. These hexameric insulin complexes 

have very low solubility and are normally present as crystals within the mature secretory 

vesicles. Additionally, a catalytic activity of PC1 has been suggested to enhance targeting of 

processed insulin to the mature secretory granules (Kuliawat, 2000). The mature insulin 

molecule consists of 2 chains (A and B chain) linked together by two disulphide bonds 

(between A7 and B7, and A20 and B19). The A-chain consists of 21 amino acids including 

another disulfide bond (A6 and A11) and the B-chain consists of 31 amino acids.   
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Figure 2.1 Post translational processing of preproinsulin molecule to generate the mature 
insulin molecule.   (Taken from Beta Cell Biology Consortium website).   

2.1.3 Insulin secretion 

Insulin secretion from β-cells is a tightly regulated process (Fig. 2.2). The secretion of insulin 

can be induced by fatty acids, amino acids, and ionophores, but physiologically, the most 

important secretagogue is glucose (Hellman, 1975; McClenaghan et al., 1994; Henquin, 2000; 

Haber et al., 2003). After the meal, blood glucose level increases resulting in the entry of the 

glucose into the β-cells via GLUT2, an insulin-independent glucose transporter. Increased 

glycolysis and cellular respiration raises the level of ATP (or ATP/ADP ratio) in the cell. The 

high ATP/ADP ratio inactivates the ATP-dependent potassium channel.  Consequently, 

potassium ions accumulate inside the cell and this causes depolarization of the cell membrane. 

The calcium channels on β-cells are voltage-gated. Depolarization of the membrane opens up 

these channels and allows calcium ions entry in the cell. Finally, the increase in calcium levels 

triggers fusion of insulin storage granules to the plasma membrane and thus exocytotic release 

of insulin.  

Establishing the role of insulin itself in insulin secretion from β-cells has been a controversial 

issue. Insulin has either been shown to be not at all involved, or stated to be essential, or even 
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a negative regulator (Leibiger et al., 2008). However, recent conditional knockout mice 

models for proteins involved in insulin signalling pathway (like insulin receptor, IRS-1, IRS-2 

and PKB) show impaired glucose tolerance due to defective insulin secretion.  

 

Figure 2.2 Schematic diagram demonstrating insulin secretion from a typical β-cell (Taken from 
Beta Cell Biology Consortium website). 

Similar experiments on an established cell line of β-cell line, MIN6, yielded consistent results 

thus favouring the positive regulation of insulin secretion from β-cells by insulin (Da Silva-

Xavier et al., 2004). Finally, effect of insulin on its own release from β-cells has been 

suggested to be dependent on the insulin concentration (Jimenez-Feltstrom et al., 2004). Low 

dosage of insulin (0.05 to 0.1nM) stimulates insulin release, concentrations between 1nM and 

100nM have no effect on insulin release and higher concentrations result in inhibition of 

insulin exocytosis.  
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2.2 Insulin Receptor 

2.2.1 General information 

Insulin exerts its pleiotropic effects by binding to and activating its cognate receptor, insulin 

receptor (IR). Insulin receptor is a member of the tyrosine kinase receptor superfamily and is 

expressed by all tissues though the receptor numbers may widely differ. The insulin receptor 

has a heterotetrameric structure consisting of two α-subunits (MW of 110 kDa each) and two 

β-subunits (MW of 97 kDa each) and all subunits are held together by disulphide bonds (Fig. 

2.3). Alternate splicing of insulin receptor gene can produce two isoforms – IR-A lacking 

exon 11 and IR-B with full transcript. IR-A has been shown to be the predominant isoform of 

insulin receptor in fetal life and in many cancer cells (Frasca et al., 1999). The α-subunit of 

insulin receptor is an extracellular subunit and possesses the insulin binding domain. 

Although both α-subunits of a α2β2 holoreceptor may theoretically bind an insulin molecule, 

the receptor exhibits negative cooperativity and only one high affinity insulin binding site 

(Lee et al., 1993). Experiments have shown that the occupancy of one insulin binding domain 

decreases the affinity of the other insulin binding domain by 100-fold (Pang and Shafer, 

1984). 

 

 

 

 

 

 

 

 

 

 

Inactive IR Active IR

Insulin

Intracellular

Extracellular

Inactive IR Active IR

Insulin

Intracellular

Extracellular

Figure 2.3 Insulin induced autophosphorylation of insulin receptor.  Insulin (green circles) binds 
to the α-subunit of insulin receptor (IR) and activates it by inducing autophosphorylation at tyrosine 
residues in the β-subunit. The important tyrosine residues are at 950, 1158, 1162 and 1163 amino acid 
position.  
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The β-subunit consists of an extracellular part via which it is anchored to the α-subunit, a 

transmembrane region and an intracellular part which contains phosphorylation sites and 

intrinsic tyrosine kinase activity (Taylor, 1991). The α-subunit exerts inhibitory effect on the 

intrinsic kinase activity of the β-subunit. Proteolytic cleavage of the α-subunits or deletion 

mutants of α-subunits have been shown to relieve this inhibition (White and Kahn, 1994). 

Interestingly, a point mutation (Val664 → Glu) in the transmembrane segment of insulin 

receptor also partially relieves the inhibitory effect of the α-subunit on the β-subunit thus 

suggesting multiple regulation of the tyrosine kinase activity of the β-subunit (Longo et al., 

1992). The binding of insulin to the α-subunit causes a conformational change in the α-

subunit. Consequently, the inhibitory effect of the α-subunit on the tyrosine kinase activity of 

the β-subunit is relieved. The first event in tyrosine kinase activation is binding of ATP to the 

β-subunits and subsequent autophosphorylation of the receptor. 

The insulin receptor phosphorylates itself by a trans - mechanism. Structural studies reveal 

that the kinase domains of the two β-subunits are in juxtaposition so that one β-subunit can 

phosphorylate the other subunit (Lee et al., 1993). The most important autophosphorylation 

sites are tyrosine residues at positions 950 (intracellular juxtamembrane region of β-subunit), 

1158, 1162 and 1163 (tyrosine kinase domain). Autophosphorylation of these tyrosine 

residues stimulates tyrosine kinase activity by 10-20 fold (White et al., 1988). Once 

autophosphorylated, the binding of insulin to the insulin receptor is no longer required and the 

receptor can be inactivated only by dephosphorylation or internalization (Taylor, 1991).  

2.2.2 Insulin receptor signalling pathway 

The activation of the β-subunit results in the phosphorylation of several intracellular 

substrates like insulin receptor substrate family of proteins (IRS), Src-homology-2-containing 

protein (Shc), Grb2-associated binder-1 (Gab1), Cbl, and adaptor protein containing PH and 

SH2 domains (APS). The most important and well characterized intracellular substrates of 

insulin receptor are IRS family of proteins (IRS 1-4). These proteins are involved in important 

insulin receptor function like glycogen synthesis, lipid synthesis, glucose uptake, cell growth 

and differentitation. IRS-1 and IRS-2 proteins are approximately 180kDa, IRS-3 is 60kDa and 

IRS-4 is approximately 160kDa. IRS-1 and IRS-2 are the major signalling molecules in the 

insulin signalling pathway and are widely distributed (Taniguchi et al., 2006). Even though 

IRS-1 and IRS-2 are 43% identical in terms of amino acid sequence homology, their functions 

are not inter-changeable. IRS-1 knockout mice exhibit growth retardation, insulin resistance 
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and impaired glucose tolerance but do not develop overt diabetes (Araki et al., 1994; 

Tamemoto et al., 1994). IRS-2 knockout mice show defective growth in some tissues like 

certain regions of brain, retina and islets of Langerhans, insulin resistance, glucose intolerance 

and are severely diabetic (Sesti et al., 2001). IRS-1 and IRS-2 double knockout mice are non-

viable. In contrast to IRS-1 and IRS-2, IRS-3 and IRS-4 are redundant in function and in mice 

these proteins were found to be expressed only in adipocytes, brain and embryonic tissues. 

IRS-3 knockout mice showed normal growth, glucose homeostasis, and glucose transport in 

adipocytes (Liu et al., 1999). Interestingly, a functional copy of IRS-3 has not been reported 

in humans raising questions regarding its importance in humans (Bjornholm et al., 2002). 

Targeted disruption of IRS-4 gene in mice resulted in only mild defects in growth, 

reproduction, and glucose homeostasis (Fantin et al., 2000). IRS-1/2 interact with the insulin 

receptor via their PH (pleckstrin-homology) domain and PTB (phosphotyrosine-binding) 

domain. These proteins have up to 20 tyrosine residues which can undergo phosphorylation 

by insulin receptor. These phosphorylated tyrosines serve as docking site for other 

intracellular molecules that contain Src-homology-2-domains (SH2 domains) (Taniguchi et 

al., 2006).  

Other intracellular substrates of active insulin receptor perform diverse functions. Cbl 

protooncogene is involved in insulin-stimulated glucose uptake. Shc activation is involved in 

induction of cell proliferation (Saltiel and Pessin, 2002). The detailed description of important 

signalling pathways activated by insulin receptor is presented below. 

2.2.2.1 PI3K signalling pathway 

The PI3K signalling pathway is the major pathway activated by insulin. This pathway elicits 

both metabolic and mitogenic responses in the cells. PI3K is the most upstream signalling 

molecule of this pathway. It consists of two subunits – p85 (regulatory subunit) and p110 

(catalytic subunit). The regulatory subunit, p85, has been reported to have at least eight 

isoforms. The exact role of these different isoforms in the regulation of insulin action is not 

clear (Pons et al., 1995). The p85 subunit interacts via its two SH2 domains with the 

phosphotyrosine motifs of IRS proteins (Ogawa, 1998). Binding of the p85 subunit to IRS 

results in the recruitment of p110 subunit to p85 and thus in the activation of the catalytic 

activity of PI3K (Fig. 2.4). The p110 subunit catalyzes phosphorylation of 

phosphatidylinositol (4,5)-bisphosphate (PIP2) and generates  phosphatidylinositol (3,4,5)-

trisphosphate (PIP3). Inhibitors against PI3K or transfection with dominant negative 
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constructs of the gene block insulin-mediated glucose transport, glycogen and lipid synthesis 

thus highlighting the importance of PI3K in the metabolic actions of insulin (Saltiel and Kahn, 

2001).  PIP3 binds to the pleckstrin homology (PH) domain of a variety of signalling 

molecules and thus influences glucose uptake, glycogen synthesis, and cell growth. The most 

important binding partner of PIP3 is phosphoinositide-dependent kinase 1and 2 (PDK1/2), for 

which PIP3 is an allosteric regulator. 
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Figure 2.4 PI3K pathway activation by active insulin receptor. PI3K pathway is the major pathway 
activated by insulin receptor (IR). It induces glucose uptake, glycogen synthesis, protein synthesis, cell 
growth and differentiation. In addition, it has anti-apoptotic effect. 

Akt, also known as protein kinase B (PKB), is a serine-threonine protein kinase. It has an 

amino-terminal PH domain, a central catalytic domain and a short regulatory domain at 

carboxy-terminus. The PIP3 recruits Akt to the plasma membrane by interacting with the PH 

domain of Akt protein. Once tethered to the membrane, Akt protein is phosphorylated at 

Thr308 and Ser473 by activated PDK1 and PDK2, respectively (Andjelkovic et al., 1997; 

Bellacosa et al., 1998). Activated Akt is another critical node in insulin signalling pathway. It 
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induces protein synthesis in the cell by interacting with mTOR (Nave et al., 1999). In 

addition, activated Akt has also been demonstrated to be associated with GLUT4 vesicles 

suggesting its role in glucose uptake (Kupriyanova et al., 1999). Furthermore, activated Akt 

directly phosphorylates FOXO1 at Ser256. FOXO1 are a class of transcription factors which 

upregulate expression of gluconeogenic genes. Phosphorylation of FOXO1 allows it to 

interact with 14-3-3, a cytoplasmic adapter protein. Consequently, it is sequestered to the 

cytoplasm, resulting in inhibition of gluconeogenesis (Tran et al., 2003). Activated Akt plays 

an important role in enhancing cell survival both directly and indirectly. Bad protein is a Bcl-

2 family member protein and in unphosphorylated state is bound to anti-apoptotic factors like 

Bcl-2 and Bcl-xl. Activated Akt directly phosphorylates Bad protein on Ser136 which results 

in the sequestration of Bad protein to 14-3-3 and release of anti-apoptotic factors (Datta et al., 

1997). Additionally, activated Akt has been demonstrated to enhance the degradation of IκB 

resulting in nuclear translocation of NF-κB and subsequent transcription of caspase inhibitors 

IAP1 and IAP2 and pro-survival Bcl-2 family members, Bcl-XL and Bfl-1/A1 (Dutta et al., 

2006). An important downstream target of Akt is GSK3α/β, a serine-threonine protein kinase 

which is a negative regulator of glycogen synthesis. Phosphorylation of GSK3α/β results in its 

inactivation. Inactivation of GSK3α/β restores the glycogen synthase activity which then 

catalyzes conversion of glucose to glycogen (Taniguchi et al., 2006).  

To summarise, PI3K pathway is the major mediator of the anabolic effects of insulin. Its 

activation results in increase in glucose uptake, glycogen synthesis, protein synthesis, cell 

proliferation and inhibition of gluconeogenesis and apoptosis.  

2.2.2.2 CAP-Cbl signalling pathway 

This signalling pathway is specifically involved in glucose uptake and collaborates with PI3K 

pathway for proper translocation of GLUT4 vesicles to the plasma membrane (Chiang et al., 

2003). The Cbl proto-oncogene is a direct intracellular substrate of the insulin receptor. 

Studies have shown that Cbl does not directly interact with insulin receptor and is recruited to 

insulin receptor by APS. APS binds to the phosphotyrosine residue of the activated insulin 

receptor via its SH2 domain. This results in its phosphorylation at tyrosine. Phosphorylated 

APS recruits Cbl to the insulin receptor where it is phosphorylated and activated. Activated 

Cbl forms a complex with CAP (Cbl Associated Protein) and activates TC10, a small GTPase. 

TC10 is activated specifically by insulin and disruption of its activation blocks insulin- 

stimulated glucose transport and GLUT4 translocation (Chiang et al., 2001). The signalling 
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events downstream of TC10 are not very clear but the net effect of TC10 activation is GLUT4 

translocation to the plasma membrane and thus increase in glucose uptake by the cell.  

2.2.2.3 MAPK signalling pathway 

MAPK pathway is another important pathway activated by insulin. This pathway is well-

known for its proliferative effect on cells. The first major event in activation of the MAPK 

signalling pathway is activation of Ras protein (Fig. 2.5). Ras proteins (H-Ras, N-Ras and K-

Ras) are 21 kDa GTPases that are attached to the cell membrane by prenylation. All the three 

isoforms are ubiquitously expressed. However, as all three isoforms have different lipid 

anchors, the cellular response can be modulated by selective targeting of the isoforms to 

different cellular compartments and signalling complexes (Hancock and Parton, 2005).  
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Figure 2.5 MAPK pathway activation by active insulin receptor. Insulin receptor (IR) can activate 
MAPK pathway by activation of Shc-Grb2-Sos complex. MAPK pathway induces cell proliferation.  
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Ras is active when it switches from the GDP-bound state to GTP-bound state (Lowy and 

Willumsen, 1993). Mutations in the Ras proteins resulting in constitutive activation of the Ras 

GTPase are found in 20% to 30% of human tumours.Activation of Ras involves activation of 

the Grb2-Sos complex. Grb2 (growth factor receptor bound protein 2) is an adapter protein 

and Sos (Son of sevenless) is a guanine nucleotide exchange factor which interacts with Grb2 

by its SH3 domain. Studies have shown that the Grb2-Sos complex can be activated by at 

least two pathways.The phosphorylated IRS-1 protein serves as a docking site for Grb2 which 

then recruits Sos to the plasma membrane for activation of Ras. Alternatively, Grb2 can bind 

to Shc protein (another direct intracellular substrate of insulin receptor) and this leads to the 

activation of Grb2-Sos complex. Once recruited to the plasma membrane, Sos activates Ras 

protein by exchanging GDP with GTP. To this activated Ras binds c-Raf, a serine-threonine 

protein kinase also called Raf-1. c-Raf phosphorylates and activates mitogen activated protein 

kinase kinase (MEK) (Kyriakis et al., 1992). Activated MEK catalyses phosphorylation of 

mitogen activated protein kinase (MAPK) at threonine and tyrosine residues (Ahn et al., 

1992). MAPK (also known as extracellular signal-regulated kinase, Erk) is a serine/threonine 

kinase and has two closely related isoforms, Erk1 and Erk2.The phosphorylated Erk1/2 enter 

the nucleus and has been demonstrated to activate transcription factors like FOS, MYC and 

JUN which are well known for their role in cell proliferation. Erk1/2 also increases expression 

of genes like Cyclin D1 that are required for cell cycle entry. Additionally, Erk1/2 are 

involved in a negative-feedback loop of insulin action by phosphorylating IRS-1 on serine 

residues (Bouzakri et al., 2003). In summary, MAPK pathway is primarily involved in 

mediating mitogenic actions of insulin. 

2.2.2.4 Inhibition of insulin receptor signalling 

Once insulin dissociates from insulin receptor, insulin signalling is rapidly attenuated by 

various mechanisms. The insulin receptor and its substrates like IRS proteins are rapidly 

dephosphorylated by protein tyrosine phosphatases (PTPases).  The most important PTPase in 

this regard is PTP1B. The disruption of PTP1B gene in mice results in increased insulin 

induced tyrosine phosphorylation of insulin receptor and IRS-1 and thus increased insulin 

receptor signalling (Drake and Posner, 1998). As a result, nowadays, PTP1B is being pursued 

as a drug target for the treatment of type II diabetes and obesity (Taylor and Hill, 2004). 

Another mechanism for attenuation of insulin signalling utilizes phosphorylation of serine and 

threonine residues of insulin receptor and IRS-1. Two serine/threonine kinases, ‘cAMP 

dependent protein kinase’ and ‘Protein kinase C’ have been implicated in this process 
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(Tanti et al., 1987; Karasik et al., 1990). Excessive serine phosphorylation of insulin receptor 

has been suggested as one of the reasons for insulin resistance. Additionally, insulin signalling 

is attenuated by internalization of the activated receptor. Studies have shown that after 5 min 

of insulin treatment approximately 30% of the insulin receptor is internalized (Marshall, 

1985). Mutation of the kinase domain resulting in the loss of tyrosine kinase activity inhibits 

internalization of the receptor thus implicating a role of the kinase domain in the attenuation 

of insulin signalling. Interestingly, internalized insulin receptors may remain catalytically 

active as protein kinase (Khan et al., 1989).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction   17  

2.3 Diabetes mellitus  

Insulin being an important regulator of glucose homeostasis is highly required for healthy life. 

Impairment in insulin production or in insulin response causes a chronic disease called as 

‘Diabetes’. ‘Diabetes mellitus’ is characterized by sweet smelling urine due to excess of 

glucose in the urine. Its global incidence has been increasing sharply. According to WHO 

projection, the numbers of diabetic patients are expected to rise from current state of 170 

million diabetic patients to approximately 300 million patients by 2025. Two major types of 

diabetes mellitus have been described – type I and type II.  

Type I Diabetes 

It is also referred to as ‘insulin dependent diabetes’. This is an autoimmune disease in which 

the immune system targets the β-cells of the endocrine pancreas and results in the loss of 

insulin production.  This disturbs glucose homeostasis and is reflected as ‘hyperglycemia’. 

Excess glucose levels in the blood damages nerves (neuropathy), kidney (nephropathy) or 

eyes (retinopathy). For treating type I diabetic patients, efforts are being made to transplant 

pancreas or insulin producing β-cells. However, success has been limited as grafted tissues 

are rejected by the host immune system. Till date, the most reliable cure has been to take daily 

injections of insulin for controlling blood glucose level. Nowadays, insulin analogues have 

been developed which can mimic the insulin secretion profile of the body to a great extent and 

thus are proving to be of great help for diabetic patients. 

Type II Diabetes 

Type II diabetes or ‘non-insulin dependent diabetes’ comprises 90% of all cases. In this type, 

insulin target tissues do not respond to insulin. This is described as ‘insulin resistance’. The 

development of insulin resistance is a complex and progressive event. Research so far has 

demonstrated that various molecular events can lead to insulin resistance. Defects related to 

insulin receptor like incomplete processing of insulin receptor, decrease in insulin receptor 

numbers on the cell surface, auto-antibodies to the insulin receptor or decreased kinase 

activity of insulin receptor have been implicated in insulin resistance (Becker and Roth, 

1990). Other events like increased insulin degradation or defective downstream signalling 

from insulin receptor also result in insulin resistance. Furthermore, impairment in 

translocation of GLUT4 to the plasma membrane has been also shown to result in insulin 

resistance (James and Piper, 1994). Insulin resistance causes non-utilization of glucose and 

like in type I diabetes the patient suffers from ‘hyperglycemia’. Initial body response to 
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counter insulin resistance is increased insulin production (hyperinsulinemia) by β-cells. This, 

however, on long term results in the destruction of β-cells and as a result insulin production 

ceases. Obesity is considered one of the major risk factors for type II diabetes (55% of 

patients are obese). The patients with early stage type II diabetes can be treated by giving 

drugs which increase insulin secretion (like sulphonylurea), or decrease glucose release from 

liver (like metformin). In addition, drugs which can increase insulin sensitivity like 

thiazolidinediones are very useful. The patients with late stage type II diabetes do not produce 

insulin. Like patients with type I diabetes, these patients also have to take daily insulin 

injections.   

Gestational Diabetes 

Gestational diabetes mellitus develops in the pregnant women. It is very similar to type II 

diabetes in terms of inadequate insulin secretion and responsiveness. It is fully treatable but 

chances are that approximately 20%–50% of affected women may develop type II diabetes 

later in their life. 
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2.4 Insulin Analogues  

2.4.1 Basis for developing insulin analogues 

The treatment of diabetic patients with insulin started only from the 1920s. At that time 

animal insulins derived from pancreas of pigs or cows were used to treat diabetes. Though it 

was of great help to save the life of diabetic patients, many of them reported allergic response 

towards animal insulins. The production of human insulin became possible only after 

sufficient knowledge was gained to genetically manipulate microorganisms for producing 

proteins of interest. In the 1980s, first time human insulin was produced from genetically 

engineered bacteria (Chance et al., 1981). It was marketed as ‘humulin’ (insulin isophane) by 

Genentech and was a boon in treating diabetic patients. Additionally, unlike animal insulin it 

did not evoke immune response. 

The most effective way, till date, to give insulin is by injecting it subcutaneously from where 

insulin diffuses into the blood and acts on the target tissues. Insulin administered 

subcutaneouly reaches blood in 30-60 min (onset time), the blood level reaches maximum in 

2-3 h (peak time) and it stays in blood for total of 5-8 h (effective duration).  The onset time 

of normal insulin is 30-60 min and effective duration is only 5-8 h, a patient may have to take 

injections twice a day.  In order to reduce the dependency of diabetic patients on insulin 

injections, attempts were made to design insulin preparations with increased effective 

duration. 

Insulin forms hexamers in presence of zinc ions (Dunn, 2005). By increasing or decreasing 

zinc ion concentration insulin release from the site of injection can be varied. Protamines are 

added to the insulin preparations. They are highly basic proteins and their concentration in the 

insulin preparation determines the dissociation rate of insulin hexamers. In order to improve 

the effective duration of normal insulin, insulin preparations are modified by altering 

concentrations of zinc ions or protamines. NPH (neutral protamine Hagedorn), lente and 

ultralente are such insulin preparations which have delayed insulin action duration and have 

been shown to remain in the blood for 10-16 h (NPH) or 10-24 h (lente and ultralente). These 

preparations have improved the efficacy of insulin treatment but still they do not mimic 

optimal timing of insulin action. For example, by modifying insulin preparations the onset 

time of normal insulin cannot be decreased below 30-60 min. In addition, lente and ultralente 

insulin preparations do not provide constant basal insulin level for a longer duration.  
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To encounter these inadequacies, pharmaceutical companies are generating artificial insulin 

molecules, also called insulin analogues, by modifying the insulin backbone. Depending upon 

the modification, insulin analogues can be of two types : rapid-acting and long-acting insulin 

analogues. 

2.4.2 Rapid-acting insulin analogues  

Insulin molecules exhibit self-association property in the presence of zinc and form stable 

hexamers which dissociate slowly. Rapid-acting insulin analogues are artificial insulin 

molecules which have been modified in a way that they are present mostly in monomeric 

form. As a result, they have much lower onset time in comparison to normal insulins. At 

present there are three rapid acting insulin analogues that have been approved for 

therapeutical use –Insulin Aspart (Novorapid®, produced by Novo Nordisk), Insulin Lispro 

(Humalog®, produced by Eli Lilly) and Insulin Glulisine (Apidra®, produced by Sanofi-

Aventis).  

Insulin Aspart 

Regular human insulin has the amino acid proline at 28th position in the B-chain of insulin. 

Insulin Aspart is generated by introducing a mutation at this position which codes for aspartic 

acid (Fig. 2.6). Aspartic acid being a negatively charged amino acid increases the charge-

charge repulsion between two monomers and thus has reduced tendency to form hexamers.  
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Figure 2.6 Schematic presentation of modification made in the insulin backbone to generate 
Insulin Aspart. Proline at 28th position in B-chain of regular insulin molecule is replaced with aspartic 
acid to generate Insulin Aspart. 

It is thus more rapidly absorbed from the subcutaneous tissue at the site of injection compared 

to regular human insulin. Insulin Aspart is available for action within 5-15 min of taking the 

injection and the concentration peaks within 40-50 min. However, the total duration of action 

is less than 5 h (Rolla, 2008).  
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Insulin Lispro 

Insulin Lispro is generated by interchanging amino acids at 28th and 29th position of the B-

chain of insulin molecule to lysine and proline respectively (Fig. 2.7). It has been reported 

that because of this inversion Insulin Lispro does not form dimers and hexamers. As a result it 

is available within 5-15 min for the action. Like Insulin Aspart, its concentration also peaks 

within 30-90 min and it is eliminated from the body in less than 5 h (Rolla, 2008).  
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Figure 2.7 Schematic presentation of modifications made in the insulin backbone to produce 
Insulin Lispro. Proline at 28th position and Lysine at 29th position in B-chain of regular insulin 
molecule is interchanged to generate Insulin Lispro. 

Insulin Glulisine 

Insulin Glulisine differs from human insulin in that the amino acid asparagine at position B3 

is replaced by lysine and the lysine in position B29 is replaced by glutamic acid (Fig. 2.8). 

Insulin Glulisine acts fast and it can be found in the blood within 15-20 minutes after the 

injection. Its concentration peaks within 34-91 minutes (Rolla, 2008). 

 

 

 

 

S-S

S-S S-S

Lys
Glu

A-chain

B-chainS-S

S-S S-S

Lys
Glu

S-SS-S

S-S S-S

Lys
Glu

A-chain

B-chain

 

Figure 2.8 Schematic presentation of modifications made in the insulin backbone to produce 
Insulin Glulisine. Asparagine at 3rd position and lysine at 29th position in B-chain of regular insulin 
molecule are replaced by lysine and glutamic acid to generate Insulin Glulisine. 
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2.4.3 Long-acting insulin analogues  

Currently there are two long-acting insulin analogues approved for clinical use – Insulin 

Glargine (Lantus®, produced by Sanofi-Aventis) and Insulin Detemir (Levemir®, produced 

by Novo Nordisk).  

Insulin Glargine 

Insulin Glargine is generated by replacing asparatic acid at 21st position in the A-chain by 

glycine and introducing two additional arginine amino acids in the B-chain of insulin 

molecule (Fig. 2.9).  
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Figure 2.9 Schematic presentation of modifications in the insulin molecule to generate Insulin 
Glargine. A-chain of insulin Glargine has glycine instead of aspartic acid at 21st position and B-chain 
contains two extra amino acids (31st and 32nd position) which code for arginine.  

Due to these modifications, Insulin Glargine has low aqueous solubility at neutral pH. When 

injected into the subcutaneous tissue, it forms microprecipitates and slowly diffuses into the 

blood. The onset time is approximately two hours. In contrast to rapid acting insulin 

analogues, there is no pronounced peak and the concentration in the blood remains relatively 

constant over a period of 24 h (Gerich et al., 2006). 

Insulin Detemir 

Insulin Detemir is produced by deleting threonine at the 30th position of the B-chain and 

adding a 14-carbon fatty acid chain to lysine in the 29th position  (Fig. 2.10). The fatty acid 

chain enables insulin detemir to bind to albumin, the most prominent blood protein. This 

results in slow release of the insulin molecule and thus lengthens the time of action. Its action 

profile is similar to that of Insulin Glargine (Heise, 2007).  
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Figure 2.10 Schematic presentation of modifications in the insulin molecule to generate Insulin 
Detemir. Amino acid at the 30th position of the B-chain has been omitted and a 14-carbon fatty acid 
chain is added to the 29th position.   

These insulin analogues are gradually replacing the conventional insulin preparations. 

Nowadays, insulin-dependent diabetic patients are being prescribed rapid-acting insulin 

analogues to prevent blood glucose spikes after meal together with long-acting insulin 

analogues which can maintain basal insulin level (Garber, 2006).  

2.4.4 Mitogenic effects  of insulin analogues 

The modification of the insulin backbone to alter the pharmacodynamics (onset time, peak 

time and effective duration) of insulin has been a big step in improving the life-quality of 

diabetic patients. However, modification of the insulin molecule may alter its biochemical 

properties like affinity to insulin receptor and insulin-like growth factor – I receptor (IGF-IR) 

or insulin receptor dissociation rate contant (Kd) (Table 2.1). These factors may lead to higher 

proliferative potency of insulin analogues in comparison to normal insulin. For example, 

insulin receptor activation is predominantly related to metabolic control, but it also elicits a 

mitogenic response in the cell. The sustained activation of insulin receptor enhances its 

mitogenic effect. Hansen et al. (1996) showed that insulin analogues having lower insulin 

receptor dissociation rate constant (Kd) exhibited higher mitogenicity than regular insulin. 

This mitogenicity was disproportionately higher for insulin analogues that had a Kd value less 

than 40% of normal insulin (analogues H2 and X97, Table 2.1). IGF-IR is a growth factor 

receptor which shows a high degree of homology with insulin receptor. The activation of IGF-

IR induces strong proliferation in the cells (Sachdev and Yee, 2001). Due to modifications, 

insulin analogues may activate the IGF-IR resulting in higher proliferative potency compared 

to regular insulin and thus can pose a health hazard. Kurtzhals et al. (2000) demonstrated that 

in a human osteosarcoma cell line, B10Asp insulin induced six-fold higher proliferation in 

comparison to regular insulin. B10Asp is an insulin analogue generated by replacing glutamic 
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acid at 10th position of B-chain with asparatic acid. This modification increases its affinity for 

insulin receptor by two-fold and for IGF-IR by approximately six-fold in comparison to 

regular human insulin (Table 2.1). Slieker et al. (1997) reported that modifications of the 

carboxy-terminus of the B-chain in insulin may increase the affinity for IGF-IR. 

B31ArgB32Arg insulin was approximately 20-fold stronger than regular insulin in stimulating 

proliferation in human osteosarcoma cell line (Kurtzhals et al., 2000). 

Analogue 
Insulin Receptor 

affinity [%] 

Insulin Receptor 

off-rate or  relative 

Kd [%] 

IGF-I 

receptor 

affinity [%] 

Human insulin 100 100 100 

H2 (A8HisB4HisB10GluB27His) N.D. 1.5 ± 0.1* N.D. 

X97  (B10GluB30desThe) N.D. 24 ± 4* N.D. 

B10Asp 205 ± 20 14 ± 1 587 ± 50 

B31ArgB32Arg 120 ± 4 75 ± 8 2,049 ± 202 

Insulin Aspart (Novorapid) 92 ± 6 81 ± 8 81 ± 9 

Insulin Lispro (Humalog) 84 ± 6 100 ± 11 156 ± 16 

Insulin Glargine (Lantus) 86 ± 3 152 ± 13 641 ± 51 

Insulin Detemir (Levemir) 46 ± 5 204 ± 9 16 ± 1 

 

Table 2.1 Insulin analogues differ from regular human insulin. Modifications performed to 
generate insulin analogues may result in altered insulin receptor affinity, insulin receptor off-rate 
(lower values mean longer duration of occupancy) and IGF-I receptor affinity. Data shown here are 
means ± SE (adapted from Kurtzhals et al., 2000; * Hansen et al., 1996; N.D means ‘not determined’).  
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Another analogue similar to B31ArgB32Arg namely Insulin Glargine 

(A21GlyB31ArgB32Arg), showed up to eight-fold higher mitogenic potency compared to 

regular insulin. Insulin Glargine was also demonstrated to have higher mitogenicity in 

primary cultures of normal fibroblasts and smooth muscle cells which expressed high levels 

of IGF-IR and IRS-1 proteins (Eckardt et al., 2007).  

2.4.5 Effect of insulin analogues on human mammary epithelial cell lines 

Insulin receptor and IGF-IR show high expression levels in epithelial cells of the normal 

human mammary gland and have been shown to be significantly overexpressed in breast 

cancer and in malignant mammary cell lines (Papa et al., 1990; Milazzo et al., 1992; Schnarr 

et al., 2000; Sachdev and Yee, 2001; Frasca et al., 2008). Thus the mammary gland may 

represent a sensitive target for growth stimulation by insulin analogues. Indeed, treatment of 

MCF10A cells (a non-malignant human breast cell line) with B10Asp caused increased focus 

formation (Milazzo et al., 1997). B10Asp was also more potent than regular insulin in 

stimulating colony formation in MCF7 cells (a malignant human breast cell line). 

Furthermore, treatment of female Sprague-Dawley rats with B10Asp led to strong increase in 

the incidence of mammary tumours (Dideriksen et al., 1992). Studies on human mammary 

epithelial cells (HMEC) by Slieker et al. (1997) revealed that B31ArgB32Arg insulin 

stimulated proliferation ten-fold higher than regular insulin. Taken together, these studies 

demonstrate that insulin analogues may induce strong proliferation in mammary epithelial 

cells.   
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2.5 Breast Cancer  

2.5.1 General information 

The mammary gland is a unique organ in that it undergoes the majority of its development 

after birth and mostly during puberty. A female child has a rudimentary mammary gland. The 

onset of puberty results in increase of estrogen, progesterone and growth factors in blood. 

Under the effect of these hormones proper development of the mammary gland takes place 

(Sternlicht, 2006). In addition, during every menstrual cycle, estrogen and progesterone are 

secreted from ovary in a cyclical pattern. These hormones in combination with growth factors 

induce recurring rounds of proliferation and apoptosis of mammary cells (Ramakrishnan, 

2002). It is suggested that this cyclical proliferation of mammary cells can result in the 

gradual accumulation of genetic alterations which may ultimately culminate into a breast 

cancer (Fig. 2.11).  

 

Figure 2.11 Schematic presentation of the organisation of normal breast tissue and two major 
types of breast cancer. A. Anatomically, a mature breast tissue is organised in ducts and lobules. 
Lobules contain milk producing glands. These lobules are linked together by tiny tubes called 
ductules, which join to form ducts and transport milk to the nipple. The lobules and ducts are 
surrounded by connective tissue and adipose tissue. Whole breast tissue is attached to the chest wall 
by the help of pectoral muscles. B. Appoximately 80% of breast cancer develop from ducts. The 
ductal carcinoma in situ (DCIS) is a clinically pre-cancerous state characterized by rapidly dividing 
ductal cells located within the duct. When aberrantly dividing ductal cells gain invasive property and 
spread to adjoining areas it is called ‘invasive ductal carcinoma’. C. Nearly 10% of breast cancer 
originates from lobular cells. The uncontrolled division of lobular cells give rise to lobular carcinoma 
in situ (LCIS). When these cells become invasive they give rise to ‘Lobular carcinoma’ (adapted from 
National Cancer Institute website). 
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Breast cancer is the most frequently detected cancer in women and its incidence has been 

gradually increasing. Annually, about one million new breast cancer cases are detected with 

320,000 cases only in Europe. Breast cancer incidence rates increase with age, more rapidly 

among pre-menopausal and peri-menopausal women than among post-menopausal women 

(Bray et al., 2004). This pattern of flattening after menopause is observed only for breast 

cancer. These findings again suggest that hormones play an important role in the development 

of breast cancer. Indeed, events which are related with hormonal changes like onset of 

puberty, menopause, pregnancy, lactation and estrogen replacement therapy have been 

reported by various epidemiological studies to be associated with breast cancer risk. For 

example, women who have first pregnancy before the age of 30 years have only half of the 

risk to develop breast cancer than nulliparous women (Dumitrescu and Cotarla, 2005). Studies 

also suggest that breast feeding women have low breast cancer risk. For every 12 month of 

breast feeding there is approximately 4% reduction in the breast cancer risk (Dumitrescu and 

Cotarla, 2005).  

Besides influence of hormones, various other factors have been identified that increase the 

risk to develop breast cancer. Lifestyle choices can have strong impact on the development of 

breast cancer. For example, every 10 g increment in alcohol consumption increases breast 

cancer risk by 9% (Dumitrescu and Cotarla, 2005). Furthermore, diets which may result in the 

generation of high amounts of free oxygen radicals increase breast cancer risk. Anti-oxidant 

rich diet shows a negative correlation with breast cancer risk (Linos and Willett, 2007). In 

addition to lifestyle choices, the genetic background of women can also predispose her to 

develop breast cancer. The hereditary breast cancer comprises approximately 10% of total 

breast cancer cases (McPherson et al., 2000). The breast cancer susceptibility genes can be 

grouped into two categories: high-penetrance genes like BRCA1, BRCA2, PTEN, ATM or 

p53 and low-penetrance genes like ERα, alcohol dehydrogenase (ADH) and CYP1A1 (an 

enzyme that catalyses 2-hydroxylation of estradiol). Any deleterious mutation in high 

penetrance genes can increase breast cancer risk significantly. For example, women who are 

carriers of BRCA1 or BRCA2 mutations have approximately 80% increased risk for 

developing breast cancer (Oesterreich and Fuqua, 1999).  Likewise, PTEN germline mutation 

results in 25-50% lifetime breast cancer risk (Dumitrescu and Cotarla, 2005). However, 

polymorphisms in low penetrance genes do not increase breast cancer risk drastically but in 

combination with various environmental factors they can have significant effects. 
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 This thesis mainly aims to investigate and elucidate the mechanism behind the proliferative 

ability of insulin, insulin analogues and IGF-I on estrogen dependent and independent 

mammary cell lines. Therefore, the role of insulin, IGF-I and estrogen in breast cancer will be 

presented in detail in the following sections. 

2.5.2 Role of estrogen in breast cancer 

Epidemiological studies have shown that the prolonged exposure to estrogen increases breast 

cancer risk (Clemons and Goss, 2001). Estrogen exposure may be increased as a consequence 

of early onset of puberty, late menopause or estrogen replacement therapy. Girls who reach 

puberty before 12 years of age have 10-20% more risk to develop breast cancer than girls who 

reach puberty after the age of 14 years (Dumitrescu and Cotarla, 2005). Similarly, women 

with late onset of menopause show approximately 3% increase in breast cancer risk with 

every 1-year increase in the onset age of menopause (Collaborative Group on Hormonal 

Factors in Breast Cancer, 1996). In contrast, the breast cancer risk was 40% lower in women 

who underwent surgical operations to induce menopause ovariectomy at or below 35 years of 

age in comparison to women who had menopause at normal age (McPherson et al., 2000). 

Conversely, post-menopausal women who develop breast cancer have approximately 15% 

higher circulating estradiol level than post-menopausal women without breast cancer 

(Dumitrescu and Cotarla, 2005). Considering results of all these studies, it can be concluded 

that higher estrogen level increases breast cancer risk. A brief description of estrogen and its 

mode of action are presented below.    

Estrogens like other steroid hormones are derived from cholesterol. There are three major 

types of estrogens in females - estradiol (17β-estradiol), estrone and estriol (Fig. 2.12). 

Estradiol is the primary estrogen in females when they are reproductively active. After 

menopause, estradiol levels decrease and estrone becomes the major estrogen. Estriol is 

primarily produced during pregnancy by placental tissues.  

                                              

      A     B     C 

Figure 2.12 Chemical structure of three major estrogens – estradiol (A), estriol (B ) and estrone (C). 
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The major estrogen, estradiol, is pre-dominantly synthesised in the ovaries during follicular 

phase of the menstrual cycle.  It plays a key role in the development of normal breasts and is 

also involved in the sexual maturation of uterus. Studies show that it can also be synthesised 

at other sites like adipose tissue, brain and arterial walls where it may have localized effects 

(Simpson, 2003). 95% of estradiol circulating in the blood is bound to plasma carrier proteins 

like sex hormone-binding globulin (SHBG) thus seriously limiting bioavailability of estradiol. 

Epidemiological studies show that in few breast cancer cases, the expression of these carrier 

proteins are downregulated resulting in increased bioavailability of estradiol (Calle and 

Kaaks, 2004). The free estradiol, being a steroid hormone (hydrophobic property), passes 

through the cell membrane and nuclear membrane and binds to its cognate receptor, estrogen 

receptor (ER) which pre-dominantly resides in the nucleus (classical mechanism of estradiol 

actions). Additionally, estradiol may also interact with ER in the cytoplasm and this liganded 

ER enters the nucleus.  

Two subtypes of estrogen receptor have been reported: estrogen receptor – alpha (ERα) and 

estrogen receptor – β (ERβ). Both, ERα and ERβ, belong to the steroid/thyroid hormone 

superfamily of nuclear receptors and share similar structures and modes of action. They show 

modular structure with various functional domains. These are the NH2-terminal or A/B 

domain that modulates gene transcription in cell specific manner through its Activation 

Function-1 (AF-1); the C-or DNA-binding domain which contains two zinc fingers for 

interaction with DNA helix; a D domain or hinge region which contains the NLS; an E 

domain that contains ligand binding domain and ligand-dependent Activation Function-2 

(AF-2); and F domain which may distinguish between estrogen agonists and antagonists by 

interacting with other cell specific factors (Klinge, 2000; Ali and Coombes, 2002). ERα or 

ERβ knockout mice have life span equal to wild type mice but exhibit reproductive 

abnormalities (Couse and Korach, 1999). ERα is required for most of the estrogenic 

responses. Both, ERα or ERβ, are overexpressed in the majority of breast cancer cases. About 

70% of primary breast cancers are ERα positive. ERα has been found to be a valuable 

prognostic factor in the clinical management of breast cancer (Sommer and Fuqua, 2001). 

Numerous studies have shown that ERα positive breast tumours respond better to therapy than 

ERα negative breast tumours (Allred et al., 2004). 

In addition to the classical mechanism of estradiol actions, recent studies have demonstrated 

the existence of non-classical mechanisms. Estradiol has been suggested to be a ligand for 

GPR30, a membrane-associated ER localized to endoplasmic reticulum (Revankar et al., 
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2005; Prossnitz et al., 2008). Activation of GPR30 by estrogen has been shown to result in 

intracellular calcium mobilization and synthesis of PIP3 in the nucleus. GPR30 knockout in 

female mice resulted in hyperglycemia, impaired glucose tolerance, reduced body growth and 

inhibition of estradiol-induced insulin release from β-cells of the pancreas suggesting 

regulation of insulin function by estradiol (Martensson et al., 2008). Additionally, estradiol 

has been shown to initiate rapid activation of signalling molecules like Akt and Erk1/2 via 

interaction of estradiol-activated ERα with a scaffold protein, MNAR (modulator of 

nongenomic action of estrogen receptor) (Greger et al., 2007). Both Akt and Erk1/2 are 

downstream effectors of EGFR and IGF-IR. This implies cross-talk of ERα with growth 

factor activated signalling pathways (Smith, 1998; Levin and Pietras, 2008). The cross-talk 

between ERα and IGF-IR is introduced in the following section. 

2.5.3 Involvement of IGF signalling system in breast cancer 

2.5.3.1 IGF signalling system 

The IGF (insulin-like growth factor) system consists of IGF ligands (IGF-I and IGF-II), 

receptors (IGF-IR and IGF-IIR), IGF-binding proteins (IGFBPs; these bind to IGF ligands) 

and proteases of binding proteins (Sachdev and Yee, 2001). IGF-I and IGF-II are 79 and 60 

amino acid long single chain polypeptide growth factors. Earlier, it was assumed that all IGF-

I is produced by the liver under the tight control of GH (growth hormone) from pituitary 

gland and that the endocrine action of IGF-I is the major determinant for postnatal growth 

(Froesch et al., 1985; Daughaday and Rotwein, 1989). The liver specific knockout of the igf-1 

gene by cre-lox recombination sytem decreased the circulating IGF-I level by 75% but this 

did not effect the postnatal growth. This indicated that an autocrine/paracrine action of IGF-I 

is the major determinant for the tissue growth (Sjögren et al., 1999; Yakar et al., 1999). Later, 

it was shown that IGF-I can be produced by other organs as well. Similarly, IGF-II is also 

expressed both in the liver and in extrahepatic sites, but unlike the igf-1 gene which lacks any 

imprinting, the igf-2 gene is paternally imprinted (Sasaki et al., 1992). Both, IGF-I and IGF-II 

show a high degree of homology to the insulin molecule. For example, the positions 1 to 29 in 

IGF-I are homologous to insulin B-chain and positions 42 to 62 to insulin A-chain 

(Rinderknecht and Humbel, 1978). However, IGFs mainly have a mitogenic effect while 

insulin mainly exerts metabolic effect.  

Both IGF-I and IGF-II can bind to IGF-IR, which is a cell-surface tyrosine kinase receptor. It 

is expressed by all cell types with the exception of hepatocytes and T lymphocytes (Sachdev 
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and Yee, 2001). IGF-IR is highly homologous to insulin receptor, especially in the tyrosine 

kinase domain, in which they share 84% amino acid identities. Like insulin receptor, IGF-IR 

consists of two α-subunits and two β-subunits. The α-subunits are entirely extracellular and 

possess the ligand binding domain. The β-subunit has a small extracellular domain through 

which it is attached to the α-subunit by disulphide bonds, a membrane spanning domain and a 

large intracellular domain (Adams et al., 2000). The intracellular domain consists of the 

juxtamembrane domain, the tyrosine kinase domain and C-terminal domain. Under 

unstimulated condition, the catalytic activity of the IGF-IR is inhibited by the presence of an 

activation loop (a-loop; stretch of amino acids containing critical tyrosine residues 1131, 1135 

and 1136) which acts as a pseudosubstrate and prevents the substrate access and ATP binding 

(Larsson et al., 2005). The β-subunits possess trans-phosphorylation activity by which one 

subunit phosphorylates the tyrosine residues in the other subunit.  

The binding of ligand to the IGF-IR results in the trans-phosphorylation of the three critical 

tyrosine residues in the a-loop which changes the conformation of the a-loop. This 

conformational change releases the inhibitory effect of a-loop at the tyrosine kinase domain. 

Once activated, tyrosine kinase domain phosphorylates other tyrosine residues in the IGF-IR 

and exogenous substrates like IRS-1, IRS-2 and Shc which in turn result in the activation of 

PI3K, MAPK and 14-3-3 pathways (Baserga, 2000). Despite the high sequence homology, the 

functions of IGF-IR and insulin receptor are considerably different. The IGF-IR is mainly 

involved in regulation of cell proliferation, anti-apoptosis, differentiation and cell motility. 

Insulin receptor, as described in section 2.2 is mostly involved in control of glucose uptake 

and metabolism. Due to the high degree of homology, IGF-IR and insulin receptor are 

reported to form hybrids that basically behave as an IGF-IR (Frasca et al., 2003). IGF-IIR 

which is also referred to as mannose 6-phosphate receptor (M6PR), preferentially binds IGF-

II. It has no intracellular kinase domain and does not act as a signalling molecule (Hebert, 

2006). It is generally accepted that IGF-IIR functions as a sink for IGF-II and thus decreased 

expression of IGF-IIR can result in enhanced availability of IGF-II leading to increase in cell 

proliferation. 

The IGFBPs are a family of six homologous proteins (IGFBP 1-6) which have high binding 

affinity for IGF-I and IGF-II (Binoux et al., 1991). Their binding affinity for IGF-I and IGF-II 

is comparable to the binding affinity of IGF-IR. These proteins are present in the circulation 

as well as extravascular fluids and sequester IGFs from circulation. In human serum > 95% of 

IGFs are bound to IGFBPs and thus unavailable for action. Nowadays, there is increasing 
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evidence that the IGFBPs may have growth regulatory actions that are independent of their 

normally suggested IGF binding activity (Gucev et al., 1996). Cathepsins and matrix 

metalloproteinases cleave IGFBPs into smaller molecular forms that have reduced affinity for 

IGFs and this releases IGFs from the binding protein complex (Schmid et al., 1991; Fowlkes 

et al., 1994).  

 

2.5.3.2 Cross-talk between IGF-IR and ERα 

The IGF-IR signalling pathway has been reported to cross-talk with that of ERα (Fig. 2.13; 

Smith, 1998; Kato et al., 2000). Several studies suggested synergistic effects of IGF-I and 

estradiol on MCF7 cell proliferation (Dupont and Roith, 2001).  
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Figure 2.13 Proposed model of cross-talk between IGF-IR and ERα. Estradiol bound ERα 
interacts with Shc. This causes dephosphorylation and activation of c-Src. c-Src in turn phosphorylates 
IGF-IR, which phosphorylates and recruits Shc. The interaction of Shc to IGF-IR results in the 
translocation of ERα to the membrane. Activation of IGF-1R results in the activation of MAPK 
pathway (Song et al., 2004) and probably also of PI3K pathway, overall leading to cell proliferation. 
 
ERα has been shown to increase the expression of IGF-IR and IRS-1 (Mauro et al., 2001; 

Maor et al., 2006). Oesterreich et al., (2001) generated MCF7 sublines (C4 and C4-12) that 
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were negative for ERα by prolonged estrogen withdrawal. The lack of ERα in these cell lines 

resulted in decrease in mRNA and protein of IGF-IR and IRS-1. Re-expression of ERα in 

these cell lines resulted in the increased expression of IGF-IR and IRS-1, thus confirming the 

direct role of ERα in regulating IGF-IR and IRS-1 gene expression.  

Other studies have shown that ERα can directly interact with the signalling components of 

IGF-IR pathway. For example, ERα has been shown to interact with SH2 region of Src, the 

p85α regulatory subunit of PI3K, Shc and IGF-IR (Kahlert et al., 2000, Migliaccio et al., 

2000, Simoncini et al., 2000, Sun et al., 2001, Song et al., 2002). Recently, Song et al. (2004) 

demonstrated that estradiol can indirectly phosphorylate and activate IGF-IR. They suggested 

formation of a ternary complex between Shc, ERα, and IGF-IR in response to estradiol 

treatment. The downregulation of Shc, ERα, or IGF-IR with specific small inhibitory RNAs 

blocked E2-induced MAPK phosphorylation. In addition, our own study has shown that 

GSK3α/β, a downstream signalling molecule of PI3K pathway, is important for stabilization 

and full transcriptional activity of ERα (Grisouard et al., 2007).  

 
2.5.3.3 Role of IGF signalling system in breast cancer  

Several studies have implicated the IGF system with increased breast cancer risk. The 

comparative analysis of IGF-I level in serum of breast cancer patients and matched controls 

revealed increased IGF-I level in the breast cancer patients (Pollak, 1998). Epidemiological 

studies have demonstrated high plasma levels of IGF-I as a potential risk factor for breast 

cancer (Hankinson et al., 1998). Schernhammer et al. (2005) reported that circulating IGF-I 

level is modestly associated with breast cancer risk among premenopausal women (RR, 1.6; 

95% CI, 1.0-2.6), but not among postmenopausal women. The relative risk was higher for 

premenopausal women of age ≤ 50 years (RR, 2.5; 95% CI, 1.4-4.3). Studies implicate 

paracrine action of IGF-I in the development of breast cancer as in situ hybridization showed 

that IGF-I is mainly expressed in stromal cells and not in breast epithelium cells (Yee et al., 

1989). Interestingly, transgenic mice overexpressing IGF-I show increased ductal hypertrophy 

in the lactating mouse (Sachdev and Yee, 2001). IGF-II has also been demonstrated to be 

positively associated with breast cancer (Singer et al., 2004). Transgenic mice overexpressing 

IGF-II developed mammary tumours (Bates et al., 1995). In breast cancer patients, free IGF-II 

serum concentrations and free IGF-II/total IGF-II ratio correlates with tumour size. 

Furthermore, in situ hybridization and immunohistochemical analysis of breast tissues 

revealed that, as observed with IGF-I expression, stromal cells adjacent to malignant 
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epithelial cells have higher IGF-II expression than stromal cells around benign or normal 

breast epithelium, suggesting paracrine action of IGF-II in breast cancer (Giani et al., 1996; 

Giani et al., 1998).  

The analysis of primary breast tumours shows not only the increase in IGF-IR expression 

levels in comparison to benign tumours or normal breast epithelium (Pezzino et al., 1996), 

tyrosine kinase activity of the IGF-IR has also been reported to be enhanced in breast cancer 

(Resnik et al. 1998). Turner et al. (1997) demonstrated a positive association of IGF-IR levels 

and radioresistance of breast cancer cells. They also reported that tumours with elevated IGF-

IR had a higher incidence of recurrency at the primary site. However, tumours with high IGF-

IR levels have better prognosis than cancers with low level of IGF-IR (Yee et al., 1994). IGF-

IR has been shown to be overexpressed in breast epithelial tumour cell lines. Studies of the 

IGF-IIR locus report significant loss of heterozygosity in breast cancer suggesting IGF-IIR as 

a breast tumour suppressor gene (Hankins et al., 1996). Mutations in the IGF-II binding 

domain of IGF-IIR have been reported in breast cancer cells (Byrd et al., 1999). The stable 

transfection of MDA-MB231 breast cancer cells with IGF-IIR cDNA not only markedly 

reduced their ability to form tumours but also reduced growth rate in nude mice, suggesting 

the importance of low expression of IGF-IIR in tumour formation (Lee et al., 2003). Other 

members of the IGF system like IGFBPs have also been studied in relation to breast cancer 

risk. Recent epidemiological studies suggested positive association between lower levels of 

IGFBP3 and increased breast cancer risk in premenopausal women (Bruning et al., 1995; 

Hankinson et al., 1998; Allen et al., 2005). Reduced expression of IGFBPs may be a reason 

for the reported increase in circulating levels of IGF-I and IGF-II in premenopausal women.  

2.5.4 Involvement of insulin signalling pathway components in breast cancer 

Several studies have implicated insulin and its cognate receptor in the development of cancer. 

Earlier studies in animal models suggested a direct role of insulin in the development of 

cancer. For example, pharmacological doses of insulin were shown to stimulate carcinoma 

formation and DNA synthesis and affect the squamous neoplastic cell differentiation in Swiss 

male mice treated with the chemical carcinogen 3-methylcholanthrene thus suggesting insulin 

as a strong co-carcinogen (Lupulescu, 1985). Dombrowski et al. (2003) demonstrated that 

high local insulin concentration in liver of diabetic BB/Pfd rats results in the formation of 

hepatocellular neoplasms, demonstrating the role of insulin as a potential carcinogen. Another 

study demonstrated that breast cancer induced in rats by the chemical carcinogen 
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dimethylbenz(a)anthracene regresses under insulin deficient conditions (pancreatic β-cells 

were destroyed by treating with alloxan). Tumour growth was shown to resume when insulin 

was provided exogenously (Heuson et al., 1972). Interestingly, tumour growth did not resume 

upon administration of exogenous estrogen. Similarly, MCF-7 human breast cancer cells 

formed tumours in insulin treated diabetic nude mice but not in untreated diabetic nude mice, 

again suggesting a direct role of insulin in tumour development (Nandi et al., 1995). Taken 

together, all these animal experiments reveal direct role of insulin in cancer formation in 

general and breast cancer in particular.  

Epidemiological studies have linked increased insulin level with breast cancer. Circulating 

insulin levels were reported to be elevated in women with premenopausal breast cancer (Del 

Giudice et al., 1998). Data obtained from patients suffering from insulin resistance and/or 

hyperinsulinemia, two important characteristics of type II diabetes, show increased risk for 

breast cancer (Bruning et al., 1992; Yam et al., 1996; Gamayunova et al., 1997). The 

mechanism by which high insulin levels may result in breast cancer is presented in Fig. 2.14. 

Obesity which is an important risk factor for type II diabetes has been consistently shown to 

increase breast cancer rates in post-menopausal women by 30-50% (Carroll, 1998; Calle and 

Kaaks, 2004). 

Insulin receptor has been reported to be overexpressed in majority of the breast cancer cases 

(Belfiore et al., 1996; Papa et al., 1996). Breast tumours with high expression level of insulin 

receptor showed significantly reduced disease free survival (Mathieu et al., 1997).  Many 

well-established mammary epithelial tumourigenic cell lines like MCF7 and ZR75-1 also 

show increased expression of insulin receptor (Frasca et al., 2003). Interestingly, breast 

cancer cells predominantly overexpress the fetal isoform of insulin receptor, IR-A (Frasca et 

al., 1999). The IR-A isoform differs from the B-isoform of insulin receptor by the absence of 

a 12–amino acid segment in the carboxy-terminus of the α-subunit. IR-A can bind both 

insulin and IGF-II and has enhanced mitogenic signalling relative to the IR-B (Frasca et al., 

2003).  
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Figure 2.14 Diagram demonstrating the mechanism of breast tumour formation by high insulin 
levels. Elevated blood insulin levels result in activation of insulin receptor (IR) and in increase of 
mitogenic signal to mammary cells. In addition, elevated insulin levels lead to decrease in the 
synthesis of IGF-binding proteins (IGFBP) 1 and 2 and sex-hormone-binding globulins (SHBG) which 
results in increased bioavailability of IGF-I and estradiol (E2), respectively. Both, IGF-I and E2 are 
potent mitogens for mammary cells. The overall effect of all this may be breast tumour development 
(Calle and Kaaks, 2004).    
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2.6 Aims 

Modification of the insulin backbone may alter the biochemical properties of the resulting 

insulin analogues like affinity for insulin receptor, dissociation rate from insulin receptor, and 

affinity for IGF-IR (Table 2.1). Consequently, the signalling and proliferative potencies of 

insulin analogues may be altered. This may pose a serious health risk as proliferation of cells 

which express these receptors may be stimulated by such insulin analogues. The findings 

demonstrating strong proliferative ability of B10Asp relative to human insulin in a 

osteosarcoma cell line (Kurtzhals et al., 2000) and the high incidence of mammary tumours in 

B10Asp treated female Sprague-Dawley rats (Dideriksen et al., 1992) give credence to the 

health concern regarding insulin analogues. Normal breast tissue shows high expression of 

insulin receptor and IGF-IR and breast tumours show overexpression of both receptors (Papa 

et al., 1990; Schnarr et al., 2000; Frasca et al., 2008). Since insulin analogues may activate 

IGF-IR in addition to insulin receptor, it can be concluded that the mammary gland represents 

a sensitive target for growth stimulation by insulin analogues. 

The proliferative ability of insulin analogues that are currently approved for therapeutical use 

has been studied on various cell systems. However, there is lack of any comprehensive study 

in mammary epithelial cell lines. The few studies which have been published till date, are not 

comparable with each other as data has been acquired under dissimilar experimental 

conditions and estimated by different assay systems, thus leading to results which do not 

allow to draw general conclusions. In addition, all studies performed on mammary epithelial 

cell lines are limited in terms of the number of insulin analogues tested.   

The initial aim of this work is to compare the proliferative potency of various insulin 

analogues with regular insulin in mammary epithelial cell lines. For this, we will screen a 

panel of mammary epithelial cell lines for their insulin responsiveness and select the strongly 

insulin responsive cell lines for the comparative analysis of insulin analogues proliferative 

potency.  

Thereafter, we compare the signalling potency of insulin analogues with regular insulin. 

Specifically, we consider analysis of PI3K and MAPK pathways as these two pathways are 

activated by regular insulin and are involved in cell proliferation. The activation of these two 

pathways is studied by analysing the phosphorylation status of key signalling molecules after 

treatment with regular insulin or insulin analogues. For studying PI3K pathway activation, 

Akt and GSK3α/β phosphorylation status is studied. MAPK pathway activation is analysed by 
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studying phosphorylation status of Erk1/2. Specific inhibitors against both pathways are 

exploited to identify the pathway related to proliferation induced by insulin analogues.  

In addition, we aim to study the role of insulin receptor and IGF-IR in the proliferative 

potency of insulin analogues that show significantly higher proliferation than regular insulin. 

We utilize RNAi technique to specifically target insulin receptor and IGF-IR. This will enable 

us to identify the receptor that is mainly activated by insulin analogues. In addition, it will 

also permit comparative analysis of PI3K and MAPK pathways activated by treatment with 

insulin, IGF-I and insulin analogues. The receptor identified to play the more important role 

in proliferation is further analysed. Immunoprecipitation is used to gain understanding of 

receptor activation by studying the phosphorylation status of the receptor after treatment with 

insulin, IGF-I and insulin analogue. Furthermore, the activation of this receptor is eventually 

corroborated by studying the expression of a downstream target gene at the transcriptional 

level using quantitative RT-PCR.  

In order to clarify the potential activation of the cross-talk between insulin receptor/IGF-IR 

and ERα by insulin analogues, we determine the activation of ERα by analysing the 

phosphorylation status of Ser118 at ERα as well as ERE-dependent gene expression. 

Moreover, we aim to extend our study to the possible tumour-promoting potential of those 

insulin analogues that demonstrate significantly higher proliferative potency than regular 

insulin. We assess this by employing the ‘wound-healing assay’ for studying cell migration.  

To summarise, the objective of this study is to perform a detailed comparative analysis of 

proliferative and signalling potency of insulin analogues in insulin responsive mammary 

epithelial cell lines, and to elucidate the role of insulin receptor, IGF-IR and ERα in the 

mitogenic potency of insulin analogues. 
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3. RESULTS 

3.1 Screening of mammary epithelial cell lines 

In order to compare the mitogenic potency of insulin analogues with regular insulin we 

needed to identify ‘insulin responsive’ mammary epithelial cell lines. For this, we studied the 

proliferative response of a panel of mammary epithelial cell lines to treatment with regular 

insulin. In addition, we studied the expression pattern of insulin receptor, IGF-IR and ERα to 

gain more information about cell characteristics.  

3.1.1 Proliferative response to the insulin treatment  

To determine the insulin responsiveness of mammary epithelial cell lines, we treated cells 

with regular insulin (Actrapid or bovine insulin) for 72 hrs and measured proliferative 

response by colorimetric proliferation assay. Cells were treated with very high concentration 

(1.5µM) of regular insulin to stimulate maximum proliferation. Proliferation response 

(obtained as absorbance value) of insulin-treated cells was normalized with that of untreated 

cells so to obtain the ‘fold of control’. 

Cell line Tumor 
Type of normal 

insulin used 
Fold of Control 

MCF10A No* Actrapid 1.7 ± 0.20 

BT474 Yes* Bovine Insulin 0.9 ± 0.05 

MCF7 Yes* Actrapid 2.2 ± 0.28 

T47D Yes* Bovine Insulin 1.1  ± 0.04 

ZR75-1 Yes* Actrapid 1.4 ± 0.20 

MDA-MB231 Yes* Bovine Insulin 1.3 ± 0.12 

HCC1937 Yes* Bovine Insulin 1.1 ± 0.05 

 

Table 3.1 MCF10A and MCF7 exhibited highest insulin induced proliferation among the panel 
of cell lines tested. Cells were starved for 24 h in medium containing 2% charcoal-stripped serum and 
then were treated with 1.5µM insulin for 48 h (MCF10A) or for 72 h (all other cell lines). Thereafter, 
cells were fixed with 3% paraformaldehyde in PBS, stained with crystal violet and absorbance was 
read at 595nm. Fold of control was calculated by comparing the growth achieved in absence or 
presence of insulin. *, information regarding tumorigenicity of the cell lines was obtained from the 
ATCC website.  



Results    40 

 

HCC1937, BT474 and T47D demonstrated poor proliferative response to the insulin treatment 

(Table 3.1). MDA-MB231 and ZR75-1 showed relatively moderate proliferation response to 

the insulin treatment, demonstrating approximately 1.3 to 1.4-fold increase in proliferation. In 

MCF10A cells, a benign mammary epithelial cell line, insulin treatment induced 

approximately 1.7-fold increase in proliferation. The strongest response to insulin treatment 

(approximately 2.2-fold) was observed in MCF7 cells, a malignant mammary epithelial cell 

line.  

As MCF10A and MCF7 showed the maximum proliferative response to the insulin treatment 

among the cell lines tested, we utilized these two cell lines for carrying out comparative 

analysis of proliferative and signalling potency of regular insulin and insulin analogues 

(Humalog, Novorapid, Lantus and Levemir) approved for therapeutical use.  

3.1.2 Expression pattern of Insulin Receptor, IGF-IR and ERα 

The above mentioned seven mammary epithelial cell lines  were studied for the expression 

pattern of insulin receptor, IGF-IR and ERα (Fig. 3.1). The MELN cells, a sub-cell line of 

MCF7 which are stably transfected with ERE-dependent firefly luciferase reporter gene, were 

also included in this analysis. All the cell lines analyzed, showed moderate  levels of insulin 

receptor. IGF-IR expression level varied among the cell lines. It was found to be strongly 

expressed in MCF7 and weakly expressed in HCC1937. T47D, BT474, MDA-MB231, ZR75-

1, and MCF10A cells showed comparatively moderate expression of IGF-IR. 

 

IRβ 

IGF-IRβ 

ERα 

Figure 3.1. Expression profile of insulin receptor, IGF-IR and ERα in mammary epithelial cell 
lines. Lysates from the mammary cells were resolved by SDS-PAGE and immunoblots were probed 
for the expression of insulin receptor and IGF-IR by antibodies against beta-subunit of insulin receptor 
(IR) and IGF-IR, respectively. Anti- ERα was used for detecting ERα. 
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Regarding ERα expression pattern, three cell lines, MCF10A, MDA-MB231 and HCC1937, 

did not show any expression of ERα protein. All other cell lines expressed ERα and like IGF-

IR, ERα was also found to be strongly expressed in MCF7 cells. 

3.2 Dose-dependent proliferative response to insulin and insulin analogues 

in MCF10A and MCF7 cells 

In order to study the dose-dependence of the proliferative response of MCF10A and MCF7 

cells to the regular insulins and insulin analogues, cells were treated with increasing 

concentrations (1.5nM, 15nM, 150nM and 1.5µM) of each compound and subjected to  

colorimetric proliferation assay. Fold of control was calculated for each dosage of treatment. 

For estimating the mitogenic potency of insulin analogues, the proliferation response obtained 

with insulin analogues was compared with the proliferation response obtained with regular 

insulin.  

3.2.1 Study of MCF10A cell proliferation using colorimetric method 

Actrapid treatment induced proliferation response in MCF10A cells at all concentrations 

tested (Fig. 3.2). At 1.5nM, proliferation response to Actrapid was merely 1.1-fold of 

untreated cells. Treatment of MCF10A cells with 15nM, 150nM or 1.5µM Actrapid resulted 

in approximately 1.7-fold increase in the proliferation response compared to untreated cells 

indicating a saturation in response at 15nM of Actrapid. 

 

Figure 3.2 Proliferative ability of insulin and insulin analogues are similar in MCF10A cells. 
MCF10A cells were starved for 24 h in growth medium without insulin and then were treated with 
increasing concentrations (1.5nM to 1.5µM) of insulin and insulin analogues for 48 h. Thereafter, cells 
were fixed and stained with crystal violet dye. After air drying, stain was dissolved in 10% acetic acid 
and the absorbance was measured at 595nm in the plate reader. The values presented are the 
mean ± SD of n = 16.  
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The proliferation levels observed in MCF10A cells treated with bovine insulin were similar to 

the proliferation levels obtained with Actrapid treatment thus suggesting similar mitogenic 

potency of the two regular insulins in MCF10A cells. Treatment of MCF10A cells with any of 

the four insulin analogues resulted in proliferation levels that were comparable to the 

proliferation levels observed with regular insulins. Thus, regarding stimulation of proliferation 

in MCF10A cells, insulin analogues are equipotent to regular insulins.  

 

3.2.2 Study of MCF7 cell proliferation using colorimetric method 

In contrast to MCF10A cells, the treatment of MCF7 cells with increasing concentrations of 

Actrapid led to gradual increase in proliferation (Fig. 3.3a). With 1.5nM Actrapid, 

approximately 1.2-fold increase in proliferation level was observed and this reached to the 

maximum value of 2.2-fold with 1.5µM Actrapid treatment. Bovine insulin yielded 

proliferation levels comparable to Actrapid treatment in MCF7 cells, which again suggests 

equipotency of two regular insulins.  

 

 

Figure 3.3a Lantus demonstrates highest proliferative ability in comparison to regular insulins 
and insulin analogues in MCF7 cells.  MCF7 cells were starved for 24 h in medium containing 2% 
DCC-FBS and then were treated with increasing concentrations of insulin and insulin analogues for 72 
h. Thereafter cells were fixed and stained with crystal violet dye. After air drying, the stain was 
dissolved in 10% acetic acid and the absorbance was measured at 595nm in a plate reader. Values 
presented are the mean ± SD of n = 20. The statistical analysis was done by using student’s t-test. 
Asterisks (*) show statistically significant (p < 0.05, t-test) difference between two data points.  
 

Humalog and Novorapid induced proliferation in MCF7 cells at all concentrations studied. 

The increase in proliferation observed with these two insulin analogues was similar to that 

obtained from regular insulins. In comparison to regular insulins, Novorapid induced slightly 
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stronger proliferation but the difference was not found to be statistically significant. 

Interestingly, MCF7 cell treatment with the two long-acting insulin analogues, Lantus and 

Levemir, yielded opposite effect. Treatment of MCF7 cells with 1.5nM and 15nM dosage of 

Levemir resulted in approximately 1.2-fold increase in proliferation which is comparable to 

the fold increase seen with Actrapid and bovine insulin at these concentrations. At higher 

concentrations (150nM and 1.5µM), Levemir was found to be slightly weaker in inducing 

MCF7 cell proliferation compared to the regular insulins. 

However, treatment with Lantus elicited strong proliferative response in MCF7 cells at or 

above 1.5nM. At 1.5nM Lantus concentration, approximately 1.5-fold increase in 

proliferation was observed in comparison to untreated cells and this proliferation response 

increased to 1.8-fold at 15nM concentration. At higher dosages of 150nM and 1.5µM,  Lantus 

induced even stronger proliferation of MCF7 cells, namely 2.7-fold and 3.1-fold in 

comparison to untreated cells, respectively. The statistical analysis showed that at 

concentrations ≥ 1.5nM, the fold of control obtained with Lantus are significantly higher 

compared to the fold of control obtained with Actrapid or bovine insulin.  

 

 
Figure 3.3b Lantus induces stronger proliferation at 1.5pM and 15pM and significantly higher 
proliferation at 150pM concentration compared to regular insulin in MCF7 cells.  MCF7 cells 
were starved for 24 h in medium containing 2% DCC-serum and then were treated with increasing 
concentrations of Actrapid or Lantus for 72 h. Thereafter, cells were fixed and stained with crystal 
violet dye. After air drying, the stain was dissolved in 10% acetic acid and the absorbance was 
measured at 595nm in a plate reader. The values presented are the mean ± SD of n = 20. The statistical 
analysis was done by using student’s t-test. Asterisk (*) shows statistically significant (p < 0.05, t-test) 
difference between two data points.  
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The observation that 1.5nM Lantus induces significantly stronger proliferative response of 

MCF7 cells than 1.5nM Actrapid motivated us to compare the proliferative ability of Lantus 

and Actrapid at lower concentrations (1.5pM, 15pM and 150pM). Our results show that even 

at 150pM concentration Lantus had significantly higher proliferative effect when compared to 

150pM Actrapid (Fig. 3.3b). Also, at 1.5pM and 15pM concentration, Lantus treatment 

yielded stronger proliferation than Actrapid, though the difference was not statistically 

significant. The dose-response model showed initial statistically significant growth response 

(given by the ED10 estimation) of MCF7 cells to Actrapid at 5.2 nM (95% confidence 

intervals, lower: -1.0571e-09 mol l-1, upper: 1.143e-08 mol l-1) and to Lantus at 0.31 nM (95% 

confidence intervals: lower: -7.8890e-11 mol l-1, upper: 7.059e-10 mol l-1) concentrations. 

To summarise, Humalog, Novorapid and Levemir had similar proliferative potency as normal 

insulins in MCF7 cells. Lantus, in comparison to the regular insulins, had significantly higher 

proliferative potency and was found to be approximately 1.5-fold stronger than Actrapid in 

eliciting proliferation of MCF7 cells at the concentrations ≥ 150pM.  

 

3.2.3 Study in MCF7 cells by FACS analysis of BrdU incorporation 

In order to gain more information regarding the proliferative ability of insulin and insulin 

analogues and to confirm our data regarding strong proliferative effect of Lantus in MCF7 

cells, we chose FACS analysis of BrdU incorporation as a second readout.  

 

 

Figure 3.4 Lantus demonstrates strongest increase in BrdU incorporation in MCF7 cells when 
compared with insulin and insulin analogues. MCF7 cells were starved in medium containing 2% 
charcoal stripped serum for 24 h and then were stimulated with regular insulins or insulin analogues 
for 16 h. Cells were then incubated in 10µM BrdU for 1 hr and submitted to FACS analysis. Fold of 
control was calculated by comparing the BrdU incorporation in the absence or presence of insulin 
treatment. The values presented are the mean and range of duplicates. 
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Herein, we studied BrdU incorporation in MCF7 cells stimulated with regular insulins or 

insulin analogues for 16 h at two low concentrations (1.5nM and 15nM). MCF7 cells treated 

with Actrapid or bovine insulin exhibited increased BrdU incorporation in comparison to the 

untreated cells (Fig. 3.4). Treatment of MCF7 cells with 1.5nM Humalog or 1.5nM Novorapid 

demonstrated similar levels of BrdU incorporation as was observed with 1.5nM of regular 

insulins. 15nM Humalog or 15nM Novorapid however were approximately 2-fold stronger 

than Actrapid in stimulating BrdU incorporation. Treatment of MCF7 cells with 1.5nM or 

15nM concentration of Levemir yielded slightly lower levels of BrdU incorporation in 

comparison to Actrapid. 

In agreement with the data obtained from colorimetric proliferation assay (Fig. 3.3A), Lantus 

induced highest increase in BrdU incorporation in comparison to both regular insulins and any 

of the other insulin analogues. The comparative analysis of BrdU incorporation at 1.5nM and 

15nM concentration of Lantus and Actrapid revealed that Lantus treatment led to 

approximately 1.5-fold (at 1.5nM) and 3-fold (at 15nM) higher BrdU incorporation than 

Actrapid. Taken together, the results from colorimetric proliferation assay (Section 3.2.2) and 

FACS analysis of BrdU incorporation clearly establish that in MCF7 cells Lantus has 

significantly higher proliferative potency than regular insulins or other insulin analogues 

studied. 

3.3 Study of PI3K and MAPK signalling pathways in MCF10A and MCF7 

cell lines 

As described in section 2.4.4, biochemical properties of insulin analogues differ from regular 

insulin with respect to insulin receptor and IGF-IR binding affinity. This may result in 

differential activation of PI3K and MAPK pathways, the two insulin-activated pathways that 

are involved in cell proliferation. In this regard, it will be interesting as well as important to 

study the effect of insulin analogues on stimulation of both PI3K and MAPK pathways. 

3.3.1 Activation of PI3K pathway by insulin and insulin analogues in MCF10A 

and MCF7 cells 

In order to investigate the effect of regular insulin and insulin analogues on PI3K pathway, 

cells were treated with the compounds and phosphorylation status of Akt and GSK3α/β 

proteins, two important signalling molecules of the PI3K pathway, was studied. As insulin 

analogues may show altered affinity for IGF-IR, MCF7 cells treated with IGF-I, the 

physiological ligand of IGF-IR, were also analyzed. To determine the signalling potency of 
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insulin analogues, the phosphorylation status of signalling molecules were compared in cells 

treated for 10 min with 15nM of insulin analogue and regular insulin. 

3.3.1.1 Study of Akt phosphorylation in MCF10A cells 

The MCF10A cells were either left untreated or were treated with regular insulins (Actrapid 

or bovine insulin), insulin analogues or IGF-I.  

 

Figure 3.5 Only Lantus induced significantly stronger Akt phosphorylation in MCF10A cells in 
comparison to regular insulins. 5 x 105 MCF10A cells were plated and starved for 24 h in medium 
without insulin. Then cells were either processed untreated (Un) or after 10 min incubation with 15nM 
insulin (B – Bovine Insulin and A – Actrapid) or insulin analogues (La – Lantus, Le – Levemir, H – 
Humalog and N – Novorapid). IGF-I (I; 15nM) was studied for comparison. The cell lysates were 
resolved by 10% SDS-PAGE and immunoblots were probed for phosphorylated Akt and total Akt.  
Fold of control was obtained by normalizing phosphorylated forms over the protein levels and then 
comparing with the untreated sample. Statistical analysis was done by using student’s t-test with at 
least three independent experiments and asterisk shows the significant difference (p<0.05) between 
Lantus and Actrapid.  
 

The basal Akt phosphorylation in untreated MCF10A cells was almost undetectable in the 

immunoblots suggesting that endogenous Akt activity is very low (Fig. 3.5 lane; ‘Un’). 

Treatment of MCF10A cells with bovine insulin (lane ‘B’) or Actrapid (lane ‘A’) increased 

phosphorylated Akt level substantially. However, the strongest increase in Akt 

phosphorylation level was observed after IGF-I treatment (lane ‘I’). It was approximately two 

times higher than that observed with regular insulin. The Akt phosphorylation levels after 

Humalog (lane ‘H’), Novorapid (lane ‘N’) or Levemir (lane ‘Le’) treatment was similar to the 

Akt phosphorylation level from regular insulin treatment. Treatment of MCF10A cells with 
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Lantus (lane ‘La’) showed strong phosphorylation of Akt. It was found to be approximately 

1.7-fold stronger than Actrapid. Statistical analysis revealed that Lantus-induced Akt 

phosphorylation levels were significantly higher compared to the levels observed with regular 

insulins.  

Thus, with respect to Akt phosphorylation, signalling potency of Humalog, Novorapid and 

Levemir was similar to regular insulin in MCF10A cells. However, Lantus was significantly 

stronger than regular insulins in inducing Akt phosphorylation.  

3.3.1.2 Study of GSK3α/β phosphorylation in MCF10A cells 

The phosphorylation levels of GSK3α/β in untreated MCF10A cells were very low (Fig. 3.6; 

lane ‘Un’). Short term incubation of cells with bovine insulin or Actrapid, resulted in strong 

increase of GSK3α/β phosphorylation levels (lanes ‘B’ and ‘A’).  

 

Figure 3.6 All insulin analogues are similar to regular insulins in inducing GSK3α/β 
phosphorylation in MCF10A cells. 5x105 MCF10A cells were plated and starved for 24 h in medium 
without insulin. Then cells were either processed untreated (Un) or after 10 min incubation with 15nM 
insulin (B – Bovine Insulin and A – Actrapid) or insulin analogues (La – Lantus, Le – Levemir, H – 
Humalog and N – Novorapid). IGF-I (I; 15nM) was studied for comparison. The cell lysates were 
resolved by 10% SDS-PAGE and immunoblots were probed for phosphorylated GSK3α/β and total 
GSK3α/β.  Fold of control was obtained by normalizing phosphorylated forms over the protein levels 
and then comparing with the untreated sample. Statistical analysis was done by using student’s t-test 
with at least three independent experiments. 
 

Surprisingly, IGF-I was equi-potent to regular insulins in inducing GSK3α/β phosphorylation 

(lane ‘I’) which is in contrast to the observed stronger effect of IGF-I in inducing Akt 

phosphorylation (refer to section 3.3.1.1). Treatment of MCF10A cells with Humalog, 
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Novorapid or Levemir caused similar increase in GSK3α/β phosphorylation levels as was 

obtained after treatment with regular insulins (compare lane ‘H’, ‘N’ and ‘Le’ with the lane 

‘A’ or ‘B’). Unexpectedly, Lantus treatment did not induce significantly higher 

phosphorylation levels of GSK3α/β in comparison to Actrapid treatment. To sum up, all 

insulin analogues were equi-potent to regular insulin in inducing GSK3α/β phosphorylation in 

MCF10A cells. Combining these results with the Akt phosphorylation results, it can be 

suggested that Humalog, Novorapid and Levemir are equi-potent to regular insulins in 

activating PI3K pathway. Lantus may be stronger than regular insulins in this regard. 

3.3.1.3 Study of Akt phosphorylation in MCF7 cells 

The endogenous Akt phosphorylation level in MCF7 cells was very low (Fig. 3.7 ; lane ‘Un’).  

Treatment with bovine insulin or Actrapid led to increase in Akt phosphorylation levels (lanes 

‘B’ and ‘A’). Actrapid had slightly stronger effect than bovine insulin but it was not found to 

be significantly higher.  

 

Figure 3.7 Of all insulin analogues studied, Lantus induces significantly stronger and Levemir 
induces significantly weaker phosphorylation of Akt in comparison to regular insulins in MCF7 
cells. 5x105 MCF7 cells were plated and starved for 24 h in serum free medium. Then cells were either 
processed untreated (Un) or after 10 min incubation with 15nM insulin (B – Bovine Insulin and A – 
Actrapid) or insulin analogues (La – Lantus, Le – Levemir, H – Humalog and N – Novorapid). IGF-I 
(I; 15nM) was studied for comparison. The cell lysates were resolved by 10% SDS-PAGE and 
immunoblots were probed for phosphorylated Akt and total Akt.  Fold of control was obtained by 
normalizing phosphorylated forms over the protein levels and then comparing with the untreated 
sample. Statistical analysis was done by using student’s t-test with at least three independent 
experiments and asterisk shows the significant differences (p<0.05) between Lantus and Actrapid or 
Levemir and Actrapid.  
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As was observed with MCF10A cells, IGF-I treatment to MCF7 cells induced strong 

phosphorylation of Akt (lane ‘I’). IGF-I was approximately 2.5 times stronger than regular 

insulins. Both Humalog and Novorapid induced similar Akt phosphorylation levels as was 

achieved with Actrapid treatment (refer to the lanes marked as ‘H’ and ‘N’ and compare with 

lane ‘A’). However, treatment of MCF7 cells with Levemir (lane ‘Le’) and Lantus (lane ‘La’) 

yielded contrasting results on Akt phosphorylation. Levemir was significantly  weaker than 

Actrapid in inducing Akt phosphorylation (approximately 2-fold). On the contrary, Lantus 

treated MCF7 cells exhibited significantly higher Akt phosphorylation levels (approximately 

2.2-fold) relative to Actrapid treated MCF7 cells (compare lanes ‘La’ and ‘A’). 

In summary, Humalog and Novorapid were equi-potent to regular insulin in inducing Akt 

phosphorylation in MCF7 cells. Levemir induced significantly weaker effect while Lantus 

induced significantly stronger effect than regular insulin in inducing Akt phosphorylation. 

3.3.1.4 Study of GSK3α/β phosphorylation in MCF7 cells 

Basal level of GSK3α/β phosphorylation in MCF7 cells was low (Fig. 3.8; refer to the lane 

marked as ‘Un’). Treatment with bovine insulin or Actrapid induced approximately 2.2-fold 

higher phosphorylation of GSK3α/β when compared with endogenous GSK3α/β 

phosphorylation levels (refer to the lanes marked as ‘B’ and ‘A’ for treatment with bovine 

insulin or Actrapid respectively and compare with lane marked as ‘Un’). IGF-I (lane ‘I’) 

treatment induced strongest increase in GSK3α/β phosphorylation levels (approximately 3.5-

fold of endogenous level). MCF7 cells treated with Humalog (lane marked as ‘H’) or 

Novorapid (lane marked as ‘N’) also showed approximately 2.2-fold increase in GSK3α/β 

phosphorylation levels as was observed with Actrapid treatment (compare lanes ‘H’ and ‘N’ 

with lane ‘A’). Treatment of MCF7 cells with Levemir (lane marked as ‘Le’) and Lantus (lane 

marked as ‘La’) showed opposite effect. Levemir, in comparison to Actrapid, was 

significantly weaker in inducing GSK3α/β phosphorylation (approximately 0.5-fold weaker). 

The treatment with Lantus, however, resulted in 1.5-fold increase in GSK3α/β 

phosphorylation levels in comparison to Actrapid (refer to the lane marked as ‘La’ and 

compare with lane ‘A’). Statistical analysis showed the difference to be significant. 
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Figure 3.8 Of all insulin analogues studied, Lantus induces significantly stronger and Levemir 
induces significantly weaker phosphorylation of GSK3α/β in comparison to regular insulins in 
MCF7 cells. 5 x 105 MCF7 cells were plated and after 24 h were starved for another 24 h in serum free 
medium. Then cells were either processed untreated (Un) or after 10 min incubation with 15nM 
insulin (B – Bovine Insulin and A – Actrapid) or insulin analogues (La – Lantus, Le – Levemir, H – 
Humalog and N – Novorapid). IGF-I (I; 15nM) was studied for comparison. The cell lysates were 
resolved by 10% SDS-PAGE and immunoblots were probed for phosphorylated GSK3α/β and total 
GSK3α/β.  Fold of control was obtained by normalizing phosphorylated forms over the protein levels 
and then comparing with the untreated sample. Statistical analysis was done by using student’s t-test 
with at least three independent experiments and asterisk shows the significant difference (p<0.05) 
between Lantus and Actrapid or Levemir and Actrapid. 
 

In summary, the two short acting insulin analogues, Humalog and Novorapid, were equi-

potent to normal insulins in inducing GSK3α/β phosphorylation. However, the two long 

acting insulin analogues were opposite in their effect. Levemir was weak and Lantus was 

strongest of all insulin analogues in stimulating GSK3α/β phosphorylation. From the results 

on GSK3α/β phosphorylation and Akt phosphorylation, it may be concluded that Humalog 

and Novorapid are similar to regular insulins in activating PI3K pathway. Levemir is weaker 

while Lantus is significantly stronger than regular insulin in activating PI3K pathway.   

3.3.2 Activation of MAPK pathway by insulin and insulin analogues in 

MCF10A and MCF7 cells 

Erk1/2 represent the down most effector molecules of the Mitogen Activated Protein Kinase 

(MAPK) pathway. The phosphorylation levels of these signalling molecules were compared 

in cells treated with insulin analogues and regular insulin in order to gain knowledge of the 

signalling potency of insulin analogues at the MAPK pathway level.  
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3.3.2.1 Study of Erk1/2 phosphorylation in MCF10A cells 

The untreated MCF10A cells showed low levels of Erk1/2 phosphorylation (Fig. 3.9; lane 

‘Un’). Short term incubation of MCF10A cells with regular insulin (bovine insulin - ‘B’ and 

Actrapid - ‘A’) resulted in 10 to 12-fold higher Erk1/2 phosphorylation in comparison to 

untreated cells. IGF-I being a strong mitogen induced highest increase in Erk1/2 

phosphorylation levels (about 35-fold of untreated sample; lane ‘I’). Treatment of MCF10A 

cells with Levemir (lane ‘Le’) and Humalog (lane ‘H’) yielded similar Erk1/2 

phosphorylation levels as observed after treatment with the regular insulins (compare ‘Le’ and 

‘H’ with lanes ‘A’ or ‘B’). 

 

Figure 3.9 All insulin analogues tested were equi-potent to regular insulins in inducing Erk1/2 
phosphorylation in MCF10A cells. 5 x 105 MCF10A cells were plated and after 24 h were starved for 
another 24 h in insulin deprived medium. Then cells were either processed untreated (Un) or after 10 
min incubation with 15nM insulin (B – Bovine Insulin and A – Actrapid) or insulin analogues (La – 
Lantus, Le – Levemir, H – Humalog and N – Novorapid). IGF-I (I; 15nM) was studied as a positive 
control. The cell lysates were resolved by 10% SDS-PAGE and immunoblots were probed for 
phosphorylated Erk1/2 and total Erk1/2.  Fold of control was obtained by normalizing phosphorylated 
forms over the protein levels and then comparing with the untreated sample. Statistical analysis was 
done by using student’s t-test with at least three independent experiments.  
 

Interestingly, short term treatment with Lantus (lane ‘La’) or Novorapid (lane ‘N’) led to 

slight increase in the Erk1/2 phosphorylation status in comparison to regular insulins but the 

differences observed were not significant (compare lanes ‘La’ and ‘N’ with ‘A’ or ‘B’). Thus, 

it can be concluded that in MCF10A cells all insulin analogues were equi-potent to regular 

insulin in inducing Erk1/2 phosphorylation. 
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3.3.2.2 Study of Erk1/2 phosphorylation in MCF7 cells 

The endogenous Erk1/2 phosphorylation levels in MCF7 cells were also very low (Fig. 3.10; 

lane ‘Un’). Treatment with regular insulins and IGF-I led to increase in Erk1/2 

phosphorylation levels (bovine insulin - ‘B’, Actrapid - ‘A’ or IGF-I - ‘I’). Bovine insulin and 

Actrapid induced approximately three fold increase over the endogenous levels. IGF-I being a 

strong mitogen, showed the strongest effect (approximately 12-fold increase in comparison to 

endogenous levels).  

 

Figure 3.10 Lantus induced significantly stronger Erk1/2 phosphorylation in comparison to 
Actrapid in MCF7 cells. 5 x 105 MCF7 cells were plated and after 24 h were starved for another 24 h 
in serum free medium. Then cells were either processed untreated (Un) or after 10 min incubation with 
15nM insulin (B – Bovine Insulin and A – Actrapid) or insulin analogues (La – Lantus, Le – Levemir, 
H – Humalog and N – Novorapid). IGF-I (I; 15nM) was studied as a positive control. The cell lysates 
were resolved by 10% SDS-PAGE and immunoblots were probed for phosphorylated Erk1/2 and total 
Erk1/2. Fold of control was obtained by normalizing phosphorylated forms over the protein levels and 
then comparing with the untreated sample. Statistical analysis was done by using student’s t-test with 
at least three independent experiments and asterisk shows the significant difference (p<0.05) between 
Lantus and Actrapid. 
 

Treatment of MCF7 cells with either Humalog (lane ‘H’) or Novorapid (lane ‘N’) induced 

slightly but not significantly stronger phosphorylation of Erk1/2 compared to Actrapid or 

bovine insulin (compare lanes ‘H’ and ‘N’ with ‘A’ or ‘B’). Again, as observed with the 

phosphorylation of Akt and GSK3α/β, treatment of MCF7 cells with Levemir or Lantus 

yielded opposite results on induction of Erk1/2 phosphorylation. In comparison to Actrapid, 

Levemir was approximately 1.5-fold weaker in inducing Erk1/2 phosphorylation (compare 

‘Le’ with ‘A’). On the contrary, Lantus induced very strong phosphorylation of Erk1/2 and 
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showed approximately 2-fold stronger effect than Actrapid. The statistical analysis showed 

that phosphorylation is significantly stronger than with regular insulins (compare lane ‘La’ 

with lane ‘A’ and ‘B’).  

To summarise, in MCF7 cells, Humalog and Novorapid were equi-potent to the regular 

insulins in inducing Erk1/2 phosphorylation. Levemir was weaker than regular insulins and 

Lantus strongly induced Erk1/2 phosphorylation thus suggesting strong activation of MAPK 

pathway by Lantus.  

3.3.2.3 Study of p38 phosphorylation in MCF7 cells 

The p38 MAPK when activated by phosphorylation leads to inhibition of proliferation (Zhang 

and Liu, 2002). Phosphorylated p38 has been reported to negatively regulate expression of 

cyclin D1 gene which is important for cell cycle progression. Thus, its effect is opposite to 

that of Erk1/2 MAPK. To gain further insights into the activation of MAPK pathway by 

insulin analogues in MCF7 cells, we studied phosphorylation status of p38 protein.  

 

Figure 3.11 Insulin analogues did not differ from regular insulins regarding their effect on p38 
phosphorylation in MCF7 cells. 5x105 MCF7 cells were plated and after 24 h were starved for 
another 24 h in serum free medium. Then cells were either processed untreated (Un) or after 10 min 
incubation with 15nM insulin (B – Bovine Insulin and A – Actrapid) or insulin analogues (La – 
Lantus, Le – Levemir, H – Humalog and N – Novorapid). IGF-I (I; 15nM) was studied as a positive 
control. The cell lysates were resolved by 10% SDS-PAGE and immunoblots were probed for 
phosphorylated p38 and total p38.  Fold of control was obtained by normalizing phosphorylated forms 
over the protein levels and then comparing with the untreated sample. The figure represents mean ± 
SD of datapoints from at least three independent experiments. 
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Interestingly, the basal phosphorylation level of p38 was very high suggesting growth 

inhibiting experimental conditions (Fig. 3.11; lane ‘Un’).  The treatment with normal insulin 

did not lead to any significant alteration in the phosphorylation levels of p38 (refer to the 

lanes marked as ‘B’ and ‘A’ for treatment with bovine insulin or Actrapid respectively). 

However, IGF-I treatment resulted in clear although not significant increase in p38 

phosphorylation (refer to the lane marked as ‘I’ and compare with ‘Un’). This is at variance 

with the anti-proliferative effect of phospho-p38 and suggests other roles of phospho-p38 in 

cell functions.  Treatment of MCF7 cells with insulin analogues did not show any significant 

change in the p38 phosphorylation levels in comparison to regular insulin (refer to the lanes 

marked as ‘H’, ‘N’, ‘Le’ and ‘La’ for Humalog, Novorapid, Levemir and Lantus respectively 

and compare with lane ‘A’ and ‘B’). Thus, unlike Erk1/2 MAPK pathway, p38 MAPK 

pathway remains unaffected by insulin analogues in comparison to regular insulins. 

3.3.2.4 Role of MAPK in Lantus induced MCF7 cell proliferation 

The Erk1/2 MAPK pathway is a well established mitogenic pathway in MCF7 cells (Lu and 

Campisi, 1992; Jhun et al., 1994). However, some studies show that the PI3K signalling 

pathway can also transduce proliferation signals in MCF7 cells (Dufourny et al., 1997).  

 

Figure 3.12 MAPK pathway is the major proliferation pathway in Lantus-induced MCF7 cell 
proliferation. 1 x 104 MCF7 cells were plated per well of a 96-well plate. After 24 h, cells were 
starved for another 24 h in growth medium containing 2% DCC stripped serum. The specific inhibitors 
for PI3K pathway (Wortmannin) and MAPK pathway (U0126) were added in combination with 
150nM Actrapid or 150nM Lantus for another 72 h. The medium was changed every 24 h. After 72 h 
of incubation cells were PBS washed and fixed by 3% PFA and stained with crystal violet dye. The 
dye was dissolved in 10% acetic acid and absorbance was measured at 595nm in the plate reader. 
Values presented are the mean ± SD of n = 8. The statistical analysis was done by using student’s t-
test. Asterisk (*) shows statistically significant (p < 0.05, t-test) difference between Lantus and 
Actrapid data points.  
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Our proliferation assays demonstrated that Lantus induced MCF7 cell proliferation 

significantly stronger than regular insulins. As Lantus stimulated both PI3K and MAPK 

pathways strongly (Section 3.3.1 and Section 3.3.2) it remained to be determined which 

pathway was related to the strong proliferation of MCF7 cells in our experiments. To achieve 

this, MCF7 cells were treated with specific inhibitors of PI3K or MAPK pathways and 

stimulated with Actrapid or Lantus. The proliferation levels were assessed by colorimetric 

proliferation assays. Wortmannin, which inhibits the catalytic subunit of PI3K (p110), was 

used for inhibiting PI3K pathway. For inhibition of MAPK pathway, U0126 was used which 

binds to MAPKK, an upstream effector of Erk1/2. The colorimetric proliferation assay was 

performed on MCF7 cells treated with Actrapid or Lantus in combination with either 

Wortmannin or U0126. As both inhibitors were dissolved in DMSO, proliferation levels were 

analysed in cells treated only with DMSO or treated with DMSO in combination with 

Actrapid or Lantus for proper comparison. 

Lantus induced stronger proliferation than Actrapid in presence of DMSO indicating 

negligible effect of DMSO (Fig. 3.12). Wortmannin treatment slightly diminished Actrapid 

and Lantus-induced proliferation. Nevertheless, Lantus induced proliferation was still stronger 

in comparison to Actrapid. Interestingly, U0126 treated MCF7 cells did not proliferate in 

response to Actrapid and Lantus treatment. Thus, the above inhibitor experiment clearly 

demonstrates that in MCF7 cells the MAPK pathway is the major proliferation pathway 

activated by Actrapid and Lantus.  

3.4 Understanding the molecular mechanism behind increased 

proliferative effect of Lantus in MCF cells 

Sections 3.3.1.3, 3.3.1.4 and 3.3.2.2 clearly demonstrated that Lantus has significantly higher 

signalling potency in comparison to all other insulin analogues tested and, most importantly, 

to regular insulin in MCF7 cells. This higher signalling potency is reflected in stronger 

proliferative potency of Lantus in comparison to regular insulin and other insulin analogues 

tested in MCF7 cells. The strong proliferative potency of Lantus may be due to strong 

activation of insulin receptor or may involve IGF-IR. ERα activation also induces 

proliferation of MCF7 cells and as described in section 2.5.3.2, ERα can cross-talk with IGF-

IR. As ERα is abundantly expressed by MCF7 cells, there is a possibility that it may 

contribute to the proliferative potency of Lantus in MCF7 cells. Therefore, we investigated 

the role of insulin receptor, IGF-IR and ERα in the proliferative ability of Lantus.  
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3.4.1 Investigating the role of insulin receptor in the strong proliferative potency 

of Lantus  

MELN cells are MCF7 cells stably transfected with ERE dependent firefly luciferase reporter 

gene. We utilised MELN cells for siRNA studies as MELN cells are easier to transfect than 

MCF7 cells. In order to study the involvement of insulin receptor in the strong signalling 

potency of Lantus, MELN cells were transfected with non-targeting siRNA (CT2 siRNA) or 

insulin receptor targeting siRNA. Thereafter, cells were stimulated for short term (10 min) 

with 15nM Actrapid, Lantus or IGF-I and phosphorylation status of Akt and Erk1/2 

(important molecules of PI3K and MAPK signalling pathways, respectively) was studied.  

 

Figure 3.13a Insulin receptor knockdown in MELN cells. 3 x 105 MELN cells were plated per well 
of a 6-well plate. After 12 h, cells were transfected with either 25nM of non-taregting siRNA (CT2 
siRNA) or 25nM of insulin receptor targeting siRNA. After 48 h of transfection, cells were starved for 
next 24 h in serum-free medium. Cells were then left untreated (‘Un’) or were treated for 10 min with 
15nM Actrapid (‘A’), 15nM Lantus (‘La’) or 15nM IGF-I (‘I’). At the end of the experiment, medium 
was aspirated, cells were washed with PBS and cell lysates were prepared as mentioned in the 
Methods section. Equal amount of cell lysate was loaded and samples were resolved by 10% SDS-
PAGE. After membrane transfer, blots were probed first for insulin receptor (IR) and then stripped and 
probed for IGF-IR.  

MELN cells treated with siRNA targeting insulin receptor showed 70% decrease in the insulin 

receptor protein level (Fig. 3.13a; compare insulin receptor protein levels in samples treated 

with non-targeting siRNA or with insulin receptor targeting siRNA). The siRNA against 

insulin receptor did not target IGF-IR (refer to the immunoblot probed with antibody against 

the beta-subunit of IGF-IR) thus demonstrating the specificity of the siRNA.  

3.4.1.1 Study of Akt phosphorylation under insulin receptor knockdown conditions 

Under non-targeting conditions, MELN cells treated with 15nM Actrapid demonstrated 

increased Akt phosphorylation levels in comparison to untreated cells (Fig. 3.13b; compare 

lanes ‘Un’ and ‘A’ under CT2 siRNA label). Lantus treatment induced even higher Akt 

phosphorylation levels (compare lanes ‘La’ and ‘A’). The highest Akt phosphorylation levels 

were obtained after treatment with IGF-I (compare lane ‘I’ with lanes ‘A’ and ‘La’). This is in 
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agreement with the Akt phosphorylation data obtained under untransfected conditions in 

MCF7 cells (Sec 3.3.1.3). 

 

Figure 3.13b Actrapid, Lantus or IGF-I induced Akt phosphorylation level in MELN cells 
transfected with insulin receptor siRNA. 3 x105 MELN cells were plated per well of a 6-well plate. 
After 12 h, cells were transfected with either 25nM of non-targeting siRNA (CT2 siRNA) or 25nM of 
insulin receptor targeting siRNA. After 48 h of transfection, cells were starved for next 24 h in serum-
free medium. Cells were then left untreated (‘Un’) or were treated for 10 min with 15nM Actrapid 
(‘A’), 15nM Lantus (‘La’) or 15nM IGF-I (‘I’). At the end of the experiment, medium was aspirated,  
cells were washed with PBS and cell lysates were prepared as mentioned in Method section. Equal 
amount of cell lysate was loaded and samples were resolved by 10% SDS-PAGE. After membrane 
transfer, blots were probed first for phospho-Akt and then stripped and probed for total Akt protein. 

Insulin receptor knockdown diminished Actrapid potency in inducing Akt phosphorylation by 

approximately 70%, thus confirming the well established fact that normal insulin at 15nM  

concentration acts mostly via insulin receptor (compare lanes marked as ‘A’ under the two 

transfection conditions). In comparison to Actrapid treatment, knockdown of insulin receptor 

did not significantly compromise Lantus ability to induce Akt phosphorylation suggesting the 

involvement of other receptors for Lantus induced signalling. Furthermore, IGF-I ability to 

induce Akt phosphorylation was also not compromised under insulin receptor knockdown 

conditions. In fact, it seemed to be increased under insulin receptor knockdown conditions. 

This is an interesting observation and indicates a ‘quenching’ effect of insulin receptor on 

IGF-IR which is abolished after silencing of the insulin receptor.  

3.4.1.2 Study of Erk1/2 phosphorylation under insulin receptor knockdown conditions 

Treatment of CT2siRNA transfected MELN cells with Actrapid induced phosphorylation of 

Erk1/2 (Fig. 3.13c; compare lanes marked as ‘Un’ and ‘A’). This effect corresponds to the 

effect of Actrapid on untransfected MCF7 cells (Section 3.3.2.2). In addition, similar to the 

results obtained on untransfected MCF7 cells, Lantus and IGF-I treatment induced stronger 

phosphorylation of Erk1/2 than Actrapid in CT2siRNA transfected cells.   
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Figure 3.13c Actrapid, Lantus or IGF-I induced Erk1/2 phosphorylation level in insulin receptor 
siRNA transfected MELN cells. 3 x 105 MELN cells were plated per well of a 6-well plate. After 12 
h, cells were transfected with either 25nM of non-taregting siRNA (CT2 siRNA) or 25nM of insulin 
receptor targeting siRNA. After 48 h of transfection, cells were starved for next 24 h in serum-free 
medium. Cells were then left untreated (‘Un’) or were treated for 10 min with 15nM Actrapid (‘A’), 
15nM Lantus (‘La’) or 15nM IGF-I (‘I’). At the end of the experiment, medium was aspirated, cells 
were washed with PBS and cell lysates were prepared as described in the Methods section. Equal 
amount of cell lysate was loaded and samples were resolved by 10% SDS-PAGE. After membrane 
transfer, blots were probed first for phosphorylated forms of Erk1/2 and after stripping for total 
Erk1/2.  

Under insulin receptor knockdown conditions, the ability of Actrapid to induce Erk1/2 

phosphorylation was decreased by approximately 80%. However, under these conditions, 

Lantus ability to induce Erk1/2 phosphorylation was not decreased to the same extent 

(compare lanes marked as ‘La’ under both transfection conditions). Furthermore, as reported 

for Akt phosphorylation, insulin receptor knockdown resulted in increased IGF-I ability to 

induce Erk1/2 phosphorylation (compare lanes marked as ‘I’ under two transfection 

conditions). This again suggests a quenching effect of insulin receptor on IGF-IR. 

3.4.2 Investigating the role IGF-IR in the strong proliferative potency of Lantus  

In order to determine the involvement of IGF-IR in the stronger signalling and proliferative 

potency of Lantus in comparison to Actrapid, a similar approach was used as described in the 

above section. MELN cells were either treated with non-targeting siRNA (CT2 siRNA) or 

with siRNA targeting the IGF-IR and then signalling and proliferative potencies of Lantus 

were compared to Actrapid. IGF-I treatment was used as positive control for IGF-IR 

activation.  

MELN cells transfected with IGF-IR targeting siRNA showed approximately 90% decrease in 

IGF-IR protein level when compared with the cells transfected with non-targeting siRNA 

(Fig. 3.14a; compare IGF-IR protein levels in samples treated with non-targeting siRNA or 

with IGF-IR targeting siRNA). The downregulation of the IGF-IR did not lead to decrease in 

the insulin receptor protein content, demonstrating the specificity of siRNA (refer to the 

immunoblot probed with antibody against beta subunit of insulin receptor). 
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Figure 3.14a  IGF-IR knockdown in MELN cells. 3 x 105 MELN cells were plated per well of a 6-
well plate. After 12 h, cells were transfected with either 25nM of non-taregting siRNA (CT2 siRNA) 
or 25nM of insulin receptor targeting siRNA. After 48 h of transfection, cells were starved for next 24 
h in serum-free medium. Cells were then left untreated (‘Un’) or were treated for 10 min with 15nM 
Actrapid (‘A’), 15nM Lantus (‘La’) or 15nM IGF-I (‘I’). At the end of the experiment, medium was 
aspirated, cells were washed with PBS and cell lysates were prepared as mentioned in the Methods 
section. Equal amount of cell lysate was loaded and samples were resolved by 10% SDS-PAGE. After 
membrane transfer, blots were probed first for IGF-IR and then stripped and probed for insulin 
receptor. 

3.4.2.1 Study of Akt phosphorylation under IGF-IR knockdown conditions 

Under non-targeting conditions, treatment of MELN cells with IGF-I induced strong 

phosphorylation of Akt (Fig. 3.14b, compare lanes marked as ‘Un’ and ‘I’ under non-

targeting conditions). Furthermore, treatment with Actrapid and Lantus induced Akt 

phosphorylation with Lantus showing a significantly stronger effect than Actrapid (compare 

lanes marked as ‘A’ and ‘La’ under non-targeting conditions). This is in agreement with the 

Actrapid and Lantus induced Akt phosphorylation levels obtained in untransfected cells (refer 

to Fig. 3.7).  

 

Figure 3.14b Actrapid, Lantus or IGF-I induced Akt phosphorylation level in MELN cells 
transfected with IGF-IR siRNA. 3 x 105 MELN cells were plated per well of a 6-well plate. After 12 
h, cells were transfected with either 25nM of non-targeting siRNA (CT2 siRNA) or 25nM of insulin 
receptor targeting siRNA. After 48 h of transfection, cells were starved for next 24 h in serum-free 
medium. Cells were then left untreated (‘Un’) or were treated for 10 min with 15nM Actrapid (‘A’), 
15nM Lantus (‘La’) or 15nM IGF-I (‘I’). At the end of the experiment, medium was aspirated, cells 
were washed with PBS and cell lysate were prepared as mentioned in the Methods section. Equal 
amount of cell lysate was loaded and samples were resolved by 10% SDS-PAGE. After membrane 
transfer, blots were probed first for phospho-Akt and then stripped and probed for total Akt protein. 
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Knockdown of IGF-IR decreased IGF-I ability to induce Akt phosphorylation by 

approximately 60% (compare lanes marked as ‘I’ under the two transfection conditions).  

Interestingly, IGF-IR knockdown also decreased Lantus ability to induce Akt phosphorylation 

(compare lanes marked as ‘La’ under the two transfection conditions). On the contrary, 

Actrapid was observed to be slightly more potent in inducing Akt phosphorylation after IGF-

IR knockdown (compare lanes marked as ‘A’ under the two transfection conditions). This 

suggests that IGF-IR also exerts a ‘quenching’ effect on insulin receptor activity, which is 

abolished after knockdown of the IGF-IR. Thus, from the results on the receptor signalling 

after insulin receptor knockdown or IGF-IR knockdown it may be concluded that both 

receptors regulate each others activity. 

3.4.2.2 Study of Erk1/2 phosphorylation under IGF-IR knockdown conditions 

In MELN cells transfected with non-targeting siRNA, the phosphorylation status of Erk1/2 in 

response to the treatment with Actrapid, Lantus or IGF-I was comparable to the results 

obtained under untransfected conditions (compare Fig. 3.14c with Fig. 3.10). IGF-I induced 

strongest phosphorylation of Erk1/2 compared to Actrapid and Lantus. Lantus induced Erk1/2 

phosphorylation level was significantly higher than the level induced by Actrapid.  

 

Figure 3.14c Actrapid, Lantus or IGF-I induced Erk1/2 phosphorylation level in MELN cells 
transfected with IGF-IR siRNA. 3 x 105 MELN cells were plated per well of a 6-well plate. After 12 
h, cells were transfected with either 25nM of non-taregting siRNA (CT2 siRNA) or 25nM of insulin 
receptor targeting siRNA. After 48 h of transfection, cells were starved for next 24 h in serum-free 
medium. Cells were then left untreated (‘Un’) or were treated for 10 min with 15nM Actrapid (‘A’), 
15nM Lantus (‘La’) or 15nM IGF-I (‘I’). At the end of the experiment, medium was aspirated, cells 
were washed with PBS and cell lysates were prepared as described in the Methods section. Equal 
amount of cell lysate was loaded and samples were resolved by 10% SDS-PAGE. After membrane 
transfer, blots were probed first for phosphorylated forms of Erk1/2 and after stripping for total 
Erk1/2.  

In MELN cells transfected with IGF-IR-targeting siRNA, IGF-I ability to induce Erk1/2 

phosphorylation was compromised and was reduced to approximately 60% (compare lane ‘I’ 

under the two transfection conditions). The knockdown of IGF-IR severely decreased Lantus 
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ability to induce Erk1/2 phosphorylation thus suggesting that Lantus-induced strong 

activation of MAPK pathway involves IGF-IR activation (compare lanes marked as ‘La’ 

under the two transfection conditions). In the absence of IGF-IR, Actrapid was more potent in 

inducing Erk1/2 phosphorylation compared to non-targeting conditions (compare lanes 

marked as ‘A’ under two types of transfections). This observation demonstrates again that 

IGF-IR has a ‘quenching’ effect on insulin receptor.  

The results demonstrate that IGF-IR plays an important role in Lantus induced strong 

phosphorylation of Akt and Erk1/2. In addition, IGF-IR exerts a quenching effect on insulin 

receptor as was evident from increased signalling potency of Actrapid under IGF-IR 

knockdown conditions.  

3.4.2.3 Study of the proliferative potency of Lantus under IGF-IR knockdown conditions 

Finally, in order to ascertain the involvement of IGF-IR in the strong proliferative ability of 

Lantus, the proliferation assay was performed under knockdown conditions. For this, MELN 

cells were transfected with non-targeting siRNA or IGF-IR targeting siRNA and cells were 

treated with Actrapid, Lantus or IGF-I.  

 

 

Figure 3.15 Lantus mediated strong proliferation in MELN cells is due to the activation of IGF-
IR.  1 x 104 MELN cells were plated per well of a 96-well plate. After 12 h, cells were transfected 
using oligofectamine (2µl/well) with 25nM CT2 siRNA or 25nM IGF-IR targeting siRNA. After 48 h 
of transfection cells were starved for next 24 h in medium containing 2% DCC-FBS. Thereafter, cells 
were treated with 150nM Actrapid, 150nM Lantus or 15nM IGF-I for 72 h. At the end of the 
experiment, cells were fixed and stained with crystal violet dye. After air drying, the stain was 
dissolved in 10% acetic acid and the absorbance was measured at 595nm in a plate reader. Fold of 
control was determined with reference to Actrapid. Statistical analysis (student’s t-test) was performed 
with at least 8 data points. Asterisks mean statistical significance at p < 0.05. 
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Under non-targeting conditions, treatment of MELN cells with both, Lantus or IGF-I yielded 

significantly higher proliferation of MELN cells compared to Actrapid (Fig. 3.15). As 

expected, IGF-IR knockdown decreased IGF-I ability to stimulate proliferation. Under IGF-IR 

knockdown conditions, proliferation levels achieved with Lantus treatment were similar to 

that of Actrapid treatment. This is a direct confirmation that the high proliferative potency of 

Lantus involves IGF-IR activation. Thus, it can be concluded that increased signalling and 

proliferative potency of Lantus compared to Actrapid involves activation of IGF-IR. 

3.4.2.4 Study of Lantus induced IGF-IR phosphorylation  

IGF-IR activation is characterized by the phosphorylation of specific tyrosine residues in the 

kinase domain of IGF-IR. Thus, Lantus induced activation of IGF-IR should result in 

increased phosphorylation of IGF-IR. To study this, we performed immunoprecipitation of 

IGF-IR followed by detection of phospho-tyrosine in the immunoprecipitates. Cell lysates 

from untreated MCF7 cells or MCF7 cells treated with Actrapid, Lantus or IGF-I were 

subjected to immunoprecipitation using a polyclonal antibody against the beta-subunit of IGF-

IR (Fig. 3.16).  

 

Figure 3.16 Lantus in comparison to Actrapid strongly phosphorylates IGF-IR in MCF7 cells.  
MCF7 cells were starved in medium containing 2% DCC-FBS for 24 h and then were treated with 
15nM Actrapid (A), 15nM Lantus (La) or 15nM IGF-I (I) for 10 min or were left untreated (Un). Cell 
lysates obtained were subjected to immunoprecipitation with antibody against IGF-IR. Precipitation 
with non-immune IgG was included to study the specificity of the immunoprecipitation. 
Immunoprecipitates obtained were resolved by 10% SDS-PAGE and the blot was first probed for the 
phosphorylated form of IGF-IR then stripped and probed for IGF-IR.  

The IGF-IR could not be detected in the lysate subjected to immunoprecipitation using non-

immune IgG thus confirming the specificity of the immunoprecipitation procedure (refer to 

lane marked ‘IgG’ and compare with other lanes of the immunoblot).  The basal 

phosphorylation of IGF-IR was very low and almost undetectable in the immunoblot (refer to 

lane labeled ‘Un’). IGF-I being a cognate ligand of IGF-IR induced strong phosphorylation of 
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IGF-IR (refer to lane labeled ‘I’). Importantly, treatment of MELN cells with Actrapid did not 

increase IGF-IR phosphorylation levels in comparison to untreated cells (refer to lane labeled 

‘A’). On the contrary, high phosphorylation levels of IGF-IR were detected in MELN cells 

treated with Lantus thus confirming the activation of IGF-IR by Lantus (refer to the lane 

labeled ‘La’). 

3.4.2.5 Study of induction of a IGF-IR responsive gene by Lantus treatment 

The activation of IGF-IR results in increased expression of genes involved in cell proliferation 

like cyclin D1 (Sachdev and Yee 2001, Furlanetto et al.,1994). In order to investigate if IGF-

IR activation by Lantus results in increase of cyclin D1 gene expression, we utilised 

quantitative RT-PCR and studied the cyclin D1 expression level in Lantus treated MCF7 cells 

after 1 h, 3 h or 6 h of treatment. The cyclin D1 gene expression level observed in Lantus 

treated MCF7 cells was compared with Actrapid treated MCF7 cells to determine the relative 

strength of the two compounds. IGF-I treatment was used as a positive control. At 1 h of 

treatment, no significant difference in cyclin D1 expression level was observed between any 

of the treatments (Fig. 3.17). 

 

Figure 3.17 Lantus in comparison to Actrapid induced significantly higher expression of Cyclin 
D1 gene in MCF7 cells.   MCF7 cells were serum-starved for 24 h and were either left untreated or 
were treated for 1 h, 3 h and 6 h with 15nM Actrapid or 15nM Lantus or 15nM IGF-I. Total RNA was 
extracted and reverse transcribed to obtain cDNA. Real time PCR was performed by using specific 
primers for cyclin D1. GAPDH was used as internal control. Standard curve for Ct values was 
obtained by plotting the number of molecules in serially diluted cDNA against their Ct value. This 
standard curve was then used to determine from each sample the number of molecules at the end of the 
experiment. After normalizing the cyclin D1 value against GAPDH, fold of control was calculated for 
each time point. Statistical analysis was done with at least two independent experiments and asterisks 
show data significantly different from Actrapid (p<0.05).  
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At the 3 h timepoint, Actrapid treatment induced approximately 1.8-fold higher cyclin D1 

gene expression in comparison to untreated cells, thus confirming insulin to be a mitogen. 

Treatment of MCF7 cells with Lantus for 3 h resulted in approximately 2.6-fold increase in 

cyclin D1 gene expression. The increase was found to be significantly higher than with 

Actrapid treatment. Similarly, at the 3 h timepoint, IGF-I treatment induced approximately 2.4 

fold increase in cyclin D1 gene expression and this increase was also significantly higher in 

comparison to Actrapid treatment. After 6 h of treatment, cyclin D1 gene expression was 

decreased in all samples, the Actrapid treated sample demonstrating basal levels of cyclin D1 

gene expression and Lantus and IGF-I treated cells showing slightly higher than basal levels. 

This reduction may be explained by the cyclical expression pattern of cyclin D1 gene (Stacey, 

2003). 

To sum up, Lantus induced expression levels of cyclin D1, an IGF-I regulated gene. The 

expression levels are comparable with the expression levels obtained with IGF-I treatment. 

This experiment thus confirms that Lantus activates IGF-IR.  

3.4.3 Investigating the role of ERα in the strong proliferative potency of Lantus  

Several studies have suggested a cross-talk between IGF-IR and ERα signalling (Smith, 1998; 

Kato et al., 2000). IGF-I induces stronger proliferation in MCF7 cells which expressed ERα 

compared to MCF7 cells which do not express ERα, suggesting an important role of ERα in 

IGF-IR mediated cell proliferation (Oesterreich et al., 2001). Results shown above clearly 

establish that Lantus induces strong proliferation in MCF7 cells via activation of IGF-IR. As 

MCF7 cells show a high expression level of ERα (Fig. 3.1), it was hypothesised that Lantus-

induced high proliferation involves ERα activation. In order to investigate the potential role of 

ERα regarding the proliferative potency of Lantus, the following two approaches were used –  

1. ERα activation involves phosphorylation of the Ser118 residue in ERα (Lannigan, 

2003). This serine residue has been demonstrated to be phosphorylated by GSK3β and 

MAPK, two protein kinases related to IGF-I signalling pathway (Grisouard et al., 

2007; Kato et al., 2000). Thus, to assess activation of ERα by Lantus, the 

phosphorylation status of Ser118 residue of ERα was studied in Lantus treated MCF7 

cells. Regular insulin and IGF-I were studied for comparison. Other insulin analogues 

were also studied.  
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2. The potential ERα activation by regular insulin, Lantus and IGF-I was directly 

assessed by luciferase reporter assay system. Estradiol treated cells were the positive 

control. 

3.4.3.1 Study of ERα phosphorylation and activation in MCF7 cells  

MCF7 cells were treated with regular insulin, insulin analogue and IGF-I for 10 min and 

phosphorylation status of ERα at Ser118 residue was compared. 

 

Figure 3.18 Lantus induced significantly higher phosphorylation of ERα in comparison to 
regular insulin and other insulin analogues in MCF7 cells. 5 x 105 MCF7 cells were serum starved 
for 24 h and then were processed without any treatment (Un) or after 10 min treatment with 15nM 
insulin (B – Bovine Insulin and A – Actrapid) or insulin analogues (La – Lantus, Le – Levemir, H – 
Humalog and N – Novorapid). 15nM IGF-I  was studied for comparison. The cell lysates were 
resolved by 10% SDS-PAGE and immunoblots were probed for ERα phosphorylated at Ser118 residue 
and total ERα protein.  Fold of control was obtained by normalizing phosphorylated forms over the 
protein levels and then comparing with the untreated sample. Statistical analysis was done with at least 
three independent experiments and asterisk shows the significant difference (p<0.05) between Lantus 
and Actrapid effects. 

MCF7 cells exhibited a weak basal phosphorylation level of ERα (Fig. 3.18; lane ‘Un’). 

Treatment with bovine insulin or Actrapid did not result in significant increase in 

phosphorylated ERα levels (compare lanes marked ‘A’ or ‘B’ with lane ‘Un’). However, IGF-

I treatment resulted in 2.5-fold increase in ERα phosphorylation levels in comparison to 

endogenous levels (compare lane ‘I’ with ‘Un’). Interestingly, in comparison to regular 

insulin, Lantus treatment resulted in 1.5-fold increase in ERα phosphorylation levels. 

Statistical analysis revealed that the effect of Lantus is significantly stronger than that of 

Actrapid. There was no observable difference in ERα phosphorylation level in cells treated 
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with regular insulin and other insulin analogues (Levemir, ‘Le’; Humalog, ‘H’ or Novorapid, 

‘N’). Thus, Lantus, like IGF-I, induces stronger phosphorylation of ERα at Ser118 residue in 

comparison to regular insulin and other insulin analogues tested, suggesting stronger 

activation of ERα by Lantus and IGF-I.  

3.4.3.2 Study of ERα activation by Lantus using reporter assay system  

Activated ERα dimerises and acts as a transcription factor. As a transcription factor it binds to 

estrogen response elements (ERE) in the promoter region of estrogen responsive genes and 

induces their transcription (McDonnell and Norris, 2002). In order to directly study the 

activation of ERα by Lantus, an ERE dependent luciferase reporter assay system was utilized. 

MELN cells (MCF7 cells stably transfected with ERE-luc reporter system) were treated with 

Actrapid, Lantus or IGF-I and the luciferase activity was measured.  

 

 
Figure 3.19 Lantus was slightly stronger than Actrapid in inducing luciferase activity in MELN 
cells. 3 x 105 MELN cells were plated and after 24 h cells were processed untreated (Un) or were 
processed after treatment with 15nM Actrapid (A), 15nM Lantus (La) or 15nM IGF-I for 6 h. MELN 
cells treated with 10nM or 100nM estradiol (E10, E100) were used as positive control. Specific 
luciferase activity was determined by normalizing the luminescence with the protein concentration. 
Fold of control was calculated by normalizing specific activity from treated cells with the specific 
activity of untreated cells. Values presented are the mean and range of four values. The statistical 
analysis was done by using student’s t-test. Asterisks (*) show statistical significance (p < 0.05, t-test) 
in comparison to untreated cells. 

Untreated MELN cells showed very low luciferase activity (Fig. 3.19). Treatment with 10nM 

and 100nM estradiol led to 8.5-fold and 6.8-fold increase over untreated cells, respectively. 

MELN cells treated with Actrapid, Lantus or IGF-I showed only little increase in luciferase 

activity compared to the untreated cells. Lantus and IGF-I treated cells demonstrated slightly 

higher luciferase activity than Actrapid treated cells, reflecting the ERα phosphorylation 
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described in section (3.4.3.1). Taken together, this suggests that Lantus modulates ERα 

activity slightly stronger than Actrapid. However, combining the results from ERα 

phosphorylation and luciferase assays, it can be concluded that ERα is only weakly activated 

by Lantus and thus ERα is unlikely to play a strong role in rendering high proliferative ability 

to Lantus.     

3.5 Study of Lantus induced cell migration by wound healing assay in 

MCF7 cells  

Cancer is characterised by metastasis which involves cell migration and cell invasion. We 

investigated the potency of Lantus in comparison to Actrapid in inducing migration in MCF7 

cells. For this, cell monolayer was wounded and cells were treated with Actrapid or Lantus for 

21 h (Fig. 3.20). At specific timepoints (3 h, 6 h, 12 h and 21 h), wound width was determined 

and wound healing was calculated as percentage of initial wound width. IGF-I, the cognate 

ligand of IGF-IR, is known to stimulate cell migration. As Lantus also activates IGF-IR 

(section 3.4), IGF-I was included in the study as a control.    
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Figure 3.20 Lantus and Actrapid induced comparable MCF7 cell migration. Confluent monolayer 
of MCF7 cells was wounded using a yellow tip. Cells were treated with 2µg/ml mitomycin C for 1 hr. 
Thereafter, cells were either left untreated or treated with Actrapid (15nM or 150nM), Lantus (15nM 
or 150nM) or IGF-I (15nM) for 3 h, 6 h, 12 h or 21 h. At each timepoint wounds were photographed 
and percentage of wound healing was calculated. The picture presented here is a representative image 
from two independent wounds. 
 

Untreated MCF7 cells demonstrated approximately 60% of wound healing by 21 h (Fig. 

3.21). Treatment with 15nM IGF-I increased MCF7 cell migration as ~ 88% wound closure 

was observed at the 21 h timepoint in comparison to ~ 60% observed in untreated cells. At 

this timepoint, 15nM and 150nM Actrapid were also found to induce cell migration as 

reflected by ~ 75% of initial wound closure. Similarly, Lantus treatm ent (15nM and 150nM) 

of MCF7 cells resulted in ~ 80% closure of initial wound after 21 h which was 1.3-fold of 

wound closure observed in untreated cells at this timepoint. Comparison of Lantus and 

Actrapid-induced MCF7 cell migration reveals that both compounds stimulate migration to a 

similar extent.  
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Figure 3.21 Graphical presentation of MCF7 cell migration under different treatments after 
21 h. Distance between the two edges of the wound was measured at 0 h (initial wound) and 21 h. The 
extent of wound healing at 21 h was calculated by subtracting the distance between the two edges at 
21 h and 0 h. These values were utilised to calculate ‘wound healing [%]’ by dividing wound width at 
21h by the initial wound width. The data presented here are mean ± SD of two independent wounds.  

In summary, the wound healing experiment demonstrates that the migration-inducing 

potential of Lantus and Actrapid in MCF7 cells are similar.  
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4 DISCUSSION 

Insulin analogues have been a great achievement in maintaining normal glucose serum levels 

in diabetic patients. However, as insulin analogues are generated by modifying the insulin 

backbone which alters binding properties to insulin receptor and IGF-IR, serious concerns 

have been raised regarding the possible increase of mitogenic potential of insulin analogues. 

These concerns have been augmented by studies demonstrating high potential of B10Asp, an 

insulin analogue generated by replacing amino acid at 10th position with asparagine, in 

causing proliferation, focus formation and colony formation in osteosarcoma cells, MCF10A 

cells and MCF7 cells, respectively. In addition to in vitro studies, B10Asp administration to 

female Sprague-Dawley rats resulted in increased mammary tumour incidence compared to 

regular insulin. The observation that insulin receptor and IGF-IR are highly expressed in 

normal mammary epithelial cells and even overexpressed in tumorigenic mammary epithelial 

cells, suggests high susceptibility of mammary epithelial cells toward the mitogenic effect of 

insulin analogues. Thus, a comprehensive and detailed study of the mitogenic potency of 

therapeutically available insulin analogues on mammary epithelial cells is strongly warranted.  

In this regard, in vitro experiments reported till date, studying the mitogenic effects of 

therapeutically used insulin analogues on mammary epithelial cells, have been largely 

inconclusive owing to the experimental assays used and inconsistencies in the results. 

Furthermore, a standard two-year carcinogenicity test has not been performed for 

therapeutically used insulin analogues except for Insulin Glargine. In this study, the rats 

treated with Insulin Glargine and regular insulin showed equal incidence of mammary 

tumours. However, the study also reported a very high mortality rate in all treated animal 

groups thus raising questions on the experimental design and conclusions drawn. The aim of 

the present work was to compare the proliferative and signalling ability of insulin analogues 

that are currently therapeutically used, with the regular insulin in human mammary epithelial 

cells. In addition, we also aimed to unravel the molecular and biochemical mechanism behind 

the proliferative potency of those insulin analogue(s) which demonstrated higher proliferative 

ability than regular insulin. 

Our study showed that in comparison to regular insulin, only Insulin Glargine (Lantus), of all 

four insulin analogues tested, elicited significantly higher proliferation in MCF7 cells, a cell 

line with high IGF-IR/IR ratio. In MCF10A cells, an insulin responsive mammary epithelial 
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cell line exhibiting low IGF-IR/IR ratio, Insulin Glargine had similar proliferative potency as 

other insulin analogues and regular insulin. At the molecular level, we observed that Insulin 

Glargine treatment resulted in strong activation of PI3K and MAPK signalling pathways in 

MCF7 cells. The strong activation of MAPK pathway by Insulin Glargine is reflected in the 

significantly increased proliferative ability of Insulin Glargine compared to regular insulin. 

Insulin Glargine exerts its strong mitogenic potency by strongly activating IGF-IR besides 

insulin receptor. ERα, by virtue of its cross-talk with IGF-IR, is also activated by Insulin 

Glargine but its overall contribution into the mitogenic potency of Insulin Glargine may be 

low. Finally, our preliminary experiments on stimulation of the migratory and invasive 

potential of the cells by Insulin Glargine revealed no significant difference from regular 

insulin.   

We postulate that Insulin Glargine may rather be a tumour promoter than a tumour inducer 

and exerts a significantly stronger proliferative effect in comparison to regular insulin 

(Actrapid) in cells that demonstrate high IGF-IR/IR ratio. The findings presented in this work 

may be of clinical relevance for those diabetic patients who have breast cancer or as yet 

undetected (pre-) cancerous lesions. 

4.1 Insulin responsiveness of mammary epithelial cell lines 

It is well established that insulin is a mitogen. In order to find a suitable model to study the 

mitogenic effect of insulin and insulin analogues on mammary epithelial cells, a panel of 

tumorigenic and non-tumorigenic cell lines was screened for their responsiveness toward 

insulin treatment (Table 3.1). Although all cell lines analysed expressed insulin receptor 

moderately, only MCF7 and MCF10A cells showed a clear proliferative response to the 

insulin treatment. The other mammary epithelial cell lines, though expressing similar levels of 

insulin receptor as MCF10A and MCF7, exhibited weak or lack of proliferative response 

indicating the importance of signalling molecules downstream of insulin receptor for 

transduction of the mitogenic effect of insulin. For example, the lack of IRS-1 protein 

expression in ZR75-1 cells (Gliozzo et al., 1998) may be the reason for ZR75-1 cells to 

demonstrate merely 1.4-fold increase in proliferation after insulin treatment. The poor 

proliferative response of BT474 cells to insulin treatment may also be explained by the low 

expression level of IRS-1 protein (Mayer et al., 2008). Bartucci et al. (2001) showed that 

absence of sustained activation of the PI3K pathway results in the lack of mitogenic response 

to IGF-I treatment in MDA-MB231 cells. This may also be true for the weak mitogenic 
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response to insulin observed in our study, where MDA-MB231 cells show barely a 1.3-fold 

increase after insulin treatment. Two other cell lines, T47D and HCC1937, respond poorly to 

the insulin treatment. Although the reason for this is unclear, it may be hypothesized that 

signalling pathways leading to proliferative response after insulin treatment are interrupted in 

these long-term established cell lines.  

Thus, our study suggests that insulin responsiveness of a cell line is not only dependent on the 

insulin receptor expression level but also on the expression and functional integrity of 

downstream signalling molecules. 

4.2 Characterisation of proliferative and signalling potency of insulin 

analogues  

Insulin analogues are commercially available as pharmaceutical preparations but not as the 

pure compounds from the companies. Since the pure compounds should be preferentially used 

for research purposes, we tried to obtain the pure insulin analogues from the respective 

companies. Unfortunately, formal agreement could not be made because they were either not 

willing to provide us the compounds or the requested conditions for signing the Material 

Transfer Agreement were not acceptable to us. Therefore, insulin analogues (Lantus, Levemir, 

Novorapid, Humalog) as well as regular human insulin (Actrapid), used in the present work, 

were bought from the pharmacy. We consider this justifiable, since in the end these 

pharmaceutical preparations are used for injection in diabetic patients. 

MCF10A and MCF7, the two most insulin-responsive cell lines, were employed to 

characterize the proliferative and signalling potency of the insulin analogues in comparison 

with regular insulin. In order to analyse the possible mitogenic potency of the additives in the 

pharmaceutical preparations, we first inactivated regular insulin and insulin analogues in the 

pharmaceutical preparation by chemical reduction of S-S bridges and heating. Thereafter, we 

performed proliferation assays with the resultant solutions. There was no difference in the 

proliferative rate of untreated cells or cells treated with carrier solvents of pharmaceutical 

preparations after inactivation of regular insulin or insulin analogues. This indicates that 

additives did not have mitogenic potency (data not shown).  

Purified bovine insulin is commercially available as zinc insulin while Actrapid is a 

pharmaceutical preparation of regular human insulin. Of importance is the fact that in all our 

experiments bovine insulin was studied for comparison and demonstrated similar proliferative 
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and signalling ability as Actrapid. This permits the conclusion that the pharmaceutical 

formulation does not alter the efficiency of insulin action significantly. In addition, similar 

proliferative potency of bovine insulin and Actrapid demonstrates that human insulin can be 

replaced with animal insulin without any safety concerns with regard to mitogenicity of the 

compound. Out of four insulin analogues studied, three insulin analogues (Insulin Lispro 

[Humalog], Insulin Aspart [Novorapid] and Insulin Detemir [Levemir]) demonstrated similar 

proliferative ability in both MCF10A and MCF7 cells. Only Insulin Glargine clearly induced 

significantly higher proliferation in MCF7 cells in comparison to Actrapid. However, in 

MCF10A cells, the proliferative effect of Insulin Glargine was similar to that of Actrapid. The 

proliferation and signalling potency of each analogue will be discussed in detail below.  

4.2.1 Proliferative and signalling potency of Insulin Glargine 

Several studies have attributed higher mitogenic potency to Insulin Glargine in comparison to 

regular insulin. Kurtzhals et al. (2000) by thymidine incorporation assay reported six-fold 

higher proliferative potency of Insulin Glargine than regular insulin in osteosarcoma cells 

while Eckardt et al. (2007) by measuring BrdU incorporation demonstrated three-fold higher 

proliferative potency of Insulin Glargine than regular insulin in fibroblasts and coronary 

artery smooth muscle cells. In agreement with the above mentioned studies, we found that in 

MCF7 cells, Lantus treatment led to approximately 1.5-fold (at 1.5nM) and 3-fold (at 15nM) 

higher BrdU incorporation than regular insulin. Furthermore, proper proliferation assay 

involving three days of treatment of MCF7 cells with Insulin Glargine or regular insulin, 

revealed that at concentrations ≥ 150pM, Insulin Glargine induced significantly stronger 

proliferation than regular insulin. Even at concentrations as low as 1.5pM and 15pM, which 

reflect lower than physiological insulin concentrations after overnight fasting, the Insulin 

Glargine effect was stronger than Actrapid though the difference was not statistically 

significant. The difference between Insulin Glargine and Actrapid was approximately 1.3-fold 

at most of the concentrations studied with the 1.5-fold difference at higher concentrations 

(150nM and 1.5µM). The difference between the data obtained by the BrdU incorporation 

assay and the colorimetric proliferation assay may be on the one hand due to the difference in 

the sensitivity of the two assays. On the other hand, BrdU incorporation detects only S-phase 

cells whereas the colorimetric assay represents the cells in all phases of the cell cycle. 

The physiological insulin concentration in serum of healthy people varies between ~15pM 

and ~200pM after overnight fasting (Labor Lademannbogen, Labor Limbach). Postprandial 
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levels are about 500pM. The fact that within this concentration range, we did not find regular 

insulin to induce significant proliferation of MCF7 cells suggests that at low concentrations 

(1.5pM, 15 pM and 150pM) regular insulin is unlikely to be a strong mitogen. Regarding 

serum concentrations of Insulin Glargine only few data are available. Free insulin serum 

levels of healthy volunteers and of patients with type-1 diabetes who received Insulin 

Glargine injections for 1 to 11 days varied between 70pM and 90pM, with peak levels of 

about 220pM after injection (Heise et al., 2002; Heise et al., 2004; Gerich et al., 2006; Becker 

et al., 2008). However, at concentrations of 1.5pM and 15pM, Lantus clearly induced stronger 

proliferation than Actrapid and at 150pM the proliferation levels obtained with Lantus were 

significantly higher (approximately 1.3-fold) than with regular insulin. Our findings 

demonstrating higher proliferative ability of Insulin Glargine in comparison to regular insulin 

in MCF7 cells at physiological concentrations raise safety concerns regarding treating diabetic 

patients who have or are at risk to have breast cancer with Lantus.  

However, in contrast to our data on MCF7 cells, Staiger et al. (2007) and Liefvendahl and 

Arnqvist (2008) did not observe higher mitogenic potency of Insulin Glargine compared to 

regular insulin in MCF7 cells. The dissimilarity in the results may be due to differences in the 

cell handling procedure or due to methodical differences. Additionally, proliferation values 

presented by Staiger et al. (2007) had very high error bars (in some cases SEM was 25% of 

the value) thus making these data difficult for reasonable analysis.  

Our investigation of the molecular mechanism behind the strong proliferative potency of 

Insulin Glargine revealed that Insulin Glargine strongly activates both PI3K and MAPK 

pathways. We observed that Insulin Glargine compared to insulin and other insulin analogues, 

induced significantly higher phosphorylation of Akt and GSK3α/β proteins, two important 

downstream targets in the PI3K pathway. Likewise, Insulin Glargine also strongly activated 

the MAPK pathway in MCF7 cells as reflected by high Erk1/2 phosphorylation levels. 

Quantitative evaluation of the phosphorylation signals followed by the statistical analysis 

revealed that Insulin Glargine was approximately two times stronger than regular insulin in 

activating PI3K and MAPK pathways. There are contradictory reports regarding the major 

proliferation pathway in MCF7 cells. Lu and Campisi (1992) and Jhun et al. (1994) 

demonstrate MAPK to be the major proliferation-linked pathway. On the contrary, Dufourny 

et al. (1997) demonstrate PI3K to be the major proliferation-linked pathway. The results from 

our proliferation experiments in presence of specific inhibitors of PI3K and MAPK pathways, 

favours MAPK pathway as the major proliferation pathway in MCF7 cells. In addition to 
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activation of the signalling pathways, we also studied the role of IR, IGF-IR and ERα in 

Lantus-induced proliferation. These findings are elaborately discussed in Sections 4.4 and 4.5.  

In contrast to MCF7 cells, the proliferative potency of Insulin Glargine was similar to regular 

insulin in MCF10A cells. This finding agrees with other reports demonstrating equi-potency 

of Insulin Glargine and regular insulin on benign rat-1-fibroblasts (Berti et al., 1998), human 

coronary artery cells (Staiger et al., 2005), muscle cells (Bähr et al., 1997), and human 

skeletal muscle cells (Ciaraldi et al., 2001). The molecular background for the differential 

proliferative ability of Lantus in MCF7 and MCF10A cells is due to differences in the IGF-

IR/IR ratio in these cells (Section 4.4). The equi-potency of both Insulin Glargine and regular 

insulin in MCF10A cells is reflected in the comparable activation of the MAPK pathway as 

suggested by the similar levels of phosphorylated Erk1/2. Interestingly, analysis of PI3K 

pathway activation revealed that in comparison to regular insulin, Insulin Glargine induced 

significantly higher phosphorylation of Akt protein. Slightly higher levels of phosphorylated 

GSK3α/β, a downstream effector of Akt, were also observed with Insulin Glargine treatment 

compared to regular insulin treatment but the difference was not statistically significant. 

Surprisingly, treatment of the cells with IGF-I caused similar phosphorylation of GSK3α/β as 

seen with Insulin Glargine. The reason of this result is unclear. It may be hypothesised that in 

MCF10A cells, the signal downstream of Akt level diverges and GSK3α/β is not the main 

target of Akt. Conversely, it can be argued that signal transduction from Akt to GSK3α/β is so 

strong in MCF10A cells that differences between the two treatments cannot be detected by 

immunoblotting. To prove this, the specific kinase activity of Akt needs to be determined. 

However, the complexity of the findings requires a more detailed analysis. We did not study 

which signalling pathway is responsible for proliferation in MCF10A cells. Nevertheless, the 

similar proliferative ability of Insulin Glargine and Actrapid and similar activation of MAPK 

pathway but not PI3K pathway by Insulin Glargine and Actrapid indicate that like in MCF7 

cells, in MCF10A cells MAPK pathway is the major proliferation pathway too. 

Another interesting observation is that the ratio of phosphorylated to total proteins of 

signalling molecules (Akt, GSK3α/β and Erk1/2) in MCF10A cells treated with regular 

insulin or insulin analogue is much higher than the ratios observed in similarly treated MCF7 

cells. However, the proliferation levels observed in MCF7 treated cells were significantly 

higher than in MCF10A treated cells. This suggests that care should be taken to present high 

phosphorylation levels of key signalling molecules as primary readout for proliferative 

potency of any compound.  
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4.2.2 Proliferative and signalling potency of Insulin Detemir 

Addition of a 14-carbon fatty-acid chain to the amino acid at 29th position of the B-chain of 

insulin renders Insulin Detemir to have higher affinity for albumin and increased lipophilicity 

compared to human insulin. It binds to BSA with an affinity of ~ 4x105 l/mol (Kurtzhals et 

al., 1996). Insulin Detemir also exhibits 50% lower binding affinity for the insulin receptor 

and 80% lower affinity for the IGF-IR than human insulin and dissociates almost two times 

faster than human insulin from insulin receptor (Kurtzhals et al., 2000). These differences in 

biochemical properties were shown by Kurtzhals et al. (2000) to be reponsible for the merely 

11% (corrected for albumin binding) mitogenic potency of Insulin Detemir relative to human 

insulin.  

However, under our experimental conditions, we observed that only at high concentrations 

(150nM and 1.5µM), Insulin Detemir-stimulated proliferation levels in MCF7 cells are lower 

than with regular insulins. At lower concentrations (1.5nM and 15nM) Insulin Detemir 

treatment of MCF7 cells yielded similar proliferation levels as obtained with regular insulin. 

This difference may be explained by the 80% lower affinity of Insulin Detemir for IGF-IR 

compared to regular insulin. At high concentrations, regular insulin can activate IGF-IR to 

some extent. On the contrary, Insulin Detemir with its 80% lower binding affinity for IGF-IR 

may not activate IGF-IR even at higher concentrations. Therefore, at high concentrations of 

regular insulin the proliferation levels achieved are higher than that achieved by Insulin 

Detemir treatment. However, at lower concentrations, regular insulin does not or only very 

weakly activate IGF-IR. Thus, under these conditions both, Insulin Detemir and regular 

insulin, are observed to induce similar levels of proliferation in MCF7 cells. Interestingly, 

although Insulin Detemir shows ~ 50% reduced binding affinity for insulin receptor and in 

comparison to regular insulin dissociates two times faster from insulin receptor (Kurtzhals et 

al., 2000), its proliferative ability is similar to regular insulin at low concentrations in MCF7 

cells. These results strongly suggest that the binding affinity for insulin receptor is not a major 

determinant for the proliferative potency of insulin. This also explains the finding, that in 

MCF10A cells, a cell line with low IGF-IR/IR ratio (0.8:1), Insulin Detemir exhibited similar 

proliferative ability as regular insulin at all the concentrations studied. 

At the molecular level, in MCF7 cells, the signalling potency of 15nM Insulin Detemir was 

approximately 50 % lower than 15nM regular insulin as demonstrated by the phosphorylation 

levels of Akt, GSK3α/β and Erk1/2. These experiments were performed under serum-free 

conditions, thus the results are solely based on the biochemical properties of Insulin Detemir 



Discussion     76 

 

and not affected by the serum binding properties of Insulin Detemir. As at 15nM 

concentration, regular insulin only weakly activates IGF-IR, the relative difference in the 

phosphorylation levels of key signalling molecules induced by Insulin Detemir and regular 

insulin is most probably due to reduced insulin receptor affinity of Insulin Detemir and not to 

reduced affinity for IGF-IR. Interestingly, the ~ 50 % lower activation of the MAPK pathway 

(as reflected by the phosphorylation status of Erk1/2 proteins) by 15nM Insulin Detemir 

compared to 15nM regular insulin did not lead to corresponding decrease in the proliferative 

ability of Insulin Detemir vis-à-vis regular insulin. Most probably, the stronger Erk1/2 

phosphorylation by 15nM Actrapid in comparison to 15nM Insulin Detemir is a transient 

effect and consequently there is no difference in proliferative potence between the two 

compounds. This assumption is supported by the study from Hansen et al. (1996) in which it 

was demonstrated that the sustained activation of insulin receptor is required for its mitogenic 

effect. However, the precise interpretation of this observation demands a more detailed study. 

In MCF10A cells, signalling potency of Insulin Detemir was similar to regular insulin. The 

difference in the signalling potency of Insulin Detemir between MCF7 cells and MCF10A 

cells is most likely due to differences in the cell characteristics. 

Altogether, it can be concluded that Insulin Detemir does not exhibit higher mitogenic 

potency than human insulin and therefore can be assumed to have low safety risks. In fact, 

studies have associated Insulin Detemir therapy with positive effects in diabetic patients like 

loss of weight (Tibaldi, 2007). The weight loss is attributed to the increased concentration of 

Insulin Detemir in the brain, which results in elevated insulin signalling and thus lowering of 

the ‘hunger signal’. The higher lipophilicity of Insulin Detemir in comparison to human 

insulin allows Insulin Detemir to cross the blood-brain barrier easily which results in higher 

concentration in brain (Rossetti et al., 2007). As the albumin concentration in brain is 200-

fold lower than in the blood (Seyfert et al., 2002), there is a higher percentage of free Insulin 

Detemir in brain than in the blood. Hennige et al. (2005) determined the tyrosine 

phosphorylation status of the insulin receptor and IRS-2 protein in hypothalamic and 

cerebrocortical tissues of C57B1/6 mice and demonstrated that insulin signalling is faster and 

stronger in the mice subjected to Insulin Detemir treatment compared to those treated with 

regular insulin. 

4.2.3 Proliferative and signalling potency of Insulin Aspart 

Insulin Aspart is generated by replacing proline at the 28th position of B-chain with aspartic 

acid. Literature survey reveals that mitogenic response to Insulin Aspart is highly dependent 



Discussion     77 

 

on the cell types under study and the mitogenic potency of Insulin Aspart can be weaker, 

similar or stronger than that of regular insulin. In Saos/B10 cells, Insulin Aspart showed only 

58 ± 22 [%] of the potency of Actrapid in inducing thymidine incorporation (Kurtzhals et al., 

2000). However, in CHO-K1 cells Insulin Aspart induced thymidine incorporation to a 

similar level as regular insulin (Hansen et al., 1996). Recently, Eckardt et al. (2007) also 

demonstrated equal potency of Insulin Aspart and regular insulin by studying BrdU 

incorporation into the DNA of human primary smooth muscle cells from different donors. 

Trüb et al. (1999) showed a slight increase in the percentage of S-phase cells (1.2-fold of 

regular insulin) after Insulin Aspart treatment in MCF7 cells.  

We also observed a differential mitogenic response to Insulin Aspart in the two insulin-

responsive mammary epithelial cell lines, MCF10A and MCF7. In agreement with the studies 

from Hansen et al. (1996) and Eckardt et al. (2007), Insulin Aspart - treated MCF10A cells 

demonstrated similar proliferation levels as Actrapid - treated MCF10A cells. This was 

reflected also at the signalling pathway level, where MCF10A cells treated with Insulin 

Aspart and Actrapid showed similar phosphorylation levels of Akt, GSK3α/β and Erk1/2. 

However, in contrast to MCF10A cells and in agreement with Trüb et al. (1999), treatment of 

MCF7 cells with 15nM Insulin Aspart resulted in ~ 1.5-fold higher BrdU incorporation in 

comparison to regular insulin. This higher potency of Insulin Aspart vis-à-vis regular insulin 

to stimulate BrdU incorporation was also reflected in the slightly higher proliferative effect of 

Insulin Aspart compared to Actrapid at all concentrations studied though the differences were 

not statistically significant. This trend was further corroborated by our results on Erk1/2 

phosphorylation levels which were somewhat higher in Insulin Aspart - treated MCF7 cells 

than in Actrapid - treated MCF7 cells whereas the PI3K pathway was similarly activated by 

both Insulin Aspart and Actrapid in MCF7 cells. 

The slightly higher proliferative potency of Insulin Aspart in MCF7 cells may be explained by 

the fact that Insulin Aspart has a lower insulin receptor dissociation rate and therefore stays 

for longer duration on the insulin receptor than regular insulin, which results in a stronger 

proliferative effect (Hansen et al., 1996). However, it is interesting that the altered 

biochemical property of Insulin Aspart does not result in stronger proliferative ability in 

comparison to regular insulin in MCF10A cells. It may be argued that the high number of 

insulin receptors relative to IGF-IR in MCF10A cells (low IGF-IR/IR ratio) compensates the 

differences in the biochemical properties of Insulin Aspart and regular insulin, resulting in 

equipotency of the two compounds with respect to proliferative ability. Nevertheless, this 
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observation merits further analysis. In summary, our study demonstrates that under low IGF-

IR/IR condition, Insulin Aspart may not pose a safety risk with regard to proliferation. 

However, the slightly increased mitogenic potency of Insulin Aspart in comparison to regular 

insulin in MCF7 cells demands further studies, preferably using animal models.  

4.2.4 Proliferative and signalling potency of Insulin Lispro 

Insulin Lispro is generated by interchanging the aminoacids at position 28 and 29 of the B-

chain of insulin molecule to lysine and proline respectively. This modification results in 

slightly lower affinity for insulin receptor (0.8-fold of human insulin) and slightly higher 

affinity for IGF-IR (1.5-fold of human insulin). However, these altered binding properties of 

Insulin Lispro did not result in altered proliferative ability in comparison to regular insulin 

(Kurtzhals et al., 2000; Slieker et al., 1997; Eckardt et al., 2007). In agreement with these 

studies, our results from the proliferation experiments on MCF10A and MCF7 cells also 

demonstrate similar proliferative potency of Insulin Lispro and regular insulin. Furthermore, 

at the molecular level, Insulin Lispro-induced phosphorylation levels of Akt, GSK3α/β and 

Erk1/2 were similar to regular insulin - induced levels in both cell lines. Taken together, we 

can conclude that the slightly higher IGF-IR affinity of Insulin Lispro does not result in higher 

proliferative potency in comparison to Actrapid and thus may have limited safety risks 

regarding mitogenicity.  

4.3 Insulin receptor and IGF-IR quench each other 

Our knockdown experiments yielded interesting results regarding the influences insulin 

receptor and IGF-IR exercise on each other. Surprisingly. under IGF-IR knockdown 

conditions, we observed an increase in the signalling and proliferative potency of regular 

insulin. Specifically, regular insulin clearly induced stronger Akt and Erk1/2 phosphorylation 

in MELN cells which exhibited low levels of IGF-IR compared to MELN cells exhibiting 

normal levels. The increased signalling potency of regular insulin also resulted in increased 

proliferative potency in MELN cells exhibiting low IGF-IR levels. Similarly, signalling and 

proliferative potency of IGF-I was observed to increase under insulin receptor knockdown 

conditions. IGF-I treatment of normal MELN cells yielded high phosphorylation levels of Akt 

and Erk1/2. These phosphorylation levels were found to increase strongly in MELN cells 

expressing low levels of insulin receptor. 
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These findings suggest that both IGF-IR and insulin receptor have inhibitory effect on each 

others ligand. Recent studies have shown that insulin receptor and IGF-IR, being highly 

homologous to each other, may form hybrid receptors (Frasca et al., 1999). As insulin 

receptor has two splice variants, IR-A (lacks exon 11) and IR-B (with full transcript), there 

can be two types of hybrid receptors - HR-A and HR-B. Regular insulin, compared to its 

binding affinity for the insulin receptor homodimer, demonstrates decreased binding affinity 

for HR-A, and has been suggested not to bind to HR-B (Frasca et al, 2003). Under conditions 

with reduced IGF-IR levels more homodimers of insulin receptors are present, which results 

in increased binding of regular insulin and in increased MAPK activation and proliferative 

potency of regular insulin. IGF-I does not exhibit strong differences in the binding affinities to 

HR-A or IGF-IR and binds to HR-B with lower affinity than to HR-A. The marked increase in 

signalling potency of IGF-I in cells which have elevated IGF-IR homodimer (due to reduction 

in insulin receptor) suggests towards the higher level of HR-B than HR-A in these cells. This 

is contradictory to the studies demonstrating higher levels of IR-A in mammary tumorigenic 

cells and thus higher levels of HR-A. This interesting observation will certainly need further 

investigations.  

4.4 Proliferative ability of Insulin Glargine is due to the strong activation 

of IGF-IR  

In comparison to regular insulin, Insulin Glargine induced significantly stronger proliferation 

at concentrations ≥ 150pM in MCF7 cells. By using RNA interference, we found that the 

higher signalling and proliferative potency of Insulin Glargine in comparison to regular 

insulin is due to its ability to activate IGF-IR besides the insulin receptor. Insulin did not 

induce phosphorylation of Akt and Erk1/2 when the level of its cognate receptor was 

significantly reduced. However, under these conditions, Insulin Glargine did induce 

phosphorylation of Akt and Erk1/2 suggesting involvement of IGF-IR. Futhermore, in MELN 

cells with significantly reduced IGF-IR expression level, the signalling and proliferative 

potency of Insulin Glargine and regular insulin were similar, which again suggests IGF-IR 

activation by Insulin Glargine and renders an explanation for the high proliferative ability of 

Insulin Glargine. The strong activation of IGF-IR by Insulin Glargine can be explained by the 

fact that Insulin Glargine possesses six-fold higher IGF-IR binding affinity than regular 

insulin (Kurtzhals et al., 2000). Insulin Glargine most probably activates IGF-IR by directly 

binding to it as the immunoprecipitation analysis showed that Insulin Glargine treatment 

results in strong phosphorylation of IGF-IR. The activation of IGF-IR was also reflected in 
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the transcription of the IGF-I responsive gene cyclin D1 in Insulin Glargine-treated MCF7 

cells.  

The differences in the proliferative potency of Insulin Glargine and regular insulin in 

MCF10A and MCF7 cells can be explained by taking into consideration the nature of two cell 

lines and the biochemical properties of Insulin Glargine. MCF10A cells exhibit low IGF-

IR/IR ratio (0.8:1; Gammeltoft et al. [1999]) in contrast to high IGF-IR/IR ratio (7:1; 

Liefvendahl et al. [2008] to 4:1; Gammeltoft et al. [1999]) observed in MCF7 cells. We 

postulate that in MCF7 cells, the IGF-IR plays the more important role in determining the 

proliferative potency of Insulin Glargine. However, in MCF10A cells, the insulin receptor 

probably plays a more important role in determining the proliferation response to Insulin 

Glargine. This may explain why Insulin Glargine with its slightly decreased affinity for 

insulin receptor and nearly 1.5 fold faster dissociation rate from insulin receptor does not 

elicit stronger proliferative response than Actrapid in MCF10A cells.  

4.5 ERα does not play a major role in the proliferative potency of Insulin 

Glargine  

ERα is a well established nuclear receptor and transcription factor and plays an important role 

in breast cancer development. About 70% of primary breast cancers are ERα-positive. In 

breast cancer cell lines like MCF7 and ZR75-1, ERα is abundantly expressed. Insulin 

Glargine induced strong proliferation in ERα-positive MCF7 cells but not in ERα-negative 

MCF10A cells. We described in the above section that IGF-IR activation plays an important 

role in the strong proliferative effect of Insulin Glargine. The IGF-IR signalling pathway has 

been reported to cross-talk with ERα signalling (Kato et al., 2000; Dupont and Le Roith, 

2001; Zhang et al., 2005) in a way that IGF treatment of cells results in phosphorylation of 

ERα in the AF-1 domain. This phosphorylation modulates ERα activity in a positive manner. 

Therefore, there is a possibility that activation of ERα contributes to the growth stimulatory 

role of IGF-IR. In order to assess the involvement of ERα in IGF-IR signalling, we first tried 

to express ERα in MCF10A cells. This would have enabled us to compare the influence of 

IGF-IR activation on proliferation of ERα positive and ERα negative MCF10A cells. 

However, this approach was not successful as MCF10A cells are very resistant to transfection 

(transfection efficiency was less than 5% with any method chosen). Alternatively we 

attempted to knockdown ERα in MCF7 cells. ERα knockdown resulted in decrease of IGF-IR 

protein levels (data not shown). This can be explained by the positive regulation of IGF-IR 
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expression by ERα in MCF-7 cells (Maor et al., 2006). Finally, we studied activation of ERα 

by IGF-I and Insulin Glargine in MCF7 cells. Previous findings from our laboratory show that 

phosphorylation of ERα at Ser118 residue located in the AF-1 domain is required for full 

activation of ERα (Medunjanin et al., 2005). The Ser118 residue can be phosphorylated by 

GSK3α/β (Medunjanin et al., 2005) and by MAPK (Kato et al., 1995). Both enzymes are 

important components of signalling pathways activated by IGF-IR. Our results show that 

Insulin Glargine induced significantly higher phosphorylation of ERα at Ser118 residue in 

comparison to regular insulin and all other insulin analogues. However, Insulin Glargine 

increased ERα activity only slightly stronger than regular insulin as was evident from the 

results of ERE-dependent luciferase activity studies. Taken together, these results suggest that 

activation of ERα contributes only weakly to the Insulin Glargine mediated MCF7 cell 

proliferation.  

4.6 Model for Insulin Glargine action in MCF7 cells  

The results on Insulin Glargine-induced signalling are summarized in a model to explain the 

high proliferative ability of Insulin Glargine in MCF7 cells (Fig. 5.1 a, b). Under normal 

conditions (Fig 5.1a), regular insulin via insulin receptor activates mainly PI3K/Akt pathway 

and to low extent MAPK pathway. IGF-I, through the IGF-IR, activates both PI3K/Akt and 

MAPK pathways strongly. 
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Figure 5.1a Illustration of the mode of action of Insulin Glargine in MCF7 cells under normal 
conditions. Insulin (green solid circle) under physiological conditions binds to the insulin receptor 
(IR; shown in green) and activates mainly PI3K pathway (shown by thick green arrow at Akt) and to 
low extent MAPK pathway (shown by thin green arrow at Erk1/2). IGF-I (blue solid circle) binds to 
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IGF-IR (shown in blue) and activates both PI3K and MAPK pathways strongly (shown by the thick 
blue arrows at Akt and Erk1/2). Insulin Glargine (depicted as Lantus in red solid circle) can bind to 
both receptors and activates PI3K and MAPK pathways equally strongly (shown by red arrows at Akt 
and Erk1/2). 

Insulin Glargine stimulates both insulin receptor and IGF-IR resulting in activation of both 

PI3K and MAPK pathways at levels higher than observed with insulin. The strong activation 

of IGF-IR by Insulin Glargine is responsible for the strong proliferative potency of Insulin 

Glargine. This mechanism of action applies to cell lines characterized by a high IGF-IR/IR 

ratio such as MCF7. 
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Figure 5.1b Illustration of the mode of action of Insulin Glargine in MCF7 cells under IGF-IR 
knockdown conditions. Under IGF-IR knockdown conditions, IGF-I mediated PI3K and MAPK 
activation decreases significantly (compare the blue arrows thickness under both the conditions) while 
insulin mediated activation of PI3K and MAPK pathway increases compared to normal condition 
(compare the thickness of green arrows). IGF-IR knockdown decreases Insulin Glargine mediated 
PI3K and MAPK pathway activation to the level stimulated by insulin (compare the thickness of green 
and red arrow). 

Under IGF-IR knockdown conditions (Fig. 5.1b), the ability of IGF-I to activate PI3K and 

MAPK pathway is severely compromised. Insulin Glargine treatment elicits similar 

phosphorylation levels of Akt and Erk1/2 as obtained with regular insulin. Thus, under IGF-

IR knockdown conditions Insulin Glargine behaves like normal insulin. This explains the 

observation that in cell lines with low IGF-IR/IR ratio, the proliferative ability of Insulin 

Glargine is similar to that of Actrapid. Interestingly, under IGF-IR knockdown conditions 

insulin treatment causes stronger stimulation of insulin receptor accompanied by stronger 

phosphorylation of Akt and more importantly of Erk1/2 compared to control siRNA 
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conditions. This shows that insulin receptor is a mitogenic receptor, but under normal 

conditions its mitogenic ability is impaired due to presence of IGF-IR.   

 

4.7 Migratory and invasive potency of Insulin Glargine  

IGF-I via activation of IGF-IR has been shown to stimulate not only proliferative but also 

motile cell responses (Leventhal and Feldman, 1997; Bredin et al., 1999; Meyer et al., 2001). 

In MCF7 cells contrasting data has been reported regarding the role of IGF-I in cell migration. 

Guvakova et al. (2002) showed that the release of cell-cell adhesion (cell separation) was 

enhanced in MCF7 cells overexpressing the IGF-IR and blocked in cells expressing a kinase-

dead mutant of this receptor. Furthermore, IGF-IR mediated cell separation was demonstrated 

to be due to the activation of α-actinin through the PI3K pathway which results in the rapid 

organization of actin into microspikes at the cell-cell junctions. On the contrary, Mauro et al. 

(2001) showed that IGF-I treatment of MCF7 cells results in increase in cell-cell adhesion via 

activation of E-cadherin protein.  

We studied MCF7 cell migration in the presence of regular insulin, Insulin Glargine or IGF-I 

by using wound healing assay. Our results show that there was no significant difference in the 

wound healing rate between the cells treated with insulin, Insulin Glargine and IGF-I. As 

IGF-I treatment of MCF7 cells did not induce significant migration under our experimental 

conditions, it may be suggsted that IGF-I has weak potency in stimulating cell migration in 

our system. In addition to the wound healing experiment, we also studied the effect of Insulin 

Glargine on MCF7 cell invasion by matrigel assay (data not shown). Control experiments 

showed increased migration through the matrigel layer by treatment of the cells with 

10%DCC-FCS as compared with 2%DCC-FCS, but there was no effect of IGF-I, Insulin 

Glargine or regular insulin on invasion. In summary, insulin, Insulin Glargine and IGF-I 

demonstrate poor migratory and invasive potency in MCF7 cells. It is important to point out 

that the validity of these data is limited in the terms of time-points and concentrations of the 

compounds studied. Further investigations are required to make a conclusive statement. 

4.8 Outlook 

Our findings show that at concentrations ≥ 150pM, Insulin Glargine exerted significantly 

higher proliferation relative to regular insulin in MCF7 cells. At lower concentrations (1.5pM 

and 15pM) a stronger proliferative effect of Insulin Glargine compared to regular insulin was 

clearly visible although not statistically significant. The question is whether this stronger 
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proliferative effect of Insulin Glargine is of relevance to diabetic patients undergoing Insulin 

Glargine therapy. Only few data are available on serum concentrations of Insulin Glargine. 

Free serum insulin levels of healthy volunteers and of patients with type I diabetes who 

received Insulin Glargine injections for 1 to 11 days varied between 70pM and90pM, with 

peak levels of about 220pM after injection (Gerich et al., 2006; Heise et al., 2002; Heise et 

al., 2004; Becker et al., 2008). Considering these studies in the light of our results, we 

postulate that at these Insulin Glargine serum levels, cell proliferation may be significantly 

stimulated in diabetic patients. We found that the difference in proliferation between Insulin 

Glargine and Actrapid treated MCF7 cells was approximately 1.5-fold. Although this 

difference seems not to be very high, it must be considered that insulin therapy is prescribed 

lifelong. The higher proliferative ability of Insulin Glargine must therefore be considered a 

matter of concern. Nevertheless, proliferation assays must be performed at Insulin Glargine 

concentrations between 15pM and 150pM to achieve precise data for concentrations that are 

found in serum of patients treated with Insulin Glargine.  

Normal breast epithelial cells do not exhibit very high IGF-IR/IR ratio, whereas, importantly, 

a high IGF-IR/IR ratio is observed in many breast tumours (Frasca et al., 2003). In the present 

study, we observed that Insulin Glargine induced stronger proliferation than regular insulin 

only in MCF7 cells which are characterized by a high IGF-IR/IR ratio. The mammary 

epithelial cells exhibiting lower IGF-IR/IR ratio responded to Insulin Glargine and regular 

insulin to a similar extent. These observations may explain why the two-year carcinogenicity 

experiment on normal mice and rats reported by Stammberger et al. (2002) did not show a 

significant difference in the incidence of mammary tumors between groups treated with 

Insulin Glargine or regular insulin. As high IGF-IR/IR ratio is observed mostly in tumour 

cells, we assume that Insulin Glargine may act as a tumour promoter rather than a tumour 

initiator. We also hypothesize that Insulin Glargine may be of risk for diabetic patients with 

breast cancer or as yet undetected (pre-) cancerous lesions. In the future, animal studies must 

be carried out to gain more information on the potential tumour promoting effects of Insulin 

Glargine in the mammary gland. Attempts can be made to initiate breast cancer in rats or mice 

by chemical carcinogens and then compare the effect of Insulin Glargine and regular insulin 

on tumour progression. In addition, transgenic mouse models of breast cancer should be 

analysed.  

We reported preliminary experiments to study the migratory and invasive potency of Insulin 

Glargine in comparison to regular insulin. Our results show slightly higher migratory potency 
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of Insulin Glargine relative to regular insulin. As a diabetic patient is on insulin therapy for 

lifelong even a slight increase can compromise the health of the diabetic patient. A detailed 

and comprehensive study of migratory and invasive potency of Insulin Glargine must be 

performed.   

Our study reveals that Insulin Lispro and Insulin Detemir where equipotent to regular insulin 

regarding mitogenicity. However, in comparison to regular insulin, Insulin Aspart had slightly 

increased proliferative effect at all concentrations in MCF7 cells. Nowadays, doctors 

prescribe one short acting insulin analogue together with one long acting insulin analogue for 

better control of glycaemia and there are reports that Insulin Glargine and Insulin Aspart are 

prescribed together (Garber, 2006). Our results suggest that this particular combination 

(Insulin Glargine + Insulin Aspart) may pose a higher safety risk compared to any of them 

administered alone. There is no information about the proliferative potency of such 

combinations. Thus, there is urgent need to compare the proliferative ability of regular insulin 

with the combination of Insulin Aspart and Insulin Glargine.  

Last but not least, type II diabetes, which is characterized by hyperinsulinemia has been 

reported to be positively associated with the risk to develop not only breast cancer but also 

cancer in other organs such as colon, pancreas and prostate (Key, 2001; Silverman, 2001; 

Giovannucci, 2007; Venkateswaran et al., 2007). A similar study as presented in this thesis 

must also be carried out with respect to the proliferative potency of insulin analogues on 

colon, pancreas and prostate cell lines.  
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5 MATERIALS 

5.1. Equipment 

Name of the Equipment  Name of the Company 

General Equipments 

Analytical balance 2002 MP1  Sartorius, Göttingen, Germany 

Blotting chamber for wet blotting  Sigma, Deisenhofen, Germany 

Centrifuge GPK  Beckman Instruments, München , Germany 

Centrifuge for Eppendorf tubes Biofuge  Heraeus, Hanau, Germany 

CHROMO4 System for Real-Time PCR Detection MJ Research, Miami, USA 

Heating block Dri Block DB3  Thermo-Dux, Wertheim, Germany 

Luminometer Biolumat LB9505    Berthold, Bad Wildbad, Germany 

Magnetic stirrer MR 2002 Heidolph, Kelheim, Germany 

Microscope camera DFC 480 Leica Microsystems, Solms, Germany 

Microwave Micromat 135 AEG, Nürnberg, Germany 

Multiplate ® PCR plates Bio-Rad, Hercules, CA, USA 

Multiskan Ex (Plate Reader) Thermo Fisher Scientific, Dreieich, Germany 

Nanodrop Peqlab, Erlangen, Germany 

PCR Primus96 Plus machine MWG Biotech, Martinsried, Germany 

PTC-200 Peltier Thermal Cycler MJ Research, Miami, USA 

pH electrode InLab 410 Mettler Toledo, Steinbach, Germany 

pH meter 535 Multical WTW, Weilheim, Germany 

Photometer Ultrospec III Amersham Pharmacia Biotech, Freiburg, 
Germany 

Pipetboy acu Integra, Hamburg, Germany 

Powersupply EPS 300 Amersham Pharmacia Biotech, Freiburg, 
Germany 
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Refrigerated centrifuge “fresco” Heraeus, Hanau, Germany 

SDS-PAGE Mini Protean II and III Bio-Rad, München, Germany 

Spin-over rotator Bioblock Novodirect, Kehl, Germany 

Thermomixer compact Eppendorf, Hamburg, Germany 

Water-purification system Milli-Q  Millipore, Eschwege, Germany 

Vortex mixer Bender u. Hobein AG, Zürich, Switzerland 

X-ray film developer Hyperprocessor Amersham Pharmacia Biotech, Freiburg,  
Germany 

Cell Culture Equipments 

Humidified CO2 incubator Forma Scientific, Labotech Göttingen, 
Germany 

Microscope (phase contrast) Leica Microsystems, Solms, Germany  

Neubauer hemacytometer Schott, Hofheim, Germany 

Sterile bench Heraeus, Hanau, Germany 

 

5.2. Chemicals  

If not otherwise mentioned, all chemicals used in the present study were of analytical grade and 

sourced from following companies: Merck (Darmstadt, Germany), Roche (Mannheim, Germany), and 

Sigma (Deisenhofen, Germany). All consumables for cell culture work were of cell culture grade and 

sourced mainly from Becton and Dickenson Labware (Heidelberg, Germany), Eppendorf (Hamburg, 

Germany) and Greiner Bio-One (Frickenhausen, Germany).  

Name of the chemical Name of the company 

General Chemicals 

Acrylamide/bis-acrylamide, 30% solution Sigma, Deisenhofen, Germany 

Ammonium persulfate Merck, Darmstadt, Germany 

Bovine serum albumin, 30% solution Bio Rad, München, Germany 

Bromophenol blue Serva, Heidelberg, Germany 

Complete mini EDTA-free protease inhibitor cocktail tablet Roche, Mannheim, Germany 
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DC protein assay kit Bio Rad, München, Germany 

Dimethyl sulphoxide (DMSO)   Merck, Darmstadt, Germany 

Dithiothreitol (DTT) Sigma, Deisenhofen, Germany 

dNTPs mix  Stratagene, Amsterdam, The 
Netherlands 

ECL-plus reagent Amersham Pharmacia Biotech, 
Freiburg, Germany 

Luciferase assay reagent (LAR)   Promega, Mannheim, Germany 

Luciferase cell culture lysis 5 x reagent Promega, Mannheim, Germany 

β-Mercaptoethanol Sigma, Deisenhofen, Germany 

Milk powder Fluka, Buchs, Switzerland 

Oligonucleotide PCR primers Operon, Köln, Germany 

Paraformaldehyde (PFA) Merck, Darmstadt, Germany 

Protein A agarose beads Roche Diagnostics, Mannheim, 
Germany 

PVDF-membrane Immobilon-P Millipore, Eschwege, Germany 

SYBR green supermix Bio Rad, München, Germany 

N,N,N’,N’-tetramethyl ethylenediamine (TEMED) Serva, Heidelberg, Germany 

Tris-base Sigma, Deisenhofen, Germany 

Tris-HCl Roth, Karlsruhe, Germany 

Triton X-100 Serva, Heidelberg, Germany 

Tween-20   GERBU, Gaiberg, Germany 

X-ray film Konica, Tokyo, Japan 

Cell Culture Chemicals 

Charcoal (Norrit A) Serva, Heidelberg, Germany 

Dextran 60 Serva, Heidelberg, Germany 

EDTA 1 % (w/v) in PBS  Biochrom, Berlin, Germany 

Fetal calf serum (FCS)  Biochrom, Berlin, Germany 

L-glutamine, 200 mM  Biochrom, Berlin, Germany 
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Matrigel R & D Systems, Minneapolis, USA 

Oligofectamine   Invitrogen, Karlsruhe, Germany 

Penicillin/streptomycin (10.000 U/10.000 μg/ml)  Biochrom, Berlin, Germany 

Transwell plates Corning, NY, USA 

Trypsin/EDTA, 0,05 %/0,02 % (w/v) in PBS  Biochrom, Berlin, Germany 

U0126  Calbiochem, Darmstadt, Germany 

Wortmannin Calbiochem, Darmstadt, Germany 

    

5.3. Hormones/Growth factors used 

Name of the compound Name of the company 

17β-estradiol (E2) Sigma, Deisenhofen, Germany 

Actrapid® Novo Nordisk, Bagsvard, Denmark 

Bovine insulin Sigma, München, Germany 

IGF-I R & D Systems, Minneapolis, USA 

Humalog® Lilly Deutschland GmbH, Bad 
Homburg, Germany 

Lantus® Sanofi Aventis 

Levemir® Novo Nordisk, Bagsvard, Denmark 

Novorapid® Novo Nordisk, Bagsvard, Denmark 

     

5.4. Disposable materials 

All disposable laboratory plastic and reaction tubes were sourced from Becton Dickinson (Heidelberg, 

Germany), Bio-Rad (München, Germany), Eppendorf AG (Hamburg, Germany), Greiner 

(Frickenhausen, Germany) and Sarstedt (Nümbrecht, Germany). 
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5.5. Growth Medium 

Name of the medium Name of the company 

Dulbecco’s MEM, 3.7 g/l NaHCO3, 4.5 g/l D-glucose, 
phenol-red free, glutamine-free, pyruvate-free (DMEM) 

Invitrogen, Karlsruhe, Germany 

Mammary Epithelial Growth Medium (MEGM) Provitro, Berlin, Germany 

RPMI 1640, phenol-red free, glutamine-free, pyruvate-
free (RPMI)  

PAA, Cölbe, Germany 

5.6. Cell lines studied 

Cell line 
Growth 

Medium 
Source-Description 

MCF7 DMEM Human (ER+) breast epithelial adenocarcinoma cell line derived 
from metastatic pleural effusion (DSMZ, Germany) 

MELN DMEM MCF-7 cells (ER+) stably transfected with ERE-controlled 
luciferase reporter plasmid (Balaguer et al. 2001)  

MDA-MB231 DMEM Human (ER-) breast epithelial adenocarcinoma cell line derived 
from pleural effusion (ATCC, Wesel) 

HCC1937 DMEM A near-tetraploid  human (ER-) breast epithelial adenocarcinoma 
cell line (ATCC, Wesel) 

BT474 RPMI-1640 Human (ER+) breast epithelial ductal carcinoma cells isolated 
from solid invasive tumour (ATCC, Wesel)  

T47D RPMI-1640 Human (ER+) breast epithelial ductal carcinoma cells derived 
from metastatic pleural effusion (ATCC, Wesel)  

ZR75-1 RPMI-1640 Human (ER+) breast epithelial ductal carcinoma cells derived 
from ascites (ATCC, Wesel).  

MCF10A MEGM 
Human non-tumorigenic epithelial cell line (ER-) produced by 
long term culture in serum free medium with low Ca++ 
concentration (ATCC, Wesel).  
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5.7. Solutions and media for cell culture work 

M2 

phenol-red free DMEM or RPMI  

Penicillin/Streptomycin 100 U/ml resp. 100 µg/ml 

FCS 10 % 

sodium pyruvate 1 mM 

L-glutamine 2 mM 

DCC solution 

Tris-HCl (pH 8.0) 0.01 M 

Charcoal Norrit A 0.25 % (w/v) 

Dextran 60 0.0025 % (w/v) in distilled H2O 

M3 

phenol-red free DMEM or RPMI 

Penicillin/Streptomycin 100 U/ml resp. 100 µg/ml 

dextran-coated charcoal-treated FCS (DCC-FCS) 10 % 

sodium pyruvate 1 mM 

L-glutamine 2 mM 

M4  

phenol-red free DMEM or RPMI 

Penicillin/Streptomycin 100 U/ml resp. 100 µg/ml 

sodium pyruvate 1 mM 

L-glutamine 2 mM 

MEGM   

serum-free MEGM  

Human recombinant EGF  10 ng 

Hydrocortisone 0.5 µg 
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Insulin  5.0 µg 

BPE 26 mg Protein/2 ml 4.0 µl 

Gentamicin 50.0 µg 

Amphotericin B  50.0 ng 

 

5.8. Description of kits used 

Kit Description Company 

Bio-Rad DC Protein Assay kit For determining protein concentration in cell 
lysates 

Bio Rad, München, 
Germany 

FITC BrdU Flow Kit For BrdU incorporation in proliferating cells  BD Biosciences, 
HD, Germany 

QIAquick gel extraction Extraction of nucleotide fragments from 
agarose gels 

Qiagen,Hilden, 
Germany 

QIAquick PCR purification 
and nucleotide removal 

To purify DNA fragments from enzymatic 
reactions 

Qiagen, Hilden, 
Germany 

RevertAidTMH Minus First 
Strand cDNA Synthesis 

For the synthesis of cDNA from total RNA Fermentas, St.Leon-
Rot, Germany 

RNeasy Extraction of total RNA from cells or tissues Qiagen, Hilden, 
Germany 

 

5.9. siRNA sequences 

Name siRNA references and/or sequences Company 

CT2  Non-targeting siRNA sequence  
(ON-TARGETplus Non-targeting siRNA #2; 
Cat # D-001810-02-05) 

Dharmacon, Lafayette, CO, USA 

IGF-IR IGF-IR targeting sequence (ON-TARGET 
plus SMART pool; Cat # L-003012-00-0005) 

Dharmacon, Lafayette, CO, USA 
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IR IR targeting sequence (ON-TARGET plus 
SMART pool; Cat # L-003014-00-0005) 

Dharmacon, Lafayette, CO, USA 

ERα ERα targeting sequence (Cat # N2010) New England Biolabs, Frankfurt, 
Germany 

5.10. Quantitative real time PCR primers 

Name Specificity Organism Length (N) Sequence (5’ → 3’)   
Tm 
(°C) 

SYBR GAPDHfwd GAPDH H.Sapiens 18 AGCCACATCGCTCAGACA 59.9 

SYBR GAPDHrev GAPDH H.Sapiens 19 GCCCAATACGACCAAATCC 60.1 

SYBR CCND1fwd Cyclin D1 H.Sapiens 20 CCTGTCCTACTACCGCCTCA 64.5 

SYBR CCND1rev Cyclin D1 H.Sapiens 18 TGGGGTCCATGTTCTGCT 59.9 

5.11. Buffers and Solutions 

Specification Composition 

Acrylamide solution 

acrylamide/bisacrylamide 30:0.8 in distilled H2O 

APS 

Ammonium Persulfate 10 % (w/v) 

Cell lysis buffer (made in distilled H2O) 

HEPES (pH 7.6) 50 mM 

NaCl 150 mM 

MgCl2 1.5 mM 

Na4P2O7 x 10 H2O 10 mM 

EDTA 2 mM 

Glycerol 10 % (v/v) 

Triton X-100 1.5 % (v/v) 
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Na-Fluoride 100 mM 

Na-Orthovanadate (Na3VO4) 2.7 mM 

Protease Inhibitor Cocktail Tablet 1 (/10 ml)  

LiCl buffer  (made in distilled H2O)  

LiCl 1M 

Tris-HCl, pH 8.0 100mM 

Na-Azide 0.1% 

PBS (10 x)  

NaCl 0.86M 

Na2HPO4 0.58M 

NaH2PO4xddH2O 0.17M 

Sample buffer (5 x)  

Tris-HCl (pH 6.7) 50 mM 

DTT 200 mM 

SDS 2 % 

Glycerol 2.5 % 

Bromophenol blue 0.1 % 

β-Mercaptoethanol 1.75 M 

SDS  

10 % made in distilled H2O 

TBS (10 x)  

Tris-HCl (pH 7.6) 0.1 M 

NaCl 1.5 M 

TBS-T  

TBS 1 x 

Tween 0.1 % 
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TE buffer (pH 8.0)  

Tris-HCl 10mM 

EDTA 1M 

Tris-HCl  

Tris solution which pH is adjusted with HCl   

SDS-PAGE gel (10 %, 2 mini gels) 

H2O 4.02 ml 

30 % acrylamide solution 3.3 ml 

1.5 M Tris (pH 8.8) 2.5 ml 

10 % SDS 100 µl 

10 % Ammonium Persulfat 50 µl 

Temed 30 µl 

Stacking gel (5 %, 2 mini gels)  

H2O 3 ml 

30 % acrylamide solution 0.66 ml 

1 M Tris (pH 6.8) 1.26 ml 

10 % SDS 50 µl 

10 % Ammonium Persulfat 38 µl  

Temed 30 µl 

Running buffer (1 x) 

Tris-HCl (pH 8.3) 25 mM 

Glycine 250 mM  

SDS 0.1 % 

Protein Standard  

Protein All Blue precision plus standard (Bio- Rad) 

Transfer buffer 
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Tris-base 50 mM  

Glycine 380 mM  

Methanol 20 % 

Blocking buffer  

Non-fat dry milk in TBS/T 5 % 

Stripping buffer 

Tris-HCl (pH 6.7) 62 mM 

β-Mercaptoethanol 7.18 ml 

10 % SDS 200 ml 

5.12. Antibodies 

Primary antibodies 

Name Species Dilution Company 

α IGF-IRβ rabbit (P)     1:1000 Santa Cruz, Heidelberg, Germany 

α IGF- IRβ mouse (M)  1:1000 Upstate, Millipore, Eschwege, 
Germany 

α IR-β rabbit (P)    1:1000 Santa Cruz, Heidelberg, Germany 

α IR-β rabbit  (M)  1:1000 Cell Signaling, NEB, Frankfurt, 
Germany 

α phospho Akt 
(Ser 473) 

mouse (M) 1:1000 Cell Signaling, NEB, Frankfurt, 
Germany 

α phospho GSK3α/β 
(Ser 21/9) 

rabbit (P)    1:800 Cell Signaling, NEB, Frankfurt, 
Germany 

α phospho Erk1/2 mouse (M) 1:1000 
Cell Signaling, NEB, Frankfurt, 
Germany 

α phospho p38 mouse (M) 1:1000 
Cell Signaling, NEB, Frankfurt, 
Germany 

 α Akt-1/2 rabbit (P) 1:1000 Santa Cruz, Heidelberg, Germany 
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α GSK3α/β mouse (M) 1:50,000 BioSource, Solingen, Germany 

α Erk1/2 rabbit(P) 1:1000 
Cell Signaling, NEB, Frankfurt, 
Germany 

α p38 rabbit (P) 1:1000 
Cell Signaling, NEB, Frankfurt, 
Germany 

α phospho Tyr 4G10 mouse (M) 1:1000 
Upstate, Millipore, Eschwege, 
Germany 

IgG rabbit  (P) 1:1000 
Upstate, Millipore, Eschwege, 
Germany 

α β-actin mouse (M) 1:200,000 Abcam, Cambridge, UK 

α ERα rabbit  (P) 1:1000 Santa Cruz, Heidelberg, Germany 

α ERα mouse (M) 1:1000 Novocastra, Newcastle, UK 

α phospho ERα     
(Ser 118) 

mouse (M) 1:5000 
Cell Signaling, NEB, Frankfurt, 
Germany 

P denotes polyclonal and M denotes monoclonal in the above list. 

 

Secondary antibodies 

The secondary antibodies used were tagged with HRP. 

Specificity Species Dilution Company 

α mouse goat 1:20,000 Dianova, Hamburg, Germany 

α rabbit goat 1:1000 Dianova, Hamburg, Germany 
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6 METHODS 

6.1 Cell culture 

6.1.1 Maintenance of various cell lines 

MCF7, MELN (a sub cell line of MCF7 cell line [Balaguer et al., 2001]), MDA-MB231 and 

HCC1937 cells were all maintained in phenol red-free DMEM (4.5 g/liter glucose) containing 

10% FBS and penicillin/streptomycin (100 U/ml / 100 µg/ml, respectively). BT474, T47D 

and ZR75-1 were maintained in RPMI-1640. Three days before the experiment, cells were 

grown in medium supplemented with 10% dextran-coated charcoal-treated FBS (DCC-FBS) 

(prepared as described by Migliaccio et al. (1993)). MCF10A cells were maintained in 

mammary epithelial growth medium (MEGM) supplemented with growth factor cocktail and 

antibiotics. Three days before the experiment, MCF10A cells were cultured in MEGM 

without insulin.  

6.1.2 Cell harvesting 

The growth medium was aspirated from the culture dish. Cells were washed with 3 ml of 

EDTA for 3-4 minutes. Thereafter, cells were incubated with 3-4 ml of Trypsin/EDTA 

solution for 5 minutes except MCF10A cells which detached only after 10 min of 

trypsinisation. Reaction was stopped by adding equal volume of M3 medium into the dish. 

The cells were collected in 15ml/50ml Falcon tubes and then spun at 1000 rpm for 5 minutes. 

The medium was aspirated and cell pellet was resuspended in growth medium. The cell 

number in the cell suspension was determined by counting with Neubauer hemacytometer. 

Cells were plated as per the requirement of the experiment. 

6.1.3 Proliferation assays 

a. Colorimetric method using crystal violet dye 

1 x104 cells/well were plated in a 96-well plate in 10% DCC-FBS medium (M3). After 24 h, 

cells were starved for next 24 h in medium containing 2% DCC-FBS except MCF10A cells 

which were starved in MEGM without insulin. Thereafter, cells were stimulated with insulin 

or insulin analogues every 24 h for total of 72 h, MCF10A cells were stimulated for 48 h. 

Controls remained untreated. At the end of incubation time, cells were washed with 100µl of 

PBS, fixed for 5 min with 100µl of 3% paraformaldehyde in PBS and stained for 10 min with 

100µl of 1% crystal violet dye dissolved in 10% ethanol. Excess crystal violet dye was 
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removed and plates were extensively washed with water to remove traces of unbound crystal 

violet dye. After air drying, the bound dye was dissolved in 100µl of 10% acetic acid. Optical 

density was read at 595 nm using a plate reader (Multiscan MX, Thermo, Dreieich, Germany). 

b. Colorimetric method using XTT 

T47D cells were plated and treated with insulin or insulin analogue as described above. After 

68 h of treatment, tetrazolium salt XTT was added to the cells. Four hours after the XTT 

addition, the optical density of the plate was read at 450nm using a plate reader.     

c. FACS analysis of BrdU incorporation 

MCF7 cells were starved in medium containing 2% DCC-FBS for 24 h and then were 

stimulated with regular insulins and insulin analogues for 16 h. BrdU incorporation was 

allowed by incubating cells with 10µM BrdU for 1 h and the whole process was carried out as 

suggested in the Manual of the Becton Dickinson kit (FITC BrdU Flow Kit). Thereafter, cells 

were submitted to FACS analysis and BrdU incorporation was measured using FACS Calibur 

equipment from Becton Dickinson. BrdU incorporation of insulin treated cells was compared 

with BrdU incorporation in untreated cells. Fold of control was determined by normalizing 

data from treated cells over untreated cells. 

6.1.4 Migration assays 

a. Wound healing assay 

MCF7 cells were plated in a 6-well plate containing M3 medium and allowed to grow till they 

reach confluency. Then, cells were treated for 1 h with 2µg/ml mitomycin C to inhibit cell 

proliferation. The monolayers were scratched using a 200 µl pipette tip, washed with PBS and 

incubated with different concentrations of Actrapid or Lantus (15nM, 150nM or 1.5µM). IGF-

I (15nM) was used as a positive control. Wound was photographed first at the beginning of 

the experiment and then after 3 h, 6 h, 12 h and 21 h. Healing was determined at every 

timepoint by measuring distance between two wound margins. Migration was calculated by 

comparing the healing at the particular timepoint with the initial wound.  

b. Transwell assay 

MCF7 cells were harvested from the culture dish and washed with PBS twice to get rid of the 

serum traces. Cell pellet was resuspended in medium containing 2%DCC-FBS. 1 x 105 cells 

were seeded in the upper chamber of the transwell plate (diameter 6.4mm, pore size 8µm) 

which was inserted in the 24-well plate. Medium containing 2%DCC-FBS (control) or 
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2%DCC-FBS in combination with 15nM Actrapid, 15nM Lantus or 15nM IGF-I was added to 

the lower chamber. Compounds were added freshly every 24 h for 2 days. M4 medium or M2 

medium in the lower chamber acted as negative and positive control, respectively, in this 

experiment. After 48 h, cells from the upper surface of the membrane were removed by cotton 

swab. Cells which had migrated to the lower surface of the membrane were washed with PBS 

twice, fixed with 3% PFA and stained with haematoxylin dye. Membrane was cut out and 

mounted with moviol on microscopic slides. Thereafter, cells were counted by light 

microscopy.    

c. Invasion assay using matrigel 

Basement Membrane Extract (BME) was aliquoted and stored at -80 oC. Before starting the 

experiment, BME was thawed at 4oC and reconstituted with medium containing 2%DCC-FBS 

to prepare a working dilution of 0.8µg/µl. Care was taken not to introduce any bubbles during 

reconstitution. 66µl of this dilution (200 µl/cm2) was added to the transwell insert and left for 

30 minutes at 37oC to gel. The gel was rehydrated by adding 100µl of medium containing 

2%DCC-FBS to the upper chamber and 600µl of medium containing 2%DCC-FBS to the 

lower chamber for at least one hour. Thereafter, medium was removed from the upper 

chamber and 1 x 105 MCF7 cells, resuspended in medium containing 2%DCC-FBS, were 

seeded on it. The lower chamber contained either medium containing 2%DCC-FBS (control) 

or medium containing 2%DCC-FBS in combination with 15nM Actrapid, 15nM Lantus or 

15nM IGF-I. Compounds were added freshly every 24 h for 3 days. M4 medium or M2 

medium in the lower chamber acted as negative and positive control, respectively, in this 

experiment. The transwell plates were incubated for 72 h at 37oC.  

At the end of the experiment, cells were removed from the upper chamber by cotton swab. 

Invaded cells at the lower surface of the membrane were washed with PBS twice, fixed with 

3% PFA and stained with haematoxylin dye. Membrane was cut out and mounted with moviol 

on microscopic slides. Thereafter, cells  were observed and counted by light microscopy.  

6.1.5 Silencing of IGF-IR or IR by transient transfection of MELN cells with 

siRNA 

a. Effect on signalling pathways 

3 x 105 MELN cells were plated in M3 in each well of a 6-well plate. After 24 h, cells were 

transfected with 25nM siRNA either targeting IGF-IR or IR using oligofectamine (10µl/well). 

For control, cells were transfected with 25nM non-targeting siRNA. After 48 h of 
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transfection, cells were starved in M4 for 24 h. At the end of the starvation period, cells were 

left unstimulated or stimulated with 15nM Actrapid, 15nM Lantus or 15nM IGF-I for 10 min. 

To stop the experiment, cells were washed with ice-cold PBS and cell lysate was made by 

standard lysis method. 

b. Effect on cell proliferation 

1 x 104 MELN cells were plated in M3 in each well of a 96-well plate. After 24 h, cells were 

transfected with 25nM siRNA targeting IGF-IR using oligofectamine (2µl/well). For control, 

cells were transfected with 25nM non-targeting siRNA. After 48 h of transfection, cells were 

starved in medium containing 2% DCC-FBS for 24 h. Cells were then treated for next 72 h 

with fresh medium containing 2% DCC-FBS (control) or medium containing 2% DCC-FBS 

supplemented with 150nM Actrapid or 150nM Lantus or 150nM IGF-I. At the end of the 

experiment, medium was aspirated, cells were washed, fixed and stained with crystal violet as 

described in section 6.1.3.a.  

6.2 Biochemistry 

6.2.1 Cell lysis 

a. Standard lysis protocol 

Medium was aspirated and cells were washed with PBS. 500µl – 750µl of ice-cold PBS was 

added to the cells and cells were scraped with a disposable cell scraper. Cell suspension was 

transferred to a 1.5 ml Eppendorf tube and centrifuged at 4°C for 5 min at 1000 rpm. The 

supernatant was discarded and the cell pellet was suspended in ice-cold lysis buffer, incubated 

on ice for 1 h and centrifuged at 4°C for 10 min at 13,000 rpm. The supernatant represented 

the lysate and was used for protein estimation. For long term storage, the lysate was stored at  

- 80oC. 

b. Direct lysis protocol  

In short-term experiments with identical cell numbers per well, lysis was performed directly 

in the plate. For this, medium was aspirated and cells were washed with ice-cold PBS. 100µl 

of 1 x SDS-loading dye was added to each well and plates were left for 15 min on ice with 

intermittent agitation. After 15 min, lysate was collected and boiled and processed as a normal 

SDS sample.   
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6.2.2 Western blotting  

The protein concentration of cell lysate was determined by Bio-Rad DC Protein Assay kit, a 

colorimetric assay based on Lowry assay. The standard curve was generated by measuring 

absorbance values (750nm) of samples with known BSA concentrations (0.25 to 2 mg/ml). 

Each cell lysate was read in duplicates and protein concentration was determined by using the 

BSA standard curve. Protein samples were prepared by adding 5 x SDS buffer to the cell 

lysates and boiling at 95°C for 5 min. The samples were loaded and resolved on a 10% SDS-

polyacrylamide gel. The separated proteins were then electro-blotted on an activated 

Immobilon-P membrane (Millipore, Eschwege, Germany) by the wet transfer method. 

Thereafter, the membrane was incubated for 1 h in blocking buffer at RT, washed three times 

with TBS-T and then incubated overnight at 4°C with specific primary antibody. Excess 

primary antibody on the membrane was removed by washing three times with TBS-T. The 

membrane  was incubated with a peroxidase-labelled secondary antibody for 1 h at RT and 

then was washed three times with TBS-T. Immunoreactive protein bands were detected with 

ECL-plus system from Amersham (GE Healthcare Biotech, Freiburg, Germany). For studying 

the phosphorylation status of proteins of signalling pathways, the membrane was first probed 

for the phosphorylated form and then for the total protein. To probe the membrane a second 

time, the membrane was first stripped by incubating in stripping buffer for 20 min at 60°C and 

then the whole process from blocking step onward was repeated with another primary 

antibody. 

6.2.3 Immunoprecipitation 

50µl of protein-A agarose beads were processed by washing first twice in PBS and then twice 

with lysis buffer. 750µg of protein (cell lysate) together with 2µg of primary antibody was 

added to the washed beads (final volume was 750µl) and left overnight for incubation at 4°C 

on a rotating shaker. Next morning, tubes were centrifuged and supernatant was discarded. To 

remove proteins bound unspecifically, beads were washed thoroughly twice with lysis buffer, 

then two times with LiCl buffer and again twice with lysis buffer (to remove the excess salt). 

Thereafter, beads were suspended in 30µl of 2.5 x  SDS buffer, boiled at 95°C for 5 min to 

separate the protein complex from beads. The beads were subjected to centrifugation at 

10,000 rpm for 10 min and  supernatant was loaded and resolved on 10% SDS-

polyacrylamide gel.  
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6.2.4 Firefly luciferase reporter gene assay  

MELN cells are MCF7 cells stably transfected with ERE controlled firefly luciferase reporter 

gene (Balaguer et al., 2001). 3 x 105 MELN cells per well were plated in M3 in a 6-well plate. 

After 10 h treatment with compounds, cells were washed with PBS and were directly lysed in 

the plate by incubating with 150 µl/well of luciferase lysis reagent for 30 min on ice. Cell 

lysate was collected and centrifugation (10,000 × g, 10 min) was performed to separate cell 

debris from supernatant.  20 µl of the supernatant was mixed with 100µl of luciferase assay 

reagent (Promega, Mannheim, Germany) and luminescence was measured for 1 min at 

560 nm in a luminometer. The luciferase activity (cpm/mg protein) was calculated by 

normalizing luminescence (expressed in counts per minute) with the protein concentration of 

the lysate.     

6.3 Molecular biology 

6.3.1 RNA extraction from cultured cells 

3 x 105 MCF7 cells were seeded per well of a 6-well plate in M3. After 12 h cells were 

starved for 24 h in M4. Cells were stimulated with required compounds for 1 h, 3 h or 6 h. 

After treatment, cells were washed with PBS and incubated for 10 min with the lysis buffer 

from RNeasy kit (Qiagen, Hilden, Germany). For shearing genomic DNA, cell lysate was 

passed 5 times through a fine needle syringe (20 Gauge) and then transferred to Eppendorf 

tubes. From here on RNA purification was performed according to the instructions provided 

in the Manual of the RNeasy kit. RNA bound to the matrix of the column (provided in the kit) 

was eluted by adding 20 μl of nuclease-free water to the column. For maximum yield, elution 

was repeated and thus the total volume of RNA eluted was 40µl.  RNA concentration was 

measured by determining absorbance at 260nm in a Nanodrop device (Peqlab, Erlangen, 

Germany). RNA or DNA is considered pure if absorbance ratio (260nm/280nm) is between 

1.5 and 2.0. Therefore, only those RNA samples which had absorbance ratio between 1.5 and 

2.0 were considered for further processing. For long term storage, RNA samples were kept at 

-80°C. 

6.3.2 cDNA synthesis by reverse transcription 

500ng of total RNA was reverse transcribed to generate cDNA. oligo-dT primers were used 

for producing cDNA and the whole process was performed as suggested in the Manual of 

‘RevertAidTMH Minus First Strand cDNA Synthesis’ kit (Fermentas, St. Leon-Rot, Germany). 
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cDNA, thus synthesised, was purified with the QIAquick PCR purification kit (Qiagen). After 

elution from the matrix, cDNA concentration was measured by determining absorbance at 

260nm in Nanodrop device. Only cDNA samples which showed absorbance ratio 

(260nm/280nm) between 1.5 and 2.0 were considered for quantitative PCR. For long term 

storage, cDNA samples were kept at -20°C.  

6.3.3 Quantitative polymerase chain reaction 

Primers for quantitative PCR were designed using ‘Universal Probe Library’ website of 

‘Roche Diagnostics’. 50ng of cDNA was incubated with 500nM of SYBR Fwd primer and 

SYBR Rev primer. MgCl2 was added to obtain a final concentration of 25mM Mg2+ in the 

reaction. Reaction was started by adding 10 µl of iQ SYBR Green supermix (Bio-Rad, 

München, Germany). PCR amplification was performed following the manufacturer’s 

instructions on PTC-200 Peltier Thermal Cycler (MJ Research, Miami, FL, USA) and the MJ 

OpticonMonitor analysis software, version 3.1 (Bio Rad).  

6.4 Statistical analysis 

Immunoblots were quantitatively evaluated using ImageJ software (NIH, USA). Signal 

intensities of phospho-proteins were normalized to the corresponding protein signals. Data are 

presented as mean ± SD of at least three independent experiments. Significance of differences 

between groups was calculated by t-test. Proliferation assays (dose-response curves) were 

evaluated using a four-parametric log-logistic model (Ritz and Streibig, 2005) and t-tests in a 

multiple contrast testing approach (Hothorn et al., 2008). P-values below 0.05 were 

considered statistically significant. 
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ABBREVIATIONS 
  
ADP Adenosine Diphosphate 
ATP Adenosine Triphosphate 
AF1 Transcriptional Activation Function1 
AF2 Transcriptional Activation Function2 
APS  adaptor protein containing PH and SH2 domains  
ATP Adenosine Triphosphate 
BSA Bovine Serum Albumine 
cAMP cyclic AMP 
Cdk Cyclindependent kinase  
Cdk2 Cyclin dependent kinase 2  
cDNA complementary or copy DNA 
CNS Central Nervous System 
CO2 Carbon Dioxide  
COX2 Cyclooxygenase2 
cpm counts per minute 
CREB cAMP Response Element Binding protein 
cSrc Cellular homologue of vSrc 
DBD DNABinding Domain   
DCC DextranCoated Charcoal 
DCIS Ductal Carcinoma In Situ 
DHEA Dehydroepiandrosterone 
DMEM Dulbecco’s Modified Eagle’s Medium 
DMSO Dimethyl Sulphoxide 
DNA Deoxyribonucleic Acid 
dsDNA doublestranded DNA 
dNTPs deoxynucleotides Triphosphate 
DTT Dithiothreitol  
ECL Enhanced Chemiluminescence 
EDTA Ethylen diaminetetraacetic Acid  
EGF Epidermal Growth Factor 
EGFR Epidermal Growth Factor Receptor 
eIF2B eukaryotic Initiation Factor 2B 
ER Estrogen Receptor 
ERα Estrogen Receptor alpha 
ERβ Estrogen Receptor beta  
ERE Estrogen Response Element 
ERK Extracellular signalRelated Kinase  
ER ERα negative 
E2 17βEstradiol 
FBS Foetal Bovine Serum 
FCS Foetal Calf Serum 
FGFR Fibroblast Growth Factor Receptor 
Fos nuclear DNA binding protein (product of the cFos protooncogene) 
Fwd primer Forward primer 
GAPDH Glyceraldehyde3Phosphate Dehydrogenase 
Gab1 Grb2-associated binder-1  
GDP Guanosine diphosphate 
GF Growth Factor 
GFP Green Fluorescence Protein 
GLUT glucose transporter 
GMCC Protein kinases group including GSK, MAPK, Cdk and CTD kinases. 
GMP Guanosine Monophosphate 
Grb2  Growth factor receptor bound protein 2 
GSK3α/β Glycogen Synthase Kinase3alpha/beta 
h hour 
H & E Hematoxylin and Eosin 
HCl Hydrochloric acid 
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HEPES  4(2Hydroxyethyl)1Piperazineethanesulfonic acid  
HEPES/KOH HEPES/Potassium hydroxide 
HER2 Human epidermal growth factor receptor 2 or ErbB2 
HRP Horseradish Peroxidase 
HRT Hormone Replacement Therapy  
IDC  Invasive Ductal Carcinoma 
IGF-I Insulin Like Growth Factor-I  
IGF-II Insulin Like Growth Factor-II 
IGF-IR Insulin Growth Factor –I Receptor 
IGFBP Insulin Growth Factor Binding Protein 
IgG Immunoglobulin G 
IHC Immunohistochemistry 
ILC Invasive Lobular Carcinoma 
IL6 Interleukin6 
IR Insulin Receptor 
IR-A  Insulin Receptor isoform lacking exon 11 
IR-B  Insulin Receptor isoform with full transcript 
IRS Insulin Receptor Substrate 
JNK cJun Nterminal kinase  
Jun nuclear DNA binding protein (product of the cJun protooncogene) 
KCl Potassium Chloride 
kDa kilo Dalton 
l litre 
LAR Luciferase Assay Reagent 
LBD Ligand Binding Domain  
LCIS  Lobular Carcinoma In Situ 
m milli 
M Molar 
MAPKAPK1 MAPKActivated Protein Kinase 1 or p90Rsk 
MAPK MitogenActivated Protein Kinase 
MEK MAPK/ERK kinase  
µ micro 
min minutes 
M6PR Mannose 6-Phosphate Receptor or IGF-II receptor 
MMTV Mouse Mammary Tumor Virus 
MNAR Modulator of Nongenomic Action of estrogen Receptor 
mRNA messenger RNA 
mTOR mammalian Target Of Rapamycin 
Myc protein inducing cell growth and encoded by the cMyc protooncogene 
MW molecular weight 
NaAc Sodium Acetate 
NaCl Sodium Chloride 
Na2CO3 Sodium Carbonate 
NaF Sodium Fluoride 
Na2HPO4 Disodiumhydrogenphosphate 
NaH2PO4 Sodium dihydrogen phosphate  
NaN3 Sodium azide 
NaOH Sodium hydroxide 
Na3VO4 Sodium orthovanadate 
NCAM Neural CellAdhesion Protein  
NCI National Cancer Institute (USA) 
NFAT  Nuclear Factor of Activating T cells 
NFκB Nuclear Factor kappa B 
NGF Nerve Growth Factor  
NIH National Institutes of Health (USA)  
NLS Nuclear Localization Signal 
NPH  Neutral Protamine Hagedorn 
nm nanometres  
O.D. Optical Density 
O/N Overnight 
PAGE Polyacrylamide Gel Electrophoresis  
PBS Phosphate Buffered Saline 



Abbreviations   122 

PCR Polymerase Chain Reaction 
PDK1/2 3PhosphoinositideDependent Protein Kinase1/2  
PFA Paraformaldehyde 
PH domain Pleckstrin-homology domain 
PKA Protein Kinase A 
PKB Protein Kinase B or Akt 
PKC Protein Kinase C 
PI3K Phosphatidylinositol 3Kinase 
PIK3CA Gene encoding the PI3K Catalytic subunit (p110 Alpha) 
PTB domain Phosphotyrosine-binding domain 
PTK Protein Tyrosine Kinase 
PVDF Polyvinylidenfluoride 
p38 MAPK Mitogen Activated Protein Kinase p38 
Rev primer Reverse Primer  
RNA Ribonucleic acid 
RNAi RNA interference 
RNase Ribonuclease 
rpm revolutions per minute 
RPMI Roswell Park Memorial Institute cell culture medium 
Rsk Ribosomal S6 Kinase or MAPKAPK1 
RT Room Temperature 
RTK Receptor Tyrosine Kinase 
RTPCR Reverse Transcriptase Polymerase Chain Reaction 
SDS Sodium Dodecyl Sulfate 
sec seconds 
SEM Standard Error of the Mean 
Ser (S) Serine, amino acid 
Shc Src-homology-2-containing protein 
SH2 domain Src-homology-2 domain 
siRNA small interfering RNA 
SNPs SingleNucleotide Polymorphisms  
SYBR SYBR green (DNA intercalating dye) 
TAE Tris Acetate EDTA buffer 
TBS Trisbuffered saline 
TBS-T TBS-Tween 20 
TE TrisEDTA buffer 
TEMED N, N, N’, N’Tetramethyl ethylenediamine 
Tm melting Temperature 
Tris trishydroxymethylaminomethane 
U Unit of the enzyme activity 
UV Ultraviolet 
vSrc Oncoprotein encoded by Rous sarcoma virus 
v/v volume per volume 
w/v weight per volume 
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