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Fig. 4 Comparison of ori sequences of mitochondrial genomes
from yeast (present work) and HeLa cells*®. Homology of potential
secondary structure is found for the inverted repeats in the A-B
region (arrows indicate the base changes found in this region in
different petite genomes). Homology of primary structure is found
for cluster C. The bottom compares the two ori sequences; the
arrows indicate the inverted repeats of the A-B region, the broken
line corresponding to the looped-out sequence. bp, Base pairs.
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Structure of C-terminal half of
two H-2 antigens from cloned mRNA
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Two explanatibns have been put forward to account for

suppressivity. The first one proposes a replicative advantage of
the mitochondrial genome of suppressive petites over that of
wild-type cells*®>™%. It was directly inspired by the work of Mills
et al.’” on the replication of QB DNA but was not accompanied
by any molecular model. The second one proposes a destructive
recombination of the petite genome with the wild-type
genome®™?, and predicts that a number of different petite
genomes are formed as the consequence of the increased paren-
tal genome instability due to the insertion of the petite genome.
The present results contradict this latter explanation because
most of the diploid petites studied here had genomes identical to
those of the parental petites. Indeed, they provide for the first
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time a precise molecular basis for the former explanation of the

replicative competition.
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antigens in the mouse), known to have key roles in cell-to-cell
recognition’, are encoded by at least three highly polymorphic
genes (H-2D, K and L). Like their human (HLA) counter-
parts®, H-2 heavy chains span the cell membrane with a short
C-terminal cytoplasmic region and an N-terminal extracellular
stretch of about 280 amino acids. HLA antigens seem to be
organized in three domains containing B-pleated sheets, with
disulphide loops within the second and third domains, but the
relative scarcity of material has hampered biochemical studies of
the H-2 antigens* . We now report the sequencing of plasmids
carrying H-2 ¢cDNA as a means of inferring the amino acid
sequence of the antigens, and especially of their previously
poorly described C-terminal half.

The isolation of recombinant plasmids pH-2°-1 and pH-2°-3

is described in Fig. 1 legend and elsewhere’. Restriction maps of
the cDNA inserts, 1,150 and 980 base pairs (bp) long, respec-
tively, are different, but canbe tentatively aligned on Poull, Ssi
and Psi sites (Fig. 1). Both inserts contain a noncoding stretch of
about 480 bp next to the poly(A) sequence. The 627- and
479-bp long coding sequences and their corresponding amino
acid sequences are given in Fig. 2. They show extensive
homologies with available sequences of H-2 and HLA mole-
cules (82% with H-2K", 73% with HLA B7) (Fig. 3)>-es 1,
allowing unequivocal alignment in the third domain. With
reference to HLA?, we assigned nucleotide 133 to the first
tryptophan residue in pH-2"-1 and nucleotide 181 to the first
arginine in pH-2%-3. Both clones should, accordingly, code for
the entire third domain, the membrane spanning region and the
cytoplasmic segment.

§Present address: Department of Cell Research, The Wallenberg Laboratory, University-of
Uppsala, Uppsala, Sweden.
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Fig. 1 Restriction maps of pH-2°-1 and pH-
2°-3 inserts and strategies to sequence them.
The cDNA library from which pH-2%-1 (ref. 7)
was selected had been constructed using
mRNA from SL2 lymphoma cells grown as

100bp
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4
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ascites in DBA/2 mice (H-2¢ haplotype). The
400 independent bacterial clones of this library
were further screened by in situ hybridiza-
tion“”, using a fragment of the insert of the first
H-2 clone as a probe. The DNAs of the positive
responders were then tested for the specific
binding of H-2 mRNA as already described’.
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At least two of them, pH-2-2 and pH-2°-3,
were found positive in this test. The cDNA
insert of p}{—2d~2 was found identical to part of
that of pH-Zd—l, and was not analysed further.
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Plasmid DNA was prepared from cleared lysatcsm, 3partially purified by centrifugation in a CsCl/ethidium bromide gradient, and further purified

by fractionation through a 5-40% sucrose gradient L

Digestion with restriction endonucleases (Biolabs, Boehringer or BRL) were carried outin

standard conditions. Restriction maps were constructed from the size of the DNA fragments, estimated from electrophoretic patterns on agarose

or acrylamide gels”‘ 3 Asindicated, each cDNA insert is bordered by two reconstituted Psd sites>*. Both inserts have the same orientation with

~ respect to pBR322 map. pBR322 sequences a
to the 3' ends of the messengers are on the
fragments sequenced are represented by arrows. They were labell
subfragments with only one labelled end
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5. Sequencing techniques used were those of Maxam and Gilbert** (——) or Maat and Smith®® (—~—).
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-29.3. Both sequences have been aligned as described in the text, the 5’ terminus is to the left, the 3’
phosphorylation (<) sites are
leotide sequences are labelled (@).

labelled. The positions at which a difference is found

ing that the major constraint is the sole mainter}ance of hydro-
phobicity. No homology with membrane-spanning segments of
other membrane proteins was found.

Amino acids 308-338 correspond to intra-cytopl;azsmic
sequences which have been reported to be phosphorylated ~ and
associated with components of the cytoskeleton'®. A possible
phosphorylation site (Arg-Asn-Thr)'* is found at position 313 in

A
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both H=2 clones. At the border with the membrane, a cluster of
four basic residues (Lys-Arg-Arg-Arg) is found in both clones.
As clusters of basic amino acids in similar positions have been
found in HLA-A2 and HLA-B7 (ref. 15), membrane-bound
IgM'®, human glycophorin'” and several viral glycoproteins'®,
we propose that they might be involved in the positioning of
transmembrane proteins.

The amino acid sequence located at the external membrane
border shows many variations. The conserved proline residues
at positions 276-278 indicate breakage of the a-helical struc-
ture, suggesting that this segment can form a flexible link, in
agreement with the accessibility of this region to papain®.

pH-2%-1 codes for the third domain and half of the second,
whereas pH-29-3 codes for the third domain only. Cysteinyl
residues at positions 164, 203 and 269 are likely to be those
involved in intrachain disulphide bridges, as they are in H-2K°
(refs 4, 5, 19). Possible glycosylation sites (Asn-Tyr-Thr)*° are
found at positions 176 and 256 in pH-2°-1 and pH-2°-3,
respectively. The two amino acid sequences are extremely
similar. Divergences are found mainly as clusters (positions
193-198, 225-227, 255-268, 275-303) also seen in
comparisons with HLA with additional variations.

The third domain of HLA shares significant homologies with
the constant domains of immunoglobulin heavy chains®"?2,
Using the alignment frame designed for HLA?', we found that
the third domains of the H-2 molecules encoded by the two
plasmids display the same type of homology (in preparation). At
20 out of the 23 aligned positions corresponding to hydrophobic
amino acids involved in the B-pleated sheet structure in
immunoglobulins, hydrophobic residues are also found in H-2
sequences. These results suggest strongly that the third domain
of H-2 antigens, like that of HLA, is folded in an immuno-
globulin-like three-dimensional structure. When the afore-
mentioned clusters of amino acid differences between pH-2-1
and pH-2%-3 are placed in the three-dimensional immunoglo-
bulin model, they fall in loop areas (in 8 differences out of 10),
while B-pleated sheets correspond to highly conserved regions.
This suggests that the three-dimensional structure of the third
domain imposes constraints on divergences. This could be true
for other parts of the molecule as well and be important in the
understanding of the basis of alloantigenicity.

Comparisons with available dataon H-2D% K9 and L (Fig. 3)
show that pH-2¢-1 differs from H-2L° at positions 155, 156,
169 and 262. It has a methionine at position 138, whereas the
cyanogen bromide cleavage map of H-2Kindicates that there is
no such residue in the molecule®. At 57 out of 58 assigned
positions the pH~2¢-1 amino acid sequence is identical to that of
H-2D?%, the only difference being at amino acid 255, denoted as
‘tentatively assigned’'®. Therefore, pH-2"-1 cannot code for
H-2L¢ or H-2K¢, but could well code for H-2D“. The pH-2%-3

CHO

140 150 160 170 ‘ 180
pH~2d—l WTAADMAA QITRRKWEQA GAAERDRAYL EGECVEWLRR  YLKNGNATLL
pH—-2%-3

#-2 18 - —_—— - _
H-2 K L—KHemmem  —Emm—Lm=== —cPem==—==  —mm==—=m=s
HLA=A2 —-—KH-—-A- —~LONRE--E
HLA-B7 ——E--KDK-F

220 230 240 250 260
pH-29-1 ADITLTWOLN GEELTQEMEL VETRPAGDGT FOKWASVVVP  LGKELKYTCH
pH=29-3  cemmes e S ———-QON---R
p-2 pd e e o mmmmmm e "
g-2 19 - - - - e = emm -
L e IeDeme  mmmmmmmmmm mmmmmmme QY
HLA-A2  —E- ~-DQ-=DT== ==m===== R- =E--=A-=-= S=Q-QR-=-=
HLA-B7  =E-—=—=—=RD ==DQ--DT== ======-- R~ ~E--—A-—== S=E~QR-=--

PO,
300 310 ‘ 320 330 338

pH—Zd-—l VVLGAVVILG AVMAFVMKRR RNTGGKGGDY ALAPGSQSSD MSLPDCKV ~COOH

Table 1 Analysis of the nucleotide changes between pH-2%-1 and pH-2¢-3
sequences

Silent Total
substitutions substitutions

22/918 =0.024

Replacements

Codons 183-284 17/704=0.024  5/214=0.023
(third domains)
Codons 285-308
(membrane
spanning regions)
Codons 309-339
(cytoplasmic
fragments)
Codons 183-339

7/148.5=0.047 2/58.5 =0.034 9/207 =0.043

3/221.5=0.014 1/66.5=0.015 4/288=0.014

27/1,074=0.025  8/339=0.024  35/1,413=0.025

pH-29-1and pH-2¢-3 were compared over their aligned sequences (Fig. 2). The
rate of ‘silent substitutions’ (see text) was determined by a computation similar to
that described by Lomedico et al.2®: all possible single-step mutations (that is,
three possible changes for each base) were totalled over the 157 aligned codons,
and classified as replacements if they involved an amino acid change, and as silent
substitutions if they did not. The numbers were then averaged for the two genes.
The fractions displayed in the table indicate the number of replacements (or silent
or total substitutions) actually recorded over the total number of possible
replacements (or silent or total substitutions).

sequence differs from H-2D¢ at position 262 (ref. 11) and is
compatible with the 15 assigned positions reported for H-2LYin
the corresponding area'". It has a possible glycosylation site™® at
positions 252258 as would be expected for H-2K* (P. Robin-
son, personal communication). Protein sequence data are thus
too limited to allow conclusive assignments, especially as the
cloned sequences could also specify Tla, Qal, Qa2 or other
H-2-like antigens®*, in line with the finding that the mouse
genome contains multiple H-2-related sequences”’,

The nucleotide sequences of pH-2¢-1 and pH-2°-3 diverge in
only 47 (9.7%) of the 485 bases aligned for comparison (includ-
ing 12 aligned with empty positions, Fig. 2). The third domain
shows remarkable conservation with only one base change in a
stretch of 156 nucleotides (positions 204-255). Surprisingly,
silent changes (with no corresponding amino acid change) are
unusually rare, compared with replacement changes (Table 1),
whereas in other genes the former arise more often than the
latter®®?”. This raises several hypotheses: a special conservative
constraint might exist on the nucleotide sequences themselves,
making the silent changes not neutral. Alternatively, the two
proteins may have diverged too rapidly to allow the accumula-
tion of neutral mutations in their genes®. Whether this feature is
related to a mechanism involved in the generation of the natural
polymorphism of these genes or not remains to be investigated.

We thank Miss O. Lebail for technical assistance, Mr B.
Caudron for assistance in computer usage and Dr D. Meyer fora
critical reading of the manuscript. The work described here was
done in accordance with the French and German guidelines for

Fig. 3 Comparison of the amino
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murine and human histocompati-
G —~S—-DDK-~ bility antigens3-%5111523 pHLA-1

—A-T--T-H- -—~AVSDHEA- is a recombinant plasmid carrying
-A-~-~T-== ~-=PISDHEA- an HLA cDNA sequence®’. Its
deduced amino acid sequence

pap shows no difference from the pub-

270 GEE 280 290 lished data on HLA-B7 COOH-
Yg‘.‘f%‘_’ffﬁ T‘_’E_“’.“:I_"fﬁ?f ﬁgﬁgﬁfﬁ‘_’i terminal fragment'®. The amino

X- acids are indicated according to the
-y- one-letter code®®. pH-29-1 insert

EYQQ-L-Q-~ —----DE-P-- VS-M has been taken as a reference to
Igiiiﬁj‘éi : align the other sequences. Three

residues have been taken out of the
™ alignment between positions 274
and 275, as indicated, to keep to
numbering conventions already
used for H-2 and HLA sequences’.
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PHLA-1 —eAV=== =  —=Y=A==C-~ KSS----- S- SO-AC-D-AQ  G-DVSLTA —COOH pH-2°-1 sequence. X 1‘nd1cz.ates an
undetermined amino acid, different
™ from tyrosine.
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Neutron diffraction reveals
oxygen-histidine

hydrogen bond in oxymyoglobin
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Cambridge CB2 2QH, UK

+ Department of Biology, Brookhaven National Laboratory, Upton,
New York 11973, USA

Myoglobin (VMb) reversibly binds molecular oxygen in verte-
brate muscle and consists of a polypeptide chain of 153 residues
and one haem, which closely resembles one subunit of a
haemoglobin (Hb) tetramer. In oxygenated myglobin (oxyMb)
the iron atom is coordinated by four porphyrin nitrogen atoms,
N of the invariant ‘proximal’ histidine (F8), and molecular
oxygen'. The oxygen molecule lies in a tight pocket, bounded by
two hydrophobic groups (Phe CD1 Val E11) and the side chain
of the ‘distal’ histidine (E7). This histidine is present in Hb and
Mb of many different organisms, with substitution by glutamine
or leucine found in only a few cases. The function of the residue
is not clear, although it does present steric hindrance to linear
ligands such as carbon monoxide and favours ‘bent’ ones, such as
0,. We report here that the imidazole stabilizes bound molecu-
lar oxygen with a hydrogen bond, as revealed by neutron

diffraction analysis.
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Fig. 1 Arrangement of proximal (F8) and distal (E7) histidines in

oxyMb. At pH 8.4, nitrogen-bound hydrogen on E7 imidazole can

be bonded to either N (the naturally predominant form), with a

hydrogen bond to O-2 (dotted line), or to N°® where it projects into
the solvent surrounding the molecule.

Pauling® first proposed that the imidazole may form a hy-
drogen bond to the terminal oxygen atom (O-2 in Fig. 1), which
carries a formal negative charge in his view of the electronic
structure of the FeO, complex. Evidence suggesting such a bond
comes from electron paramagnetic resonance and oxygen
affinity data on cobalt-substituted Hb and Mb*"*. The pK of the
distal histidine is ~5.5 (ref. 4). At physiological pH (and the pD
of the crystals used here) the histidine may have hydrogen-
bonded to either N° or N? (see Fig. 1), and interaction with O-2
may therefore be by a hydrogen bond, or a simple van der Waals
contact. X-ray crystallography of protein crystals cannot dis-
tinguish between these alternatives as hydrogen atoms scatter X
rays only weakly, and are not normally visible in electron density
maps. Neutrons, however, are scattered as strongly by hydrogen
and deuterium as C, N, O, S and Fe atoms, and well-ordered H
and D atoms may be observed in neutron density maps of
proteins®’.

Crystals of oxyMb were prepared from frozen sperm-whale
skeletal muscle!. Large crystals (8 mm?) were transferred to
deuterated mother liquor (pD 8.4) at 20 °C 3 months before data
collection, because hydrogen gives strong incoherent scattering
of neutrons which increases the background level in diffraction
data collection. Replacement of H,O solvent in crystals with
D,O, and subsequent replacement of exchangeable H atoms
with D in the protein, alleviates this problem and improves the
signal-to-noise ratio of the data. It also allows exchangeable H
atoms to be identified in the density map, as H scatters out of
phase with respect to D.

Neutron diffraction data were collected using the protein
crystallography station of the High Flux Beam Reactor at
Brookhaven National Laboratory. The diffractometer was
equipped with a two-dimensional multiwire proportional coun-
ter® and a cooling device to maintain the crystals at =5 °C and
retard oxidation of the haem iron. Two crystals were used for
data collection, each being exposed to the neutron beam for 21
days. No radiation damage or oxidation was observed; 88% of
available data to 2 A resolution was collected, together with
further data between 2 and 1.5 A, giving 14,411 independent
reflections. The merging R factor between crystals was 14.1%
on intensities,

Calculated phases and amplitudes for the neutron data were
computed from the coordinates ofall C, N, O, S and Fe atoms in
the refined X-ray structure’, including 60 ordered H,O mole-
cules. A difference density map (coefficients |Fo|—|F.]: crystal-
lographic R factor 35% for 10,152 reflections with [ > 1.50(I))
showed clear peaks for 40% of the missing H and D atoms.
Small peaks were visible at both N and N° of His E7. Hand D
atoms observed in the map were added to the model, together
with unobserved ones whose positions were known from
stereochemistry (for example, most C—H groups), but ring
nitrogen-bound H or D atoms for histidines were omitted—this
reduced R to 33%. A second difference map failed to resolve
the ambiguity at His E7, and combined crystallographic and
conformational energy refinement was initiated, using methods
described for X-ray refinement of oxyMb, but modified for use
with neutron data. Seven cycles of coordinate refinement were
carried out, with three cycles on individual atomic thermal
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