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Abstract This fact was first realized by AMD which replaced 
As the amount of computing power keeps increas-
ing, host interface bandwidth to memory and input-out-
put devices (I/O) becomes a more and more limiting 
factor. High speed serial host interface protocols like 
PCI-Express and HyperTransport (HT) have been 
introduced to satisfy the applications’ ever increasing 
demands for more bandwidth. Recent applications in 
the field of General Purpose Graphic Processing Units 
(GPGPUs) and Field Programmable Gate Array 
(FPGA) based coprocessors are an example. In this 
Paper we present a novel implementation of an FPGA 
based HyperTransport 3 (HT3) host interface. To the 
best of our knowledge it represents the very first imple-
mentation of this type. The design offers an extremely 
high unidirectional bandwidth of up to 2.3 GByte/s. It 
can be employed in arbitrary FPGA applications and 
then offers direct access to an AMD Opteron processor 
via the HT interface. To allow the development of an 
optimal design, we perform a complexity and require-
ments analysis. The result is our proposed solution 
which has been implemented in synthesizable Hard-
ware Description Language (HDL) code. Microbench-
marks are presented to show the feasibility and high 
performance of the design.

1. Introduction

Following Moore’s Law, computing power has dou-
bled every 18 months over the last years. While scaling 
the operating frequency of high end processors has 
come to an end, exponential gains in computing power 
are still anticipated through the use of parallel process-
ing. In either case, providing the processor with enough 
duty will require the increase of I/O bandwidth signifi-
cantly. In fact, the processor - I/O bandwidth perfor-
mance gap has increased in the last years [1] making it 
even more crucial to improve I/O performance. 

the outdated front size bus (FSB), that is used to inter-
connect the CPU, memory and I/O devices, with a 
novel packet based point-to-point interconnect called 
HyperTransport (HT) in their Opteron processors. HT 
offers high bandwidth, extremely low latency [2] and 
can support cache coherency which makes it ideally 
suited for communication between CPUs, memory and 
IO. The high performance of the HT interconnect is the 
main reason for the much better scalability of Opteron 
based symmetric multiprocessor (SMP) with non uni-
fied memory architecture (NUMA) machines in com-
parison to Intel Xeon based SMPs [3].

HT supports variable link widths and up to 2 Gbit/s 
on each lane in protocol version 2.x, also referred to as 
Gen1. This leads to a maximum unidirectional band-
width of 4 GByte/s for a 16 bit link. Apart from the 
Opteron CPUs, HT 2.x is successfully implemented by 
peripheral hardware devices like the Pathscale network 
interface [4], Cray’s Seastar [5] and the Field Program-
mable Gate Array (FPGA) based rapid prototyping 
board [6]. HT devices can directly communicate with 
the processors without any intermediate bridges using 
the HyperTransport Extension (HTX) connector [7]. 
HTX is a PCI-Express slot like standard defined by the 
HyperTransport Consortium (HTC).

Recently, the HTC introduced HT 3.1, also referred 
to as Gen3, which increases the supported speeds to 6.4 
Gbit/s on a lane equalling a theoretical unidirectional 
peak bandwidth of 12.8 GByte/s for a 16 bit link. The 
first integrated circuits (ICs) that will support HT 3.x 
are the Shanghai Opteron processors, however, no non 
Opteron implementations are currently available. The 
reason for this is, that currently no HTX3 capable main-
boards are available and the lack of an open source 
HT3-Core like the HT2-Core [8]. To solve the latter 
issue, in this paper we present the very first high perfor-
mance HT3-Core for FPGA implementations. The core 
provides very high bandwidth even for FPGA imple-
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mentations, and therefore presents the ideal building 
block for high performance next generation I/O 
devices. Our solution promises to deliver a bidirec-
tional bandwidth of up to 9.2 GByte/s for a 16 bit link. 
To the best of our knowledge this makes it the fastest 
host interface implementation currently available for 
FPGAs.

The rest of the paper is organized as follows. Sec-
tion 2 will provide background information and define 
the requirements for an FPGA based HT3 core. Section 
3 will present a complexity analysis and describe the 
challenges of such an implementation. Our proposed 
architecture is presented in Section 4. It is followed by 
an evaluation in Section 5 and we draw a conclusion in 
Section 6.

2. Background

To define the requirements of an HT3 core a short 
introduction to the HT protocol will be given. The HT 
specification defines the entire protocol stack ranging 
from the physical layer up to the transaction level layer. 
The physical layer defines the electrical parameters 
which have to be adhered by HT device implementa-
tions and include jitter, slew rate and common mode 
characteristics. Physical layer compliance is already 
provided by the physical layer device (PHY) and there-
fore out of scope of this paper. The PHY also takes care 
of serialization/deserialization (SERDES) of the high-
speed serial data stream. For signalling HT defines 2, 4, 
8, 16 and 32 bit command-address-data (CAD) busses 
which are accompanied by a set of control (CTL) lanes
and clock (CLK) lanes. Most common are 8 or 16 bit 
configurations, whereby multiples of 8 CAD lanes, one 
CTL and one CLK lane are considered as a link. A link 
connects exactly two endpoints whereas switches have 
to be employed to realize topologies of multiple end-
points. 

The transaction layer defines the packets which are 
transmitted over HT links. A transaction consists of a 
command packet and an optional data packet carrying 
1-16 doublewords (32 bit) which allows to send maxi-
mum sized transactions of 64 Byte. This size is equiva-
lent to a cacheline on current x86 systems. In Gen3 
mode each transaction is also appended with a CRC. 
The specification defines a large number of commands 
with the main purpose of data movement. Therefore, 
write, read and response operations are defined. To 
avoid deadlocks, which may be caused by cyclic depen-
dencies from split phase transactions, the different com-
mands are assigned to different virtual channels (VC). 
This allows reordering of the data stream and breaking 
up cyclic dependencies. Furthermore, the commands

implement low level functionality like flow control and 
fault tolerance. The required functionality which has to 
be provided by an HT3-Core implementation is there-
fore as follows:
• Packetization: Extracts Transactions from the data 

stream and sorts them into their according virtual 
channel queue and vice versa.

• Flow control: HT defines a credit based flow con-
trol which has to be supported by the core.

• Fault tolerance: HT3 defines an advanced CRC 
mechanisms for increased reliability

• Scrambling: To support clock data recovery in 
Gen3 mode, the data stream is scrambled.

• Low level initialization methods
As the HT2-Core presented in [8] implements the 

same functionality according to the HT2 specification 
and HT3 is downwards compatible, it is reasonable to 
analyze, whether a modified HT2-Core would be a suf-
ficient solution. Therefore, it is useful to examine the 
novel features which have to be supported by Gen3 
devices. The most important modifications are the 
increased frequency support of up to 3.2 GHz and the 
enhanced fault tolerance mechanic. Additionally to the 
periodic CRC, which can be used to detect, but not to 
correct errors, HT3 introduces a retry mechanism with 
per-transaction CRC. Every transaction sent out by the 
transmitter is appended with a CRC and stored into a 
retry buffer. On reception the receiver calculates the 
CRC again and in the case of a successful match sends 
an acknowledge back. In the case of a mismatch a nack 
packet is generated which leads to a retransmission of 
the original transaction. Implementation of the retry 
mechanism requires heavy modification of the HT2-
Core. Even more significant, however, is the increased 
bandwidth that has to be supported internally. The HT2-
Core supports an internal data width of 64 bit which 
requires an internal core clock frequency of 600-1600 
MHz for a 16 bit link at Gen3 frequencies, and a fre-
quency of 300-800 MHz for a 8 bit link.

Last but not least is the introduction of a new data 
sampling scheme for Gen3 devices. Instead of the 
source synchronous mechanism sampling incoming 
data with the link clock, HT3 devices use a clock data 
recovery (CDR) technique. The CDR circuit recovers a 
dedicated clock for each lane and uses it to sample the 
data. As static data patterns occurring in IDLE phases 
prohibit reliable clock recovery, a data scrambling 
mechanism is used in Gen3 mode.

The required change to a 128 bit internal interface
and the additional modifications regarding retry mode 
demand for a complete redesign of the HT2-Core.
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3. Complexity analysis

As mentioned before HT3 is a packet-based point to 
point interconnect, which operates on a minimum 
packet size of 32 bit, one doubleword (DW). To support 
the provided bandwidth of HT3 an analysis of the data 
stream is required.

The data stream of HT3 can be distinguished into 
three different DW types which are command (CMD), 
data (DATA), and a cyclic redundancy check (CRC) 
checksum. To keep the decoding of the data stream as 
simple as possible, an internal data width of 32 bit 
would be ideal, so every clock cycle one of only three 
different types of DWs must be interpreted. To support 
higher bandwidth on the HT link, the data stream has to 
be parallelized which leads to wider internal data buses,
as the maximum frequency is the limiting factor in 
FPGAs. Due to the fact that the HT3 protocol does not 
allow all combinations of different DW types, the com-
plexity does not increase quadratically, but as can be 
seen in Figure 1, the increase in complexity is signifi-
cant. Multiple consecutive command DWs may belong 
to two separate command packets without a separating 
CRC due to command packet insertion. The number of 
combinations for a 256 bit wide data path is not 
depicted due to the large number of possible combina-
tions.

Figure 1:  Complexity growth

HT3 has a minimum link frequency requirement of 
1.2 GHz. Depending on link width and parallelization 
degree this results in different possible core frequencies 
shown in Table 1.

The target device is a state of the art Virtex 5 FPGA 
which can be clocked at a theoretical maximum fre-
quency of 550 MHz for the core logic. For a design that 
contains complex logic as the HT3-Core a core fre-
quency of 300 MHz is difficult to achieve but possible.
This reduces the possible combinations of link width 
and parallelization degree that can be realized.

In the HT3-Core design an internal data width of 
128 bit is implemented, as it provides the best combina-
tion between feasible core frequency and logic com-
plexity. The core logic mainly consists of multiplexing 
structures which sort the DWs to form complete pack-
ets. Analysis of these multiplexing structures has 
shown that two different factors influence the reachable 
frequencies of such multiplexers. One is the number of 
the input bits of the multiplexer, the other is the number 
of control signals of the multiplexers. Figure 2 shows 
that increasing the multiplexer width reduces the 
achievable core frequency significantly. Doubling the 
width from two to four doublewords reduces the operat-
ing frequency by almost 100 MHz.

Figure 2: Multiplexer width influence
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Increasing the number of control signals of the mul-
tiplexer also reduces the maximum operating fre-
quency. This is shown in Figure 3, where all other 
parameters besides the control signals remain unmodi-
fied.

Figure 3: Multiplexer control signal influence

To handle all different traffic types, a multiplexer 
width of 128 bit which selects between two sets of 
seven DW wide registers is needed. The input and out-
put path is four DWs wide, and if only one DW can be 
forwarded three DWs must be stored. If the multiplexer 
width would be increased to 256 bit the above 
explained factors for frequency decrease would take 
effect. Obviously, the input width would have to be 
doubled and also the number of control inputs would 
have to increase, as the decoding complexity increases 
due to different cases that have to be handled. These 
two combined factors result in a much larger amount 
and deeper hierarchy of multiplexers inside the design. 
Thereby the routing of the control signals to all multi-
plexers becomes so difficult that routing delay and 
fanout get extremely high and reduces the reachable 
frequency. This reduction outweighs the advantage 
gained through doubling the data path, which is a 
reduction of the necessary core frequency by a factor of 
two.

These results show that an internal data width of 64 
bit is not sufficient to reach a clock frequency which is 
feasible in today FPGAs. A multiplexer width of 256 
bit increases the complexity of the logic nearly quadrat-
ically, which is a point where no advantage of the lower 
internal frequencies can be achieved due to the routing 
overhead. Therefore a multiplexer width of 128 bit was 
chosen for the design.

4. Proposed architecture

Due to the addition of a retry mode implementation 
for HT3 devices, as well as the increased internal data 
path width, a new architecture has been created to ful-

fill these needs. The increased data path width, neces-
sary to handle the complexity, also results in an 
increased pipeline depth to reach timing closure.

Due to the nature of the HT protocol, it is necessary 
to support Gen1 operation as well as Gen3 operation. 
As the goal of the architecture is to operate in HT3 
mode, Gen1 operation is only intended for configura-
tion access following cold reset, to transition the con-
troller into Gen3 operation.

The controller can be separated into two functional 
main components. One is handling the reception of 
incoming traffic (RX), while the other is responsible for 
creating and transmitting an outbound transaction 
stream (TX). These two entities largely operate inde-
pendently from one another. Only the exchange of flow 
control credits links both components. An overview is 
given in Figure 4.

Figure 4: Top-level HT3-Core overview

The application interfaces consist of a number of 
traffic buffers, and support fully asynchronous clock-
ing. This enables the application to run at an arbitrary 
frequency, independent of the link frequency. The inter-
faces contain separate command and data packet buff-
ers for each VC. All contents of these buffers start at 
naturally aligned borders, whereby command packets 
are reordered to gain a continuous address field for 
transactions with address extension (64 bit addresses).

The PHY operates with a deserialization factor of 8. 
So for a 16 bit link, this results in 128 bits of CAD and 
16 bits of CTL information each cycle. The core always 
operates on the same amount of data, independent of 
link width. This means that an 8 bit link only requires 
half the internal frequency of a 16 bit link.

The RX side architecture imposes no restrictions of 
command throttling, and permits command insertion. 
The TX architecture is more restrictive. Command 
insertion is not performed, and the number of command 
packets in each octaword is limited to one each cycle. If 
data transactions travel in the same VC, they can be 
streamed back-to-back.

RX and TX paths will be discussed in more detail in 
paragraphs 4.1 and 4.2 respectively. Two additional 
paragraphs highlight some of the more interesting 
implementation details. Paragraph 4.3 details the imple-
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mentation of the user application interface, and para-
graph 4.4 describes the CRC implementation.

4.1 RX path
The RX path reorders and decodes the incoming 

transaction stream, so that it can forward octaword 
aligned command and data packets. Such an alignment 
is rarely given in the data stream itself. It is further 
responsible for handling some low-level signaling (ini-
tialization), and must handle no-operation (NOP) pack-
ets.

All RX functionality can be divided into five major 
functional blocks, shown in Figure 5, and further 
described below. Each block contains multiple pipeline 
stages.

Figure 5: Functional pipeline of the RX path

The Source Sync block operates at the frequency of 
the recovered link clock. Its functionality includes han-
dling the Gen1 initialization and the Gen3 training 
sequences. These sequences are used to communicate 
the start of the first DW between two participants in an
HT chain. Due to the deserialization factor of 8, it 
might further be necessary to align the 8 bit received 
from each lane to reflect the DW alignment. During 
Gen3 operation the individual lanes are deskewed to 
return the same link bit-time, and the data stream is also 
descrambled. The last function this block fulfills is to 
check the periodic CRC DW and remove it from the 
data stream. The data stream is then stored in an asyn-
chronously clocked FIFO to leave the source synchro-
nous clock domain.

The Splitting block separates the incoming transac-
tion stream into info and non-info traffic. Info traffic 
refers to NOPs and credits, whereas non-info traffic 
consists of all other transactions. This is necessary, as 
the following block buffers the non-info transactions. 
Buffering is enabled by the fact that VC traffic is flow 
controlled and therefore limited, whereas info traffic is 
not limited. Info packets are handled in the NOP block 
in parallel to the non-info transaction processing.

The NOP block evaluates received info packets. 
This includes extraction of flow control credits, as well 
as evaluation of other info packet fields, such as LDT-
STOP/retry indication. During Gen3 operation the per-

transaction CRC of the NOP packets is also checked 
and the acknowledge count included in the NOP is used 
to remove the acknowledged transactions from the retry 
logic.

The Sorting and Decoupling stage contains three 
major blocks. The first separates the incoming transac-
tion stream into the basic transaction building blocks, 
which are command packets, data packets, and CRC 
packets. These packets are then stored in independent 
buffers. This buffering allows the remaining controller 
logic to operate at reduced bandwidth in cases where 
the input stream contains more than one command 
packet every octaword. A worst-case maximum of three 
command packets can be located inside of an octaword. 
The logic can compensate the reduced bandwidth if 
data transactions are processed. This is possible as 
commands and data, of up-to 128 bit size each, are pro-
cessed simultaneously.

The Checking and Routing block of the RX path 
implements forwarding of the decoded transactions to 
their corresponding VC buffer within the application 
interface. During Gen3 operation, it calculates the per-
transactions CRC of the forwarded transaction and indi-
cates a successful check to the VC buffers. The VC 
buffers are implemented in such a way that a stored 
transaction only becomes visible to the application after 
it has been validated.

4.2 TX path
The TX path creates a HT compliant transaction 

stream from the command and data packets provided by 
the application interface. If no transactions are available 
in the user buffers, NOP packets are transmitted. The 
retry functionality required for Gen3 operation is not 
implemented with an explicit retry buffer, but reuses 
the TX application interface buffers to reduce complex-
ity and area in terms of SRAM.

TX functionality can be divided into four major 
functional blocks, shown in Figure 6, which are further 
described below. Each TX block contains multiple 
pipeline stages.

Figure 6: Functional pipeline of the TX path

The Stream Creation block merges the command 
and data packets from the application interface buffers 
and creates a rudimentary transaction stream for each 
VC, which is limited to one command packet per octa-
word. These streams do not yet contain the per-transac-
tion CRC or any info packets. The VC transaction-
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streams are multiplexed into a single stream via round 
robin arbitration. The order in which transactions from 
different VCs are transmitted is tracked as well. This 
allows to correctly assign received acknowledges to the 
corresponding VCs. The arbitrated transaction stream is 
stored into a decoupling buffer to ease implementation 
of backward flow control between the complex pipeline 
stages.

The Stream Extension block adapts the transactions 
retrieved from the decoupling buffer to the actual link 
width. During this adjustment, it also appends a per-
transaction CRC placeholder after each transaction, 
independent of the operation mode, and is filling possi-
ble gaps between transactions with NOP placeholders.

The Stream Completion block is filling the place-
holders inserted by the previous block with the required 
information. This means that it is computing the per-
transaction CRC during Gen3 operation and inserting it 
into the CRC placeholder. NOP placeholders are filled 
with valid information, including the release of flow-
control credits. During Gen1 operation all CRC place-
holders are replaced with empty NOP packets, as this 
helps reduce the amount of necessary complexity for 
Gen1 operation in prior pipeline stages.

The Low Level stage implements a multiplexer 
between the assembled transaction stream and special 
low-level signaling schemes. The low-level signaling 
includes Gen1 initialization, Gen3 training, as well as 
sync-flooding. During Gen3 operation the transaction 
stream is also scrambled in this block, before it is for-
warded to the PHY.

4.3 Application interface buffers
During Gen3 operation the core must support the 

retry mode defined by HT. This retry mode secures 
every transaction with a per-transaction CRC, and 
introduces two requirements to the architecture:
a) Received transactions are only forwarded after 

their CRC has been successfully verified
b) Transmitted transactions, barring info traffic, must 

be stored to allow a retransmission

Point a) is solved by the use of a special buffer that 
stores unverified transactions until their CRC has been 
checked. Entries in the buffer only become visible to 
the application after the CRC check was successful. 
This allows the decoding of the transaction to continue 
concurrently with the verification of the transaction’s 
CRC, as even unverified transactions can already be 
added to the buffer and get validated later on. It further-
more, reduces area as transactions do not have to be 
intermittently stored in registers, but can be forwarded 
to the buffers immediately. To keep the interface simple 

and easy to use, while still fulfilling all needs of the 
retry mode, the RX application buffers are implemented 
as FIFO buffers with an additional validated write 
pointer (ValWr). Stored values are written to the write 
pointer (Wr) address, whereas the output is read from 
the read pointer (Rd) address. The operation of this 
FIFO is illustrated in Figure 7. Entries located between 
the ValWr pointer and the write pointer are unvalidated 
(shaded dark) and not visible to the application. Entries 
located between the read and the ValWr pointer are val-
idated entries that the application can access through 
the defined mechanism. If a retry is executed, the write 
pointer will be set to the current ValWr pointer address, 
thereby removing all unvalidated entries.

Figure 7: RX application buffer operation

A solution to issue b) would be the addition of a 
retry buffer that stores all transmitted non-info transac-
tions. Our proposed implementation avoids this addi-
tional retry buffer by reusing the already existing TX 
application buffers. This is possible as HT makes no 
assumption about the order in which unacknowledged 
transactions are replayed in case of an error.

The TX application buffers are implemented as 
FIFO buffers with a second unacknowledged read 
pointer (URd). Whenever a transaction gets acknowl-
edged by the remote device, the URd pointer is incre-
mented and thereby the addressed transaction is 
effectively removed from the retry buffer. Figure 8
illustrates the operation of this FIFO. All transactions 
located between the URd pointer and the read pointer 
resemble the retry buffer, as they are unacknowledged 
(shaded dark). Entries located between the read and the 
write pointer resemble the application interface buffer 
with transactions that still have to be transmitted 
(lightly shaded). During a retry, the read pointer is reset 
to the current value of the URd pointer. As the VC mul-
tiplexing in TX is done behind the application buffers, 
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this means that retried transactions are not sent in the 
same order they were initially sent.

 

Figure 8: TX application buffer operation

To maintain the simple FIFO interface, both addi-
tional pointers can be incremented in single steps via an 
additional input signal to the buffers. Incrementing of 
the additional pointers is done after a successful packet-
CRC check for RX, and the additional TX pointer is 
incremented whenever a new acknowledge counter is 
received from the remote device.

4.4 CRC calculation of non-info transactions
Calculation of the 32 bit per-transaction CRCs used 

for the retry mode during Gen3 operation is dependent 
on the degree of used data parallelism. The CRC calcu-
lation is commonly implemented as linear feedback 
shift registers (LFSR) for the polynomial division. Fig-
ure 9 depicts an example of a CRC calculation imple-
mented as LFSR, where in each cycle one bit of data is 
serially added to the checksum. The calculation shown 
is based on the polynomial x4+x2+x+1.

Figure 9: CRC LFSR example

The operation performed by the LFSR can be 
expressed through the following formulas, where t 
identifies time (cycles).

crc3t+1  =  crc2t 
crc2t+1  =  crc1t + crc3t + datat 
crc1t+1  =  crc0t + crc3t + datat 
crc0t+1  =  crc3t + datat

These formulas describe the addition of one bit of 
data to a checksum. It can also be seen that each new 
result directly depends upon the previous cycle’s result. 
More practical formulas, describing how multiple bits 
are added to a checksum in parallel, can be produced by 
recursively iterating these formulas.

The complexity of the formulas increases with more 
data to be included into the calculation. They can 
always be expressed as XOR combinations of the input 
data and the state of the CRC register from the previous 
cycle. This determines the maximum number of param-
eters one formula can include to be parameter_limit = 
CRC_size + data_size and the worst case number of nec-
essary XOR operations is xor_limit = parameter_limit - 1. 
So each formula grows linear with both CRC and data 
size. All formulas together grow quadratically with the 
CRC size and linear with the data size, because there 
are as many formulas as there are bits in the CRC.

In HT, the minimum transaction unit (mTU) is one 
DW of CAD plus 4 bit of CTL, which are all covered 
by the per-transaction CRC. The maximum size of an
HT transaction that is supported by the proposed archi-
tecture is 19 mTUs, excluding the per-transaction CRC. 
Such a transaction contains a 3 mTU command packet 
with address extension plus a 16 mTU data packet. Any 
received HT transaction can have an arbitrary size rang-
ing from 1 to 19 mTUs. The CRC calculation must be 
capable of calculating the per-transaction CRC for all 
possible transaction sizes. For the given architecture 
operating on four mTUs per cycle, this means that in 
each clock cycle 0 to 4 mTUs may be added to the cal-
culation of one per-transaction CRC. This results in 
four sets of different CRC formulas, for adding 1 to 4 
mTUs that all operate on the same 32 bit CRC register.

A formula f used to calculate one bit of a CRC for 
one parallel data input combination can be divided into 
a recursive function g and a non-recursive function h.

crct+1  =  f(crct, data)  =  g(crct) + h(data)

This reduces the impact of the cycle-to-cycle depen-
dency on the CRC calculation and relaxes timing, as 
functions g and h can be implemented in different pipe-
line stages. This is especially attractive for large 
amounts of data, as function h can be further pipelined. 
Function g however contains the cycle-to-cycle depen-
dency of the CRC calculation and cannot directly be 
pipelined further, which also means that it includes the 
critical timing path.

This approach was used to implement the CRC cal-
culation of non-info transactions in the proposed archi-
tecture. As the architecture must handle 1 to 4 mTUs, 
four different g and h formulas exist for each CRC bit. 
These are multiplexed in the last pipeline stage which 
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then contains all recursive logic. Figure 10 gives an 
overview of the CRC calculation pipelining. 

Figure 10: CRC pipelining overview

5. Evaluation

The bandwidth results shown in this paragraph were 
gathered from simulation of the synthesizable HDL 
description of the core. An implementation of the pro-
posed architecture, using an 8 bit link operating at 2.4 
Gbit/s. The bandwidth was measured through the trans-
mission of 2,000 write transactions which introduces 3 
DWs of overhead to the data payload. One DW per-
transaction CRC and two DWs command packet con-
taining a 40 bit address. The simulation have been 
repeated for all sizes of data packets to show the overall 
performance of the core.

Figures 11 and 12 show the measurement results of 
the RX and TX path. Both paths were simulated sepa-
rately to avoid performance influences. In these figures 
Transaction Bandwidth refers to the bandwidth being 
used for non-info transactions, including command 
packets, data packets and per-transaction CRCs, calcu-
lated as (((DATA DW + CMD DW + CRC DW) * 2000 * 4 * 
(1 / time)) / 10^9) GByte/s. Transaction Bandwidth with-
out CRC does not count the CRCs, calculated as 
(((DATA DW + CMD DW) * 2000 *4 * (1 / time)) / 10^9) 
GByte/s. Lastly Payload Bandwidth shows the effective 
bandwidth that is used for data forwarding, excluding 
command packets and CRCs, calculated as ((DATA DW * 
2000 * 4 * (1 / time)) / 10^9) GByte/s.

 For sufficient payload sizes the architecture reaches 
a total bandwidth of 2.38 GByte/s. The periodic CRC 
slot accounts for a bandwidth loss of about 0.775% or 
0,0186 GByte/s on an 8 bit link as it is recommended 
by HT so every 512 bit times a 4 bit CRC has to be 
transmitted. If this bandwidth loss is added to the
Transaction Bandwidth it results in a total utilized 
bandwidth of 2.3986 GByte/s which is extremely close 

to the theoretical maximum of 2.4 GByte/s for an 8 bit 
link.

Due to the increased number of pipeline stages the 
bandwidth drops with lower data payloads. This hap-
pens because of credit starvation. Then all available 
credits can be in use. But if high bandwidth is required, 
sending smaller data payloads is counterproductive 
because the further command overhead will decrease 
the usable bandwidth additionally.

Figure 11: RX bandwidth for data transfers

Figure 12: TX bandwidth for data transfers

Due to the increased datapath of the core and the 
fact that this increase also adds complexity, the resource 
usage of the HT3-Core is higher than it was for the 
HT2-Core. Table 2 shows the total and percentage 
resource usage of the core on a Xilinx Virtex-5 LX110T 
FPGA device.
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Table 2: Resource usage on LX110T

Resource Used Percentage

Slice Registers 18,905 27%

Slice LUTs 37,094 53%

Occupied Slices 11,098 64%

Block RAMs 78 52%
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6. Conclusion and outlook

We have proposed a novel architecture of an HT3 
controller for FPGAs. To the best of our knowledge this 
is the first implementation for such reconfigurable plat-
forms. We have performed a complexity analysis and 
shown the issues of modern high bandwidth I/O tech-
nologies like HT. Solutions for these problems and a 
very efficient implementation of the core is provided. 
The benchmarks show the excellent performance of the 
architecture with maximum achievable bandwidth of 
2.3 GByte/s, which is close to the theoretical optimum.

Our future work will focus on the bringup of the 
design in real world systems using various FPGA tech-
nologies. The architecture will also be further improved 
as more real world data can be gathered. A 16 bit link 
version, currently in development, promises to double 
the achievable bandwidth to 4.6 GByte/s. There are also 
plans to push the 8 bit link version beyond the current 
lane rate of 2.4 Gbit/s.
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