

Proceedings of the
First International Workshop on HyperTransport Research and Applications (WHTRA2009)
Feb. 12th, 2009, Mannheim, Germany
HyperTransport 3 Core: A Next Generation Host Interface with Extremely
High Bandwidth

 Benjamin Kalisch, Alexander Giese, Heiner Litz, Ulrich Brüning
University of Heidelberg

Computer Architecture Group
{benjamin.kalisch, alexander.giese, heiner.litz, ulrich.bruening}@ziti.uni-heidelberg.de

Abstract This fact was first realized by AMD which replaced
As the amount of computing power keeps increas-
ing, host interface bandwidth to memory and input-out-
put devices (I/O) becomes a more and more limiting
factor. High speed serial host interface protocols like
PCI-Express and HyperTransport (HT) have been
introduced to satisfy the applications’ ever increasing
demands for more bandwidth. Recent applications in
the field of General Purpose Graphic Processing Units
(GPGPUs) and Field Programmable Gate Array
(FPGA) based coprocessors are an example. In this
Paper we present a novel implementation of an FPGA
based HyperTransport 3 (HT3) host interface. To the
best of our knowledge it represents the very first imple-
mentation of this type. The design offers an extremely
high unidirectional bandwidth of up to 2.3 GByte/s. It
can be employed in arbitrary FPGA applications and
then offers direct access to an AMD Opteron processor
via the HT interface. To allow the development of an
optimal design, we perform a complexity and require-
ments analysis. The result is our proposed solution
which has been implemented in synthesizable Hard-
ware Description Language (HDL) code. Microbench-
marks are presented to show the feasibility and high
performance of the design.

1. Introduction

Following Moore’s Law, computing power has dou-
bled every 18 months over the last years. While scaling
the operating frequency of high end processors has
come to an end, exponential gains in computing power
are still anticipated through the use of parallel process-
ing. In either case, providing the processor with enough
duty will require the increase of I/O bandwidth signifi-
cantly. In fact, the processor - I/O bandwidth perfor-
mance gap has increased in the last years [1] making it
even more crucial to improve I/O performance.

the outdated front size bus (FSB), that is used to inter-
connect the CPU, memory and I/O devices, with a
novel packet based point-to-point interconnect called
HyperTransport (HT) in their Opteron processors. HT
offers high bandwidth, extremely low latency [2] and
can support cache coherency which makes it ideally
suited for communication between CPUs, memory and
IO. The high performance of the HT interconnect is the
main reason for the much better scalability of Opteron
based symmetric multiprocessor (SMP) with non uni-
fied memory architecture (NUMA) machines in com-
parison to Intel Xeon based SMPs [3].

HT supports variable link widths and up to 2 Gbit/s
on each lane in protocol version 2.x, also referred to as
Gen1. This leads to a maximum unidirectional band-
width of 4 GByte/s for a 16 bit link. Apart from the
Opteron CPUs, HT 2.x is successfully implemented by
peripheral hardware devices like the Pathscale network
interface [4], Cray’s Seastar [5] and the Field Program-
mable Gate Array (FPGA) based rapid prototyping
board [6]. HT devices can directly communicate with
the processors without any intermediate bridges using
the HyperTransport Extension (HTX) connector [7].
HTX is a PCI-Express slot like standard defined by the
HyperTransport Consortium (HTC).

Recently, the HTC introduced HT 3.1, also referred
to as Gen3, which increases the supported speeds to 6.4
Gbit/s on a lane equalling a theoretical unidirectional
peak bandwidth of 12.8 GByte/s for a 16 bit link. The
first integrated circuits (ICs) that will support HT 3.x
are the Shanghai Opteron processors, however, no non
Opteron implementations are currently available. The
reason for this is, that currently no HTX3 capable main-
boards are available and the lack of an open source
HT3-Core like the HT2-Core [8]. To solve the latter
issue, in this paper we present the very first high perfor-
mance HT3-Core for FPGA implementations. The core
provides very high bandwidth even for FPGA imple-
- 11 -

mentations, and therefore presents the ideal building
block for high performance next generation I/O
devices. Our solution promises to deliver a bidirec-
tional bandwidth of up to 9.2 GByte/s for a 16 bit link.
To the best of our knowledge this makes it the fastest
host interface implementation currently available for
FPGAs.

The rest of the paper is organized as follows. Sec-
tion 2 will provide background information and define
the requirements for an FPGA based HT3 core. Section
3 will present a complexity analysis and describe the
challenges of such an implementation. Our proposed
architecture is presented in Section 4. It is followed by
an evaluation in Section 5 and we draw a conclusion in
Section 6.

2. Background

To define the requirements of an HT3 core a short
introduction to the HT protocol will be given. The HT
specification defines the entire protocol stack ranging
from the physical layer up to the transaction level layer.
The physical layer defines the electrical parameters
which have to be adhered by HT device implementa-
tions and include jitter, slew rate and common mode
characteristics. Physical layer compliance is already
provided by the physical layer device (PHY) and there-
fore out of scope of this paper. The PHY also takes care
of serialization/deserialization (SERDES) of the high-
speed serial data stream. For signalling HT defines 2, 4,
8, 16 and 32 bit command-address-data (CAD) busses
which are accompanied by a set of control (CTL) lanes
and clock (CLK) lanes. Most common are 8 or 16 bit
configurations, whereby multiples of 8 CAD lanes, one
CTL and one CLK lane are considered as a link. A link
connects exactly two endpoints whereas switches have
to be employed to realize topologies of multiple end-
points.

The transaction layer defines the packets which are
transmitted over HT links. A transaction consists of a
command packet and an optional data packet carrying
1-16 doublewords (32 bit) which allows to send maxi-
mum sized transactions of 64 Byte. This size is equiva-
lent to a cacheline on current x86 systems. In Gen3
mode each transaction is also appended with a CRC.
The specification defines a large number of commands
with the main purpose of data movement. Therefore,
write, read and response operations are defined. To
avoid deadlocks, which may be caused by cyclic depen-
dencies from split phase transactions, the different com-
mands are assigned to different virtual channels (VC).
This allows reordering of the data stream and breaking
up cyclic dependencies. Furthermore, the commands

implement low level functionality like flow control and
fault tolerance. The required functionality which has to
be provided by an HT3-Core implementation is there-
fore as follows:
• Packetization: Extracts Transactions from the data

stream and sorts them into their according virtual
channel queue and vice versa.

• Flow control: HT defines a credit based flow con-
trol which has to be supported by the core.

• Fault tolerance: HT3 defines an advanced CRC
mechanisms for increased reliability

• Scrambling: To support clock data recovery in
Gen3 mode, the data stream is scrambled.

• Low level initialization methods
As the HT2-Core presented in [8] implements the

same functionality according to the HT2 specification
and HT3 is downwards compatible, it is reasonable to
analyze, whether a modified HT2-Core would be a suf-
ficient solution. Therefore, it is useful to examine the
novel features which have to be supported by Gen3
devices. The most important modifications are the
increased frequency support of up to 3.2 GHz and the
enhanced fault tolerance mechanic. Additionally to the
periodic CRC, which can be used to detect, but not to
correct errors, HT3 introduces a retry mechanism with
per-transaction CRC. Every transaction sent out by the
transmitter is appended with a CRC and stored into a
retry buffer. On reception the receiver calculates the
CRC again and in the case of a successful match sends
an acknowledge back. In the case of a mismatch a nack
packet is generated which leads to a retransmission of
the original transaction. Implementation of the retry
mechanism requires heavy modification of the HT2-
Core. Even more significant, however, is the increased
bandwidth that has to be supported internally. The HT2-
Core supports an internal data width of 64 bit which
requires an internal core clock frequency of 600-1600
MHz for a 16 bit link at Gen3 frequencies, and a fre-
quency of 300-800 MHz for a 8 bit link.

Last but not least is the introduction of a new data
sampling scheme for Gen3 devices. Instead of the
source synchronous mechanism sampling incoming
data with the link clock, HT3 devices use a clock data
recovery (CDR) technique. The CDR circuit recovers a
dedicated clock for each lane and uses it to sample the
data. As static data patterns occurring in IDLE phases
prohibit reliable clock recovery, a data scrambling
mechanism is used in Gen3 mode.

The required change to a 128 bit internal interface
and the additional modifications regarding retry mode
demand for a complete redesign of the HT2-Core.
- 12 -

3. Complexity analysis

As mentioned before HT3 is a packet-based point to
point interconnect, which operates on a minimum
packet size of 32 bit, one doubleword (DW). To support
the provided bandwidth of HT3 an analysis of the data
stream is required.

The data stream of HT3 can be distinguished into
three different DW types which are command (CMD),
data (DATA), and a cyclic redundancy check (CRC)
checksum. To keep the decoding of the data stream as
simple as possible, an internal data width of 32 bit
would be ideal, so every clock cycle one of only three
different types of DWs must be interpreted. To support
higher bandwidth on the HT link, the data stream has to
be parallelized which leads to wider internal data buses,
as the maximum frequency is the limiting factor in
FPGAs. Due to the fact that the HT3 protocol does not
allow all combinations of different DW types, the com-
plexity does not increase quadratically, but as can be
seen in Figure 1, the increase in complexity is signifi-
cant. Multiple consecutive command DWs may belong
to two separate command packets without a separating
CRC due to command packet insertion. The number of
combinations for a 256 bit wide data path is not
depicted due to the large number of possible combina-
tions.

Figure 1: Complexity growth

HT3 has a minimum link frequency requirement of
1.2 GHz. Depending on link width and parallelization
degree this results in different possible core frequencies
shown in Table 1.

The target device is a state of the art Virtex 5 FPGA
which can be clocked at a theoretical maximum fre-
quency of 550 MHz for the core logic. For a design that
contains complex logic as the HT3-Core a core fre-
quency of 300 MHz is difficult to achieve but possible.
This reduces the possible combinations of link width
and parallelization degree that can be realized.

In the HT3-Core design an internal data width of
128 bit is implemented, as it provides the best combina-
tion between feasible core frequency and logic com-
plexity. The core logic mainly consists of multiplexing
structures which sort the DWs to form complete pack-
ets. Analysis of these multiplexing structures has
shown that two different factors influence the reachable
frequencies of such multiplexers. One is the number of
the input bits of the multiplexer, the other is the number
of control signals of the multiplexers. Figure 2 shows
that increasing the multiplexer width reduces the
achievable core frequency significantly. Doubling the
width from two to four doublewords reduces the operat-
ing frequency by almost 100 MHz.

Figure 2: Multiplexer width influence

DW0
DW1

DW0

DW0

DW1
DW2

DW3

DW0

DW1
DW2

DW3

DW0

DW1
DW2

DW3

DW0

DW1
DW2

DW3

Packet Combinations at 32 bit data width

Packet Combinations at 64 bit data width

Packet Combinations at 128 bit data width

= CMD = DATA = CRC

Table 1: Internal clock frequencies

At 1.2GHz link
frequency

External Link Width

8bit 16bit

32bit 600MHz 1200MHz

Internal 64bit 300MHz 600MHz

Link Width 128bit 150MHz 300MHz

256bit 75MHz 150MHz

300

350

400

450

500

550

1 2 3 4

Width of multiplexer DW

M
H

z

Frequency
- 13 -

Increasing the number of control signals of the mul-
tiplexer also reduces the maximum operating fre-
quency. This is shown in Figure 3, where all other
parameters besides the control signals remain unmodi-
fied.

Figure 3: Multiplexer control signal influence

To handle all different traffic types, a multiplexer
width of 128 bit which selects between two sets of
seven DW wide registers is needed. The input and out-
put path is four DWs wide, and if only one DW can be
forwarded three DWs must be stored. If the multiplexer
width would be increased to 256 bit the above
explained factors for frequency decrease would take
effect. Obviously, the input width would have to be
doubled and also the number of control inputs would
have to increase, as the decoding complexity increases
due to different cases that have to be handled. These
two combined factors result in a much larger amount
and deeper hierarchy of multiplexers inside the design.
Thereby the routing of the control signals to all multi-
plexers becomes so difficult that routing delay and
fanout get extremely high and reduces the reachable
frequency. This reduction outweighs the advantage
gained through doubling the data path, which is a
reduction of the necessary core frequency by a factor of
two.

These results show that an internal data width of 64
bit is not sufficient to reach a clock frequency which is
feasible in today FPGAs. A multiplexer width of 256
bit increases the complexity of the logic nearly quadrat-
ically, which is a point where no advantage of the lower
internal frequencies can be achieved due to the routing
overhead. Therefore a multiplexer width of 128 bit was
chosen for the design.

4. Proposed architecture

Due to the addition of a retry mode implementation
for HT3 devices, as well as the increased internal data
path width, a new architecture has been created to ful-

fill these needs. The increased data path width, neces-
sary to handle the complexity, also results in an
increased pipeline depth to reach timing closure.

Due to the nature of the HT protocol, it is necessary
to support Gen1 operation as well as Gen3 operation.
As the goal of the architecture is to operate in HT3
mode, Gen1 operation is only intended for configura-
tion access following cold reset, to transition the con-
troller into Gen3 operation.

The controller can be separated into two functional
main components. One is handling the reception of
incoming traffic (RX), while the other is responsible for
creating and transmitting an outbound transaction
stream (TX). These two entities largely operate inde-
pendently from one another. Only the exchange of flow
control credits links both components. An overview is
given in Figure 4.

Figure 4: Top-level HT3-Core overview

The application interfaces consist of a number of
traffic buffers, and support fully asynchronous clock-
ing. This enables the application to run at an arbitrary
frequency, independent of the link frequency. The inter-
faces contain separate command and data packet buff-
ers for each VC. All contents of these buffers start at
naturally aligned borders, whereby command packets
are reordered to gain a continuous address field for
transactions with address extension (64 bit addresses).

The PHY operates with a deserialization factor of 8.
So for a 16 bit link, this results in 128 bits of CAD and
16 bits of CTL information each cycle. The core always
operates on the same amount of data, independent of
link width. This means that an 8 bit link only requires
half the internal frequency of a 16 bit link.

The RX side architecture imposes no restrictions of
command throttling, and permits command insertion.
The TX architecture is more restrictive. Command
insertion is not performed, and the number of command
packets in each octaword is limited to one each cycle. If
data transactions travel in the same VC, they can be
streamed back-to-back.

RX and TX paths will be discussed in more detail in
paragraphs 4.1 and 4.2 respectively. Two additional
paragraphs highlight some of the more interesting
implementation details. Paragraph 4.3 details the imple-

150

180

210

240

270

300

330

1 2 3 4

Multiplexer control signals

M
H

z

Frequency

TX Logic

Application
Interface

Application
Interface

PHY

RX

TX

credit

Source
Sync RX Logic
- 14 -

mentation of the user application interface, and para-
graph 4.4 describes the CRC implementation.

4.1 RX path
The RX path reorders and decodes the incoming

transaction stream, so that it can forward octaword
aligned command and data packets. Such an alignment
is rarely given in the data stream itself. It is further
responsible for handling some low-level signaling (ini-
tialization), and must handle no-operation (NOP) pack-
ets.

All RX functionality can be divided into five major
functional blocks, shown in Figure 5, and further
described below. Each block contains multiple pipeline
stages.

Figure 5: Functional pipeline of the RX path

The Source Sync block operates at the frequency of
the recovered link clock. Its functionality includes han-
dling the Gen1 initialization and the Gen3 training
sequences. These sequences are used to communicate
the start of the first DW between two participants in an
HT chain. Due to the deserialization factor of 8, it
might further be necessary to align the 8 bit received
from each lane to reflect the DW alignment. During
Gen3 operation the individual lanes are deskewed to
return the same link bit-time, and the data stream is also
descrambled. The last function this block fulfills is to
check the periodic CRC DW and remove it from the
data stream. The data stream is then stored in an asyn-
chronously clocked FIFO to leave the source synchro-
nous clock domain.

The Splitting block separates the incoming transac-
tion stream into info and non-info traffic. Info traffic
refers to NOPs and credits, whereas non-info traffic
consists of all other transactions. This is necessary, as
the following block buffers the non-info transactions.
Buffering is enabled by the fact that VC traffic is flow
controlled and therefore limited, whereas info traffic is
not limited. Info packets are handled in the NOP block
in parallel to the non-info transaction processing.

The NOP block evaluates received info packets.
This includes extraction of flow control credits, as well
as evaluation of other info packet fields, such as LDT-
STOP/retry indication. During Gen3 operation the per-

transaction CRC of the NOP packets is also checked
and the acknowledge count included in the NOP is used
to remove the acknowledged transactions from the retry
logic.

The Sorting and Decoupling stage contains three
major blocks. The first separates the incoming transac-
tion stream into the basic transaction building blocks,
which are command packets, data packets, and CRC
packets. These packets are then stored in independent
buffers. This buffering allows the remaining controller
logic to operate at reduced bandwidth in cases where
the input stream contains more than one command
packet every octaword. A worst-case maximum of three
command packets can be located inside of an octaword.
The logic can compensate the reduced bandwidth if
data transactions are processed. This is possible as
commands and data, of up-to 128 bit size each, are pro-
cessed simultaneously.

The Checking and Routing block of the RX path
implements forwarding of the decoded transactions to
their corresponding VC buffer within the application
interface. During Gen3 operation, it calculates the per-
transactions CRC of the forwarded transaction and indi-
cates a successful check to the VC buffers. The VC
buffers are implemented in such a way that a stored
transaction only becomes visible to the application after
it has been validated.

4.2 TX path
The TX path creates a HT compliant transaction

stream from the command and data packets provided by
the application interface. If no transactions are available
in the user buffers, NOP packets are transmitted. The
retry functionality required for Gen3 operation is not
implemented with an explicit retry buffer, but reuses
the TX application interface buffers to reduce complex-
ity and area in terms of SRAM.

TX functionality can be divided into four major
functional blocks, shown in Figure 6, which are further
described below. Each TX block contains multiple
pipeline stages.

Figure 6: Functional pipeline of the TX path

The Stream Creation block merges the command
and data packets from the application interface buffers
and creates a rudimentary transaction stream for each
VC, which is limited to one command packet per octa-
word. These streams do not yet contain the per-transac-
tion CRC or any info packets. The VC transaction-

Source Splitting
Decoupling Routing

Checking

Sync

&
Sorting

NOP

&

non-info traffic only

credits

Stream
Creation

Stream
Extension

Stream
Completion

Low
Level
- 15 -

streams are multiplexed into a single stream via round
robin arbitration. The order in which transactions from
different VCs are transmitted is tracked as well. This
allows to correctly assign received acknowledges to the
corresponding VCs. The arbitrated transaction stream is
stored into a decoupling buffer to ease implementation
of backward flow control between the complex pipeline
stages.

The Stream Extension block adapts the transactions
retrieved from the decoupling buffer to the actual link
width. During this adjustment, it also appends a per-
transaction CRC placeholder after each transaction,
independent of the operation mode, and is filling possi-
ble gaps between transactions with NOP placeholders.

The Stream Completion block is filling the place-
holders inserted by the previous block with the required
information. This means that it is computing the per-
transaction CRC during Gen3 operation and inserting it
into the CRC placeholder. NOP placeholders are filled
with valid information, including the release of flow-
control credits. During Gen1 operation all CRC place-
holders are replaced with empty NOP packets, as this
helps reduce the amount of necessary complexity for
Gen1 operation in prior pipeline stages.

The Low Level stage implements a multiplexer
between the assembled transaction stream and special
low-level signaling schemes. The low-level signaling
includes Gen1 initialization, Gen3 training, as well as
sync-flooding. During Gen3 operation the transaction
stream is also scrambled in this block, before it is for-
warded to the PHY.

4.3 Application interface buffers
During Gen3 operation the core must support the

retry mode defined by HT. This retry mode secures
every transaction with a per-transaction CRC, and
introduces two requirements to the architecture:
a) Received transactions are only forwarded after

their CRC has been successfully verified
b) Transmitted transactions, barring info traffic, must

be stored to allow a retransmission

Point a) is solved by the use of a special buffer that
stores unverified transactions until their CRC has been
checked. Entries in the buffer only become visible to
the application after the CRC check was successful.
This allows the decoding of the transaction to continue
concurrently with the verification of the transaction’s
CRC, as even unverified transactions can already be
added to the buffer and get validated later on. It further-
more, reduces area as transactions do not have to be
intermittently stored in registers, but can be forwarded
to the buffers immediately. To keep the interface simple

and easy to use, while still fulfilling all needs of the
retry mode, the RX application buffers are implemented
as FIFO buffers with an additional validated write
pointer (ValWr). Stored values are written to the write
pointer (Wr) address, whereas the output is read from
the read pointer (Rd) address. The operation of this
FIFO is illustrated in Figure 7. Entries located between
the ValWr pointer and the write pointer are unvalidated
(shaded dark) and not visible to the application. Entries
located between the read and the ValWr pointer are val-
idated entries that the application can access through
the defined mechanism. If a retry is executed, the write
pointer will be set to the current ValWr pointer address,
thereby removing all unvalidated entries.

Figure 7: RX application buffer operation

A solution to issue b) would be the addition of a
retry buffer that stores all transmitted non-info transac-
tions. Our proposed implementation avoids this addi-
tional retry buffer by reusing the already existing TX
application buffers. This is possible as HT makes no
assumption about the order in which unacknowledged
transactions are replayed in case of an error.

The TX application buffers are implemented as
FIFO buffers with a second unacknowledged read
pointer (URd). Whenever a transaction gets acknowl-
edged by the remote device, the URd pointer is incre-
mented and thereby the addressed transaction is
effectively removed from the retry buffer. Figure 8
illustrates the operation of this FIFO. All transactions
located between the URd pointer and the read pointer
resemble the retry buffer, as they are unacknowledged
(shaded dark). Entries located between the read and the
write pointer resemble the application interface buffer
with transactions that still have to be transmitted
(lightly shaded). During a retry, the read pointer is reset
to the current value of the URd pointer. As the VC mul-
tiplexing in TX is done behind the application buffers,

Validated entries removed

W
r

R
d Va
lW

r

Unvalidated entries added (empty)

Entries validated (no longer empty)

R
d

Va
lW

r

W
r

R
d

Va
lW

r

W
r

Fallback removes unvalidated entries

R
d

Va
lW

r
W

r

- 16 -

this means that retried transactions are not sent in the
same order they were initially sent.

Figure 8: TX application buffer operation

To maintain the simple FIFO interface, both addi-
tional pointers can be incremented in single steps via an
additional input signal to the buffers. Incrementing of
the additional pointers is done after a successful packet-
CRC check for RX, and the additional TX pointer is
incremented whenever a new acknowledge counter is
received from the remote device.

4.4 CRC calculation of non-info transactions
Calculation of the 32 bit per-transaction CRCs used

for the retry mode during Gen3 operation is dependent
on the degree of used data parallelism. The CRC calcu-
lation is commonly implemented as linear feedback
shift registers (LFSR) for the polynomial division. Fig-
ure 9 depicts an example of a CRC calculation imple-
mented as LFSR, where in each cycle one bit of data is
serially added to the checksum. The calculation shown
is based on the polynomial x4+x2+x+1.

Figure 9: CRC LFSR example

The operation performed by the LFSR can be
expressed through the following formulas, where t
identifies time (cycles).

crc3t+1 = crc2t
crc2t+1 = crc1t + crc3t + datat
crc1t+1 = crc0t + crc3t + datat
crc0t+1 = crc3t + datat

These formulas describe the addition of one bit of
data to a checksum. It can also be seen that each new
result directly depends upon the previous cycle’s result.
More practical formulas, describing how multiple bits
are added to a checksum in parallel, can be produced by
recursively iterating these formulas.

The complexity of the formulas increases with more
data to be included into the calculation. They can
always be expressed as XOR combinations of the input
data and the state of the CRC register from the previous
cycle. This determines the maximum number of param-
eters one formula can include to be parameter_limit =
CRC_size + data_size and the worst case number of nec-
essary XOR operations is xor_limit = parameter_limit - 1.
So each formula grows linear with both CRC and data
size. All formulas together grow quadratically with the
CRC size and linear with the data size, because there
are as many formulas as there are bits in the CRC.

In HT, the minimum transaction unit (mTU) is one
DW of CAD plus 4 bit of CTL, which are all covered
by the per-transaction CRC. The maximum size of an
HT transaction that is supported by the proposed archi-
tecture is 19 mTUs, excluding the per-transaction CRC.
Such a transaction contains a 3 mTU command packet
with address extension plus a 16 mTU data packet. Any
received HT transaction can have an arbitrary size rang-
ing from 1 to 19 mTUs. The CRC calculation must be
capable of calculating the per-transaction CRC for all
possible transaction sizes. For the given architecture
operating on four mTUs per cycle, this means that in
each clock cycle 0 to 4 mTUs may be added to the cal-
culation of one per-transaction CRC. This results in
four sets of different CRC formulas, for adding 1 to 4
mTUs that all operate on the same 32 bit CRC register.

A formula f used to calculate one bit of a CRC for
one parallel data input combination can be divided into
a recursive function g and a non-recursive function h.

crct+1 = f(crct, data) = g(crct) + h(data)

This reduces the impact of the cycle-to-cycle depen-
dency on the CRC calculation and relaxes timing, as
functions g and h can be implemented in different pipe-
line stages. This is especially attractive for large
amounts of data, as function h can be further pipelined.
Function g however contains the cycle-to-cycle depen-
dency of the CRC calculation and cannot directly be
pipelined further, which also means that it includes the
critical timing path.

This approach was used to implement the CRC cal-
culation of non-info transactions in the proposed archi-
tecture. As the architecture must handle 1 to 4 mTUs,
four different g and h formulas exist for each CRC bit.
These are multiplexed in the last pipeline stage which

Entries speculatively removed

Entries added

Speculatively removed entries have been validated

Fallback returns unvalidated entries

W
r

U
R

d
R

d
U

R
d

R
d

W
r

U
R

d

R
d W
r

U
R

d
R

d W
r

crc0crc1crc2crc3

data

+++
- 17 -

then contains all recursive logic. Figure 10 gives an
overview of the CRC calculation pipelining.

Figure 10: CRC pipelining overview

5. Evaluation

The bandwidth results shown in this paragraph were
gathered from simulation of the synthesizable HDL
description of the core. An implementation of the pro-
posed architecture, using an 8 bit link operating at 2.4
Gbit/s. The bandwidth was measured through the trans-
mission of 2,000 write transactions which introduces 3
DWs of overhead to the data payload. One DW per-
transaction CRC and two DWs command packet con-
taining a 40 bit address. The simulation have been
repeated for all sizes of data packets to show the overall
performance of the core.

Figures 11 and 12 show the measurement results of
the RX and TX path. Both paths were simulated sepa-
rately to avoid performance influences. In these figures
Transaction Bandwidth refers to the bandwidth being
used for non-info transactions, including command
packets, data packets and per-transaction CRCs, calcu-
lated as (((DATA DW + CMD DW + CRC DW) * 2000 * 4 *
(1 / time)) / 10^9) GByte/s. Transaction Bandwidth with-
out CRC does not count the CRCs, calculated as
(((DATA DW + CMD DW) * 2000 *4 * (1 / time)) / 10^9)
GByte/s. Lastly Payload Bandwidth shows the effective
bandwidth that is used for data forwarding, excluding
command packets and CRCs, calculated as ((DATA DW *
2000 * 4 * (1 / time)) / 10^9) GByte/s.

 For sufficient payload sizes the architecture reaches
a total bandwidth of 2.38 GByte/s. The periodic CRC
slot accounts for a bandwidth loss of about 0.775% or
0,0186 GByte/s on an 8 bit link as it is recommended
by HT so every 512 bit times a 4 bit CRC has to be
transmitted. If this bandwidth loss is added to the
Transaction Bandwidth it results in a total utilized
bandwidth of 2.3986 GByte/s which is extremely close

to the theoretical maximum of 2.4 GByte/s for an 8 bit
link.

Due to the increased number of pipeline stages the
bandwidth drops with lower data payloads. This hap-
pens because of credit starvation. Then all available
credits can be in use. But if high bandwidth is required,
sending smaller data payloads is counterproductive
because the further command overhead will decrease
the usable bandwidth additionally.

Figure 11: RX bandwidth for data transfers

Figure 12: TX bandwidth for data transfers

Due to the increased datapath of the core and the
fact that this increase also adds complexity, the resource
usage of the HT3-Core is higher than it was for the
HT2-Core. Table 2 shows the total and percentage
resource usage of the core on a Xilinx Virtex-5 LX110T
FPGA device.

1 mTU

2 mTU

3 mTU

4 mTU

data
XOR

4 mTU

3 mTU

2 mTU

1 mTU

data
XOR

data
XOR

data
XOR

crc
XOR

crc
XOR

crc
XOR

crc
XOR

1-4 mTU
data
input

CRC

Table 2: Resource usage on LX110T

Resource Used Percentage

Slice Registers 18,905 27%

Slice LUTs 37,094 53%

Occupied Slices 11,098 64%

Block RAMs 78 52%

0.0

0.4

0.8

1.2

1.6

2.0

2.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Payload size / doublewords

Ba
nd

w
id

th
 /

 G
B

yt
e/

s

Transaction Bandwidth
Transaction Bandwidth without CRC
Payload Bandwidth

0.0

0.4

0.8

1.2

1.6

2.0

2.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Payload size / doublewords

B
an

dw
id

th
 /

 G
B

yt
e/

s

Transaction Bandwidth
Transaction Bandwidth without CRC
Payload Bandwidth
- 18 -

6. Conclusion and outlook

We have proposed a novel architecture of an HT3
controller for FPGAs. To the best of our knowledge this
is the first implementation for such reconfigurable plat-
forms. We have performed a complexity analysis and
shown the issues of modern high bandwidth I/O tech-
nologies like HT. Solutions for these problems and a
very efficient implementation of the core is provided.
The benchmarks show the excellent performance of the
architecture with maximum achievable bandwidth of
2.3 GByte/s, which is close to the theoretical optimum.

Our future work will focus on the bringup of the
design in real world systems using various FPGA tech-
nologies. The architecture will also be further improved
as more real world data can be gathered. A 16 bit link
version, currently in development, promises to double
the achievable bandwidth to 4.6 GByte/s. There are also
plans to push the 8 bit link version beyond the current
lane rate of 2.4 Gbit/s.

7. References

[1] Mahapatra, N. R. and Venkatrao, B.: The processor-
memory bottleneck: problems and solutions. Proc.
Crossroads 5, 3, 1999

[2] Bees, D. and Holden B. 2004. HyperTransport re-
duces delays in some applications.

[3] C. Guiang, K. Milfeld, A. Purkayastha, J. Boisseau.
"Memory Performance on Dual-Processor Nodes:

Comparison of Intel Xeon and AMD Opteron Mem-
ory Subsystem Architectures," Proceedings of the
ClusterWorld Conference and Expo, San Jose, CA,
June 24-26, 2003.

[4] R. Brightwell, D. Doerfler, K.D. Underwood, "A
preliminary analysis of the InfiniPath and XD1 net-
work interfaces," ipdps,pp.311, Proceedings 20th
IEEE International Parallel & Distributed Process-
ing Symposium, 2006

[5] Ron Brightwell, Kevin T. Pedretti, Keith D. Under-
wood, Trammell Hudson, "SeaStar Interconnect:
Balanced Bandwidth for Scalable Performance,"
IEEE Micro, vol. 26, no. 3, pp. 41-57, May/Jun,
2006

[6] H. Fröning, M. Nüssle, D. Slogsnat, H. Litz, U.
Brüning: The HTX-Board: A Rapid Prototyping
Station. Proc. of 3rd annual FPGAworld Confer-
ence, Nov. 16, 2006, Stockholm, Sweden.

[7] HyperTransport Consortium: The Future of High-
Performance Computing: Direct Low Latency
CPU-to-Subsystem Interconnect. HTC whitepaper,
2008

[8] David Slogsnat, Alexander Giese, Mondrian
Nüssle, Ulrich Brüning: An Open-Source Hyper-
Transport Core. ACM Transactions on Reconfig-
urable Technology and Systems (TRETS), Vol. 1,
Issue 3, p. 1-21, Sept. 2008.
- 19 -

	cover-03
	whtra09-paper12
	HyperTransport 3 Core: A Next Generation Host Interface with Extremely High Bandwidth
	1. Introduction
	2. Background
	3. Complexity analysis
	4. Proposed architecture
	5. Evaluation
	6. Conclusion and outlook
	7. References

