


Exploiting the HTX-Board as a Coprocessor for Exact Arithmetics

Fabian Nowak Rainer Buchty David Kramer
and Wolfgang Karl

Institute of Computer Science & Engineering
Universität Karlsruhe (TH)

Zirkel 2
76131 Karlsruhe, Germany

{nowak, buchty, kramer, karl}@ira.uka.de

Abstract

Certain numerical computations benefit from dedicated
computation units, e.g. providing increased computation
accuracy. Exploiting current interconnection technolo-
gies and advances in reconfigurable logic, restrictions and
drawbacks of past approaches towards application-specific
units can be overcome. This paper presents our implemen-
tation of an FPGA-based hardware unit for exact arith-
metics. The unit is tightly integrated into the host system us-
ing state-of-the-art HyperTransport technology. An accord-
ing runtime system provides OS-level support including dy-
namic function resolution. The approach demonstrates suit-
ability and applicability of the chosen technologies, setting
the pace towards broadly acceptable use of reconfigurable
coprocessor technology for application-specific computing.

1 Introduction

One major requirement of certain numerical applications
is computation accuracy. Depending on the application, us-
ing standard floating-point implementation does not provide
necessary resolution, especially due to accumulating round-
ing errors. This may lead to more required iterations, thus
degrading the overall application performance. The solu-
tion to such problems is the use of dedicated precise arith-
metic routines, ideally provided as a dedicated application-
specific hardware accelerator.

Such approaches were already targeted in the past, but
were typically hampered by insufficient hardware resources
and, most notably, the used interconnection technology: pe-
ripheral buses usually do not provide significant bandwidth
to enable a tight cooperation between an application run-
ning on the host CPU and the according hardware accelera-
tor.

With the advances in programmable logic and intercon-
nection technology, using so-called FPGAs as application-
specific computation devices tightly integrated into the host
system via current interconnection technology such as Hy-
perTransport delivers a promising concept for arbitrary co-
processor solutions. Suiting the programmers’ needs, such
a solution should be easily accessible, not requiring a new
programming model or dedicated, heavyweight execution
environments.

We therefore chose the original work of Kulisch et al. for
exact arithmetics [21], which delivered impressive numbers
on raw computation throughput. Unfortunately, the back
then available state-of-the-art interconnection bus turned
out to be severely limiting. Using current HyperTransport
and FPGA technology, we adopted the original design prin-
ciple. Based on the UoH HTX-Board [2], a dedicated unit
supporting exact arithmetics was developed. We further-
more provide a runtime system supporting dynamic reso-
lution and mapping of function calls that enables seamless
switching between standard and exact computation. Such
a runtime system not only fulfils the requirements for ad-
vanced, parallel arithmetics as mentioned before, but also
for irregularly memory-demanding applications such as nu-
merical applications on adaptive meshes and graph analy-
sis problems [14] as it allows redirecting resource accesses,
which is substantial to tackling these issues.

In the following section, we will give an overview over
the field of dedicated application accelerators and their in-
tegration into the host system, outlining the individual pe-
culiarities of each approach. Section 3 then introduces the
concept of exact arithmetics as proposed by Kulisch, and its
implementation on the UoH HTX-Board using the Open-
Source HyperTransport Core [27]. An overview of our run-
time system and its general usage is given in Section 4. Our
experimental setup is presented in Section 5, its results are
shown in Section 6. Finally, we give an outlook over future
work in Section 7 after drawing some conclusions.

Proceedings of the 
First International Workshop on HyperTransport Research and Applications (WHTRA2009) 
Feb. 12th, 2009, Mannheim, Germany

- 20 -



2 Related Work

A significant amount of research on the arithmetic part,
dynamically reconfigurable application accelerators, and
according runtime systems and programming models ex-
ists. For this paper, we will therefore restrict to some focal
points, outlining the intended problem solution and eventual
drawbacks.

Targeting the domain of error estimation, interval arith-
metic was developed in the 1950s and 1960s [23] and is still
actively researched today [25, 8].

Several approaches targeting hardware implementations
of more exact arithmetics exist, ranging from multi-
precision fixed-point vector MAC [29] to quad-precision
floating-point units [11] or fixed-point computations. A
major problem with floating-point operations is the accu-
mulation of rounding errors: for this, the extension of the
radix avoiding time-consuming rounding operations is a po-
tential solution [26]. Using reconfigurable logic lays the
foundation for arbitrary-precision arithmetic units on FP-
GAs for rational numbers [7]. While the cited approach
lacks floating-point support, it demonstrates feasibility and
achievable speed-up in comparison to software emulation
by the GMP library [12].

As of now, a vast number of also commercially avail-
able hardware accelerators exists for different goals, among
them acceleration of computation and algorithms on dedi-
cated hardware. The ClearSpeed series of accelerators [5]
might serve as an example of current state-of-the-art accel-
erator architectures, providing 96 floating-point processing
cores. An even bigger number of processing cores is pro-
vided by current graphics cards being used as floating-point
accelerators, also employing a multi-level memory hierar-
chy to overcome bus bandwidth limitations resulting from
the used PCI express bus (PCIe).

All these hardware approaches have in common that in-
terconnection bandwidth and therefore data transport be-
tween host system and accelerator becomes a bottleneck.
This makes the use of such units only sensible when the
gained speedup outweighs transfer time.

In order to avoid transport delay issues when tackling
precision, the available precision can be extended inside
floating-point units: in the IBM P6 [30], this technique is
well-employed with buffering of intermediate results and
providing further rounding operations in addition to those
specified in the 754 standard. Still, precision is not enough
for numerically unstable algorithms.

Approaches such as IRAM [24] and PIM [28] target the
problem of data transport and transport latencies directly
by calculating inside memory, what requires their own pro-
gramming models as well. Both exact arithmetic and inter-
val arithmetic are also available as software libraries for a
large number of programming environments and systems,

even bindings for high-level programming languages are
available [20, 12, 9].

Reconfigurable logic offers the possibility of providing
required arithmetic operations as demanded by the compu-
tation, therefore offering the same flexibility as software li-
braries but at significantly higher speed. With the advent
of high-performance interconnection buses such as Hyper-
Transport [16], this approach has gained widespread ac-
ceptance ranging from reconfigurable accelerator cards like
Nallatech’s FPGA Computing platforms [17] to reconfig-
urable supercomputing systems like Cray XD-1 [6]. On
these accelerator cards, the available FPGAs are big enough
to hold a couple of acceleration units.

Our approach follows the reconfigurability concept,
making use of reconfigurable FPGA hardware to model a
dedicated, high-performance acceleration unit focusing on
exact arithmetics. To avoid limitations from communica-
tion bottlenecks, we employ HyperTransport as state-of-
the-art interconnection technology. The case study for our
approach is Kulisch et al.’s first implementation of a hard-
ware unit for exact arithmetic. As mentioned before, this
work suffered from bandwidth limitations of the PCI bus
while the unit was sufficiently fast [18].

The use of application-specific and potentially reconfig-
urable hardware from within the application is targeted by
several approaches ranging from description languages to
integrated environments, consisting of dedicated compil-
ers and runtime systems. The scope ranges from program-
ming languages such as Handel-C [4], abstraction via ISA
extensions such as MOLEN [31] and EXOCHI [32], and
runtime environments such as LIME [15], and combined
API/Runtime systems like the recent OpenCL [13].

The above solutions typically require either additional
software layers for accessing accelerator hardware, are fo-
cused on a dedicated system setup, or both. What is missing
from these approaches is an easy and lightweight method
to dynamically resolve function calls at runtime so that a
different implementation or a different library be used for
the same function call. This is very desirable, as it offers
the possibility to hide transport and computation latency by
switching to different implementations as long as the hard-
ware is occupied, and it is also important for dynamic sys-
tems where hardware resources are allocated and freed at
runtime for the best mapping of an application onto the
respective hardware, enabling more precise, faster or less
power-consuming execution of the application.

We therefore developed a lightweight extension to the
Linux OS’s runtime system providing a method for dy-
namic control of function mapping as a convenient means
to change between different arithmetic implementations as
required by the running computation.

In the following, we will present the implementation and
integration of the accelerator into HT-equipped systems, fo-

- 21 -



cusing on the hardware design, and will include software
and runtime implications where appropriate.

3 Exact Arithmetics

As basic design of an exact accumulator, we imple-
mented the approach proposed by Kulisch et al. [21]. The
idea behind their approach is to avoid rounding results as
much as possible, because rounding leads to accumulation
of rounding errors after a couple of computations in conven-
tional FPUs, such as adding small values multiple times to a
rather big value. For double precision, the computation win-
dow is much larger than for single precision operation, but
breaks with three more orders of magnitude as well. Such
computation schemes however, are common to a wide range
of numerical applications.

As already mentioned, their implementation in CMOS
technology was fast enough, but did not keep pace with ad-
vances in processor technology as the interconnection relied
on the PCI bus.

3.1 Concept

In order to avoid rounding, a different presentation than
the conventional one consisting of the well-known sign-
characteristic-mantissa encoding where numbers are com-
posed like

number = 2exponent ∗ 1.mantissa (1)

with m the length of the characteristics field and n
the length of the mantissa field and exponent =
characteristic − 2m−1 + 1 (i.e. the characteristic is the
exponent plus the required bias), is needed for intermediate
representation of the values, because with the exponent rep-
resentation, only a “window” of a float number is precise.

The flat two’s complement encoding suits very well as
rational numbers can be stored in fix-comma representation
easily enabling both very large and very small numbers to
be represented at once:

number = whole-number.fraction (2)

with a length of k and l respectively where whole-number
ranges from −2k−1 to 2k−1 − 1 and fraction is in

between 2−l and
l∑

i=1

2−i for both positive and negative

numbers as well as zero is possible. Considering IEEE
754 single-precision format with m = 8 and n = 23,
0x00000001 = 2−2m−1+2−n = 2−149 is the small-
est representable number; whereas the largest number is
0x7FFFFFFF = 22m−1 − 2−n < 2128. Thus, for ac-
cumulating these precisely, the following inequation must
be held:

k >= 128; l >= 149 (3)

Host System

HT HT XC4VFX100

UoH HTX Board

Opteron #1

Opteron #2

Figure 1. HTX testsystem

For double-precision with m = 11 and n=52, the re-
quirements are huge:

k >= 1024; l >= 1074 (4)

Adhering to these requirements does however only al-
low accumulation within this range, but accumulation of
the largest possible values would result in infinity. Thus,
additional bits are recommendable; and for multiplication
of float-format encoded numbers, we need to double the
amount of bits at least. Accommodating the possibility for
a billion accumulations only does not seem very reasonable
as numerical applications frequently iterate over meshes
with some million elements per dimension. Hence, Kulisch
proposes 86 additional bits for single-precision and 92 bits
for double-precision accumulations.

With this in mind, when implementing an exact accumu-
lator for single-precision arithmetics, 2 ∗ 277 + 86 = 640
seem to suffice.

3.2 Implementation

For accessing the exact arithmetics unit (EAU), we used
the HyperTransport (HT) evaluation design of the Univer-
sity of Heidelberg with a Xilinx Virtex-4 FX100 in an AMD
Opteron system (cf. Figure 1).

The EAU as an accelerator unit is wrapped in a memory-
mapping HT interface, which is linked to the IO buffer
wrappers for the evaluation board and the HTX socket, as
is shown in Figure 2. Note that the reset and clock wires
are not drawn for simplicity. A simplification unit has been
inserted to merge the posted and non-posted requests. The
memory-mapping interface allows addressing of up to 16
EAUs; however, only 14 MAC-equipped EAUs fit onto the
FPGA, while 16 simpler accumulation-only units fit very
well. The resource usage is discussed in more detail in
Section 6.1. The design runs at a clock frequency of 100
MHz, hence allowing a theoretical unidirectional through-
put of 800MB/s with 16 bits per each clock edge of the 200
MHz HT clock.

Accumulation of the decoded IEEE-754 represented val-
ues happens in small blocks of 32 bits each. The exponent
determines both the block’s position inside the big accumu-

- 22 -



Figure 2. Device architecture

lation register and the proper shifting of the mantissa value
before accumulating.

When adding the possibility for multiplication of two
floating-point format data values, the sum of parts of their
exponents is used for addressing the register position, with
each data being shifted by the lower parts of its own expo-
nent only. Using dual-port registers, reading the data to be
accumulated to while writing the last sum to the last posi-
tion is possible during the same cycle.

By using bit masks, fixing carry-resolution becomes an
easy task: it requires only one additional cycle. Speaking of
cycles, a regular accumulation of a single value requires up
to 6 cycles after transmitting the data, where the last cycle
may even overlap with the first cycle of another computa-
tion; so already with 6 accumulators we could hide the to-
tal latency completely if the calculation was split and data
transfer lasted one cycle only. Multiply-accumulate, how-
ever, is finished no earlier than 18 cycles after starting the
transfer of the first data word. The data transfers account
for 8 of these cycles, among which 6 are due to the internal
communication structure between the HT Link and the HT
interface. These 6 additional transport cycles cannot be hid-
den by simply addressing other accumulations units as only
one connection is possible during theses transfers. But one
cycle can be saved when starting the next computation al-
ready during the last cycle. This leads to a latency of at least
17 cycles. With data transfers for a multiply-accumulate
operation taking 3 and 5 cycles respectively, it is clear that
three accumulation units can already make up for at least
the computation latency; a higher number does not provide
any additional advantage with regard to processing speed
and hiding this latency. Throughput is therefore limited to
less than 50MB/s because of the aforementioned 8 internal

transport cycles when multiplying-accumulating. 4 cycles
are needed for computing the addendum, and another three
for writing the shifted sum in blocks to the accumulation
register. This way, a clock rate of more than 100MHz can
still be obtained, making the implementation suitable for the
HTX bus specification, but currently suffering from high la-
tency.

Speaking of addressing the accumulation units via the
HT bus, all the units on the HT-core enabled HTX Board
are memory-mapped into the processor’s address space with
4kB page size, where different areas of a memory-mapped
page denote different operations such as value-reading,
writing flags or adding a product to the current accumulator
value. This is illustrated in Figure 3. For example, writing
to a page offset of 136 will prepare a multiply-accumulate
operation and require a subsequent write to offset 140 for
the next single-precision value to be multiplied. When read-
ing from the first five words (i.e. addresses 0, 4, 8, 12, 16),
the register value is returned as single-precision floating-
point number rounded to 0, away from 0, towards negative
infinity, towards positive infinity or towards nearest number,
respectively.

All the accumulators are completely independent from
each other except for the data transfer, which is multiplexed
by the HT Memory-Mapping Interface to only one of the
EAUs based on the target address. This interface passes the
bundles of command, data, and address to the arithmetic
units as operation code and associated data, thereby also
handling replies.

The HT Simplify module then merges posted and non-
posted requests, preferring the posted requests, passes them
to the memory-mapping interface and cares for fetching and
buffering new commands or data.

- 23 -



Figure 3. Memory-mapping of EAUs

4 Runtime System

When executing numerical programs exploiting external
hardware units, it is crucial to allow regular program con-
tinuation during calculation in hardware while also main-
taining flexibility for choosing which software, hardware
or hybrid implementation of a function to use. We devel-
oped a runtime system [3] coming in two different flavours,
a Global Linking System (GLS) and a Dynamic Linking
System (DLS). Both can be controlled via the Proc file sys-
tem.

4.1 Global Linking System

The Global Linking System, also referred to as GOT-
based Linking System for the Global Offset Table in the
Linux kernel’s task management, extends the lazy-linking
technique of the kernel by means of the Executable and
Linkable Format (ELF) [19]: the kernel extracts the func-
tion names from an application’s ELF file and resolves each
function symbol when the respective function is accessed
for the first time. Using the Proc file system [22], the GLS
resets a function symbol’s structures and target function so
that upon the next access onto the symbol, the dynamic
linker resolves the symbol again. Function alternatives both
from inside an application and from the linked libraries can
be used for function switching.

The GLS is completely independent from compilers and
programming languages used and also suits closed-source,
proprietary software. However, although providing flexi-
bility for mapping functions to alternate implementations,
different threads will always use the same function; so reg-
ular program continuation cannot be granted when access
to hardware resources used in a function implementation is
exclusive-only.

dls_struct_ptr

this: dls_struct*

next: dls_struct_ptr*

dls.h

Kernel

ProcFS

dls_set_fct() | dls_register()

Control

Daemon

Proxy Function
long (*fct)(int a, ...)

dls_fcts_ptr: dls_fct_type*
num_fcts: int
next: dls_struct*

dls_struct

long libfct_a(int a, ...) long libfct_b(int a, ...)

Figure 4. Switching of proxy functions

4.2 Dynamic Linking System

To overcome the missing support for individual per-
thread function mapping, the DLS changes an application’s
task state segment (TSS) by adding function proxies per
thread for each reconfigurable function. Hence, apart from
linking to an additional library, the program code must
contain statements indicating which functions may be ex-
changed at runtime, and must then indicate which functions
of which libraries are appropriate implementations for the
proxy. An application may hence start a software and a
“hardware” thread, each thread adding a software or hard-
ware implementation function to the list of possible alterna-
tives. A quick overview of the kernel extensions, the Proc
file system interface and the proxy functions is given in Fig-
ure 4.

The DLS can be used in two different ways, either the
static version or the dynamic version.

In the static version, right from the beginning the func-
tion proxy points to a valid function implementation. The
pointer may be changed via the Proc file system to a dif-
ferent implementation. In contrast, in the dynamic ver-
sion the unresolved proxy calls a fix-up function, which
in return starts the dynamic loader and adjusts the function
pointer. When changing that proxy’s target at runtime, a
fix-up function must be given first that again resolves the
proxy’s pointer.

In both versions, functions can be exchanged even from
inside the application itself.

4.3 Employment

Targeting matrix multiplication using exact arithmetics
as a first example for numerical applications, there are two
levels at which the runtime system can be employed: at the
coarse algorithmic level for selecting which of the specific
implementations should the proxy function be resolved to,

- 24 -



and at the fine-grained operation level for deciding whether
calculation on regular FPU, in enhanced-precision library
or on external hardware unit is preferred.

The runtime system offers ultimate flexibility for both
the programmer, the user, and system administrators by
(dis)allowing access onto special hardware for more pre-
cision and numerical robustness or, in contrast, fast compu-
tation. For most of the systems, the programmer wants to
use the DLS, where he picks the static linking variant if all
implementations are already known at compile time, or the
dynamic version, if new implementations become available
at runtime, e.g. for long-running applications where new ac-
celeration functions are constantly being developed. The
system hence is also usable as runtime testing system for
algorithms and their implementations.

5 Architecture

Our approach of combining exact arithmetics with a gen-
eral runtime system for program adaptivity is based on the
afore-mentioned HTX Testsystem (cf. Figure 1). A mod-
ified Linux kernel in version 2.6.20 runs both the runtime
system and the programs, which may connect to the UoH
HTX Board via the HyperTransport Interface of the AMD
Opteron that runs at 2.0 GHz.

On the FPGA of the HTX Board, up to 16 EAUs are cre-
ated and interconnected as illustrated in Fig. 2. The system
clock is 100 MHz, cooperating with the 200 MHz HT clock
(double-edge clocking) at a bandwidth of four 16 bit-wide
transfers per system clock cycle.

The runtime system is responsible for mapping accumu-
late and multiply-accumulate operations onto the respec-
tive library functions, enabling emulated exact arithmetics,
hardware support for exact arithmetics, or execution in reg-
ular single/double floating-point format on the Opteron’s
FPU.

The described 100 MHz system clock is due to hardware
constraints. In order to foster maximum use of the available
accelerator hardware, we employ the dynamic linking sys-
tem to allow different threads to run with different imple-
mentations concurrently, allowing computation in parallel.

6 Results

In this section, we first present our hardware implemen-
tation results for the Virtex-4 FX100 1152-10 as available
on the UoH HTX-Board [10], obtained with XST (ISE
9.2.04). We then give the results of some preliminary
benchmarks results for different libraries both without and
with use of our runtime system. We conclude by showing
some potential benefit for numerical applications that suffer
from convergence problems.

6.1 Implementation Results

Targeting ultimate flexibility, we implemented a basic
EAU with accumulation support only and an enhanced unit
with additional multiply-accumulate support so that based
on available hardware resources, the operating system, dy-
namic runtime system or the user herself can decide how
much and which coprocessor support to exploit in the cur-
rent setup.

Hence, we present in Tables 1 and 2 the results of the
synthesis runs for 1, 2, 4, 8, and 16 accumulator-only and
MAC-extended EAUs, respectively. As we can see, the HT
interface logic and the mapping interface only make up for
a minor part of the system and with increasing number of
EAUs, the routing costs rise enormously. Note that the num-
ber of needed resources depends strongly on several factors
such as software, host system used for synthesis, synthesis
settings, and the hardware description itself. Consequently,
the results cannot be regarded as accurate, but only indicate
the approximate amount of required resources.

The actually better results for the multiplication unit
arise from the need to specify very strict requirements for
synthesis and mapping.

Rather independent from the number of EAUs, the maxi-
mum theoretical design frequency is about 120 MHz for the
accumulate-only design and about 100 MHz for the MAC
design, independent of the number of EAUs. The critical
path is determined by selecting from the large register; this
can however be circumvented by splitting the large register
into several smaller resources or mapping it directly onto
the hardware BRAM resources. The HyperTransport core
requires its client to run at 100 MHz or 200 MHz respec-
tively, using a differential clocking with 200 MHz for the
bus interface and merging the 16 bit connection into an in-
ternal 64 bit wide bus interface.

6.2 Runtime Results

For the results below, we indicate the mean value of
ten runs, measured in clock ticks as reported by the CPU’s
timestamp counter.

First, we measured the time in clock ticks for both an
IJK and IKJ matrix multiplication with arbitrarily chosen
sizes of 30x20 * 20x16 and 100x100 * 100x16. The pro-
grams were compiled with -O2. Note that the enormous
runtime for the 1-MAC-unit version is due to the neces-
sity to read values in between of two same operations or to
do any other operation freeing the virtual HyperTransport
channel for the accumulator. Also, the software-emulated
MAC support for high-precision arithmetics still sometimes
produces erroneous results and cannot be compared there-
fore, but already gives a rough estimate. The results without
any additional runtime support are given in Figure 5.

- 25 -



Table 1. Hardware implementation results for accumulation-only units
Resource Used Resources Available

1 EAU 2 EAUs 4 EAUs 8 EAUs 16 EAUs

Slice Flip Flops 4,835 5,350 6,409 8,536 12,783 84,352
Occupied Slices 7,795 9,501 13,701 19,254 31,923 42,176
4 input LUTs 10,324 13,274 19,312 31,477 55,788 84,352
Logic 10,066 12,888 18,654 30,291 53,562
Route-thru 234 362 634 1,162 2,202
Shift registers 24 21 24 24 21
RAMB16s 26 27 29 33 41
Equiv. gate count 1,811,662 1,902,807 2,085,366 2,451,628 3,184,303

Table 2. Hardware implementation results for multiply-accumulation units
Resource Used Resources Available

1 EAU 2 EAUs 4 EAUs 8 EAUs 16 EAUs

Slice Flip Flops 5,085 5,890 7,505 10,728 17,167 84,352
Occupied Slices 7,955 10,718 14,846 24,008 39,141 42,176
4 input LUTs 11,355 15,535 23,868 40,570 73,868 84,352
Logic 11,059 15,077 23,084 39,134 71,129
Route-thru 272 434 760 1,412 2,715
Shift registers 21 21 21 21 24
RAMB16s 26 27 29 33 41
DSP48s 4 8 16 32 64 160
Equiv. gate count 1,821,103 1,923,091 2,126,585 2,533,808 3,346,401

Execution times increase for the IKJ multiplication as
both compiler optimization makes up for the non-optimally
aligned memory accesses and few potential for overlapping
computation in hardware is given due to the layout of the
algorithm. The runtime of the software-emulated MAC unit
is a rough estimate only as the implementation hampers
from incorrect algorithmic implementation and may pro-
duce wrong results.

Furthermore, we evaluated three different routines for
getting the sine value of the program’s argument. The first
implementation is the regular call of the sine function in the
math library of the GNU C Library, the second uses a look-
up table as has been done for example in Quake III Arena
to offer sufficient speed while achieving good precision on
those days’ PCs, and finally, the Taylor series:

sin(x) =
n∑

i=1

(−1)i+1 x2i−1

(2i− 1)!
= x− x3

3!
+

x5

5!
− . . . (5)

The Taylor series implementation is much slower than
the others, but it allows external coprocessor support for
accumulating each summand in hardware and also swap-
ping the construction of the summands into the hardware
accelerator. Figure 6 presents the runtime results for dif-
ferent implementations with and without support for exact
arithmetics plus the number of iterations needed until the
result was stable. For the three different routines, the run-
time system has been used to allow measuring runtimes of
implementation alternatives by simply switching the func-
tion pointers from inside the application at program run-
time, with the static linking of the DLS being sufficient for

this purpose. The result was stable after 9 iterations for dou-
ble precision, 4 iterations for emulation without MAC sup-
port, and 5 iterations for the remaining runs.

6.3 Exact Arithmetics

Accuracy is achieved as shown in Table 3: with ex-
act arithmetics, the result is more precise than with reg-
ular single-precision operation. The bad runtime for the
MAC-enabled unit is again due to the additional operation
needed for clearing the HT interface registers. Except for
the double-precision runs, after 10 iterations the result is al-
ready stable. This is due to obtaining single-precision val-
ues only when reading the accumulator value: the conver-
gent Euler series is also convergent for the iterations follow-
ing iteration number 10, which hence do not influence the
single-precision value to any extent. Reading double values
from the EAU in subsequent implementations will produce
different results. After 39 and 178 iterations respectively,
the single and double precision windows are too small for
storing the component values of the product to be accumu-
lated.

A more detailed result1 for the EAU can be obtained
from the hardware accumulator when adding the subse-
quently read value to the intermediate coarse result value
after subtracting it from the accumulator. The gain in pre-
cision with the MAC unit is ascribed to not losing the re-

12.71828183528879208097350783646106719970703125 (accumula-
tor only) and 2.71828183518901056459071696735918521881103515625
(MAC-extended)

- 26 -



0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

800000000

Single
Double
Emulation
MAC Emulation
1 Accumulator
2 Accumulators
4 Accumulators
8 Accumulators
16 Accumulators
1 MAC Unit
2 MAC Units
4 MAC Units
8 MAC Units
16 MAC Units

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

800000000

900000000

IJK IKJ
Figure 5. Comparison of runtimes for IJK and IKJ matrix multiplication with and without exact arith-
metics

16500

17000

17500

18000

18500

19000

19500

20000

20500

460

480

500

520

540

560

580

600

0

20000

40000

60000

80000

100000

120000

Single
Double
Emulation
MAC Emulation
1 Accumulator
1 MAC Unit

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Single
Double
Emulation
MAC Emulation
1 Accumulator
1 MAC Unit

(a) Taylor series 16500

17000

17500

18000

18500

19000

19500

20000

20500

460

480

500

520

540

560

580

600

0

20000

40000

60000

80000

100000

120000

Single
Double
Emulation
MAC Emulation
1 Accumulator
1 MAC Unit

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Single
Double
Emulation
MAC Emulation
1 Accumulator
1 MAC Unit

(b) Look-up table
16500

17000

17500

18000

18500

19000

19500

20000

20500

460

480

500

520

540

560

580

600

0

20000

40000

60000

80000

100000

120000

Single
Double
Emulation
MAC Emulation
1 Accumulator
1 MAC Unit

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Single
Double
Emulation
MAC Emulation
1 Accumulator
1 MAC Unit

(c) GNU C Library

Figure 6. Runtimes and iterations for calculating the sine value of 1.0

Table 3. Runtimes and iterations for calculating the Euler number
Implementation Result Runtime Iterations

Result fixed Summand! = 0

Single Precision 2.7182819843292236328125 3,150 10 39
Double Precision 2.71828182845904553488480814849026501178741455078125 6,566 17 178
Emulation w/o MAC 2.71828174591064453125 19,935.9 10 39
Emulation w/ MAC 2.71828174591064453125 26,171.3 10 39
Accumulator 2.71828174591064453125 31,486.2 10 39
Multiply-Accumulator 2.71828174591064453125 188,945.7 10 39

- 27 -



mainders of the product. This clearly shows how accurate
the obtainable results are in comparison to single-precision
format. Similarly, when reading from the coprocessor reg-
ister, the results of the Taylor sine routine are a little more
precise than their native FPU counterpart.

With multiplication in hardware, we gain from not be-
ing limited to the format in use, i.e. single floating-point
precision with a mantissa of 23 bits, but instead being able
to accumulate the exact product onto the previous register
value. With accumulation only, the multiplication has to
be carried out on the host processor and only the rounded
result, limited to the precision in use, can be accumulated,
hence loosing valuable information.

For example, multiplying single-precision data con-
verted to double-precision values would achieve a more pre-
cise representation of the product than with single-precision
only; but as soon as the result is converted for adding regular
single-precision values, the additional precision is lots. On
the MAC hardware, though, the result of additional MAC
and accumulation operations onto the previous multiplica-
tion result is still precise and the accumulated error due to
rounding and format limits is much smaller. Of course, its
additional precision will be lost as well when converting to
single-precision format for further processing on the host
processor.

7 Conclusions and Outlook

Developments in interconnection and FPGA technolo-
gies enable the use of reconfigurable logic as application-
specific hardware accelerators.

In this paper, we showed an implementation of an exact
arithmetics hardware unit using an FPGA-equipped Hyper-
Transport device as a coprocessor. Through a lightweight
runtime systems, dynamic per-function control of which
implementation or software to use for calculations is made
possible. The hardware is easy to use from a programmer’s
view and can be completely hidden from the user because
the runtime systems offers the necessary abstraction and
wrapping and because control is possible from within the
application itself, if desired.

The arithmetics unit uses a wide fixed-point representa-
tion of the data, enabling accumulation of both very small
and very large numbers altogether. The hardware unit is ad-
dressed via memory-mapping, which enables separate us-
age of up to 16 arithmetics units at once, thus speeding
up parallel, separate computations by hiding latency. The
HyperTransport bus is controlled by an AMD Opteron, the
Virtex-4 is connected to the HT bus through an HTX board.
For now, only single-precision is supported, but the increase
in exactness due to not loosing the additional bits when mul-
tiplying and adding in our hardware in contrast to comput-
ing on regular floating-point units already proves the bene-

fit of such architectures and proves both feasibility and re-
liability of such an arithmetic coprocessor for exact arith-
metics.

The runtime system is a lightweight extension to the
Linux kernel, altering the dynamic loading of libraries that
can be controlled via the procfs interface. Alternate libraries
may emulate hardware, access it directly, or offer fast and
unreliable implementations – the user or a runtime system
can choose, which one to use in his system based on avail-
ability and load.

We conducted several experiments regarding the basic
operations required by the targeted numerical applications
such as frequent multiply-accumulate as needed in solving
linear equation systems. The results deliver further proof
that supporting single-precision is far not enough when tar-
geting real-world applications as the regularly obtainable
data is not precise enough. We thus deduct that exact
accumulation is only useful when appropriate means are
given for retrieving those bits that cannot be represented
in the regular floating-point format so that additional digits
of a calculated high-precision value be obtainable. It also
becomes more expedient when supporting double preci-
sion, offering more precision than regular double-precision
without introducing the need for additional computation li-
braries such as QD [1].

Thus, we can conclude that 1) using coprocessor tech-
nologies for arithmetics is a valid and suitable approach,
2) HyperTransport fits well as interconnection technology,
and 3) usage of exact arithmetics needs no longer be an is-
sue for programmers due to the achievable enhancements of
dynamic runtime linking.

For the hardware, our ongoing work includes extend-
ing the arithmetic unit by exact multiplication, decreasing
overall latency and area, and increasing clock frequency
of the implementation, thereby enabling usage for even
small amounts of computations without a large amount of
runtime overhead. Support for double-precision is also a
nearby goal, both for reading double values, accumulat-
ing double values and accumulating double-precision prod-
ucts. Further plans for the runtime system include using it
for a wider range of applications such as dynamic systems
and debugging, but also incorporating reconfigurable hard-
ware as memory-mapped devices into the operating system,
which allows building and loading custom accelerators per
application. Access onto the available resources will have
to be managed then by offering only a few virtualized units
to applications.

Acknowledgment

The authors would like to thank Reimar Döffinger for the
initial work on the exact accumulation unit.

- 28 -



References

[1] D. H. Bailey, Y. Hida, K. Jeyabalan, X. S. Li, and
B. Thompson. QD. Web site: http://crd.lbl.gov/
˜dhbailey/mpdist/.

[2] U. Brüning. The HTX board – a universal HTX test
platform. Web site: http://www.hypertransport.
org/members/u_of_man/htx_board_data_
sheet_UoH.pdf.

[3] R. Buchty, D. Kramer, M. Kicherer, and W. Karl. A light-
weight approach to dynamical runtime linking supporting
heterogenous, parallel, and reconfigurable architectures. In
Architecture of Computing Systems – ARCS 2009, 22nd In-
ternational Conference, Lecture Notes in Computer Science
(LNCS), Delft, Netherlands, March 2009. GI e.V. to appear.

[4] Celoxica. Handel-C Language Reference Manual, 2001.
[5] ClearSpeed Technology plc. ClearSpeed Advance X620 and

e620 Accelerator Boards, 2006. Web site: http://www.
clearspeed.com/products/cs_advance/.

[6] Cray Inc. Cray XD1 Supercomputer, 2004. Web
site: http://www.cray.com/downloads/Cray_
XD1_Datasheet.pdf.

[7] E. Ej-Araby, I. Gonzalez, and T. El-Ghazawi. Bring-
ing High-Performance Reconfigurable Computing to Exact
Computations. Field Programmable Logic and Applica-
tions, 2007. FPL 2007. International Conference on, pages
79–85, Aug. 2007.

[8] C. F. Fang, T. Chen, and R. A. Rutenbar. Floating-point error
analysis based on affine arithmetic. In Proc. IEEE Int. Conf.
on Acoust., Speech, and Signal Processing, pages 561–564,
2003.

[9] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zim-
mermann. MPFR: A multiple-precision binary floating-
point library with correct rounding. ACM Trans. Math.
Softw., 33(2):13, 2007.

[10] H. Fröning, M. Nüssle, D. Slogsnat, H. Litz, and U. Brüning.
The HTX-Board: A Rapid Prototyping Station. Proceed-
ings of the 3rd Annual FPGA World Conference, November
2006.

[11] G. Gerwig, H. Wetter, E. M. Schwarz, and J. Haess. High
Performance Floating-Point Unit with 116 Bit Wide Divider.
In ARITH ’03: Proceedings of the 16th IEEE Symposium on
Computer Arithmetic (ARITH-16’03), page 87, Washington,
DC, USA, 2003. IEEE Computer Society.

[12] T. Granlund. The GNU MP Bignum Library, 2008. Web
site: http://gmplib.org.

[13] K. Group. Khronos OpenCL API Registry. December 2008.
http://www.khronos.org/registry/cl/.

[14] B. Hendrickson and J. Berry. Graph Analysis with High-
Performance Computing. Computing in Science & Engi-
neering, 10(2):14–19, March-April 2008.

[15] S. S. Huang, A. Hormati, D. F. Bacon, and R. Rabbah. Liq-
uid Metal: Object-Oriented Programming Across the Hard-
ware/Software Boundary. In ECOOP 2008 Object-Oriented
Programming, volume 5142/2008 of Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, 2008.

[16] HyperTransport Consortium. Low Latency Chip-to-Chip
and beyond Interconnect, 2005. Web site: http://www.
hypertransport.org/.

[17] N. Inc. High Performance FPGA Computing Solutions
for Defense and HPC, 2005. Web site: http://www.
nallatech.com/.

[18] J. Kernhof, C. Baumhof, B. Höfflinger, U. Kulisch, S. Kwee,
P. Schramm, M. Selzer, and T. Teufel. A CMOS Floating-
Point Processing Chip for Verified Exact Vector Arith-
metic. Proceedings ESSCIRC ’94, pages 196–199, Septem-
ber 1994.

[19] J. Koshy. libelf by Example. Web site: http:
//people.freebsd.org/˜jkoshy/download/
libelf/article.html.

[20] U. Kulisch. The XSC tools for extended scientific comput-
ing. In Proceedings of the IFIP TC2/WG2.5 working con-
ference on Quality of numerical software, pages 280–284,
London, UK, 1997. Chapman & Hall, Ltd.

[21] U. W. Kulisch. Advanced arithmetic for the digital com-
puter: design of arithmetic units. Springer, 2002.

[22] M. Tim Jones. Access the Linux kernel using the
/proc filesystem. In IBM developerWorks, 2006. Web
site: http://www.ibm.com/developerworks/
library/l-proc.html.

[23] R. E. Moore. Interval arithmetic and automatic error anal-
ysis in digital computing. PhD thesis, Stanford University,
Stanford, CA, USA, 1963.

[24] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Kee-
ton, C. Kozyrakis, R. Thomas, and K. Yelick. A Case for
Intelligent RAM. IEEE Micro, 17(2):34–44, 1997.

[25] J. G. Rokne. Interval arithmetic and interval analysis: an
introduction. Granular computing: an emerging paradigm,
pages 1–22, 2001.

[26] P.-M. Seidel. High-radix implementation of IEEE floating-
point addition. Computer Arithmetic, 2005. ARITH-17 2005.
17th IEEE Symposium on, pages 99–106, June 2005.

[27] D. Slogsnat, A. Giese, M. Nüssle, and U. Brüning. An open-
source HyperTransport core. ACM Trans. Reconfigurable
Technol. Syst., 1(3):1–21, 2008.

[28] T. Sterling, J. Brockman, and E. Upchurch. Analysis and
Modeling of Advanced PIM Architecture Design Trade-
offs. In SC’2004 Conference CD, Pittsburgh, PA, November
2004. IEEE/ACM SIGARCH.

[29] D. Tan, A. Danysh, and M. Liebelt. Multiple-precision
fixed-point vector multiply-accumulator using shared seg-
mentation. Computer Arithmetic, 2003. Proceedings. 16th
IEEE Symposium on, pages 12–19, June 2003.

[30] S. D. Trong, M. Schmookler, E. Schwarz, and M. Kroener.
P6 Binary Floating-Point Unit. Computer Arithmetic, 2007.
ARITH ’07. 18th IEEE Symposium on, pages 77–86, June
2007.

[31] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels,
G. Kuzmanov, and E. M. Panainte. The Molen Polymorphic
Processor. IEEE Transactions on Computers, pages 1363–
1375, November 2004.

[32] P. H. Wang, J. D. Collins, G. N. Chinya, H. Jiang, X. Tian,
M. Girkar, N. Y. Yang, G.-Y. Lueh, and H. Wang. EXOCHI:
architecture and programming environment for a heteroge-
neous multi-core multithreaded system. In PLDI ’07: Pro-
ceedings of the 2007 ACM SIGPLAN conference on Pro-
gramming language design and implementation, pages 156–
166, New York, NY, USA, 2007. ACM.

- 29 -


	cover-03
	whtra09-paper13



