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SUMMARY 

Malignant gliomas are the most frequent primary brain tumors in adults and have a poor 

prognosis, despite advances in the conventional treatment involving neurosurgery, 

followed by radiation- and chemotherapy. Hence, there is a great need for the 

development of novel therapeutic approaches. Gene therapy based on viral vectors 

represents an interesting alternative or adjuvant to conventional cancer therapies. The 

oncotropic and oncolytic properties of rodent autonomous parvoviruses, together with 

their low pathogenicity make them particularly attractive candidates as viral vectors for 

cancer gene therapy.  

Gliomas are highly vascularized tumors that induce a strong immunosuppressive 

environment. Therefore, our laboratory has recently investigated the antitumor effects of 

parvoviral vectors delivering human interferon inducible protein-10 (hIP-10) and mouse 

tumor necrosis factor-α (mTNF-α), cytokines known to have both immunostimulatory 

and antiangiogenic properties, in a syngeneic mouse glioma model. These recombinant 

viruses strongly inhibited the growth of murine GL261 glioma cells grafted 

subcutaneously in immunocompetent mice. Complete tumor regression was observed 

when glioma cells were coinfected with both vectors, demonstrating synergistic 

antitumor effects (Enderlin et al., 2008). 

In the present study, the mechanisms sustaining subcutaneous tumor inhibition by  

TNF-α- and IP-10-encoding parvoviral vectors were investigated. Parvoviral-transduced 

TNF-α increased the mRNA expression and protein secretion of endogenous IP-10 in 

GL261 cells in vitro. When both viruses were used in combination, the IP-10 levels may 

thus reach a critical threshold that could account for the synergistic antitumor effects 

observed in vivo. The analysis of the cellular immune response upon peritumoral 

injections of recombinant parvoviruses in established subcutaneous GL261 tumors 

showed a decreased infiltration of CD4+ and CD8+ T lymphocytes compared to PBS-

treated tumors. More strikingly, the infiltration of CD4+ T lymphocytes was dramatically 

decreased in tumors treated with cytokine-encoding vectors and inversely correlated 

with the tumor growth in vivo. We hypothesize that the antitumor effects could be due to 

a decrease of CD4+ T regulatory cells, known to suppress immune responses. In 

agreement with this, we could show that in vitro infection of GL261 cells with cytokine-
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encoding vectors led to a decrease of TGF-β that strongly correlated with the infiltration 

of CD4+ T cells.  

Next, the antitumor effects of parvoviral vectors transducing mTNF-α and hIP-10 were 

investigated on GL261 implanted intracranially in syngeneic C57BL/6 mice. The tumor 

growth and survival of mice implanted with GL261 cells in vitro infected with parvoviral 

vectors were monitored. Wild-type parvovirus and the vector devoid of transgene had 

only a slight antitumor effect, similarly to the results obtained subcutaneously. In 

contrast, in the intracranial setting, TNF-α-, but not IP-10-encoding vector significantly 

delayed the tumor growth of GL261 glioma and prolonged the survival of tumor-bearing 

mice. No synergy between TNF-α and IP-10 could be observed in this setting. 

Immunohistochemical analysis on brain tumor samples showed that parvoviral infection 

induced a moderate infiltration of CD4+ and CD8+ T lymphocytes. The TNF-α-

transducing parvoviral vector decreased tumor microvascularization as well as the 

infiltration of CD68+ macrophages/microglia, and these effects are likely responsible for 

the antitumor effects observed.  

The monocyte chemotactic protein (MCP)-2 and -3 are known to be potent 

immunoactive cytokines, recruiting a broad range of leukocytes. Parvoviral vectors 

delivering MCP-3 were shown to inhibit the tumor growth in several animal tumor 

models. This prompted us to compare the effects of parvoviruses delivering MCP-2 and 

MCP-3 in the GL261 intracranial glioma model to those obtained with parvoviral vectors 

transducing TNF-α and IP-10. No effects on tumor growth and animal survival could be 

observed, suggesting a possible processing of MCP-2 and MCP-3 by GL261 cells, 

leading to their inactivation.  
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ZUSAMMENFASSUNG 

Maligne Gliome sind die am häufigsten bei Erwachsenen auftretenden Hirntumor. Trotz 

großer Fortschritte in der konventionellen Behandlung, die aus Neurochirurgie, gefolgt 

von Strahlen- und Chemotherapie besteht, haben maligne Gliome eine sehr schlechte 

Prognose. Daher bedarf es dringend einer Entwicklung neuer therapeutischer Ansätze. 

Die virale Gentherapie stellt eine interessante Alternative oder auch Adjuvans zur 

konventionellen Krebstherapie dar. Die autonomen Nagetierparvoviren sind aufgrund 

ihrer onkotropischen und onkolytischen Eigenschaften, sowie ihrer niedrigen 

Pathogenität besonders attraktive Kandidaten für die Entwicklung viraler Vektoren für 

die Gentherapie gegen Krebs. 

Gliome sind hochvaskularisierte Tumore, die ein stark immunsuppressives Milieu 

erzeugen. Daher wurde in unserem Labor vor kurzem die antitumoralen Effekte 

parvoviraler Vektoren, die das humane Interferon-γ-induzierte Protein-10 (hIP-10) und 

den murinen Tumornekrosefaktor-α (mTNF-α) transduzieren, in einem syngenen, 

murinen Gliom-Modell untersucht. IP-10 und TNF-α sind Zytokine, die für ihre 

immunostimulatorischen und antiangiogenischen Eigenschaften bekannt sind. Diese 

rekombinanten Viren konnten das Wachstum von murinen GL261-Gliomzellen, die 

subkutan in immunkompetente Mäuse appliziert wurden, signifikant hemmen. Die 

Koinfektion der Gliomzellen mit beiden Vektoren führte zu einer kompletten 

Tumorregression, was auf einen synergistischen antitumoralen Effekt schließen lässt 

(Enderlin et al., 2008). 

In der vorliegenden Arbeit wurden die Mechanismen, die zu einer Hemmung des 

Tumorwachstums durch TNF-α- und IP-10-kodierende parvovirale Vektoren führten, 

untersucht. Parvoviral transduziertes TNF-α verstärkte die mRNA-Expression und 

Proteinsekretion von endogenem IP-10 in GL261-Zellen in vitro. Die Kombination von 

beiden Viren könnte auf diese Weise in IP-10-Mengen resultieren, die oberhalb eines 

kritischen Schwellenwertes liegen und so zu den in vivo beobachteten synergistischen 

antitumoralen Effekten führen. Die Analyse der zellulären Immunantwort nach 

peritumoraler Applikation der rekombinanten Parvoviren in etablierte, subkutane GL261 

Tumore zeigte eine verringerte Tumorinfiltration von CD4+ und CD8+ T-Lymphozyten im 

Vergleich zu PBS behandelten Tumoren. Auffallend war die drastisch verringerte 

Tumorinfiltration von CD4+ T-Lymphozyten durch die Behandlung mit den Zytokin-
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kodierenden Vektoren, die mit dem Tumorwachstum in vivo umgekehrt korrelierte. Wir 

vermuten, dass die antitumoralen Effekte auf einer Verringerung der CD4+ 

regulatorischen T-Zellen beruhen, welche eine Suppression von Immunantworten 

verursachen. Zudem konnten wir zeigen, dass die in vitro Infektion von GL261-Zellen 

mit Zytokin-kodierenden Vektoren zu einer Verringerung an TGF-β führte, welche stark 

mit der Infiltration von  CD4+ T-Lymphozyten korrelierte.  

Desweiteren wurden die antitumoralen Effekte der mTNF-α- und hIP-10-

transduzierenden parvoviralen Vektoren auf GL261-Zellen untersucht, die intrakranial in 

syngene C57BL/6 Mäuse implantiert wurden. Hierzu wurden das Tumorwachstum der 

mit parvoviralen Vektoren präinfizierten GL261-Zellen sowie die Überlebensrate der 

behandelten Mäuse beobachtet. Wildtyp Parvovirus und der virale Vektor ohne 

Transgen zeigten nur einen schwachen antitumoralen Effekt. Dies gleicht den 

Resultaten aus dem subkutanen Tumorversuch. Im Gegensatz hierzu, konnte TNF-α-, 

jedoch nicht IP-10-kodierende parvovirale Vektoren im intrakranial Tierversuch zu einer 

signifikanten Verzögerung des Tumorwachstums der GL261 Gliome sowie zu einem 

verlängerten Überleben der tumortragenden Mäuse führen. Zudem wurde kein 

synergistischer Effekt zwischen TNF-α und IP-10 beobachtet. Immunohistochemische 

Untersuchungen der Hirntumorproben zeigten, dass die parvovirale Infektion zu einer 

mäßigen Infiltration von CD4+ und CD8+ T-Lymphozyten führte. Der TNF-α-

transduzierende parvovirale Vektor verringerte die Vaskularisierung des Tumors und die 

Infiltration von CD68+ Makrophagen/Mikroglia. Dies scheint für die beobachteten 

antitumoralen Effekte verantwortlich zu sein. 

Die Monozyten chemotaktisches Proteine (MCP)-2 und -3 sind potente immunaktive 

Zytokine, die eine Vielzahl an Leukozyten rekrutieren. Es konnte gezeigt werden, dass 

MCP-3-transduzierende parvovirale Vektoren das Tumorwachstum in verschiedenen 

Tiermodellen hemmen. Dies veranlasste uns die Effekte von MCP-2- und MCP-3-

transduzierenden vektoren im intrakranialen GL261-Gliom-Modell mit denen von     

TNF-α und IP-10 zu vergleichen. Es konnten jedoch keine Effekte auf Tumorwachstum 

und Überlebensrate beobachtet werden. Wir vermuten, dass MCP-2 und MCP-3 in den 

GL261-Zellen prozessiert werden, was zu ihrer Inaktivierung führt. 
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1. INTRODUCTION 

1.1. Gliomas 

Gliomas are primary tumors of the central nervous system (CNS), originating from glial 

cells or their precursors. They are classified according to the glial cell types that 

predominate in the tumor mass as astrocytomas, oligodendrogliomas, mixed 

oligoastrocytomas and ependymomas. Gliomas are graded by the World Health 

Organization (WHO) on a scale from I to IV, based on the degree of malignancy, as 

determined by histopathological and genetic features. Astrocytomas are the most 

frequent intracranial neoplasm and account for more than 75% of all gliomas (CBTRUS, 

2004). They are graded as pilocytic astrocytomas (grade I, non malignant), diffuse 

astrocytomas (grade II, non malignant), anaplastic astrocytomas (grade III, malignant) 

and glioblastoma multiforme (GBM) (grade IV, malignant) (Louis et al., 2007). GBM is 

the most aggressive and most prevalent type of glioma (Louis et al., 2002). It accounts 

for 20% of all primary brain tumors and occurs at a frequency of about 5 cases per 

100 000 people (CBTRUS, 2004). GBMs typically affect adults and are preferentially 

located in the cerebral hemispheres. They are further subdivided into primary and 

secondary subtypes, based on the clinical presentation. Whereas primary GBMs 

develop de novo without antecedent history, secondary GBMs show evidence of 

malignant progression from previously diagnosed lower grade tumors (Kleihues and 

Ohgaki, 1999). Despite their distinct clinical histories, primary and secondary GBM have 

indistinguishable histopathologies and their prognosis is not significantly different.  
 

The main histopathological features of GBMs include aggressive growth, highly 

infiltrative properties, potent immunosuppression, and prominent vascularization 

(Brandes et al., 2008). These properties together with their anatomic location make 

malignant gliomas very challenging tumors to treat. Despite recent advances in the 

conventional treatment, involving surgery followed by adjuvant radio-and chemotherapy, 

the prognosis of patient with malignant gliomas remain poor, especially for GBM, with a 

median survival of less than a year after diagnosis (Stupp et al., 2005a). Thus, there is a 

great need for new therapeutics and gene therapy is emerging as a promising 

alternative to supplement the conventional therapies.  
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1.2. Glioma therapy  

1.2.1. Conventional treatment strategies 

The current standard treatment for gliomas involves surgical resection followed by 

adjuvant radiation therapy and chemotherapy. 

1.2.1.1 Surgery 

Surgery is commonly the initial therapeutic modality for newly diagnosed gliomas (Hsieh 

and Lesniak, 2005; Stupp et al., 2005b). The aim is to achieve maximum resection 

without causing any neurological defects. Despite improved surgical techniques, 

complete resection of the tumor is often hampered by the absence of defined tumor 

edges or localization of the tumor in critical areas of the brain. Even after apparent 

complete removal, there are almost invariably residual tumor cells infiltrated beyond the 

tumor margin defined and local recurrence is almost inevitable. Yet, tumor resection, 

even partial, relieves the increased intracranial pressure and improves the response to 

post-operative adjuvant treatments through disruption of the blood brain barrier (BBB). 

Biopsies are performed for inoperable tumors, providing histological confirmation of the 

diagnosis, required prior to alternative radiation or chemotherapy. 

1.2.1.2 Radiotherapy 

Post-operative radiation therapy has been shown to prolong the median survival of 

patients with glioblastomas and is the standard adjuvant therapy for high-grade gliomas 

after resection or biopsy (Fiveash and Spencer, 2003; Laperriere et al., 2002). The 

current treatment protocol involves conventional fractionated external-beam 

radiotherapy to total a dose of 60 Gy delivered in 30 daily fractions of 2 Gy. To limit 

irradiation of normal brain tissue, radiations are directed to a localized volume including 

the tumor bed and a 2-5 cm margin, where recurrence occurs in most of the cases 

(Brada, 2006). The main limitation to brain tumor radiotherapy is the radiation tolerance 

of normal brain tissue. Therefore, new techniques were developed to deliver more 

precise and higher dose of radiation, such as hyper-fractionation, stereotactic surgery or 

radiation sensitizers. However, until now, these alternative radiotherapies failed to 

demonstrate a survival benefit compared with conventional fractionated radiation 

therapy (Brada, 2006; Laperriere et al., 2002). 
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1.2.1.3 Chemotherapy  

Despite treatment of malignant gliomas with surgery followed by radiotherapy, most of 

the tumors recur and therefore additional therapies are required. Chemotherapy is 

currently a standard modality of treatment for gliomas, used either during or after 

radiotherapy. The most commonly used agents for glioma therapy are alkalyting agents 

including nitrosoureas (carmustine, lomustine), platinium-based drugs (cisplatin, 

carboplatin) and more recently temozolomide (Lonardi et al., 2005). The main limitations 

of chemotherapy are the blood-brain barrier and the development of chemorestistant 

cells within the tumor. The latter can be overcome through combination of multiple types 

of antitumoral drugs. The most common drug combination is the nitrosourea-based 

regime of procarbazine, lomustine, and vincristine (Stupp et al., 2005a). Nitrosoureas 

were long considered as the standard chemotherapy approach for malignant gliomas. 

However, their toxicity is not negligible and clinical studies have failed to demonstrate 

significant evidence of their benefits on patient survival (Lonardi et al., 2005; Stupp et 

al., 2005a). In contrast, concomitant and adjuvant chemotherapy with temozolomide 

was recently shown to increase patient survival with minimal additional toxicity, and has 

therefore become the standard treatment for newly diagnosed glioblastoma (Stupp et 

al., 2005a). 

 
Even after surgery followed by adjuvant radio- and chemotherapies, local recurrence 

occurs in more than 80% of the patients (Lonardi et al., 2005). The prognosis of patients 

with malignant gliomas remains poor, with a median survival of approximately one year 

after initial diagnosis (Stupp et al., 2005a).   

1.2.2. Gene therapy of glioma 

Gene therapy is defined as the transfer of engineered genetic material into cells for 

therapeutic purpose. Malignant gliomas remain mostly refractory to conventional 

therapies and therefore represent attractive targets for gene therapy. Moreover, their 

localization in an anatomically restricted area should allow local delivery of gene therapy 

vehicles without the risk of severe systemic toxicity. 

Currently there are two main approaches for gene transfer in the CNS, referred as in 

vivo and ex vivo strategies. In the in vivo approach, the genetic material is directly 

delivered into the target cells, either by systemic or local delivery into the brain. In the ex 
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vivo approach, the target cells are first removed from the patient, genetically modified by 

gene transfer in the laboratory, and subsequently re-implanted into the host.  

1.2.2.1 Gene therapy approaches 

Several gene therapy strategies were developed for malignant gliomas, including direct 

killing of tumor cells by correction of genetic defects, suicide genes, suppression of 

angiogenesis and immunotherapy. 

1.2.2.1.1 Correction of genetic defects 

This strategy, also referred to as replacement gene strategy, intends to transfer specific 

genes that are mutated or deleted in patients, such as tumor suppressor genes. 

Inactivation of p53, Rb and p16 suppressor genes is commonly found in glioma tumors, 

leading to a loss of cell cycle control. In this context, adenoviral vectors encoding wild-

type p53, p16 or Rb were evaluated in preclinical studies and were shown to inhibit 

glioma tumor growth both in vitro and in vivo (Chintala et al., 1997; Fueyo et al., 2000; 

Kock et al., 1996). Adenoviral vectors delivering p53 were further evaluated in a phase I 

clinical study in patients with glioblastoma. Although p53 transfer was observed in tumor 

cells, the effect was limited to a short distance from the injection site (Lang et al., 2003). 

1.2.2.1.2 Suicide genes: prodrug activating enzymes 

This approach involves the gene transfer of an enzyme which converts a prodrug, 

normally innocuous, into a toxic compound leading to cell death. Most of the gene 

therapy trials for malignant gliomas have been based on the delivery of the herpes 

simplex virus - thymidine kinase (HSV-TK) followed by systemic administration of the 

prodrug ganciclovir (GVC). The HSV-TK enzyme activates GCV, which in turns inhibits 

DNA synthesis and leads to cell death. Retroviral as well as adenoviral vectors 

encoding HSV-TK were tested both in preclinical and clinical studies of gliomas 

(reviewed in Aghi and Chiocca, 2006). Adenoviral vectors were found to be more 

effective compared to retroviral vectors and this could be assigned to the higher 

transduction efficiency of adenoviral vectors in human glioma cells (Sandmair et al., 

2000). Furthermore, there is a risk of insertional mutagenesis with retroviruses. 

However, the survival increase with adenoviral vectors was in most clinical trials non-

significant compared with the standard treatment (Aghi and Chiocca, 2006). 
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1.2.2.1.3 Suppression of angiogenesis 

Malignant gliomas are among the most highly vascularized tumors and thus 

angiogenesis represents an attractive therapeutic target. Two main strategies have 

been tested, namely the inhibition of endogenous angiogenic factors, and the delivery of 

natural antiangiogenic agents. Vascular endothelial growth factor (VEGF) and its 

receptors seem to be the central signaling pathway in glioma angiogenesis, but other 

pathways were also identified, involving for instance fibroblast growth factor (FGF) or 

epidermal growth factor (EGF). Inhibition of these pathways in glioma resulted in a 

reduced tumor vascularization and tumor growth in animal models (Tuettenberg et al., 

2006). Several antiangiogenic molecules have also shown antitumor effect in preclinical 

studies including angiostatin (Ma et al., 2002), endostatin (Peroulis et al., 2002) and 

platelet factor-4 (Bikfalvi, 2004). The results of preclinical studies are very encouraging 

and several clinical trials in glioma patients are ongoing using antiangiogenic molecules. 

Up to now, the most widely antiangiogenic molecules evaluated in clinical trials for 

malignant gliomas have been thalidomide, known to inhibit VEGF- and FGF-mediated 

angiogenesis and interferon (IFN)-α and -β, known to suppress FGF expression. 

However, both drugs gave variable results and induced severe side effects 

(Tuettenberg et al., 2006). 

1.2.2.1.4 Immunotherapy 

This strategy aims to stimulate the immune system to mount an effective immune 

response against glioma cells. Gliomas create a very immunosuppressive environment 

and commonly escape recognition by the immune system. Thus, immunotherapy 

represents an attractive strategy for glioma treatment. Several approaches have been 

tested in preclinical and clinical studies, including the transfer of immunostimulatory 

cytokines, and the ex vivo manipulation of immune cells. The transfer of several 

cytokines was shown to result in significant antitumor responses in animals models 

including interleukin-2, -4, -12 (IL-2, IL-4, IL-12), and granulocyte macrophage-colony 

stimulating factor (GM-CSF) (Benitez et al., 2008; Okada and Pollack, 2004). These 

cytokines mainly aim to enhance the activation of T lymphocytes. Another promising 

approach consists in the ex vivo manipulation of effector cells such as T lymphocytes or 

especially dendritic cells (DC), normally absent from the brain parenchyma (Barzon et 

al., 2006).   
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1.2.2.2 Gene transfer vectors 

To deliver the genes of interest into tumor cells, various viral and non-viral vectors were 

developed. Viral vectors are considered up to now as the most effective gene delivery 

system and are predominantly used in gene therapy trials. Most vectors are produced 

by replacement of one or more genes necessary for viral replication by the transgenes 

and are thus replication deficient.  

The main viral and non-viral vectors used for gene therapy purposes in malignant 

gliomas have been retroviral vectors and adenoviral vectors, although liposomes were 

also tested. Most clinical trials have been performed using retroviral and adenoviral 

vectors delivering the suicide gene HSV-TK, and adenoviral vectors encoding p53 

(Andreansky et al., 1996).  

Although the different gene transfer methods tested in gliomas have generally been 

proven to be safe and well tolerated, the clinical responses were rather disappointing 

compared to the preclinical results. This has been mainly assigned to the inefficient 

transduction of tumor cells and lack of selectivity of the vectors. Thus, continuous efforts 

in vector engineering are required to increase the selectivity and efficiency of tumor cell 

transduction.  

 

1.2.3. Oncolytic virotherapy 

Oncolytic viruses are replicating viruses able to selectively infect and lyses tumor cells, 

either naturally or through appropriate engineering. They are either used as direct killing 

agent or modified to be used as gene transfer vector, thus allowing highly selective 

delivery in tumor cells. 

Oncolytic viruses engineered from HSV type 1 (HSV-1) and adenovirus have been most 

intensively studied for glioma therapy, although naturally tumor-selective viruses like 

Newcastle disease, reovirus, poliovirus, vesicular stomatis virus and vaccinia virus are 

also under consideration.  

Oncolytic viruses derived from HSV-1 used in clinical trials for malignant gliomas 

include G207 and HSV1716. Both mutants harbor deletion in the neurovirulence gene 

γ34.5 and are thus replication-defective in neurons but replicate efficiently in 

transformed cells (Harrow et al., 2004; Markert et al., 2000; Papanastassiou et al., 

2002; Rampling et al., 2000). G207 and HSV1716 were tested in phase I clinical studies 
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in patients with malignant gliomas and gave promising results without any associated 

toxicity (Heise et al., 1997). 

Oncolytic virotherapy of malignant glioma with oncolytic adenoviruses was conducted 

using ONYX-015. ONYX-015 is an adenovirus mutant deleted in the E1B gene that 

preferentially replicates in p53 deficient cells, thus being more selective for cancer cells 

(Chiocca et al., 2004). The potential efficacy and safety was evaluated in a phase I 

clinical trial in patient with recurrent gliomas. Although no serious side effects were 

observed, no significant antitumor effect could be demonstrated (Berns, 1996).  

 
Autonomous parvoviruses are emerging as promising oncolytic viruses for cancer 

therapy. Indeed, they are endowed with intrinsic oncolytic but also oncotropic and 

oncosuppressive properties. Moreover, they show low pathogenicity in adult animals 

and prevalent cytotoxicity in transformed cells (Cornelis et al., 2004a).  

1.3. Autonomous parvoviruses  

Parvoviruses (latin parvus = small) are, with a diameter of approximately 20–25 nm, 

among the smallest, non enveloped icosahedral viruses, containing a linear single-

stranded DNA genome of 4 to 6 kb and belong to the Parvoviridae family (Berns, 1996).  

1.3.1. Taxonomy of Parvoviruses 

The Parvoviridae family is divided into two subfamilies on the basis of their host range: 

the Parvovirinae infecting birds and mammals, and the Densovirinae infecting insects 

and other arthropods (see Figure 1-1). The Parvovirinae subfamily is further divided in 

five genera: Parvovirus, Dependovirus, Erythrovirus, Amdovirus and Bocavirus and 

includes the known human viruses such as B19 (Erythrovirus) and the adeno-

associated viruses (AAV, Dependovirus). The erythrovirus B19, as well as the recently 

identified Human Bocavirus (HuBoca) are until now the only known human pathogenic 

members of the Parvoviridea (Anderson, 2007; Anderson et al., 1983).  

Dependoviruses, with the exception of the goose (GPV) and duck parvoviruses (DPV), 

are so called because they require the assistance of a helper virus, adenovirus, herpes 

virus or vaccinia virus, for efficient replication (Berns et al., 2000; Kerr et al., 2006). In 

contrast, other members of the Parvovirinae are able to replicate independently and are 

commonly described as autonomous parvoviruses (Kerr et al., 2006). 
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Family Subfamily Genus Species Host 

Parvovirus MVM, H-1 PV, FPV, KRV, LuIIIV,  
MPV-1, PPV  

Vertebrates 

Dependovirus AAV, AAAV, BAAV, DPV, GPV Vertebrates 

Erythrovirus B19 Vertebrates 

Amdovirus AMDV Vertebrates 

Parvovirinae 

Bocavirus BPV-1, CnMV, HuBoca Vertebrates 

Densovirus JcDNV, GmDNV Invertebrates

Iteravirus BmDNV, CeDNV Invertebrates

Brevidensovirus AaeDNV, AalDNV Invertebrates

Parvoviridae 

Densovirinae 

Pefudensovirus PfDNV Invertebrates
 
 

Figure 1-1: Taxonomy of the Parvoviridae family 
MVM: Minute Virus of Mice; H-1 PV: H-1 parvovirus; FPV: Feline panleukopenia virus; KRV: Kilham rat 
virus; LuIIIV: LuIII virus; MPV-1: Mouse parvovirus 1; PPV: Porcine parvovirus; AAV: Adeno-associated 
virus; AAAV: Avian adeno-associated virus; BAAV: Bovine adeno-associated virus; DPV: Duck 
parvovirus; GPV: Goose parvovirus; B19: B19 virus; AMDV: Aleutian mink disease virus; BPV-1: Bovine 
parvovirus type 1; CnMV: Canine minute virus; HuBoca: Human bocavirus; JcDNV: Junonia coenia 
densovirus; GmDNV: Galleria mellonella densovirus; BmDNV: Bombyx mori densovirus; CeDNV: 
Casphalia extranea densovirus; AaeDNV: aedes aegypti densovirus; AalDNV: Aedes albopictus 
densovirus; PfDNV: Periplaneta fuliginosa densovirus. (Adapted from Kerr et al., 2006) 

The Parvovirus genus contains three distinct subgroups based on host range: Feline 

panleukopenia virus (FPV), Porcine parvovirus (PPV), and rodent viruses species 

including a mouse virus group with Minute Virus of Mice (MVM), and Mouse 

parvovirus 1 (MPV-1), as well as a rat virus group with H-1 virus (H-1 PV), Kilham rat 

virus (KRV), and LuIII virus (LuIIIV). 

MVM comprises two strains, the immunosuppressive (MVMi) strain and the prototype 

(MVMp) strain, used in this study. Although they are very similar, with only 3% 

divergence in their genome (Sahli et al., 1985), both strains display different in vitro 

tropism and in vivo pathogenicity. Whereas MVMp replicates in vitro preferentially in 

mouse fibroblast cell lines, MVMi replication is restricted to mouse T lymphocytes and 

hematopoietic precursors (Segovia et al., 1991). The two strains are therefore also 

commonly named fibrotropic or prototype (MVMp) and lymphohematotropic (MVMi). In 

vivo, MVMp infection of newborn mice is asymptomatic, while MVMi infection leads to 

severe growth retardation or death (Kimsey et al., 1986).  

 

In this study, the parvoviral vectors used are based on the MVM prototype strain MVMp 

and are referred as MVMp-based vectors. 



                                                                                                                INTRODUCTION 
                                                                                                                                                                              

9 

1.3.2. Organization of the parvoviral genome 

Parvoviruses are composed of a small, linear, single-stranded DNA genome (minus 

strand) of approximately 5 kb, flanked at both ends by palindromic hairpins (Berns, 

1996). The genomic organization of MVM together with the corresponding transcripts 

and proteins are illustrated in Figure 1-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-2: Genomic organization and transcription map of MVM  
A. Line diagram of the MVM genome showing the coding sequence and terminal hairpins. The position of 
the early promoter P4, driving the expression of the viral non-structural proteins (NS 1/2) and of the late 
promoter P38, driving the expression of the viral capsid proteins (VP 1/2) is indicated by the arrows.       
B. Schematic representation of MVM transcripts and corresponding proteins. The three transcripts 
classes (R1, R2, R3) are represented with their frequency (M: major, m: minor, r: rare) and size. The 
encoded proteins are listed on the right of each transcript. The large (1 and 3) and small (2) open reading 
frames are depicted together with their respective splicing sites (vertical caret), as well as Poly (A) tail 
(AAA), and eventual cleavage site (CS). 

The viral genome contains two large overlapping transcription units (Bodendorf et al., 

1999) controlled by two distinct promoters: the early promoter P4 and the late promoter 

P38, driving respectively the expression of viral non-structural (NS) and capsid (VP) 

proteins (Pintel et al., 1983). Three major mRNA species, R1, R2 and R3 are produced, 

all terminating at a single common polyadenylation site at the right end of the genome     

(Clemens and Pintel, 1987). Transcription of the left unit, under the control of P4, 

produces two classes of mRNAs transcripts, R1 and R2, which are alternatively spliced. 

While R1 encodes the non-structural proteins NS1, the R2M, R2m and R2r splice 
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variants code respectively for the NS2-p, -y, and -l isoforms. Transcription of right unit, 

under the control of P38, produces one mRNA transcript R3, and its two splice variants 

R3M and R3m code for the viral proteins VP1 and VP2. VP3 is produced by proteolytic 

cleavage of VP2. While the viral P4 promoter has a strong and constitutive activity, P38 

promoter activity is conditional and depends on NS1 for its transactivation (Rhode, 

1985). 

 

1.3.3. Parvoviral Proteins 

1.3.3.1 Non-structural proteins 

NS1 is a 83 kDa nuclear phosphoprotein, involved in viral DNA replication, 

transactivation of the P38 promoter and parvoviral-mediated cytotoxicity (Li and Rhode, 

1990). NS1 is essential for the viral replication and exerts its functions through helicase, 

adenosine triphosphatase (ATPase), nickase, endonuclease activities and site-specific 

DNA binding properties (Cotmore et al., 1995; Wilson et al., 1991). NS1 binding sites 

are reiterated at multiple sites throughout the viral genome, including the viral DNA 

replication origins and the transactivating region (TAR) upstream of the P38 promoter. 

Upon binding to the TAR region, NS1, endowed with a transcriptional activation domain, 

upregulates transcription from the P38 promoter, and thus stimulates the expression of 

viral capsid genes (Rhode, 1985). Besides its functions in viral replication and 

transcription, NS1 exerts cytotoxic properties and is considered as the major mediator 

of parvovirus-induced cytotoxicity (Caillet-Fauquet et al., 1990; Li and Rhode, 1990). 

However, the mechanisms of NS1-mediated cytotoxicity remain elusive. NS1 

oligomerization, as well as phosphorylation were shown to be essential for both the 

replicative and cytotoxic functions of NS1 (Corbau et al., 2000; Li and Rhode, 1990; 

Nuesch et al., 1998). 
 
NS2 is a 25 kDa phosphoprotein, predominantly cytoplasmic, present in three different 

isoforms (p, y, l). While MVM NS2 is required for a productive infection in its natural 

host, it seems to be non-essential in cells from other species (Naeger et al., 1990). In 

murine cells, NS2 appears to influence various steps of the parvovirus life-cycle 

including synthesis of DNA replication forms, capsid assembly (Cotmore et al., 1997) 

and efficient nuclear egress of progeny virions (Eichwald et al., 2002). NS2 might also 

be implied in parvoviral cytotoxicity (Brandenburger et al., 1990). The mechanism of 
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action of NS2 remains unclear. NS2 was shown to interact with different proteins, 

including proteins of the 14-3-3 family (Brockhaus et al., 1996), the survival motor 

neuron protein (SMN) (Young et al., 2002) and the chromosome region maintenance 

protein 1 (CRM1) (Bodendorf et al., 1999). The interaction between NS2 and CRM1 

was shown to be essential for active nuclear export of NS2 and viral egress from the 

nucleus (Eichwald et al., 2002; Miller and Pintel, 2002). Up to now, no distinct function 

could be attributed to the different NS2 isoforms. 

 
Recently, a novel non-structural protein was identified in the genus Parvovirus, termed 

SAT, for small alternatively translated protein. The SAT protein is translated from a 

small open reading frame (ORF) located at the 5’ end of the VP2 ORF, highly 

conserved in the genome of all members of the Parvovirus genus. The SAT protein is a 

late non-structural protein, expressed from the VP2 mRNA. The role of the SAT protein 

remains elusive but its localization in the endoplasmic reticulum (ER) in porcine 

parvovirus suggests that SAT could mediate immune evasion by blocking major 

histocompatibility complex (MHC) type I processing or induce cell death pathways 

through ER stress as previously shown for other viral proteins localized in the ER 

(Zadori et al., 2005). 

1.3.3.2 Viral capsid proteins 

Parvoviral capsid proteins include VP1 (83 kDa), VP2 (64 kDa) and VP3 (60 kDa). 

While VP1 and VP2 constitute the majority of capsid proteins, both in empty and full 

capsid, VP3 is only found in DNA-containing capsids (Cotmore and Tattersall, 1987). 

Viral capsid proteins VP1 and VP2 are both endowed with unusual nuclear import 

signals and are translocated as oligomeres via nuclear pore complexes into the 

nucleus, where capsid assembly occurs (Lombardo et al., 2002). Besides its nuclear 

import signal, VP2 harbors also a nuclear export signal, required for the nuclear export 

of full particles (Maroto et al., 2004). While VP2 is sufficient for empty capsid assembly 

and virus binding to the host cell receptor, VP1 is required for a productive infection 

(Tullis et al., 1993). This is possibly owing to N-terminal VP1 phospholipase A2 (PLA2) 

activity, required for the transport of virions and/or viral DNA from the late endosomes to 

the nucleus (Zadori et al., 2001).  
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1.3.4. Parvoviral Life cycle 

Parvoviral infection begins with adsorption of the virus particle to specific cell surface 

receptors. Some cellular receptors of parvoviruses have been identified, including the 

erythrocyte P antigen globoside for B19 (Brown et al., 1993) and transferring receptors 

for the related canine (CPV) and feline (FPV) parvoviruses (Parker et al., 2001). The 

cellular receptors of MVM and H-1 remain unknown, but their sensitivity to 

neuraminidase and trypsin treatment favors N-acetyl neuraminic (sialyl) containing 

glycoproteins (Cotmore and Tattersall, 1987). Upon adsorption, parvoviruses are 

internalized by receptor-mediated endocytosis, most likely through clathrin-mediated 

endocytosis (Vihinen-Ranta et al., 2004), as shown for CPV (Suikkanen et al., 2002). 

The viral particles are then transported via several endosomal compartments, early 

toward late, to perinuclear compartments (Cotmore and Tattersall, 2007; Ros et al., 

2002). The endosomal acidification was shown to be essential for MVMp infection (Ros 

et al., 2002), inducing major rearrangements of the viral capsid necessary for nuclear 

entry in particular the externalization of the VP1 N-terminal sequence, and the cleavage 

of an exposed VP2 N-terminal sequence (Mani et al., 2006). The mechanisms implied in 

the transfer of viral DNA and/or viral particles from the endosomal compartments to the 

nucleus remain unclear but evidence suggests the implication of N-terminal VP1 PLA2 

activity (Zadori et al., 2001). In the nucleus, the viral single-stranded DNA is converted 

into a double-stranded monomeric replicative form, using the right-end palindromic 

hairpin as template to initiate DNA replication by the host cell polymerase (Berns, 1996). 

The conversion depends strictly on cellular factors transiently expressed during the S 

phase of the cell cycle such as cyclin A (Bashir et al., 2001). Thus, autonomous 

parvoviruses can only replicate in proliferating cells. Infection of resting cells leads to a 

latent infection, delayed until the host cells enter the S phase (Deleu et al., 1999). The 

monomeric replicative form is further amplified in multimeric intermediates and serves 

as template for the synthesis of viral mRNAs and progeny single-stranded DNA, which 

is then encapsidated in newly assembled capsids (Berns, 1996; Cotmore and Tattersall, 

1987). The viral life cycle ends in permissive cells with the release of progeny virions, 

usually associated with cell death. The parvoviral life cycle is schematically represented 

in Figure 1-3. 
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Figure 1-3: The parvoviral life cycle 

 

1.3.5. Oncosuppressive properties of rodent parvoviruses 

Originally isolated from tumor cells or tumor-bearing animals, rodent parvoviruses were 

first identified as potential cancerogen agents (Kilham and Olivier, 1959; Toolan et al., 

1962). On the contrary, they were later shown to prevent the formation of spontaneous, 

virally or chemically induced tumors in laboratory animals in vivo, a phenomenon known 

as oncosuppression (Dupressoir et al., 1989; Rommelaere and Cornelis, 1991; Toolan 

et al., 1982). In addition, antitumor effects of rodent parvoviruses could also be 

demonstrated both in established tumors or virus-infected tumor cells grafted in mice 

(Faisst et al., 1998; Haag et al., 2000). 

Tumor cells as well as in vitro transformed cells with oncogens or carcinogens were 

shown to sustain an increased viral DNA replication and gene expression, in 

comparison to their normal counterparts (Cornelis et al., 1988; Salome et al., 1990). The 

preferential replication of parvoviruses in transformed cells is referred to as oncotropism 

(Rommelaere and Cornelis, 1991). Cell transformation appears to provide beneficial 

environment for parvoviral replication. Indeed, it induces a dysregulation of the cell 

cycle, leading to proliferation but also to the activation of oncogenes, and was shown to 

stimulate all the steps of the virus life cycle depending on the cells. 
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Rodent parvoviruses were also shown in vitro to preferentially kill transformed cells, 

compared to the normal parental cells (Rommelaere and Cornelis, 1991). This 

phenomenon is known as oncolysis and has been assigned, at least in part, to the 

cytotoxic NS1 protein (Caillet-Fauquet et al., 1990; Li and Rhode, 1990). 

1.3.6. Low pathogenicity of rodent parvoviruses 

The pathology of rodent parvoviruses in their natural host depends both on the virus 

strain and on the age of the animal. H-1 or MVMi infection of fetuses and neonates 

leads to acute, lethal diseases, while the infection of adult animals remains fully 

asymptomatic. Other rodent parvoviruses, like MVMp, or MPV-1 seem to be non 

pathogen in both neonates and adults (Ball-Goodrich et al., 1998; Jacoby et al., 1996; 

Siegl, 1984). 

In regards to the potential use of rodent parvoviruses as anti-cancer agents, their 

possible pathological effects in human are of importance. No correlation could be 

established between any human disease and serological evidence of prior infection with 

parvovirus H-1 (Siegl, 1984). In two limited phase I clinical trials, in vivo injections of H-1 

in few patients with advanced disseminated cancers lead to viremia followed by 

seroconversion, without causing any pathological side effects (Le Cesne et al., 1993; 

Toolan et al., 1965). Yet, there is a need to accumulate data concerning the safety of 

rodent parvoviruses for human therapy.  

1.3.7. Parvoviral vectors based on rodent parvoviruses 

As mentioned, the oncolytic, oncotropic, and oncosuppressive properties of rodent 

parvoviruses, together with their low pathogenicity make them attractive candidates for 

cancer therapy. However, their frequent isolation from tumors demonstrates that wild-

type (wt) parvoviruses are not always able to eradicate tumors. Therefore, in order to 

increase the antitumor properties of wt parvoviruses, recombinant parvoviruses were 

constructed so as to deliver transgenes in the tumors able to stimulate the immune 

system.  

 
Up to now, recombinant rodent parvoviral vectors have been engineered from the 

MVMp, H-1 and LuIII infectious clones. Two main types of constructs were used, 

namely complete coding replacement vectors and capsid replacement vectors. 
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In the first type, based on LuIIIV, all the viral coding regions between the telomeric 

origin of replication were removed and replaced by a transgene (Maxwell et al., 1993; 

Maxwell et al., 1996). These vectors allow high encoding capacity (up to 4 kb). They 

retain the cis-acting elements but lack viral non-structural proteins and are thus deficient 

for viral DNA replication.  

In contrast, capsid replacement vectors enable the expression of transgenes while 

maintaining the parvoviruses intrinsic properties and were thus used in this study. 

Based on MVMp and H-1, these vectors retain the expression of the non-structural 

proteins, under the control of the parvoviral early promoter P4, whereas the capsid 

genes, driven by the late promoter P38, have been replaced by a therapeutic transgene 

(Brandenburger et al., 1999; Kestler et al., 1999; Russell et al., 1992). These vectors 

were shown to retain the oncotropic properties of the wild-type viruses in vitro and 

represent therefore selective gene delivery vectors for cancer gene therapy (Dupont et 

al., 2000; Dupont et al., 1994; Russell et al., 1992). Furthermore, they retain the non-

coding terminal sequences. This, together with the expression of NS1, allows viral DNA 

replication and high levels of transgene expression through transactivation of the P38 

promoter (Kestler et al., 1999). Due to the deletion of the capsid genes, these vectors 

are no longer able to produce capsid proteins and hence, progeny virions. They are viral 

DNA-replication competent, since they retain the NS genes, but propagation deficient. 

 
Recombinant parvoviruses are produced by co-transfection of the recombinant 

parvoviral vector plasmid together with a helper plasmid, providing the parvoviral capsid 

proteins. One major problem encountered during the production was the contamination 

of recombinant virus stocks with replication-dependent viruses (RCV), produced by 

homologous recombination between the vector and helper constructs (Dupont et al., 

1994; Kestler et al., 1999; Russell et al., 1992). To reduce the probability of 

recombination, several strategies were developed including the decrease of homology 

between the two constructs (Dupont et al., 2001; Wrzesinski et al., 2003), pseudotyping 

(Wrzesinski et al., 2003), or the use of split helper constructs (Brown et al., 2002).  

 
The MVMp-based capsid replacement vectors used in this study are so-called chimeric 

recombinant vectors (see Figure 1-4). Taking advantage of the similarity between the 

MVM and H-1 genomes, viral sequences were exchanged up- and downstream of the 

transgenes between both viruses. This strategy resulted in a dramatic decrease of RCV 

contamination without affecting virus titers (Wrzesinski et al., 2003). 
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Another limitation of capsid replacement vectors is their low cloning capacity. Indeed, 

while removal of up to 800 bp in the 5’ VP sequence did not affect the virus yields, 

larger deletions lead to a dramatic reduction of the virus titers (Kestler et al., 1999). The 

choice of transgenes in parvoviral-based therapy is therefore restricted by their 

respective size. However, most immunostimulatory genes used for cancer gene therapy 

have a small size, compatible with the limited size of parvoviral vectors. Therapeutic 

transgenes used so far in H-1 and MVMp-derived vectors include genes encoding 

toxins, co-stimulatory factors, cytokines/chemokines and antigens from bacterial origin 

(reviewed in Cornelis et al., 2004b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Figure 1-4: Schematic representation of pMVMp and recombinant parvoviruses 
In order to increase the antitumor properties of wt MVMp, recombinant parvoviral MVMp-based vectors 
were developed. Based on the wt pMVMp infectious clone, part of the VP-coding sequence were deleted 
(800 bp), producing the so-called control empty vector (pChi-MVMp/Δ800) and replaced by various 
transgenes (pChi-MVMp/Transgene). Recombinant viruses are produced by co-transfection of the 
recombinant parvoviral vector plasmid together with a helper plasmid (pMVMp Helper), providing the 
parvoviral capsid proteins in trans, driven by the human cytomegalovirus (CMV) promoter. To reduce the 
probability of homologous recombination between the vector and helper constructs, viral sequences were 
exchanged up- and downstream of the transgenes between the close related MVMp (blue) and H-1 (red) 
viruses, producing so-called chimeric recombinant vectors.  

MVM Origin H1 Origin

pMVMp

pChi-MVMp/Δ800

pMVMp Helper

NS1/NS2 VP1/VP2
P4 P38

Δ800NS1/NS2
P4 P38

P-CMV
VP1/VP2

pChi-MVMp/Transgene

NS1/NS2
P4 P38

Transgene

MVM Origin H1 Origin

pMVMp

pChi-MVMp/Δ800

pMVMp Helper

NS1/NS2 VP1/VP2
P4 P38

Δ800NS1/NS2
P4 P38

P-CMV
VP1/VP2

pChi-MVMp/Transgene

NS1/NS2
P4 P38

Transgene



                                                                                                                INTRODUCTION 
                                                                                                                                                                              

17 

1.3.8. Antitumor effects of recombinant parvoviruses in vivo 

The anti-neoplastic effects of recombinant parvoviruses transducing various cytokines 

and chemokines as well as the co-stimulatory factor B7.1 were evaluated by monitoring 

the formation and growth of tumors after implantation of human or mouse tumor cells in 

recipient mice (see Table 1-1).  

 

Tumor cells 1 Virus  Transgene 2 Mice 3 Infection 4 Antitumor effect 5 Ref 6 

HeLa H-1 IL-2 nude ex vivo + 1 

HeLa H-1 MCP-1 nude ex vivo - 1 

HeLa H-1 MCP-3 nude ex vivo + 2 

K1735 MVMp IL-2 syn ex vivo + 3 

K1735 MVMp MCP-3 syn in vivo + 4 

B78/H-1 MVMp MCP-3 syn ex vivo / in vivo + 4 

H5V MVMp IP-10 syn in vivo + 5 

H5V MVMp IL-2 syn in vivo - 5 

EL4 MVMi B7.1 syn in vivo + 6 

 
Table 1-1: Antitumor effects of recombinant parvoviral vectors in vivo  
1: HeLa: human cervical carcinoma; K1735: mouse melanoma; B78/H-1: mouse melanoma; H5V: mouse 

endothelioma; EVL4: mouse thymoma. 
2: IL-2: interleukin-2; MCP-1 and MCP-3: monocyte chemotactic protein 1 and 3; IP-10: interferon-γ 

inducible protein 10; B7.1: costimulatory molecule B7.1. 
3: H-1-derived vectors were used against human tumor cells grafted in immunosuppressed (nude) mice, 

whereas MVMp-derived vectors were against mouse tumor cells injected in syngeneic (syn) mice. 
4: ex vivo: tumors cells infected prior to subcutaneous grafting; in vivo: established tumors treated with 

peritumoral injections of virus. 
5: Antitumor effects include longer life expectancy, prevention of tumor appearance, inhibition of tumor 

growth, and regression of established tumors. +: enhanced effect of the transgene-delivering vector 
compared to a control virus (wild-type, empty vector or vector carrying a reporter gene); -: no 
improvement of the antitumor effect with the transgene-delivering vector over a control virus.  

6: The numbers correspond to the following references: (1) Haag et al., 2000;(2) Wetzel et al., 2001; (3) 
El Bakkouri et al., 2005; (4) Wetzel et al., 2007; (5) Giese et al., 2002; (6) Palmer and Tattersall, 2000. 

(Adapted from Kerr et al., 2006) 

Altogether these studies show that H-1 and MVMp-based vectors transducing IL-2, 

monocyte chemotactic protein (MCP) -3, Interferon-γ inducible protein 10 (IP-10), and 

B7.1 induce significant antineoplastic effects in several mouse tumor models. 

Furthermore, these studies argue for the safety of parvoviral based-therapy as relatively 

low doses of parvoviral vectors were sufficient to achieve a therapeutic effect and no 

harmful side effects could be detected, even after repeated virus injections (Giese et al., 

2002; Lang et al., 2006; Wetzel et al., 2007). 
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The antitumor effects observed could be assigned largely to the virus-mediated 

transgene expression. Indeed, therapeutic vectors had greater antitumor effects than 

the respective control viruses including wild-type viruses, empty vectors or 

recombinants expressing a reporter gene (Giese et al., 2002; Haag et al., 2000; Wetzel 

et al., 2001; Wetzel et al., 2007). In these studies, parvoviral vectors were inoculated 

either to tumor cells prior to implantation (ex vivo) or to established tumors (in vivo). The 

antitumor effects of parvoviral vectors were generally lower in vivo than ex vivo (Wetzel 

et al., 2007). This can be ascribed to poor intratumoral virus spread, virus uptake by 

non-tumoral cells, and generation of neutralizing antibodies at later stages. 

1.3.9. Rationale for the use of rodent parvoviruses in glioma therapy 

The properties of parvoviruses outlined above and especially their oncotropic properties 

make them attractive candidates as antitumor agents in glioma therapy. Indeed, the 

adult brain is composed of post-mitotic neurons and low proliferative glial cells, and 

should therefore not be prone to parvoviral infection, as the parvoviral life cycle is strictly 

dependent on host cell proliferation. In accordance with this, rodent parvovirus 

replication was reported in fetal but not adult brain (Cotmore and Tattersall, 1987). 

In this context, several pre-clinical studies investigated the permissiveness of glioma 

cells for rodent parvoviruses H-1 and MVMp infection. The permissiveness for H-1 

infection was analyzed in established glioma cell lines of rat and human origin as well 

as in short-term and low-passage cultures of malignant brain tumors. H-1 was found to 

infect all the cells tested and to induce a dose-dependent killing (Herrero et al., 2004). 

MVMp was shown to infect and to efficiently kill in vitro mouse glioma cells but also 

several rat and human gliomas cells lines (Dupont et al., 2000; Wollmann et al., 2005). 

In the rat system, a MVMp-based vector carrying a reporter gene showed preferential 

transduction and killing in rat C6 glioma cells, whereas no killing and no or low levels of 

transgene expression could be detected in normal rat neurons and astrocytes 

respectively (Dupont et al., 2000). Similarly to rat astrocytes, normal mouse astrocytes 

were shown to sustain an abortive viral life cycle and to express limited amounts of viral 

proteins upon MVMp infection, whereas microglia did not (Abschuetz et al., 2006). 

Together, these data show that H-1 or MVMp are able to efficiently infect and kill most 

malignant glioma cells, without deleterious effects on normal brain cells in vitro. Thus, 

these preclinical studies suggest that glioma cells may represent a good target for 

rodent parvoviral-mediated gene therapy. 



                                                                                                                INTRODUCTION 
                                                                                                                                                                              

19 

1.4. Candidate transgenes 

As described above, gliomas are highly vascularized tumors, known to grow in a very 

immunosuppressive environment. Thus, antiangiogenic and immunostimulatory 

cytokines represent attractive candidates as antitumor agent for glioma gene therapy. 

In this context, the antitumor effects of MVMp-based parvoviral vectors transducing 

such cytokines/chemokines were evaluated in a mouse glioblastoma model. 

1.4.1. Tumor necrosis Factor-α  

Tumor necrosis Factor-α (TNF-α) was first isolated from the serum of mice treated with 

bacterial endotoxin, and shown to cause hemorrhagic necrosis of mice tumors (Carswell 

et al., 1975). Since then, TNF-α was shown to be a multifunctional cytokine involved in 

apoptosis, cell survival, inflammation, and immunity. TNF-α is mainly produced by 

activated macrophages, natural killer (NK) cells, and T lymphocytes. TNF-α expression 

was also reported in a variety of other cell types, including, DCs, fibroblatsts, astrocytes, 

endothelial cells, smooth muscle cells, and tumor cells (Oppenheimer and Feldmann, 

2000).  

TNF-α is synthesized as a 26 kDa membrane-bound propeptide (pro-TNF), and is 

released upon cleavage of its pro-domain by the TNF-converting enzyme. In its soluble 

form, TNF-α is biologically active as a homotrimer of 17 kDa subunits (Bemelmans et 

al., 1996). 

TNF-α signals through two distinct cell receptors, referred to as TNFR-1 and TNFR-2. 

While TNFR-1 is expressed on all cell types, TNFR-2 expression is restricted to 

endothelial and immune cells (Aggarwal, 2003). The major difference between the two 

receptors is the presence of a death domain in TNFR-1, absent in TNFR-2. Through this 

domain, TNFR-1 is able to induce apoptotic cell death and belongs to the death 

receptor family (Ashkenazi and Dixit, 1998). Besides the induction of apoptosis, TNFR-1 

has also the ability to transduce cell survival signals. Both TNFR-1 survival and death 

pathways are well defined but their regulation remains elusive (Muppidi et al., 2004). 

TNFR-1 signaling activates multiple signal transduction pathways including Nuclear 

Factor kappa B (NF-κB) and Jun kinase (JNK) survival pathways as well as the 

apoptosis pathway. TNFR-2 was also shown to activate both NF-κB and JNK (Chen and 

Goeddel, 2002; Wajant et al., 2003). 



INTRODUCTION 

20 

TNF-α acts on many cells types and has a broad range of activities. TNF-α is above all 

a potent pro-inflammatory cytokine, inducing the release of inflammatory cytokines such 

as IL-6 or IL-8. It also induces the activation of many professional cells of the immune 

system including macrophages, lymphocytes, and NK cells (Waterston and Bower, 

2004). In addition, TNF-α is also reported to induce the maturation of DCs which in turn 

activate the adaptative immune response (Trevejo et al., 2001; Yanagawa et al., 2002). 

While TNF-α is involved in the clearance of viral, bacterial, fungal, or parasitic infection, 

it has also been shown to be involved in the pathogenesis of many human diseases, 

including autoimmunity, allergy, and septic shock (Oppenheimer and Feldmann, 2000). 

The role of TNF-α in cancer is controversial and both tumor promoting as well as 

antitumor activities are discussed. Indeed, TNF-α was shown to promote tumor 

formation, growth, invasion, and metastasis. On the other hand, TNF-α was shown to 

have antineoplastic effects such as induction of apoptosis, disruption of tumor 

vasculature, stimulation of antitumor immunity, and synergism with chemotherapeutic 

drugs (Balkwill, 2006; Mocellin and Nitti, 2008; Mocellin et al., 2005). It is worth 

mentioning that systemic administration of TNF-α in clinical trials resulted in minimal 

tumor response with severe toxicity (reviewed in Creagan et al., 1998; Lejeune et al., 

1998; Van Horssen et al., 2006). In contrast, local delivery of high concentration of TNF-

α could be maintained safely, in particular for the treatment of melanoma (Lejeune et 

al., 1994; Lejeune et al., 2006; Manusama et al., 1996). 

1.4.2. Chemokines 

Chemokines (chemotactic cytokines) represent a large family of structurally and 

functionally related small (8-15 kDa) proteins that induce directional cellular migration. 

Chemokines establish concentration gradients along which responding cells migrate, 

thus promoting the accumulation of cells at the source of chemokine production. 

Chemokines and their receptors have been involved in development, homeostasis, and 

angiogenesis but also in autoimmune and infectious diseases, as well as tumor growth 

and metastasis (Horuk, 1998; Rossi and Zlotnik, 2000). 

Until now, the chemokine superfamily consists of approximately fifty members (Laing 

and Secombes, 2004; Zlotnik et al., 2006) and twenty receptors (Zlotnik and Yoshie, 

2000).  Chemokines are structurally subdivided into four subfamilies, CXC (α), CC (β), 

CX3C (δ) and C (γ), according to the position of two highly conserved N-terminal 

cysteine residues (Murphy, 2002; Zlotnik et al., 2006). Functionally, chemokines are 
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divided into homeostatic and inflammatory proteins. Homeostatic chemokines are 

constitutively expressed, and generally involved in the development and homeostasis of 

the hematopoietic and immune systems as well as in immune surveillance. In contrast, 

inflammatory chemokines are inducible, produced only in response to physiological 

stress including inflammation or infection, and induce leukocyte recruitment to the 

injured or infected site (Luster, 1998; Zlotnik and Yoshie, 2000). The CXC subfamily is 

further functionally divided in ELR+ and ELR- chemokines, depending on the presence 

or absence of the ELR (glutamic acid - leucine - arginine) motif preceding the CXC 

domain. Whereas ELR+ chemokines are strong angiogenic factors, able to simulate 

endothelial cell chemotaxis, ELR- are potent angiostatic factors (Strieter et al., 1995). 

Chemokines signal through G-protein coupled, seven transmembrane receptors, which 

are divided into four subfamilies, CXCR, CCR, CX3CR and XCR, based on their 

chemokine subclass specificity (Murphy, 2002). Most receptors can respond to several 

chemokines and similarly most chemokines can bind to more than one receptor, 

although these interactions are typically class restricted (Rossi and Zlotnik, 2000). 

Upon signaling, chemokines receptors induce inhibition of adenylcyclase and activation 

of phospholipase C, leading to release of intracellular calcium. Downstream of the G 

proteins, several signal transduction molecules were shown to be activated by 

chemokines including GTPases like Rho, Rac and Cdc42, or pathways of major kinases 

like mitogen-activated protein kinase (MAPK) and phosphatidyl inositol-3 kinase (PI3K) 

(reviewed in Balkwill, 1998; Thelen, 2001). After signaling, chemokine receptors are 

usually internalized and cells become thus refractory to further stimulation with the 

same or other ligands. 

1.4.3. Interferon-γ inducible protein 10  

Interferon-γ (IFN-γ) inducible protein 10, commonly designated as IP-10 or CXCL10 is a 

10 kDa protein, member of the ELR- CXC chemokine subfamily. IP-10 binds to a unique 

chemokine receptor, CXCR3, shared with two other ELR- CXC ligands, namely 

monokine induced by IFN-γ (Mig or CXCL9) and IFN-inducible T-cell α-chemoattractant 

(I-TAC or CXCL11) (Cole et al., 1998; Loetscher et al., 1996). 

Human IP-10 was originally isolated from U937 monocytic leukemia cells as an 

interferon-γ inducible mRNA (Luster et al., 1985). Later, IP-10 was found to be 

synergistically induced by IFN-γ and TNF-α in several cells types (Majumder et al., 
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1996), but also slightly by TNF-α alone (Sheng et al., 2005) or lipopolysaccharide (LPS) 

(Ohomori and Hamilton, 1992). 

IP-10 has multiple biological functions including T cell development, recruitment of 

immune cells, adhesion of T cells to endothelial cells, and inhibition of angiogenesis. 

IP-10 is a potent chemoattractant for NK cells (Taub et al., 1995), NKT cells (Kim et al., 

2002), plasmoid dendritic cells (Penna et al., 2001), monocytes and stimulated T cells 

(Loetscher et al., 1996; Taub et al., 1993). Both the activation status and the phenotype 

of T cells were shown to be determinant for IP-10 chemotaxis. Indeed, IP-10 promotes 

the migration of stimulated but not of naïve T cells (Taub et al., 1993). Furthermore,    

IP-10 attracts specifically activated Th1 but not Th2 lymphocytes (Bonecchi et al., 1998; 

Sallusto et al., 1998). In agreement with this, IP-10 has been shown to be involved in 

several Th1-type inflammatory diseases, such as multiple sclerosis (Salmaggi et al., 

2002) or experimental autoimmune encephalomyelitis (EAE) (Ransohoff et al., 1993). In 

addition to the recruitment of T cells, IP-10 also promotes the adhesion of activated T 

cells to endothelial cells, and thus seems to play a role in the entry of T cells to sites of 

tissue inflammation (Taub et al., 1993). IP-10 is a highly inducible gene but it is also 

constitutively expressed in some organs including naïve lymphoid organs, suggesting a 

role for IP-10 in T cell development (Gattass et al., 1994). Besides its function as 

chemoattractant, IP-10, as ELR- chemokine, has been shown to be a potent inhibitor of 

angiogenesis in vitro (Angiolillo et al., 1995; Strieter et al., 1995) and in vivo (Sgadari et 

al., 1996). This seems to be mediated by direct effects on endothelial cells through 

inhibition of endothelial cell migration (Belperio et al., 2000; Strieter et al., 1995), 

proliferation (Angiolillo et al., 1995; Feldman et al., 2006; Luster et al., 1995; Strieter et 

al., 1995), and differentiation (Angiolillo et al., 1995). In addition, IP-10 was also recently 

shown to induce endothelial cell apoptosis (Feldman et al., 2006).  

Owing to both its angiostatic and immunostimulatory properties, IP-10 represents an 

attractive candidate for cancer therapy. Indeed, IP-10 demonstrated strong antitumor 

effects in several mouse tumor models, used either alone (Feldman et al., 2002; Giese 

et al., 2002; Sun et al., 2005) or in combination with other cytokines, such as MIG 

(Tominaga et al., 2007), or IL-12 (Keyser et al., 2004; Narvaiza et al., 2000). The 

antitumor effects of IP-10 were shown to be mediated by both its immunostimulatory 

(Luster and Leder, 1993) and angiostatic properties (Arenberg et al., 1996; Sgadari et 

al., 1996). 



                                                                                                                INTRODUCTION 
                                                                                                                                                                              

23 

1.4.4. Monocyte chemotactic protein-2 and -3  

Monocyte chemotactic protein-2 and -3 (MCP-2, MCP-3), also known as CCL8 and 

CCL7, are inflammatory chemokines belonging to the CC chemokine family (Van 

Damme et al., 1992). MCP-2 and -3 are produced by various cell types, including tissue 

cells, leukocytes, and tumor cells. Their expression is induced by pro-inflammatory 

cytokines such as IL-1, TNF-α, and IFN-γ, but also by exogenous stimuli like LPS, 

bacteria, and viruses (reviewed in Van Coillie et al., 1999; Zlotnik et al., 2006). Both 

chemokines bind multiple CCR receptors including CCR1, CCR2, CCR3 and CCR5 

(Fioretti et al., 1998). Owing to their multiple receptors, they have a broad range of 

target cells, including most leukocyte cell types. Indeed, they were shown to be 

chemotactic in vitro for monocyte/macrophages, basophils, neutrophils, eosinophils, 

T lymphocytes, NK cells, and DCs. Besides leukocyte chemotaxis, MCP-2 and -3 were 

reported to induce the release of specific enzymes in monocytes and T cells, allowing 

these cells to digest extracellular matrix components and thus to migrate into tissues. 

They were also reported to induce histamine release in basophils and granzyme A 

release from T and NK cells (reviewed in Menten et al., 2001; Van Coillie et al., 1999). 

The broad range of actions of MCP-2 and -3 and especially their chemotaxis for NK 

cells, T cells and DCs, known to play a critical role in antitumor immunity, make them 

attractive candidates as antitumor agents. MCP-3 was shown to be a potent antitumor 

agent in several mouse tumor models, including mouse mastocytoma (Fioretti et al., 

1998), human carcinoma HeLa (Wetzel et al., 2001), and mouse melanomas B78/H-1 

and K1735 (Wetzel et al., 2007).  

 

1.5. Aim of the study 

Recombinant parvoviral vectors encoding TNF-α and IP-10 were recently shown in our 

laboratory to exert antitumor effects on mouse GL261 glioma implanted subcutaneously 

(Enderlin et al., 2008). In this context, the first aim of this study was to investigate the 

mechanisms sustaining tumor inhibition by TNF-α- and IP-10-expressing parvoviral 

vectors in the GL261 subcutaneous tumor model. The second aim of this work was to 

implement the intracranial GL261 tumor model in our laboratory, which was not 

established at the time this study was started, and to analyze the antitumor effects of 

parvoviral vectors transducing TNF-α, IP-10, compared to MCP-2 and MCP-3 on GL261 
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implanted intracranially in syngeneic C57BL/6 mice. The mechanisms sustaining tumor 

inhibition subcutaneously as well as intracranially were to be investigated by 

immunohistochemistry on tumor samples and included the analysis of the cellular 

immune infiltration, intratumoral cell proliferation and apoptosis as well as 

microvascularization.  
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2. MATERIALS 

2.1. Animals 

Female, 5 to 7 weeks old, C57BL/6 mice were purchased from Charles River WIGA. 

 

2.2. Mammalian cells lines  

Name Species Description Reference 

293T Human Adenovirus-transformed human embryonic 
kidney cells expressing SV40 large T antigen Graham et al., 1977  

A9 Mouse Fibroblastic cells Littlefield, 1964 

GL261 Mouse 3-methylcholanthrene induced astrocytoma cells Seligman and Shear, 1939 

MLEC-
PAI/Luc Mouse 

Mink lung epithelial cells transfected with 
luciferase under a plasminogen activator 
inhibitor-1 promoter 

Abe et al., 1994 

 

 

2.3. Bacteria strains 

Name Resistance Origin Reference 

E. Coli SURE Tetracyclin + Kanamycin Stratagene Greener, 1990 

E. Coli JM 109 - Stratagene Yanisch-Perron et al., 1985 
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2.4. Plasmids 

Name Description Size 
(bp) Resistance Origin 

 pChi-MVMp/∆800 Infectious MVMp DNA clone 
bearing an 800 bp deletion in VP genes 

6469 
- Ampicillin Wrzesinski 

et al., 2003 

 pChi-MVMp/MCP-2 Infectious MVMp DNA clone 
expressing human MCP-2 

6855 
440 Ampicillin  T.Kayser, 

unpublished 

 pChi-MVMp/MCP-3 Infectious MVMp DNA clone    
expressing human MCP-3 

6987 
434 Ampicillin Wetzel et al., 

2007 

 pChi-MVMp/TNF-α Infectious MVMp DNA clone 
expressing mouse TNF-α 

7283 
700 Ampicillin Enderlin et 

al., 2008 

 pChi-MVMp/IP-10 Infectious MVMp DNA clone 
expressing human IP-10 

6984 
380 Ampicillin Enderlin et 

al., 2008 

 pCMV-VP<MVMp MVMp helper plasmid expressing VP  
genes under a CMV promoter 7700 Ampicillin Wrzesinski   

et al., 2003 

 

2.5. Primers 

Transcript 
Primer sequence 5´→3´                  

sense/antisense 
Tannealing 

(°C) 
Cycles

Supplier 
Reference 

ACCACAGTCCATGCCATCAC mGAPDH 
TCCACCACCCTGTTGCTGTA 

60 25 Paulukat et al., 2001 

TGACCTCCACCAGCAGCTCAA mIFN-α 
GACCACCTCCCAGGCACAGG 

58 35 Maxim Biotech 

CATCAACTATAAGCAGCTCCA mIFN-β 
TTCAAGTGGAGAGCAGTTGAG 

56 35 Cervantes-Barragan 
et al., 2007 

TGAGCAGAGATGTCTGAATC mIP-10 
TCGCACCTCCACATAGCTTACAG 

58 25 Giese et al., 2002 

ACTTCTTCTGCTGCACAGCA MCS  
GGGTCAGTGTTAAAGATGTAGGTG 

58 30 self designed 

TGAATGGAAAAGATATCGGATGGAATAG NS1 
GCCTCCGTCTCTTGGTGG 

58 30 Giese et al., 2002 

TCAACGGGATCAGCCCCAAA mTGF-β1 
TGGTAGCCCTTGGGCTCGTG 

58 35 Maxim Biotech 

CCCCCGGAGGTGATTTCCAT mTGF-β2 
TGGGGTTTTGCAAGCGGAAG 

58 35 Maxim Biotech 

CACTGTGCGCGAGTGGCTGT mTGF-β3 
TCCTCCAGGTTGCGGAAGCA 

58 35 Maxim Biotech 
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2.6. Antibiotics 

 

2.7. Antibodies 

2.7.1. Primary antibodies 

Antigen Host Isotype Clonality Dilution Application Supplier / Reference 

33D1 Rat IgG Monoclonal 1:200 IHC BD Pharmingen 

CD4 Rat IgG Monoclonal 1:200 IHC Abcam 

CD8 Rat IgG Monoclonal 1:200 IHC Abcam 

CD31 Rat IgG Monoclonal 1:200 IHC BD Pharmingen 

CD68 Rat IgG Monoclonal 1:500 IHC AbD Serotec 

Ki67 Rabbit IgG Polyclonal 1:500 IHC Abcam 

NKG2D Rat IgG Monoclonal 1:100 IHC R&D Systems 

2.7.2. Secondary antibodies 

Specificity Host Conjugate Dilution Application Supplier Reference 

Rabbit IgG Donkey Biotin 1:100 IHC Amersham Biosciences 

Rat IgG Goat Biotin 1:100 IHC Amersham Biosciences 

Antibiotic Working dilution Stock concentration Supplier 

Ampicillin 75 ng/ml 75 μg/ml Roche Applied Science 

Chloramphenicol 136 µg/ml 34 mg/ml, in 75% EtOH Roche Applied Science 

Geneticin 250 µg/ml 50 mg/ml Gibco-Invitrogen 

Kanamycin  12.5 ng/ml 25 μg/ml Roche Applied Science 

Penicillin 100 U/ml 10,000 U/ml Gibco-Invitrogen 

Streptomycin 100 µg/ml 10,000 µg/ml Gibco-Invitrogen 

Tetracyclin 12.5 ng/ml 12.5 μg/ml, in 75% EtOH Sigma 
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2.8. Cytokines and growth factors 

Product name Supplier 

Recombinant human IP-10  R&D systems 

Recombinant human TGF-β1 PeproTech  

 

2.9. Enzymes 

Product name  Supplier 

M-MLV reverse transcriptase Promega  

Rnasin ribonuclase inhibitor Promega  

RQ1 Rnase-Free Dnase I Promega  

Taq DNA polymerase Invitrogen  

Restriction endonucleases NEB, Roche, Fermentas 

Streptavidin-horseradish peroxidase complex Amersham Biosciences 

 

2.10. Kits 

Name used in the text Product name Supplier 

DNA labeling system Megaprime DNA Labeling systems Amersham Biosciences 

Gel Extraction kit QIAQuick Gel Extraction kit Qiagen  

Luciferase assay system Luciferase assay system Promega  

Mouse IFN-α ELISA Mouse IFN-α ELISA kit PBL Biomedical Laboratories 

Mouse IP-10 ELISA  Quantikine Mouse CXCL10/IP-10 R&D Systems  

Mouse TNF-α ELISA BD optEIA Mouse TNF-α ELISA set BD Biosciences  

Plasmid mega kit Qiagen Plasmid mega kit Qiagen  

TUNEL assay kit Apoptag Qbiogene 
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2.11. Reagents    

Name used in the text Product name Supplier 

Agarose Agarose NA  Pharmacia Biotech  

Antiseptic cream Bepanthen Bayer 

BSA BSA Fraction V Roche  

Casy blue Casy blue Schärfe System  

Casy ton Casy ton Schärfe System  

DAB DAB substrate Roche 

DMSO DMSO Hybri Max Sigma  

Dnase/Rnase-free water UltraPURE water DNAse/RNAse Free Gibco-Invitrogen  

dNTPs Mix dNTPs Mix (PCR grade) Invitrogen  

DPBS  calcium- and magnesium-free DPBS  Gibco-Invitrogen  

Guanidium thiocyanate / 
phenol solution TRIzol Invitrogen  

HBSS  HBSS  -CaCl2 and –MgCl2 Gibco-Invitrogen  

Herring sperm DNA Herring sperm DNA Promega  

Histogreen Histoprime Linaris 

Hydrogen peroxyde Hydrogen peroxyde Roth 

Iodixanol OptiPrep Axis-Shield 

Isopetane Isopentane Roth 

Ketamin Ketavet (100 mg/ml) Pfizer  

Mounting medium Histofluid Marienfeld 

NaCl 0.9%  0.9% NaCl solution   Braun  

OCT Compound Tissue-Tek Sakura Finetek  

Oligo (dT) primer Oligo (dT)18 primer Fermentas  

Paraformaldehyde Paraformaldehyde Roth 

Rotihistol Rotihistol Roth 

Trypan blue  Trypan blue solution Fluka  

Trypsin 0.25% 0.25% Trypsin-EDTA  Gibco-Invitrogen  

Xylazin Rompun 2%   Bayer  
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2.12. DNA ladders 

Name used in the text Product name Supplier 

2 Log DNA ladder NEB  
DNA ladder 

100 bp DNA ladder NEB  

 

2.13. Chemicals 

Acids, bases, as well as organic and inorganic solutions were purchased in analytical 

grades from Applichem, Becton Dickinson, Bio-Rad, Calbiochem, Fluka, Gerbu, Baker, 

Merk, Pharmacia Biotech, Riedel-de Haen, Roth, and Sigma. 

Radiochemicals used for the labeling of DNA probes (32P-dCTP) were obtained from 

Amersham Pharmacia. 

2.14. Consumables 

Standard plasticware for cell culture and molecular biology was purchased from 

Greiner, Nunc, Satstedt, Costar, Millipore, BD Falcon, and Eppendorf. 

 

Name used in the text Product name Supplier 

Absorbent swabs Sugi absorbent swabs Kettenbach  

Centrifugal buffer exchange columns Zeba Desalt Spin Column Pierce-Therma Scientific 

Cryomolds Cryomold 10x10x5 mm Sakura 

33 gauge beveled needle NanoFil 33 gauge beveled  WPI  

Nitrocellulose membrane filters NC45 Schleicher & Schuell 

Non absorbable nylon thread Daclon DS 12mm EP 0.7  SMI 

1 ml fine dosage syringe Omnican-F 1ml  B/Braun  

10 µl syringe 10µl NanoFil   WPI  

Polyallomer centrifuge tube Polyallomer Quick-seal Beckman Instruments 

Matrix tubes Lysing Matrix D Qbiogene 

Superfrost microscope slide Superfrost Plus Menzel 
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2.15. Equipment  

Name used in the text Product name Supplier 

Cell counter CASY Cell Counter & Analysis System  Schärfe System  

Cell disrupter Fast-Prep Qbiogene 

Centrifuges:   

     High speed HERMLE ZK380; Megafuge 1.0R Hermle; Heraeus  

     Super speed Sorvall RC 5C Super Speed  Thermo Scientific  

     Ultra speed Optima LE-80K Beckman Coulter  

     Table MiniSpin Eppendorf  

Centrifuge rotors:   

     Fixed angle  FiberLite F-10 Thermo Scientific  

     Fixed angle (ultra speed) 50.2 Ti Beckman Coulter  

     Swinging bucket Sorvall HB-6 Thermo Scientific  

     Swinging bucket Heraus 2706D Heraus  

Clinical 1.5 T MR scanner Magnetom Vision  Siemens 

Heating pad Solac CT8630 Solac  

Horizontal electrophoresis system Easy Cast electrophoresis system Peqlab 

Luminometer  Fluoroskan Ascent FL  Thermo Labsystems   

Microinjection unit: UltraMicroPump II Microserynge 
Injector WPI  

 Micro4 Microsyringe Pump Controller WPI  

Microplate reader Multiscan EX   Thermo Labsystems  

Microscopes: leica DMIL Leica  

 Axio Imager Z1 Carl Zeiss 

Microtome HM 550 Microm 

Spectrophotometer Ultrospec 3100 pro Amersham Biosc.  

Stereotactic frame: Stoelting Lab Standard Stereotaxic WPI  

 Stoelting Mouse/Neonatal Rat Adapter  WPI  

Thermal cycler Mastercycler epGradientS Eppendorf  

UV-transilluminators: Image Master VDS (302 nm) Pharmacia Biotech  

 N90 (366 nm) Konrad Benda  

Water purification system Milli-Q Biocell A10 Millipore  
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2.16. Softwares 

Product name Supplier 

Adobe Photoshop Adobe Systems Inc 

Ascent Multiscan Thermo Labsystems  

Ascent Fluoroscan Thermo Labsystems  

AxioVision Rel. 4.7 Carl Zeiss 

Endnote X Thomson 

Image Master 1D Amersham Pharmacia Biotech  

Microsoft Office Microsoft 
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3. METHODS 

3.1. Microbiological methods 

3.1.1. Bacteria culture 

All bacteria were grown in Luria Bertani (LB) medium supplemented with the 

appropriate antibiotics at 37°C with vigorous shaking (200 rpm). The Escherichia Coli 

(E. Coli) strains used in this study as well as the antibiotics applied for the selection of 

plasmid containing bacteria are listed below. 
 

Strain Use Selective antibiotics 

E. Coli SURE Propagation of infectious recombinant DNA clones Tet + Kan + Amp 

E. Coli JM 109 Propagation of MVM helper vector Amp 

 

Media and additives for bacteria culture were purchased from Fluka, Gibco-Invitrogen, 

PAA Laboratories, and Sigma. 
 

LB-medium: 1% (w/v) Bacto-tryptone  
 0.5% (w/v) Yeast extract 
 0.5% (w/v) NaCl  
 pH 7.0  
   

3.1.2. Preparation of bacteria for plasmid isolation 

For amplifying plasmid DNA, 20 ml LB-medium supplemented with the appropriate 

selective antibiotics were inoculated with transformed E. Coli SURE or E. Coli JM109 

bacteria containing the desired plasmid. After incubation at 37°C with vigorous shaking 

(200 rpm) for 8 h, 5 ml of the starter culture were transferred to 250 ml LB-medium with 

the appropriate antibiotics. The culture was incubated at 37°C for 12-16 h until bacteria 

growth reached the end of the logarithmic growth phase. In the case of E. Coli SURE 

bacteria, the culture was further incubated for 5 h at 37°C in the presence of 

chloramphenicol to amplify plasmid replication. The bacterial cells were harvested by 

centrifugation at 5000 rpm for 10 min at 4°C (fixed angle rotor, super speed centrifuge) 
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and all traces of supernatant were removed. The cell pellet was further processed to 

isolate plasmid DNA or stored at -20°C. 

3.1.3. Long-term storage of bacteria 

For cryopreservation of bacteria, 1 ml of late logarithmic phase growing bacteria was 

removed from the culture before addition of chloramphenicol, mixed with 0.5 ml 50% 

glycerol, freezed in liquid nitrogen, and stored at -80°C.  

 

3.2. Molecular biological methods 

3.2.1. Plasmid DNA isolation and purification 

Plasmid DNA isolation and purification from 2 x 250 ml bacteria culture was performed 

using a plasmid purification kit according to the manufacturer’s instructions. Briefly, 

bacteria were lyzed under alkaline conditions and the plasmid DNA was bound to an 

anion exchange resin under low salt conditions. RNA, proteins and low molecular 

weight impurities were removed by a medium salt wash. Plasmid DNA was eluted in a 

high salt buffer and precipitated with isopropanol. Purified DNA was dissolved in Tris-

EDTA (TE) buffer, quantified by spectrophotometry at 260 nm, and analyzed by 

restriction digestion followed by agarose gel electrophoresis. Plasmid DNA was further 

processed for calcium phosphate transfection or stored at -20°C. 
 

TE buffer: 10 mM Tris-HCl, pH 8.0  
 1 mM EDTA, pH 8.0 
  

3.2.2. DNA quantification and quality assessment 

The DNA concentration was determined by measuring the absorbance at 260 nm with a 

spectrophotometer. An absorbance of 1 unit at 260 nm corresponds to 50 µg/ml dsDNA. 

The purity of DNA can be estimated by the ratio of the absorbance values at 260 nm 

and 280 nm (A260/A280). Only pure plasmid preparations with a ratio of A260/A280 

between 1.8 and 2.0 were subjected to transfection of mammalian cells. Alternatively, 

the concentration of a DNA fragment was estimated by gel electrophoresis by 
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comparing the intensity of the isolated band with a molecular weight marker of known 

concentration. 

3.2.3. Restriction enzyme digestion of DNA 

Restriction analysis was used for the characterization, identification, and isolation of 

DNA molecules. The treatment of plasmid DNA with restriction endonucleases 

produces, due to their sequence specificity, a series of precisely defined fragments 

which are separated according to their size by gel electrophoresis.  

Restriction enzyme digestions were performed in a final volume of 20 μl according to 

the enzyme manufacturer’s instructions, using 1 µg of plasmid DNA. Incubation periods 

ranged from 1 h to 2 h at 37°C depending on the enzyme used. Analysis of the 

fragmented plasmid DNA was done by agarose gel electrophoresis. 

3.2.4. Agarose Gel electrophoresis 

Separation of nucleic acids according to size was conducted for analytical as well as 

preparative purposes by agarose gel electrophoresis. Agarose concentrations varied 

between 1 and 2 % in Tris-Acetate-EDTA (TAE) buffer, depending on the expected size 

of the fragments. Ethidium bromide was added to the gel at a final concentration of 

1 μg/ml to allow visualization of the nucleic acids under UV-light. The samples were 

supplemented with 10x DNA loading buffer and loaded in parallel to DNA molecular 

weight markers for product size and concentration estimation. The gels were run in an 

horizontal electrophoresis system at 5-10 V/cm in 1x TAE buffer until sufficient 

separation of the fragments. The gel was visualized in a UV transilluminator (302 nm), 

and documentation was done by photography of the visualized bands using the Image 

Master 1D software. 

 

TAE buffer: 40 mM Tris-Acetat, pH 7.8 
 1 mM EDTA 
 pH 8.0 
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3.2.5. DNA gel extraction  

The DNA fragment to be purified was run in an agarose gel, visualized under UV light at 

a wavelength of 366 nm (UV transilluminator) to avoid DNA damage, and was cut out 

from the gel using a scalpel. Isolation and purification of the fragment was performed 

with the gel extraction kit, according to the manufacturer’s instructions. The purified 

DNA fragment was dissolved in TE buffer and stored at -20°C. Qualitative and 

quantitative analysis was carried out by agarose gel electrophoresis.  

3.2.6. Total RNA isolation from eukaryotic cells 

Total RNA was isolated from cell monolayers by guanidium thiocyanate extraction and 

purified by phenol/chloroform extraction according to the method described by 

Chomczynski and Sacchi, 1987. Monolayer cells were washed once with PBS and lyzed 

with a cell scraper using 1 ml of guanidium thiocyanate/phenol solution (TRIzol) per 

10 cm plate. The cell lysates were transferred into matrix tubes, homogenized with rapid 

and vertical angular motion in a cell disrupter (time: 3x 20 s, speed: 5) at RT and 

transferred to eppendorf tubes. Addition of chloroform (0.2 ml per ml of TRIzol) and 

incubation for 3 min at RT, followed by centrifugation (15 min, 13000 rpm, 4°C, table 

centrifuge), separated the solution in an aqueous phase, containing RNA, and an 

organic phase, containing protein. The upper aqueous phase was transferred to a new 

tube and mixed with equal volume of isopropanol. Samples were then incubated for 10 

min at RT, centrifuged (10 min, 11000 rpm, 4°C, table centrifuge) and the supernatant 

discarded. The RNA pellet was washed once with 75% ethanol, centrifuged again, air-

dried and dissolved in 300 μl Dnase/Rnase-free water. Total RNA was stored at -80ºC.  

3.2.7. Total RNA quantification and quality assessment 

The RNA concentration was determined by measuring the absorbance at 260 nm with a 

spectrophotometer. An absorbance of 1 unit at 260 nm corresponds to 40 µg/ml ssRNA. 

The purity of RNA can be estimated by the ratio of the absorbance values at 260 nm 

and 280 nm (A260/A280), with pure RNA having a A260/A280 ratio of 1.9 -2.1. 
The integrity of total RNA was verified by agarose gel electrophoresis in the presence of 

ethidium bromide. For this, 1µg RNA was run on a 2% agarose gel. The 18S and 28S 

ribosomal RNA from eukaryotic source should appear as sharp bands. Pure RNA was 

further used for reverse transcriptase polymerase chain reaction (RT-PCR).  
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3.2.8. Reverse transcription-polymerase chain reaction (RT-PCR)  

This method is a two steps process allowing the amplification of a defined piece of RNA. 

In the first step, called ‘first strand cDNA synthesis’, complementary DNA (cDNA) is 

made from a messenger RNA template by a RNA-dependent DNA polymerase reverse 

transcriptase through the process of reverse transcription (RT).  

The second step consists in the amplification of the resulting cDNA through polymerase 

chain reaction (PCR). This method allows specific amplification of defined regions of a 

DNA molecule in vitro through enzymatic replication by a DNA-dependent DNA 

polymerase. 

3.2.8.1 Deoxyribonuclease treatment and secondary structures removal 

Prior to RT-PCR, 1 μg of total RNA was treated with 1 U Rnase free 

Deoxyribonuclease I (DNAse I) according to the manufacture’s instructions in order to 

eliminate contaminating DNA. 

RNA secondary structures were denatured by incubation at 70°C for 5 min, followed by 

direct chilling on ice for 5 min to prevent their reformation. 

3.2.8.2 First strand cDNA synthesis from total RNA  

Total polyA RNA was reverse transcribed by the Moloney Murine Leukaemia Virus 

Reverse Transcriptase, RNAse H Minus Point Mutant (M-MLV RT (H-)), a RNA-

dependent DNA polymerase, using oligo(dT) primers. 

The reverse transcription was performed using a thermal cycler and the reaction was 

set up on ice in a final volume of 25 µl as follows: 

 
Component          Final quantity 

- DNAse-treated RNA   1 µg 

- M-MLV RT (H-)   200 U 

- Oligo(dT) primers   0.5 µg  

- dNTPs mix    0.5 mM each 

- Rnasin (Rnase Inhibitor)  20 U 

           
The reaction was mixed gently, briefly centrifuged, and incubated at 40°C for 1 h. The 

reverse transcriptase was subsequently inactivated by incubating at 90°C for 5 min. The 
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cDNA was diluted 1:8 using RNAse/DNAse free water and further used for PCR 

amplification or stored at -20°C.  
The cDNA synthesis was verified by amplification of the housekeeping gene 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) via PCR. 

3.2.8.3 Polymerase chain reaction (PCR) amplification of cDNA 

The reverse transcribed cDNA was used as template to amplify target sequences by 

PCR using specific primer pairs, self-designed, or commercially purchased. For 

commercial primers, the PCR reaction was performed according to the manufacturer’s 

instructions. PCR reactions with self-designed primers were set up on ice in a total 

volume of 25 or 50 µl as follows:  
 

Component           Final quantity 

- cDNA template   5 / 10 µl 

- Taq DNA Polymerase  2 U 

- Forward primer    0.5 µM  

- Reverse primer   0.5 µM 

- dNTPs mix    0.2 mM each 

- MgCl2     1.5 mM  

 

The samples were mixed, briefly centrifuged and the PCR was performed in a thermal 

cycler. The PCR program was adapted to the primer pair, using the following protocol: 
 

Step             Temperature  Time 

- Initial denaturation   94°C  3 min 

- Denaturation    94°C  30 s 

- Annealing    58-60°C 30 s     25-35 cycles 

- Extension    72°C  30 s   

- Final extension   72°C  10 min  

- Storage    4°C   hold 

 
The primers, as well as their specific PCR conditions (annealing temperature, number of 

cycles) are listed in section 2.5. The amplified PCR products were analyzed in terms of 

size and quantity by agarose gel electrophoresis and stored at -20°C. 

When semi-quantitative PCR was performed, the quantity of cDNA templates was 

adjusted according to their housekeeping gene signal intensity. 
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3.2.9. Preparation of a NS-specific radioactive labeled probe for virus titration  

The replication titer of purified viruses was determined by hybridization with a NS-

specific radiolabeled DNA probe to detect the viral DNA amplified within infected cells 

(see section 3.4.3.2). The probe was prepared according to Wrzesinski et al., 2003. 

The NS-specific DNA probe was generated by double restriction digestion of 50 µg 

pMVMp/Δ800 plasmid with EcoRV and EcoRI in a final volume of 50 µl, generating two 

fragments of 703 and 5716 bp, which were separated in a 1% preparative agarose gel. 

The 703 bp NS-specific DNA fragment was purified by agarose gel extraction and its 

concentration was estimated by comparison with a DNA standard. The DNA probe was 

stored at – 20°C before further processing for radioactive labeling. 

The NS-specific DNA fragment was radiolabeled using a DNA labeling system with   
32P-dCTP according to the manufacturer’s instructions, and the reaction was terminated 

by addition of 150 µl TE buffer. The radiolabeled probe was subsequently purified from 

unincorporated radiolabeled dNTPs by gel filtration through a Sephadex G50 column. 

For this, the probe was carefully pipetted onto the column matrix and centrifuged at 

2000 rpm for 10 min at RT (high speed centrifuge). The radioactivity of the purified 

probe was measured in a radioisotope counter using 2 µl of probe. The activity ranged 

typically between 30000 and 50000 CPM/µl. The labeled probe was subsequently 

denatured at 100°C for 10 min (heat block) and chilled on ice for 5 min before being 

transferred into the hybridization solution. Alternatively, the probe was frozen at -20°C 

before denaturation for short-term storage.  

 

3.3. Cell biological methods 

3.3.1. Maintenance of mammalian cell lines 

The given cell lines were maintained in monolayer cultures in defined medium with the 

adequate supplements under standard conditions (37°C, 5% CO2, 90% humidity). Sub-

confluent cells were splitted 1:5 - 1:20, depending on the cellular growth, usually twice a 

week. For this, the medium was removed, the cells were detached with 0.25% trypsin, 

and resuspended in fresh complete medium. Mammalian cells were generally 

centrifuged at 1000 rpm for 10 min at RT (high speed centrifuge) or alternatively at 1500 

rpm for 10 min at RT (table centrifuge). 
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The different cell lines used in this study as well as their respective media are indicated 

in the table below.  
 

Cell line Use Media 

293T Production of recombinant viruses by co-transfection DMEMc 

A9 Production of wt MVMp 
Titration of wt and recombinant MVM MEMc 

GL261 Glioma tumor model  DMEMc 

MLEC-PAI/Luc TGF-β luciferase bio-assay DMEMc + geneticin 
 

 

Media and additives for cell culture were purchased from: Fluka, Gibco-Invitrogen, PAA 

Laboratories, and Sigma. 
 

DMEM complete: 10% FBS  MEM complete: 5% FBS 
(DMEMc) 100 U/ml Penicillin  (MEMc) 100 U/ml Penicillin 
 100 µg/ml Streptomycin   100 µg/ml Streptomycin
 2 mM Glutamine   2 mM Glutamine 
 in DMEM   in MEM 
     
DMEMc + geneticin: 250 µl/ml  G418    
 in DMEMc    
     

3.3.2. Long term storage of mammalian cell lines 

For cryopreservation, cells were trypsinised, collected in 15 ml tubes, pelleted by 

centrifugation, and resuspended at the desired density in freezing medium. The cell 

suspensions were aliquoted into cryovials, gradually frozen to -80°C overnight in a cell 

freezing box, and then transferred to a cryogenic refrigerator for long term storage in 

liquid nitrogen. 
 

Freezing medium: 5% DMSO 
 5% Glycerol 
 in DMEMc or MEMc 
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3.3.3. Thawing of mammalian cell lines 

The cryo-preserved cells were quickly thawed in a water bath at 37°C and the cell 

suspension was added to pre-warmed medium containing all supplements. The cells 

were incubated overnight under standard conditions and the next day, fresh medium 

was provided.   

3.3.4. Cell number and viability determination 

3.3.4.1 Manual counting: trypan blue exclusion 

This assay is based on the principle that living cells possess intact cell membranes that 

exclude certain dyes, such as trypan blue, eosin, or propidium, whereas dead cells do 

not and therefore take up the dyes. The cell suspension is simply mixed with dye and 

then visually examined to assess whether cells take up or exclude the dye. 

An aliquot of cells was diluted in trypan blue solution, loaded onto a haemocytometer, 

and counted under a light microscope. For statistical significance, a minimum of 100 

cells per large square were counted. 

The cell concentration, total amount of viable cells, and the percentage of viability of a 

cell suspension were calculated as follows: 

 

 

 
 

 

 

The factor 104 compensates for the volume of the counting chamber to obtain the 

amount of cells present per ml of cell suspension as the volume over the central 

counting area is 0.1 µl.  

3.3.4.2 Automated counting:  CASY cell counter and analyzer system 

Automated cell counting was performed with a CASY cell counter and analyzer system. 

The CASY technology combines an established particle measurement technique with 

an additional pulse area analysis. For measurement of cell number or viability, the cell 

suspension is diluted in a weak electrolyte (CASY ton) and drawn through a capillary 

with a constant flow velocity. A low voltage field is applied to the capillary by two 

Cell concentration (cells/ml) = average of viable cells per square x dilution factor x 104

Total number of cells = cell concentration x volume of original cell suspension 

x100
cells of number total
cells viable of number  (%) viability  Cell  =
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platinum electrodes, resulting in a defined electrical resistance. During their passage, 

the cells displace a quantity of electrolyte corresponding to their volume and intact cells, 

considered as isolators, increase the resistance. These electric changes are 

proportional to the cell volume and can be used as a scale for living cells.  

Depending on the cell amount, about 50 - 200 µl of cell suspension were diluted in 

10 ml of CASY ton and gently mixed by inverting the solution. 400 µl of diluted cell 

suspension were then measured in triplets, and the number of viable and total cells as 

well as the viability were determined. Discrimination between vital and dead cells or cell 

debris was carried out by cell-type-dependent cursor setting as determined with the 

CASY blue solution. 

 

3.4. Virological methods 

3.4.1. Virus production 

3.4.1.1 Production of wild-type parvovirus  

Wild type MVMp was produced by infection of mouse A9 cells with a master stock of 

virus, and virions were extracted from the cells by freeze-thaw cycles in Viral Tris-EDTA 

(VTE) buffer as described by Kestler et al., 1999. The EDTA present in VTE complexes 

the calcium ions needed for the binding to the receptor and therefore leads to the 

release of the virus from the cell membrane. In addition, freeze-thaw cycles help 

destroying the cells. For large scale production, 21 x 10 cm cell culture dishes were 

seeded with A9 cells and incubated overnight so that they reached 90 - 95% confluency 

before infection. The cells were infected at a multiplicity of infection (MOI) of 3 x 10-3 

plaque forming units/cell (PFU/cell), trypsinised 4 h post-infection and transferred to 

15 cm dishes. The cells were further incubated for 4 to 5 days, until the cytopathic 

effects were visible. A9 cells were then detached from the plate with a cell scraper and 

pooled together with their media into 50 ml tubes. Cells were pelleted by centrifugation 

at 2500 rpm for 10 min at RT (swinging bucket rotor, high speed centrifuge), washed 

with PBS, and centrifuged again. The cell pellets were then resuspended each in 5 ml 

VTE and lyzed by three subsequent freeze-thawing cycles (-20°C/RT). Cell debris were 

pelleted by centrifugation at 2500 rpm for 10 min at RT (swinging bucket rotor, high 
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speed centrifuge), whereas supernatants, containing recombinant viruses were 

collected in 50 ml tubes and stored at 4°C. Pelleted cells were resuspended again in 

5 ml VTE and viruses were extracted as described above. The supernatants were 

pooled to a final volume of 20 ml virus-containing crude extract, and further processed 

for purification or stored at 4°C. 
 

VTE buffer: 50 mM Tris-HCl, pH 8.7 
 0.5 mM EDTA, pH 8.0  
  

3.4.1.2 Production of recombinant MVM parvoviruses 

Recombinant viruses were produced in 293T cells by calcium phosphate co-transfection 

of parvoviral vector DNA and helper plasmid, as described by Haag et al., 2000; Kestler 

et al., 1999. On the day before transfection, 30 x 10 cm culture dishes were seeded with 

2 x 106 293T cells and incubated overnight so that they reached 90 - 95% confluency 

before the transfection. Per dish, 6 μg recombinant vector DNA and 12 μg of capsid 

protein-providing helper plasmid pBK-CMV/VP were suspended in a 250 mM CaCl2 

solution. In parallel, a separate tube containing an equal volume of HBSS 2x, pH 7.05 

was prepared. Following, the DNA/CaCl2 solution was added drop-wise to the HBSS 

solution under delicate mixing. The mixture was allowed to precipitate for 15 - 20 min 

and then spread equally onto the 293T cells. Three days post-transfection, virions were 

extracted from the cells as described for wild-type MVMp and further processed for 

purification or stored at 4°C.  
 

HBSS, 2x: 280 mM NaCl 
 50 mM HEPES 
 12 mM D-Glucose 
 10 mM KCl 
 1.5 mM Na2HPO4 
 pH 7.05 
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3.4.2. Purification and buffer exchange of virus stocks 

3.4.2.1 Virus purification through iodixanol density gradient centrifugation 

Virus purification was performed through an iodixanol discontinuous density gradient 

ultracentrifugation, adapted from Zolotukhin et al., 1999. The gradient is formed by 

under-layering and displacing the less dense cell lysate with solutions of increasing 

iodixanol concentration, buffered in PBS supplemented with 1 mM MgCl2 and 2.5 M KCl 

(PBS-MK). For each gradient, 20 ml of the virus-containing clarified lysate were 

transferred into a 40 ml polyallomer centrifuge tube using a Pasteur pipette. 

Successively, 7 ml of 15%, 5 ml of 25%, 4 ml of 40%, and 4 ml of 60% iodixanol 

solutions were under-layered. To prevent aggregation of virus particles with proteins 

from the cell lysates, NaCl was added to the 15% iodixanol solution to a final 

concentration of 1 M. In addition, phenol red was added to the upper 25% and lower 

60% density steps to a final concentration of 0.01 µg/ml to distinguish the different 

phases. Tubes were sealed and ultra-centrifuged at 50000 rpm for 2.5 h at 10°C (fixed 

angle rotor). The centrifuge tube was then ventilated with a syringe needle at the top 

and the 40% layer, containing full virus particles, was recovered under sterile conditions 

by inserting a syringe needle below the 60% to 40% density interphase and collecting a 

total of about 4 ml. The purified viral suspension was stored at 4°C. 
 

PBS: 136.9 mM NaCl  PBS-MK: 2.5 mM KCl 
 2.7 mM KCl   1 mM MgCl2 
 4.9 mM KH2PO4   in PBS 
 1.8 mM K2HPO4    
 pH 7.2 - 7.4    
     

3.4.2.2 Buffer exchange of virus suspensions 

For in vivo virus injection, a buffer exchange of the iodixanol virus suspension to 

Dulbecco PBS (DPBS) was performed using centrifugal buffer exchange columns, 
according to the manufacturer’s instructions. Viral suspensions in DPBS were short-

term stored at 4°C. 
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3.4.3. Virus titration 

3.4.3.1 Wild type infectious titer determination: Plaque assay 

This method, routinely performed to titrate replication competent viruses, was used to 

determine the infectious titer of wt MVMp as described by Cornelis et al., 1988. 

Briefly, 2.5 x 105 A9 cells per 6 cm culture dish were infected with serial dilutions (10-6 - 

10-10) of wt MVM. Dilutions were performed in duplicate and mock-infected cells were 

included as control. After aspiration of the inoculum, the cells were covered with 7 ml 

overlay medium 1 and incubated at 37°C in a CO2 incubator. 5 days post-infection, cells 

were stained with 3 ml of overlay medium 2, containing neutral red and incubated 

overnight at 37°C. The plates were dried and the plaques scored visually.  

Titers are expressed as plaque forming unit (PFU) per ml of virus suspension, and 

calculated as follows: 

 

 

 

Bacto-Agar, 1.7% 1.7% (w/v) Bacto-Agar  Overlay medium 1: 3/7 Bacto-Agar 1.7% 
 in LB-medium   4/7 MEMc 2x 
     
Neutral red solution: 0.33% (w/v) neutral red  Overlay medium 2: 2/32 neutral red sol. 
 pH 6.8 - 7.0   15/32 PBS 2x 
    15/32 Bacto-Agar 1.7% 
     

3.4.3.2 Recombinant and wt infectious titer determination: Hybridization assay 

This method, adapted for the titration of recombinant viruses, unable to produce 

progeny virions, measures the amplification of viral DNA within infected cells using a 

radioactive-labeled viral DNA probe as described by Kestler et al., 1999. 

2.5 x 105 A9 cells per 6 cm culture dish were infected with serial dilutions (10-4 - 10-7) of 

recombinant virus in supplement-free MEM. Dilutions were performed in duplicate and 

mock-infected cells were included as control. 48 h post-infection, the medium was 

aspirated and cells were washed with sterile PBS. Cells were transferred onto 

nitrocellulose filters by placing gently the filters on the cells and moistening them with 

100 μl PBS. Cells were lyzed and their DNA denatured by applying the filters to 

denaturation buffer for 8 min and subsequently neutralized in neutralization buffer for 

10 min. Fixation of the DNA was performed by backing filters for 2 h at 80°C. To avoid 

volume  inoculum x dilution
plaques of number average  (PFU/ml) Titer =
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unspecific binding of the radioactive probe, filters were pre-hybridized for at least 1 h at 

65°C in hybridization solution supplemented with 0.2 ng of heat-denaturated herring 

sperm DNA per ml hybridization solution. The denatured radioactive labeled DNA probe 

(see section 3.2.9) was added to the hybridization solution and hybridization was 

performed overnight at 65°C. The next day, the hybridization solution was discarded 

and membranes were washed twice in washing solution 1 for 45 min at 65°C and once 

in washing solution 2 for 15 min at 65°C. After air-drying, the membranes were exposed 

to X-ray films in an autoradiography cassette for 24 - 72h at -80°C in the presence of an 

amplifier screen and films were developed in a darkroom film processor. Each spot on 

the X-ray film represents viral DNA-replication within one cell. Alternatively, this method 

was also used for titration of wt MVM. In this case, the infection was stopped 28 h post-

infection in order to avoid secondary infections. 

Titers are expressed as replication unit (RU) per ml of virus suspension and calculated 

as follows: 

dilution
7.5 xspots  of number average  (RU/ml) Titer =  

inoculum)   µl400 
of (fraction   µl1000 

area) (filter cm7.2 
area) (dish cm 21.5  7.5 Factor 2

2

x=  

 

Denaturation buffer: 1.5 M NaCl  Neutralization buffer: 1.5 M NaCl 
 0.5 M NaOH   1 mM EDTA  
    0.5 M Tris-HCl  
    pH 7.0 
     
SSC, 20x: 3M NaCl  Hybridization solution: 3x SSC 
 300mM Tri-Na-Citrate   1% (w/v) SDS 
 pH 7.0   5 mM EDTA 
    10x Denhardt’s 
     
Denhardt´s, 100x: 2% (w/v) BSA  Washing solution 1: 3x SSC 
 2% (w/v) Ficoll 400   1% (w/v) SDS 
 2% (w/v) PVP    
   Washing solution 2: 0.3x SSC 
    1% (w/v) SDS 
     

3.4.4. Virus infection of adherent cells 

To infect mammalian cell lines, a defined ratio of infectious virus particles to cell is used, 

termed multiplicity of infection (MOI). Depending on the titration method, the MOI is 

expressed as PFU/cell (plaque assay) or RU/cell (hybridization assay).  
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On the day before infection, the cells were seeded at the appropriate density and 

incubated overnight in a 37°C incubator. The culture medium was aspirated and 0.1 ml 

(24 well plate), 0.4 ml (6 cm dish), or 1 ml (10 cm dish) of virus inoculum was applied 

onto the cell monolayer. Virus dilutions with the appropriate MOI were prepared in 

supplement-free MEM or DMEM, depending on the cell type. Virus stocks were diluted 

at least 1:3 in media to avoid high concentrations of iodixanol which could affect the 

infection efficiency. As negative control (mock infection), virus free buffer was used as 

inoculum. Cells were incubated under standard conditions for 1 h and the dishes were 

gently rocked every 10 min to allow the inoculum to spread evenly over the whole dish. 

Finally, the inoculum was replaced by complete fresh medium and cells were further 

incubated at 37°C.  

3.4.5. Assessment of progeny virion production by virus production assay 

2 x 105 GL261 or A9 cells were seeded in 6 cm plates and infected at a MOI of 0.1 or 1 

PFU/cell. 7 days post-infection, cells were scraped in their culture medium, transferred 

into 15 ml tubes, and pelleted by centrifugation at 2500 rpm for 10 min at RT (swinging 

bucket rotor, high speed centrifuge). The supernatant was collected in a new tube and 

stored at -20°C until further processing. The cell pellet was resuspended in 1 ml VTE 

and viruses were extracted from the cell pellet as described above (see section 3.4.1.1), 

performing five freeze-thaw cycles. Titration of progeny virions present in the cell pellets 

and supernatants respectively was performed by plaque assay (see section 3.4.3.1). 

 

3.5. Biochemical methods 

3.5.1. Quantification of TGF-β in cell supernatants: PAI/L bioassay   

The amount of TGF-β present in cell supernatants was assayed using the plasminogen 

activator inhibitor-1 / luciferase (PAI/L) bioassay, as described by Abe et al., 1994 . This 

quantitative bioassay is based on the ability of TGF-β to induce PAI-1 expression, using 

mink lung epithelial cells (MLEC) stably transfected with a luciferase reporter gene 

under the control of a truncated PAI-1 promoter. Under these conditions, binding of 

TGF-β to the receptors of the PAI-1/Luc transfected MLEC (MLEC-PAI/Luc) results in a 

dose-dependent increase of luciferase activity.  
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Briefly, transfected MLEC cultures were plated in a 96 well plate at a density of 1.6 x 104 

cells per well in complete DMEM supplemented with geneticin and allowed to attach for 

3 h at 37°C in a 5% CO2
 incubator. After being washed once with production media, 

MLEC cells were further incubated for 14 to 18 h with 100 µl of cell supernatants to be 

investigated, or recombinant human TGF-β1, serially diluted in production media       

(0 - 4 µg/ml), to generate a standard curve. Cells were then washed twice with PBS and 

lyzed using 20 µl of cell lysis buffer for 30 min at RT under gentle agitation. The cell 

lysates were freezed at -20°C for 3 h and 20 µl cell lysates were subsequently 

transferred to an opaque 96 well plate. The bioassay was measured in a luminometer 

following the injection of 100 μl/well luciferase substrate reagent, using a luciferase 

assay system according to the manufacturer’s instructions. Luciferase activity was 

reported as relative light units (RLU), converted into concentrations using the standard 

curve obtained with human recombinant TGF-β1 and normalized in cell number. 

Only the active form of TGF-β is detected with the MLEC-PAI/Luc bioassay. Therefore, 

to evaluate the amount of total (active and latent) TGF-β, half of the cell supernatants 

were transiently acidified with 1 N HCl for 5-10 min at RT, followed by neutralization with 

1 N NaOH prior addition to the MLEC cells.  

 
Production Media: 0.1% (w/v) BSA  Cell lysis buffer: 25 nM Tris-HCl pH 7.4 
 100 U/ml Penicillin   2 mM EDTA-NaOH pH 7.4
 100 µg/ml Streptomycin   10% Glycerol 
 2 mM Glutamine   1% NP40 
 in DMEM   2 mM DTT  
     
 

3.6. Immunological methods 

3.6.1. Cytokine quantification by enzyme-linked immunosorbent assays (ELISA) 

The expression of cytokines in vitro was measured by a quantitative sandwich enzyme 

immunoassay, ELISA, which specifically detects and quantitates the concentration of 

soluble cytokines. Briefly, a capture antibody, specific for the cytokine of interest, is pre-

coated onto a microplate and the plate is blocked to avoid non-specific binding. 

Standards, controls, and samples are distributed into the coated wells and the cytokine 

of interest is bound to the immobilized capture antibody. A detection antibody, 

horseradish peroxidase-linked specific for the cytokine is then added, followed by a 
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chromogenic substrate solution, which is acted upon by the bound enzyme to produce 

color. The reaction is stopped, and the levels of colored product are determined 

spectrophotometrically at 450 nm using a microplate reader. The intensity of this 

colored product is directly proportional to the amount of cytokine bound in the initial 

step. Cytokine concentrations are determined from the standard curve established from 

serial dilutions of a recombinant cytokine. 

The levels of cytokines released in cell culture supernatants were determined with 

commercially available ELISA kits according to manufacture’s instructions or with 

specific ELISA established by the laboratory of Prof. Dr. Jo Van Damme (Rega Institute, 

University of Leuven, Belgium) for hMCP-2, hMCP-3 and hIP-10. 

Cell supernatants were harvested at the indicated time post-infection (p.i.), and stored 

at -80°C until analysis. The cumulative and daily cytokine production were determined. 

For the measurement of daily cytokine production, the medium was removed, frozen 

and replaced with fresh medium every day.  

3.6.2. Immunohistochemistry 

Immunohistochemistry was done in collaboration with the laboratory of Prof. Dr. Ralf 

Kinscherf, in the Centre for Biomedicine and Medical Technology Mannheim (CBTM), 

Medical Faculty Mannheim, University of Mannheim.  

3.6.2.1 Immunohistochemical staining 

Cryosections (6 µm) were cut with a microtome, mounted on Superfrost microscope 

slides, fixed in acetone for 10 minutes at -20°C and air-dried for 30 min. 

The sections were fixed in 4% paraformaldehyde in PBS for 10 min, washed three times 

with PBS for 5 min and non-specific binding sites were blocked in 1% normal swine 

serum in PBS for 10 min. All subsequent washing steps were performed with PBS for 

5 min. The primary antibody (see section 2.7.1) diluted in PBS was applied on the tissue 

and incubated overnight at RT in a humidified chamber. The sections were then washed 

twice and the endogenous peroxidase activity was blocked with 3% hydrogen peroxide 

in PBS for 5 min at RT. The sections were then washed three times and the 

corresponding secondary biotinylated antibody (see section 2.7.2) was applied to the 

tissue and incubated at 37°C for 30 min. After being washed twice, the sections were 

incubated for 30 min at 37°C with streptavidin-horse radish peroxidase (HRP) complex 

diluted 1:100 in PBS. After washing three times, a chromogenic substrate solution was 
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added, either diamino-benzidine (DAB) or histogreen, staining in brown or green, 

respectively, and the reaction was stopped with PBS. The sections were counterstained 

with hematoxylin according to Mayer’s protocol for a few seconds and washed twice in 

water for 5 min. The sections were then dehydrated by successive incubations in 99% 

ethanol (twice) and rotihistol (three times, xylol replacement) and cover glasses were 

placed using mounting medium.  

Apoptosis measurement was performed by terminal deoxynucleotidyl transferase biotin-

dUTP nick end labeling (TUNEL) assay using a commercially available kit following the 

manufacturer’s instructions. This method allows detection of free 3’-OH termini present 

in the DNA of apoptotic cell by enzymatic labeling. 
 

PBS: 136.9 mM NaCl  Paraformaldehyde, 4%: 4% (w/v) paraformaldehyde
 2.7 mM KCl   in PBS 
 4.9 mM KH2PO4    
 1.8 mM K2HPO4    
 pH 7.2 - 7.4    
     

3.6.2.2 Morphometric analyses 

Cryosections were photographed using an Axio Imager Z1 microscope equipped with 

the AxioVision Rel 4.7 imaging software and digitalized images were processed with the 

same software to measure labeled nucleus, cells, or surfaces. 

For the intracranial model, the whole tumor was photographed and analyzed, whereas 

for the subcutaneous model, 10 regions of interest per tumor were photographed and 

analyzed.  

 

3.7. Animal experiments 

3.7.1. Mouse handling 

Animals were kept under specific pathogen-free conditions within the central animal 

facility at the German Cancer Research Center of Heidelberg. Mice were housed five 

per cage within a flexible film isolator. The temperature was maintained at 21 - 24°C 

and the relative humidity at 40 - 60%. All animals were housed under the same 

conditions with food and water ad libitum, with a 12 h regime light schedule. Animal 
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experimentation was performed in compliance with institutional, governmental, and EU 

guidelines, and in accordance with recommendations for proper care and use of 

laboratory animals. All mice used in experiments were females between 7 and 9 weeks 

of age. Individual animals were identified using ear punches. Animals were sacrificed by 

cervical dislocation or CO2 inhalation. 

3.7.2. Subcutaneous GL261 tumor model  

3.7.2.1 Preparation of virus for injection in established subcutaneous tumors 

Prior to injection in established tumors, the virus stock was diluted to desired 

concentration of viral particles in DPBS, or buffer exchanged to DPBS when the ratio 

iodixanol:DPBS was higher than 1:3 to avoid iodixanol- or phenol red-mediated side 

effects. Virus in DPBS was kept on ice until the injection or alternatively stored for short 

time at 4°C.  

3.7.2.2  Subcutaneous inoculation of GL261 

Subcutaneous tumors were established by injection of GL261 cell suspension into the 

mice right posterior flank. To transfer the tumor, the flank of the carrier was shaved and 

1 x 106 cells GL261 cells were injected subcutaneously in 100µl of DPBS with a 1 ml 

fine dosage syringe. 

3.7.2.3 Virus injection in established subcutaneous tumors 

100 μl of virus suspension was applied peritumorally to avoid mechanical damage of the 

tumor. 

3.7.2.4 Subcutaneous tumor growth monitoring 

After subcutaneous tumor inoculation, the tumor growth was monitored every 2 to 3 

days by measuring its dimensions using an electronic digital caliper. The tumor volume 

(V) was calculated using the formula for an ellipsoid, V(mm3)=(π/6) L x W x H, where L 

is the length and W the width and H the height of the tumor.  

Animals were sacrificed when the tumor volume reached 4 cm3, one dimension 

exceeded 2 cm, or in case of necrosis.   
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3.7.2.5 Tumor embedding for immunohistochemistry 

Mice were sacrificed at the indicated time by cervical dislocation and the subcutaneous 

tumors were resected. The tumor samples were placed in cryomolds and embedded in 

OCT compound for cryo-sectioning. The cryomolds were then snap frozen in liquid 

nitrogen-cooled isopentane and stored at -80°C. 

3.7.3. Intracranial GL261 tumor model 

3.7.3.1 Preparation of in vitro infected cells for intracranial injection 

Three hours post-infection, virus-infected tumor cells were trypsinized, collected by 

centrifugation, and washed twice with calcium- and magnesium-free DPBS. The cells 

were then counted, resuspended in DPBS at a concentration of 2.5 x 104 cells/µl, and 

kept on ice until the injection.  

3.7.3.2 Intracranial inoculation of GL261 

Intracranial implantation of 1 x 105 in vitro infected GL261 cells was performed 

stereotactically in the left striatum. 

Female 7 to 9 weeks old C57BL/6 mice were anesthetized by intraperitoneal injection of 

a mixture of ketamin (0.1 mg/g body weight) and xylazin (0.02 mg/g body weight) in 

0.9% NaCl. The eyes of the mice were carefully covered with an antiseptic cream to 

avoid cornea drying. The head of the mouse was fixed in a stereotactic frame fitted with 

a mouse adaptor. A 1 cm midline scalp incision was made to expose the surface of the 

skull and a small hole was made into the left side of the skull with a 25 gauge needle at 

the defined location of the caudate/putamen, in the striatum, 2.5 mm lateral to the 

sagittal suture at the level of the bregma. The cortical surface was carefully cleared of 

any traces of blood using absorbent swabs. Tumor cells were delivered using a 10 µl 

syringe with a 33 gauge needle inserted into an automated microinjection unit. The 

syringe was inserted to a depth of 3.5 mm and retracted to a depth of 3 mm below the 

surface of the skull to create an injection canal. 1 x 105 GL261 cells suspended in 4 µl of 

phosphate buffer (DPBS) were stereotactically injected with an injection rate of 

250 nl/min. Following injection, the needle was left in place for an additional 5 min and 

then slowly withdrawn to minimize any back-flow through the insertion canal. The skin 

was sutured with non absorbable nylon thread and the mice were placed on a heating 
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pad until recovery from anesthesia. Animals were monitored daily after treatment and 

sacrificed at the indicated time. 

3.7.3.3 Intracranial tumor growth monitoring by MRI 

Magnetic resonance imaging (MRI) provides high soft tissue contrast and high spatial 

resolution. Due to MRI as a non invasive in vivo imaging modality individual animals can 

be examined at various time points during longitudinal animal studies with little or no 

effect on measured animals.  

After intracranial tumor inoculation, tumor growth was monitored weekly by MRI. To 

avoid movements during MRI measurements, mice were immobilized by inhalation 

anesthesia applied by a nose cone (1.5% isoflurane in oxygen). MRI measurements 

were performed using a 1.5 tesla whole-body MR-scanner (see Figure 3-1 B) in 

combination with a custom-made radio-frequency coil for excitation and signal reception 

(see Figure 3-1 A). Morphologic MR-imaging was carried out using a transversal T2-

weighted turbo-spin echo sequence (repetition time, TR = 1,510 ms, echo time, TE = 

59 ms, field of view, FOV = 50  x 50 mm2, matrix 128,  slice thickness = 1.0 mm).  

Regions of interest were drawn by hand around tumor borders on every acquired two-

dimensional (2D) slice, and the tumor surface was determined on the MR scan with the 

biggest tumor diameter (see Figure 3-1 C). 

Morphologic MRI was done in collaboration with the division of Medical Physics in 

Radiology of the DKFZ (Prof. Dr. Dr. Semmler) by M. Batel and Dr. M. Jugold.  

 

 

 

 

 

 

 

 
 
Figure 3-1: Magnetic resonance imaging of mouse glioma 
Mice to be imaged were anesthetized and placed in a custom-made animal coil (A). Magnetic resonance 
imaging was performed on a clinical 1.5 T MR scanner (B), using a Turbo Spin Echo Sequence. 
Transversal sections of the brain (C) were obtained on which the tumor size was estimated. 
 
 
 

A B  C 
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3.7.3.4 Tumor embedding for immunohistochemistry 

Mice were sacrificed at the indicated time by CO2 inhalation. The brains were dissected 

and divided at the injection site into two coronal pieces. Tumor samples were placed in 

cryomolds and embedded in OCT compound for cryo-sectioning. The cryomolds were 

then snap frozen in liquid nitrogen-cooled isopentane and stored at -80°C.  

3.7.3.5 Survival follow-up 

Survival curves were constructed using the Kaplan and Meier survival rate analysis 

(Kaplan and Meier, 1958). For this, the percentage of surviving mice in the different 

groups of animals was recorded daily after glioma implantation. Moribund animals were 

euthanized and their death recorded as occurring on the following day. The median 

survival, representing the time at which half the subjects have died, was estimated for 

each group. In the cases where the survival curve was horizontal at 50% survival, the 

median survival time was calculated as the average of the two time points at which the 

survival curve equals 50 %. 

 

3.8. Statistics 

Statistical analyses for the intracranial tumor growth and animal survival were 

performed in collaboration with Dr. Lutz Edler (department of Biostatistics, DKFZ) using 

the nonparametric Wilkinson Rank Sum and Koziol tests (Koziol et al., 1981). 

All other statistical analyses were performed using the Student t test.  

P values < 0.05 were considered statistically significant. 
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4. RESULTS 

Gliomas are highly vascularized solid tumors, known to induce an immunosuppressive 

environment. In this context, our laboratory has recently investigated the antitumor 

effects of parvoviral vectors delivering TNF-α and IP-10, cytokines known to have both 

immunostimulatory and antiangiogenic properties, in a syngeneic subcutaneous glioma 

tumor model. The growth of mouse glioma GL261 cells infected in vitro with TNF-α- or 

IP-10-transducing parvoviruses, grafted subcutaneously in C57BL/6 mice, was 

significantly delayed compared to buffer-treated cells or to cells infected with the vector 

devoid of transgene (Chi-MVMp/Δ800). A complete tumor regression was observed 

when GL261 cells were coinfected with both TNF-α- or IP-10-encoding parvoviruses. 

The treatment of established tumors with repeated peritumoral injection of cytokine-

encoding parvoviruses also inhibited tumor growth compared to tumors treated with  

Chi-MVMp/Δ800, MVMp wt, or buffer-treated tumors, but to a lesser extend than in the 

in vitro setting. In vivo, the antitumor effects of TNF-α- and IP-10- transducing vectors or 

the combination of both were comparable.  

This work was initiated by Enderlin M. (Enderlin, 2004) and was completed during the 

present work, leading to a publication in which I contributed as second author (Enderlin 

et al., 2008). 

In this thesis, the mechanisms sustaining GL261 subcutaneous tumor inhibition were 

investigated. Next, the analysis of the antitumor effects of these parvoviral vectors was 

extended to GL261 implanted intracranially in syngeneic mice.  

 

Monocyte chemotactic proteins MCP-2 and MCP-3 are known to be potent 

immunoactive cytokines, recruiting a broad range of leukocytes. Parvoviral vectors 

delivering MCP-3 were previously demonstrated to inhibit the tumor growth of human 

Hela grafted in nude mice (Wetzel et al., 2001) and mouse melanoma implanted 

subcutaneously in syngeneic mice (Wetzel et al., 2007). This prompted us to investigate 

the antitumor effects of parvoviruses delivering these chemokines in the GL261 glioma 

tumor model.  
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4.1. Production of wt and recombinant MVM parvoviruses 

Wild-type (wt) MVMp was produced by infection of mouse A9 cells, the reference 

producer cell line, with a master-stock of virus available in the laboratory. Recombinant 

MVMp-derived viruses Chi-MVMp/Δ800, Chi-MVMp/TNF-α, Chi-MVMp/IP-10,           

Chi-MVMp/MCP-2, and Chi-MVMp/MCP-3 were produced in 293T cells by                  

co-transfection of the corresponding recombinant MVMp DNA clones with a helper 

plasmid, providing the parvoviral capsid proteins in trans. 

The virus stocks were purified by iodixanol gradient ultracentrifugation and titrated either 

by infected cell hybridization assay (recombinant and MVMp wt viruses), or by plaque 

assay on A9 cells (MVMp wt). The infectious titers of wt virus determined by infected 

cell hybridization (4 x 109 RU/ml) and plaque assay (3 x 109 PFU/ml) were comparable 

and typically higher than the ones of recombinant viruses which ranged between 9 x 106 

and 10 x 107 RU/ml. This difference can be assigned to the capacity of wt MVMp to 

produce progeny virions through secondary infections during the production procedure, 

whereas recombinant viruses are replication defective. 

4.2. Characterization of GL261 infected with wt MVMp and MVMp-
based vectors in vitro 

The recombinant parvoviruses used in this study are so-called capsid replacement 

vectors. While they retain the expression of parvoviral non-structural proteins (NS1 and 

NS2) under the control of the P4 promoter, the viral capsid proteins genes, driven by the 

P38 promoter, have been replaced by cDNA encoding cytokines or chemokines.  

Mouse glioma GL261 cells infected in vitro with recombinant parvoviruses were 

analyzed for the expression of the transgenes. Next, the effects of both wt and 

recombinant MVMp infection on GL261 cellular growth were analyzed.    

Recombinant viruses encoding TNF-α and IP-10 strongly inhibited the growth of GL261 

mouse glioma cells grafted subcutaneously in C57BL/6 mice, especially when used in 

combination (Enderlin et al., 2008). Therefore, in addition to the effects of parvoviral 

infection using single vectors, the effects of the coinfection of these both viruses were 

also investigated in the following experiments. 
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4.2.1. Transgene expression in GL261 after infection with parvoviral vectors 

High and transient expression of transgenes is a prerequisite in cytokine-mediated 

cancer gene therapy. Indeed, sustained expression of a cytokine could lead to chronic 

inflammation or autoimmunity and hence induce severe adverse reactions. 

We first verified the expression of transgenes in infected GL261 at the mRNA level, 

together with the expression of MVMp non-structural protein NS1. Indeed, NS1, 

retained in parvoviral capsid replacement vectors, is involved in the amplification of the 

viral genome and transactivates the parvoviral P38 promoter, driving the expression of 

the transgene (Kestler et al., 1999). For this, 2 x 105 GL261 cells were infected with        

Chi-MVMp/TNF-α, Chi-MVMp/IP-10, Chi-MVMp/MCP-2, and Chi-MVMp/MCP-3 at an 

MOI of 3 RU per cell. GL261 cells infected with Chi-MVMp/Δ800, or MVMp wt at an MOI 

of 3 RU per cell, or buffer-treated (mock) served as controls. Total RNA was isolated 

24 h post-infection, reverse-transcribed, and amplified by PCR using specific primers 

flanking the transgene in MVMp-derived vectors and for the MVMp non-structural 

protein NS1. Figure 4-1 shows the result of one representative experiment out of two. 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 4-1: Expression of transgenes and NS1 by GL261 after infection with MVMp-
derived vectors 

2 x 105 GL261 cells were infected with Chi-MVMp/TNF-α, Chi-MVMp/IP-10, Chi-MVMp/MCP-2, and       
Chi-MVMp/MCP-3 (MOI = 3 RU/cell). Cells infected with Chi-MVMp/Δ800, MVMp wt (MOI = 3 RU/cell), or 
buffer-treated (mock) served as controls. Total RNA was isolated 24 h post-infection, reverse-transcribed, 
and amplified by PCR using specific primers for the multiple cloning site of MVMp-derived vectors and 
MVMp non-structural protein NS1. GADPH was used as loading control and a RT-PCR with all reagents 
except RNA (-RNA) was included as negative control. 

The expression of the transgenes and their relative size was verified at the mRNA level 

by amplification of the region comprised in the multiple cloning site of MVMp-based 

vectors. Furthermore, the levels of NS1 mRNA in GL261 cells were similar in all infected 
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cells, showing similar efficiency of infection by the different vectors. The expression of 

GAPDH was used as control for sample loading, and as expected no amplification 

products were obtained when RNA was omitted from the reaction. 
 
In order to evaluate the levels of cytokines secreted in the culture medium by GL261 

cells upon infection with recombinant MVMp viruses, 2 x 105 GL261 cells were infected 

with Chi-MVMp/TNF-α, Chi-MVMp/IP-10, Chi-MVMp/MCP-2, or Chi-MVMp/MCP-3 at an 

MOI of 3 RU per cell, and the amounts of cytokines released in the culture medium 

were measured by ELISA at day 1 to 4 post-infection. As controls, 2 x 105 GL261 cells 

were also infected with Chi-MVMp/Δ800 or MVMp wt at an MOI of 3 RU per cell or 

buffer-treated. Figure 4-2 shows the cumulative and daily production of secreted 

cytokines determined in one representative experiment. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4-2: Levels of mTNF-α, hIP-10, hMCP-2, and hMCP-3 in GL261 supernatants after 

infection with MVM-based vectors  
2 x 105 GL261 cells were infected with Chi-MVMp/TNF-α (A), Chi-MVMp/IP-10 (B), Chi-MVMp/MCP-2 
(C), or Chi-MVMp/MCP-3 (D) (MOI = 3 RU/cell). GL261 cells infected with Chi-MVMp/Δ800, MVMp wt 
(MOI = 3 RU/cell) or buffer-treated (mock) served as controls. Cell supernatants were harvested either 
daily (blue bars) or after 1 to 4 days for the accumulated (violet bars) cytokine secretion. The levels of 
cytokines released in the culture medium were measured by ELISA and expressed as nanograms per 
2 x 105 initially infected cells. All cytokine determinations were carried out at least in duplicates. The 
cytokines content in cell supernatants from Chi-MVMp/Δ800-, MVMp wt-, or mock-infected cells were 
lower than 8 ng per 2 x 105 GL261 cells. 
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The daily release of cytokines delivered by parvoviral vectors increased from day 1 

post-infection, peaked at day 2, and decreased thereafter, as previously observed in 

HeLa cells for hH-1/MCP-1 (Haag et al., 2000) or hH-1/MCP-3 (Wetzel et al., 2001). 

The peak production of cytokine at day 2 post-infection was observed for all vectors, 

ranging between 175 (MCP-2) and 276 (IP-10) ng per 2 x 105 initially infected GL261 

cells. Transgenes accumulated in large amounts ranging from 350 ng (MCP-2) up to 

750 ng (IP-10) of cytokines per 2 x 105 cells. The accumulation of cytokines in the cell 

culture medium increased and reached a plateau 4 or 5 days post-infection (data not 

shown), suggesting that all cytokines were stable for at least 5 days in the cell culture 

medium. As expected, human MCP-2, MCP-3, and IP-10 were undetectable in the 

supernatants of mouse GL261 cells infected with Chi-MVMp/Δ800-, MVMp wt- or mock-

infected cells showing the specificity of the ELISAs for human chemokines. No mouse 

TNF-α secretion could be detected in the same settings indicating that GL261 cells did 

not constitutively express mTNF-α and that its expression was not induced after 

infection with these parvoviral vectors.  

Taken together, these results show that parvoviral-mediated gene expression in GL261 

fulfills the conditions for gene therapy as mTNF-α, hIP-10, hMCP-2, and hMCP-3 are 

transiently secreted in high amounts into the culture medium of GL261 cells infected 

with the respective vector. The cytokine yields obtained in GL261 cells with recombinant 

parvoviruses were much higher than those obtained with retroviral or adenoviral 

vectors, transducing respectively MCP-1 (Herrlinger et al., 2004) and TNF-α (Ehtesham 

et al., 2002), where the production was limited to pg levels.  

4.2.2. Effects of wt and recombinant MVMp infection on GL261 cellular growth 

In order to investigate the effects of the parvoviral infection and the transduced genes 

on GL261 cells, the growth of in vitro infected GL261 cells was monitored over 4 days. 

2 x 105 GL261 cells were infected with MVMp wt, Chi-MVMp/TNF-α, Chi-MVMp/IP-10, 

Chi-MVMp/MCP-2, Chi-MVMp/MCP-3, or Chi-MVMp/Δ800 at an MOI of 3 RU per cell or 

buffer-treated (mock). For the coinfection with Chi-MVMp/TNF-α and Chi-MVMp/IP-10, 

an MOI of 1.5 RU per cell was used for each vector. The number of viable cells was 

determined from day 1 to 4 post-infection by the trypan blue dye exclusion method. 

Figure 4-3 shows the result of one representative experiment out of three. 
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Figure 4-3: Cellular growth of GL261 after infection with MVMp or MVMp based vectors  
2 x 105 GL261 cells were infected with MVMp-based vectors and wt (MOI = 3RU/cell), coinfected with    
Chi-MVMp/TNF-α and Chi-MVMp/IP-10 (MOI = 1.5 RU/cell for each vector) or buffer-treated (mock). The 
number of viable cells was determined at the indicated times by the trypan blue dye exclusion method. 

Buffer-treated (mock) GL261 cells grew fast, with a generation time of about 24 h. The 

infection with Chi-MVMp/Δ800 had only a marginal effect on the cellular growth. In 

contrast, infection with Chi-MVMp/IP-10, Chi-MVMp/MCP-2, and Chi-MVMp/MCP-3 

displayed cytostatic effects on GL261 cells, as shown by a limited increase in the cell 

number. Infection of GL261 cells with MVMp wt, Chi-MVMp/TNF-α alone, or coinfection 

with Chi-MVMp/IP-10 had comparable cytotoxic effects, as shown by the drop in the 

number of living cells from day 3 post-infection. This suggests a toxicity of the 

accumulated transgene products in GL261 cells, especially of TNF-α. The effects 

observed with wt MVMp, TNF-α-, and IP-10-encoding viruses are consistent with the 

results previously obtained in the laboratory (Enderlin, 2004). Indeed, GL261 glioma 

cells were shown to be very sensitive to TNF-α in vitro, either recombinant or parvoviral-

transduced and thus an autocrine cytotoxic effect of TNF-α, accumulated in the cell 

culture medium, is very likely. The cytotoxic effect of wt MVMp can be assigned to the 

ability of GL261 cells to produce progeny virions and to induce secondary infections, as 

shown in Figure 4-4.  

0

1

2

0 1 2 3 4
Days post-infection

C
el

ln
um

be
rx

 1
06 

0

1

2

0 1 2 3 4
Days post-infection

C
el

ln
um

be
rx

 1
06 



                                                                                                                           RESULTS 

61 

4.2.3. Production of progeny virions by MVMp-infected GL261 

Since MVMp exerted a high cytotoxicity on GL261 cells in vitro, we investigated whether 

GL261 cells were able to produce progeny virions upon MVMp infection. To this end, 

2 x 105 GL261 cells were infected with MVMp wt at an MOI of 0.1 PFU per cell and the 

production of virions was compared to the production of the reference A9 cells. 7 days 

post-infection, the medium of infected cells was harvested and viruses were extracted 

from the cell lysates by freeze-thaw cycles. The titration of progeny virions released in 

the medium and intracellular was performed by plaque assay.  

 
 

 

 

 

 

 

 

 

 

 
Figure 4-4: Production of progeny viruses by GL261 and A9 cells after MVMp infection 
2 x 105 cells GL261 or A9 cells were infected with MVMp at a MOI of 0.1 PFU/cell and lyzed 7 days post-
infection. The production of progeny viruses was then determined by plaque assay on reference A9 cells. 
The input represents the quantity of virus used initially to infect the cells and the output corresponds to 
the total amount of virus produced. 

As shown in Figure 4-4, GL261 cells produced high amounts of progeny virions. Indeed, 

the amount of neosynthetized viruses (4.7 x 108 PFU) was much higher than the 

amount of inoculum used initially to infect the cells (5 x 104 PFU), and only slightly lower 

than with the producer A9 cell line (2.4 x 109 PFU).  

The production of progeny virions is of importance as it could contribute to increased 

killing of MVMp wt through successive rounds of infection, in contrast to MVMp-based 

vectors which are replication defective. Although MVMp wt was indeed shown to 

mediate high cytotoxicity on GL261 cells in vitro, it had similar effects as the 

recombinant parvovirus devoid of transgene when injected in established GL261 tumors 

(Enderlin et al., 2008), indicating that the cytotoxicity of MVMp wt is hampered in vivo. 

This could be due to the dilution in vivo of factors inducing cytotoxicity in vitro and/or to 

parvovirus entry in non tumoral cells in vivo and hence loss of infectious viruses. 
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4.3. Analysis of the mechanisms sustaining tumor inhibition by     
TNF-α- and IP-10-expressing parvoviral vectors in the GL261 
subcutaneous model 

 
The antitumor effects of recombinant parvoviral vectors encoding TNF-α and IP-10 on 

mouse GL261 glioma implanted subcutaneously were recently investigated in our 

laboratory. The growth of GL261 infected in vitro with TNF-α- or IP-10-transducing 

parvoviruses, grafted subcutaneously in C57BL/6 mice, was significantly delayed 

compared to buffer-treated cells or to cells infected with the empty vector                  

Chi-MVMp/Δ800. Complete tumor regression was observed when GL261 cells were 

coinfected with both TNF-α- and IP-10-transducing parvoviruses, suggesting a 

synergistic antitumor effect of these cytokines. In contrast, the treatment of established 

tumors with repeated peritumoral injections of cytokine-encoding parvoviruses viruses 

inhibited the tumor growth compared to wt MVMp-, Chi-MVMp/Δ800-, and PBS-treated 

tumors, but the effects were similar whether TNF-α, IP-10, or both cytokine-transducing 

vectors were used (Enderlin et al., 2008).  

In this thesis, I investigated the mechanisms sustaining tumor inhibition by TNF-α- and 

IP-10-expressing parvoviral vectors in the GL261 subcutaneous tumor model. The 

synergy between TNF-α and IP-10, observed when parvovirus-infected GL261 glioma 

cells were implanted subcutaneously, was analyzed in vitro.  

Next, the infiltration of leukocytes as well as proliferation and apoptosis of intratumoral 

cells were investigated by immunohistochemistry after peritumoral injections of 

recombinant parvoviruses in established tumors. 

4.3.1. Analysis of the synergistic antitumor effects of TNF-α and IP-10 

4.3.1.1 Increased mIP-10 RNA expression and protein secretion in GL261 cells 

infected with Chi-MVMp/TNF-α  

The subcutaneous growth of GL261 cells in vitro coinfected with both TNF-α- and 

IP10-expressing viruses grafted subcutaneously in mice was strongly impaired, in 

contrast to GL261 cells infected with each of the virus independently, showing 

synergistic antitumor effects of TNF-α and IP-10 in this system (Enderlin et al., 2008).  
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TNF-α was reported to induce, in synergy with IFN-γ, the production of IP-10 in various 

cell types, such as keratinocytes, fibroblasts (Majumder et al., 1996), or astrocytes 

(Salmaggi et al., 2002). TNF-α alone was also shown to induce IP-10 expression, for 

instance in human neural precursors cells (Sheng et al., 2005), normal astrocytes 

(Salmaggi et al., 2002), and astrocytomas (Majumder et al., 1998).  

To investigate whether TNF-α-encoding virus was able to induce murine IP-10 (mIP-10) 

expression in the GL261 model, the levels of mIP-10 transcripts were analyzed in 

infected GL261 cells. To this end, 2 x 105 GL261 cells were infected with                   

Chi-MVMp/TNF-α at an MOI of 3 RU per cell, or coinfected with Chi-MVMp/TNF-α and 

Chi-MVMp/IP-10 at an MOI of 1.5 RU per cell for each virus. MVMp wt-,                   

Chi-MVMp/Δ800-, and Chi-MVMp/IP-10-infected cells at an MOI of 3 RU per cell as well 

as buffer-treated (mock) were used as controls. Total RNA was isolated 24 h and 48 h 

post-infection, reverse transcribed using primers specific for mouse IP-10, and the PCR 

products were analyzed on agarose gel electrophoresis. Figure 4-5 shows the results 

obtained after 24 h post-infection. Similar results were obtained 48 h post-infection.  

 

 

 

 

 

 

 

 
 
Figure 4-5: Increased mIP-10 mRNA levels after infection of GL261 cells with                 

Chi-MVMp/TNF-α  
2 x 105 GL261 cells were infected with Chi-MVMp/TNF-α (MOI = 3 RU/cell), or coinfected with             
Chi-MVMp/TNF-α and Chi-MVMp/IP-10 (MOI = 1.5 RU/cell for each vector). MVMp wt-, Chi-MVMp/IP-10- 
and Chi-MVMp/Δ800-infected cells (MOI = 3 RU/cell) as well as buffer-treated cells (mock) were used as 
controls. Total RNA was isolated 24 h post-infection and reverse transcription-PCR analysis was 
performed for the expression of mIP-10. GADPH was used as loading control and a RT-PCR with all 
reagents except RNA (-RNA) was included as negative control. 

Similar mIP-10 mRNA expression levels were observed after infection with MVMp,                

Chi-MVMp/Δ800, and Chi-MVMp/IP-10, compared to buffer-treated GL261 infected 

cells. Thus, some mIP-10 expression is constitutive in GL261 cells and it is not 

increased upon parvoviral infection. In contrast, infection of GL261 cells with                  

Chi-MVMp/TNF-α or coinfection with Chi-MVMp/TNF-α and Chi-MVMp/IP-10 resulted in 

a significant increase of mIP-10 mRNA levels.  
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The induction of mIP-10 expression in GL261 cells by TNF-α-transducing parvovirus 

was verified at the protein level. To this end, 2 x 105 GL261 cells were infected with     

Chi-MVMp/TNF-α at an MOI of 3 RU per cell, or coinfected with Chi-MVMp/TNF-α and 

Chi-MVMp/IP-10 at an MOI of 1.5 RU per cell for each virus. Chi-MVMp/Δ800-,             

and Chi-MVMp/IP-10-infected cells at an MOI of 3 RU per cell as well as buffer-treated 

(mock) were used as control. The secretion of mIP-10 in the culture medium was 

measured 24 and 48 h post-infection by ELISA. The results are illustrated in Figure 4-6. 

 

 

 
 
  

 
 

 

 
 
 
 
 
Figure 4-6: Increased mIP-10 secretion in GL261 cells after infection with Chi-MVM/TNF-α 
2 x 105 GL261 cells were infected with Chi-MVMp/TNF-α (MOI = 3 RU/cell), or coinfected with             
Chi-MVMp/TNF-α and Chi-MVMp/IP-10 (MOI = 1.5 RU/cell for each vector). Chi-MVMp/IP-10- and      
Chi-MVMp/Δ800-infected cells (MOI = 3 RU/cell) as well as buffer-treated cells (mock) were used as 
controls. Cell supernatants were harvested after 24 and 48 h and the levels of mIP-10 accumulated in the 
culture medium were measured by ELISA. Results are expressed as nanograms per 2 x 105 initially 
infected cells and shown as mean of triplicates from one representative experiment. Error bars represent 
the standard deviation. Statistical analysis was performed using Student’s t test (*=p<0.01 versus mock). 

As shown in Figure 4-6, the infection of GL261 cells with Chi-MVMp/Δ800 and             

Chi-MVMp/IP-10 resulted in mIP-10 protein levels comparable to the constitutive 

secretion from mock-infected GL261 cells. In contrast, statistically significant increased 

levels of mIP-10 were detected in the supernatants of GL261 cells infected with         

Chi-MVMp/TNF-α, alone or coinfected with Chi-MVMp/IP-10 compared to mock-infected 

cells at 24 and 48h post-infection (p<0.01). The difference between GL261 cells 

infected with Chi-MVMp/TNF-α alone or in combination with Chi-MVMp/IP-10 was not 

statistically significant. The increase of mIP-10 secretion by TNF-α delivering viruses 

was about 4 times higher than the constitutive levels secreted 48 h post-infection. 
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These results, together with the data obtained by RT-PCR, show that the infection of 

GL261 glioma cells with TNF-α-transducing parvovirus significantly increases both   

mIP-10 mRNA expression and protein secretion in GL261 cells in vitro. The levels of 

mIP-10 produced after 48 h (30 ng per 2 x 105 cells) represent up to 20 % of the levels 

produced after infection with Chi-MVMp-hIP-10 under the same conditions (200 ng). 

The expression of mouse IP-10 induced by Chi-MVMp/TNF-α combined with the 

expression of human IP-10 induced by Chi-MVMp/IP-10 may thus result in IP-10 

amounts above a critical threshold. This could account for the synergistic antitumor 

effects of Chi-MVMp/TNF-α and Chi-MVMp/IP-10 observed in the GL261 subcutaneous 

tumor model. Indeed, TNF-α, and IP-10 may synergize to induce the production of one 

or more factors which, in turn, would also participate in the antitumor response. 
 

4.3.1.2 Production of interferons in parvovirus-infected GL261 cells 

As mentioned above, TNF-α was reported to induce the production of IP-10, usually in 

synergy with IFN-γ in various cell lines, but also more rarely in synergy with IFN-α or -β 

(Buttmann et al., 2007; Kato et al., 2003; Matikainen et al., 2000; Petry et al., 2006). 

Whereas IFN-γ is exclusively produced by lymphocytes, IFN-α, and -β, known as viral 

IFNs, can also be produced by most types of virally infected cells (Pestka et al., 2004). 

In this context, we investigated at the mRNA level, whether parvoviral infection of 

GL261 cells could induce the expression of IFN-α, and/or -β isoforms. For this, 2 x 105 

GL261 cells were infected with the different parvoviral vectors at an MOI of 3 RU per 

cell, coinfected with Chi-MVMp/TNF-α and Chi-MVMp/IP-10 at an MOI of 1.5 RU per 

cell for each vector or buffer-treated cells (mock). Total RNA was isolated 24 h and 48 h 

post-infection and reverse transcription-PCR analysis was performed using primers 

specific for IFN-α or -β isoforms. The results are illustrated in Figure 4-7. 
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Figure 4-7: Induction of mIFN-α but not mIFN-β mRNA expression after infection with 

MVMp-derived vectors 
2 x 105 GL261 cells were infected with Chi-MVMp/Δ800, Chi-MVMp/TNF-α, Chi-MVMp/IP-10 
(MOI = 3 RU/cell), coinfected with Chi-MVMp/TNF-α and Chi-MVMp/IP-10 (MOI = 1.5 RU/cell for each 
vector), or buffer-treated cells (mock). Total RNA was isolated 24 h and 48 h post-infection and reverse 
transcription-PCR analysis was performed using primers specific for mIFN-α or -β. GADPH was used as 
loading control and a RT-PCR with all reagents except RNA (-RNA) was included as negative control. 

Whereas no expression of IFN-β could be detected in infected or non-infected cells, the 

expression of IFN-α was induced 48 h post-infection in GL261 cells after parvoviral 

infection. The infection with all cytokine-encoding parvoviruses resulted in an increased 

expression of IFN-α compared to the infection with the empty vector Chi-MVMp/Δ800. 

The expression increased with time as shown by higher levels of mRNA 48 h post-

infection irrespective of the group. No striking difference could be observed between 

cells infected with Chi-MVMp/TNF-α, Chi-MVMp/IP-10, or coinfected with both vectors.  

At the protein level, the induction of IFN-α expression in GL261 cells after infection with 

parvoviral vectors was undetectable by ELISA, meaning that the IFN-α concentrations 

were lower than 12.5 pg/ml.  

 
Together, these results suggest that TNF-α transduced by parvoviral vectors is 

sufficient to induce mIP-10 expression and secretion in the GL261 system. Whether low 

amounts of IFN-α, may also contribute to the induction of mIP-10 by TNF-α remains to 

be elucidated. 

 
We next verified that mIP-10 expression could be induced by TNF-α alone in GL261 

cells and not in the context of parvoviral infection. For this, 1 x 105 GL261 cells were 

treated with increasing concentrations of recombinant mouse TNF-α (0, 1, 10 or 

100 ng/ml) for 24 to 48 h and the secretion of mIP-10 in the culture medium was 

measured by ELISA.  
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Figure 4-8: Increased mIP-10 secretion in GL261 cells treated with recombinant mTNF-α 
1 x 105 GL261 cells were treated with increasing concentrations of recombinant mouse TNF-α              
(0 - 100 ng/ml) for 24 to 48 h, and the levels of mIP-10 released in the culture medium were measured by 
ELISA. Results are expressed as nanograms per 1 x 105 cells and shown as mean of triplicates. Error 
bars represent the standard deviation and statistical analysis was performed using Student’s t test 
(*=p<0.01 versus mock; °=p<0.05 versus 10 ng/ml). 

As shown in Figure 4-8, TNF-α alone is indeed sufficient to induce mIP-10 expression in 

GL261 cells. The treatment of GL261 cells with increasing concentrations of 

recombinant TNF-α induced, in a concentration dependent manner, statistically 

significantly increased levels of mIP-10 secretion in comparison to untreated cells 

(p<0.01). High concentrations of TNF-α (100 ng/ml) were toxic for GL261 cells resulting 

in decreased levels of mIP-10 (p<0.05).  
 

TNF-α was reported to induce IP-10 by itself in various cells. The analysis of the IP-10 

proximal promoter region revealed the presence of an interferon-stimulated responsive 

element (ISRE) and of two Nuclear Factor-kappa B (NF-κB) binding elements, κB1 and 

κB2, conserved among mammalian species (Ohmori and Hamilton, 1993; Yang et al., 

2007). The κB motifs are recognized by members of the NF-κB/Rel homology family 

(Kunsch et al., 1992). Of interest, the TNF-α signaling pathway induces the activation of 

the NF-κB/Rel proteins. Therefore, the induction of mIP-10 by TNF-α most probably 

happens through positive transcriptional regulation of the mIP-10 promoter by the κB 

elements. Whether one or both NF-κB binding elements are involved in the induction of 

mIP-10 in GL261 cells and which members of the NF-κB/Rel protein family may 

participate remains to be elucidated. 
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4.3.2. Analysis of the immune cells infiltration, cell proliferation, and apoptosis in 
established subcutaneous GL261 tumors treated with peritumoral injections 
of parvoviral vectors 

The treatment of established subcutaneous GL261 tumors with repeated peritumoral 

injections of parvoviruses transducing TNF-α, IP-10, or with both vectors was recently 

shown to inhibit tumor growth, while wt MVMp and the control vector Chi-MVMp/Δ800 

had only marginal effects compared to buffer-treated tumors. Whereas synergistical 

antitumor effects were observed when GL261 cells were coinfected in vitro with both 

cytokines-encoding vectors and grafted subcutaneously, the antitumor effects were 

similar whether established tumors were treated with single cytokine-encoding vectors 

or their combination. This suggests that the synergy might be effective only in early 

tumor stages, before tumors become palpable. Alternatively, this could be assigned to 

the lower probability that tumor cells might be coinfected with both viruses in vivo 

(Enderlin et al., 2008).  

To investigate the mechanisms sustaining tumor inhibition by TNF-α- and IP-10-

expressing parvoviral vectors, we examined the infiltration of the major types of 

leukocytes involved in immune responses, including T lymphocytes, macrophages, 

dendritic cells, and natural killer cells. In addition, we also investigated intratumoral cell 

proliferation and apoptosis. 

As the tumors developing from GL261 cells coinfected in vitro with both parvoviral 

vectors encoding TNF-α and IP-10 remained very small and regressed rapidly, we 

rather decided to analyze the antitumor mechanisms after injection of recombinant 

parvoviruses in established GL261 tumors. For this, 1 x 106 GL261 cells were grafted 

subcutaneously in C57BL/6 mice. Small tumors were treated with two peritumoral 

injections, at day 9 and 13 post-implantation, of Chi-MVMp/Δ800, wt MVMp,               

Chi-MVMp/TNF-α, Chi-MVMp/IP-10 (1 x 106 RU per injection), both Chi-MVMp/TNF-α 

and Chi-MVMp/IP-10 (each at 1 x 106 RU per injection), or PBS (mock) (3 mice per 

group). 17 days post-implantation, tumors were resected, cryofixed and tumors sections 

were stained with specific antibodies by immunohistochemistry. Cryosections were 

photographed and digitalized images were processed with an imaging software to 

quantify stained cells.  

 

 



                                                                                                                           RESULTS 

69 

4.3.2.1 Decreased infiltration of CD8+ and CD4+ lymphocytes in subcutaneous 

GL261 treated with parvoviral vectors  

Cellular immune responses were suggested to contribute to the antitumor effects 

observed when GL261 cells coinfected with both TNF-α- and IP-10-encoding vectors 

were grafted subcutaneously in immunocompetent mice. Indeed, when GL261 cells 

coinfected with both vectors were grafted in immunodeficient (nude) mice, all animals 

developed tumors and there was no significant difference in the tumor volume in mice 

implanted with coinfected cells or buffer-treated cells (Enderlin et al., 2008). Moreover, 

IP-10 is known as a potent chemoattractant for activated T cells (Taub et al., 1993), 

especially CD4+ Th1 helper cells, which induce the proliferation of cytotoxic CD8+ 

T cells (Bonecchi et al., 1998; Sallusto et al., 1998).  

In this context, we analyzed the infiltration of lymphocytes in tumor samples, using 

antibodies against CD4 and CD8. These antibodies can detect CD4+ and CD8+ 

T lymphocytes, respectively, as well as NKT cells, which can be CD4+ or CD8+. The 

results are summarized in Figure 4-9. 
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Figure 4-9: Decreased infiltration/proliferation of CD4+ and CD8+ T lymphocytes in 

subcutaneous GL261 treated with MVMp wt and derived vectors  
1 x 106 GL261 cells were grafted subcutaneously in C57BL/6 mice. Small tumors were treated with two 
peritumoral injections (day 9 and 13 post-implantation) of Chi-MVMp/Δ800, wt MVMp, Chi-MVMp/TNF-α, 
Chi-MVMp/IP-10 (1 x 106 RU per injection), with both Chi-MVMp/TNF-α and Chi-MVMp/IP-10 (each at 
1 x 106 RU per injection), or PBS (control) (3 mice per group). 17 days post-implantation, tumors were 
resected, cryofixed, and T lymphocytes were stained by immunohistochemistry using anti-mouse CD8+ 
(A) and CD4+ (B) rat monoclonal antibodies, and counterstained with hematoxylin. Cryosections were 
photographed and digitalized images were processed with an imaging software to measure CD4+ and 
CD8+ positive cells. The number of positive cells is given per mm2 as mean value of three animals per 
group and the error bars represent the SEM. Statistical analysis was performed using Student’s t test  
(*=p<0.05;**=p<0.01 versus mock; °=p<0.05 versus Chi-MVMp/Δ800). Representative picture are shown 
below. 

Both CD8+ and CD4+ cells were found in all subcutaneous GL261 tumors, but 

surprisingly more lymphocytes were found in PBS-treated tumors (control) than in virus-

treated groups. Whereas the infiltration of CD8+ cells was quite similar in all virus-

treated groups, the infiltration of CD4+ cells varied depending on the treatment. Indeed, 

dramatically decreased numbers of CD4+ lymphocytes were observed in tumors treated 

with cytokine-encoding vectors, compared to tumors treated with the empty vector or 

with PBS (p<0.05). The differences observed between Chi-MVMp/TNF-α,                  
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Chi-MVMp/IP-10 or with both cytokine-encoding vectors groups were not statistically 

significant. Thus, in this setting, parvoviral-transduced IP-10 did not seem to mediate 

chemoattraction of T lymphocytes.  

 
A significant tumor inhibition was observed in established subcutaneous GL261 tumors 

treated with parvoviral vectors encoding TNF-α, IP-10, or both, compared with the 

controls (Enderlin et al., 2008). Thus, the infiltration of CD4+ cells is inversely correlated 

with the tumor growth in vivo. Of interest, CD4+ cells comprise helper T cells and 

regulatory T cells (Tregs), which respectively stimulate or suppress immune responses. 

Tregs were indeed shown to be present in high numbers in GL261 subcutaneous 

tumors (El Andaloussi et al., 2006). Thus, we hypothesized that the treatment of GL261 

tumors with cytokine-encoding vectors might inhibit the infiltration and/or proliferation of 

Tregs and hence promote an effective immune response.  

 
 
Gliomas are known to induce an immunosuppressive environment through the secretion 

of several molecules including IL-10, prostaglandin E2 (PGE2), and transforming growth 

factor-β (TGF-β). TGF-β is known as the most immunosuppressive molecule and its role 

in malignant glioma biology is not restricted to immunosuppression but also affects 

tumor growth, invasion, migration, as well as tumor angiogenesis (Platten et al., 2001). 

Interestingly, TGF-β was reported to induce Tregs proliferation and infiltration (Chen 

and Wahl, 2003; Ghiringhelli et al., 2005; Schramm et al., 2004).  

In this context, we investigated the effects of parvoviral infection and of the transgenes 

on the production of TGF-β in GL261 cells. The expression of the TGF-β isoforms 

(TGF-β1, -β2, -β3) was analyzed in virus-infected GL261 cells at the messenger RNA 

level. To this end, 2 x 105 GL261 cells were infected with Chi-MVMp/TNF-α,               

Chi-MVMp/IP-10, Chi-MVMp/Δ800, MVMp wt at an MOI of 3 RU per cell, coinfected 

with Chi-MVMp/TNF-α and Chi-MVMp/IP-10 at an MOI of 1.5 RU per cell for each virus, 

or buffer-treated (mock). Total RNA was isolated 24 h and 48 h post-infection, and 

reverse transcription-PCR analysis was performed using primers specific for TGF-β 

isoforms. Figure 4-10 shows the result of one representative experiment out of two. 
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Figure 4-10: Reduced TGF-β expression by GL261 after infection with MVMp wt and 

derived vectors  
2 x 105 GL261 cells were infected with Chi-MVMp/TNF-α, Chi-MVMp/IP-10, Chi-MVMp/Δ800, MVMp wt 
(MOI = 3 RU/cell), coinfected with Chi-MVMp/TNF-α and Chi-MVMp/IP-10 (MOI = 1.5 RU/cell for each 
virus), or buffer-treated (mock). Total RNA was isolated 24 h and 48 h post-infection, and RT-PCR 
analysis was performed for the expression of TGF-β1, -β2, and -β3 isoforms. GADPH was used as 
loading control and a RT-PCR with all reagents except RNA (-RNA) was included as negative control. 

As shown in mock-infected cells, GL261 cells expressed both TGF-β2 and TGF-β3 

isoforms, but not TGF-β1. TGF-β2 expression was not affected upon parvoviral infection 

or by any of the transgenes, neither at 24 h nor at 48 h post-infection. In contrast,   

TGF-β3 expression was found to be reduced after parvoviral infection, and more 

strikingly with cytokine-encoding vectors. While TGF-β3 mRNA levels remained 

unchanged after infection with Chi-MVMp/Δ800, MVMp wt or Chi-MVMp/IP-10 at 24 h 

post-infection, no TGF-β3 expression could be detected after infection with               

Chi-MVMp/TNF-α. Furthermore, TGF-β3 transcripts were significantly reduced after 

coinfection with both Chi-MVMp/TNF-α and Chi-MVMp/IP-10, suggesting an effect of 

parvoviral-transduced TNF-α. 48 h post-infection, TGF-β3 expression was slightly 

reduced by the parvoviral infection itself, as shown by reduced mRNA levels after 

infection with MVMp wt or Chi-MVMp/Δ800, compared with buffer-treated cells. Most 

strikingly, TGF-β3 expression remained undetectable, not only after infection with      

Chi-MVMp/TNF-α, as already seen 24 h post-infection, but also after infection with    

Chi-MVMp/IP-10 or coinfection of both viruses. This indicates that IP-10 could also have 

an effect on TGF-β3 expression, yet at later times post-infection.  

 
In summary, while parvoviral infection has a only moderate effect on TGF-β3 

expression, the infection with TNF-α- and IP-10-encoding viruses significantly 

decreased the accumulation of TGF-β3 mRNA, indicating a direct role of the cytokines. 
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In contrast, we could not detect an effect on TGF-β2 expression. One should point out 

that all three TGF-β isoforms bind to the same receptors, induce a similar transduction 

pathway and thus have similar functions per se (Graycar et al., 1989). The effects of 

different isoforms depend on the type and differentiation state of target cells and on the 

presence of other cytokines (Nathan and Sporn, 1991).  

 
The inhibition of TGF-β in infected GL261 cells observed at the mRNA level, was 

confirmed at the protein level. For this, the amounts of TGF-β released in the 

supernatants of infected GL261 were assayed using the plasminogen activator  

inhibitor-1 / luciferase (PAI/Luc) bioassay, described by Abe et al., 1994. This assay is 

based on the ability of TGF-β to induce PAI-1 expression, using mink lung epithelial 

cells (MLEC) stably transfected with a luciferase reporter gene under the control of a 

truncated PAI-1 promoter. The assay detects all three TGF-β isoforms. To this end, 

GL261 cells were infected as described here-above with Chi-MVMp/TNF-α,              

Chi-MVMp/IP-10, Chi-MVMp/Δ800, MVMp wt, coinfected with Chi-MVMp/TNF-α and 

Chi-MVMp/IP-10, or buffer-treated (mock). The levels of TGF-β released in the 

supernatants of infected GL261 were measured using the MLEC-PAI/Luc bioassay. 

Figure 4-11 shows one representative experiment out of three.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-11: Decrease of TGF-β secretion after infection with wt and recombinant MVMp 

in GL261 
2 x 105 GL261 cells were infected with Chi-MVMp/TNF-α, Chi-MVMp/IP-10, Chi-MVMp/Δ800, MVMp wt 
(MOI = 3 RU/cell), coinfected with Chi-MVMp/TNF-α and Chi-MVMp/IP-10 (MOI = 1.5 RU/cell for each 
virus), or buffer-treated (mock).Total TGF-β amounts present in the cell supernatants were determined 
using the MLEC-PAI/L bioassay. Results are shown as mean of triplicates from one representative 
experiment and error bars represent the standard deviation. Luciferase activity is reported as relative light 
units (RLU) and TGF-β amounts are normalized per cell number. Statistical analysis was performed using 
Student’s t test (*=p<0.01, **=p<0.001 versus mock; °=p<0.01; °°=p<0.001 versus Chi-MVMp/Δ800). 
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TGF-β secretion by infected GL261 was significantly reduced in all groups compared to 

mock-infected cell. Similarly to the results obtained at the mRNA level, GL261 infection 

with Chi-MVMp/Δ800 and MVMp moderately reduced TGF-β production compared to 

mock-treated cells, whereas the inhibition was greater after infection with cytokine-

encoding vectors. The most potent inhibitions were observed after infection with           

Chi-MVMp/TNF-α and its combination with Chi-MVMp/IP-10, which were statistically 

significant compared to Chi-MVMp/IP-10 used alone (p<0.01). 
 
Taken together, these results show that the infection of GL261 cells with wt and MVMp-

derived vectors inhibits the production of TGF-β in GL261 at the mRNA (TGF-β3) as 

well as at the protein level. This effect is particularly striking for cytokine-encoding 

parvoviruses while the virus alone has only a moderate effect. 
 
Interestingly, the pattern of TGF-β expression strongly correlates with the infiltration of 

CD4+ T cells in subcutaneously implanted GL261 tumors (see Figure 4-9 B). TGF-β was 

reported to induce CD4+ Tregs proliferation and infiltration (Chen and Wahl, 2003; 

Ghiringhelli et al., 2005). The decrease of TGF-β levels observed after infection with 

TNF-α- and IP-10-encoding parvoviruses might thus indeed lead to a decrease in the 

amounts of Tregs infiltrating the tumor, and supports our hypothesis. A decrease of 

Tregs could contribute to the antitumor effects observed, as these cells are potent 

inhibitors of immune responses. 

In addition, TGF-β was reported to impair the function of both CD8+ cytotoxic cells and 

CD4+ helper cells (Gorelik and Flavell, 2002; Thomas and Massague, 2005). The 

reduction of TGF-β expression detected in GL261 cells after infection with cytokine- 

encoding vectors might in turn allow CD4+ helper and CD8+ cytotoxic T lymphocytes to 

exert their functions in vivo while being suppressed in the control groups, becoming 

then the potential effector cells responsible for the antitumor effects mediated with 

cytokine-encoding vectors. 

4.3.2.2 Increased infiltration of CD68+ macrophages in subcutaneous-implanted 

GL261 cells treated with both Chi-MVMp/TNF-α and Chi-MVMp/IP-10 

Macrophages are important components of antitumor responses. They are implied in 

both innate- and adaptative-mediated immunity. Their role in innate immunity implies 

direct killing of tumor cells through phagocytosis and production of various inflammatory 

proteins. Through phagocytosis, macrophages can also process tumor antigens, and 

present them to lymphocytes in order to activate the cellular immune response.  
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The infiltration of macrophages was analyzed by staining of tumor samples with 

antibodies against CD68, also known as microsialin in mouse. CD68 is a glycosylated 

lysosomal antigen restricted to cells of the macrophage lineage (Holness et al., 1993).  
 
 
 

 

 

 

 

 

 

 
 
 
 
 
 

 

 

 
 
 
 

 
Figure 4-12: Increased infiltration of CD68+ macrophages in subcutaneous GL261 treated 

with both Chi-MVMp/TNF-α and Chi-MVMp/IP-10  
1 x 106 GL261 cells were grafted subcutaneously in C57BL/6 mice. Small tumors were treated with 
repeated peritumoral injection (day 9 and 13 post-implantation) of Chi-MVMp/Δ800, wt MVMp,             
Chi-MVMp/TNF-α, Chi-MVMp/IP-10 (1 x 106 RU per injection), with both Chi-MVMp/TNF-α and             
Chi-MVMp/IP-10 (each at 1 x 106 RU per injection), or PBS (control) (3 mice per group). 17 days post-
implantation, tumors were resected, cryofixed and macrophages were stained by immunohistochemistry 
using an anti-mouse CD68 rat monoclonal antibody, and counterstained with hematoxylin. Cryosections 
were photographed and digitalized images were processed with an imaging software to measure CD68 
positive cells. The number of positive cells is given per mm2 as mean value of three animals per treatment 
group and the error bars represent the standard error of the mean. Statistical analysis was performed 
using Student’s t test (*=p<0.05 versus mock). Representative pictures are shown below. 
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As seen on Figure 4-12, tumor infiltrating macrophages, identified as CD68+ cells, were 

found in all tumor samples, irrespective of the group. Whereas no significant differences 

were observed in tumors treated with TNF-α- or IP-10-encoding viruses, compared to 

Chi-MVMp/Δ800, MVMp wt, or buffer-treated tumors (control), an increased number of 

macrophages was detected in tumors treated with the combination of both cytokine-

transducing vectors, statistically significant compared to buffer-treated tumors (control), 

but not to vector-infected groups.  

Considering the variability between the different groups and the fact that the treatment 

of established GL261 tumors with parvoviral vectors encoding TNF-α, IP-10, or both 

vectors resulted in similar antitumor responses (Enderlin et al., 2008), the increase of 

macrophages observed when using both vectors might not be relevant for the antitumor 

effects observed.  

4.3.2.3 No detectable infiltration of dendritic cells or natural killer cells 

Natural killer cells and dendritic cells are also important components of antitumor 

responses. Whereas natural killer cells are involved in the innate immune response and 

can mediate direct killing of tumor cells, dendritic cells are known as the most efficient 

antigen presenting cells, able to activate both the humoral and cellular adaptative 

responses. The infiltration of natural killer cells and dendritic cells was investigated 

using NKG2D and 33D1 antibodies respectively. Yet, we could not detect any of these 

two types of cells in subcutaneous tumor samples, irrespective of the group. Thus, it 

seems that natural killer cells do not play a key role in the antitumor response in this 

system. Concerning dendritic cells, one possibility may be that at the time point 

analyzed, they may have already left the tumor to the draining lymph nodes.  

4.3.2.4 Effects of MVMp wt and derived vectors on cell proliferation and apoptosis 

The tumor growth of established GL261 tumors treated with peritumoral injections of 

cytokine-encoding parvoviruses was reduced compared to the control groups (Enderlin 

et al., 2008). In addition, parvoviral infection with MVMp wt and derived vectors impaired 

the cellular growth of GL261 cells in vitro (see section 4.2.2). Furthermore, TNF-α is a 

known potent pro-apoptotic factor. This prompted us to investigate whether these 

viruses had an effect on subcutaneous intratumoral cell proliferation or apoptosis. For 

this, tumor cryosections were histomorphometrically examined after staining either for 
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Ki67, used as a marker of cell proliferation, or after staining by terminal deoxynucleotidyl 

transferase Biotin-dUTP nick end labeling (TUNEL) assay to detect apoptotic cells.  

 
 

Treatment group % Ki67 positive cells % TUNEL positive cells 

Control 33.0 ± 6.5 7.5 ± 1.3 

Chi-MVMp/Δ800 33.0 ± 1.5 6.0 ± 2.5 

Chi-MVMp/TNF-α 30.5 ± 4.4 7.3 ± 1.8 

Chi-MVMp/IP-10 29.5 ± 2.3 7.0 ± 1.2 

Chi-MVMp/TNF-α + Chi-MVMp/IP-10 32.5 ± 1.5 6.0 ± 2.2 

wt MVMp 30.3 ± 1.8 6.4 ± 1.5 

 
 

 

 
 
 
 
 
 
 

 
Table 4-1: Effect of MVMp wt and derived vectors on cell proliferation and apoptosis 
1 x 106 GL261 cells were grafted subcutaneously in C57BL/6 mice. Small tumors were treated with two 
peritumoral injections (day 9 and 13 post-implantation) of Chi-MVMp/Δ800, wt MVMp, Chi-MVMp/TNF-α, 
Chi-MVMp/IP-10 (1 x 106 RU per injection), with both Chi-MVMp/TNF-α and Chi-MVMp/IP-10 (each at 1 x 
106 RU per injection), or PBS (control) (3 mice per group). 17 days post-implantation, tumors were 
resected, and cryofixed. Proliferating cells were stained by immunohistochemistry with an antibody 
against Ki67 and apoptotic cells were detected by TUNEL assay. Cryosections were photographed and 
digitalized images were processed with an imaging software to measure Ki67 and TUNEL positive cells 
and counterstained with hematoxylin to quantify the total amount of cells. The percentage of Ki67 and 
TUNEL positive cells are given as mean value of three animals per treatment group ± standard error of 
the mean. The difference between the treated groups was not statistically significant (Student’s t test). 
One representative picture for each stain is shown below. 

As shown in Table 4-1, no significant differences could be observed in the proliferation 

or apoptosis rate between the treated groups. Thus at this time point, the infection of 

GL261 cells with parvoviral vectors did not affect the proliferation nor the apoptosis of 

intratumoral cells in vivo. However, one should point out that these results were 

obtained at only one time point and may perhaps not be representative of the situation 

on a long-term follow up. 

                     Ki67                                                               TUNEL 
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4.4. Analysis of the antitumor effects of cytokine-transducing 
parvoviral vectors on GL261 implanted intracranially in syngeneic 
C57BL/6 mice 

The CNS has long been considered as an immune-privileged site. However, growing 

evidence indicates that the CNS has a significant but tightly regulated capability to 

induce immune responses and many immunotherapeutic approaches, including the use 

of immunostimulatory genes, have already been tried in the treatment of malignant brain 

tumors. This prompted us to investigate the antitumor effects of cytokine-transducing 

parvoviruses on mouse glioma tumor growth and animal survival when glioma cells are 

implanted intracranially in syngeneic immunocompetent mice.  

4.4.1. Establishment of GL261 cells intracranial implantation  

The GL261 glioma model is widely used as subcutaneous but also as intracranial tumor 

model. Of interest, several reports demonstrate that GL261 cells grow well after 

intracerebral implantation in syngeneic C57BL/6 mice and with a highly reproducible 

disease progression (Cha et al., 2003; Szatmari et al., 2006; Zagzag et al., 2000).  

Thus, we decided to test the antitumor effects of cytokine-encoding parvoviral vectors 

on mouse GL261 glioma implanted intracranially. Since this model was not established 

in our laboratory at the time I started, I contributed with S. Paschek (Vet. Med.) to 

implement it in our laboratory. Briefly, mice to be injected intracranially were 

anesthetized, mounted in a stereotactic frame (Figure 4-13 A) and a midline scalp 

incision was made to expose the surface of the skull. The point of junction of the coronal 

and sagittal sutures of the skull, termed bregma, served as reference point for 

stereotactic injections (Figure 4-13 B). A small hole was made at the define position of 

the caudate putamen (2.5 mm lateral to the bregma) and the needle was stereotactically 

introduced into the left striatum (3 mm deep) (Figure 4-13 C). 1 x 105 GL261 cells 

suspended in 4 µl of phosphate buffer (DPBS) were then injected over 16 min with an 

injection rate of 250 nl/min using a microinjection unit (Figure 4-13 A). Following 

injection, the needle was left in place for an additional 5 min to minimize any back-flow 

and the skin was sutured with non-absorbable nylon thread.  
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Figure 4-13: Stereotactic injection of mice in the left striatum 
A: Stereotactic frame with microinjection unit; B: schematic representation of the skull adapted from 
(Cook, 1965); C: Coronal section of the brain adapted from the mouse brain library. 

We first investigated the intracranial tumor growth of buffer-treated GL261 cells 

compared to cells infected with MVM wt and the empty parvoviral vector                   

Chi-MVMp/Δ800, which had only marginal effects on tumor growth and survival in the 

GL261 subcutaneous model (Enderlin et al., 2008). 

To this end, GL261 cells were infected in vitro with either MVMp wt, Chi-MVMp/Δ800 at 

an MOI of 3 RU per cell, or buffer-treated (mock). 1 x 105 cells were stereotactically 

implanted into the left brain hemisphere of C57BL/6 mice (9 animals per group). After 

intracranial tumor inoculation, tumor growth was monitored weekly by magnetic 

resonance imaging (MRI) and the percentage of surviving mice in the different groups 

was recorded daily. Tumor growth and animal survival are illustrated in Figure 4-14. 

In agreement with the literature, almost all mice implanted with buffer-treated cells died 

within four weeks (Szatmari et al., 2006; Zagzag et al., 2000) (Figure 4-14 B). 

Infection of GL261 cells prior implantation with Chi-MVMp/Δ800 or MVMp wt did not 

affect the intracranial tumor growth of GL261 cells up to 23 days post-implantation as 

shown by the similar growth compared with buffer-treated cells (mock) (Figure 4-14 A). 

While the animal survival of mice implanted with Chi-MVMp/Δ800 infected cells was 

slightly, but statistically significantly, prolonged compared to mice implanted with buffer- 

treated cells (p<0.05), there was no statistically significant difference between MVMp wt 

and mock groups. The median survival of mice implanted with Chi-MVMp/Δ800- 

(31 days) or MVMp wt- (30 days) infected cells was only slightly prolonged compared to 

mice implanted with mock-infected cells (28 days) (Figure 4-14 B).  

These results are in agreement with the marginal effects of parvoviral infection on the 

GL261 subcutaneous tumor growth and survival of mice (Enderlin et al., 2008).  
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Figure 4-14: Tumor growth and survival of mice intracranially implanted with GL261 cells 

infected with MVMp wt or the empty parvoviral vector Chi-MVMp/Δ800  
GL261 cells were infected in vitro with MVMp wt, Chi-MVMp/Δ800 (MOI = 3 RU/cell) or buffer-treated, 
and 1 x 105 cells were intracranially implanted in the left striatum of C57BL/6 mice (9 per group). Tumor 
development and animal survival were monitored over time. The tumor growth (A) and the percentage of 
surviving animals per group (B) are plotted as a function of time post-implantation. The tumor size is 
given as mm2 + SEM. Statistical analysis was performed using the Wilcoxon Rank Sum Test. (*=p<0.05 
versus mock). (C) Representative MRI scans of one mice implanted with buffer-treated cells and one 
mice implanted with Chi-MVMp/Δ800 over time.  
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4.4.2. Inhibition of tumor growth and prolonged survival of mice implanted 
intracranially with GL261 transducing TNF-α or both TNF-α and IP-10, but 
not IP-10 alone 

TNF-α- and IP-10-transducing parvoviral vectors were recently shown to inhibit the 

growth of subcutaneously grafted GL261 glioma cells in syngeneic recipient animals. 

The tumor growth of GL261 cells infected in vitro with TNF-α- and IP-10-encoding 

parvoviruses and subsequently implanted subcutaneously in C57BL/6 mice was 

significantly delayed compared to the controls and complete tumor regression was 

observed when glioma were coinfected with both vectors (Enderlin et al., 2008).  

This prompted us to investigate the antitumor effects of TNF-α- and IP-10-transducing 

parvoviruses and their combination on glioma tumor growth and animal survival when 

GL261 cells are implanted intracranially.  

To this end, GL261 cells were infected in vitro with either Chi-MVMp/TNF-α, or          

Chi-MVMp/IP-10 at an MOI of 3 RU per cell, or coinfected with both vectors at an MOI 

of 3 RU per cell for each vector. As control, GL261 were infected with the empty vector 

Chi-MVMp/Δ800 at an MOI of 3 RU per cell. 1 x 105 cells were stereotactically 

implanted into the left brain hemisphere of C57BL/6 mice. After intracranial tumor 

inoculation, tumor growth was monitored weekly and the percentage of surviving mice in 

the different groups was recorded daily. The tumor growth is shown for one 

representative experiment (9 mice per group) out of two in Figure 4-15 A and the animal 

survival is illustrated in Figure 4-15 B based on two independent experiments 

(2 x 9 mice).  
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Figure 4-15: Inhibition of tumor growth and increased survival of mice implanted 

intracranially with GL261 transducing TNF-α or both TNF-α and IP-10, but 
not IP-10 alone 

GL261 cells were infected in vitro with Chi-MVMp/TNF-α, Chi-MVMp/IP-10 (MOI = 3 RU/cell), or 
coinfected with Chi-MVMp/TNF-α and Chi-MVMp/IP-10 (MOI = 3 RU/cell for each vector). GL261 cells 
infected with Chi-MVMp/Δ800 (MOI = 3 RU/cell) served as control. 1 x 105 cells were intracranially 
implanted in the left striatum of C57BL/6 mice. Tumor development and animal survival was monitored 
over time. The tumor growth (A, 9 mice per group), and the percentage of surviving animals (B, 18 mice 
per group from two independent experiments) are plotted as a function of time post-implantation. The 
tumor size is given as mm2 + SEM. Statistical analysis was performed using the using the Koziol test for 
the tumor growth (*=p<0.05 versus delta) and the Wilcoxon Rank Sum Test for the animal survival 
(*=p<0.05, **=p<0.001 versus delta).   
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The intracranial tumor growth was significantly delayed in animals implanted with                    

Chi-MVMp/TNF-α-infected GL261 cells or with cells coinfected with Chi-MVMp/TNF-α 

and Chi-MVMp/IP-10. This tumor inhibition was statistically significant compared to the 

empty vector Chi-MVMp/Δ800 (p<0.05). Surprisingly, the growth of GL261 cells infected 

with Chi-MVMp/IP-10 alone was similar to the empty vector and there was no significant 

differences in tumor growth between parvoviral infections delivering TNF-α or both  

TNF-α and IP-10 (Figure 4-15 A). Furthermore, the survival of mice implanted with 

GL261 cells transducing TNF-α alone (p<0.001) or with both TNF-α and IP-10 (p<0.05) 

was statistically significantly prolonged (median survival: 35 days for both groups) 

compared to mice implanted with Chi-MVMp/Δ800-infected cells (median survival: 

31 days). In contrast, the survival of mice implanted with GL261 cells transducing IP-10 

(median survival: 30 days) was not significantly different from the control. No statistically 

significant differences could be observed between the survival of mice implanted with 

GL261 cells transducing either TNF-α alone or both TNF-α and IP-10 (Figure 4-15 B). 

 
These results differ from the data previously obtained in the subcutaneous model, as 

TNF-α- and IP-10-transducing parvoviral vectors alone were shown to inhibit the growth 

of subcutaneous GL261 and complete tumor regression was achieved when glioma 

were coinfected with both vectors, showing synergistical antitumor effects. Moreover, 

the survival of mice implanted subcutaneously with TNF-α- or IP-10-transducing GL261 

cells was quite similar and prolonged compared to the control (Chi-MVMp/Δ800), while 

all mice implanted with GL261 cells coinfected with Chi-MVMp/TNF-α and                  

Chi-MVMp/IP-10 were long-term survivors (Enderlin et al., 2008). 

Thus, in contrast to the results obtained subcutaneously, treatment with the IP-10-

encoding vector did not reduce the GL261 intracranial tumor growth, and consequently 

did not increase the survival of the animals compared to the control group. No synergy 

between TNF-α and IP-10 could be observed in this setting. In this model, TNF-α alone 

was the most potent antitumor cytokine.  
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4.4.3. Analysis of the mechanisms sustaining the antitumor effects of parvoviral 
vectors transducing TNF-α alone or together with IP-10 in the GL261 
intracranial model 

In order to investigate the mechanisms sustaining the antitumor effects of parvoviral 

vectors expressing TNF-α and to elucidate the lack of effects of IP-10-encoding vectors, 

we analyzed tumor microvascularization, the recruitment of the major types of 

leukocytes involved in immune responses, as well as intratumoral cell proliferation and 

apoptosis by immunohistochemistry on tumors samples from infected GL261 cells 

implanted intracranially. 

For this, GL261 cells infected in vitro with either Chi-MVMp/TNF-α, or Chi-MVMp/IP-10, 

at an MOI of 3 RU per cell, or coinfected with Chi-MVMp/TNF-α and Chi-MVMp/IP-10 at 

an MOI of 3 RU per cell for each virus and 1 x 105 cells were intracranially implanted in 

the left striatum of C57BL/6 mice (3 mice per group). Cells infected with MVMp wt,          

Chi-MVMp/Δ800, or buffer-treated (mock) were used as controls. 21 days post-infection, 

the brains were resected, cryofixed, and tumors sections were stained with specific 

antibodies by immunohistochemistry. Cryosections were photographed and digitalized 

images were processed with an imaging software to quantify positive cells or surface 

area.  

4.4.3.1 Inhibition of tumor angiogenesis in TNF-α-transduced GL261 tumors 

The cytokines used in this model are known to have both immunostimulating functions 

but also to potentially inhibit tumor angiogenesis. Indeed, IP-10 is known for its 

chemoattractive properties and also as a potent angiostatic molecule. TNF-α induces 

immune stimulation and was also reported to inhibit tumor angiogenesis. Therefore, we 

investigated the effects of parvoviral vectors delivering these transgenes on the 

intracranial GL261 tumor microvascularization. For this, tumor cryosections were 

histomorphometrically examined after staining for CD31, used as a marker of 

endothelial cells and microvascularization. The results are illustrated in Figure 4-16. 
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Figure 4-16: Decreased percentage of CD31+ labeled area after infection with TNF-α-

encoding MVMp-based vector 
GL261 cells were infected in vitro with Chi-MVMp/TNF-α, Chi-MVMp/IP-10 (MOI = 3 RU/cell), or 
coinfected with both vectors (MOI = 3 for each vector). GL261 infected with wt MVMp, Chi-MVMp/Δ800 
(MOI = 3 RU/cell) or buffer-treated (mock) were used as controls. 1 x 105 cells were intracranially 
implanted in the left brain hemisphere of C57BL/6 mice (3 per group). 21 days post-infection, brains were 
resected, cryofixed and tumors sections were stained with an antibody against CD31 by 
immunohistochemistry, and counterstained with hematoxylin. Cryosections were photographed and 
digitalized images were processed with an imaging software to quantify CD31+ labeled area. The 
percentage of CD31+ labeled area within the tumor is given as mean value of three animals per treatment 
group. Error bars represent standard deviations. Statistical analysis versus buffer-treated cells (mock) 
was performed using Student’s t test (*=p<0.05, **=p<0.01). Representative pictures are showed below. 

The microvascularization, as shown by CD31 labeling, was significantly decreased in 

tumors derived from GL261 cells infected with Chi-MVMp/TNF-α alone (p<0.01) or 

coinfected with Chi-MVMp/TNF-α and Chi-MVMp/IP-10 (p<0.05) compared to the 

control group (mock). TNF-α-transducing parvovirus had the most potent effect with less 

than 2 % of CD31+ labeled area compared with 6 % in the control (mock). In contrast, 

the effects of Chi-MVMp/IP-10, Chi-MVMp/Δ800 or MVMp wt on tumor 

microvascularization were not statistically significant compared to the control (mock). 
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These results indicate that TNF-α has an antiangiogenic effect on intracranial GL261 

tumor microvascularization while IP-10 has no significant effect. 

The effects of parvoviruses encoding TNF-α or its combination with IP-10 on 

microvascularization correlate with the increased survival of mice and suggest that 

inhibition of tumor angiogenesis by TNF-α may contribute to the antitumor mechanisms.  

4.4.3.2 Increased infiltration of CD8+ and CD4+ lymphocytes in mice intracranially 

implanted with parvovirus-infected GL261 cells 

To investigate the effect of parvoviral vectors on the recruitment of T cells in intracranial 

GL261 cells, we analyzed the infiltration of lymphocytes in tumor samples, using anti-

CD4 and CD8, antibodies respectively. The results are illustrated in Figure 4-17. 
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Figure 4-17: Increased infiltration of CD8+ and CD4+ lymphocytes in mice intracranially 

implanted with parvovirus-infected GL261 
GL261 cells were infected in vitro with Chi-MVMp/TNF-α, Chi-MVMp/IP-10 (MOI = 3 RU/cell), or 
coinfected with both vectors (MOI = 3 RU/cell for each vector). GL261 infected with wt MVMp, Chi-
MVMp/Δ800 (MOI = 3 RU/cell) or buffer-treated (mock) were used as controls. 1 x 105 cells were 
intracranially implanted in C57BL/6 mice (3 per group). 21 days post-infection, tumors were resected, 
cryofixed and T lymphocytes were stained by immunohistochemistry using anti-mouse CD8+ (A) and 
CD4+ (B) rat monoclonal antibodies, and counterstained with hematoxylin. Cryosections were 
photographed and digitalized images were processed with an imaging software to measure CD4+ and 
CD8+ positive cells. The number of positive cells is given per mm2 as mean value of three animals per 
treatment group and the error bars represent the SEM. Statistical analysis was performed using Student’s 
t test (*=p<0.05 versus mock). Representative pictures are showed below. 

Whereas very low numbers of CD8+ lymphocytes and no CD4+ could be detected in 

tumors derived from buffer-treated GL261 cells, a significant, yet limited, infiltration of 

both types of lymphocytes could be observed in all tumors derived from parvoviral 

infected GL261 cells. The lymphocyte infiltration into intracranial GL261 control tumors 

was much less than of the subcutaneous tumors, which is in agreement with the 

literature (Badie et al., 2001).  
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The increase in lymphocyte numbers was statistically significant for CD8+ lymphocytes 

in the case of tumors derived from GL261 infected with Chi-MVMp/TNF-α (p<0.05) 

compared to the mock, but not between the different parvoviral-treated groups, due to 

the large standard deviations observed for all other groups. Similarly the difference of 

infiltration of CD4+ lymphocytes between the different parvoviral-treated groups was not 

statistically significant. 

Thus, the parvoviral infection alone is able to induce the intracranial infiltration of CD4+ 

and CD8+ lymphocytes, but we could not observe a significant effect of any of the 

transgenes on the attraction of these leukocytes. 

Yet, it is worth noting that, as shown in section 4.3.2.1, independently of the numbers of 

infiltrating lymphocytes, the cells might be differentially activated depending on the 

treatment. Indeed, we could show a decrease of TGF-β in GL261 cells infected with 

parvoviral vectors transducing transgenes. Thus, CD4+ and CD8+ might be activated in 

tumors derived from GL261 cells infected with cytokine-encoding parvoviral vectors 

while being suppressed in the control groups (Chi-MVMp/Δ800, MVM wt). 

4.4.3.3 Decreased infiltration of macrophages and/or microglia in mice 

intracranially implanted with parvovirus-infected GL261 cells. 

Both human and animal brain tumors have been shown to be significantly infiltrated by 

blood derived-macrophages and/or by microglia, the latter known as the brain resident 

macrophages (Badie and Schartner, 2000; Roggendorf et al., 1996). Once activated, 

microglial cells acquire morphological and immunophenotypical features similar to 

peripheral macrophages. Hence, it is difficult to distinguish between these two types of 

cells and they are often designated as macrophage/microglial cells (Stoll and Jander, 

1999). The role of glioma-infiltrating macrophages/microglia remains controversial, as 

they were shown to have both pro- and antitumor activities (Badie and Schartner, 2001). 

 
In order to analyze the effect of parvoviral vectors on the infiltration of activated 

macrophages/microglia in intracranially-implanted GL261, tumor cryosections were 

histomorphometrically examined after staining with anti-CD68 antibodies, specific for 

cells of the macrophage lineage. 
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Figure 4-18: Decreased infiltration of macrophages and/or microglia in mice intracranially 

implanted with parvovirus-infected GL261 
GL261 cells were infected in vitro with Chi-MVMp/TNF-α, Chi-MVMp/IP-10 (MOI = 3 RU/cell), or 
coinfected with both vectors (MOI = 3 RU/cell for each vector). GL261 infected with wt MVMp, Chi-
MVMp/Δ800 (MOI = 3 RU/cell) or buffer-treated (mock) were used as controls. 1 x 105 cells were 
intracranially implanted in C57BL/6 mice (3 per group). 21 days post-infection, brains were resected, 
cryofixed and tumors sections were stained for macrophages/microglia using a CD68-specific antibody. 
Cryosections were photographed and digitalized images were processed with an imaging software to 
quantify CD68 labeled area. The percentage of CD68 positive labeled area within the tumor is given as 
mean value of three animals per treatment group. Error bars represent standard deviations. Statistical 
analysis versus buffer-treated cells was performed using Student’s t test (*=p<0.05, **=p<0.01, 
***=p<0.001). Representative pictures are showed below. 

As shown in Figure 4-18, the infiltration of CD68+ macrophages/microglia was 

statistically decreased in all parvovirus-infected cells compared to the control (Mock), 

except for GL261 transducing IP-10. However, the difference between GL261 cells 

infected with Chi-MVMp/IP-10 or Chi-MVMp/Δ800 was not statistically significant. 

The macrophages/microglia numbers were minimal in GL261 cells infected with        

Chi-MVMp/TNF-α (p<0.001) or with both Chi-MVMp/TNF-α and Chi-MVMp/IP-10 
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(p<0.01), suggesting an effect of the transduced TNF-α on the infiltration of 

macrophages. This could be owing to a decreased invasion into the tumor, but also to a 

decreased proliferation or induced cell death within the tumor of macrophages/microglia 

upon treatment with TNF-α-transducing parvoviral vector.  

The degree of macrophages/microglia infiltration inversely correlates with the tumor 

growth and survival in vivo and indicates that these cells might have rather tumor 

promoting features in our experimental setting. Indeed, brain microglia/macrophages 

were reported to secrete many factors including cytokines and matrix proteases which 

directly or indirectly promote glioma proliferation, migration, and angiogenesis (Rao, 

2003; Watters et al., 2005). Thus, this might also be related to the reduced 

vascularization observed in TNF-α-transducing tumors (see section 4.4.3.1). 

4.4.3.4 No detectable infiltration of dendritic cells or natural killer cells  

The infiltration of natural killer cells and dendritic cells was analyzed using anti-NKG2D 

and 33D1 antibodies respectively. At the time point analyzed, we could not detect any of 

these two immune cells in GL261 intracranial tumors, irrespective of the group, similarly 

to the situation in subcutaneous tumors.  

4.4.3.5 No effect of MVMp-derived vectors on cell proliferation and apoptosis 

In order to determine whether parvoviral vectors may affect the intratumoral cell 

proliferation and apoptosis, intracranial tumor cryosections were histomorphometrically 

examined after staining for Ki67 (cell proliferation marker), or after TUNEL assay to 

detect apoptotic cells.  

As shown in Table 4-2, the proliferation rate of tumors was comparable in all groups, 

with about 30% of proliferating cells. The difference between the treatment groups was 

not statistically significant, similarly to what was observed subcutaneously. This 

suggests that at the time point analyzed (21 days post-implantation) neither the infection 

of GL261 cells with parvoviral vectors nor the transduced cytokines did affect the 

proliferation of intracranial GL261 or non tumoral cells. 

Intratumoral apoptosis was evaluated using the TUNEL assay (data not shown). The 

rate of positively stained cells in both cases were very variable between the three 

individual of each group and no significant differences could be observed. Therefore no 

clear effect could be seen on intratumoral apoptosis. 
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Treatment group % Ki67 positive cells  

Mock 29 ± 1.4 

Chi-MVMp/Δ800 31 ± 1.8 

Chi-MVMp/TNF-α 32 ± 4.2 

Chi-MVMp/IP-10 31 ± 5.1 

Chi-MVMp/TNF-α + Chi-MVMp/IP-10 28 ± 5.6 

wt MVMp 29 ± 3.8 

 
Table 4-2: No effect of MVMp-derived vectors on intracranial tumor cell proliferation  
GL261 cells were infected in vitro with Chi-MVMp/TNF-α, Chi-MVMp/IP-10 (MOI = 3 RU/cell), or 
coinfected with both vectors (MOI = 3 RU/cell for each vector). GL261 infected with wt MVMp, Chi-
MVMp/Δ800 (MOI = 3 RU/cell) or buffer-treated (mock) were used as controls. 1 x 105 cells were 
intracranially implanted in C57BL/6 mice (3 per group). 21 days post-infection, brains were resected, 
cryofixed and tumors sections were stained with an antibody against KI67 by immunohistochemistry, and 
counterstained with hematoxylin. Cryosections were photographed using a and digitalized images were 
processed with an imaging software to measure Ki67 positive cells and counterstained with hematoxylin 
to quantify the total amount of cells. The percentage of KI67 positive cells is given as mean value of three 
animals per treatment group ± standard deviation. The difference between the treatment groups was not 
statistically significant (Student’s t test). 

Thus, at the time point analyzed, the infection of GL261 cells with parvoviral vectors did 

not significantly affect the proliferation nor the apoptosis of intratumoral cells in vivo. 

However, one should point out that these results were obtained at only one time point 

and may perhaps not be representative of the situation on a long-term follow up.  

 

4.4.4. Analysis of the antitumor effects of MCP-2- and MCP-3-transducing 
parvoviral vectors on GL261 implanted intracranially in C57BL/6 mice  

Monocyte chemotactic proteins MCP-2 and MCP-3 are known to be potent 

immunoactive cytokines, recruiting a broad range of leukocytes. Their chemotaxis for 

NK cells, T cells and DCs, known to play a critical role in antitumor immunity, makes 

them attractive candidate as antitumor agents. Parvoviral vectors delivering MCP-3 

were previously demonstrated to inhibit the tumor growth of human Hela grafted in nude 

mice (Wetzel et al., 2001) and mouse melanoma implanted subcutaneously in 

syngeneic mice (Wetzel et al., 2007). This prompted us to investigate the antitumor 

effects of parvoviruses delivering MCP-2 and MCP-3 in the GL261 intracranial glioma 

model.  

For this, GL261 cells were infected in vitro with Chi-MVMp/MCP-2, Chi-MVMp/MCP-3 at 

an MOI of 3 RU per cell. As control, GL261 cells were infected with Chi-MVMp/Δ800 at 
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an MOI of 3 RU per cell or buffer-treated. 1 x 105 cells were stereotactically implanted 

into the left brain hemisphere of C57BL/6 mice (8 mice per group) and tumor growth 

was monitored weekly by magnetic resonance imaging (MRI). The percentage of 

surviving mice in the different groups was recorded daily. The tumor growth and the 

animal survival are illustrated in Figure 4-19. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

 
Figure 4-19: Tumor growth and animal survival of mice intracranially implanted with 

GL261 cells transducing MCP-2 or MCP-3 
GL261 cells were infected in vitro with Chi-MVMp/MCP-2, or Chi-MVMp/MCP-3 (MOI = 3 RU/cell).      
Chi-MVMp/Δ800-infected cells (MOI = 3 RU/cell) and buffer-treated cells (mock) served as control. 
1 x 105 cells were intracranially implanted in the left striatum of C57BL/6 mice (9 per group). Tumor 
development and animal survival were monitored over time. The tumor growth (A) and the percentage of 
surviving animals per group (B) are plotted as a function of time post-implantation. The tumor size is 
given as mm2 + SEM.  
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As observed in Figure 4-19, whereas the tumor growth of GL261 infected with           

Chi-MVMp/Δ800 or buffer-treated was comparable up to 20 days post-implantation, the 

median survival of mice implanted with GL261 infected with Chi-MVMp/Δ800 (27 days) 

was slightly increased compared to mice implanted with buffer-treated cells (24 days). 

The intracranial tumor growth of GL261 cells infected with parvoviral vectors 

transducing MCP-2 or MCP-3 and the corresponding survival (median survival: 28 days 

for MCP-2, and 28.5 days for MCP-3) was similar to that of the empty vector (median 

survival: 27 days). This indicates that the effect observed can be attributed to the 

parvoviral vector alone rather than to the inflammatory cytokines. It might be that these 

two cytokines are processed when produced by GL261, leading to their inactivation by 

cleavage, as it was shown for MCP-2 delivered by parvoviral-derived vectors in 

melanomas (Struyf et al., in press). 
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5. DISCUSSION  

5.1. Mechanisms sustaining tumor inhibition by TNF-α- and IP-10- 
expressing parvoviral vectors in the GL261 subcutaneous model 

Parvoviral vectors transducing hIP-10 and mTNF-α were recently shown to strongly 

inhibit the growth of GL261 glioma, especially when GL261 cells were coinfected in vitro 

with TNF-α- and IP-10-transducing parvoviruses, and subcutaneously implanted in 

syngeneic mice. A synergistic antitumor activity of these cytokines was demonstrated. 

The treatment of established tumors with peritumoral injections of cytokine-encoding 

parvoviruses also inhibited the tumor growth compared to tumors treated with the 

controls but to a lesser extend than in the in vitro setting and the antitumor effects of 

TNF-α- and IP-10-transducing vectors or the combination of both were comparable 

(Enderlin et al., 2008).   

5.1.1. Implication of T lymphocytes and the possible roles of Tregs and TGF-β 

The immunohistochemical analysis of CD4+ lymphocytes infiltrating established GL261 

subcutaneous tumors treated with parvoviral vectors showed a dramatically decreased 

infiltration that inversely correlated with the tumor growth in vivo. Thus, we hypothesized 

that the antitumor response might be related to a decreased tumor invasion and/or 

proliferation of CD4+ Tregs, known to suppress immune responses. Supporting this 

possibility, the depletion of Tregs was shown to prolong the survival of C57BL/6 mice 

bearing intracranial GL261 tumors (El Andaloussi et al., 2006; Grauer et al., 2007).  

This hypothesis would need to be confirmed through the analysis of Treg specific 

markers. Up to now, the most specific marker for mouse Tregs is FoxP3, a member of 

the forkehead transcription factor family. FoxP3 is highly expressed in CD4+ Tregs and 

was shown to be linked to their suppressive activity (Fontenot et al., 2003; Hori et al., 

2003). Other molecules are constitutively expressed on Tregs such as the IL-2 receptor 

α-chain (CD25) and the cytotoxic lymphocyte-associated antigen-4 (CTLA-4), and are 

alternatively used to identify Tregs. However, these molecules can also be found 

temporarily on conventional CD4+ T cells upon activation and are thus not highly 

specific for Tregs (Furtado et al., 2002; Takahashi et al., 2000). Hence, to confirm a 
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decrease of CD4+ Tregs upon infection with recombinant parvoviruses, a double 

staining for CD4 and FoxP3 could be performed by immunohistochemistry or 

fluorescence-activated cell sorting (FACS) analysis. Furthermore, we could verify that 

anti-CD25 antibodies-mediated depletion of Tregs reduces the growth of virus-infected 

GL261 implanted subcutaneously.  

 
Moreover, our results revealed that the decrease in CD4+ lymphocytes correlated with 

decreased expression of TGF-β, which is known to induce Treg infiltration and 

proliferation (Chen and Wahl, 2003; Ghiringhelli et al., 2005). To confirm the effect of 

TGF-β on CD4+ Tregs, we could block TGF-β in vivo by means of TGF-β blocking 

antibodies and study its effect on the proportion of CD4+ Tregs infiltrating tumors. 

 
We showed a decreased expression of TGF-β in vitro in GL261 cells infected with 

cytokine-encoding vectors compared to cells infected with the controls (MVMp wt, 

empty vector or buffer-treated cells). Interestingly, TGF-β was also reported to impair 

the function of both CD4+ and CD8+ lymphocytes (Gorelik and Flavell, 2002; Thomas 

and Massague, 2005). This prompted us to consider that the lymphocyte activity might 

be impaired by TGF-β in the controls but not in cytokine-treated tumors. To verify this 

hypothesis, we could test in our experimental setting the activation status of CD4+ and 

CD8+ tumor infiltrating lymphocytes by FACS analysis for lymphocyte activation markers 

such as CD25, CD69 or CD44high. As for cytotoxic CD8+ T lymphocytes (CTL), we could 

also perform RT-PCR on tumors samples for the expression of markers of CTL-

mediated cytotoxicity such as perforin, granzyme A and B, IFN-γ, and Fas ligand 

(Russell and Ley, 2002).  

5.1.2. Implication of macrophages 

The analysis of the macrophage infiltration in established subcutaneous GL261 tumor 

revealed a slight increase in tumors treated with the combination of parvoviral vectors 

encoding TNF-α and IP-10 compared to the control. Since the treatment of established 

tumors with parvoviral vectors transducing TNF-α, IP-10 or both had similar antitumor 

effects, we assume that the contribution of macrophages is only marginal in this setting. 

However, it would be interesting to verify the contribution of macrophages when in vitro 

infected GL261 cells are subsequently grafted subcutaneously, as in this setting, the 

combination of parvoviral vectors encoding TNF-α and IP-10 had the most potent effect. 

This could be tested by depletion of macrophages using anti-CD68 antibodies. 
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5.2. Inhibition of tumor growth and increased survival of mice 
implanted intracranially with GL261 cells transducing TNF-α alone 
or in combination with IP-10, but not IP-10 alone 

We showed that the infection of GL261 cells prior implantation with Chi-MVMp/Δ800 

and MVMp wt did not significantly affect the intracranial tumor growth of GL261 cells 

compared with buffer-treated cells, and only slightly prolonged the survival of mice. 

These results are in agreement with the marginal effects of parvoviral infection in the 

GL261 subcutaneous model (Enderlin et al., 2008).  

The intracranial tumor growth was significantly delayed and the survival prolonged in 

animals implanted with Chi-MVMp/TNF-α-infected GL261 cells or with cells coinfected 

with Chi-MVMp/TNF-α and Chi-MVMp/IP-10 compared to the empty vector               

Chi-MVMp/Δ800. Surprisingly, in contrast to the data obtained subcutaneously, the 

growth of GL261 cells infected with Chi-MVMp/IP-10 alone and the survival of recipient 

mice was similar to the empty vector. Moreover, there were no significant differences in 

tumor growth and survival between mice implanted with parvoviral vectors delivering 

TNF-α alone or together with IP-10.  

Thus, in contrast to the subcutaneous setting, when the glioma cells are implanted 

intracranially, the most potent antitumor effects were obtained with TNF-α-transducing 

parvoviral vector. The effects of TNF-α are in agreement with those of Ehtesham et al., 

who observed a prolonged survival of mice implanted with GL26 glioma cells treated 

with an adenoviral vector encoding TNF-α compared to mice treated with a control 

vector encoding LacZ (Ehtesham et al., 2002). 

 

The lack of antitumor effect of the recombinant parvovirus encoding human IP-10    

(hIP-10) prompted us to investigate the possibility that hIP-10 transduced in GL261 cells 

could be degraded or inactivated. To verify this, hIP-10 produced by parvovirus-infected 

GL261 cells was purified until homogeneity from cell supernatants and was analyzed by 

mass spectrometry in collaboration with S. Struyf (Rega Institute, University of Leuven, 

Belgium). Preliminary results indicate that several forms of hIP-10 are produced by 

infected GL261 cells, some of which might be inactive.  

Yet, Chi-MVMp/IP-10 was shown to be effective as antitumor agent subcutaneously 

when used alone. This suggests that the levels of active hIP-10 transduced are 

sufficient to induce an antitumor response subcutaneously. In the brain, hIP-10 might be 

further modified or degraded due to the presence of modifying enzymes or proteases in 
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the tumor environment. Alternatively, some brain cells might bind and/or trap (decoy 

receptors) IP-10, thus diminishing its availability to attract leukocytes. Indeed, CXCR3 

expression was found to be constitutively expressed in vivo in astrocytes and neurons 

(Goldberg et al., 2001; Xia et al., 2000). 

Moreover, the fact that hIP-10 produced by infected GL261 cells might be partly 

degraded or inactivated supports the hypothesis that the synergistical antitumor effects 

observed subcutaneously, when using both vectors encoding mTNF-α and hIP-10, 

could indeed be related to the increased mIP-10 secretion in GL261 cells infected with 

TNF-α-transducing parvovirus.  

Our hypothesis is that in the brain, but not subcutaneously, the levels of intact hIP-10 

produced by recombinant parvovirus-infected GL261 cells are further processed so that 

only endogenous mIP-10, induced by TNF-α, may be produced in an active form, yet at 

too low levels to be effective. 

To test this, it appears thus relevant to produce a Chi-MVMp-based parvoviral vector 

delivering mouse IP-10 and to evaluate its antitumor effects intracranially, alone or in 

combination with the TNF-α-transducing vector.  

 

 

5.3. Mechanisms sustaining the antitumor effects of TNF-α-
transducing parvoviral vectors in the GL261 intracranial tumor 
model 

The above mentioned observations prompted us to study the mechanisms responsible 

for the antitumor effects of TNF-α-transducing parvoviral vector. TNF-α is a pluripotent 

cytokine, known for its immunostimulatory properties, but also as a potent inhibitor of 

angiogenesis (Lejeune et al., 1998; Mocellin et al., 2005). In addition, it is also able to 

induce direct killing of tumor cells through necrosis or apoptosis (Ashkenazi and Dixit, 

1998; Carswell et al., 1975). Here, we showed an effect of parvoviral TNF-α on 

intracranial tumor vascularization and on the infiltration of macrophages. We also 

investigated the apoptosis of intratumoral cells but could not see any significant 

differences between the different groups. This suggest that at least at the time point 

studied, TNF-α did not induce direct killing of tumor cells, although GL261 cells express 

TNF-α receptors.  
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5.3.1. Parvoviral-transduced TNF-α inhibits GL261 tumor microvascularization 

We observed that parvoviral-transduced TNF-α significantly decreased the 

microvascularization of intracranial GL261 tumors, as shown by reduced CD31 labeling. 

TNF-α was reported to inhibit tumor neovascularization as well as to induce endothelial 

cell death (Lejeune et al., 2006; Mocellin et al., 2005; Polunovsky et al., 1994; Sato et 

al., 1987). Whether inhibition of angiogenesis and/or endothelial cell death contribute to 

the decrease of microvascularization in our system remains to be elucidated.  

The angiogenesis was previously also investigated in the subcutaneous tumor model by 

CD31 labeling but no effect could be detected neither with parvoviruses encoding   

TNF-α, IP-10, or the combination of both. However, this analysis was performed on 

subcutaneous established tumors that were treated in vivo with parvoviruses. Therefore, 

the cytokine levels achieved might have been too low, due to loss of the virus in non-

tumoral cells. Yet, tumor necrosis was shown to be enhanced in the groups treated with 

parvoviral vector encoding TNF-α (Enderlin et al., 2008). Whether this was due to direct 

killing of GL261 cells or to vascular damage remains to ne determined. 

5.3.2. Parvoviral-transduced TNF-α decreases the infiltration of macrophages 
and/or microglia in GL261 brain tumors 

We showed lower numbers of macrophages/microglia in GL261 tumors transducing 

TNF-α. The reduced infiltration with microglia/macrophages correlated with the reduced 

tumor growth and increased survival of mice. These results are in agreement with 

clinical studies indicating that the extend of glioma-associated macrophages/microglia 

positively correlates with poor prognosis (Leung et al., 1997; Roggendorf et al., 1996; 

Rossi et al., 1988). These data are also in accordance with those of Engel et al., who 

showed that inhibition of C6 rat glioma growth correlated with decreased 

macrophages/microglial infiltration (Engel et al., 1999), and of Platten et al., who 

showed that macrophages/microglia infiltration induced by MCP-1-transducing CNS-1 

glioma tumors inversely correlated with animal survival (Platten et al., 2003). 

Macropages/micoglia may indeed contribute to tumor development by secreting growth 

signals, angiogenic factors, matrix-degrading proteinases, and immunosuppressors 

(Badie and Schartner, 2001; Bingle et al., 2002; Graeber et al., 2002).  

Both peripheral macrophages and microglia are CD68+. Thus, we cannot discriminate 

between the relative contribution of both types of cells in our system by means of this 

marker. So far, no specific markers have been identified to differentiate microglia and 
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macrophages. Yet, some markers are differentially expressed on both types of cells in 

the mouse, such as CD45 which is highly expressed on macrophages (CD45high) and 

less on microglia (CD45+) (Sedgwick et al., 1991). We could thus consider using such a 

marker to discriminate both cell types by FACS analysis.  

The reduced numbers of macrophages/microglia in TNF-α-transduced intracranial 

GL261 tumors could be due to reduced invasion in the tumor, reduced proliferation, or 

increased cell death within the tumor. Indeed, TNFR-1 and TNFR-2 expression was 

reported on macrophages/microglia (Dopp et al., 1997) and TNF-α could thus directly 

kill these cells. Both types of cells are known to produce TNF-α upon activation 

(Waterston and Bower, 2004; Watters et al., 2005) and have thus evolved to be 

resistant to TNF-α-mediated apoptosis. For instance, macrophages were shown to 

constitutively express NF-κB, and its inhibition induced macrophages apoptosis (Liu et 

al., 2004). It might be that macrophages/microglia are sensitized to TNF-α-induced cell 

death in the glioma microenvironment through inhibition of NF-κB. Alternatively, TNF-α 

may act indirectly by inducing or inhibiting the production of other proteins that would 

lead to macrophages/microglia cell death or decrease their infiltration and/or 

proliferation. 

5.3.3. Slight increased infiltration of lymphocyte in parvovirus-infected brain 
tumors  

We showed a mild increase of CD4+ and CD8+ lymphocytes in parvovirus-infected 

GL261 intracranial tumors compared to the control (mock), but no significant attraction 

due to the cytokines expressed by parvoviral vectors. Yet, as mentioned before, it might 

be that the activation of lymphocytes is higher in tumors transducing cytokines than in 

the controls (MVMp wt and the empty vector) as a result of the decreased TGF-β 

secretion in GL261 transducing cytokines. In agreement with this, inhibition of TGF-β 

signaling using an inhibitor of the TGF-βRI kinase was shown to restore immune 

surveillance and to improve the survival of mice implanted intracranially with SMA-560 

glioma (Tran et al., 2007). Furthermore, the eradication of established intracranial 9L rat 

gliomas was reported after subcutaneous immunizations with 9L cells expressing a 

TGF-β antisense construct (Fakhrai et al., 1996). Thus, it would be interesting to test 

the expression of TGF-β in vivo in our system, for example by RT-PCR on tumor 

samples. 
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5.4. Potential of cytokine-transducing parvoviral vectors for glioma 
therapy 

Our findings illustrate the efficacy of TNF-α-encoding parvoviral vectors as antitumor 

agent in a mouse syngeneic intracranial glioma model. Further studies should be 

performed to exploit the therapeutic potential of cytokine-encoding parvoviral vectors 

and their possible application to malignant gliomas. This would include the injection of 

parvoviral vectors in vivo in established brain tumors or the use cytokine-secreting 

autologous glioma vaccines. As the adult brain is composed of low proliferating glial 

cells and post-mitotic neurons, the application of parvoviral vectors in vivo should 

selectively target glioma tumor cells, as the parvoviral life cycle is strictly dependent on 

host cell proliferation. In agreement with this, preclinical studies showed that normal 

mouse astrocytes and microglia sustain an abortive viral life cycle upon MVMp infection 

(Abschuetz et al., 2006). 

 
Cytokine-transducing parvoviral vectors, like all emerging immunotherapeutic agents, 

should be considered to be applied as adjuvant to the conventional treatment strategy, 

involving surgery, radiation and chemotherapy, to eradicate residual brain tumor cells. 

Of interest, several reports showed that the combination of radiation with intratumoral 

administration of TNF-α-encoding vectors substantially reduced glioma tumor 

progression (Li et al., 1998; Staba et al., 1998). 

Thus, the use of TNF-α-encoding parvoviral vectors in combination with radiotherapy 

and/or chemotherapy appears as a promising therapeutic approach for the treatment of 

malignant gliomas. Whether TNF-α can be combined with IP-10 to increase its efficacy 

in the brain remains to be further investigated. 
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IFN interferon 
Ig immunoglobulin 
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JNK Jun kinase 
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m mouse 
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RU replication unit 
s.c. subcutaneous 
SAT small alternatively translated protein 
SD standard deviation 
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SEM standard error of the mean 
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SSC saline-sodium citrate 
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TE tris-EDTA 
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TNF tumor necrosis factor 
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WHO world health organization 
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°C  degree Celsius 
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g  gram 
h  hours 
kg  kilogram 
l  liter 
µ  micro 
M molar 
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mm millimeter 
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n  nano 
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nt nucleotide 
p  pico 
rpm revolution per minute 
s second 
V volt 
U units 
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