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1 Summary 

The AP-1 transcription factor is a central player in a multitude of biological processes from 

normal development to neoplastic transformation causing cancer. Junb, a subunit of AP-1, is 

special by the fact that it has at the same time activator and repressor functions. While 

positively regulated Junb target genes are principally required for proper vascular 

development, negative regulation of cytokines is of crucial importance to suppress pro-

inflammatory and tumorigenic phenotypes. In this work, I approached this double-edge role 

of Junb by addressing two scientific questions: the mode of operation of Junb as negative 

transcription regulator and its impact in the ER stress response and apoptosis. First, I could 

show that, in addition to the general view of being an inhibitor of AP-1 by absorbing Jun 

activity, Junb also represses genes by epigenetic mechanisms. Although Junb did regulate 

neither the levels of histone acetylation nor the expression of HDACs, DNMTs and co-

repressor complexes, few genes showed differential induction by HDAC inhibitors in wild-

type and Junb-deficient fibroblasts. Presumably, these genes may be regulated through a yet 

to be identified Junb-dependent mechanism involving HDACs. Moreover, Junb regulated the 

DNA methylation of the imprinting control region of the gene H19. The molecular 

mechanisms involved in Junb-dependent epigenetic regulation appear to be novel and very 

unusual for an AP-1 member and remains to be fully solved. Secondly, I investigated the role 

of Junb in ER stress, a condition that has been described to contribute to hypoxia tolerance 

and tumor progression. Although Junb deficiency resulted in minor changes in the ER stress-

triggered unfolded protein response (UPR), Junb-ablated MEFs were resistant towards 

apoptosis. Very high levels of activated pro-survival kinases resulted in aberrant post-

translational modification of BH3-only proteins Bim and Bad and subsequent failure in 

mitochondria permeabilization and caspases activation. A soluble factor, most likely Pdgfb, 

elicited a pro-survival autocrine loop causative for the apoptosis resistance in absence of 

Junb. In summary, the negative regulation of cytokines and growth factors by Junb accounts 

for most of the deleterious effects observed in absence of Junb, except for the angiogenesis 

phenotype. Thus, the understanding of how Junb represses genes and the targeting of this 

specific mechanism would represent a promising therapeutic approach to treat in the future 

inflammatory disease and cancer. 

. 
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2 Zusammenfassung 
Der Transkriptionsfaktor AP-1 ist ein zentraler Akteur in einer großen Zahl biologischer 

Prozesse von der normalen Entwicklung bis zur neoplastischen Transformation, die zu Krebs 

führt. Junb, eine Untereinheit von AP-1, ist  dadurch außergewöhnlich, dass Junb gleichzeitig 

Aktivator- und Repressorfunktionen hat. Während positiv regulierte Junb Zielgene in der 

Hauptsache für eine geordnete vaskuläre Entwicklung erforderlich sind, ist die negative 

Regulation von Zytokinen für die Unterdrückung von entzündlichen und tumorgenen 

Phänotypen von entscheidender Bedeutung. In der vorliegenden Arbeit habe ich diese 

zweischneidige Rolle von Junb analysiert, indem ich zwei wissenschaftliche Fragen 

bearbeitete: die Arbeitsweise von Junb als negativer transkriptioneller Regulator und seinen 

Einfluss in der ER Stressantwort und Apoptose. Als Erstes konnte ich zeigen, dass zusätzlich 

zur generellen Ansicht, dass JunB AP-1 durch Abfangen der Jun Aktivität hemmt, Junb Gene 

auch über epigenetische Mechanismen inaktiviert. Obwohl Junb weder die Menge an 

Histonazetylierung, noch die Expression von HDACs, DNMTs und Ko-Repressorkomplexen 

regulierte, zeigten einige Gene in Wildtyp und Junb-defizienten Fibroblasten unterschiedliche 

Induktion nach HDAC Inhibitorgabe. Dies lässt vermuten, dass diese Gene durch einen noch 

zu identifizierenden Junb-abhängigen Mechanismus via HDACs reguliert sein könnten. 

Darüber hinaus regulierte Junb die DNA Methylierung der Imprinting Kontrollregion des 

H19 Gens. Der molekulare Mechanismus dieser Junb-abhängigen epigenetischen Regulation 

scheint neuartig und sehr ungewöhnlich für ein AP-1 Mitglied und muss noch vollständig 

geklärt werden. Als Zweites habe ich die Aufgabe von Junb im ER Stress untersucht, einem 

Zustand der mit Hypoxietoleranz und Tumorprogression im Zusammenhang steht. Obwohl 

das Fehlen von Junb zu minimalen Veränderungen im ER Stress induzierten 

Stoffwechselweg UPR führt, waren MEFs ohne Junb Apoptose-resistent. Sehr hohe Level an 

aktivierten überlebensstimulierenden Kinasen resultierten in veränderter posttranslationaler 

Modifikation der „BH-3 only“ Proteine Bim und Bad und im nachfolgendem Ausbleiben der 

Mitochondrienpermeabilisierung und Caspase-Aktivierung. Ein löslicher Faktor, sehr 

wahrscheinlich Pdgfb, löste einen überlebensfördernden autokrinen geschlossenen Regelkreis 

aus, der für die Apoptoseresistenz in Abwesenheit von Junb ursächlich ist. Zusammengefasst 

ist die negative Regulation von Zyktokinen und Wachstumsfaktoren durch Junb für die 

meisten schädlichen Auswirkungen verantwortlich, die mit Ausnahme des 

Angiogenesephänotyps, in Abwesenheit von Junb auftreten. Daher würde das Verständnis 

darüber wie Junb Gene reprimiert und der somit mögliche gezielte Eingriff in diesen 
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Mechanismus ein viel versprechender therapeutischer Ansatz bieten, um künftig entzündliche 

Erkrankungen und Krebs zu behandeln. 
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3 Introduction 

The development of multicellular organisms is very complex and, thus, requires a tight 

regulation. Developmental programs include cell division, growth, migration and 

differentiation, which are all governed by complex signaling pathways resulting in changes in 

gene expression. Proper gene expression is absolutely essential for the maintenance of the 

cellular integrity of higher organisms, while aberrant gene expression results in the 

development of various diseases such as cancer. Gene expression is regulated on multiple 

levels, from transcription by transcription factors to translation and post-translational 

modifications.  

Much of our current knowledge about the characteristics of transcription factors comes from 

the discovery and study of Activating Protein-1 (AP-1). Since the AP-1 transcription factor 

mediates gene regulation in response to a wide variety of physiological and pathological 

stimuli, it is a central player in a multitude of cellular processes from normal development to 

neoplastic transformation causing cancer. Despite the fact that AP-1 has been identified more 

than two decades ago, it still maintains a lot of its mystery. Deciphering the complexity of the 

AP-1 genetic network should help to better understand how the cell performs the critically 

fine tuning of its fate. 

3.1 The transcription factor AP-1 

The activating protein-1 (AP-1) is a transcription factor principally composed of dimers 

between the Jun (Jun, Junb and Jund), Fos (Fos, Fosb, Fra-1, Fra-2), ATF (activating 

transcription factor, Atf2, LRF-1/ATF-3, Batf, Jdp1, Jdp2) and Maf (c-Maf, MafB, MafA, 

MafG/F/K) protein families. AP-1 is at the receiving end of signaling cacades elicited by a 

plethora of physiological and pathological stimuli, including cytokines, growth factors and 

stress signals, bacterial and viral infections as well as oncogenic stimuli and it regulates, upon 

activation, numerous target genes (Hess et al., 2004). 

3.1.1 Biochemical properties of AP-1 

A common feature of AP-1 family members is the conserved bZIP domain. The 

evolutionarily conserved bZIP domain consists of a leucine zipper region, which allows 

dimerization of the proteins, combined with a basic DNA binding domain that requires 

dimerization to bind DNA. While the Fos proteins (Fos, Fosb, Fra-1, Fra-2) can only 

heterodimerize with members of the Jun family, the Jun proteins (Jun, Junb, Jund) can both 
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homo- and heterodimerize with Fos or ATF members to form transcriptionally active 

complexes. In addition to the well-characterized bZIP domain, the AP-1 family members 

comprise a transactivation domain, which differs between the individual Jun and Fos proteins 

with regard to its potential (Angel and Karin, 1991; Hess et al., 2004). Whereas Jun, Fos and 

Fosb are considered strong transactivators, Junb, Jund, Fra-1 and Fra-2 exhibit only weak 

transactivation potential. Under specific circumstances, the latter may even act as repressors 

of AP-1 activity by competing for binding to AP-1 sites or by forming inactive heterodimers 

with Jun, Fos or FosB (Angel and Karin, 1991; Chiu et al., 1989; Hess et al., 2004). 

AP-1 regulates gene expression through binding to the palindromic TPA Responsive Element 

(TRE) consensus sequences. The TRE, composed of the 5’-TGA G/C TCA-3’ DNA 

sequence, was originally identified in the human collagenase and metallothionein IIa genes 

and was called so because it is strongly induced by the tumor promoter 12-O-

tetradecanoylphorbol-13-acetate (TPA). Although the main DNA element bound by AP-1 is 

the TRE, some dimers have also been described to bind to the related cAMP-Response 

Element or CRE. The CRE differs from the TRE by a single base insertion and has the DNA 

consensus sequence 5’-TGA GC TCA-3’ (Angel and Karin, 1991). 

3.1.2 Transcriptional and post-transcriptional regulation of AP-1 

The net AP-1 activity in a given cell is regulated by a broad range of physiological and 

pathological stimuli. It is achieved at two major levels: extracellular stimuli can modulate 

both the abundance and the activity of AP-1 proteins.  

The abundance of AP-1 proteins is regulated by transcription of genes encoding AP-1 

subunits, control of the stability of their mRNAs and turnover of pre-existing or newly 

synthesized AP-1 subunits (Karin et al., 1997).  

Post-translational modifications and interactions with other transcription factors or cofactors 

modulate AP-1 activity (Hess et al., 2004). Post-translational modification has been 

extensively studied for the AP-1 member Jun, that becomes phosphorylated and activated by 

the Stress Activated Protein Kinase (SAPK) cascade (Minden and Karin, 1997). SAPK, 

which are Jun N-terminal Kinases (JNK) and p38-kinases, are members of the Mitogen-

Activated Protein Kinase (MAPK) superfamily. JNK comprise three isoforms: JNK1, JNK2 

and JNK3. Activated by stress stimuli through a MAPK cascade, JNK translocates to the 

nucleus, phosphorylates Jun within its N-terminal transactivation domain (on Ser63 and 

Ser73 residues) and thereby enhances its transactivation potential. In addition to Jun, JNK 

can also phosphorylate Junb, Jund and Atf2 and potentiate their activity (Hess et al., 2004). 
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Furthermore, AP-1 can be regulated by interaction with other transcription factors and 

cofactors. For instance, the mutual interference between AP-1 and steroid hormone receptors, 

particularly the Glucocorticoid Receptor (GR), represents an example of protein-protein 

interaction based crosstalk. In this context, the anti-inflammatory and immunosuppressive 

activities of glucocorticoids are mediated, at least in part, by GR-mediated repression of AP-1 

activity (Herrlich and Ponta 1994). In addition to GR, many transcription factors (e.g. C/EBP, 

Ets, Gata, NFAT, NF-κB, Runx, Sp1 and others), transcriptional cofactors (e.g. p300/CBP, 

TAF1, Trip6 and others) and subunits of chromatin remodeling complexes (e.g. SWI/SNF 

and HDAC3) have been found to physically interact and modulate AP-1 activity, although in 

most cases, the exact mechanism of interaction between AP-1 and these proteins remains to 

be determined (Hess et al., 2004). 

3.1.3 Role of AP-1 in development 

Most of our knowledge on the function of AP-1 proteins in development was obtained from 

loss of function experiments using gene targeting in mice.  These analyses revealed that each 

AP-1 component has specific functions during embryogenesis and organogenesis. In addition, 

while Fos, Fosb, Jund are dispensable, Jun, Junb and Fra-1 are essential for embryonic 

development since complete ablation of these proteins in mice results in embryonic lethality 

(Jochum et al., 2001). 

Mice lacking Fos are viable and fertile but lack osteoclasts resulting in an osteopetrotic 

phenotype (Johnson et al., 1992; Wang et al., 1992). Mutant mice also show abnormalities of 

the hematopoietic system including extramedullary hematopoiesis and lymphopenia (Okada 

et al., 1994). 

Mice lacking Fosb develop normally (Brown et al., 1996; Gruda et al., 1996). However, adult 

Fosb -/- females display a profound nurturing defect that correlates with the absence of Fosb 

expression in a hypothalamic region critical for nurturing behavior (Brown et al., 1996). In 

addition, Kuroda and colleagues reported broader neurobehavioral dysfunctions in Fosb -/- 

mice, which may share the same underlying molecular mechanisms that are also responsible 

for the nurturing defect (Kuroda et al., 2008). 

Fra-1 inactivation results in embryonic lethality around day 10 of development due to defects 

in the placenta and the yolk sac (Schreiber et al., 2000). The development of Fra-1-deficient 

embryos can be rescued up to birth by providing wild-type extra-embryonic tissues upon 

generation of tetraploid chimeras. These rescued Fra-1 deficient pups display no 
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morphological abnormalities, suggesting that Fra-1 is dispensable for the development of the 

embryo (Schreiber et al., 2000).  

The mice lacking Fra-2 show severe growth retardation, appear runted, and die within a week 

after birth. So far it is unknown for which physiological functions Fra-2 is required to ensure 

post-natal survival (Eferl et al., 2007). 

Mice lacking Jun die between day 12.5 and 13.5 of embryonic development (Hilberg et al., 

1993; Johnson et al., 1993). Jun-deficient embryos show defects of the interventricular 

septum in the heart and incomplete separation of the aorta and the pulmonary artery, 

indicating that Jun is essential for the development of a normal cardiac outflow tract (Eferl et 

al., 1999). Mutant embryos also show abnormalities in the liver, which include areas of 

hemorrhaging and generalized edema as well as increased numbers of apoptotic hepatoblasts 

and hematopoietic cells (Eferl et al., 1999; Hilberg et al., 1993). However, these 

abnormalities are not intrinsic to the hematopoietic compartment since lethally irradiated 

mice can be reconstituted with Jun-deficient fetal liver cells (Eferl et al., 1999). 

Junb is also essential for embryonic development and Junb-deficient embryos die between 

day 8.5 and 10.0 of embryonic development due to vascular defects in the extra-embryonic 

tissues (Schorpp-Kistner et al., 1999). Junb in vivo and in vitro functions will be discussed in 

more details in a subsequent paragraph. 

Jund, finally, is dispensable for development. Yet, mutant males show impaired growth, 

hormone imbalance and age-dependant defects in reproduction due to impaired 

spermatogenesis (Thepot et al., 2000). In addition, Jund has been shown to be involved in 

muscle cell differentiation and function (Andreucci et al., 2002; Ricci et al., 2005) and to play 

a crucial role in T lymphocyte proliferation and T helper cell differentiation (Meixner et al., 

2004). 

3.1.4 Role of AP-1 in stress response and apoptosis 

The isolation of genetically modified cells from animals with ablated AP-1 subunits has 

contributed to the deciphering of individual functions of these subunits in controlling cell 

proliferation, differentiation, apoptosis and neoplastic transformation.  

AP-1 activity is greatly enhanced upon treatment of cells with genotoxic agents, implying 

that AP-1 target genes are involved in the cellular stress response, including DNA repair, 

induction of survival and initiation of the apoptotic program. AP-1 has a dual function in 

stress response: it can induce apoptosis in some cellular systems but is required for cell 

survival in others. Therefore, the role of AP-1 in apoptosis should be considered within the 
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context of a complex network of signaling pathways. Here, some findings are described 

exemplifying the complexity of AP-1 regulated mechanisms of cell death. 

Many studies have highlighted an important role for the extrinsic death receptor pathway 

mediated by JNK, Jun/AP-1 and FasL (also called CD95L), in the control of lymphoid, 

fibroblast and neuronal cell fate. JNK, activated by the MAPK cascade, phosphorylates Jun 

and results in enhanced transcription of target genes implicated in cellular stress-induced 

apoptosis. Whereas Jun is a potent activator of Fas, FasL and TNF-α transcription, Fos 

abrogates Jun-mediated activation of Fas as well as negatively regulates FasL expression 

through a transcriptional repressor element within the FasL promoter (Hess et al., 2004).  

Some reports demonstrate a fundamental pro-apoptotic role for JNK/Jun signaling in the 

stress-induced mitochondrial death pathway (Behrens et al., 1999; Palmada et al., 2002; 

Whitfield et al., 2001). Expression of a dominant-negative Jun mutant reduces expression of 

Bim, a BH3-only member of the Bcl-2 family of apoptosis regulators and inhibits 

mitochondrial cytochrome c release (Whitfield et al., 2001). The importance of a putative 

JNK–Jun/AP-1–Bim pathway in neuronal cell death control is underscored by pathologies 

associated with deregulated apoptosis, such as Alzheimer’s disease. Furthermore, analyses of 

cell cultures derived from sympathetic and cerebellar granular neurons revealed a clear 

dependency on JNK/Jun activity for stimulation of apoptosis upon growth factor withdrawal 

(Palmada et al., 2002; Whitfield et al., 2001). Finally, the subunit Junb appears to act pro-

apoptotic in myeloid cells, as shown in mice lacking Junb in the myeloid lineage that develop 

a myeloproliferative disease (Passegue et al., 2001; Passegue et al., 2004). 

In addition to the pro-apoptotic functions of AP-1, numerous experiments have demonstrated 

that AP-1 is also critically involved in survival signaling. For instance, Fos expression 

negatively correlates with increased neuronal cell death in the hippocampus during kainic-

acid-induced seizure, indicating an anti-apoptotic role for Fos in this scenario (Zhang et al., 

2002). Jun expression is needed to prevent apoptosis in fetal hepatocytes during mouse 

development (Behrens et al., 1999; Eferl et al., 1999; Hilberg et al., 1993). During liver tumor 

formation, Jun prevents apoptosis by antagonizing p53 activity, and this may contribute to the 

early stage of human hepatocellular carcinogenesis (Eferl and Wagner, 2003). Moreover, Jun 

regulates transcription of p53 in mouse fibroblasts and, thus, apoptosis (Schreiber et al., 

1999). Furthermore, enhanced apoptosis in the absence of Jun is also observed in 

keratinocytes and notochordal cells (Behrens et al., 2003; Zenz et al., 2003). In the case of 

keratinocytes, Jun regulates expression of EGFR and its ligand HB-EGF, which controls 
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keratinocyte proliferation and survival (Zenz et al., 2003). Finally, JNK activation can also 

signal pro cell survival. Davis and colleagues demonstrated that Jund promotes JNK-

stimulated survival after TNF treatment by collaborating with NF-κB to increase expression 

of anti-apoptotic genes such as the inhibitor of apoptosis IAP-2 (Lamb et al., 2003).  

3.1.5 Junb, a special member of the Jun family 

3.1.5.1 Transcriptional and post-translational regulation of Junb  

Junb is induced by a plethora of cellular stress signal and its transcriptional regulation is 

mediated by different regulatory elements located in the 5’ and 3’ regions flanking its coding 

sequence. The transcriptional induction of Junb in response to various mitogens is mediated 

by multiple Ets sites (Coffer et al., 1994), an IL-6 response element containing a STAT3 

binding site and a CRE-like site (Nakajima et al., 1993), a GC box, an inverted repeat 

element and a novel myeloid-specific IL-6 response element (IL-6RE) (Sjin et al., 1999) in 

the proximal promoter region. In addition, the regulation of Junb by v-src involves the CAAT 

and TATA box region (Apel et al., 1992). Growth factor-initiated signaling pathways induces 

Junb through a TRE, a SRE and two Ets-linked motifs located in a region around -1000 to -

2000 in the mouse Junb promoter (Phinney et al., 1996). By contrast, Pdgfb, serum, bFGF, 

phorbol ester and forskolin mediate Junb induction by a SRE and a CRE site located in the 3’ 

flanking region of Junb gene (Perez-Albuerne et al., 1993). Finally, recently, four NF-κB 

binding sites located downstream of the gene have been shown to mediate transcriptional 

induction of Junb in response to oxygen deprivation (Schmidt et al., 2007). 

Although much less is known about the regulation of Junb via post-translational mechanisms, 

there are some evidences of Junb phosphorylation and SUMOylation. Junb is phosphorylated 

by JNK in T cells at threonine residues 102 and 104 and this phosphorylation is important for 

synergy with c-Maf transcription factor and T helper cell differentiation (Li et al., 1999). In 

addition, three proline-flanked serine or threonine residues (Ser23, Thr150 and Ser186) are 

specifically phosphorylated by p34cdc2-cyclinB kinase in M and early G1 phase of the cell 

cycle, correlating with a decrease in Junb protein levels. These residues are not conserved in 

Jun or Jund and the phosphorylation may target the Junb protein for degradation (Bakiri et 

al., 2000). Recently, Farras et al. observed that Junb becomes phosphorylated by mid-/late G2 

phase, that this phosphorylation leads to proteasome-mediated degradation, and that this 

event is required for proper cell cycle progression (Farras et al., 2008). 
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Furthermore, Junb conjugation with small ubiquitin-like modifier (SUMO) on lysine 237 

plays a critical role in T cell activation. Indeed, SUMO modification regulates the ability of 

Junb to induce cytokine gene transcription (Garaude et al., 2008). 

3.1.5.2 In vitro and in vivo functions of Junb 

Junb has been first characterized as an inhibitor of Jun function following the observations 

that excess of Junb over Jun is sufficient to inhibit transactivation of AP-1 reporter genes by 

Jun. Furthermore, Junb alone fails to transactivate artificial reporter genes containing a single 

TRE. So far, the exact mechanism by which Junb represses transcription is unknown but two 

different models have been proposed. First, Jun and Junb may compete for the DNA binding 

site, since both proteins have a similar DNA binding affinity.  Secondly, Junb may form a 

heterodimer with Jun that has a lower transactivation potential than a Jun:Jun homodimer, 

thus,  resulting in a lower net AP-1 activity. Most interestingly, Junb appears to be as 

effective as Jun in transactivating reporter genes containing multiple AP-1 binding sites 

(Angel and Karin, 1991; Chiu et al., 1989). 

Recent analyses carried out with cells and mice deficient for Junb revealed that Junb is not 

only a repressor of Jun activity but is also required for the transcriptional activation of key 

target genes involved in cell cycle regulation, proliferation, differentiation, angiogenesis as 

well as skin and hematopoietic functions. Thus, both activator and repressor functions of 

Junb are required for proper cell function and proper development and physiology of mice. 

Junb deficiency results in embryonic lethality between day 8.5 and 10.0 of embryonic 

development due to defective feto-maternal interactions. Most importantly, in absence of 

Junb, gene expression and function in cells of extra-embryonic tissues, such as trophoblast 

giant cells, as well as endothelial cells of the yolk sac and placental cell types are affected 

(Schorpp-Kistner et al., 1999).  

Analysis of Junb-deficient MEFs revealed that Junb suppresses cell proliferation via its target 

gene p16/Ink4a during G1 to S phase transition of the cell cycle (Passegue and Wagner, 

2000), but also promotes cell cycle progression from G2 to M phase via the transcriptional 

activation of cyclin A (Andrecht et al., 2002). Furthermore, recent data showed that the Junb 

breakdown in mid-/late G2 phase is required for down-regulation of cyclin A2 levels and for 

proper mitosis (Farras et al., 2008). 

Loss of Junb in conditional mutants with either a widespread deletion of Junb in various 

tissues or even a tissue-specific deletion in epidermis results in a myeloproliferative disease 

resembling human Chronic Myeloid Leukemia (CML) (Meixner et al., 2008; Passegue et al., 
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2001; Passegue et al., 2004). Detailed analyses revealed that Junb inactivation results in CML 

by specifically expanding the number of Long Term Hematopoietic Stem Cells (LT-HSC) 

and Granulocyte/Macrophage Progenitors (GMP) (Passegue et al., 2004). Also in humans, 

loss of Junb due to epigenetic promoter silencing could be associated with CML (Yang et al., 

2003), while Junb overexpression has been associated with cutaneous CD30-positive T-cell 

lymphomas (Rassidakis et al., 2005).  

In addition, Junb plays a critical role in bone biology by being responsible for the 

differentiation and proper function of chondrocytes and osteoblasts (Hess et al., 2003; Kenner 

et al., 2004). 

Furthermore, Junb is a critical regulator of the cutaneous response to injury or stress of the 

skin as shown by in vitro organotypic cultures (Szabowski et al., 2000) and conditional 

mouse mutants. Mice lacking Junb in the skin develop normally, indicating that Junb is 

neither required for cutaneous organogenesis nor homeostasis (Florin et al., 2006). Yet, in 

wounded skin, Junb-deficiency results in delayed tissue remodeling, pronounced epidermal 

hyperproliferation, disturbed differentiation and prolonged inflammation. These phenotypic 

skin abnormalities were associated with Junb-dependent alterations in expression levels and 

kinetics of cytokines governing wound repair, such as Csf2, Gro-1, Mip-2 and Lcn-2 in both 

the dermal and epidermal compartments of the skin, and with a reduced ability of wound 

contraction of mutant dermal fibroblasts in vitro (Florin et al., 2006). Moreover, inducible 

epidermal deletion of Junb and Jun in adult mice leads to a phenotype resembling the 

histological and molecular hallmarks of psoriasis, including arthritic lesions (Zenz et al., 

2005). Presumably, loss of Junb in keratinocytes triggers chemokine/cytokine expression 

resulting in the recruitment of inflammatory immune cells contributing to the psoriasis-like 

phenotype. Finally, epidermal Junb-deficiency causes skin ulcerations, myeloproliferative 

disease and low bone mass due to high systemic levels of the negatively regulated Junb-target 

G-CSF (Meixner et al., 2008). 

Junb has also an essential role in the differentiation and function of immune cells. Junb is 

involved in the differentiation of naïve T cells into T helper 1 and T helper 2 cells, which is a 

hallmark of the T cell-dependent immune response (Hartenstein et al., 2002). In addition, 

Junb regulates the ability of Natural Killer cells to kill target cells by regulation of NKG2D-

ligand Rae-1epsilon (Nausch et al., 2006). Finally, Junb is a critical regulator of mast cell 

biology. Junb is required for proper mast cell degranulation and for mast cell mediated-
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angiogenic processes, by regulating the expression of Swap70, Vamp8, Syt1 and Vegfa genes, 

respectively (Textor et al., 2007). 

The most dramatic consequences of loss of Junb are seen in the vascular system. Complete as 

well as endothelial-specific ablation of Junb result in a similar phenotype affecting the 

remodeling of the primary vascular plexus in the yolk sac of the developing embryo but also 

affecting angiogenic remodeling in the embryo itself (Licht et al., 2006; Schorpp-Kistner et 

al., 1999). A mechanistic explanation for the observed phenotypes could be provided: Junb is 

a target gene of hypoxia-induced signaling mediated by NF-κB and this occurs independently 

of the known master regulator of hypoxia-induced signaling Hypoxia-Induced Factor (HIF). 

Most importantly, in vitro analyses revealed that Junb is required for the expression and 

induction of the key regulator of angiogenesis Vegfa upon hypoxia and hypoglycemia 

(Schmidt et al., 2007; Textor et al., 2006). Thus, Junb is a critical independent regulator of 

the autocrine and paracrine acting Vegfa. In line with these findings, loss of Junb affects 

tumor angiogenesis due to impaired paracrine acting Vegf.  Junb is also required for proper 

endothelial cell morphogenesis both in vivo and in vitro in a cell-autonomous manner as 

shown by endothelial cell-specific ablation of Junb. In endothelial cells, Junb is required for 

Cbfb induction in response to hypoxia and subsequently for the expression of the Cbfb and 

AP-1 target Mmp13 (Licht et al., 2006). In summary, positively regulated Junb targets are 

required for proper vascular development.  Yet, negative regulation of cytokines by Junb is 

also of unequivocal importance to suppress a pro-inflammatory and pro-cancerogenic 

phenotype.  

3.2 Mechanisms of repression 

Gene repression, which is the process of keeping genes in an off state until transcription 

becomes activated as final step in signal transduction pathways, plays a central role in gene 

regulation. Indeed, it controls proper gene activation throughout development as well in 

response to extracellular signals (Courey and Jia, 2001). In fact, impaired gene repression due 

to aberrant expression of repressor proteins results in diseases, such as Rett (mutation of 

MeCP2 gene) and ICF syndromes (Immunodeficiency, Centromere instability and Facial 

anomalies syndrome, mutation of dnmt3b gene) as well as some human cancers. These 

findings underscores that transcriptional repression and gene silencing is essential for the 

maintenance of the cellular integrity of higher organisms (Thiel et al., 2004). 
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Eukaryotic transcriptional repression mechanisms are remarkably variable in their modes of 

action and effects. Some mechanisms are readily reversible, but others establish a heritable 

state of long-term silencing (Moazed, 2001). Three different mechanisms are described. First, 

repression can act directly on the transcription initiation complex. It has been shown that 

blockade of the targeting of TATA-binding proteins to the TATA box on the DNA or 

inhibition of the formation of the initiation complex of RNA polymerase II result in gene 

repression (Pugh, 2000). Secondly, a factor can repress gene expression indirectly by 

inhibiting an activating component located on the promoter. Such repression can be mediated 

either by protein-protein interaction and subsequent inhibition of the transactivation activity 

or by competition for a transcription factor binding site at the promoter of the gene (Cowell, 

1994). Third, repression can be achieved by active remodeling of the chromatin structure 

through epigenetic modifications.  

As described in the previous section of this work, Junb, due to its weak transactivation 

domain, is considered as an inhibitor of AP-1, in particular of Jun. Thus, by forming weakly 

active dimers with Jun, Junb absorbs the activity of AP-1 and acts as a repressor (Chiu et al., 

1989). In this work, I wanted to investigate the ability of Junb to repress genes independently 

of its weak transactivation activity and to determine whether Junb, in addition, acts as an 

active repressor by modulating the chromatin structure. 

3.2.1 Epigenetics 

3.2.1.1 Definition 

Epigenetics is the study of heritable alterations in phenotype and gene expression acquired 

during development and cellular differentiation that are not caused by a modification in the 

DNA sequence. Epigenetic changes are orchestrated by four different mechanisms: chromatin 

modifications, DNA methylation, non-coding RNAs as well as nucleosome repositioning.  

Much of epigenetic studies converged on the analyses of covalent and non-covalent 

modifications of DNA and histones. Therefore, these two mechanisms, chromatin 

modifications and DNA methylation, will be described in more detail in the following 

paragraphs. 

3.2.1.2 Histone modifications 

In the nuclei of all eukaryotic cells, the double stranded DNA is highly folded and tightly 

compacted by histone and non-histone proteins in a dynamic three dimensional structure 
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called chromatin. The chromatin organization is dependent on a higher order structure, 

namely nucleosomes. The nucleosome, which is wrapped by two superhelical turns of DNA 

and 147 base pairs in length, represents the basic repeating unit of chromatin and is composed 

of eight histones: one H3-H4 tetramer and two H2A-H2B dimers (Luger et al., 1997). 

Histones are small basic proteins which consist of a globular domain and a flexible basic N-

terminal tail that protrudes from the nucleosome. N-terminal histone tails are subjected to 

many covalent modifications which control and modify the DNA binding properties of 

nucleosomes. At least 8 different modifications have been described so far and include 

acetylation, lysine and arginine methylation, phosphorylation, ubiquitination, sumoylation, 

ADP ribosylation and others. In addition, histones can be modified on as many as 60 

residues. The complexity is further increased by the fact that some modifications such as 

methylation can occur in different forms. For instance, lysines are mono-, di- and tri-

methylated while arginines are mono- and di-methylated, symmetrically or asymmetrically. 

Thus, this wide amount of possible modifications provides an enormous potential and ensures 

a very fine tuning of functional responses (Kouzarides, 2007).  

Whereas most of the modifications are still poorly understood, much effort has been brought 

about the understanding of the function and regulation of histone acetylation and methylation. 

On the one hand, histone acetylation almost always correlates with chromatin accessibility 

and transcriptional activity. It is achieved by both relaxation of the DNA backbone following 

the neutralization of positive charge of the N-terminal histone tail and by recruitment of 

enzymes. For instance, acetylated histones recruit the bromodomains of nucleosome 

remodeling complexes, which, under ATP expenditure, displace nucleosomes and open the 

chromatin (Syntichaki et al., 2000). 

On the other hand, methylation can have different functions depending on which residue is 

modified. While histone H3 methylation on lysine 4 (H3K4) and 36 (H3K36) is associated 

with transcribed chromatin, H3 methylation on lysine 9 (H3K9), 27 (H3K27) and H4 

methylation on lysine 20 (H4K20) correlate with repression. In contrast to histone 

acetylation, transcriptional regulation by lysine methylation is always achieved through 

recruitment of chromatin modifying enzymes. For example, methylated H3K4 recruits, via 

the chromodomain of Chd1, transcription activating complexes (Pray-Grant et al., 2005), 

while methylated H3K9 or H3K27 binds HP1 and Polycomb proteins, respectively, and 

mediate chromatin compaction (Bannister et al., 2001). 
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Furthermore, while most of the covalent modifications are associated with changes in 

transcription, few of them, such as acetylation, methylation, phosphorylation and 

ubiquitination, have also been involved in other DNA processes such as DNA repair, 

replication and condensation (Kouzarides, 2007). 

3.2.1.3 Histone modifying enzymes and HDACs 

In the past years, much effort has been invested to characterize histone modifying enzymes. 

Enzymes, which catalyze acetylation (Sterner and Berger, 2000), methylation (Zhang and 

Reinberg, 2001), phosphorylation (Nowak and Corces, 2004), ubiquitination (Shilatifard, 

2006), sumoylation (Nathan et al., 2006), ADP-ribosylation (Hassa et al., 2006) and others, 

have been identified. Since most modifications have been found to be dynamic, in addition, 

enzymes have been discovered that remove all previously described modifications, except for 

arginine demethylases.  

Among these enzymes, histone deacetylases (HDACs) attracted particular interest. Indeed, 

HDACs play global roles in the regulation of gene transcription, cell growth, survival and 

proliferation and alterations in HDACs expression or activity have been intensively 

correlated to disease state such as cancer (Cress and Seto, 2000). 

HDACs consist of three different classes based on their homology to yeast counterparts. 

While the class I, composed of HDAC1, 2, 3 and 8, are homologue to RbAp48 (Rb-

associated protein 48), the class II, HDA-1 like proteins, comprises at least 6 homologues in 

vertebrates: HDAC4, 5, 6, 7, 9 and 10. The class III, which do not share any homology with 

the classes I and II, is composed of NAD+ dependent deacetylases called sirtuins (SIR1-7).  

HDACs are tightly regulated through a multitude of mechanisms, such as recruitment into co-

repressor complexes, modulation of deacetylase activity by protein-protein interactions or 

post-translational modifications as well as translocation from the cytoplasm to the nucleus 

(Yang and Seto, 2008b).   

All class I members, with the exception of HDAC8, function as catalytic subunits of mSin3, 

NuRD (nucleosome remodeling deacetylase), SMRT (silencing mediator of retinoic acid and 

thyroid hormone receptors) and CoREST (corepressor of RE1-silencing  transcription factor) 

co-repressor complexes (Yang and Seto, 2008b). HDACs do not have the ability to bind 

directly to DNA, but, by being part of co-repressor complexes, they get to interact with DNA 

sequence specific factors and repress transcription as well as shape epigenetic patterns. In 

mammals, two mSin3 co-repressor complexes exist: mSin3A and mSin3B. More precisely, 

mSin3A is composed of many different proteins, including HDAC1, 2, and ING2. By binding 
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to methylated histone H3 on lysine 4, ING2 targets the whole complex to deacetylate regions 

of the genome where H3K4 is methylated (Ahringer, 2000). 

Class II members are characterized by tissue-specific expression and can exist both in the 

nucleus and in the cytoplasm. They contain intrinsic nuclear import and export signals for 

dynamic nucleo-cytoplasmic trafficking. Therefore, association of partners (such as 14-3-3) 

upon diverse signaling stimuli controls both the subcellular distribution and the repression 

activity of HDACs (Yang and Seto, 2008b). 

Additionally, although implicated in deacetylation of the histone H4 on lysine 16, recently, 

sirtuins became of great interest in the scientific community, since they have been described 

to promote longevity both in yeast and mice and, therefore, to be protective against aging and 

neurodegenerative disease (Saunders and Verdin, 2007; Vaquero et al., 2007). 

Finally, protein acetylation became accepted as a post-translational modification capable of 

regulating protein activity, localization, protein-protein interaction as well as other 

mechanisms and the list of acetylated proteins increased in the past years (Yang and Seto, 

2008a). There is accumulating evidence that HDACs deacetylate those non histone proteins 

as well. For instance, HDAC6 controls, in addition to gene expression, multiple cellular 

processes by deacetylating tubulin as well as hsp90 (Kovacs et al., 2005; Zhang et al., 2008; 

Zhang et al., 2003).  

3.2.1.4 DNA methylation 

DNA methylation occurs almost exclusively in the context of CpG dinucleotides in 

vertebrates and most of the CpG dinucleotides in the genome are methylated (Bird, 2002). 

Non-CpG methylation has an established function in plants (Chan et al., 2005) and may play 

a yet-to-be defined role in mammals as well. 

Mammalian DNA methylation has been implicated in a broad range of cellular functions and 

diseases, including tissue-specific gene expression, cell differentiation, genomic imprinting, 

X chromosome inactivation, regulation of chromatin structure, genomic stability, 

carcinogenesis and aging (Bird, 2002). It is essential for proper development (Li et al., 1992; 

Okano et al., 1999) and remains indispensable for the survival of differentiated cells 

(Jackson-Grusby et al., 2001).  

Mechanistically, methylated cytosine residues regulate gene expression by the fact that they 

can promote or exclude the recruitment of regulatory proteins (Bernstein et al., 2007). On the 

one hand, methyl-CpG binding proteins bind to methylated CpG dinucleotides and mediate 

transcriptional repression through interactions with co-repressor complexes and HDACs. A 
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family of five methyl-CpG binding proteins (MBD1, 2, 3, MeCP2 and Kaiso) has been 

characterized and each member contains a region closely related to the Methyl-CpG Binding 

Domain (MBD) of MeCP2 (Bird, 2002). On the other hand, the methylation on cytosine 

residues can exclude DNA binding proteins from their DNA consensus sequence. It has been 

described, for example, for CTCF binding at the H19 locus and will be further explained in 

the next paragraph. 

DNA methylation patterns are dynamic during development. Shortly after fertilization, in 

mammals, the paternal genome is actively demethylated, while the maternal genome 

presumably undergoes passive demethylation. Genome-wide methylation levels increase 

rapidly in the blastocyst and eventually result in the formation of methylation patterns found 

in the adult (Reik et al., 2001).  Although the molecular determinants responsible for the 

patterning of de novo methylation in the blastocyst remain mysterious, de novo methylation is 

achieved by the two DNA Methyltransferases DNMT 3a and 3b. Then, once the methylation 

patterns are set, the DNA methyltransferase 1 (DNMT1) maintains the methylation patterns 

between cell divisions by residing in the replication fork and having a higher affinity for 

hemi-methylated DNA.  

Finally, alterations in DNA methylation are observed in patho-physiology such as cancer. 

Indeed, in tumorigenesis, the methylome undergoes characteristic changes with genome-wide 

loss of methylation and genome instability, as well as aberrant local gain of methylation on 

promoters of tumor suppressor genes. These findings underscore that genetics and epigenetics 

cooperate at all stages of cancer development (Jones and Baylin, 2002, 2007). 

3.2.1.5 Imprinting  

Genomic imprinting is an epigenetic mechanism of transcriptional regulation through which 

expression of a subset of mammalian genes is restricted to one parental allele. While either 

the maternal or paternal allele is expressed, the other is silenced. Imprinting has been found 

only in mammals and not in other vertebrates. 

The importance of imprinting in development and growth have been underscored by the fact 

that embryos generated from a monoparental genome fail to develop (Solter, 1988), as well as 

by  development of cancers and disease syndromes following loss of imprinting (Prader-

Willi, Angelman and Beckwith-Wiedemann syndromes) (Nicholls and Knepper, 2001; 

Weksberg et al., 2005). A common feature of imprinted genes is the control of fetal 

development by paternally expressed genes, such as Igf2, and maternally expressed genes, 

such as H19 and Igf2r, that positively and negatively regulate growth, respectively. 
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To date, around 70 genes have been shown to be controlled by imprinting. A majority of 

them are arranged in clusters in the genome and this organization appears to be required for 

appropriate gene regulation (Verona et al., 2003). Such clusters are often composed of 

multiple protein coding genes and at least one non-coding region RNA and they are regulated 

by a major cis-acting element, called Imprinting Control Region (ICR). The ICR acquires 

differential epigenetic modifications such as DNA methylation and histone modifications 

during gametogenesis, which are subsequently retained during development (Reik et al., 

2001). 

3.2.1.5.1 H19 

H19 and Igf2 (insulin-like growth factor 2) genes were among the first imprinted genes 

identified in the mouse. Both genes are also imprinted in humans and many aspects of the 

regulation identified in mice also apply to humans. 

The H19 gene encodes a 2.3 kb non-coding mRNA which is strongly expressed during 

embryogenesis. So far, the function of H19 has not been deciphered. Mice carrying deletions 

of the H19 gene are viable and fertile. Although such mutations lead to an overgrowth 

phenotype, the molecular cause has been linked to a loss of imprinting of the adjacent Igf2 

gene. Furthermore, recent work from Cai X and Cullen B identified H19 as a micro RNA 

precursor (miR-675) but further analyses are still required to uncover miR-675 target genes 

and functions (Cai and Cullen, 2007). 

The H19-igf2 locus, located within a conserved imprinted cluster on mouse chromosome 7 

and human chromosome 11p15, contains the maternally expressed H19 and the paternally 

expressed Igf2 gene. The imprinting mechanism of H19 has been widely studied. First, both 

genes, H19 and Igf2, share a common enhancer located 10 kb downstream of H19 

transcriptional start (Yoo-Warren et al., 1988). Second, the 90 kb segment located between 

H19 and Igf2 genes defines a region where many different regulatory elements have been 

identified using targeted germ line deletion and transgenic approaches in the mouse (Sasaki et 

al., 2000). More precisely, the analyses of this cluster revealed an essential 2kb ICR that is 

differentially methylated. The paternally methylated region, also called Differentially 

Methylated Domain (DMD), is located 4kb upstream of the H19 gene. This region is, indeed, 

essential since its deletion by genetic manipulation leads to a loss of expression of H19 

(Brannan and Bartolomei, 1999; Sasaki et al., 2000). The ICR domain contains four binding 

sites for the CCCTC binding factor (CTCF) included in CpG rich elements.  



  3. Introduction 

25 

 

CTCF binding is crucial for the control of differential expression of H19 between maternal 

and paternal alleles as well as for the establishment and the maintenance of differential 

methylation and imprinting of H19. First, CTCF is involved in insulator activity, meaning 

CTCF can block the interaction between enhancers and promoters. On the maternally 

inherited allele, CTCF binds to the unmethylated DMD, creating a chromatin insulator which 

prevents the Igf2 promoter from gaining access to the downstream enhancers. On the 

paternally inherited allele, the DMD is methylated, which blocks CTCF binding. This lack of 

CTCF binding inactivates the insulator, allowing the promoter of the paternal Igf2 allele to 

interact with the downstream enhancers and, thus, to be transcribed (Bell and Felsenfeld, 

2000; Hark et al., 2000). Secondly, in addition to the fact that CTCF binding is sensitive 

towards methylation, the DNA methylation itself is dependent on CTCF binding. Indeed, 

mutation of the CTCF binding site in the DMD results in increased methylation of the 

maternally inherited gene in post-implantation development (Pant et al., 2003; Schoenherr et 

al., 2003). Similar results have been obtained upon use of siRNA-mediated knock down of 

CTCF in the oocyte, which results in increased H19 DMD methylation (Fedoriw et al., 2004).  

3.3 Stress responses 

As described above, AP-1 plays multiple roles in stress responses and stress-induced 

apoptosis being either pro-apoptotic or anti-apoptotic, depending on the balance of AP-1 

members in the given cell, the cell lineage, the differentiation stage, the microenvironment 

and the type of stimulus (Hess et al., 2004). Previous work based on in vivo mouse models as 

well as in vitro tissue culture models derived thereof defined a crucial role for Junb in cellular 

hypoxia and hypoglycemia responses (Schmidt et al., 2007; Textor et al., 2006). Recent 

evidence has emerged that hypoxia and hypoglycemia may trigger ER stress that may act as 

an important contributor to hypoxia tolerance and tumor progression. Due to the facts that 

AP-1 is a key player in many stress responses and that so far a link between AP-1 and ER 

stress response is still missing, I aimed to decipher the implication of Junb in the ER stress 

response but also in stress-induced apoptosis.  

3.3.1 Unfolded protein response (UPR) 

In eukaryotic cells, secreted and transmembrane proteins fold and mature in the lumen of the 

endoplasmic reticulum (ER). The flux of proteins entering into the ER depends on multiple 

factors such as cell differentiation, environmental conditions and physiological state of the 

cell. Cells adjust the protein-folding capacity of the ER according to their requirements in 
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order to maintain the high quality of transmembrane and secreted proteins. An imbalance 

between the load of protein entering the ER and the folding capacity of the ER induces a 

condition of stress, called ER stress. ER stress activates an adaptive response, namely 

unfolded protein response or UPR, which will act in three steps. First, the cell reduces the 

protein load entering the ER by lowering protein synthesis and translocation into the ER. 

Second, in order to increase the capacity of the ER to handle unfolded proteins, the cell 

transcriptionally activates UPR target genes implicated in the protein folding machinery. 

Third, if the cell does not re-establish homoeostasis, programmed cell death is triggered (Ron 

and Walter, 2007). 

ER stress has been defined as an initiating and/or contributing factor in a broad range of age-

related diseases, including neurodegeneration (Ryu et al., 2002), tumor development (Bi et 

al., 2005; Koumenis, 2006) and type 2 diabetes (Ozcan et al., 2004; Ozcan et al., 2006).  

As shown in Figure 1, ER stress is controlled by a unique ER-located chaperone, namely 

Grp78 (78kDa glucose-related protein, also BiP or Hspa5). While, under resting state, Grp78 

binds to and, therefore, inhibits the downstream initiators of the UPR, misfolded protein 

accumulation displaces Grp78 and activates UPR (Bertolotti et al., 2000). Three ER stress 

transducers have been identified and each of them regulates a distinct arm of the UPR: PERK 

(protein kinase RNA (PKR)-like ER kinase), IRE1 (inositol requiring kinase 1) and ATF6 

(activating transcription factor-6) (Szegezdi et al., 2006). Active PERK phosphorylates the 

eukaryotic Initiating Factor 2 α (eIF2α or Eif2a) and triggers global attenuation of protein 

synthesis as well as cell cycle arrest (Harding et al., 2000b). In addition, phosphorylated 

eIF2α selectively translates mRNAs transcripts, such as Atf4 (activating transcription factor 

4), which has been described to induce the expression of the pro-apoptotic transcription factor 

CHOP (CAAT/Enhancer binding protein homologous protein, Gadd153 or Ddit3) (Harding 

et al., 2000a). IRE1 (or Ern2), which is a serine, threonine protein kinase and an 

endonuclease, initiates the unconventional splicing of the transcription factor Xbp1 mRNA 

transcript (X-box binding protein 1). Spliced Xbp1 is subsequently translated and gives rise 

to a transcription factor activating the expression of numerous genes involved in the UPR, 

such as grp78, grp94 and chop (Calfon et al., 2002). Finally, upon dissociation of Grp78, 

ATF6 is processed by the site-1 and -2 proteases S1P and S2P (or Mbtps1 and Mbtps2, 

respectively) in the Golgi and subsequently translocates to the nucleus, where it activates the 

expression of key players of the UPR (Ye et al., 2000). 
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3.3.2 Prolonged ER stress will result in mitochondria-mediated apoptosis 

Upon prolonged misfolded protein load in the ER, PERK, ATF6 and IRE1 signaling will 

induce cell death. These signaling pathways do not directly cause apoptosis but rather initiate 

the activation of downstream molecules, which subsequently trigger the cell to the path of 

death.  

As shown in Figure 2, all pathways inducing apoptosis converge on the activation of 

caspases. Caspases are cysteine-aspartic acid proteases that coordinate the efficient 

destruction of the cell by cleavage of multiple substrates and activation of DNases. Two 

pathways of programmed cell death can be distinguished (Fig. 2). The so-called extrinsic or 

death-receptor mediated pathway is triggered by the death receptors (members of the Tumor 

Necrosis Factor (TNF) receptor family such as Fas, also named CD95, or TNF receptor-1). 

Upon binding of the ligand, the receptor recruits and activates caspase-8, which results in the 
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subsequent activation of downstream effector caspases without any involvement of the 

mitochondria and the Bcl-2 family members. The second pathway, targeting mitochondrial 

functionality is called intrinsic pathway. Since prolonged ER stress has been described to 

induce apoptosis through the intrinsic pathway (Szegezdi et al., 2006), this mechanism will 

be described in more detail in the following section (Fig. 2). 
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In addition to supply energy to the whole cell by generation of adenosine triphosphate (ATP), 

the mitochondria play a central role in many processes such as cell signaling, differentiation, 

growth and apoptosis. Most apoptosis-inducing conditions involve the disruption of the 

mitochondrial transmembrane potential which results in a sudden increase of mitochondria 

membrane permeability. Thus, osmotic swelling will eventually lead to the rupture of the 

outer membrane and to the release of pro-apoptotic proteins, such as cytochrome C, from the 

mitochondria into the cytoplasm (Loeffler and Kroemer, 2000). Those mitochondrial events 

are kept under strict control by the Bcl-2 family members, which will be further discussed in 

the next paragraph. 

Bcl-2 family members, which are key regulators of the intrinsic apoptosis pathway, have 

been described by homology to the structure of the original Bcl-2 (B-cell lymphoma-2) 

protein. The family comprises, in mammals, at least 12 members that have been grouped into 

three classes. One class inhibits apoptosis (Bcl-2, Bcl-xL, Mcl1 and others), whereas a 

second class promotes apoptosis (Bax, Bak and others). The third class, composed of BH3-

only proteins (Bad, Bid, Bim, Bmf, Noxa, Puma and others), have a conserved BH3 domain 

that binds and regulates the anti-apoptotic Bcl-2 family members, thereby promoting 

apoptosis (Youle and Strasser, 2008; Zha et al., 1996). There are clear evidences that the pro-

apoptotic members Bax and Bak are crucial for inducing permeabilization of the outer 

mitochondrial membrane, by forming oligomeres which resemble pores (Saito et al., 2000; 

Schlesinger et al., 1997). Yet, the biochemical nature of these pores remains unknown and 

controversial. Anti-apoptotic members, such as Bcl-2 and Bcl-xL, inhibit the formation of 

oligomeres by direct binding to Bax and Bak and, thus, hinder the formation of pores in the 

outer mitochondrial membrane and subsequent caspase activation (Sedlak et al., 1995). 

Once the outer mitochondrial membrane is permeabilized, proteins including cytochrome c 

are released into the cytosol. Then, cytochrome c forms with APAF-1 a heptameric protein 

ring called apoptosome, which binds to pro-caspase-9 and induces its activation through a 

conformational change (Shi, 2006). Active caspase-9 will eventually result in activation of 

the effector caspase-3 and subsequent cell death (Hakem et al., 1998). 

The molecular mechanisms involved in the death of ER stressed cells remain poorly 

understood and many different models have been proposed, which involve diverse essential 

molecules, such as Bcl-2 family members, CHOP, SAPK/JNK, and caspase-12.  

Bcl-2 family members have been shown to be essential for ER stress-mediated apoptosis. 

Indeed, Bax and Bak ablation in MEFs result in resistance towards ER stress and treatment 
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with other stress stimuli known to activate the intrinsic apoptosis pathway, including growth 

factor retrieval, ultraviolet (UV) irradiation, staurosporine and etoposide (Wei et al., 2001). In 

addition, an imbalance in expression of pro-apoptotic and anti-apoptotic Bcl-2 family 

members with excess of anti-apoptotic protein levels results in decreased cell death following 

ER stress induction (Szegezdi et al., 2006). Although the involvement of Bcl-2 proteins in ER 

stress-mediated apoptosis is well known, their regulation by UPR is less understood. So far 

two different mechanisms have been described.  First, CHOP, a pro-apoptotic transcription 

factor induced upon PERK activation, has been shown to negatively regulate Bcl-2 gene 

expression. Indeed, overexpression of CHOP results in induction of apoptosis due to low Bcl-

2 expression and re-expression of Bcl-2 in these cells could efficiently block CHOP-induced 

apoptosis (McCullough et al., 2001). Secondly, induction and post-translational modifications 

of BH3-only proteins by JNK has been reported as key event in the ER stress-mediated 

apoptosis cascade. JNK is activated by a protein complex formed by activated IRE1 which 

contains the adaptor protein TRAF2 and the MAPK Kinase ASK1 (Urano et al., 2000). JNK-

triggered phosphorylation of Bim releases Bim from an inhibitory association with the dynein 

motor complex and, thus, allows Bim to exert its pro-apoptotic effects (Lei and Davis, 2003). 

In addition, JNK promotes Bax translocation to the mitochondria through phosphorylation of 

14-3-3, a cytoplasmic anchor of Bax (Tsuruta et al., 2004).  

Finally, caspase-12 has been proposed as a key mediator of ER stress-induced apoptosis. 

Caspase12 -/- MEFs have been reported to exhibit partial resistance specifically against ER-

stress inducing agents (Nakagawa et al., 2000). However, in a recent work published by Saleh 

and colleagues, Caspase12 -/- MEFs, originated from another source, displayed no resistance 

to ER stress mediating agents (Saleh et al., 2006). In addition, only a few consistent data 

linking caspase-12 to downstream caspase activation is available, thus, it is difficult to state 

an essential role for this caspase in ER-stress induced apoptosis (Szegezdi et al., 2006). 
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4 Aims 
During my thesis work, I addressed two scientific problems associated with the in vivo 

functions of Junb that are still not yet solved but that may be of fundamental importance with 

regard to the double-edge role of Junb in cancer: the function of Junb as a negative 

transcriptional regulator and its impact in the ER stress response and apoptosis.   

The analysis of global gene expression between wild-type and Junb knock-out mouse 

embryonic fibroblasts revealed a big set of genes derepressed in absence of Junb. It was 

claimed that Junb, by being a weak transactivator, on its own may act as a repressor by 

forming less active heterodimers with other AP-1 subunits and, thus, absorbing the Jun and 

other AP-1 members’ activity. In this work, I investigated the repressor activity of Junb and 

wanted to decipher other possible repression mechanisms. Therefore, during my PhD work, I 

aimed to answer these two questions. 

1. Does Junb modulate the acetylation-deacetylation status of genes by regulating the 

expression of HDACs and/or members of co-repressor complexes? 

2. Does Junb regulate methylation of promoters and/or imprinted domains? 

Previous work based on in vivo mouse models as well as in vitro tissue culture models 

derived thereof defined a crucial role for Junb in cellular hypoxia and hypoglycemia 

responses. Recent evidence has emerged that hypoxia and hypoglycemia may trigger ER 

stress and UPR. Since UPR controls protein synthesis, cell metabolism, cell cycle progression 

and cell death, it may act as an important contributor to hypoxia tolerance and tumor 

progression. Although AP-1 is a key player in many stress responses and stress-induced 

apoptosis, so far a link between AP-1 and ER stress response is still missing. Therefore, I 

studied the implication of Junb in the ER stress response but also in stress-induced apoptosis 

in order to answer the following questions: 

1. Is Junb induced upon ER stress? And is the UPR deregulated in absence of Junb? 

2. Does loss of Junb affect ER stress-mediated apoptosis? And if so what are the 

molecular mechanisms responsible for the observed phenotype? 
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5 Material and methods 

5.1 Material 

5.1.1 Chemicals 
Acrylamid/Bisacrylamid (30:0,8)    Roth, Karlsruhe 

Agarose      Sigma, Deisenhofen 

Ammoniumperoxodisulfat (APS)    Janssen Chimica 

Ampicillin       Sigma, Deisenhofen 

Bacto agar       Roth, Karlsruhe 

Bacto tryptone      Gerbu Biotechnik, Gaiberg 

Bacto yeast extracts      Gerbu Biotechnik, Gaiberg 

β-Mercaptoethanol      Merck, Darmstadt  

Bismaleimidohexane (BMH)    Pierce 

Bovine serum albumine, fraction V    Sigma, Deisenhofen 

Bromphenol blue      Serva, Heidelberg 

Calcium chloride      Merck, Darmstadt 

DC protein measurment kit    Biorad, Munich 

Dithiothreitol (DTT)      AppliChem, Darmstadt 

DMSO (Dimethylsulfoxide)     Merck, Darmstadt 

EDTA (Ethylenediamine-tetraacetate)   Roth, Karlsruhe 

EGTA        Roth, Karlsruhe 

Entellan       Merck, Darmstadt 

Eosin B       Sigma, Deisenhofen 

Enhanced chemiluminescent system   Perkin Elmer, Waltham, USA 

Ethanol       Sigma, Deisenhofen  

Ethanolamine       Merck, Darmstadt 

Ethidium bromide      AppliChem, Darmstadt 

Fugene       Roche, Mannheim 

HEPES       Gerbu Biotechnik, Gaiberg 

Hoechst H33342     Calbiochem, Darmstadt 

Isopropanol      Sigma, Deisenhofen 

Kanamycin      Sigma , Deisenhofen 

Mayer’s hematoxylin      Roth, Karlsruhe 
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Methanol       Sigma , Deisenhofen 

Milk powder      Roth, Karlsruhe 

MitoTracker
® 

CMXRos     Invitrogen, Karlsruhe 

Mowiol      Calbiochem, Darmstadt 

Nitrocellulose-Membran     Schleicher und Schuell, Dassel 

Positively charged nylon membrane   GE healthcare, Munich 

Paraformaldehyde      Roth, Karlsruhe  

Polybrene       Sigma, Deisenhofen 

Proteinase K      Merck, Darmstadt 

Puromycin      Sigma, Deisenhofen 

Saccharose      Merck, Darmstadt 

SDS       Gerbu Biotechnik, Gaiberg 

TEMED       Roth, Karlsruhe 

Triton X-100      AppliChem, Darmstadt 

Tween 20       Sigma, Deisenhofen  

Xylol       Merck, Darmstadt 

Xylencyanol       Serva, Heidelberg 

 

All other chemicals not listed here were either from Merck, Sigma or Roth. 

5.1.2 Enzymes and molecular biology reagents 
AnnexinV APC     BD Biosciences, Heidelberg 

dNTP       Promega, Mannheim 

OligodT      Fermentas, St-Leon-Rot 

Restriction enzymes Promega, Fermentas, New England 

Biolabs 

Revertaid M-MuLV Reverse Transcriptase  Fermentas, St-Leon-Rot 

Riboblock RNase inhibitor    Fermentas, St-Leon-Rot 

RQ1 DNase RNase-free    Promega, Mannheim  

SYBR green fluorescein    Thermo Scientific 

T4 DNA ligase     Promega, Mannheim 

Taq polymerase     Genaxxon, Steinbrenner 

Thermosensitive Alcaline Phosphatase  Promega, Mannheim 
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Gene ruler 100bp DNA ladder   Fermentas, St-Leon-Rot 

Gene ruler DNA ladder mix    Fermentas, St-Leon-Rot 

Protein marker IV     Peqlab Biotechnology, Erlangen 

5.1.3 Equipment 
Bacterial petri dishes      Greiner, Frickenhausen 

Cell culture articles      TPP, Trasadingen, Switzerland  

Cell incubator       Heraeus, Hanau 

Centrifuge       Heraeus, Hanau 

Centrifuge J2-HS with rotors JS-13.1 and JA-1  Beckman, Munich 

Electrophoresis chambers    Cosmo bio, Carlsbad, USA 

ELISA reader      Biorad, Munich 

Gel documentation     Peqlab Biotechnology, Erlangen  

FACS Calibur      Becton Dickinson, Heidelberg 

Leica microscope      Leica, Bensheim 

Microtome RM 2155      Leica, Bensheim 

PCR Cycler       BioRad, Munich 

Plastic tubes       TPP, Trasadingen, Switzerland 

Reaction Tubes      Steinbrenner Laborsystem, Wiesenbach 

SDS-PAGE chambers     Sigma, Deisenhofen 

Slides        Bender and Hohbein, Karlsruhe 

Nanodrop Spectrophotometer    PeqLab Biotechnology, Erlangen 

UV-Stratalinker 2400      Stratagene, Heidelberg 

Wet blotting transfer system    Sigma, Deisenhofen 

Whatman 3MM paper     Schleicher und Schuell, Dassel 

5.1.4 Oligonucleotides 

5.1.4.1 RT-PCR oligonucleotides  

Junb  

primers for qRT-PCR 

• RT2 qPCR primer assay – SYBR Green Mouse Junb: PPM03821A, SuperArray 

HPRT 
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Name Sequence 5’-3’ 

hprt-F GCATTTAAAAGGAACTGTTGACAACG 

hprt-R TTGTTGGATTTGAAATTCCAGACAAG 

 

ER-located chaperones 

Name Sequence 5’-3’ 

grp78-F AGGACATCAAGTTCTTGCCATT 

grp78-R AATAGTGCCAGCATCTTTGGTT 

grp94-F TCAGAGACATGTTGCGGCGGATTA 

grp94-R TTCTGCGTCTTCTGAGGTGTCTTC 

calnexin-F AGGGGAGGTTTATTTTGCTGAC 

calnexin-R CATGATGCTTGGCCCGAGACA 

 

XBP1 splicing 

Name Sequence 5’-3’ 

mXBP1.19S GGCCTTGTGGTTGAGAACCAGGAG 

mXBP1.14AS GAATGCCCAAAAGGATATCAGACT 

 

Mitochondria-mediated apoptosis  

Name Sequence 5’-3’ 

clusterin-F GAAGTTCTATGCACGTGTCTGC 

clusterin-R TCCTGAAAGAGCGTGTCTATGA 

 

Growth factors 

Name Sequence 5’-3’ 

Pdgfa-F AGCCGGCCGCCCCTCTCC 

Pdgfa-R TTTTGTGGTTTTGTTTTCGCTCTC 

Pdgfb-F AGCAGAGCCTGCTGTAATCG 

Pdgfb-R GGCTTCTTTCGCACAATCTC 
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Pdgfralpha-F CTGGGAAAGTGGCCTGGACGAAC 

Pdgfralpha-R ACGCCGCTGAGATGCTACTGACG 

Pdgfrbeta-F CTGCGCTGGACCTGCTATGAGAC 

Pdgfrbeta-R TGGTGACAGTGGCCCGAGGTAAC 

gmcsf-F ATCAAAGAAGCCCTAAACCTCCTG 

gmcsf-R CTGGCCTGGGCTTCCTCATT 

csf2ra-F ATGTTTAACGACATTGATGTCACC 

csf2ra-R GGGTTAGGGTTTGTTAAGAACTGA 

csf2rb-F GTCAAGCCCATCTCTAACTACGAT 

csf2rb-R GATCTTTTCCTTCCACTTCCTGTA 

csf2rb2-R ATTGCATCATTTCTCCACCTATTT 

csf2rb2-R CAGTGAACATAGACCAAGGAACAC 

kgf-F CTGGCCTTGTCACGACCTGTTTCT 

kgf-R -CCCTTTCACTTTGCCTCGTTTGTC 

 

Epigenetics 

Name Sequence 5’-3’ 

dnmt1-F CCACTGCATTTGCTGAATACAT 

dnmt1-R TGGTAGAAGGAGGAACAGTGGT 

dnmt3b-F GATGGCTTTCTTTTACCCTCCT 

dnmt3b-R AATAGCATCCTCCAGCAAATGT 

ctcf-F ACTTGCGAAAGCAGCATTCC 

ctcf -R TGTCTTGCCATTGTGTTCCG 

 

Junb target genes 

Name Sequence 5’-3’ 

lpl-F TTGAAAGTGGGTTTTCCTGAGT 

lpl-R CTCCTGCCTGCTGTCTTCTAAT 

decorin-F GAACCTGAAGGACTTGCATACC 

decorin-R CAAGCACATTGTTCAGTCCATT 
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gsta4-F GAGAAGATGCAAAAGGATGGAC 

gsta4-R TCCTGACTCTCTCCTTCAGGTC 

cyba-F CGATGTGGACAGAAGTACCTGA 

cyba-R CTGCCAGCAGATAGATCACACT 

wdr79-F CCTGATGGCAATCTCTTCTTCT 

wdr79-R TCCACTGATATCCCACACAGAG 

epb4.1l4b-F GACGGACGGAATATCAAGCTAC 

epb4.1l4b-R ATTGTGGACTTCAGGATTTGCT 

slc35e3-F AAGACACACCCCTAGGTCTCAA 

slc35e3-R ACATTTAGTGAGGCCAGGAAAA 

fas-F AAAGTGCTGGAAAAGGAGACAG 

fas-R TCTTGCCCTCCTTGATGTTATT 

h19-F GGGGACTTCTTTAAGTCCGTCT 

h19-R GGGTGCTATGAGTCTGCTCTTT 

mkp1-F AACTCGGCACATTCGGGACCAA 

mkp1-R CAAGCGAAGAAACTGCCTCAAACA 

id1-F GCCCCAGAACCGCAAAGTGA 

id1-R TTAACCCCCTCCCCAAAGTCTCTG 

id3-F GGTGCGGCTGCTACGAG 

id3-R TTCAGGCCACCCAAGTTCAGTCC 

 

5.1.4.2 Non radioactive EMSA oligonucleotides 

 

Name transcription 

factor site 

Origin of 

binding site 

sequence 5'-3' 

PDGF-wt-F AP-1, ets1. 

NFAT 

PDGFb AGCTGCGCTGACTCCGGGC

CAGGAGAGGAAAGGCTGA

GCT 

PDGF-wt-R AP-1, ets1. 

NFAT 

PDGFb AGCTCAGCCTTTCCTCTCCT

GGCCCGGAGTCAGCGCAGC

T 
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MMP13-TRE-F AP-1 MMP13 AGCTAAAGTGGTGACTCAT

CACTATAGCT 

MMP13-TRE-R AP-1 MMP13 AGCTATAGTGATGAGTCAC

CACTTTAGCT 

consensus-SP-1-F SP-1  ATTCGATCGGGGCGGGGCG

AGC 

consensus -SP-1-R SP-1  GCTCGCCCCGCCCCGATCG

AAT 

PDGF-SP1-F SP-1 PDGFb AGCTTGTCTCCACCCACCTC

TCAGCT 

PDGF-SP1-R SP-1 PDGFb AGCTGAGAGGTGGGTGGAG

ACAAGCT 

PDGF-TRE-F AP-1 PDGFb AGCTTAGGGTGAATCACAG

AAGGAAGCT 

PDGF-TRE-R AP-1 PDGFb AGCTTCCTTCTGTGATTCAC

CCTAAGCT 

PDGFbwt-Ets1-F ets1 PDGFb AGCTCCAGGAGAGGAAAG

GCTGAGCT 

PDGFbwt-Ets1-R ets1 PDGFb AGCTCAGCCTTTCCTCTCCT

GGAGCT 

Ets-F ets1 stromyelosin1 AGCTGCAGGAAGCATTTCC

TGGAGCT 

Ets-R ets1 stromyelosin1 AGCTCCAGGAAATGCTTCC

TGCAGCT 

 

5.1.5 shRNA 
shRNA against mouse clusterin cloned into the lentivirus vector pLK0.1-puro were purchased 
from Sigma-Aldrich. 

Name Sequence 5’-3’ and region targeted by the shRNA 

shRNA1    CCGGCCGGTTTATATGATCTTCATACTCGAGTATGAAGATC
ATATAAACCGGTTTTTG 

Region: CDS 
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shRNA2 CCGGCCTGAAACAGACCTGCATGAACTCGAGTTCATGCAG
GTCTGTTTCAGGTTTTTG 

Region: CDS 

shRNA4 CCGGGCTAAAGTCCTACCAGTGGAACTCGAGTTCCACTGGT
AGGACTTTAGCTTTTTG 

Region: CDS 

shRNA5 CCGGAGGGAAGTAAGTACGTCAATACTCGAGTATTGACGT
ACTTACTTCCCTTTTTTG 

Region: CDS 

Non-targeting 
shRNA 

Catalogue number: SHC002 

 

5.1.6 Antibodies 
Name Company Catalogue number 

Junb (N17) Santa Cruz Biotechnology Sc-46 

 

ER-stress proteins 

Name Company Catalogue number 

Grp78 Cell Signaling Technology 3177 

CHOP Santa Cruz Biotechnology Sc-575 

p-eIF2a Cell Signaling Technology 9725 

eIF2a Upstate ab5369 

 

Mitochondria-mediated apoptosis 

Name Company Catalogue number 

Caspase 3 Cell Signaling Technology 9662 

Caspase 6 Cell Signaling Technology 9762 

Caspase 9 Cell Signaling Technology 9504 

Cleaved PARP (Asp214) Cell Signaling Technology 9544 

Bax Cell Signaling Technology 2772 
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Bak Cell Signaling Technology 3814 

Bcl2  Cell Signaling Technology 2870 

Bcl-XL Cell Signaling Technology 2762 

Bad Cell Signaling Technology 9292 

p-Bad S112 Cell Signaling Technology 9296 

p-Bad S136 Cell Signaling Technology 9295 

Clusterin Santa Cruz Biotechnology Sc-6419 

Cytochrome c Promega G7421 

 

MAPK pathway and growth factor signaling 

Name Company Catalogue number 

p-ERK1,2 Cell Signaling Technology 9101 

ERK1,2 Cell Signaling Technology 4696 

p-JNK (T183/Y185) Cell Signaling Technology 9251 

JNK1 Santa Cruz Biotechnology Sc-1648 

JNK2 Santa Cruz Biotechnology Sc-7345 

p-Akt S473 Cell Signaling Technology 4051 

Akt Cell Signaling Technology 9272 

p-PDGFRa Y754 Cell Signaling Technology 2992 

PDGFRa Cell Signaling Technology 3164 

p-PDGFRb Y751 Cell Signaling Technology 3166 

PDGFRb Cell Signaling Technology 3169 

 

Epigenetic mediators 

Name Company Catalogue number 

HDAC 1 Cell Signaling Technology 2062 

HDAC 2  Upstate 05-814 

HDAC 3 Cell Signaling Technology 2632 

HDAC 5 Cell Signaling Technology 2082 

HDAC 6 Cell Signaling Technology 2162 

HDAC 7 Cell Signaling Technology 2882 
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MeCP2 Upstate 07-013 

mSin3A Santa Cruz Biotechnology Sc-994 

CTCF Upstate 07-729 

 

Name Company Catalogue number 

HSC70 Stressgen SPA-816 

Actin  Santa Cruz Biotechnology Sc-1615 

RCC1 BD biosciences 610377 

 

Secondary antibodies 

Name Company Catalogue number 

Anti-mouse HRP-

conjugated Cell Signaling Technology 7076 

Anti-rabbit HRP-conjugated Cell Signaling Technology 7074 

Anti-goat HRP-conjugated Santa Cruz Biotechnology Sc-2020 

 

5.1.7 Inhibitors 
• N-glycosylation inhibitor 

o Tunicamycin, Sigma 

• PI3-Kinase inhibitor 

o Wortmannin, Sigma  

o LY294002, Calbiochem  

• Proteasome inhibitor 

o MG132, Sigma 

• RNA polymerase II inhibitor 

o Actinomycin D, Sigma 

• HDAC inhibitors 

o Trichostatin A, Sigma 

o Sodium Butyrate, Sigma 

• Protease inhibitor 

o Sigma 
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• Phosphatase inhibitors 

o Phosphatase inhibitor cocktail I, Sigma 

o Phosphatase inhibitor cocktail II, Sigma 

5.1.8 Kits 
• RNA extraction kit: RNeasy, Qiagen 

• Genomic DNA extraction kit: blood and tissue extraction kit, Qiagen 

• Plasmid purification kit: PureLink HiPure plasmid maxi kit, Invitrogen 

• PCR purification kit, Qiagen 

• Gel extraction kit, Qiagen 

• Bisulfite treatment of genomic DNA: EpiTect Bisulfite kit, Qiagen 

• LightShift Chemiluminescent EMSA kit, Pierce 

• Dual luciferase assay system, Promega 

• Mycoplasma PCR detection kit, PromoKine 

5.1.9 Bacterial culture  
• Bacteria strains used : 

o E.Coli DH5 alpha, 

o TOPO-10 (Invitrogen) 

• TY medium composition: 1% Bacto-tryptone, 1% Bacto yeast extract, 0,1% 

Casamino acids, 5% NaCl 

• Solid medium contains 2% (w/v) Agar 

• Ampicillin: 100µg/ml, 

• Kanamycin: 50µg/ml 

5.1.10 General buffer and solutions 
• PBS: 137 mM NaCl, 2.7 mM KCl, 6.5 mM Na2HPO4, 1.5 mM KH2PO4, pH 7.6 

• TBE: 90 mM Tris-HCl, 90 mM Boric acid, 2.5 mM EDTA 

• SDS running buffer: 25mM TrisBase, 250mM Glycine, 0.1% SDS 

• TE: 10 mM Tris-HCl pH 8.0, 1 mM EDTA 

• 10x DNA loading buffer: 0.25% (w/v) bromophenol blue, 0.25% (w/v) xylene cyanol 

FF, 30% (v/v) glycerol 

• Laemmli sample buffer: SDS 2%, glycerol 10%, 50mM Tris pH 6.8, 5% b-

mercaptoethanol, bromophenol blue 
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5.1.11 Cell culture  

5.1.11.1 Cell types 

• Mouse embryonic fibroblasts (MEFs) were isolated at embryonic day 8.5 and 

immortalized using the 3T3 protocol 

o Wild-type: clones 1, 7, 47 

o Junb -/-  MEFs: clones 6, 10, 49 

• HEK293T cells 

• Phoenix ecotropic packaging cells: Orbigen, San Diego, USA 

5.1.11.2 Cell culture material 

DMEM (Dulbecco Modified Earle’s Medium) high glucose  PAA, Pasching, Austria 

Trypsin 2.5% (10x)        Lonza, Wuppertal 

Fetal bovine serum       Sigma, Deisenhofen 

Penicillin/streptomycin      PAA, Pasching, Austria 

L-Glutamine 200mM (100x)      PAA, Pasching, Austria 

Cell culture petri dishes      TPP, Trasadingen, CH 

5.1.12 Animals 
Mice were housed in specific pathogen free and light, temperature (21°C), and humidity 

(50%-60% relative humidity) controlled conditions. Food and water were available ad 

libitum. The procedures for performing animal experiments were in accordance with the 

principles and guidelines of the ATBW (officials for animal welfare) and were approved by 

the Regierungspräsidium Karlsruhe. 

5.2 Methods 

5.2.1 Bacterial methods 

5.2.1.1 Transformation 

Competent bacteria were incubated on ice with plasmid DNA (50-100ng) for 30 min, heat 

shocked at 42°C for 90 seconds and then replaced on ice for 2 min. After adding 1 ml of TY 

medium, the bacteria were incubated 1h at 37°C with shaking. Transformed bacteria were 

then further selected on a TY-Agar plate containing the appropriate antibiotics. 
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5.2.2 DNA methods 

5.2.2.1 Plasmid mini-preparation and maxi-preparation 

Transformed bacteria were grown overnight in 3 ml (mini-preparation) or 200 ml (maxi-

preparation) of TY-medium supplemented with the appropriate antibiotics.  For plasmid 

mini-preparation, bacteria were resuspended and lysed in the solution provided with the 

purification kit from Invitrogen. The DNA was further precipitated with 2.5 volumes of 

100% EtOH (-20°C), washed with 1 volume 70% EtOH and resuspended in H2O. For maxi-

preparation, plasmid DNA was extracted with the purification kit from Invitrogen following 

the instruction of the manufacturer. DNA was resuspended in H2O. Purity and concentration 

were measured with a NanoDrop spectrophotometer. 

5.2.2.2 Isolation of genomic DNA 

Genomic DNA from tissues was extracted using the following procedure. The tissue was 

digested in 500µl tail buffer (50mM Tris-HCl pH 8.0, 100mM NaCl, 100mM EDTA, 1% 

SDS) supplemented with 250µg of Proteinase K overnight at 56°C. Proteins were precipitated 

with 250µl 5M NaCl. Then, the DNA in the supernatant was precipitated with 0.67 volume of 

isopropanol, washed with 70% EtOH and resuspended in TE buffer. 

For the analysis of DNA methylation, genomic DNA was extracted using the DNA blood and 

tissue extraction kit from Qiagen following the instructions of the manufacturer. 

5.2.2.3 Cloning and sub-cloning 

In order to clone a promoter region or a coding sequence, primers containing the restriction 

site of interest were designed. The PCR fragment was subsequently sub-cloned into the 

pGEMT-easy (Promega) or TOPO-pCR4 (Invitrogen) vectors and its sequence was 

confirmed by sequencing (MWG Biotech). 1 μg of the vector was digested with 3 units of the 

adequate restriction enzyme in the recommended buffer and further isolated by 

electrophoresis. The separated fragment of DNA was then isolated with the Gel extraction 

and Purification Kit from Qiagen following the instructions. Equimolar amounts of insert and 

vector (minimum 100ng) were ligated overnight at 4°C with 3 unit of T4 ligase following the 

instruction of the company.  

5.2.2.4 PCR 

A standard PCR reaction was performed as follows: 
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• 10-500 ng template DNA 

• 2.5 μl 10 x PCR buffer recommended by the Taq provider 

•  1 μl 25mM dNTP solution (containing dATP; dCTP; dGTP; dTTP; pH 7.0) 

• 0.2 μl of each primer (0.1 μg/μl or 10μM) 

• 1 U Taq polymerase 

• H20 to 25 μl 

DNA was initially denatured for 5 min at 95°C. PCR was carried out with 20-40 cycles for 

each 30 sec at 95°C; 30 sec at the appropriate annealing temperature and 0.5-1.5 min 

extension at 72°C, depending on the length of DNA fragment to amplify. 

5.2.3 RNA methods 

5.2.3.1 RNA isolation 

RNA was isolated from cultured cells with the RNeasy kit from Qiagen following the 

instruction of the manufacturer. RNA from tissues was extracted in PeqLab Gold RNA pure 

followed by a second purification over the columns of the RNeasy easy kit from Qiagen. 

Purity and concentration were measured with a NanoDrop spectrophotometer. 

5.2.3.2 DNase digestion of RNA 

In order to avoid genomic DNA contamination, 5 μg of RNA were digested with 1 unit of 

RQ1 RNase-free DNase for 30 min at 37°C in a final volume of 20 μl. RQ1 digested RNA 

was then purified following a phenol-chloroform extraction. In brief, 1/10 volume of 3M 

NaOAc (pH 5.2), one volume of phenol and one volume of chloroform:isoamyl alcohol 

(49:1) were added and mixed well. The mixture was centrifugated at 13 000 rpm at room 

temperature for 5 min. The upper phase containing the DNA was carefully taken and 

precipitated with 2.5 volumes of 100% ice-cold ethanol. After 2 h incubation at -20°C, the 

mixture was centrifugated at 4°C at 13 000 rpm for 30min. The supernatant was removed and 

the pellet washed with 70% ethanol. After another centrifugation, the pellet was dried and 

resuspended in RNase-free H2O. 

5.2.3.3 Reverse Transcriptase PCR (RT-PCR) 

5 μg of RQ1-digested RNA was reverse transcribed into cDNA as follows 

• 5 μg of RQ1-digested RNA denatured at 70°C for 5 min 

• 1 μl of oligo-dT primers 



                                                                                                                5. Material and methods 

47 

 

• 10 μl of 5x reverse transcriptase buffer 

• 2 μl of 25mM dNTP solution 

• 2 μl of RNase inhibitors (Riboblock) 

• 1 μl of reverse transcriptase 

• In a final volume of 50 μl 

The reaction was incubated at 42°C for 1 h followed by 10 min at 70°C in order to inactivate 

the reverse transcriptase. cDNA was further diluted and used for semi-quantitative or 

quantitative PCR. The amplified products were then analyzed on an agarose gel. 

5.2.3.4 Quantitative RT-PCR 

Relative quantification of PCR products was assessed as follows: PCR amplification was 

done in triplicates in a final volume of 25 μl by using a SYBR green mix. Primer efficiency 

was measured for each PCR run, by including dilution series of a reference cDNA. The 

primer efficiency was incorporated into the calculation of the fold induction as indicated 

hereafter. 

  

5.2.4 Protein methods 

5.2.4.1 Cell extracts 

5.2.4.1.1 Whole cell extracts 

Cells were washed twice with PBS and lysed in RIPA (50mM Tris pH 8.0, 150mM NaCl, 

0.1% SDS, 0.5% deoxycolic acid, 1% Nonidet P-40, 2mM DTT) or Cell Lysis buffer (Cell 

Signaling Technology). After 30 min incubation on ice, the extracts were briefly sonicated 

(2.5 min in a Bioruptor sonicator with an ON/OFF cycle of 30 sec / 20 sec) and centrifugated 

20 min at 13’000 rpm at 4°C. The supernatant was collected and kept at -80°C. 

5.2.4.1.2 Nuclear extracts 
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Cells were washed twice with PBS and collected in hypotonic buffer (20mM HEPES, 10mM 

KCl, 1mM MgCl2, 0.5mM DTT, 0.1% Triton X-100, 20% glycerol supplemented with 

proteases and phosphatases inhibitors). The cell membranes were destroyed by 18 strokes 

with a douncer.  After centrifugation at 2’000 g for 5 min at 4°C, the supernatant containing 

the cytoplasmic fraction was collected. The pelleted nuclei were further lysed in extraction 

buffer (20mM HEPES, 10mM KCl, 1mM MgCl2, 0.5mM DTT, 0.1% Triton X-100, 20% 

glycerol, 420mM NaCl supplemented with proteases and phosphatases inhibitors) and 

nuclear membranes were destroyed by performing 5 freeze and thaw cycles. Debris were then 

removed by another centrifugation step at 13’000 rpm. The supernatant was collected and 

kept at -80°C. 

In order to obtain nuclear extracts from animal tissues, the samples were pulverized by using 

a dismembrator. The powder was then resuspended in hypotonic buffer and the samples were 

processed as described before. 

5.2.4.1.3 CHAPS extracts 

Cells were washed twice with PBS and lysed in CHAPS buffer (Cell Signaling Technology). 

After 30 min incubation on ice, three freeze and thaw cycles were performed. The extracts 

were centrifugated 20 min at 13’000 rpm at 4C. The supernatant was collected and kept at -

80°C. 

5.2.4.1.4 Mitochondria extracts and Bax oligomerization 

Cells were washed twice with PBS and lysed in hypotonic buffer (250mM sucrose, 20mM 

HEPES pH7.5, 10mM KCl, 1.5mM MgCl2, 1mM EDTA, 1mM EGTA, supplemented with 

proteases and phosphatases inhibitors). The cytoplasmic fraction was incubated with 5mM 

Bismaleimidohexane (BMH) for 30min at RT or with DMSO. The cytoplasmic fraction was 

further centrifuged and the pellet, containing the mitochondrial fraction, was lysed into 

Laemmli buffer and boiled at 95°C for 5 minutes. 

5.2.4.1.5 Protein concentration determination 

The protein concentration of the samples was measured with the DC protein measurement kit 

from Biorad. 

5.2.4.2 Western Blotting 

20 to 50 μg of proteins were denatured into Laemmli sample buffer and boiled at 95°C for 5 

min. Denatured protein were separated on a SDS-polyacrylamide gel (SDS-PAGE). Proteins 
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were transferred onto a nitrocellulose membrane overnight in a wet blotting system (25mM 

Glycine, 0.15% Ethanolamine, 25% MetOH) by application of 69 V. The membrane was then 

blocked against unspecific signal by incubation in 5% milk or BSA in PBS/0.1% Tween-20. 

The first antibody was incubated overnight at 4°C, and then the membrane was washed 3 

times with PBS/0.1% Tween-20 and incubated for an hour with the secondary antibody. After 

3 additional washes with PBS/0.1% Tween-20, the signal was revealed with an enhanced 

chemiluminescence system. 

5.2.4.3 Luciferase 

48 h after transfection cells were lysed in luciferase extraction buffer (100mM K-phosphate 

pH 7.6, 0.2% Triton X-100, and 1mM DTT) and incubated 15 min at room temperature. 

Measurement of luciferase activity was performed with the dual luciferase reporter assay 

system from Promega following the instructions of the manufacturer. 

5.2.4.4 Electrophoretic Mobility Shift Assay (EMSA) 

Non radioactive EMSA were performed according to the LightShift Chemiluminescent kit 

from Pierce. In brief, 5µg of nuclear extracts were incubated in binding buffer with 50ng 

polydI.dC and competitor DNA (unlabelled oligonucleotides) for 10 min at RT. 20 fmoles of 

5’ biotinylated primers encompassing the transcription binding site of interest were then 

added to the mixture and incubated 20 further min at RT. Each transcription factor requires a 

special binding buffer related to its biochemical properties. For AP-1, the binding buffer is 

composed of 10mM Tris pH 7.5, 50mM KCl, 10% glycerol, 5mM MgCl2, 0.5mM EDTA, 

2mM DTT. For SP-1, the binding buffer is composed of 10mM Tris pH 7.5, 150mM KCl, 

15% glycerol, 0.1 % NP-40, 15mM MgCl2, 0.1µM ZnCl2, 1mM DTT. 

After incubation 20 min at RT, the complex was loaded on a 4% polyacrylamide gel 

previously pre-run for 1h. Migration was performed at 200V for 1h30 in 0.25% TBE buffer. 

Then, the probes were transferred in a wet blotting system in 0.5% TBE buffer at 500mA for 

1h30 at 4°C. The DNA was further cross linked on the membrane by application of 

1200µJoules in a UV cross linker. Detection of shifted probes was made by using a 

chemiluminescent system with streptavidin-HRP according to the manufacturer’s 

instructions. 
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5.2.5 Epigenetics methods 

5.2.5.1 Isolation of histones 

Cells were washed twice with PBS and lysed in hypotonic buffer (20mM HEPES, 10mM 

KCl, 1mM MgCl2, 0.5mM DTT, 0.1% Triton X-100, 20% glycerol supplemented with 

proteases, phosphates and HDAC inhibitors). Cells were disrupted by 18 strokes in a dounce 

homogenizer. The lysate was centrifugated at 2’000g for 5 min at 4°C and the supernatant 

transferred to another tube. The nuclear pellet was washed twice with hypotonic buffer and 

resuspended in 100 μl ice-cold H2O. Sulfhydric acid (H2SO4) was added to a final 

concentration of 0.4N. After 1 hour incubation on ice, the sample was centrifugated at 13’000 

rpm for 15 min at 4°C. The proteins of the supernatant including the histones were 

precipitated with 10 volumes acetone by overnight incubation at -20°C. After centrifugation 

at 13’000 rpm for 15 min at 4°C, the pellet was air dried and resuspended in H2O. The purity 

of the histone preparation was assessed by SDS-PAGE followed by a Coomassie staining. 

5.2.5.2 DNA methylation analysis: Combined Bisulphite Restriction Analysis 

(COBRA) and bisulphite sequencing 

The bisulfite treatment of 2 μg of genomic DNA was performed with the EpiTect Bisulfite 

Kit from Qiagen following the instructions of the manufacturer. PCR amplification of the 

regions of interest was performed with PCR primers recognizing bisulfite converted DNA 

sequences. The primers were designed with the Methprimer software. 

For COBRA analysis, the PCR fragments were digested with the restriction enzyme BstUI 

following the instruction of the provider. The fragments were separated by gel 

electrophoresis.   

For bisulfite sequencing, the PCR fragments were cloned into the TOPO-pCR4 vector and 

sequencing of 5 to 10 mini-preparations of DNA were analyzed. 

5.2.6 Immunoflorescence methods 

5.2.6.1 Mitotracker / Cytochrome c staining 

Cells, seeded on glass coverslips, were labeled in vivo 30 min with 200nM MitoTracker
®

, 

washed with PBS and fixed with 4% formaldehyde for 15 min. All steps were performed in 

the dark in order to avoid quenching of the fluorescent MitoTracker
®

dye. After 2 washes with 

PBS, cell membrane were permeabilized by incubation with 100% ice-cold Methanol at -
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20°C for 20 min. Cells were further washed three times with PBS and unspecific signal was 

blocked with 1%BSA/PBS supplemented with 0.2% Tween 20 for 1 h. Coverslips were 

washed with PBS and incubated with cytochrome c antibody (diluted 1:1000 in PBS 

supplemented with 0.3% Triton X-100) overnight at 4°C. After 3 washes with PBS, cells 

were incubated with the secondary antibody (Alexa488-conjugated goat anti mouse diluted 

1:500) and with Hoechst 33342 (diluted 1:1000) 1h at RT. After 3 additional washes, 

coverslip were mounted with mowiol on microscope slides. 

5.2.7 Cell culture 

5.2.7.1 Culture conditions 

Mouse embryonic fibroblasts (MEFs) cells were cultivated in high glucose DMEM 

supplemented with 4mM glutamine and 10% FBS and were maintained at 37°C and 8% CO2. 

Cells were trypsinised (0.25% Trypsin) three times a week. Mycoplasma tests (PromoKine 

mycoplasma PCR detection kit) were performed routinely. 

5.2.7.2 Co-culture conditions 

Cells were co-cultivated in a 0.4 µM filter insert (Falcon) placed above a six-well dish.  Cells 

were seeded in equal density and were allowed to grow for 48h. Dishes were carefully 

shacked every 6 to 10h to obtain a homogenous growth factor distribution. 

5.2.7.3 Transfection 

5.2.7.3.1 Calcium phosphate transfection 

50 μl of a solution of 1M of CaCl2 was added to the appropriate amount of plasmid DNA 

diluted into 500 μl of H2O. HBS 2x (50mM HEPES, 280mM NaCl, 1.5mM Na2HPO4, pH 

7.05) was added drop by drop to the mixture while vortexing. The mixture was incubated 15 

min in order to allow the calcium phosphate precipitate to form and subsequently added to a 

10 cm diameter dish with semi-confluent cells. The precipitate was left on the cells for 24 

hours, then the medium was replaced. 

5.2.7.3.2 Transfection with Fugene 

Plasmid DNA and Fugene were added to DMEM in a ratio of 1: 2.5. The mixture was 

incubated for 15 min at RT and added to semi-confluent cells. 24 h later, the medium was 

replaced with fresh medium. 
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5.2.7.4 Retroviral and lentiviral Transduction 

In order to produce retrovirus, a 10cm diameter dish of ecotropic Phoenix packaging cells 

was transfected with 25 μg of the vector of interest. One day after transfection, the medium 

was replaced by 6 ml of fresh medium. After 48h, the supernatant containing the virus 

particles was filtrated through a 0.45 μm filter and supplemented with 8μg/μl polybrene, 

before being added to the transduced cells. After 24h incubation, the cells were passaged and 

further analyzed. For lentivirus production, the same procedure was applied in HEK293T 

cells by co-transfection of plasmids encoding gag-pol (pMDLgrpRRE), VSV-g (pMD2-G) 

and Rev (pRSVrev). 

5.2.8 FACS analysis 

5.2.8.1 AnnexinV staining 

Cells, treated with different drugs for the appropriate time, were trypsinised and resuspended 

in 100 µl of AnnexinV buffer (10mM Hepes/NaOH pH 7.4, 150mM NaCl, 5mM KCl, 1mM 

MgCl2, 1.8 mM CaCl2). Cells were incubated with 2 µl AnnexinV APC for 30 min on ice in 

the dark, then washed and AnnexinV incorporation was measured by fluorescent activated 

cell sorting (FACS) with a FACS Calibur. 
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6 Results 

6.1 Junb as a positive and negative transcription regulator 

6.1.1 Analysis of histone H3 acetylation marks 
Gene activation has been correlated with an increased acetylation of the promoter region 

(Marushige, 1976). In order to investigate whether the observed gene de-repression in the 

absence of Junb is due to an increase in global histone acetylation, I analyzed the levels of 

acetylated histone H3 in wild-type and Junb-deficient cells. Therefore, I isolated histones 

from cells treated with Trichostatin A (TsA), a large spectrum HDAC inhibitor, or with 

vehicle (DMSO) and subsequently determined levels of acetylation on 3 different lysines 

(K9, K18 and K27) of the N terminal tail of histone H3 by immunoblot. As shown in Figure 

3, no significant increase in acetylation could be observed in unchallenged Junb-deficient 

MEFs when compared to wild-type cell. Treatment with TsA for 4 and 12h lead to similar 

increased levels of acetylation of histone H3 on the lysines 9, 18 and 27 for both wild-type 

and Junb -/- MEFs. Thus, loss of Junb does not result in a global hyperacetylation of histone 

H3. 

 

6.1.2 Analysis of HDACs expression 
Within the last years, it became clear that histone acetylation is also located outside of coding 

sequences and is very important for the stability of the genome (Kouzarides, 2007). Thus, 

promoter hyperacetylation of a subset of genes, namely the Junb targets, could not be 

detected on total histone extracts. Further analyses, such as the determination of expression 

levels of enzymes that remove histone acetylation, HDACs, would be required to monitor 
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global differences in acetylation distribution. In order to analyze whether an impaired 

expression of HDACs would be causative of the observed gene de-repression, we determined 

HDACs protein levels in wild-type and Junb-deficient MEFs. Immunoblot analysis of nuclear 

protein fractions revealed no difference in the expression and localization of HDACs 1, 2, 3, 

5, 6 and 7 between wild-type and Junb-deficient MEFs (Fig. 4).  

Since HDACs require co-repressor complexes to be targeted to promoter regions, I also 

measured protein levels and localization of the co-repressor complexes mSin3A and MeCP2 

by immunoblotting. Similar mSin3A levels were observed for wild-type and Junb-deficient 

MEFs (Fig. 4). Protein expression and localization of MeCP2, that binds to methylated CpGs 

and targets HDACs to DNA methylated promoter regions, was also not altered in Junb-

deficient MEFs when compared to wild-type cells  (Fig. 4). 

 

In conclusion, levels of HDACs, mSin3A and MeCP2 are unaffected in Junb-deficient MEFs. 

6.1.3 Analysis of transcription induction by HDAC inhibition 
Although, no apparent differences in HDACs, mSin3A and MeCP2 levels were detected, it 

still may be feasible that the promoters of previously identified Junb repressed genes were 

regulated by HDACs. In order to prove that, I measured by qRT-PCR the induction of Junb-

repressed mRNA transcripts in response to HDAC inhibition. In order to avoid any unspecific 
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effects of HDAC inhibitors, MEFs were treated with two different inhibitors covering a broad 

spectrum of HDACs: TsA and Sodium Butyrate (NaB). 

MEFs were treated for 24h with TsA (100nM) and NaB (10mM) applying doses that induce 

similar levels of H3 acetylation (H3K9Ac; Fig. 5A). Immunoblot analysis of nuclear extracts 

revealed that Junb is not induced upon 24h treatment with TsA and NaB (Fig. 5B). 

 

Then, MEFs were subjected to the HDAC inhibitor treatments as described and RNA was 

extracted. qRT-PCR was performed for all Junb-repressed target genes which have been 

identified in previous transcription profiling arrays (Florin et al., 2004). Four different classes 

of genes could be identified. First, I could identify genes induced by both HDAC inhibitors in 

wild-type as well as in Junb-deficient MEFs (Fig. 6). This class comprised the following 

genes: lipoprotein lipase (lpl), clusterin (clu), mapk phosphatase 1 (mkp1), SUMO1 

activating enzyme subunit 2 (sae2) as well as solute carrier family 35 member E3 (slc35e3).  
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Secondly, I could define genes that were only induced in wild-type MEFs (Fig. 7). These 

genes were encoding for glutathione S-transferase alpha 4 (gsta4), erythrocyte protein band 

4.1-like 4b (epb4.1l4b) and inhibitor of DNA binding 1 (id1).  
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Furthermore, expression of many genes did not change upon treatment with TsA or NaB (Fig. 

8A). These genes were 78 kDa glucose-regulated protein (grp78), decorin, cytochrome b-245 

alpha polypeptide (cyba), WD repeat domain 79 (wdr79) as well as Fas. Finally, the 

expression of few genes such as inhibitor of DNA binding 3 (id3) and keratinocyte growth 

factor (kgf) was decreased due to TsA and NaB treatments (Fig. 8B).  
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Taken together, this approach identified a subset of Junb-target genes that are regulated by 

HDACs in wild-type and Junb knock-out MEFs. Among those genes, gsta4, epb4.1l4b and 

id1 are of particular interest since they are induced by HDAC inhibitors only in wild-type 

cells, suggesting that these genes may be regulated through yet to be identified Junb-

dependent HDACs mechanism. 

6.1.4 H19, a novel Junb target gene 
The H19 transcript has been identified as the most highly up-regulated gene in Junb-deficient 

MEFs by previous transcription profiling array (Florin et al., 2004). This could be validated 

by semi-quantitative RT-PCR (Fig. 9A) demonstrating that H19 transcripts were highly 

increased in Junb -/- cells. De-repression was truly Junb-dependent as re-expression of Junb in 

null cell upon retroviral transduction reduced H19 transcripts to levels observed in wild-type 

cells. This confirms that H19 is a novel Junb-target gene. 

 

In order to investigate whether an impaired expression of H19 regulators may be causative 

for the enhanced transcript levels of H19 in Junb-deficient MEFs, I analyzed the expression 

of dnmt1, dnmt3a and ctcf by RT-PCR. Yet, wild-type and Junb-deficient MEFs expressed 

dnmt1, dnmt3a and ctcf transcripts at similar levels (Fig. 9B). In line with these findings, 
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CTCF protein levels were also unaffected in Junb-deficient MEFs as shown by immunoblot 

of nuclear extracts (Fig. 9C), while the expression of DNMT1 and DNMT3a proteins could 

not be detected by immunoblot, most likely due to very low expression levels (data not 

shown). Thus, Junb regulates H19 transcription but not the expression of factors involved in 

the setting and maintenance of the imprinting status of this gene. 

6.1.5 Junb regulates the methylation of the H19 imprinting domain 
Since CTCF binds only to its unmethylated DNA recognition sequence, loss of methylation 

of the imprinting domain of H19 would increase the binding of CTCF, enhance the activity of 

the downstream enhancer on H19 promoter and result in increased gene expression.  

I, therefore, analyzed the methylation status of the CTCF binding sites within the H19 

imprinting domain in wild-type and Junb-deficient MEFs. For this propose, I isolated 

genomic DNA from wild-type and Junb-/- MEFs and subsequently treated the DNA with 

bisulfite. Treatment of DNA with bisulfite converts cytosine to uracil residues, but leaves 5-

methylcytosine residues unaffected, thus allowing us to discriminate between methylated and 

unmethylated cytosines. 

First, I analyzed the methylation status of the imprinted region encompassing the CTCF 

recognition sites by Combined Bisulfite Restriction Analysis (COBRA). During the course of 

this method, the regions of interest were amplified by PCR and the amplicons were digested 

with BstUI, a restriction enzyme containing the dinucleotide CG within its restriction site. By 

the bisulfite treatment, unmethylated cytosines were converted to uracil, leading to the loss of 

the BstUI restriction site. Thus, observation of an undigested PCR product is reminiscent of 

absence of DNA methylation and a digested PCR product is a sign for the presence of DNA 

methylation. Only the 1st, 3rd and 4th CTCF sites could be analyzed by COBRA since the 2nd 

CTCF site did not fulfill the necessary prerequisite of containing a BstUI restriction site (Fig. 

10A). While wild-type MEFs displayed approximately a 1:1 ratio of unmethylated and 

methylated CTCF sites (Fig. 10B), Junb -/- MEFs showed significantly elevated amounts of 

unmethylated amplicons for all three CTCF sites (Fig. 10B).  

Secondly, in order to analyze the methylation status of each individual cytosine located in the 

region of interest, bisulfite sequencing experiments were carried out for the 2nd and 4th CTCF 

site. The bisulfite sequencing revealed for the wild-type cells that 100% of the PCR 

amplicons covering both CTCF sites were methylated (Fig. 10C). By contrast, a significant 

increase of unmethylated cytosines (represented by empty circles) was observed in Junb-

deficient MEFs. Interestingly, the CTCF site number 2 displayed loss of methylation only in 
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the CTCF consensus sequence, while the 4th CTCF binding site displayed loss of methylation 

on a wide region encompassing the consensus sequence (Fig. 10C).  
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Taken together, these analyses revealed that methylation at the four CTCF binding sites is 

impaired or lost in Junb-deficient MEFs and that the molecular mechanisms regulating the 

methylation status of each CTCF site may be different. 

6.2 Junb is a novel decision maker for death or survival 

6.2.1 Junb is induced in response to ER stress  
To investigate whether Junb is causally implicated in the ER stress response, I analyzed the 

expression of Junb in wild-type and Junb-deficient MEFs following Tunicamycin application.  

Tunicamycin (Tm), a nucleoside antibiotic that inhibits the enzyme N-acetylglucosamine 

phosphotransferase blocks the synthesis of all N-linked glycoproteins and, thereby, causes 

ER stress. Tm treatment of wild-type cells resulted in a significant induction of Junb mRNA 

transcripts already 15, 30, and 45 minutes (data not shown) but with a maximum at 1 and 4 h 

post Tm application as measured by qRT-PCR (Fig. 11A). Analysis of Junb protein levels 

revealed a rapid upregulation of Junb starting 10 min post treatment, with a peak at 4 to 8 h 

and a decline to basal levels 24 h post treatment. No Junb protein was detectable in Junb-

deficient MEFs (Fig. 11B).  
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6.2.2 Loss of Junb results in increased expression of ER-located 
chaperones and to minor changes in UPR 

To investigate the role of Junb in ER stress, we monitored the expression of ER-located 

chaperones and UPR signaling molecules in Tm-treated wild-type and Junb-deficient MEFs. 

ER-located chaperones and enzymes, such as Grp78, Grp94 and Oxidoreductin-like 1, are 

essential for protein folding in the ER and are good markers of ER steady state and ER stress. 

Thus, I analyzed their mRNA expression in unchallenged as well as in Tm-treated MEFs 

(Fig. 12). qRT-PCR analyses revealed that untreated Junb-deficient MEFs harbored 

significantly increased endogenous levels of grp78, grp94 and oxidoreductin-like 1. 

Furthermore, treatment with Tm induced expression of all three chaperone mRNAs both in 

wild-type and Junb-/- MEFs. While mRNA transcripts levels were comparable between wild-

type and Junb-/- cells 4 and 8 h post Tm application, transcripts levels of all three chaperones 

were significantly increased in Junb-deficient MEFs 16 h post treatment (Fig. 12).  
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Furthermore, analysis of Grp78 protein revealed for Junb-deficient MEFs a delayed induction 

kinetics. While, in wild-type cells, Grp78 protein was already induced 4 h post treatment and 

reached its maximum levels at 8 h lasting until 24 h post induction, Grp78 protein in Junb-

deficient cells was only induced at 8 h with its maximum at 16 to 48 h post Tm application 

(Fig. 13A). A major event in the Grp78-triggered signaling of the UPR is the processing of 

Xbp1. In both wild-type and Junb-deficient MEFs, processed Xbp1 (Xbp1s) was detected 4 h 

post Tm treatment (Fig. 13B). Yet, kinetics and extent of Xbp1 processing appeared to be 

slightly different for Junb-/- MEFs with enhanced levels of spliced Xbp1s found 4 and 8 h 

post Tm treatment. To monitor PERK signaling, phosphorylation of eIF2α was determined. 

Phosphorylated eIF2α was already detected in unchallenged Junb-deficient MEFs (Fig. 13C). 

In response to Tm application, a further increase in phospho-eIF2α was found in Junb-

deficient MEFs, yet, the kinetics of induction was slightly delayed in comparison to wild-type 

cells. Finally, expression of the UPR-induced pro-apoptotic transcription factor CHOP was 

monitored. CHOP protein was induced in both wild-type and Junb-deficient MEFs with a 

maximal induction 16 h post Tm treatment (Fig. 13D). While the kinetics of CHOP induction 

was similar, total amount of CHOP protein was slightly diminished in Junb-/- cells.  
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In summary, unchallenged Junb-deficient cells show somewhat elevated chaperone 

expression being reminiscent of endogenous ER stress, however, Junb-/- cells are still able 

respond to the ER stress inducing agent Tm by initiating UPR signaling. 
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6.2.3 Junb deficiency renders cells resistant toward stress-induced 
apoptosis 

Sustained ER stress leads to the induction of cell death (Szegezdi et al., 2006). To determine 

the apoptosis rate in response to prolonged Tm treatment, wild-type and Junb-deficient MEFs 

were stained by AnnexinV and subsequently analyzed by flow cytometry (Fig. 14). No 

obvious differences in the rate of spontaneous apoptosis could be observed in cells left 

untreated. 40% of wild-type cells were AnnexinV-positive 24 h post treatment with Tm. By 

contrast, only 12% of Junb-deficient MEFs were positively stained for Annexin V. In order to 

determine whether MEFs were resistant towards ER stress-mediated apoptosis or whether 

they harbored a general apoptosis defect, MEFs were treated with stress stimuli such as 

proteasomal inhibitor (MG132) and UV. While MG132 and UV treatment induced 60% and 

40% AnnexinV positive cells, respectively, in wild-type MEFs, Junb knock-out cells were 

resistant towards both stresses displaying only 15% cells positively stained for AnnexinV. 

Importantly, treatment of both wild-type and Junb-/- with vehicle (DMSO) did not induce any 

significant cell death. Moreover, Junb-deficient MEFs were hypersensitive in response to a 

low dose of CD95L that efficiently induced apoptosis in these cells as evidenced by more 

than 40% AnnexinV positive cells, while wild-type cells were not responsive (10% positive 

cells).  

 

In conclusion, loss of Junb confers resistance toward stress stimuli-induced cell death, but 

Junb-deficient cells have the capacity of undergoing apoptosis upon death receptor activation. 

As the activation of caspases is a prerequisite for the induction of apoptosis, we assessed the 

processing of caspases upon Tm treatment by immunoblotting. In wild-type cells, the effector 
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caspase 3, and the initiator caspases 6 and 9 were activated 24 h post Tm treatment (Fig. 15), 

while in Junb-deficient MEFs, no (caspases 6 and 9) or only very marginal caspase 

processing (caspase 3) was detectable. To exclude a potential delay in caspase processing in 

Junb-/- cells, we also determined levels of cleaved caspases at later time points. Even at 32, 36 

and 48 h post Tm application no caspase processing was detected. As a read-out for caspase 

activity, the cleavage of the caspase-3 target PARP was determined. Whereas PARP was 

efficiently cleaved in wild-type MEFs, Junb-deficient MEFs exhibited no PARP cleavage 

(Fig. 15). Thus, Junb-deficient MEFs fail to undergo apoptosis in response to ER stress due to 

a failure of caspase activation. 

 

6.2.4 Junb-deficient MEFs exhibit a defective intrinsic apoptosis pathway  
Recently, Masud et al (Masud et al., 2007) have shown that ER stress induced apoptosis 

primarily depends on the mitochondrial intrinsic pathway. Activation of this intrinsic 

pathway results in cytochrome c release from the mitochondria. Cytochrome c subsequently 

triggers the formation of the apoptosome and eventually leads to the processing of caspase 9. 

As no caspase 9 processing was observed in Junb-deficient MEFs, I analyzed the release of 

cytochrome c from the mitochondria of wild-type and Junb-deficient MEFs in response to 

Tm treatment (Fig. 16). In wild-type MEFs, 18 h post Tm application, all cytochrome c had 

been released from the mitochondria as demonstrated by loss of co-staining with the 

mitochondrial marker Mito Tracker® by immunofluorescence analysis. By contrast, in Junb-

deficient cells, cytochrome c did not translocate to the cytoplasm at 18 h or even 48 h post 
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Tm treatment since cytochrome c staining was still overlapping with the mitochondrial 

marker at these time points (Fig.16, right panel).  

 

A prerequisite for cytochrome c release upon apoptosis induction is the oligomerization of 

Bax at the mitochondrial membrane that facilitates the formation of the MOMP 

(mitochondrial outer membrane pore). Bax oligomerization was measured by 

immunodetection of the crosslinked mitochondrial fraction. Oligomerization was detected 21 

h post Tm application in wild-type cells, while no Bax oligomerization was found in Junb-

deficient MEFs at this time point but could be detected 48 h post Tm treatment (Fig. 17A). 
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Thus, loss of Junb results in delayed Bax oligomerization upon prolonged ER stress which is 

causative of the absence of cytochrome c release from the mitochondria. 

6.2.5 Aberrant expression and post-translational modification of pro- and 

anti-apoptotic Bcl2 family members in Junb-/- MEFs 

Mitochondrial outer membrane pore formation is governed by the net balance of pro-

apoptotic Bcl-2 members such as Bax, Bad, Bak and Bim and anti-apoptotic Bcl-2 family 

members including Bcl-2, Bcl-xL. The net activity is determined via expression levels but 

also post-translational modification of Bcl-2 members.  

Thus, I investigated the expression and post-translational modification of key Bcl-2 members. 

Junb-deficient MEFs displays diminished protein levels of Bax both on whole cell extracts 

(Fig. 17B) and mitochondrial membranes (Fig. 17A). However, bax mRNA transcripts were 

not diminished in Junb-deficient MEFs (data not shown). Furthermore, levels of Bak, Bcl2, 

Bcl-xL were not affected in Junb-deficient MEFs (Fig. 17A).  

Recently, Zhang and colleagues revealed a crucial role of clusterin in the regulation of 

apoptosis by inhibiting Bax oligomerization (Zhang et al., 2005). Clusterin levels were 

elevated both on mRNA (Fig. 6) and protein levels (Fig. 17B) in Junb-deficient MEFs. In 

order to decipher the impact of increased clusterin expression on the cell death phenotype, 

clusterin mRNA levels were suppressed by siRNA technology in Junb-/- MEFs. Junb-null 

MEFs were infected with lentiviral particles encoding 4 different shRNAs against clusterin 

and one non-targeting shRNA. One week post infection and subsequent puromycin selection, 



                                                                                                                                       6. Results 

70 

 

clusterin expression was measured by RT-PCR and immunoblot. Clusterin mRNA and 

protein levels could be efficiently suppressed upon infection with shRNAs number 1, 2 and 5 

(Fig. 18A and 18B), while cells infected with non-targeting control shRNA and shRNA 4 

showed clusterin levels similar to the ones measured in uninfected Junb-/- MEFs. To 

determine whether clusterin suppression may rescue the apoptosis failure, shRNA-infected 

Junb-deficient MEFs were treated with Tm and cell death was monitored morphologically. In 

contrast to wild-type cells, no cell death was observed in Junb-/- MEFs (Fig. 18C) in whose 

clusterin was efficiently knocked-down. Thus, increased clusterin levels are not responsible 

for the apoptosis resistance of Junb-deficient MEFs. 
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In order to decipher whether an imbalance of pro- and anti-apoptotic Bcl-2 members in favor 

for anti-apoptotic proteins may be causative for apoptosis resistance of Junb-deficient cells, I 

determined the post-translational modifications of the Bcl-2 family members Bim and Bad. 

Bim is phosphorylated on multiple serine and threonine residues by both pro-survival and 

pro-apoptotic kinases. While phosphorylation of Bim by the MAPK Extracellular signal 

Regulated Kinase (ERK) leads to its degradation by the proteasome (Hubner et al., 2008), 

pro-apoptotic Bim phosphorylation by JNK induces formation of the MOMP (Lei and Davis, 

2003), and subsequent cell death. Thus, I analyzed the Bim levels by immunoblot analysis. In 

wild-type cells, Bim protein levels were strongly induced between 1 and 4 h and again 24 h 

post Tm treatment. The Bim specific antibody detected a protein smear most likely due to a 

significant portion of slower migrating phosphorylated Bim. While no induction of Bim 

protein could be observed in Junb-deficient cells in response to Tm application, a slower 

migrating Bim, which is indicative for phosphorylated Bim, was very prominent in untreated 

Junb-deficient cells as well as in -/- cells harvested shortly post Tm treatment (Fig. 19, 0 up 

to 1 h post Tm treatment). At later time points Bim levels were induced with a maximum at 

24 h but in contrast to wild-type cells, no Bim phosphorylation even at late time points, 32 

and 48 h could be detected (Fig. 19).  

Bad is phosphorylated on the serine residues 112 by ERK and 136 by Akt, respectively, and 

subsequently sequestered in the cytoplasm by 14-3-3. Upon stress stimuli, Bad is 

dephosphorylated, translocates to the mitochondrial membrane and induces the formation of 

the MOMP, and subsequent cell death (Youle and Strasser, 2008). Thus, I analyzed the levels 

of Bad phosphorylation at S-112 and S-136 following Tm application in wild-type and Junb-

deficient MEFs. In wild-type cells, some Bad phosphorylation on both serine residues was 

detected from 30 min to 8 h post Tm treatment, whereas no Bad phosphorylation could be 

detected at 16 to 24 h post treatment when the cells undergo apoptosis (Fig. 19 compared to 

Fig. 14). By contrast, high levels of phosphorylated Bad were measured in unchallenged 

Junb-/- MEFs and phospho-Bad protein persisted up to  24 and 32 h post Tm treatment, the 

time point when wild-type cells undergo apoptosis.  
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Thus, Junb-deficient MEFs are different from wild-type cells by diminished protein levels of 

Bax and increased levels of clusterin. Yet, these alterations are not solely responsible for the 

cell death resistance of Junb-deficient MEFs. Most importantly, aberrant phosphorylation of 

Bcl-2 family members Bim and Bad observed in Junb-/- MEFs confers anti-apoptotic 

behavior. 

6.2.6 Imbalance in favor of anti-apoptotic Bcl2 family members is due to 
enhanced pro-survival signaling  

Bim and Bad are phosphorylated by the kinase Akt and the MAP kinases ERK and JNK. As 

altered and even more abundant p-Bim and p-Bad levels were observed in Junb-/- cells, I 

analyzed the activation of these upstream kinases in wild-type and Junb-deficient MEFs 

following Tm application. Strikingly, untreated Junb-deficient MEFs displayed elevated 

levels of phosphorylated Akt (Fig. 20A) and ERK (Fig. 20B). Although phosphorylation of 

Akt was further induced 1 h post Tm treatment in Junb-/- MEFs similarly to wild-type cells 

(Fig. 20A), levels of phosphorylated ERK only  marginally increased upon Tm treatment in 

wild-type and dramatically decreased upon Tm treatment in Junb-deficient MEFs (Fig. 20B). 

Tm-induced phosphorylation of JNK was identified as a major inducer of ER stress mediated 

apoptosis (Urano et al., 2000). In wild-type cells, JNK phosphorylation was only slightly 

induced at early time points following Tm application and prominent p-JNK levels were 
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detected  24 h post Tm treatment, at a time point when wild-type cells were apoptotic. By 

contrast, no p-JNK was found at any time point post Tm treatment in Junb-/- MEFs. Thus, 

Junb-deficiency results in an aberrant balance of pro-survival and pro-apoptotic signaling as 

apparent by major differences in p-Akt, p-ERK and p-JNK levels. 

 

The kinases Akt and ERK respond to activation of Phosphoinositide-3 Kinase (PI3K) and 

Ras elicited by extracellular stimuli. In order to decipher whether an increased PI3K activity 

in Junb-/- cells is causative for phosphorylated Akt and ERK signaling, wild-type and Junb-

deficient MEFs were treated with PI3K inhibitors. In order to ensure specific action of the 

inhibitors, two different PI3K inhibitors, Wortmannin and LY294002, were used. Treatment 

of wild-type and Junb-deficient MEFs with either inhibitor resulted in a decrease of p-Akt, p-

ERK and p-Bad on S136 (Fig. 21). Wortmannin, which has a very short half-life 

(Vanhaesebroeck and Waterfield, 1999), inhibited phosphorylation of Akt and ERK 1 h post 

application and lost its activity by 4 h (ERK) and 8 h (Akt) post treatment (Fig. 21A). By 

contrast, LY294002 required a minimum time span of 16 h in order to inhibit Akt and ERK 

phosphorylation (data not shown). 24 h post application, levels of phosphorylated Akt, ERK 
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and Bad on S136 were reduced to basal levels both in wild-type and Junb-deficient MEFs 

(Fig. 21B). 

 

Taken together, increased PI3K activity is causative of the enhanced pro-survival signaling 

and subsequent apoptosis resistance observed in Junb-deficient MEFs. 

6.2.7 Presence of (a) soluble factor(s) responsible for autocrine pro-
survival signaling in Junb-deficient MEFs. 

PI3K is activated downstream of numerous Receptor Tyrosine Kinases (RTKs) and G Protein 

Coupled Receptors (GPCRs) that directly or through adaptor proteins bind and activate PI3K. 

PI3K activity is, thus, carefully regulated by growth factor-receptor interactions (Stokoe, 

2005). In order to determine whether Junb-deficient MEFs express increased levels of soluble 

factors which would enhance PI3K activity, wild-type cells were cultured in presence of 

Junb-deficient MEFs in a transwell co-culture system as described in Figure 22A. Wild-type 

and Junb-/- MEFs were seeded at equal density in a porous insert positioned above a six-well 

and were allowed to grow for 48 h. Dishes were carefully shacked every 6 to10 h in order to 

avoid any growth factor deposition. Since the substrate on which cells grow can influence 

PI3K signaling, wild-type and Junb-deficient cells were co-cultured in both directions, 

meaning wild-type in the insert and Junb-null in the six-well as well as vice versa. After 48 h 

of incubation, whole cell extracts were prepared and analyzed by immunoblot. Levels of p-

Akt and p-ERK were independent of the substrate on which the cells were grown (Fig. 22B). 
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Importantly, co-culture of wild-type MEFs with Junb-/- resulted, in wild-type cells, in 

marginally increased levels of p-Akt, and prominent levels of p-ERK similar to those 

observed for unchallenged Junb-/- MEFs (Fig. 22B). In addition, co-culture did not reduce the 

levels of p-Akt and p-ERK in Junb-null MEFs, revealing that the soluble factor(s) is (are) 

present in excess and sufficient to sustain autocrine and paracrine signaling in both cell types 

at the same time. 

 

Previous experiments identified Junb as a repressor of many cytokines such as G-CSF and 

Csf2 (also called GM-CSF) in fibroblasts (Meixner et al., 2008; Saito et al., 2000; Szabowski 

et al., 2000). Since Csf2 has been described to induce phosphorylation of Akt and ERK in 

myeloid cells (Klein et al., 2000), I analyzed the impact of Csf2 overexpression in MEFs. As 

shown by RT-PCR in Figure 23A, Junb-deficient MEFs express large amount of Csf2 

mRNA. To decipher whether fibroblasts can respond to Csf2, we determined the levels of 

Csf2 receptor expressed in wild-type and Junb-/- MEFs. Csf2 receptor consists of 2 subunits: 

a cytokine specific alpha-chain (Csf2ra), which binds the ligand with low affinity, and a beta-

chain (Csf2rb), which forms only upon association with the alpha-chain a high affinity 

receptor. So far, two isoforms of the beta-chain have been described Csf2rb and Csf2rb2 

(Geijsen et al., 2001). RT-PCR analyses of two different pairs of wild-type and Junb-deficient 

clones revealed that Junb-/- MEFs expressed neither Csf2ra nor Csf2rb and only marginal 
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amounts of Csf2rb2 transcripts (Fig. 23B). By contrast, wild-type cells expressed the alpha 

chain Csf2ra but none of the Cs2rb isoforms.  

 

Moreover, RT-PCR performed on cDNA prepared from wild-type and Junb-null thymus as 

positive control for Csf2ra, Csf2rb and Csf2rb2 expression, revealed no difference of Csf2 

receptor expression between wild-type and Junb-null thymus. Thus, since MEFs do not 

express the functional Csf2 receptor, Csf2 can be excluded as the factor being responsible for 

increased p-Akt and p-ERK  

6.2.8 Pdgfb is a novel negatively regulated Junb target gene  
Platelet-derived Growth Factor (Pdgf) is a potent mitogenic growth factor acting on 

mesenchymal cells such as fibroblasts via Akt signaling (Heldin and Westermark, 1999). 

Pdgf family consists of Pdgf-a, -b, -c and -d which form either homo- or hetero-dimers. The 

Pdgfs bind to the protein kinase receptor Pdgfra and Pdgfrb, which also form dimers. 

Extensive studies have shown that, while Pdgf-aa homodimer binds only to Pdgfr-aa dimer, 

Pdgf-bb binds preferentially Pdgfr-bb dimer (Andrae et al., 2008). Thus, we measured mRNA 

transcript levels of Pdgfa, Pdgfb, Pdgfra and Pdgfrb by qRT-PCR. As described in Figure 

24A, levels of Pdgfa, Pdgfb, Pdgfra were significantly increased in Junb-deficient MEFs, 

while levels of Pdgfrb were slightly increased (1.8x, non significant). Although Junb null 

MEFs harbored increased levels of Pdgfa and Pdgfra mRNA and protein, no endogenous 
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phosphorylation of the Pdgfra could be detected by immunoblot (Fig. 24B). By contrast, 

elevated levels of Pdgfrb protein and endogenous phosphorylation of the Pdgfrb could be 

detected by immunoblot of Junb-deficient whole cell extracts (Fig. 24B). Thus, Pdgfb 

appears as a very good candidate being responsible for the enhanced endogenous levels of p-

Akt and p-ERK. 

 

Increased levels of Pdgfb mRNA in Junb-/- MEFs could be due to either increased 

transcription or enhanced mRNA stability. In order to discriminate between these two 

possibilities, wild-type and Junb-deficient MEFs were treated with the transcription inhibitor 

Actinomycin D (ActD) and levels of mRNA transcripts were quantified by qRT-PCR. 

Actinomycin D, a polypeptide antibiotic, binds to DNA at the transcription initiation complex 
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and prevents elongation by RNA polymerase (Sobell, 1985). Treatment of MEFs with ActD 

for 4 h induced a 10-fold decrease in Pdgfb transcript levels in both wild-type and Junb-

deficient cells (Fig. 25).  Thus, mRNA stability is not affected in Junb-deficient MEFs and 

increased levels of Pdgfb mRNA in Junb-/- most likely results of increased transcription. 

 

In silico promoter analysis of Pdgfb highlighted the presence of two putative AP-1/TRE, one 

NF-κB, one Ets1 and one Sp1 transcription factor binding sites (Fig. 26A). In order to verify 

the ability of AP-1 and other transcription factors to bind to these putative sites in vitro, 

Electromobility Shift Assays (EMSA) were performed by incubation of biotin-labeled 

oligonucleotides with wild-type and Junb-deficient extracts and subsequent separation on a 

non-denaturing PAGE. The localization of transcription factor binding sites and 

oligonucleotides used for EMSA are given in figure legend 26A. EMSA analysis of the AP-

1/TRE binding site (-388) revealed the binding of a complex which was diminished in Junb-

deficient nuclear extracts (Fig. 26B left panel). Since the binding was competed by non-

biotinylated oligonucleotides encompassing the previously described consensus TRE of 

MMP13 promoter (Angel et al., 1987), this complex appears to contain AP-1. EMSA with the 

NF-κB site produced only a very weak complex and no difference in binding was observed 

between wild-type and Junb-deficient extracts (data not shown). When oligonucleotides 

encompassing the TRE and Ets1 binding sites (TRE/Ets1 -70/-87) were analyzed, the binding 

of a complex was observed with nuclear extracts of wild-type but not of Junb-deficient 

MEFs. Competition experiments using unlabelled oligonucleotides comprising the 

stromyelosin Ets1, and the consensus TRE sites were unsuccessful, suggesting that this 

complex was neither composed of AP-1 nor Ets1. Yet, this complex was competed with an 

oligonucleotide containing a mutated AP-1 site but the original Ets1 site plus flanking 

sequences, meaning that this unidentified factor binds to a sequence site located 3’ of the AP-
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1 recognition sequence within the oligonucleotide (Fig. 26B, middle panel). Sp1 interacted 

strongly with its binding site located at position -53 in wild-type MEFs, while its binding 

activity was reduced in nuclear extracts from Junb-/- MEFs (Fig. 26B, right panel).  
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Taken together, the results identified in the Pdgfb promoter an AP-1/TRE binding site at 

position -388, an unidentified factor binding site at around -70 and a Sp1 binding site at -53, 

which were all less efficiently bound in absence of Junb.  

In order to study the impact of the identified factors on the promoter activity, luciferase 

reporter assays were performed. Therefore, three different Pdgfb promoter regions were 

cloned in front of the luciferase gene: one comprised the Sp1 site, the unidentified binding 

site and the NF-κB site (named short construct); the two other reporter constructs 

encompassed a wild-type or a mutated AP-1/TRE as well as the Sp1, the yet unidentified 

binding site and the NF-κB sites (wtTRE, mutTRE; Fig. 27A). Wild-type and Junb-deficient 

MEFs were transfected with these luciferase constructs and promoter activity was measured 

48 h post transfection. All three constructs displayed a 45-fold induction of luciferase activity 

compared to the empty vector in wild-type MEFs (Fig. 27B), indicating that the promoter 

activity was not affected by the mutation of the AP-1/TRE (-388) site. In Junb-deficient 

MEFs the luciferase reporter was only 15-fold induced when compared to empty vector and, 

in line with the findings received in wild-type cells, the promoter activity was not impaired  

upon mutation of the AP-1/TRE (-388) site (Fig. 27B). 
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Altogether, these results identified an AP-1/TRE binding site located at -388 of the Pdgfb 

promoter, but luciferase analyses showed that this binding site do not regulate the promoter 

activity. 

6.2.9 Re-expression of Junb rescues the apoptosis failure of Junb-deficient 
MEFs  

In order to ensure that solely the loss of Junb is responsible for the observed apoptosis 

resistance and to exclude that potential secondary mutations probably acquired during the 

immortalization process may account for the observed phenotype, Junb expression was 

restored in Junb-deficient MEFs. Therefore, wild-type and Junb-null MEFs were infected in 

parallel with retrovirus containing either an empty vector (+pMX) or a Junb expression 

vector (+pMX-Jb) both coexpressing GFP that facilitated the monitoring of transduction 

efficiency. Subsequently to retroviral infection, cells were selected with puromycin to obtain 

more than 95% cells transduced, as monitored by FACS analysis for GFP expression (data 

not shown). Re-expression of Junb in Junb-deficient MEFs resulted in a very high expression 

of Junb on protein level (Fig. 28A). Since the levels of Junb are very critical for the cells, 
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wild-type cells were as well infected with retrovirus containing Junb. Thus, wild-type MEFs 

could be obtained that express similar level of Junb as the Junb-transduced Junb-/- MEFs (Fig. 

28A). Pdgfb mRNA levels were measured by qRT-PCR. While retroviral infection resulted in 

a further mild non significant increase of Pdgfb transcripts in Junb-/- MEFs, Pdgfb mRNA 

transcripts were robustly suppressed in Junb-/- MEFs rescued with Junb (Fig. 28B). 

Furthermore, levels of p-Akt, p-ERK and p-Bad in Junb-rescued Junb-/- MEFs were 

normalized to wild-type levels (Fig. 28C). 
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Rescued cells were then treated with Tm and apoptosis was monitored by AnnexinV staining 

and subsequent FACS analysis (Fig. 29). No obvious differences in the rate of spontaneous 

apoptosis could be observed in cells left untreated (Fig. 29, left bars). While 45% wild-type 

cells were AnnexinV-positive upon 24 h treatment with Tm, only 35% of infected wild-type 

cells were stained with AnnexinV, meaning that infection of cells with retrovirus slightly 

impaired induction of cell death. Junb-rescued Junb-/- cells showed a minor increase in 

AnnexinV positive cell numbers 24h post Tm treatment while Junb-deficient cells did not 

undergo apoptosis (20% AnnexinV positive), Importantly, when the analysis was performed 

32h post Tm application, 35% of all Junb-rescued Junb-/-cells were AnnexinV positive. This 

number of apoptotic cells was similar to the one monitored for Junb over-expressing wild-

type MEFs (Fig. 29). At this time point, Junb-null MEFs infected with the empty retrovirus 

displayed only 22% AnnexinV positive cells and, thus, exhibited similar number as 

uninfected Junb-deficient cells. Importantly, treatment of all cell lines with vehicle (DMSO) 

did not induce any significant cell death (Fig. 29, right bars).  

 

Altogether, this experiment showed that re-expression of Junb in Junb-/- MEFs brings Pdgfb, 

p-Akt, p-ERK and p-Bad back to wild-type levels, and furthermore restores the ability of the 

MEFs to undergo apoptosis upon prolonged ER stress elicited by Tm treatment, meaning that 

solely the loss of Junb is responsible for the observed apoptosis resistance. 
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7 Discussion 

7.1 Junb as positive and negative transcription regulator 
Previous in vitro and in vivo experiments clearly defined Junb as both an activating and 

repressing transcription factor (Florin et al., 2004; Florin et al., 2006; Licht et al., 2006; 

Meixner et al., 2008; Schmidt et al., 2007; Szabowski et al., 2000). While the molecular 

mechanisms regulating AP-1 transcription activation were intensively studied, the 

mechanisms underlying transcription repression are so far poorly understood. In general, 

different mechanisms of gene repression have been proposed, involving inhibition of 

transcription initiation, inhibition or competition for activating factors as well as epigenetic 

mechanisms.  For Junb, it has been claimed that it acts as a repressor on its own by forming 

heterodimers with other AP-1 subunits that, as a result, exhibit a much weaker transactivation 

potential. It is still a mystery how Junb is able to discriminate among target gene to repress 

and to activate. The understanding of this selectivity process and the underlying molecular 

mechanism may help to design specific drugs that could interfere with Junb function and thus 

interfere with the evil features of Junb. Therefore, I investigated in the present work 

additional mechanisms by which Junb may represses genes, and I could identify Junb target 

genes which are epigenetically regulated through two different mechanisms: HDAC-

dependent deacetylation and DNA methylation.  

Although no apparent difference in acetylation of histones and expression of HDACs could 

be observed between wild-type and Junb-deficient MEFs, the analysis of gene expression 

following treatment by two independent HDAC inhibitors revealed a few genes that are 

regulated by HDAC-dependent mechanisms. Four different classes of genes were identified 

depending on their expression following HDAC inhibitor treatment.  

The first class of genes, which comprises lipoprotein lipase (lpl), clusterin (clu), mapk 

phosphatase 1 (mkp1) as well as others, had their expression induced by HDAC inhibitor 

both in wild-type and Junb-deficient MEFs. This suggests that these genes have the potential 

to be induced by HDAC inhibitors in a similar way in wild-type and Junb-deficient cells and 

excludes that the difference in basal expression may be due to increased acetylation levels of 

histones located on their promoter region in Junb-deficient cells. 

The second class of genes is of particular interest since expression of these genes is enhanced 

by HDAC inhibitors only in wild-type cells. It includes glutathione S-transferase alpha 4 

(gsta4), erythrocyte protein band 4.1 like 4b (epb4.1l4b) and inhibitor of DNA binding 1 
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(id1). The fact that the gene expression cannot be further induced upon HDAC inhibition in 

absence of Junb suggests that the repression mechanisms involve HDACs and that they are 

impaired in Junb-null MEFs. Possible mechanisms will be discussed in more details in a 

subsequent paragraph. 

The third identified class of genes shows no modification in their expression pattern upon 

treatment with HDAC inhibitors, suggesting that some other mechanisms may be involved. 

For instance, another transcription factor or co-activator may be super activated in Junb-

deficient cells and be responsible for the enhanced expression. Novel experimental 

approaches, such as reverse genetic screens by RNA interference on a genome-wide scale in 

Junb-deficient cells or a recently describes break-through technology that quantitatively 

evaluates within a cell activities of dozens of transcription factors simultaneously (Romanov 

et al., 2008) would be required to address this issue.  

The last and fourth class of genes finally comprises inhibitor of DNA binding 3(id3) and 

keratinocyte growth factor (kgf), that display decreased expression upon treatment with 

HDAC inhibitors. HDAC inhibitors are reported to affect cell cycle progression and induce 

cell death (Marks et al., 2001). Since the two identified genes are involved in cell growth, 

proliferation and differentiation (Benharroch and Birnbaum, 1990; Lasorella et al., 2001; 

Zebedee and Hara, 2001), it is highly probable that the toxicity of such compounds is the 

major cause of their down-regulation. 

Different mechanisms could be causative of the observed HDAC-dependent de-repression 

phenotype of the second class of genes. First, one could postulate that Junb may interact with 

a yet-to-be-identified HDAC and recruit it to the promoter of target genes. Indeed, several 

transcription factors recruit HDACs to promoters and thereby repress transcription in the 

absence of appropriate signals (Glass and Rosenfeld, 2000). For instance, HDAC3 binds to 

the N terminal region of unphosphorylated Jun and represses Jun activity. When Jun becomes 

phosphorylated by JNK in response to the activation of upstream signaling pathways, 

HDAC3 dissociates from Jun, thus, allowing Jun to transactivate genes (Weiss et al., 2003). It 

has been recently shown that such a de-repression mechanism occurs during inflammation for 

the very tightly controlled expression of the cytokine ccl2 following Interleukin-1 treatment 

(Wolter et al., 2008). If an HDAC-dependent mechanism is responsible for the de-repression 

of the described genes, one could expect endogenously increased levels of histone acetylation 

in the promoter region of derepressed target genes in Junb-deficient MEFs. Further 
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experiments, such as chromatin immunoprecipitation, are required to analyze acetylation 

levels of histones in the promoter region of those genes and to confirm the hypothesis. 

Secondly, lysine acetylation may be implicated in the repression mechanism. Lysine 

acetylation has been originally identified in histones, but occurs also in a significant number 

of non-histone proteins including transcription factors, nuclear regulators and various 

cytoplasmic proteins. Thus, lysine acetylation is not only crucial in nucleus and 

transcriptional regulation, but also appears to be essential for regulating the activity of 

proteins involved in different processes, such as cytoskeleton dynamics, energy metabolism, 

endocytosis, autophagy and even signaling from the plasma membrane (Yang and Seto, 

2008a). More than 80 transcription factors, including p53, Forkhead box transcription factors 

(FoxO) and STAT, are known to be modified by acetylation. Acetylation of p53 was 

intensively investigated and studies revealed that acetylation can enhance p53 DNA binding, 

binding to transcriptional co-activator such as CBP, as well as protein stability by precluding 

ubiquitination and subsequent degradation (Yang and Seto, 2008a). Further studies should 

show whether Junb is modified by acetylation and, if so, whether such post-translational 

modification might regulate Junb transactivation activity and transcription of gsta4, id1 and 

epb4.1l4b. Finally, for the case that no difference in the acetylation of the promoter of the 

previously described genes or no acetylation modification of Junb will be observed, a global 

comparative analysis of the acetylome may help to explain the differences in gene expression 

observed in Junb-deficient MEFs.  

Taken together, these data suggest that Junb regulates gene expression through a yet-to-be 

identified HDAC-triggered mechanism (Fig. 30B panel 1). Although Junb does neither 

regulate the histone H3 acetylation status nor the expression levels of HDACs, the data from 

the HDAC inhibitor experiment nevertheless state that some of the Junb target genes must be 

regulated by HDACs. Further studies will be required to underline the molecular mechanisms 

responsible and to decipher whether Junb represses the identified genes by recruiting an 

HDAC to their promoter, or whether Junb activity by itself is regulated via acetylation or 

whether absence of Junb results in abnormal post-translational modifications of another 

regulator or transcription factor. 

 

With regard to gene repression by DNA methylation, my work revealed an essential role for 

Junb in the setting and/or maintenance of the imprinting of the non-coding RNA H19. H19 

was identified as the most deregulated transcript in Junb-deficient MEFs by previous global 
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gene expression analysis (Florin et al., 2004). Most importantly, I could confirm that solely 

the loss of Junb is responsible for the impaired expression of H19 since re-expression of Junb 

in Junb-deficient MEFs suppressed H19 expression. Although H19 is one of the first 

imprinted genes discovered, its function has not yet been fully unraveled but much effort has 

been invested to understand its transcription regulation. While the expression of key 

regulators of H19 transcription, such as CTCF, DNMT1 and DNMT3b, is unaffected in Junb-

deficient MEFs, analyses of methylation by using two different techniques revealed a loss of 

methylation of the imprinting control region in absence of Junb. Surprisingly, the results 

obtained for wild-type cells by the two techniques used were not consistent. While the 

COBRA assay revealed an expected 50:50 ratio for unmethylated and methylated DNA, 

being consistent with one maternally imprinted allele, bisulfite sequencing analyses revealed 

almost 100% of methylation of all sites analyzed. Different reasons, which have been 

previously described, could be responsible for this difference. It has been reported that a bias 

could emerge in bisulfite sequencing from PCR amplification, sub-cloning into sequencing 

vector and transformation into bacteria due to a higher affinity of primers or ligase for DNA 

comprising cytosine residues (reminiscent of DNA methylation before the bisulfite 

conversion) versus DNA with uracil/thymidine residues (reminiscent of absence of DNA 

methylation before the bisulfite conversion) (Grunau et al., 2001; Warnecke et al., 1997). In 

the present work, both approaches have been carried out from the same PCR amplification 

products, therefore, I conclude that the bias, most likely, arose from a preferential sub-

cloning or transformation of the PCR amplicons derived from previously methylated DNA 

rather than from a differential PCR amplification per se. Despite the presence of this bias, 

both methods revealed a loss of methylation of all four CTCF binding sites in Junb-deficient 

MEFs. In addition, bisulfite sequencing allows the determination of the methylation status of 

each cytosine residue in the region of interest. Interestingly, while the region encompassing 

the second CTCF binding site showed a loss of methylation of only the residues 

encompassing the consensus sequence, the fourth CTCF site displayed a loss of methylation 

for the whole region surrounding this binding site. This suggests that the molecular 

mechanisms responsible for the methylation regulation of both sites may be different.  

Although Junb does regulate neither the expression of CTCF nor of DNA methyltransferases, 

it may regulate the targeting of these enzymes to the DNA and/or their activity. In silico 

analysis of the insulator revealed the presence of a TRE site (5’-TGA C TCA-3’) located 

between the third and fourth CTCF consensus binding site. It will be crucial to determine 
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whether this site is required and essential for the regulation of imprinting by Junb. For this 

purpose, it will be important to confirm in future experiments in vitro and in vivo binding of 

Junb and, if a binding is confirmed, to test its impact by reporter assay and mutagenesis.  

It is feasible to postulate that Junb may interact with a DNA methyltransferase and may even 

recruit DNA methylation activity to the insulator via the identified AP-1 binding site. Indeed, 

there is increasing evidence that transcription factors can directly bind to DNA 

methyltransferases and recruit the enzyme specifically to some promoters, in a similar way as 

described above for HDACs. For instance, the transcription factor Myc associates with 

DNMT3a and, through the DNA-binding protein Miz-1, targets DNA methylation and 

silencing of p21Cip1 gene (Brenner et al., 2005). 

Moreover, H19 is located in an imprinted cluster with Igf2 and the expression of the two 

genes is differentially regulated by the same molecular determinant, namely the insulator. If 

the insulator is unmethylated, CTCF binds to its DNA sequence and creates a boundary 

which restricts the activity of the common downstream enhancer on H19 gene. Due to the 

fact that, in absence of Junb, the insulator undergoes demethylation, the expression of Igf2 

should be reduced. However, preliminary analyses revealed that Igf2 expression is rather 

enhanced in Junb-deficient MEFs. This suggests that, in addition to its impact on imprinting, 

Junb may regulate Igf2 and/or H19 expression directly through their promoters and further 

experiments shall address those questions. 

The data obtained in the present work revealed for the first time an implication of Junb and 

AP-1 in imprinting and DNA methylation (Fig. 30B panel 2). Thus, it will be challenging to 

determine whether Junb and AP-1 regulate the DNA methylation of other imprinting clusters 

or promoters. For this purpose, further experiments such as analyses of DNA methylation 

pattern on a genome-wide level by methyl-DNA immunoprecipitation or genome-wide 

bisulfite sequencing are required.  



                                                                                                                                 7. Discussion 

89 

 

 
 

Altogether, this work confirms that Junb can repress genes by other mechanisms than 

absorbing the transcriptional activity of Jun and other AP-1 members (Fig. 30). Apparently, 

the molecular mechanisms involved in such a regulation are novel and very unusual for an 

AP-1 member, thus, they could not be fully deciphered during the course of this work. Many 

different possible mechanisms have been proposed and further experiments are required to 

confirm or exclude the hypotheses described above. Since impaired epigenetic modifications 

of the genome, including aberrant DNA methylation pattern and loss of imprinting, are 

observed in many tumors, the understanding of how Junb and AP-1 influence such processes 

will be of great importance in order to develop new possible therapies against cancer. 

7.2 Junb is a novel decision maker for death or survival  
The implication of AP-1 in stress response is very complex since it can have opposite 

function, being either pro-apoptotic or anti-apoptotic. Indeed, the net function depends on the 

relative abundance of AP-1 subunits, the composition of AP-1 dimers, the cell type, the 

cellular environment and the stimulus. Previous work based on in vivo mouse models and in 

vitro cell culture models defined a crucial role for one AP-1 member, Junb, in cellular 
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hypoxia and hypoglycemia responses. In the present work, I investigated the role of Junb in 

ER stress, a condition that has been described to contribute to hypoxia tolerance and tumor 

progression. Loss of Junb resulted in minor change in UPR, but most intriguingly Junb-

ablated MEFs were unable to undergo apoptosis upon prolonged ER stress albeit they were 

able to sense ER stress. Remarkably, Junb-deficient MEFs were also resistant towards 

apoptosis in response to DNA damaging agents or proteasome inhibitors suggesting a general 

defect in stress-induced apoptosis due to very high levels of activated pro-survival kinases 

elicited by an autocrine loop and resulting in failure in mitochondria permeabilization and 

subsequent caspases activation. Very importantly, apoptosis resistance could be solely 

attributed to the absence of Junb and not to additional mutations acquired during spontaneous 

immortalization of the MEFs. 

First, I found that Junb participates in the ER stress response as it is strongly induced on both 

mRNA and protein levels in response to Tunicamycin, which promotes ER stress by blocking 

protein glycosylation. Surprisingly, although Junb is described as an immediate early gene, 

whose expression is induced very fast after stress and rapidly returns to basal levels, Junb 

protein levels stayed high until 8 to 12 h post Tm application. Interestingly, such prolonged 

Junb induction was never observed so far for any kind of stress stimulus. At least two 

different causes could account for this observation: the specific requirement of Junb for the 

ER stress response or as a consequence of a cell cycle arrest. In an attempt to re-establish 

cellular homeostasis, the UPR will eventually results in cell cycle arrest. eIF2α, 

phosphorylated by PERK, has been proposed to block cyclin D1 protein translation, thus, 

causing cyclin D1 degradation and G1 phase arrest (Brewer and Cadman, 2000; Brewer and 

Diehl, 2000). In the past, it has been reported that the Junb is regulated during cell cycle 

progression with a peak at S/early G2 phase and a breakdown at M phase (Bakiri et al., 

2000). Besides, Junb regulates cell cycle via its target genes p16/Ink4a, cyclin A, cyclin A2 

and cyclin D1 (Andrecht et al., 2002; Bakiri et al., 2000; Farras et al., 2008; Passegue and 

Wagner, 2000). Moreover, the degradation of Junb at the M phase by the proteasome is 

absolutely required for proper cell cycle progression, since constitutive Junb expression 

results in cell cycle arrest at late G2/early M phase (Farras et al., 2008). Thus, it is feasible 

that the prolonged Junb induction is a consequence of cell cycle arrest. However, Junb could 

equally well be required for a proper late ER stress response. For instance, Junb-activated 

target genes may be involved in late UPR or may contribute to UPR induced cell cycle arrest. 

It will be a challenge to dissect cause and consequence as well as Junb direct and indirect 
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functions in this respect. Future experiments, incorporating cell cycle analysis along with 

UPR studies with synchronized wild-type and Junb-deficient MEFs, may be helpful in 

addressing these questions. 

Since Junb was induced upon ER stress, I investigated whether it is involved in UPR by 

monitoring key UPR factors in wild-type and Junb-deficient MEFs. Only minor differences 

were observed in ER stress sensing and induction. Untreated as well as Tm-treated Junb-

deficient MEFs harbored increased mRNA levels of the ER-located chaperones grp78 and 

grp94 and of the oxidoreductase and protein disulfide isomerase cofactor oxidoreductin-like 

1. It appears unlikely that Junb, on its own, transcriptionally regulates all these three 

chaperones, moreover because differences in expression were only minor although 

significant, between 1.5 and 2.5 fold. Thus, increased levels of these factors may rather be a 

consequence of an increased requirement for ER folding capacity in absence of Junb. Indeed, 

while Junb-deficient MEFs produce about 50% less protein (Textor B and Schorpp-Kistner 

M, unpublished data), they express much more mRNA coding for cytokines and growth 

factors. Assuming that these factors once being translated have to transit through the ER, 

then, Junb-/- MEFs would require a much higher capacity of the ER chaperone machinery 

than wild-type cells. This could be reflected by the enhanced chaperone expression levels but 

also by different kinetics in the UPR. Indeed, minor differences were observed in the kinetics 

of Grp78 and CHOP protein induction and of XBP1 splicing, while eIF2α was already 

endogenously phosphorylated in Junb-deficient MEFs. Furthermore, increased Grp78 and 

Grp94 protein expression has been extensively correlated to resistance towards apoptosis and 

tumorigenesis (Moenner et al., 2007). eIF2α phosphorylation by PERK prevents as well ER 

stress-induced cell death as it was shown that PERK-deficient cells are more susceptible to 

apoptosis in response to ER stress (Harding et al., 2000b). However, due to the fact that 

apoptosis induction was as well impaired upon proteasomal inhibition and DNA damage, 

both endogenous increased Grp78 expression and phosphorylation of eIF2α are presumably 

not responsible for the apoptosis phenotype observed in absence of Junb.  

Interestingly, Junb-deficient MEFs had the capacity to undergo apoptosis upon death receptor 

activation elicited by low concentrations of ectopically applied CD95L/FasL and were even 

more sensitive than wild-type cells. This is presumably due to increased levels of the receptor 

CD95/Fas on the surface of Junb-deficient MEFs (Bierbaum H, 2002). Thus, these data 

corroborate previous observations that AP-1 plays a dual role in cell survival and apoptosis 

depending on the type of stress stimulus. 
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Resistance towards apoptosis and absence of caspase activation in cells lacking Junb could be 

ascribed to an in impairment in Bax expression and oligomerization, in mitochondria 

membrane permeabilization and in cytochrome c release into the cytosol. Bax protein but not 

mRNA levels were diminished in Junb-deficient MEFs, suggesting that Bax is not a 

transcriptional Junb target. However, Junb loss may influence Bax translation or protein 

stability. Indeed, various reports highlighted the fact that some factors may regulate apoptosis 

through modulation of Bax stability. For instance, the E6 protein from human papillomavirus 

16 and the glucosidase inhibitor pentagalloylglucose regulate the proteasomal degradation 

and protein stability of Bax (Chen and Lin, 2004; Magal et al., 2005).  

Both, Bax oligomerization and mitochondria pore formation is tightly orchestrated by Bcl-2 

protein family members and other proteins such as clusterin. Intracellular clusterin has been 

reported to interact with activated Bax, thus impeding Bax oligomerization and subsequent 

cytochrome c release (Zhang et al., 2005). Clusterin, first identified as Junb target gene upon 

global gene expression profiling (Florin et al., 2004), was indeed highly expressed in Junb-

deficient MEFs both on protein and mRNA level. However, increased levels of clusterin were 

not responsible for the block of apoptosis since knock-down of clusterin in Junb-deficient 

MEFs by siRNA technology did not rescue the apoptosis phenotype. 

Further analyses revealed aberrant post-translational modifications of the Bcl-2 family 

members Bim and Bad and enhanced upstream pro-survival signaling in absence of Junb. 

Functional regulation of Bim-dependent apoptosis is achieved via the regulation of its 

expression and via post-translational modification of the Bim protein by phosphorylation. 

Bim is phosphorylated on multiple residues by members of the MAPK family, including 

ERK, JNK and p38. While many studies have shown that ERK-dependent phosphorylation of 

Bim on the serine residues S-55,-65 and -73 targets Bim for proteasomal degradation, two 

reports provided evidence that ERK-dependent phosphorylation of BimEL attenuated its 

apoptotic activity independently of effects on protein stability (Collins et al., 2005; Wang et 

al., 2004). Bim is also phosphorylated on threonine 112 that is a target of both ERK and JNK 

signaling pathways. While JNK phosphorylates T-112 in response to UV radiation, ERK 

mediates phosphorylation at this site upon serum stimulation. Analysis of mice with germline 

mutations for the major Bim phosphorylation sites revealed furthermore that phosphorylation 

on S-55/65/73 negatively regulates BimEL expression and function, while JNK-triggered 

phosphorylation of Thr-112 increases the apoptotic activity of Bim (Hubner et al., 2008).  
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Due to the lack of antibodies recognizing specifically the phosphorylated residues, I 

investigated phosphorylation of Bim by the appearance of a slower migrating band on a 

denaturing polyacrylamide gel. In contrast to wild-type MEFs, unchallenged Junb-deficient 

MEFs harbored already increased levels of phosphorylated Bim while the late Tm-induced 

Bim phosphorylation that in wild-type cells coincides with JNK activation, was missing. One 

can speculate that the basal Bim phosphorylation is mediated by abundant p-ERK observed in 

Junb-/- cells. Intriguingly, this pro-survival signaling results at least in our cell culture model 

not in a phosphorylation-triggered proteasomal degradation of Bim but at least in an 

attenuation of its pro-apoptotic activity. Most importantly, Junb-deficiency leads to increased 

phosphorylation of a second pro-apoptotic BH3-only protein Bad. Both, ERK-mediated 

phosphorylation of Bad on serine residue S-112 as well as Akt-triggered phosphorylation on 

serine residue S-136 were robustly increased in logarithmically growing Junb-deficient 

MEFs. Bad has been shown to link survival signals to the mitochondrial cell death 

machinery. Growth factor-triggered Bad phosphorylation by Akt and its subsequent 

sequestration into the cytoplasm by 14-3-3zeta is considered as a major mechanism for 

survival factor-mediated block of apoptosis (Youle and Strasser, 2008). Concordantly, 

analyses of the upstream signaling pathways revealed enhanced PI3K activity and abundant 

p-ERK and p-Akt levels in unchallenged MEFs lacking Junb. Interestingly, JNK activation 

was completely abolished in Junb-deficient MEFs and most likely due to the imbalance 

between life and death cues in favor for pro-survival signaling. Indeed, there is evidence that 

Akt phosphorylates the JNK kinase ASK1 on S-83 and, thereby, inhibits JNK activation 

(Aikin et al., 2004).  

With regard to the present knowledge on the BH3-only proteins Bad and Bim as upstream 

initiators of the intrinsic apoptotic pathway, it is obvious that survival factor-induced ERK 

and Akt-mediated phosphorylation of Bim and Bad, respectively, and the subsequent 

inhibition of their pro-apoptotic activity is finally causative of the apoptosis resistance of 

Junb-deficient cells. 

Co-culture experiments clearly pointed out that one or multiple soluble factor(s) must be 

highly expressed in the absence of Junb and be responsible for autocrine pro-survival feed-

forward loop (Fig. 31). Previous studies showed that Junb negatively regulates the 

transcription of multiple growth factors and cytokines, including Kgf, Lipocalin-2, Csf2 

(Florin et al., 2006; Szabowski et al., 2000), and G-CSF (Meixner et al., 2008). In line with 

that, in vivo and in vitro phenotypes observed in absence of Junb have been associated to 
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alterations in expression levels and kinetics of cytokines. For instance, while impaired 

expression of Csf2 and Kgf are causative of skin abnormalities (Florin et al., 2006), increased 

levels of G-CSF obtained upon epidermal Junb-deficiency causes skin ulcerations, 

myeloproliferative disease and low bone mass (Meixner et al., 2008).  

Among the factors described here above, Csf2 appeared as potential candidate since it has 

been reported to induce phosphorylation of Akt and ERK in myeloid cells (Klein et al., 

2000). However, Csf2 could be excluded as the factor being responsible for increased 

phosphorylated Akt and ERK since Junb-deficient MEFs did not express the two subunits 

composing the Csf2 receptor. 

Further candidate factors included Pdgf, which is very potent mitogenic growth factor acting 

on mesenchymal cells such as fibroblasts and induces Akt and ERK activation (Heldin and 

Westermark, 1999). The expression of the ligands Pdgfa and Pdgfb as well as their respective 

receptors Pdgfra and Pdgfrb were elevated in absence of Junb; in particular, mRNA levels of 

Pdgfb and protein levels of Pdgfrb were highly up-regulated (Fig. 31).  

 

 
 

Pdgfb, discovered more than 30 years ago, is the cellular homologue of the product of the 

retroviral oncogene v-sis of simian sarcoma virus (SSV). v-sis is sufficient to confer the 

transforming activity of SSV and SSV transformation involves autocrine growth stimulation 

by the PDGF-like molecule v-sis, thus, demonstrating for the first time the importance of 

autocrine growth stimulation in neoplastic transformation and cancer (Doolittle et al., 1983). 

Since then, three additional Pdgf genes have been characterized: Pdgfa, Pdgfc and Pdgfd. All 
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Pdgfs form dimers of disulfide-linked polypeptide chains and act via the receptor tyrosine 

kinase Pdgfra and Pdgfrb. The possible Pdgf-Pdgfr interactions are multiple and complex and 

include the formation of receptor heterodimers (Andrae et al., 2008; Heldin and Westermark, 

1999). However, in vivo there is functional evidence only for a few interactions. For instance, 

Pdgf-aa interacts with Pdgfr-aa and Pdgf-bb with Pdgfr-bb (Andrae et al., 2008). Pdgfs have 

crucial roles during development and increased Pdgf activity has been linked with several 

diseases and pathological conditions, such as cancer. Numerous studies demonstrated that 

autocrine Pdgfb signaling confers self-sufficiency in growth signals but per se does not cause 

malignant cell behavior. Thus, Pdgfb signaling contributes to tumorigenesis by driving the 

proliferative expansion of pre-neoplastic and/or genetically unstable cell clones, which will 

eventually become fully malignant through further genetic alteration (Andrae et al., 2008). 

Moreover, a multifaceted role of Pdgf in cancer biology is now emerging as Pdgf signaling 

plays, in addition to providing a cell-autonomous proliferative stimulus, a role in invasion 

and in metastasis.  

Among all Pdgf members, Pdgfb appeared as the best candidate responsible for the enhanced 

pro-survival signaling observed in Junb-deficient cells due to its strong overexpression and 

due to the observed enhanced phosphorylation of Pdgfrb in Junb-deficient MEFs. However, 

further experiments, including siRNA-mediated knock-down of Pdgfb in Junb-ablated MEFs, 

are needed to corroborate the impact of Pdgfb on the pro-survival phenotype and concomitant 

apoptosis resistance. 

In this work, I identified Pdgfb as novel negatively regulated Junb-target gene. A promising 

TRE/AP-1 binding site was identified in the proximal promoter of Pdgfb. Although, I could 

confirm in vitro binding of AP-1 to this consensus site, reporter gene assay and mutagenesis 

analyses revealed that this TRE element was not the site through which repression of Pdgfb 

was achieved. Besides, other transcription factor binding sites, including a Sp1 and a yet-to-

be identified site, have been characterized, but none of these sites was responsible for the 

repression of Pdgfb by Junb. Further analyses revealed three distal TRE-related CRE 

elements located at around -4000 relative to transcription initiation site. Preliminary results 

suggest that two of these sites are bound by AP-1 in vitro and further experiments will 

address the impact of these two distal CRE sites on Pdgfb transcription regulation by reporter 

gene assays and mutagenesis. One could hypothesize that an intrachromosomal loop 

involving the CRE and/or TRE binding sites could bring multiple transcription factors 

together and, thus, tightly regulate Pdgfb transcription. Such regulatory loop has been 
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reported for the transcriptional regulation of the Jun promoter, where phosphorylated Jun 

interacts with TCF4 and beta-catenin and form a ternary complex on the promoter, thus, 

regulating intestinal tumorigenesis (Nateri et al., 2005). 

In addition to its impact on tumorigenesis, Pdgfb has important tasks in embryonic 

development. Endothelial expressed Pdgfb plays a crucial role in the recruitment of vascular 

smooth muscle cells (vSMC) and pericytes during embryogenesis (Hellstrom et al., 1999). 

Indeed, Pdgfb and Pdgfrb null embryos display pericyte and vSMC deficiency already at the 

onset of angiogenic sprouting. In spite of mural cell hypoplasia, the embryos continue to 

develop until embryonic day E16-E19 when finally widespread hemorrhage and edema cause 

embryonic lethality (Leveen et al., 1994). In addition, paracrine Pdgfb signaling plays a role 

in tumorigenesis by recruiting stromal cells, thereby inducing tumor angiogenesis and 

facilitating metastasis and drug resistance (see for review Andrae et al., 2008). Other studies 

reported that overexpression of Pdgfb even decreased colorectal and pancreatic cancer 

growth by increasing tumor pericyte content (McCarty et al., 2007). With regard to the 

numerous roles of Pdgfb signaling in fibrotic diseases, cancer and vascular disorders, it will 

be very important to prove that the negative regulation of this growth factor by Junb is also of 

relevance in vivo. It will be of high interest to investigate whether mice with conditionally 

ablated Junb display striking differences in Pdgfb signaling and whether some of the 

observed phenotypes can be attributed to aberrant Pdgfb signaling. 

 

Altogether, our results identified Junb as tumor suppressor since its absence in mouse 

embryonic fibroblasts results in resistance towards apoptosis due to an enhanced autocrine 

loop (Fig. 32). However, many studies, including the present one, which addressed the impact 

of Junb on apoptosis and cancer, suggest diverse even contradictory functions of Junb. For 

instance, previous work has suggested a tumor suppressor role of Junb in myeloid cells. 

Absence of Junb in myeloid cells in mice results in CML due to an uncontrolled expansion of 

LT-HSC and GMP. Increased Csf2 expression in Junb-deficient myeloid precursor cells 

initiates an autocrine loop favoring increased proliferation and decreased apoptosis (Passegue 

and Wagner, 2000). Additionally, high systemic levels of G-CSF resulting from the absence 

of Junb in epidermis cause as well myeloproliferative disease by favoring myeloid cell 

proliferation (Meixner et al., 2008). By contrast, Junb acts as tumor promoter in beta cells. 

Knock-down of Junb by siRNA in pancreas beta cells results in higher sensitivity towards the 

chemical ER stress inducer cyclopiazonic acid, while overexpression of Junb protects beta 



                                                                                                                                 7. Discussion 

97 

 

cells from cytokine-induced cell death due to diminished iNOS levels (Gurzov et al., 2008b). 

Moreover, partial reduction of Junb levels by siRNA in wild-type murine fibroblasts causes 

increased proliferation and tumorigenicity, whereas in Jun-deficient cells it induces p53-

independent cell cycle arrest and apoptosis. Finally, Junb knock-down combined with JNK 

inhibition in melanoma B16 cancer cells results in cell cycle arrest and apoptosis-inducing 

factor-dependant apoptosis (Gurzov et al., 2008a). Altogether, these findings suggest that the 

role of Junb in apoptosis regulation is very complex and may depend on many parameters 

such as the cell type, transformation of the cells, the amount of Junb, as well as the balance 

between all AP-1 members.  

 

 
 

In conclusion, negative regulation of cytokines by Junb is of unequivocal importance to 

suppress pro-inflammatory and pro-tumorigenic phenotypes. Due to the fact that Junb has 

double-faced functions, it cannot be a rational therapeutical target. However, understanding 

how Junb represses gene and, most importantly, specific targeting this mechanism would 

represent a promising therapeutic approach in the future in order to treat inflammatory 

disease and cancer.  
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