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1 Abstract

As high performance computing becomes more important and supercomputers grow bigger and
faster, the I/O part of applications can become a real problem in regard to overall execution
times. While use of new and specialized hardware and tuning of parallel �le systems help a
lot in the struggle to minimize I/O times, adjustment of the execution environment is not the
only option to improve overall application behavior.
It is not always possible to run applications on parallel computers which are especially adabted
to that kind of applications and one has to use the system settings provided. Not only the
system administrator and the developers of hardware or software components can help to reduce
application execution times but also the application programmer can help by making use of
non-blocking I/O operations.
To see if and how much performance gains can be achieved by making use of non-blocking I/O
operations this thesis discusses non-blocking I/O operations in detail, proposes a benchmark to
measure performance gains when switching from blocking I/O operations to their non-blocking
counter parts and presents the results of di�erent series of test runs.
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2 General goals of the thesis

Execution times of applications run on computer clusters in the area of high performance
computing can often increase a lot when a lot of I/O operations have to be executed. In order
to minimize I/O as a bottleneck in the computer system a lot of optimizations in di�erent
software layers of the execution environment are applied and specialized hardware also helps
to reduce I/O times. While these improvements are very important they are not the only way
to reduce the time an application needs on a given computer system to terminate faster.
The idea of non-blocking I/O operations also suggests the possibility to improve application
behavior and to reduce the impact I/O has on the overall program execution.

This thesis �rst talks about high performance computing in chapter 3 and will discuss the idea
of benchmarking in chapter 4. Furthermore some existing benchmarks for parallel computing,
especially for parallel I/O systems, are presented.
Then the idea of non-blocking I/O operations is presented and the theory behind possible
performance gains by switching from blocking I/O operations to non-blocking I/O operations
is discussed in detail in chapter 5.
In order to see if the potential performance gains suggested in theory can actually be achieved,
a benchmark is proposed and described in chapter 6 and the results of a series of test runs
made is presented in chapter 7.
Finally chapter 8 compares the results with the expectations established when discussing the
theory behing non-blocking I/O operations in order see what can actually be achieved.

In addition to this a few extra test runs will be presented in chapter 9, for which the assumption
is made that the computer cluster does not have a dedicated I/O part and that the application
making use of the I/O system is run on the same nodes as the I/O servers of the parallel �le
system used.
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3 High performance computing

performance [...] the ability to operate e�ciently, react quickly [6]

computing [...] the operation of computers [6]

3.1 The TOP500 - a history of HPC

While a regular personal computer or notebook is enough for most users, there are groups for
whom the computing power of these is not enough. Quite a lot of �elds need more computing
power for their needs as one regular PC can provide, even when used e�ciently. This might be
for a lot of reasons including applications having to do so many calculation that termination of
the application would be way too long to reasonably be waiting for. Other applications need
more than the average main memory provided by regular PCs. Therefore supercomputers

have been designed and built during the last years to grow in nearly every aspect to satisfy
those needs.

Used in a lot of areas of research, especially Weather and Climate Research, but also outside of
research in production systems in the areas of Finance, Geophysics, Energy, and others [5], su-
percomputers provide ever greater computing power measured in floating point operations

per second also known as Flops. While the developements over the recent years provided
more and more resources, the race towards the bigger and faster supercomputer seems to go
on without an end in sight.

When the �rst TOP500 list was published in June 1993, the number one of the list was located
in the Los Alamos National Laboratory, USA, and had 1024 processors [5, TOP500-List June
1993]. The peak performance of this Supercomputer was 131 GFlops. Measured with the
Linpack benchmark the 500 fastest supercomputers have been ranked every 6 month since
then and the trend is clear: bigger and faster.
This is not only shown by looking at how the peak performance of the number one of the list
grew from 131 GFlops in 1993 to 367000 GFlops in November 2006 [5, TOP500-List November
2006], but also by the fact that the current number 500 with its 4896 GFlops outperforms the
number one of 1993 by quite a margin.

This growth goes hand in hand with the improvement and extension of all di�erent parts and
resources of the supercomputers. As an example Figure 3.1 shows the distribution of number
of processors per supercomputer for the years 1993, 1999 and 2006.[5] One can easily see the
trend to more CPUs per supercomputer.
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Figure 3.1: Shift of number of CPUs of TOP500 supercomputers

3.2 HPC on computer clusters

"cluster [...] a number of things of the same kind growing closely together [...]"

[6]

3.2.1 Computer clusters

As the supercomputers grew bigger and faster they not only provided more computing power
and main memory, but also grew more and more expensive. Often hand built with specially
developed parts and in very low quantities millions of dollars are necessary to buy one. Fur-
thermore most of the di�erent supercomputer architectures have their own instruction set and
run a di�erent operating system. Programmers need to adjust to individual systems and in
most cases could not beni�t from experience. [16, Foreword]

In the early 1990's a di�erent kind of supercomputer was born: the computer cluster. A lot
of homogeneous compute resources, mostly regular PC architectures, connected by some kind
of network in order to be able to communicate between the so called nodes. A supercomputer
for everyone.
As the computer marked grew and prices for desktop PCs fell it suddenly became possible to
build a supercomputer using parts one was accustomed to and which were available at very low
cost. In addition to this the cluster could run commodity software and provided the option to
develop tools which now are very portable. A lot of groups like the Beowulf Cluster Project
worked hard to create those in order to provide everybody with the needs to operate their own
supercomputer. [16, Chapter 1]
Users are now able to use the aggregated compute power of their cluster nodes for performance
or have additional fault tolerance in their system. But in order to be able to do so, programs as
yet run as sequential programs need to be adjusted to run in the parallel compute environment
provided by the clusters.
The idea is to split up the calculation into di�erent parts which can be executed in parallel and
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3 High performance computing

distribute them across the compute nodes of the cluster. While in some cases this might be
enough, most applications regularly need to have global intermediate results of the calculation
in order to go on. Therefore it is necessary for the di�erent parts of the program, executed
as di�erent processes on the di�erent nodes, to communicate with each other. As said before
network connections between the nodes are provided in order to enable this.

3.2.2 MPI, MPI-2 and MPICH2

In order to run parallel programs on clusters and be able to have the processes communicate,
one needs to compile the program, distribute it to all the nodes, start the processes there
and have some way to organize communication. While in the beginning di�erent groups had
similiar but di�erent ideas about how to accomplish this in the best way, it soon became clear
that some kind of standard was needed.
What was common in all ideas was that the communication of the processes had to be based
on some kind of message passing since no shared memory is available in clusters, at least not
between the individual compute nodes. In some cases clusters are built using nodes with more
than one CPU, so called symmetric multiprocessors (SMP).

Since November 1992 the Message Passing Interface Forum members met to discuss this topic
and to publish the �rst message-passing interface standard in 1994 [1]. This and the fol-
lowing revised versions of MPI 1.x only included communication [1].
1997 the Message Passing Interface Forum published the Extensions to the Message Passing

Interface: MPI-2. The MPI-2 paper does not only include extensions to the MPI-1 standard,
but also addresses topics which include process creation and management, one-sided communi-
cation and external interfaces. Most important for this thesis it also includes I/O functionality
for parallel programming. [2]
The standard is a message-passing library speci�cation but not a programming language. It
provides routines for these tasks of communication, I/O, etc., which are implemented in the
programming language used, such as C, C++ or Fortran and are called by the client program.
[16, Chapter 8]
Implementations exist in di�erent languages and more than once in those. Di�erent groups
or hardware vendors implement their version, often to �t the underlying hardware architec-
ture. Some of the implementations are BeoMPI, MPICH-GM, MPICH-G2, MPI-Madeleine,
MPICH-V, MPI/GAMMA, MPI/Pro, MP-MPICH, MVABICH, MVICH, ScaMPI, LAM/MPI
or LAM/MPI's next generation MPI implementation - Open MPI. Open MPI tries to combine
the ideas of FT-MPI, LA-MPI, LAM/MPI and PACX-MPI and wants to provide the best MPI
implementation available [3] [16, Chapter 8].
While a lot of implementations are out there, sometimes freely available and even as open source
software, this thesis is done using the MPI implementation MPICH2. MPICH2 is the reimple-
mentation of MPICH and is developed at the Argonne National Laboratories, Argonne, USA.
Its aim is to provide a MPI implementation for important platforms, especially for clusters.
The MPICH2 developers also had an implementation in mind which can be used in research
for MPI implementations and can help to improve the developement of any aspect of parallel
programming. It is freely available as open source software at [4].
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3 High performance computing

3.3 HPC and I/O

3.3.1 Overview

In the beginning of High Performance Computing, I/O was not much of a worry. It was now
possible to do fast calculations of big problems, reducing very long calculation times to relatively
short ones. One would load a program, execute it and in the end write the results to disk.
Programs with still bigger execution times sometimes would have to write checkpoints during
execution in order to be able to restart execution there in case of system failures. But with
the evolution of supercomputers and ever faster processors, I/O became a bigger bottleneck
in comparison to calculation and communication. [16, Chapter 19] Users were forced to write
checkpoints less frequently in order to overcome this bottleneck.
Also users now were able to use the speedup in supercomputing to create more and more useful
data and therefore had the wish to save this data. I/O got and still gets more and more
important.
But the amount of data to be written or read is not the only problem arising when changing to
parallel programming environments. Now one not only has one process executing a sequential
program which is accessing the data, but suddenly has a lot of processes executing who need
to access the data concurrently. Also the data is most likely not stored in local disks but
distributed somewhere in the cluster network or on a connected storage server.

To address these issues the MPI-2 standard adresses I/O in an analog way to communication.
An interface for I/O operations is de�ned and collective and asynchronous I/O is introduced.
Also the very important concepts of derived datatypes, �le views and di�erent kinds of �le
pointers are presented. [2] [9, MPI-IO] Files are opened collectively by all processes which are
given access to the �le, which enables MPI to implement the support for individual or collective
�le access. Every process sets the datatype expected in the �le, creates its own �le view and
is then able to access the data in the �le inside their �le view space. These operations also
provide the possiblilty to access non contiguous data with only one I/O operation call.
Most importantly the de�nition of the standard provides the possibility for the MPI implemen-
tation to optimize the internal operations to actually manipulate the data for the underlying
system without the need for programmer to change the application when switching to a new
system. [16, Chapter 9&19] [2]

3.3.2 Parallel �le systems

While the de�nitions in 3.3.1 solve the problems of concurrent access of multiple processes to a
single �le located somewhere in network, it does not necessarily solve the problem of the great
amounts of data needed to be manipulated.

What is left is a series of issues that needs to be addressed. Files might be too large to �t on
singel hard disk. The time to access the data is still too big. More hardware used to address
these problems leads to more failures and the need of backup systems.
Also a very important issue is the question of data consistency since one �le is not only accessed
by one client, but multiple clients at the same time.

These issues are addressed by Parallel File Systems.
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In [16, Chapter 19], Walt Ligon and Rob Ross give three characteristics which describe a
parallel I/O system, in which a parallel �le system is used:

• multiple hardware I/O resources on which data will be stored,

• multiple connections between these resources and compute resources, and

• high-performance concurrent acces to these I/O resources by numerous compute re-
sources.

A parallel �le system is a software layer operating on a parallel I/O system. It provides a global
namespace for di�erent physical I/O devices and can be seen as an abstraction of where which
part of the data is stored.
To higher level software layers it provides an interface presenting the data as a directory
hierarchie and allowing concurrent access to the data by more than one process. It provides a
consistent few of the data even in parallel environments. The intefaces provided by parallel �le
systems often are not only limited to UNIX �le system semantics but also provide a MPI-IO
�le view compliant interface to be able to optimize data access. [16, Chapter 19]

Its role is also to organize distribution of data over physically distributed I/O resources and
therefore is able to provide faster acces to the data through use of aggregated throughput and
bandtwidth of I/O servers, hard disks and interconnects between I/O devices and compute
resources. This is made possible by striping the data across the I/O servers in a similar fashion
as done in RAID systems. [16, Chapter 19] [8]

PVFS2

The parallel �le system used in this thesis is the Parallel Virtual File System 2 (PVFS2).
It is an open source parallel �le system designed as a client-server architecture. It aims to
provide the possiblilty of multiple processes operating on multiple nodes of a cluster to access
large amounts of data located on some subpart of the cluster. It strives to be very scalable.
PVFS2 consists of two parts: pfvs2-server or pvfs2-client. A pvfs2-server can have one of or
both of two roles: data server or metadata server. Data servers are run on the I/O nodes of the
cluster and manage the data stored locally on that node. Metadata servers store and manage
all object attributes. Furthermore the second part is the PVFS2 client. Client applications can
use the provided userlevel-Interface to access the data.[15, 7]
While some parallel �le systems do provide �le consistency using for example locking mecha-
nisms, PVFS2 was designed using relaxed semantics and de�ning data access semantics without
data locking. This and a careful design and ordering of metadata operations provide consis-
tency. This is done because locking mechanisms always lead to performance loss with a rising
number of accessing processes and soon become a bottleneck in the I/O system. [13]
For more information on PVFS2 and an in depth look at this parallel �le system see [15, 7] or
refer to the PVFS homepage at www.pvfs.org.
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4 Benchmarking

4.1 Introduction to benchmarking

When writing programs, whether sequential programs or programs to be executed in parallel
environments, the progammer soon has to make quite a few decisions. How to organize the
program, which part in which order and, in case of parallel programs, which process takes on
which part of the problem. Furthermore at some point decisions are made on which hardware
to deploy, which software tools and operating system to use. In short: one has to decide on
the execution environment.
Furthermore given problems and possible solutions implicate di�erent behavior of the program
and this causes di�erent performance behavior in di�erent environments.

Since not everybody has the resources to buy and con�gure new computers, supercomputers
and clusters for each new type of application, most institutions have to decide which hardware
and software to use. Since this is done more or less once for a long time, one has to �nd a way
of deciding which system would be best.
One way would be to take the applications which will be run on the system and make test
runs before buying a system. But in most cases it is not one or only a few applications which
will be run and, as is the case especially with supercomputers, more than one person or even
group will be using the system. Therefore a system has to be found to meet the needs of all
those users, which turns the idea of trying out a system at the vendor with all the expected
applications into an impossible task. Another method is needed: a benchmark.

benchmark [...] an example of sth which is used as a standard or point of reference
for making comparisons [6]

One solution to this problem is writing a program which can be used in order to make com-
parisons between the di�erent systems available. A benchmark should represent the needs of
expected applications, their workload and execution behavior. The development of a bench-
mark should be done having in mind which values are important and what exactly is to be
measured. Nearly always a benchmark is created and run in order so see which scenario provides
the highest performance and minimizes execution times and to �nd out how given applications
will perform on di�erent systems. Looking at existing benchmarks one can see a lot of di�erent
ideas about how to write them, about what they should do and how they should do it. On the
other hand a lot of similarities are apparent throughout a lot of groups of benchmarks.
General di�erences for example include ideas about benchmark execution times. Opinions go
from the believe that benchmarks should �nish in a relatively short period of time [12] to
believes that longer execution times can provide more meaningful results.

What basically all benchmarks have in common is the fact that any computer system has a
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lot of hardware components and di�erent software layers which will be used when running
applications. Each application uses all these parts and layers in a di�erent manner and this us-
age needs to be represented in a benchmark. To create this "example of sth which is used

as a [...] point of reference for making comparisons" [6] an examination of the ex-
pected applications and workloads needs to be undertaken and a benchmark has to be created
which represents the usage and patterns of these components.
This includes amongst others the use the applications make of the CPU, network interface
cards, random access memory and di�erent available cache memories. Important also are fac-
tors which are not as obvious such as use of available switches in the network for example.
If the applications the benchmark represents have communication patterns which try to send
more data at one time as the switch can handle, the benchmark needs to represent this, too.
When looking at the I/O needs of applications, access patterns are one of the important factors
which need to be represented but also amount of data being accessed should not be neglected.
When di�erent computer systems are compared to on another the existence of cache memory
on the side of the storage devices can in�uence application behavior and can result in di�erent
data access times when the amount of data being accessed is changed.

All in all one can say that when running applications on computer clusters a long list of factors
in�uences the execution behavior. Di�erent con�gurations and setups can have more or less
great impact on performance issues and what is good for one kind of application might be bad
for another.

Problems with benchmarking

As said before benchmarks are written to �nd the hardware which is best for a special kind of
application and in addition the software layers and their con�gurations which provide the best
performance behavior.
While in a lot of cases benchmarks are able to aid in the search of bottlenecks and provide
knowledge about which part of the system to adjust to remove those, there are also some
limitations of benchmarks.

When a benchmark is used to compare computer clusters together with their given con�guration
it is not always possible to say that the results of the benchmark tell the user which setup would
be able to provide better performance for this kind of application. It only shows which of the
systems is better when a given setup and con�guration is provided and cannot be adjusted.
The question is whether a benchmark is run on a computer system without tuning the system
for the test and without optimizing the benchmark code to �t the resources provided or whether
it is run after adjusting setup parameters to support the benchmark. While an application can
perform better on one computer system than on another it might be possible that with a little
bit of tuning the second system really is the one which could provide better execution times
for the given application.

Furthermore nearly all existing benchmarks test how a given application performs when ex-
ecuted on di�erent computer systems or how performance is in�uenced when con�gurations
on one computer system are changed. All changes in execution times measured are results of
changes of some part of the computer system outside the represented applications.
While this is very important, changes outside the client applications are not the only possibility
to achieve better execution times. Also di�erent ways of implementing a program and the use
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of di�erent concepts of communication and I/O can improve application behavior.
Nearly none of the available benchmarks provide possibilities to compare di�erent ways of
writing programs when trying to minimize execution times. This thesis will discuss the use of
non-blocking I/O operations as one way to reduce execution times. It will propose a bench-
mark which aims at measuring the performance gains one can achieve when changing from
blocking I/O operations to non-blocking I/O operations and will present the results of a series
of benchmark test runs. Finally the results will be compared to expectations and will show if
computer system setup and con�guration is the only way to improve application performance
or if the programmer can also aid in reducing the time his program needs to terminate.

Before non-blocking I/O operations and their semantics are discussed, some available parallel
benchmarks are presented in the following sections.

4.2 Overview over existing benchmarks

4.2.1 Calculation and Communication Benchmarks

E�ective Communication and File-I/O Bandwidth Benchmarks

The e�ective communication banwidth benchmark b_eff is one of two benchmarks designed to
measure communication and I/O performance on parallel computers. It is implemented using
MPI functions.
Both benchmarks aim to provide one characteristic value by running several experiments and
taking an average of the results.
The communication benchmark runs a large number of very short test, all of which are run
using several communication methods. This allows to obtain results which do not depend on
the question which implementation of the MPI functions is optimized.
Also the benchmark makes sure, that all processes send messages to other processes at the
same time, resulting in parallel communication. The test runs are combinations of a series
of di�erent communication patterns, 21 message sizes and 3 communication methods. The
communication patterns include 6 ring patterns, 30 random and 13 additional patterns. All
tests are run 3 times, resulting in 9261 experiments, which in the end calculate the effective
bandwidth.
Since the developers of this benchmark suite believe that the execution time of a benchmark
should be limited, the length of each experiment loop is automatically controlled.

[12, 11]

4.2.2 I/O Benchmarks

E�ective Communication and File-I/O Bandwidth Benchmarks

The I/O benchmark of the e�ective communication and �le-i/o bandwidth benchmarks,
b_eff_io is a benchmark implemented with MPI functions. Its aim is to characterize the
e�ective I/O-bandwidth. This benchmark �rst analyses the applications needs and then tests
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hardware and parallel �le system on its performance in satisfying these and not vice versa. It
tests a variety of di�erent access patterns, running 315 di�erent measurements. These are com-
binations of 5 di�erent I/O patterns, 7 di�erent chunk sizes, 3 numbers of parallel benchmark
processes and the access forms initial write, rewrite and read.
The developers of b_e�_io had a �xed time in mind concerning how long it should take to
complete the benchmark. They believe that 10 minutes should be enough to overrun any cache
in the system.
One unique scenario of this benchmark is the comparison of performance behavior of wellformed
and non-wellformed data sizes. Wellformed data sizes being powers of 2.

[12, 11]

PIO_BENCH

In his master thesis F. Shorter proposes a suite of access pattern benchmarks which are repre-
sentative of the needs of many parallel I/O codes. He aims to reduce the degree of subjectiveness
running benchmarks by de�ning one unique timing mechanism. This timing mechanism is pro-
posed as part of a framework for all tests in order to allow easy adding of new access pattern
tests. To provide a standard way of setups for the access pattern tests, each module needs
to implement 7 prede�ned functions. The �eld of responsibility for each of these function is
prede�ned in order to have comparable test results.
In theory the paper also proposes a standard framework for interpreting results which should
automatically evaluate the data gathered by the tests.
All in all the PIO_BENCH benchmark has been proposed in order "to reduce the degree of

subjectiveness in choosing a parallel filesystem to meet the needs that parallel

applications typically have" [14].
A very interesting part of the thesis is the discussion and description of a lot of di�erent access
patterns, both spacial and temporal access patterns.

[14]

PRIOmark

PRIOmark is a benchmark which "measures file system and disk I/O performance of

modern computer systems" [10]. Unlike the benchmarks described above, PRIOmark not
only uses the MPI-IO interface but also takes advantage of POSIX I/O semantics. POSIX I/O
semantics are even used in parallel tests run in distributed environments.
PRIOmark comes with a set of sub-benchmarks which include a raw benchmark measuring
performance of raw disk access. The sub-benchmarks common_file and strided measure ac-
cess performance of a lot of processes to a single �le, each accessing one large consecutive block
of data for common_file and several non contiguous blocks in the strided case respectively.
The penultimate sub-benchmark is the single_file test in which each process accesses an
individual �le on a local disk. In distributed environments every process would have its own
�le on a local disk which would be accessed in a block-by-block manner.
Last but not least, unlike nearly all benchmarks available for parallel I/O, PRIOmark also has
a sub-benchmark which is called async. As described later in this paper (see 5.2), MPI-IO
introduces the idea of asynchronous I/O, which allows for calculation to continue while data
is being accessed. While this paper wants to examine how much time can be saved using
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non blocking I/O routines, PRIOmark focuses on the percentage of time lost in each one of
the following cases: It calculates what the authors call asynchronous calculation loss and
asynchronous bandwidth loss, looking at how execution times increase for I/O and calcula-
tion. PRIOmark does not analyse whether non blocking I/O could nevertheless aid in reducing
overall application execution times.

[10]
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[to] block [...] to prevent sb/sth from moving or making progress [6]

5.1 Computer resources and concurrency

While computers grew faster and bigger throughout the years, the use of more resources and
the developement of faster hardware components were not the only factors increasing the
performance of computer systems.

One thing that changed during the years was the operating system. First the programmers
interacted directly with the computer hardware without any kind of operating system. Then
computers where created where a �rst version of an operating system called the monitor started
to organize the use of the system allowing for batch processing. While �rst one program was
executed after another soon the �rst systems where created which were able to do batch pro-
cessing with multiple programs in order to use idle processor time during the execution of one
job by executing another. Already on those �rst systems the I/O system was one of the main
reasons for idle time like this. A lot of time could be saved by using the free processor cycles
for a second job while the �rst waited for results of an I/O operation.
The next step in the developement to the current operating systems were systems allowing for
time sharing. This now allowed users to interact with the programs which was not possible in
the previous batch systems.
With this came new tasks to be taken care of by the operating system including process man-
agement, memory management, making sure that applications of one user didn't interfere with
those of another and overall resource management. Then operating systems were created which
introduced the idea of threads allowing for one program to use multiple processors on a symmet-
ric multiprocessor architecture. Now di�erent parts of one program can make use of di�erent
resources at the same time, di�erent processes can be executed concurrently and unused CPU
cycles by one application are used by another.

[17]

While applications needed to wait on I/O operations or execution of software stacks for net-
work communication and therefore left CPU cycles unused which could then be used by other
applications, the operations they were waiting for still needed a lot of CPU cycles themselves
in order to satisfy the applications needs. The processor was needed to move data from the
main memory storage devices or to the network interface card in order to send it to a distant
location. Therefore data access was limited by how fast the CPU could satisfy the needs of the
used hardware and the CPU was not free to attend other waiting tasks.
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Direct memory access modules were created and are able to free the CPU from tasks like mov-
ing data between hard disks and main memory or between main memory and network devices.
While DMA modules and CPU still need to compete for use of the computers bus system, the
CPU is free of the tasks concerning data movement and can continue execution of a di�erent
process. Important here can be existing cache memories which can contain data the CPU is
operating on without the need to use the bus system.

[17]

Now di�erent parts of processes are executed in parallel while special hardware like DMA
modules or extra processors on network interface cards take care of copying data from one
location to another. A lot of tasks are executed in parallel and thanks to special hardware and
software solutions concurrency makes faster execution of applications possible.
These ideas also play an important role for reducing execution times of parallel programs by
use of non-blocking I/O as presented in the following chapters.

5.2 The idea of non-blocking I/O

When running applications on a cluster, ways of doing I/O come in many di�erent �avors.
Individual processes could access data stored in individual �les or could access one shared �le
concurrently. Data might be saved on local hard disks or distributed over storage devices some-
where in the cluster network. Depending on the application, shared or individual �le pointers
allow for di�erent kinds of access to a shared �le and di�erent �le system semantics allow for
block-by-block access or more advanced data manipulation by use of �le views and explicit
o�sets.
For each of these versions of doing I/O, di�erent parts of the I/O system allow for di�erent
options of optimizations to enhance I/O performance in order to avoid I/O becoming a per-
formance bottleneck. Most of the points mentioned are addressed in the MPI-2 paper and are
represented in the MPI-IO standard [2] or are probable parts of parallel �le systems.

The MPI implementation MPICH2 for example uses amongst others the following two kinds
of optimizations in their I/O software layer ROMIO in order to optimize data access.[8]
Data sieving is used to optimize access to noncontiguous data. When reading data the idea
here is to not only request the noncontiguous data from the �le system, but to read one large
contiguous block of data and to discard the unwanted bytes between the desired concontiguous
blocks. Access time can be reduced if the time to read the unnecessary data is smaller than
the time won by reducing the overhead of creating a lot of small I/O requests.
In case of writing data this version operates by doing a read-modify-write operation since the
holes need to be written with the current valid data.
This optimization of course only works if the use of extra send or receive bu�er is available and
the holes between the wanted data blocks are small and relatively few.
Two phase I/O is used to optimize collective I/O operations. Here the additional information
available by the fact that ROMIO knows that all processes are going to do I/O operations can
be used to enhance I/O performance. The idea is that in one phase each process reads or writes
a chunk of contiguous data and in the other phase the data is distributed or collected from the
corresponding process depending on whether the processes are reading or writing data.
This option also needs more bu�er space on the client side than used by the data so be ac-
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cessed in order to make the data organization possible. Performance bene�t comes from less I/O
requests and the fact that every process now requests modi�cation of contiguous blocks of data.

[8]

Another way of saving time when doing I/O is using non-blocking I/O operations.
For most applications which iteratively calculate new data, di�erent points during execution are
de�ned where data needs to be written or read. This often is done in a blocking way, resulting
in a period of time during execution in which calculation is paused until the data access is
�nished. This is due to the fact that blocking I/O operations return only after successfully
terminating the I/O request, i.e. in the case of a write operation when the �le system signals
that the data has been written and is now available for future access.
As suggested in chapter 5.1 computer systems allow for a lot of di�erent ways of using resources
concurrently. This fact soon leads to the idea of having the calculation part of an application
go on while the I/O operation is being executed concurrently.
The idea of how this can be done using non-blocking I/O operations and what this means for
the semantic of these operations is presented in the following paragraphs.

In order to look at non-blocking I/O operations and the question if performance gains can be
achieved in comparison to the use of blocking I/O operations, one �rst needs to look at the
blocking I/O operations.
For the following discussions an application is suggested, which iteratively does: calculations,
I/O, calculations, I/O and so forth, as shown in Figure 5.1.

CalculationI/OClientProgram

Time

CalculationI/O CalculationI/O CalculationI/O ...

Figure 5.1: Example program using blocking I/O functions

While calculation will not be able to start again until the I/O operation has returned, it is not
necessarily the case that the processor used by the executing process is used to full capacity
during the time spent in the I/O operation.
In case of accessing data on local hard disks, the write or read operation could be done using
direct memory access (DMA) unburdening the processor which then is not responsible for the
actual movement of data between main memory and the storage device. [17, Chapter 1.7.3] The
same idea can be applied when sending data over the network to a storage server somewhere
in the system also leaving the CPU available for other tasks.
In case of blocking I/O operations these free CPU cycles might not be used by the client
application. The application nevertheless has to wait for the operation to terminate, wasting
valuable CPU cycles. Only when completion of the data transfer is signaled can the function
return and therefore allow for the following calculation to commence.
Another scenario would be an application, which for whatever reason is not able to use more
than one processor in a SMP environment and therefore could take advantage of a second
processor to press ahead with calculations while the �rst processor is taking care of the I/O
operations. One possible setup would be an application which needs all of the available main
memory for two sets of data being manipulated by the process one after the other. While the
calculation part does its work on one of the two parts, another part of the application could for
example take care of saving the other part to the I/O system. While this is a possible setup,
the �rst scenario is the more likely one.
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Important is that this variant of I/O assures that after termination of the I/O function the
client program can directly make sure that the operation completed successfully and could also
access the data again right away.

In order to use the free CPU cycles which accrue sometime during the I/O operation, the idea
of non-blocking I/O is to start the I/O operation and, in a di�erent thread of the process, go
on with calculation. If the operating system supports kernel threads and allows for one thread
to go on working while another is suspended, this is possible.

Calculation

I/OClientProgram

Time

Calculation

I/O

Calculation

I/O

Calculation

I/O ...
termination time of
sequential version

Figure 5.2: Example program using non-blocking I/O functions

Figure 5.2 demonstrates the theory behind this and indicates where the sequential version of
the program in Figure 5.1 ended.
This of course assumes that individual times for I/O and calculation do not change when being
executed in parallel and that there is no overhead involved when running non-blocking I/O
functions.
As already indicated in [10] this is not the case and some kind of drawback for the individual
times can be expected when running the non-blocking version of such a program.

Before looking at the theory in more detail in the following chapters, there are a few more
points worth mentioning.
First of all one has to keep in mind that, when using non-blocking I/O, it is not ensured that
data is written or read any time the application needs to do calculations. It is very important
for the implementation of the non-blocking I/O functions to provide possibilities to and for
the implementation of the application using the non-blocking I/O functions to use options to
verify that data access has �nished before trying to modify the bu�er used to save that data.
Also, as mentioned before, the use of non-blocking I/O most likely needs additional main
memory if the data to be accessed is also needed to continue with the calculations. In a
scenario where more than one set of data already exists and calculation can be done on a set
of data distinct from the data used in the I/O operation, this overhead can be saved.

5.3 Discussion of scenarios

scenario [...] an imagined sequence of future events [6]

5.3.1 Introduction to di�erent scenarios and possible performance gains

While non-blocking I/O can be done for write and read operations, this thesis only looks at
write operations. The same ideas and tests can easily be applied to read operations and at
least the theory isn't really di�erent from the write operations.

21



5 Non blocking I/O operations and their semantics

In order to �nd out if performance boosts really are achievable write operations only are tested
here. This is also done due to the fact that one possible area of application of non-blocking
I/O in real applications is the time when check points are being written in order to be able to
restart the application there and not from the beginning in cases of execution failures.

For the following scenarios and the rest of the proposed benchmark of this thesis the assumption
is made that it is run on a computer cluster which makes use of a parallel �le system allowing for
all processes to access one �le concurrently. Also used is the idea of a parallel �le system which
allows for data to be cached locally in the main memory of the I/O nodes of the cluster hosting
the I/O server. This means that the regular I/O operation returns when the �le system signals
that all data has been received successfully, but does not mean that anything has physically
been written to disc already. This is the case for the parallel �le system PVFS2 used for the
tests presented in chapters 6.2, 7.2 and 8. For more information on PVFS2 see chapter 3.3.2
and [7, 15]

The following chapters describe di�erent possible scenarios of parallel programs using blocking
I/O operations, their counterparts using non-blocking I/O operations and the expected perfor-
mance boosts.
In contrast to the most likely expected approach of looking at the version using blocking I/O
�rst, the scenarios are set up to consider the non-blocking variant �rst. This is done because
it helps �nd the application using blocking I/O which in theory can result in the maximum
speedup possible. For more information on this scenario look at chapter 5.3.4.
Furthermore the scenarios all �t into a �xed pattern, i.e. all scenarios look at a setup where a
program repeatedly writes data followed by some calculation. This is done a variable number
of times, but always assumes that every time I/O is done, it needs the same amount of time
because everytime the same amount of data is being written. The same goes for the calculation.
Small di�erences in each iteration are to be expected but are not taken into consideration when
looking at the theory. This is because the in�uence of aspects as external processor use by for
example the operating system, etc. are something that in theory should be negligible small. A
computer cluster con�gured for high performance computing should only have very few tasks
running on the compute and I/O nodes in order to provide the maximum amount of compute
power to the applications run on the system.

All scenarios will be presented showing operations done on the client side and the expected
behavior of the I/O server used to save the data. Most cases are presented as using 1 client and
1 I/O server even if that is not a scenario for parallel applications but single process programs.
It nevertheless explaines the idea behind the scenario and is arranged a lot more clearly. This
also helps to sum up theoretical expectations of performance behavior.

Performance boosts will be presented as a single number which compares the time for execution
of the application using non-blocking I/O to the version using blocking I/O by calculating the
ratio of non-blocking version / blocking version.
This number is to be interpreted as follows:

• A number bigger than 1 means performance loss. This would show that the non-
blocking version of the scenario would overall take more time than the blocking version.

• A number equal to 1 means no change in performance. This would show that both
version need exactly the same time to terminate.
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• A number smaller than 1 means performance gain. This would show that an actual
performance gain has been achieved. The smaller the number, the faster the non-blocking
version terminated in comparison to the version using blocking I/O routines.

While there are a lot of di�erent aspects which could be used to create di�erent scenarios there
is one aspect which seems to be the adequate to arrange di�erent setups.
While one could take amount of data to be written, block size of contiguous data to be written
or number of processors used for the application as the primary criteria, it is not those that
seem to make the most sense. When looking at execution times and the wish to reduce these,
the primary criteria chosen here is the ratio between the time it takes to do the desired I/O
operations and the time necessary to do the desired calculation. This choice is reinforced by
the theory of the possible speedup one can get by using non-blocking I/O operations.
If for theory discussions the assumption is made that the individual times of I/O and calcul-
tation do not change when executed in parallel, the maximum amount of time which can be
saved using non-blocking I/O is the lesser of the times needed to do the desired I/O or the
desired calculation.
If the I/O time is always a lot smaller than the calculation for the blocking version and the
times do not change for the non-blocking version, the I/O will in each iteration be able to �nish
before the corresponding iteration of calculations. The result is that the time needed for overall
application execution now is the sum of the individual calculation times. This can already be
seen in Figure 5.2.
A more thorough discussion of this shall be presented in the following three sections discussing
three scenarios. :

• The time needed to �nish the desired I/O operation is always smaller than the time
needed to �nish the desired calculations.

• The time needed to �nish the desired I/O operation is always larger than the time
needed to �nish the desired calculations

• Both times are always identical when executed in parallel.

In contrast to the examples presented already the following parts try to take into account the
di�erences in times for I/O and calcuation in the two versions. Because of this the times refered
to in the list above are the times for I/O and calculation in the version using non-blocking
I/O.
Changes in times between non-blocking versions and versions using blocking I/O routines might
be presented exaggeratedly which is done because it makes them more obvious and better visible
in the graphics.

5.3.2 I/O < Calculation

As an example this scenario represents an application which is very CPU intensiv and needs to
save a small amount of data periodically. With the assumption that I/O times and calculation
times do not vary when executed in parallel, the time saved by using non-blocking I/O routines
would be the time needed to �nish all I/O operations. Figure 5.1 and 5.2 demonstrate this.
When looking at the fact that there is some overhead included when running two tasks in
parallel, such as additional operations to initialize threads needed, times needed to switch
between threads and new concurrent usage of resources, some changes in execution times are
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to be expected.
The new concurrent usage of resources for example can include competitive use of the nodes
bus system. In case direct memory access is used in order to write a block of data from main
memory to hard disk or to send the data over the network interface to an external I/O server,
the bus system is still needed to transfer this data. Due to the fact that calculation goes on
while this is done, additional usage of the bus system arises in order to load and write back
data needed for the calculation to continue. In case of communication between the processes
on di�erent nodes the use of the underlying network also has to be shared and coordinated for
both communication and I/O in case there is no seperate I/O network available.

The worst case for the I/O operation wanting to save data to an I/O server somewhere in the
network is one where the I/O server has no free memory available to cache the data to be
written. This means that the I/O server can only receive data as fast as it takes to free cache
by writing data physically to the available storage devices.
In times where no write request is submitted to the I/O server, such as in times the application
only is doing calculations, the I/O server has the opportunity to free cache memory by physically
writing data to disk. This is called write behind and allows for future write operations to �nish
faster. This happens when the available bandwidth to transfer data to the main memory of
the node hosting the I/O server is faster than bandwidth available to write data to disk.
Since I/O operations can be acknowledged as �nished whenever all data to be written is received
by the I/O server, I/O operations terminate faster if the deciding time is the transfer time only
and not times needed to to write behind.

Calculation Calculation

I/O I/O I/O

Calculation

ClientProgram

Time for I/OServer
to do write behind 
and free cache.

Time

PhysicalI/O PhysicalI/OI/OServer

* * *

*

PhysicalI/OPhysicalI/O

Data of
previous 
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Data of Client
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Data of Client
Program

Data of Client
Program

Figure 5.3: Non-blocking I/O for small I/O times compared to calculation times

Figure 5.3 shows one possible version of this scenario using non-blocking I/O routines.
Important here is that the bars representing the operations do not necessarily implicate CPU
usage or usage of any kind of resource. Of course resources will be used during this time,
but temporary discontinuances in execution are not being represented. The bars represent the
operation from the time they are initialized to the time the I/O operation and the iteration
of calculations respectively can be seen as �nished. In the case of blocking I/O the end would
signal the point in execution where the I/O operation can return and in case of non-blocking
I/O this would signal the point in execution where the client applications would get a positive
acknowledgement when checking whether the I/O operation has been �nished.
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On the server side of the scenario times of physical I/O are shown. These are examples and show
how in order to free memory for new data in the beginning, old cached data is being written to
hard disk. Because here a scenario is shown where the I/O server has no free memory in the
beginning, the �rst I/O operation takes as long as it takes to save the same amount of data to
hard disk. The other I/O operations can terminate faster since during the longer calculation
the I/O server had the time to further write data to storage devices and therefore free memory
which can be used to receive data of future I/O operations.

Calculation CalculationI/O I/O I/O Calculation
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*
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Program

End of version using nonblocking I/O

* *

Figure 5.4: Non-blocking I/O for small I/O times compared to calculation times

Taking all this into consideration the version using blocking I/O operations would be as shown
in Figure 5.4. In this scenario this is the straight forward execution of the I/O and calculation
operations one after the other. Due to the fact that in both versions the I/O server has
enough time to free su�cient memory to cache the data to be written in the second and third
iteration, the I/O times are expected to be nearly the same in both versions. Time di�erences
for each in between the two versions are neglected in the graphic. In theory the times for doing
calculations can be expected to be shorter in this version due to the absence of CPU usage by
the I/O operation.

A more interesting in�uence of the possibility of the I/O server to use the time during calcu-
lations to free memory is visible in the following scenarios.

When looking at the ratio between the versions using non-blocking I/O and blocking I/O rou-
tines the following can be expected.
For a theoretical discussion of the ratio let's assume what was assumed above already and say
that the times for I/O and calculations respectively do not change depending on the version.
Now as an example let's assume that the I/O time takes 2 time intervals compared to 8 intervals
needed for calculations resulting in a total time of 10 intervals for each iteration. As seen the
time needed for the version using non-blocking I/O would come down to 8 times the amount
of iterations done. In the other case 10 times the amount of iterations is needed. Therefore
the ratio of non-blocking version / blocking version equals 0.8. This would be the best
speedup possible by use of non-blocking I/O for this scenario.
Therefore for an application in which needs to do little I/O in comparison to calculations, the
best possible speedup would be:

non− blocking version

blocking version
=

calculation time

calculation time + I/O time
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5.3.3 IO > Calculation

This scenario represents I/O intensiv applications. A lot of data has to be written every time
a few calculations have been done. As already shown above the maximum amount of time one
could save would be the time to do calculations.
If taken into consideration that the I/O takes a long time and the I/O server has no chance
to free cache memory in order to save data sent by a write request, it might even be possible,
that the unused CPU cycles on the client side while the I/O operation is waiting is enough for
the calculations to be done. This would be equal to the assumption that the times of I/O and
calculation respectively do not change when non-blocking I/O routines are used in comparison
to a blocking version.
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Figure 5.5: Non-blocking I/O for large I/O times compared to calculation times

Figure 5.5 shows the version of this scenario which makes use of non-blocking I/O routines. As
done before a situation is taken as an example where the I/O server in the beginning has no
free memory available to cache data. Therefore all I/O operations have to wait for the time
needed to physically write the data to disk which they want to save.
Due to the fact that there are no times in which the I/O server has the chance to free memory
by writing data to disk without having to receive data, all I/O operations take that amount of
time and cannot pro�t by use of free main memory on the node hosting the I/O server.

Looking at the version using blocking I/O operations no di�erence should be seen for the �rst
I/O operation. It still has to wait for the I/O server to free enough memory on the node it is
running on in order to receive the data to be written.
Other than in the non-blocking version of this scenario the I/O server does have time to do write
behind and free memory which can be used to cache data of the next write operation. This can
be done during the times the calculations take place on the client side of the application. When
looking at Figure 5.6 one can also see that it is likely that calculation terminates faster than it
would in the version using non-blocking I/O. This can be expected since the calculation does
not have to wait for free CPU cycles in the I/O process but can use all CPU cycles directly.
The second and third I/O operation of the example can terminate faster than the �rst one
due to the freed memory on the I/O server side. As suggested in this example, the third
I/O operation could even bene�t more from this than the second by additional free memory
accumulated during the second phase of calculations.

While the behavior described is to be expected, the extent of changes in times and the amount
of memory possibly freed during a write behind period might not be as extreme as suggested
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in the Figures 5.3 and 5.6. The extent of changes rather depends amongst others on factors
like actual times needed to do the desired calculations, amount of data to be written and the
amount of CPU cycles needed on the client side to transfer this data to the I/O server.
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Figure 5.6: Blocking I/O for large I/O times compared to calculation times

Again when looking at the ideal situation where the times of I/O operations and calculation
periods respectively do not change when changing from non-blocking I/O calls to their blocking
counterparts, the ratio of execution times would be:

non− blocking version

blocking version
=

I/O time

calculation time + I/O time

So at best one can save the time needed to do the total amount of desired calcuations in this
I/O intensiv scenario. While this should be possible something less than this is probable due
to the described reasons. Again, these include change of execution times for both parts of the
application when switching between the I/O routine variants and the question of how much
data the I/O server can write to disk during calculation in order to free main memory it has
available.

5.3.4 I/O == Calculation

This scenario probably is the most interesting in theory. This is due to the fact that this
scenario suggests the maximum possible speedup which could promise a ration of non-blocking
version / blocking version of 0.5.

To get this performance gain it is best to again �rst take a look at an example where it makes
no di�erence for I/O and calculation times respectively whether being executed in parallel or
one after the other. The two versions using non-blocking I/O and blocking I/O routines are
presented in Figure 5.7.

While this is a comparison of two scenarios which includes a lot of abstractions, it nevertheless
is quite useful in the discussions of theory.
First of all the fact that a bigger workload on a computer system will not allow for faster
completion shows that the shown example is the best possible. In case the times for I/O
routines and calculation periods respectively change when switching from blocking I/O routines
to non-blocking ones, they will change to become larger. Therefore no better speedup than
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Figure 5.7: Theoratical comparison of scenarios with equal times for I/O and calculation

this situation is theoretically possible. Therefore the best value for the ratio of non-blocking
version / blocking version is:

non− blocking version
blocking version

= 0.5

Now when looking at a scenario with the fact that times might di�er between the two versions
and also including the I/O server side, the version using non-blocking I/O would look as shown
in Figure 5.8.
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write operations
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Program

Data of Client
Program
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Program

Figure 5.8: Non-blocking I/O used resulting in equal times for I/O and calculation

This scenario is important because it does not leave CPU cycle unused on the one side and
does not let time pass by with calculations which could be used to transfer data to an I/O
server using methods like direct memory access.
Both operations start and end at the same time which results in the maximum amount of data
able to be written during a calculation period.
In case the application is run using one process per node on a cluster o�ering nodes with 2
CPUs each, this is especially obvious. While one CPU is busy doing calculations, the other is
used to write as much data to the underlying I/O system as is possible during this time. In
case the application is run on nodes with 1 CPU per node, this also is the other extreme in
comparison to the scenarios presented in sections 5.3.2 and 5.3.3. In case the I/O operations
would always turn out to take less time than the calculation periods, their time would be
the maximum time possibly saved. In case I/O operations would always take longer than the
desired calculations, the calculation times would limit the maximum possible time saved. The
closer the time which can be saved is to the time of the other operation, the more time can be
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saved. Therefore the biggest performance boost can be expected when both times result to be
equal in the non-blocking version.

In theory this scenario would look as presented in Figure 5.7, showing the perfect behavior.
In real execution environments the behavior should be di�erent when switching from using
non-blocking I/O routinges in Figure 5.8 to using blocking I/O routines.
For demonstration purposes two possible versions of the application using blocking I/O oper-
ations are presented here.

In the �rst example shown in Figure 5.9 the �rst I/O operation takes as long as it did in the
version using non-blocking I/O due to the fact that the I/O server can only receive data as fast
as physical I/O can be done.
Here the �rst calculation period is assumed to be long enough for the I/O server to write as
much data to the storage devices as is needed to have memory available for all of the data of the
next I/O request. Therefore the second and third write operations only take the time needed
to transfer the data over the network to the I/O server memory used for caching it. After the
successful transfer has been signaled the I/O server can use the times during calculations in
order to further write data to disk.
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End of version using nonblocking I/O routines

Figure 5.9: Example 1: Blocking I/O operations used for scenario in Figure 5.8

Another possible scenario would be one where the I/O server does not have enough time to
save all data sent by the second I/O request as shown in Figure 5.10. This means that the
second I/O request can send as much data as the I/O server has freed doing write behind for
which the transfer bandwidth is the limiting factor. For the rest of the data which cannot be
cached on the I/O server side the client has to wait again for physical I/O to take place. This
results in a second I/O operation which is faster than the �rst one, but is not as fast as the
case has been in the example of Figure 5.9.
Only the third write operation would take only the time needed to transfer the data in this
example.
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Figure 5.10: Example 2: Blocking I/O operations used for scenario in Figure 5.8
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As seen looking at these examples it is not easy to �nd the version using blocking I/O which
would save the most time when being changed to use non-blocking I/O. While the best maxi-
mum speedup possible is 0.5 for the said ratio, it is not easy to �nd an application which really
would show this performance boost. A lot of factors play an important role when comparing
the two versions and indicate that an application behaving as shown in Figure 5.7 is no likely
to be found. Therefore the question is how much speedup can acutally be achieved by the
possibilities suggested here.

5.4 MPICH2 and the wish to use possibilities suggested in
theory

When writing applications which are to be executed on a parallel computer such as a computer
cluster, a lot of programmers use the MPICH2 implementation of the MPI-1 and MPI-2 stan-
dards in order to handle the tasks of process creation, communication and �le access.
A lot of times the program deveolpers do not have unlimited access to compute resources and
need to make sure not to exceed their resource access time limits when doing so. Also it is
desirable to use the available time in an optimized way in order to get the maximum amount of
results possible. When the application needs to do I/O operations during execution the theory
presented in the previous chapters probably start to sound very interesting when implementing
the application.

The MPI-IO part of the MPI-2 standard does de�ne non-blocking I/O routines [2]. In the
chapter on I/O in the paper, the function MPI_FILE_IWRITE(...) is de�ned as "a nonblocking
version of the MPI_FILE_WRITE interface" [2]. The standard also provides the routines MPI_TEST
and MPI_WAIT in order to complete the non-blocking operations and at the same time to have
an option to check whether it has completed successfully.
The problems start when trying to use MPICH2 to implement the application. While the
non-blocking I/O functions are provided their use will not get the desired and expected results.
The problem becomes obvious when looking at the source code of the MPICH2 imple-
mentation. Here the code in the MPI_File_iwrite(...) function calls the blocking version
MPI_File_write(...). The semantics for the non-blocking function are exactly as de�ned in
the MPI-IO de�nitions and the implementation is not controversial to the MPI-2 standard, but
would not lead to the expected behavior. Here the non-blocking I/O routine would basically
result in the same behavior as the blocking counterpart with the small di�erence that the suc-
cessful completion has to be checked by a call to MPI_Test(...) or MPI_Wait(...).

5.5 Summary of expectations and plans for the benchmark

As demonstrated in this chapter the use of non-blocking I/O routines has a lot of potential.
For applications having to do I/O operations periodically the I/O part of the application can
soon become a bottleneck in performance. In order to address this problem one possiblilty is
to have the calculation part of the application go on while the desired I/O operation is being
taken care of.
In order to do this the MPI-2 standard de�nes non-blocking I/O operations [2]. The discussion
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of di�erent scenarios in which non-blocking I/O routines can be used led to the following results:

• In case the I/O operations are relatively short in comparison to the necessary calculations
in between them, the time which can be saved using non-blocking I/O routines is the time
needed to do the I/O when using the blocking I/O counterparts.

• In case the I/O operations are relatively large in comparison to the necessary calculations
in between them, the time which can be saved using non-blocking I/O routines is the time
needed to do the desired calculations in the version using blocking I/O calls.

• The biggest performance boost can in theory be achieved when both times take the same
amount of time in both versions. Here execution time could be halved.

All in all this leads to the following ratio between the two versions of doing I/O indicating the
speedup obtained when switching from blocking I/O routines to their non-blocking counter-
parts:

non− blocking version
blocking version

For more information on this ratio and the possible values consult the previous chapters.

Due to the fact that not all implementations of the MPI standards implement non-blocking
I/O functions in a way which allows for real concurrency in execution, not much experience
exists in its use. In order to �nd out if the performance gains suggested in theory acutally can
be achieved in case implementations of the MPI-IO standard would allow for real non-blocking
I/O, a benchmark is proposed in the following chapters. The benchmark aims at implementing
a version of non-blocking I/O calls and testing the theory described above.
This is done not only to prove or disprove theory but also to see if the work needed to expand
implementations of the MPI-IO standard would actually be worth the trouble and result in
better execution times for the client applications.
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6.1 The program

The idea of the benchmark proposed here is to measure possible performance gains by switch-
ing from using blocking I/O operations to non-blocking I/O operations. The theory of this
possible performance boost is discussed in detail in chapter 5.
The idea of the implementation is to create functions representing the non-blocking I/O se-
mantics de�ned by the MPI-IO standard in [2] and functionality to run di�erent test scenarios
using non-blocking I/O and blocking I/O operations. The times measured of the two versions
shall be compared and the ratio non-blocking version / blocking version discussed in
chapters 5.3.1 will be calculated. The following section will present the MPI de�nitions, talk
about their usage and present how this functionality will be emulated in the program. It will
also talk about problems with the implementation indicating limitations of possible tests and
their reasons.

The programming language used will be C and the benchmark will be using the MPI inter-
face where possible. The benchmark will test non collective write operations only. The test
environment will be presented in section 6.2.

As seen in the previous discussion on di�erent scenarios the most important scenario is the one
where I/O operation and calculations in an iteration take the same amount of time. Therefore
this is the �rst test implemented for this benchmark. The test is presented in section 6.1.3.

6.1.1 MPI-IO de�nitions and implemented emulations

In the paper "MPI-2: Extensions to the Message-Passing Interface"[2] published by the Mes-
sage Passing Interface Forum in 1997 the chapter on I/O de�nes functions for non-blocking
write operations. Used for this benchmark is the function MPI_FILE_IWRITE which allows the
processes of the parallel program to write to a shared �le using individual �le pointers in a
non collective manner. Figure 6.1 shows the de�nition of the MPI-IO section of [2] and the C
interface de�nition of the same.

When a non-blocking write is started, the call to MPI_FILE_IWRITE(...) returns directly after
initializing the operation. In order to �nish the operation, i.e. to make sure that the access to
the used bu�er has been �nished, one of the two operations MPI_WAIT or MPI_TEST needs to be
called. While MPI_TEST returns immediately indicating the status of the operation, MPI_WAIT
only returns after the I/O operation has been terminated. For this benchmark MPI_WAIT is
needed and therefore is the only one of the two operations considered here. As can be seen
in Figure 6.1 a handle to a MPI_REQUEST object is returned in order to identify the operation.
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MPI_FILE_IWRITE(fh, buf, count, datatype, request)
INOUT fh �le handle (handle)
IN buf initial address of bu�er (choice)
IN count number of elements in bu�er (integer)
IN datatype datatype of each bu�er element (handle)
OUT request request object (handle)

int MPI_File_iwrite(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

Figure 6.1: De�nition MPI_FILE_IWRITE of MPI-2 standard and C interface

This handle is needed when calling MPI_WAIT to identify the operation one wants to wait for.
As shown in Figure 6.2 the MPI_WAIT call then returns a MPI_STATUS object which can be used
to see if any kind of error occured during the non-blocking write operation.

MPI_WAIT(request, status)
INOUT request request (handle)
OUT status status object (Status)

int MPI_Wait(MPI_Request *request, MPI_Status *status)

Figure 6.2: De�nition MPI_WAIT of MPI-1 standard and C interface

As said before the MPI implementation MPICH2 uses the blocking version of the I/O operation
internally, calling MPI_File_write(...). This is done without creating a new thread resulting
in a blocking write operation which has then to be terminated by a call to MPI_WAIT.
In order to emulate the functionality of MPI_File_iwrite(...) and MPI_Wait(...) two
functions have been implemented. Their interface is shown in Figures 6.3 and 6.4.

E_MPI_FILE_IWRITE(E_fh, E_bu�er, E_count, E_datatype, E_request)
INOUT E_fh �le handle (handle)
IN E_buffer initial address of bu�er (choice)
IN E_count number of elements in bu�er (integer)
IN E_datatype datatype of each bu�er element (handle)
OUT E_request request object (handle)

int E_MPI_File_iwrite(MPI_File E_fh, void *E_buffer, int E_count,

MPI_Datatype E_datatype, E_MPIO_Request *E_request)

Figure 6.3: De�nition E_MPI_FILE_IWRITE and C interface

The emulated non-blocking I/O function E_MPI_File_iwrite(...) creates and starts a POSIX
thread. It also collects all necessary information for the I/O operation and passes it to the
started thread. A function has been implemented which then uses this information to run the
blocking MPI call MPI_File_write(...). The function creating the thread can return directly
after the thread has been created returning an E_MPIO_Request object, which includes amongst
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others information about the ID of the created thread. This information is then passed to the
E_MPI_Wait function which makes sure the thread is joined with the main thread when both
threads reach that point in execution. Therefore the two functions can basically be used as
the de�nitions of MPI-2 suggest. The only thing is that due to the MPICH2 implementation
no two MPI functions can be called by one process due to a giant mutex regulating this
access. Therefore if for example communication functions are called in between the calls to
E_MPI_File_iwrite(...) and E_MPI_Wait(...) the MPI_File_write(...) call and the
communication call compete for the mutex and will be executed one after the other. Due to
this and the fact that communication has not been part of the discussions in the previous
chapter on non-blocking I/O, no communication will be done during the I/O and calculation
operations.

E_MPI_WAIT(E_request, E_status)
INOUT E_request request (handle)
OUT E_status status object (Status)

int E_MPI_Wait( E_MPIO_Request *E_request,

MPI_Status *E_status)

Figure 6.4: De�nition E_MPI_WAIT and C interface

As mentioned above and indicated in the interfaces shown in Figures 6.3 and 6.4 a new object
has been created: E_MPIO_Request. The exact de�nition of this object can be seen in Figure
6.5.

typedef struct{
void* E_handle;
MPI_Status* E_Status;
double E_io_time;

} E_MPIO_Request;

Figure 6.5: De�nition of E_MPI_Request

The value E_handle is used to pass along the thread handle in order to call the operation to
join the thread with the main program in the E_MPI_Wait(...) function. E_status is used to
save the status returned by the MPI_File_write(...) operation and is only accessible when
the E_MPI_Wait(...) function returns.
The value E_io_time is used to save the time the actual call to the blocking I/o operation took
in the extra thread and can also can only be accessed when completion of the joining of the
threads has been veri�ed.

The emulated functions have been tested and it has been veri�ed that I/O and operations done
between E_MPI_File_iwrite(...) and E_MPI_Wait(...) are actually executed concurrently
if the underlying operating system allows for POSIX threads to do run concurrently.

34



6 A non-blocking I/O benchmark

6.1.2 Auxiliary functions

In addition to the emulated I/O functions presented in the previous chapter and the actual
test presented in the following chapter, di�erent auxiliary functions have been implemented.
These functions are used in the test and are provided to be available in future enhancements
and additions to the benchmark.

As indicated in the discussion of di�erent scenarios in Chapter 5 the tests will be executed
simulating a �lled I/O bu�er on the I/O server side at the beginning of the tests. In order to be
able to provide this a function write_fill_buffer(MPI_File fill_fh, int write_times)

is provided. This function writes data to the �le referenced by the handle fill_fh. This is
done write_times times using a bu�er which can be de�ned using command line parameters
when starting the benchmark. In order to �ll the main memory of the cluster nodes hosting
the I/O servers and to force the I/O servers to do physical I/O, the parameters have to be
chosen accordingly depending on the execution environment.
The command line options provided for the benchmark are presented in section 6.1.4.

After deciding which amount of data is to be written in each iteration of the scenario presented
in 5.3.4 it has to be �gured out how many calculation operations are needed. The time to
do the calculations needs to be equal to the time it takes to write the desired data to the �le
system when both parts are being executed concurrently.
Therefore a function int get_workload(MPI_File fh, int workload_iterations) has been
implemented. It needs to be provided with a handle to a �le used for the I/O operation and
with an initial value of workload iterations to be done. The workload itself is a short series
of operations which can be executed as many times as desired. The function runs the I/O
operation, which is using a bu�er also de�ned using command line options, and the calcu-
lations concurrently using the emulated functions described above and adjusts the value of
workload_iterations until the time di�erence between the two operations is either smaller
than a de�ned margin or until a maximum number of tries to achieve this is reached. A mini-
mum number can also be set before compile time.
In order to do this for a given set of processes an average of the desired workload iterations is
taken every 10 tries using the MPI communication function MPI_Allreduce(...).
In the testruns desribed in the following section this function worked well and provided numbers
for workload_iterations which turned out to have the desired e�ect. The write operation
and calculations in each iteration of I/O and calculation di�ered very little.

6.1.3 Test0: I/O == calculation

The �rst test implemented for the benchmark is the one testing the scenario of section 5.3.4
The idea is to de�ne an amount of data to be written in each iteration, decide how much
calculation needs to be done in order to terminate both operations at the same time when
executed in parallel and then run the test. The test will run the version using the emulated
non-blocking I/O functions �rst and then run the test again with the same amount of data to
be written and the same amount of calculations to be done one after the other. This is done a
number of times which can be set when starting the benchmark.
In order to be able to judge how good the test is, i.e. if the test run represents the scenario
in a good way, the average time di�erences between the non-blocking I/O operations and
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the corresponding calculations is measured for each iteration. The overall average of these
di�erences for all processes and all iterations is one of the output parameters of the benchmark.
The important values measured are the total time needed to execute all iterations for the version
using non-blocking I/O and the total time needed to execute all iterations for the version using
the blocking I/O routine MPI_File_write(...). Both times and the ratio of non-blocking
version / blocking version are measured or calculated respectively and are also part of the
program output.

In order to have comparable situations the �les used for �lling the I/O bu�er and for the actual
measured write operations are created and opened before every phase of the test. Due to this
the �le view is de�ned each time and each phase begins writing at the beginning of the �le. At
the end of each phase the �les are closed and, if set to do so, deleted.

The four phases of the test are:

• Preparation of the values. In this phase the auxiliary function int get_workload(...)

is used to �gure out the amount of calculations needed to be done for the following phases.
The test �le is created before this and closed and, if set to do so, deleted afterwards.

• Non-blocking test. This phase is the testrun using the emulated write function pre-
sented in 6.1.1 is executed. This phase creates and opens the needed �les and runs the
test a user-de�ned number of times. The total execution time, the average di�erence
between the I/O operation and the calculation of the individual iterations and average
I/O and calculation times are measured.

• Blocking test. This phase is the testrun using the original blocking write operation
MPI_File_write(...) provided by the MPICH2 implementation. It executes the write
operation and the calculations one after the other the same amount of times as done in
the phase using non-blocking I/O. The same times are measured in this phase as done
in the previous one although the average time di�erence here is not important for the
judgement of the testrun. But it can be used to see if the times of the two operations
diverge in comparison to the non-blocking version.
This phase also opens and, if set to do so, deletes the test �le used.

• Results. This phase summarizes all times and values measured in the previous phases
and creates the following output values. These are written to a �le called results.txt

by the process with the process id 0 if possible and to the standard output if not. The
data is formated in a tab seperated format, providing the following information from left
to right. If written to �le the data is added as a new line at the end of the �le in order
to allow automatic execution of a series of tests which save the results to one �le.

� reduce_p_time: The average time needed for the version using non-blocking I/O.
In the source code of the benchmark this is referred to as the parallel version with
reference to concurrent execution of I/O and calculation.

� reduce_s_time: The average time needed for the version using blocking I/O. In
the source code of the benchmark this is referred to as the sequential version with
reference to the execution of I/O and calculation one after the other.

� reduce_ps_time: The average of the time di�erences between the non-blocking
version and the blocking version of the test.

� reduce_p_time / reduce_s_time: The ratio de�ned and presented in chapter
5.3.1:
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non− blocking version
blocking version

� p_reduce_average_calc_time: The average time needed for calculations in the
version using the emulated write operation.

� s_reduce_average_calc_time: The average time needed for calculations in the
version using the blocking I/O operation MPI_File_write(...).

� p_reduce_average_io_time: The average time needed for one execution of the
write operation inside the emulated I/O operation.

� s_reduce_average_io_time: The average time needed for one execution of the
write operation in the version using the blocking I/O routine.

� p_reduce_average_time_di�erence: The average di�erence of the time
needed to write using the emulated function E_MPI_File_iwrite(...) and the
time needed to exectue the corresponding block of calculations. These are times for
concurrent execution of the two parts.

� s_reduce_average_time_di�erence: The average di�erence of the time
needed to write using the blocking I/O routine and the time needed to calculate
the corresponding block of calculations. These are times measured for operations
exectued one after the other.

� size: The number of processes used in the testrun. All processes write to the same
�le and execute the same amount of calculations.

� elements: The number of elements in the bu�er used for the write operations. Here
each element is one MPI_BYTE. Therefore the number of elements is the number of
bytes which are written by each process in each iteration.

� iterations: The number of iterations calculations and I/O are executed in the
phases Non-blocking test and blocking test. Therefore the number of bytes
written in total in the test to the �le used for these phases can be calculated by:

Bytes written to file = size ∗ elements ∗ iterations

� �ll_elements: The number of elements in the bu�er used for the write operations
in the auxiliary function write_fill_buffer(...).

� �ll_iterations: The amount of times each process writes to the �le used to �ll the
I/O bu�er on the I/O server side. The amount of data written to the �le system
each time the bu�er is �lled can be calculated by:

Bytes written to fill file = size ∗ fill_elements ∗ fill_iterations

The names of the values here are identical to the names of the variables in the source code
used to save these values. A variable with reduce as part of its name always means that
it is an average of the value from all processes. A p as part of the name implicates the
value has been measured during the phase using non-blocking I/O and a s in the name
means the value is part of the results of the phase using the blocking write operation.

6.1.4 Benchmark usage

use [...] a way in which sth can be used [6]
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When running the benchmark there are a series of options which can be provided in order to
in�uence benchmark behavior.
Also some values can be set before the source code is compiled. Furthermore di�erent scenarios
of the benchmark can be created by external in�uences such as the choice of number of processes
used when starting the benchmark and the kind of parallel �le system used as well as the number
of I/O servers used in case �le system like PVFS2 is used.

<name of binary> [-d] [-f �lename] [-F �ll_�lename] [-h] [-H hints]
[-i iterations] [-s elements] [-I �ll_iterations]
[-e �ll_elements] [-m margin]

-d Toggle delete �les on close.
(Default: false)

-f The name of the �le used for the test.
(Default: pvfs2:///pvfs2/test_�le)

-F The name of the �le used to �ll I/O server bu�er.
(Default: pvfs2:///pvfs2/�ll_�le)

-h Display help.
-H Hints provided to the MPI-IO calls in the form key=value.
-i Number of times the test repeats I/O and calculation blocks.

(Default: 10)
-s Number of elements of bu�er used to write to test �le.

(Default: 10485760)
-I Number of times each process writes to I/O server bu�er.

(Default: 10)
-e Number of elements of bu�er used to �ll I/O server bu�er.

(Default: 104857600)
-m Margin acceptable for di�erence in I/O and calculation times in seconds.

(Default: 0.02)

Figure 6.6: Command line options of benchmark

The two values needed to be set before compiling the source code are the values MAX_TRIES

and MIN_TRIES which are used in the auxiliary function int get_workload(...) presented in
chapter 6.1.2.
When �guring out how many iterations of the calculation part are needed to last as long as
the concurrently executed I/O operation, the function iteratively adjusts the original value.
This is done at least MIN_TRIES times and until the average time di�erence on each process
has dropped under the de�ned margin (see below) but at most MAX_TRIES times.

A lot of di�erent parts of the benchmark can be in�uenced by use of command line arguments.
These include bu�er sizes, number times the test repeats I/O and calculation blocks and the
amount of data written to �ll the bu�er of the I/O system. Furthermore the margin used for
the function calculating the workload can be set. Figure 6.6 explains the possible parameters
in more detail. The defaults here can be changed in the source code before it is compiled.
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6.2 The test environment

The test environment for this paper will be computer cluster located at the Ruprecht

Karls University of Heidelberg, Germany. It is the research cluster of the research group
Parallel and Distributed Systems.

The cluster consists of 10 nodes. One node acts as the master node, hosts the home directories
of the cluster users and is the access point for users to the cluster. The nodes, named node1 to
node9, can be split into compute nodes (node6 to node9) and especially equipped I/O nodes
(node1 to node5). The cluster runs Debian Sarge (Linux 2.6.19-5-pvs) as the operating system.
The details of the setup are as follows:

Common components

• Two Intel Xeon 2GHz CPUs

• Intel Server Board SE7500CW2

• 1 GB DDR-RAM

• 80GB IDE HDD

• CD-ROM Drive

• Floppy Disk Drive

• Two 100-MBit/s-Ethernet-Interfaces. These interfaces are not used)

• Two 1-GBit/s-Ethernet-Interfaces. One of these interfaces is used for the cluster network.

• 450 Watt Single Power Supply

Special hardware of master node

• 80 GB IDE HDD used to host the users home directories. The home directories are
accessible on all nodes by use of the network �le system NFS.

• 2nd 1-GBit/s-Ethernet-Interface used for external network connection. This connection
is the only access point for users to the cluster.

Special hardware of I/O nodes

• RAID-Controller Promise FastTrack TX

• RAID0 (Striping): Two 160 GB S-ATA HDDs. This raid system is used for the I/O
system of the test runs in this paper. The pvfs2-servers can be run on node1 to node5 in
order to provide disk space on these hardware I/O devices.
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6 A non-blocking I/O benchmark

Special hardware used in the cluster network

• D-Link DGS-1016: The cluster nodes are connected using the 1-GBit/s-Ethernet-
Interface connected through a D-Link DGS-1016 switch. The switch supports 10,100
and 1000 Mbit connections and has 16 ports available.

No additional hardware is used for the compute nodes (node6 to node9).
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test [...] a trial or an experiment intended to show whether sth works or works well
[6]

7.1 Planning the tests

plan [...] to consider sth in detail in advance [6]

The previous chapters of this paper gave a short introduction to high performance cluster
computing and presented the idea of benchmarking. Then the concept of non-blocking I/O
operations was presented and di�erent scenarios have been discussed. All these scenarios
examined situations in applications where the use of non-blocking I/O in theory promises
a performance gain in comparison to the same application using blocking I/O routines. A
benchmark has been implemented and described which is supposed to be used as a test to
show whether this method works in order to reduce overall execution times. Interesting of
course is not only the question if the execution time of an application can be reduced but also
if the potential suggested in theory can be exploited well.
The presentation of the available parameters one can use to tune the benchmark behavior
together with the presented scenarios indicates that a lot of di�erent tests can be planned and
executed. In order to �nd out if the use of non-blocking I/O really can provide the bene�ts
suggested in theory and if so how much really is possible, a series of tests is planned and
presented in the following chapters.
Since these are the �rst tests to be done here, they are all based on the scenario presented in
chapter 5.3.4 and aim at verifying the theory, the fact that the program can actually represent
the needs of applications of this scenario and at showing what can actually be achieved.

7.1.1 The client side

When planning the test runs and looking at the client side of the application, a lot of decisions
have to or can be taken. These include amongst others how much data should be written,
how often and, more important for the �rst tests, how many processes should take part in the
benchmark.
When looking at the available test environment described in section 6.2 one can see that the
nodes used for computation have 2 CPUs each and that 4 nodes are available. While each node
can also be con�gured to use only one CPU this setup is good for the �rst round of tests. The
second set of tests will be run on nodes con�gured to be single processor nodes and will be
representing the scenarios where the performance boost comes by making use of unused CPU
cycles during the I/O operation. Both versions will be discussed in a little more detail in the
following paragraphs.
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1 Client per 2-CPU node

Running one client process on a seperate node providing 2 CPUs each will help to prove if a
performance boost can actually be achieved and will represent applications which for reasons
of memory usage can only use 1 process per node even when 2 CPUs per node are provided.

For this set of tests 3 di�erent numbers of processes have been selected. 1 process will show
if a performance boost can be achieved without having more than one process access the �le
used to save the data. 2 and 4 processes will show if the total execution time can be reduced
when writing to one �le using more than one process.

Verifying the program

This set of tests is above all used to verify theory and the question if the implemented bench-
mark can actually represent it.
The discussions on the di�erent scenarios in chapter 5 often assumed that when switching from
blocking I/O to non-blocking I/O, the times for the write operation and the blocks of calcula-
tion respectively do not change. This is very unlikely if not impossible when running the tests
on a node where both threads have to use 1 CPU. But in case 2 CPUs are provided and are
available for the one process only, both threads can use all CPU cycles of one of them in both
phases of the benchmark. This setup therefore best represents the idea of the theory using this
assumption.

Due to the fact that less changes in these times are expected in this setup, it can also be
used to see how much of the promised reduction in execution time can really be obtained with
this benchmark. The hope is for some testrun to provide a ratio of non-blocking version /

blocking version of 0.5 to make sure that it is not the fault of the benchmark in case this
is not achieved when running the other tests.

1 Client per 1-CPU node

For scenarios which are more CPU intensiv and which allow only for one CPU per process the
times of each operation will most likely change between the two phases of the benchmark. Here
both threads executing in parallel have to make use of one CPU and compete for the available
CPU cycles. For this set of tests the same numbers of processes will be used as in the previous
setup.
This setup probably is the more realistic one representing the majority of the applications being
run on computer clusters and having to do I/O regularly. The hope here is that the di�erence
between performance gains here and performance gains in the previous setups and in theory
are small.
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7.1.2 The I/O-server side

When looking at the I/O server side of the benchmark the con�guration of the parallel �le
system used has be decided upon.
In this case here the parallel �le system PVFS2 is used and the test environment provides for
5 nodes which can be used as I/O nodes in this case. Since for the client side the number of
processes used are 1, 2 and 4 it has been decided to use the same numbers for the number of
nodes providing the storage devices and running the pvfs2-servers.
Important for the testruns is that the amount of data written to �ll the memory available on
the nodes hosting the I/O servers is enough to �ll the memory all pvfs2-server nodes used.

7.1.3 Summary of planned tests

Taking all this into consideration the number of tests planned is a combination of 3 numbers
of client processes, 2 setups of CPUs per node and 3 numbers of nodes hosting I/O servers.

Number of tests = 3 * 2 * 3 = 18

In addition to these tests one more setup on the client side will be considered and tested.
Using 2 CPUs per node 8 processes will be used. For this setup only 2 and 4 I/O nodes will
be tested.

For each scenario a series of tests will be run and in order to judge the quality of the single
test runs, i.e. how exact the individual test run �nds a workload matching the I/O in the
non-blocking phase of the test, only test runs are judged which have a ratio of average time

difference / average I/O time in blocking version of less than 0.11.
This is done because the test runs with a bigger ratio here do not represent the scenario well
enough.

7.2 Test runs and their results

This chapter will present the results of all the test runs made. The tests have been prepared in
the previous chapter and their results will be shown here individually. The following chapter
8 will compare the results with the expectations discussed in the chapter on non-blocking I/O
operations and their semantics (for more information on this see 5). It will also be responsible
for a more detailed overview of the results and will attempt to present a ranking of the tests.
Here the focus is more on individual tests and their results.

In order to get a �rst idea of the results Figures 7.1 and 7.2 show a �rst summary of the obtained
results. Figure 7.1 presents the results for the tests run with 1 process on a node providing
2 CPUs and �gure 7.2 presents the results for the tests where each process is executed on a
cluster node running with 1 CPU.
Both �gures show the ratio of non-blocking version / blocking version for each results.
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Figure 7.1: Overview over test results for test with 2 CPUs per process

Important here is that a smaller number means a greater performance boost has been
obtained.
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Figure 7.2: Overview over test results for test with 1 CPUs per process

As can be seen already the results show that performance gains are really achievable and the
benchmark provided can get close to the optimum as shown in �gure 7.1 for the test using 1
client and 4 I/O servers.

For a view of the tests di�erent amounts of data to be written have been chosen and have been
tested. Since the results of di�erent bu�er sizes to be written didn't seem to provide great
di�erences in performance gains they have not been distinguished in the presentation of the
results. The results of these runs mixed with each other when looking at one test executed
with di�erent amounts of data to be written.
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Presented will be the following information for the series of tests made for each version:

• Average ratio non-blocking version / blocking version: This value is the indica-
tor for how much execution time has been saved for the test scenario when changing from
blocking I/O to non-blocking I/O . This average is the average over all times the test has
been executed. For more information on this number see chapter 5.3.1.

• Maximum ratio non-blocking version / blocking version: This value is the re-
sult of the test execution run which showed the worst test result. The maximum ratio
is identical to the least performance boost.

• Minimum ratio non-blocking version / blocking version: This value is the result
of the test execution run which showed the best test result. The minimum ratio is
identical to the best performance boost seen during repetition of the individual test.

• Average ratio average time difference / average I/O time in blocking version:
This value indicates the quality of the test runs. It is the ration between average time

difference between I/O and calculation in the non-blocking phase of the benchmark

and average I/O time in the non-blocking phase of the benchmark. Therefore it
shows how many percent of the average I/O time in the non-blocking test the I/O time
and calculation time di�ered in average. The average is taken over all tests run for the
corresponding setup.

• Maximum ratio average time difference / average I/O time in blocking version:
This value indicates the quality of the worst test run for the corresponding setup.

• Minimum ratio average time difference / average I/O time in blocking version:
This value indicates the quality of the best test run for the corresponding setup.

• Ratio calculation time non-blocking version / calculation time blocking version:
This value indicates the change of execution time for the calculation part of the bench-
mark. It is an average over all executions of one test. The value is to be interpreted as
follows:

� A number greater than 1 indicates that the calculation takes longer in the non-
blocking version. The greater the value the greater the time di�erence.

� A number equal to 1 indicates that the calculation takes an equal amount of times
in both test phases.

� A number smaller than 1 indicates that the calculation can terminate faster when
non-blocking I/O is used.

• Ratio I/O time non-blocking version / I/O time blocking version: This value
indicates the change of execution time for the I/O part of the benchmark in the two
phases using non-blocking I/O and blocking I/O routines. It is an average over all
executions of one test. The value is to be interpreted the same way as the previous value
for the di�erence in calculation times.

The maximum and minimum values are provided in order to see in between which range the
values �uctuated.
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7.2.1 1 Client per 2-CPU node

This section will present the results of the test runs for the scenarios using 2 CPUs on each
node and running 1 process per node.
The performance gain ratio is between 0.5307 for 4 I/O servers and 1 client and 0.6800 for 1
I/O server and 2 clients.

1 I/O server - 1 client process

Average ratio 0.5996
Minimum speedup 0.6680

Maximum speedup 0.55137

Average quality 0.001039

Minimum quality 0.002709

Maximum quality 0.000006344

Ratio of calculation times 1.007591

Ratio of io times 1.03158

1 I/O server - 2 client processes

Average ratio 0.6800
Minimum speedup 0.7781

Maximum speedup 0.5962

Average quality 0.01858

Minimum quality 0.1080

Maximum quality 0.00009491

Ratio of calculation times 1.007822

Ratio of io times 1.8051

1 I/O server - 4 client processes

Average ratio 0.6335
Minimum speedup 0.7229

Maximum speedup 0.5740

Average quality 0.01870

Minimum quality 0.09406

Maximum quality 0.000004928

Ratio of calculation times 0.9983

Ratio of io times 1.4639
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2 I/O servers - 1 client process

Average ratio 0.5474
Minimum speedup 0.5508

Maximum speedup 0.5455

Average quality 0.06381

Minimum quality 0.07299

Maximum quality 0.04719

Ratio of calculation times 1.0972

Ratio of io times 1.009457

2 I/O servers - 2 client processes

Average ratio 0.6456
Minimum speedup 0.7447

Maximum speedup 0.6064

Average quality 0.05619

Minimum quality 0.0875

Maximum quality 0.007106

Ratio of calculation times 1.04926

Ratio of io times 1.2079

2 I/O servers - 4 client processes

Average ratio 0.6607
Minimum speedup 0.6888

Maximum speedup 0.6394

Average quality 0.03496

Minimum quality 0.1027

Maximum quality 0.005776

Ratio of calculation times 1.03191

Ratio of io times 1.3512

4 I/O server - 1 client process

Average ratio 0.5307
Minimum speedup 0.5329

Maximum speedup 0.5295

Average quality 0.002536

Minimum quality 0.003890

Maximum quality 0.0008469

Ratio of calculation times 1.1143

Ratio of io times 0.9987
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4 I/O server - 2 client processes

Average ratio 0.5812
Minimum speedup 0.5924

Maximum speedup 0.5720

Average quality 0.0682

Minimum quality 0.1091

Maximum quality 0.009083

Ratio of calculation times 1.1073

Ratio of io times 1.05680

4 I/O server - 4 client processes

Average ratio 0.5722
Minimum speedup 0.6092

Maximum speedup 0.5447

Average quality 0.05869

Minimum quality 0.1016

Maximum quality 0.0008741

Ratio of calculation times 1.07032

Ratio of io times 1.0714

7.2.2 1 Client per 1-CPU node

This section will present the results of the test runs for the scenarios using 1 CPU on each
node and running 1 process per node.
The performance gain ratio is between 0.6671 for 4 I/O servers and 4 clients and 0.7484 for
4 I/O servers and 2 clients.

1 I/O server - 1 client process

Average ratio 0.6878
Minimum speedup 0.7022

Maximum speedup 0.6779

Average quality 0.02621

Minimum quality 0.06697

Maximum quality 0.004474

Ratio of calculation times 1.08635

Ratio of io times 1.5089
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1 I/O server - 2 client processes

Average ratio 0.7477
Minimum speedup 0.7579

Maximum speedup 0.7304

Average quality 0.04449

Minimum quality 0.06699

Maximum quality 0.03350

Ratio of calculation times 1.05761

Ratio of io times 1.9682

1 I/O server - 4 client processes

Average ratio 0.7282
Minimum speedup 0.7557

Maximum speedup 0.6951

Average quality 0.01933

Minimum quality 0.02690

Maximum quality 0.01492

Ratio of calculation times 1.04296

Ratio of io times 1.9720

2 I/O servers - 1 client process

Average ratio 0.7345
Minimum speedup 0.7394

Maximum speedup 0.7314

Average quality 0.08720

Minimum quality 0.0985

Maximum quality 0.07429

Ratio of calculation times 1.2925

Ratio of io times 1.5230

2 I/O servers - 2 client processes

Average ratio 0.6887
Minimum speedup 0.7124

Maximum speedup 0.6646

Average quality 0.02330

Minimum quality 0.03195

Maximum quality 0.01874

Ratio of calculation times 1.1861

Ratio of io times 1.3360
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2 I/O servers - 4 client processes

Average ratio 0.7031
Minimum speedup 0.7873

Maximum speedup 0.6205

Average quality 0.04264

Minimum quality 0.08455

Maximum quality 0.009949

Ratio of calculation times 1.1695

Ratio of io times 1.4517

4 I/O servers - 1 client process

Average ratio 0.7308
Minimum speedup 0.7329

Maximum speedup 0.7290

Average quality 0.06618

Minimum quality 0.07484

Maximum quality 0.05927

Ratio of calculation times 1.4495

Ratio of io times 1.3642

4 I/O servers - 2 client processes

Average ratio 0.7484
Minimum speedup 0.7529

Maximum speedup 0.7432

Average quality 0.08203

Minimum quality 0.09922

Maximum quality 0.06636

Ratio of calculation times 1.3288

Ratio of io times 1.5259

4 I/O servers - 4 client processes

Average ratio 0.6671
Minimum speedup 0.6748

Maximum speedup 0.6619

Average quality 0.07209

Minimum quality 0.07950

Maximum quality 0.06463

Ratio of calculation times 1.2501

Ratio of io times 1.2962
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7.2.3 Extra: 8 clients on 4 2-CPU nodes

This section will present the results of the test runs for the scenarios using 2 CPU on each
node and running 2 processes per node.
The performance gain ratio is between 0.7246 and 0.7360. All tests here are using 8 clients
on 4 compute nodes.

2 I/O servers - 8 client processes

Average ratio 0.7246
Minimum speedup 0.7576

Maximum speedup 0.7021

Average quality 0.03180

Minimum quality 0.06695

Maximum quality 0.009745

Ratio of calculation times 1.0580

Ratio of io times 1.7273

4 I/O servers - 8 client processes

Average ratio 0.7360
Minimum speedup 0.7823

Maximum speedup 0.6735

Average quality 0.05417

Minimum quality 0.08923

Maximum quality 0.03100

Ratio of calculation times 1.1415

Ratio of io times 1.6815
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Possible perfomance gains by switching from blocking I/O routines to non-blocking I/O rou-
tines have been discussed. A benchmark has been implemented and run in order to see how
actual results would be in comparison to the values expected after looking at the theory. The
individual result of the test runs have been presented and each scenario has shown at least
some kind of performance gain as presented in chapter 7.2. In order to get a better overview
of the results presented, this chapter will sum up results and discuss a few di�erent numbers.
It will sum up what as been seen and will compare the results to the expectations presented
in chapter 5.

All in all the expectations for all scenarios tested suggested that the possible performance boost
can be described by the ratio of non-blocking version / blocking version and that the
expectations of all scenarios are expected to be in between the values 0.5 and 1.0 for this
number. This means that performance gains were expected for all scenarios which has been
proven to be correct by the tests presented in the previous chapter. All average ratios have
been inside this interval.

0.5 <
non− blocking version

blocking version
< 1.0

Figure 8.1: Expected interval for results

In the following section will discuss the results which will be split up into the two goups made
up by number of CPUs used for one benchmark process. It will try to analyze trends in the
result and talk about changes in times for I/O and calculation respectively when switching
between the two I/O versions.
The �nal section of this chapter will present a list of all results sorted by the average ratio of
non-blocking version / blocking version.

8.1 Comparison of individual results

8.1.1 1 Client per 2-CPU node

This series of tests was presented in chapter 5.3.4 and made the assumption that there are no
times for either I/O or calculation parts when switching from one version of I/O to the other.
It also represents the applications which have 2 CPUs available for each application process.
Due to this fact the results were expected to be close to the maximum speedup possible.
The test results of these tests also were expected to show that if the scenario allows for maximum
speedup, the benchmark can actually achieve that.
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Figure 8.2: Results for tests run on nodes providing 2 CPUs for 1 process

The latter has been shown with the results of the tests using 4 I/O servers and 1 client process
which itself was executed on a node providing 2 CPUs. The best result here was a ratio of
0.5295 and the average speedup turned out to be not much worse with a ratio of 0.5307. Also
the other test runs using 2 CPUs per node and more than one client process were not too far
of the possible maximum.

Figure 8.2 shows all results for these tests.

All results were better than a ratio of 0.6800 and over half of the results proved to be lower
than 0.6.

Interesting are the numbers representing the changes in I/O times and calculation times re-
spectively when switching from blocking I/O to non-blocking I/O. While most of the numbers
suggest an increase in times it is very small in most cases. A few test results even implicate that
the execution of one part has been faster when using non-blocking I/O. This of course is not
possible in theory but those really small time di�ences can be the result to external in�uences
as CPU use by the operating system or monitoring tasks on the cluster. This explains how in
individual cases a lower time can be seen for those cases.

Using trace tools provided with the MPICH2 implementation of the MPI standards and
the work of the resarch group Parallel and Distributed Systems at the Ruprecht Karls

University, Heidelberg, who added a lot of functionality concerning traces on the I/O side
of an application, the following �gures 8.3 and 8.4 have been created.
Figure 8.3 shows a few iterations of the blocking phase of a test run using 1 I/O server and
2 client processes. As this group of test runs implicates, 2 CPUs have been available on each
node running one of the two processes.
Figure 8.4 shows a few iterations of the non-blocking phase of the same test run.

The upper two lines represent the two client processes, the lower line the behavior of the I/O
server.
The orange phases on the client side represent the time in which calculation takes place. The
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Figure 8.3: 2 CPUs per node - blocking I/O phase of a test using 1 I/O server and 2 client
processes

dark red phase represents the time the client process spends inside the call to MPI_File_write(...).
While this call is done in the usual way in the blocking version, MPI_File_write(...) is called
inside the E_MPI_File_iwrite(...) function implemented for the presented benchmark.
Due to the fact that concurrent events in one client process are presented one behind the other,
the calculation part in the non-blocking version is hidden mostly behind the I/O part. Nev-
ertheless one can see the calculation part in between some of the I/O iterations, showing that
both times are in fact more or less equal.

One can see nicely that the I/O phases take about the same amount of time in each version.
The same goes for the calculation blocks. This proves nicely the theory of no time change in
between the two versions when 2 CPUs per process are provided.

All in all these numbers show that when using 2 CPUs for one process of the benchmark the
theoretical behavior of no time change is represented and the average ratios show that results
close to the expected optimum can be achieved.

8.1.2 1 Client per 1-CPU node

The group of tests executed in a test environment which provides 1 CPU per node used for
computation and running 1 benchmark process on each compute node is the more interesting
of the two test groups. Most applications are expected to not have the luxury to use 2 CPUs
on one node for each process executed on that node.
These tests were presented in chapter 5.3.4 and did not make the assumption that the times
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Figure 8.4: 2 CPUs per node - non-blocking I/O phase of a test using 1 I/O server and 2 client
processes

needed to complete the two parts of the benchmark stay the same when being executed in
parallel. Here the hope was for unused CPU cycles during the I/O operation which could be
used by the calcualtion part. These free CPU cycles arise from use of techniques like direct
memory acces and would be waisted waiting when using blocking I/O operations.

Due to times for the I/O server to free memory for caching data to be written during times
when the client processes do calculations in the blocking version of the benchmark, the I/O
operations are expected to �nish faster in this version than when non-blocking routines are
used. Also overhead arising from the need to switch between the threads during execution on
one processor was expected to in�uence execution time di�erences.
Nevertheless the theory still allowed for performance gains to be achieved by making use of the
non-blocking write operation, even when these gains were expected to be smaller than in the
previously presented test group.

Figure 8.5 gives an overview of the results of this test group.

As already has been shown when looking at the individual scenario results, all tests have
provided some kind of speedup. The least speedup still presenting an average ratio of
non-blocking version / blocking version lower than 0.75. While the best result with
at ratio of 0.6671 is not as good as the best results shown in the previous test group, it is still
better than the worst result there.

Interesting again is the change in time needed for I/O and calculations respectively when
changing the I/O version. While in the previous test group the changes have been small to
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Figure 8.5: Results for tests run on nodes providing 1 CPU for 1 process

none, this test group shows, as expected, bigger di�erences.
Especially the I/O times increased when changing from blocking I/O to the non-blocking write
operation. In most cases the I/O time ratio was even bigger or equal to 1.5.
While calculation time changes show less alterations, they are still changing more than in the
tests using 2 CPUs for each benchmark process.

Again examples of the execution of a test of this group of tests is provided in �gures 8.6 and
8.7. Here each process was, as implicated by this group of tests, executed on a node providing
1 CPU. The test run used 4 I/O servers and 4 client processes.
The �rst 4 lines labeled 0, 1, 2 and 3 represent the behavior on the client side. One can see
again the calculation part represented by the orange blocks and the write operation represented
by the dark red blocks.
The last 4 lines labeled 100, 101, 102 and 103 represent the behavior of the 4 I/O servers.

As the numbers in the results show one can see that the I/O times are larger in the non-
blocking version. Here the time di�erences show an increase ratio of non-blocking I/O time

/ blocking I/O time of about 1.25. The exact numbers of the test run shown here are
presented in the following table.

Non-blocking version / blocking version 0.6494
Quality ratio: 0.08234

Ratio of calculation times 1.2394

Ratio of io times 1.2408

But while the indivdual times do increase, in some cases more than just a little, does the use
of non-blocking I/O still provide a performance gain when looking at the overall execution
times.
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Figure 8.6: 1 CPU per node - blocking I/O phase of a test using 4 I/O servers and 4 client
processes

8.1.3 Extra: 8 clients on 4 2-CPU nodes

As a mixture of the two previous test groups a few tests have been run which use compute
nodes providing 2 CPUs each. These tests ran 2 application processes on each node using 4
compute nodes in total. The 8 benchmark processes used 4 I/O servers in one test group and
2 I/O servers in the other.
The overview of the test results of the two test series was given in chapter 7.2.3.

Due to the fact that each benchmark process has the same amount of CPU resources, i.e. 1
CPU per process, as in the test group providing 1 CPU per node the expectations were that
the performance gains would be somewhere in the same area as there.
But while the same amount of CPU resources per process was provided, one cannot neglect the
fact that another important cluster resouce changed in this scenario. Here two processes had
to use the same network interface card and therefore share the network resources which in the
other tests were available for each process. This could in�uence execution behavior since here
more data has to be sent to the I/O server throught the same connection as before.

The numbers presented in the previous chapter show that the results of this group of tests
really is in the scope of the test runs using 1 CPU per node. While the calculation times only
change a little bit, the I/O times grow quite a bit when switching from blocking I/O to the
non-blocking write operation.

All in all one can say that for this still small number of benchmark processes and the relatively
large number of I/O servers provided for those the network connection provided was still able
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8 Comparing expectations with results

Figure 8.7: 1 CPU per node - non-blocking I/O phase of a test using 4 I/O servers and 4 client
processes

to satisfy the needs of the benchmark in a way which allows for non-blocking I/O operations
to speed up overall execution times in comparison to their blocking counterparts. As suggested
in chapter 10 the use of more processes and if available the use of an symmetric multiprocessor
environment providing more than 2 processors per node can be an interesting scenario for future
examinations.

58



8 Comparing expectations with results

8.2 Ranking of results

The following list presents all test scenarios ordered by the average result all executions of one
test scenario provided.

Number of CPUs Number of I/O Number of client Average results
per node servers processes

2 4 1 0.5307490000
2 2 1 0.5474842500
2 4 4 0.5722641250
2 4 2 0.5812520000
2 1 1 0.5996916842
2 1 4 0.6335783243
2 2 2 0.6456498333
2 2 4 0.6607702500
1 4 4 0.6671947500
2 1 2 0.6800488333
1 1 1 0.6878722000
1 2 2 0.6887297500
1 2 4 0.7031473333
2 2 8 0.7246107500
1 1 4 0.7282810000
1 4 1 0.7308408000
1 2 1 0.7345192000
2 4 8 0.7360940000
1 1 2 0.7477625000
1 4 2 0.7484068000
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9 Non-blocking I/O on "Poor people's
clusters"

9.1 Theory and expectations

While all previous discussions of non-blocking I/O operations and all previous tests have been
done assuming that the cluster used has a dedicated part for hosting the I/O system, this is
not always the case.
Small research groups, di�erent departments of businesses or private people might not have
the resources to by and con�gure a big cluster and to equip part of it with special I/O devices.
These groups might just connect some of the shelf computers and install open source software
to create a small personal cluster without special hardware for e.g. a RAID system. The
applications run on small clusters might need all available processors and especially need to
make use of the hard discs provided in the cluster nodes. Even if the cluster nodes might be
equipped with a RAID system it might be necessary to use all nodes to run all parts necessary:
The I/O servers and the client processes.

In order to �nd out if setups like this can also make use of non-blocking I/O operations, the
benchmark has been run on a subpart of the available cluster using only the I/O nodes to host
both the pvfs2-servers and the benchmark processes.
First these nodes were used providing 2 CPUs each and then some tests have been run with
all parts of the benchmark using one CPU on each node only. In the non-blocking phase this
now means that I/O server, calculation thread and I/O thread need to compete for the single
CPU resource.
The results of the tests will be presented in the following sections.

Before the tests are run and results are looked at some points about expectations for these
tests should be mentioned.
The maximum speedup possible of course does not change in theory and it might be possible
that the speedup matches the ratio of 0.5. The results presented this paper so far suggest that
this of course might not be the case and that there are reasons to expect a behavior worse than
the best case.
The previous tests showed that the calculation part of the benchmark can use time during the
I/O part when using non-blocking I/O operations in order to provide a better total execution
time. This can be done even when the two threads compete for one available CPU. The question
in the scenario where I/O server and client processes are executed on the same nodes is whether
the additional need for CPU by the I/O server still enables this or if blocking I/O would be
the better choice in this situation. But while the additional CPU usage by the I/O server
in�uences the non-blocking phase of the benchmark, it also in�uences the part using blocking
I/O operations. The overall time needed to run an application on a cluster with less resources
such as only 1 CPU per node and the fact that the I/O server also competes for those, will
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9 Non-blocking I/O on "Poor people's clusters"

increase. Therefore it might be possible that while overall execution time increases, the use of
non-blocking I/O still can help in keeping it from increasing to far.
The following tests will show if the execution of all parts of the system on the same nodes will
still bring perfomance gains and if so, how much.

9.2 Results

9.2.1 2-CPU nodes with 1 I/O-server and 1 client process

The following tables show the results for the test runs using 2 CPUs per node and executing
benchmark and I/O server on the same nodes of the cluster. The results show that this scenario
also allows for reduction in execution times by switching from blocking I/O to the non-blocking
write operation.

2 I/O servers - 2 client processes

Average ratio 0.7556
Minimum speedup 0.7760

Maximum speedup 0.7355

Average quality 0.03411

Minimum quality 0.05782

Maximum quality 0.009799

Ratio of calculation times 1.4314

Ratio of io times 1.1735

4 I/O servers - 4 client processes

Average ratio 0.7899
Minimum speedup 0.8300

Maximum speedup 0.7637

Average quality 0.07003

Minimum quality 0.08789

Maximum quality 0.03590

Ratio of calculation times 1.5052

Ratio of io times 1.3172

9.2.2 1-CPU nodes with 1 I/O-server and 1 client process

The following tables show the results for the test runs using 1 CPU per node and executing
benchmark and I/O server on the same nodes of the cluster.
The results show that again a reduction in application execution time can be achieved. Very
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9 Non-blocking I/O on "Poor people's clusters"

interesting is that the results for 2 nodes shows that a lot of time has been saved when switching
from blocking I/O write to the non-blocking counterpart. While the absolute execution time
of this scenario was a lot longer than all the other execution times of the di�erent scenarios
presented so far, it shows that if one has to work with a setup which runs I/O server and client
application on the same nodes which provide only 1 CPU per node, the use of non-blocking I/O
can nearly cut in half the execution time. Of course in this case it might be better to change
the execution environment in order to reduce absolute I/O time but concerning the potential
of non-blocking I/O operations it shows that its use can really help in both cases: In case a
pretty good execution environment can be provided, but also in cases where this cannot be
done.

Average ratio 0.5783
Minimum speedup 0.5936

Maximum speedup 0.5716

Average quality 0.05133

Minimum quality 0.08288

Maximum quality 0.03573

Ratio of calculation times 1.08561

Ratio of io times 1.1208

Average ratio 0.7418
Minimum speedup 0.7615

Maximum speedup 0.7211

Average quality 0.009700

Minimum quality 0.01604

Maximum quality 0.0003914

Ratio of calculation times 1.1294

Ratio of io times 1.9594
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10 Future work

While the provided thoughts on non-blocking I/O operations and the implemented benchmark
showed that non-blocking I/O operations not only could bring a performance boost but also
that is actually does, this is only a �rst step in the examination of this version of doing I/O. A
lot di�erent aspects can be distinguished and more detailed examinations can be done. Some
of these are the following.

• In the chapter on non-blocking I/O operations and their semantics di�erent scenarios have
been presented. While the scenario where I/O and calculation take the same amount of
time when executed concurrently is the one which promised the best performance boosts,
it is not the only one presented. Not all applications need to do more or less the same
amount of data access and calculations but rather are either I/O or calculation intensive.
As discussed in chapter 5 the latter scenarios could also save some time by using non-
blocking I/O operations.
This should be tested and veri�ed. Also it could be analyzed at what ratio of I/O to
calculation it does not help any more to use non-blocking operations.

• In order to discuss non-blocking I/O and to analyze performance gains made possible by
it, only the non-collective write operation has been used. Other forms of doing I/O such
as collective operations can be analyzed. The collective I/O operations de�ned in the
MPI-IO standard are called split collective operations [2]. Also the read operations are
a candidate for analyzation and could also promise performance gains when used in the
non-blocking versions.

• Furthermore more detailed tests can be done using di�erent kinds of access patterns.
Also the di�erent in�uences of amount of data to be accessed in each I/O operation on
the performance gains can provide a series of interesting tests.

• Last but not least all scenarios and tests should be run on a bigger computer cluster using
more nodes. While the presented tests do show that non-blocking I/O has the potential
to save overall execution times it coud be very interesting how the benchmark behavior
changes when scaled to greater numbers.

The benchmark code provided has been written in a way which should allow for easy adjustment
and adding of new tests.
The command line parameters in�uence variables and bu�ers which can be interesting for a lot
of di�erent future tests. The actual test implemented has been written in a way which allows
for new tests to be added which allows for a non-blocking I/O benchmark suite to emerge.
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11 Conclusion

While optimizations and modernizations in computer systems are very important in the struggle
to minimize execution times for applications run on parallel computers, it has been shown that
they are not the only way to do so.
Non-blocking I/O operations and their semantics have been presented and the theory of possible
performance gains by making use of them have been discussed. The theory has been tested and
proved by the proposed benchmark and the results have been compared to the expectations
established when looking at the theory.

While the overall setup of the execution environment and optimizations e.g. in the used par-
allel �le system are very important to minimize I/O times and help to make sure that data
access does not slow down applications by becoming a bottleneck, it is not always possible to
switch to a better computer system. In order to still reduce the time an application needs
to terminate, the programmer can make use of non-blocking I/O operations like the emulated
E_MPI_File_iwrite(...) function proposed in this paper.
All scenarios tested showed a ratio of non-blocking version / blocking version lower than
0.75 and some scenarios even allowed for results close to the theoretical optimum. While for
applications with small execution times and very fast I/O systems this might not be much time
when looking at absolute numbers, it can be quite a bit for applications which take a long time
and have to deal with an I/O system which does not provide a good data access bandwidth.

All in all one can say that not only administrators and developers of used software layers such
as the parallel �le system can help in reducing the application execution times but also the
application programmers themselves can make better use of their available and valuable time on
computer clusters by changing from blocking I/O operations to their non-blocking counterparts
where possible.
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