INAUGURAL - DISSERTATION

zur
Erlangung der Doktorwürde
der
Naturwissenschaftlich-Mathematischen Gesamtfakultät
der
Ruprecht - Karls - Universität
Heidelberg

vorgelegt von
Diplom-Biologin Sandra Werner
aus: Lutherstadt Wittenberg
Tag der mündlichen Prüfung:

.................................
Thema

Effekt von endogenem und exogenem FGF-2 auf die hippocampale Neurogenese

Gutachter:

Prof. Dr. med. Klaus Unsicker
Prof. Dr. Christoph M. Schuster
Inhaltsverzeichnis

1 Zusammenfassung 14

2 Summary 16

3 Einleitung 17
 3.1 Adulte Neurogenese - Ein historischer Überblick 17
 3.2 Adulte Stammzellen 17
 3.3 Regulation der Neurogenese 18
 3.3.1 Die Subventrikularzone (SVZ) 18
 3.3.2 Der Hippokampus 20
 3.4 Molekulare Marker der Neurogenese der verschiedenen Entwicklungsstadien 23
 3.5 Faktoren, welche die Neurogenese beeinflussen 25
 3.5.1 Verhalten und Umgebung 25
 3.5.2 Endogene Faktoren 26
 3.6 FGF-2/FGFR und die adulte Neurogenese 27
 3.6.1 FGF-2 27
 3.6.2 FGF-Rezeptoren 28
 3.7 Neurogenese und Stress 29
 3.7.1 Präklinische Studien 29
 3.7.2 Klinische Hinweise für den Zusammenhang von Neurogenese und Depression 30
 3.7.3 Serotonin und Neurogenese 32
 3.7.4 Weitere Theorien 32

4 Fragestellung 34

5 Materialien 35
 5.1 Geräte und Zubehör 35
 5.2 Chemikalien, Kits und Assays 36
 5.2.1 Chemikalien 36
 5.2.2 Kits 38
 5.2.3 Assays 38
 5.3 Lösungen 38
 5.3.1 Immunhistochemie 38
5.3.2 Westernblot ... 39
5.3.3 Polymerase-Kettenreaktion (PCR) 40
5.3.4 Kultur- und Präparationsmedien 41

6 Methoden .. 42

6.1 Versuchstiere ... 42
6.1.1 FGF-2−/− Mäuse .. 42

6.2 Das Bulbektomie-Depressionsmodell 42
6.2.1 Bulbektomie ... 42
6.2.2 CVI - Cerebroventriculäre Injektion 42

6.3 Histologie .. 43
6.3.1 Perfusion .. 43
6.3.2 Immunhistochemie ... 43

6.4 Molekularbiologische Methoden 47
6.4.1 Genotypisierung der FGF−/− und FGF+/+ Mäuse 47
6.4.2 Präparation des Hippokampus 48
6.4.3 Präparation des Gyrus Dentatus 48
6.4.4 RNA-Isolation .. 48

6.5 cDNA-Synthese ... 49

6.6 Quantitative Real Time-PCR 50

6.7 Western blot .. 51
6.7.1 Proteinisolation ... 51

6.8 Slice Kulturen ... 54
6.8.1 Bestimmung der biologischen Aktivität des FGF-2 an murinen Fibroblastenkulturen ... 55
6.8.2 Nachweis der Diffusion des exogenen FGF-2 in hippokampalen Slice-Kulturen .. 55
6.8.3 Testen der biologischen Aktivität des FGF-2 neutralisierenden Antikörpers an murinen Fibroblastenkulturen 55
6.8.4 Testen der biologischen Aktivität des FGF-2 neutralisierenden Antikörpers mittels BrdU an murinen hippokampalen Slice-Kulturen 56
6.8.5 Laktatdehydrogenase Assay (LDH-Assay) 56
7 Resultate

7.1 Einfluss von endogenem und exogenem FGF-2 auf die adulte hippokampale Neurogenese

7.1.1 Fehlen des endogenen FGF-2 führt zur Reduktion der Neurogeneserate im Gyrus Dentatus von adulten FGF-2\(-/-\) Mäusen

7.1.2 Fehlen des endogenen FGF-2 hat unterschiedliche Effekte auf die mRNA-Expression der Neurogenese-Marker

7.1.3 Fehlen des endogenen FGF-2 hat ansteigenden Zelltod zur Folge

7.1.4 Fehlen des endogenen FGF-2 führt auf mRNA-Ebene zu einem signifikanten Anstieg der FGFR 1 Expression im DG adulter Mäuse

7.1.5 Fehlen des endogenen FGF-2 führt zu einem signifikanten Anstieg der FGFR 1 Protein-Expression im DG adulter Mäuse

7.1.6 Testen des in dieser Arbeit verwendeten FGF-2: Exogenes FGF-2 erhöht die Proliferation muriner Fibroblasten in Kultur

7.1.7 Testen des verwendeten FGF-2 an Slice-Kulturen: Behandlung hippokampaler Slices mit exogenem FGF-2 führt zum Anstieg der BrdU positiven Zellen im DG

7.1.8 Durch die Zugabe von exogenem FGF-2 zu hippokampalen FGF-2\(-/-\) Slice Kulturen kann die Zahl neuronaler Progenitorzellen nicht gesteigert werden

7.1.9 LDH-Assay - Exogenes FGF-2 hat keinen signifikanten Effekt auf den Zelltod in hippokampalen Slice-Kulturen

7.1.10 Testen des verwendeten neutralisierenden Antikörpers - Der neutralisierende FGF-2 Antikörper reduziert die Proliferation muriner Fibroblasten

7.1.11 Vorversuche zur Bestimmung der optimalen Konzentration und Dauer des neutralisierenden FGF-2 Antikörpers in murinen hippokampalen Slice-Kulturen

7.1.12 Keine Verringerung der Neurogenese in hippokampalen FGF-2\(+/+\) Slices nach der Behandlung mit dem FGF-2 neutralisierenden Antikörper

7.1.13 Keine Erhöhung des Zelltodes in hippocampalen FGF-2\(+/+\) Slices nach der Behandlung mit dem FGF-2 neutralisierenden Antikörper

7.2 Einfluss des Alters auf die adulte hippokampale Neurogenese
INHALTSVERZEICHNIS

7.2.1 Neurogenese im Gyrus Dentatus nimmt im Alter dramatisch ab, ist aber unabhängig vom endogenen FGF-2 .. 74

7.3 Zusammenhang zwischen Depressionen und hippocampaler Neurogenese 75

7.3.1 Weder die Antidepressiva Amitriptylin oder Citalopram noch die Applikation von FGF-2 können die Neurogenese depressiver Tiere signifikant steigern .. 75

8 Diskussion .. 77

8.1 Reduktion der hippocampalen Neurogenese im DG von FGF-2⁻/⁻ Mäusen . . 77

8.2 Erhöhter Zelltod in den hippocampalen Slice-Kulturen der FGF-2⁻/⁻ Mäuse . 78

8.3 Das Fehlen des endogenen FGF-2 führt zum Anstieg der FGFR 1 mRNA und des Proteins ... 79

8.4 Exogenes FGF-2 hat in FGF-2⁻/⁻ Slice-Kulturen keinen Einfluss auf die Neurogenese ... 80

8.5 Exogenes FGF-2 verringert nicht den Zelltod im Hippokampus der FGF-2⁻/⁻ Mäuse 82

8.6 Blockade des endogenen FGF-2 in den Slice-Kulturen der FGF-2⁺/+ Mäuse hat keinen Einfluss auf die Neurogeneserate .. 83

8.7 Blockade des endogenen FGF-2 in den Slice-Kulturen der FGF-2⁺/+ Mäuse führt nicht zum erhöhten Zelltod .. 84

8.8 Altern führt zur Reduktion der Neurogenese sowohl in FGF-2⁺/+ Mäusen als auch in FGF-2⁻/⁻ Mäusen - Endogenes FGF-2 scheint die Neurogenese im Alter nicht mehr zu beeinflussen .. 85

8.9 Amitriptylin, nicht aber Citalopram kann die Neurogenese bulbektomierter Tiere beeinflussen .. 86

8.10 FGF-2 appliziert in bulbektomierte Tiere beeinflusst die Neurogenese 89

9 Schlussfolgerung .. 92

9.1 Einfluss des endogenen und exogenen FGF-2 auf die hippocampale Neurogenese 92

9.2 Einfluss des Alterns auf die hippocampale Neurogenese und die Rolle des endogenen FGF-2 im Alter .. 92

9.3 Depression und Neurogenese .. 93

10 Publikationen ... 94
INHALTSVERZEICHNIS

11 Literaturverzeichnis 95

11 Danksagung 118
Abbildungsverzeichnis

1. Das SVZ-OB-System .. 19
2. Neurogenese im DG .. 21
4. FGFR-Domänen .. 29
5. Indirekte Immunfluoreszenz .. 43
6. Hippokampus-Präparation ... 48
7. Laktatdehydrogenase Assay .. 57
8. Immunohistochemie der Neurogenesemarker im Gyrus Dentatus von adulten FGF-2⁺/+ und FGF-2−/− Mäusen 58
11. Zelltod-Bestimmung durch die Messung der LDH-Aktivität im Zellkulturmedium hippokampaler Slice-Kulturen von FGF⁺/+ und der FGF−/− Mäusen 61
14. Lichtmikroskopische Kontrolle der biologischen/mitogenen Aktivität des in dieser Arbeit verwendeten FGF-2 64
15. Kontrolle der biologischen/mitogenen Aktivität des in dieser Arbeit verwendeten FGF-2 durch die Bestimmung der Zellzahl 64
16. Testen des exogenen FGF-2 an Slice Kulturen 65
17. Anzahl der NeuroD positiven Zellen in hippokampalen P6 Slice-Kulturen ... 66
18. Anzahl der Calretinin positiven Zellen in hippokampalen P6 Slice-Kulturen ... 67
19. Zelltod-Bestimmung durch die Messung der LDH-Aktivität im Zellkulturmedium hippokampaler Slice-Kulturen von FGF⁺/+ Tieren, FGF⁻/⁻ Tieren und FGF⁻/⁻ Tieren, behandelt mit 20ng/ml FGF-2 68
20. Kontrolle der biologischen/mitogenen Aktivität des in dieser Arbeit verwendeten FGF-2 ... 69
<table>
<thead>
<tr>
<th>Abbildungsverzeichnis</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 Immunhistochemische Färbung der FGF-2+/+ Slices sowie der Slices behandelt mit 2,5 μg/ml FGF-2 neutralisierenden Antikörpern mittels eines Antikörpers gegen BrdU</td>
<td>70</td>
</tr>
<tr>
<td>22 Anzahl der BrdU positiven Zellen im DG von FGF-2+/+ Slices nach unterschiedlichen Inkubationszeiten mit dem FGF-2 neutralisierenden Antikörpern</td>
<td>71</td>
</tr>
<tr>
<td>23 Anzahl der NeuroD positiven Zellen im DG von FGF-2+/+ und FGF-2+/+ Slices behandelt mit 2,5 μg/ml neutralisierenden FGF-2 Antikörpern</td>
<td>72</td>
</tr>
<tr>
<td>24 Zelltod-Bestimmung durch die Messung der LDH-Aktivität im Zellkulturmedium von hippokampalen FGF-2+/+ und FGF-2+/+ Slices behandelt mit 2,5 μg neutralisierenden FGF-2 Antikörper</td>
<td>73</td>
</tr>
<tr>
<td>25 Immunohistochemie der Neurogenese-Marker im Gyrus Dentatus von adulten und alten FGF-2+/+ und FGF-2−/− Mäusen</td>
<td>74</td>
</tr>
<tr>
<td>26 Immunohistochemie der Neurogenesemarker im Gyrus Dentatus von FGF-2+/+ und FGF-2−/− Mäusen</td>
<td>75</td>
</tr>
<tr>
<td>27 Neuroplastizität und zelluläre Belastbarkeit bei Gemütskrankheiten</td>
<td>90</td>
</tr>
</tbody>
</table>
Tabellenverzeichnis

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Titel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Verwendete Geräte, Typbezeichnungen und deren Hersteller</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>Verwendete Chemikalien und deren Hersteller</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>Verwendete Kits und deren Hersteller</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>Verwendete Assays und deren Hersteller</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>Für die Immunohistochemie verwendete primäre Antikörper</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>Für die Immunohistochemie verwendete biotinylierte Antikörper</td>
<td>45</td>
</tr>
<tr>
<td>7</td>
<td>Für die Immunohistochemie verwendete sekundäre Antikörper</td>
<td>46</td>
</tr>
<tr>
<td>8</td>
<td>Für die PCR verwendete Primer, Sequenzen, Reaktionsbedingungen und Produkte</td>
<td>47</td>
</tr>
<tr>
<td>9</td>
<td>Für die RT-PCR verwendete Primer, Sequenzen, Reaktionsbedingungen und Produkte</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>Herstellung der Polyacrylamid Gele für den Western Blot</td>
<td>52</td>
</tr>
<tr>
<td>11</td>
<td>Für den Westernblot verwendete primäre Antikörper</td>
<td>53</td>
</tr>
<tr>
<td>12</td>
<td>Für den Westernblot verwendete sekundäre Antikörper</td>
<td>54</td>
</tr>
</tbody>
</table>
Symbolverzeichnis

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>µ</td>
<td>Mikro-</td>
</tr>
<tr>
<td>AS</td>
<td>Aminosäure</td>
</tr>
<tr>
<td>BDNF</td>
<td>brain derived neurotrophic factor</td>
</tr>
<tr>
<td>bHLH</td>
<td>basic Helix Loop Helix</td>
</tr>
<tr>
<td>bp</td>
<td>Basen-Paare</td>
</tr>
<tr>
<td>BrdU</td>
<td>Bromodeoxyuridin</td>
</tr>
<tr>
<td>CB</td>
<td>Cerebellum</td>
</tr>
<tr>
<td>cDNA</td>
<td>Copy DNA</td>
</tr>
<tr>
<td>CVI</td>
<td>Cerebroventrikuläre Injektion</td>
</tr>
<tr>
<td>Cy3</td>
<td>Cyanin 3</td>
</tr>
<tr>
<td>DAPI</td>
<td>4’,6-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DG</td>
<td>Gyrus Dentatus (Dentate Gyrus=DG)</td>
</tr>
<tr>
<td>DME</td>
<td>Dulbecco’s Modified Eagle’s Medium</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonucleinsäure</td>
</tr>
<tr>
<td>dNTP</td>
<td>2’Desoxyribonukleosid-5’-trisphosphat</td>
</tr>
<tr>
<td>EC</td>
<td>Entorhinaler Cortex</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamintetraessigsäure</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal like growth factor</td>
</tr>
<tr>
<td>EtBr</td>
<td>Ethidiumbromid</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>FGF-1</td>
<td>Fibroblast growth factor-1</td>
</tr>
<tr>
<td>FGF-2</td>
<td>Fibroblast growth factor-2</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>FGFR</td>
<td>Fibroblast growth factor receptor</td>
</tr>
<tr>
<td>g</td>
<td>Gramm, Erdbeschleunigung</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glyceraldehyd-3-phosphat Dehydrogenase</td>
</tr>
<tr>
<td>GFAP</td>
<td>Glial fibrillary acidic protein</td>
</tr>
<tr>
<td>Gr</td>
<td>Granuläre Neurone</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunglobulin</td>
</tr>
<tr>
<td>IGF-1</td>
<td>Insulin like growth factor-1</td>
</tr>
<tr>
<td>KCl</td>
<td>Kaliumchlorid</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>Monokaliumporphat</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>LDH</td>
<td>Laktatdehydrogenase</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>MDD</td>
<td>Major Depressive Disorder</td>
</tr>
<tr>
<td>MEM</td>
<td>Minimum Essential Medium</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Magnesium-Chlorid</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger-RNA</td>
</tr>
<tr>
<td>n.s.</td>
<td>nicht signifikant</td>
</tr>
<tr>
<td>Na₂HPO₄</td>
<td>Dinatriumorthophosphat</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>NaCl₂</td>
<td>Natrium-Chlorid</td>
</tr>
<tr>
<td>NaH₂PO₄</td>
<td>Natriumdihydrogenphosphat</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogramm</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>OB</td>
<td>Olfactory bulb</td>
</tr>
<tr>
<td>OSN</td>
<td>Olfaktorische sensorische Neurone</td>
</tr>
<tr>
<td>PAA</td>
<td>Polyacrylamid</td>
</tr>
<tr>
<td>PB</td>
<td>Phosphatpuffer</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphatgepufferte Salzlösung</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase-Ketten-Reaktion</td>
</tr>
<tr>
<td>PFA</td>
<td>Paraformaldehyd</td>
</tr>
<tr>
<td>PG</td>
<td>Periglomeruläre Neurone</td>
</tr>
<tr>
<td>pg</td>
<td>pico Gramm</td>
</tr>
<tr>
<td>PTSD</td>
<td>Posttraumatic Stress Disorder</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>rpm</td>
<td>Umdrehungen pro Minute</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Real-Time-PCR</td>
</tr>
<tr>
<td>sec</td>
<td>Sekunden</td>
</tr>
<tr>
<td>SEM</td>
<td>Standardfehler des Mittelwertes</td>
</tr>
<tr>
<td>Ser</td>
<td>Serin</td>
</tr>
<tr>
<td>SRI</td>
<td>Serotonin reuptake Inhibitor</td>
</tr>
<tr>
<td>SSC</td>
<td>standard saline citrat</td>
</tr>
</tbody>
</table>
Symbolverzeichnis

SVZ Subventrikuläre Zone

TA Transient amplifying cells

TAE Tris-Acetat-EDTA-Puffer

Tris Tris(hydrohymethyl)-aminomethan

u units

vs versus

ZNS Zentrales Nervensystem

°C Grad Celsius
1 Zusammenfassung

Ein klinischer Aspekt dieser Arbeit war die Untersuchung des Zusammenhanges zwischen Depressionen und Neurogenese. Es ist bekannt, dass sich während der Depression das hippokampale Volumen und auch die Neurogenese verringert. Mittels immunhistochemischer Studien konnten wir die Reduktion der Neurogenese in bulbektomierten Mäusen (Depressionsmodel) bestätigen. Da Serotonin in die Regulation der Depression involviert sein soll und auch einen mitogenen Effekt auf die Neurogenese zu haben scheint, haben wir den Effekt der Antidepressiva Amitriptylin und Citalopram untersucht. Nach der Behandlung der bulbektomierten Tiere mit diesen Antidepressiva konnten wir immunhistochemisch keine Steigerung der Neurogenese beobachten.
Da FGF-2, wie oben bereits beschrieben, die Neurogenese fördern soll, haben wir den Einfluss von FGF-2 auf die Neurogenese bulbektomierter Tiere untersucht. Die Applikation von FGF-2 in die Ventrikel bulbektomierter Tiere zeigte keinen signifikanten Effekt auf die Neurogenese. Zusammenfassend scheint FGF-2 ein bedeutender Faktor der Neurogenese zu sein, welcher weniger allein, sondern über die Involvierung in weitere Signalwege das Überleben der Zellen sowie deren Differenzierung und Migration fördert.
2 Summary

The literature describes the Fibroblast-Growth-Factor-2 (FGF-2) as one of the fundamental factors that is involved in regulating neurogenesis. Adult neurogenesis is mainly restricted to two areas in the brain, the subventricular zone (SVZ) and the subgranular zone (SGZ) of the dentate gyrus (DG). Many studies have investigated the influence of FGF-2 on cell proliferation. However, we were interested in studying the role of endogenous FGF-2 on proliferating, differentiating as well as migrating neurogenic cells in the DG. By immunohistochemical markers we could show that the loss of endogenous FGF-2 leads to a decrease in differentiating cells and results in an increase of cell death.

On the basis of organotypic hippocampal slices we were interested to investigate whether FGF-2 applied to slice cultures of FGF-2−/− mice could compensate for the reduction of neurogenesis and the increase in cell death. The results indicate that short-term treatment with FGF-2 was neither sufficient to compensate for the loss of FGF-2 nor able to prevent cell death seen in FGF-2−/− mice. Also the acute block of endogenous FGF-2 in FGF-2+/> mice using FGF-2 neutralizing antibodies did not induce a decrease in adult hippocampal neurogenesis.

Furthermore, we were interested in studying the influence of aging and FGF-2 in aged mice on hippocampal neurogenesis. By using immunohistochemical markers we found a dramatic decrease in neurogenesis during ageing. Endogenous FGF-2 seems to be less important for neurogenesis since we found no differences in the number of neurogenic cells in the DG of aged FGF-2+/> vs. FGF-2−/− mice.

One clinical aspect of this work was to investigate a possible link between depression and hippocampal neurogenesis. From the literature it is known that during depression a decrease in hippocampal volume as well as neurogenesis occurs. By using bulbectomized mice, as a model for depression, we observed a decrease in neurogenesis. Given that serotonin seems to be involved in regulating depression but also acts as a mitogen on neurogenic cells we investigated the effect of the antidepressants citalopram and amitriptylin on hippocamal neurogenesis. After treatment of bulbectomized mice with these antidepressants no significant increase in neurogenesis could be observed. Furthermore, we wanted to study the effect of FGF-2 on bulbectomized mice. The results show a slight increase of neurogenic cells in the DG of bulbectomized mice after FGF-2 treatment.

In summary FGF-2 is an important factor which seems to regulate neurogenesis more by involvement in other signaling pathways, than by its own.
3 Einleitung

3.1 Adulte Neurogenese - Ein historischer Überblick

3.2 Adulte Stammzellen

Als adulte Stammzellen, auch somatische Stammzellen genannt, werden undifferenzierte Zellen bezeichnet, die sich selbst erneuern und zu Zelltypen des entsprechenden Organs differenzieren können. Die Selbsterneuerung dieser Stammzellen kann zum einen durch symmetrische Zellteilung erfolgen, wobei zwei Tochterzellen gleichen Zelltypes entstehen. Zum anderen kann die
Selbsterneuerung durch asymmetrische Zellteilung erfolgen, wobei eine Tochterzelle identisch der Mutterzelle ist, die andere jedoch zu einem anderen Zelltyp differenziert. Während der Entwicklung durchlaufen Stammzellen des Neuroepithels eine, oder mehrere symmetrische Teilungen, gefolgt von mehreren asymmetrischen Teilungen.

3.3 Regulation der Neurogenese

3.3.1 Die Subventrikularzone (SVZ)

1. **Proliferation und Zelltypbestimmung**

 Die Proliferation findet in der SVZ statt. Die proliferierenden Zellen sind von TA-Zellen (transient amplifying cells) umgeben. Diese TA Zellen unterstützen die Proliferation der Stammzellen, indem sie sich 4-5 mal teilen, bevor sie zu unreifen Neuronen ausdifferenzieren.

2. **Migration**

 In der SVZ existieren „Kanäle“, die sogenannten Glia-Röhren (130) (93) (177). Innerhalb dieser Kanäle migrieren die unreifen Neurone, gepackt in eine kettenartige Struktur (vergleiche Abb. 1). Wenn die Neuroblasten den Bulbus Olfactorius erreicht haben, verlassen sie diese kettenartige Struktur.

3. **Integration**

 Die reifen Neurone differenzieren im OB zu granulären und periglomerulären Interneuronen (vergleiche Abb. 1).
Abb. 1: Schematische Darstellung eines Säugetiergehirns. Rechts ist der Bulbus Olfactorius (OB), links das Cerebellum (CB) dargestellt. Die SVZ befindet sich entlang der lateralen Ventrikel. Die jungen Neurone ordnen sich innerhalb der SVZ in kettenartigen Komplexen an. Viele der kettenartigen Komplexe sind mit dem Rostralen Migratorischen Strom (RMS) verbunden, welcher die jungen Neurone in den OB leitet. Im OB verteilen sich die jungen Neurone und reifen zu granulären und periglomerulären Neuronen. Olfaktorische sensorische Neurone (OSN); Büschelzellen (T); Mitralzellen (M); granuläre Neurone (Gr); periglomeruläre Neurone (PG). Abbildung verändert nach (125).

Außer zu dem OB können die Zellen der SVZ ebenso in Richtung Neocortex migrieren, wie zum Beispiel bei Mäusen beschrieben (75) (133). In den Glia-Röhren befinden sich Astroglia Zellen, welche GFAP sowie Vimentin und Nestin exprimieren (177) (178). Diese Moleküle sind wichtig für die Migration und Leitung der Neuroblasten auf ihrem Weg zum OB.
3.3.2 Der Hippokampus

1. **Proliferation und Zelltypbestimmung**

 Die Proliferation findet in der SGZ statt (vergleiche Abb. 2). Die proliferierenden Zellen sind von TA-Zellen (transient amplifying cells) umgeben. Diese TA-Zellen unterstützen die Proliferation der Stammzellen, in dem sie sich 4-5 mal teilen, bevor sie ausdifferenzieren.

2. **Migration**

 Viele Neurone sterben innerhalb der ersten 1-2 Wochen. Die überlebenden unreifen Neurone wandern in die granuläre Schicht des Gyrus Dentatus (107) (vergleiche Abb. 2).

3. **Integration**

Abb. 2: Schematische Darstellung der hippokampalen Formation. Die neuronalen Vorläuferzellen proliferieren und differenzieren in der subgranulären Zone des DG. Danach wandern die unreifen Neurone in die granuläre Zone des DG und differenzieren dort zu granulären Neuronen. Diese erhalten Eingänge vom EC (Lila) und projizieren in die CA3-Region via Moosfasern (Rot). Abbildung verändert nach (125).

Basierend auf der Morphologie können drei verschiedene Typen proliferierender Zellen unterschieden werden: (1) die radialen gliazell-ähnlichen Vorläufer (auch B-Zellen, oder Typ-1-Zellen genannt), (2) die Nestin-exprimierenden (Typ-2-) Zellen, denen Gliazell-Merkmale fehlen und (3) die Doublecortin positiven, Nestin-negativen (Typ-3-) Zellen (108). Ein Teil der Typ-3-Zellen werden postmitotisch und beginnen neuronale Marker zu exprimieren. Die reifen Neurone beginnen Calretinin zu exprimieren. Es wird vermutet, dass das der Zeitpunkt ist, an dem die neuen Neurone ihre Axone via Moosfasern in die CA3-Region senden (20). Die elektrophysiologischen

3.4 Molekulare Marker der Neurogenese der verschiedenen Entwicklungsstadien

Die neu geborenen Zellen im Gyrus Dentatus exprimieren während ihrer Reifung, Migration und Integration spezifische Marker. Anhand dieser ist es möglich, Zellen verschiedener Stadien der Neurogenese zu visualisieren und zu quantifizieren. Im folgenden sind die in dieser Arbeit verwendeten Marker dargestellt.

Abb. 3: Die Abbildung zeigt schematisch einen Ausschnitt aus dem Gyrus Dentatus. Zu sehen sind die granuläre und subgranuläre Zone. Des Weiteren sind die verschiedenen Entwicklungsstadien und die in diesen Stadien exprimierten Marker dargestellt. Abbildung verändert nach (45).

1. **Phosphohiston H3**

EINLEITUNG

2. NeuroD

3. Doublecortin

4. Calretinin

Die Expression der calcium-bindenden Proteine Calbindin, Pavalbumin und Calretinin ist im ZNS weit verbreitet. Diese Proteine werden oft als Marker verwendet, um bestimmte neuronale Zellpopulationen unterscheiden zu können (9). Es wird angenommen, jedoch kontrovers diskutiert, dass Calretinin Neurone schützt, in dem es beispielsweise nach einer Ischämie oder nach einem Trauma das Übermaß an intrazellulärem Calcium puffert (14) (123) (2) (119).
3.5 Faktoren, welche die Neurogenese beeinflussen

3.5.1 Verhalten und Umgebung

Neben der Manipulation der Umgebung und des Verhaltens sind auch pathologische Ereignisse bekannt, welche die Anzahl der granulären Zellen erhöhen: Verletzungen des Hippokampus (172) (12), Ischämien (128) und mechanische Läsionen (78).

Die Proliferation der Zellen im DG kann durch verschiedene Faktoren, wie Stress oder ansteigende Glukokortikoid-Level, inhibiert werden (24) (76) (143).
3.5.2 Endogene Faktoren

Die adulte Neurogenese kann durch verschiedene Faktoren beeinflusst werden, beispielsweise durch genetische Faktoren, Wachstumsfaktoren, Neurotransmitter, Stress, Hormone, das Alter und nicht zuletzt durch Umweltfaktoren.

Es konnte gezeigt werden, dass Neurotransmitter die Proliferation, Migration und das Überleben neuronaler Stammzellen beeinflussen (24). Die Applikation von NMDA-Rezeptor-Antagonisten führt postnatal zu einem Anstieg der Proliferation granulärer Vorläuferzellen (77). Dies lässt vermuten, dass das glutamaterge NMDA-Rezeptorsystem normalerweise als Inhibitor der Neurogenese fungiert (208).

Auch Hormone können an der Regulation der Neurogenese beteiligt sein. Adrenale Homonkonzentrationen sind umgekehrt proportional zur Neurogenese im DG. So führen verminderte Kortikosteroid Konzentrationen im DG von Ratten zu einem Anstieg der Neurogenese granulärer Zellen. Auch durch die operative Entfernung der Nebennierenrinde kommt es zum Anstieg der Neurogenese. Dieser Anstieg kann durch die Zugabe von Kortikosteroiden wieder reduziert werden (76).

Es konnte gezeigt werden, dass die Wachstumsfaktoren die Proliferation der Stamm-/Progenitorzellen in vitro und in vivo beeinflussen. Zwei Wachstumsfaktoren, die im Zusammenhang mit der adulten Neurogenese diskutiert werden, sind BDNF (Brain derived neurotrophic factor) und IGF-1 (Insuline-like growth factor-1). Durch die Applikation von BDNF konnte ein Anstieg der Neurone im OB und in anderen Gebieten beobachtet werden. Auch in vitro kann BDNF die neuronale Stammzellproliferation steigern (175) (192).

Adulte transgene Mäuse, welche IGF-1 überexprimieren, zeigten einen Anstieg granulärer Neurone. Auch in vitro konnte beobachtet werden, dass IGF-1 als Mitogen auf Stammzellen wirkt (127).

Wie oben bereits erwähnt, sind auch die FGFs in die Regulation der Neurogenese involviert. Viele

3.6 FGF-2/FGFR und die adulte Neurogenese

3.6.1 FGF-2

Die Familie der FGFs umfasst 23 Mitglieder, wobei das Vorhandensein von 10 Mitgliedern im ZNS nachgewiesen werden konnte. Die FGFs haben ein Molekulargewicht von 17-34 kDa und sind sowohl bei Vertebraten als auch Invertebraten zu finden. Die meisten Mitglieder der FGFs teilen sich eine ähnliche Kernregion mit 28 hoch konservierten und 6 identischen Aminosäureresten (166).

Verschiedene Studien zeigen, dass die FGFs in verschiedenste Entwicklungsprozesse des ZNS involviert sind. Diese umfassen neben der Bestimmung des Zelltypes die Migration, die Differenzierung, das Überleben von Zellen sowie Reparaturmechanismen.

So konnte gezeigt werden, dass FGF-2 in einem frühen Entwicklungsstadium Auswirkungen auf die Länge des Zellzyklus dopaminerger Vorläuferzellen hat. Diese Verlängerung wurde durch die Verzögerung der Zelldifferenzierung kompensiert (19).

In der hippokampalen Formation unterstützt FGF-2 neben der Differenzierung (220) und dem

Auch das Cerebellum ist lang schon als Ort der Neurogenese bekannt. Wird FGF-2 in das Cerebellum neonataler Tiere injiziert, wird die Proliferation neuronaler Vorläuferzellen in der äußeren granulären Schicht stimuliert. Dies hat einen Anstieg der Neurone in der inneren granulären Schicht zur Folge (33).

Im peripheren Nervensystem konnte nachgewiesen werden, dass DRG (dorsal root ganglion)-Neurone zu bestimmten Zeitpunkten in ihrer Entwicklung FGF-2 benötigen. Eine Subpopulation der Neurone des peripheren Nervensystems benötigt für ihre Entwicklung zuerst NGF und anschließend FGF-2 (1).

Neben den vielen Experimenten am Tiermodell konnte auch beim Menschen die Neurogenese im Kortex, Hippokampus sowie in der Amygdala nachgewiesen werden (6).

3.6.2 FGF-Rezeptoren

Die FGFR Gene bestehen aus bis zu drei extrazellulären Ig-ähnlichen Domänen. Werden in der Schleife der Ig-Domäne Introns herausgeschnitten und/oder Exons eingefügt, können verschiedene Rezeptorvarianten entstehen, wie z. B. bei FGFR 1 und 3 (168) (18). Die erste und die zweite Schleife der Ig-Domäne sind getrennt durch eine Region bestehend aus Aminosäure-Resten (siehe Abb. 4). Diese AS-Region ist ein besonderes Merkmal der FGFR, zumal sie wichtig zu sein scheint für deren Funktion (30). Auch die Ligandenbindungsdomäne der FGFR besteht aus einzelnen Domänen (I, II und III) (siehe Abb. 4). Es wird davon ausgegangen, dass die Domäne I in der Lage ist, die Affinität der Ligandenbindung zu beeinflussen (203). Die Rezeptorregion, welche für die Spezifität der Ligandenbindung verantwortlich ist, befindet sich in der carboxyterminalen Hälfte der Ig-Domäne III. Diese 3. Domäne der FGFR1-3 kann entweder aus den Exons 7 und 8 (Isoform IIIb) oder aus den Exons 7 und 9 (Isoform IIIc) bestehen (97) (228) (8) (31) (siehe Abb. 4).
Abb. 4: Schematische Darstellung der FGFR-Domänen. Die FGFR 1-3 bestehen aus drei immunglobulinähnlichen Domänen (Ig I-III). Ig I und II sind getrennt durch eine Region aus Aminosäureresten. Die Rezeptoren besitzen eine Transmembranregion sowie intrazelluläre Tyrosinkinase-Subdomänen. Abbildung verändert nach (16).

Die FGF-Signalkaskade wird entweder direkt, indem das Protein an die tyrosinautophosphorylierte Seite des aktiven Receptors bindet, oder indirekt, indem Proteine durch FGFs tyrosinphosphoryliert werden, initiiert (53) (165). Wie bei anderen Rezeptortyrosinkinasen führt der Weg der Signaltransduktion über die Aktivierung verschiedener intrazellulärer Signalwege. Diese umfassen die direkte Aktivierung des MAPK- und phosphatidylinositol 3-Kinase-Signalwegs sowie die indirekte Aktivierung der Proteinkinase C, via Phospholipase C-γ (53) (193) (91) (120) (149).

3.7 Neurogenese und Stress

3.7.1 Prädlinische Studien

Dass Stress die Proliferation der Vorläuferzellen im DG des Hippokampus reduziert, ist in verschiedenen Studien gezeigt worden. Stresshormone scheinen hierbei eine wichtige Rolle zu spielen da Manipulationen der Glukokortikoide strukturelle und funktionelle Effekte auf die hippocampale Formation haben (144). Glukokortikoide scheinen ihre Effekte via NMDA Glutamat-

Zusammenfassend konnte also gezeigt werden, dass Stress die Neurogenese in vielen Spezies unterdrückt. Wahrscheinlich geschieht dies durch den Anstieg der Glukokortikoide im Gehirn und den daraus resultierenden Anstieg der Glutamat-Level.

3.7.2 Klinische Hinweise für den Zusammenhang von Neurogenese und Depression

3.7.3 Serotonin und Neurogenese

Die meisten Medikamente zur Behandlung der Depression wirken, indem die serotonerge Neurotransmission im Gehirn erhöht wird. In Experimenten, bei welchen die mitogenen Effekte des Fluoxetin auf die Zellen im DG untersucht wurden, haben einen Anstieg der Proliferation im DG gezeigt (113). Weitere Studien haben untersucht, ob es möglich ist, durch chronische Applikation von Antidepressiva die stress-induzierte, verringerte Neurogenese zu blocken oder umzukehren. Letztendlich wurde gezeigt, dass nicht nur Fluoxetine, sondern auch Antidepressiva, welche auf Noradrenalin wirken, und elektrokonvulsive Schocks die Zellproliferation im DG erhöhen (134).

3.7.4 Weitere Theorien

Blier und de Montigny vermuten, dass der Hippokampus eine entscheidende Rolle im Krankheitsbild der Depressionen spielt, da der Hippokampus zum einen in die Entstehung von Angstgefühlen (oft eine Vorstufe in Richtung Depression) und Gedächtnisprozesse involviert ist und zum anderen die Hypophysen- und Nebennierenprozesse zu regulieren scheint (150). Sie gehen davon aus, dass Antidepressiva in der Weise den Hippokampus beeinflussen, indem sie die Neurotransmission am Serotonin Receptor erhöhen und am β-adrenergen Receptor senken.

Watson et al. zeigten die Wichtigkeit der glukokortikoid-induzierten Abnahme des Serotonin-Rezeptors, da sie im Gehirn depressiver Patienten eine Abnahme der Serotonin-Rezeptor mRNA beobachten konnten (131).

Die stressbedingte Abnahme von BDNF führt zu Veränderungen der neuronalen Morphologie oder sogar zum Zelltod. Folglich gehen sie davon aus, dass die Depression von der Variation neurotropher Faktoren bestimmt wird, welche entweder das Überleben und die Funktion bestimmter Neurone im Hippokampus fördern oder inhibieren (46).
4 Fragestellung

Da FGF-2 in die Regulation der adulten Neurogenese involviert zu sein scheint und die Neurogenese auch im Zusammenhang mit Depression steht, haben wir versucht, den folgenden Fragestellungen nachzugehen.

1. Welchen Einfluss hat endogenes FGF-2 auf die adulte Neurogenese?
2. Unterstützt endogenes FGF-2 das Überleben hippokampaler Zellen?
3. Beeinflusst endogenes FGF-2 die FGFR Expression im DG adulter Mäuse?
4. Kann exogenes FGF-2 in FGF-2\(^{-/-}\) Mäusen die Neurogenese steigern?
5. Hat exogenes FGF-2 einen Effekt auf den Zelltod im Hippokampus von FGF-2\(^{-/-}\) Mäusen?
6. Welchen Effekt hat das akute Blocken des endogenen FGF-2 auf die Neurogenese?
7. Inwieweit beeinflusst der Alterungsprozess die Bildung neuer Neurone und ist die Neurogenese im Alter noch FGF-2 abhängig?
8. In verschiedenen Studien konnte nachgewiesen werden, dass Depressionen mit der Reduktion des hippocampalen Volumens sowie mit der Verringerung der hippocampalen Proliferation einhergehen. Verringert die Depression auch die Anzahl differenzierender und migrierender Zellen im DG?
9. Sind Antidepressiva und FGF-2 Injektion in der Lage, eventuell gesehene Effekte der Depression auf die adulte Neurogenese zu blocken oder umzukehren?
5 Materialien

5.1 Geräte und Zubehör

Tabelle 1: In der Tabelle 1 sind die in der Arbeit verwendeten Geräte sowie deren Typbezeichnungen und Hersteller dargestellt.

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Typbezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>15ml-Gefäß</td>
<td>PP-Test tubes</td>
<td>Greinerbio-one</td>
</tr>
<tr>
<td>50ml-Gefäß</td>
<td>PP-Test tubes</td>
<td>Greinerbio-one</td>
</tr>
<tr>
<td>Bench</td>
<td>Lamin Air HB 2472</td>
<td>Heraeus Instruments</td>
</tr>
<tr>
<td>Brutschrank</td>
<td>BNA 310</td>
<td>Uni Equip Laborgerätebau</td>
</tr>
<tr>
<td>Bunsenbrenner</td>
<td>Touch-o-matic</td>
<td>Hanau Egingergeraüe co. inc.</td>
</tr>
<tr>
<td>Deckgläschen</td>
<td>24x60mm microscope cover glasses</td>
<td>R. Langenbrinck Labor- und medizintechnik</td>
</tr>
<tr>
<td>Elektrophorese-Kammer</td>
<td>Horizon 11-14</td>
<td>Life Technologies</td>
</tr>
<tr>
<td>Gel Printer</td>
<td>P91D</td>
<td>Mitsubisji</td>
</tr>
<tr>
<td>Gel-Kamm</td>
<td>1.0mm, 1.5mm</td>
<td>Gibco</td>
</tr>
<tr>
<td>Gelkammer</td>
<td>Horizon</td>
<td>Gibco</td>
</tr>
<tr>
<td>Heizplatte</td>
<td>OTS40</td>
<td>BB medite Medizintechnik</td>
</tr>
<tr>
<td>Heizrührer</td>
<td>IKA RCT basic</td>
<td>IKA Werke</td>
</tr>
<tr>
<td>Konfokales Mikroskop</td>
<td>C1Si</td>
<td>Nikon</td>
</tr>
<tr>
<td>Lichtmikroskop</td>
<td>Axiovert 135 Tv</td>
<td>Zeiss</td>
</tr>
<tr>
<td>Membranen</td>
<td>0.4µl culture plate insert</td>
<td>Millipore</td>
</tr>
<tr>
<td>Objektträger</td>
<td>Super Frost Plus Objektträger</td>
<td>R. Langenbrinck Labor- und medizintechnik</td>
</tr>
<tr>
<td>Petrischalen</td>
<td>Cellstar 94/16mm</td>
<td>BB Greiner Labortechnik</td>
</tr>
<tr>
<td>Photometer</td>
<td>RS232C</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>QT-PCR-Computer</td>
<td>Dell PP01X</td>
<td>Applied-Biosystem</td>
</tr>
<tr>
<td>QT-PCR-Cycler</td>
<td>7000 sequence detection system</td>
<td>Applied-Biosystem</td>
</tr>
<tr>
<td>Schüttler</td>
<td>3005</td>
<td>GFL</td>
</tr>
<tr>
<td>Thermocycler</td>
<td>Mastercycler</td>
<td>Eppendorf</td>
</tr>
</tbody>
</table>
5.2 Chemikalien, Kits und Assays

5.2.1 Chemikalien

Tabelle 2: Die Tabelle gibt eine Übersicht über in dieser Arbeit verwendeten Chemikalien und deren Bezugsquelle.

<table>
<thead>
<tr>
<th>Name</th>
<th>Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammoniumperoxodisulfat (APS, 10%)</td>
<td>Fluka</td>
</tr>
<tr>
<td>β Mercaptoethanol</td>
<td>Sigma</td>
</tr>
<tr>
<td>10× PCR Puffer</td>
<td>Promega</td>
</tr>
<tr>
<td>Agarose</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Basal Medium Eagle (BME)</td>
<td>Gibco</td>
</tr>
<tr>
<td>Bromphenolblau-Granulat</td>
<td>Sigma</td>
</tr>
<tr>
<td>Bromphenolblau-Lösung</td>
<td>Promega</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>J. T. Baker</td>
</tr>
<tr>
<td>Citronensäure</td>
<td>AppliChem</td>
</tr>
<tr>
<td>Dieethylether</td>
<td>Zentrallager Im Neuenheimer Feld</td>
</tr>
<tr>
<td>Fetales Kälberserum (FCS)</td>
<td>Gibco</td>
</tr>
<tr>
<td>dNTPs</td>
<td>Promega</td>
</tr>
<tr>
<td>Dulbecco’s modified Eagle’s medium (DMEM)</td>
<td>Gibco</td>
</tr>
<tr>
<td>EDTA</td>
<td>Merck</td>
</tr>
<tr>
<td>Erststrang-Puffer</td>
<td>Promega</td>
</tr>
<tr>
<td>Ethidiumbromid</td>
<td>Sigma</td>
</tr>
<tr>
<td>Glukose</td>
<td>Sigma</td>
</tr>
<tr>
<td>Glycerin</td>
<td>AppliChem</td>
</tr>
<tr>
<td>Chemical</td>
<td>Supplier</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Glycerol</td>
<td>Riedel-de Haën</td>
</tr>
<tr>
<td>Glycin</td>
<td>Serva</td>
</tr>
<tr>
<td>KCl</td>
<td>J. T. Baker</td>
</tr>
<tr>
<td>KH$_2$PO$_4$</td>
<td>J. T. Baker</td>
</tr>
<tr>
<td>L-Glutamin</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Loading Dye</td>
<td>Promega</td>
</tr>
<tr>
<td>MgCl$_2$</td>
<td>Promega</td>
</tr>
<tr>
<td>Minimum Essential Medium (MEM)</td>
<td>Gibco</td>
</tr>
<tr>
<td>Mowiol</td>
<td>Calbiochem</td>
</tr>
<tr>
<td>Na$_2$HPO$_4$</td>
<td>Merck</td>
</tr>
<tr>
<td>NaCl</td>
<td>J. T. Baker</td>
</tr>
<tr>
<td>NaOH-Plätzchen</td>
<td>J. T. Baker</td>
</tr>
<tr>
<td>Natriumdodecylsulfat (SDS, 10%)</td>
<td>Serva</td>
</tr>
<tr>
<td>Oligonukleotide</td>
<td>Metabion</td>
</tr>
<tr>
<td>Orange G-Lösung</td>
<td>Promega</td>
</tr>
<tr>
<td>Paraformaldehyd</td>
<td>Riedel-de Haën</td>
</tr>
<tr>
<td>PCR Mastermix</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Pferdeserum</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>PSN</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Random Hexamer Primer</td>
<td>Promega</td>
</tr>
<tr>
<td>RNAse Inhibitor</td>
<td>Promega</td>
</tr>
<tr>
<td>TRIS</td>
<td>Roth</td>
</tr>
<tr>
<td>Triton-x</td>
<td>Merck</td>
</tr>
<tr>
<td>Tween 20</td>
<td>Sigma</td>
</tr>
<tr>
<td>Xylen-Cyanol-Lösung</td>
<td>Promega</td>
</tr>
</tbody>
</table>
5.2.2 Kits

Tabelle 3: Dargestellt sind die in der Arbeit verwendeten Kits und deren Hersteller.

<table>
<thead>
<tr>
<th>Kit</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>BuccalAmp<sup>TM</sup> DNA Extraction Kit</td>
<td>Epicentre</td>
</tr>
<tr>
<td>Go-Taq-Kit</td>
<td>Promega</td>
</tr>
<tr>
<td>RNeasy Mini Kit</td>
<td>Qiagen</td>
</tr>
</tbody>
</table>

5.2.3 Assays

Tabelle 4: Dargestellt sind die in der Arbeit verwendeten Assays und deren Hersteller.

<table>
<thead>
<tr>
<th>Assay</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>CytoTox 96 Non Radioactive Cytotoxicity Assay</td>
<td>Promega</td>
</tr>
</tbody>
</table>

5.3 Lösungen

5.3.1 Immunhistochemie

Phosphatgepufferte Kochsalzlösung (PBS):

137 mM NaCl
3 mM KCl
1,5 mM KH₂PO₄
6,5 mM Na₂HPO₄

Phosphatpuffer (PB) 0,1M pH 7,4:

19 mM NaH₂PO₄
81 mM Na₂HPO₄

Fixierlösung:

4% Paraformaldehyd in PB-Puffer
Floureszenz-Eindeckmedium:

2,4 g Mowiol
6 g Glycerol
12 ml Tris (0,2 M, pH 8,5)

5.3.2 Westernblot

Trisoxymethylaminometha (TRIS, 1,5M):

181,71 g TRIS in 1L Aqua dest.

Phosphatgepufferte Kochsalzlösung Tween 20 (PBST):

0,2% Tween in PBS

2x Lämmli-Puffer:

10 ml Glycerin (87%)
3,3 ml β Mercaptoethanol
20 ml Sodium dodecylsulfat (SDS, 10%)
6,25 ml TRIS (1,25 mM)
1 ml Ethylendiamintetraessigsäure (EDTA, 10 mM)
9,45 ml Aqua dest.

10x Lämmli-Laufpuffer:

30,3 g TRIS
144 g Gycin
10 g SDS
1 L Aqua dest.
10x Westernblot-Transferpuffer (WTB):

58,15 g TRIS
29,28 g Glycin
1 L Aqua dest.

5.3.3 Polymerase-Kettenreaktion (PCR)

50x Tris-Acetat-EDTA (TAE)-Puffer, pH 8,5:

242 g TRIS
57,1 ml Essigsäure
100 ml EDTA (0,5 M)
auf 1 L mit Aqua dest. auffüllen

DNA-Ladepuffer (6x):

1 ml Bromphenolblau-Lösung
1 ml Xylen-Cyanol-Lösung
2 ml Orange G-Lösung
4 ml EDTA (50 mM, 30%)
12 ml Glycerin

Ethidiumbromidlösung:

0,5 µg/ml Ethidiumbromid
1x TAE-Puffer
5.3.4 Kultur- und Präparationsmedien

Präparations-Medium (100 ml)

99 ml Minimum Essential Medium (MEM)
1 ml L-Glutamine (200mM)
pH 7,35

Slice Kultur-Medium (100 ml)

48 ml MEM (mit 25mM Hepes)
25 ml horse Serum
25 ml Basal Medium Eagle (BME)
1 ml 200mM L-Glutamine
1,45 Glucose (45%)
1 ml Penicillin, Streptomycin, Neomycin (PSN)
pH 7,2
6 Methoden

6.1 Versuchstiere

Alle Mäuse wurden unter Standardbedingungen, d.h. 12 Stunden Hell-Dunkel-Zyklus, Nahrung und Wasser ad libitum, gemäß des Tierschutzgesetzes gehalten. Die Tiere wurden in der Interfakultären Biomedizinischen Forschungseinrichtung der Universität Heidelberg gehalten und bei Bedarf von dort bezogen.

6.1.1 FGF-2\(^{-/-}\) Mäuse

6.2 Das Bulbektomie-Depressionsmodell

6.2.1 Bulbektomie

6.2.2 CVI - Cerebroventriculäre Injektion

6.3 Histologie

6.3.1 Perfusion

Die für die folgenden Versuche verwendeten Mäuse wurden mittels Diethylether narkotisiert. Nach der Eröffnung des Brustkorbes wurde der Kreislauf der Maus mit PBS gespült. Dazu wird eine Kanüle in die linke Herzkammer des Tieres gelegt und anschließend die Vena Cava durchtrennt (anschließende Paraformaldehyd (PFA)-Fixierung nur bei Tieren für die Depressionsstudien). Nach erfolgter Perfusion wurde der Kopf des Tieres abgetrennt und das Gehirn für weitere Versuche entnommen.

6.3.2 Immunhistochemie

Abb. 5: Dargestellt ist die Methode der indirekten Immunhistochemie. A stellt das Antigen dar, wogegen der erste Antikörper (magenta) gerichtet ist. Der zweite Antikörper (lila) ist gegen den Ersten gerichtet und wird mittels Streptavidin CY3 markiert.
Für die folgenden Experimente wurde die Methode der indirekten Immunfluoreszenz angewandt.

- **NeuroD, Doublecortin, Calretinin**

- **Phosphohiston H3**
 Für die Färbung mit dem Antikörper gegen Phosphohiston H3 mussten die Vibratomschnitte vorbehandelt werden. Zur Demaskierung des Antigens wurden diese in 0.01 M Citronensäure für 15 min bei 95°C gekocht. Anschließend wurden unspezifische Bindungsstellen geblockt. Die Schnitte wurden mit dem primären Antikörper Phosphohiston H3 (1:50) über Nacht bei 4°C inkubiert und anschließend, wie oben beschrieben, weiter behandelt.

- **BrdU**
 Die Schnitte (hippocampale Slice-Kulturen), behandelt mit 200 µM BrdU, wurden 3 mal mit PBS, 5 mM MgCl₂, 1 mM CaCl₂ gewaschen. Anschließend erfolgte die Inkubation der Schnitte mit DNase (10 mM), 5 mM MgCl₂, 1 mM CaCl₂ für 10 min bei RT. Nach drei Waschschritten mit PBS wurden die Schnitte für 60 min mit Blocking-Puffer behandelt. Danach erfolgte die Behandlung der Schnitte mit einem Antikörper gegen BrdU (1:60) bei 4°C über Nacht. Am nächsten Tag konnten die Schnitte dann, wie oben beschrieben, weiter behandelt werden.

Für die Auswertung der Vibratomschnitte wurden die Phosphohiston, NeuroD, Doublecortin und Calretinin postiven Zellen in der SGZ (subgranulären Zone) von 6 koronalen Schnitten ausgezählt.
Die in dieser Arbeit verwendeten primären, biotinylierten und sekundären Antikörper sind in den folgenden Tabellen dargestellt.

Primäre Antikörper

Tabelle 5: In dieser Tabelle sind die in der Immunohistochemie verwendeten primären Antikörper sowie deren Bezugsquellen dargestellt.

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziege anti-Doublecortin (N19) Antikörper</td>
<td>Santa Cruz, Deutschland</td>
</tr>
<tr>
<td>Kaninchen anti Calretinin Antikörper</td>
<td>Chemicon, Deutschland</td>
</tr>
<tr>
<td>Ziege anti-Neuro D (N19) Antikörper</td>
<td>Santa Cruz, Deutschland</td>
</tr>
<tr>
<td>Kaninchen anti-p-Histone H3 (Ser 10)-R Antikörper</td>
<td>Santa Cruz, Deutschland</td>
</tr>
<tr>
<td>Maus anti-BrdU Antikörper</td>
<td>Roche, Deutschland</td>
</tr>
</tbody>
</table>

Biotinylierte Antikörper

Tabelle 6: In dieser Tabelle sind die in der Immunohistochemie verwendeten biotinylierten Antikörper sowie deren Bezugsquellen dargestellt.

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>biotinylierter anti-Ziege IgG Antikörper</td>
<td>Vector, England</td>
</tr>
<tr>
<td>biotinylierter anti-Kaninchen IgG Antikörper</td>
<td>Vector, England</td>
</tr>
<tr>
<td>biotinylierter anti-Maus IgG Antikörper</td>
<td>Vector, England</td>
</tr>
</tbody>
</table>
Sekundäre Antikörper

Tabelle 7: In dieser Tabelle sind die in der Immunohistochemie verwendeten sekundären Antikörper sowie deren Bezugsquellen dargestellt.

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Bezugsquelle</th>
</tr>
</thead>
</table>
| biotinyliert anti-Ziege IgG Antikörper

\(\text{TM} \) | Jackson Immuno Research Laboratories. Inc, England |
6.4 Molekularbiologische Methoden

6.4.1 Genotypisierung der FGF\(^{-/-}\) und FGF\(^{+/+}\) Mäuse

Aus den Schwänzen der Mäuse wurde mit Hilfe des dem BuccalAmp\(^T\)M DNA Extraction Kits genomische DNA isoliert. Der Genotyp der Mäuse wurde mittels PCR bestimmt. Im folgenden sind die Oligonukleotide und der Ansatz der PCR dargestellt.

Ansatz für die PCR

\[15,25 \mu l \text{ Wasser} \]
\[0,5 \mu l \text{ dNTP (40 mM)} \]
\[1 \mu l \text{ MgCl}_2 \]
\[5 \mu l \text{ Puffer} \]
\[0,5 \mu l \text{ 3'-5'} (\text{WT}) \text{ Primer} \]
\[0,5 \mu l \text{ 5'-3'} (\text{WT}) \text{ Primer} \]
\[0,5 \mu l \text{ (Neo cassette) Primer} \]
\[0,25 \mu l \text{ Taq Polymerase} \]
\[1,5 \mu l \text{ Probe} \]

Tabelle 8: Die Tabelle zeigt die für die Genotypisierung der Mäuse verwendeten Primer. Dargestellt sind die Sequenzen und Produktgrößen der verwendeten Primer. Die Reaktionsbedingungen sind ebenfalls der Tabelle zu entnehmen.

<table>
<thead>
<tr>
<th>Genprodukt</th>
<th>Forward Primer-Sequenz(5'-3')</th>
<th>Reverse Primer-Sequenz(5'-3')</th>
<th>Annealing-Temp.</th>
<th>Produktgröße(bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT (Acc.Nr.: NT 162143.3)</td>
<td>GTTTCTAACTTTTCTCGCTGTGGG</td>
<td>CAATCTATGGGGGTCAAGCCTATGGGG</td>
<td>61°C</td>
<td>348</td>
</tr>
<tr>
<td>PGK-neo cassette</td>
<td>GATCTGGACGAAAGACATCAGGGG</td>
<td>CAATCTATTGGGGGTCAAGCCTATGGGG</td>
<td>61°C</td>
<td>840</td>
</tr>
</tbody>
</table>
6.4.2 Präparation des Hippokampus

Abb. 6: Dargestellt sind die Schritte zur Präparation des Hippokampus aus dem Gehirn einer Maus. Abbildung verändert nach (235).

6.4.3 Präparation des Gyrus Dentatus

Die Präparation des Gyrus Dentatus wurde mit einem Gewebe-Schneider durchgeführt. Dieser ermöglichte 400 \(\mu \text{m} \) dicke Schnitte des Hippokampus. Aus diesen wurde unter dem Lichtmikroskop der Gyrus Dentatus herauspräpariert.

6.4.4 RNA-Isolation

Das unfixierte Gewebe des Gyrus Dentatus wurde in 0,5 ml TRIZol/TriFast mechanisch zerkleinert. Danach wurde bis zu 1 ml Trizol aufgefüllt und für 5 min bei RT inkubiert. Pro ml TRIZol/TriFast wurden 2 ml Chloroform zum Ansatz pipettiert, anschließend gemischt und für 10 min bei RT inkubiert. Nach der Inkubationszeit wurden die Proben bei max. Geschwindigkeit
für 15 min bei 4°C inkubiert. Die obere wässrige Phase, in welcher sich die RNA befindet, wurde abgenommen und in ein neues 1,5 ml Tube überführt. Das Ausfällen der RNA erfolgte durch die Zugabe von 0,5 ml 2-Propanol pro ml TRIzol/TriFast und anschließendes Invertieren der Tubes. Die RNA wurde über Nacht bei -20°C ausgefällt. Am nächsten Tag wurden die Proben für 10 min (bei maximaler Geschwindigkeit) bei 4°C zentrifugiert, der Überstand abgenommen und das Pellet (RNA) mit 75% EtOH gewaschen. Die Proben wurden abermals bei max. Geschwindigkeit für 5 min bei 4°C zentrifugiert und der Überstand verworfen. Das Pellet wurde getrocknet. Nach dem Trocknen wurden zu den Pellets 40µl RNAse-freies Wasser pipettiert. Um das Pellet darin zu lösen, wurde dieser Ansatz für 10 min bei 55-60°C inkubiert.

6.5 cDNA-Synthese

Bei der cDNA Synthese dient die isolierte RNA als Template. Die Reverse Transkriptase ermöglicht, zusammen mit den Random Hexamers das Umschreiben der RNA in cDNA. Im folgenden ist der Reaktionsansatz der cDNA Synthese dargestellt.

Ansatz für die cDNA Synthese

2 µg RNA (max. 20µl)
0,5 µl RNAse Inhibitor
0,5 µl RQ1 DNAse

Dieser Ansatz wurde für 20 min bei 37°C und anschließend für 10 min bei 70°C inkubiert. Nach dem Abkühlen der Proben auf RT wurden außerdem

8 µl RNA first strand Puffer (5x)
4 µl dNTP (40 mM)
2 µl random hexamer Primer (500 ng/µl)
2 µl M-MLV (Reverse Transkriptase) (200 u/µl)
3 µl Wasser

dazu pipettiert. Dieser Ansatz wurde für 2 h bei 37°C und anschließend für 5 min bei 90°C inkubiert und bis zum weiteren Gebrauch bei -80°C eingefroren.
6.6 Quantitative Real Time-PCR

Die PCR ermöglicht die Amplifikation eines bestimmten Teils des DNA-Stranges. Die quantitative RT-PCR beruht auf dem Prinzip der herkömmlichen PCR, mit dem Unterschied, dass in die DNA interkalierende Farbstoffe eingelagert werden (SYBR Green), welche die Quantifizierung der PCR-Produkte ermöglichen. Für die quantitative RT-PCR wurde folgender Ansatz hergestellt:

Ansatz für die PCR

15 µl PCR-Mix
1 µl fw/rev Primer
11 µl Wasser
3µl cDNA

Für die quantitative RT-PCR wurden die verwendeten Proben 1:4 verdünnt. Die in dieser Arbeit verwendeten Primerpaare sind in der folgenden Tabelle dargestellt.

Tabelle 9: Die Tabelle zeigt die für die RT-PCR verwendeten Primer. Dargestellt sind deren Sequenzen und Produktgrößen. Die Reaktionsbedingungen sind ebenfalls der Tabelle zu entnehmen.

<table>
<thead>
<tr>
<th>Genprodukt</th>
<th>Forward Primer-Sequenz(5’-3’)</th>
<th>Reverse Primer-Sequenz(5’-3’)</th>
<th>Annealing-Temp.</th>
<th>Produktgröße(bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NeuroD2</td>
<td>ACGCAGAAGCTGTCCAAGAT</td>
<td>CCTGCTCCGTGAGGAAGTTA</td>
<td>60°C</td>
<td>199</td>
</tr>
<tr>
<td>(Acc.Nr.: NM010895)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doublecortin</td>
<td>TCCCCAACACCTCAAAAGAC</td>
<td>ATGGAATCGCCAAGTGATC</td>
<td>60°C</td>
<td>221</td>
</tr>
<tr>
<td>(Acc.Nr.: AY560329)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calretinin</td>
<td>TCCCCAACACCTCAAAAGAC</td>
<td>ATGGAATCGCCAAGTGATC</td>
<td>60°C</td>
<td>188</td>
</tr>
<tr>
<td>(Acc.Nr.: NM0075861)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FGFR-1</td>
<td>TCCCCAACACCTCAAAAGAC</td>
<td>ATGGAATCGCCAAGTGATC</td>
<td>53°C</td>
<td>856</td>
</tr>
<tr>
<td>(Acc.Nr.: NM001079908.1, 010206.2, 001079909.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FGFR-3</td>
<td>ACTGTAATCTCAAGACTGAGG</td>
<td>GTCCCTTGTGATGCATCAT</td>
<td>53°C</td>
<td>835</td>
</tr>
<tr>
<td>(Acc.Nr.: NM038010.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6 METHODEN

Das RT-PCR Programm für die Gene NeuroD, Doublecortin, Calretinin, 18S und β-Aktin war wie folgt: initiale Denaturierung für 3 min bei 95°C, Amplifikation der Produkte über 40-45 Zyklen durch Denaturierung bei 95°C für 30 Sekunden, Annealing für 30 Sekunden bei 60°C, Elongation für 30 Sekunden bei 72°C.

Das RT-PCR Programm für die Gene FGFR 1 und 3 beginnt mit einem Denaturierungsschritt bei 94°C für 45 Sekunden. Das Annealing erfolgte bei 53°C für 45 Sekunden, die Elongation bei 72°C für 120 Sekunden.

Die Amplifikation wurde durch die Messung der fluorometrischen Intensität des SYBR Green I am Ende jeder Elongationsphase verfolgt. Die Expression der beiden ‘housekeeping Gene’ (β-Aktin, 18S) wurde bestimmt, um die Menge der cDNA in jeder Probe zu normalisieren. Die Änderung der Anzahl der Zyklen (ΔCt) wurde normalisiert zu den Mittelwerten der beiden housekeeping Gene in dem ΔCtReferenzgen vom ΔCtZielgen substrahtiert wurde. Die PCR Produkte wurden anschließend über ein 1,5%iges Agarose Gel elektrophoretisch der Größe nach aufgetrennt.

6.7 Western blot

Der Western Blot oder auch Immuno Blot ist eine Methode bei welcher spezifische Protein aus einem Gewebe, oder Zellen extrahiert werden. Diese werden, dann der Länge, nach elektrophoretisch aufgetrennt, auf eine Membran geblottet und mittels spezifischer Antikörper detektiert.

6.7.1 Proteinisolation

Die Proteine wurden nach der DNA-Präzipitation aus der Phenol/Ethanol Phase durch die Zugabe von 1 ml Isopropanol präzipitiert. Anschließend wurden die Proben für 10 min bei RT inkubiert und danach für 10 min bei 4°C und 12,000xg zentrifugiert. Das dabei entstehende Proteinpellet wurde dreimal mit 2 ml 0,3 M Guanidinhydrochlorid / 95% Ethanol gewaschen und anschließend für 5 min bei 4°C und 7,500xg zentrifugiert. Im letzten Waschschritt wurde das Pellet in 2 ml 100% Ethanol aufgenommen, für 20 min bei RT inkubiert und danach für 5 min
bei 4°C bei 7,500xg zentrifugiert. Nach dem Trocknen der Pellets wurden diese in 1% SDS durch das Auf- und Abziehen mit der Pipette gelöst.

- **Polyacrylamid (PAA)-Gele**

Für die durchgeführten Versuche wurden 8% ige Gele gegossen, je nach Länge des zu untersuchenden Proteins.

Zusammensetzung der Polyacrylamid Gele

Tabelle 10: In dieser Tabelle ist die Zusammensetzung 8%iger Gele dargestellt

<table>
<thead>
<tr>
<th></th>
<th>8%ige PAA Gele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trenngel</td>
<td></td>
</tr>
<tr>
<td>Wasser</td>
<td>6,6 ml</td>
</tr>
<tr>
<td>40%iges PAA</td>
<td>4 ml</td>
</tr>
<tr>
<td>1,5M Tris</td>
<td>5ml</td>
</tr>
<tr>
<td>80%iges Glycerin</td>
<td>4 ml</td>
</tr>
<tr>
<td>SDS</td>
<td>200 µl</td>
</tr>
<tr>
<td>APS</td>
<td>200 µl</td>
</tr>
<tr>
<td>TMED</td>
<td>40 µl</td>
</tr>
<tr>
<td>Sammelgel</td>
<td></td>
</tr>
<tr>
<td>Wasser</td>
<td>7,2ml</td>
</tr>
<tr>
<td>40%iges PAA</td>
<td>1,3ml</td>
</tr>
<tr>
<td>1M Tris</td>
<td>1,25ml</td>
</tr>
<tr>
<td>SDS</td>
<td>100 µl</td>
</tr>
<tr>
<td>APS</td>
<td>200 µl</td>
</tr>
<tr>
<td>TMED</td>
<td>20 µl</td>
</tr>
</tbody>
</table>

In die Taschen des Sammelgels wurden jeweils 25 µl der zu untersuchenden Proben aufgetragen. Die Proteine wurden bei 20 mA aufgetrennt.

- **Protein-Transfer**

Nach dem vollständigen Auftrennen der Proteine wurden 6 Papierstücke Whatman-Paper
sowie eine PVDF-Membran vorbereitet. Die Membran wurde für 10 Sekunden in Methanol aktiviert. Das PAA Gel wurde wie folgt in eine Transferkammer überführt: auf 3 Whatman-Paper wurde die aktivierte Membran gelegt, darauf das Gel sowie nochmals drei Whatman-Paper. Der Transfer der Proteine auf die PVDF-Membran wurde 1,5 h bei 90 Volt und 4°C durchgeführt.

- **Blotten**

Die Membran wurde nach 1,5 h für 1 h mit 5%igen Milchpulver behandelt, um unspezifische Bindungsstellen zu blockieren. Anschließend erfolgte die Inkubation der Membran mit dem primären Antikörper (FGFR 1/3, 1:750; β-Aktin, 1:5000) über Nacht bei 4°C. Am nächsten Tag folgten mehrere Waschschritte der Membran mit PBST sowie die Inkubation mit dem HRP-gekoppelten sekundären Antikörper (1: 10000) für 1 h bei RT in 5%igen Milchpulver. Für die Detektion der Proteine auf der Membran wurde eine ECL (Enhanced Chemiluminescence) -Lösung hergestellt, mit welcher die Membran für 5 min inkubiert wurde. Die ECL-Lösung (Luminol) ist das Substrat, welches durch das Enzym HRP (Horseradish Peroxidase) zu Licht umgesetzt wird. Visualisiert wurden die Proteine mittels Foto-Film Entwicklung in der Dunkelkammer. In den folgenden Tabelle sind die für den Westernblot verwendeten primären und sekundären Antikörper aufgeführt.

Primäre Antikörper

Tabelle 11: In dieser Tabelle sind die für den Westernblot verwendeten primären Antikörper sowie deren Bezugsquellen dargestellt.

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaninchen anti Flg (C-15) Antikörper</td>
<td>Santa Cruz</td>
</tr>
<tr>
<td>Kaninchen anti FGFR 3 (C-15)</td>
<td>Santa Cruz</td>
</tr>
<tr>
<td>Maus anti β-Aktin Antikörper</td>
<td>Sigma</td>
</tr>
</tbody>
</table>
Sekundäre Antikörper

Tabelle 12: In dieser Tabelle sind die für den Westernblot verwendeten sekundären Antikörper sowie deren Bezugsquellen dargestellt.

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-Kanichen IgG, HRP gekoppelt</td>
<td>Cell Signaling</td>
</tr>
<tr>
<td>anti-Maus IgG, HRP gekoppelt</td>
<td>Sigma</td>
</tr>
</tbody>
</table>

6.8 Slice Kulturen

Für die Slice-Kultur Experimente wurden FGF\(^{+/+}\) und FGF\(^{-/-}\) Mäuse, im Alter von P5-P7 verwendet. Vor den Präparationen (Gehirn, Hippokampus) mussten zuerst Präparations- und Kultur-Medium angesetzt werden. Im Präparationsmedium wurde der Hippocampus herausgepräpariert. Mit dem ‚Tissue chopper‘ wurden 400 \(\mu\)m dicke Schnitte angefertigt. Schnitte, bei denen die CA1-, CA3-Region und der Gyrus Dentatus unter dem Mikroskop gut sichtbar waren, wurden auf eine Membran gelegt. Danach wurde je 1 ml Zellkulturmedium hinzu gegeben. Die Schnitte, behandelt mit FGF-2 (20 ng/ml), wurden für 12 Tage kultiviert, wobei das Medium alle drei Tage gewechselt wurde. Die Schnitte, behandelt mit dem FGF-2 neutralisierenden Antikörper, wurden für 4,5 Tage kultiviert. Nach 12 bzw. 4,5 Tagen wurden die Schnitte für 3 h mit 4 %igen PFA fixiert, für 30 min mit 1 %igen Triton, für 30 min mit dem jeweils spezifischen Blocking Puffer, und anschließend über Nacht bei 4°C mit den primären Antikörpern (NeuroD 1:300, Calretinin 1:2000, BrdU 1:60) inkubiert. Die weiteren Schritte der immunhistochemischen Färbungen wurden, wie zuvor schon beschrieben, durchgeführt. Die Auswertung der Schnitte erfolgte unter dem konfokalen Mikroskop mittels der Z-Stapel Technik, wobei alle 2 \(\mu\)m ein Foto des Slices aufgenommen wurde. Diese Fotos wurden im ImageJ (NIH, USA) zu einem Z-Projekt zusammengefügt. Anschließend wurde die Anzahl der neurogenetisch positiven Zellen in 3 Zählquadraten (250 \(\mu\)m\(^2\)) bestimmt. Durch die Ermittlung der gesamten Fläche des DG pro Schnitt (2 \(\mu\)m) konnten die positiven Zellen pro DG errechnet werden.
6.8.1 Bestimmung der biologischen Aktivität des FGF-2 an murinen Fibroblastenkulturen

6.8.2 Nachweis der Diffusion des exogenen FGF-2 in hippokampalen Slice-Kulturen

6.8.3 Testen der biologischen Aktivität des FGF-2 neutralisierenden Antikörpers an murinen Fibroblastenkulturen

6.8.4 Testen der biologischen Aktivität des FGF-2 neutralisierenden Antikörpers mittels BrdU an murinen hippokampalen Slice-Kulturen

6.8.5 Laktatdehydrogenase Assay (LDH-Assay)

Abb. 7: Dargestellt ist die Funktionsweise des LDH-Assays. LDH wird von apoptotischen/nekrotischen Zellen in das Zellkulturmedium abgegeben. LDH katalysiert die Oxidation von Laktat zu Pyruvat und gleichzeitig die Umwandlung von NAD\(^+\) zu NADH\(+H^+\). Die neu gebildete NADH Diaphorase katalysiert anschließend die Reduktion von Tetrazolium Salz zu roten Formazan. Abbildung verändert nach (92).

In dieser Arbeit wurde die LDH-Aktivität nach 3, 6, 9 und 12 Tagen in FGF-2\(^{+/+}\), FGF-2\(^{-/-}\) und FGF-2\(^{-/-}\)+20ng/ml FGF-2 Mäusen sowie alle 12 h in FGF-2\(^{+/+}\) und FGF-2\(^{+/+}\)+2,5 µg/ml FGF-2 neutralisierender Antikörper bestimmt (Durchführung nach Herstellerangaben).
7 Resultate

7.1 Einfluss von endogenem und exogenem FGF-2 auf die adulte hippocampale Neurogenese

7.1.1 Fehlen des endogenen FGF-2 führt zur Reduktion der Neurogeneserate im Gyrus Dentatus von adulten FGF-2−/− Mäusen

Um die verschiedenen Stadien der adulten Neurogenese im Gyrus Dentatus zu untersuchen, wurden Marker verwendet, die für die spezifischen Stadien der Neurogenese charakteristisch sind. Der Proliferationsmarker Phosphohiston H3, der neuronale Transkriptionsfaktor NeuroD, das mikrotubuli-assoziierte Protein Doublecortin sowie das calcium-bindende Protein Calretinin wurden für die immunhistochemischen Untersuchungen verwendet. Die folgende Abbildung ist ein Beispiel für die immuhistochemischen Färbungen der oben genannten Proteine.

\[\begin{align*}
\text{A} & \quad \text{Phosphohiston H3 positive Zellen im DG} \\
\text{B} & \quad \text{NeuroD positive Zellen im DG} \\
\text{C} & \quad \text{Doublecortin positive Zellen im DG} \\
\text{D} & \quad \text{Calretinin positive Zellen im DG}
\end{align*}\]

\textit{Abb. 9:} Dargestellt sind die Quantifizierungen (Anzahl der Zellen pro Schnitt) der Marker Phosphohiston H3 (A), NeuroD (B), Doublecortin (C) und Calretinin (D) im Gyrus Dentatus von FGF-2$^{+/-}$ und FGF-2$^{-/-}$ Mäusen. \(*p \leq 0.05 \), \(***p \leq 0.001 \).

Es konnte kein signifikanter Unterschied der proliferierenden Zellen im DG der FGF-2$^{+/-}$ Mäuse im Vergleich zu den FGF-2$^{-/-}$ Mäusen beobachtet werden (\textbf{Abb. 9A}). Die quantitative Bestimmung der NeuroD positiven Zellen im DG der FGF-2$^{-/-}$ Mäuse ergab eine 60\%ige Abnahme (\textbf{Abb. 9B}). Bei der Bestimmung der Doublecortin positiven Zellen wurde eine Abnahme von circa 50\% im DG der FGF-2$^{-/-}$ Mäuse beobachtet (\textbf{Abb. 9C}). Die Calretinin positiven Zellen nahmen im DG der FGF-2$^{-/-}$ Mäuse um circa 30\% ab (\textbf{Abb. 9D}). Diese Daten zeigen keine Veränderung der Proliferation der Zellen im DG der FGF-2$^{+/-}$ Mäuse und FGF-2$^{-/-}$ Mäuse,

7.1.2 Fehlen des endogenen FGF-2 hat unterschiedliche Effekte auf die mRNA-Expression der Neurogenese-Marker

![Diagramm der mRNA-Expressionen der Neurogenese-Marker](image)

Abb. 10: Dargestellt sind die mRNA-Expressionen der Neurogenese-Marker NeuroD (A), Doublecortin (B) sowie Calretinin (C) im Gyrus Dentatus von FGF-2+/+ und FGF-2−/− Mäusen. Die mRNA-Expressionen sind normalisiert zu zwei Housekeeping Genen, β-Aktin und 18S.*p ≤ 0,05, ***p ≤ 0,001.

Auf mRNA-Ebene konnte gezeigt werden, dass die Expression von NeuroD im DG adulter FGF-2−/− Mäuse im Vergleich zu den adulten Kontroll-Tieren um circa 40% reduziert ist (Abb. 10A). Die Expression von Doublecortin hingegen ist im DG adulter FGF-2−/− Mäuse um 60% erhöht (Abb. 10B). Die Expression des Markers Calretinin ist auf mRNA-Ebene unverändert (Abb. 10C).

7.1.3 Fehlen des endogenen FGF-2 hat ansteigenden Zelltod zur Folge

Für die Untersuchungen des Zelltodes wurden die LDH-Aktivitäten im Zellkulturmedium der FGF-2+/+ und FGF-2−/− Slice-Kulturen bestimmt.
Abb. 11: Dargestellt sind die Messungen der optischen Dichte des Formazans bei 490nm, welches entsteht, wenn die Laktatdehydrogenase Laktat in Pyruvat umwandelt. Die Abbildungen A, B, C und D zeigen die LDH-Aktivität der FGF\(^{+/-}\) und der FGF\(^{-/-}\) Tiere nach 3, 6, 9 und 12 Tage in Kultur. *p \leq 0,05, ***p \leq 0,001.

7.1.4 Fehlen des endogenen FGF-2 führt auf mRNA-Ebene zu einem signifikanten Anstieg der FGFR 1 Expression im DG adulter Mäuse

Da insbesondere die FGFR 1 und 3 im adulten Gehirn exprimiert werden, wurden quantitative RT-PCR Analysen für den FGFR 1 (Variante 1 und 2) sowie für den FGFR 3 (Variante 1, 2 und 3) durchgeführt.

Abb. 12: Dargestellt sind die mRNA-Expressionen der FGFR 1 (A) sowie der FGFR 3 (B) in DG adulter FGF-2$^+/+$ und FGF-2$^{-/-}$ Mäuse. Die mRNA-Expressionen sind normalisiert zu den zwei Housekeeping Genen β-Aktin und 18S. *p≤ 0.05.

7.1.5 Fehlen des endogenen FGF-2 führt zu einem signifikanten Anstieg der FGFR 1 Protein-Expression im DG adulter Mäuse

Durch das alternative Schneiden des FGFR Transkripts entstehen verschiedene Isoformen des FGFR 1 und 3. Durch die Wahl der Primer in der RT-PCR konnte lediglich eine Aussage über die Gesamtheit des FGFR 1 und 3 getroffen werden. Im Westernblot war es möglich, zwischen verschiedenen Splice-Varianten der beiden Rezeptoren zu unterscheiden.

Ebenfalls keinen signifikanten Unterschied ergab die quantitative Auswertung der Isoform IIIc des FGFR 3 im DG der FGF-2^{-/-} Mäuse im Vergleich zu den FGF-2^{+/+} Mäusen (Abb. 13C).

7.1.6 Testen des in dieser Arbeit verwendeten FGF-2: Exogenes FGF-2 erhöht die Proliferation muriner Fibroblasten in Kultur

Durch die Zugabe von FGF-2 (10 ng/ml) zu den murinen Fibroblasten und die darauf folgende Kontrolle unter dem Lichtmikroskop sowie der Bestimmung der Zellzahlen konnte die biologische/mitogene Aktivität des verwendeten FGF-2 sicher gestellt werden. Die folgende Abbildung
zeigt die Fibroblastenkultur der Kontrolle sowie die mit FGF-2 (10 ng/ml) behandelte Kultur.

Für die quantitative Auswertung wurden die Zellen nach 48 h vom Untergrund abgelöst und die Zellzahl mittels der Neubauer-Zählkammer bestimmt.

Abb. 15: Dargestellt sind die Zellzahlen pro Well zu Beginn der Kultur, die unbehandelte Kontrolle nach sowie die Zellen, behandelt mit FGF-2 (10 ng/ml) nach 48 h. **p ≤ 0,01.
Die Zellzählungen konnten zeigen, dass FGF-2 eine signifikante mitogene Aktivität besitzt. Die Zellzahl erhöhte sich durch 10ng/ml FGF-2, verglichen zur Kontrolle, um circa 60% (Abb. 15).

7.1.7 Testen des verwendeten FGF-2 an Slice-Kulturen: Behandlung hippokampaler Slices mit exogenem FGF-2 führt zum Anstieg der BrdU positiven Zellen im DG

Im nächsten Schritt wurden Experimente durchgeführt, um zu zeigen, dass exogenes FGF-2 in die Schnitte eindringen kann. Um dies zu untersuchen, wurden FGF-2+/- Slices, entweder behandelt mit oder ohne 20ng/ml FGF-2, nach 48 h in Kultur gegen BrdU gefärbt.

Im DG der FGF-2+/- Slices, behandelt mit 20ng/ml exogenem FGF-2, wurden 30% mehr BrdU positive Zellen gezählt als in den unbehandelten FGF-2+/- Slices. Die Ergebnisse zeigen, das exogenes FGF-2 in die Slices eindringen kann und dort die Proliferation der Zellen im DG signifikant steigert (Abb. 16A, 16B).
7.1.8 Durch die Zugabe von exogenem FGF-2 zu hippokampalen FGF-2\(^{-/-}\) Slice Kulturen kann die Zahl neuronaler Progenitorzellen nicht gesteigert werden.

In diesem Experiment sollte untersucht werden, welchen Einfluss exogenes FGF-2 auf hippokampale Slice Kulturen von FGF-2\(^{-/-}\) Mäusen hat. In der folgenden Abbildung sind die immunhistochemischen Färbung gegen NeuroD im DG der FGF-2\(^{+/+}\), FGF-2\(^{-/-}\) und FGF-2\(^{-/-}\) Slices, behandelt mit 20ng/ml exogenem FGF-2 dargestellt (Abb. 17A).

Abb. 17: Die Abbildung A zeigt die immunhistochemischen Färbungen NeuroD positiver Zellen in FGF-2\(^{+/+}\) Slices, FGF-2\(^{-/-}\) Slices sowie FGF-2\(^{-/-}\) Slices, behandelt mit 20ng/ml FGF-2 nach 12 Tagen in Kultur. Für die Zellkernfärbung wurde Dapi verwendet. Die Abbildung B zeigt die Anzahl der NeuroD positiven Zellen im DG der FGF-2\(^{+/+}\), FGF-2\(^{-/-}\) sowie FGF-2\(^{-/-}\) Slices, behandelt mit 20ng/ml FGF-2. **\(p \leq 0.01\), ***\(p \leq 0.001\).

7.1.9 LDH-Assay - Exogenes FGF-2 hat keinen signifikanten Effekt auf den Zelltod in hippokampalen Slice-Kulturen

Um zu untersuchen, ob exogenes FGF-2 im Slice-Kultur-System in der Lage ist, den Zelltod zu beeinflussen, wurde die LDH-Aktivität im Zellkulturmedium nach 3, 6, 9 und 12 Tagen in Kultur bestimmt.

7.1.10 Testen des verwendeten neutralisierenden Antikörpers - Der neutralisierende FGF-2 Antikörper reduziert die Proliferation muriner Fibroblasten

Nachdem nachgewiesen werden konnte, dass sich die Proliferation der murinen Fibroblasten durch die Zugabe von exogenem FGF-2 signifikant steigern lässt, sollte im nächsten Schritt untersucht werden, wie sich die akute Blockade des endogenen FGF-2 mittels eines FGF-2 neutralisierenden Antikörpers auf die Proliferation muriner Fibroblasten auswirkt.

Die Zellzählungen ergaben, dass die Proliferation muriner Fibroblasten, bei einer Konzentration von 2,5 µg/ml des FGF-2 neutralisierenden Antikörpers, um circa 30% abnimmt, verglichen zu murinen Fibroblasten die mit 5ng/ml FGF-2 behandelt wurden (Abb. 20). Anhand dieser Ergebnisse konnte festgestellt werden, dass sich die Proliferation der murinen Fibroblasten si-
7.1.11 Vorversuche zur Bestimmung der optimalen Konzentration und Dauer des neutralisierenden FGF-2 Antikörpers in murinen hippokampalen Slice-Kulturen

Zu beobachten war, dass der FGF-2 neutralisierende Antikörper die Anzahl der BrdU positiven Zellen nur nach 12-stündiger Inkubation, verglichen zur Kontrolle, signifikant um circa 41% reduziert (Abb. 21). Die nachfolgende Abbildung zeigt die Anzahl der BrdU positiven Zellen im DG der WT-Slices und der Slices behandelt mit dem FGF-2 neutralisierenden Antikörper nach 12- (Abb. 22A), 24- (Abb. 22B) und 48- (Abb. 22C) Stunden.

Abb. 22: Die Abbildung A zeigt die Anzahl der BrdU positiven Zellen im gesamten DG pro Slice nach 12 h, die Abbildung B nach 24 h und die Abbildung C nach 48 h Inkubation mit dem FGF-2 neutralisierenden Antikörper. ***p ≤ 0,001.

Anhand dieser Daten konnte festgestellt werden, dass der FGF-2 neutralisierende Antikörper nur für circa 12 h in der Lage ist, das endogene FGF-2 zu neutralisieren und somit die Proliferation der Zellen signifikant zu verringern.

7.1.12 Keine Verringerung der Neurogenese in hippokampalen FGF-2\(^{+/+}\) Slices nach der Behandlung mit dem FGF-2 neutralisierenden Antikörper

In murinen Fibroblasten sowie in hippocampalen Slices konnte gezeigt werden, dass die Behandlung der Zellen mit einem FGF-2 neutralisierenden Antikörper die Zellproliferation signifikant verringert.

Das folgende Experiment sollte zeigen, ob durch die Zugabe des FGF-2 neutralisierenden Antikörpers die Anzahl neurogenetischer Zellen im DG verringert werden kann. Für diese Untersuchung wurde der Marker für junge Neurone, NeuroD, gewählt. In der folgenden Abbildung ist die immunhistochemische Färbung gegen NeuroD dargestellt (Abb. 23A) sowie die quantitative Auswertung der NeuroD positiven Zellen im DG von FGF-2\(^{+/+}\) Slices und FGF-2\(^{+/+}\) Slices, behandelt mit dem FGF-2 neutralisierenden Antikörper (Abb. 23B).
Abb. 23: Die Abbildung A zeigt die immunhistochemische Färbung der FGF-2^{+/+} und FGF-2^{+/+} Slices behandelt mit 2,5 µg/ml neutralisierendem FGF-2 Antikörper gegen NeuroD. Die Zellkernfärbung erfolgte mit Dapi. Die Abbildung B zeigt die quantitative Auswertung der NeuroD positiven Zellen im DG der FGF-2^{+/+} und FGF-2^{+/+} Slices behandelt mit 2,5 µg/ml neutralisierenden FGF-2 Antikörper nach 4,5 Tagen.

Die quantitative Bestimmung der NeuroD positiven Zellen im DG der FGF-2^{+/+} und FGF-2^{+/+} Slices behandelt mit 2,5 µg/ml neutralisierenden FGF-2 Antikörper ergab keinen signifikanten Unterschied in den beiden untersuchten Gruppen (Abb. 23B).
7.1.13 Keine Erhöhung des Zelltodes in hippokampalen FGF-2\(^{+/+}\) Slices nach der Behandlung mit dem FGF-2 neutralisierenden Antikörper

Um zu untersuchen, ob die Neutralisierung des endogenes FGF-2 einen Effekt auf den Tod der Zellen im Hippokampus hat, wurde die LDH-Aktivität im Medium der FGF-2\(^{+/+}\) und FGF-2\(^{+/+}\) Slices, behandelt mit 2,5 \(\mu\)g/ml neutralisierenden FGF-2 Antikörper, bestimmt.

Abb. 24: Die Abbildung zeigt die gemessenen LDH-Konzentrationen im Medium von hippokampalen FGF-2\(^{+/+}\) und FGF-2\(^{+/+}\) Slices behandelt mit 2,5 \(\mu\)g/ml neutralisierenden FGF-2 Antikörper alle 12 Stunden für 4,5 Tage.

Zu beobachten war, dass der FGF-2 neutralisierende Antikörper den Zelltod hippokampaler Slice-Kulturen nicht erhöht (Abb. 24).
7.2 Einfluss des Alters auf die adulte hippocampale Neurogenese

7.2.1 Neurogenese im Gyrus Dentatus nimmt im Alter dramatisch ab, ist aber unabhängig vom endogenen FGF-2

*Abb. 25: Dargestellt sind die immunhistochemischen Untersuchungen verschiedener Neurogenesemarker in Gyrus Dentatus. Die Abbildungen zeigen die quantitative Bestimmung (Anzahl der Zellen/Schnitt) der Phosphohiston H3 (A), Doublecortin (B) und Calretinin (C) positiven Zellen im DG adulter/alter FGF-2+/+ und FGF-2−/− Mäuse. *p \leq 0,05, **p \leq 0,01, ***p \leq 0,001.

FGF-2 scheint im Alter keinen signifikanten Einfluss auf die nur noch gering vorhandene Neurogenese zu haben.
7.3 Zusammenhang zwischen Depressionen und hippokampaler Neurogenese

7.3.1 Weder die Antidepressiva Amitriptylin oder Citalopram noch die Applikation von FGF-2 können die Neurogenese depressiver Tiere signifikant steigern.

Abb. 26: Dargestellt sind die immunhistochemischen Untersuchungen verschiedener Neurogenesemarker in Gyrus Dentatus. Die Abbildungen zeigen die Untersuchung der Marker Doublecortin (A) und Calretinin (B). Analysiert wurden die für diese Marker positiven Zellen im Gyrus Dentatus pro Schnitt.

Im Depressionsmodell (bulbektomierte Tiere) konnte, verglichen zur Kontrolle, eine circa 50%ige Abnahme der Doublecortin positiven Zellen beobachtet werden (Abb. 26A). Weiterhin konnten die Injektionen mit Citalopram und 2xFGF-2 in die lateralen Ventrikel bulbektomierter Tieren die Anzahl der Doublecortin positiven Zellen im Gyrus Dentatus, verglichen zur Kontrolle, nicht steigern, oder auf ein normales Level (Kontrolltiere) anheben. Die (Abb. 26A) zeigt keinen signifikanten Unterschied der bulbektomierten Tiere, behandelt mit Amitriptylin oder 4xFGF-2 im Vergleich zu den Kontrolltieren. Somit führt die Behandlung der bulbektomierten Tiere mit dem Antidepressivum Amitriptylin sowie die Behandlung mit 4 FGF-2 Injektionen zu einem leichten Anstieg der Doublecortin positiven Zellen im Gyrus Dentatus um 33 bzw. 26% (Abb. 26A).

Die Untersuchungen der Calretinin positiven Zellen ergaben, verglichen zur Kontrolle, keinen signifikanten Verlust im Gyrus Dentatus bulbektomierter Tiere (Abb. 26B). Die Antidepressiva
Amitriptylin und Citalopram sowie die FGF-2 Applikationen zeigten keinen signifikanten Effekt auf die Anzahl Calretinin positiver Zellen in bulbektomierten Tieren (Abb. 26B).
8 Diskussion

8.1 Reduktion der hippocampalen Neurogenese im DG von FGF-2−/− Mäusen

Es existieren der Zeit nur wenige Studien, welche die Neurogenese in FGF-2−/− Mäusen beschreiben (94) (233).

Im Gegensatz dazu wurde gezeigt, dass sich die Zellzykluscharakteristika der Vorläuferzellen in der SVZ von FGF-2−/− Mäusen, verglichen zu FGF-2+/+ Mäusen, nicht ändern. Die Vorläuferzellen der FGF-2−/− Mäuse scheinen in einer Art Ruhezustand zu verweilen (236). Da wir in

8.2 Erhöhter Zelltod in den hippokampalen Slice-Kulturen der FGF-2−/− Mäuse

Entwicklungsstudien zeigten einen direkten (83) (160) (15) und Studien der adulten Neurogene-

8.3 Das Fehlen des endogenen FGF-2 führt zum Anstieg der FGFR 1 mRNA und des Proteins

Der Wachstumsfaktor FGF-2 bindet an die FGFR 1-4 (166). Durch alternatives Splicen der FGFR 1-3 entstehen Rezeptorvarianten, welche die Domäne II sowie drei alternative Formen der Domäne III (a, b, c) enthalten können. Diese unterschiedlichen Splice-Varianten der FGF-Rezeptoren sind wichtig für die Bestimmung der Ligandenspezifität (68). Die volle Länge des FGFR 1 bindet FGF-1 und FGF-2 mit gleicher Affinität (167). Die Isoformen II und IIIc besitzen eine höhere Bindungsaktivität zu FGF-1 als zu FGF-4 (139). Dagegen besitzen die Isoformen II und IIIc eine höhere Affinität zu FGF-1 als zu FGF-2 (41) (228).

Da FGF-2 die höchste Affinität zu den Isoformen FGFR 1c, FGFR 3c und FGFR 4 (168) besitzt, FGFR 4 im Gehirn jedoch nicht exprimiert wird, haben wir die mRNA- sowie die Protein-Expressionen der FGF-Rezeptoren 1 und 3 untersucht.

Während der Embryogenese und im Erwachsenenalter konnte die höchsten FGFR 1-Expressionen im Hippokampus nachgewiesen werden (89) (226) (7) (164). Es konnte gezeigt werden, dass die mRNA des FGFR 1 in allen Schichten der hippokampalen Formation exprimiert wird und das der FGFR 1 essentiell für das Wachstum der Neurosphärenkulturen in Anwesenheit von FGF-2 ist (164).

Die Daten der RT-PCR zeigen einen signifikanten Anstieg der FGFR 1 mRNA im DG der FGF-2−/−-Mäuse, verglichen zu den Kontrollen. Auf Protein-Ebene konnten wir einen Anstieg des FGFR1 Isoform IIIc nachweisen. Zwar bindet FGF-2 bevorzugt an diese Isoform, jedoch hat

8.4 Exogenes FGF-2 hat in FGF-2−/− Slice-Kulturen keinen Einfluss auf die Neurogenese

In den Slice-Kulturen der FGF-2−/− Mäuse, verglichen zu FGF-2+/+ Mäusen, konnte eine Abnahme der NeuroD positiven Zellen im DG beobachtet werden. Auch in vivo, wie oben beschrie-

8.5 Exogenes FGF-2 verringert nicht den Zelltod im Hippokampus der FGF-2−/− Mäuse

Der genaue Mechanismus, wie FGF-2 in die Regulation der Apoptose involviert ist, wird in der Literatur noch kontrovers diskutiert. Als ein möglicher Signalweg des Zelltodes wird die Fas

8.6 Blockade des endogenen FGF-2 in den Slice-Kulturen der FGF-2+/+ Mäuse hat keinen Einfluss auf die Neurogenesisrate

Mehrere Studien lassen vermuten, dass die Neurogenesis in vitro (67) (40) (38) (52) (39) (181) (182) (64) (44) und in vivo (211) von verschiedenen extrazellulären Faktoren beeinflusst wird. Um die Rolle des FGF-2 in der Regulation der Neurogenesis zu untersuchen, haben wir einen FGF-2 neutralisierenden Antikörper verwendet. Dieser erkennt das native Protein, blockt spezifisch die FGF-2 Aktivität und zeigt keinerlei Kreuzreaktion zu FGF-1 (141).

8.7 Blockade des endogenen FGF-2 in den Slice-Kulturen der FGF-2+/+ Mäuse führt nicht zum erhöhten Zelltod

neurotrophe Faktoren das Überleben der Zellen fördern. So konnte gezeigt werden, dass nach Schäden in der Retina die Expression des Faktors FGF-1 erhöht ist und dieser möglicherweise die Bcl-xL und Bcl-2 Expression reguliert (29).

8.8 Altern führt zur Reduktion der Neurogenese sowohl in FGF-2^{+/+} Mäusen als auch in FGF-2^{-/-} Mäusen - Endogenes FGF-2 scheint die Neurogenese im Alter nicht mehr zu beeinflussen

Um der Frage nachzugehen, ob es zum Rückgang der Neurogenese im Alter kommt, weil die Vorläuferzellen nicht mehr von anderen Faktoren stimuliert werden können, oder ob die Umgebung der Vorläuferzellen diese Stimuli nicht mehr zur Verfügung stellen kann, haben wir den Einfluss des Wachstumsfaktors FGF-2 auf die hippokampale Neurogenese während des Alterns untersucht. Es ist bekannt, dass sich die lokale Umgebung der neuronalen Vorläuferzellen während des Alterns dahingehend ändert, dass beispielsweise mitotische Stimuli nicht länger benötigt werden. In verschiedenen Studien wurden Faktoren beschrieben, welche das Entstehen junger Neurone regulieren (82) (13) (95).

Mayo et al. konnten zeigen, dass die Infusion des neuroaktiven Steroids Pregnenolon-Sulfat das geschädigte Gedächtnis alter Ratten positiv beeinflussten (142). Ebenso wurde beschrieben, dass oxidativer Stress die Verletzlichkeit hippokampaler Neurone erhöht (162). Glukokortikoide sollen die Neurogenese im DG inhibieren (82) (80). Die höchsten Kortikostero-Level wurden überraschender Weise in jungen weiblichen Mäusen und die niedrigsten in jungen männlichen Mäusen nachgewiesen (17).

Ein Grund für die Abnahme der proliferierenden, differenzierenden und migrierenden Zellen im

8.9 Amitriptylin, nicht aber Citalopram kann die Neurogenese bulbektomierter Tiere beeinflussen

Verschiedene Hinweise lassen einen Zusammenhang zwischen Depressionen und Änderungen im Hippokampus vermuten. So wurde durch MRI-Studien gezeigt, dass das hippocampale Volumen der Testpersonen mit Depressionen abnimmt (202). Es wurde eine Korrelation zwischen der

Weitere Studien konnten den oben beschrieben Volumenverlust des Hippokampus in chronisch-depressiven Patienten, nicht aber in geheilten depressiven Patienten beobachten (200).

8.10 **FGF-2 appliziert in bulbektomierte Tiere beeinflusst die Neurogenese**

Neben BDNF, welcher einer der Hauptregulatoren der Depression sein soll, scheint FGF-2 über einen ähnlichen Signalweg in die Regulation der Depression involviert zu sein. Wie in der Abb. 27 gezeigt, weisen depressive Patienten einen geringeren Serotoninspiegel auf, dies führt zur Reduktion des Faktors BDNF. Folglich werden proapoptotische Proteine nicht mehr ausreichend gehemmt und antiapoptotische Proteine zu wenig exprimiert. Dieses führt vermehrt zum Zelltod.

Evans et al. vermuten, dass FGF-2 auf ähnliche Weise die Signalwege der Depression beeinflusst. Sie konnten zeigen, dass sich die FGF-2 Transkriptions-Level in MDD (Major Depressive Disorder)-Patienten verglichen zu den Kontrollen unterscheiden. FGF-2 scheint in den Serotonin-reuptake-Inhibitionsmechanismus involviert zu sein, da Evans et al. zeigen konnten, dass MDD-Patienten, welche mit SSRIs behandelt wurden, eine signifikant weniger starke Abnahme einiger FGF Transkripte aufwiesen (54).

In der Literatur gibt es einige Hinweise, dass die Level der Wachstumsfaktoren positiv mit dem hippocampalen Volumen korrelieren. So zeigten ansteigende BDNF (122)- und FGF Level (234) (223) einen verminderten Verlust des hippocampalen Volumens. Negativ zu korrelieren scheint das hippocampale Volumen mit der Anfälligkeit auf stressbedingte Krankheiten. Eine negative Korrelation des hippocampalen Volumens konnte bei Veranlagungen für PTSD (posttraumatic stress disorder) nachgewiesen werden (21).

Derzeit ist wenig über die Interaktionen zwischen den verschiedenen Wachstumsfaktoren be-

9 Schlussfolgerung

9.1 Einfluss des endogenen und exogenen FGF-2 auf die hippokampale Neuronebose

9.2 Einfluss des Alterns auf die hippokampale Neurogenese und die Rolle des endogenen FGF-2 im Alter

9.3 Depression und Neurogenese

10 Publikationen

Literatur

[159] Y Nakagami, H Saito, and N Matsuki. Basic fibroblast growth factor and brain-derived

11 Danksagung

Mein besonderer Dank gilt Herrn Prof. Dr. med. Klaus Unsicker für die Aufnahme in die Arbeitsgruppe sowie für die konstruktive Kritik und die sehr hilfreichen Ideen.

Des weiteren danke ich Herrn Prof. Dr. rer. nat. Oliver von Bohlen und Halbach für die Betreuung dieser Arbeit sowie für die hilfreichen Diskussionen und Inspirationen.

Bedanken möchte ich mich bei Herrn Prof. Dr. Christoph M. Schuster für die Übernahme des Zweitgutachtens.

Bei allen Mitgliedern der Arbeitsgruppe möchte ich mich ausdrücklich für die Hilfsbereitschaft und die gute Arbeitsatmosphäre bedanken.

Zum Schluss möchte ich mich vor allem bei meiner Familie, insbesondere bei meiner Mutter Annette Werner und meiner Schwester Christin Werner sowie meinem Freund Jörg Monnheimer, für die motivierenden Worte in manch schwerer Phase und die unendliche Unterstützung, bedanken.