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Short summary 
 
 
The nuclear envelope (NE) is a highly specialized membrane system that surrounds 

the interphase nucleus of eukaryotic cells. Nuclear pore complexes (NPCs) form gated 

channels through the NE and mediate nucleocytoplasmic transport. In metazoan cells, 

the NE breaks down and reforms during each cell cycle. These events are tightly 

coordinated in space and time with the formation of the mitotic spindle and the 

segregation of chromosomes to the two daughter cells. At the end of mitosis, new 

NPCs begin to assemble on chromatin and an intact NE reforms around the 

decondensing chromosomes. 

 

MEL-28/ELYS is a recently identified NE protein essential for nuclear integrity and 

function in many organisms. Genetic mutation or RNAi depletion of MEL-28 severely 

impair nuclear morphology and lead to loss of NPCs from the NE in a variety of cells 

and organisms. Our work and that of others shows that MEL-28 is critically involved in 

postmitotic NPC formation, but at the same time links between MEL-28 and other 

cellular processes are emerging. 

 
This thesis aims at thoroughly characterizing the role of MEL-28 in nuclear assembly. 

It addresses the function of MEL-28 in living cells and examines the contribution of 

MEL-28 to nuclear assembly in vitro. 

 

MEL-28 is an NPC/INM protein in interphase and partly localizes to kinetochores in 

mitosis. RNAi knockdown of MEL-28 in human cells results in loss of nucleoporins 

(nups) from the NE, but leaves the NE membranes intact, suggesting that it is 

specifically involved in NPC assembly. This phenotype is mirrored by employing MEL-

28-immunodepleted Xenopus laevis egg extract for nuclear assembly in vitro, which 

gives rise to nuclei devoid of pores. MEL-28 acts in NPC formation by targeting nups 

to chromatin. It interacts with a subset of nups, the Nup107-160 complex, which is a 

central building block of the NPC. MEL-28 binds directly to chromatin through its AT 

hook and additional chromatin binding motifs in its C-terminus. My data show that 

MEL-28 anchors the forming NPC to chromatin. Addition of high concentrations of AT 

hook to a nuclear assembly reaction leads to inhibition of NPC assembly and 
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recapitulates the MEL-28 depletion phenotype. Recombinant MEL-28 rescues the 

recruitment of the Nup107-160 complex to chromatin, indicating that the depletion 

phenotype in nuclear assembly can be specifically attributed to MEL-28. The function 

of MEL-28 is under control of the Ran GTPase. RanGTP enhances MEL-28 and nup 

binding to chromatin and thus triggers NPC formation. Moreover, MEL-28 chromatin 

binding is regulated during the cell cycle, possibly by phosphorylation. 

 

In conclusion, this study extends our current model of postmitotic NPC formation by 

demonstrating that targeting of nups to chromatin is mediated by and requires MEL-

28. MEL-28 function is regulated spatially by the Ran GTPase and coordinated 

temporally with the cell cycle. The involvement of MEL-28 in NPC formation is its best 

characterized function to date, but it is likely that MEL-28 has additional roles in other 

cellular processes. 

 

In addition, this thesis contains an initial characterization of NET5, a conserved 

transmembrane protein of the INM. NET5 has a well defined domain topology and 

localizes to foci in the NE which are not identical to nuclear pores. RNAi knockdown of 

NET5 in human cells perturbs nuclear integrity and leads to distortion of the NE, 

suggesting that it has an essential role in nuclear organization. 

 

Part of this thesis was published in: 

Franz C*, Walczak R*, Yavuz S, Santarella R, Gentzel M, Askjaer P, Galy V, Hetzer 
M, Mattaj IW and Antonin W (2007). "MEL-28/ELYS is required for the recruitment of 
nucleoporins to chromatin and postmitotic nuclear pore complex assembly." EMBO 
Rep 8: 165-72.  
 
* authors contributed equally  
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Zusammenfassung 
 
 
Die Kernhülle stellt ein hochgradig spezialisiertes Membransystem dar, welches den 

Zellkern eukaryontischer Zellen in der Interphase umgibt. Kernporenkomplexe bilden 

Kanäle durch die Kernhülle und vermitteln den Transport von Molekülen zwischen 

Zellkerninnerem und Zytoplasma. In Vielzellern wird die Kernhülle bei jeder Zellteilung 

abgebaut, und bildet sich danach neu. Diese Vorgänge sind räumlich und zeitlich eng 

mit der Bildung der mitotischen Spindel und der Verteilung der Chromosomen auf die 

beiden Tochterzellen abgestimmt. Am Ende der Mitose bilden sich neue 

Kernporenkomplexe auf dem Chromatin, und eine intakte Kernhülle baut sich um die 

dekondensierenden Chromosomen auf. 

 

MEL-28/ELYS ist ein kürzlich identifiziertes Kernhüllenprotein, das in zahlreichen 

Organismen für die Integrität und Funktion des Zellkerns essentiell ist. Die genetische 

Mutation oder RNAi Depletion von MEL-28 beeinträchtigen die Gestalt des Zellkerns 

und führen in einer Vielzahl von Zellen und Organismen zu einem Verlust von 

Kernporenkomplexen von der Kernhülle. Unsere Arbeit und diejenige anderer zeigen, 

dass MEL-28 an der Bildung von Kernporenkomplexen am Ende der Mitose beteiligt 

ist. Gleichzeitig wird jedoch, deutlich, dass MEL-28 auch in andere zelluläre 

Vorgängen eingebunden ist. 

 
Die vorliegende Arbeit hatte das Ziel, die Rolle von MEL-28 bei der Bildung des 

Zellkerns umfassend zu charakterisieren. Sie beinhaltet Experimente zur Funktion von 

MEL-28 in lebenden Zellen und zum Beitrag von MEL-28 zur Zellkernbildung in vitro. 

 

MEL-28 ist Teil der Kernpore und der inneren Kernmembran in der Interphase, und 

ein Teil des zellulären MEL-28 bindet an Kinetochore in der Mitose. Die RNAi 

Depletion von MEL-28 in menschlichen Zellen hat den Verlust von Nukleoporinen von 

der Kernhülle zur Folge, nimmt jedoch keinen Einfluss auf die Kernmembran. Dieses 

Ergebnis legt nahe, dass MEL-28 spezifisch an der Bildung von Kernporenkomplexen 

beteiligt ist. Ein vergleichbares Ergebnis erhält man mit dem in vitro 

Kernbildungssystem, bei dem die Verwendung von MEL-28-immundepletiertem 

Xenopus laevis Eiextrakt zur Bildung von kernporenfreien Zellkernen führt. Die 
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Funktion von MEL-28 besteht darin, Nukleoporine bei der Bildung des 

Kernporenkomplexes zum Chromatin zu führen. MEL-28 interagiert mit einer Gruppe 

von Nukleoporinen, dem Nup107-160 Komplex, einem zentralen Baustein des 

Kernporenkomplexes. Es bindet mittels seines AT hook Motifs und weiterer 

Chromatinbindungsmotive in seinem C-Terminus direkt an Chromatin. Meine Daten 

zeigen, dass MEL-28 den sich bildenden Kernporenkomplex am Chromatin verankert. 

Die Zugabe hoher Konzentrationen von AT hook zu einer Kernbildungsreaktion 

hemmt die Bildung von Kernporenkomplexen und führt zum gleichen Phänotyp wie die 

Depletion von MEL-28. Rekombinantes MEL-28 rettet die Bindung des Nup107-160 

Komplexes an Chromatin, was verdeutlicht, dass der Depletionsphänotyp bei der 

Zellkernbildung spezifisch auf MEL-28 zurückzuführen ist. Die Funktion von MEL-28 

wird durch die GTPase Ran reguliert. RanGTP verstärkt die Bindung von MEL-28 und 

Nukleoporinen an Chromatin und fördert so die Bildung von Kernporenkomplexen. 

Zusätzlich ist die Bindung von MEL-28 an Chromatin im Laufe des Zellzyklus reguliert, 

möglicherweise durch Phosphorylierung. 

 

Die vorliegende Arbeit erweitert unser Modell der Bildung von Kernporenkomplexen 

um die Erkenntnis, dass MEL-28 die Bindung von Nukleoporinen an Chromatin 

vermittelt. Die Funktion von MEL-28 ist räumlich durch die GTPase Ran reguliert und 

zeitlich mit dem Zellzyklus abgestimmt. Die Beteiligung an der Kernporenbildung ist 

die bisher bestcharakterisierte Funktion von MEL-28, aber es ist wahrscheinlich, dass 

es an weiteren zellulären Vorgängen beteiligt ist. 

 

Diese Arbeit umfasst zusätzlich eine initiale Charakterisierung von NET5, einem 

konservierten Protein der inneren Kernmembran. NET5 verfügt über eine klar 

definierte Topologie und ist in Foci in der Kernhülle zu finden, bei denen es sich nicht 

um Kernporen handelt. Die RNAi Depletion von NET5 in menschlichen Zellen zerstört 

die Integrität des Zellkerns und führt zu einer Auffaltung der Kernhülle. Diese 

Ergebnisse legen nahe, dass NET5 eine essentielle Funktion für die Organisation des 

Zellkerns besitzt. 
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The hallmark of eukaryotic cells is their elaborate subdivision into structurally and 

functionally distinct membrane-enclosed compartments. The most prominent of these 

organelles is the cell nucleus, which harbors the genetic material during interphase of 

the cell cycle. The nucleus is delimited by the nuclear envelope (NE), which provides 

the physical barrier between the nuclear interior and the cytoplasm and constitutes a 

central component of nuclear architecture. Compartmentalization into nucleus and 

cytoplasm provides eukaryotic cells with unique and complex possibilities for 

regulating gene expression. At the same time, the need for selective exchange of 

molecules between the different compartments arises. DNA replication, transcription, 

RNA processing and ribosomal subunit maturation occur in the nucleus, while proteins 

are synthesized in the cytoplasm. Therefore, mRNAs, rRNAs and ribosomes must be 

exported from the nucleus whereas nuclear and ribosomal precursor proteins have to 

be imported. These transport events are exclusively mediated by nuclear pore 

complexes (NPCs) in the NE and selective and efficient nucleocytoplasmic transport is 

essential for proper functioning and survival of eukaryotic cells. The transport 

mechanism will be discussed in greater detail below, but first I will describe the crucial 

elements of NE architecture. 

 

1.1 The nuclear envelope 
 

The NE is composed of four distinct elements: the inner (INM) and outer (ONM) 

nuclear membranes, NPCs and, in metazoa, the nuclear lamina. INM and ONM 

contain two different sets of membrane proteins and are separated by the perinuclear 

space, which topologically corresponds to the lumen of the endoplasmic reticulum 

(ER). While the ONM is continuous with, although not identical to, the ER, the INM 

harbors a unique set of integral membrane proteins which form contacts with the 

underlying lamina and chromatin. One group of INM proteins are the so-called LEM 

domain (Lap2, Emerin and MAN-1) containing proteins, which interact with the small 

dimeric DNA-binding protein Barrier-to-autointegration factor (BAF) and are 

associated with the nuclear lamina. BAF acts in concert with vaccinia-related kinase 

(VRK) and is required for NE formation in C. elegans (Gorjanacz et al., 2007). Lamin B 

receptor, another conserved integral INM protein, binds to lamin B and 
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transcriptionally silent chromatin via heterochromatin protein 1 (Ye and Worman, 

1996). 

 

 

 
 

In recent years, an intriguing link between the INM and ONM has emerged with the 

discovery and characterization of proteins from the SUN (Sad1, UNC-84 homology) 

and KASH (Klarsicht, ANC-1, Syne homology) families. SUN proteins reside in the 

INM, while KASH-domain proteins are specific for the ONM. Both form an interaction 

that bridges the perinuclear space and is essential for proper spacing of the nuclear 

membranes (Crisp et al., 2006). At the same time, SUN proteins bind to lamins A and 

Figure 1-1. Schematic illustration of a metazoan nucleus. ER: 
endoplasmic reticulum; ONM: outer nuclear membrane; INM: inner 
nuclear membrane; POM: pore membrane; INM-specific proteins are 
depicted in black, ONM-specific proteins in red and ER/ONM proteins in 
yellow. (Modified from Prunuske and Ullman, 2006) 
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C (Haque et al., 2006), whereas KASH proteins associate with the cytoskeletal actin 

network and centrosome (Starr and Han, 2002; Malone et al., 2003). In this way they 

have been implicated in nuclear positioning and migration and in transmitting forces 

between the cytoskeleton and nuclear lamina (Starr, 2007). 

 

1.2 The nuclear pore complex 
 

The NE is perforated by nuclear pores, aqueous channels that connect the 

nucleoplasm and the cytoplasm. These openings are occupied by NPCs, large protein 

assemblies, which span the ONM and INM. NPCs are the sole known mediators of 

nucleocytoplasmic transport and their general architecture is conserved among 

eukaryotes. Early structural studies revealed that NPCs possess an eightfold 

rotational symmetry perpendicular to the plane of the NE (Watson, 1959; Franke, 

1966). Today, with the help of powerful imaging methods, such as cryoelectron 

tomography and three-dimensional reconstruction, the NPC structure has been refined 

significantly and several distinct structural elements within the NPC have been 

identified (Beck et al., 2004; Beck et al., 2007). The NPC can be divided into three 

main parts, a central circular core in the plane of the NE, cytoplasmic filaments and a 

nuclear basket. The central core, which measures roughly 100 nm in diameter, 

consists of three distinct ring structures: a cytoplasmic ring, a lumenal spoke ring and 

a nuclear ring. It has been a matter of debate whether the central plug or transporter, 

which appears to be highly variable in shape (Beck et al., 2004), is an integral part of 

the NPC or represents cargo in transit through the nuclear pore. A diverse set of 

biophysical and proteomic data were combined in an effort to obtain a comprehensive 

model of the yeast NPC with better definition of the position of individual proteins than 

has been possible from the EM studies (Alber et al., 2007). This model needs to be 

tested as additional information on the NPC emerges. Until recently, only few crystal 

structures of nuclear pore proteins had been determined, but new studies are adding 

to our understanding of the fine structure of NPCs (Napetschnig et al., 2007; Melcak et 

al., 2007; Hsia et al., 2007; Schrader et al., 2008; Böhmer et al., 2008; Brohawn et al., 

2008; Debler et al., 2008). The future challenge for structural biologists will be to 

determine the structures of NPC subcomplexes, to fit the obtained crystal structures 
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into the EM structures to complete our model of the NPC and to understand the 

dynamics of NPC components. 

 

 

 
 

 

 

 

 

 

NPCs are enormous structures by molecular standards with an estimated mass of 60 

MDa in yeast (Rout et al., 2000) and 125 MDa in vertebrates (Reichelt et al., 1990; 

Cronshaw et al., 2002). They are built in a modular fashion from only a limited number 

of molecular building blocks (Schwartz, 2005). NPCs are formed from ≈ 30 so-called 

nucleoporins (nups), many of which are organized in NPC subcomplexes. Nups are 

believed to exist in eight copies or multiples of eight per NPC, given its symmetry. 

Proteomic approaches aimed at providing an inventory of the NPC have yielded an 

extensive list of NPC proteins for the yeast (Rout et al., 2000) and mammalian 

(Cronshaw et al., 2002) NPC. 

Figure 1-2. 3D-model of the NPC from Dictyostelium discoideum. This 
structure was determined by cryoelectron tomography and three-dimensional 
reconstruction and highlights the main morphological features of eukaryotic 
NPCs. (Adapted from Beck et al., 2004) 
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Nups can be divided into two groups based on the presence or absence of 

hydrophobic, natively unfolded FG repeat motifs (Denning et al., 2003). FG repeat 

containing nups have been localized to the central channel of the nuclear pore and are 

assumed to constitute the permeability barrier of the NPC (Rout et al., 2000; Denning 

et al., 2003). Nups without FG repeats are thought to be structured and to form the 

backbone of NPC architecture (Rout et al., 2000). The NPC is stably associated with 

Figure 1-3. Nucleoporin organization within the metazoan NPC. The 
localization of nucleoporins in the NPC is indicated and nups in biochemically 
characterized subcomplexes are grouped. (Modified from Schwartz, 2005) 
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the NE membranes at sites where the INM and ONM join. Vertebrate and yeast NPCs 

each contain three transmembrane nups, Pom121, Ndc1 and gp210 in vertebrates 

and pom34, Ndc1 and pom152 in yeast (Mans et al., 2004). Integral membrane nups 

are believed to anchor the NPC to the NE membrane. 

 

Nups form evolutionarily conserved, biochemically stable NPC subcomplexes, which 

behave as an entity throughout the cell cycle and are believed to function as building 

blocks of the NPC. The largest of these complexes is the Nup107-160 complex in 

vertebrates or Nup84 complex in yeast (Belgareh et al., 2001; Vasu et al., 2001; 

Siniossoglou et al., 1996), which is considered a key element of NPC structure. Alber 

et al. (2007) placed the Nup84 complex in the vicinity of the pore membrane (POM) in 

their yeast NPC model. Drin et al. (2007) identified an amphipathic α-helical motif, 

which senses membrane curvature as compared to flat membranes. Human Nup133 

also contains this motif, suggesting that it might contribute to the so far poorly 

understood interaction between the NPC and the NE membranes. The Nup84 

complex has a Y-shaped structure as judged by electron microscopy (Siniossoglou et 

al., 2000; Lutzmann et al., 2002), but so far no uniform model has emerged for the 

distribution of nups within the complex based on crystal structures (Hsia et al., 2007; 

Browhan et al., 2008). Nup205 and Nup93 reside in a distinct NPC subcomplex and 

are essential for NPC function and cell viability in C. elegans (Galy et al., 2003). The 

Nup58 complex lines the central channel in the inner pore (Guan et al., 1995) and is 

involved in gating transport cargoes through the NPC. Nup358/RanBP2 constitutes 

the cytoplasmic filaments of the NPC and attaches to the pore via Nup214 and Nup88 

(Bernad et al., 2004), while TPR, which forms the nuclear basket (Cordes et al., 1997), 

is bound to the NPC via Nup153 (Walther et al., 2001). 

 

A computational and biochemical analysis assigned folds to the yeast and vertebrate 

nuclear pore proteins (Devos et al., 2006). Interestingly, disordered FG repeats and 

two additional fold types, α-solenoids and β-propellers, accounted for >85% of all 

residues. This study also detected architectural similarities between NPCs and coated 

vesicles, suggesting that they might possess a common evolutionary origin. The 

authors had previously hypothesized that nups and vesicle coat proteins had evolved 

by duplication and divergence from very simple structural motifs (Devos et al., 2004). 
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Two recently published crystal structures of parts of the yeast Nup84 complex provide 

additional evidence for a common ancestry of vesicle coat proteins and nups 

(Brohawn et al., 2008; Debler et al., 2008). A systematic analysis determined the 

dynamic organization of vertebrate nuclear pore proteins (Rabut et al., 2004). Based 

on their dissociation rates from the NPC, which ranged from minutes to hours, nups 

were grouped into three categories: components of a stable central scaffold, more 

peripheral adapter nups and highly mobile proteins, which only transiently bind to 

NPCs. Interestingly, many additional proteins have been reported to localize to 

nuclear pores, although many of them have not been considered bona fide nups. 

Among them are the mitotic checkpoint proteins Mad1 and Mad2 (Campbell et al., 

2001; Iouk et al., 2002) and RanGAP, which requires sumoylation for its localization to 

NPCs (Matunis et al., 1996; Mahajan et al., 1997). 

 

1.3 Nucleocytoplasmic transport 
 

The exchange of molecules between the nuclear interior and cytoplasm is mediated 

by NPCs and is an essential prerequisite for cell survival. Small molecules up to 20-40 

kDa can pass the nuclear pore uninhibited by passive diffusion, whereas larger 

molecules have to be actively transported through the NPC. In this manner, cargoes 

up to several MDa, such as ribosomal subunits or viral particles, can traverse the 

pore. Active transport of cargo is a selective process and requires specific transport 

signals. These in turn are recognized by transport receptors, which mediate cargo 

passage through the nuclear pore (Mattaj and Englmeier, 1998; Görlich and Kutay, 

1999). The largest group of transport receptors is constituted by members of the 

importin β superfamily (a.k.a. karyopherins), which interact directly with NPCs and 

possess an N-terminal RanGTP-binding motif. Based on the direction in which they 

carry their cargo these receptors can be classified as importins or exportins. In simple 

cases, the transport substrates are recognized directly by their respective receptor, in 

other scenarios, cargo recognition is mediated by adaptor molecules, such as importin 

α (Goldfarb et al., 2004). Crm1 acts as an export receptor for leucine-rich nuclear 

export signals (NESs) (Fornerod et al., 1997). mRNA export from the nucleus utilizes 

a different set of transport receptors, Mex67p-Mtr2p in yeast (Strässer and Hurt, 2000) 

and TAP-NxT1 in humans (Katahira et al., 1999; Guzik et al., 2001). 
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The events of nucleocytoplasmic transport are controlled by the Ran GTPase system, 

which is conserved in all eukaryotes. Ran is an abundant, Ras-like small GTPase vital 

for nuclear organization that exists in GTP- and GDP-bound states. Conversion 

between these states requires additional proteins as Ran possesses low intrinsic 

activity for GTP hydrolysis or nucleotide exchange. Ran’s active, GTP-bound form is 

generated by its chromatin-bound guanine-nucleotide exchange factor (GEF) RCC1 

(Bischoff and Ponstingl, 1991; Klebe et al., 1995). Hydrolysis of Ran-bound GTP to 

GDP is mediated by a cytosolic protein, the GTPase-activating protein RanGAP, 

which acts in concert with either RanBP1 or RanBP2 (Coutavas et al., 1993; 

Yokoyama et al., 1995). Consequently, interphase cells possess a high nuclear and 

low cytoplasmic RanGTP concentration and the reciprocal for RanGDP. The unequal 

distribution of RanGTP across the NE is instrumental in imposing directionality on 

nucleocytoplasmic transport, as RanGTP differentially influences cargo-receptor 

complex formation and cargo dissociation from their cognate transport receptor. 

Import cargo and receptor complexes form in the cytoplasm in the absence of 

RanGTP and enter the nucleus through nuclear pores. Binding of nuclear RanGTP to 

importins destabilizes the cargo-receptor complex, thereby liberating the import 

substrate in the nucleus. In contrast, the interaction of exportins with their cargoes is 

stabilized by RanGTP via cooperative binding and formation of a trimeric complex, 

which can then exit the nucleus. Once in the cytoplasm, this complex is dissociated by 

hydrolysis of Ran-bound GTP and the export cargo is delivered to its destination. 

Recycling of RanGDP to the nucleus is accomplished by NTF2 (Ribbeck et al., 1998). 

In recent years, the structures of many components of the nucleocytoplasmic transport 

pathway have been solved and have helped further our understanding of this 

fascinating process (for a review see Cook et al., 2007). Interestingly, the direction of 

transport can be inverted under certain experimental conditions (Nachury and Weis, 

1999) and the actual passage of molecules through the pore is independent of Ran 

and energy (Englmeier et al., 1999; Ribbeck et al., 1999). Nevertheless, Ran is the 

key organizer and the driving force for all transport events, as GTP hydrolysis by Ran 

in the cytoplasm is the irreversible step, which confers directionality to 

nucleocytoplasmic transport. 
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Besides its well understood role in nucleocytoplasmic transport in interphase, Ran has 

also proven to be a key regulator of mitotic events (Hetzer et al., 2002; Weis, 2003). 

Formation of RanGTP by RCC1 on chromatin persists throughout the cell cycle and 

leads to the formation of a RanGTP gradient ranging away from the condensed 

chromosomes in mitosis (Kalab et al., 2002; Kalab et al., 2006). In this manner, 

RanGTP acts as a universal spatial clue for cells to signal the position of chromatin 

and contributes to functions such as formation of the mitotic spindle (Clarke and 

Zhang, 2008) and postmitotic NPC assembly, as discussed in greater detail below. 

 

NPCs are remarkable transport machines, which can mediate hundreds of transport 

events per second in both directions (Ribbeck and Görlich, 2001; Smith et al., 2002). It 

has been a long standing question how such high transport rates can be reconciled 

with the simultaneously observed exquisite selectivity of NPCs. Translocation of 

cargo-receptor complexes through the pore crucially depends on interactions of FG 

nups with transport receptors (Rexach and Blobel, 1995; Shah et al., 1998). A 

systematic deletion approach has defined the FG repeat nups essential for transport 

and viability in yeast (Strawn et al., 2004). The structures of FG repeats in complex 

with importin β or NTF2 demonstrate that the FG repeat binding sites on the transport 

receptors are distinct from the sites for Ran or cargo molecule interaction and explain 

how transport receptors can bind to nups, while simultaneously interacting with a wide 

range of transport substrates (Bayliss et al., 2000; Bayliss et al., 2002). However, 

these structural snapshots cannot reveal the dynamics of translocation through the 

pore. Three models for the NPC transport mechanism have been proposed: The 

affinity gradient model predicts that cargo receptor complexes, while driven by 

Brownian motion, encounter stepwise increasing binding affinities upon passage 

through the pore (Ben-Efraim and Gerace, 2001). The Brownian affinity gating model 

is based on restricted diffusion through the pore and suggests that the probability for 

cargo entry into and passage through the NPC is significantly increased upon binding 

to transport receptors (Rout et al., 2000). According to the selective phase model, FG 

repeat nucleporins in the NPC form a meshwork through weak hydrophobic 

interactions, which acts as a physical barrier for molecules above a certain size 

(Ribbeck and Görlich, 2001). In order to enter and traverse the NPC, molecules have 

to become "dissolved" in the mesh, which requires a sufficiently hydrophobic surface 
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for interaction with FG repeats and competitive disruption of the inter-repeat contacts. 

Two recent publications have shown that the purified FG repeat domain of yeast 

Nsp1, which is required for viability in yeast, can form an elastic reversible hydrogel 

(Frey et al., 2006) and that a saturated hydrogel has permeability properties similar in 

some respects to those of the nuclear pore (Frey et al., 2007). An independent 

publication provided additional evidence that the FG domains of nups cooperate to 

establish the permeability barrier of the NPC (Patel et al., 2007). Many 

transmembrane proteins are believed to pass from the ONM to the INM by passive 

diffusion through channels in NPCs (Soullam and Worman, 1993). Interestingly, a 

recent publication provided evidence that at least some integral membrane proteins 

are targeted to the INM by the same mechanism as soluble proteins (King et al., 

2006). This utilization of the Ran system could also explain the energy dependence of 

INM protein transport observed by Ohba et al. (2004). Having passed the NPC, INM 

proteins are prevented from diffusing back to the ER by stable interactions with 

underlying nuclear interaction partners, such as chromatin or the nuclear lamina 

("diffusion-retention model"). The NPC accommodates a wide range of different 

transport pathways and nucleocytoplasmic transport is connected to many other 

cellular processes (see following paragraph). We can therefore expect interesting new 

findings, especially concerning the regulation of transport through the nuclear pore. 

 

1.4 Functions of the NE and NPCs other than transport 
 

The hypothesis that the nuclear periphery crucially contributes to nuclear organization 

was already stated more than two decades ago (Blobel, 1985). In recent years, it has 

become increasingly evident that the NE and NPCs not only serve as a passive barrier 

between the nucleus and cytoplasm and as transport devices, but actively participate 

in several other cellular functions, one of which is gene expression (for a review see 

Akhtar and Gasser, 2007). The general picture is that actively transcribed genes 

localize to the nuclear pore (Casolari et al., 2004; Taddei et al., 2006), while relocation 

of genes to the nuclear lamina and non-pore NE sites silences their expression 

(Pickersgill et al., 2006; Reddy et al., 2008). Other emerging areas of NPC function 

are modulating the activity of sumoylating and desumoylating enzymes (Palancade 

and Doye, 2008), DNA damage repair (Palancade et al., 2007) or chromatin boundary 
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activity (Ishii et al., 2002). Mice heterozygous for Nup96 exhibit specific defects in the 

immune system and are highly susceptible to viral infection (Faria et al., 2006). 

Mutation of Nup155 causes atrial fibrillation in mice, thereby linking the NPC to 

cardiovascular disease (Zhang et al., 2008). The expression levels of the Nup107-160 

complex proteins are regulated during the cell cycle and ubiquitin-mediated 

degradation of Nup96 appears to control the expression of several cell cycle 

regulators (Chakraborty et al., 2008). In Drosophila melanogaster Nup153 and the Tpr 

homologoue Mtor critically contribute to dosage compensation of X-chromosomal 

genes in male flies (Mendjan et al., 2006). In yeast, Ndc1 has essential functions both 

at the NPC and spindle pole bodies (Chial et al., 1998).  

 

1.5 The nuclear lamina 
 

An essential element of the metazoan NE is the nuclear lamina, a network of type-V 

intermediate filaments which lines the INM. Lamins can be divided into A- and B-types 

based on their biochemical properties and behavior in mitosis. While B-type lamins are 

expressed in all cells and are essential for viablility, A-type lamins (lamin A and C) 

arise by alternative splicing from a single gene, are expressed in a tissue-specific 

manner and are dispensable for cell survival. Lamins are elongated molecules and 

form coiled-coil dimers with their extended central domain, which polymerize head to 

head or head to tail into a two-dimensional lattice. The nuclear lamina confers physical 

stability on the nucleus, but is also involved in a variety of other cellular processes, 

such as chromatin organization, gene expression and signaling (for a review see 

Gruenbaum et al., 2005). In mitosis, lamins are phosphorylated and the nuclear 

lamina is reversibly depolymerized (Gerace and Blobel, 1980). The nuclear lamina has 

become an intense focus of research, since mutations in lamins or lamin-associated 

proteins cause a wide range of heritable human diseases commonly referred to as 

"laminopathies" (Burke and Stewart, 2002). Among these clinical disorders are Emery-

Dreyfuss muscular dystrophy and Hutchison-Gilford progeria syndrome, which causes 

premature ageing. The study of lamins therefore links NE research to medical 

applications. 
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1.6 Dynamics of the nuclear envelope during the cell cycle 
 

As cells divide chromatin condenses and the chromatids are segregated by the mitotic 

spindle. Yeast, filamentous fungi and certain protists undergo closed mitosis, in which 

the mitotic spindle forms inside the nucleus or spindle microtubules can penetrate the 

intact NE. In contrast, the NE of higher eukaryotes exhibits a highly dynamic behavior 

in M-phase. Metazoan cells undergo open mitosis, in which the NE breaks down in 

pro-metaphase and reforms in late anaphase/telophase. The nuclear membranes 

retract from chromatin and INM proteins diffuse freely throughout the ER, while 

soluble nups or NPC-subcomplexes become dispersed in the cytoplasm. These 

events are tightly coordinated in space and time with the formation of the mitotic 

spindle and the segregation of chromosomes to the two daughter cells. At the end of 

mitosis, new NPCs begin to assemble on chromatin and an intact NE reforms around 

the decondensing chromosomes. 

 

1.6.1 Nuclear envelope breakdown  
 

Upon entry into mitosis, metazoan cells disassemble their NE. The first step of nuclear 

envelope breakdown (NEBD) at the transition from prophase to prometaphase is 

marked by an increase in permeability of the NE and the release of certain nups from 

the NPC (Lénárt et al., 2003). In mammalian somatic cells, NPC disassembly 

proceeds within minutes and begins with the dissociation of Nup98 from the pore, 

followed by a simultaneous release of several other nups (Dultz et al., 2008). In 

subsequent steps, the nuclear lamina is disassembled (Gerace and Blobel, 1980) and 

the nuclear membranes retract from chromatin in a microtubule-dependent manner 

(Beaudouin et al., 2002; Salina et al., 2002). Interestingly, RanGTP has been shown 

to affect NEBD (Mühlhäusser and Kutay, 2007). Among the molecules involved in 

NEBD are the transmembrane nup gp210 (Galy et al., 2008), the GTPase Rab5 and 

reticulons (Audhya et al., 2007). 

 

While soluble nups become dispersed throughout the cytoplasm in mitosis, integral 

membrane proteins of the nuclear membranes diffuse freely in the mitotic ER, which 

remains a continuous tubular network in living cells (Ellenberg et al., 1997; Yang et al., 
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1997; Puhka et al., 2007). The hypothesis that NEBD would lead to vesiculation of the 

nuclear membrane derived from observations in Xenopus laevis egg extracts 

(Newport and Dunphy, 1992), probably stems from the fact that the ER is physically 

disrupted during the preparation of the extract and does not reflect the situation in 

living cells. The regulation of NEBD is believed to be carried out by mitotic kinases, 

which phosphorylate NE components, including nups, lamins and INM proteins. Cdk1 

appears to be a universal mitotic kinase, which might phosphorylate nups and directly 

trigger lamina depolymerization. However, also Aurora A (Hachet et al., 2007; Portier 

et al., 2007) and a cyclin A2/Cdk complex (Gong et al., 2007) play important roles in 

NEBD. The semi-open mitosis of A.nidulans is controlled by the NIMA kinase, which 

localizes to NPCs at the entry of mitosis and promotes dispersal of certain nups, 

including Nup98, which is phosphorylated by NIMA (De Souza et al., 2004). 

 

 

 

 
 

 

 

 

Figure 1-4. The events of nuclear envelope breakdown (NEBD). NE: 
nuclear envelope, dark green; ER: endoplasmic reticulum, light green; NPC: 
nuclear pore complex; MTs: microtubules. (Modified from Kutay and Hetzer, 
2008) 
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1.6.2 Functions of NE and NPC components during mitosis 
 

Several NE and NPC components have been reported to carry out important functions 

during mitosis. Nup358, a component of the cytoplasmic NPC filaments in interphase, 

possesses SUMO E3 ligase activity and anchors sumoylated RanGAP to the NPC. 

Following NPC disassembly, a fraction of Nup358 binds to spindle microtubules and 

MT-bound kinetochores and contributes to proper chromosome alignment and bipolar 

spindle formation (Salina et al., 2003; Joseph et al., 2004). Low Nup358 expression 

levels lead to aneuploidy and tumorigenesis in mice, suggesting that the function of 

Nup358 in mitosis is an important one (Dawlaty et al., 2008). A number of nups, 

including the Nup107-160 complex, and MEL-28/ELYS, partly localize to kinetochores 

during mitosis (Loiodice et al., 2004; Rasala et al., 2006). Kinetochore targeting of the 

Nup107-160 complex depends on the Ndc80 complex and CENP-F, but is upstream 

of Nup358/RanGAP recruitment (Zuccolo et al., 2007). In this way, the Nup107-160 

complex has been shown to contribute to mitotic spindle formation in vitro (Orjalo et 

al., 2006). The nup Rae1, which participates in mRNA export during interphase, 

contributes to spindle formation in mitosis (Blower et al., 2005). In addition, Rae 1 

expression is required for preventing aneuploidy and premature sister chromatid 

separation as a consequence of uncontrolled securin degradation (Jeganathan et al., 

2005), thus establishing a connection between nups and the spindle assembly 

checkpoint. In summary, many nups influence the progression or control of mitosis 

and an intimate connection between the NPC and mitotic spindle is emerging. 

 

1.6.3 Nuclear envelope and nuclear pore complex formation 
 

At the end of mitosis, the two daughter cells reform NEs around the segregated 

chromatids. From late anaphase onwards, the NE membranes enclose the 

decondensing chromatin and nuclear pores assemble in the newly forming NE. The 

observation that the ER remains an intact tubular network and that INM proteins are 

distributed in the ER during mitosis suggests that the tubular ER is the precursor of 

the NE membranes. In fact, live imaging demonstrated that nuclear assembly requires 

an intact ER and that ER targeting to chromosomes is accomplished by tubule-end 

binding and subsequent tethering to the chromatin surface (Anderson and Hetzer, 
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2007). These initial membrane-chromatin contacts might be mediated by direct 

binding of integral NE proteins to DNA. NE transmembrane proteins as a group are 

enriched in large cytosolic, positively charged domains and their interaction with DNA 

is critical for early steps in NE assembly (Ulbert et al., 2006b). The hypothesis has 

been put forward that ER membrane subdomains, containing a specific set of proteins, 

might mediate chromosome attachment and be critically required for postmitotic NE 

formation (Mattaj, 2004). Once bound to chromatin, the tubules flatten and spread out 

to form a closed NE. It has been hypothesized that the spreading NE membranes 

might encircle sites where nuclear pores are formed, so that NPCs would occupy the 

holes between the merging NE membranes (Anderson and Hetzer, 2007). 

Interestingly, NE expansion also requires an intact ER which is in contact with the NE, 

suggesting that the increase in membrane surface is accomplished by lipid transfer 

from the ER to the growing NE. Based on the study by Anderson and Hetzer (2007), 

NE formation is independent of ATP or GTP hydrolysis when performed from a pre-

formed ER. This contradicts previous publications, which implied that membrane 

fusion was required for NE formation (Vigers and Lohka, 1991; Boman et al., 1992; 

Wiese et al., 1997; Hetzer et al., 2000; Baur et al., 2007). Both results can be 

reconciled by considering the different experimental setups: In previous in vitro 

experiments, the NE precursor vesicles were added directly to chromatin and the 

soluble fraction of the extracts, so that ER formation occurred concomitantly with NE 

assembly. The observed inhibition of NE formation by interfering with membrane 

fusion events therefore may have resulted from a preceding block in ER fusion. In light 

of this result, the involvement of the AAA ATPase p97, which has been proposed to 

mediate homotypic fusion events in NE assembly (Hetzer et al., 2001) has to be re-

evaluated. p97 was later demonstrated to participate in NE formation by an alternative 

mechanism (Ramadan et al., 2007), which can explain its importance without invoking 

membrane fusion. Based on this report, p97 is required for extracting ubiquitylated 

aurora B kinase from chromatin, thereby inactivating it and allowing chromatin 

decondensation and NE formation to proceed. It is nevertheless unclear how p97 

would be able to exert its membrane fusion-independent role in NE formation in the 

presence of non-hydrolyzable NTP analogues. 
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ER tubules are formed by virtue of proteins from the reticulon family (Voeltz et al., 

2006) and the shape of the ER is indeed relevant for accurate timing of NE formation 

in vivo (Anderson and Hetzer, 2008). Overexpression of reticulons delays NE 

formation and inhibits NE expansion, whereas depleting them by RNAi accelerates 

nuclear assembly. This result suggests that restructuring the ER by transforming 

chromatin-bound membrane tubules into flat sheets is the rate-limiting step in NE 

formation. 

 

 
 

 

 

 

 

The enclosure of chromatin by the NE membranes is closely coordinated in space and 

time with NPC formation. Contrary to their rather simultaneous dissociation from NPCs 

during NEBD, nups assemble into the forming NPC in a well-defined sequential order. 

In mammalian cells, the Nup107-160 complex and Nup153 are the first nups to 

accumulate at the chromatin periphery, followed by recruitment of the transmembrane 

nup pom121. The centrally located Nup205-93 and Nup58 complexes bind later to the 

forming NPC, but are incorporated clearly before the cytoplasmically orientated 

Figure 1-5. Schematic illustration of postmitotic NE and NPC formation. 
NE: nuclear envelope, dark green; ER: endoplasmic reticulum, light green; 
NPC: nuclear pore complex; MTs: microtubules. (Modified from Kutay and 
Hetzer, 2008) 



34 

Nup214 complex and the integral membrane nup gp210 (Bodoor et al., 1999; Dultz et 

al., 2008). Based on NPC structures observed in electron microscopy studies, the 

existence of NPC assembly intermediates has been proposed (Goldberg et al., 1997; 

Kiseleva et al., 2001). 

 

Much of our mechanistic understanding of NE and NPC formation has been obtained 

with the help of an in vitro nuclear assembly assay derived from amphibian egg extract 

(Lohka and Masui, 1983; see also Materials and methods). With the help of this 

system, the contribution of several individual nuclear pore components to NPC 

assembly has been studied. 

 

One of the largest and most important building blocks of the NPC is the Nup107-160 

complex (or the homologous Nup84 complex in yeast). Deletion of proteins of the 

Nup84 complex led to defects in nuclear membrane and NPC organization and mRNA 

export in yeast (Siniossoglou et al., 1996). The vertebrate Nup107-160 complex is the 

first complex of soluble nups to bind to chromatin early in NPC assembly (Walther et 

al., 2003a). RNAi knockdown of Nup107-160 complex members in human cells 

resulted in reduced nuclear pore numbers, whereas employing Xenopus laevis egg 

extract immunodepleted of this complex in nuclear assembly gave rise to nuclei 

devoid of pores (Walther et al., 2003a; Harel et al., 2003a). These two publications 

establish Nup107-160 binding to chromatin as a key event for early NPC formation, as 

the presence of the Nup107-160 complex on chromatin was required for recruitment of 

all other soluble components of the NPC. Interestingly, addition of the Ca2+ chelator 

BAPTA to extracts caused the same phenotype as Nup107-160 depletion, but the 

BAPTA mechanism remains unclear (Macaulay and Forbes, 1996). The Nup58 

complex (Finlay et al., 1991) and the soluble nup Nup93 (Zabel et al., 1996; Grandi et 

al., 1997) are also required for assembly of functional NPCs, although at later stages 

than the Nup107-160 complex. Nup155 is essential for NE and NPC assembly in C. 

elegans and in vitro (Franz et al., 2005), as is Nup53, which is a member of the 

Nup205-93 complex that interacts with the transmembrane nup Ndc1 (Hawryluk-Gara 

et al., 2005; Mansfeld et al., 2006; Hawryluk-Gara et al., 2008). The nucleoplasmically 

orientated Nup153 is essential for incorporating several nups into the nascent NPC, 

notably nuclear basket components, affects NPC distribution in the NE and plays a 
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role in importin α/β-mediated protein import (Walther et al., 2001). Depletion of 

Nup358, but not Nup214, from extracts resulted in loss of cytoplasmic filaments from 

in vitro assembled nuclei. However, both nups from the cytoplasmic face of the NPC 

were largely dispensable for importin α/β-mediated protein import (Walther et al., 

2002). 

 

Of the three vertebrate transmembrane nups, only Ndc1 is essential for NPC 

formation (Mansfeld et al., 2006; Stavru et al., 2006b). pom121 plays a crucial role in 

NPC assembly in vitro, but the effect on NPC formation of its depletion from cultured 

human cells is variable (Antonin et al., 2005; Mansfeld et al, 2006; Stavru et al., 

2006a). Interestingly, the block in NE membrane closure in vitro caused by depletion 

of pom121 can be prevented by simultaneous removal of the Nup107-160 complex, 

suggesting that disruption of NE formation requires simultaneous NPC formation on 

chromatin. In contrast to Ndc1 and pom121, gp210 associates late with the 

assembling pore and is dispensable for NPC formation (Antonin et al., 2005; Stavru et 

al., 2006a). This is also reflected in the fact that certain cell types do not express 

gp210 (Eriksson et al., 2004). It is unclear how these cells accomplish NEBD. In yeast, 

Ndc1 and pom152 contribute to nuclear pore biogenesis, whereas pom34 does not 

(Madrid et al., 2006). A.nidulans cells lacking all three fungal transmembrane nups are 

viable, but a combined deletion of Nup84-120 complex members with Ndc1 is lethal or 

destabilizes the nuclear membranes, indicating that these nups have redundant 

functions (Liu et al., 2009). 

 

The Ran GTPase and other components of the Ran system have essential functions 

in NE and NPC assembly in vivo in yeast and C. elegans (Ryan et al, 2003; Bamba et 

al., 2002; Askjaer et al., 2002). Importin α associates with membranes and too high or 

too low importin α concentrations in Xenopus laevis egg extract inhibit NE formation in 

vitro (Hachet et al., 2004). Likewise, importin β plays a role in NE and NPC formation, 

in vitro (Harel et al., 2003b), in yeast (Ryan et al., 2007) and in C. elegans embryos 

(Askjaer et al., 2002). Ran and importin β presumably impact NPC assembly by the 

same mechanism with which they act in mitotic spindle formation. The local generation 

of RanGTP by RCC1 dissociates certain nups from importin β, thereby allowing them 
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to bind to chromatin, assemble into larger complexes and to become inserted into 

membranes and ultimately promoting NPC assembly (Walther et al., 2003b). In this 

manner, the local production of RanGTP could contribute to the proper spatial 

coordination of NPC assembly in postmitotic mitotic cells. 

 

Chromosome segregation requires the activation of the anaphase promoting complex 

(APC) and securin degradation at the transition from metaphase to anaphase. The 

APC also inactivates the mitotic kinase Cdk1 by degrading its corresponding cyclin. 

Consequently, with declining kinase activity, phosphatases can remove mitosis-

specific phosphorylation from NE and NPC components. Mitotic phosphorylation has 

been reported for several nups (Favreau et al., 1996; Glavy et al., 2007) and, although 

clear data on its functional relevance is missing, it is tempting to speculate that their 

dephosphorylation might contribute to the temporal coordination of NPC assembly. 

 

Like the NE membranes and NPCs, the nuclear lamina reforms at the end of mitosis. 

Interestingly, A- and B-type lamins differ spatially and temporally with respect to their 

targeting to the assembling NE (Moir et al., 2000). While lamin B is recruited to the NE 

in telophase and may actively participate in NE and NPC formation (Lopez-Soler et al., 

2001), lamins A and C are imported into nuclei after completion of NE assembly (Moir 

et al., 2000). The contribution of lamins to nuclear assembly was reviewed by Holaska 

et al. (2002). 

 

In cells undergoing open mitosis two principally different NPC assembly events can be 

distinguished, NPC formation into the intact interphase NE and NPC assembly at the 

end of mitosis. While postmitotic NPC assembly has been investigated in quite some 

detail, comparably little is known about interphase NPC assembly. NPC biogenesis in 

yeast can only occur by insertion of nuclear pores into an intact NE and the number of 

NPCs per yeast nucleus doubles during the cell cycle (Winey et al., 1997). A typical 

mammalian nucleus contains in the order of 2000 nuclear pores and the NPC number 

doubles during interphase (Maul et al., 1972). Recently, d’Angelo and Hetzer (2006) 

published evidence that NPCs are formed by a de novo mechanism in interphase, i.e. 

without using existing pores as a template. They showed that interphase NPC 

assembly occurs from both sides of the NE and requires RanGTP. 
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1.7 MEL-28 and NET5 
 

1.7.1 MEL-28 
 

In a systematic search for novel factors essential for postmitotic NE formation, Vincent 

Galy and Peter Askjaer, former Mattaj lab post-docs, identified a locus in C. elegans 

whose deletion resulted in pronuclear appearance defects. The gene, later termed 

mel-28, encodes a 200 kDa AT-hook-containing protein and has orthologues of similar 

size in most higher eukaryotes (de Jong-Curtain et al., 2008). Filamentous fungi and 

S.pombe possess significantly smaller MEL-28 orthologoues around 35 kDa (Liu et al., 

2009). Interestingly, mel-28 was found independently in an effort to functionally group 

C. elegans genes based on RNAi phenotypes of early embryos (Gunsalus et al., 

2005). This study also reported phenotypic similarities between mel-28 depletion and 

that of certain nups and the Ran GTPase. 

 

Vincent Galy and Peter Askjaer extensively characterized the role of mel-28 in NE 

assembly using C. elegans as a model system (Galy et al., 2006). They found that 

MEL-28 localizes to the NE in interphase and is recruited to kinetochores in mitosis, a 

behavior that it shares with its Xenopus laevis and human orthologues (see below). 

RNAi depletion or genetic mutation of mel-28 severely impaired nuclear morphology 

and led to abnormal distribution of both integral NE proteins and NPCs. The structural 

NE defects could be confirmed by transmission electron microscopy and were 

associated with functional defects and a lack of nuclear exclusion of cytoplasmic 

proteins. Vincent Galy’s and Peter Askjaer’s work suggests that MEL-28 is an early 

assembling, stable NE component essential for all aspects of NE formation. A parallel 

study by Fernandez and Piano (2006) reported additional roles for MEL-28 in mitotis 

and confirmed the involvement of MEL-28 in NE assembly, suggesting that it would 

act therein in a Ran-dependent manner. 

 

Three earlier publications had dealt with the mouse MEL-28 orthologue, named ELYS 

by the authors for embryonic large molecule derived from yolk sac (Kimura et al., 

2002; Okita et al., 2003; Okita et al., 2004). Kimura et al. (2002) initially proposed a 

function for MEL-28 in haematopoiesis and suggested it might act as a transcription 
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factor. The observation that MEL-28 homogygous mutant embryos died 3-5 days after 

implantation, significantly earlier than onset of mouse haematopoiesis, indicated that 

MEL-28 was required for survival for other reasons (Okita et al., 2004). The role of 

MEL-28 in nuclear organization was not addressed in any of these reports. 

 

Cerstin Franz initiated the work on Xenopus laevis MEL-28, which opened up the 

possibility to study its role in nuclear assembly in vitro. My work has extended her 

results and addressed novel aspects of MEL-28 function, as explained in subsequent 

parts of this thesis. Since I began working on MEL-28, five studies from other research 

groups dealing with MEL-28/ELYS have been published (Rasala et al., 2006; Gillespie 

et al., 2007; Rasala et al., 2008; Davuluri et al., 2008; de Jong-Curtain et al., 2008). 

These reports characterized the function of MEL-28 in nuclear assembly and obtained 

data very similar to ours (see Results), but also uncovered a previously unexpected 

functional link of MEL-28 to DNA replication (Gillespie et al., 2007; Davuluri et al., 

2008).  

 

MEL-28/ELYS is essential for nuclear integrity in invertebrates (Galy et al., 2006; 

Fernandez and Piano, 2006) and vertebrates (Davuluri et al., 2008; de Jong-Curtain et 

al., 2008). A point mutation in the zebrafish ELYS gene, leading to a stop codon within 

the coding region, gives rise to the flotte lotte (flo) mutant phenotype. flo mutant fish 

exhibit widespread apoptosis in the intestine, pancreas, liver and eye, suggesting that 

these tissues are particularly vulnerable to loss of ELYS. Cells in these tissues display 

strongly disrupted nuclear pores and dissociation of nups from the NE into the 

cytoplasm (Davuluri et al., 2008). At the ultrastructural level, flo mutant nuclei possess 

few if any well defined pores. Interestingly, flo mutant animals are more sensitive to 

treatment with DNA replication inhibitors than wild type fish (Davuluri et al., 2008), an 

observation which is in line with in vitro data that MEL-28 interacts with the replication 

licensing system (Gillespie et al., 2007). In the latter study, MEL-28 as shown to 

associate with the minichromosome maintenance (Mcm) proteins 2-7 on chromatin. 

Mcm2-7 are loaded onto chromosomes at the end of mitosis and are required for 

licensing origins of replication for use in the subsequent S phase. Preventing the 

loading of Mcm2-7 onto chromatin delayed chromatin recruitment of MEL-28 and nups 
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and as a consequence NPC assembly, suggesting that these two important cellular 

events are coordinated with each other. 

 

Our work (Franz et al., 2007 and results presented in this thesis) and that of others 

(Gillespie et al., 2007; Rasala et al., 2008) has demonstrated that MEL-28 plays a 

crucial role in postmitotic NPC formation. Since our findings and those of Gillespie et 

al. (2007) and Rasala et al. (2008) are highly redundant, they will be referred to and 

discussed in more detail in part 3 (Discussion) of this thesis. 

 

1.7.2 NET5 
 

NET5 was identified as an integral membrane protein of the NE in a subtractive 

proteomic approach (Schirmer et al., 2003). An independent study linked its C. 

elegans orthologue T24F1.2 to several nups by phenotypic similarity and to the Ran 

GTPase by correlating their expression (Gunsalus et al., 2005). These findings 

together with the observation by Matyas Gorjanacz that T24F1.2 caused synthetic 

lethality in combination with a group of NPC proteins specifically required for pore 

formation (personal communication), prompted me to clone and begin characterizing 

the human NET5 protein. 

 

NET5/T24F1.2 is a comparably recently discovered protein and so far, only one study, 

describing its S.pombe orthologue Ima1, has been published (King et al., 2008). In 

fission yeast, Ima1 is an NE protein enriched at sites where the microtubule organizing 

center (MTOC) is attached to the nucleus. Loss of Ima1 resulted in pronounced NE 

deformations and loss of spherical nuclear shape. In addition, ima1Δ cells became 

increasingly sensitive to microtubule-dependent forces exerted on the nucleus. Ima1 

was required for proper localization of the S.pombe SUN and KASH proteins Sad1 

and Kms2 and ima1 deletion led to more frequent separation of centromeres from the 

normally unique MTOC attachment site, indicating that the MTOC attachment site was 

fragmented in ima1Δ cells. Based on the result that chromatin immunoprecipitation 

against GFP-Ima1 enriched the central centromeric region, the authors suggest that 

Ima1 specifically tethers centromeric heterochromatin to the NE. 
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Our approach has been to study the function of NET5/T24F1.2 in nuclear organization 

in human cells and C. elegans (see below). 

 

1.8 Aim of the thesis 
 

NE and NPC formation at the end of mitosis are two elaborate processes essential for 

cell survival. MEL-28 had been identified as an essential factor for postmitotic NE 

assembly in vivo and in vitro, but its mode of action remained unclear. The aim of this 

thesis was to closely investigate the role of MEL-28 in nuclear organization and to 

dissect the mechanism by which it acts in nuclear assembly. Accordingly, the primary 

objectives were: characterizing the MEL-28 RNAi and in vitro depletion phenotypes, 

clarifying the relation between MEL-28 and previously indentified players in NE 

assembly and addressing the regulation of MEL-28 function, e.g. by the Ran system. 

To achieve this, I employed a wide range of techniques, from RNAi experiments in 

cultured cells to in vitro nuclear assembly and from molecular biology to biochemical 

methods and confocal microscopy. 

 

Our understanding of NE dynamics is far from complete. While global approaches can 

help to identify novel genes involved in a process of interest, they do not reveal the 

mechanism by which the corresponding proteins function in that process. Based on 

the available information, NET5/T24F1.2 was a promising new candidate protein, 

implicated in NE and NPC organization. Together with Matyas Gorjanacz, I decided to 

carry out a thorough characterization on this interesting protein. While he focused on 

investigating T24F1.2 in C. elegans, I generated reagents for studying the human 

NET5 protein. 
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2.1 MEL-28 
 

The work on MEL-28 presented here is the continuation of a project initated by three 

previous members of the Mattaj group. Peter Askjaer and Vincent Galy mapped the 

maternal-effect embryonic-lethal mutation mel-28 to the C38D4.3 gene in C. elegans. 

They conducted a thorough characterization of its gene product MEL-28 

demonstrating that MEL-28 is essential for many aspects of nuclear assembly in C. 

elegans (Galy et al. 2006). Cerstin Franz began working on the vertebrate orthologue 

of C. elegans MEL-28 by cloning the Xenopus laevis MEL-28 gene and generating 

antibodies against the Xenopus laevis MEL-28 protein. She carried out an initial 

characterization of its role in nuclear assembly in vitro. Her results demonstrated that 

the function of MEL-28 is conserved in metazoa, however, many open questions 

remained about the mechanism by which MEL-28 would act in nuclear assembly. 

Consequently, some of my experiments followed up on previous experimental 

avenues, while others addressed entirely new aspects of MEL-28 function in NE 

formation. 

 

2.1.1 Generation of specific reagents against human MEL-28  
 

Among the most important goals at the beginning of my PhD work was to generate 

reagents for studying the human MEL-28 protein. Such reagents were not available in 

the laboratory at the time, but promised to be very valuable tools and to open up 

several new experimental directions. 

 

In order to produce polyclonal antibodies against human MEL-28, several fragments of 

the human MEL-28 cDNA were cloned into vectors for expression as His6- or GST-

tagged proteins in E. coli. In addition to the antigen previously published by Kimura et 

al. (2003), residues 1208-1582, four fragments of roughly equal size were chosen 

based on their predicted high hydrophilicity: residues 141-365, 1572-1800, 1801-2016 

and 2017-2266.  A full length cDNA clone of human MEL-28 previously generated by 

Peter Askjaer served as a template for the corresponding PCR reactions. All 

fragments were expressed in BL21 (DE5) Rosetta cells according to standard 

protocols (see Materials and methods) and evaluated for high expression and 
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solubility. Based on the results the fragment sizes were extended, finally yielding two 

large fragments of human MEL-28, amino acid residues 1208-1800 and 1572-2266, 

which were expressed and purified as His6-tagged proteins and used for immunizing 

rabbits (Figure 2-1 A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Western blotting using the corresponding rabbit sera revealed a major band at 250 

kDa in HeLa cell total lysate (Figure 2-1 B), but not in Xenopus laevis or C. elegans 

(data not shown). The antibodies against human MEL-28 were affinity purified using 

the soluble fragments cross-linked to Sepharose and were used in all subsequent 

experiments. 

 

A      B 

Figure 2-1. Generation of specific antibodies against human MEL-28. (A) 
Coomassie-stained SDS-PAGE gels with Hs MEL-28 fragments expressed in 
and purified from E. coli, which were used to immunize rabbits. (B) Western 
blot using the corresponding pre-immune sera (lanes 1+2) or affinity purified 
antibodies against Hs MEL-28 (lanes 3+4) on a HeLa cell lysate. Both 
antibodies recognize a single band at 250 kDa. 
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2.1.2 Human MEL-28 is a nuclear envelope and kinetochore protein 
 

In order to establish the subcellular localization of MEL-28 in human cells, cultured 

HeLa cells and U2OS cells were fixed with PFA and immunostained with anti-Hs MEL-

28 antibodies (Figure 2-2). Co-staining was performed with mAb414, an NPC marker 

which recognizes the four FG repeat-containing nups Nup358, Nup214, Nup153 and 

p62 (Davis and Blobel, 1986). For both cell types very similar results were obtained 

(U2OS data not shown). MEL-28 localized to the NE of interphase cells, giving a 

strong rim staining around the nucleus. A weaker nucleoplasmic staining was also 

detectable. This staining was absent from cells labeled with the corresponding pre-

immune sera (data not shown). 

 

Mitotic cells displayed a loss of the MEL-28 nuclear rim staining indicative of NE 

breakdown, but showed bright MEL-28 foci on the condensed chromosomes from 

early prophase through late anaphase and a weaker diffuse overall chromosome 

staining. These foci were highly reminiscent of kinetochores. Rasala et al. (2006) 

demonstrated by performing co-staining for the kinetochore protein CENP-B that they 

indeed correspond to kinetochores. Human MEL-28 thus exhibits a similar behavior to 

its C. elegans and Xenopus laevis orthologues (Galy et al., 2006; Franz et al., 2007) 

changing localization between the NE and kinetochores during the cell cycle. 

Interestingly, cells in late anaphase could be observed with a relatively strong MEL-28 

staining already evenly distributed on the decondensing chromatids, but low mAb414 

signal, suggesting that MEL-28 might be generally distributed on chromatin before the 

FG repeat-containing nups began to assemble into NPCs at the end of mitosis. 

 

2.1.3 MEL-28 localizes to nuclear pores and the INM 
 

We wished to determine the localization of MEL-28 at the NE at higher resolution. 

Magnified confocal sections through the nuclear surface of human cells showed that 

MEL-28 was not evenly distributed in the plane of the NE, but displayed a dot-like 

pattern that bore resemblance to NPC staining. Upon co-labeling with mAb414, the 

MEL-28 staining largely coincided with the mAb414 signal in the NE, suggesting that 

MEL-28 resides at nuclear pores (Figure 2-3 A). In order to reliably  
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 A                    B 

 
 
 
 
 
C 

Figure 2-3. MEL-28 localizes to nuclear pores and the INM. (A) Confocal section 
through the nuclear surface of a fixed U2OS cell stained for MEL-28 and NPCs 
(mAb414). Scale bar, 1 µm. (B) Examples of MEL-28 labeling at the NE. HeLa cells 
or Xenopus laevis A6 cells were fixed and processed for immunogold labeling 
according to the Tokuyasu technique. Labeling was performed with affinity purified 
antibodies against human or Xenopus MEL-28 and 10 nm protein A gold. The 
scheme illustrates the orientation of the NE: C-cytoplasm, N-nucleoplasm. (C) 
Quantitation of gold particles at the NE. NPC- nuclear pore complex, INM- inner 
nuclear membrane, ONM- outer nuclear membrane, L- lumen. Processing and 
labeling of cells for EM + counting of gold particles were carried out by Rachel 
Mellwig. 
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determine the precise localization of MEL-28 in the cell, electron microscopy (EM) was 

used. Rachel Mellwig processed HeLa and Xenopus laevis A6 cells for immunogold 

labeling with anti-human MEL-28 or anti-Xl MEL-28 antibodies according to the 

Tokoyasu technique (see Materials and methods). Gold particles could be detected 

primarily at nuclear pores and at the INM with very little labeling at the ONM. Figure 2-

3 B shows examples of gold particles at nuclear pores in human or Xenopus cells. 

Rachel Mellwig quantified the labeling by counting 209 particles for HeLa cells and 

215 particles for A6 cells. These results are summarized in Figure 2-3 C. Note that 

NPCs correspond to only a small fraction of the NE surface, so most MEL-28 is at 

NPCs.  

 

Another clue about the orientation of MEL-28 in the NE could be obtained from an 

additional experiment in which HeLa cells were selectively permeabilized with different 

detergents (Figure 2-4). Treatment of cells with Triton X-100 leads to unspecific 

perforation of all cellular membranes, while treatment with digitonin selectively 

permeabilizes the plasma membrane and leaves the NE intact. While Nup358, a 

component of the cytoplasmic filaments of the NPC, was detectable under all 

conditions, the nuclear interior was only accessible after incubation with Triton X-100 

as assessed by detection of the Cajal body marker coilin (Platani et al., 2000). 

Likewise, MEL-28 immunolabeling was only detectable after Triton X-100 

permeabilization, a result obtained with both antibodies, directed against the two 

different regions of human MEL-28. 

 

Given that Hs MEL-28 is a very large protein consisting of 2266 amino acids it could 

potentially span the entire NE. Since no structural data on MEL-28 is currently 

available complete interpretation of this experiment is difficult. Attempts to affinity 

purify the antibodies directed against the extreme N-terminus (aa 1-195) of Xl MEL-28, 

which were produced by Cerstin Franz (Cerstin Franz PhD thesis figure 2.18), for 

comparative immunogold labeling were unsuccessful. We can nevertheless conclude 

that the C-terminal half of MEL-28 is orientated toward the inner face of the NE. 
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Figure 2-4. The C-terminus of MEL-28 faces the inner side of the NE. HeLa 
cells were fixed with PFA and permeabilized with 0.25% Triton X-100 (T X-100) 
or 0.025% digitonin. Triton X-100 treatment largely removes the NE 
membranes, while digitonin selectively permeabilizes the plasma membrane 
leaving the NE intact. Thus intranuclear antigens are only accessible after Triton 
X-100 treatment. Cells were immunostained with antibodies against coilin, MEL-
28 and Nup358. The Cajal body protein coilin (arrowheads) served as an 
intranuclear marker, Nup358 as a marker for the outer face of the NE. Scale 
bar, 20 µm. 
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2.1.4 MEL-28 is required for NPC maintenance in human cells 
 

One of the most important open questions of the project was to address the function of 

MEL-28 in living vertebrate cells. RNA interference (RNAi) is a convenient and well- 

established method to examine the phenotypic consequences of depleting a specific 

protein from cells in vivo. Cerstin Franz had carried out an RNAi experiment in HeLa 

cells which suggested that the loss of human MEL-28 might affect the organization of 

nuclear pores. This result could, however, not be interpreted conclusively due to the 

unavailability of a useful antibody against human MEL-28 to monitor the depletion 

efficiency. With specific antibodies in hand we repeated the RNAi experiment. HeLa 

cells were transfected with control siRNA oligos directed against firefly luciferase, a 

gene not present in human cells, or two different oligos targeting two distinct regions 

within the MEL-28 mRNA. Similar results were obtained upon treatment with both 

MEL-28 oligos: analysis of HeLa cell lysates by Western blotting showed that MEL-28 

levels were significantly reduced after 48 h of RNAi (Figure 2-5 A) while the levels of 

nups, α tubulin or Histone H2B were unaffected. The gradual loss of MEL-28 from 

HeLa cells upon RNAi treatment was confirmed by confocal microscopy. Cells fixed at 

different timepoints after transfection with MEL-28 siRNA oligos were immunostained 

for MEL-28, nups or INM proteins (Figure 2-5 B and C). After 2 days of RNAi 

treatment the MEL-28 signal in many cells was below detection limit. As they became 

depleted of MEL-28, the cells displayed a progressive loss of nups from the NE until 

after 3 days many had lost their mAb414 rim staining entirely. This was observed for 

all nups tested, suggesting that the entire NPC was lost from the NE. At the same 

time, the cells began to accumulate large nucleoporin-containing cytoplasmic 

aggregates, a phenotype already observed after depletion of Nup107-160 complex 

members (Walther et al., 2003a). Such annulate lamellae (AL) can also be observed 

at low levels in wild type HeLa cells (Kessel, 1992). Both HeLa and U2OS cells 

displayed the same MEL-28 RANi phenotype, although the effect was more 

pronounced in U2OS cells. 

 

Interestingly, while MEL-28 depletion significantly altered the distribution of nups in the 

cells, the nuclear membranes appeared to be unaffected, as judged by 

immunostaining for the INM markers LEM2 and Emerin (Figure 2-5 C and 
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Figure 2-5. MEL-28 is required for NPC maintenance in human cells. (A) HeLa 
cells were treated for 48 h with two different siRNA oligos against MEL-28 and total 
cell lysates analyzed by Western blotting. (B+C) Phenotypic characterization of MEL-
28 RNAi in Hela cells fixed after 48 h (panels 2, 3 and 5) or 72 h (panels 1+4) of 
MEL-28 RNAi treatment with nuclear pore (B) and NE membrane (C) markers. Scale 
bar, 15 µm. The RNAi experiments, labeling and recording of cells for panels 1 and 4 
were performed by Sevil Yavuz. 

A                     B 
 
 
 
 
 
 
 
 
 
C 
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data not shown), suggesting that MEL-28 was required specifically for proper NPC 

assembly, but not formation of the NE membranes. Cells that had lost MEL-28 

possessed smaller nuclei than control cells, a phenotype consistent with defects in 

nucleocytoplasmic transport. Interestingly, Lap2 and Lamin A staining also remained 

largely unaltered after 48 h of MEL-28 RNAi (Figure 2-5 C), indicating that the nuclear 

lamina remained unaffected. This result, which was independently reported by Rasala 

et al. (2006), is very surprising as lamins A and C are thought to be imported into the 

nucleus after completion of NE and NPC assembly at the end of mitosis. Either the 

nuclear import of A-type lamins is more resistant to reduced NPC numbers compared 

to other transport events or MEL-28 affects interphase NPC formation. After 3 days of 

RNAi treatment many cells appeared apoptotic emphasizing that MEL-28 is required 

for cell survival. These results establish MEL-28 as an essential factor for NPC 

maintenance in human cells, however they do not resolve whether interphase NPC 

assembly or postmitotic NPC formation is impaired upon MEL-28 downregulation. 

 

In order to confirm that the cytoplasmic aggregates observed upon MEL-28 RNAi were 

indeed annulate lamellae, we examined them by electron microscopy. Rachel Mellwig 

prepared RNAi-treated HeLa cells following two different protocols. Staining with 

osmium tetroxide and uranyl acetate permitted morphological characterization of the 

MEL-28 RNAi phenotype by EM (Figure 2-6 A). A significant increase in the number of 

cytoplasmic membrane stacks was observed following MEL-28 RNAi. The stacks were 

filled with frequent membrane gaps and constrictions resembling nuclear pores. In 

addition, the NE of the RNAi cells possessed very few nuclear pores compared to 

control cells. In a second experiment, Rachel Mellwig labeled the cells with mAb414 

and Protein A gold (Figure 2-6 B). The membrane stacks stained strongly for FG 

repeat-containing nups proving that they were indeed AL. RNAi depletion of MEL-28 

therefore results in the same phenotype as removal of the Nup107-160 complex 

(Walther et al., 2003a). 

 

2.1.5 Annulate lamellae can form independently of MEL-28 
 

An interesting question that arose from the above experiments was whether AL 

formation was an immediate consequence of MEL-28 depletion. While MEL-28 co-
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Figure 2-6. RNAi depletion of MEL-28 leads to annulate lamellae formation. 
HeLa cells were fixed after 72 h of MEL-28 RNAi treatment and stained with 
osmium tetroxide / uranyl acetate for morphological studies (A) or processed for 
immunogold labeling with mAb414 according to the Tokuyasu technique (B). (B) 
depicts the observed AL in cross-section or top view. Scale bars, 200 nm. 
Processing and labeling of cells were performed by Rachel Mellwig. 
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Figure 2-7. MEL-28 is neither part of annulate lamellae nor required for AL 
formation. (A) HeLa cells were fixed and immunostained for MEL-28 or nuclear 
pores (mAb414). Scale bars, 10 µm. (B). Annulate lamellae form independent of 
MEL-28 in Xenopus egg extract. Mock or MEL-28-depleted Xenopus laevis egg 
extract was supplemented with Ran mutants (10µM final concentration) and 
incubated with membranes for 60 min. Annulate lamellae were purified through a 
sucrose cushion and analyzed by Western blotting. 

A 
 
 
 
 
 
 
 
  
 
 
B 
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localized with nups at the NE, it was never detected in the cytoplasmic mAb414-

positive foci of wild type cells demonstrating that MEL-28 is not part of AL in vivo 

(Figure 2-7 A). In order to test, whether MEL-28 depletion per se would result in AL 

formation, we utilized the Xenopus laevis egg extract system in which AL can be 

readily formed by combining membranes with a cytosolic fraction (Meier et al., 1995). 

Supplementing the extract with the constitutively GTP-bound Ran GTPase mutant 

Q69L leads to liberation of importins from nups and triggers assembly of nuclear pores 

in the membranes (Walther et al., 2003b). 

 

AL were formed for 60 min in mock or MEL-28-depleted extracts with or without 

addition of Ran mutants, isolated through a sucrose cushion and analyzed by Western 

blotting (Figure 2-7 B). Immunodepletion of MEL-28 did not significantly reduce 

mAb414 levels in the extract. When mock depleted extracts were supplemented with 

RanQ69L the levels of nups co-purified with the membranes were significantly 

elevated (Figure 2-7 B, right panel, lane 2). Addition of the nucleotide-free inactive 

form of Ran, T24N, did not induce this effect (lane 3). Interestingly, the MEL-28-

depleted extracts behaved like the mock extracts in this assay. Removal of MEL-28 

did not alter the amounts of nups in the purified membranes, but RanQ69L-mediated 

induction of AL formation was as efficient in the absence of MEL-28 as in the control. 

Thus, removal of MEL-28 per se does not induce AL formation or render it 

independent of RanGTP. 

 

2.1.6 MEL-28 is required for postmitotic NPC assembly 
 

It was therefore unclear how MEL-28 depletion would lead to AL formation in living 

cells. The main difference between the in vivo situation in the RNAi experiment and 

the in vitro AL formation assay was that annulate lamellae were formed in the absence 

of chromatin. The Xl egg extract system is, however, also suitable to recapitulate 

postmitotic nuclear assembly (see Introduction or Materials and methods). Using mock 

or MEL-28-depleted extracts in the in vitro nuclear assembly assay, Cerstin Franz 

showed that nuclei formed from MEL-28-free extract contain no detectable nups, 

suggesting that MEL-28 has an essential function early in postmitotic nuclear pore 

formation. However many important aspects of the MEL-28 depletion phenotype 
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remained unresolved. We repeated the experiment and investigated the MEL-28 

depletion phenotype in detail. Immunodepletion of MEL-28 from cytosol did not 

significantly affect the levels of other nups (Figure 2-8 A). We confirmed that MEL-28-

free extracts give rise to nuclei devoid of nups, but staining with the membrane dye 

DilC18 suggested that they were surrounded by a membrane (Figure 2-8 B). Rachel 

Mellwig processed mock or MEL-28-free nuclei for close inspection by EM (Figure 2-8 

C). Control nuclei contained decondensed chromatin and possessed a double 

membrane perforated with clearly visible nuclear pores. MEL-28-free nuclei were also 

encompassed by a double membrane, but lacked nuclear pores. ΔMEL-28 nuclei were 

also smaller than control nuclei and retained the rod-like shape which chromatin 

templates acquire after the phase I decondensation of nuclear assembly (Philpott et 

al., 1991). At the same time the chromatin of ΔMEL-28 nuclei remained highly 

condensed demonstrating that the second nucleocytoplasmic transport-dependent 

phase of nuclear assembly did not occur. 

 

The membrane phenotypes observed upon impairment of nuclear assembly in vitro 

fall into two distinct categories: Nuclei with a closed NE membrane devoid of pores as 

observed for removal of the Nup107-160 complex (Walther et al., 2003a) or chromatin 

templates decorated with unfused vesicles characteristic for depletion of Nup53, 

Nup155 or the transmembrane nups pom121 or Ndc1 (Hawryluk-Gara et al., 2008; 

Franz et al., 2005; Antonin et al., 2005; Mansfeld et al., 2006). It was therefore 

important to assign the MEL-28 depletion phenotype to either group. In order to 

unambiguously determine whether MEL-28-free nuclei possess a closed NE, Wolfram 

Antonin carried out an exclusion assay (Figure 2-8 D). In this assay chromatin was 

decondensed with recombinant nucleoplasmin in the presence of biotinylated histones 

prior to addition of membranes. After completion of the nuclear assembly reaction 

fluorescently labeled streptavidin was added to the nuclei. Labeling of chromatin 

indicates the absence of a closed nuclear membrane. Supplementing the assembly 

reaction with high concentrations of RanQ69L inhibits formation of a closed nuclear 

membrane and served as negative control. MEL-28-free nuclei efficiently excluded 

fluorescently labeled streptavidin like mock nuclei. ΔMEL-28 nuclei thus acquire a 

closed NE membrane. 
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Taken together, these results show that nuclei formed in the absence of MEL-28 

possess a closed NE with inner and outer nuclear membranes, but lack nuclear pores. 

Thus, depletion of MEL-28 leads to the same nuclear assembly phenotype in vitro as 

depletion of the Nup107-160 complex. 

 

2.1.7 MEL-28 interacts with the Nup107-160 complex 
 

The finding that removal of MEL-28 from extract resulted in a phenotype previously 

observed for depletion of the Nup107-160 complex suggested an intimate functional 

relationship between MEL-28 and this complex. MEL-28 and Nup107 can be co-

immunoprecipitated with each other from interphase egg extract (Cerstin Franz PhD 

thesis). In order to determine whether immunoprecipitation of MEL-28 would enrich 

the complete Nup107-160 complex, I repeated the experiment with affinity purified 

anti-Xl MEL-28 antibodies cross-linked to protein A Sepharose beads and analyzed 

the IP eluates by Western blotting for additional nups (Figure 2-9 A). A control IP was 

performed with rabbit IgG. MEL-28, Nup107, Nup160 and Nup37 were precipitated in 

the MEL-28 IP, but not in the control IP. A weak p62 signal in the eluates was not 

considered a real interaction, since an IP with mAb414 did not co-precipitate MEL-28 

and p62 was frequently found to generate a weak signal in control IPs (data not 

shown). In a separate unbiased approach to identify proteins bound to MEL-28 in 

Xenopus egg extract, MEL-28 IP eluates were separated on SDS-PAGE gels and 

stained with silver (Figure 2-10). Marc Gentzel analyzed prominent specific bands in 

the MEL-28 IP eluate by mass spectrometry and identified Nup133, Nup96 and Sec13 

as additional interacting proteins. MEL-28 thus binds to the entire Nup107-160 

complex in egg extract. The interaction was confirmed by mutual IP of MEL-28 or the 

Nup107-160 complex from membrane-free cytosol using serum against MEL-28 or 

nups (Figure 2-9 B). Nup93 and 205 are part of a separate nup complex and were 

precipitated as negative controls. 

 

The availability of antibodies against human MEL-28 allowed me to ask whether the 

interaction between MEL-28 and the Nup107-160 complex also occurs in human cells. 

IPs from HeLa cell lysates were performed with affinity purified anti-human MEL-28 

antibodies or an unrelated pre-immune serum as negative control and investigated by 
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A                                   B 

C 

Figure 2-9. MEL-28 interacts with the Nup107-160 complex. (A) 
Immunoprecipitation of MEL-28 from membrane-free Xenopus laevis egg 
extract. The IP was performed with affinity purified anti-Xl MEL-28 
antibodies cross-linked to Protein A Sepharose, the control IP with rabbit 
IgG. Eluates were analyzed by Western blotting. (B) Mutual IP of MEL-28 
and the Nup107-160 complex from Xl egg extract. IPs were carried out 
with sera against the indicated proteins. The IPs against Nup205 and 
Nup93, which reside in a distinct Nup complex, served as negative 
control. (C). IP of human MEL-28 from a HeLa cell nuclear extract. The 
IP was performed with affinity purified anti-Hs MEL-28 antibodies ("C-
terminus") cross-linked to Protein A Sepharose, the control IP with an 
unrelated pre-immune serum. 
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Western blotting (Figure 2-9 C). Interestingly, only antibodies against the C-terminus 

of Hs MEL-28 precipitated MEL-28, but not those directed against the middle fragment 

suggesting that only amino acids 1801-2266 of human MEL-28 are accessible in HeLa 

cell lysates. The MEL-28 IP eluate contained Nup107, which was not detected in the 

control IP, indicating that the interaction observed in the Xenopus system is conserved 

among vertebrates. Probing for other human nups was restricted by the available 

antibodies. Rasala et al. (2006) independently demonstrated that human MEL-28 

interacts with the complete Nup107-160 complex. 

 

2.1.8 Identification of proteins bound to MEL-28 
 

As mentioned previously the MEL-28 IP eluates from interphase Xenopus laevis egg 

extract were analyzed by SDS-PAGE and silver staining to identify all proteins 

precipitated with MEL-28. Table 2-1 summarizes the candidate proteins for interaction 

with Xenopus laevis MEL-28 that were not Nup107-160 complex components. 

 

Table 2-1 Unrelated proteins bound to MEL-28 in Xenopus laevis egg extract 

No. in 
Fig. 2-10 

Candidate protein Gene ID 

1 Homologous to dedicator of cytokinesis 
[Mus musculus] 

gi|82915356 

2 AND-1 protein gi|2102674 
3 T-complex protein 1 subunit gamma (TCP-1-gamma)  gi|1729875 
4 Cyclase-associated protein 1b gi|31747013 
5 MGC81040 protein gi|46249848 
6 Homologuos to BAE40130 unnamed protein product 

[Mus musculus] 
gi|74207780 

7 Centrin gi|1017791 
 

In addition to the above listed nups and candidate proteins, importin α and β were 

identified in the MEL-28 eluates. Importin β had previously been shown to bind to the 

Nup107-160 complex (Walther et al., 2003b). AND-1 had been characterized in a 

previous publication (Köhler et al., 1997) and we obtained a monoclonal antibody 

against this protein from the authors. AND-1, however, did not appear to interact with 

MEL-28, since an AND-1 IP did not co-precipitate MEL-28. The other candidates from 

the above list were not investigated in greater detail as part of this thesis. 
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Figure 2-10. Proteins bound to MEL-28 in Xenopus laevis egg extract. MEL-28 
was immunoprecipitated from membrane-free Xenopus laevis egg extract with 
affinity purified anti-Xl MEL-28 antibodies cross-linked to Protein A Sepharose. The 
control IP was performed with rabbit IgG. Eluates were separated on 7% (left) or 
15% (right) SDS-PAGE gels, analyzed by silver staining and specific bands were 
identified by mass spectrometry (MS). Nuclear pore proteins are marked. Unrelated 
proteins are numbered and listed in table 2-2. The identification of proteins by MS 
was carried by Marc Gentzel. 
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The above experiment was complemented with two additional IPs in which different 

starting material was employed and which intended to answer the following two 

questions. Firstly, do MEL-28 and the Nup107-160 complex bind to additional proteins 

from the membrane fraction of the egg extract? Secondly, does the composition of 

proteins bound to MEL-28 change during the cell cycle? To address the first question, 

MEL-28 was immunoprecipitated from membrane-free extract as above followed by a 

second incubation with detergent-solubilized total membranes. The second question 

was tackled by comparing silver-stained MEL-28 IP eluates from membrane-free 

interphase and mitotic extracts. Xenopus laevis eggs are arrested in metaphase of 

meiosis 2, and can be used to prepare mitotic extract when activation of the eggs is 

prevented. Neither approach, however, led to the identification of additional proteins. 

 

In addition to IPs from egg extract, the antibodies against human MEL-28 were used 

to precipitate MEL-28 from HeLa nuclear extracts followed by SDS-PAGE and silver 

staining (data not shown). Although the eluates contained only a small number of 

bands suggesting the enrichment was specific, the experiment suffered from 

proteolytic degradation, despite the addition of protease inhibitors, and Nup160 was 

the only nup detectable. The proteins identified with the highest numbers of peptides 

besides MEL-28 are listed in table 2-2: 

 

Table 2-2 Proteins enriched by the human MEL-28 IP from HeLa nuclear extract 

Name Gene ID 
ubiquitin-conjugating BIR-domain enzyme APOLLON gi|8489831 
DNA-activated protein kinase, catalytic polypeptide gi|13654237 
IkB kinase beta subunit; IKK beta gi|3213217 
Bruton's tyrosine kinase-associated protein-135; BAP-135  gi|1870688 
Hydroxysteroid (17-beta) dehydrogenase 4 gi|13111861 
kinesin family member 2C gi|5803082 
 

The above collection of candidate proteins suggests that the human MEL-28 IP might 

have enriched the nucleoplasmic pool of MEL-28, rather than the NE fraction. This is 

in line with the experimental conditions, since the nuclear extract was prepared 

without detergents. 
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2.1.9 MEL-28 acts upstream of the Nup107-160 complex in NPC assembly 
 

Having identified the interaction between MEL-28 and the Nup107-160 complex, we 

wondered if MEL-28 and Nup107-160 formed a stochiometric complex and what their 

functional relationship in nuclear assembly was. Wolfram Antonin had separated 

interphase egg extract by gel filtration and analyzed the migration behavior of nups 

and MEL-28 by Western blotting (Figure 2-11 A). In this experiment, a large fraction of 

MEL-28 co-migrated with Nup107 and Nup160 in a high molecular weight peak 

around 2 MDa indicating that this might be the complex previously purified in the MEL-

28 IP. A smaller MEL-28 peak was observed at slightly lower molecular weight 

(fractions 8-10 in Figure 2-11 A), while a second Nup107/Nup160 peak followed 

significantly later (fractions 14-18 in Figure 2-11 A), suggesting that this was the MEL-

28-free Nup107-160 complex which remained in extracts after MEL-28 

immunodepletion (see e.g. Figure 2-8 A). The gel filtration experiment indicated that 

while a significant fraction of Nup107-160 complexes was MEL-28-free only a small 

proportion of MEL-28 was not bound to Nup107-160 complexes. This was indeed 

observed when the Nup107-160 complex was immunodepleted from egg extract: a 

significant part of MEL-28 was removed along with Nup107-160, but a small amount 

remained detectable in the extracts (Figure 2-11 B). 

 

Removal of MEL-28 and the Nup107-160 complex caused the same phenotype in 

nuclear assembly, however, their hierarchy in this process was unclear. To address 

this issue we incubated chromatin templates with membrane-free Nup107-160 or 

MEL-28-depleted extract for 10 min, stopped the reactions by fixation and processed 

the samples for MEL-28 and Nup160 immunostaining followed by confocal microscopy 

(Figure 2-11 C). While MEL-28 could still bind to chromatin in the absence of the 

Nup107-160 complex, Nup107-160 complex recruitment to chromatin was abolished 

in MEL-28-depleted extracts. These results demonstrate that MEL-28 acts upstream 

of Nup107-160 and is required for the Nup107-160 complex to bind to chromatin in 

postmitotic NPC assembly. 
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Figure 2-11. MEL-28 is required for recruitment of the Nup107-160 complex to chromatin 
but not vice versa. (A) Xenopus laevis egg extract separated on a Superose 6 gel filtration 
column. Fractions were analyzed by Western blotting. Fraction 1 corresponds to the void. 
Elution of dextran 2000 and ferritin (550 kDa) are indicated. The gel filtration experiment was 
performed by Wolfram Antonin. (B) Depletion of the Nup107-160 complex from cytosol with 
antibodies directed against Nup107. (C) Recruitment of MEL-28 or the Nup107-160 complex 
to chromatin. Extracts were depleted of MEL-28 or the Nup107-160 complex, centrifuged to 
remove membranes and the supernatants incubated with chromatin for 10 min. The chromatin 
templates were fixed, isolated through a sucrose cushion and analyzed by immunostaining 
and confocal microscopy. Scale bar, 10 µm.  
 

A 
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2.1.10 Mapping the NE-localization domain in MEL-28 
 

We next wanted to define the region in MEL-28 which mediates interaction with the 

Nup107-160 complex. The starting point of this experiment was the observation that 

an N-terminally GFP-tagged full length Xenopus MEL-28 localized properly to the NE 

when expressed in HeLa cells (Figure 2-12 B). Western blotting of lysates from 

transfected cells indicated that the full length protein was expressed (Figure 2-12 A). 

Interestingly, this experiment showed that a new anti Xenopus MEL-28 antiserum, 

which I generated with the same antigen fragment that Cerstin Franz had used before, 

cross-reacted with the human protein (Figure 2-12 A). 

 

Mapping followed the rationale to consecutively truncate the MEL-28 cDNA and check 

for localization of the GFP-tagged fragments in HeLa cells. At first I exploited the 

unique restriction sites in the MEL-28 sequence, releasing fragments of the cDNA and 

re-ligating the plasmid by blunt end ligation. This series of C-terminal truncations 

demonstrated that the C-terminal 800 amino acids of over-expressed Xl MEL-28 are 

dispensable for NE localization (Figure 2-12 B). In a second round, additional N-

terminal truncations were amplified by PCR, shortening the previously identified 

fragment by ≈ 200 amino acid increments. While most of the constructs did not display 

proper localization, amino acids 1007-1418 directed GFP to the NE in most 

transfected cells (Figure 2-12 C). These cells exhibited a slightly higher background 

GFP signal than cells transfected with the full length protein, but a strong enrichment 

at the NE was clearly visible. The fact that some longer fragments did not localize to 

the NE may indicate either a folding problem or shielding of the binding site. Although 

the experiment intended to narrow down the interaction domain in MEL-28 with the 

Nup107-160 complex, a possible interpretation of its result is that MEL-28 dimerizes 

via this region with human MEL-28 present in the HeLa cells and is thus brought to the 

NE. Figure 2-12 D schematically illustrates the minimal part of Xl MEL-28 which was 

found to target GFP to the NE in HeLa cells. This fragment could be expressed in and 

purified from E. coli when expressed as a GST-tagged protein. Using it as bait in GST-

pulldown experiments from Xenopus egg extract has not yet yielded a conclusive 

result, as the binding pattern of nups was not reproducible and the experimental 

conditions need to be optimized. 
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The difficulties to predict domains within MEL-28 by means of bioinformatics have 

significantly limited approaches to find soluble fragments useful for biochemical 

experiments. The lab of Darren Hart has developed a method, ESPRIT (Expression of 

Soluble Proteins by Random Incremental Truncation), which allows generation of a 

large library of randomly shortened cDNA fragments and subsequent screening of 

these constructs for expression and solubility with the aid of robotics (Tarendeau et 

al., 2007). After initial attempts to generate the library in Heidelberg using a larger 

cDNA fragment failed, we decided to set up a collaboration with the Hart group. They 

used the minimal MEL-28 fragment, amino acids 1007-1418, as a template for a new 

library, which is currently being screened. Soluble fragments identified by this 

approach will be used for biochemical experiments in the future. 

 

2.1.11 Interplay with the Ran GTPase system 
 

Nuclear assembly has been shown to be regulated by the Ran GTPase system 

(Walther et al., 2003b; Harel et al., 2003b), but Ran’s contribution to MEL-28 function 

had not been investigated. In order to examine the response of MEL-28 to 

manipulation of the Ran system, chromatin was incubated for 10 min with membrane-

free cytosol supplemented with 5 µM RanQ69L or RanT24N. The reactions were 

stopped by fixation, the chromatin templates purified through a sucrose cushion and 

MEL-28 was analyzed by immunostaining (Figure 2-13 A). Heat-inactivated extract, 

from which the heat-denatured nups and MEL-28 had been removed by centrifugation, 

but which supports decondensation of chromatin, was used as a negative control for 

non-specific binding of antibodies to chromatin. RanQ69L significantly enhanced the 

binding of MEL-28 to chromatin compared to the control reaction, while RanT24N did 

not (Figure 2-13 A). Interestingly, RanT24N did not reduce the chromatin recruitment 

of MEL-28, suggesting that a certain amount of MEL-28 can bind to chromatin 

independently of the Ran system. In a similar experiment, Ran mutants or importin β 

were added to cytosol at 20 µM or 10 µM, respectively, before incubation with sperm 

chromatin. After 10 min the chromatin templates were separated from the extract 

through a sucrose cushion, washed and analyzed by Western blotting (Figure 2-13 B). 

This experimental setup allowed simultaneous visualization of the recruitment of 

several nups to chromatin. RanQ69L triggered binding of MEL-28, Nup160 and 
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mAb414 antigens to chromatin. Importin β slightly diminished the amounts of these 

proteins on chromatin, an effect which could be reversed by addition of RanQ69L. At 

the same time, RanT24N had a particularly strong inhibitory effect on recruitment of 

the mAb414 antigens, while not affecting MEL-28 or Nup160. The binding of Nup358 

and Nup214 to the chromatin templates, a comparably late event in NPC assembly in 

vitro, indicated that the extract contained residual amounts of membranes (see also 

Figure 2-13 C). The RanQ69L effect was more pronounced in the experiment shown 

in Figure 2-13 A as compared to Figure 2-13 B, possibly because the samples were 

fixed in A, thus allowing much better preservation of the chromatin templates. Longer 

incubation of chromatin with extracts led to a more substantial effect upon addition of 

RanQ69L, but the time was typically kept short to minimize the influence of mutual 

stabilization of proteins once bound on the chromatin surface at later time points. 

 

In order to assess the contribution of MEL-28 to chromatin binding of nups in the 

presence of RanGTP, membrane-free mock or MEL-28-depleted cytosol was 

incubated with chromatin plus or minus 20 µM RanQ69L or membranes. The absence 

of membranes was confirmed by probing for the transmembrane nup Ndc1. After 45 

min the chromatin templates were purified through a sucrose cushion, washed and 

analyzed by Western blotting (Figure 2-13 C). Addition of RanQ69L increased the 

amount of nups bound to chromatin, particularly of Nup153 (the lowest of the three 

bands recognized by mAb414). Interestingly, Nup358 and Nup214 (the two upper 

mAb414 bands) could not be detected on chromatin in the absence of membranes 

demonstrating that membranes are required for completion of NPC assembly. It was 

striking that the levels of MEL-28, Nup160 and Nup153 on chromatin were higher with 

membranes compared to incubation with 20 µM RanQ69L possibly reflecting the 

stabilization of NPCs on incorporation into membranes. Upon depletion of MEL-28, 

nup recruitment to chromatin was abolished. Not even high concentrations of Q69L 

could overcome the MEL-28 depletion, demonstrating that it is essential for nup 

binding to chromatin under all conditions. 
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Figure 2-13. RanGTP-mediated recruitment of nucleoporins to chromatin is dependent 
on MEL-28. (A) MEL-28 binding to chromatin is enhanced by RanGTP. Membrane-free 
cytosol was supplemented with Ran mutants (5 µM final conc.) and incubated with chromatin.  
The reactions were stopped by fixation after 10 min and processed for immunostaining with 
MEL-28 antibodies. Incubation with heat-inactivated extract served as control for unspecific 
antibody labeling of chromatin. Scale bar, 10 µm. (B) The Ran system modulates nucleoporin 
binding to chromatin. Cytosol was supplemented with Ran mutants (20 µM final conc.) or 
importin β (10 µM final conc.) and incubated for 10 min with chromatin. The chromatin 
templates were purified through a sucrose cushion, washed and analyzed by Western blotting. 
(C) Recruitment reaction as in (B), but with mock or MEL-28-depleted membrane-free cytosol. 
Incubation time with extracts before purification of chromatin templates was 45 min.  

A                                          B 

C 
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In summary, nup recruitment to chromatin requires MEL-28 even in the presence of 

high RanQ69L concentrations. RanGTP positively modulates several early steps in 

NPC formation including MEL-28 binding to chromatin, but membranes are required 

for later steps and completion of nuclear assembly. 

 

MEL-28 contains a predicted nuclear localization signal (NLS) between amino acids 

1748-1758 and importin α and β were identified in the MEL-28 IPs from egg extract. 

However, since members of the Nup107-160 complex also bind importin β, it was 

unclear whether the interaction with MEL-28 was direct or indirect. Several NLS-

containing Xl MEL-28 fragments have been cloned, expressed and purified as GST-

tagged proteins. Employing them as baits in GST-pulldowns from extract and testing 

for a direct interaction with purified importins is in progress.  

 

2.1.12 Expression and purification of full length MEL-28 
 

In order to fully demonstrate the specificity of any depletion phenotype it is necessary 

to perform a rescue experiment with recombinant protein. I have thus invested a 

significant part of my PhD work in expressing and purifying recombinant full length 

MEL-28 and optimizing the conditions of the "add-back" experiment. Attempts to 

express full length Xenopus laevis MEL-28 in E. coli were unsuccessful (data not 

shown). We therefore turned to the Baculovirus system for expression in insect cells. 

This work was carried out together with Ann-Marie Lawrence from the EMBL protein 

expression facility. I cloned constructs for expression of N- or C-terminally His6-tagged 

or N-terminally FLAG- or HA-tagged Xl MEL-28. Ann-Marie Lawrence prepared the 

corresponding viruses and performed the cell culture work and transfections. We 

tested four different insect cell lines, Sf9, TniHi5, High5 and Sf+, and analyzed cell 

lysates for maximal MEL-28 expression levels by Western blotting at different time 

points (0, 24, 40, 48 and 72h) (data not shown). Expression of both His6-tagged 

proteins was strongest in Hi5 cells and peaked 24h post transfection for the N-terminal 

construct (Figure 2-14 A) while expression of the FLAG- and HA-tagged proteins was 

much lower (data not shown). Purification of FLAG- or HA-tagged MEL-28 was 

unsuccessful (data not shown). We therefore focused on the purification of the His6-

tagged proteins. Even under the best conditions the expression levels were too low to 
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Figure 2-14. Expression and purification of full length MEL-28 from insect 
cells. (A) Total lysates of Drosophila Hi5 cells expressing Xl MEL-28 analyzed 
by Western blotting. (B) Purification of recombinant MEL-28 from insect cells 
with Ni-NTA agarose monitored by Western blotting. Endogenous MEL-28 (0.5, 
0.25 or 0.12 µl cytosol per lane) is shown as a reference. 

B 

A 
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be monitored by Coomassie staining. We therefore followed the expression and 

purification of MEL-28 by Western blotting with anti-Xl MEL-28 antibodies. Ann-Marie 

Lawrence expressed the protein while I purified MEL-28 from the cell pellets. Figure 2-

14 B depicts the purification of His6-MEL-28. The purified protein corresponded to the 

lower of the two MEL-28 bands in Xl egg extract indicating that the full length protein 

had been expressed. Hi5 cells grow in adherent culture, which posed an inherent 

limitation on the amount of material that could be obtained. Four 175 cm2 flasks 

typically yielded an amount of MEL-28 equivalent to 50-100 µl of cytosol. Also 

concentration of the purified protein proved to be very difficult. 

 

2.1.13 Recombinant MEL-28 rescues the MEL-28 depletion phenotype in the first 
steps of NPC assembly 
 

The recombinant MEL-28 was added back to MEL-28-depleted extracts in an attempt 

to restore the depletion phenotype. Addition of the C-terminally His6-tagged purified 

protein inhibited nuclear assembly even in an undepleted reaction, possibly due to a 

dominant-negative effect of N-terminally truncated fragments, which had been purified 

along with the full length protein (data not shown). Therefore, only the N-terminally 

His6-tagged MEL-28 was used in subsequent rescue experiments. 

 

At first I tried to rescue the initial steps of NPC assembly with recombinant MEL-28 by 

performing a recruitment experiment similar to that performed in Figure 2-13 C. The 

purified recombinant MEL-28 did not contain nups as judged by Western blotting for 

Nup107 or with mAb414 (Figure 2-15 A, lane 2). RanQ69L and recombinant MEL-28 

were added to the extracts on ice for 5 min and then incubated with chromatin at 20°C 

for 60 min. Such a long reaction time was required to reproducibly visualize nups by 

Western blotting after purifying and washing the chromatin templates. Recombinant 

MEL-28 could be added back to the depleted extracts to approximately endogenous 

concentrations and bound strongly to chromatin. Nup107 recruitment to chromatin was 

impaired in the absence of MEL-28, but was restored upon addition of the 

recombinant protein. The presence of 20 µM RanGTP did not significantly enhance or 

alter the rescue effect. Nup153 levels bound to chromatin displayed a significant 

increase in the rescue condition, even above the mock depleted samples. At the same 
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time Nup358 binding could be observed in these samples despite the absence of 

added membranes. 

  

A more challenging experiment was the rescue of complete nuclear assembly, as it 

required higher concentrations of recombinant MEL-28 and higher activities of both 

extract and the purified protein. The rescue conditions were modified and optimized in 

several trials, but the restoration of full nuclear assembly was ultimately unsuccessful. 

Either the amounts of recombinant protein added to the depleted extract were 

insufficient to restore endogenous MEL-28 levels or the extracts suffered so severely 

from the combination of incubation with antibody beads and subsequent dilution, that 

even control reactions did not produce fully assembled nuclei. At the same time, low 

available amounts and problematic handling of the purified recombinant MEL-28 set a 

limit to further concentration of the protein and optimization of the rescue conditions. 

Figure 2-15 B depicts the outcome of a typical rescue experiment performed as in 

figure 2-8. MEL-28 staining and strong mAb414 foci were detectable on the chromatin 

surface of control samples. The majority of chromatin templates, however, had not 

acquired a continuous mAb414 rim staining, indicating that the assembly reaction 

stalled before completion (also see time course experiment in Franz et al. (2007) for 

comparison). Depletion of MEL-28 completely abrogated mAb414 binding to 

chromatin as observed in previous experiments. Upon addition of recombinant MEL-

28 to depleted extract MEL-28 recruitment to chromatin was partially restored, albeit to 

significantly lower levels than in the control reaction. Formation of mAb414 foci was 

also clearly increased, but correspondingly did not reach control levels and nuclei in 

the rescue condition failed to acquire mAb414 rim staining. The failure to fully restore 

nuclear assembly with recombinant MEL-28 could be due to a number of reasons (see 

Discussion). 

 

In conclusion, full length MEL-28 could be expressed and purified from insect cells. 

The recombinant protein restored MEL-28 binding and Nup107-160 complex 

recruitment to chromatin, but did not support later steps of NPC assembly. The 

observed rescue effect demonstrates that recruitment of nups such as the Nup107-

160 complex can indeed be specifically attributed to MEL-28. At the same time it is 

evident that recombinant MEL-28 could not fully replace endogenous MEL-28 in NPC 
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Figure 2-15. Recombinant MEL-28 partially rescues the MEL-28 depletion 
phenotype in NPC assembly. (A) Recruitment experiment with membrane-free 
extract. Mock or MEL-28-depleted cytosol was incubated with or without RanGTP (20 
µM final conc.) with chromatin for 60min. The chromatin templates were purified 
through a sucrose cushion, washed and analyzed by Western blotting. (B) 
Unsuccessful attempt to rescue complete nuclear assembly. Mock or MEL-28-depleted 
extracts were incubated with chromatin and membranes for 90 min, fixed and 
processed for immunofluorescence. mAb414 foci on chromatin are highlighted with 
arrowheads. Scale bar, 15 µm. 

B 

A 
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assembly. It might therefore be rewarding to repeat the MEL-28 rescue experiment 

with recombinant protein from a different source. 

 

2.1.14 Investigating the function of the MEL-28 AT hook 
 

The rational design of experiments to investigate the function of MEL-28 in closer 

detail was hampered by difficulties predicting domains and motifs within the MEL-28 

protein sequence. In addition, the lack of sufficient amounts of recombinant full length 

protein prevented the pursuit of certain biochemical experiments. We therefore chose 

an alternative, indirect approach to investigate early events in NPC assembly by 

inhibiting MEL-28 function with competitive protein fragments. 

 

Besides its NLS sequence, the most prominent and in fact only other well predicted 

motif in the MEL-28 protein of most species is an AT hook which comprises amino 

acid residues 2122-2134 in Xenopus laevis MEL-28. AT hooks are small DNA-binding 

motifs found in chromatin- or DNA-binding proteins from a wide range of organisms 

(Aravind and Landsman, 1998). As their name implies AT hooks have a preference for 

AT-rich DNA sequences and are characterized by a central GRP (glycine-arginine-

proline) signature surrounded by additional positive residues. The presence of the AT 

hook suggested that MEL-28 would bind directly to DNA and made MEL-28 a 

candidate for mediating chromatin anchorage of nups in nuclear assembly. This 

prediction is also supported by the previously described data in this thesis. The role of 

the MEL-28 AT hook in NPC assembly had, however, never been tested 

experimentally. 

 

I addressed this issue by expressing the AT hook in a recombinant form fused to GST 

and investigating if this construct influenced nuclear assembly in vitro. The GST-tag 

facilitated both the purification of the AT hook and its convenient detection with 

antibodies against GST. Based on the published NMR structure of an AT hook bound 

to DNA (Huth et al., 1997), which revealed the residues essential for DNA-binding, I 

prepared a mutated AT hook as a negative control. Two arginines and one lysine were 

mutated to glycine in the mutated AT hook, thus removing three positive charges 

(MEL-28MUT in Figure 2-16 A). Two additional mutated MEL-28 AT hooks were 
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A                                   B 

C 

Figure 2-16. The AT hook in MEL-28 binds to chromatin. (A) Schematic 
representation of AT hooks fused to GST. Shown are the amino acid sequences 
of the MEL-28 AT hook, a mutated version predicted not to bind to DNA and the 
sequences of AT hooks from three unrelated proteins. (B) Coomassie-stained 
SDS-PAGE gel of purified AT hooks fused to GST expressed in E. coli. (C) 
DNA-binding properties of purified AT hooks. Membrane-free extract was 
supplemented with the purified GST or GST-AT hooks (1 µM final conc.) and 
incubated with chromatin for 10 min. The reactions were stopped by fixation, 
chromatin templates purified through a sucrose cushion and processed for 
immunostaining. Scale bar, 15 µm. 



77 

prepared, in which the same three residues were changed to alanine or serine, 

respectively. The 3x Ser mutated AT hook behaved like the 3x Gly mutant in all 

subsequent experiments, while the 3x Ala AT hook was degraded when expressed in 

bacteria (data not shown). All experiments shown as figures in this thesis made use of 

the 3x Gly mutant AT hook (MEL-28MUT). In order to provide additional controls and to 

assess the specificity of the MEL-28 AT hook I prepared corresponding constructs 

with AT hooks from three unrelated Xenopus laevis proteins, HMGA 2β, LHX2 and 

ORC 1. Figure 2-16 A illustrates the experimental strategy and lists the amino acid 

sequences of the AT hooks used. 

 

The GST-AT hook constructs were expressed in E. coli and purified via Glutathione 

Sepharose. All proteins were obtained in high purity and concentration and the AT 

hook constructs displayed a lower electrophoretic mobility compared to GST alone 

(Figure 2-16 B). 

 

To investigate whether the purified AT hook constructs could bind to chromatin 

membrane-free extracts were supplemented with 1 µM GST-AT hooks or GST and 

incubated with chromatin for 10 min before fixation. The chromatin templates were 

purified through a sucrose cushion and analyzed by immunostaining for GST (Figure 

2-16 C). No staining was detected after incubation of the chromatin with extract 

containing buffer or GST, demonstrating that GST alone cannot bind to chromatin. In 

contrast, the GST-MEL-28 AT hook bound strongly to chromatin while the mutated 

version behaved like GST. This result proves that the MEL-28 AT hook is an active 

chromatin binding motif under nuclear assembly conditions and that mutating the 

critical residues in the AT hook abolishes DNA-binding. The additional three control 

AT hooks from unrelated proteins exhibited a graded chromatin binding pattern. While 

the HMGA 2β AT hook was highly enriched on chromatin, the LHX2 AT hook revealed 

intermediate binding and the ORC1 AT hook did not target GST to chromatin. These 

three constructs therefore allowed evaluating whether an effect on nuclear assembly 

generally correlated with the strength of chromatin binding of the respective AT hook. 
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2.1.15 Inhibition of nuclear assembly with an excess of AT hook recapitulates 
the MEL-28 depletion phenotype 
 

After showing that GST-AT hook constructs can bind to sperm chromatin, we then 

wanted to assess whether excess recombinant AT hook could recapitulate the MEL-

28 depletion phenotype, possibly by acting in a dominant negative manner against 

endogenous MEL-28. To do this, we performed nuclear assembly reactions in the 

presence and absence of purified GST-AT hooks. While nuclei with a strong mAb414 

rim staining formed in control reactions, adding the GST-AT hook to extract at 36 µM 

gave rise to nuclei devoid of pores (Figure 2-17). At the same time, identical 

concentrations of GST or the mutated MEL-28 AT hook had no inhibitory effect 

suggesting that DNA-binding of the GST-AT hook prevented NPC formation. 

Interestingly, addition of the HMGA 2β AT hook to 36 µM led to the same phenotype 

as for the MEL-28 AT hook. The additional two control AT hooks from LHX2 and 

ORC1 displayed a stepwise pattern for inhibition of nuclear assembly analogous to 

Figure 2-16 C, suggesting that the degree of inhibition of NPC formation correlates 

with the strength of DNA-binding (Figures 2-17 C and 2-16 C). A similar effect was 

observed when nuclei were assembled in extracts with decreasing MEL-28 AT hook 

concentrations. At 18 µM a mixed population of nuclei with varying mAb414 labeling 

emerged, while with 4 µM GST-AT hook practically all nuclei acquired a mAb414 rim 

staining (data not shown). The nuclei formed under all conditions possessed a closed 

nuclear membrane as judged by DilC18 membrane staining. 

 

Our immediate idea was that inhibition of NPC assembly by the AT hook might be a 

consequence of displacement of endogenous MEL-28 from chromatin. However, 

when we tested how much MEL-28 would bind to chromatin after 10 min incubation in 

extracts with 36 µM GST-AT hook, the levels were not significantly reduced compared 

to extracts containing buffer or GST (Figure 2-18 A). Moreover, when we analyzed 

nuclei assembled in the presence of 36 µM GST-AT hook, we found that they still 

possessed a clearly visible MEL-28 nuclear rim staining comparable to control nuclei 

(Figure 2-18 B). The anti-Xl MEL-28 antibody was generated against a fragment of 

MEL-28 which did not contain the AT hook so that cross-reactivity could be ruled out. 

In order to inspect the effect of AT hook addition on MEL-28 chromatin binding more 
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A 

Figure 2-17. Inhibition of nuclear assembly with an excess of AT hook 
recapitulates the MEL-28 depletion phenotype. Cytosol was supplemented 
with GST or GST-AT hooks (36 µM final conc.) and employed in a nuclear 
assembly reaction. The reactions were stopped by fixation after 90 min, nuclei 
purified through a sucrose cushion and analyzed by immunostaining and confocal 
microscopy. Pre-labeled floated membranes were used in the reactions illustrating 
the membrane staining. Nuclei shown in (A) and (C) were fixed with 
glutaraldehyde+PFA, those in (B) with PFA. Scale bars, 10 µm. 

B                             C 
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closely, chromatin was incubated with membrane free cytosol with or without addition 

of GST or varying concentrations of GST-AT hook constructs. After 10 min the 

chromatin templates were purified through a sucrose cushion, washed and analyzed 

by Western blotting (Figure 2-18 C). In buffer-diluted extracts a significant amount of 

MEL-28 bound to chromatin. Upon addition of increasing GST-AT hook concentrations 

to the extract, more and more GST signal was detected on the isolated chromatin 

while the amount of MEL-28 became progressively reduced. Nevertheless, even in the 

presence of 36 µM GST-AT hook, conditions that prevent NPC assembly in vitro, a 

considerable amount of MEL-28 was detected on chromatin, which could account for 

the MEL-28 signal in Figure 2-18 A+B. High concentrations of AT hook therefore do 

not displace endogenous MEL-28 from chromatin, but reduce its local concentration 

on the chromatin templates. Interestingly, the HMGA 2β AT hook bound more strongly 

to chromatin than the MEL-28 AT hook, caused a much stronger reduction of MEL-28 

binding to chromatin and even led to a reduction of RCC1 levels on chromatin 

indicating that this particular AT hook changed the chromatin in a more fundamental 

way than the MEL-28 AT hook. At the same time the chromatinization of the sperm 

head DNA seemed unaffected by the HMGA 2β AT hook as judged by Histone H2B 

levels. The notion that stronger chromatin binding by the HMGA 2β AT hook caused 

more pronounced MEL-28 displacement is also in accord with the finding that this AT 

hook inhibited NPC assembly at concentrations lower than 36 µM (data not shown). 

 

In summary, supplementing nuclear assembly reactions with the MEL-28 AT hook 

fused to GST strongly inhibited NPC assembly, thus recapitulating the MEL-28 

depletion phenotype. MEL-28 levels on chromatin were reduced but not abolished, 

suggesting either that displacement of MEL-28 is not the only effect of AT hook 

addition or that NPC assembly requires a threshold concentration of MEL-28 on 

chromatin which is not reached in the presence of 36 µM AT hook. Interestingly, NPC 

formation could also be prevented with an unrelated AT hook, provided that it bound to 

chromatin with sufficient strength, demonstrating that the inhibition in nuclear 

assembly was not exclusive for or specific to the MEL-28 AT hook. 

 

We were intrigued by the observation that a short 16 amino acid peptide could inhibit 

the function of a 2201 amino acid protein like MEL-28 and prevent the entire process 
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C 

A                                  B 

Figure 2-18. The MEL-28 AT hook does not displace endogenous MEL-28 from 
chromatin. (A) Recruitment reaction. Membrane-free cytosol was supplemented with 
GST or GST-AT hook (36 µM final conc.) and incubated with chromatin for 10 min 
before the reaction was stopped by fixation. Chromatin templates were purified 
through a sucrose cushion and processed for immunofluorescence. (B) Complete 
assembly reaction in the presence of 36 µM GST or GST-AT hook. Nuclei were 
prepared for confocal microscopy as chromatin templates in (A). Scale bars in A+B, 
10 µm. (C) Chromatin binding assay as in (A). The final GST-AT hook concentrations 
in the cytosol were 36, 15, 4 and 0.8 µM, those of GST or GST-AT hookHMGA were 36 
µM. After 10 min incubation the chromatin templates were purified through a sucrose 
cushion, washed and analyzed by Western blotting. 
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of NPC formation. However, high concentrations of AT hook constructs were required 

to bring about this phenotype. We therefore wondered how they related to the 

endogenous MEL-28 concentration in egg extract. Given the lack of sufficient amounts 

of recombinant MEL-28, the molar concentration of MEL-28 in extracts could only be 

determined indirectly by Western blotting with the help of the purified antigen Xl MEL-

28 aa1602-2120. 

 

By comparison with a BSA gradient on a Coomassie-stained gel (Figure 2-19 A) and 

by performing a Bradford assay, the concentration of the antigen was estimated to be 

0.6 mg/ml. In a second step, mixtures of decreasing quantities of extract and 

increasing amounts of MEL-28 aa1602-2120 were analyzed by Western blotting and 

probing for Xl MEL-28. Considering the molar mass of the antigen fragment (58 kDa) 

and by matching signals of equivalent strength, the concentration of endogenous 

MEL-28 could be estimated (Figure 2-19 B). 0.063 µl cytosol corresponded to 4.75 

fmol of antigen, according to which [MEL-28]endogenous in egg extract is ≈ 75 nM. 

Inhibition of NPC assembly in vitro thus required a ≈ 500 fold excess of MEL-28 AT 

hook over the endogenous MEL-28. 

 

2.1.16 The C-terminus of MEL-28 contains at least one chromatin binding motif 
besides the AT hook 
 

Gillespie et al. (2007) also investigated the function of MEL-28 in nuclear assembly in 

a very similar way to us and drew analogous conclusions to those presented here. In 

one such experiment extract was supplemented with a larger MEL-28 fragment 

designated recombinant AT hook (rATh) which comprised the C-terminal 208 amino 

acids of MEL-28 and contained the AT hook. This construct blocked NPC assembly 

already at 2 µM and prevented recruitment of endogenous MEL-28 to chromatin 

(Gillespie et al., 2007), suggesting that the C-terminus of MEL-28 harbors additional 

chromatin binding sites, which allow larger fragments to compete more efficiently with 

full length MEL-28 for chromatin binding.  We wished to repeat and expand on this 

experiment and evaluate the role of the AT hook in the context of the larger rATh 

fragment by introducing the same three mutations that previously abolished AT hook 

chromatin binding. Both rATh and the mutated form rAThMUT were expressed as GST 
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Figure 2-19. The endogenous MEL-28 concentration in Xenopus laevis 
egg extract is ≈ 75 nM. (A) With the help of a BSA gradient the concentration 
of purified MEL-28 fragment aa1602-2120 (arrowhead) was estimated to be ≈ 
0.6 mg/ml. (B) Sample mixtures with decreasing amounts of cytosol and 
increasing concentrations of MEL-28 aa1602-2120 were analyzed by Western 
blotting. Taking the molar mass of the MEL-28 fragment into account and by 
matching signals of equivalent strength (red boxes) the concentration of MEL-
28 in extracts could be estimated. 



84 

fusion proteins and purified using Glutathione Sepharose (Figure 2-20 A). 

 

When employed in a chromatin-recruitment reaction with membrane-free extract an 

interesting picture emerged: Incubation with 9 µM GST-AT hook or 2 µM GST-rATh 

led to approximately equivalent amounts of GST moieties in the isolated chromatin 

pellets, indicating that the affinity of rATh for chromatin was higher than that of the AT 

hook alone. Moreover, the wild type GST-rATh and the mutated version bound to 

chromatin with equal intensity, establishing that the AT hook is not the only chromatin-

targeting element in the C-terminus of MEL-28. Rasala et al. (2008) followed the same 

experimental strategy and drew the identical conclusion that the C-terminus of MEL-28 

contains at least two chromatin binding motifs. This result could explain why the full 

length MEL-28 protein has a significantly higher affinity for chromatin than the AT hook 

alone and why a 50 fold excess of AT hook over the endogenous MEL-28 does not 

lead to inhibition of NPC assembly. Interestingly, these findings are in line with the 

more global conclusion by Aravind and Landsman (1997) that AT hooks appear to be 

an auxiliary protein motif that cooperates with other DNA-binding activities within a 

protein to achieve high binding activity, and may act as a versatile minor groove 

tether. 

 

Strikingly, 2 µM of our GST-rATh construct did not prevent chromatin binding of MEL-

28, which is in contrast to the result by Gillespie et al. (2007). This difference can, 

however, be attributed to differences in the respective experimental setups. The rATh 

used by Gillespie et al. (2007) was prepared with a different Xenopus laevis MEL-28 

clone (LOC397707) than the one we used for our experiments (see Cerstin Franz’ 

thesis). The two resulting rATh constructs are 81% identical. In addition, the fragments 

carried different affinity tags (His6 versus GST) and probing for MEL-28 was carried 

out with different antibodies against Xl MEL-28. All of this variation could reconcile the 

differing results. 

 

A basic method for assessing the features of proteins is to analyze the distribution of 

charges along their amino acid sequence. In cases such as MEL-28, with little or no 

structural information available, such analysis can serve as a guide to the protein’s 

overall organization. Naturally, these results must be interpreted with care, however 
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A              B 

C 

Figure 2-20. The C-terminus of MEL-28 contains at least one chromatin 
binding motif besides the AT hook. (A) Coomassie-stained SDS-PAGE gel of 
purified GST-rATh or GST-rAThMUT. (B) Chromatin-recruitment assay from 
membrane-free extract. Cytosol was supplemented with GST-AT hook (36, 9 
and 2 µM final conc.), GST-AT hookMUT (36 µM final conc.), GST-rATh or GST-
rAThMUT (2, 0.5 and 0.12 µM final conc. for both) and incubated with chromatin 
for 10 min. The chromatin templates were purified through a sucrose cushion, 
washed and analyzed by Western blotting. (C) Schematic representation of the 
Xl MEL-28 protein showing the isoelectric point (pI) values of 50 amino acid 
increments along the entire protein sequence. The positions of the AT hook and 
the rATh fragment at the C-terminus are indicated. 
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analyzing the charge distribution along MEL-28 supports previous experimental 

results. Figure 2-20 C depicts a schematic plot of the isoelectric point (pI) values of 50 

amino acid increments along the Xenopus laevis MEL-28 protein sequence. It is 

evident that positive charges cluster at the C-terminus of MEL-28. The average 

isoelectric point of the last 500 amino acids is 9.91. Similarly, the rATh possess a pI 

value of 10.12, while the average value for the full length protein is acidic (pI = 5.65). 

Interestingly, the mutated rATh also exhibits a highly basic pI value of 9.91, which 

could explain why it still strongly binds to chromatin. This argumentation is supported 

by structure prediction algorithms (see Materials and methods), all of which predict the 

entire C-terminal half of MEL-28 to be disordered. Based on this analysis MEL-28 

possesses a positively charged 500 amino acid stretch at the C-terminus, which is 

likely accessible and could contain multiple chromatin binding sites. 

 

2.1.17 MEL-28 binding to chromatin is regulated during the cell cycle 
 

The NE undergoes dramatic changes during open mitosis. The discovery of MEL-28 

as one of the key molecules for accurate postmitotic NPC formation in metazoa 

suggested that its function is regulated along with cell division. We began analyzing 

this important aspect by asking whether the two key functions of MEL-28, interaction 

with the Nup107-160 complex and chromatin binding, change during the cell cycle. 

Both questions can be readily addressed experimentally in the Xenopus laevis egg 

extract system by comparing MEL-28 activity in interphase and mitotic extracts. 

 

In order to test for the stability of the MEL-28 and Nup107-160 complex interaction in 

interphase or mitosis, MEL-28 was immunoprecipitated from membrane-free extract of 

either cell cycle stage and the IP eluates were analyzed by Western blotting (Figure 2-

21 A). In both cases similarly high amounts of Nup107 and Nup160 were detected 

along with precipitated MEL-28, suggesting that MEL-28 binding to the Nup107-160 

complex is not altered and that both interact throughout the cell cycle. Interestingly, 

the amounts of Nup153 (lowest mAb414 band) detected by IP from interphase cytosol 

and presumably precipitated via the Nup107-160 complex (Vasu et al., 2001), were 

significantly diminished upon IP from mitotic extract, indicating that this interaction 

might be regulated on progression from interphase to mitotis. 
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Figure 2-21. MEL-28 binding to chromatin is regulated during the cell cycle. 
(A) Immunoprecipitation of MEL-28 from membrane-free interphase (int) or mitotic 
(mit) Xl egg extract. Eluates were analyzed by Western blotting. (B) The 
electrophoretic mobility of MEL-28 changes during the cell cycle. (See also (A).) 
Interphase and mitotic Xl egg extract was separated by SDS-PAGE and analyzed 
by Western blotting. (C) Chromatin-recruitment experiment with membrane-free 
interphase (int) or mitotic (mit) cytosol. After 10 min of incubation with extract the 
chromatin templates were purified through a sucrose cushion, washed and 
analyzed by Western blotting. 
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A remarkably different picture emerged when we examined the regulation of MEL-28 

binding to chromatin. Membrane-free interphase or mitotic cytosol was incubated with 

chromatin for 10 min. The chromatin templates were isolated through a sucrose 

cushion, washed and analyzed by Western blotting (Figure 2-21 C). MEL-28 and the 

Nup107-160 complex were recruited to chromatin from interphase extract but not from 

mitotic extract, indicating that NPC assembly is also regulated at the level of nup 

association with chromatin. This finding also supports the pre-pore hypothesis, which 

states that some nups begin to accumulate on chromatin during NPC assembly before 

the binding of ER membranes (Walther et al., 2003b). At the same time, we did not 

detect other nups bound to chromatin in the absence of membranes either in 

interphase or mitotic extract. Differential chromatin binding of MEL-28 during the cell 

cycle was independently reported by Gillespie et al. (2007). 

 

Mitotic phosphorylation has been demonstrated for many nups (Favreau et al., 1996; 

Glavy et al., 2007). A recent proteomic approach identified many previously unknown 

phosphorylation sites in proteins of the human mitotic spindle (Nousiainen et al., 

2006). Among them were sites in several nups and nine serine residues in human 

MEL-28, which are conserved in Xenopus laevis MEL-28. Comparing interphase and 

mitotic egg extract by Western blotting, we observed a shift in electrophoretic mobility 

for several nups including MEL-28 (Figure 2-21 B). It is therefore an attractive 

hypothesis that the mitotic regulation of MEL-28 binding to chromatin might be 

mediated by phosphorylation, which we will test in future experiments. 
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2.2 NET5 - a novel NE transmembrane protein 
 

2.2.1 NET5 is a conserved transmembrane protein with a well defined domain 
organization 
 

The C. elegans protein T24F1.2 and its human orthologue NET5 were identified as NE 

proteins in two independent studies (Gunsalus et al., 2005; Schirmer et al., 2003). 

Matyas Gorjanacz discovered that T24F1.2 genetically interacts with a specific subset 

of nups and we decided to analyze this molecule in greater detail. This project was 

performed in a collaboration with Matyas Gorjanacz, Nathalie Daigle and Rachel 

Mellwig. 

 

 

 
 

 

 

 

T24F1.2/NET5 shows high conservation in metazoa, although a Xenopus orthologue 

has not yet been identified. According to computational prediction NET5 possesses six 

transmembrane helices and two larger lumenal domains (Figure 2-22). Some 

prediction algorithms proposed that the first transmembrane helix might be a signal 

peptide, however our results (see Figure 2-27) and those of King et al. (2008) indicate 

that it is rather a membrane-adhering hydrophobic helix which is not removed during 

translation. The N- and C-terminal domains should therefore be exposed to the 

nucleoplasm or cytoplasm. The N-terminal domain is the most conserved part of NET5 

Figure 2-22. Topology of NET5. Predicted domains and motifs 
of human NET5 are highlighted. 
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and contains four pairs of highly conserved cysteines, which likely possess functional 

relevance. Bioinformatic predictions suggest they may form novel zinc finger motifs. 

The C-terminal domain contains a putative bipartite NLS. Human cells possess two 

additional predicted NET5 isoforms besides the full length 666 amino acid protein. The 

second isoform lacks the eighth exon, which results in a 23 amino acid deletion in the 

C-terminal domain, while a third shorter isoform lacks almost the entire C-terminal 

domain and differs from the full length protein in its last five amino acids (fragment aa 

1-394 in Figure 2-27). 

 

2.2.2 Human NET5 localizes to foci in the nuclear envelope 
 

I cloned the full length human NET5 cDNA from isolated HeLa total RNA by means of 

RT-PCR. This construct served as a template for generating a GFP-tagged full length 

NET5 and fragments for expression in E. coli and raising polyclonal antibodies in 

rabbits. Despite significant efforts, attempts to generate antibodies against the N-

terminal domain failed. The C-terminal domain suffered from severe degradation when 

expressed in E. coli, but could be purified as an N-terminally GST-tagged and C-

terminally His6-tagged protein in a two-step purification using first Ni-NTA agarose and 

second Glutathione Sepharose (Figure 2-23 A). The antibodies from two rabbits raised 

against the C-terminal domain were affinity purified using the antigen cross-linked to 

Sepharose. Both antibodies displayed a punctate staining in the plane of the NE when 

used for immunolabeling of HeLa cells and the same pattern was observed upon 

expressing the GFP-tagged full length NET5 protein (Figure 2-23 D). When followed 

through mitosis, NET5 exhibited dynamics typical of an NE membrane protein, 

becoming dispersed throughout the ER from prophase onwards and returning to the 

forming NE late in telophase (data not shown). The predicted molecular weight of 

human NET5 is 72 kDa. Interestingly, only one of the affinity purified anti-NET5 

antibodies (number “2”) recognized a band at the expected size when used for 

Western blotting on total HeLa cell lysate (Figure 2-23 B). Both antibodies detected a 

second lower band at 60 kDa, which does not correspond to any of the predicted 

isoforms and is thus considered an unspecific cross-reactivity. Antibody “2” detected 

an additional band at about 100 kDa in lysates of HeLa cells expressing GFP-tagged 
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that it  

D 

A                  B                         C 

Figure 2-23. Human NET5 localizes to foci in the nuclear envelope. (A) Coomassie 
stained samples from the purification of the N-terminally GST- and C-terminally His6-
tagged C-terminal domain (aa 374-640) of human NET5. The protocol followed a 2-step 
purification using first Ni-NTA agarose and second Glutathione Sepharose. The final 
eluate was used to immunize rabbits. (B) Probing a HeLa cell lysate with pre-immune sera 
(lanes 1+2) or affinity purified antibodies (lanes 3+4) from two different rabbits 
corresponding to (A). The predicted size of full length Hs NET5 is 72 kDa, which 
corresponds to the upper band in the anti-Hs NET5 “2” lane. (C) Western blot of 
untransfected HeLa cells or cells expressing a C-terminally GFP-tagged human NET5. 
Probing was with the second of the affinity purified anti-human NET5 antibodies from (B). 
(D) Comparison of NET5-GFP localization in HeLa cells with antibody staining of 
endogenous NET5. All cells shown are fixed samples. Scale bars, 10 µm. Staining and 
recording of the cells were performed by Nathalie Daigle.
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full length NET5, demonstrating that it indeed recognizes NET5 in Western blotting 

(Figure 2-23 C). This additional band was not detected with antibodies against GFP, 

presumably because the amounts were very low. Additional proof that anti-NET5 

antibody “2” recognizes the correct protein came from analyzing NET5 RNAi samples 

by Western blot (Figure 2-25 A). 

 

The punctate localization pattern of NET5 was strongly reminiscent of nuclear pore 

staining. In order to test for co-localization we performed immunostaining with NET5 

and NPC markers. Surprisingly, neither the anti-NET5 antibody staining with either 

antibody, nor the signal of NET5-GFP, co-localized with mAb414 labeling in the plane 

of the NE (Figure 2-24 A and data not shown) suggesting that the NET5 foci are 

structures distinct from nuclear pores. Figure 2-24 B depicts the qualitative 

assessment NET5 and mAb414 signal overlap along an arbitrarily chosen 10 µm path 

and illustrates that NET5 and mAb414 peaks rarely coincide. 

 

Based on the light microscopy results, we decided to use both anti-NET5 antibodies 

after affinity purification for immunogold labeling of human cells. Rachel Mellwig 

labeled HeLa cells and confirmed that human NET5 localizes to the INM (data not 

shown). Interestingly, while staining with both antibodies gave identical results at the 

light microscopy levels, Rachel Mellwig found that gold particles were highly enriched 

at nuclear pores for the anti-NET5 antibody “1” (data not shown), the antibody which 

did not recognize full length NET5 in Western blotting. This finding is particularly 

intriguing because C. elegans T24F1.2 was also found at nuclear pores (Rachel 

Mellwig and Matyas Gorjanacz, personal communication). 

 

In summary, NET5 localizes to foci in the NE which are distinct from nuclear pores at 

the light microscopy level. Immunogold labeling with an antibody against the C-

terminus of NET5 suggests that a fraction of NET5 might specifically localize to 

nuclear pores. This interpretation, however, requires that this particular antibody 

recognizes only the native antigen and does not detect the denatured NET5 protein in 

Western blotting. We are currently examining the localization of NET5-GFP in HeLa 

cells with immunogold labeling and by probing for GFP in order to shed light on this 

interesting open question. 
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Figure 2-24. The NET5 foci are not identical to nuclear pores. (A) HeLa cells 
expressing NET5-GFP or wild type cells labeled with anti-NET5 antibodies were 
co-stained with mAb414. Scale bar, 10 µm. Staining and recording of the cells 
were carried out by Nathalie Daigle. (B) Qualitative assessment of NET5 and 
mAb414 colocalization along an arbitrarily chosen 10 µm path. The NET5 and 
mAb414 curves were recorded with the Carl Zeiss LSM software and 
smoothened manually. The white line in the insert illustrates the section of the 
NE along which the signals were recorded.  
 

A 
 
 
 
 
 
 
 
 
B 



94 

2.2.3 RNAi depletion of NET5 causes aberrant nuclear and cytoskeletal 
morphology and folding of the nuclear envelope  
 

We wished to investigate the possible NE- and NPC-related role of NET5 by 

performing RNAi-mediated down-regulation this novel NE protein. In total four different 

siRNA oligos against NET5 were used, two against sequences in the NET5 coding 

region and two against the 3’-UTR. Treatment with all four oligos reduced the amounts 

of NET5 in HeLa cell lysates after 48 h as judged by Western blotting with anti-NET5 

antibody “2” (Figure 2-25 A). At the same time no significant loss of NET5 from RNAi-

treated HeLa cells was detected by NET5 immunofluorescence (data not shown). This 

finding, together with the residual Western blotting signal, indicates that a fraction of 

NET5 persisted despite RNAi treatment. Initial difficulties to visualize the loss of NET5 

at the protein level prompted us to perform qPCR to analyze whether the RNAi 

treatment reduced the amounts of NET5 mRNA. All four oligos caused a reduction in 

NET5 mRNA levels by 50-85% (data not shown), which is consistent with the 

decrease in NET5 observed in Western blotting. The qPCR analysis also suggested 

that NET5 mRNA levels in HeLa cells were orders of magnitude lower compared to 

the actin and GAPDH control mRNAs. 

 

Loss of NET5 from human cells led to a complex phenotype. Nathalie Daigle 

investigated the NET5 RNAi phenotype induced with the oligos targeting the coding 

sequence by staining HeLa cells for NE markers (Figures 2-25 B and 2-26 A) and 

cytoskeletal proteins (Figure 2-26 B). Probing for the INM protein Emerin revealed 

that, in contrast to the spherical nuclei of control cells, NET5 RNAi-treated cells 

possessed a highly lobulated, irregular NE. The nuclear lamina appeared largely intact 

based on staining for Lap2 and Lamin B1, but displayed wide gaps through which 

chromatin seemed to bulge out of the nucleus. Taken together, these results 

demonstrate that NET5 is essential for nuclear integrity and that reduction of NET5 

levels in HeLa cells affects nuclear organization at different levels. Besides these 

alterations in nuclear architecture, RNAi-treatment resulted in a dramatic 

rearrangement of the cytoskeleton (Figure 2-26 B). While the cytoplasm of control 

cells was filled with a fine interphase microtubule network, NET5 RNAi led to the 

formation of thick microtubule bundles which often surrounded the distorted nuclei. 
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Figure 2-25. RNAi depletion of NET5 causes aberrant nuclear morphology and 
leads to invagination of the nuclear envelope. (A) Western blot analyzing total 
lysates of HeLa cells collected 48 h after transfection with different siRNA oligos. 
Two oligonucleotides target regions in the open reading frame of NET5, two are 
directed against the 3’UTR. Probing for NET5 was with anti-Hs NET5 “2”. (B) 
Phenotypic characterization of the NET5 RNAi. HeLa cells were treated with a 
mixture of the two ORF siRNA oligos for 48 h, fixed and processed for 
immunostaining. Scale bar, 10 µm. The RNAi experiment, labeling and recording of 
cells were carried out by Nathalie Daigle. 

A 

B 
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Figure 2-26. RNAi depletion of NET5 results in distortion of nuclear shape and 
perturbs cytoskeletal organization. (A+B) Characterization of the NET5 RNAi 
phenotype in HeLa cells. Cells were transfected with a mixture of the two ORF 
siRNA oligos for 48 h, fixed and stained for NE (A) or cytoskeleton markers (B). 
Scale bar, 10 µm. The RNAi experiment, labeling and recording of cells were 
performed by Nathalie Daigle. 

A 
 
 
 
 
 
 
 
 
 

  
B 
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Labeling with phalloidin which binds to actin filaments revealed massive formation of 

actin cables upon NET5 RNAi treatment, which were reminiscent of stress fibers. 

Interestingly, the nuclei of NET5 RNAi-treated cells seemed to fall to the bottom of the 

cell (data not shown), suggesting that nuclear attachment to the microtubule 

cytoskeleton and nuclear positioning might be impaired. The oligos targeting the 3’-

UTR induced a prometaphase arrest, eventually followed by cell death. We can 

hypothesize that the different phenotypes arise from the fact that the oligos against the 

3’-UTR hit all three NET5 isoforms, whereas the ORF oligos should only affect 

isoforms including the C-terminal domain. 

 

Taken together, RNAi knockdown of NET5 in Hela cells leads to aberrant nuclear 

morphology indicative of a severe structural defect and to extensive disorganization of 

the cytoskeleton. The nuclear phenotype bears resemblance to the corresponding 

situation in C. elegans, where depletion of T24F1.2 results in NPC clustering and 

invagination of the NE membrane (Matyas Gorjanacz, personal communication). We 

are currently investigating the RNAi phenotypes in human cells and nematodes by 

transmission electron microscopy (TEM). It will be valuable for our understanding of 

NET5/T24F1.2 function to compare the observed defects in both systems at high 

resolution. 

 

2.2.4 Mapping the sequence requirements for NET5 localization 
 

NET5 possesses a well predicted topology. This allowed us to pursue a rational 

approach to map the requirements for NET5 localization and function in human cells. 

Based on the topology prediction displayed in Figure 2-22, I cloned several truncated 

NET5 protein fragments for expression with a C-terminal GFP-tag. Nathalie Daigle 

carried out the transfections into HeLa cells and recorded the localization patterns. 

Figure 2-27 schematically depicts the different fragments on the left side and shows 

corresponding typical localization on the right side. 

 

Full length NET5 localized to foci in the NE and the first or last predicted 

transmembrane helices were dispensable for this localization (Figure 2-27, compare 

contructs 1-3). Removal of the C-terminal domain resulted in a smooth uniform 
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distribution of NET5 in the plane of the NE, which was not affected by the presence or 

absence of the putative NLS (constructs 4 and 5). The C-terminal domain is thus 

essential for targeting NET5 to the foci within the NE. Nathalie Daigle performed 

iFRAP experiments with full length NET5 and the aa 1-394 construct to determine the 

mobility of NET5 in the NE. While the half time for recovery was about 20 min for the 

full length protein, the shorter isoform was much more mobile with a half time roughly 

one order of magnitude lower (data not shown). We concluded that binding to foci 

renders NET5 largely immobile within the NE. Interestingly, the C-terminal domain 

was not sufficient for binding to NE foci, but localized throughout the cell (construct 6). 

This result also supports the notion that the putative NLS is not functional, since this 

construct should otherwise accumulate in the nucleus. Further shortening of NET5 

defined amino acids 1-213 as the minimal construct for NE localization (construct 7). 

Interestingly, the first predicted transmembrane helix is required for NE targeting of the 

N-terminal domain alone (construct 8), although it is dispensable in the context of the 

full length protein. This finding suggests that the N-terminal domain bears binding sites 

for NE proteins, but requires the help of a hydrophobic membrane tether for NE 

targeting. To address the functional relevance of the conserved cysteine pairs in 

NET5, Nathalie Daigle mutated both residues of either the first or second cysteine pair 

to alanine (second pair shown as construct 9 in Figure 2-27). When expressed in 

HeLa cells, these constructs exhibited a strikingly different localization compared to 

wild type NET5. While a weak NE signal and some NE foci were still detectable, 

significant amounts of the mutated protein redistributed to the ER. This result 

establishes the importance of one of the cysteine pairs for NET5 localization and 

demonstrates that NET5 retention in the NE requires an intact N-terminal domain. 

Similar truncation constructs of T24F1.2 fused to GFP and expressed in C. elegans 

embryos showed analogous localization patterns, suggesting functional conservation 

of the NET5/T24F1.2 domains (Matyas Gorjanacz, personal communication). 

 

In conclusion, we have dissected the basic requirements for NET5 localization by 

analyzing the expression of truncated or mutated variants in human cells. Targeting of 

NET5 to the NE mainly relies on the N-terminal domain, but requires an additional 

hydrophobic motif for adhesion to the NE membrane. Binding of NET5 to the NE foci 

is mediated by the C-terminal domain and leads to stable interaction of NET5 with 
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Figure 2-27. Mapping the requirements for NET5 localization. Truncated C-terminally 
GFP-tagged versions of human NET5 (schematically depicted on the left side) were 
transiently expressed in HeLa cells. The last construct is the full length protein, in which the 
first of the four conserved Cysteine pairs was mutated. The images on the right side show 
typical nuclei of live HeLa cells expressing the corresponding constructs from the left side. 
Scale bar, 10 µm. Transfection and recording of cells were performed by Nathalie Daigle. 
 



100 

these structures. Besides providing a solid foundation for the analysis of NET5 

function at the NE, the truncated NET5-GFP constructs may serve as tools to perform 

rescue experiments following NET5 RNAi. 

 

2.2.5 Additional approaches and experiments 
 

In addition to the above experiments, we have pursued other experimental avenues to 

investigate the role of NET5 in nuclear organization. Biochemical approaches to 

affinity purify binding partners of NET5 have been hampered by difficulties in working 

with NET5 fragments in a recombinant form. I therefore prepared constructs of the N- 

and C-terminal domain for Yeast 2-Hybrid Screening, which was carried out by the 

group of Manfred Koegl at the German Cancer Research Center (DKFZ). While the C-

terminal domain did not specifically interact with candidates upon raising the 

stringency of the Yeast 2-Hybrid assay, several candidate binding proteins were 

identified for the N-terminal domain. They are listed in Table 2-3. 

 

Table 2-3 Candidate proteins for interaction with human NET5 

Candidate protein Gene ID 
PDZ and LIM domain-containing protein 7 (enigma) gi|33598968 
nuclear factor of kappa light polypeptide gene 
enhancer in B-cells 1 gi|34577122 
O-sialoglycoprotein endopeptidase;  gi|8923380 
chromosome 10 open reading frame 30 
 

gi|155029542 
gi|155029544 

centromere protein T gi|126722969 
polymerase (DNA directed) iota gi|154350220 
zinc finger protein 483 
 

gi|190014620 
gi|55741870 

DEAD (Asp-Glu-Ala-Asp) box polypeptide 46 gi|41327773 
ATP synthase, H+ transporting, mitochondrial F0 
complex, subunit B1 

gi|21361565 
 

bone morphogenetic protein 5 gi|10835091 
kinectin 1 (kinesin receptor) 
 

gi|33620775, gi|118498362, 
gi|118498368, gi|118498356 

coiled-coil domain containing 57 
 

gi|92091575, gi|25955524,  
gi|84040219 

Ran GTPase, member RAS oncogene family gi|5453555 
RANBP2-like and GRIP domain containing 1 - 
RAN binding protein 1 gi|4506407 
RAN binding protein 2 gi|150418007 
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I will perform GST-pull down experiments from HeLa cell lysates with the purified C-

terminal human NET5 domain. Analyzing the proteins bound to this bait might allow a 

better definition of the NE foci to which NET5 binds. IP experiments to identify NET5 

binding partners are also planned, but might be complicated by the fact that NET5 is a 

transmembrane protein. We have received reagents for CenpT, one of the candidates 

from the Yeast 2-Hybrid list of NET5 interactors, from Manfred Koegl. Nathalie Daigle 

has examined the localization of human CenpT with the reagents, but could not 

establish an obvious connection to NET5, although the CenpT phenotype reported in 

the MitoCheck database is similar to the NET5 RNAi phenotype. Following up on 

some of the NET5 interacting candidate proteins and defining the mechanism of NET5 

action promise to be interesting avenues of research in the future. 
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The formation of NPCs in interphase and NE/NPC assembly at the end of mitosis are 

vital events in the life of a cell. This thesis represents a contribution to our 

understanding of nuclear assembly and provides a thorough investigation of the role of 

MEL-28 in this essential process. In addition, it contains an initial characterization of 

the novel NE transmembrane protein NET5. 

 

3.1 MEL-28 
 

3.1.1 MEL-28 is a conserved NPC/INM protein in metazoa 
 

MEL-28 orthologues have been identified in a wide range of metazoa. MEL-28/ELYS 

is a large protein and its size is well conserved among organisms: Homo sapiens 

(2266 aa), Mus musculus (2243 aa), Xenopus laevis (2201 aa), Danio rerio (2527 aa), 

Caenorhabditis elegans (1784 aa). Human and mouse MEL-28 are 70% identical, the 

human and Xenopus laevis proteins 44% and human and C. elegans MEL-28 19%. 

The N-terminal halves of the proteins display a higher degree of sequence 

conservation and most analyzed MEL-28 proteins contain one or more AT hook motifs 

near their C-termini. Taken together, these results indicate that MEL-28 has an 

important conserved function in multicellular organisms, whose cells undergo open 

mitosis. 

 

In C. elegans, Xenopus laevis and humans, MEL-28 is an NE protein in interphase 

and partly localizes to kinetochores during mitosis (Galy et al., 2006; Franz et al., 

2007). Although comparable data from other organisms is not available, it is likely that 

this dynamic localization is conserved in all metazoa. Close investigation of MEL-28 

localization by immunogold labeling and electron microscopy revealed that a 

significant proportion of MEL-28 is concentrated at nuclear pores in interphase in the 

three species listed above (Galy et al., 2006 and Figure 2-3). In cultured vertebrate 

cells some MEL-28 localizes to the INM and a fraction of MEL-28 is nuclear in 

interphase. This data suggests that MEL-28 may function inside the nucleus, at the 

INM and at nuclear pores. 
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3.1.2 MEL-28 is essential for NPC formation 
 

In vivo experiments from several model organisms and in vitro results using the 

Xenopus laevis egg extract nuclear assembly system have shown that MEL-28 has a 

role in NPC formation. The observation that homozygous MEL-28 knockout mice are 

not viable (Okita et al., 2004) demonstrated that MEL-28 is required for an essential 

cellular process. RNAi-depletion or genetic mutation of MEL-28 led to severe 

structural nuclear defects in C. elegans (Galy et al., 2006; Fernandez and Piano, 

2006) and Danio rerio (Davuluri et al., 2008 and de Jong-Curtain et al., 2008). When 

examined by electron microscopy, MEL-28 deficient cells possessed fewer nuclear 

pores than control cells or no pores at all. RNAi-mediated MEL-28 knockdown in 

human cells resulted in loss of nups from the NE into the cytoplasm (Rasala et al., 

2006; Franz et al., 2007), a result that is mirrored by the MEL-28 mutant zebrafish 

(Davuluri et al., 2008). Interestingly, the NE membranes appeared intact in the RNAi-

treated cells, suggesting that MEL-28 is specifically involved in NPC formation, but 

dispensable for organization of the nuclear membranes. This result is supported by 

TEM analysis of in vitro assembled MEL-28-free nuclei, which possessed an evenly 

spaced double NE membrane (Figure 2-8 C). MEL-28 RNAi C. elegans embryos 

displayed abnormal chromatin morphology and were deficient in several additional 

processes such as centrosome separation, kinetochore assembly and mitotic spindle 

formation (Fernandez and Piano, 2006). This finding, together with the observation 

that RNAi treatment in HeLa cells significantly increased the number of cells with 

cytokinesis defects (Rasala et al., 2006), suggests that MEL-28 has additional 

functions in cell division.  

 

3.1.3 MEL-28 interacts with the Nup107-160 complex 
 

MEL-28 interacts with the Nup107-160 complex in Xenopus laevis egg extract and 

HeLa cells (Figure 2-9 and Rasala et al., 2006). The intimate functional relationship 

between MEL-28 and this nup complex was already hinted at by the similar RNAi 

phenotypes in HeLa cells. In both cases, NPC assembly in the NE was impaired and 

annulate lamellae formed in the cytoplasm of the RNAi-treated cells (Figure 2-5 and 

Walther et al., 2003a). In fact, MEL-28 and the Nup107-160 complex act together in 
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NPC formation, as discussed in more detail below. In order to better define the region 

in MEL-28 which mediates NE targeting, a series of GFP-tagged N- or C-terminally 

truncated MEL-28 fragments was generated. Examining their subcellular localization 

upon expression in HeLa cells revealed that amino acids 1007-1418 are sufficient to 

target MEL-28 to the NE (Figure 2-12). Whether this region directly binds to the 

Nup107-160 complex could not be assessed to date as I have not yet been successful 

in generating soluble recombinant MEL-28 sub-fragments, but we hope this issue can 

be addressed in future experiments with soluble MEL-28 fragments generated with the 

help of the ESPRIT method (Tarendeau et al., 2007). 

 

In addition to its role in NPC formation, the Nup107-160 complex has been reported to 

participate in mitotic spindle formation in vitro (Orjalo et al., 2006) and to contribute to 

kinetochore function (Zuccolo et al., 2007). MEL-28-Nup107-160 complex interaction 

persists during the cell cycle (Figure 2-21 A) and MEL-28 is required for targeting the 

Nup107-160 complex to kinetochores in human cells (Rasala et al., 2006). 

Considering the mitotic phenotypes in C. elegans embryos depleted of MEL-28, it 

would be rewarding to examine whether depleting MEL-28 from mitotic Xenopus 

laevis egg extract affects mitotic spindle formation. 

 

3.1.4 MEL-28 functions in postmitotic NPC formation by recruiting nucleoporins 
to chromatin 
 

MEL-28 is essential for correct NPC formation in living cells. Studying the 

consequences of MEL-28 depletion on nuclear assembly in the Xenopus laevis in vitro 

system allowed us to specifically ask if MEL-28 has a role in postmitotic NPC 

formation. Since MEL-28-free extracts give rise to nuclei devoid of NPCs (Figure 2-8), 

MEL-28 is essential for NPC assembly at the end of mitosis. The ΔMEL-28 nuclei 

were surrounded by a closed NE membrane, but contained no nuclear pores (Figure 

2-8). MEL-28 is therefore required for inserting nups into the NE in late 

anaphase/telophase. Interestingly, MEL-28 depletion causes the same in vitro nuclear 

assembly phenotype as depletion of the Nup107-160 complex (Walther et al., 2003a), 

indicating that they act in the same pathway. Prior to my work, Nup107-160 complex 

binding to chromatin was the earliest described step in postmitotic NPC formation. The 
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result that MEL-28 is required for recruitment of the Nup107-160 complex to 

chromatin, but can bind to chromatin independently of this complex (Figure 2-11 C), 

places MEL-28 upstream of all previously studied nups, including the Nup107-160 

complex. MEL-28 binding to chromatin is therefore the first identified event in NPC 

assembly at the end of mitosis. In addition, our data indicate that MEL-28 binds 

directly to chromatin (as discussed below). MEL-28 can be targeted to chromatin in 

the absence of membranes and recruit the Nup107-160 complex and Nup153 to 

chromatin under these conditions (Figure 2-13 C and Rasala et al., 2008). This finding 

supports the pre-pore hypothesis, according to which a subset of NPC proteins 

initiates NPC assembly on chromatin independently of NE membrane targeting to the 

chromatin surface. Although both processes can be separated experimentally in vitro, 

they probably occur simultaneously in vivo. Our results specifically demonstrate that 

MEL-28 acts in postmitotic NPC assembly, but it is conceivable that it might carry out 

an analogous function in interphase. Interestingly, MEL-28 RNAi-treated human cells 

maintain a robust nuclear lamina staining (Figure 2-5 and Rasala et al., 2006). We 

plan to investigate the potential involvement of MEL-28 in interphase NPC formation 

by performing additional experiments and with the help of a temperature-sensitive C. 

elegans mel-28 mutant strain now available in our lab. 

 

Removal of MEL-28 from cells induces the formation of annulate lamellae (AL), 

cytoplasmic membrane stacks that contain NPCs (Figure 2-6). AL contain nups, but 

are free of MEL-28 (Figure 2-7 A and Rasala et al., 2008). Interestingly, RanGTP-

mediated AL formation was equally efficient in mock or MEL-28-depleted extract 

(Figure 2-7 B), demonstrating that MEL-28 is not required for NPC formation per se. 

This conclusion is also supported by the result that MEL-28 RNAi treatment in HeLa 

cells did not alter nup levels (Figure 2-5 A), but instead led to a significant 

redistribution of NPCs in the cell from the NE to AL. MEL-28 therefore appears to 

provide localization information and to direct NPC formation to the region of chromatin 

rather than to mediate the process of NPC assembly itself. Loss of MEL-28 

nevertheless has severe consequences for cells, as they lose their ability to assemble 

NPCs in the right place, i.e. in the NE, which leads to cell death. 

 



107 

3.1.5 Recombinant MEL-28 rescues Nup107-160 complex binding to chromatin 
 

In order to demonstrate that the observed depletion phenotype can be attributed 

specifically to MEL-28, Xenopus laevis MEL-28 was expressed in and purified from 

insect cells (Figure 2-14). Addition of the recombinant protein to depleted extracts 

rescued the recruitment of the Nup107-160 complex to chromatin, but did not support 

later steps of NPC assembly (Figure 2-15). The purified protein can therefore interact 

with the Nup107-160 complex and bind to chromatin, but does not allow completion of 

NPC formation. Either the recombinant MEL-28 is improperly folded when expressed 

in Hi5 cells, which might explain why it is degraded after 24h of expression, or it lacks 

a specific modification required for full activity. The rescue experiment generally 

suffered from the very low amounts of recombinant MEL-28 produced and the fact that 

the purified protein could not be concentrated without loss. MEL-28 is stable in egg 

extract, which suggests that it might need components in the extract and possibly 

binding partners, such as the Nup107-160 complex, for stability. The rescue of nup 

recruitment to chromatin in the absence of membranes can be performed with highly 

diluted extracts, whereas full nuclear assembly tolerates only very mild dilution. The 

purified material available for this work was not sufficiently active to support complete 

in vitro nuclear assembly following the harsh depletion procedure and dilution of the 

extract. Repeating the rescue experiments with more concentrated and possibly more 

active recombinant MEL-28 is highly desirable but could not be achieved. 

 

3.1.6 The MEL-28 AT hook binds to chromatin and is important for NPC 
formation 
 

Studying the detailed mechanism of MEL-28 function in NPC assembly was 

complicated by difficulties in predicting domains or motifs in the MEL-28 protein 

sequence and the unavailability of sufficient recombinant protein. The best 

experimental strategy, removing or mutating motifs, such as the predicted NLS or the 

AT hook, and testing their functional importance in the context of the full length protein 

was not feasible. We chose the next best approach by interfering with NPC formation 

with the aid of MEL-28 fragments. This series of experiments demonstrated that the 

MEL-28 AT hook binds to chromatin in nuclear assembly and that supplementing 
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extracts with high concentrations of purified GST-AT hook (36µM) leads to inhibition of 

NPC formation in a manner analogous to depletion of MEL-28. Binding of the AT hook 

to chromatin and inhibition of NPC formation were critically dependent on three basic 

residues in the AT hook which were previously shown to mediate DNA binding in other 

AT hooks (Figure 2-16 and 2-17 A and Aravind and Landsman, 1998). The inhibition 

of nuclear assembly with the help of an AT hook-containing MEL-28 fragment was 

independently reported by Gillespie et al. (2007) and Rasala et al., (2008). Although 

these experiments do not directly prove the involvement of the MEL-28 AT hook in 

NPC assembly, they provide indirect evidence that it contributes to MEL-28 chromatin 

binding and thus probably participates in nuclear assembly. Interestingly, the AT hook 

is not the only chromatin binding motif in the positively charged C-terminus of MEL-28 

(Figure 2-20 and Rasala et al., 2008). It is therefore likely that two or more motifs 

cooperate in targeting MEL-28 to chromatin to achieve a higher binding affinity and 

thereby direct NPC formation to the chromatin surface. Identifying these additional 

chromatin binding motifs and assessing their relative contribution to the overall MEL-

28 chromatin affinity are rewarding future experiments. 

 

While Gillespie et al. (2007) and Rasala et al. (2008) observed displacement of 

endogenous MEL-28 from chromatin upon inhibition with C-terminal MEL-28 

fragments at 2 µM or 10 µM, respectively, we found MEL-28 chromatin levels to be 

reduced in the presence of 36 µM GST-AT hook. In addition to the different 

experimental conditions, MEL-28 clones and antibodies used, which might account for 

the differing results, the longer MEL-28 fragments employed by Gillespie et al., (2007) 

and Rasala et al. (2008) may compete more efficiently with endogenous MEL-28 for 

chromatin binding. Our result demonstrates that reduction of MEL-28 amounts on 

chromatin below a certain threshold are sufficient to prevent NPC formation on 

chromatin. Interestingly, a significant amount of MEL-28 remained on chromatin in the 

presence of the AT hook and organized into an NE rim staining during the course of 

nuclear assembly. It is intriguing to ask what MEL-28 binds to in the NE membrane 

under these conditions. 

 

In order to assess the specificity of NPC assembly inhibition by the AT hook construct, 

we conducted two additional experiments. First we estimated the concentration of 
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MEL-28 in egg extract and second evaluated the effect of AT hooks from unrelated 

proteins on nuclear assembly. We were astonished that a 16 amino acid fragment was 

able to interfere with the function of the 245 kDa protein MEL-28 and to inhibit the 

entire process of NPC formation (Figure 2-17). However, we estimated the 

concentration of MEL-28 in egg extract to be ≈ 75 nM (Figure 2-19). This made clear 

that an enormous (500-fold) excess over the endogenous MEL-28 was necessary for 

achieving the inhibition phenotype. Testing unrelated AT hooks for inhibition of nuclear 

assembly showed that the degree of inhibition correlates with the chromatin binding 

affinity of the AT hook (Figures 2-16 C and 2-17 C). In particular the HMGA 2β AT 

hook bound strongly to chromatin and was more powerful in inhibiting NPC formation 

than the MEL-28 AT hook (Figures 2-17 A and 2-18 C). Therefore, inhibition of NPC 

assembly in vitro is not specific for the MEL-28 AT hook. 

 

AT hooks are minor groove DNA binding motifs with a preference for AT-rich 

sequences. Rasala et al. (2008) carried out an elegant experiment, in which they 

sought to inhibit nuclear assembly with antibiotics that specifically bind to AT-rich or 

GC-rich DNA sequences. While the AT-binding Distamycin A phenocopied the AT 

hook inhibition, addition of the GC-binding Chromomycin A3 did not affect nuclear 

assembly, indicating that MEL-28 indeed initiates NPC formation on chromatin by 

binding to AT-rich DNA sequences. Whether MEL-28 possesses DNA sequence 

specificity beyond AT-rich Vs GC-rich, is a question for future investigation. 

 

In summary, supplementing nuclear assembly reactions with the MEL-28 AT hook 

fused to GST strongly inhibits NPC formation, thus recapitulating the MEL-28 

depletion phenotype. AT hook construct binding to chromatin is essential for inhibiting 

NPC assembly, although a high excess of AT hook over endogenous MEL-28 is 

required and the inhibition is not specific for the MEL-28 AT hook. Direct MEL-28 

binding to chromatin is therefore an essential step in postmitotic NPC assembly and 

NPC formation requires a certain minimal concentration of MEL-28 on chromatin. 
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3.1.7 Regulation of MEL-28 function by the GTPase Ran 
 

Several important events of nuclear assembly have been shown to be regulated by 

the Ran GTPase system (Walther et al., 2003b). Based on our experiments, we can 

add MEL-28 to the list of key factors whose activity is modulated by RanGTP. MEL-28 

binding to chromatin was enhanced by RanGTP and slightly reduced by addition of 

importin β (Figure 2-13). Interestingly, the inactive Ran mutant T24N decreased 

mAb414 antigen binding to chromatin, but not MEL-28 recruitment, suggesting that 

MEL-28 can bind to chromatin independently of Ran (Figure 2-13B) even if 

inefficiently. Interestingly, the interaction of MEL-28 with the Nup107-160 complex was 

not affected by addition of RanQ69L (data not shown). Targeting of nups to chromatin 

critically depended on MEL-28, even in the presence of 20 µM RanGTP (Figure 2-13 

C). MEL-28 contains a predicted NLS motif and importins α and β were identified in 

the MEL-28 IP eluates (Figure 2-10). We are currently investigating whether MEL-28 

binds directly to importins and whether such an interaction is relevant for nuclear 

assembly. 

 

3.1.8 The function of MEL-28 is regulated during the cell cycle 
 

The NE and NPCs undergo dramatic changes during the cell cycle, many of which 

arise as a consequence of posttranslational modification of NE and NPC components. 

We asked if the two main functions of MEL-28, interaction with a subset of nups and 

binding to chromatin, are regulated throughout the cell cycle by comparing the 

situations in interphase and mitotic Xenopus laevis egg extract. MEL-28 binding to the 

Nup107-160 complex was stable in both cell cycle stages (Figure 2-21 A). In contrast, 

recruitment of MEL-28 and the Nup107-160 complex to chromatin, which occurred 

readily in interphase extract, was abolished in mitotic extract (Figure 2-21 C). This 

result, combined with the observation that MEL-28 is phosphorylated in mitosis 

(Nousiainen et al., 2006 and Figure 2-21 B), suggests that mitotic phosphorylation 

might regulate MEL-28 chromatin binding. It is conceivable that addition of phosphate 

residues might change the charge distribution in the C-terminus of MEL-28 and 

thereby alter its chromatin binding affinity. Whether additional proteins are involved in 

dissociating MEL-28 from chromatin is unknown. At the end of mitosis, phosphatases 
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could remove the phosphates and permit MEL-28 to bind to chromatin, thus initiating 

NPC formation on the segregated chromatids. It would be interesting to examine the 

consequences of MEL-28 dephosphorylation on chromatin binding and NPC assembly 

in vitro and to identify the kinases and phosphatases that modify MEL-28 in living 

cells. 

 

In addition to its involvement in NPC formation, links between MEL-28 and other 

cellular processes are emerging. While MEL-28 at kinetochores might critically 

influence the assembly and function of the mitotic spindle, Gillespie et al. (2007) 

uncovered a functional connection between MEL-28 and the minichromosome 

maintenance (MCM) proteins. The Mcm protein complex, Mcm2-7, is the probable 

replicative helicase and is loaded onto chromatin in late mitosis and early G1 phase 

prior to NE formation and S phase entry. Loading of Mcm2-7 onto chromatin was 

required for timely MEL-28 targeting to chromatin and NPC formation, suggesting that 

the two important cellular events of licensing replication and NPC assembly are 

coordinated with one another. The fact that we did not identify Mcm proteins in our 

MEL-28 IP eluates suggests that MEL-28 does not bind directly to Mcm2-7 or that 

their interaction might only take place on chromatin, a conclusion supported by 

findings in Gillespie et al. (2007). In summary, MEL-28 is part of an emerging picture 

in which NPC formation is intimately connected to other cell cycle events. 

 

3.1.9 Model for MEL-28 in postmitotic NPC formation 
 

Based on the available information on MEL-28 function we can extend our model of 

postmitotic NPC assembly (Figure 3-1). In late anaphase/telophase mitotic kinase 

activity subsides and phosphatases can dephosphorylate cellular proteins, including 

NE and NPC components (step 1 in figure 3-1). Removal of phosphates from MEL-28 

might render it competent for binding to chromatin. MEL-28 chromatin binding is 

mediated by the AT hook and additional motifs in the C-terminus. In the vicinity of 

decondensing chromatin, MEL-28 encounters a high local concentration of RanGTP, 

which might dissociate it from importin β, thereby enhancing its binding to chromatin 

(step 2). Our data suggest that MEL-28 binds to chromatin alone and then recruits the 

Nup107-160 complex (step 3) but we cannot exclude that MEL-28 and the Nup107- 
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160 complex are targeted to chromatin as one entity (step 4). Once this binding has 

occurred, MEL-28 and the Nup107-160 complex relocalize to foci on the chromatin 

surface and other nups, such as those recognized by mAb414, bind to them forming 

so-called pre-pores (step 5). Subsequent steps of NPC assembly require the presence 

of NE membranes and binding of integral membrane nups, such as Pom121 and 

Ndc1, to the nascent NPC (step 6). In the absence of the transmembrane nups, MEL-

28 and the Nup107-160 complex prevent closure of the NE membranes (Antonin et 

al., 2005), presumably a control mechanism which ensures accurate coordination of 

NPC formation with NE membrane assembly. Additional soluble nups join the forming 

NPC, some after being liberated from importin β by RanGTP close to chromatin 

(Walther et al., 2003b, step 7). NPC formation is completed by addition of the 

cytoplasmic filaments and nuclear basket (step 8). 

 

While regulation of its phosphorylation state may account for the temporal regulation 

of MEL-28 in NPC assembly, RanGTP is likely to contribute to its local control. MEL-

28 appears to be directly regulated by Ran, but NPC assembly is modulated by 

RanGTP at multiple levels (Walther et al., 2003b). MEL-28 anchors the forming NPC 

to chromatin during postmitotic NPC assembly. 

 

It will be important, in the future, to integrate the contribution of individual factors to NE 

and NPC formation into a uniform assembly model and to elucidate the dynamic 

changes that nups undergo during NPC formation. In addition, we know comparatively 

little about the underlying regulatory mechanisms which govern nuclear assembly at 

the end of mitosis. The data in this thesis contribute to our mechanistic understanding 

of early events in postmitotic NPC formation and of how nups are targeted to 

chromatin during this process. It will be rewarding to closely examine the regulation of 

MEL-28 during the cell cycle and to investigate its involvement in cellular processes 

other than NPC formation. 
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3.2 NET5 
 

3.2.1 NET5 is a conserved transmembrane protein of the INM 
 

NET5/T24F1.2 is a novel transmembrane protein of the NE found in most eukaryotes. 

Its high degree of conservation suggests that it carries out an essential function. NET5 

has six predicted transmembrane helices, a putative bipartite NLS and four highly 

conserved cysteine pairs in its N-terminal domain, which might form zinc finger motifs 

(Figure 2-22). 

 

In cultured human cells NET5 is not evenly distributed in the plane of the NE, but 

localizes to foci (Figure 2-23 C) that are distinct from NPCs (Figure 2-24). It is 

currently unclear what the NET5-containing foci in the NE are, however we will 

address this question by performing immunoprecipitations against NET5 and GST-

pulldown experiments with the C-terminal NET5 domain from HeLa cell lysates. 

According to immunogold labeling and electron microscopy NET5 localizes to the INM 

in HeLa cells and C. elegans and is enriched at nuclear pores in worm embryos. We 

are currently investigating whether human NET5 also partly localizes to NPCs, as this 

would have interesting implications for its function. 

 

3.2.2 Specific domains mediate correct NET5 localization 
 

The fact that NET5 domain topology can be predicted with confidence allowed us to 

systematically investigate the contribution of individual domains and motifs to its 

localization. This analysis demonstrated that the N-terminal domain (amino acids 1-

213) is required for NET5 localization to the NE. The C-terminal domain targets NET5 

to NE foci. The iFRAP experiments performed by Nathalie Daigle indicate that binding 

to foci largely immobilized NET5 in the NE, suggesting that the interaction formed by 

the C-terminal domain is a stable one. The C-terminal domain alone is, however, not 

sufficient for correct localization. 

Based on the topological analysis of the S.pombe NET5 homologue, Ima1, by King et 

al. (2008), who concluded that the first predicted TM helix is a membrane-adhering 

motif and not a signal peptide, both NET5 domains should be either cytoplasmic or 
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nucleoplasmic. Our EM result that NET5 localizes to the INM in human cells and C. 

elegans embryos suggests that they face the inner side of the NE. Both domains 

might therefore interact with nuclear proteins, specific chromatin regions or the 

nucleoplasmic domains of other NE transmembrane proteins. In addition, our data 

suggest that the putative NLS in the C-terminus of NET5 is not functional, or at least 

not required for directing the short human NET5 isoform to the NE. Mutation of one 

pair of cysteines in the N-terminal domain led to redistribution of NET5 into the ER, 

demonstrating the importance of this protein motif for correct NET5 localization. These 

results provide a framework for assessing the domain requirements for NET5 

localization and the available GFP-tagged fragments can also be used in future 

experiments to attempt rescue of the NET5 RNAi phenotype. 

 

3.2.3 Loss of NET5 perturbs nuclear integrity 
 

The ima1 deletion phenotype in S.pombe and NET5/T24F1.2 RNAi phenotypes in 

human cells and C. elegans suggest a context in which NET5 might contribute to 

nuclear architecture and function. Loss of Ima1 from fission yeast cells and reduction 

of NET5 levels in human cells lead to similar phenotypes (King et al., 2008 and 

Figures 2-25 and 2-26). ima1Δ cells display severe NE deformations and loss of 

spherical nuclear shape, while NET5 RNAi-treated HeLa cells have a highly lobulated 

and distorted NE. Deletion of ima1 renders nuclei increasingly sensitive to 

microtubule-dependent forces and results in fragmentation of the MTOC attachment 

site at the NE (King et al., 2008). HeLa cells with reduced amounts of NET5 display a 

dramatic reorganization of their microtubule cytoskeleton and their nuclei are no 

longer centrally located but instead sink to the bottom of the cells. These results 

demonstrate that NET5 plays a role in physically stabilizing the NE and might link the 

nucleus to the microtubule cytoskeleton. The observation that the S.pombe nup cut11 

accumulates in cytoplasmic foci in ima1Δ cells and the fact that NPCs appear to 

cluster in the NE in T24F1.2 RNAi-treated C. elegans embryos indicate that NET5 

might also influence the NPC distribution in the NE. 

 

Another intriguing finding was that some NET5 RNAi-treated HeLa cells had large 

chromatin protrusions bulging out of their nuclei. These extensions seemed to 
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penetrate the NE through holes in the nuclear lamina (Figure 2-26 A). Accordingly, 

NET5 might contribute to chromatin organization or be required for confining 

chromatin to the nuclear compartment. King et al. (2008) report that the inner 

centromeric region is bound by Ima1 and preventing the heterochromatin-specific 

H3K9 methylation results in mislocalization of Ima1. In S.pombe, centromeres are 

positioned adjacent to the SPB attachment site at the NE (Funabiki et al., 1993), 

indicating a connection between chromatin and the cytoskeleton, for which Ima1 might 

be essential. Whether NET5 carries out an analogous function in human cells remains 

to be determined, but the identification of the centromere protein T in our Yeast 2-

Hybrid approach suggests that NET5 might indeed be linked to heterochromatin. It will 

therefore be important to examine the behavior of centromere markers in the NET5 

RNAi-treated cells. 

 

ima1 deletion leads to separation of the S.pombe SUN and KASH proteins Sad1 and 

Ksm2, which usually co-localize at the MTOC attachment site. Together with the 

finding that Sad1 dissociates from the centromere in ima1Δ cells, it is tempting to 

speculate that the NET5 foci in the NE of human cells might contain SUN proteins. 

Human Sun2 has been reported to localize to the NE in a punctuate pattern similar to 

NET5 (Liu et al., 2007) and SUN proteins are involved in anchoring the nucleus to the 

cytoskeleton, which appears defective in NET5 RNAi-treated HeLa cells. RNAi against 

T24F1.2 did not affect the localization of Matefin, the C. elegans Sun orthologue, any 

C. elegans KASH domain protein, or vice versa (Matyas Gorjanacz, personal 

communication). It will nevertheless be interesting to examine if NET5 is functionally 

linked to SUN- or KASH-proteins in human cells. 

 

Our RNAi experiments suggest that NET5 is not directly involved in postmitotic NE or 

NPC assembly. The fact that we could not identify a NET5 Xenopus orthologue, 

presumably because sequencing of the Xenopus genome is not complete, prevented 

us from analyzing a potential role of NET5 in nuclear assembly in vitro. In the future it 

will be important to investigate whether NET5-deficient cells encounter problems 

during cell division, if they display abnormalities in assembling the NE and NPCs at 

the end of mitosis, or whether the observed phenotype develops in interphase. 
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3.2.4 Future perspectives regarding NET5 
 

A difficulty with the present NET5 results is the uncertainty surrounding the RNAi 

phenotypes generated by different siRNAs. NET5 RNAi treatment did not visibly 

decrease the NET5 signal in HeLa cells as judged by immunofluorescence (data not 

shown), suggesting that a significant fraction of NET5 has a low turnover. This is in 

contrast to the situation in C. elegans embryos, where RNAi treatment efficiently 

depletes T24F1.2 (Matyas Gorjanacz, personal communication). However, Western 

blotting of total lysates of RNAi-treated cells revealed a similar reduction of a band at 

the predicted size of full length NET5 with all four siRNA oligos (Figure 2-25 A). 

Whether the remaining signal corresponds to stable NET5 or represents an unspecific 

cross-reacting band is a question we will attempt to answer in the near future. It will be 

important to determine which NET5 isoforms are expressed in HeLa cells and to 

examine the specificity of the RNAi phenotype by performing rescue experiments with 

RNAi-resistant NET5 constructs. 

 

Our longer term plan is to identify NET5 binding partners by means of biochemical 

methods and to characterize their functional relationship with NET5. In parallel we will 

investigate the NET5 binding candidate proteins from the Yeast 2-Hybrid approach, in 

particular LMO7, the Ran GTPase, RanBP1 and RanBP2. By following different 

experimental approaches we hope to be able to determine in more detail the 

mechanism by which NET5 contributes to nuclear organization. 
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4.1 Materials 
 
4.1.1 Chemicals and reagents 
 
Acetic acid  Merck (Darmstadt, Germany) 
Acetone Merck (Darmstadt, Germany) 
30% Acrylamide/bisacrylamide solution, 37.5:1  Bio-Rad (München, Germany) 
Adenosine 5’-triphosphate (ATP)  Sigma-Aldrich (Steinheim, Germany) 
Agar-agar  Serva (Heidelberg, Germany) 
Agarose  Invitrogen (Karlsruhe, Germany) 
Alexa Fluor®-coupled secondary antibodies  Invitrogen (Karlsruhe, Germany) 
Ampicillin  Grünenthal (Aachen, Germany) 
Ammonium chloride  Merck (Darmstadt, Germany) 
Ammonium sulfate  Gibco BRL (Eggstein, Germany) 
Ammonium peroxodisulfate  Sigma-Aldrich (Steinheim, Germany) 
Bacto tryptone  Difco (Detroit, USA) 
Bacto yeast extract  Difco (Detroit, USA) 
Bench MarkTM Prestained Protein Ladder  Invitrogen (Karlsruhe, Germany) 
Bovine serum albumin (BSA)  Sigma-Aldrich (Steinheim, Germany) 
Bromophenol blue (3’,3’’,5’,5’’-tetrabromophenolsulfonephthalein) 
 Sigma-Aldrich (Steinheim, Germany) 
Calcium chlorid  Merck (Darmstadt, Germany) 
Chloramphenicol Sigma-Aldrich (Steinheim, Germany) 
CNBr-activated SepharoseTM 4B  Amersham Biosciences 
 (Braunschweig, Germany) 
CompleteTM EDTA-free Protease Inhibitor Cocktail (use 1 tablet per 25 ml buffer) 
 Roche (Mannheim, Germany) 
Coomassie brilliant blue G-250  Sigma-Aldrich (Steinheim, Germany) 
Creatine phosphate  Roche (Mannheim, Germany) 
Cycloheximid (3-(2-(3,5-dimethyl 2-oxocyclohexyl) 2-hydroxyethyl)glutarimide) 
 Sigma-Aldrich (Steinheim, Germany) 
L-Cysteine  Merck (Darmstadt, Germany) 
Cytochalasin D  Sigma-Aldrich (Steinheim, Germany) 
4’,6-Diamidino 2-phenyindole (DAPI)  Sigma-Aldrich (Steinheim, Germany) 
Deoxynucleotides (dNTPs) 100mM Fermentas (St. Leon-Rot, Germany) 
Digitonin Sigma-Aldrich (Steinheim, Germany) 
1-(4,5-Dimethoxy 2-nitrophenyl)ethyl ester (A23187) 
 Invitrogen (Karlsruhe, Germany) 
Dimethyl pimelimidate Sigma-Aldrich (Steinheim, Germany) 
Dimethyl sulfoxid (DMSO)  Merck (Darmstadt, Germany) 
100bp DNA ladder New England Biolabs (Ipswich, USA) 
1kb DNA ladder New England Biolabs (Ipswich, USA) 
DNA oligonucleotides  MWG Biotech (Ebersberg, Germany) 
DNA Polymerase I, Large (Klenow) Fragment New England Biolabs (Ipswich, USA) 
DNAse I Roche (Mannheim, Germany) 
1,1'-Dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiIC18 ) 
 Invitrogen (Karlsruhe, Germany) 
1,4-Dithio-L-threitol (DTT)  Merck (Darmstadt, Germany) 
Dulbecco modified Eagle’s medium (DMEM)  Invitrogen (Karlsruhe, Germany) 
ECLTM anti-rabbit IgG Horseradishperoxidase linked whole antibody (from donkey)
 Amersham Biosciences 
 (Braunschweig, Germany) 
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ECLTM anti-mouse IgG, Horseradishperoxidase linked whole antibody (from sheep)
 Amersham Biosciences 
 (Braunschweig, Germany) 
Epon Roth (Karlsruhe, Germany) 
Ethanol  Merck (Darmstadt, Germany) 
Ethanolamine Sima-Aldrich (Steinheim, Germany) 
Ethidium bromide  Serva (Heidelberg, Germany) 
Ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA) 
 Sigma-Alrich (Steinheim, Germany) 
Ethylene glycol-bis(2-aminoethylether)-N,N,N’,N’-tetraacetic acid (EGTA) 
 Sima-Aldrich (Steinheim, Germany) 
Fetal calf serum (FCS)  PAA Laboratories (Cölbe, Germany) 
Formvar Serva (Heidelberg, Germany) 
Fugene 6 transfection reagent Roche (Mannheim, Germany) 
L-Glutamine  Invitrogen (Karlsruhe, Germany) 
Glutaraldehyde (50% aqueous solution)  Sigma-Aldrich (Steinheim, Germany) 
Glutathione Sigma-Aldrich (Steinheim, Germany) 
Glutathione Sepharose 4 Fast Flow  Amersham Biosciences 
 (Braunschweig, Germany) 
Glycerol (87% aqueous solution)  Merck (Darmstadt, Germany) 
Glycine  Merck (Darmstadt, Germany) 
Glycogen (source: oyster, used at 200 mg/ml)  Amersham Biosciences 
 (Braunschweig, Germany) 
Guanosine 5’-diphosphate (GDP)  Sigma-Aldrich (Steinheim, Germany) 
Guanosine 5’-triphosphate (GTP)  Merck (Darmstadt, Germany) 
HeLa nuclear extract Cilbiotech (Mons, Belgium) 
HiPerFect Transfection Reagent QIAgen (Hilden, Germany) 
Hoechst 33342 Sigma-Aldrich (Steinheim, Germany) 
Hydrochloric acid, 37% (HCl)  Merck (Darmstadt, Germany) 
Human chorionic gonadotropin (hCG)  Sigma-Aldreich (Steinheim, Germany) 
4-(2-Hydroxyethyl)piperazine-1-ethansulfonic acid (HEPES) 
 Sigma-Aldrich (Steinheim, Germany) 
Igepal CA-630 (NP-40)  Sigma-Aldrich (Steinheim, Germany) 
Imidazole  Sigma-Aldrich (Steinheim, Germany) 
Immersion oil  Leica (Heidelberg, Germany) 
Intergonan (PMSG)  Intervet (Unterschleißheim, Germany) 
Isopropyl β-D-thiogalactopyranoside (IPTG)  Sigma-Aldrich (Steinheim, Germany) 
Kanamycin  Serva (Heidelberg, Germany) 
Magnesium chloride  Merck (Darmstadt, Germany) 
Magnesium acetate  Merck (Darmstadt, Germany) 
Manganese chloride Sigma-Aldrich (Steinheim, Germany) 
2-Mercaptoethanol  Sigma-Aldrich (Steinheim, Germany) 
Methanol  Merck (Darmstadt, Germany) 
Microcystin LR Sigma-Aldrich (Steinheim, Germany) 
Milk powder  Frema Reform (Lüneburg, Germany) 
3-(N-Morpholino)propanesulfonic acid, 4-Morpholinepropanesulfonic acid (MOPS) 
 Sigma-Aldrich (Steinheim, Germany) 
Nail polish P2 Palmers Textil AG (Vienna, Austria) 
Ni-NTA agarose QIAgen (Hilden, Germany) 
OptiMEM  Invitrogen (Karlsruhe, Germany) 
Osmium tetroxide Serva (Heidelberg, Germany) 
Paraformaldehyde, 16% solution Electron Microscopy Sciences (Hatfield, USA) 
Penicillin/Streptomycin  Sigma-Aldrich (Steinheim, Germany) 
Pfu turbo polymerase Stratagene (La Jolla, USA) 
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Piperazine 1,4-bis(2-ethanesulfonic acid) (PIPES) 
 Sigma-Aldrich (Steinheim, Germany) 
Phenylmethylsulfonyl fluoride (PMSF)  Sigma-Aldrich (Steinheim, Germany) 
2-Phosphogycerol Sigma-Aldrich (Steinheim, Germany) 
Polyethylene glycol 4000 Roth (Karlsruhe, Germany) 
Poly-L-Lysine solution  Sigma-Aldrich (Steinheim, Germany) 
Polyvinylpyrolidon Merck (Darmstadt, Germany) 
Ponceau S Sigma-Aldrich (Steinheim, Germany) 
Potassium acetate  Merck (Darmstadt, Germany) 
Potassium chloride  Merck (Darmstadt, Germany) 
Potassium hydroxide Sigma-Aldrich (Steinheim, Germany) 
Precision Plus Protein Standards Bio-Rad (München, Germany) 
2-Propanol Merck (Darmstadt, Germany) 
Protein A Gold Cell Microscopy Center (University Medical  
 Center, Utrecht, The Netherlands) 
Protein A Sepharose TM CL-4B  Amersham Biosciences 
 (Braunschweig, Germany) 
Protein Assay Bio-Rad (München, Germany) 
Protein Molecular Weight Standards Amersham Biosciences 
 (Braunschweig, Germany) 
QIAGEN Plasmid Maxi Kit QIAgen (Hilden, Germany) 
QIAGEN Plasmid Midi Kit QIAgen (Hilden, Germany) 
QIAprep Spin Miniprep Kit QIAgen (Hilden, Germany) 
QIAquick Gel Extraction Kit  QIAgen (Hilden, Germany) 
QIAquick PCR Purification Kit  QIAgen (Hilden, Germany) 
Restriction enzymes  New England Biolabs (Ipswich, USA) 
RNAseH Invitrogen (Karlsruhe, Germany) 
RNeasy Mini kit QIAgen (Hilden, Germany) 
Shrimp alkaline phosphatase (SAP)  USB Corporation (Cleveland, USA) 
Silver nitrate  Sigma-Aldrich (Steinheim, Germany) 
siRNA oligonucleotides Dharmacon (Lafayette, USA) 
Sodium azide Sigma-Aldrich (Steinheim, Germany) 
Sodium cacodylate Sigma-Aldrich (Steinheim, Germany) 
Sodium cloride  Merck (Darmstadt, Germany) 
Sodium dodecylsulfate  Serva (Heidelberg, Germany) 
Sodium hydroxide Sigma-Aldrich (Steinheim, Germany) 
Sodium thiosulfat  Merck (Darmstadt, Germany) 
Spermidine tetrachloride Sigma-Aldrich (Steinheim, Germany) 
Spermine Sigma-Aldrich (Steinheim, Germany) 
Sucrose  USB Corporation (Cleveland, USA) 
SuperScript II reverse transcriptase Invitrogen (Karlsruhe, Germany) 
SYBR Green PCR master mix Applied Biosystems (Foster City, USA) 
T4-DNA ligase  New England Biolabs (Ipswich, USA) 
Taq polymerase  Roche (Mannheim, Germany) 
N,N,N′,N′-Tetramethylethylenediamine (TEMED) 
 Sigma-Aldrich (Steinheim, Germany) 
Titer Max Gold adjuvant  Sigma-Aldrich (Steinheim, Germany) 
Tris(hydroxymethyl)amino methane (Tris)  Sigma-Aldrich (Steinheim, Germany) 
Triton X-100  Sigma-Aldrich (Steinheim, Germany) 
Trypsin EDTA 1x GibcoTM  Invitrogen (Karlsruhe, Germany) 
Tween®-20, Sigma-Ultra  Sigma-Aldrich (Steinheim, Germany) 
Uranyl acetate Serva (Heidelberg, Germany) 
Vectashield® mounting medium H-1000  Vector Laboratories (Grünberg, Germany) 
Western LightningTM Chemiluminiscence reagent 
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 Perkin Elmer Life Science (Boston, USA) 
 
4.1.2 Commonly used buffers, solutions and media 
 
AB (acetate buffer)  20 mM HEPES, pH 7.4 
 100 mM KOAc 
 3 mM KCl 
 50 mM EGTA 
 150 mM Sucrose 
 
Coomassie staining for SDS-PAGE gels  0.2% (w/v) Coomassie brilliant blue 
 40% (v/v) Methanol 
 10% (v/v) Acetic acid 
 
Coomassie destain solution  40% (v/v) Methanol 
 10% (v/v) Acetic acid 
 
Cysteine buffer  2% (w/v) Cysteine in 0.25x MMR 
 adjusted to pH 7.8 with NaOH 
 
DMEM + Glucose  DMEM medium 
 44 mM NaHCO3 
 17 mM Glucose 
 
6x DNA loading buffer  0.25% (w/v) Bromphenol blue 
 0.25% (w/v) Xylene cyanol FF 
 40% (w/v) Sucrose 
 in H2O 
 
50x Energy mix  500 mM Creatine phosphate 
 25 mM GTP 
 25 mM ATP 
 2.5 mg/ml Creatine kinase 
 
LB-agar (autoclaved)  1.5% (w/v) Bacto agar in LB medium 
 
LB-medium (autoclaved) 1% (w/v) Bacto tryptone 
 0.5% (w/v) Bacto yeast extract 
 170 mM NaCl 
 adjusted to pH 7.6 with NaOH 
 
MMR buffer  50 mM HEPES, pH 7.9 
 100 mM NaCl 
 10 mM MgCl2 
 20 mM CaCl2 
 1 mM EDTA 
 
PBS (phosphate buffered saline)  130 mM NaCl 
 100 mM Na2HPO4, pH 7.0 
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S250 buffer  20 mM HEPES, pH 7.5 
 250 mM Sucrose 
 50 mM KCl 
 2.5 mM MgCl2 
 
S500 buffer  500 mM Sucrose 
 20 mM HEPES, pH 7.5 
 50 mM KCl 
 2.5 mM MgCl2 
 
1x SDS-loading buffer  10% (v/v) Glycerol 
 50 mM Tris, pH 6.8 
 10% (w/v) SDS 
 1 mM DTT 
 0.1% (w/v) Bromphenol blue 
 
SDS running buffer  25 mM Tris 
 192 mM Glycine 
 0.1% (w/v) SDS 
 
Viki-fix 80 mM Pipes pH 6.8 
 1 mM MgCl2 
 150 mM Sucrose 
 0.5% (v/v) Glutaraldehyde 
 2% (w/v) Paraformaldehyde 
 
Wet blot transfer buffer  25 mM Tris 
 200 mM Glycine 
 10% (v/v) Methanol 
 
4.1.3 Materials 
 
0.2 ml reaction tubes (Thermo TubeTM)  PEQlab (Erlangen, Germany) 
0.5 ml micro tubes  Sarstedt (Nümbrecht, Germany) 
1.5 ml reaction tubes  Eppendorf (Hamburg, Germany) 
10 ml chromatography columns  Bio-Rad (München, Germany) 
6-well or 24-well plates  Nunc (Wiesbaden, Germany) 
Bottle top filters, 0.22 μm pore size  Millipore (Schwalbach, Germany) 
Coverslips (11 mm diameter) Nunc (Wiesbaden, Germany) 
Homogenizer 2 ml and 40 ml, Pestle B  Kontes Glass, Co (Vineland, USA) 
Filter paper  Whatman (Dassel, Germany) 
General glass ware  Schott (Jena, Germany) 
General plastic ware  Nunc (Wiesbaden, Germany) 
Gloves (Latex or Nitrile) Kimberley-Clark (Mainz, Germany) 
KODAK BioMax MR Film  Sigma-Aldrich (Steinheim, Germany) 
Lab-Tek Nunc (Wiesbaden, Germany) 
MoBiCol MoBiTec (Göttingen, Germany) 
MicrolanceTM sterile needles  Becton Dickinson 
 (Heidelberg, Germany) 
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Microscope slides  Nunc (Wiesbaden, Germany) 
Neubauer chamber  LO-Laboroptik 
 (Friedrichsdorf, Germany) 
NuPAGE 4-12% Bis-Tris gels Invitrogen (Karlsruhe, Germany) 
Parafilm Pechiney Plastic Packaging 
 (Chicago, USA) 
Plastic cuvettes  Nunc (Wiesbaden, Germany) 
Protran nitrocellulose membrane Perkin Elmer Life Science 
 (Boston, USA) 
SDS-PAGE Minigel system  Bio-Rad (München, Germany) 
Spectra/Por Membrane  Carl Roth (Karlsruhe, Germany) 
Syringes Becton Dickinson 
 (Heidelberg, Germany) 
Ultracentrifuge tubes  Beckman (Krefeld, Germany) 
 
4.1.4 Instruments 
 
Centrifuges:  Rotors: 
Heraeus Megafuge 1.0 R Beckman SW55Ti 
Heraeus BiofugeA  Beckman SW40 
Beckman L8-70M  Beckman JLA-8.1000 
Beckman Coulter Optima TLX  Beckman TLA100.4 
Beckman Coulter Avanti J-20 XP  Beckman TLA120.2 
Du Pont Instruments Sorvall RC-5B Beckman TLA 100 
 Beckman TLS-55 
 Sorvall SS34 
 Sorvall HB6 
 
Air liquide ESPACE 331 GAZ (Liquid nitrogen tank) 
Amersham Biosciences Ultraspec 2100 pro (Spectrometer) 
Avestin EmulsiFlex-C5 (Homogeniser) 
B. Braun, Thermomic Bu (Waterbath) 
Biorad Power Pac 300 (Power supply) 
Biorad gelelectrophoresis system 
Biorad Transfer Cell (Western blot wet blot chamber) 
Biorad Gene PulserTM 
Branson Sonifier B15, Tip: Branson Converter BSB7 (Sonicator) 
Carl Zeiss AG LSM 510 META (confocal microscope) 
Cell culture cabinet (The Baker Company (Sanford, USA)) 
Eppendorf Centrifuges 5415 D and R (table top centrifuges) 
Eppendorf Thermomixer compact 
Eppendorf Thermostat 5320 
Heidolph Polymax 2040 and Unimax 2010 (shaking tables) 
Hera cell 240 (Incubator) 
Infors AG HT (Shaking incubators) 
Leica TCS SP2 AOBS FCS (confocal microscope) 
MJ Research PTC-200 Peltier Thermal Cycler (PCR machine) 
Pharmacia LKB (FPLC machine) 
Philips CM-120 BioTwin (electron microscope) 
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Radiometer Copenhagen pH M82 Standard pH Meter 
7500 Real Time PCR system (Applied Biosystems, Foster City, USA) 
Snjiders Scientific test tube rotator Model 34528 
Superose 6 gel filtration column (GE Healthcare, München, Germany) 
Thermo Scientific Hera -80°C freezer 
 
4.1.5 Animals and cell lines 
 
Rabbits Harlan Winkelmann GmbH 
 (Borchen, Germany) 
Xenopus laevis frogs African Reptile Park 
 (Republic of South Africa) 
 
Drosophila cells (Sf9, TniHi5, SF+, High 5) EMBL protein expression 
 and purification facility 
HeLa Kyoto cells Ellenberg lab (EMBL Heidelberg) 
U2OS cells Ulrike Kutay (ETH Zürich) 
Xenopus laevis A6 cells Karsenti lab (EMBL Heidelberg) 
 
4.1.6 Bacterial strains 
 
XL1Blue: genotype: recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac (F’proAB 
lacIqZDM15 Tn 10 (Tetr)) (Stratagene). 
BL21 (DE3): genotype: F- ompT hsdSB (rB-mB-) gal dcm (DE3), a lambda prophage 
carrying the T7 RNA polymerase gene (Novagene). 
Rosetta (DE3): genotype: F- ompT hsdSB (rB-mB-) gal dcm (DE3) pRARE2 (CamR) 
(Novagene). 
 
4.1.7 Antibodies 
 
Primary antibodies 
 
Antigen Raised in Source / remarks 

 
Alpha tubulin Mouse Sigma-Aldrich (Steinheim, Germany) 
AND-1 Mouse Kindly provided by Marion Schmidt-Zachmann (DKFZ, 

Heidelberg). (Köhler et al., 1997) 
GST Rabbit Kindly provided by Elisa Izaurralde (MPI Tübingen).  
Histone H2B Rabbit Abcam (Cambridge, UK) 
Human Coilin Rabbit Kindly provided by Melpomeni Platani. (Platani et al., 2000) 
Human Emerin Rabbit Abcam (Cambridge, UK) 
Human Lamin A Mouse Biozol Diagnostica (Eching, Germany) 
Human Lamin B Mouse ImmuQuest (North Yorkshire, UK) 
Human MEL-28 Rabbit Raised against His6-tagged aa 1208-1800 or aa 1572-2266 

of human MEL-28. (Franz et al., 2007) 
Human NET5 Rabbit Raised against N-terminally GST-tagged and C-terminally 

His6-tagged aa 374-640 of human NET5. 
Human Nup107 Rabbit Kindly provided by Ulrike Kutay (ETH Zürich). 
Human Nup133 Rabbit Kindly provided by Martin Hetzer (SALK Institute, La Jolla). 
Human Nup358 Guinea-

pig 
Raised against aa 2285-2314 of human Nup358. Kindly 
provided by Volker Cordes (MPI Göttingen). 
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Human Nup37 Rabbit Cross-reacts with X. laevis Nup37, produced by Melpomeni 
Platani, available in the Mattaj lab. 

Lap2 Mouse BD Biosciences (Heidelberg, Germany) 
Human LEM2 Rabbit (Ulbert et al., 2006a) 
mAb414 Mouse Covance (Berkeley, USA) 
X. laevis Cyclin B1 Rabbit Kindly provided by the Gruss lab (ZMBH Heidelberg) 
X. laevis MEL-28 Rabbit Raised against His6-tagged aa 1602-2120 of X. laevis MEL-

28. (Franz et al., 2007) 
X. laevis Ndc1 Rabbit Raised against GST-tagged aa 361-521 of X. laevis Ndc1, 

produced by Wolfram Antonin, available in the Mattaj lab. 
(Mansfeld et al., 2006) 

Rat Nup107 Rabbit Cross-reacts with X. laevis Nup107, raised against His6-
tagged aa 76-171 of rat Nup107, produced by Tobias 
Walther, available in the Mattaj lab. (Walther et al., 2003a) 

X. laevis Nup155 Rabbit Raised against His6-tagged X. laevis Nup155 purified from 
inclusion bodies, produced by Cerstin Franz, available in 
the Mattaj lab. (Franz et al., 2005) 

X. laevis Nup160 Rabbit Raised against His6-tagged aa 1-414 of X. laevis Nup160, 
produced by Wolfram Antonin, available in the Mattaj lab. 

X. laevis Nup205 Rabbit Raised against aa 1-230 of X. laevis Nup205, produced by 
Wolfram Antonin, available in the Mattaj lab. 

X. laevis Nup50 Rabbit Raised against His6-tagged X. laevis Nup50. Affinity purified 
antibodies were used in this thesis. 

X. laevis Nup93 Rabbit Raised against aa 1-230 of X. laevis Nup93, produced by 
Wolfram Antonin, available in the Mattaj lab. 

X. laevis Nup98 Rabbit Raised against GST-tagged aa 1-185 of X. laevis Nup98, 
produced by Wolfram Antonin, available in the Mattaj lab. 

Human RCC1 Rabbit Cross-reacts with X. laevis RCC1, raised against His6-
tagged human RCC1, produced by Oliver Gruss and 
Christoph Schatz, available in the Mattaj lab.  

 
Secondary antibodies (Western blotting) 
 
ECLTM anti-rabbit IgG Horseradishperoxidase linked whole antibody (from donkey) 
Amersham Biosciences (Braunschweig, Germany) 
ECLTM anti-mouse IgG, Horseradishperoxidase linked whole antibody (from sheep) 
Amersham Biosciences (Braunschweig, Germany) 
 
Secondary antibodies (Immunofluorescence) 
 
Alexa Fluor 488 goat anti-mouse or anti-rabbit IgG (Invitrogen (Karlsruhe, Germany)) 
Alexa Fluor 546 goat anti-mouse or anti-rabbit IgG (Invitrogen (Karlsruhe, Germany)) 
Alexa Fluor 488 goat anti-guinea pig IgG (Invitrogen (Karlsruhe, Germany)) 
 
4.1.8 Clones 
 
The clones used in this thesis were ordered at the Deutsches Ressourcenzentrum für 
Genomforschung (RZPD), now imaGenes (Berlin, Germany). 
 
IMAGp998K238393Q full length X. laevis Nup50, in pCMV-SPORT6 
IRAKp961F12217Q short NET5 isoform (aa 1-394), in pCMV-SPORT6 
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4.1.9 Oligonucleotides 
 
All oligos for cloning were ordered from MWG Biotech AG (Ebersberg, Germany). 
 

 Name Sequence (5' → 3') 
 

1 hELYS_R1208NdeI_fw GCATCGCATATGCGATCAACACCTTTAGCATCTCCCT 
2 hELYS_Q1800XhoI_rev CTGCTCGAGTCACTGGTTCTGAAATAGTCCTCTGA 
3 hELYS_D1572NheI_fw CTGGCTAGCGACACTGCTGAATGTGACATTGCTG 
4 hELYS_L2266XhoI_rev CCGCTCGAGTTACAGCATTTTTCTGCGTAAAATTTG 
5 Xlnup50fwd1 GCATCGCATATGGCGAAGCGAATTGCGGATAAAGAG 
6 Xlnup50rev CCGCTCGAGTTATACTTCTTTTTTCTCCAGAAGGATTT 
7 GST-AT-1 GATCCGGGCCCTCAAAACCAAGAGGCAGACCTCCAAAA

CACAAAGCAAAGACGTAGC 
8 GST-AT-2 TCGAGCTACGTCTTTGCTTTGTGTTTTGGAGGTCTGCCT

CTTGGTTTTGAGGGCCCG 
9 GSTonly1 GATCCTAGGGGCCCTCAAAACCAAGAGGCAGACCTCCA

AAACACAAAGCAAAGACGC 
10 GSTonly2 TCGAGCGTCTTTGCTTTGTGTTTTGGAGGTCTGCCTCTT

GGTTTTGAGGGCCCCTAG 
11 ATmutGly_Fwd GATCCGGTCCGAGCAAACCGGGTGGTGGTCCGCCGGG

TCACAAAGCAAAAACCTAGC 
12 ATmutGly_Rev TCGAGCTAGGTTTTTGCTTTGTGACCCGGCGGACCACCA

CCCGGTTTGCTCGGACCG 
13 AT-HMGA_Fwd GATCCAGCCCGAAACGTCCGCGTGGTCGTCCGAAAGGC

AGCAAAAACAAAAGCTAGC 
14 AT-HMGA_Rev TCGAGCTAGCTTTTGTTTTTGCTGCCTTTCGGACGACCA

CGCGGACGTTTCGGGCTG 
15 AT-LHX_Fwd GATCCGTGGGTACCGTGCAGAAAGGTCGTCCGCGTAAA

CGTAAAAGCCCAGGTTAGC 
16 AT-LHX_Rev TCGAGCTAACCTGGGCTTTTACGTTTACGCGGACGACCT

TTCTGCACGGTACCCACG 
17 AT-ORC1_F GATCCCGCGTGTATGCGTGGAAAGGCCGCCCGAGCATT

AAAGATCGCAAACTGTAGC 
18 AT-ORC1_R TCGAGCTACAGTTTGCGATCTTTAATGCTCGGGCGGCCT

TTCCACGCATACACGCGG 
19 rATh FwdBamHI ACTGGATCCCTACCTCCAGTAATCGAAGACCATT 
20 F7ext_revXhoI CCGCTCGAGTCATATCATCTTTCGGCGCATGA 
21 mut Gly F2 GGGCCCTCAAAACCAGGTGGCGGTCCTCCAGGTCACAA

AGCAAAGACG 
22 mut Gly R2 CGTCTTTGCTTTGTGACCTGGAGGACCGCCACCTGGTTT

TGAGGGCCC 
23 Fwd-M1 ATCGGAGCTCATGCAAAACCTCAAAGCTCAGATCAC 
24 Fwd-K196 ATCGGAGCTCAAAATTCCCAAGCTACGAGAAGGTG 
25 Fwd-D401 ATCGGAGCTCGACATTAATCGATGGTATCAAGCGC 
26 Fwd-G605 ATCGGAGCTCGGATCATGTAACTTCATTGACCCAC 
27 Fwd-S800 ATCGGAGCTCTCTGTTCCTGCCAGTCTTATCAAATT 
28 Fwd-A1007 ATCGGAGCTCGCCAAACCCTACTCATTACCATCAC 
29 Fwd-R1200 ATCGGAGCTCCGCACTACACCGTTGGTCTCACCT 
30 Rev-G1418 ATCGCCCGGGCTAGCCTGCAGGAGTTTCTGAAATACAC 
31 nTMfwdBglII GTACTAGATCTATGGAGGGAGTGAGCGCGCTGCTG 
32 nTMrevBam2 ACTGGATCCGCGCAGGCTCTGGTACAGAAACAC 
33 nTM_Ct_N3r ACTGGATCCGGAAGGGCCGAAACGACCTCTCCA 



128 

34 nTMfwdXhoI CCGCTCGAGGTATGGAGGGAGTGAGCGCGCTGCTG 
35 nTMrevBam1 ACTGGATCCTGGCTGCTTCTCTGACCTTCGGGG 
36 nTMsh-delNLS ACTGGATCCTGTGGCCACAGCCGCCGTGAAGC 
37 nTM_Nt_N3f GTACTAGATCTATGGCGCGGAGGATGAAGCCAACGCAC

AC 
38 nTM_Nt_N3r ACTGGATCCCTGGACCGGGGACTTCACGGCGG 
39 nTM_Ct_N3f GTACTAGATCTATGACAAGGAAGGCAACGGGCCCACGG 
40 nTM3-pGEXfwd ACTGGATCCACAAGGAAGGCAACGGGCCCACGG 
41 nTM3-pGEXrev TACGAATTCTCAATGGTGATGGTGATGGTGGGAAGGGC

CGAAACGACCTCTCCA 
42 nTM1-Y2Hnew TACGAATTCGCGCGGAGGATGAAGCCAACGCAC 
43 nTM_Nt_C3r ACTGGATCCTCACTGGACCGGGGACTTCACGGCGG 
44 nTM3-Y2Hnew TACGAATTCACAAGGAAGGCAACGGGCCCACGG 
45 nTM3_revBam ACTGGATCCTCAGGAAGGGCCGAAACGACCTCTCCA 
46 qPCR_278fwd CCTGAGATCCAAGCTGGAAA 
47 qPCR_278rev TGGTGTCCACCACACAGGTA 
48 qPCR_279fwd CTCCAGCTCCGGCTCTCT 
49 qPCR_279rev GTGACGGGAACAGCAGCA 
50 qPCR_001fwd AGCTGTCTCGGTGGATTCTG 
51 qPCR_001rev TGACCTGGCAAAATGTGTAGA 
52 qPCR_003fwd TGTGGAGTGGGCAGAAGG 
53 qPCR_003rev GTCACAAAGCAGGGCACAT 
 
siRNA oligonucleotides were ordered from Dharmacon (Lafayette, USA). 
 
Firefly Luciferase AATCGAAGTATTCCGCGTACG 
MEL-28 (1) AATATCTACATAATTGCTCTT 
MEL-28 (2) CCCTCAAGTTCGCAATTAATT 
 
NET5: 
"278" CCATCAAGAAAGAGGACGA 
"279" GGCTCAACCTGAAGGGACA 
"3'-UTR 1" ACTCTGCCATTCTGGGATA 
"3'-UTR 2" CCTCAGAGCTCCCAGGTCT 
 
4.1.10 Plasmids 
 
pBluescript II KS+ Fermentas (St. Leon-Rot, Germany)  
pEGFP-C3 BD Biosciences (Heidelberg, Germany) 
pEGFP-N3 BD Biosciences (Heidelberg, Germany) 
pET28a Novagen (Darmstadt, Germany) 
pET28d/pET28n Kindly provided by Wolfram Antonin (FMI, Tübingen) 
pFastBac 1 Invitrogen (Karlsruhe, Germany) 
pFastBac HT A Invitrogen (Karlsruhe, Germany) 
pGBT9 Clontech (Saint-Germain-en-Laye, France) 
pGEX-KG EMBL, Protein Expression and Purification Facility 
pmEGFP-C3 BD Biosciences (Heidelberg, Germany) 
 for expression tagged with monomeric GFP 
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4.1.11 Constructs 
 
4.1.11.1 Foreign constructs 
 
pCRII hELYS Full length human MEL-28 cDNA clone (Peter Asjkaer) 
 This construct contains point mutations! 
pEGFP-C3 Xl MEL-28 Full length X. laevis MEL-28 (Cerstin Franz) 
pET28a xMel(1602-2120aa) 
 Amino acids 1602-2102 of X. laevis MEL-28 
 (Cerstin Franz) 
pQE32 RanQ69L For expression as His6-tagged protein in E. coli 
pQE32 RanT24N For expression as His6-tagged protein in E. coli 
pQE Impβ For expression as His6-tagged protein in E. coli  
pGEX-KG xMel(1-195aa) Amino acids 1-195 of X. laevis MEL-28 (Cerstin Franz) 
 
4.1.11.2 Constructs generated as part of this thesis 
 
Vector Oligos Restriction 

sites 
Description 

pET28 a 1+2 NdeI/XhoI Amino acids 1208-1800 of human MEL-28 
pET28 a 3+4 NheI/XhoI Amino acids 1572-2266 of human MEL-28 
pET28 a 5+6 NdeI/XhoI Full length X. laevis Nup50 

 
pGEX-KG 7+8 BamHI/XhoI GST without multiple cloning site ("GST-stop") 
pGEX-KG 9+10 BamHI/XhoI GST-AT hook (MEL-28) 
pGEX-KG 11+12 BamHI/XhoI GST-AT hookMUT (MEL-28) 
pGEX-KG 13+14 BamHI/XhoI GST-AT hook (HMGA 2β) 
pGEX-KG 15+16 BamHI/XhoI GST-AT hook (LHX 2) 
pGEX-KG 17+18 BamHI/XhoI GST-AT hook (ORC-1) 

 
The oligos for the GST-AT hook constructs were designed to yield DNA fragments 
with sticky ends for direct ligation. Two corresponding oligos were mixed at 17.5 ng/µl 
in 1x TE buffer, the mixture heated to 95°C in a heat block for 5 min and allowed to 
slowly cool down to RT. 5 µl of the annealed oligos were used in a ligation reaction. 
    
pGEX-KG 19+20 BamHI/XhoI GST-rATh (the C-terminal 208 amino acids of 

X. laevis MEL-28) 
pGEX-KG 21+22 - GST-rAThMUT (the C-terminal 208 amino acids 

of X. laevis MEL-28 with three point mutations 
in the AT hook) 
 

pGEX-KG GST-rAThMUT was generated from pGEX-KG GST-rATh by site-directed 
mutagenesis. The wild type construct was used as template in a PCR reaction and the 
PCR product was purified with a QIAquick PCR Purification Kit according to the 
manufacturer’s instructions. The purified DNA was digested with DpnI in NEB4 at 
37°C for 3 h. 5 µl of the digested DNA were used to transform competent E. coli cells. 
    
pEGFP-C3 - SpeI/BamHI Amino acids 1-660 of X. laevis MEL-28 
pEGFP-C3 - PmlI/BamHI Amino acids 1-1010 of X. laevis MEL-28 
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pEGFP-C3 - SbfI/BamHI Amino acids 1-1420 of X. laevis MEL-28 
pEGFP-C3 - EcoNI/BamHI Amino acids 1-1760 of X. laevis MEL-28 

 
These constructs were generated from the pEGFP-C3 full length MEL-28 construct by 
removing fragments via restriction digest with the indicated enzymes. The overhangs 
were filled using Klenow fragment (1u/µg DNA) by incubating the DNA with 33 µM 
dNTPs in NEB2 for 15 min at 25°C. The reaction was stopped by addition of EDTA to 
10 mM and heating to 75°C for 20 min. The DNA was purified from an agarose gel 
with a QIAquick Gel Extraction Kit according to the manufacturer’s instructions, 
followed by ligation and transformation of competent E. coli cells. 
    
pEGFP-C3 23+30 SacI/XmaI Amino acids 1-1418 of X. laevis MEL-28 
pEGFP-C3 24+30 SacI/XmaI Amino acids 196-1418 of X. laevis MEL-28 
pEGFP-C3 25+30 SacI/XmaI Amino acids 401-1418 of X. laevis MEL-28 
pEGFP-C3 26+30 SacI/XmaI Amino acids 605-1418 of X. laevis MEL-28 
pEGFP-C3 27+30 SacI/XmaI Amino acids 800-1418 of X. laevis MEL-28 
pEGFP-C3 28+30 SacI/XmaI Amino acids 1007-1418 of X. laevis MEL-28 
pEGFP-C3 29+30 SacI/XmaI Amino acids 1200-1418 of X. laevis MEL-28 
    
pmEGFP-N3 31+32 BglII/BamHI Full length human NET5 
pmEGFP-N3 31+33 XhoI/BamHI Amino acids 1-640 of human NET5 
pmEGFP-N3 34+35 XhoI/BamHI Amino acids 1-394 of human NET5 
pmEGFP-N3 34+36 XhoI/BamHI Amino acids 1-374 of human NET5 
pmEGFP-N3 37+32 BglII/BamHI Amino acids 36-666 of human NET5 
pmEGFP-N3 34+38 XhoI/BamHI Amino acids 1-213 of human NET5 
pmEGFP-N3 37+38 BglII/BamHI Amino acids 36-213 of human NET5 
pmEGFP-N3 39+33 BglII/BamHI Amino acids 374-640 of human NET5 
    
pGEX-KG 40+41 BamHI/EcoRI Amino acids 374-640 of human NET5, 

expressible with a C-terminal His6-tag 
pGBT9 42+43 EcoRI/BamHI Amino acids 36-213 of human NET5 
 44+45 EcoRI/BamHI Amino acids 374-640 of human NET5 
 
The sequences of all constructs were verified by sequencing at the EMBL genomics 
core facility. 
 
 
4.2 Methods 
 
4.2.1 Molecular biology methods 
 
4.2.1.1 Purification of plasmid DNA 
 
Purification of plasmid DNA from bacteria was carried out with the QIAGEN plasmid 
Maxi, Midi or QIAprep Spin Miniprep Kits according to the manufacturer’s instructions. 
 
4.2.1.2 Restriction digest 
 
For a typical restriction digest, 1 µg DNA was digested with 2 µl restriction enzyme(s) 
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in 50 µl at 37°C for 2 h or overnight. To prevent self-ligation, vectors were treated with 
shrimp alkaline phosphatase (SAP). 10x SAP buffer was directly added to the 
restriction reaction and the sample was incubated at 37°C for 45 min, followed by 
purification of the DNA using a QIAquick PCR Purification Kit according to the 
manufacturer’s instructions. 
 
4.2.1.3 Ligation of DNA fragments 
 
Ligation reactions were carried out in 10 µl reaction volume containing 1 µl 10x T4 
DNA ligase buffer (New England Biolabs), 0.5 µl vector (20 ng), 7.5 µl insert and 1 µl 
T4 DNA ligase . The ligation reaction was incubated at 16°C overnight and used 
directly for transforming competent E. coli cells. 
 
4.2.1.4 Preparation of chemically competent cells 
 
A single colony of the bacterial strain of interest was picked from a fresh LB-agar plate 
and used for growing a 10 ml overnight culture in LB medium at 37°C. A 1 l culture 
was inoculated with 2-3 ml of the overnight culture and grown under vigorous rotation 
at 18°C until OD600 ≈ 0.12 (typically 24 h). The culture flask was chilled in ice water for 
10 min and the cells were harvested by centrifugation in chilled, sterile centrifuge 
buckets at 5000 rpm for 10 min. All subsequent steps were carried out on ice in the 
coldroom. The cell pellet was resuspended in 150 ml cold transformation buffer (10 
mM PIPES pH 6.7, 250 mM KCl, 15 mM CaCl2, 55 mM MnCl2), centrifuged at 5000 
rpm for 10 min and resuspended again in 15 ml cold transformation buffer. After 
addition of 1 ml DMSO to the resuspended cells and careful mixing, 100 µl aliquots of 
cells were frozen in liquid nitrogen and stored at -80°C. 
 
4.2.1.5 Transformation of chemically competent bacteria 
 
Chemically competent E. coli cells were thawed on ice. 50 ng plasmid DNA or 5 µl 
ligation reaction were added to 50 µl bacteria and the mixture was incubated on ice for 
15 min. A heat shock was performed in a water bath at 42°C for 45 s and the cells 
were transferred to ice for 2 min. 150 µl of warm (37°C) LB medium were added to the 
cells, incubated at 37°C for 1 h on a Thermomixer followed by plating of the bacteria. 
 
4.2.1.6 PCR 
 
PCR-reactions were carried out in 50 µl reaction volume containing: 5 µl 10x Pfu  
buffer, 5 µl dNTPs (2 mM each), 2x 10 µl primers (0.5 µM), 18 µl dH2O and 1 µl 
template (10 ng plasmid DNA). 1 µl Pfu polymerase (2.5u/µl) was added, the reaction 
was mixed and transferred to the PCR machine.  
Standard PCR reactions were performed according to the following program: 95°C, 1 
min; 5 cycles of [95°C, 45 s; 54°C, 45 s; 72°C, X+1 min]; 25 cycles of [95°C, 45 s; 
58°C, 45 s; 72°C, X+1 min]; 72°C, 2X min; 4°C forever. The extension time X was 
chosen based on the product size (1 min per 1 kb of product size). The amplified PCR 
product was analyzed on an agarose gel and purified with a QIAquick PCR 
Purification Kit according to the manufacturer’s instructions. 
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4.2.1.7 RT-PCR 
 
First-strand cDNA synthesis was carried out with the SuperScript II Reverse 
transcriptase (Invitrogen) according to the manufacturer’s instructions. 5 µg of total 
RNA were used in a 20 µl RT-PCR reaction. The total RNA for cloning of the full 
length human NET5 cDNA and for monitoring the NET5 RNAi experiments was 
collected from HeLa cells with the RNeasy Mini kit (QIAGEN) according to the 
manufacturer’s instructions. The concentration of the isolated total RNA sample was 
determined by measuring the OD260. 
 
4.2.1.8 Real time quantitative PCR 
 
Real time quantitative PCR reactions were carried out with the SYBR Green PCR 
master mix using a 7500 Real Time PCR system (Applied Biosystems) in the EMBL 
genomics core facility. The reactions were set up in 25 µl with 12.5 µl SYBR Green 
PCR master mix. The cDNA and primer concentrations were optimized starting with 
12.5 ng cDNA per reaction and 200 nM primers. The NET5 primers used were oligos 
46-53 from chapter 4.1.9 and the EMBL genomics core facility standard actin and 
GAPDH primers served as controls. The reactions were carried out according to the 
gene core standard qPCR protocol with 40 cycles of amplification. 
 
 
4.2.2 Biochemical methods 
 
4.2.2.1 Biochemical standard methods 
 
4.2.2.1.1 Protein expression in E. coli 
 
A small scale culture in LB medium (+ antibiotics) was inoculated with a single colony 
from a fresh plate and incubated overnight shaking at 37°C. An expression culture (LB 
with antibiotics) was inoculated with the overnight culture to OD600=0.1 and grown at 
37°C under vigorous rotation. At OD600=0.4 the culture was allowed to cool down to 
RT and at OD600=0.8 expression was induced by addition of 0.25 mM IPTG (final 
conc.). After 2.5 h of expression the bacteria were harvested by centrifugation (JLA-
8.1000, 4000 rpm, 15 min, 4°C). The cell pellet was resuspended in cold Ni wash 
buffer (20 mM Tris pH 7.5, 0.5 M NaCl, 1 mM MgCl2, 8 mM imidazole) in the case of 
His6-tagged proteins or PBS + 1 mM EDTA for GST-tagged proteins and pelleted 
again (Heraeus Megafuge 1.0 R, 4000 rpm, 10 min, 4°C). The washed bacteria pellet 
was frozen in liquid nitrogen and stored at -80°C. 
 
4.2.2.1.2 Purification of His6-tagged proteins 
 
The cell pellet was resuspended in cold Ni wash buffer (20 mM Tris pH 7.5, 0.5 M 
NaCl, 1 mM MgCl2, 8 mM imidazole; 20 ml per 1000 OD600 cells), 200 µM PMSF were 
added and the bacteria were lysed by passing the suspension twice through an 
Emulsiflex-C5 homogenizer. The lysate was cleared by centrifugation (SS34, 15000 
rpm, 15 min, 4°C) and the supernatant incubated with Ni-NTA agarose (1 ml 50% 
slurry per 1000 OD600 cells) at 4°C for 1 h. The resin was washed twice in batch with 
10 bed volumes of Ni wash buffer and transferred to a Bio-Rad chromatography 
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column. The resin was washed in the column with 10 bed volumes Ni wash buffer and 
the bound protein was eluted with Ni wash buffer + 250 mM imidazole in 1 ml 
fractions. The fractions were analyzed by SDS-PAGE and Coomassie staining and 
pooled accordingly. The eluted protein was dialyzed overnight at 4°C against 10 mM 
Tris pH 7.5, 150 mM NaCl, 1 mM MgCl2, 5% (v/v) glycerol, frozen in liquid nitrogen 
and stored at -80°C. 
 
His6-tagged RanQ69L, RanT24N and Importin β were expressed and prepared as 
described in Walther et al. (2003b) and the references therein. 
 
4.2.2.1.3 Purification of GST-tagged proteins 
 
The bacteria pellet was resuspended in cold PBS, 200 µM PMSF were added and the 
bacteria were lysed by passing the suspension twicw through an Emulsiflex-C5 
homogenizer. The lysate was cleared by centrifugation (SS34, 15000 rpm, 15 min, 
4°C) and the supernatant incubated with Glutathione Sepharose (0.5 ml 50% slurry 
per 1000 OD600 cells) at 4°C for 1 h. The resin was washed twice in batch with 10 bed 
volumes of PBS and transferred to a Bio-Rad chromatography column. The resin was 
washed in the column with 10 bed volumes PBS and the bound protein was eluted 
with 50 mM Tris pH 8, 150 mM NaCl, 20 mM glutathione in 1 ml fractions. The 
fractions were analyzed by SDS-PAGE and Coomassie staining and pooled 
accordingly. The eluted protein was dialyzed overnight at 4°C against 10 mM Tris pH 
7.5, 150 mM NaCl, 1 mM MgCl2, 5% (v/v) glycerol, frozen in liquid nitrogen and stored 
at -80°C. 
 
4.2.2.1.4 Determination of protein concentration 
 
Protein concentrations were typically determined in a Bradford assay using the Bio-
Rad Protein Assay. 1 volume of the Protein Assay reagent was diluted with 4 volumes 
of water. The protein samples were diluted to 100 µl in plastic cuvettes and 0.9 ml of 
diluted reagent were added. After 3 min incubation at RT, the absorption at 595 nm 
was measured in an Ultraspec 2100 pro spectrometer and the protein concentration 
determined with the help of a BSA concentration gradient. 
 
4.2.2.1.5 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 
 
SDS-PAGE separating and stacking gels for 4 mini gels (0.75mm spacer) with the Bio-
Rad gel system were prepared according to the following table: 
 

 Stacking gel Separating gel 
Percentage acrylamide 3.9% 6 / 8 / 12% 

30% Acrylamide/bis 1.3 ml 4 / 5.35 / 8 ml 
1.5M Tris pH 8.8 - 5 ml 
1M Tris pH 6.8 1.25 ml - 
10% (w/v) SDS 100 µl 200 µl 

dH2O 7.25 ml 10.6 / 9.25 / 6.6 ml 
TEMED 10 µl 20 µl 

10% (w/v) APS 100 µl 200 µl 
Σ 10 ml 20 ml 
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All separating gel components except for APS were mixed and polymerization was 
initiated by addition of APS. The separating gel solution was filled into the assembled 
gel plates and overlaid with 2-propanol. After polymerization of the separating gel, the 
2-propanol was removed by washing with water, the stacking gel solution was 
prepared, pipetted on top of the separating gel and the combs were inserted. Gels 
were stored in the coldroom for up to one week wrapped in wet tissue paper. For gels 
of different percentages the amounts of acrylamide were adjusted and for larger gels 
the volumes of all components were scaled up accordingly. The gels were run at 120 
V until the dye front had entered the separating gel, followed by 200 V. 
For experiments, in which low amounts of proteins had to be detected by Western 
blotting, NuPAGE 4-12% Bis-Tris gels (Invitrogen) were used to electrophoretically 
separate proteins. 
 
Coomassie-staining: 
SDS-PAGE gels were stained with Coomassie by incubation in Coomassie staining 
solution for 30 min and destaining in Coomassie destain solution. 
 
4.2.2.1.6 Silver staining 
 
The SDS-PAGE gel was fixed for 20 min in methanol-acetic acid-dH2O (40:10:50) and 
rinsed several times with water (time: 3-4 h). Sensitizing was carried out for 2 min in 
0.02% (w/v) sodium thiosulfate in dH2O followed by 2 washes with water (1 min each). 
The gel was incubated for 30 min in chilled (4°C) 0.1% (w/v) silver nitrate solution and 
washed twice with water (1 min each). The staining was developed by incubation in 
0.04% (v/v) formaldehyde in an aqueous 2% (w/v) sodium carbonate solution and the 
reaction stopped by addition of 1% (v/v) acetic acid. Silver-stained gels were stored in 
1% (v/v) acetic acid at 4°C. 
 
4.2.2.1.7 Western blotting 
 
Western blotting was carried out using the wet blot method. The SDS-PAGE gel was 
incubated in transfer buffer (25 mM Tris, 200 mM glycine, 10% (v/v) methanol) for 5 
min. A nitrocellulose membrane, Whatman filter papers and sponges were soaked in 
transfer buffer and assembled in the blotting cassette in the following order: cathode – 
sponge – 3 filter papers – gel – membrane – 3 filter papers – sponge – anode. The 
transfer was carried out for 4 h at 250 mA for small gels and for 4 h at 370 mA in the 
case of large gels. To control the transfer efficiency, the membrane was briefly stained 
with 0.1% (w/v) Ponceau S in 1% (v/v) acetic acid and the staining was washed off 
with water. 
 
The membrane was blocked at 4°C overnight with 5% (w/v) milk powder in PBS-
Tween (0.1% (v/v) Tween-20). Incubation with primary antibodies was for 2 h at RT or 
overnight at 4°C in blocking solution, followed by 3 washes (10 min each) with PBS-
Tween. Incubation with secondary antibodies was for 1 h at RT, followed by several 
washes with PBS-Tween (time > 2 h). The wash buffer was dripped off the membrane 
and Western LightningTM Chemiluminiscence reagent was added. After 1 min of 
incubation, the reagent was removed and the membrane covered with cling film. A 
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Kodak BioMax MR film was exposed to the membrane in the darkroom and the film 
was developed automatically. 
 
Stripping of antibodies from membranes for re-probing was performed by washing the 
membranes for 30 min in pre-warmed (55°C) stripping buffer (60 mM Tris pH 6.8, 2% 
(w/v) SDS, 100 mM 2-mercaptoethanol). The membranes were washed several times 
with PBS-Tween prior to re-blocking and re-probing. 
 
4.2.2.1.8 Affinity purification of polyclonal antibodies 
 
The antigen was dialyzed against buffer A (100 mM NaHCO3 pH 8.3, 0.5 M NaCl, 2 
mM MgCl2) overnight at 4°C. CNBr-activated Sepharose 4B was swelled in ice cold 1 
mM HCl pH 2-3 and equilibrated with buffer A (0.3 g Sepharose per 10 mg antigen). 
The antigen solution was incubated with the CNBr-Sepharose at 3.5 mg/ml for 1 h at 
RT. The supernatant was removed and the beads washed with 5 bed volumes buffer 
A. All washes were performed in batch in a Heraues Megafuge 1.0 R (1000 rpm, 2 
min, 4°C). The Sepharose beads were incubated with 1 M ethanolamine pH 8 in buffer 
A for 2 h at RT to block remaining free binding sites. The resin was washed twice in 
buffer A, twice in buffer B (100 mM sodium acetate pH 4.2, 0.5 M NaCl), twice in 
buffer A and again twice in buffer B (10 ml per wash). The antigen beads were pre-
eluted with 200 mM glycine pH 2.3, 150 mM NaCl and equilibrated in PBS. 
 
Antiserum was added to the antigen column (10 ml serum per 1 ml beads) and rotated 
overnight at 4°C. The beads were washed with 5 bed volumes cold PBS, packed into 
a Bio-Rad chromatography column and washed with 20 bed volumes PBS. The 
column was drained and eluted with 3x 1 ml 200 mM glycine pH 2.7, 150 mM NaCl. 
The elution fractions were neutralized with 1.5 M Tris pH 8.8 (30 µl/ml eluate), pooled 
and immediately dialyzed against PBS (twice for 1h). The column was eluted with 5x 1 
ml 200 mM glycine pH 2.3, 150 mM NaCl, the elution fractions neutralized with 1.5 M 
Tris pH 8.8 (60 µl/ml eluate), combined and dialyzed against PBS (twice for 1h). The 
column was washed extensively with PBS and stored in PBS + 0.1% (w/v) sodium 
azide + protease inhibitors. 
 
4.2.2.1.9 Preparation of antibody beads 
 
Affinity purified antibodies or antiserum were bound to protein A Sepharose overnight 
at 4°C (4 mg purified antibodies or 1 ml serum per 50% slurry protein A). The beads 
were washed twice with coupling buffer (200 mM NaHCO3 pH 9.3, 100 mM NaCl) and 
incubated with 10 mM Dimethylpimelimidate (DMP) in coupling buffer for 10 min at 
RT. The beads were washed again with coupling buffer and the cross-linking was 
repeated. The beads were washed twice with buffer B (100 mM sodium acetate pH 
4.2, 0.5 M NaCl), twice in buffer A (100 mM NaHCO3 pH 8.3, 0.5 M NaCl), twice in 
buffer B and again twice in buffer A. The antibody beads were equilibrated with S250 
and blocked with 3% BSA (w/v) in S250 supplemented with protease inhibitors. 
Blocked antibody beads were stored at 4°C in 3% BSA (w/v) in S250 + protease 
inhibitors. 
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4.2.2.1.10 Immunodepletion of MEL-28 or the Nup107-160 complex from egg extract 
 
MEL-28 was immunodepleted from interphase egg extract with affinity purified anti-
Xenopus MEL-28 antibodies cross-linked to protein A Sepharose. The extract was 
incubated with the antibody beads (beads:extract 1:2) in MoBiCol columns for 30 min 
at 4°C under rotation. Two rounds of depletion were necessary to remove MEL-28 
from the extract. 
 
The Nup107-160 complex was depleted with anti-Rat Nup107 antiserum (ODBF, 3rd 
bleed) cross-linked to protein A Sepharose. Two rounds of incubation (30 min at 4°C) 
were required to immunodeplete the Nup107-160 complex. Immunodepletions were 
carried out in MoBiCol columns. 
 
4.2.2.1.11 Immunoprecipitation 
 
Egg extract was diluted with an equal volume of cold PBS, supplemented with 
protease inhibitors and centrifuged to remove membranes (TLA100.4, 100000 rpm, 30 
min, 4°C). The immunoprecipitations were carried out in MoBiCol columns and 
draining of the beads was performed by centrifugation in a table top centrifuge (5000 
rpm, 30 sec, 4°C). For immunoprecipitation with antibodies cross-linked to beads, 0.7 
ml supernatant was directly added to 50 µl beads. When serum was used, 50 µl 
serum in 0.5 ml PBS was incubated with protein A Sepharose under rotation for 30 
min at 4°C to bind the antibodies. The unbound was removed and 0.7 ml membrane-
free diluted egg extract were added to the beads. Beads and extract were incubated 
under rotation for 1 h at 4°C. The beads were washed 10 times with PBS and the 
bound proteins eluted with 50 µl 1x SDS-loading buffer or with 40 µl 200 mM glycine 
pH 2.3, 150 mM NaCl into 5 µl 1.5 M Tris pH 8.8. When serum was used for the 
immunoprecipitation, protein A peroxidase was used as secondary antibody in 
Western blotting. 
 
Immunoprecipitation from human nuclear extract (Cilbiotech) was performed using 
affinity purified anti-human MEL-28 antibodies cross-linked to protein A Sepharose in 
MoBiCol columns. 0.7 ml nuclear extract were supplemented with 20 mM Tris pH 7.5, 
150 mM KCl, 0.2 mM MgCl2, 0.04 u/µl DNAseI and protease inhibitors. The mixture 
was centrifuged in a table top centrifuge (13200 rpm, 10 min, 4°C) and the 
supernatant was added to 50 µl antibody beads, followed by a 1 h incubation at 4°C 
under rotation. The beads were washed 8 times with 20 mM Tris pH 7.5, 150 mM KCl, 
0.2 mM MgCl2. The bound proteins were eluted with 50 µl 200 mM glycine pH 2.3, 150 
mM NaCl into 5 µl 1.5 M Tris pH 8.8. 10 µl 4x SDS-loading buffer were added to the 
eluate and 10 µl were loaded per SDS-PAGE gel lane. 
 
 
4.2.2.2 Specific biochemical methods 
 
4.2.2.2.1 Protein expression and purification using the Baculo system 
 
Expression of proteins in insect cells was carried out using the Bac-to-Bac Baculovirus 
Expression system (Invitrogen). Generating the bacmid and virus followed the Bac-to-
Bac protocol according to the manufacturer’s instructions. 
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Expression tests with Sf9, TniHi5, SF+ and High 5 cells at 0, 24, 40, 48 and 72 h time 
points were carried out. N-terminally His6-tagged MEL-28 was expressed in Hi 5 cells 
for 24 h, typically in 6x 175 cm2 flask scale. The cells were harvested by scraping from 
the plates and frozen in liquid nitrogen. 
 
The cell pellet was resuspended in insect cell lysis buffer (20 mM Tris pH 7.5, 0.35 M 
NaCl, 0.5% (v/v) Triton X-100, 1 mM MgCl2, 5 mM imidazole, 5 mM, 0.1 u/µl DNAse I 
and EDTA-free complete protease inhibitors). 1 ml cell pellet was taken up in 10 ml 
lysis buffer, sonicated 3x with 15 pulses and homogenized in a potter with pestle B. 
After rotation for 20 min at 4°C, the cell lysate was centrifuged (SS34, 18000 rpm, 20 
min, 4°C) and the supernatant incubated with Ni-NTA agarose beads for 30 min at 
4°C (0.2 ml 50% slurry per 1 ml cell pellet). The beads were filled into a Bio-Rad 
chromatography column and washed with 15 column volumes Ni wash buffer (20 mM 
Tris pH 7.5, 0.5 M NaCl, 1 mM MgCl2, 8 mM imidazole). The protein was eluted with 
250 mM imidazole in Ni wash buffer in 150 µl fractions. The elution fractions were 
dialyzed individually twice for 1 h against 10 mM Tris pH 7.5, 0.35 M NaCl, 1 mM 
MgCl2, 10% (v/v) glycerol, frozen in liquid nitrogen and stored at -80°C. 
 
4.2.2.2.2 Preparation of interphase Xenoups leavis egg extract 
 
Extract preparation was carried out with a modified protocol from Newmeyer and 
Wilson (1991) and Hartl et. al. (1994). 
Female Xenopus laevis frogs were primed by injection with pregnant mare serum 
gonadotropin (PMSG). To induce laying of eggs, the frogs were injected with 0.5 ml 
(500u/ml in H2O) human chorionic gonadotropin and placed in plastic boxes with 0.5 l 
MMR at 16°C for 14-16 h. Batches of eggs containing apoptotic eggs were discarded. 
The eggs were collected and washed intensively with 1xMMR to remove dirt and 
debris and apoptotic eggs (large white) were removed continuously. Dejellying of eggs 
was performed for 10 min under continuous swirling with 1 l freshly prepared 2% (w/v) 
cysteine in 0.25x MMR. The eggs were washed carefully 4 more times with 1x MMR 
and activated (in 100ml MMR) by addition of 8 µl of the calcium ionophore A23187 (2 
mg/ml in EtOH) for 10 min. This step mimics fertilization and releases the eggs from 
metaphase of meiosis II into interphase. Activation was visible by contraction of the 
animal pole. The eggs were washed 4 more times with 1x MMR, incubated at RT for 
20 min and washed twice with cold S250. All subsequent steps were carried out on 
ice. With a cut plastic pasteur pipette, the eggs were carefully transferred into SW55Ti 
tubes into which 50 µl S250, 50 µl protease inhibitors (PI), 5 µl DTT, 12.5 µl 
Cycloheximide and 2.5 µl Cytochalasin D had been filled. The eggs were packed by 
centrifugation in a Heraeus Megafuge 1.0 R (800 rpm, 30 sec, immediately followed 
by 1600 rpm, 30 sec, both at 4°C). Excess buffer was removed and the tubes were 
filled with remaining eggs. A crude low speed extract was generated by centrifugation 
in a Beckmann L8-70M untracentrifuge (SW55Ti, 25000 g (15000 rpm), 20 min, 4°C). 
The low speed extract was removed from the tubes using a syringe, avoiding lipids, 
yolk and pigments. The low speed extract was supplemented with fresh DTT, PI, 
cycloheximide and cytochalasin D and centrifuged again (SW55Ti, 225000 g (45000 
rpm), 40 min, 4°C). Cytosol and membranes were removed from the tubes using a 
syringe, were diluted with AB buffer (0.3 ml per 1 ml of extract) and centrifuged again 
(SW55Ti, 225000 g (45000 rpm), 40 min, 4°C), yielding a high speed extract which 
consisted of a cytosolic and a membrane fraction. Cytosol was removed, 
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supplemented with 3% (v/v) glycerol, frozen in aliquots and stored in liquid nitrogen. 
Cytosol for immunoprecipitation was immediately processed as described in chapter 
4.2.2.1.10. Membranes were processed as described in chapter 4.2.2.2.4. 
 
Stock solutions of reagents: 
A23187 2 mg/ml in EtOH, use 1/2500 
Cycloheximide 20 mg/ml in EtOH, use 1/400 
Cytochalasin D 10 mg/ml in EtOH, use 1/2000 
DTT 1 M, use 1/1000 
Protease inhibitors (PI) dissolve 1 tablet in 0.5 ml H2O, use 1/100 
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Figure 4-1. Preparation of interphase Xenopus laevis egg extract. (A) Female 
Xenopus laevis frogs. (B) Fractionation of Xenopus laevis eggs by differential 
centrifugation. Eggs were packed into centrifuge tubes and lysed by low speed 
centrifugation yielding a crude extract, lipids (yellow top phase), pigments (black) and 
yolk (bottom pellet). Further centrifugation of the crude extract at high speed allows 
separation into a cytosolic and membrane fraction and removal of lipids (white phase 
on top), mitochondria (brown, below membranes) and glycogen+ribosomes (clear 
yellow pellet at bottom of tube). The membranes can be separated further on a 
stepwise sucrose gradient. Cytosol and membranes may be used for in vitro nuclear 
assembly reactions together with demembranated sperm head chromatin. 
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4.2.2.2.3 Preparation of mitotic Xenopus leavis egg extract 
 
Mitotic egg extract was prepared as described in Desai et al. (1999). When used in 
experiments (immunoprecipitation or chromatin recruitment), mitotic extracts were 
supplemented with 1 µM microcystin, 20 mM 2-phospho-glycerol and EDTA-free 
protease inhibitors and were centrifuged to remove membranes (TLA 120.2, 100000 
rpm, 20 min, 4°C). 
 
4.2.2.2.4 Floatation of interphase membranes 
 
The membrane fraction was removed from the SW55Ti tube avoiding mitochondria 
and lipids. Total membranes were prepared by diluting the membranes 10 fold with 
S250 + 1 mM DTT + PI, mixing and douncing the mixture with pestle B on ice. The 
membranes were placed on top of 1 ml S500 + 1 mM DTT + PI in SW40 tubes and 
centrifuged (SW40, 18000 g (11000 rpm), 20 min, 4°C). The pelleted total membranes 
were taken up in a small volume of S250 + 1 mM DTT + PI and homogenized again in 
a small potter. The volume of the total membrane suspension was brought to 20% of 
the corresponding volume of cytosol, aliquoted and frozen and stored in liquid 
nitrogen. 
 
In order to separate total membranes on a stepwise sucrose gradient (preparation of 
"floated membranes"), the membrane fraction from the second high speed spin was 
mixed with 2.1 M sucrose (1 ml membranes + 2.08 ml of 2.1 M sucrose solution). 
Membranes were homogenized in a large chilled potter with pestle B and filled into 
SW40 tubes (2 ml per tube). The membranes were overlaid with a stepwise sucrose 
gradient of decreasing density (each concentration prepared by dissolving additional 
sucrose in S250 + 1 mM DTT + PI): 1.4 M, 1.3 M, 1.1 M, 0.9 M, 0.7 M (1.6 ml each). 
The tubes were filled with S250 buffer and centrifuged (SW40, 225000 g (38000 rpm), 
4 h, 4°C), setting the centrifuge to minimum deceleration (to avoind perturbation of the 
separated membranes). This step allowed separation of the total membrane fraction 
into six separate membrane layers. The two upper layers were collected individually, 
mixed 1:2.5 with S250 + 1 mM DTT + PI and centrifuged (TLA100.4, 420000 g 
(100000 rpm), 30 min, 4°C). The pelleted membranes were resuspended in S250 + 1 
mM DTT + PI (1/30 of the cytosol volume for each membrane layer), homogenized in 
a chilled small douncer using pestle B and frozen as 15 µl aliquots in liquid nitrogen. 
The membranes were stored in liquid nitrogen. 
 
4.2.2.2.5 Labeling of floated membranes 
 
For labeling membranes with the lipophilic membrane dye DilC18, floated membranes 
were supplemented with DilC18 dissolved in DMSO + 1 mM DTT + PI at a final 
concentration of 5 µg/ml and incubated on ice for 10 min. The labeled membranes 
were mixed 1:1 with S250 + 1 mM DTT + PI, laid on top of 1.2 ml S500 and 
centrifuged (TLA100.4, 420000 g (100000 rpm), 30 min, 4°C). The pelleted 
membranes were resuspended and homogenized as above and frozen in liquid 
nitrogen in 5 µl aliquots. When used in nuclear assembly reactions, 1 volume of 
labeled membranes was diluted with 4 volumes of unlabeled membranes. 
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4.2.2.2.6 Preparation of sperm chromatin 
 
This protocol was modified from Gurdon et al. (1976). Testis were removed from male 
Xenopus laevis frogs and separated into smaller pieces with forceps in HPS buffer (15 
mM HEPES pH 7.4, 250 mM sucrose, 0.5 mM spermidine tetrachloride, 0.2 mM 
spermine). The testis fragments were further disrupted by pressing the suspension 
through a 1 ml syringe onto a glass plate. The suspension was filtered through cheese 
cloth to remove debris. Cells were pelleted by centrifugation in a Heraeus Megafuge 
1.0 R (2000 rpm, 10 min, 4°C). The cell pellet was resuspended in 1 ml HSP 
supplemented with 0.3 mM PMSF and 50 μl 10 mg/ml lysolecithin. Plasma 
membranes were permeabilized at RT for 5 min and the reaction was stopped by 
addition of 10 ml chilled HSP buffer containing 0.3 mM PMSF and 3% BSA. The cells 
were pelleted repeatedly as above and washed with 3 ml HSP, 0.3 mM PMSF, 0.3% 
(w/v) BSA. The sperm heads were resuspended in 2.5 ml HSP buffer, 0.3% (w/v) BSA 
and 30% (v/v) glycerol, diluted and counted in a Neubauer chamber according to the 
manufacturer’s instructions. Staining with trypan blue showed whether cells had been 
properly permeabilized. The preparation was diluted to 3000 sperm heads per μl, 
aliquoted, frozen in liquid nitrogen and stored at -80°C.  
 
4.2.2.2.7 In vitro nuclear assembly  
 
For a typical assembly reaction 20 µl interphase egg extract were added to 1 µl sperm 
head chromatin (3000/µl) and incubated at 20°C for 10 min. In this initial 
decondensation step, nucleoplasmin in the extract exchanges protamines bound to 
the chromatin with histones (Philpott et al., 1991). Following the decondensation, 2 µl 
floated membranes, 0.4 µl 50x energy mix and 0.4 µl glycogen (200 mg/ml) were 
added and the reaction was incubated at 20°C for 90 min. The steps of nuclear 
assembly in vitro are depicted in Figure 4-2. In order to fluorescently label membranes 
following the nuclear assembly reaction, 1 µl of 0.1 µg/ml DilC18 was added to the 
nuclei after the 90 min incubation, the sample was mixed and incubated at RT for 10 
min. When using pre-labeled membranes, this step was omitted. Samples with labeled 
membranes or those designated for immunostaining with mAb414 were fixed with Viki 
fix on ice for 20min (0.5 ml of Viki fix per nuclear assembly reaction). For labeling with 
other antibodies, the nuclei were fixed with 4% PFA in PBS (0.5 ml per assembly 
reaction) at RT for 10 min. The fixed nuclei were placed on top of an 0.8 ml 30% (w/v) 
sucrose cushion in PBS and centrifuged onto poly L-Lysine-coated coverslips in a 
Heraeus Megafuge 1.0 R (3500 rpm, 15 min). The coverslips were washed once with 
water, mounted and sealed with nail polish. 
Alternatively, the assembled nuclei were fixed and processed for immunofluorescence 
(chapter 4.2.3.4) or electron microscopy (chapter 4.2.3.6).  
 
The exclusion assay on in vitro assembled nuclei was carried out as described in 
Franz et al. (2007). 
 
4.2.2.2.8 Formation of annulate lamellae in vitro 
 
Interphase egg extract was centrifuged to remove membranes (TLA120.2, 100000 
rpm, 30 min, 4°C). 35 µl of membrane-free supernatant were supplemented with 0.7 µl 
50x energy mix and 0.7 µl glycogen and up to 4 µl proteins/buffer (as required for the 
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Figure 4-2. Steps of nuclear assembly in vitro. Decondensed, demembranated 
sperm heads (1) were incubated with DilC18-labeled membranes (red) and cytosolic 
extracts, and the time course of NE assembly was recorded. During nuclear 
assembly, membranes bind to chromatin (2), form a network on the chromatin 
surface (3) and give rise to a closed NE (4). The in vitro assembled nuclei contain 
functional NPCs (green). After closure of the membranes, the nuclei grow and the 
NE expands in a transport-dependent manner. DNA is coloured in blue. (Modified 
from Hetzer et al., 2002). 
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experiment). 35 µl of the mixture were combined with 4 µl floated membranes and 
incubated for 45 min at 20°C. The reaction was diluted with 0.95 ml S250, placed on 
top of a 0.8 ml 0.5 M sucrose cushion and centrifuged (TLS-55, 34000 g (22000 rpm), 
20 min, 4°C). The pelleted AL were taken up in 50 µl 1x SDS loading buffer and 10 µl 
were loaded per lane of an SDS-PAGE gel. 
 
4.2.2.2.9 Re-isolation of chromatin for Western blotting 
 
For chromatin recruitment experiments Xenopus laevis egg extract was centrifuged to 
remove membranes (TLA120.2, 100000 rpm, 20 min, 4°C). Proteins, inhibitors or 
buffer (as required for the experiment) were added to the membrane-free cytosol and 
the mixture was incubated on ice for 5 min. A typical recruitment reaction was set up 
as follows: 60 µl cytosol with additives were supplemented with 1.2 µl 50x energy mix 
and 1.2 µl glycogen, added to 3 µl sperm head chromatin (3000/µl) and incubated at 
20°C for 10min. The reaction was diluted with 0.94 ml S250 buffer and placed on top 
of a 0.6 ml 1.7 M sucrose cushion in TLS-55 rotor tubes. The chromatin templates 
were separated from the soluble extract by centrifugation (TLS-55, 10000 g (13000 
rpm), 10 min, 4°C). Supernatant and sucrose cushion were carefully aspirated and the 
pelleted chromatin washed once with 1 ml S250 buffer, followed by a second round of 
centrifugation (TLS-55, 10000 g (13000 rpm), 10 min, 4°C). After removal of the S250 
supernatant, the chromatin pellet was taken up in 60 µl 1x SDS-loading buffer. 10 µl 
sample were loaded per SDS-PAGE gel lane. 
 
In order to analyze complete nuclei by Western blotting, a modified protocol was used. 
40 µl cytosol were added to 2 µl sperm head chromatin (3000/µl) and incubated at 
20°C for 10 min. 4 µl floated membranes, 0.8 µl 50x energy mix and 0.8 µl glycogen 
were added and the reaction incubated at 20°C for 60 min. The assembly reaction 
was diluted with 0.95 ml isolation buffer (20 mM Tris pH 7.4, 70 mM KCl, 10 mM 
EDTA, 2 mM DTT, 2% (w/v) polyvinylpyrolidon) and placed on a 0.5 ml 1.3 M sucrose 
cushion (in isolation buffer) in TLS-55 tubes. Following centrifugation (TLS-55, 5000 g 
(9000 rpm), 10 min, 4°C), supernatant and cushion were removed and the pelleted 
nuclei taken up in 50 µl 1x SDS-loading buffer. 10 µl sample were loaded per lane. 
 
 
4.2.3 Other methods 
 
4.2.3.1 Generation of polyclonal antibodies in rabbits 
 
Immunization of rabbits was carried out with purified recombinant proteins expressed 
in E. coli. The antigen was dialyzed against PBS + 0.35 M NaCl, diluted to 2 mg/ml, 
frozen in 0.6 ml aliquots in liquid nitrogen and stored at -80°C. 0.6 ml antigen solution 
were mixed with 0.6 ml Titer Max Gold adjuvant and passed several times through an 
0.8 mm needle until the emulsion remained viscous. A pre-bleed was taken prior to 
immunization. 0.6 ml antigen-Titer Max Gold emulsion were injected per rabbit and 
boost. Rabbits were boosted four times every 14 days before the first bleed was 
taken, followed by boosting and bleeding every 28 days. Antigen injection and 
bleeding of the rabbits were peformed by EMBL Laboratory Animal Resources 
technicians. The blood was incubated in a water bath for 45 min at 37°C and 
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centrifuged twice in a Heraeus Megafuge 1.0 R (4000 rpm, 20 min, 4°C). The serum 
was frozen in liquid nitrogen and stored at -80°C. 
Purified proteins used as antigen in this study were His6-Hs MEL-28(aa 1208-1800), 
His6-Hs MEL-28(aa 1572-2266), His6-Xl MEL-28(aa 1572-2266), His6-Xl Nup50 and 
GST-Hs NET5(aa 374-640)-His6. 
 
4.2.3.2 Cell culture 
 
HeLa and U2OS cells were maintained in Dulbecco’s modified Eagle medium 
(DMEM), high glucose, obtained from the EMBL media kitchen, supplemented with 
10% fetal calf serum, 2 mM glutamine, 100 μg/ml penicillin and 100 U/ml 
streptomycin. Cells were grown in a Hera cell 240 incubator at 37 °C under 5% CO2. 
 
Xenopus laevis A6 cells were obtained from the Karsenti lab (EMBL Heidelberg) and 
maintained according to published protocols (Miller and Daniel, 1977). 
 
4.2.3.3 Transient transfection of human cells 
 
Transfection of HeLa cells with plasmids was carried out with the Fugene 6 
transfection reagent (Roche) according to the manufacturer’s instructions. 100 µl 
serum-free OptiMEM medium were mixed with 1 µg plasmid DNA and 3 µl Fugene 6 
reagent and incubated at RT for 15 min. The entire mixture was added to 5 ml DMEM 
medium, mixed and added to the cells. 
 
Transfection of HeLa or U2OS cells with siRNA oligonucleotides (at 50 nM final 
concentration) was performed with the HiPerFect Transfection Reagent (QIAgen) 
according to the manufacturer’s instructions.  
 
4.2.3.4 Immunofluorescence 
 
Fixed cells or in vitro assembled nuclei were incubated for 5 min in 50 mM ammonium 
chloride in PBS to quench remaining PFA. Blocking was carried out for 30 min in 3% 
(w/v) BSA in PBS-Tx (0.1% (v/v) Triton X-100). The samples were incubated with the 
primary antibodies in blocking solution at RT for 2 h and washed 6 times with PBS-Tx. 
Incubation with secondary antibodies in blocking solution was performed for 1 h, 
followed by 10 washes with PBS-Tx. In order to stain DNA, the samples were 
incubated for 10 min with 0.1 µg/ml DAPI in PBS or 5 ng/ml Hoechst 33342. The 
samples were washed twice with water, mounted and sealed with nail polisher. 
For the selective permeabilization experiment, cells were treated for 10 min with either 
PBS + 0.25% (v/v) Triton X-100 or with 0.025% (w/v) digitonin in PBS on ice. Cells 
treated with digitonin were washed and incubated in PBS without Triton X-100. 
 
4.2.3.5 Light microscopy 
 
Image acquisition of microscopy samples was performed with Carl Zeiss LSM 510 
META and Leica TCS SP2 AOBS FCS confocal microscopes. The fluorophores, 
predominantly DAPI, Alexa 488 and Alexa 546, were excited with the laser lines at 
405 nm, 488 nm and 532 nm, respectively. 
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4.2.3.6 Electron microscopy 
 
HeLa and A6 cells designated for immunogold labeling were prepared according to 
Tokuyasu (1973) and Tokuyasu (1978). Immunogold labeling was carried out as 
described in Slot et al. (1983). 
 
For morphological studies by electron microscopy, HeLa cells rinsed twice with PBS 
and fixed with 2.5% glutaraldehyde in cacodylate buffer (50 mM sodium cacodylate pH 
7.2) for 30 min. After fixation, they were washed 5 times (5 min each) with cacodylate 
buffer and then stained with 1% osmium tetroxide in cacodylate buffer for 40 min. After 
osmium staining, cells were rinsed 4 times with water, stained with 0.5% uranyl 
acetate in water for 40 min, and rinsed again 4 times with water. All fixation and 
staining steps were carried out on ice. Finally, the coverslips were taken through a 
series of dehydration steps with EtOH (40%, 50%, 70%, 80%, 90%), 5 min each step. 
Cells were further dehydrated twice with 96% EtOH and 100% dried EtOH. Coverslips 
were then dipped in propylene oxide and quickly placed on top of a BEEM capsule 
filled with Epon (Roth). Blocks were incubated for 48 h at 60oC. Serial sections were 
cut 60 nm thick and placed on a copper palladium slot grid coated with 1% Formvar 
(Serva).  
 
In vitro assembled nuclei were prepared for electron microscopy according to 
Macaulay and Forbes (1996). 
 
Imaging of the electron microscopy samples was performed with a CM-120 Biotwin  
(Phillips) electron microscope. 
 
4.2.3.7 Bioinformatic tools 
 
The following prediction algorithms were used to predict the structure and properties 
of MEL-28 and NET5: 
 
For predicting MEL-28 protein disorder: 
http://dis.embl.de/, http://globplot.embl.de/, http://www.strubi.ox.ac.uk/RONN, 
http://bip.weizmann.ac.il/fldbin/findex, 
http://www.ist.temple.edu/disprot/predictorVSL2.php, http://iupred.enzim.hu/, 
http://www.pondr.com/, http://bioinf.cs.ucl.ac.uk/disopred/disopred.html 
 
For predicting a signal peptide in NET5: 
http://www.cbs.dtu.dk/services/SignalP/ 
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