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Abstract 

 

Transcription regulation during vertebrate embryonic development is tightly 
regulated by cis-regulatory elements and respective transcription factor complexes, 
which bind to them. The interaction of these elements, followed by the recruitment of 
the RNA polymerase II machinery, leads to transcription initiation, which is one of 
the major regulatory steps in gene expression regulation. In this thesis I study three 
aspects of cis regulatory function in the zebrafish embryo: 

 
1. Non-coding genomic sequences, in some cases with extreme evolutionary 

conservation, were shown to harbour enhancer function. After the completion of 
several mammalian and vertebrate genomes, phylogenetic footprinting became 
frequently used methods for cis-regulatory element identification. I present the 
identification of conserved noncoding sequences in the pax2 locus and their in vivo 
test for enhancer activity in transient transgenic zebrafish embryos.  

2. Conserved non-protein coding sequences working as enhancers were 
significantly enriched in and or around developmental regulators and/or transcription 
factor genes. In the second part of this thesis I present the application of a combined 
global and local alignment tool, which could identify higher number of conserved 
noncoding elements with enhancer activity, then any of the previous methods. Two 
thirds of the identified elements were shuffled during evolution. Although the 
majority of these shuffled conserved elements were still assigned to gene classes of 
transcription factors and developmental regulators, there were high enrichment in 
genes belonging to the extracellular regions and behavioural Gene Ontology classes.  

3. The assignment of identified enhancers to their target gene promoters is often 
problematic, because of the potentially very large sequence distances separating them. 
Furthermore, based on recent results, promoters show an unexpected diversity. As 
promoter-enhancer interaction is mediated through multiprotein complexes, the 
composition of these complexes is likely dependent on the properties of the cis-
regulatory elements involved and may result in interaction specificities. To investigate 
whether the DNA sequence of core promoters and enhancers define the specificity of 
their interaction, we have performed a high throughout screen, where 20 core 
promoters and 13 enhancers were used to generate 260 combinations. Data analysis 
after the automated image acquisition and processing revealed that enhancer function 
is clearly promoter-specific. 
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  Introduction 

1) Introduction 

Due to the completion of several vertebrate genomes, it became clear that 

mammalians encode a remarkably consistent set of genes. Moreover, vertebrate 

embryonic development is regulated by proteins that have orthologs with more or less 

sequence conservation in humans, rodents, and even in fish. Understanding the 

mechanisms of gene regulation during development and how gene expression 

regulation contributes to morphological differences among organisms expressing 

almost the same sets of similar proteins is the new challenge of the post-genomic era.  

1.1 Gene expression regulation in eukaryotes 

From the several thousands of genes of a eukaryotic cell, only a small 

proportion are expressed at a given time point. The proportion and composition of 

transcribed genes vary in different cell- or life cycle stages, in different sexes, among 

cell types, and in response to changes in the physiological and environmental 

conditions (White et al. 1999; Arbeitman et al. 2002). During metazoan embryonic 

development terminally differentiated cells of the adult organism are specified from 

the pluripotent zygote through different successive stages by sequential coordinated 

expression of genes. While this developmental program can be modified by epigenetic 

and environmental factors, in principle it is driven by genetic regulatory networks set 

up at the beginning of embryogenesis. These networks receive inputs from 

intercellular signals and the output instructions regulate expression of specific genes 

(Halfon et al. 2002). Eukaryotes utilize different mechanisms to regulate gene 

expression, including transcriptional (chromatin condensation and modification, DNA 

methylation, transcription initiation), post-transcriptional (silencing by RNA 

interference or microRNAs, alternative splicing, mRNA stability), translational and 

several forms of post-translational controls (covalent post-translational modifications, 

intracellular trafficking and protein degradation) (Alberts 2002; Levine et al. 2003). 

For virtually every eukaryotic gene for which relevant information exists, 

transcriptional initiation appears to be one of the most important determinants of the 

overall gene expression profile.  
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1.2 Cis-regulatory elements 

Every gene is surrounded by sequences in cis that regulate the timing, spacing 

and the level of its expression under given environmental conditions. Cis-regulatory 

elements are stretches of DNA located in and around genes, affecting the transcript 

synthesis or stability in an allele-specific manner (Figure 1). Two major types can be 

distinguished by their position: promoters and distal regulatory elements. These 

regulatory DNA sequences contain binding sites for trans-regulating factors that 

activate, enhance, repress or keep transcription silenced. 

 

Figure 1: A scheme of eukaryotic cis-regulatory elements 

A typical metazoan cis-regulatory module consists of multiple enhancers in combination with 

silencer(s) and insulators. INR and DPE represent initiator and downstream promoter elements. 

Redrawn from (Levine et al. 2003) 

1.2.1 Promoters 

Promoters are cis-regulatory elements where the RNA polymerase II 

holoenzyme assembles. A typical eukaryotic promoter, spanning a few hundred base 

pairs around the transcription start site (TSS), consists of a core promoter and a 

proximal promoter region.  

Core promoters 

The core promoter is defined as the minimal DNA region required to direct low 

levels of accurate RNA PolII transcription initiation in the absence of activators in 

vitro (Gross et al. 2006). Core promoters typically encompass the transcription start 

site and extend either upstream or downstream for an additional 35-40 nucleotides 
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(Butler et al. 2002). Core promoters consist of functional motifs, termed core 

promoter elements, examples include:  

• TATA-box (Breathnach et al. 1981), usually located about 29-31 base pairs 

upstream (5`) of the transcription start site (Ponjavic et al. 2006);  

• initiator (Inr), a conserved pyrimidine-rich sequence encompassing the TSS, 

functions to direct accurate transcription initiation either by itself or together 

with TATA-box or DPE elements (Smale et al. 1989); 

• the downstream promoter element (DPE), which is located at +18 to +32 bp 

upstream of the start site in vertebrates (Burke et al. 1996); 

• motif ten element (MTE), found between +18 and +29 bp position upstream 

of the TSS, normally functions in conjunction with the Inr, but it can substitute 

for the loss of the TATA-box or DPE, or work synergistically with them in an 

Inr-dependent manner to strengthen the promoter activity (Lim et al. 2004); 

• the downstream core element (DCE) contains three discontinuous sub-

elements, spanning from position +6 to +34 (Lee et al. 2005); 

• the upstream TFIIB recognition elements (BREu), (Lagrange et al. 1998); 

• the downstream TFIIB recognition elements (BREd), (Deng et al. 2005);  

• X core promoter element 1 (XCPE1), (Tokusumi et al. 2007); 

• CpG island, a genomic sequence overrepresented by unmethylated CG 

dinucleotides (Bourbon et al. 1988); 

When the first protein-coding genes were isolated, virtually every gene contained 

a TATA-box (Breathnach et al. 1981), and further studies showed, that mutations of 

this element reduced transcription initiation and prevented the proper positioning of 

the TSS (Grosschedl et al. 1981; Takihara et al. 1986; Peltoketo et al. 1994). Based 

upon these observations, it was expected that a similar core promoter structure would 

be found in every PolII-transcribed cellular gene. But later bioinformatic analysis of 

promoter regions of the Drosophilal and yeast genomes revealed that only few 

percentages of genes contain TATA-boxes. Several studies have been performed on 

human promoters to determine the percentage of the TATA-containing promoters, 

leading to contradictory results (Trinklein et al. 2003; FitzGerald et al. 2004; 

Gershenzon et al. 2005; Kimura et al. 2006). The different results could arise from the 

usage of different databases and the experimental TSS mapping techniques. For 
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example Gershenzon et al. used the EPD database, which was relatively small and 

appeared “enriched” in TATA-containing core promoters. Indeed, analyses of larger 

databases, including the database of transcriptional start sites, the dbTSS (Suzuki et 

al. 2001), obtained by aligning the 5’end of full-length cDNAs to the human genome 

sequence, revealed a more restricted number of TATA-containing genes. Based on the 

latest study that performed genome-scale computational analyses of human core 

promoters present in the UCSC GoldenPath (15,685 genes) and dbTSS (10,271 genes) 

databases revealed that 24% of the human genes contain TATA-like elements, and 

only 10% of these TATA-containing promoters (2,4% of the total genes) contain the 

canonical TATA-box (Yang et al. 2007a).  

Proximal promoters 

The proximal promoter is defined as a region up to few hundred base pairs 

upstream from the core promoter, and typically consists of multiple transcription 

factor binding sites, like Sp1(Kingsley et al. 1992), CAAAT-binding transcriptional 

factor (CTF) (Santoro et al. 1988), and CAAAT-box binding factor (CBF) (Sakata-

Takatani et al. 2004). The regulatory sequences of different inducible genes, like the 

metal- (Stuart et al. 1985), xenobiotics- (Fujisawa-Sehara et al. 1987), hormone- 

(Beato 1987) responsive and heat shock elements (Wu 1984), are usually located in 

the proximal promoter region.  

Promoter diversity  

Promoters show much higher degree of complexity as thought before, and there 

is a growing list of evidence of the differential usage of distinct promoters. The first 

level of diversity arises from the core promoter element composition. Different core 

promoter elements were shown to correlate with gene function – promoters with 

TATA-box were associated with highly regulated genes, while TATA-less promoters 

tend to be associated with housekeeping genes in yeast (Basehoar et al. 2004). 

CAGE (cap analysis of gene expression), a method used to identify TSSs and to 

measure their expression levels, was applied in the FANTOM3 (functional annotation 

of mouse 3) project to sequence more than 7 million mouse and human sequences 

from more than 20 tissues. Using these FANTOM3 results Carninci et al. found that 

transcription initiation occurred at multiple nucleotide positions. They could classify 

four distinct categories: core promoters showing the TSS distribution of a.) a single 
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dominant peak, b.) a general broad distribution, c.) a broad distribution with a 

dominant peak, and d.) a bi-or multimodal distribution (Figure 2). 

 

 

Figure 2: The four promoter categories based on their TSS distribution 

a.) single peak, b.) broad, c.) bi-or multimodal, d.) broad with a dominant peak. Redrawn after (Kawaji 

et al. 2006) 

These “promoter-shapes” were shown to be generally very similar between 

human and mouse orthologous promoter regions. TATA-boxes were strongly 

overrepresented in promoters showing sharp TSSs, while broad TSS regions were 

strongly associated with CpG islands (Carninci et al. 2006). Kawaji et al. could 

demonstrate, that there were distinct, tissue-specific modes of start site selection 

within core promoters for at least half of the tag clusters they investigated. Some of 

these tissue-specific TSSs were regulated via DNA methylation and/or subsequent 

chromatin remodelling (Kawaji et al. 2006). 

Additional diversity in gene regulation is achieved by the use of multiple 

(alternative) promoters for a single gene. In alternative promoters core promoters 

are separated by clear genomic space, while broad or multimodal TSS distribution of 

a promoter represents an array of closely located initiation sites (Kawaji et al. 2006). 

Recent large-scale studies that identified promoters by ChIP-on-chip analysis (Kim et 

al. 2005), or analysing full-length cDNAs (Zavolan et al. 2002; Landry et al. 2003; 
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Trinklein et al. 2003; Sharov et al. 2005; Carninci et al. 2006) suggested that 14 - 58% 

of the human genes were subject to regulation by alternative promoters. Seventeen 

percent of the alternative promoter-containing loci showed tissue-specific use of these 

promoters (Kimura et al. 2006). The alternative promoter-containing regulatory 

regions were shown to be enriched in genes coding signal transduction-related 

proteins. In those genes, which had multiple alternative promoters, the frequency of 

the CpG island core promoter element was lower compared to those ones, which had 

only one promoter (Baek et al. 2007). Some of the mammalian genes with alternative 

promoters produce distinct mRNA isoforms with a heterogeneous 5` UTR, but coding 

identical proteins. The 5` UTR can affect the mRNA stability and the translational 

efficiency. In other cases distinct protein isoforms (with potentially different function) 

are produced from the alternative promoters (Davuluri et al. 2008). 

Gene pairs that are arranged in a head-to-head orientation on opposite strands 

with less than 1000 bp separating their TSSs are termed bidirectional. In some cases 

it has been shown that a bidirectional promoter regulates the transcription of a gene 

pair whose levels need to be co-ordinately expressed, e.g. bidirectional promoters 

provide the stoichiometric relationship of histone genes, others regulate the co-

expression of genes that function in the same biological pathway, or provide 

coordinated responses to signals, like heat shock. Genome-wide analysis of gene 

organization in the human genome identified a large class of bidirectional genes 

representing more than 10% of all human genes (Trinklein et al. 2004). The shared 

cis-regulatory elements located in the bidirectional promoters were necessary for full 

promoter activity in both directions. Although neighbouring genes had a correlation 

for coordinated regulation higher than random, the correlation for the bidirectional 

gene pairs was even higher. In functional tests, half of all tested human promoters did 

not exhibit strong directionality in transcript initiation, and the majority (90%) of the 

tested bidirectional promoters showed activity in both directions. Some gene 

categories were overrepresented in the bidirectional gene pairs, like DNA-repair, 

chaperone, mitochondrial and a special class of RNA-helicase genes. Sequence 

analysis of the these promoters revealed enrichment of CpG island core promoter 

element in this group (Trinklein et al. 2004).  
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1.2.2 Distal cis-regulatory elements 

Enhancers were originally defined as DNA sequences capable of elevating the 

transcription of a gene containing only a promoter (Banerji et al. 1981; Atchison 

1988). They typically regulate transcription in a spatial- or temporal-specific manner, 

and this function is independent from the distance and the orientation relative to the 

promoter (Atchison 1988). Enhancers are modular: different enhancers can work 

independently of one another to direct composite patterns of gene expression when 

linked within a common cis-regulatory region. Enhancers function in an autonomous 

fashion, sequence-specific activators or repressors bound to one element do not 

interfere with the activity of the others (Levine et al. 2003). Enhancers not only 

regulate gene expression in distinct tissues or cell types, but provide precise timing as 

well (Zakany et al. 1997). Enhancers consist of groups of clustered TFBSs. The 

identity, precise order and distance of these binding sites from one another within an 

enhancer cluster are often highly conserved between species, suggesting a critical role 

for protein-protein interactions between bound transcription factors in the proper 

function of the enhancer. This conveys that the distance and orientation independence 

is only valid for the cluster as a whole. Nice example for this is the even-skipped 

stripe 2 element. The even-skipped stripe 2 expression is conserved in Drosophilal 

species, but sequence of the enhancer has been diverged. The chimeric enhancer 

generated by gluing together the 5’ and the 3’ halves of the original enhancer 

elements from two species no longer function as an enhancer (Ludwig et al. 2000). 

The complex structure and the high degree of evolutionary conservation hints that 

enhancers have largely evolved in parallel with the coding sequences they control 

(Mackenzie et al. 2004). Tissue-specific enhancers can work over distances of 100kb 

or even more (Lettice et al. 2003; Vavouri et al. 2006). This type of long-range 

regulation is not observed in yeast and might be a common feature of genes that play 

role in morphogenesis (Levine et al. 2003). 

There are two mechanisms proposed how enhancers affect gene expression. The 

“stochastic” model suggests that genes have two transcriptional states, and enhancers 

shift the balance from “off” to “on” state (Sutherland et al. 1997; Blackwood et al. 

1998). The other, “rheorastic” model says that instead of the on/off switch, enhancers 

regulate the expression in a continuous spectrum, depending on the amount and the 

nature of bound factors (Rossi et al. 2000).  
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Silencers are cis-regulatory sequences with similar properties as enhancers but 

with a negative effect on transcription. They are originally defined as sequence 

elements capable of repressing promoter activity in an orientation- and position 

independent fashion (Brand et al. 1985). The negative regulatory element of the 

human thyrotropin-β (hTSHβ) gene (Kim et al. 1996), the NRE within the chicken 

ovalbumin 5’ promoter (Haecker et al. 1995) or the NRE from the platelet-derived 

growth factor A -chain promoter (Liu et al. 1996) are examples for classical silencers. 

A significant number of negative regulators of transcription however are position-

dependent. These passive or position dependent silencers physically inhibit the 

interaction of transcription factors with their specific binding sites, or interfere with 

signals which control splicing sites, 5’ polyadenylation signals, translational start sites 

or by affecting transcriptional elongation (Ogbourne et al. 1998). 

Insulators are DNA sequences that usually contain clustered binding sites for 

large zink finger proteins, such as Su(Hw) and CTCF. They selectively block the 

interaction of a distal enhancer with its target promoter when positioned between the 

two (enhancer-blocking insulators), or block the spreading of the heterochromatin 

(barrier insulators) (Gaszner et al. 2006). Insulators function in a position-dependent, 

but orientation-independent manner. They were first identified at gene boundaries, but 

have been also found within complex genetic loci, like the igf-2 locus in mice (Levine 

et al. 2003). Although different DNA binding sequences and their associated proteins 

are involved in enhancer blocking in vertebrates and invertebrates, it seems that 

similar mechanisms have been developed. Enhancer-blocking elements can interact 

with each other or tether the DNA to structural elements within the nucleus to 

establish chromatin loops. These loops can block the direct interaction of promoters 

and enhancers (a mechanism compatible with the looping model of enhancer action) 

or block the signal travelling from the enhancer to the promoter (a mechanism 

compatible with the tracking model) (Gaszner et al. 2006). 

Locus control regions (LCRs) are groups of regulatory elements (enhancers, 

silencers, insulators and matrix or chromosome scaffold attachment regions) involved 

in regulating an entire locus or gene cluster (Li et al. 2002). Their collective activity 

defines the LCR and confers proper special and temporal gene expression. Based on 

the regulatory element composition, LCRs not only positively or negatively regulate 

the transcription, but also possess all the properties necessary for opening a 
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chromosome domain and preventing heterochromatin formation at ectopic sites. The 

first identified and the best-studied one is the mammalian β-globin LCR (Grosveld et 

al. 1987), but LCRs have been found in several other mammalian loci as well 

(Aronow et al. 1992; Neznanov et al. 1993; Diaz et al. 1994; Dang et al. 1995; Jones 

et al. 1995; Kamat et al. 1999). 

1.3 Transcription factors 

Transcription factors are sequence-specific DNA-binding proteins involved in 

the regulation of transcription initiation or subsequent steps, like elongation, re-

initiation (Lee et al. 2000) or in the activation of the RNA PolII complex already 

assembled on promoters (Kininis et al. 2007). Many of these factors belong to 

multiprotein families, like the nuclear receptors (Aranda et al. 2001; Kininis et al. 

2008), AP-1(Curran et al. 1988), CTF/NF-I (Santoro et al. 1988), NF-κB (Baldwin 

1996), p53 (Yang et al. 2002), and Sp families (Kingsley et al. 1992). Transcription 

factors are modular (Brent et al. 1985): a typical TF has a DNA-binding domain 

linked to one or more activation or repression modules, potentially contains a 

multimerization and a regulatory module. There are many distinct DNA binding 

domains, like the homeodomain, zink finger, leucine zipper, helix-loop-helix, 

forkhead, ETS, POU or HMG1 domains and others (Pabo et al. 1992). Each TF has a 

variety of sequences they bind to, summarized as a consensus sequence or a position-

specific score matrix (Stormo 2000). Binding of a given TF to its binding site depends 

on several factors:  

• the sequence of the binding site determines the strength of the 

interaction, the structure and the methylation state of the DNA,  

• the methylation, acethylation and phosphorylation state of the 

neighbouring histones and the presence of other proteins (other TFs or 

remodelling factors) influence the availability of the site,  

• and other proteins such as co-activators or co-repressors can influence or 

inhibit the DNA-protein interaction.  

A TF may bind to a site on the DNA without having effect on the transcription 

(non-functional binding) (Tabach et al. 2007). As the sequence-specific protein-DNA 

interactions rarely extend more than 5 base pairs (in the case of zinc finger TFs it is 

only 3 bp), the extent of this physical interaction is not sufficient to provide much 
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sequence specificity, other structural features have to increase the number of 

nucleotides required for efficient binding. Some TFs contain multiple DNA binding 

domains (like the members of the Pax family have a paired-box and a homeodomain), 

additional structural features can bind nearby nucleotides through minor groove 

contacts (like in many homeodomain and GATA TFs), and homo- or 

heterodimerization of the TFs can be required prior to DNA binding (e.g. for most 

nuclear receptors) (Wray GA et al. 2003). 

Transcription cofactors or coactivators by definition lack DNA-binding 

domains, but function the same ways as transcription factors. They typically contain 

domains that mediate a specific protein-protein association with a TF and directly or 

indirectly with effector complexes (either the transcription machinery or chromatin 

remodelling complexes) (Meier 1996). 

1.3.1 Core promoter binding factors 

The general RNA PolII transcription machinery has been biochemically defined as 

a set of factors essential for accurate transcription initiation at TATA-containing 

promoters in vitro, and consists of the general transcription factors (GTFs) TFIIA, 

TFIIB, TFIID, TFIIE, TFIIF and TFIIH, and the RNA polymerase II. Transcription 

initiation requires ordered assembly of RNA PolII and GTFs into a pre-initiation 

complex (PIC) at the core promoter (Gross et al. 2006). These factors are considered 

general, as they have been proposed to be present in all multiprotein complexes 

formed on promoters, although recent results showed that different PICs can contain 

different GTFs (Muller et al. 2004). The assembly of the PIC on the core promoter is 

sufficient to drive basal levels of transcription; this basal activity is greatly stimulated 

by transcription factors, also called as activators (Ptashne et al. 1997). 

TFIID is a multiprotein complex playing important role in promoter 

recognition, consists of TBP (TATA-binding protein) (Horikoshi et al. 1989), which 

mediates the interaction with the promoter DNA, and TBP-associated factors (TAFs) 

(Tora 2002) that stabilize the TBP-promoter interaction. TBP is the predominant 

TATA-box binding protein, but there are several TBP-related factors with partial 

homology to TBP. TRF1, only present is Drosophilal, was shown to be able to bind to 

non-canonical TATA-box motifs and to TC box sequences (Crowley et al. 1993). 

TRF2/TLF, first discovered in Drosophila, but later found in vertebrates as well, does 

not appear to bind TATA-box, but has been shown to be required for expression of a 
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specific set of genes, or in specific developmental stages (Dantonel et al. 2000; 

Veenstra et al. 2000; Muller et al. 2001). TBP2, isolated from vertebrates, binds 

TATA-box sequences, interacts with TFIIA and B, and is expressed in the gonads and 

during embryonic development (Bartfai et al. 2004). TFIID binds cooperatively to 

other core promoter sequences as well, for example it interacts with the Initiator and 

the DPE elements (Kaufmann et al. 1994; Burke et al. 1996), and this interaction is 

mediated through TAF1 and 2 in the case of the Inr (Chalkley et al. 1999), while 

TAF6 and TAF9 interact with the DPE sequence (Burke et al. 1997). DCE is also 

recognized by TFIID via the TAF1 subunit (Lee et al. 2005). TFII-I and YY1 interact 

with the Inr (Roy et al. 1991; Weis et al. 1997). SP1 and related transcription factors 

bind to GC boxes, sequences found in CpG islands (Butler et al. 2002). TFIIB 

interacts with the upstream (BREu) (Lagrange et al. 1998) and the downstream TFIIB 

recognition elements (BREd) (Deng et al. 2005) via different consensus sequences. 

The major step for the pre-initiation complex formation in TATA-box containing 

promoters is the binding of the TBP to the TATA-box sequences present at ~30 base 

pairs upstream from the TSS (Hahn et al. 1989). The binding of TBP to various 

TATA sequences induces a dramatic DNA bend (Patikoglou et al. 1999), and is 

stabilized by cooperative interactions with TFIIB, TFIIA and with TAFs, which 

interact with the INR and other downstream core promoter elements (Hahn 2004). 

Transcription initiation from promoters lacking TATA-box elements are mediated by 

alternative PICs, like the TBP-free TAFII-containing complex (Brand et al. 1999; 

Hardy et al. 2002). 

1.3.2 Enhancer/silencer-binding factors 

Studies using non-purified chromatin templates have shown that transcription 

initiation is massively influenced by distal cis-regulatory sequences. Transcription 

factor binding of an enhancer results in changes in the nucleosome-structure and in 

recruitment of histone-modifying enzymes - this step is important to generate protein-

accessible chromatin around the promoter region. Co-factor-containing mediator 

complexes bound to the transcription factors present on the enhancer then mediate 

protein-protein interactions with the basal transcription machinery that is targeted to 

the core promoter. The formation of this multiprotein complex (bringing together the 

promoter and enhancer elements) results in the transcription initiation (Cosma 2002) 

(Figure 3). 
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It has been shown for the steroid receptors that they could bind to (or near to) 

proximal promoter regions as well as sequences located even at several hundred 

kilobase distance, and different regulatory role has been shown for the distal and the 

proximal cis-regulatory elements (Kininis et al. 2008). Genome-wide studies showed 

that not only transcription factors, but also GTFs or the RNA polymerase II itself 

were bound to the enhancer regions (Shang et al. 2002; Spicuglia et al. 2002; Carroll 

et al. 2006; Kininis et al. 2007; Kwon et al. 2007). These results suggest transcription 

of enhancer elements and are consistent with the findings of global transcriptome 

analysis, which provided evidence that a large proportion of the genome is transcribed 

(Katayama et al. 2005). One possible answer why PolII or GTFs are present at distal 

cis-regulatory regions could be that they regulate correct timing of gene activation in 

different cell types during development (Szutorisz et al. 2005). 

 
Figure 3: Transcription regulation mediated by differential transcription factor-containing multiprotein 

complexes formed on cis-regulatory elements 

Silencers are binding sites for negative transcription regulators, called 

repressors. Repressor function can require the recruitment of co-repressors, or TFs 

can switch to repressors by differential co-factor-binding.  

1.4 Genomic organisation of cis-regulatory elements 

Scattering of cis-regulatory elements is a general feature of many genes 

particularly of developmentally regulated genes (Plessy et al. 2005; Kikuta et al. 

2007). Because of their unpredictable distance from the target promoter and the 

potential interdigitate position, the annotation of cis-regulatory elements to their target 

promoter is difficult.  

Introns were thought to be remnants of early assembly of genes, subjects to 

minimal pressure for their removal (Gilbert et al. 1986), or selfish DNA with no 

function, the result of the increased capacity of multicellular organisms to accumulate 
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cellular debris from transposons and other sources (Cavalier-Smith 1985). But there is 

a growing list of evidence of the functionality of introns: introns were shown to 

improve transcriptional and translational yield (Juneau et al. 2006), they contain 

conserved sequences with yet uncovered function, they code all the small nucleolar 

RNAs (Liu et al. 1990a) and a large fraction of microRNAs (Eddy 1999), and several 

enhancer elements are located in introns (Brooks et al. 1994; Howell et al. 1997; 

Muller et al. 1999; Sivak et al. 1999; Hural et al. 2000; Flodby et al. 2007; Khandekar 

et al. 2007; Camp et al. 2008). The distribution of intronic sequences is probably non-

random based upon the results of Taft et al. (2007). They have found correlation 

between the total intronic sequences within annotated protein-coding genes and their 

functions. Large introns were overrepresented in genes expressed in the nervous 

system, uterus and in genes under-expressed in immunologic, embryonic stem and 

cancer cells; in genes that require precise transcriptional regulation. Small introns 

were enriched in genes highly expressed in heart, bone narrow, lung and pancreas 

(Taft et al. 2007). Distal cis-regulatory elements can be embedded in an intron of 

another gene, with a potentially different function and/or expression pattern. The 

gene, the enhancer is functionally linked to, is the target gene, and the gene, in which 

the interdigitate regulatory element is located, is the bystander gene (Kleinjan et al. 

2005). 

Approximately 25% of the human genome consists of gene deserts – long 

genomic regions containing no protein-coding genes and with no obvious biological 

function (Venter et al. 2001). Some of these gene deserts were shown to contain 

conserved elements with enhancer function (Nobrega et al. 2003; Kimura-Yoshida et 

al. 2004; Uchikawa et al. 2004), while deletion of other gene deserts resulted in no 

severe effects on survival of mouse embryos (Russell et al. 1982; Rinchik et al. 1990; 

Nobrega et al. 2004). Based on comparisons of human and chicken genomes, and 

analyzing the genomic structure, conservation patterns and evolutionary relationships 

of the gene deserts present in these species, Ovcharenko et al. (2005) could classify 

them into two functionally different groups: stable and variable gene desert. Stable 

gene deserts are more conserved between chicken and human, and between fugu and 

human, than variable ones. Stable gene deserts are flanked with genes functioning as 

transcription factors, developmental regulator and DNA binding proteins. Stable gene 

deserts are functionally linked to at least one of the flanking genes, forming large 

syntenic regions, and the already described conserved enhancers are located in the 

 13



Introduction 

stable group. These properties of the two groups hint that stable gene deserts are the 

ones that contain functional elements, while variable gene deserts are probably more 

“disposable” (Ovcharenko et al. 2005). 

1.5 Evolutionary aspects of cis-regulation 

The morphological and behavioural complexity of higher organisms is not 

reflected in expanded gene numbers (Hahn et al. 2002), so other mechanisms should 

be responsible for the increase of complexity. These mechanisms involve the 

redeployment of developmental genes in novel tissues and pathways, multifaceted use 

of the genes (alternative splicing of transcripts and the usage of different alternative 

promoters) and alterations in cis-regulation. There are emerging data from the field of 

evolutional biology showing the importance of the evolution of gene regulatory 

networks in divergent developmental pathways.  

There are many factors contributing to the importance of cis-regulatory DNA in 

evolution. First, individual cis-regulatory elements can act and evolve independently 

of others. A good example is the typical organisation of the cis-regulatory regions of 

developmental genes, composed of many independent elements. The products of most 

of the genes involved in morphology patterning have pleiotropic function, like 

influencing multiple phenotypic traits or regulating the expression of many different 

genes. Mutations affecting protein function may cause disturbance in much more 

developmental and physiological processes, therefore less tolerable in the evolution. 

Second, there is a higher degree of freedom in cis-regulatory sequences, which allows 

greater varieties of mutations. Regulatory elements do not need to maintain any 

reading frame, they can function at widely varying distances and in either orientation 

to the transcription units they control. This evolvability of regulatory DNA sequence 

means that it is a rich source of genetic and, potentially, phenotypic variation. Finally, 

most elements are controlled by TFs whose DNA binding specificity is sufficiently 

relaxed that the affinity and number of sites for each factor can evolve at a significant 

rate, even in functionally conserved elements (Carroll 2000). 

When human and chimpanzee homologous proteins were sequenced, and found 

to be nearly identical, the role of changes in cis-regulatory elements in the variation of 

gene expression has been hypothesised (King et al. 1975). Since then, mutations of 

several regulatory elements have been shown to modify specific aspects of patterns 

and/or levels of gene expression during development, leading to changes in 
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organogenesis, resulting in morphological and physiological modifications. Several 

reports showed cases for altered cis-regulatory elements causing different phenotypic 

effects in metazoans (Stern 1998; Sucena et al. 2000; Wittkopp et al. 2003; Shapiro et 

al. 2004; Wang et al. 2004; Gompel et al. 2005; Prud'homme et al. 2006), but there 

are limited data from higher vertebrates. Cretekos et al. (2008) investigated the limb-

specific enhancer of the prx1 gene in different mammalian species. Nevertheless the 

shocking morphological differences of their forelimbs, the initial limb bud formation 

in the mouse (Mus musculus) and in the short-tailed fruit bat (Carollia perspicillata) 

is identical, the differences only appear in later stages of limb formation. Replacement 

of the limb-enhancer containing genomic region upstream from the mouse prx1 gene 

to the orthologous bat sequence resulted in higher levels of prx1 transcript and 

elongated forelimbs in transgenic mouse embryos. Interestingly, deletion of the mouse 

enhancer did not cause any detectable phenotype, suggesting the presence of 

additional regulatory elements with redundant function (Cretekos et al. 2008). A 

conserved noncoding sequence (called as HACNS1) that evolved extremely rapidly in 

humans worked as an enhancer in the forelimb and some other parts of the body, 

notably the pharyngeal arches, eye and ear when tested in transgenic mice, while the 

orthologous elements from chimpanzee and rhesus macaque did not show any 

enhancer activity. In vivo analyses with synthetic enhancers, in which human-specific 

substitutions were introduced into the chimpanzee enhancer sequence indicated that 

13 substitutions in the otherwise highly constrained element were sufficient to confer 

human specific limb expression domain (Prabhakar et al. 2008).  

New cis-regulatory elements can arise by several mechanisms, including 

random sequence mutation, genomic insertions (these can bring functionally active 

sequences with regulatory capacity novel to the host gene), gene duplication followed 

by divergence in the regulatory modules. Gene duplication is often seen after aberrant 

recombination or replication, or chromosome and genomwide duplications (Ohno et 

al. 1968). Transposon-derived sequences, often referred as repetitive sequences or 

“junk DNA”, were shown to harbour regulatory functions as well (Peaston et al. 2004; 

Bejerano et al. 2006; Nishihara et al. 2006; Xie et al. 2006). 

Gene duplication is thought to be one of the major sources of cis-regulatory 

element evolution, as it provides material for novel gene functions and expression 

patterns to arise from (Cooke et al. 1997; Lynch et al. 2000; Gompel et al. 2005; 

Jeong et al. 2006; Prud'homme et al. 2006). The most common fate of a duplicated 

 15



Introduction 

gene pair is the non-functionalisation of one of the genes (one copy collects 

deleterious mutations, and thus degenerates to a pseudogene) (Nowak et al. 1997). 

Advantageous mutations can also occur in one of the duplicated genes, of course less 

commonly, thus one copy evolves new function. The third possible mechanism is the 

subfunctionalisation, when both of the duplicated paralogs are retained in the genome 

(Prince et al. 2002). The retention of duplicated paralogs during evolution by 

subfunctionalisation is the basis of the duplication-degeneration-complementation 

(DDC) model (Force et al. 1999). This model suggests that each duplicated gene can 

fulfil only a subset of complementing functions of the ancestral gene Several studies 

implicated specific mutations in enhancers of paralogous gene copies to be the likely 

source of subfunctionalisation in duplicated engrailed2 (Postlethwait et al. 2004), 

hoxb2 (Scemama et al. 2002), hoxb3a and hoxb4a (Hadrys et al. 2004; Hadrys et al. 

2006), fign, pax2 and unc4.1 (Woolfe et al. 2007a) enhancers in fish. 

1.6 Medical aspects of cis-regulation 

The proper execution of biological processes such as development, proliferation, 

apoptosis, aging and differentiation requires a precise regulation of the spatial and 

temporal expression of genes. Alterations in the properties of the interaction between 

promoters and other cis-regulatory elements (either by mutation or by physical 

dissociations) can cause defects in the transcriptional control.  

Disease Mutation  
(relative to the TSS) Affected gene Reference 

β-thalassemia 
TATA/box 

CACCC box, 
DCE 

β-globin 
(Antonarakis et al. 1984) 

(Kulozik et al. 1991) 
(Lewis et al. 2000) 

δ-thalassemia GATA1 (77 bp 5`) δ-globin (Matsuda et al. 1992) 
Bernanrd-Soulier Syndrome GATA1 (133 5`) GpIbβ (Ludlow et al. 1996) 
Charcot-Marie-Tooth disease (215 5`) connexin-32 (Wang et al. 2000) 

Congenital erythropoietic 
porphyria 

GATA1 (70 5`) 
CP2 (90 5`) 

uroporphyrinogen III 
synthase (Solis et al. 2001) 

Familian hypercholesterolemia Sp1 (43 5`) LDL receptor (Koivisto et al. 1994) 
Familial combined 

hyperlipidemia Oct1 (39 5`) lipoprotein lipase (Yang et al. 1995) 

Haemophilia CCAAT box factor IX (Crossley et al. 1990) 
Progressive myoclonus 

epilepsy Expansion ~70bp 5` cystatin B (Lalioti et al. 1997) 

Pyruvate kinase deficient 
anaemia GATA1 (72 5`) PKLR (Manco et al. 2000) 

Treacher Collins syndrome YY1 (346 5`) TCOF1 (Masotti et al. 2005) 

Table 1: Examples of diseases caused by mutations in the promoter region 
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Germline chromosomal rearrangements were identified in some human diseases 

in which the phenotype-associated breakpoints or mutations were found outside of the 

coding sequences. In these syndromes the mutations were shown to present in the core 

or the proximal promoter regions (Table 1), or single enhancer, silencer or insulator 

elements or whole locus control regions were affected (Table 2) (Kleinjan et al. 2005; 

Maston et al. 2006). One example for these mutations is affecting the limb-specific 

ZRS enhancer of the sonic hedgehog (shh) gene. This element is located in one 

megabase distance from the shh locus in human, in an intron of the limb deformity 

region 1 (lmbr1) gene. Genetic lesions affecting this element cause preaxial 

polydactily in human patients and in mutant mouse strains (Lettice et al. 2002), while 

complete elimination of this regulatory region causes severe limb truncations in mice 

(Sagai et al. 2005). A single point mutation in the enhancer element can be 

responsible for the polydactyly (Lettice et al. 2003).  

Disease Gene Distance of the  
cis-reg element Reference 

Aniridia Pax6 125 kb (Fantes et al. 1995; Kleinjan 
et al. 2001) 

Saethre-Chotzen Syndrome Twist 260 kb (Cai et al. 2003) 
X-linked deafness POU3F4 900 kb (de Kok et al. 1996) 

Reiger syndrome type I Pitx2 90 kb (Flomen et al. 1998) 
Greig cephalopolysyndactyly 

syndrome Gli3 10 kb (Wild et al. 1997) 

Anomalies in cataract and 
ocular development MAF 1 Mb (Paige et al. 2000) 

Iridogoniodysgenesis type I FOXC1 1,2 Mb (Davies et al. 1999) 
Lymphedema distichiasis FOXC2 120 kb (Fang et al. 2000) 

Blephalrophimosis-posis-epicantus 
inversus s. FOXL2 170 kb (De Baere et al. 2001) 

Campomelic Dysplasia Sox9 850 kb (Pfeifer et al. 1999) 
Holoprosencephaly Six3 200 kb (Wallis et al. 1999) 
Holoprosencephaly Shh 265 kb (Belloni et al. 1996) 
Preaxial polydactily Shh 1 Mb (Lettice et al. 2002) 

Split-hand/split-foot malformation 
type I dlx5/6 450 kb (Scherer et al. 1994) 

α-thalassemia HBA2 18 kb (Tufarelli et al. 2003) 
Limb deformality gremlin  (Zuniga et al. 2004) 

Table 2: Examples of diseases caused by mutations in distal cis-regulatory regions 

Improper regulatory function due to mutations in general transcription factors 

and chromatin remodelling proteins can lead to severe diseases as well. Mutations in 

TFIIH have been shown to cause xenoderma pigmentosum (Lehmann 2001), while 

BRG1 and BRM, the mammalian homologs of the SWI/SNF factors, are mutated in 
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several cancer cell lines, and the mutant proteins participate in the altered regulation 

of cell proliferation and metastasis (Banine et al. 2005). The best-characterized causes 

of malignant transformation are the chromosomal rearrangements leading to chimeric 

DNA sequences containing genes with improper regulatory regions. This type of 

rearrangement between the regulatory regions of the immunoglobulin or T-cell 

receptor genes and the cMYC oncogene causes the inadequate activation of the 

cMYC protein, leading to Burkitt`s lymphoma or acute T-cell leukaemia (Popescu et 

al. 2002). When c-myc is translocated to an immunoglobulin locus, an extra step of 

alteration occurs in the expression regulation, a shift in the alternative promoter usage 

of the c-myc gene (Marcu et al. 1992). Aberrant activation or repression of genes from 

alternative promoters is often associated with cancer initiation and progression. 

CYP19A1 is overexpressed in several estrogen-dependent breast cancers, and this 

overexpression in often caused by aberrant activation of one of the eight promoters 

distributed over a 93 kb region. (Bulun et al. 2007)  

Disruption of the expression regulation of developmentally regulated genes is 

implicated in neuropsychiatric disorders, including Parkinson’s disease, 

schizophrenia, bipolar disorder and autism. Most of these genes produce distinct 

protein isoforms in different brain regions and developmental or differentiation stages 

via differential expression regulation from alternative promoters of dopamine 

receptors (Anney et al. 2002), serotonin receptors (Parsons et al. 2004), and brain-

derived neurotrophic factor (Liu et al. 2005). 

As it was shown for the ZRS enhancer, mutation of one nucleotide can disrupt 

enhancer activity (Lettice et al. 2003), several laboratories started studying the impact 

of the single-nucleotide polymorphism (SNP) of the non-coding sequences on gene 

expression. 30-60% of human promoters contain functional regulatory SNPs, which 

tend to cluster in an approximately 100 base pair-range region around the TSS, 

suggesting a high impact of promoter-mutations in diseases (Buckland et al. 2005; 

Pastinen et al. 2006).  
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1.7 Mechanism of interaction between cis-regulatory elements 

Genes maintain their functional identity in the complex and diverse genomic 

organisation. Ideas about how independent expression profiles of individual genes are 

managed originally came from electron microscopy observations showing that lamp 

brush chromosomes were structurally organized in large loops of varying sizes. (Gall 

1956) This observation led to the assumption that loops are structural domains that 

represent functional domains of specific gene expression. The existence of insulator 

and boundary elements further strengthen the structural domain view, by assuming 

that chromosomes are subdivided into physically distinct expression domains 

containing a gene or a gene cluster and all its cis-regulatory elements. This model 

suggests that functional independence of genes is due to their structural autonomy; 

they are physically separated from neighbouring domains by specific boundary or 

insulator sequences, which would block the spread of heterochromatin from one 

domain to the next and/or counteract the effects of neighbouring enhancers (Dillon et 

al. 2000). However the findings that independently regulated loci can partially or 

completely overlap and their cis-regulatory elements can be found within or beyond 

neighbouring unrelated genes questions the generality of the this structural domain 

model. Nevertheless, insulator activities appear to co-localize frequently with other 

transcriptional activities and vice versa. Scs`, a prototypic insulator in Drosophilal, 

harbours the promoter of the Aurora gene (Glover et al. 1995), the Drosophilal 

enhancer-blocker gypsy can act as a promoter-specific transcriptional stimulator (Wei 

et al. 2001), and CTCF, the only mammalian insulator protein knows so far, was 

originally isolated as a transcriptional enhancer and silencer (Klenova et al. 1993; 

Filippova et al. 1996; Bell et al. 1999). Single DNA elements can harbour multiple 

regulatory activities and TFs can exert different effects depending on the DNA 

context where their binding sites are present. Taking these results into account, 

instead of structural entities, genes are better characterized as “functional expression 

modules” that encompass both the transcribed regions and their cis-regulatory 

sequences. These modules function appropriately in different cell types within the 

context of the local chromatin architecture (de Laat et al. 2003). 

Since the demonstration of the existence of distant enhancers, the question arise 

how these long-range elements interact with their cognate promoters over hundreds of 

kilobases of intervening DNA. There are several models to interpret the mechanisms 
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underlining cis-regulatory element interactions. In the random collision model both 

the enhancer and the promoter move around randomly until they encounter each 

other, and when the contact is established, transcription is activated (Park et al. 1982). 

The tracking or scanning model states that the initially formed enhancer-bound 

complex scans along the DNA in search of a promoter (Heuchel et al. 1989; Tuan et 

al. 1992). Combination of the tracking and looping models exist as well (facilitated 

tracking), suggesting a mechanism where the complex tracking along the DNA 

remain attached to the enhancer, dragging it along to create a loop (Blackwood et al. 

1998). 

 

Figure 4: The looping model of cis-regulatory element interaction 

The interaction of cis-regulatory elements by loop-formation, thus the expression of tissue-specific 

genes is cell type –specific due to the availability of activators and coactivators. From (Kleinjan et al. 

2005) 

Together with the tracking model, the looping model (Figure 4) is the most 

commonly encountered one. In this model, transcription factors bound at the enhancer 

make direct contact with the promoter and/or with factors bound to the enhancer, 

while the intervening DNA loops out (Wang et al. 1988). Biochemical analyses of 

DNA structure suggested that looping is a mechanism that can be used to increase 

specificity and affinity simultaneously and, at the same time, to control the intrinsic 

stochasticity of cellular processes (Vilar et al. 2005). Several reports provide strong 
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experimental support for a mechanism of long-range interaction that involves close 

contact between the enhancer and the promoter as in the looping model. By using the 

3C (chromosome conformation capture) technique de Laat et al. (2003) described the 

spatial clustering of regulatory elements and active promoters as a formation of an 

active chromatin hub (ACH). The result of ACH formation is a high-density 

clustering of regulatory elements, their cognate binding factors, associated 

coactivators and chromatin modifiers, which sets up a suitable local environment to 

generate precisely the required expression level, counteracting even heterochromatic 

surrounding (Figure 4.). Genes are expressed when the hubs make contact with the 

RNA PolII molecules, which are distributed as multimolecular aggregates within the 

nucleus that form transcription factories (Osborne et al. 2004). In recent studies, 

interactions have been detected at these factories within and between chromosomes 

(Osborne et al. 2004; Spilianakis et al. 2005). One possible mechanism how the 

promoters to find the hubs or transcription factories is the transcription of the 

intergenic regions, which would bring together enhancers and promoters by the RNA 

PolII itself (West et al. 2005). 

1.8 Promoter-enhancer interaction specificity 

As cis-regulatory elements can be located in large distances from the promoter 

of the regulated gene, enhancers are potentially able to influence transcription of more 

than one gene, but in vivo - in their original genomic context – an enhancer generally 

has only one target gene.  

Distance between key regulator elements and promoters is one important 

parameter in defining the outcome of the competition of promoters for a particular 

enhancer. Like in the hoxD cluster, where genes compete for an upstream enhancer, 

with proximal genes being favoured over distal ones (Kmita et al. 2002). Distance is 

also expected to be relevant in terms of spacing between cis-regulatory elements. 

Structural studies show, that the flexibility and conformation of the chromatin 

template will restrict the distance between two elements forming a loop (Rippe 2001). 

In addition to distance, promoter affinity is also important in gene competition. 

Promoter competition ensures the activation of a specific gene by a given enhancer, 

enhancer competition or enhancer interference could lead to specific ways of 

controlling one gene by the selected enhancer (Lin et al. 2007). Since affinity is 
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dependent on transcription factors bound to the cis-regulatory elements, it can be 

modulated in time and space (Ohtsuki et al. 1998).  

Several studies have shown that the core promoter sequence context can 

significantly influence the responsiveness of a given gene to a gene-specific DNA-

binding activator and repressor. The earliest studies of different TATA-box elements 

revealed that different TATA-box sequences respond differentially to activators. For 

example the human hsp70 promoter becomes unresponsive to E1A when its natural 

TATA-box is substituted by the SV40 TATA element (Simon et al. 1988). Later 

studies investigated how the presence or absence of different core promoter elements 

affects activator functions. For example c-FOS preferentially activates transcription 

from TATA-containing core promoters (Metz et al. 1994) , while ETS family member 

ELF-1 exhibits a preference for Inr-containing ones (Ernst et al. 1996). Core promoter 

selectivity is also observed in transcription repression. For example p53 has been 

reported to repress transcription from promoters containing a consensus TATA motif, 

whereas promoters containing Inr elements instead of a TATA-box were resistant to 

p53-dependent repression (Mack et al. 1993). Studies in Drosophila have provided 

evidence that core promoter structure plays an important role in selectivity of 

enhancers for their target genes (Li et al. 1994; Ohtsuki et al. 1998). A later study 

using FLP/Cre excision and enhancer-trapping techniques could demonstrate the 

existence of promoter type – specific enhancers. Three out of 18 characterized trapped 

enhancers turned to be DPE- specific, while one was TATA-box-specific, enhancing 

the transcription from only one specific promoter type (Butler et al. 2001). In 

vertebrates a cell-type specific enhancer element of the rat carbamyl phosphate 

synthetase was described to be gene specific, as it requires a proximal GAG for the 

interaction with the promoter. The activation of the heterologous thymidine kinase 

promoter by the enhancer was possible when a GAG element was introduced (Goping 

et al. 1995). 

A promoter targeting sequence (PTS) was described in Drosophilal in the 

context of the bithorax gene complex. This element has an anti-insulator activity; it 

allows an enhancer to activate its promoter despite an intervening insulator and 

facilitates long-distance enhancer-promoter interactions, plus selectively activates a 

single promoter when more than one is included in the same transgene (Zhou et al. 

1999). A later study showed that this abd-B locus contains multiple PTSs, all of them 

can overcome multiple insulators and function from a number of positions relative to 
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the enhancer and the insulator (Chen et al. 2005). This promoter targeting sequence 

was found to play a role not only in promoter competition, when multiple promoters 

are available for a single enhancer, but also in enhancer interference (when several 

enhancers are competing for one promoter) as well (Lin et al. 2007). Until now, no 

information is available about PTSs present in other genomes than Drosophilal. 

Although most enhancers directly influence the expression of just one gene, 

many exceptions are known. In the case of bidirectional promoters, cis-regulatory 

element located between the two promoters can regulate transcription of paralogous 

loci that lie on opposite strands of DNA (Trinklein et al. 2004). Regulatory element 

sharing or cross-regulation is also a known phenomenon in paralogs that are 

transcribed convergently or in parallel, like the hoxB cluster (Sharpe et al. 1998). 

Cross-regulation may be one reason for the long-term physical linkage of genes in the 

hox complexes of animals.  

1.9 Identification of novel cis-regulatory elements 

The functional and sequence code organization of the cis-regulatory elements is 

much less understood than that of the protein coding sequences. Automated search for 

regulatory sequences is thus quite difficult, as there are no sequence features that 

provide a consistent and general relationship to promoter, enhancer or insulator 

function. There are numerous experimental and computational methods to predict 

sequences with potential cis-regulatory activity. The success rate of predicting or 

detecting cis-regulatory elements depends greatly on the quality of the genome 

assembly, as the correct choice of the genomic region around the target gene is a 

crucial step for assigning functional elements into this region. The prediction or 

experimental identification of TSSs is crucial for the proper definition of promoters.  

1.9.1 Transcription factor binding site analysis 

The common feature in the cis-regulatory elements is that they contain multiple 

transcription factor binding sites (TFBSs) forming cis-regulatory modules (CRMs). 

Because of the enrichment of cis-regulatory element in TFBSs, techniques used for 

the identification of cis-regulatory elements are usually combined with transcription 

factor binding site analysis. The average TFBS spans 5-8 bp, most of them tolerate at 

least one, and often more, specific nucleotide substitution without losing 

functionality. The full range of sequences that can bind to a particular TF is often 
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displayed in position-specific score matrices (Stormo 2000). The consensus sequence 

of a particular TFBS refers to the single best variant of the binding site matrix or to a 

degenerate sequence that captures most of the binding sites. Given that there are many 

transcription factors with different binding matrices and that binding sites are short 

and imprecise, every kilobase of genomic DNA contains dozens of potential TFBSs. 

Based upon biochemical tests, many of these consensus matches do not bind protein 

in vivo and have no influence on transcription (Wasserman et al. 2004; Vavouri et al. 

2005). Less false positive outcome is gained with those methods, which use extra 

criteria, such as conservation of sites across species, clustering of binding sites in 

regulatory regions, or association with existing information about the expression 

pattern of the gene (Bailey et al. 1995). 

1.9.2 Promoter-predicting tools 

As discussed in a previous chapter, promoters can contain a large variety of core 

promoter elements in different combinations, so simply searching for the co-

occurrence of known core promoter motifs has only limited success (Fickett et al. 

1997). The more powerful promoter prediction programs are based on the analysis of 

training data set of already described promoters and scan the genomic sequences for a 

common sequence contexts (Knudsen 1999; Scherf et al. 2000; Davuluri et al. 2001). 

The newest algorithms that predict promoters and TSSs use data sets containing 

information about promoters, exons and introns as well (Knudsen 1999; Davuluri et 

al. 2001; Bajic et al. 2002; Bajic et al. 2004; Lu et al. 2008). Still, the prediction 

potential of these programs is limited due the training sets they use predetermine the 

search.  

1.9.3 Experimental identification of TSSs 

The transcriptional start site can be identified as the first nucleotide copied at the 

5` end of the nascent mRNA by using different methods like nuclease protection 

assays, primer extension or 5` RACE. Known TSSs are used to define core promoters 

and aid in searching for further cis-regulatory elements (Sandelin et al. 2007). The 

construction of full-length cDNA libraries containing the cap associated 5` ends 

allowed the determination of the exact position of the TSSs and the adjacent putative 

promoters from the human genomic sequences in a high-throughput manner (Suzuki 

et al. 2001). Information about eukaryotic promoters of which the TSS is 
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experimentally defined are gathered in the EDP (Schmid et al. 2006), dbTSS (Suzuki 

et al. 2002) or PromSer (Halees et al. 2003) databases. Results from these large-scale 

studies have revealed a surprisingly large number of novel intergenic transcripts, 

containing transcribed distal enhancers or non-coding RNA products that function in 

imprinting or as transcriptional co-activators (Sandelin et al. 2007). Recent results 

from the detailed analysis of 1% of the human genome by the ENCODE project 

consortium have found that over 90% of the regions tested were transcribed into 

primary transcripts (King et al. 2007), suggesting that the genome is transcriptionally 

more active than thought before, or our categories and definitions of functional 

elements are out of date (Elgar et al. 2008). 

1.9.4 Experimental methods to identify functional elements in the genome 

Regions in the genomic DNA in which the chromatin state is perturbed can be 

detected with DNaseI hypersensitive site mapping. This method was developed for 

high-throughput genome-wide detection of transcriptionally active regions (Crawford 

et al. 2004).  

A technique called chromatin immuneprecipitation-coupled DNA microarray 

analysis (ChIP-on-chip) can be used to investigate whole genomes for sequences that 

are able to bind a specific transcription factor. These DNA sequences can contain 

enhancers, silencers or active promoters. With this technique Kim et al. (2005) could 

determine around 10.000 TFIID-binding DNA regions in the human genome, which 

were in close proximity to the 5` end of known transcripts, and enriched in core 

promoter elements like CpG islands, Inr and DPE, so these were considered as 

promoters. This list of in vivo TFIID-binding elements contained roughly 4200 new 

promoters for at least 2500 known genes, and 1200 putative promoters that 

correspond to previously un-annotated transcription units (Kim et al. 2005).  

Transposon-based vectors are generally used to detect regulatory sequences by 

gene trap or enhancer trap experiments. In a promoter trap system, a reporter gene 

is cloned into the terminal repeats of the original transposons, which is only 

expressed, when the insertion occurs near to a functional promoter. In the enhancer 

trap system, a minimal attenuated promoter is cloned in front of the fluorescent 

reporter gene, which is switched on only when the construct can “sense” an enhancer. 

As the sites of the transposition events are easy to detect by PCR performed with 

transposon-specific primers, the neighbouring sequences (containing the regulatory 
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elements driving the expression of the reporter into distinct tissues) can be identified. 

So far the Sleeping Beauty (Ivics et al. 1997), the Tol2 (Kawakami et al. 1998) and 

the Ac/Ds (Mc Clintock 1951) transposons have been used in zebrafish and medaka 

(Oryzias latipes) for identifying cis-regulatory regions (Davidson et al. 2003; 

Kawakami 2004; Parinov et al. 2004; Emelyanov et al. 2006; Fisher et al. 2006b). A 

similar, but retrovirus-based technique was used to generate enhancer trap lines in 

zebrafish, using a modified murine leukaemia virus containing the 1kb gata2 

promoter followed by the yfp gene (Ellingsen et al. 2005).  

1.9.5 Phylogenetic footprinting  

Pair wise or multiple sequence comparisons between evolutionary diverged 

species can highlight functional conserved regions (orthologous DNA sequences 

with high similarity), based upon a hypothesis that functionally important sequences 

evolve more slowly than the non-functional sequences in the neighbourhood 

(Wasserman et al. 2000). This strategy is called “phylogenetic footprinting” and is 

used for identification of conserved non-coding regions. Initially, this method 

included cloning and sequencing of orthologous non-coding sequences from two or 

more organisms. Later, when the whole human and mouse genomes were available, 

global sequence comparisons between genomes became the most commonly 

employed approach in comparative studies (Ahituv et al. 2004). In many genomic 

regions the evolutionary divergence between mammals is not sufficient to select 

neutrally evolving sequences from functionally constrained ones. Multiple genome 

comparison of species of comparable evolutionary divergence or the use of 

evolutionary distant species for pair-wise comparisons can better highlight those non-

coding elements, which are most likely functional, as the increase of the total 

phylogenetic branch length enables the removal of similarities between neutrally 

evolving sequences (Venkatesh et al. 2006). The initial observation of the 

compactness of the fugu genome (7.5 times smaller than the human) led to the 

suggestion that genes and non-coding sequences conserved between these species 

would represent the minimal set of genes and regulatory elements required to 

construct a vertebrate organism (Brenner et al. 1993; Aparicio et al. 1995). On the 

basis of the first reports showing functional conserved regulatory elements, a 

conventional threshold was created for the identification of human-fish non-coding 

elements, requiring 70% identity over a minimum size of 100 bp (Ahituv et al. 2004). 
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Phylogenetic footprinting, using either mouse-human or fish-human comparisons, has 

been useful to select candidate regions, which were functionally tested by transgenic 

assays (Muller et al. 2002; Nobrega et al. 2003; de la Calle-Mustienes et al. 2005; 

Goode et al. 2005; Poulin et al. 2005; Woolfe et al. 2005). Enhancer databases, like 

the Vista Enhancer Browser (Visel et al. 2007b), the Condor (Woolfe et al. 2007b) or 

the Ancora (Engstrom et al. 2008) databases collected evolutionary conserved 

vertebrate non-coding sequences with enhancer activity.  

The level of conservation of non-coding sequences in some cases is extremely 

high. Comparative analysis of the human, mouse and rat genome revealed 481 

genomic regions termed as ultraconserved elements (UCEs), which shared 100% 

homology with no insertions or deletions over 200 bp. They are widely distributed in 

the genome and often found in clusters. These elements show extremely high 

sequence conservation with orthologous regions in chicken and fugu as well, and in 

the human population these ultraconserved elements exhibit extremely low level of 

natural variation (SNPs). Two third of these elements are non-exonic (256) or 

possibly exonic (probably non-coding), showing a tendency of congregating in 

clusters near transcription factors and developmental genes, or located in gene deserts 

(Bejerano et al. 2004). Several other studies investigated the abundance and the 

function of sequences with such a high degree of conservation. Changing the search 

criteria (decreasing the length of the conserved fragments to 50 bp) resulted in higher 

number (roughly 3500) of ultraconserved non-coding regions (UCR) between human, 

mouse and pufferfish. This study also found these elements clustering near to genes 

that act as master regulators during vertebrate development (Sandelin et al. 2004). 

Plessy et al. (2005) performed systematic analysis of experimentally verified mouse 

enhancers, and could show that genes with enhancers conserved between mouse and 

zebrafish were significantly enriched in developmental regulators (Plessy et al. 2005). 

Another studies focused on highly conserved non-coding elements (CNEs) found 

between human and fugu (with a minimum length of 100 bp), related to 

transcriptional regulator or developmental genes. Functional analysis of a small 

portion of these CNEs was performed, and the majority of the tested elements showed 

enhancer-like activity in transient expression assays in zebrafish, compared to non-

conserved non-genic regions (Woolfe et al. 2005; McEwen et al. 2006). 

Ultraconserved elements were also subject to in vivo functional tests. Paparidis et al. 

(2007) reported that an ultraconserved non-coding element from the second intron of 
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gli3 gene was a transcriptional enhancer (Paparidis et al. 2007). Pennacchio et al. 

(2006) tested 167 UCEs, and could demonstrate that 45% of these sequences could 

work as enhancers in transgenic mouse assays (Pennacchio et al. 2006) Besides the 

enhancer activity, ultraconserved non-protein coding sequences can function as 

splicing regulators (Lareau et al. 2007; Ni et al. 2007), factors of epigenetic 

modifications (Bernstein et al. 2006; Lee et al. 2006), transcriptional co-activators 

(Feng et al. 2006) or encode a particular set of noncoding RNA (ncRNA) (Calin et al. 

2007). The ultraconserved element located between the dlx5 and dlx6 genes codes a 

noncoding RNA (Evf-2), which is able to increase the transcriptional activity of Dlx2 

on the dlx5/dlx6 locus, by forming a stable complex with the transcription factor. This 

particular example shows that a subset of vertebrate ultraconserved regions may 

function at both the DNA and RNA level to control key developmental regulators, and 

may explain why ultraconserved sequences exhibit 90% or more conservation even 

after 450 million years of vertebrate evolution (Feng et al. 2006). 

Target gene  Bystander gene 
shh  lmbr1 

gremlin  formin 
pax6  elp4 

nkx2.8 – pax9  scl25a21 
foxL2  mrps22 

cd79b-hgh  scn4a 
otp  ap3p1 

fgf8  fbxw4 
barhl1  ddx31 

mir9  mef2 

Table 3: Examples of gene interdigitation 

From Kikuta et al. (2007) 

Conserved synteny blocks are stretches of chromosome similarities where 

orthologous protein coding sequences are located on the same chromosome and in the 

same linear order in more than one species (Barbazuk et al. 2000). Chromosomal 

rearrangement events within genomes are not completely random, a significant 

portion occurs within similar parts of the genome. MacKenzie et al. (2004) 

hypothesise that long-range gene interdigitation and the ability of individual cis-

regulatory elements directly affect the expression of many genes at a distance and 

thus contribute to the persistence of conserved synteny blocks in higher vertebrates. 

They claim that these sites represent the border of areas permissive to translocation 

events through evolution, as translocations do not disrupt any functional linkage, such 
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as a cis-regulatory element - target gene. Kikuta et al. (2007) showed (by using fish-

human genome comparisons) that target genes of long-range cis-regulatory elements 

and their phylogenetically and functionally unrelated bystander genes, in which the 

regulatory elements reside, form regions of conserved synteny, confirming the 

hypothesis of MacKenzie et al. (Table 3 shows examples of interdigitation). Single 

copies of these genomic regulatory blocks (GRBs) are protected from chromosomal 

breakage, while in cases of teleost duplication of GRBs, bystander genes have often 

lost by neutral evolution. They claim that combination of human-teleost synteny, 

enhancer detection and GRB duplication analysis allows recognition of target versus 

bystander genes and permits annotation of highly conserved elements to target genes 

within a syntenic chromosomal segment. Based upon their analysis, genes encoding 

developmental transcriptional regulators tend to be surrounded by larger regions of 

synteny than other functional categories of genes (Kikuta et al. 2007).  

 

Some conserved non-coding sequences function as enhancers in gain-of-

function assays, but in contrast, some apparently constrained non-coding DNA 

sequences have no obvious function, and some functional cis-regulatory elements do 

not show any conservation (Fisher et al. 2006a). Because many genes show different 

expression patterns even between human and mouse, there is no reason to expect that 

all cis-regulatory elements to be under the same level of constraint. Based on the 

ENCODE protein occupancy and chromatin modification data gained from the 1% of 

the human genome, King et al. (2007) defined a set of putative transcriptional 

regulatory regions (pTRRs) and used the promoters and DNaseI hypersensitive sites 

analysed by the ENCODE consortium, and tested these sequences for conservation. 

They have found that while most classes of non-coding functional elements (pTRRs, 

promoters and DNaseI hypersensitive sites) are enriched for multispecies constrained 

sequences (MCS), many of the functional non-coding elements are not constrained. 

They suggest that these MCSs select for only a very highly constrained subset of 

regulatory elements and miss many other regions that are under constraints. The genes 

nearest to the conserved pTRRs were checked for gene ontology, and they have found 

that different classes of elements tend to be constrained over different phylogenetic 

spans (King et al. 2007). Visel et al. (2008) tested for embryonic enhancer activity 

231 non-coding ultraconserved human genomic regions out of the total 256 existing, 

and 206 extremely conserved regions lacking ultraconservation in transgenic mice. 
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They found no differences between these two categories in the number of sequences 

working as enhancers, equally half of the sequences from both groups drove 

expression of the reporter gene in various tissues in the developing mouse, and they 

could not find any tissue or anatomical region where the ultraconserved sequences 

selectively activated transcription (Visel et al. 2008). Nevertheless ultraconserved 

elements have remained frozen during mammalian evolution; a relatively small 

number of them may more likely to be functional due to their higher level of 

conservation.  

A recent study demonstrated that knock out mice, in which conserved non-

coding sequences with enhancer function were deleted, showed no severe detectable 

phenotype during the development, and the deletions did not affect the viability of the 

mice (Ahituv et al. 2007). Based upon their results Ahituv et al. questioned the 

relevance of the in vivo function of these constrained sequences, not taken to account 

that only one aspect of the complex endogenous mRNA expression is affected when 

only a single enhancer is deleted, while expression of the gene in other tissues or at 

other stages is maintained. Moreover, deletion of functional enhancers were 

previously shown to cause little or no phenotypic changes for the engrailed2 (Li Song 

et al. 2000), fgf4 (Guyot et al. 2004), gata1 (Guyot et al. 2004) or myoD (Chen et al. 

2004) genes. Deletion of a single hoxd11 enhancer in mice does not cause severe 

defects, just delays the expression of hoxd10 and hoxd11, in later stages the normal 

expression is restored by complementary regulatory elements (Zakany et al. 1997). 

Functional redundancy can also give an explanation to this phenomenon, which has 

been shown for the sgs-4 developmental gene in Drosophilals (Jongens et al. 1988), 

for the tcr-gamma locus (Xiong et al. 2002), or for the shh gene (Jeong et al. 2006): 

several enhancers can be responsible for the expression in a given tissue, and the 

deletions of single enhancers not necessarily cause major changes, but deletion of all 

enhancers results in a severe reduction of the given gene.  

Investigation of the Latimeria menadoensis (coelacanth) genome led to the 

identification of an ancient SINE (short interspersed elements, 75-500 bp long 

retrotransposons that contain internal promoters for RNA PolIII)) family, the 

members of which are related to SINEs present in mammals, birds and in fish species. 

These retrotransposon-derived sequences are not only present in these species, but 

more than 100 human copies are highly conserved among mammalian orthologs 

(Nishihara et al. 2006). One member of this lungfish-SINE family from the human 
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genome, located 500kb from the isl1 gene, showed isl1-specific enhancer activity 

(Bejerano et al. 2006). Recent research demonstrated high abundance of transposable 

element-derived sequences in mammalian genomes (Mikkelsen et al. 2007), and 

based on Bejerano et al. (2006), 5,5% of all the conserved non-coding sequences 

originated from transposons  – the high level of conservation should be revisited. 

Inter-lineage transfer and intraspecies proliferation of transposable elements can cause 

high levels of sequence similarities between element copies in different lineages, as 

the time of divergence of these “junk” elements is different from the one of the host 

genome.  

1.10 Experimental approaches to verify cis-regulatory elements  

Biochemical analysis methods, like DNase hypersensitivity assay, 

electromobility shift assay and chromatin immuneprecipitation can be used to 

determine whether a given sequence is bound by transcription factors, but these do not 

provide information about the in vivo relevance of the TF-binding. Reporter-gene 

assay is a generally used method to identify and analyse transcriptional regulatory 

activity in vivo of given DNA sequences: the piece of DNA of interest is cloned in 

front of a reporter gene – e.g. chloramphenicol acetyl transferase (cat), β-

galactosidase, luciferase or a fluorescent protein (like gfp) gene. If a putative core 

promoter is assayed, no additional sequence is added, but in the case of analysing 

distal regulatory elements, a weak promoter is attached in front of the reporter gene. 

Then the construct is transformed into cell culture, and the activity of the reporter is 

compared to a control construct. After the given genomic region is identified as a 

regulatory region, serial deletions, linker scanning mutagenesis, or site-directed 

mutagenesis can be applied for more precise analysis. The in vivo activity of a 

reporter gene may fail to recapitulate the endogenous gene activity even with the full 

set of its cis-regulatory elements due to different chromatin context. Furthermore, it is 

possible that a given element is only used in limited context such as in a specific 

tissue, developmental stage or physiological response. To overcome these issues, one 

can use model organisms such as mouse, frog or zebrafish. After microinjection of 

the constructs into embryos of these animals, the expression of the reporter can be 

detected throughout the development. By generating stable transgenic lines, the 

expression of the reporter gene can be followed in different tissues and in different 

conditions as well, but large-scale screens are not easily manageable in this way. Loss 
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of function studies, like deletion of a cis-regulatory element allows analysis of 

requirement of the regulatory architecture of a locus (Yanagisawa et al. 2003). Tissue 

and time-specific knockouts can be generated as well with the use of the CRE/lox 

system (Gu et al. 1994) to check the requirement for function by studying the direct 

effect of the loss of a regulatory sequence (Vong et al. 2005). 

1.11 Zebrafish as a model organism 

Zebrafish (Danio rerio) are easy to keep and breed under laboratory conditions. 

Females produce large number of eggs that develop externally and easy to 

manipulate. They not only have short generation cycle (approximately three months), 

but the embryos are transparent and develop rapidly. In 48 hours after fertilization at 

280C a free-swimming larva develops from a fertilized egg. The genome assembly 

and the annotation of zebrafish genes are close to the finish at the time of writing.  

Large-scale identification of zebrafish mutations affecting early embryogenesis 

(Driever et al. 1996; van Eeden et al. 1999; Burkhart 2000) led to the identification of 

several genes as key players in vertebrate gastrulation, brain development and midline 

signalling (Feldman et al. 1998; Griffin et al. 1998; Karlstrom et al. 1999). These 

findings not only founded studies of early developmental mechanisms, but also laid 

the ground to establish zebrafish as a model for human diseases. In the last decade 

zebrafish models have been established to elucidate the molecular mechanisms of 

human diseases like cardiovascular defects, muscle- and neural disorders, 

haematopoiesis and cancer (Zon 1999; Dooley et al. 2000; Amsterdam 2006).  

The transparency of the developing embryo gives a unique quality to whole-

mount in situ (Fjose et al. 1992) and antibody staining (Wilson et al. 1990). The 

genetic analysis in zebrafish have been furthermore facilitated by the completion of 

the zebrafish genome sequencing and by the improvements in the assembly quality 

and gene annotations, which makes it a suitable model for comparative genomic 

studies as well. The fast ex utero development in water and the easily detectable 

phenotype changes due to the transparency of the embryos were the advantages why 

toxicological studies started to use zebrafish for environmental and chemical toxicity 

tests (Van Leeuwen et al. 1990).  

These approaches, in combination with the zebrafish sequence and genome-

wide gene expression studies (Stickney et al. 2002; Lo et al. 2003), provide the 
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possibility to understand the vertebrate development, disease susceptibility and 

evolution in more detail. 

1.11.1 Transcription regulation analysis in zebrafish 

In the past several decades, it has become clear that the expression and function 

of a variety of regulatory genes guides developmental processes, thus studying the 

properties of differentially regulated gene expression during embryogenesis became a 

highly effective way to investigate developmental mechanisms.  

Zebrafish mutant screens characterized genes at a molecular level, and several 

of these genes have been found to code transcription factors e.g. (Schulte-Merker et 

al. 1994; Talbot et al. 1995; Brand et al. 1996). Gene expression analyses in mutants 

revealed transcriptional pathways by the identification of direct downstream target 

genes for example in axis formation (Strahle et al. 1993; Chang et al. 1997), somatic 

muscle development (Weinberg et al. 1996; Griffin et al. 1998; Yamamoto et al. 

1998), hindbrain patterning (Moens et al. 1996; Prince et al. 1998), neural crest 

development (Henion et al. 1996), neuronal phenotype (Guo et al. 1999) and heart 

development (Alexander et al. 1998).  

The development of transgenesis in zebrafish by microinjection of linearized 

plasmid DNA in the late eighties (Stuart et al. 1988) and the short generation cycle of 

the fish provided the possibility for transcription regulation studies e.g. (Long et al. 

1997; Meng et al. 1997; Meng et al. 1999) in zebrafish, Japanese medaka fish 

(Oryzias latipes) and Xiphophorus (Winkler et al. 1992) by injecting a promoter 

followed by a reporter gene . The most generally used reporters are fluorescent 

proteins, which provide the investigation of the transgene in living animals 

(Amsterdam et al. 1995). The usage of bacterial artificial chromosomes provided the 

possibility of injecting large fragments of DNA (Jessen et al. 1999). Generating 

transgenic zebrafish is although laborious. First, generating the desired expression 

constructs by conventional subcloning can require multistep cloning strategies, 

because the choice of restriction enzymes is often limited for long genomic or cDNA 

fragments. Long-range PCR methods can circumvent some of these problems, but 

require resequencing of coding sequences. Second, rates of germline transgenesis are 

low with plasmid-based transgenesis, requiring the injection, raising, and screening of 

scores to hundreds of potential founders to ensure recovery of a stable line. Injection 

of supercoiled or linear DNA yields 1-10% germline transgenic founders (Stuart et al. 
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1988; Stuart et al. 1990), while linearization with I-SceI meganuclease yields 20-30% 

germline transgenic founders (Thermes et al. 2002). Retroviral and transposon-based 

insertions have dramatically increased the transgenesis rate to 30% with Sleeping 

Beauty (Davidson et al. 2003) or 50% with Tol2 (Kawakami 2004) and with 

pseudotyped retrovirus (Laplante et al. 2006). The generation of enhancer detection or 

enhancer trap lines, where in each line the expression of a reporter gene is under the 

transcriptional control of tissue-specific enhancers, provided transgenic fish with 

differentially marked cells or tissues. These lines are particularly useful for studying 

development of distinct organs, to analyze the effects of other genes or toxic 

compounds on the marked cells/tissues, or simply to collect information about the in 

vivo expression pattern of genes during development (Amsterdam et al. 2005). 

GAL4-UAS bitransgenic zebrafish lines have been developed for efficient tissue-

specific and temporally controlled transgene expression to mark cell types or 

ectopically express proteins (Scheer et al. 1999; Koster et al. 2001; Scheer et al. 2002; 

Thummel et al. 2005). 

Injection of multiple different DNA sequences, such as activating sequences and 

gene fragments with a reporter construct, is also possible (Muller et al. 1997). This 

co-injection approach exploits the rapid concatamerisation of injected DNA in fish 

embryos (Stuart et al. 1988; Winkler et al. 1991) and by-passes the need to generate 

multiple expression constructs. To exclude the generation of stable transgenic lines, 

the mosaic transient transgene fish can be monitored for expression as well. The high 

degree of mosaicism observed in the injected fish is due to the fact, that 

cytoplasmically injected foreign DNA is compartmentalised into a subset of cells in 

the cleaving embryos (Westerfield et al. 1992), and persist mainly 

extrachromosomally. Despite the mosaic expression, cell-type-specific gene 

expression can be analyzed by generating a large number of transgenic animals and 

summing up their expression (Muller et al. 1997). 

Although gene knock out is not jet possible in zebrafish, microinjections of 

mRNAs or morpholino oligonucleotides can result in specific inactivation of genes 

(Nasevicius et al. 2000). For example DNA microarray analysis was performed in 

morpholino knock down embryos to determine the generality and function of TBP 

(Ferg et al. 2007). 

Genomic microarray coupled with chromatin immuneprecipitation (ChIP-Chip) 

can be used in zebrafish as well to determine the genomic binding locations of DNA 
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interacting proteins during development and investigate the assembly of the genetic 

networks that regulate embryogenesis (Wardle et al. 2006). 

1.11.2 Large-scale and high throughput screening methods using zebrafish 

High throughput screens (HTS) provide the possibility to quickly perform large-

scale biochemical, genetic or pharmacological tests by automated sample handling 

and/or programmed data collection and processing. Zebrafish are highly reproductive 

and the embryos develop ex vivo, thus an ideal model for whole-organism gene 

expression studies. 

The first large-scale screens performed with zebrafish were systematic genome-

wide mutagenesis screens, which led to the identification of thousands of mutations in 

genes affecting early zebrafish development. These screens used either chemical 

mutagens like N-ethyl-N-nitrosourea (ENU) (Driever et al. 1996; Haffter et al. 1996) 

or mouse retroviral vectors (Amsterdam et al. 1999; Chen et al. 2002). TILLING 

(Targeting Induced Local Lesions in Genomes), a traditional chemical mutagenesis 

followed by high-throughput screening for point mutations (Wienholds et al. 2002) 

further provided large number of mutant lines (Henikoff et al. 2004). Transgenic fish 

expressing fluorescent proteins provide real-time readouts of phenotype. Transposon- 

or retrovirus-based gene trap or enhancer trap experiments not only yielded in large-

scale stable transgenic lines, where specific tissues and cells are labelled with 

fluorescent proteins, but also provided insights of transcription regulation. 

Behavioural outcomes can also be screened as a phenotype (Bang et al. 2002; Gahtan 

et al. 2004). As zebrafish has been found to be a useful tool for toxicological analysis, 

high-throughput assays were developed for testing bioactive compounds, including 

drugs, pesticides and industrial by-products either using developing embryos or 

adults, even in a microtiter plate (Parng et al. 2002; Milan et al. 2003; Pichler et al. 

2003; Behra et al. 2004; Kokel et al. 2008; Lam et al. 2008). 

Expression patterns of genes playing role in regulation of development were 

determined by using high throughput in situ hybridization in several large-scale 

screens (Kudoh et al. 2001; Pollet et al. 2001; Thisse 2001; Wienholds et al. 2005; 

Visel et al. 2007a; Thisse et al. 2008). The sequencing of the zebrafish genome and 

the extensive collection of expressed sequence tags have led to the development of 

many commercial or self-designed microarrays for defining the set of genes 

expressed. The method based on hybridization of the transcripts to immobilized 
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cDNA accelerated the molecular analysis of zebrafish mutants (Stickney et al. 2002), 

but more importantly unravelled defined developmental processes and biochemical 

pathways (Ton et al. 2002; Lo et al. 2003; Hedlund et al. 2004; Mathavan et al. 2005; 

Sumanas et al. 2005; Giraldez et al. 2006; Xu et al. 2006). The outcome of the 

different treatments can be assayed on the transcriptome level as well (Yang et al. 

2007b; Kily et al. 2008; van Boxtel et al. 2008) – even the effect of chronic 

tuberculosis on gene expression of non-treated adults was investigated this way 

(Meijer et al. 2005). 

Functional tests, like dissection of the functions of particular isoform 

combinations of large multiprotein complexes (using in situ hybridization studies and 

antisense-based reverse genetic knockdowns) (Cheng et al. 2003), analysis of 

metabolic pathways (Ho et al. 2003) or measurement of circadian gene expression in 

vivo (Kaneko et al. 2005) were also adapted to analyze large number of zebrafish 

embryos.  

As the micro-manipulation and handling of a large number of fish embryos is 

time-consuming and laborious, methods like automated micro-injection (Wang et al. 

2007) or embryo-handling (Furlong et al. 2001) have been developed to provide the 

opportunity of automated manipulation and sorting embryo samples in standard 

conditions. To increase the facility and throughput of scoring phenotypic traits in 

zebrafish, automated fluorescence microscopy of transgenic embryos expressing GFP 

were developed in a microtiter plate format (Burns et al. 2005). Fully automated 

fluorescence stereomicroscopes were utilized for time-lapse imaging of transgenic 

embryos (Distel et al. 2006). Using three-dimensional image recording, spatial 

reconstruction of expression patterns was possible, moreover, by combining three-

dimensional image recording over time with subsequent deconvolution analysis, 

subcellular dynamics could be resolved (Distel et al. 2006). Although automated 

microscopic picture taking can speed up screens, the tremendous number of digital 

images generated from large numbers of embryos frequently leads to a bottleneck in 

data analysis and interpretation. The development of algorithms recognizing tissues or 

specific cell types and changes of reporter signals within these have been reporter in 

the last two years (Li et al. 2007; Tran et al. 2007; Zanella et al. 2007; Liu et al. 

2008). Unfortunately these are specified to distinct cells, tissues, developmental 

stages or microscopes to be used generally.  
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2) Objectives 

 

Our laboratory is interested in cis-regulatory mechanisms regulate vertebrate 

embryonic development. The following topics raised questions, and to answer these 

questions, different projects were designed. 

 

1. When conserved non-coding sequences (CSTs) around a particular gene of 

interest are tested for enhancer activity, generally the endogenous promoter is used for 

the assay. In contrast, larger scale studies usually prefer to use the basal promoter of a 

ubiquitously expressed gene to avoid cloning of each and every endogenous promoter. 

But do these conserved non-coding sequences show the same results, when tested 

with different promoters? Enhancer trap experiments performed with different 

promoters could fish out different sets of enhancers, giving a hint that the promoter 

specificity of enhancers observed in Drosophilal is a valid phenomenon in vertebrates 

as well. 

To test whether predicted cis-regulatory elements show preference toward their 

endogenous promoters, I aimed to test CSTs determined by phylogenetic footprinting 

from the pax2 locus for enhancer activity with an endogenous and a heterologue 

promoter. 

 

2. Phylogenetic footprinting relies on computer programs that compare large 

pieces of genomic DNA from multiple species. Different alignment methods give 

slightly different results when the same genomic regions are used as templates. Local 

alignment approaches compare relatively short intervals of genomic sequences with 

each other and return the best match between two genomes for each subregion. 

Because they do not take into account the regions surrounding these matches, they can 

result in false hits. Global alignment tools align entire syntenic regions, and return 

less false positive matches, but not sensitive to rearrangements. Knowing these, we 

wanted to know in what extent does the algorithm of the phylogenetic footprinting 

prejudice the outcome of the search, and whether these algorithms can be further 

developed to better predict cis-regulatory elements. 
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For this project, a collaborator partner designed a new sequence comparison 

method, which resulted in large number of conserved non-protein coding sequences. 

My aim was to test a subset of these elements for enhancer activity. 

 

3. The partially overlapping results gained with the CSTs from the pax2 locus 

with two different promoters raised further questions: What is the level of the cis-

regulatory element interaction specificity? Do the different properties of core 

promoters determine which enhancers can interact with them? Or does the chromatin 

structure or other DNA elements located in the original genomic context needed for 

the interaction specificity? 

To answer these questions, I aimed to perform a high throughput analysis: 

cloning of a set of enhancers in combination with a set of promoters, injection of these 

constructs into zebrafish embryos. Our aim was to develop computational algorithms 

for automated picture acquisition and quantification to handle the enormous amount 

of data. 
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3) Materials and methods 

Chemicals, if not mentioned, were purchased from Sigma-Aldrich. 

3.1 Standard molecular cloning 

3.1.1 Isolation of zebrafish genomic DNA  

The genomic DNA isolation was performed with Qiagen DNeasy Tissue Kit. 

To 100 embryos in a 1.5 ml microcentrifuge tube 180 µl ATL buffer and 20 µl 

Protease K were added, and the tubes were incubated at 550C for at least 3 hours. 

After vortexing the samples, 200 µl AL buffer was added, and the vortexed samples 

were incubated for 10 minutes at 700C. Then 200 µl 100% ethanol was added, and 

after vortexing, the solutions were pipetted into DNeasy spin column, centrifuged for 

1 minute at 13.000 rpm at room temperature. After discarding the flow-through, the 

collection tubes were replaced. 500 µl AW1 buffer was added onto the columns, 

which were centrifuged at 13.000 rpm for 1 minute at room temperature. After 

discarding the flow-through, the collection tubes were replaced. 500 µl AW2 buffer 

was added onto the columns, which were centrifuged at 13.000 rpm for 3 minutes at 

room temperature. The columns were placed into new microcentrifuge tubes, 200 µl 

AE buffer was added into the membranes, and he columns were centrifuged for 1 

minute at 13.000 rpm at room temperature. The concentrations of the DNA solutions 

were measured on the Nanodrop machine. 

3.1.2 Amplification of DNA sequences from zebrafish genomic DNA 

The amplification was carried out with Eppendorf Triple Master and dNTPs 

with sequence specific primers. (See primer sequences under chapter 5.1.16 and 4.2.6) 

The composition of the PCR reaction: 

Master Mix1     Master Mix2    
Genomic DNA  0.5µl   High Fidelity buffer 5µl 
Primer1   0.25µl   dNTP 10mM  1µl 
Primer2   0.25µl   enzyme  0.5µl 
Nuclease free water 9µl   nuclease free water 33.5µl 
Total:   10µl   total:   40µl 

The two Master Mix solutions were mixed only in the PCR tubes, just prior the 

cycles started. 
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The program used: TM01 
1. 930C  1.00 min   5. GOTO 2           29 times 
2. 930C  0.15 min   6. 680C  10.00 min 
3. 560C  0.30 min   7. 40C  forever 
4. 680C  2.00 min   8. END 

3.1.3 Restriction digest 

The restriction enzymes were purchased from Promega. All enzymatic reaction 

were performed according to the following basic protocol: 3 Units of enzyme was 

used to each mg of DNA, the reaction mix contained the enzyme-specific buffer and 

1% BSA. The reaction was incubated at 370C for at least 3 hours, and then the 

fragments were gel-purified. 

3.1.4 Gel-purification of PCR products and restriction fragments 

The Promega SV Gel and PCR Clean-Up System was used. 

The DNA was run on a 1% agarose gel containing 0,1v/m% Ethidium bromide. 

The desired fragments were cut out from the gel under UV light, and the gel slices 

containing the DNA fragments were put into microcentrifuge tubes and measured. 

10µl Membrane Binding Solution was added to each 10mg of gel slice; the tubes were 

mixed and incubated at 650C until the gel slices were completely dissolved. The 

dissolved gel mixtures was transferred into the SV Minicoulmns inserted into 

collection tubes, incubated for 1 minute at room temperature, then centrifuged at 

13.000 rpm for 1 minute. The flow through was discarded and the Minicolumns was 

reinserted into the Collection Tubes. 700µl Membrane Wash Solution was added into 

the columns, they were centrifuged at 13.000 rpm for 1 minute. The flowthrough was 

discarded and the Minicolumns were reinserted into the Collection Tubes. The 

washing step was repeated with 500µl Membrane Wash Solution, but after discarding 

the flowthrough, the tubes were centrifuged once more at 13.000 rpm for 1 minute. 

Then the columns were transferred into clean microcentrifuge tubes, 50µl nuclease-

free water was added into the columns, and after 1-minute room temperature 

incubation, they were centrifuged at 13.000 rpm for 1 minute. The Minicoulmns were 

discarded and the DNA samples were kept at -200C. 
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3.1.5 Ligation 

For the ligation of DNA fragments produced by restriction digest, T4 DNA was 

used from Promega. The vector: insert ratio was 1:3; the reaction contained the ligase-

specific buffer. The reaction was incubated at 40C overnight, and then transformed 

into competent bacteria. 

3.1.6 TOPO-cloning 

The TOPO pCRII was purchased from Invitrogen. 

PCR products amplified by TripleMaster enzyme mix were incubated with 1U GoTaq 

for 10 minutes at 720C for adding 3`A overhangs. 

4µl PCR product was mixed with 1µl Salt solution and 1µl of TOPO vector. The 

reaction was incubated at room temperature for 30 minutes, then placed on ice, and 

transformed into competent bacteria. 

3.1.7 Preparation of chemically competent bacteria 

A single colony of bacteria was inoculated in 10 ml of LB media for overnight 

growth at 370C. The next day 1 ml of the overnight culture was inoculated into 200 ml 

of LB media, kept at 370C until the OD at 600 nm reached 0.3-0.4. Then the bacteria 

were kept on ice for 10 minutes, centrifuged at 5000 rpm at 40C for 10 minutes. After 

discarding the supernatant, the bacterial pellet was re-suspended in 40 ml of ice-cold 

0.1M CaCl2, and kept on ice for 1 hour. After the incubation, the bacteria were 

centrifuged at 5000 rpm at 40C for 10 minutes, the supernatant was discarded and the 

bacterial pellet was re-suspended in 20 ml 0.1M CaCl2 supplemented with 15% 

glycerol, and 50 µl aliquots were fast-frost in liquid nitrogen, and kept at -800C. 

The bacterial stains used: TOP10, Mach1T1R, ccdB-Survival T1R 

3.1.8 Plasmid transformation into chemically competent bacteria 

The competent cells were defrosted on ice. 1-10 µl of plasmid DNA was added 

to each vial of bacteria, and incubated on ice for 30 minutes. Then the bacteria 

received a short heat-shock (420C for 45 seconds), and after a 20-minute incubation 

on ice, 250µl SOC media was given to each vial, and the bacteria were shifted to 

370C, and were shaken for 1 hour. Then 200 µl were spread on antibiotic-containing 

LB-plates, which were kept at 370C for overnight. 
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3.1.9 Preparation of electro-competent bacteria 

1 colony on the specific bacteria was inoculated for overnight culture in 20 ml 

of SOC media. The next day, the 10 ml of the culture was inoculated into 200 ml of 

pre-warmed SOC media, and the culture was grown at 370C until the OD at 600 nm 

reached 0.3. The cells were chilled on ice for 15 minutes after transferring them into 

centrifuge tubes. The bacteria were centrifuged for 15 minutes at 40C at 3000 rpm, the 

supernatant was discarded, and the bacterial pellet was gently re-suspended with a 

pipette in 200 ml of ice-cold water. The cells were centrifuged again with the same 

parameters, and the pellet was re-suspended in 200 ml in ice-cold water. The 

centrifuging step was repeated, and the pellet was re-suspended in 100 ml of ice-cold 

water containing 10% glycerol. The centrifuging step was repeated and the bacterial 

pellet was re-suspended in 2ml of ice-cold water containing 10% glycerol. 40 µl 

aliquots were fast-frost in liquid nitrogen, and kept at -800C. The bacterial stain used: 

Mach1T1R 

3.1.10 Electroporation of plasmid DNA 

1-2µl plasmid DNA was mixed with the competent cells defrosted on ice, the 

mixture was moved to 1mm electroporation cuvettes, and the electroporation was 

performed with the following parameters: 2500V. After the electroporation 460µl of 

LB media was added into the cuvettes, and the mixture was transferred into 

microcentrifuge tubes. The bacteria was kept at 370C for 1 hour in a water bath, then 

half was spread 

3.1.11 Identification of colonies by PCR reaction 

Single colonies were picked from the plates with yellow pipette tips, and were 

rinsed into the PCR mix, then into 3 ml LB media for inoculation the miniprep 

cultures. 

The PCR reaction:     The program used:  
5x coloured buffer 4µl    1. 950C 1.30 min 
dNTP 10mM  0.5µl    2. 950C 0.20 min 
primer1 100nM  0.1µl    3. 540C 0.20 min 
primer2 100nM  0.1µl    4. 720C 2.00 min 
GoTaq   0.5µl    5. GOTO 2 29 times 
Nuclease free water 15µl    6. 720C 5.00 min 
Total:   20µl    7. 40C  forever 
       8. END 
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3.1.12 Plasmid miniprep 

The Qiagen QiaPrep Spin Miniprep Kit was used. 

3 ml of antibiotics-containing LB was inoculated with a single colony and incubated 

at 370C for overnight. Next day the bacteria were collected in microcentrifuge tubes 

by centrifugation at 10.000 rpm for 2 minutes in a table centrifuge. The supernatant 

was discarded and the bacterial pellet was re-dissolved in 250µl P1 solution. 250µl P2 

solution was added, and after gentle mixing and 4 minutes of room temperature 

incubation 300µl P3 solution was added as well, and after gentle mix the tubes were 

centrifuged at 13.000 rpm for 15 minutes. The supernatant was transferred into the 

Qiaprep spin columns, the columns were centrifuged at 13.000 rpm for 1 minute, 

washed with 750µl Buffer PE, centrifuged again at 13.000 rpm for 1 minute, and after 

the follow-through was removed, the centrifugation step was repeated once more. 

Then the columns were transferred into clean microcentrifuge tubes, and the DNA 

was eluted with 50µl Buffer EB, with 1-minute centrifugation at 13.000 rpm. 

3.1.13 Plasmid maxiprep 

The Qiagen Plasmid Maxi Kit was used. 

100ml antibiotic-containing LB was inoculated with a single colony. and incubated at 

370C for overnight. Next day the bacteria were centrifuged at 5.000 rpm for 20 

minutes at 40C. The supernatant was discarded and the bacterial pellet was re-

dissolved in 10ml P1 solution. 10ml P2 solution was added, and after gentle mixing 

and 4 minutes of room temperature incubation 10ml P3 solution was added as well, 

and after gentle mix the tubes were centrifuged at 10.000 rpm for 30 minutes. The 

supernatant was transferred into the equilibrated Qiagen maxiprep columns and let to 

flow through by gravity flow. Then the columns were washed with 2x 30 ml QC 

buffer, and finally the DNA was eluted with 15 ml QF buffer. The plasmid DNA was 

precipitated with 10.5ml isopropanol, and was centrifuged at 40C for half an hour at 

10.000 rpm. The pellet was washed with 70% ethanol, then air-dried and re-dissolved 

in 200µl nuclease free-water. 

3.1.14 Plasmid DNA sequencing 

The plasmids were sent to GATC Biotech AG for sequencing. 
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3.1.15 In vitro transcription of an in situ probe 

The Ambion Message Machine Kit was used for this purpose. 

2 µl 10x transcription buffer 
2 µl DIG RNA labelling kit 
1 µl RNase inhibitor 
1 µg template 
1 µl T3 polymerase or 2 µl T7/ SP6 polymerase 
adjusted to 20 µl with nuclease-free water 

The reaction was incubated for 2 hours at 370C, then the nucleic acids were 

precipitated with 10 µl 7.5M NH4Oac and 75 µl 100% ethanol, incubated for 20 min 

at –800C, then centrifuged for 15 minutes with 12000 rpm at 40C. The pellet was 

washed with 80% ethanol, air-dried, and re-suspended in 30 µl HYB-buffer. 

3.1.16 Primer sequences 

 
 Forward primer Reverse primer 

eng2b promoter ACTGGAGTGAATTGTTTTTCGTTG TGAAACTCTCCAAATGTTC 

eng2b CXE CGATACACTTTGATGATACGCATTG GCTCACATGACATTTCTCATTTTCC 

eng2b reg5 TATCTTGTCCCCATTCCAACAGAG ATGTCAGCCAGAATGGTCAAAAAC 

mef2d promoter CATGTGCTTAAGGGAACGTTAAATAA ACAGTCAAAACCCTCCATGTACAGAG 

dre-mir9-1 promoter GAGGGTAAATCTGCGGAAAACTAAAGCA GGCTTGCTCTCACAATAAAATGATGCA 

elp4 promoter CTAGTTCAGAAAGCTGTCGGTTTCA ACTGAGCTTCAACCCATCGAATAAT 
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3.2 The Multisite Gateway cloning 

3.2.1 The principals of the Multisite Gateway technology 

The Gateway cloning is based on site-specific recombination, excluding the 

need of restriction digests and ligations, which is advantageous when cloning several 

hundreds of constructs (Hartley et al. 2000; Walhout et al. 2000). The cloning system 

comprises two distinct recombination reactions that rely on cis elements and 

excision/integration enzyme complexes from bacteriophage λ. The BP clonase (a 

mixture of the λ phage integrase and integration host factor) catalyses the BP 

recombination between the PCR product and the “donor” vector yielding to an “entry” 

vector. The Gateway system relies on a counter-selection method for high efficiency 

recovery of entry plasmids. The donor vectors contain a ccdB cassette coding a 

protein that is toxic to standard bacterial strains, plus a chloramphenicol resistance 

gene, which allows the maintenance of the cassette in ccdB-tolerant cells. Therefore, 

un-recombined donor vectors will not be propagated after the BP recombination, only 

the entry vectors. The entry vectors, together with the destination vectors, then further 

used in an LR recombination reaction to generate the final expression vectors. This 

reaction is catalysed by the LR clonase, a mixture of the integrase, integration host 

factor and excisionase. In this case, the destination vector contains the ccdB –

chloramphenicol resistance cassette, so these are constraselected after the LR reaction. 

The Multisite Gateway system provides the possibility of building up complex 

expression vectors, containing an ORF of interest, a promoter and a cis-regulatory 

region by combining different entry clones (Figure 61.). 

For cloning roughly 260 different enhancer-promoter combinations we used a 

modified version (Table 16.) of the commercially available Multisite Gateway system 

(Roure et al. 2007).  

 
vectors for cloning after recombination 
pDONR-221-P1/P2 pENTRY-L1-promoter-L2 
pDONR-221-P3/P5 pENTRY-L3-enhancer-L5 

pSP72-R3-ccdB/cmR-R5::RfA-venus pSP72-B3-enhancer-B5::B1-promoter-B2-venus 

Table 16: The Multisite Gateway vectors used for the high throughput screen 
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Figure 61: The scheme of the Multisite Gateway cloning 

3.2.2 Amplification of DNA sequences 

The amplification was performed in two steps, for the first reaction sequence-

specific primers were used which contained a short adapter stretch (see standard 

molecular cloning methods), and then the first reaction was used as a template for the 

second PCR made with the adaptor primers (primer sequences in Table 17.). The two 

Master Mix solutions were mixed only in the PCR tubes, just prior the cycles started. 

The composition of the Gateway second PCR reaction: 

Master Mix1     Master Mix2    
1st PCR reaction  1µl    High Fidelity buffer 5µl 
Primer1   0.25µl   dNTP 10mM  1µl 
Primer2   0.25µl   enzyme   0.5µl 
Nuclease free water 9.5µl   nuclease free water 33.5µl 
Total:   10µl   total:   40µl 
 
The program used: TM02 
1. 930C  1.00 min    7. 550C  0.30 min 
2. 930C  0.15 min    8. 680C  2.00 min 
3. 450C  0.30 min    9. GOTO 6 19 times 
4. 680C  2.00 min    10. 680C 10.00 minutes 
5. GOTO 2 9 times     11. 40C  forever 
6. 930C  0.15 min    12. END 
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3.2.3 The Gateway BP recombination – generation of entry clones 

For the generation of promoter entry clones PCR products containing the 

amplified minimal promoters with B1 and B2 attachment sites and the donor vector 

pDONR-221-P1/P2 were used, for the enhancer entry clones PCR products containing 

the amplified enhancers with B3 and B5 attachment sites and the donor vector 

pDONR-221-P3/P5 were used. The recombination reaction contained an equal 

amount of 50 fentomoles of PCR products and donor vectors; the volume was 

adjusted with TE to 4µl, and finally 1µl of BP clonase II was added to the reaction. 

After overnight room temperature incubation 0.5µl Proteinase K was added to the 

reaction, and incubated for 10 minutes at 370C. The reaction was then transformed 

into competent bacteria.  

3.2.4 The Gateway LR recombination – generation of expression vectors 

Each entry clone and destination vector was used in an equal amount of 10 

fentomoles, 1µl of 5x buffer was added to the mix, the volume was adjusted to 4µl 

with TE buffer, and finally 1µl of LR Clonase Plus was added to the reaction. After 

18-20 hours of room temperature incubation 0.5µl Proteinase K was added to the 

reaction, and incubated for 10 minutes at 370C. The reaction was then transformed 

into competent bacteria. 

3.2.5 Testing the colonies after transformation by colony PCR 

For checking entry clones, M13 FP (TGTAAAACGACGGCCAGT) and RP 

(CAGGAAACAGCTATGACC) primers, for checking expression vectors, attB3 

(GGGGACAAGTTTGTATAATAAAGTAGGCT) and Venus RP 

(TAGCTCAGGTAGTGGTTGTC) primers were used.  
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3.2.6 Primer sequences 

Forward primer  Reverse Primer Construct 
name sequence  sequence 

promoters    

ctr AAGCTTCGTGTATTGTACGG  TATGTGTGTTATTTTTGTATAG 

apoeb TGGGATGACAAAAGACGA  CCCTTCTGTAATAAGAGGATGA 

atp6v1g1 CTGTGAGTCTCGTGCAGTC  GCTTTGGTACGGATTTTATTT 

gtf2a1 CAGCTGACTGCACGGTAAGA  CTCTTTACGGTCTTATTCACAGTCC 

klf4 ACTACATCCCAAGCGTCAT  AGGTGTTTACTCTCATTCAGT 

krt4 CAAGTGTGTGTGTGTGTGAGAG  CTGAGAAGGAGGTACGAGAGTG 

ndr1 CTGACCATCAAAAGACTGCAAG  TCAAATCAAGGTAATAACCACACG 

Pcpb2 CAGTGTGCAGTGTGGAGTACG  GGGGAAGAGGGAAGACACG 

rdh10 CATAACAGGCGGACACAC  CCACGAAATCTGCCCAAA 

tbp AGTATGCGAGCCAATAGTGC  CTCCGTCTAGAAACAGTGTTAGATCA 

tram1 GCTCTCTCGTCTCCTTGC  GTTCTGGATCACAAACTCATGG 

c20orf45 GGGAGATTTTCCATTTAGATTGC  TTTAGAGTTTAACGGGCGACT 

ccne GTGCTTCGTTGTCATTCTAGGAG  AGTCTGTAAGCAGGCAGCAT 

shha GTTTTGTGGGATAACATCAGAAGTG  CGGAGGTTTGCGGCGGGGA 

mef2d CTTCCACACAGCAGTATCCATTCTA  GGTTATTATTTAGCCCGTACAGTCA 

dre-mir9-1 TTGATCTAAATACAGTTGACTTTCTAA  GGATTCTTGTTACTTTCGGTTA 

elp4 TCTCTTTCTGATTGGCTGAGATTAC  GCTGCGGGTTTTCTTCTGA 

hsp70 TTGATTGGTCGAACATGCTG  CAGTCCGCTCGCTGTCTC 

eng2b TGAGAATAAGGCGAGGTTGG  TTCAGAATCAAAGCAGTAGACCTG 

enhancers    

ctr GTGTGTCATCCTCATCCACG  CATTCCATGATGGTGCTCTG 

shha arc AGCTTGACAACGGAGAGCAT  GAAACGCGCACATAAGGAAT 

b-actin-i1 GCAGCCCTTCAAGTCTTTCATTT  GACAAAGGAAGTCCCTCTGCATT 

pax6-eye GCTGGCAAACACACTAACTTCACTT  TCATGTTTCTGTGTTTTGTTGCAGT 

eng2b-CXE TATCTTGTCCCCATTCCAACAGAG  ATGTCAGCCAGAATGGTCAAAAAC 

eng2b-reg5 CGATACACTTTGATGATACGCATTG  GCTCACATGACATTTCTCATTTTCC 

dre-mir9-1 ATTCCTTTCCTTGGCATCAA  GGGACACCGTTGTTCCTCTA 

myl7 CCATCCTTTTCATCCCTCAA  AGCTTTGTCTACTCACCATGTTC 

isl1 
zCREST2 

TCCAGCACCATAATTCACCA  CCAGTATCGTGCAGCCCTA 

dlx2b/6a ei AATCAGAAAGCAAGGCAAAATTAG  TGTCATATAAACACACTGGCTGAA 

mnx1-regB ATGTGGAGGATCGGTGTCAT  CCGGTGACTTGTTGATTTCC 

kdrl CCGCGGTCACCTTCTGCTAGTTAAAACC  GCGGCCGCAATCCAAAGTAATTGATCCCTG 

myf5 AAGACATAAAAACAGACATCCGAAG  GTTTGGTGTTGAAGGTTTCTGAGT 

Gateway  primers   

attB1 GGGGACAAGTTTGTACAAAAAAGCAGGCT attB2 GGGGACCACTTTGTACAAGAAAGCTGGGT 

attB3 GGGGACAAGTTTGTATAATAAAGTAGGCT attB5 GGGGACCACTTTGTATACAAAAGTTGGGT 

3.3 DNA injection into zebrafish embryos  

The circular plasmid DNA was injected to one-cell stage zebrafish embryos in a 

concentration of 5ng/µl, the linear DNA solutions were used in concentration of 

25ng/µl, in 10x diluted Phenol red solution. The embryos were either dechorionated 

with 10mg/ml Pronase before injection, either at 24hpf stage. The fish embryos were 

kept in fish water containing 0.003% Phenylthiourea (PTU) at 280C, until they 

reached the proper developmental stage. 
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3.4 Fish husbandry and care 

The adult zebrafish stocks were maintained in the fish facility of the ITG, in an 

aquarium system build by Aquarienbau Schwarz (Göttingen) in conditions referring to 

The Zebrafish Book. (Westerfield 1993). Approximately 15 pairs were kept in each 

tank (30 l) under the following water conditions: conductivity 400-500 µS; hardness 

5° dH; pH 7,0-7,5 and temperature between 26 and 28°C. The light/dark cycle in the 

facility was set to 14 hours light and 10 hours dark. The fish were fed two times per 

day and the ammonium, nitrate, nitrite and phosphate levels are checked once per 

week to ensure a good water quality. Wild type zebrafish from the AB strain were 

used for the experiments. The crossing of fishes was performed in one liter crossing 

cages, filled with system water. One fish pair was put in every cage in the evening. To 

avoid parental cannibalism the cage contained a sieve, which separated the eggs from 

the parents after the laying. The laying started the next morning with the switching on 

of the facility light, which is one of the main breeding stimuli for the fishes. The eggs 

are collected shortly after using a small net, transferred to a Petri dish and used for 

experiments.  

3.5 Staining methods 

3.5.1 Detection of the fluorescent proteins 

The Venus YFP and the GFP were detected under an epifluorescent microscope 

with the proper filter under UV light. 

3.5.2 X-Gal staining 

The embryos were fixed at room temperature in BT-Fix (4% paraformaldehyde, 

4% sucrose, 0.12mM CaCl2, 0.1M NaPi pH 7.4) for 2-4 hours in 24-well plates, then 

washed 3 times with 0.02% NP40 containing 1x PBS, once with staining buffer 

(0.15M NaCl, 3mM K4Fe3(CN6)6, 3mM K3Fe4(CN6)6, 0.02M NaPi, pH 7.4) then 

stained with 1 ml staining buffer containing 5µl 8% X-Gal in DMSO. After the 

staining was complete, the embryos were washed 3 times with 0.02% NP40-PBS, and 

finally were fixed with BT-Fix. 
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3.5.3 In situ hybridization 

The embryos were fixed at the appropriate stage in BT-Fix in 24-well plates 

overnight at 40C, then the fixative was changed to 100% methanol, and the plates 

were kept at –200C for at least 2 hours. Then the embryos were rehydrated with 

descendent alcohol series: a 5-minute wash with 75% methanol in PTW (1xPBS, 

0.1% Tween 20), a 5-minute wash with 50% methanol in PTW and finally a 5-minute 

wash with 25% methanol in PTW, 4 times 5-minute wash with PTW, at room 

temperature. Then the embryos were treated with Proteinase K (in a 10µl/ml final 

concentration) for 1 minute, followed by a 20-minute fixation with BT-Fix, and 5 

times wash with PTW, at room temperature. 

Then the embryos were incubated in hybridisation buffer (HYB: 50% 

Formamide, 5x SSC, 0.5 mg/ml yeast RNA, 50 µg/ml heparin, 0.1 % Tween 20.9 mM 

citric acid).at 650C for at least 3 hours for pre-hybridization, followed by the 

hybridization step with the HYB-buffer containing the RNA-probe in a 1:500 dilution, 

overnight at 650C. 

The next day the embryos were washed with the SSC-buffers at 650C: 2x 30-

minute wash with 50% formamide/50% 2xSSC, 0.1% Tween 20; 1x15 min in 2x 

SSC, 0.1% Tween 20; 2x30 min in 0.2x SSC, 0.1% Tween 20 and 1x 5min blocking 

buffer( 1x PBS, 0.1% Tween 20, 5% sheep serum, 0.2% BSA, 1% DMSO). After the 

washes the embryos were incubated at room temperature with blocking buffer for at 

least 2 hours, then the embryos were incubated with the anti- dioxigenin alkaline 

phosphatase Fab fragments ON at 40C in a 1:4000 dilution  

The next day the embryos were washed 6 times with PTW for 20 minutes, once 

with staining buffer (100 mM Tris-HCl pH 7.9, 100mM NaCl, 0.1% Tween 20, 

50mM MgCl2) for 5 minutes, at room temperature. The bound antibody was revealed 

by adding the substrates, NBT and BCIP (0.34mg/ml and 0.175 mg/ml). Reaction was 

stopped by repeated rinses in PTW followed by BT-Fix. 
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3.6 High throughput screening 

3.6.1 Automated microscopy 

The microscopy was performed in the laboratory and with the help of Urban 

Liebel (ITG, FZK, Karlsruhe, Germany). Imaging of the 96 well plates was done on a 

"Scan^R" high content screening microscope (Olympus Biosystems, Munich, 

Germany) with a SWAP plate gripper (Hamilton, Switzerland), a 2x objective (Plan-

Apo, Olympus, Germany) and an Olympus Biosystems DB-1 (1300x1024 pixels) 

camera in bright field and with CFP, YFP filter cubes. Image integration times were 

fixed (180ms CFP and 1000ms for YFP). Central focal plane of the embryo was 

detected by an object detection auto-focus algorithm. Each embryo was acquired with 

four z-slices (55µm) and projection was performed. Light source was an ultra stable 

MT-20 (Olympus Biosystems, Munich, Germany) with a xenon lamp. Data 

management, thumbnail gallery generation, data compression was carried out via an 

assembly of LabView software modules (National Instruments, Germany). 

3.6.2 Embryo referencing, overlay of experiments and normalisation  

All the algorithms were written and performed by Markus Reischl (IAI, FZK, 

Karlsruhe, Germany). 

Images were processed by an automated computer vision routine using bright 

field images (showing a high contrast and small structures) and CFP images (to find 

outlines and to remove dirt objects) to gather embryo morphology and reporter 

expression information (Detailed description of all algorithms are described in Reischl 

et al., manuscript in preparation). Errors caused by noise, dirt or malformed embryos 

were suppressed. The exact outline of the embryo was extracted from the inverted 

monochrome CFP image using histograms, dynamic thresholds, opening algorithms, 

binary largest object algorithms, hole filling algorithms and low pass filtering. The 

alignment of the embryos was identified by a regression routine. To save computation 

time, the images were cropped to contain only the embryo. The cropped aligned 

image was checked for errors of detection (e.g. empty wells, embryos out of focus, 

malformed embryos etc.), and images with gross errors were discarded. Embryos not 

reaching a minimum level of CFP activity (uninjected) and top 5% of embryos having 

the highest venus expression were excluded from quantification analysis. 
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A final image was generated from the 4 YFP and CFP aligned images taken at 

different planes per embryo by an extended depth of field algorithm using a 5-fold 

wavelet analysis (Daubechies wavelets). Furthermore, background yolk fluorescence 

and saturated areas were deduced in the YFP images. To handle contrast differences 

and noise effects a robust mathematical model was fitted to each embryo by a new 

model based regression analysis. A model function for the ventral and the dorsal side 

was introduced. Parameters for the model functions were adapted to an outline 

resulting from a greyscale threshold obtained by a histogram of the CFP image. 

Similar algorithms were applied to the bright field image to detect embryo domains. 

Each model function was used to define characteristic landmarks and coordinate 

systems within the embryo image.  

A data mining routine evaluated validity and reproducibility of all experiments 

to allow merging of repetitions. To gain reliable results, the minimum number of 

embryos for the analysis of a construct was set to 25, which provided a reliable 

indicator of domain specificity (effect of number of analysed embryos on the rate of 

error is described in Reischl et al., in preparation). 

3.6.3 Definition of domains of the prim 16 stage zebrafish embryo: 

Based on the expression patterns of the chosen enhancers (summarized in Table 

2) the following tissues – anatomical regions were chosen for the quantitative 

analysis: eye, brain, cerebellum, heart, notochord, and spinal chord. After injection of 

distinct constructs high levels of Venus expression was observed in the yolk, the yolk 

plug and the skin, so these tissues were chosen for the signal quantification as well, 

and finally the signal coming from the yolk structures were removed from the 

overlays. Domains of the embryo were arbitrarily defined to include but not restricted 

to characteristic features/ tissues of the zebrafish embryo as below. Domain of the 

heart: the region containing the heart was defined as the curved keel shape territory 

bordered by the ventral brain dorsally and the yolk cell ventrally. The anterior 

boundary was arbitrarily set as the line between the anterior tip of the brain (olfactory 

placode) and the ventral joint between the yolk ball and yolk extension. The posterior 

boundary is defined by the line between the posterior end of the retina and the ventral 

joint between the yolk ball and yolk extension. Domain of the yolk: this domain 

includes the yolk ball and the yolk extension. Spinal cord domain: the anterior 

boundary of the domain containing the spinal cord was defined at 2 OVL (otic vesicle 
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length) posterior to the otic vesicle itself. The territory is posterior to this position, 

above the notochord and beneath the skin domain (also including somites). Brain 

domain: the domain is defined as the region anterior to the spinal cord excluding the 

notochord, the MHB and the retina. Notochord domain: this domain is defined by 

the notochord and starts anteriorly below the anterior end of the otic vesicle. Domain 

of the midbrain hindbrain boundary (MHB): this domain contains the MHB 

bordered by the two prominent vertical furrows anteriorly and posteriorly of the 

MHB, respectively. Thus, it includes tissue of the posterior part of the tectum and 

tegmentum, cerebellar tissue and tissue of rhombomere 1. Ventrally the domain 

extents to the floorplate. Domain of the eye: this domain contains the retina region 

including the lens placode and tissues between the eyes. Domain of the skin: this 

domain contains a stripe of a single cell width at the outline of the embryo (15 µm). 

The defined region contains mainly skin cells of the midsection and overlaps partially 

with the median fin fold. 
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4) Results and discussion 

4.1 Evolutionary conserved regions around the pax2 locus show 

differential enhancer activity with different promoter constructs 

Pax2 is a transcription factor involved in the development of the midbrain 

hindbrain boundary (MHB) organizer and specification of neuronal cell fates in 

vertebrates (Nornes et al. 1990). It is required for establishment of eng2 and eng3 

gene expression in the midbrain and MHB primordium during late gastrulation (Song 

et al. 1996; Lun et al. 1998), and plays role in kidney (Dressler et al. 1990), ear and 

eye (Nornes et al. 1990) development. In zebrafish and in fugu two orthologues are 

present, pax2a and b. In zebrafish they share 93% identity at amino acid sequence 

level, but the two genes are completely different in their 3’ and 5’ non-coding 

sequences (Pfeffer et al. 1998). pax2a expression is initiated at 8-9 hours post 

fertilization (hpf) in zebrafish embryos in two lateral stripes of the anterior neural 

plate. At 24hpf stage the expression is detected in the ventral retina and optic stalk, in 

the otic vesicle, in specific neurons of the hindbrain and spinal cord, in the pronephric 

duct and in the proctodeum (Krauss et al. 1991) (Figure 5.). pax2b is expressed in all 

these domains except in the pronephros, and differs from pax2a in the temporal onsets 

and transcription level at the otic region (Pfeffer et al. 1998; Picker A et al. 2002). 

 
Figure 5: In situ hybridization of wild type zebrafish embryo with pax2a probe 

The expression is visible in the ventral eye (VE), optic stalk (OS), midbrain-hindbrain boundary 

(MHB), hindbrain (HB) and spinal cord (SC) neurons, otic vesicle (OV), pronephros (P) and 

proctodeum (Proc). 

Although several pax2 enhancers have been identified, its cis-regulatory 

grammar is still not fully understood. For example, the elements that regulate the 

expression in the hindbrain and the MHB are clearly characterized: a 120 bp early 
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enhancer (at –3.7 kb position from the TSS of the mouse pax2) activates pax2 in the 

neural plate of late gastrula embryos, while pax2 transcription is subsequently 

maintained at the MHB by a 410 bp late enhancer at –2.8 kb (Pfeffer et al. 2002). 

Nevertheless, up to date there is only one report mentioning a regulatory region that is 

responsible for the eye expression. This not further characterized pax2 optic stalk 

enhancer is located within a 9kb region upstream to the mouse pax2 TSS (Schwarz et 

al. 2000). 

4.1.1 Identification of conserved non-coding sequences in the pax2 locus 

Our major aim was to identify those enhancer elements, which drive the 

expression of pax2 into the developing vertebrate eye. As the proteins and their 

expression patterns are highly conserved between mammals and fish, and as several 

already described enhancers were shown to be conserved between human, mouse and 

fugu (Pfeffer et al. 2002), Sandro Banfi et al. (TIGEM, Naples, Italy) performed 

phylogenetic footprinting using the fugu, mouse and human genomic DNA around the 

orthologous pax2 regions by using Vista (Mayor et al. 2000). They have chosen those 

regions, which shared more than 75% homology between the human and fugu 

sequences. They named the identified conserved non-coding sequences as CSTs, and 

numbered them related to their genomic position (Table 4., Figure 6.).  

Associated with Amplified from Length Distance from TSS (in bp) CST pax2a pax2b  (in bp) in human in fugu 
1 + + pax2b 175 135849 59378 
2 + + pax2b 483 134988 58799 
3 + + pax2b 203 133424 58164 
4 + + pax2b 168 126044 51446 
5 - + pax2b 172 102954 39736 
6 - + pax2b 228 99116 35755 
7 + + pax2b 339 94367 31521 
8 + + pax2b 528 93521 30990 

10 - + pax2b 166 92332 30052 
11 - + pax2b 150 85585 23934 
12 - + pax2b 223 80532 22493 
13 - + pax2b 195 78033 20634 
14 + + pax2b 724 61235 16027 
17 + + pax2b 182 7527 1915 
18 + - pax2a 172 120609 40062 
19 + - pax2a 224 89269 24050 
20 + - pax2a 124 36196 7178 
21 + - pax2a 153 35098 5588 

Table 4: Properties of the conserved non-coding sequences analysed in the screen 
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Figure 6: The genomic position of the tested CSTs amplified from fugu pax2b (numbers on top) and 

pax2a (numbers on the bottom) genomic regions. 

They amplified the corresponding fugu sequences, containing the conserved 

regions plus several tens of base pairs of flanking DNA. I tested these PCR products 

for enhancer activity with different promoter-reporter constructs in developing 

zebrafish embryos. 

4.1.2 CSTs show enhancer activity when co-injected with the endogenous promoter  

First I used an endogenous promoter construct, the 5.3kb zebrafish pax2a 

promoter followed by a gfp tag (Picker A et al. 2002) for the enhancer-assays. This 

promoter drives expression of the reporter to the MHB, otic placode, hindbrain, spinal 

cord and pronephros (Picker A et al. 2002). To verify the expression gained with the 

promoter construct, I injected the isolated linearized fragment to one-cell stage 

zebrafish embryos, and detected the fluorescence in a concentration dependent 

manner at 24hpf stage: in the forebrain, hindbrain, at the MHB, in the spinal cord, 

pronephric duct and ventral mesoderm (50ng/µl), or in the hindbrain, forebrain and 

MHB (10 ng/µl). 

I performed co-injections of the PCR fragments using the lower concentration 

of the promoter construct, fixed the embryos at 24hpf stage, and performed in situ 

hybridization (ISH) with a gfp-specific probe. The staining provided the possibility of 

detailed expression domain analysis. I counted the gfp-expressing cells, and collected 

the staining patterns into composite expression maps from head preparations, because 

the optic stalk is only visible from dorsal view. In this set of co-injection experiments 

CST4, 7, 10, 14 and 18 resulted in the enhanced appearance of the gfp transcript in the 

ventral retina and/or optic stalk (Figure 8. and 10.A), while CST2, 17 and 18 turned be 

a kidney enhancer, and co-injection of CST10 and 20 resulted in expression of the 

reporter in the otic vesicle (Table 5.).  
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Figure 8: Expression maps from the head preparations  

A: A head preparation of an embryo after ISH with pax2a-specific probe. B-E: Expression maps 

collected from roughly 30 embryos. The CSTs were co-injected with the 5.3kb pax2a-gfp construct, 

and the embryos were subject to ISH with a gfp-specific probe. B: pax2a-gfp promoter only, C: pax2a-

gfp co-injected with CST7, D: pax2a-gfp co-injected with CST17, E: pax2a-gfp co-injected with 

CST18. 

4.1.3 Different results gained when hsp68 minimal promoter was used 

To test whether the pax2a promoter is required for the activity of the tested 

conserved non-coding sequences, and to get rid of the basal eye-activity of the 

promoter construct detected by ISH, the whole set of CSTs were co-injected with a 

heterogonous promoter as well. The minimal promoter of the mouse heat shock 

protein 68 (hsp68) (Kothary et al. 1989) was chosen, as it has been shown to have 

weak basal activity, but its expression was enhanced by tissue-specific enhancers in 

transgenic mice (Tuggle et al. 1990) and in zebrafish as well (Muller et al. 1999). 

After co-injections of the CST fragments with the linearized hsp68-lacZ construct I 

mildly fixed the 24hpf stage embryos, checked for LacZ activity, and took the 

expression maps (Figure 10.). As a positive control I used the well characterized 

notochord enhancer, the sonic hedgehog activation region C (shh arC) (Muller et al. 

1999).  

The hsp68 promoter itself hardly turned on the reporter gene expression, while 

shh arC gave enhanced expression in the notochord, as expected. Several CSTs 

showed enhancer activity in pax2-specific domains: like CST7, 8, 10, 14 and 18 

directed the lacZ expression to the eye and the ventral retina (Figure 10.B), CST8 and 

17 showed activity in the developing kidney, while the co-injection of CST6, 8, 14, 17 

and 18 resulted in reporter expression in the spinal cord (Figure 9., Table 5.). 
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Figure 9: Expression maps of the CSTs co-injected with hsp68 promoter. 

The expression maps were collected from approximately 50 embryos after X-Gal staining. The green 

dots represent pax2a-specific expression patterns, the red ones represent ectopic activation of the lacZ 

reporter. 

 

 
Figure 10: The number of reporter-expressing retina and optic stalk cells in the co-injected embryos, 

normalized by the total embryo number. A: for the CSTs co-injected with the 5.3kb pax2a promoter, B: 

for the CSTs co-injected with the hsp68 promoter. 
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The results gained with the two promoters are partially overlapping. The number 

of expressing cells normalized by the expressing embryo number in the two co-

injection systems is comparable. The major “outlier” is the CST18, it activated the 

expression of the pax2a promoter-driven reporter in twice as much cells in the optic 

stalk and retina, compared to other CSTs and the control, and four times more 

compared to the CST18 co-injected with the hsp68 promoter (Figure 10.). Some 

elements showed eye and optic stalk expression only when co-injected with one 

promoter, like the CST4 gave retina expression with the pax2a-gfp construct, but not 

with the other, or the CST8 and CST20 vice versa (Table 5.). 

 

  MHB HB SCN PD OV OS, R   MHB HB SCN PD OV OS, R 
pax2 + + + - - - hsp - - - - - - 
ArC - - - - - - ArC - - - - - - 

1 - - - - - - 1 - - - - - - 
2 - - - + - - 2 - - - - - - 
3 - - - - - - 3 - - - - - - 
4 + + - - - + 4 + + - - - - 
5 - - - - - - 5 - - - - - - 
6 - - - - - - 6 + + + - - - 
7 + - - - - + 7 - - - - - + 
8 - - - - - - 8 - - + + - + 

10 - + + - + + 10 - - - - - + 
11 - - - - - - 11 - - - - - - 
12 - - - - - - 12 - - - - - - 
13 - - - - - - 13 - - - - - - 
14 - + + - - + 14 + + + - - + 
17 - + + + - - 17 - + + + - - 
18 - + + + - + 18 - + + - - + 
19 + + - - - - 19 + + - - - - 
20 + + - - + - 20 + + - - - + 
21 - - - - - - 21 - - - - - - 

Table 5: Summary of the enhancer activities of the CSTs tested with the two promoters 

A: Summary of the co-injections performed with the pax2a-gfp promoter, B: summary of the co-

injections performed with the hsp-lacZ promoter. Elements highlighted with light colours showed 

pax2-specific enhancer activity, while the ones highlighted with dark colours enhanced the reporter 

activity in the optic stalk and/or retina. MHB: midbrain-hindbrain boundary, HB: hindbrain, SCN: 

spinal cord neurons, PD: pronephric duct, OV: otic vesicle, OS: optic stalk, R: ventral retina. 
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When comparing other pax2-specific expression domains, more differences are 

visible between the two data series (Table 5.). While CST4, 19 and 20 were able to 

activate both promoters in the midbrain hindbrain boundary and in the hindbrain, 

CST7 was MHB-specific with the endogenous promoter, and CST6 and 14 showed 

MHB- and hindbrain-expression with the hsp68-lacZ construct. The CST14, 17 and 

18 were driving the reporter expression to the hindbrain and spinal cord with both 

promoters, only the pax2a promoter was activated by the CST10, while the hsp68 

promoter with the CST6 and 8 in the spinal cord. When co-injected with the pax2a 

promoter, CST2, 17 and 18 could activate pronephric expression, while the hsp68-

lacZ construct was activated by the CST8 and 17 in the embryonic kidney. No otic 

vesicle expression could be observed when the CSTs were co-injected with the hsp68 

promoter, while the CST10 and CST20 was able to activate the pax2a promoter in the 

developing ear.  

The fact that CST17 showed hindbrain, spinal cord and pronephros enhancer 

activity with the hsp68 promoter confirms the co-injection experiments, as the pax2a 

promoter itself, which contains the CST17, has the ability to drive the expression into 

these domains. 

4.1.4 Verification of the co-injection by injecting covalently joint fragments 

Co-injection of linear DNA fragments, like cis-regulatory elements and 

promoters followed by a reporter gene is a fast method for testing putative enhancers. 

It does not require the generation of expression construct, the amplified sequences can 

be simply mixed with the linearized promoter construct in a reaction tube (Muller et 

al. 1997). To verify the specificity of the expression domains gained by co-injection, 

those fragments, which showed enhancer activity in ventral retina and optic stalk in 

both reporter systems, namely CST7, 10, 14 and 18 were cloned in front of the 

hsp-lacZ cassette, and I injected these as circular plasmids into zebrafish embryos. 

The low-concentration plasmid injections (Uemura et al. 2005) resulted in less 

background in non-related tissues, such as muscle and notochord, compared to the co-

injections, but the specificity of eye-expression was indifferent in all cases (Figure 

11.). The major difference observed was that the co-injected fragments turned on the 

reporter expression in the spinal cord neurons, while the covalently joint fragments 

did not. 
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Figure 11: Verification of the co-injection with covalently linked enhancers 

Expression maps from roughly 50 embryos. The embryos were co-injected with the hsp promoter and 

the CSTs (A-F) or injected with the plasmids containing the CSTs in front of the promoter construct 

(G-L), then stained with X-Gal. A, G: expression map of the hsp68-lacZ promoter. B, H: CST7, C, I: 

CST10, D, J: CST14, E, K: CST17, F, L: CST18. The green dots represent pax2-specific expression 

patterns, the red ones represent ectopic activation of the lacZ reporter. 
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4.1.5 Discussion 

Conserved non-coding sequences upstream from pax2 genes with enhancer activity 

Pax2, together with Pax6, plays an important regulatory role in vertebrate eye 

development during embryogenesis. pax2 is expressed in the ventral half of the optic 

vesicle during early eye morphogenesis (Nornes et al. 1990; Torres et al. 1996), and 

shortly after the invagination of the optic cup it becomes confined to the optic stalk 

(Nornes et al. 1990; Torres et al. 1996). The developing optic cup/optic stalk border is 

marked by overlapping pax2 and pax6 expression domains (Nornes et al. 1990; 

Walther et al. 1991). The pax6-expressing pigmented epithelium of the retina has 

been shown to expand in the pax2 mutant embryos, invading the optic cup/optic stalk 

boundary (Torres et al. 1996). Moreover, it was demonstrated that Pax6 was sufficient 

to repress transcription of a reporter gene driven by pax2 enhancer sequences and vice 

versa (Schwarz et al. 2000). Despite the fact that only the ventral retina is pax2-

specific, I collected the expression information from the whole retina for the cell-

counts,due to the potential shift of the expression domains upon injection of promoter 

and enhancer fragments of the pax2 gene, potentially disturbing the physiological cis-

regulatory element – transcription factor ratio. 

Conserved non-coding sequences around the pax2 loci showed enhancer activity 

in transient zebrafish tests. Numerous amplified fugu fragments containing the 

conserved sequences were able to drive expression of reporter genes into pax2-

specific domains upon interaction with the endogenous zebrafish pax2a and the 

heterologue mouse hsp68 promoter. I demonstrated that four conserved non-coding 

sequences (CST7, 10, 14 and 18) could drive the reporter expression into the 

developing eye and optic stalk of zebrafish embryos with two different promoter 

constructs.  

Lessons from methodology 

I used different techniques to detect the expression of the transient transgene 

during the enhancer assays. First I detected the fluorescent protein (expressed from 

the pax2a-gfp construct) under epifluorescent microscope, but checking GFP 

expression at a defined stage in large number of living embryos was not feasible. 

Thus I fixed the injected embryos at 24hpf stage, and performed in situ hybridisation. 

This staining is a sensitive method of labelling the transcript of the reporter. This 
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could be the reason why I could not observe fluorescent signal in the retina or optic 

stalk of the embryos injected with low plasmid concentration, while the ISH stained 

embryos showed some background retina expression, even when the same plasmid 

concentration was used.  

As the hsp68 promoter construct by itself did not show any significant 

expression in any pax2-specific domains, the appearance of signal in the optic stalk or 

in the retina upon co-injection of fragments clearly indicated eye-specific enhancer 

activity. The hsp68 promoter is cloned in front of the lacZ cassette, therefore I 

performed X-Gal staining to detect the enhancer activity of the co-injected fragments. 

This staining methods is based on enzymatic reaction of the expressed protein, thus 

gives information about the expression on the protein level. The X-Gal staining is 

even faster and less laborious then the ISH - the fixation and the following staining is 

done in one day, moreover it gives the possibility of later ISH over the stained 

embryos  

Verification of the co-injections by covalently cloned fragments 

The co-injection experiments with the hsp68 promoter were verified by 

constructs where fragments were covalently cloned in front of the promoter. The 

consequent enhancer activity of CST7, 10, 14 and 18 in the retina and/or optic stalk in 

these experiments indicate that co-injection of isolated linear DNA sequences is a 

reliable methods for fast enhancer assay. 

Partially different enhancer activity is observed with different promoters 

The majority of the CSTs behaved differentially when co-injected with the two 

promoter constructs. The partially overlapping results (summarized in Table 5.) can 

arise from different sources. First of all, the 5.3kb zebrafish pax2a promoter is not a 

basal promoter, it contains enhancer elements that drive expression of pax2 into the 

MHB, hindbrain, otic placode, spinal cord and pronephros (Picker A et al. 2002), and 

the conserved sequences may cooperate with these other enhancers. Second, several 

enhancers were shown to be promoter-specific, including the pax2 early MHB 

enhancer (Picker A et al. 2002), so the enhancers may only interact with the 

endogenous, but not with the hsp68 promoter. To rule out the first potential cause, 

extra experiments with the pax2a core promoter would be needed to perform.  
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4.2 Shuffled conserved sequences show enhancer activity, even if not 

related to transcription factor or developmental regulator genes 

Comparative analysis of the mammalian and fish genomes revealed in 

conserved elements, which shared extremely high degree of homology (Bejerano et 

al. 2004; Iwama et al. 2004; Plessy et al. 2005; Woolfe et al. 2005). All these studies 

concluded that conserved non-protein coding sequences working as enhancers were 

significantly enriched in or around developmental regulators and/or transcription 

factor genes. But is this observation restricted to developmental genes? 

In collaboration with Remo Sanges and Elia Stupka (CBM, AREA Science 

Park, Basovizza, Trieste, Italy) we were focusing on the extent, mobility and function 

of conserved non-coding elements across vertebrate orthologous loci. The 

collaborating partners developed a new tool to identify regionally conserved elements 

(rCNEs), which were not exclusively associated with genes falling into developmental 

or transcription factor GO categories. They extensively analyzed these elements, and 

later I tested a subset of these for enhancer activity in zebrafish embryos. 

One of the major drawbacks of current comparative studies is that they rely on 

methods for local alignment, such as BLAST (Altschul et al. 1990) and FASTA 

(Pearson et al. 1988), which were developed when the majority of available sequences 

to be aligned were coding. It has been shown that such algorithms are not as efficient 

in aligning non-coding sequences (Bergman et al. 2001). Recently two approaches 

have been published which provide novel alignment strategies: the promoter-wise 

algorithm coupled with “evolutionary selex” (Ettwiller et al. 2005), and the CHAOS 

alignment program (Brudno et al. 2003a). Unlike other fast algorithms for genomic 

alignment, CHAOS does not depend on long exact matches, it does not require 

extensive ungapped homology, and it does allow for mismatches within alignment 

seeds, all of which are important when comparing non-coding regions across distantly 

related organisms. Thus in this project, CHAOS was used for the identification of 

short conserved regions that have changed their location during vertebrate evolution. 
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4.2.1 The identification and computational analysis of regionally conserved elements 

All genes, for which there were predicted orthologs within the Ensemble 

(Birney et al. 2006) in the mouse, human and either in the rat or dog genome, were 

subject to the analysis, 9.749 gene groups in total. For each group of orthologous 

genes global multiple alignment was performed using MLAGAN (Brudno et al. 

2003b). For each locus, the whole repeat-masked sequence was used, containing the 

transcriptional unit as well as the flanking sequences up to the preceding and 

following gene. The alignments were parsed using VISTA (Mayor et al. 2000), 

searching for segments of minimum 100 bp length and 70% identity. From the gained 

dataset, those regions were chosen, which were found at least in mouse, human, and a 

third mammalian species, and which overlapped by at least 50bp. 77,3% of the total 

364.358 rCNEs were shown to be non-genic. These non-coding conserved elements 

were further annotated based upon their position in the mouse genome with respect to 

the gene locus to define categories of pre-gene, intronic or post-gene elements.  

Conservation of the rCNEs were found in teleost genomes using CHAOS 

alignment tool, with the criteria of at least 60% identity over a minimum length of 

40bp (the mouse rCNE sequences were used as baselines). Regions of the mouse 

genome that were conserved at least in the fugu orthologous loci were termed as SCEs 

(shuffled conserved elements). The analysis identified 21.427 non-redundant non-

genic SCEs, which were found in about 30% of the genes analyzed. 

The SCEs, which had a median length of 45bp and a median percentage identity 

of 67%, were investigated if they have shuffled in terms of position and orientation 

relative to the transcriptional unit. The results of this revealed that only 28% of the 

elements identified have retained the same orientation and same position (labelled as 

“collinear”), whereas others have been shifted in terms of orientation (labelled as 

“reversed”), position (“moved”), or both (“moved-reversed”) (Figure 12.).  

The genes associated with the SCEs were analyzed in terms of gene ontology 

(GO). Although there is a significant over-representation of gene classes of 

transcription factors and developmental regulators, there are other GO categories that 

are significantly under-represented in other studies (Woolfe et al. 2005). Most 

strikingly, there is 54-fold enrichment in genes belonging to the extracellular regions 

that contain SCEs, and SCEs were identified in 40% of genes assigned to the 
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behavioural GO class. These results show, that this type of analysis found not only 

higher number of conserved non-coding elements, but elements, which are assigned to 

different types of genes as well. Finally the shuffling properties of the SCEs were 

analyzed in relation to their distance from the transcriptional unit. Collinear elements 

are distributed significantly closer to the start and the end of the transcriptional unit 

compared with non-collinear (moved, reversed and moved-reversed) elements. The 

higher resolution analysis of the regions poor in shuffling revealed that proximal 

promoter regions (approximately 1000bp upstream of the TSS) contained 

significantly less shuffled elements. 

 
Figure 12: Shuffling categories of SCEs 

 

 66



  Results and discussion 

 

4.2.2 Analysis of shuffled conserved elements for enhancer activity 

To verify the ability of SCEs to predict functional enhancer elements, an overlap 

analysis was performed with 98 already published mouse enhancers present in 

Genbank. Compared to the previous datasets of conserved non-coding elements (one) 

and ultraconserved elements (two), the SCEs contained eighteen of these already 

known enhancers. 

The next step was the in vivo analysis of several shuffled conserved elements. 

Twenty-eight SCEs were amplified from the fugu genome and I co-injected these 

fragments into one-cell stage zebrafish embryos together with the isolated fragment of 

the minimal mouse hsp68 promoter construct (hsp68-lacZ). Four out of these 

elements overlapped with known mouse enhancers, the activity of these in zebrafish 

was not previously reported. The remaining 23 elements were assigned to twelve 

genes; four of them were not belonging to transcription factor or developmental 

regulator GO categories. As an enhancer control, the already well described sonic 

hedgehog activation region C (shh arC) was used (Muller et al. 1999). As a negative 

control set twelve non-coding, non-repeated and non-conserved fragments were 

chosen for co-injections, of which nine were from the same genomic regions as the 

SCEs, three were from random genes. Table 6. summarises the properties of the SCEs 

and controls used in the test. 

I co-injected all fragments (SCEs and controls as well) at least three times, 

collected the embryos at 24hpf stage, mildly fixed in BT-Fix, and performed X-Gal 

staining. I counted the LacZ positive cells per each embryo and determined the tissues 

where the stained cells appeared. Due to the chosen concentrations of the co-injected 

DNA molecules, the tested fragments induced the lacZ expression only in few cells in 

the co-injected embryos (Figure 13.), but this setting provided us great specificity. I 

plotted the X-Gal stained cells into composite expression maps representing 

approximately 130 embryos per SCEs.  

The gained expression patterns were compared with expression data retrieved 

from the Zebrafish Information Network (http://zfin.org). Based upon the expression 

domains of the assigned genes, I determined the lacZ expression in the following 

tissues or embryo regions: muscle, notochord, central nervous system (CNS), eye, ear 

and blood vessels. The YSL was excluded from the cell-counts. 
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Gene SCE ID enhancer Length of Length of Mouse  Fugu injected expressing % of Embryos 

  effect element (bp) PCR (bp) region region embryos embryos Expressing LacZ

no element - - N/A N/A   161 97 58,2 

Shh ArC + N/A 500 N/A N/A 96 87 90,6 

 12058 - 45 749 INTRON INTRON 139 88 62,3 

Otx2 2894 + 51 527 POST_END PRE_GENE 111 83 74,7 

Gata3 2755 - 40 380 POST_END INTRON1 107 79 73,8 

Ets 1645 + 40 522 PRE_TSS POST_GENE 105 66 62,9 

 1646 + 46 715 PRE_TSS INTRON1 133 82 61,7 

 1652 + 41 668 INTRON1 POST_GENE 159 93 58,5 

 1653 + 48 695 INTRON1 INTRON2 149 80 53,7 

Pax2b 333 + 39 543 PRE_GENE PRE_GENE 149 86 57,7 

Pax6a 1194 + 33 265 INTRON6 PRE_GENE 133 93 69,9 

Pax3 2598 - 42 670 PRE_TSS POST_GENE 124 68 54,8 

1300007F04Rik* 44 - 42 710 POST_END POST_GENE 107 55 51,4 

Zfpm2 691 + 48 562 PRE_TSS POST_GENE 140 94 67,1 

 692 + 48 549 PRE_TSS INTRON2 131 113 86,3 

Tmeff2* 1050 + 48 771 INTRON4 INTRON4 164 127 77,4 

 1051 + 38 648 INTRON4 PRE_GENE 120 108 90 

 1052 + 51 570 INTRON4 PRE_GENE 109 83 76,1 

Jag1b 3120 - 37 453 PRE_TSS PRE_GENE 136 105 77,2 

 3121 + 55 278 PRE_TSS PRE_GENE 142 91 64,1 

 3122 - 44 543 PRE_TSS PRE_GENE 106 80 75,5 

Mapkap1 1972 + 37 648 INTRON1 PRE_GENE 143 102 71,3 

 1973 + 39 272 PRE_GENE PRE_GENE 136 93 68,4 

Mab21l2 4939 + 42 580 PRE_GENE PRE_GENE 142 123 86,6 

 4940 + 37 348 PRE_GENE PRE_GENE 155 137 88,4 

Hmx3 2032 + 150 792 PRE_GENE POST_GENE 165 98 59,4 

Lmx1b1 4049 + 300 763 INTRON2 PRE_GENE 116 95 81,9 

3110004L20Rik* VF_5491 - 45 700 PRE POST 65 27 41,5 

 VF_5492 + 39 863 INTRON PRE 122 113 92,6 

Elmo1 FF_6026 - 45 759 INTRON INTRON 103 75 72,8 

Ets ctr VC_11216 - - 613  INTRON2 104 59 56,7 

Gata3 ctr VC_3255 + - 704  POST_GENE 174 127 72,9 

1300007F04Rik ctr VC_2797 - - 913  POST_GENE 157 120 76,4 

Tmeff2 ctr VC_198 - - 656  INTRON4 145 50 34,5 

Mab21l2 ctr VC_909 - - 576  PRE_GENE 165 108 65,4 

3110004L20Rik ctr VC_410 - - 769  INTRON2 107 34 31,7 

Elmo1 ctr VC_10157 - - 780  PRE_GENE 146 99 67,8 

Shh ctr VC_11271 - - 633  PRE_GENE 165 128 77,5 

Impact ctr VC_5990 + - 596  INTRON4 150 112 74,7 

Ubl7 ctr VC_268 + - 682  POST_GENE 117 93 79,5 

Lmx1b1 ctr VC_11767 - - 536  POST_GENE 116 43 37,1 

Irx3 ctr VC_5945 - - 550  POST_GENE 93 35 37,6 

Table 6: The summary of the analysed SCEs and controls 

SCEs are grouped under the name of the closest genes. The * mark indicates genes where only a 

predicted zebrafish homologue found. The length of the element indicates the length of the conserved 

sequence, while the size of the actual fragment is shown in the length of the PCR product column. The 

position of the fragments in mouse and in fugu indicates the tendency of the mobility. 
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In general, the additional DNA molecules (both control or SCE fragments) 

enhanced the expression of the promoter construct (Figure 13.), thus detailed mapping 

of the expression patterns and statistical analysis were needed for the determination of 

significant enhancer activity. Probably due to the properties of the promoter, the 

reporter expression was upregulated in muscle cells by almost all fragments (Figure 

14.A-B), while only some fragments could increase the lacZ expression in other 

tissues like the notochord (Figure 14.C-D), the central nervous system (Figure 14.E-F) 

or the endothel of the developing vascular system (data not shown). 

 
Figure 13: The lacZ-expressing cells per embryo ratios for the analysed SCEs and controls 

The cell-counts were used to define statistically which fragments exhibited 

tissue-restricted or general enhancer activity. The number of expressing cells, for each 

co-injection and for each tissue, was compared with the number of expressing cells of 

the negative controls, when the average of cells expressing lacZ in the injected 

embryos were higher than in the control. When lacZ expression was increased in 

particular tissues, Fisher exact tests were used on the dataset, and a P value cut off 

0.01 was used to classify a fragment as a tissue-restricted enhancer. The identification 

of the generic enhancers was performed by establishing the average and standard 

deviation of the number of expressing cells per embryo in the control group. Those 

fragments were classified as generic enhancers, in which the number of expressing 

cells per embryo was higher than the average plus twice the standard deviation of the 

control fragments. As one control fragment (a control for ubl7) had an extremely high 

activity in the central nervous system and in the notochord, this fragment was 

excluded from the calculations of the average and standard deviation. 
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Figure14: The lacZ-positive cells per embryos ratios in distinct tissues 

A: The lacZ-positive cells per embryo ratios in the muscle for the analysed SCEs, B: for the controls.        

C: The expressing cells per embryo in the notochord for the analysed SCEs, D: for the controls. E: The 

lacZ-positive cells in the central nervous system per embryo ratios for the analysed SCEs, F: for the 

controls. 

Based upon the statistical analysis, 22 out of the 28 fragments (representing 

79%) showed enhancer activity; while only 3 out of the 12 investigated controls 

(25%) were positive in the enhancer assay (Table 7.). Twenty out of the 22 SCEs with 

enhancer activity turned to be tissue-specific, from which 6 were fragments assigned 

to non trans-dev genes. From the control group, all three fragments showing enhancer 

activity were tissue-specific. These results indicate a broader range of conserved cis-

regulatory elements than previously described. 
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Vicinal Gene 
 

trans- 
dev 

SCE ID 
 

injected 
embryos 

muscle 
 

notochord
 central nervous system eye 

 
ear 

 
vessels 

 

no element N - 161             

Shh Y  ArC 96   8,48E-07         

  12058 139 6,86E-09           

Otx2 Y 2894 111 0,644   0,00627 0,5536 0,3155   

Gata3 Y 2755 107     0,398 0,5764 0,1906   

Ets Y 1645 105     0,00259     4,78E-09

   1646 133     0,1558 0,6015 0,3619 2,15E-06

   1652 159     0,05534 0,6136 0,1485 2,08E-06

   1653 149     0,0444 0,129 0,07924 1,30E-05

Pax2b Y 333 149    0,00237 0,06327 0,1902   

Pax6a Y 1194 133     8,2E-06 0,3343 0,01268   

Pax3 Y 2598 124 0,02982   0,5287 1     

1300007F04Rik N 44 107 0,2929           

Zfpm2 Y 691 140     1,49E-06 0,01296 1   

   692 131     3,58E-04 0,04369 0,1231   

Tmeff2 N 1050 164     0,7654 0,02301 0,3371   

   1051 120 1,04E-03   0,303 0,2088     

   1052 109     6,31E-04 0,0149 0,5862   

Jag1b Y 3120 136     0,1849 1 1   

   3121 142     5,45E-08 6,52E-03 0,3245   

   3122 106     0,5088 1 0,5058   

Mapkap1 N 1972 143     0,05292 0,3788 0,6065   

   1973 136     4,04E-03 0,5973 0,077   

Mab21l2 Y 4939 142     1,24E-07 4,99E-03 0,2339   

  Y 4940 155     7,85E-08 4,14E-03     

Hmx3 Y 2032 165     0,00103 0,07062 0,01423   

Lmx1b1 Y 4049 116     0,00762 0,1876 1   

3110004L20Rik N VF_5491 65 0,2929           

   VF_5492 122 0,1874 0,01209         

Elmo1 N FF_6026 103 7,13E-03 0,6848         

Ets ctr Y VC_11216 104 1         0,6954 

Gata3 ctr Y VC_3255 174 0,04481   0,281 0,5739 0,0216   

1300007F04Ri ctrk N VC_2797 157             

Tmeff2 ctr N VC_198 145 0,7448   0,6597   0,3651   

Mab21l2 ctr Y VC_909 165 0,06359   1 1 1   

3110004L20Rik ctr N VC_410 107             

Elmo1 ctr N VC_10157 146 0,287 0,8126         

Shh ctr Y VC_11271 165 3,34E-07   1 1 1   

Impact ctr Y VC_5990 150 0,6496   0,2754   0,0622   

Ubl7 ctr N VC_268 117 3,33E-04   7,15E-11 0,02555 0,6097   

Lmx1b1 ctr Y VC_11767 116 0,2743       0,0707   

Irx3 ctr Y VC_5945 93 0,03938           

Table 7: The results of the statistical analysis for the SCEs 

The red label indicates statistical significant enhancer activity. 
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In several cases, multiple SCEs found within a single gene locus gave similar 

tissue-specific enhancer activity. For example, all four SCEs tested from the ets1 

locus gave expression in the endogenous ets1-specific expression domains, namely in 

the developing blood vessels and blood precursors (Thisse 2004) (Figure 15.). 

 
Figure 15: Expression profiles of the embryos co-injected with the ets1 fragments. 

A: ISH performed with ets1-specific probe, downloaded from the zfin database. ets1 is expressed in the 

neural crest and in the blood vessels around the retina, in the metencephalon, in the ventral truck. The 

expression maps below represent approximately 120-150 embryos. B: hsp68-lacZ minimal promoter-

reporter construct, C: fg11216 is a non-conserved control fragment from the ets1 genomic region, co-

injected with hsp-lacZ, D-G: SCEs located in the ets1 genomic region, co-injected with hsp-lacZ. 

Both elements tested from the mab21-like2 genomic region gave central nervous 

system (CNS) and eye specific enhancer activity, but the strength of the two SCEs 

was significantly different. Both fragments directed the reporter activity into ectopic 

brain regions as well, as the endogenous mab21l2 is not expressed in the 
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telencephalon, while the LacZ staining was quite strong in the forebrain for the 

embryos co-injected with the mab21l2 associated fragments. The negative control for 

this genomic region gave no brain expression at all (Figure 16.).  

 

Figure 16: Expression profiles of the embryos co-injected with the mab21l2 fragments. 

A: ISH performed with mab21l2-specific probe, downloaded from the zfin database. mab21l2 is 

expressed in restricted areas of the CNS, like the eyes, midbrain and some neurons in the spinal cord. 

The expression maps below represent approximately 120-150 embryos. B: hsp68-lacZ minimal 

promoter-reporter construct, C: fg909 is a non-conserved control fragment from the mab21l2 genomic 

region, co-injected with hsp-lacZ, D-E: SCEs located in the mab21l2 genomic region, co-injected with 

hsp-lacZ. 
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Both elements for the zfpm2 (the homologue of fog2) gave CNS-specific 

enhancer activity, which is in accordance with the reported expression pattern of the 

endogenous gene in zebrafish (Figure 17.). 

 
Figure 17: Expression profiles of the embryos co-injected with the zfpm2 fragments. 

A: ISH performed with zfpm2-specific probe, from (Walton et al. 2006). zfpm2 is expressed in some 

brain regions, in the heart and in the intermediate cell mesoderm. B: hsp68-lacZ minimal promoter-

reporter construct, C-D: SCEs located in the zfpm2 genomic region, co-injected with hsp-lacZ. 

In contrast, there were genomic regions from which only one out of several 

SCEs showed tissue-specific enhancer activity, the effect of the other fragments were 

comparable with the controls, based on the statistical calculations (Table 10.), like in 

the case of jag1b. Fragment 3121 gave specific expression in the CNS and in the eye, 

which is partially overlapping with the endogenous jag1b expression; it is expressed 

in the rostral end of the pronephric duct, in nephron primordia and in brain regions 

extending from the otic vesicle to the eye (Thisse 2004) (Figure 18.). 
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Figure 18: Expression profiles of the embryos co-injected with the jag1b fragments. 

At 24-hpf-stage jag1b is expressed in the pronephros and in the region extending from the otic vesicle 

to the eye. The expression maps represent approximately 120-150 embryos. A: hsp68-lacZ minimal 

promoter-reporter construct, B-D: SCEs located in the jag1b genomic region, co-injected with hsp-

lacZ. 

SCEs assigned to genes, which do not belong to transcription factor and/or 

developmental regulator (“trans-dev”) GO categories (mapkap1: mitogen-activated 

protein kinase associated protein 1, an integral membrane protein; tmeff2: a putative 

transmembrane protein, predominantly expressed in the mouse brain; elmo1: 

engulfment and cell motility 1 gene, homologue of C. elegans ced-12, involved in 

actin cytoskeleton organisation; and 3110004L20Rik: a transmembrane transporter 

protein), were tested for enhancer activity as well. mapkap1 is ubiquitously expressed 

(Thisse 2004), while elmo1’s expression is restricted to the central nervous system, 

lateral line primordial, lens, olfactory placode and blood vessels (Thisse 2004). For 

tmeff2 and 3110004L20Rik no expression data is available in zebrafish. Two SCEs 

assigned to mapkap1, two out of three SCEs assigned to tmeff2, two fragments from 

the 3110004L20Rik genomic region and one from the elmo1 locus activated the lacZ 

expression in distinct domains, showing significant enhancer activity (Figure 19.).  
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Figure 19: Expression profiles of the embryos co-injected with SCEs of non- “trans-dev” genes. 

A: hsp68-lacZ minimal promoter-reporter construct, B: a control fragment from the 3110004L20Rik 

genomic region, co-injected with hsp-lacZ. C: an SCE located in the 3110004L20Rik genomic region, 

co-injected with hsp-lacZ. No expression information is available for this gene. D-E: SCEs located in 

the mapkap1 genomic region, co-injected with hsp-lacZ. mapkap1 expression is not spatially restricted, 

based on (Thisse 2004). F-G: SCEs located in the tmeff2 genomic region, co-injected with hsp-lacZ. No 

expression information is available for this gene. 
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4.2.3 Discussion 

A new alginment method found more and diversed types of conserved noncoding 

sequences 

With the combination of a global and a local alignment method at the genome 

level, in this screen 21.427 non-genic shuffled conserved elements (SCEs) were 

identified; approximately 30% of the analysed genes presented at least one SCE. This 

number is roughly a magnitude higher than the number of highly conserved non-

coding sequences found by a previous similar approach (Woolfe et al. 2005). 72% of 

the elements identified were shifted in terms of orientation and/or position when 

compared in different species. Approximately 50% of SCEs do not overlap with 

previously reported datasets of conserved sequences, suggesting that the use of 

nonexact seeds for the initial local alignments has a significant impact on the analysis 

of noncoding DNA harbouring short, well conserved elements. This dataset overlaps 

only 45% of the UCE elements (Bejerano et al. 2004), and 51% of the CNEs (Woolfe 

et al. 2005) within the loci analyzed, probably because of the regional approach taken, 

which disregards elements conserved across nonorthologous loci. Detailed analysis of 

the shuffled elements showed that 1kb regions upstream of the TSSs showed less 

mobility, suggesting that the majority of non-coding conserved elements are located 

outside of these regions. 

Although there is a significant over-representation of gene classes of 

transcription factors and developmental regulators among the genes assigned to the 

SCEs, using this type of analysis we have found not only higher number of conserved 

non-coding elements, but elements assigned to different types of genes as well, like 

extracellular or behavioural genes.  

The majority of the tested shuffled consreved elements show enhancer activity in 

zebrafish 

The set of SCEs contained 18 from the 98 already published mouse enhancers 

present in Genbank, ten times more as the conserved non-coding (Woolfe et al. 2005) 

or the ultraconserved elements (Bejerano et al. 2004). Four out of these 18 mouse 

enhancers overlapped with the SCE-series I tested, and I could show the enhancer 

activity of their fugu counterparts in zebrafish. The relative evolutionary closeness of 
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fugu and zebrafish implies that expression and regulation of expression of 

developmentally regulated genes is probably well conserved (Miles et al. 2003; 

Woolfe et al. 2005). Only one of the fragments that we tested (SCE 1973 from the 

mapkap1 gene) overlaps with a UCE element. The overlap is only 33 bp, but the 

element nonetheless acted as a tissue-restricted enhancer in vivo. A region adjacent to 

the UCE in mouse (SCE 1973), although not ultraconserved, is also conserved in fish 

and acted as a generic enhancer in our assays, highlighting the complexity of these 

regions.  

Based on my previous results with the functional analysis of the pax2 CSTs, I 

performed the enhancer test as a co-injection assay, using the basal mouse hsp68 

promoter linked to a lacZ gene. In general, the additional DNA molecules (both 

control or SCE fragments) enhanced the expression of the promoter construct. 

Probably due to the properties of the promoter, the reporter expression was 

upregulated in muscle cells by almost all fragments, while other tissues were activated 

by only a subset of the tested fragments. Similar phenomena were experienced in 

transgenic mice when the hsp68 promoter was used to generate the transgenes. 

Ectopic expression patterns were observed in a number of founder embryos in the 

spinal cord, which was independent of the enhancer elements used. When the hsp68 

promoter in construct was replaced with the En-2 promoter, the spinal cord expression 

was lost and the En-2-specific expression pattern was retained. So therefore it was 

suggested that the hsp68 promoter fragment used in these studies contained an 

element that is capable of directing expression to the spinal cord and that such 

expression is only detectable when the promoter is flanked by a strong enhancer 

element (Logan et al. 1993). 

Altogether, 79% of the amplified and tested fugu SCEs (22 out of 28) showed 

significantly enhanced reporter expression, from which 20 showed tissue-specific 

enhancer activity. Multiple SCEs assigned to ets1, mab21l2 and zfpm2 genes gave 

similar expression patterns, indicating that a single gene can have several enhancers 

with similar activities. This functional redundancy is a well-described phenomenon 

(Jongens et al. 1988; Tebb et al. 1989; Buttgereit 1993). For example the two 

enhancer elements of math1 (a transcription factor of the bHLH class, which is 

expressed during development in multiple neuronal domains), while dissimilar in 

sequence, appear to have redundant activities in the different math1-specific 

expression domains except the spinal neural tube (Helms et al. 2000). Redundant 
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enhancers were found to control the shh expression in the ventral spinal cord, 

hindbrain and regions of the telencephalon (Jeong et al. 2006).  

In other genomic regions just the subset of the fragments showed significant 

tissue-specific enhancer effect (e.g. jag1b, tmeff2). From the fragments assigned to 

non- “trans-dev” genes (mapkap1, tmeff2, elmo1 and 3110004L20Rik) at least one 

fragment per gene showed significant enhancer activity.  

Three nongenic nonconserved control fragments have been shown to act as 

tissue-specific enhancers, one showed even higher activity then all the tested 

conserved sequences (the control fragment for ubl7). These are probably 

nonconserved enhancers hit by the random sequence choice. 

In this screen, SCEs were assigned to the closest genes, although it has been 

shown that enhancers may act across intervening genes (Spitz et al. 2003), or can also 

be located within the introns of neighbouring genes (Lettice et al. 2003), located at 

distances of several hundred kilobases to over a megabase (Bishop et al. 2000; 

Jamieson et al. 2002; Lettice et al. 2003). Moreover, a recent report suggested, that 

only half of the cis-regulatory elements is located in a 250kb radius from the target 

promoter (Vavouri et al. 2006). For those genes, where expression information exist 

in zebrafish, we could confirm the target gene choice, in all cases the expression 

patterns gained with the enhancers were partially recapitulating the expression 

patterns of the closest genes. For those genes, of which we lack the expression 

information (elmo1, 0300007F04Rik and 3110004L20Rik), I could not perform this 

comparison, thus I cannot be confident, that these are regulated by the assigned 

sequences.  

Although conserved non-coding sequences were reported to harbour other 

functions (Bernstein et al. 2006; Feng et al. 2006; Lee et al. 2006; Calin et al. 2007; 

Lareau et al. 2007; Ni et al. 2007), I only tested these elements for enhancer activity, 

and I only used one developmental stage (24 hpf), thus the elements turned to be 

silent in this screen, still can harbour function.  
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4.3 A high throughput screen to investigate promoter-enhancer 

specificity 

In the original genomic context, one enhancer generally has only one target 

gene, although a cis-regulatory element can be located even in a megabase range 

around the promoter, surrounded with other potential targets. There are mechanisms 

that can restrict the promiscuity of the cis-regulatory elements, described in details 

under point 1.8. Insulators or boundary elements can block the interaction between 

promoters and enhancers (Levine et al. 2003), specific regulatory elements can 

“guide” the enhancers to specific promoters (Zhou et al. 1999), or cis-regulatory 

elements can compete with each other for the interaction with an enhancer or a 

promoter (Kmita et al. 2002; Lin et al. 2007). Several studies have shown that the core 

promoter sequence context can significantly influence the responsiveness of a given 

gene to gene-specific DNA-binding activators and repressors (Simon et al. 1988; 

Metz et al. 1994; Ernst et al. 1996). Studies in Drosophila have provided evidence that 

core promoter structure plays an important role in selectivity of enhancers for their 

target genes (Li et al. 1994; Ohtsuki et al. 1998; Butler et al. 2001). 

To elucidate if the sequence of the cis-regulatory elements already determines 

the interaction specificity in transcription regulation during vertebrate development, 

we addressed the following questions. Do promoters isolated from their original 

genomic context show specificity towards interacting with different enhancers? Do 

isolated enhancers “select” from a set of promoters? Based on the textbook 

knowledge, the answer to these questions would be no, as enhancers by definition 

should activate any promoter (Banerji et al. 1981; Atchison 1988), but experimental 

results do not uniformly confirm this (Wefald et al. 1990; Li et al. 1994; Keplinger et 

al. 2001). Furthermore we wanted to know, whether an isolated interdigitate enhancer 

is able to interact with both promoters of its target and bystander genes. To answer 

these questions 13 enhancers and 20 zebrafish promoters (including controls) have 

been selected to generate the 260 possible combinations in Multisite Gateway 

expression vectors. We have tested the transcriptional activity and strength of these 

constructs by generating transient transgenic zebrafish, and the analysis of this high 

throughput screen revealed that the sequence of the regulatory elements is an 

important determinant of the interaction specificity. 
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4.3.1 Identification of enhancers 

I have chosen enhancers with published expression patterns from the literature 

(Table 8. summarizes the enhancers selected). As the scientific interest is much 

greater in relation to genes expressed in the nervous system, our collection is also 

overrepresented with enhancers of these genes (like the arC, driving the expression of 

the shha gene into the floorplate, notochord and hypothalamus; the eye enhancer of 

pax6b; the midbrain-hindbrain boundary specific CXE enhancer of eng2;, the brain 

enhancer of the dre-mir9-1 microRNA gene; the isl1 zCREST2, a sensory and motor 

neuron enhancer; the forebrain-specific ei enhancer of the dlx2b/dlx6a gene cluster 

and the regB enhancer, driving the expression of mnx1 into the spinal motor neurons). 

The only enhancer element that is not from a publication is the eng2b reg5, which was 

identified and tested in our laboratory. 

 Name Size 
 (bp) Origin Reference Nature of functional 

verification 

00 ctr (VC_909) 576 Takifugu 
rubripes (Sanges et al. 2006) co-injection 

01 shha arC 462 Danio rerio (Muller et al. 1999) co-injection,  
cloned fragment injection 

04 bactin2 intron1 508 Cyprinus 
carpio (Muller et al. 1997) co-injections 

06 pax6b eye enh. 343 T. rubripes (Woolfe et al. 2005) co-injections 
07 eng2b CXE 968 D. rerio (Song et al. 1996)  

08 eng2b reg5 416 D. rerio New enhancer co-injection 
cloned fragment injection 

09 dre-mir9 brain enh. 365 D. rerio (Kikuta et al. 2007) enhancer trap 

10 myl7 heart enh. 285 D. rerio (Huang et al. 2003) deletion,  
cloned fragment injection 

11 myf5 somite enh. 308 D. rerio (Chen et al. 2007) deletion 
15 isl1 enh. 724 D. rerio (Uemura et al. 2005) cloned fragment injection 
16 dlx2b/dlx6a ei 479 D. rerio (Zerucha et al. 2000) cloned fragment injection 
17 mnx1 regB 215 D. rerio (Nakano et al. 2005) tg mice with cloned fragment 

18 kdrl enh. 812 D. rerio (Choi et al. 2007) deletion,  
cloned fragment injection 

Table 8: Summary of the enhancers used in the project 

The list of enhancers also contains elements with expression domains outside of 

the nervous system, like the intronic enhancer of the ß-actin gene, with general 

expression pattern, the heart enhancer of the myl7 gene, the somite enhancer of myf5 

and the enhancer driving expression of the kdrl gene to the developing vascular 

endothel. For having more diverse types of cis-regulatory elements, I cloned 

responsive elements of inducible genes as well, like the estrogen responsive element 
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of the cytochrome P450 oxidase gene or the xenobiotic responsive element (XRE) 

element of the metallothionenin2 gene, but these elements did not show upregulation 

of the reporter upon published induction circumstances (estradiol or zink treatment) in 

the pre-screen tests, so these were omitted from the later assay. As a negative control, 

I used a nonconserved noncoding Fugu sequence (VC_909) showing no significant 

enhancer activity in my previous assay (Sanges et al. 2006). Figure 20. illustrates the 

expected expression domains of the enhancers.  

 
Figure 20: The expected expression domains of the enhancers at prim 16 stage 

Sonic hedgehog (Shh) is a signalling molecule expressed in the midline 

mesoderm of vertebrates (Strahle et al. 1996), playing a crucial role in the induction 

of floor plate and motor neurons (Echelard et al. 1993; Chiang et al. 1996), and in the 

proper development of the limbs (Riddle et al. 1993). The analysis of the introns of 

the zebrafish shha gene revealed in identification of multiple enhancers. Activator 

region C (arC) was shown to direct expression into the notochord (Muller et al. 

1999). β-actin is expressed in nonmuscle cells (Clarke et al. 1977). The regulatory 

elements (a proximal promoter, an upstream negative regulatory element, and an 

orientation- and position-dependent enhancer-like element) responsible for the 

expression of the common carp (Cyprinus carpio) β-actin were identified in the first 

intron (Liu et al. 1990b). The intronic enhancer element was showing non-restricted 

expression pattern in zebrafish in a co-injection experiment (Muller et al. 1997). Pax6 

is a highly conserved protein, with paired- and homeodomain DNA-binding regions; 
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it functions as a transcription factor with a major role in eye and brain development 

from Drosophila to humans (Callaerts et al. 1999; van Heyningen et al. 2002). 

Sequence comparison of fugu and human DNA using MegaBlast resulted in seven 

conserved sequences around the fugu pax6 genes. The element called pax6_19 

(EMBL accession number: CR847483) is located in an intron of the neighbouring 

housekeeping gene, elp4. This element drove the expression of the β-actin promoter-

containing reporter construct into the eye, forebrain, hindbrain, spinal cord and skin in 

a co-injection assay (Woolfe et al. 2005). Engrailed is a homeoprotein with multiple 

roles in directing anterior-posterior patterning during vertebrate (Joyner et al. 1985) 

and invertebrate (Nusslein-Volhard et al. 1980) development. The zebrafish 

engrailed2 genes are expressed across the presumptive midbrain–hindbrain boundary 

(MHB) with distinct temporal and spatial profiles (Ekker et al. 1992). A 1-kb 

enhancer element (called CX) directing the mouse engrailed2 expression into the 

MHB was found to be conserved in human, and the human enhancer showed MHB-

specific enhancer activity in transgenic mice (Song et al. 1996). This cis-regulatory 

element shares high similarity with a sequence upstream of the zebrafish eng2b locus. 

This zebrafish homologue (named as CXE) was used in our screen, as in co-injection 

tests it was able to drive reporter expression int. o the MHB (Figure 21.A). During the 

comparisons of the non-coding sequences in and around the zebrafish, human and 

mouse engailed2 locus we have found an intronic conserved element. This sequence, 

called reg5, showed enhancer activity in co-injection experiments (Figure 21.B).  
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Mir9 is a microRNA playing role in brain development (Krichevsky et al. 

2003). The enhancer, which is located between the mef2d and rhgb genes, drives the 

expression of the dre-mir9-1 into the developing brain of zebrafish embryos was 

discovered in an enhancer trap experiment (Kikuta et al. 2007). Regulatory myosin 

light polypeptide 7, (Myl7), formerly called as Cardiac myosin light chain (Cmlc2) is 

the major contractile component of cardiac striated muscle in zebrafish (Yelon et al. 

1999), a homologue of human and murine Mlc-2. It is expressed in the zebrafish 

cardiac cells fused into a single heart tube at 24hpf stage (Huang et al. 2003). In 

deletion series, a 244-bp sequence, located upstream of the core promoter, was 

identified as an enhancer driving myl7 in the heart. This fragment was tested in 

combination with the endogenous promoter and with the CMV promoter as well 

(Huang et al. 2003). Myf5 is a basic helix-loop-helix transcription factor that 

functions as a myogenic factor in the specification and differentiation of muscle cells 

(Pownall et al. 2002). Its expression is finely tuned by cis-regulatory control 

mechanisms. Deletion analysis of the 80-kb upstream sequence of the zebrafish myf5 

gene resulted in the characterization of distinct enhancers. The segment responsible 

for the basal transcription in somites and the presomitic mesoderm was positioned 

into the –290/-1 fragment (Chen et al. 2007). Islet-1 (Isl1) is a LIM-homeodomain 

protein, expressed at the earliest stage of neural differentiation, and is highly 

conserved during evolution (Ericson et al. 1992; Inoue et al. 1994; Thor et al. 1997; 

Jackman et al. 2000). The isl1 zCREST2 enhancer, which is conserved in human, 

mouse and chick, located at 53kb downstream of the zebrafish isl1 locus, was 

described as an enhancer element activating gene expression in primary sensory 

neurons and in spinal motor neurons innervating the abductor muscle of the pectoral 

fin bud and the ventral trunk muscles (Uemura et al. 2005). In stable transgenic fish 

the reporter expression was observed also in other tissues, such as notochord and 

commissural interneurons in the spinal cord (Uemura et al. 2005). Four out of the six 

mammalian distall-less-related homeobox (dlx) genes are arranged in a head-to-tail 

manner, and the gene pairs show overlapping expression domains in the ventral 

telencephalon and diencephalons (Liu et al. 1997). This genomic arrangement is 

conserved in distantly related vertebrates as zebrafish (Ellies et al. 1997). A regulatory 

element between the zebrafish dlx2a/dlx6a gene pair was identified as an enhancer 
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element responsible for the ventral forebrain activity in developing transgene 

zebrafish embryos (Zerucha et al. 2000). Motor neuron and pancreas homeobox 1 

(Mnx1), previously called as Hb9, is a transcription factor serving as a marker for 

motor neurons in developing vertebrate embryos (Tanabe et al. 1998), probably 

playing role in the consolidation and maintenance of motor neuron identity (Arber et 

al. 1999). Using a cross-species homology analysis, a highly conserved 125-bp 

sequence was identified, and this sequence was able to drive expression into the motor 

neurons of the transgene zebrafish (Nakano et al. 2005). Kinase insert domain 

receptor (Kdr) is the major receptor for Vascular endothelial growth factor (VEGF) 

on endothelial cells in vertebrates (Marcelle et al. 1992). During embryogenesis it is 

required for both vasculogenesis and angiogenesis (Shalaby et al. 1995). In zebrafish, 

two genes have been identified with similar sequence and function (Habeck et al. 

2002; Covassin et al. 2006; Bussmann et al. 2008). Deletion analysis of the 6.4-kb 

genomic sequence upstream of the TSS revealed that an approximately 800-bp DNA 

fragment (at -4.3kb position) is sufficient to drive expression of kdrl in endothelial 

cells. GFP expression was detected in transgenic fish in the dorsal aorta, posterior 

cardinal vein, intersomitic vessels, endothelial cells in the brain and in neural tissues 

such as brain, eyes and neural tube in addition to endothelial cells by 24hpf (Choi et 

al. 2007). 

4.3.2 Identification of promoters 

Basal promoters with different TSS distribution, core promoter composition and 

strength have been selected from the already cloned and tested set of promoters 

present in the Müller lab. The TSSs have been identified by using the ESTs present in 

the dbTSS or the ENSEMBL databases (Figure 22.). Promoters were classified into 

the following four distinct categories based on Kawaji et al 2006.: core promoters 

showing the TSS distribution of a.) a single dominant peak, b.) a general broad 

distribution, c.) a broad distribution with a dominant peak, and d.) a bi-or multimodal 

distribution (Figure 2). Depending on the TSS distribution of the promoters, I 

amplified roughly 120-200-bp piece of the core promoter regions. In case of 

promoters with a dominant TSS peak (when the majority of the ESTs were clustering 

around one position), I took ~75 base pairs upstream and ~50 downstream from the 

major TSS. For the bimodal promoters (in which two major TSS peaks could be 

observed, Figure 22.), the amplified fragment contained ~75 base pairs upstream from 
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the 5` TSS and ~50 downstream from the 3` TSS. In case of promoters showing broad 

TSS distribution (when the EST cluster did not show sharp peak), I have defined 

arbitrary the 5` and 3` ends of the core promoter regions:  ~50 base pairs upstream 

from the first EST-alignment, and ~50 base pairs downstream from the last one. In all 

TSS-distribution categories, if the first ATG was within the downstream 50 base 

pairs, the last bases upstream to the ATG were used as 3’ end of promoter region. 

 

Figure 22: The bimodal promoter region of the at6v1g1 gene 

The light and the dark blue arrows represent the start points of the transcripts present in the Ensemble 

and NCBI databases. The red arrows represent the starting positions of all the known atp6v1g1 ESTs 

aligned to the genomic DNA, showing a dominant bimodal TSS distribution. Downloaded from the 

dbTSS database 

These promoters belong to genes from diverse gene ontology classes such as 

tissue-specific (apoeb), developmentally restricted (ndr1) or ubiquitous (tbp) genes. 

For some enhancers the endogenous promoters (eng2b for eng2b CXE and reg5 

enhancers, shha for the shha arC enhancer) and for others the target and the bystander 

promoter pairs were chosen (dre-mir9-1 and mef2d promoters for the dre-mir9-1 

enhancer). As a negative control, I used the basal promoter of the Ciona intestinalis 

fog (friend of gata) gene (Roure et al. 2007), as my previous experiments showed that 

Ciona promoters were inactive in zebrafish embryos (data not shown). Table 9. 

summarizes the properties of the promoters used in the project.  
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 Gene 
symbol Chromosomal position Promoter 

size (bp) 

Total 
number of 

ESTs 

TSS  
distribution 

00 ctr    - 
01 apoeb chr16:24388715-24388903 181 624 dominant 
02 atp6v1g1 chr5:50839078-50839225 148 195 dominant, bimodal 
03 gtf2a1 chr20:12836731-12836899 169 73 broad 
04 klf4 chr2:27760887-27761017 131 130 broad 
05 krt4 chr6:29046051-29046216 166 601 dominant 
06 ndr1 chr21:11382510-11382652 143 3 not conclusive 
07 pcbp2 chr9:614661-614812 152 107 broad 
08 rdh10 chr2:24616214-24616320 107 210 dominant 
09 tbp chr13:24702224-24702404 181 106 dominant 
10 tram1 chr24:17550732-17550953 222 102 broad 
11 c20orf45 chr6:58935813-58935969 157 88 broad 
12 ccne chr7:43205849-43206021 173 20 broad 
13 shha chr7:36764532-36764712 181 3 not conclusive 
15 mef2d chr16:20571360-20571520 161 20 broad 
16 dre-mir9-1 chr16:20549606-20549799 194 2 not conclusive 
17 elp4 chr7:8747729-8747891 163 24 broad 
19 hsp70 chr3:23548288-23548436 149 4 not conclusive 
20 lmbr1l chr7:38089239-38089403 165 0 not conclusive 
21 eng2b chr2:24409903-24410129 227 8 broad 

 

Table 9: The promoters used in the project 

Apoeb is an extracellular protein responsible for lipid transport. In zebrafish the 

expression of apoeb gene is very strong in the yolk syntitial layer (YSL) from blastula 

stage until larval development. Between the first and the third days of development, a 

new domain of apoeb gene expression appears in the head region, in the facial 

ectoderm, and in some cells of the retina and brain (Babin et al. 1997). atp6v1g1 

encodes a component of vacuolar ATPase (V-ATPase), a multisubunit enzyme that 

mediates acidification of eukaryotic intracellular organelles (Finbow et al. 1997). V-

ATPase dependent organelle acidification is necessary for such intracellular processes 

as protein sorting, zymogen activation, receptor-mediated endocytosis, and synaptic 

vesicle proton gradient generation (Nishi et al. 2002). During zebrafish 

embryogenesis, it is expressed by 30hpf in the central nervous system (Rauch et al. 

2003). The gtf2a1 gene codes the general transcription factor IIA 1, a factor important 

in the transcription initiation from RNA Pol II promoters and shows non-restricted 

expression pattern throughout the embryonic development of the zebrafish (Thisse 

2004). Krüppel-like factor 4 (Klf4) is related to the erythroid cell specific Krüppel-

like factor EKLF in mammals (Kawahara et al. 2000). It is expressed in the hatching 

gland, blood, lateral line primordium and neuromasts of the Prim15-stage zebrafish 
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embryos (Thisse 2004). Keratin 4 (Krt4) belongs to the protein family of intermediate 

filaments and it is a component of the cytoskeleton of epithelial cells. Gene 

expression analysis during embryonic development revealed that this gene is 

expressed in all surface cells, notably in those of the enveloping layer (EVL) and of 

the periderm (Imboden et al. 1997). Nodal-related 1 (Ndr1), previously called as 

Squint is a member of the nodal-related subclass of the TGF-β family, and is essential 

for early steps in dorsal mesoderm development (Feldman et al. 1998). ndr1 is 

expressed throughout the whole embryos at Prim5 stage (Hagos et al. 2007), no 

information is available for the later stages. Poly(rC) binding protein 2 (Pcbp2) is an 

RNA-interacting protein with a specificity for poly(C) homopolymer (Swanson et al. 

1988). Its function is linked to mRNA stabilization, translational silencing and 

translational enhancement (Makeyev et al. 2002). In zebrafish it has a general 

expression pattern (Thisse 2004). Retinol dehydrogenase 10 (Rdh10) is a crucial 

protein in embryonic organ development of placental vertebrates by being involved in 

retinoic acid synthesis from maternal retinol. It is expressed in the developing brain 

and sensory organs in mouse embryos (Cammas et al. 2007). In zebrafish, rdh10 was 

shown to be expressed in the notochord, tail bud and YSL in the 14-19-somite stage 

(Thisse 2001), no information is available about its expression at 30hpf stage. TATA-

binding protein (TBP) mediates transcription initiation from TATA-box containing 

promoters (Buratowski et al. 1988). In zebrafish the isolated tbp promoter was shown 

to direct reporter expression throughout the developing embryo (Burket et al. 2008). 

Cotranslational translocation of most, but not all secretory proteins across the 

mammalian endoplasmic reticulum membrane requires the Translocating chain-

associating membrane protein 1 (Tram1) (Voigt et al. 1996). tram1 is expressed in 

the central nervous system, otic vesicle, pectoral fin musculature and pharyngeal 

arch3-7 skeleton by 30hpf in zebrafish embryos (Thisse 2001). C20orf45 is a 

predicted orthologue of the vertebrate Slowmo homologue 2 protein. slowmo encodes 

a mitochondrial protein of unknown function in Drosophila melanogaster, which is 

essential for the development of the central nervous system (Dee et al. 2005). In 

vertebrates the in vivo function and the expression pattern of this gene is yet 

unknown. Cyclin E (Ccne), a protein essential for the control of the cell cycle at the 

G1/S transition (Sherr 1993), shows a restricted expression in the central nervous 

system in the 30-hpf-stage zebrafish embryo (Thisse 2004). The Myocyte enhancer 
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factor 2d (Mef2d) transcription factor plays role in muscle thick filament assembly. In 

zebrafish it is expressed in the heart and in slow and fast muscles (Hinits et al. 2007). 

Elongation protein 4 homolog (Elp4), previously called as Paxneb (Pax6 neighbour) 

is a part if the Elongator holoenzyme complex, regulating the transcription elongation 

from RNA Pol II promoters (Winkler et al. 2001). It is ubiquitously expressed in the 

developing zebrafish embryo (Thisse 2004; Kikuta et al. 2007). The 70-kDa Heat 

shock cognate protein (Hsp70 or more precisely Hsc70) is a non-heat-inducible 

chaperone from the Hsp70 gene family (Ingolia et al. 1982), playing role in protein 

folding. The expression of zebrafish hsp70 starts at 72 hpf during the embryonic 

development (Yeh et al. 2002). Limb region 1 (Lmbr1) is a transmembrane protein, 

playing role in limb development (Clark et al. 2000). The zebrafish homologue, 

lmbr1l is expressed in the whole embryo at Prim 15 stage (Thisse 2001). 

 

The transcriptional activity of the apoeb, atp6v1g1, gtf2a1, klf4, krt4, ndr1, 

pcbp2, rdh10, tbp, tram1, c20orf45, ccne and shha promoters (as 1-kb-fragments) was 

previously verified by assaying reporter expression (Gehrig in preparation).  

I amplified the mef2d, dre-mir9-1 and elp4 promoters as 500-bp fragments, and 

cloned into the CLGY vector (Ellingsen et al. 2005). After linearization by restriction 

digest, I injected these constructs to one-cell zebrafish embryos either alone or in 

combination with the isolated shha arC enhancer. The embryos were fixed at 24hpf 

stage, and were subject to antibody staining with a first antibody specific to GFP, but 

also recognizing YFP. The basal activity of these promoters were low and rather 

unspecific, but in all three cases the YFP expression was directed into the notochord 

upon the enhancer co-injection, suggesting that these promoters are able to interact 

with the shh arC enhancer. The dre-mir9-1 promoter in combination with the shha 

arC not only gave notochord and hypothalamus expression, but the YFP was also 

present in spinal cord motor neurons (Figure 23.). 
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Figure 23: The expression pattern of the mef2d-, dre-mir9-1- and elp4-CLGY constructs 

The isolated plasmids were injected either alone or with the isolated shha arC fragment. The embryos 

were subject to antibody staining. 

I cloned the hsp70, lmbr1l and eng2b promoters into the Gateway vectors, and 

tested in combination with the control enhancer for basal activity. The eng2b core 

promoter gave some skin expression by itself, while no signal was detected in the 

embryos injected with the hsp70 and lmbr1l promoters in combination with the 

control enhancer. The hsp70 and the eng2b promoters were injected in combination 

with the shha arC enhancer, and both of them were activated in the notochord, 

floorplate and hypothalamus (Figure 24.). The lmbr1l promoter was tested with the 

mnx1 regB enhancer, and this construct showed YFP expression in the spinal cord, 

skin and muscle (Figure 24.). 
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Figure 24: The activity of the hsp70, eng2b and lmbr1l promoters 

The promoters were combined either with the control enhancer, or with the shha arC (hsp70 and 

eng2b) or with the mnx1 regB enhancer (lmbr1l). 
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4.3.3 Multisite Gateway expression vectors do not affect the expression pattern of 

the transgene 

We decided to use the Multisite Gateway vectors for the generation of the 

different enhancer-promoter combinations, as this system provides the possibility of 

cloning several fragments of interest into the same plasmids without using restriction 

enzymes (Hartley et al. 2000; Walhout et al. 2000). Once distinct fragments are 

cloned into the intermediate vectors called entry clones, they can be used for the 

generation of any possible combination in the second recombination reaction without 

any further modifications. (For the overview of the Multisite Gateway cloning, see the 

Materials and Methods chapter.) 

I used a version of the Multisite Gateway system modified by the group of 

Patrick Lemaire (IBDM, Marseille, France), which was designed for Ciona 

intestinalis (Roure et al. 2007). Before starting the cloning I checked whether the 

expression pattern of a given promoter is altered when cloned into a Multisite 

Gateway destination vector. I cloned the 2.4kb fragment of the shha promoter into 

distinct sites of the Multisite Gateway destination vectors. I microinjected the 

generated expression vectors harbouring shha 2.4 promoter followed by the Venus yfp 

as a reporter gene to zebrafish embryos, and detected the expression patterns under 

epifluorescence microscope at 24hpf stage. Compared to a pCS2 vector containing the 

same shha promoter in front of a gfp reporter, both Multisite Gateway constructs gave 

the same results in respect of the ratio of the expressing per total embryo number 

(Table 10.), and there were no difference in the gained expression patterns (Figure 

25.). The generated Multisite Gateway expression vectors did not disturb the 

transcription regulation compared to previously used vector. 

construct injected 
embryos 

expressing 
embryos % 

shh2.4-gfp-pCS2 270 153 67,7 
B3-shh2.4-B5::B1-venus-B2 235 123 52,3 
R3-R5::B1-shh2.4-B2-venus 205 117 57,1 

Table 10: Comparison of the expressing per injected embryo ratio for the different shha2.4 constructs 
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Figure 25: Comparison of the expression patterns of zebrafish embryos injected with different vectors 

containing the shha promoter. 

Based upon these observations I have started to clone the isolated promoters and 

enhancers into the Multisite Gateway vectors system. I amplified the promoters and 

enhancers from zebrafish or fugu genomic DNA or from plasmids, and I used the 

PCR products containing the correct attachment sites and the p221-P1-P2 or p221-P3-

P5 donor vectors for the first recombination reaction. I checked the generated entry 

clones by sequencing, and then used these to generate the 260 expression vectors 

(pSP72-B3-enhancer-B5::B1-promoter-B2-venus) in the second recombination 

reaction.  

4.3.4 Pre-screen test with the shha arc-series 

Before starting the high throughput screen, I performed a test-injection series 

with the shh arC-promoter constructs. I microinjected the circular expression vectors 

into zebrafish eggs, and checked the reporter expression at 30hpf embryonic stage. I 

counted the number of the expressing embryos, and checked the different domains 

specific to the arC enhancer: the notochord, floorplate and the hypothalamus. The 

results of the pre-screen test were promising: the shha arC enhancer was able to drive 

the expression of the venus into shha-specific domains in combination with ten 

promoters, while only three promoters (tbp, tram1 and c20orf45) showed expression 

comparable with the control (Figure 26.A and B).  

As Figure 26.B illustrates, the distribution of the reporter expression varied 

between the constructs containing different promoters. There were promoters that 

have been activated by the enhancer preferably in the notochord (apoeb), others in the 

floorplate and/or hypothalamus (hsp70, klf4), or in the case of the krt4, ccne, shha and 

eng2b promoters, the reporter expression was detected more or less equally in all 

shha-specific domains.  
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Figure 26: The YFP expression gained with the shha arC enhancer in combination with distinct 

promoters. A: Expressing per total embryo number ratio. B: Expressing per total embryo number ratios 

for distinct tissues. Red bars represent the notochord, pink bars the floorplate, yellow bars the 

hypothalamus and black ones the ectopic domains such as skin and muscle. 

Regarding the ectopic expression in the skin and muscle, there were major 

differences between the promoters: while the majority of the constructs showed no or 

low level of ectopic activity, the apoeb, krt4 and gtf2a1 promoters were highly active 

in these tissues. 

These results suggested us that there would be promoter-specific differences in 

the enhancer activities in the forthcoming high throughput screen. 

4.3.5 The high throughput screening and the data analysis 

Our laboratory team: Ferenc Müller, Jochen Gehrig, Marco Ferg, Yavor 

Hadzhiev, Andreas Zaucker, Simone Schindler, a guest researcher Chengyi Song and 

Nadine Gröbner participated in the high throughput screen. We microinjected all the 

250 generated expression vectors into one-cell stage zebrafish embryos (200 eggs per 

construct), five to fifteen minutes after the eggs have been laid. We found that this 

time-window is crucial to gain high level of reporter expression. The injection 

solution also contained cfp mRNA to trace those embryos that were correctly injected; 

the CFP-negative embryos were manually selected out at 24hpf stage. Then we 

dechorionated the embryos and pipetted them into plates containing delves with 

500µm in diameter in 92 wells (Figure 27.). At 30hpf stage, when all the enhancers 

should be active, we manually oriented the anesthetised embryos into the delves, and 

the embryos were subject to automated image acquisition with the kind help of Urban 

Liebel (ITG, FZK, Karlsruhe). 
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Figure 27: The 92-well agar-filled plate containing 500-nm diameter delves in the middle of each well. 

Plates were handled by a Hamilton robotic arm, and central focal plane of the 

embryos was detected by an object detection auto-focus algorithm. Pictures were 

acquired from each embryo in 4 z-slices (55µm) in 3 channels: CFP, YFP and bright 

field. Markus Reischl (IAI, FZK, Karlsruhe) processed the gained pictures. Because 

the embryos were randomly oriented on the microscopic pictures, first they were to be 

registered and oriented. Then the 4 z-slices of a single embryo were projected into one 

picture with an extended focus algorithm (Figure 28.). To get the expression pattern 

of multiple embryos injected with the same construct, the extended focus pictures 

from embryos injected with one expression vector were projected into one composite 

expression picture (Figure 29.) 

 
Figure 28: Extended focus pictures of an embryo injected with shha arc-tram1 construct  

A: bright field B: CFP C: YFP 

 
Figure 29: Generation of composite expression pictures in the example of the isl1 zCREST2-eng2b 

construct A: Venus signal of a single embryo. B: projection of approximately 60 embryos. 
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4.3.6 The activity and interactivity of promoters  

The analysis of the extended focus pictures of several ten thousand embryos 

revealed that the ability of promoters to drive expression of the reporter and their 

responsiveness to enhancers varied in a wide range (Figure 30. and Table 11.). From 

the nineteen promoters seven (the apoeb, krt4, atp6v1g1, klf4, gtf2a1, c20orf45 and 

tbp) showed background activity when tested with the control enhancer, and showed 

high expression in combination with several enhancers. On the other end of the scale 

stand the pcbp2 (interacting only with shha arC), dre-mir9-1 (eng2b CXE) and lmbr1l 

(dlx2b/dlx6a ei) promoters with a single interacting enhancer. The control promoter 

did not show reporter expression in combination of any of the enhancers. 

 

 

Figure 30: Expressing per total embryo number ratios for all the enhancer-promoter 

combinations 
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 ctr shha 

arC 
eng2b 
CXE 

eng2b 
reg5 

isl1 
zCREST2 

dlx2b/ 
dlx6a ei 

mnx1 
regB 

dre-
mir9-1 

ß-actin 
intron1 

myl7 myf5 kdrl 

apoeb + + + + + - + + + + - + 
atp6v1g1 + + + + + - + + + - - - 

gtf2a1 + + + - + - + + + + - - 
klf4 + + + - + - + + + + - - 
krt4 + + + + + + + + + + - - 

ndr1 - + + - - - - + + + - + 
pcbp2 - + - - - - - - - - -  
rdh10 - + + - - - - - + + - - 

tbp + + - + + + NA + - - - - 
tram1 - + + - - NA NA + - NA - - 

c20orf45 + + + + + - - + - + + - 
ccne - + + - - + - - + + - - 
shha - + - + + - - + + - - - 

mef2d - + + - - - - - + - - - 
dre-mir9-1 - - + - - - - - - - NA - 

elp4 - + + NA + - - - + - - - 
hsp70 - + + - + - + + - + - - 
lmbr1 - NA NA NA - + - - NA - - - 
eng2b + + + - + + + + - + NA - 

Table 11:  Summary of the promoter-enhancer interactions 

 

The apoeb promoter showed a weak background activity in the central nervous 

system, including the brain, eye and spinal cord. The high level of expression driven 

by the enhancers came upon this background. This promoter was able to interact with 

the shh arC, ß-actin intron1, kdrl, eng2b reg5, dre-mir9-1, myl7, isl1 zCREST2 and 

mnx1 regB enhancers (Figure 31.).  

 
Figure 31: The expression patterns of the constructs containing the apoeb promoter. 
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The atp6v1g1 promoter gave yolk expression when tested with the control enhancer. 

Combination of this element with the ß-actin intron1, eng2 CXE, eng2b reg5, dre-

mir9-1, isl1 zCREST2 and mnx1 regB enhancers resulted in enhancer-specific 

expression of the reporter. The shh arC enhancer activated the expression only in the 

muscle (Figure 32.). 

 
Figure 32: The expression patterns of the constructs containing the atp6v1g1 promoter 

The gtf2a1 promoter showed background expression in the brain, eye and spinal 

cord, while the gene itself is expressed throughout the embryo. This promoter showed 

expression in the enhancer-specific domains with the following enhancers: shh arC, 

ß-actin intron1, dre-mir9-1, myl7, isl1 zCREST2 and mnx1 regB. The eng2b CXE 

activated the promoter to drive expression in ectopic brain regions and in the 

notochord (Figure 33.).  

 
Figure 33: The expression patterns of the constructs containing the gtf2a1 promoter 
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The klf4 promoter showed a strong background activity in the skin, eye and 

brain. The skin expression was highly upregulated when it was combined with the shh 

arC, ß-actin intron1, dre-mir9-1, myl7 and mnx1 regB enhancers. The shh arC, eng2b 

CXE, myl7 and mnx1 regB enhancers drove the reporter expression to their specific 

domains as well (Figure 34.). 

 
Figure 34: The expression patterns of the constructs containing the klf4 promoter 

The epidermis-specific krt4 promoter showed skin, brain and spinal cord 

background expression. The combination of this promoter with the shh arC and isl1 

zCREST2 resulted in highly specific and strong venus expression, while the ß-actin 

intron1, eng2b CXE, dre-mir9-1, dlx2a/dlx6b ei and mnx1 regB enhancers boosted up 

the background activity as well (Figure35.). 

 
Figure 35: The expression patterns of the constructs containing the krt4 promoter 
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ndr1 worked as a weak promoter, the expression driven to the specific domains 

by the shh arC and myl7 enhancers was really faint. The ß-actin intron1, dre-mir9-1 

and kdrl enhancers slightly enhanced the Venus expression throughout the whole 

embryo, while the eng2b CXE enhancer activated strong expression in the brain, eye 

and skin domains (Figure 36.). 

 
Figure 36: The expression patterns of the constructs containing the ndr1 promoter 

The rdh10 promoter was able to interact with the shh arC, ß-actin intron1, 

eng2b CXE and dre-mir9-1 enhancers. The CXE enhancer activated the reporter 

expression into the MHB and ectopic brain domains, skin and muscle, while the 

activation by the shh arC enhancer was highly specific (Figure 37.). 

 
Figure 37: The expression patterns of the constructs containing the rdh10 promoter 
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The tbp promoter in combination with the control enhancer gave some weak 

background activity in the CNS, skin, muscle and notochord. It worked as a weak 

promoter in combination with the shh arC, dre-mir9-1 and dlx2b/dlx6a ei enhancers. 

The isl1 zCREST2 and eng2b CXE enhancers activated ectopic expression when 

attached to this promoter (Figure 38.). 

 
Figure 38: The expression patterns of the constructs containing the tbp promoter 

c20orf45 was one of the strongest promoters, giving high level of background 

expression in the CNS, skin, muscle, notochord and hatching gland. This background 

activity was highly enhanced by the shh arC, eng2b CXE and reg5, dre-mir9-1, myl7, 

myf5 and isl1 zCREST2 enhancers (Figure 39.). 

 
Figure 39: The expression patterns of the constructs containing the c20orf45 promoter 
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The shha promoter was able to interact with the shh arC, ß-actin intron1, eng2b 

reg5, dre-mir9-1 and isl1 zCREST2 enhancers. The expression of these constructs was 

quite weak, but in the case of the arC and zCREST2 enhancers the expression was 

highly specific (Figure 40.). 

 
Figure 40: The expression patterns of the constructs containing the shha promoter 

The hsp70 promoter was activated by the shh arC, eng2b CXE, dre-mir9-1, 

myl7, isl1 zCREST2, dlx2b/dlx6a ei and mnx1 regB enhancers. In the cases of the shh 

arC, eng2b CXE, myl7, isl1 zCREST2 and mnx1 regB enhancers the expression was 

highly specific (Figure 41.). 

 
Figure 41: The expression patterns of the constructs containing the gtf2a1 promoter 

A weak skin background expression was detected in embryos injected with the 

eng2b-ctr enhancer construct. The reporter expression was enhanced by the shh arC, 
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eng2b CXE, dre-mir9-1, myl7, zCREST2, dlx2b/dlx6a ei and mnx1 regB enhancers, 

but the CXE enhancer was not able to direct the expression into the MHB (Figure 42.) 

 
Figure 42: The expression patterns of the constructs containing the eng2b promoter 

The tram1, ccne, mef2d and elp4 promoters showed weak, generally ectopic 

activity in combination with several enhancers (Table 14.). 
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4.3.7 Promoter-specific differences in enhancer activity and strength 

Based on my analysis of the extended focus pictures for each construct, from the 

twelve enhancers seven (the CNS-specific shh arC, eng2b CXE and reg5, isl1 

zCREST2 and mnx1 regB, the general β-actin intron1 element and the heart-specific 

myl7 enhancer) directed the reporter expression into the previously described 

domains; two (dre-mir9-1 and dlx2b/dlx6a ei) worked as general enhancers rather 

than CNS-specific (Figure 30. and Table 14.). The eye enhancer of the pax6b gene did 

not show enhancer activity at all, while the somite enhancer of the myf5 and the 

enhancer element driving the kdrl1 gene to blood vessel endothel directed the reporter 

expression into ectopic domains, and in combination with only two promoters.  
 

The shh arC enhancer activated the reporter expression in the notochord, 

floorplate and in the hypothalamus in most of the tested promoter combinations, while 

shh arC-atp6v1g1 showed some muscle expression in few embryos, while injection of 

the shh arC-dre-mir9-1 construct resulted in no YFP signal (Figure 43.). 

 
Figure 43: The projected expression maps of the embryos injected with the shha arC constructs 
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The general β-actin enhancer enhanced the background activity of the apoeb, 

gtf2a, klf4, krt4, tbp and c20orf45 promoters and in general, increased expression 

could be observed in the skin and muscle. While the atp6v1g1 promoter only had 

some yolk expression by itself, its combination with the β-actin intronic enhancer 

resulted in expression in novel domains: in the skin, muscle, notochord and in the 

CNS. In case of the ndr1, rdh10, ccne, shha and elp4 promoters, where there was no 

detectable background, the enhancer activated the reporter expression in the brain, 

retina, skin and in some cases in the muscle. No expression was detected in the 

combination with the pcbp2, tbp, tram1, mef2d, dre-mir9-1, hsp70 and eng2b 

promoters (Figure 44.). 

 
Figure 44: The projected expression maps of the embryos injected with the β-actin intron1 constructs 

The two eng2b enhancers directed the venus expression into the midbrain 

hindbrain boundary (MHB) in combination with distinct promoters (Figure 45. and 

46.).  
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Figure 45: Pictures of an embryo injected with the eng2b CXE-klf4 construct, showing venus 

expression in the MHB. Left side: extended focus picture from the YFP channel, right side: bright field 

picture of the same embryo. 

 
Figure 46: Pictures of an embryo injected with the eng2b reg5-c20orf45 construct, showing venus 

expression in the MHB. Left side: extended focus picture from the YFP channel, right side: bright field 

picture of the same embryo. 

 
Figure 47: The projected expression maps of the embryos injected with the eng2b CXE 

constructs 

 106



  Results and discussion 

The CXE enhancer, which was described in mouse, was able to interact with the 

atp6v1g1, klf4, krt4, rdh10, c20orf40, ccne, mef2d, dre-mir9-1, elp4 and hsp70 

promoters to drive expression into the MHB, while the interaction with the tram1 and 

the endogenous eng2b core promoters resulted in general brain and ectopic skin 

expression of the reporter. The ccne promoter, which did not show any background 

expression, was activated in brain regions other then the MHB and in other tissues as 

well, such as retina, spinal cord, epithel and muscle. These ectopic expression 

domains were observed with the MHB-specific constructs as well (Figure 47.).  

 

 
Figure 48: The projected expression maps of the embryos injected with the eng2b reg5 constructs 

 

The eng2b CXE-pcbp2 and –shha combinations showed no expression. The 

reg5 enhancer, which was identified as a conserved intronic element, activated 

expression in combination with fewer promoters, compared to the CXE. No 

expression was detected with the gtf2a1, klf4, ndr1, pcbp2, rdh10, tram1, ccne, mef2d, 

dre-mir9-1, hsp70 and eng2b core promoters, although the gtf2a, klf4 and eng2b 

promoters have background activity. The reg5 enhancer directed the venus expression 
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into the MHB in combination with the apoeb, atp6v1g1, krt4, c20orf45 and shha 

promoters (Figure 48.), from which the atp6v1g1, krt4 and c20orf45 promoters gave 

MHB-specific expression with the CXE enhancer, while none of them gave 

expression with pcbp2 promoter.  

 

The dre-mir9-1 enhancer element, identified as a brain enhancer in an enhancer 

trap experiment did not show expression in distinct brain domains, but rather worked 

as a general enhancer in our system. In combination with the apoeb, atp6v1g1, klf4, 

krt4, tbp and eng2b promoters, it gave ectopic skin, yolk, muscle and neural 

expression upon the enhanced background activity, while with the ndr1, rdh10, shha, 

mef2d and hsp70 promoters, where no background was detected, the dre-mir9-1 

enhancer activated the expression in the brain, retina, spinal cord, skin and muscle 

(Figure 49.).  

 
Figure 49: The projected expression maps of the embryos injected with the dre-mir9-1 constructs 
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Venus signal in the developing heart tube (Figure 50.) was observed in the 

following promoters in combination with the myl7 enhancer: apoeb, gtf2a, klf4, krt4, 

ndr1, hsp70 and eng2b, but only in few embryos in the case of the last three 

promoters. Interestingly no expression at all was observed in the embryos injected 

with al the other constructs (Figure 51.). 

 
Figure 50: Pictures of an embryo injected with the myl7-krt4 construct, showing venus expression in 

the MHB. Left side: extended focus picture from the YFP channel, right side: bright field picture 

 
Figure 51: The projected expression maps of the embryos injected with the myl7 constructs 

The somite-specific myf5 enhancer was not able to direct the expression 

specifically into the developing muscle, nor enhance the background activity of the 

promoters, and no vascular epithel-specific Venus expression was observed with the 

kdrl enhancer. 
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The isl1 zCREST2 enhancer directed the reporter expression into motor and 

sensory neurons of the brain and spinal cord in combination with the atp6v1g1, gtf2a, 

klf4, krt4, c20orf45 and eng2b promoters, while it activated the venus expression in 

ectopic domains when combined to elp4 and hsp70 promoters. No Venus signal was 

detected in embryos injected with all the other constructs (Figure 52.). 

 

 
Figure 52: The projected expression maps of the embryos injected with the isl1 zCREST2 constructs 

 

No forebrain-specific reporter expression was observed in embryos injected 

with expression vectors containing the dlx2b/dlx6 ei enhancer. It could only activate 

the ccne promoter in the brain, retina, muscle and epithel, the strength and the 

specificity of the expression gained in combination with the apoeb, gtf2a, krt4 and tbp 

promoters were comparable with their background activity.  
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The motor neuron specific mnx1 regB enhancer was able to direct the venus 

expression into the spinal cord (Figure 53.) in combination with the apoeb, atp6v1g1, 

gtf2a and klf4 promoters, while it showed a non-specific activator effect when 

combined to the hsp70, lmbr1l and eng2b promoters (Figure 54.). 

 
Figure 53: Pictures of an embryo injected with the myl7-krt4 construct, showing venus expression in 

the MHB. Left side: extended focus picture from the YFP channel, right side: bright field picture of the 

same embryo. 

 
Figure 54: The projected expression maps of the embryos injected with the mnx1 regB constructs 
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4.3.8 Quantification of the expression 

To generate numeric data from the expression patterns, embryo structures were 

detected on the extended focus pictures and the fluorescence was measured in the 

following domains (for domain definition see Materials and Methods point 4.6.3): 

eye, midbrain hindbrain boundary, brain, spinal cord, heart, notochord, skin, yolk and 

yolk plug. The Venus signal originating from the yolk structures were removed from 

the overlay analysis. To obtain a quantitative readout of reporter activity, the mean of 

Venus expression in the total number of embryos was calculated for each tissue 

domains as well as for the whole embryo. The mean of the fluorescent pixels detected 

within a tissue domain were normalised to the size proportion of the domain as 

compared to the whole of the embryo and the normalised values were expressed in a 

chart and expressed in colour intensity codes. The brightness of a square in the colour 

code system was used to indicate the extent of expression as measured by normalised 

pixel intensity counting (Figure 55.). The complete results of the quantification of the 

entire experiment are shown in Figure 56. 

 
Figure 55: Quantification of the expression was performed in distinct domains of the zebrafish embryo 

A: The colour code of the defined tissue domains: red – yolk and yolk plug (Yo), greyish green 

– retina (Re), dark blue – skin (Sk), light green – brain (Br), brown – MHB (Mh), blue – heart (He), 

orange – notochord (No), bluish green – spinal cord (Sp). B: The quantification of the projection 

picture shows that the majority of the signal is located in the spinal cord, and there were some Venus-

positive cells in the brain and skin domains. C: The colour code representation of the signal strength in 

the different domains.  
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Figure 56: Overview of the analysis of 250 reporter constructs. Colour intensities represent pixel 

counts per embryo for each domain as described in Figure 29. Grey boxes indicate constructs not 

assayed. 
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Figure 57: Interaction map 

Reporter gene expression activities (total number of YFP-positive pixels per embryo) were 

calculated for each cis regulatory combination. Blue lines indicate reporter activity of a specific 

enhancer-promoter combination, where the thickness of the line is proportionate to the strength of 

activity as measured by pixels counts of YFP signal. Position of promoters (right half, yellow discs) 

and enhancers (left half, green discs) on the y-axis is proportionate to their ability to generate 

interaction with each other (interactivity) and is measured as percentage of positive reporter activity 

obtained of total interactions tested.  

The interactions between enhancers and promoters observed by analyzing the 

projection map pictures were visualized on an interaction map. The interaction map 

was created by plotting enhancers and promoters on the x-axis representing strength 

of reporter gene activity (expressed as a mean of all interactions studied with the 

given enhancer or promoter). All the promoters series were compared to the ctr 
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enhancer-promoter constructs. Position on the x-axis demonstrates the strength of 

enhancer-promoter interaction as measured by the average number of YFP-positive 

pixels in all interaction experiments for the given enhancer or promoter. On the y-

axis, the position of an enhancer/promoter was determined by the percentage of 

combinations showing more expressivity than the controls (Figure 57.).  

 

Based on the results of the quantification and the interaction map, strong core 

promoters were identified, that showed comparably high interaction capability with 

several enhancers (e.g. apoeb, klf4 and krt4) while other promoters were weakly 

active and only in conjunction with a small number of enhancers (pcbp2, tram1, elp4 

and dre-mir9-1). Furthermore, differential interaction-specificity could be observed 

with several enhancer-promoter combinations. For example, the ndr1 and engrailed2b 

promoters had differential ability to interact with the isl1 zCREST2 and shha arC 

enhancers. While the eng2b promoter was efficiently activated by the zCREST2 in the 

motor neurons, this enhancer was almost inactive in combination with the ndr1 

promoter. In contrast, the shha arC enhancer was better activating the Venus 

expression in the notochord and ventral brain in conjunction with the ndr1 promoter 

than with the eng2b. Thus, both the overall strength of activity, as well as the tissue 

specificity of enhancer-promoter interactions was dependent on the identity of the 

core promoters applied.  
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4.3.9 The ability of promoters to respond to enhancers depends on the promoter 

strength and usage 

I have asked whether any characteristics of core promoters used in this study 

show correlation with the responsiveness of promoters to enhancers. The following 

properties were taken into account: tissue-specificity of the gene the promoters belong 

to, TSS distribution and core promoter composition of the promoters and the total 

number of ESTs mapping to the core promoter region (Table 15.). 

 Gene 
symbol 

Number of 
interactions 

Tissue-
specificity 

Core promoter  
composition 

TSS  
distribution 

Number 
of ESTs 

01 apoeb 9 CNS TATA-box, Inr  dominant 624 
05 krt4 9 tissue-spec - dominant 601 
02 atp6v1g1 7 CNS - dominant, 

bimodal 
195 

03 gtf2a1 7 general TATA-box broad 73 
04 klf4 7 tissue-spec - broad 130 
11 c20orf45 7 NA - broad 88 
12 ccne 7 CNS - broad 20 
21 eng2b 7 CNS Inr broad 8 
06 ndr1 6 general Inr not conclusive 3 
19 hsp70 6 CNS TATA-box not conclusive 4 
09 tbp 5 general BREd dominant 106 
13 shha 5 CNS - not conclusive 3 
08 rdh10 4 tissue-spec BREd dominant 210 
17 elp4 4 general BREd broad 24 
10 tram1 3 CNS - broad 102 
15 mef2d 3 tissue-spec - broad 20 
07 pcbp2 1 general BREd broad 107 
16 dre-mir9-1 1 CNS - not conclusive 2 
20 lmbr1l 1 general BREd not conclusive 0 
00 ctr 0 - - -  

Table 15: The properties of the promoters used in the screen. The promoters are ranked by the number 

of interacting enhancers. 

To investigate whether the tissue-specificity of the regulatory elements 

influenced the formation of interactions, based on the embryonic expression patterns 

of the zebrafish genes, the promoters were grouped into three categories: 1) 

expression domain in the central nervous system (CNS), 2) expression domain in 

tissues other than the CNS (called tissue-specific) and 3) general expression pattern. 

The promoters showed no clustering in terms of tissue-specific expression patterns 

when the expression profiles of the interacting enhancers were checked (Figure 58.).  
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Figure 58: The number of interacting enhancers for each promoter. Orange bars represent the 

CNS-specific enhancers, green ones the general enhancer and the red bar are for the non-CNS tissue-

specific enhancers. 

Core promoters of genes from all categories were able to interact with tissue-

specific or general enhancers, although general promoters showed a tendency of 

interacting with less CNS-specific enhancers, compared to CNS-specific or general 

promoters (Figure 59). 

 
Figure 59: The average of interacting enhancers for the three promoter categories. The orange bars 

represent the core promoters of genes expressed in the CNS, the green bars are for the promoters 

expressed in tissues other than the CNS and the purple ones are for the promoters of generally 

expressed genes. 

Next the core promoter composition of the promoters was analyzed. None of the 

promoters contained DPE, DCE, BREu or MTE elements. The sequence analysis did 

not detect any known core promoter elements in the atp6v1g1, tram1, c20orf45, 

mef2d and dre-mir9-1 promoters. The apoeb (at –30 position), gtf2a1 (-29), and hsp70 

(-42) harbour TATA-box (Bucher 1990), the pcbp2 (at –28 position), rdh10 (-20, 19), 

tbp (-15, 1), elp4 (-7) and lmbr1l (-21) promoters contain BREd, while the apoeb (at 

13), ndr1 (-84, 8, 50) and eng2b (10) promoters have initiator sequence.  

No correlation could be observed between the core promoter composition and 

the strength of promoters, although BREd shows a tendency to be present in promoters 

that are rather weak or having few interacting partners. 
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To get the information about the TSS distribution of the amplified core 

promoters ESTs mapping to the promoter regions were retrieved from the dbTSS 

database or were manually checked in the ENSEMBL database. The TSS distribution 

did not correlate with the strength, nor with the interactivity of the promoters. 

Although the strength (expressivity) of the promoters was found to be dependent on 

the number of EST evidences available for a given promoter. A significant correlation 

was observed between the ability of promoters to interact with enhancers and the 

number of ESTs. These results suggest that more active (strong) promoters are more 

likely to be able to interact with enhancers (Figure 60.). 

 
Figure 60: Correlation between the promoter activity (A) or responsiveness to enhancers (B) and the 

number of ESTs mapped to the promoter region. 
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4.3.10 Discussion 

Large scale cloning of 250 enhancer-promoter combinations 

To investigate what determines the specificity of the interaction between cis-

regulatory elements I have generated 250 constructs containing different core 

promoter-enhancer combinations. We decided on using covalently joint fragments for 

this screen to better control the ratio of the cis-regulatory elements injected. I used the 

Multisite Gateway vectors system, which allows cloning of fragments in large scale, 

as it relies on site-specific recombination instead of restriction digest and ligation. I 

cloned the promoters to the site where usually the gene of interest is cloned, in front 

of the C-terminal venus tag, and the enhancers were recombined into the regulatory 

element site.  

High throughput screening of the generated expression vectors 

We have injected these constructs into zebrafish eggs, and detected the 

expression of the venus reporter and the co-injected cfp mRNA in pim15 stage 

embryos. For the automated microscopy embryos were plated into 92-well plates with 

agarose filling, each containing a pit in the middle for the yolk. The embryos were 

anesthetised and then the yolks were manually oriented into the wholes. By using a 

robotic arm to handle the plates in the cooled microscope room, we could even screen 

30 plates per night. Pictures were taken with a "Scan^R" high content screening 

microscope with a 2x objective in bright field and with CFP, YFP filter cubes. After 

the central focal plane of the embryos was detected by an object detection auto-focus 

algorithm. Each embryo was acquired with four z-slices (55µm). 

The generated pictures were processed by using several algorithms: the embryos 

were automatically detected and oriented, the bad quality pictures were removed and 

the pictures taken at 4 z-slices from each and every embryo were projected into one 

extended focus picture. I used these files to evaluate the interaction of the different 

cis-regulatory element combination, approximately 15000 extended focus pictures 

were analysed. The extended focus pictures were then merged into one overlay 

picture for demonstration purposes, as the overlay of single embryos with mosaic 

expression could highlight the whole expression patterns. 

 119



Results and discussion 

Automated data analysis 

The mean fluorescent pixels were counted in distinct expression domains and 

for the whole embryo from extended focus pictures for every construct, then were 

normalised by the area of the domain. These numbers were used to generate a colour 

coded plot and the interaction map.  

The automated data quantification resulted in slightly different results as the 

manual analysis of the extended focus pictures. For example, the atp6v1g1, ccne and 

ndr1 promoters are ranked as weak promoters with few interacting partners by the 

automated quantification, while these promoters were activated by seven (atp6v1g1 

and ccne) or six (ndr1) enhancers. The differential output could arise from the major 

drawback of the automated analysis. The algorithm cannot distinguish between 

signals coming from the surface or from the middle of the embryo, the total number of 

fluorescent pixels were counted per expression domains. This means that the potential 

background activity in the epithel strongly modified the quantification results. The 

strongest and mostly interactive promoters, the apoeb, klf4, krt4, tbp and c20orf45 

promoters all showed epithel expression with the control and with several other 

enhancers as well, so the activity of the enhancers in combination with these 

promoters is probably overestimated. The future challenge is to approve the 

quantification to overcome these imperfections. 

Seven enhancers directed the expression into specific domains  

From the twelve enhancers eleven showed enhancer activity when combined to 

different promoters, while the pax6b eye enhancer did not work as an enhancer at all. 

The pax6b eye enhancer was identified as a non-coding sequence highly conserved 

between fugu and human, located at the elp4 locus (Woolfe et al. 2005), where a pax6 

eye-enhancer element was previously predicted (Kleinjan et al. 2001). This element 

was tested in a co-injection experiment with the following parameters: conserved 

element DNA at 150–300 ng/µl, reporter construct (β-actin promoter) DNA at 25 

ng/µl concentration (Woolfe et al. 2005). In this screen we covalently joined the 

enhancer fragment to the promoters, so the molar ratio was obviously much less, 

compared to the original publication. The differential molar ratio or the use of another 

promoter could be the reason why this element did not show enhancer activity in 

combination of any of the tested promoters.  
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Regarding the specificity, seven enhancers out of the working eleven directed 

the expression into the previously described tissue/domains, showing tissue-specific 

enhancer activity with at least one promoter. The dre-mir9-1 and dlx2b/dlx6a ei 

enhancers worked as general enhancers rather than CNS-specific, and the myf5 and 

the kdrl1 enhancers showed weak and ectopic enhancer activity in combination with 

few promoters. The enhancer element driving the myf5 expression into the somites 

was identified in deletion series (Chen et al. 2007). As it is located close to the core 

promoter element, it is possible that this element is not an enhancer, but a proximal 

promoter, working only in the context of the endogenous myf5 promoter. No vascular 

epithel-specific Venus expression was observed with the kdrl enhancer. This could be 

due to the fact that this enhancer element was investigated in its original context, in 

combination with the 1.5-kb kdrl promoter (Choi et al. 2007) that could harbour other 

regulatory elements assisting in the interaction of the enhancer with the promoter.  

There were three enhancers for which I have cloned their endogenous promoters 

as well. Interestingly, the shh arC-shha combination did not reveal the strongest 

signal from the arC-series, but the reporter activation was strongly enhancer-specific, 

no significant background expression was detected (Figure 30.). For the other two 

enhancers, neither the eng2b CXE-eng2b, nor the eng2b reg5-eng2b combinations 

resulted in activation of the Venus expression in the midbrain hindbrain boundary 

(Figure 34. and 36.). The activity of the two eng2b enhancers was tested in co-

injection experiments with their endogenous promoter prior to the screen (Figure 21.), 

and in this experiment they directed the reporter expression into MHB. The promoter 

fragment was then 1kb long, while in this screen a 227-bp-long core promoter was 

used. The longer fragment could harbour sequences the enhancers were able to 

interact with, possibly missing from the basal promoter. 

The strenght and the interactivity of promoters varied in a wide range 

Three promoters (pcbp2, dre-mir9-1 and lmbr1l) from the nineteen showed 

expression only in combination with one enhancer. The pcbp2 promoter could interact 

only with the shha arC enhancer, driving the venus expression into shha-specific 

tissues such as hypothalamus, floorplate and notochord. The brain-specific dre-mir9-1 

promoter was only active with the eng2b CXE enhancer, and this interaction was also 

enhancer-specific, while the lmbr1l promoter was activated by the dlx2b/dlx6a ei in 

the muscle, yolk, skin and spinal cord, where the dlx2b and dlx6a genes are not 
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expressed. On the other hand, several promoters showed high background activity, 

and these were able to interact with numerous enhancers (apoeb, krt4, atp6v1g1, ccne, 

eng2b, klf4, gtf2a1 and c20orf45). 

Interestingly, the expression patterns gained with the core promoters were not in 

all case overlapping with the endogenous expression of their genes. For example the 

atp6v1g1 gene is expressed at 30hpf in the central nervous system, while its core 

promoter showed activity in the yolk when tested with the control enhancer. The 

gtf2a1 and the tbp promoter showed reverse effect, they were expressed in the brain, 

eye and spinal cord when combined with the control enhancer, while the genes 

themselves show general expression.  

The dre-mir9-1 and mef2d promoters and the dre-mir9-1 enhancer were chosen 

to represent gene interdigitation in the dataset. None of the two promoters were 

activated when combined with the dre-mir9-1 enhancer, thus no further conclusions 

can be drawn in terms of interaction specificity of enhancers with their target and 

bystander promoters. 

Enhancer trap experiments performed with different basal promoters showed 

preference for enhancers driving expression into different tissues. The screen using 

the basal promoter of the gata2 gene could identify enhancers assigned to regulators 

of early development (Ellingsen et al. 2005). The promoter of the krt4 (previously 

called as krt8) gene was previously used in transposon-mediated enhancer trap 

(Parinov et al. 2004). The 460-bp promoter construct effectively detected expression 

patterns in tissues derived from all three germ layers: ectoderm, endoderm, and 

mesoderm, but the CNS was the main target for the reporter expression (Parinov et al. 

2004). The krt4 core promoter was one of the strongest and most active promoters in 

our screen: it could interact with nine enhancers, including general, tissue-specific and 

CNS-specific enhancers. Only the myf5 and kdrl enhancer did not activate expression 

in combination with the krt4 promoter, but these enhancers rather worked as weak and 

unspecific regulatory elements in the screen.  

The hsp70 promoter is widely used as a basal promoter in reporter constructs in 

enhancer tests and in generation of transgenes (Miyashita et al. 2004; Aizawa et al. 

2005; Thummel et al. 2005; Sanges et al. 2006). In this screen, this promoter was able 

to interact with seven (shh arC, eng2b CXE, dre-mir9-1, myl7, isl1 zCREST2, 

dlx2b/dlx6a ei and mnx1 regB) from the eleven working enhancers. In the case of shh 

arC, eng2b CXE, myl7, isl1 zCREST2 and mnx1 regB enhancers the expression was 
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highly specific (Figure 41). Most of these enhancers are CNS-specific, but the myl7 

element, driving the expression to the developing heart tube is also in this list. 

Interestingly, the ß-actin intron1 enhancer, which worked as a general enhancer in 

combination with several promoters, did not activate the hsp70 promoter.  

Enhancer action is promoter-specific 

I could show that there are differences between different promoters in terms of 

ability to interact with a given enhancer. These results are contradictory to a previous 

report, in which a total number of 27 combinations of different enhancers and 

promoters were tested. This experiment was performed in cell culture, and they have 

chosen promoters (β-globin and Ig kappa) and enhancers of the immunoglobulin 

heavy and light chain, SV40 and Moloney sarcoma virus. The combinations of these 

cis-regulatory elements could evenly activate the reporter expression in the 

transfected cells (Kermekchiev et al. 1991). In contrary, our screen was performed in 

a developing vertebrate embryo, which system is much more complex, then tissue-

culture. Second, the majority of promoters and enhancers are cis-regulatory elements 

of developmentally regulated genes, completely differing of the elements of genes 

expressed in terminally differentiated cells from an adult organism. Thus the two 

experimental systems are not directly comparable. 

Butler et al performed an elegant experiment in Drosophilal by using FLP/Cre 

excision and enhancer-trapping techniques. They could demonstrate the existence of 

DPE-, and TATA-box-specific enhancers (Butler et al. 2001). Our results do not show 

this kind of straightforward correlation between the core-promoter composition and 

the ability of promoters to interact a specific enhancer. The different classes of 

promoters do not tend to cluster in terms of interacting with different enhancers. This 

could be due to the fact, that from the 20 promoters 10 do not contain any of the know 

core promoter motives (for TATA.box, only the TATAWADR sequence was 

accepted, based on Bucher’s definition) at the right position, so the sample number is 

too low to detect such a correlation. Despite of few tendencies observed (BREd is 

present is promoters that are rather weak or having few interacting partners, and 

general promoters showed a tendency of interacting with less CNS-specific 

enhancers, compared to CNS-specific or general promoters), the only significant 

correlation found was that the more EST evidences a promoter region has, the 

stronger and more interactive the promoter is.  
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5) Conclusions 

5.1 Four conserved non-coding elements form the pax2 locus show 

eye enhancer activity 

Sequence comparison of genomic sequences upstream of the orthologuous pax2 

genes from fugu, mouse and human revealed in non-coding sequences (CSTs) with 

conservation. Previously several enhancers have been identified, which direct the 

transcription of pax2 into distinct domains. The element regulating the optic stalk 

expression was located into a 9kb DNA sequence (Schwarz et al. 2000), but this 

element was not further characterized. I tested the conserved noncoding sequences in 

a co-injection assay, with a 5.3kb pax2a promoter. To test whether the same enhancer 

activity is gained with a different promoter, I performed experiments with the mouse 

minimal hsp68 promoter as well. The CSTs showed overlapping but not identical 

results with the two different constructs. I could demonstrate that four of these 

elements were able to direct pax2a expression into the optic stalk and retina in the 

developing zebrafish embryos at 24hpf stage with both of the tested promoters. These 

four elements were cloned in front of hsp68 promoter, and the expression of these 

constructs was compared to the results gained with the co-injections. The consequent 

enhancer activity of these conserved non-coding sequences in the retina and/or optic 

stalk confirm that co-injection of isolated linear DNA sequences can be used for 

enhancer-assays. 

5.2 Combined alignment approach reveals in increased number and 

variety of conserved non-coding sequences with enhancer function 

Genomic sequence aligmnent tools eighter generate false hits (local tools), or 

miss consreved sequences due to their insensitivity to elements that are shifted in 

position (global tools). The development of a new sequence comparison method, by 

combining a global and a local alignment, 21.427 non-genic conserved elements were 

identified, ten times more, than found by similar approaches. Two thirds of the 

elements were shuffled during evolution, suggesting that enhancer shuffling is 

widespread in vertebrates. This type of analysis not only revealed in higher number of 

conserved non-coding elements, but elements assigned to different types of genes as 
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well, emphasising the importance of the alignment tool choice in sequence 

comparison. 

22 out of 28 shuffled conserved elements showed significant enhancer activity, 

from which 20 were tissue-specific. I presented here some examples of functional 

redundancy of genes, where multiple elements assigned to a single gene showed 

similar enhancer activity. Gene assignment of the SCEs was confirmed by comparing 

the expression domains of the enhancers with the endogenous expression patterns of 

the genes.  

5.3 Promoter-specific differences in enhancer action 

To investigate whether core promoters and enhancers isolated from their 

original genomic context show interaction specificty, we have performed a high 

throughput screen with approximately 23.000 zebrafish embryos. I have generated 

250 expression vectors with the Multisite Gateway system, and we have injected these 

to zebrafish embyos. Pictures were taken with an automated microscope from the 

30hpf stage embryos in a special 92-well format, and the generated more than 

275.000 pictures were processed by computer algorithms. The fluorescent pixels were 

counted in distinct domains and in the whole embryos. The data generated by the 

quantification was used to draw an interaction map.  

From the 13 enhancers nine showed enhancer activity consistent with the 

published activities, while two acted as general enhancers instead of being tissue-

specific. Each working enhancer could interact with only a subset of promoters, and 

the expression was not in all case drirected into the enhancer-specific domains. The 

enhancer action thus was shown to be promoter-specific, but the properties of core 

promoters to determine the interaction specificity could not be identified. The only 

significant correlation observed was that the promoters having more EST evidences in 

their promoter regions, meaning transcribed more often, were more active in our 

screen and had inetraction with more enhancer elements. 
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