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SUMMARY 

To understand how the brain generates representations of the external world it 

is crucial to analyze the processing of sensory information between early 

processing centers and higher brain regions. In the first olfactory relay, the 

olfactory bulb (OB), odors are represented by dynamic patterns of activity 

across the population of principal neurons, the mitral cells. During an odor 

response, subsets of mitral cells synchronize their action potentials and convey 

information that is different from the information contained in non-

synchronized firing patterns. It is, however, poorly understood how these 

combinatorial representations are further processed in higher brain areas. I 

used a small vertebrate model system, the zebrafish, to examine how neurons 

in the dorsal posterior telencephalon (Dp), a direct target of OB output that is 

homologous to olfactory cortex, extract information from OB output activity 

patterns. Using 2-photon Ca2+ - imaging and whole-cell patch-clamp 

recordings, I found that individual Dp neurons receive input from diverse sets 

of mitral cells. Unlike in mitral cells, responses of Dp neurons to binary 

mixtures of odors could not be predicted from their responses to the 

components. Electrophysiological and pharmacological results demonstrated 

that suprathreshold responses are controlled by the convergence of excitatory 

and inhibitory pathways in single Dp neurons. I next analyzed the temporal 

integration properties of neurons and neuronal circuits to examine whether 

neurons in Dp may selectively extract the information contained in 

synchronized mitral cells spikes. No evidence for coincidence detection 

mechanisms was found; rather, action potential firing is controlled primarily 

by a slow membrane depolarization. In conclusion, the readout of information 

in Dp is determined by a balance of slow excitatory and inhibitory inputs that 

allows Dp neurons to detect defined patterns of excitation and inhibition 

across the population of mitral cells in the olfactory bulb. This mechanism 

does not depend on the synchronization of inputs and mediates the association 

of information about multiple molecular features of an odor stimulus. 

Together, these data suggest that neurons in Dp form synthetic representations 

of olfactory objects. 



ZUSAMMENFASSUNG 

Um zu verstehen, wie das Gehirn eine interne Repräsentation der externen 

Welt generiert, ist es notwendig, die Verarbeitung sensorischer Information 

zwischen peripheren Zentren und höheren Hirnarealen zu untersuchen. Im 

ersten olfaktorischen Verarbeitungszentrum, dem Bulbus olfactorius (OB), 

werden Gerüche durch dynamische Aktivitätsmuster von Mitralzellen 

repräsentiert. Während einer Geruchsantwort synchronisieren Gruppen von 

Mitralzellen ihre Aktionspotenziale und transportieren Stimulusinformation, 

die sich von der Information in nicht synchronisierten Feuermustern 

unterscheidet. Die weitere Verarbeitung dieser kombinatorischen 

Repräsentationen in höheren Hirnarealen ist jedoch noch kaum verstanden. Ich 

habe ein kleines Wirbeltiermodell, den Zebrafisch, verwendet, um zu 

untersuchen, wie Neurone im posterioren dorsalen Telencephalon (Dp), einem 

dem olfaktorischen Cortex homologen Projektionsgebiet des OB, Information 

aus Aktivitätsmustern im OB extrahieren. Mithilfe von 2-Photonen Ca2+ - 

Imaging und intrazellulären Ableitungen einzelner Zellen habe ich 

herausgefunden, dass einzelne Dp Neurone Inputs von mehreren Mitralzellen 

erhalten. Im Gegensatz zu Mitralzellen konnten die Antworten der Dp 

Neurone auf binäre Geruchsmixturen nicht anhand der Antworten auf die 

Komponenten vorhergesagt werden. Elektrophysiologische und 

pharmakologische Experimente zeigten, dass überschwellige Antworten durch 

die Konvergenz erregender und inhibitorischer Synapsen kontrolliert werden. 

Untersuchungen der zeitlichen Integrationseigenschaften von Neuronen und 

Schaltkreisen lieferten keinerlei Hinweise dafür, dass Dp selektiv Information 

ausliest, die durch synchronisierte Aktionspotentiale transportiert wird. 

Vielmehr scheint das Feuern von Aktionspotenzialen in Dp primär durch eine 

langsame Membrandepolarisation bestimmt zu sein. Das Auslesen von 

Information in Dp ist daher durch ein Gleichgewicht langsamer erregender 

und hemmender Inputs bestimmt, das es Dp Neuronen ermöglicht, definierte 

Mitralzell-Aktivitätsmuster zu detektieren. Dieser Mechanismus hängt kaum 

von der Synchronisation der Eingänge ab und vermittelt die Assoziation 

zwischen verschiedenen molekularen Determinanten eines Geruchsstimulus. 

Diese Daten weisen darauf hin, dass Neurone in Dp synthetische 

Repräsentationen olfaktorischer Objekte  erzeugen. 
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INTRODUCTION 

A challenging question in neuroscience is to understand how information 

about the outside world is represented and processed by the activity of large 

populations of neurons. Vision, hearing, touch, taste and olfaction are the five 

modalities via which we perceive our external environment. All of these – 

except for olfaction – relay primary sensory input to the thalamus from where 

it is subsequently mapped onto the cerebral cortex. Olfactory input, in 

contrast, is transmitted directly from the olfactory bulb, the first olfactory 

processing center, to the olfactory cortex. This direct link between periphery 

and higher brain areas makes the olfactory system an interesting model to 

investigate the transformation of sensory input into a higher neuronal 

representation. 

The Olfactory System 

Chemicals in the environment are detected by olfactory sensory neurons in the 

nasal epithelium. These sensory neurons transform chemical signals into 

electrical signals. The primary second messenger involved in olfactory signal 

transduction is cyclic AMP, which is synthesized by adenylyl cyclase upon 

odorant induced activation of a G protein coupled receptor. Cyclic AMP opens 

cyclic nucleotide-gated ion channels, which leads to a modest depolarization 

and Ca2+ influx. Ca2+ then opens Ca2+ - activated chloride channels. Because 

the reversal potential for chloride is near 0 mV in olfactory sensory neurons, 

the opening of chloride channels further amplifies the depolarization and 

constitutes the major amplification step in the signal transduction cascade 

(Review: Frings, 2001). Alternative signal transduction pathways that may 

operate in subsets of olfactory sensory neurons involve inositol trisphosphate 

(Reviews: Restrepo et al, 1996; Schild & Restrepo, 1998). Electrical signals 

are transmitted to the olfactory bulb (OB) where sensory neurons converge 

onto OB principal cells in structures termed glomeruli. 
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 A variety of interneuron classes, a subset of which receives direct 

input from sensory neurons, mediates the interaction between neurons within 

and across (neighboring) glomeruli and thereby dynamically shapes the output 

of the OB (Reviews: Lledo et al, 2008; Mori et al, 1999). Axons of mitral and 

tufted cells, the principal neurons in the OB, form the olfactory tracts that 

project to multiple central targets including anterior olfactory cortex, piriform 

cortex, entorhinal cortex, olfactory tubercle, amygdala, and agranular insula 

(Finger, 1975; Levine & Dethier, 1985; Neville & Haberly, 2004; Rink & 

Wullimann, 2004; von Bartheld et al, 1984; Wilson et al, 2006). 

 In the piriform cortex, a major target of the OB in mammals, mitral 

cells project to broad and overlapping terminal patches (Buonviso et al, 1991; 

Ojima et al, 1984). Afferent activity is then processed by an extensive 

associational network of excitatory pyramidal cells and inhibitory interneurons 

(Neville & Haberly, 2004). Individual pyramidal cells contact a large number 

(> 1000) of additional pyramidal cells distributed throughout very large areas 

within piriform cortex (Johnson et al, 2000). Diverse neuromodulatory inputs 

differentially influence afferent and associational connections (Hasselmo & 

Bower, 1992; Tang & Hasselmo, 1994). 

Representation of odorants in the olfactory bulb (OB) 

In the vertebrate OB odorants are represented by combinatorial and 

chemotopic patterns of activity across glomeruli (Friedrich & Korsching, 

1997; Friedrich & Korsching, 1998; Mori et al, 2006; Uchida et al, 2000; Xu 

et al, 2000). Each glomerulus receives direct input from only one type of 

olfactory sensory neuron expressing one type of odorant receptor (Malnic et 

al, 1999), and sensory neurons expressing the same odorant receptor converge 

onto only one or a few glomeruli (Mombaerts et al, 1996; Ressler et al, 1994; 

Vassar et al, 1994). Odor stimuli are therefore represented by discrete 

combinations of activated glomeruli. Glomeruli receiving inputs from 

chemically distinct classes of molecules are topographically segregated. Thus, 
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the OB contains a chemotopic map of sensory features. This map is 

hierarchically organized: Primary molecular features, such as defined 

functional groups, are mapped onto relatively large regions, whereas 

secondary features, for example chain length, are mapped within these regions 

in a more overlapping fashion (Friedrich & Korsching, 1997; Friedrich & 

Korsching, 1998; Mori et al, 2006; Uchida et al, 2000). 

 The topographical organization of sensory inputs is largely preserved 

in the activity patterns of mitral cells and thus at the output level of the OB. 

Mitral cells responding to different stimulus classes (e.g. amino acids and bile 

acids) are clearly segregated and the majority of mitral cells responds 

selectively to only one stimulus class (Yaksi et al, 2009). 

Representation of odorants in higher brain areas 

In the piriform cortex, pyramidal cells responsive to different stimulus classes 

are distributed and intermingled (Illig & Haberly, 2003; Rennaker et al, 2007; 

Zou et al, 2005) and individual neurons respond to molecularly diverse 

odorants (Kadohisa & Wilson, 2006; Wilson, 2003; Yoshida & Mori, 2007). 

However, the nature of odor representations in piriform cortex is still poorly 

understood. Moreover, the mechanisms that determine the integration of odor-

evoked activity in individual higher-order neurons of vertebrates remain to be 

explored. 

 In the mushroom body, a higher olfactory brain area of insects, 

Kenyon cells, the mushroom body intrinsic neurons, receive convergent inputs 

from multiple antennal lobe projection neurons and odorants are represented 

by sparse patterns of activity across Kenyon cells (Laurent & Naraghi, 1994; 

Perez-Orive et al, 2002). This sparsening is the result of intrinsic neuronal and 

circuit properties in the insect olfactory system (Review: Laurent, 2002). 
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Synthetic perception of odorant mixtures 

Animals and humans perceive complex odorant mixtures not as a discernible 

combination of their components but as novel odor objects (Jinks & Laing, 

2001; Staubli et al, 1987). However, little is known about the information 

processing strategies underlying this transformation of discrete inputs into a 

coherent odor percept. At the output level of the OB, responses to binary 

mixtures are often dominated by one of the component responses (Giraudet et 

al, 2002; Tabor et al, 2004), indicating that odor representations in the OB 

retain much, albeit not all, information about the components. The creation of 

mixture-specific representations may therefore occur primarily at higher 

processing stages and depend on the strategies used by higher-order neurons to 

extract information from the OB output. 

 In an extreme case, higher-order neurons might summate converging 

inputs and fire upon reaching threshold. The response selectivity would then 

depend strongly on the firing threshold, and mixture responses could be 

predicted from the component responses by a relatively simple algorithm. 

Alternatively, more sophisticated integration strategies could enable neurons 

to detect specific patterns of input activity. Neurons responding to binary odor 

mixtures but not their individual components have been found in the olfactory 

cortex by electrophysiological experiments (Yoshida & Mori, 2007) and 

immediate early gene expression (Zou & Buck, 2006). Responses to multi-

component mixtures further suggest that neurons in the olfactory cortex may 

employ complex strategies to extract information from mitral cell output 

(Barnes et al, 2008). However, further experiments are required to understand 

the principles by which mitral cell activity patterns are read out by circuits in 

higher brain regions. I therefore used binary mixtures to investigate the basic 

strategies underlying the formation of synthetic mixture representations in a 

higher brain region. 
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The relevance of neuronal synchronization in olfactory processing 

Information may be encoded in the brain not only by the identity of neurons 

but also by the temporal patterns of action potentials. While the relative timing 

of action potentials obviously encodes information in some sensory systems 

such as the auditory system (Joris & Yin, 2007; Nemenman et al, 2008), its 

role in other systems remains controversial (Borst & Theunissen, 1999; Oram 

et al, 2001).  

 In the first processing center of vertebrate and invertebrate olfactory 

systems, the olfactory bulb and antennal lobe, respectively, odor stimulation 

induces a rhythmic synchronization of dynamic and stimulus-specific 

ensembles of projection neurons that manifests itself in an oscillation in the 

local field potential (LFP) (Adrian, 1942; Friedrich & Laurent, 2001; Hughes 

& Mazurowski, 1962; Kashiwadani et al, 1999; Kay & Stopfer, 2006; Laurent, 

1996; Laurent, 2002; Laurent & Naraghi, 1994; Rall & Shepherd, 1968; Satou, 

1990; Wehr & Laurent, 1996). In locusts and probably in other insects, 

Kenyon cells in the next processing center, the mushroom body, selectively 

extract information conveyed by synchronized projection neurons in the 

antennal lobe by coincidence detection (Laurent & Naraghi, 1994; Perez-Orive 

et al, 2004; Perez-Orive et al, 2002). In vertebrates, however, it remains 

unclear whether neurons in target areas of the OB also read synchronized OB 

output, or whether they integrate synaptic inputs independently of 

synchronization.  

 Studies in zebrafish revealed that synchronized and non-

synchronized action potential patterns across mitral cells (MCs) convey 

information about complementary stimulus features (Friedrich et al, 2004). A 

simple model has demonstrated that information conveyed by synchronized or 

non-synchronized MC activity patterns could be read out selectively by 

neurons acting as temporal integrators or coincidence detectors, respectively 

(Friedrich et al, 2004). It is therefore important to determine how the 
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integration of synaptic inputs in target areas of the OB depends on their 

synchronization. 

 Individual neurons can act as coincidence detectors if they have short 

membrane time constants (Bernander et al, 1994; Koch et al, 1996) or if they 

express active conductances that amplify fast transients or inputs arriving at a 

specific frequency (Desmaisons et al, 1999; Laurent & Naraghi, 1994) 

(Reviews: Hutcheon & Yarom, 2000; Llinás, 1988). In addition, coincidence 

detection can be achieved by circuit mechanisms such as delayed feedforward 

inhibition, which defines a time window for the integration of excitatory 

inputs (Mittmann et al, 2005; Pouille & Scanziani, 2001; Swadlow, 2003). In 

Kenyon cells of the insect mushroom body, coincidence detection is achieved 

by at least two mechanisms: fast transients caused by synchronized projection 

neuron input are amplified by active dendritic conductances, and phase-

delayed feedforward inhibition limits the time window of integration for each 

oscillatory cycle (Laurent & Naraghi, 1994; Perez-Orive et al, 2004; Perez-

Orive et al, 2002). It is unclear, however, whether similar mechanisms also 

establish coincidence detection in higher-order neurons of the vertebrate 

olfactory system. 

 Odor responses recorded in the mammalian olfactory cortex show 

oscillatory activity that is correlated with stimulus-evoked oscillations in the 

OB (Bressler, 1987a; Bressler, 1987b) (but see Eeckman & Freeman, 1990). 

These and further studies indicate that the afferent input to piriform cortex 

contains an oscillatory temporal structure that is then sustained by intrinsic 

network mechanisms (Ketchum & Haberly, 1993). Additional investigations 

in brain slices showed that pyramidal cell responses to olfactory tract 

stimulation are curtailed by feedforward inhibition (Franks & Isaacson, 2006; 

Luna & Schoppa, 2008). It is, however, not known whether the odor-evoked 

rhythmical synchronization of MCs plays a role in shaping the odor selectivity 

of higher-order neurons. I therefore analyzed the temporal integration 
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properties of neurons in a higher olfactory brain area and examined their 

impact on odor responses. 

Zebrafish as a vertebrate model in systems neuroscience 

A comprehensive understanding of sensory processing by populations of 

neurons is remarkably facilitated by the use of a small animal model since it 

allows investigating comparatively large proportions of the entire system. The 

zebrafish OB contains a relatively small number of glomeruli (100 – 200) and 

the genome contains only about 143 olfactory receptor genes (Alioto & Ngai, 

2005), compared to more than 1800 glomeruli and 1000 olfactory receptor 

genes in the mouse (Zhang & Firestein, 2002). Moreover, the OB and higher 

olfactory forebrain areas of zebrafish are much smaller and contain a lower 

number of neurons than homologous brain areas in mammals, making them 

accessible to optical imaging approaches. Nevertheless, the major 

organizational principles of the olfactory system are conserved across species 

(Ache & Young, 2005; Sato et al, 2007). The zebrafish therefore exhibits 

important advantages that make it an attractive vertebrate model in systems 

neuroscience.  

 In the last decades investigations in an explant preparation of the 

adult zebrafish brain and nose have provided significant insight into the 

processing of odorants at the periphery and in the OB (Reviews: Friedrich et 

al, 2009; Korsching, 2005; Korsching, 2001), providing an excellent basis for 

studies of olfactory processing in higher brain areas. For the present 

investigations I focused on the dorsal posterior telencephalon (Dp), a direct 

target area of the OB that is homologous to the mammalian olfactory cortex 

(Wullimann & Mueller, 2004). 
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Aim of this study 

The principles by which activity patterns across mitral cells are processed in 

higher brain areas depend on the integration of inputs by downstream neurons. 

To investigate the integration of olfactory bulb output by neuronal circuits in 

the zebrafish telencephalon I focused on two major questions: 

Circuit mechanisms shaping odor responses in the dorsal posterior 

telencephalon (Dp) 

I used 2-photon Ca2+- imaging of neuronal activity patterns to quantify 

responses of Dp neurons to individual compounds and their binary mixtures. 

The results show that, unlike MCs, Dp neurons exhibited pronounced mixture 

interactions and frequently showed selective responses to either the mixture or 

the components. I further investigated the mechanistic basis underlying the 

observed mixture interactions by pharmacological experiments and whole-cell 

patch-clamp recordings. I found that GABAergic inhibition played a major 

role in shaping the odor responses of Dp neurons, and that odor-evoked 

spiking was controlled by a balance of excitatory and inhibitory mechanisms. 

These mechanisms endow Dp neurons with the ability to detect specific 

patterns of activity and inactivity across the population of MCs. 

Temporal integration in Dp 

I investigated the temporal characteristics of the neuronal circuitry in Dp by 

measuring biophysical properties and odor responses of higher-order neurons 

within the intact network. The temporal structure of odor responses was 

analyzed along with the simultaneously recorded local field potential in the 

OB. Responses of Dp neurons were not restricted to synchronous oscillatory 

activity but reflected the integration of inputs over time. Thus Dp neurons may 

extract information from non-synchronized MC spikes carrying information 

about the identity of odorants. 
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MATERIALS AND METHODS 

Brain explant preparation 

Zebrafish (Danio rerio) were kept at 26-27°C on a 13/11-h light/dark cycle 

following standard procedures. Experiments were performed in an explant 

preparation of the intact adult (> 3 months old) zebrafish brain and nose as 

described (Friedrich & Laurent, 2001; Tabor et al, 2004). Briefly, fish were 

anesthetized by cooling, decapitated in teleost artificial cerebral spinal fluid 

(ACSF) (Mathieson & Maler, 1988), and the ventral forebrain was exposed. 

After removal of the dura mater, the preparation was placed ventral-side up 

into a custom-made flow chamber and continuously superfused with ACSF. 

Experiments were performed at room temperature (~ 22ºC).  All animal 

procedures were conducted in accordance with official animal care guidelines 

and approved by the Federal Republic of Germany and the Veterinary 

Department of the Canton of Basel-Stadt (Switzerland). 

Odor stimulation 

Amino acids and bile acids – of the highest available purity (Fluka; Neu-Ulm, 

Germany or Sigma Aldrich; Munich, Germany) – were used for odorant 

stimulation. Amino acids and bile acids are present in the natural aquatic 

environment (Carr, 1988; Hara, 1994) and therefore represent realistic 

olfactory stimuli for fish. Fresh solutions (amino acids 10 µM; bile acids 1 

µM) were prepared from frozen stocks (10 or 1 mM, respectively) prior to 

each experiment. These concentrations are in the intermediate physiological 

range (Carr, 1988), do not saturate glomerular responses (Friedrich & 

Korsching, 1997; Friedrich & Korsching, 1998), and had been used in 

previous experiments. Amino acids and bile acids evoke responses of similar 

magnitude at these concentrations. In a subset of experiments, 10-fold higher 

stimulus concentrations were used, but no obvious differences were observed. 
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Data were therefore pooled. Food extract was prepared from scientific fish 

food (SDS-400; Special Diets Services, Witham, Essex, UK) as previously 

described (Tabor et al, 2004). Briefly, a stock solution was prepared by 

suspending 200 mg of dry food in 50 ml of ACSF and leaving it on the shaker 

at 4ºC for 2-3 hours prior to filtering. Stock solution was stored at 4ºC and 

diluted 1:100 in ACSF immediately before the experiment. 

Odorants were delivered through a constant flow directed at the nares using a 

computer-controlled, pneumatically actuated HPLC injection valve 

(Rheodyne, Rohnert Park, CA) as described (Tabor et al, 2004). Odor 

applications were separated by at least 90 s to avoid sensory adaptation. 

Ca2+- imaging 

Odor-evoked Ca2+ signals in somata of Dp neurons were measured by 2-

photon microscopy following similar procedures as described for the OB 

(Yaksi & Friedrich, 2006; Yaksi et al, 2007). Briefly, 50 μg of rhod-2-AM 

were dissolved in 16 μl of DMSO/Pluronic F-127 (80/20; Invitrogen/ 

Molecular Probes), diluted 1:10 in ACSF and pressure-injected into Dp using 

a broken-tip patch-pipette with a tip diameter of approximately 1 – 2 µm. Two 

to three injections were needed to load the entire Dp. Measurements started at 

least 60 min after the last injection. Ca2+ signals were detected using a 

custom-built multiphoton microscope equipped with a 20 × water immersion 

objective (NA, 0.95; Olympus or NA, 1.0; Zeiss). Two-photon fluorescence 

was excited at 840 nm by a mode-locked Ti:Sapphire laser (100 fs; 80 MHz; 

SpectraPhysics, Mountain View, CA). Fluorescence emission was detected 

externally by a photomultiplier-based whole-field detector through an 

emission filter (610/75nm). Laser intensity was optimized to minimize noise 

and photobleaching. Images were acquired at 8 Hz at a resolution of 256 × 128 

pixels/frame with custom-written software (ScanImage; Svoboda Lab, Cold 
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Spring Harbor Laboratory and Janelia Farm Research Campus (see Pologruto 

et al, 2003)). Two to four trials were averaged for each odor stimulus. 

Electrophysiology 

Dp neurons were visualized by differential interference contrast (DIC) or 

similar optics and contrast-enhanced video display. Intracellular recordings 

were performed with borosilicate pipettes (9 – 15 MOhm). Signals were amplified 

(Axoclamp 2B or MultiClamp 700B; Axon Instruments/Molecular Devices), 

filtered at 4 kHz, and digitized at 10 kHz using National Instruments hardware. 

Odor responses were recorded in whole-cell current-clamp. Intracellular solution 

contained (in mM) 130 K-gluconate, 10 Na-gluconate, 10 Na-phosphocreatine, 

4 NaCl, 4 Mg-ATP, 0.3 Na-GTP, 10 HEPES; pH adjusted to 7.25 with KOH; 

osmolarity adjusted to ~300 mOsm with K-gluconate. 

Local field potential recordings were performed with low resistance patch-

pipettes filled with ACSF (4 – 7 MOhms). Field potentials were measured in 

the center of the ipsilateral OB approximately 150-200 µm below the surface 

using a MultiClamp 700B amplifier and band-pass filtered (5 – 40 Hz) after 

acquisition. 

Data were acquired and analyzed using custom software written in IgorPro 

(Wavemetrics) or Matlab (MathWorks, Inc.). 
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Simulation of input to Dp neurons 

For the simulation of odor-evoked MC inputs impinging onto Dp neurons I 

generated spike trains with varying degrees of synchronization at a carrier 

frequency of 20 Hz (Fig. 10). For each simulated presynaptic cell spikes were 

generated randomly from probability functions (p) with variable index of 

synchronization (s) according to: 

 

1)220sin( +×××= tsp π  for 1≤s  
Stp )1)220(sin( +××= π  for  

 

1>s

where t is time in seconds. Probability functions were normalized to the mean. 

Spike times falling in the refractory period of a previously generated spike 

were deleted and drawn again from the same probability distribution. Spike 

trains generated with the same probability function were summed for all 

presynaptic cells and convolved with a postsynaptic current waveform (PSC). 

The shape of the PSC was modelled by an alpha function, which is defined by 

an exponential rise and an exponential decay. Table 1 shows parameters 

chosen for the presynaptic population activity (number of presynaptic cells, 

time-averaged spike frequency for each cell, absolute refractory period) and 

the postsynaptic current elicited by each spike (rise and decay times of the 

PSC). Low synchronization indices s produced flat probability functions, 

resulting in nearly Poisson-distributed spike times. Increasing the 

synchronization index created spike trains with increasing degrees of 

synchronization at an oscillatory frequency of 20 Hz, which corresponds to the 

frequency of odor-evoked LFP oscillations in the zebrafish OB (Friedrich et 

al, 2004; Friedrich & Laurent, 2001; Tabor et al, 2008). 
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Parameter Chosen value 

Number of presynaptic cells 20 

Time-averaged spike frequency of each cell 20 Hz 

Absolute refractory period 5 ms 

Rise time constant of PSC 0.8 ms 

Decay time constant of PSC 5 ms 

 
Table 1: Parameters for the simulation of artificial input currents 

PSC: Postsynaptic current in response to one presynaptic spike. 
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Data Analysis 

Imaging 

Series of fluorescence images were converted into image series depicting the 

relative change in fluorescence (ΔF/F) in each pixel. The baseline fluorescence 

F was determined by averaging raw images over two seconds before stimulus 

onset. Response maps were constructed by averaging ΔF/F frames over a 

period of 3 seconds after response onset. Data were not corrected for 

bleaching since the effect was negligible. In the ΔF/F images, neuronal somata 

were outlined manually and the response of each soma to each stimulus was 

determined. Neurons that did not respond to any stimulus were excluded from 

further analyses. A control analysis demonstrated that mixture interactions did 

not depend on the sequence of stimulus application, confirming that the 

observed effects cannot be explained by non-stationary responses. 

 The mean coefficient of variation, CVrep, was determined from two 

repeated applications of the same odor stimulus. Repeated stimulus 

applications were separated in time by approximately 40 min. Only neurons 

with a mean response exceeding at least three times the detection threshold 

were included in the calculation of CVrep, as in other analyses. 

Electrophysiology 

Average values are given as mean ± standard deviation. For the analysis of the 

dual channel recordings of OB local field potential (LFP) and Dp neuron 

membrane potential the recorded traces were normalized to the respective 

standard deviation in a 2 s window prior to stimulus onset. From this 

normalized data, power spectral densities (PSDs) were calculated over 2 s time 

windows before and during odor stimulation. PSDs were then averaged over 

repeated trials with each cell-odor pair. The average peak oscillation 

frequency of the LFP was 14.7 ± 4.6 (range: 7.3 Hz to 27.5 Hz; n = 66 cell-

odor pairs). The mean oscillation power in the LFP and the membrane 
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potential of a simultaneously recorded Dp neuron was then calculated by 

averaging the power in a frequency band of 3.6 Hz around the peak oscillation 

frequency for each cell-odor pair. 

 To quantify subthreshold membrane potential changes voltage traces 

were median filtered using a sliding window of 14 ms. Slow membrane 

potential changes were further isolated by 5 Hz low-pass filtering. The 

maximum depolarization within 5 s around the stimulation period was then 

quantified by averaging the membrane potential in a 100 ms time window 

centered on the maximum value and subtracting the resting membrane 

potential. The low-pass filtered trace was subtracted from the median filtered 

membrane potential trace to isolate fast subthreshold components. This trace 

was then 5 – 40 Hz band-pass filtered prior to determining the amplitudes of 

oscillatory membrane potential fluctuations during the LFP oscillation period 

(2 s). Maximum fluctuations were calculated for each cell-odor pair by 

averaging the largest 10 % of fluctuations. 
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RESULTS 

Circuit mechanisms shaping odor responses in Dp 

Responses to binary mixtures analyzed by 2-photon Ca2+ - imaging 

For the investigation of sensory processing in a higher olfactory brain area I 

used a nose-attached explant preparation of the intact adult zebrafish brain. 

Odor responses in the dorsal posterior telencephalon (Dp) were imaged at 

single-neuron resolution using 2-photon microscopy (Denk et al, 1990) after 

bolus loading of a Ca2+ - sensitive dye (Stosiek et al, 2003) and quantified by 

the relative change in fluorescence (ΔF/F). Odor responses in Dp were 

reproducible and stimulus-specific (Fig. 1). 

 

 

 

 

Figure 1: Odor responses in Dp. 

Ca2+ signals evoked in Dp by odor stimulation (single trials). Response 

magnitudes are color-coded. Response maps are reproducible (Lys versus Lys 

repeat) and stimulus-dependent (Lys versus Val). Traces show time course of 

Ca2+ signals in the somata indicated by arrows. 
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 To examine the mechanisms by which Dp integrates sensory inputs I 

measured the responses of multiple Dp neurons to amino acids and bile acids. 

Amino acids and bile acids stimulate segregated glomeruli in the lateral and 

medial OB, respectively, and MC activity patterns for amino acids with 

different secondary molecular features do not overlap (Friedrich & Korsching, 

1997; Friedrich & Korsching, 1998). Somatic Ca2+ signals were obtained for a 

total of 240 neuron-mixture pairs in five fish. 

 As odor stimuli I used individual compounds and binary mixtures. 

The individual stimuli comprised one bile acid (taurodeoxycholic acid, 

TDCA) and three amino acids. Two of the amino acids (Tyrosine, Tyr; and 

Tryptophan, Trp) shared the same secondary molecular feature (aromatic side 

chain), while the third (Arginine, Arg) had a different secondary molecular 

structure (basic side chain) (Fig. 2). Mixtures were either composed of two 

amino acids (usually 10 µM each) or of one amino acid (10 µM) and TDCA (1 

µM). 

 

 

Figure 2: Chemical structures of individual odor stimuli used for binary mixture experiments. 
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 For each neuron-mixture pair I determined whether the neuron 

responded to at least one of the individual components, to their binary mixture, 

or to both. I counted a response if the evoked Ca2+ signal exceeded a detection 

threshold defined as two times the SD of the Ca2+ signal in trials without odor. 

To avoid artifacts resulting from signals close to the detection threshold, 

neuron-mixture pairs were included in the analysis only when at least one of 

the three responses (either component or the mixture) exceeded three times the 

detection threshold. 

 Individual neurons responded frequently in a mixture- or component-

selective fashion (20 % of the neuron-mixture pairs). Surprisingly, 

component-selective responses were more frequently observed than mixture-

selective responses (Fig. 3B, left). Hence, interactions between components in 

a mixture appear to be prominent in Dp. 

 I next examined the relationship between mixture and component 

responses by not only counting responses in an all-or-non fashion but by 

determining the relative response magnitudes. The similarity of the mixture 

response to the component responses was determined by mapping the 

magnitude of the mixture response of each neuron-odor pair onto the interval 

between the component responses such that the smaller component response is 

represented by a value of zero and the larger component response is 

represented by one. The magnitude of the mixture response often fell in 

between the component responses (Fig. 3B, center). Mixture responses were 

therefore not dominated by one of the two component responses. This is 

clearly different from mixture responses in the OB where MCs usually exhibit 

a clear “component dominance” (Giraudet et al, 2002; Tabor et al, 2004; Yaksi 

et al, 2009).  

 I further investigated mixture interactions by quantifying mixture 

suppression and mixture synergism. Mixture synergism was defined as a 

response to the mixture that is greater than the larger component response, 
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multiplied by a safety factor. This safety factor was introduced to minimize 

false positives caused by the natural response variability. It was defined as 1 + 

CVrep, where CVrep is the mean coefficient of variation of responses to 

repeated applications of the same stimulus (see Materials and Methods). 

Mixture suppression was defined accordingly as a response to the mixture that 

is smaller than the larger component response, multiplied by a safety factor 

defined as 1 – CVrep. Many mixture responses (44 %) showed suppression, but 

synergism also occurred relatively frequently (17%) (Fig. 3B, right). 11 % of 

the mixture responses exhibited strong mixture synergism: they were larger 

than the sum of both component responses multiplied by the safety factor, 

1 + CVrep (Fig. 3B, right, narrow bar). 

 These results confirm that odor responses of Dp neurons are shaped 

by complex mixture interactions and indicate that mixture suppression is 

particularly prominent. 
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Figure 3: Mixture interactions in Dp. 

(A) Responses of 10 simultaneously imaged Dp neurons to two individual 

odorants and their binary mixture. For each neuron, ΔF/F is plotted against 

time. Odor stimulation periods are indicated by gray bars. Light and dark stars 

depict mixture suppression and mixture synergism, respectively. 

(B) Left: Percentage of neuron-mixture pairs that responded to the mixture and 

at least one component (Comp. & Mix.), to one or both components only 

(Comp. only), and to the mixture only (Mix. only). Center: histogram of 

mixture response magnitudes relative to component responses. Response 

magnitudes were scaled so that the smaller component response equals 0 and 

the larger component response equals 1. Right: Frequency of neutral mixture 

responses, suppression and synergism. Numbers indicate percentages. Narrow 

bar on the right (> Sum) indicates percentage of mixture responses larger than 

the sum of the component responses multiplied by the safety factor, 1 + CVrep. 
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 Given the chemotopic representation of odorants at the level of the 

OB, I was interested whether the pronounced mixture interactions observed in 

Dp depend on the spatial segregation of activated MCs. Since amino acids and 

bile acids activate segregated areas in the OB, I separately analyzed the 

responses to mixtures of two amino acids (n = 133 neuron-mixture pairs) and 

mixtures of one amino acid and one bile acid (n = 107). The frequency of 

mixture- or component- selective responses, the distribution of relative 

response magnitudes, and the occurrence of suppression and synergism were 

similar, independently of the primary molecular features of the components 

(Fig. 4). To further explore whether mixture interactions in Dp are influenced 

by the overlap of MC activity patterns, I tested whether mixture interactions 

differ in response to mixtures of amino acids with the same secondary 

molecular features (Tyr-Trp, both aromatic; n = 55 neuron-mixture pairs) and 

mixtures of amino acids with different secondary molecular features (Tyr-Arg, 

aromatic and basic; n = 78). The frequency of mixture- or component-specific 

responses and the distribution of relative response magnitudes were similar for 

Tyr-Trp and Tyr-Arg mixtures (Fig. 5). In summary, mixture interactions in 

Dp show little, if any, dependence on odor classes, indicating that they are not 

strongly influenced by the locations of MCs in the OB. Consequently, Dp 

neurons associate inputs from MCs that convey information about different 

molecular features. Dp therefore has the capacity to integrate information 

about different molecular components of an odor. 
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Figure 4: Mixture interactions for responses of Dp neurons to odorants with 

distinct primary molecular features. 

(A) Amino acid – Amino acid mixtures. 

(B) Amino acid – Bile acid mixtures. 

Conventions are the same as in Fig. 3B. 
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Figure 5: Mixture interactions for responses of Dp neurons to odorants with 

distinct secondary molecular features. 

(A) Mixture of two amino acids with aromatic side chain. 

(B) Mixture of one amino acid with aromatic and one with basic side chain. 

Conventions are the same as in Fig. 3B. 
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Mechanistic basis for mixture interactions in Dp 

The frequent occurrence of mixture suppression suggests that odor responses 

of Dp neurons are controlled not only by excitatory inputs but also by 

inhibitory synaptic pathways. To test this hypothesis, I first injected Gabazine 

into Dp. Gabazine is a selective GABAA receptor antagonist that acts by 

competitive allosteric modulation of channel opening (Ueno et al, 1997). Focal 

application of Gabazine strongly and reversibly amplified odor-evoked Ca2+ 

signals. The magnitude of odor responses was increased in all experiments 

(n = 4 fish; Fig. 6A). Gabazine injection also modified the time course of odor 

responses (Fig. 6B). In some experiments, the response was slighly prolonged 

(Fig. 6B1), while in others, Gabazine converted a transient response into a 

more sustained response (Fig. 6B2). This demonstrates that odor responses in 

Dp are under inhibitory GABAergic control. 

 I further examined the synaptic mechanisms underlying odor 

responses in Dp by whole-cell patch-clamp recordings (n = 115 neuron-odor 

pairs in 32 neurons of 17 fish; usually 5 repetitions of each stimulus). In the 

absence of odors, most Dp neurons were silent or fired spontaneous action 

potentials at very low rates. For the quantification of odor responses 

subthreshold responses were counted when the mean membrane potential 

within at least five consecutive 100 ms time bins during odor stimulation was 

significantly different from baseline (P < 0.01, Wilcoxon rank sum test). 

Suprathreshold responses were identified as significant changes in firing rate 

using the same procedure after convolving individual action potentials with a 

Gaussian (σ = 25 ms; other values yielded similar results). Upon odor 

stimulation, subthreshold responses were detected in 93 % of the recorded 

neuron-odor pairs (Fig. 7). The membrane potential response was usually a 

transient depolarization (70 % of neuron-odor pairs), but hyperpolarizing 

(10 %) or multiphasic responses (13 %) were also observed (Fig. 7A). Despite 

this broad subthreshold tuning, action potential firing occurred only in 16 % of 
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the neuron-odor pairs. The firing pattern was usually a short burst (see Fig. 

7A, cell 23), consistent with the kinetics of Ca2+ signals (Fig. 1 and Fig. 3A). 

These results indicate that neurons in Dp receive direct or indirect synaptic 

input from functionally diverse sets of MCs but respond with action potentials 

only to specific patterns of input activity. 

 

 

 

 

Figure 6: Effect of Gabazine on odor responses in Dp. 

(A) Effect on the response magnitude. Ca2+ signals evoked by odor stimulation 

(Arg + TDCA) in Dp before (Control), during (Gabazine) and five minutes after 

(Wash) pressure injection of Gabazine into the intercellular space (single trials, 

low magnification). 

(B) Effects on the time course. (B1) Time course of odor-evoked Ca2+ signal 

averaged over the entire field of view before and during application of Gabazine 

for the experiment shown in (A). (B2) Time course of spatially averaged Ca2+ 

signal before and during application of Gabazine in another experiment. 

 32



 

 

 

Figure 7: (Legend see next page) 
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Figure 7: Intracellular current-clamp recordings of odor responses. 

(A) Whole-cell recordings of odor responses in Dp neurons.  Multiple trials are 

overlaid for each recording. Stimuli are indicated above the respective traces. 

(B) Frequency of response types in Dp. 

(C) Response of a Dp neuron to odor stimulation (Arg) at rest (black) and 

during depolarizing current injection (17 pA; gray). 

  

To reveal the mechanisms controlling action potential initiation, I measured 

responses to odors that evoked a subthreshold depolarization again during the 

injection of a depolarizing current. The magnitude of the current was chosen 

to cause spontaneous action potential firing. In all cases (n = 19 neuron-odor 

pairs), depolarization resulted in a reversal of the subthreshold response and in 

the inhibition of action potential firing (Fig. 7C). Hence, synaptic input during 

the odor response drives the membrane potential towards a reversal potential 

near spike threshold that is, most likely, determined by a mixture of excitatory 

and inhibitory conductances. The kinetics of the membrane potential responses 

in the absence and in the presence of current injection were usually not mirror 

symmetric (Fig. 7C), indicating that changes in different conductances follow 

different time courses. These data indicate that action potential firing in Dp is 

dynamically controlled by the balance of excitatory and inhibitory inputs, 

which in turn is determined by the activity pattern across the population of 

mitral cells.  

 34



Temporal integration of synaptic inputs by individual neurons 

For the investigation of temporal properties of Dp neurons I performed whole-

cell current-clamp recordings from 44 Dp neurons in 31 fish. 

In the absence of any injected current, most neurons (79 %) had a resting 

potential between -60 and -80 mV and spontaneous firing rates smaller than 

0.2 Hz. Some neurons (21 %) had slightly more depolarized resting potentials 

and fired spontaneously at up to 7 Hz. The average input resistance was 

measured in 16 neurons and found to be 1.1 ± 0.6 GΩ (mean ± SD; range: 0.5 

– 2.8 GΩ). 

Passive and active properties of Dp neurons 

To determine the membrane time constant of Dp neurons, I injected 

hyperpolarizing and depolarizing current pulses (500 ms or 250 ms) to cause 

membrane potential changes of approximately 10 to 30 mV (Fig. 8A). I 

quantified the membrane time constant by the decay constant of a single 

exponential fit to the voltage response recorded during the first 200 ms 

following stimulus offset (Fig. 8A). The calculated time constants were 27.0 ± 

10.2 ms (mean ± SD; n = 16 neurons) in response to hyperpolarizing pulses 

and 46.9 ± 20.8 ms (n = 19 neurons) in response to depolarizing pulses (Fig. 

8B). The difference between time constants for hyperpolarizing and 

depolarizing pulses indicates that membrane time constants depend on the 

membrane potential, presumably because the input resistance is influenced by 

voltage-gated conductances. However, in all cases, and particularly for 

depolarizing input currents, the time constant was relatively long in 

comparison to the oscillation period of synchronized activity in the OB (~ 

50 ms). Hence, the passive membrane properties of Dp neurons do not favor 

the detection of input currents synchronized on a ms time scale. 
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Figure 8: Membrane time constants. 

(A) Hyperpolarizing (left) and depolarizing (right) current pulses (gray, top) 

were applied during whole-cell voltage recordings. Membrane potential 

responses are shown for two neurons (black, bottom). Time constants were 

obtained by single exponential fits during 200 ms after pulse offset (insets). 

(B) Time constant for each cell (open circles) with mean ± SD values for 

hyperpolarizing (left, n = 16) and depolarizing (right, n = 19) current pulses. 

 

Step depolarizations close to action potential threshold did not evoke 

membrane potential transients, suggesting that fast inputs are not selectively 

amplified by active conductances (Fig. 8A). To examine this in more detail, I 

analyzed the frequency-dependence of subthreshold membrane potential 

changes evoked by sine wave currents of discrete frequencies (3, 10, 20, 30, 

and 60 Hz; n = 15 neurons) (Fig. 9A). The current amplitude was adjusted to 

evoke membrane potential fluctuations that were near spike threshold at 3 Hz. 

The frequency-dependence of evoked membrane potential changes was 

quantified by the impedance (power spectral density of voltage divided by 

power spectral density of current) (see Hutcheon & Yarom, 2000). In all 

neurons, the impedance showed no specific frequency tuning but declined 
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monotonically with increasing frequency, as expected for purely passive 

filtering by the membrane properties (Fig. 9C). 

 To corroborate this finding, I recorded the membrane potential in 

response to  a 30 s sine wave current with linearly increasing or decreasing 

frequency ("ZAP" function, see Puil et al, 1986) between 0 and 60 Hz (n = 9 

neurons) (Fig. 9B). As found with sine waves of constant frequency, the PSD 

of the membrane voltage decayed constantly with increasing frequency (Fig. 

9D). These results indicate that individual Dp neurons do not amplify input 

currents at a particular frequency, but essentially act as passive low-pass 

filters. 

Temporal dynamics of circuit responses 

To investigate how input-output functions of Dp neurons in the suprathreshold 

regime depend on the temporal structure of inputs I simulated trains of 

postsynaptic currents with different degrees of synchrony (Fig. 10). For these 

artificial input currents I simulated action potentials of 20 individual cells, 

each firing at a mean frequency of 20 Hz (Fig. 10B). I varied the synchrony 

among action potentials by changing the probability of spiking for each cell 

from a Poisson distribution to a distribution that peaked at a specific phase 

during each 50 ms time window (see Materials and Methods) (Fig. 10A). The 

degree of synchrony was defined by the synchronization index, s, that is 0 for 

random spiking, 1 for a sinusoidal change in firing probability, and >1 for 

even sharper tuning of spike times. Current commands were then generated by 

convolving each spike with the waveform of a unitary fast excitatory 

postsynaptic current (Fig. 10C,D) and injected into Dp neurons in whole-cell 

current-clamp (Fig. 10E). Neuronal output was quantified by the spike count. 

In a small set of neurons (n = 4), the spike output showed no obvious 

dependence on input synchrony (Fig. 10E). Further recordings will be 

performed to endorse this observation. 
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Figure 9: (Legend see next page) 
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Figure 9: Filter properties. 

(A) Whole-cell voltage response of a Dp neuron (black) to sinusoidal currents 

of different constant frequencies (gray). 

(B) Membrane potential of a Dp neuron (black) during injection of a sinusoidal 

current of linearly increasing frequency from 0 to 60 Hz (gray). 

(C) Impedance measured by constant frequency current injections (A), 

calculated as power spectral density of membrane voltage divided by power 

spectral density of injected current at each frequency. Gray traces show data 

obtained for each cell (n = 15 cells) normalized to the impedance at 3 Hz. Black 

trace shows mean ± SD. 

(D) Impedance measured by ZAP current injection (B), shown as mean power 

spectral densities of voltage responses (black; ± SD; n = 9 cells). The power 

spectral density of voltage responses is directly proportional to the impedance 

because the power spectral density of the injected current (gray) is flat. 

 39



 

 

 

 

Figure 10: (Legend see next page) 
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Figure 10: Spike output as a function of input synchrony. 

(A) Normalized probability functions giving the probability of spiking during 

the oscillation cycle (50 ms) for three synchronization indices (low: s = 0.0001; 

high: s = 1; very high: s = 10). 

(B) Raster plots of spike trains generated from the probability functions shown 

in (A). 

(C) Unitary PSC simulating an AMPA receptor current (sum of first-order 

exponentials; rise time constant 0.8 ms, decay time constant 5 ms, amplitude 60 

pA). 

(D) Spike trains with the same underlying probability were summed and 

convolved with the PSC shown in (C). Examples for the obtained currents are 

shown for each index of synchronization. 

(E) Whole-cell current clamp recording from a Dp neuron. Gray: Injected input 

currents with 3 different degrees of synchrony at 20 Hz: high (left), low 

(middle) and very high (right). Black: Measured voltage-responses. 

 

Together, my observations indicate that individual Dp neurons are not 

equipped with passive or active mechanisms that amplify synchronized input 

or oscillatory input at a frequency near the oscillation frequency in the OB. 
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Temporal structure of the Dp neuron membrane potentials during odor 

responses 

I next examined the relationship between oscillatory synchronization in the 

OB and the activity of Dp neurons during odor responses by simultaneous 

recordings of the LFP in the OB and the membrane potential of Dp neurons 

(n = 66 neuron-odor pairs; 15 neurons in 8 fish). Odor stimuli included a food 

extract, five amino acids (arginine, tyrosine, tryptophan, isoleucine, 

methionine), the bile acid taurodeoxycholic acid (TDCA) and binary mixtures 

of amino acids or an amino acid and TDCA. Membrane potential responses of 

Dp neurons usually consisted of a large and slow depolarization and smaller, 

faster fluctuations (Fig. 11A; see also Fig. 7A,C). In some recordings, small 

fluctuations in the membrane potential appeared to be phase-locked to the LFP 

oscillation (Fig. 11A, arrows). 

 In order to quantitatively compare the temporal structure of LFP 

oscillations in the OB and membrane potential responses in Dp, each 

recording was normalized to the standard deviation before response onset. I 

then first analyzed the power spectral density (PSD) of unfiltered LFP signals 

and the membrane potential (Fig. 11B). Odor stimulation increased the power 

of the LFP within a clearly defined frequency band between 10 and 30 Hz, 

consistent with previous results (Friedrich et al, 2004; Friedrich & Laurent, 

2001; Tabor et al, 2008). The peak frequency of the LFP oscillation decreased 

slightly during the odor response (Fig. 11C). 

 To quantify the intensity of oscillatory activity, I measured the power 

within a 3.6 Hz frequency window centered on the peak frequency of the 

oscillation during the odor response relative to the power in the same 

frequency band before response onset. Odor stimulation increased the LFP 

power in the oscillatory frequency band in all recordings (n = 66) (Fig. 12). 

On average, power increased by a factor of 28.0 ± 47.3 (median: 12.6; range: 

1.2 to 274.5). For the membrane potential, the power spectrum was more 
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complex and often exhibited multiple peaks (Fig. 11B). During the odor 

response, a peak at a frequency corresponding to the LFP oscillation frequency 

was sometimes observed, but the power generally increased throughout a wide 

range of frequencies (Fig. 11B). The power in the oscillatory frequency band 

increased in 82 % (54/66) of the recordings and decreased in the remaining 

18 % (12/66) in response to odor stimulation (Fig. 12). Moreover, the average 

change in oscillatory power was significantly lower (p << 0.0001, Wilcoxon 

rank sum test) than for LFP recordings (4.8 ± 7.1; median: 2.6; range: 0.03 to 

45.7). Hence, oscillatory responses are considerably less pronounced in the 

membrane potential of Dp neurons than in the LFP in the OB. 

 The autocorrelation of the normalized LFP showed large-amplitude 

oscillations with a frequency near 20 Hz (Fig. 11D). The autocorrelation of the 

normalized membrane potential also exhibited periodic fluctuations at a 

corresponding frequency that were, however, small compared to a much 

slower component. The cross-correlation of normalized LFP and normalized 

membrane potential was also oscillatory, but the amplitude was substantially 

smaller than that of the autocorrelation of the normalized LFP (Fig. 11D). 

Together, these findings demonstrate that synchronized activity of OB output 

neurons is reflected in the subthreshold membrane potential fluctuations of a 

subset of Dp neurons, but these fluctuations account only for a small part of 

the temporal structure in the membrane potential during an odor response. 
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Figure 11: (Legend see next page) 
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Figure 11: Simultaneous recording of olfactory bulb LFP and Dp neuron 

membrane potential. 

(A) Example of LFP in the OB (black; detrended, 5 – 40 Hz band-pass filtered, 

normalized to the standard deviation) and simultaneously recorded membrane 

potential of a Dp neuron (blue; detrended, normalized to the standard deviation) 

showing prominent subthreshold membrane potential oscillations in response to 

food extract. Red line indicates 2 s response window for analysis. Inset: 

Enlargement of a portion of the traces. Arrows depict similarities between 

fluctuations in the membrane potential and the LFP. 

(B) Power spectral densities of LFP (top) and membrane voltage (bottom) for 

the response window indicated by the red line in (A) (black, blue) and for a 2 s 

stretch prior to stimulus onset (gray, very close to 0). Traces were unfiltered and 

normalized in amplitude to the SD before odor stimulation. 

(C) Time-resolved frequency content of LFP (top) and membrane voltage 

(bottom). Red bars indicate the odor stimulation period. Traces were unfiltered 

and normalized in amplitude to the SD before odor stimulation. 

(D) Left: Autocorrelation of normalized LFP (top) and normalized membrane 

voltage (bottom). Right (bottom): Autocorrelation of normalized membrane 

voltage; note the different scaling of the y-axis. Right (top): Cross-correlation of 

normalized LFP and normalized membrane voltage. Black and blue traces for 2 

s stretch indicated by red line in (A), gray traces during 2 s stretch prior to 

stimulus onset.  

 

Role of odor-evoked membrane potential oscillations for spike generation 

in Dp neurons 

In order to estimate the role of synchronized synaptic input on action potential 

output of Dp neurons I analyzed the contribution of oscillatory membrane 

potential fluctuations to the overall odor-evoked membrane depolarization. I 

first extracted the slow membrane depolarization by 5 Hz low-pass filtering of 

the recorded membrane potential response (Fig. 13A, green trace). The 

residual fast fluctuations (Fig. 13A, red trace) were then 5 – 40 Hz band-pass 

filtered to extract fluctuations corresponding to the LFP oscillation (Fig. 13A, 
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black trace). I then determined the maxima (VOsc) and the peak-to-peak 

amplitudes (ΔVOsc) (Fig. 13C, inset) of the fast fluctuations within a two 

second time window (Fig. 13B) and compared them to the amplitude of the 

slow component (ΔVSlow). I obtained an average of 40.8 ± 3.5 fluctuations per 

2 s time window. The amplitude of the fast fluctuations was determined for 

each neuron-odor pair either as the mean of the maxima (VOsc, Mean) or as the 

mean of the peak-to-peak amplitudes (ΔVOsc, Mean) of all oscillatory 

fluctuations. In addition, I quantified the maximum depolarizations induced by 

the fast fluctuations as the average amplitude of the 10 % largest oscillatory 

fluctuations for the maximum amplitudes (VOsc, Max) or the peak-to-peak 

amplitudes (ΔVOsc, Max). In all neuron-odor pairs, ΔVSlow was substantially 

larger than VOsc, Max or ΔVOsc, Max. ΔVSlow amounted to 18.4 ± 9.9 mV, while 

VOsc, Max  and   ΔVOsc, Max amounted to 2.5 ± 1.8 mV and 4.2 ± 2.8 mV, 

respectively (Fig. 13C). VOsc, Mean and ΔVOsc, Mean were 1.0 ± 0.7 mV and 1.5 ± 

1.1 mV, respectively (Fig. 13C). In a direct comparison of the magnitudes of 

slow and oscillatory components for each neuron-odor pair, ΔVSlow exceeded 

VOsc, Mean and ΔVOsc, Mean by a factor of 23.3 ± 20.6 and 15.7 ± 13.8, 

respectively. The 10 % largest fluctuations were exceeded by factors of 9.0 ± 

5.7 (VOsc, Max) and 5.2 ± 3.2 (ΔVOsc, Max). The average difference between the 

resting potential and the action potential threshold (ΔAP) was 29.0 ± 6.5 mV. 

Hence, using different means of quantification I found the amplitude of the 

oscillatory membrane potential fluctuations to be small compared to the slow 

component and compared to the depolarization required to reach spike 

threshold. 

 To further examine the mechanisms that drive Dp neurons towards 

action potential threshold, I examined subthreshold and suprathreshold odor 

responses of the same neuron in more detail. I compared ΔVSlow, VOsc, Mean and 

ΔVOsc, Mean for responses with no action potentials and with at least two action 

potentials. In suprathreshold responses (n = 12 recordings) ΔVSlow was 
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significantly larger (p < 0.0001, Wilcoxon rank sum test) than in subthreshold 

responses (n = 20 recordings). ΔVSlow amounted to 26.0 ± 5.6 mV and 17.5 ± 

2.7 mV, respectively. VOsc, Mean and ΔVOsc, Mean also increased but this 

difference was small (0.7 and 0.9 mV respectively) compared to the difference 

in ΔVSlow (8.5 mV). Furthermore, the quantification of VOsc, Mean and ΔVOsc, 

Mean may be slightly biased towards higher values in suprathreshold responses 

by residual contributions from action potentials after median filtering. I 

therefore conclude that temporal integration of synaptic inputs is required for 

action potential generation by Dp neurons and firing depends primarily on the 

amplitude of the slow component, while oscillatory components have only a 

minor influence. 

 

 

Figure 12: Oscillatory power of LFP and membrane potential during odor 

response. 

Left: Odor-evoked change in power around the oscillation frequency in 

membrane voltage. Right: Odor-evoked change in power around the oscillation 

frequency in the LFP.  Horizontal lines in the center of the boxes represent the 

median, the vertical extent of the boxes delineates the interquartile range. 

Notches show 95 % confidence intervals. 
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Figure 13: (Legend see next page) 
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Figure 13: Contribution of fast oscillatory fluctuations to the overall membrane 

depolarization. 

(A) Top: Membrane potential response to stimulation with food extract. The 

magnitudes of the slow membrane depolarization and the fast oscillatory 

fluctuations were quantified individually after filtering of the original trace as 

illustrated at higher zoom in the inset. The green line shows the 5 Hz low-pass 

filtered trace used to estimate the slow depolarization. The red line is the 

difference between the original trace and the low-pass filtered trace. The band-

pass filtered LFP is overlaid (gray). The zero-line is indicated in orange. The 

expanded inset shows an overlay of the LFP and the fast fluctuations after band-

pass filtering at 5 – 40 Hz. 

(B) Scatter plot of the amplitudes of individual fluctuations, maxima (VOsc) and 

peak-to-peak amplitudes (ΔVOsc), obtained from the recording in (A). 

(C) Box plots summarizing the amplitudes of slow membrane depolarizations 

(ΔVSlow), the relative membrane depolarization necessary to reach action 

potential threshold (ΔAP) and the amplitudes of fast fluctuations (VOsc) for all 

66 cell-odor pairs. Fast fluctuations were quantified by the mean maxima (VOsc, 

Mean) and the mean peak-to-peak amplitudes (ΔVOsc, Mean) for each cell-odor pair. 

Average values for only the 10 % largest maxima (VOsc, Max) and peak-to-peak 

amplitudes (ΔVOsc, Max) are shown in addition. Horizontal lines in the center of 

the boxes represent the median; the vertical extent of the boxes delineates the 

interquartile range. All data points outside the interquartile range are indicated. 

Notches indicate 95 % confidence intervals.  
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DISCUSSION 

Sensory information detected at the periphery is transformed between 

successive processing stages to finally create a percept of the external 

environment. Here I explored the mechanisms that neuronal circuits in a 

higher olfactory brain area use to extract information from the output activity 

of the olfactory bulb. 

Complex integration of olfactory inputs in Dp 

I used 2-photon imaging of somatic Ca2+ signals to quantify mixture responses 

of individual Dp neurons. Ca2+ signals measured by this method are closely 

related to action potential firing in neurons of the adult zebrafish brain (Yaksi 

& Friedrich, 2006) and other brain areas (e.g. the mammalian neocortex, see 

Kerr et al, 2005). Thus, this technique provides a quantitative and reliable 

readout of neuronal activity. 

 Responses of Dp neurons to binary mixtures often resemble neither 

of the component responses. In the OB, in contrast, MC responses to binary 

mixtures are usually similar to one of the component responses. This 

“component dominance” for mixture representations in the OB has first been 

observed by electrophysiological recordings from mitral cells (Giraudet et al, 

2002; Tabor et al, 2004) and has subsequently been confirmed by 2-photon 

Ca2+ - imaging using the same procedures as in this study (Yaksi et al, 2009). I 

therefore conclude that the mixture interactions observed in Dp cannot be 

explained by interactions at the level of the OB. While in the OB mixture 

responses are to a large extent determined by the component responses, 

mixture interactions in Dp indicate that odor responses in Dp neurons result 

from the integration of multiple sensory inputs and are shaped by the neuronal 

circuitry within Dp. 
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Convergence and synergism of diverse excitatory inputs 

My data provides interesting and novel insights into the processing of sensory 

inputs by the neuronal circuitry in Dp. 

1. Inputs from multiple MCs converge onto individual Dp neurons.  The 

following evidence was found for this: 

− Amino acids and bile acids, which activate distinct MC populations in 

the OB, frequently evoke subthreshold responses in the same Dp 

neuron. 

− Mixture interactions observed for mixtures of one amino acid and one 

bile acid (Fig. 4B) are similar to those observed for mixtures of two 

amino acids (Fig. 4A). 

− Intracellular recordings show a very broad subthreshold tuning (Fig. 

7), implying that individual Dp neurons receive inputs from multiple 

MCs.  

It remains to be explored whether this input convergence is direct or 

multisynaptic. 

2. The topographic segregation of sensory inputs observed in the OB is not 

mapped onto the population of Dp neurons. 

This is suggested by subthreshold responses to diverse molecular features 

often observed in the same Dp neuron and is a further conclusion from the 

findings that (i) responses to amino acids and bile acids, two stimulus classes 

that evoke non-overlapping responses in the OB, are often observed in the 

same Dp neuron and that (ii) mixture interactions occur for binary mixtures of 

one amino acid and one bile acid. Consistent with this conclusion, recent 

measurements of population activity patterns in Dp directly demonstrate that, 
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unlike in the OB, there is little or no topographic segregation of responses to 

different stimulus classes in Dp (Yaksi et al, 2009). 

 3. Afferent inputs may act synergistically to drive Dp neurons to 

spike threshold. This would explain part of the observed mixture interactions 

such as the observed strong mixture synergism and, particularly, the selective 

responses to binary mixtures but not their components. 

Input convergence and synergistic activation of Dp neurons can, however, not 

explain all of my observations. In particular, additional mechanisms must be 

involved to achieve mixture suppression, and these might also account for the 

fact that mixture responses often fall in between the component responses. 

Inhibitory control of odor responses 

Component-selective responses and the frequently observed mixture 

suppression imply that odor responses in Dp are controlled by inhibition. The 

disinhibitory effect of Gabazine confirmed this conclusion and revealed that 

inhibition is mediated, at least partially, by GABAergic mechanisms involving 

GABAA receptors, consistent with observations in the piriform cortex of 

rodents (Franks & Isaacson, 2006; Luna & Schoppa, 2008). 

 In addition, I found that subthreshold depolarizing responses are 

reversed upon intracellular current injection, indicating that the membrane 

potential during the odor response is set primarily by the reversal potential of 

synaptically activated conductances. Since this reversal potential is near the 

threshold for action potential initiation, synaptic inputs most likely consist of a 

mixture of excitation and inhibition. Hence, odor responses of Dp neurons are 

not merely the result of a summation of excitatory inputs, but controlled by a 

balance of inhibitory and excitatory conductances. Moreover, the time courses 

of the odor responses in the absence and presence of current injection indicate 

that excitatory and inhibitory synaptic inputs follow different time courses. 
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In summary, response properties of Dp neurons are complex and seem to be 

shaped by convergent combinations of multiple excitatory and inhibitory 

synaptic inputs that cooperatively clamp the membrane potential to a defined, 

odor-dependent value close to spike threshold. The excitatory synaptic inputs 

may originate from mitral cells, intracortical connections, or combinations of 

both. In, contrast, inhibitory activity is most likely mediated exclusively by 

intracortical connections (Luna & Schoppa, 2008) (Y.-P. Zhang and R. W. 

Friedrich, unpublished observations). The neuronal circuitry in Dp therefore 

generates odor-specific patterns of excitation and inhibition from diverse 

afferent olfactory bulb input patterns. Thus, Dp may extract information about 

precise odorant features from MC activity patterns and mediate associations 

between segregated channels in the OB. This may allow Dp to transform the 

analytical representation of olfactory inputs in the OB into a synthetic 

olfactory image. 

Mixture interactions in other brain areas 

Recently, binary mixture responses were also examined by 2-photon Ca2+ - 

imaging in a subpallial target area of the OB, the ventral part of the ventral 

telencephalon (Vv) (Yaksi et al, 2009). Unlike neurons in the OB or Dp, 

neurons in Vv rarely showed mixture- or component- selective responses 

while mixture synergism was observed frequently. Moreover, Vv neurons 

were much more broadly tuned than neurons in the OB or in Dp. This 

demonstrates that different areas within the zebrafish telencephalon use 

distinct strategies to extract information from the OB output activity. 

 In insects, transformations of odor-encoding activity patterns 

between the antennal lobe and the mushroom body involve a combination of 

convergent excitatory input, multisynaptic inhibitory input and thresholding 

(Perez-Orive et al, 2002; Turner et al, 2008), suggesting that higher-order 

neuronal circuits in insects and vertebrates share basic features. Unlike in the 
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mushroom body, however, odor-evoked activity in Dp does not seem to be 

ultra-sparse. Thus, while the mushroom body and Dp may have common 

organizational principles at the level of afferent projections, the neuronal 

output appears to differ between the two brain areas. This suggests that 

distinct integration mechanisms may operate in higher brain centers of insects 

and vertebrates. 

 In the olfactory cortex of mammals, individual neurons integrate 

inputs originating from different mitral cells (Arenkiel et al, 2007; Franks & 

Isaacson, 2006; Wilson et al, 2006), receive excitatory and inhibitory inputs 

(Luna & Schoppa, 2008; Neville & Haberly, 2004) and show mixture 

suppression and synergism (Barnes et al, 2008; Yoshida & Mori, 2007; Zou & 

Buck, 2006), consistent with properties of Dp neurons. Major principles of 

sensory information processing in higher brain areas might thus be conserved 

across vertebrates but more detailed investigations are necessary to further 

address this issue. 

Temporal properties of olfactory processing in Dp 

To obtain further insights into the mechanisms that trigger stimulus-evoked 

action potentials in the olfactory circuitry in Dp, I investigated whether 

neurons in Dp may be explicitely sensitive to synchronized input from mitral 

cells in the OB. Information contained in the synchronization of action 

potentials may be read out by downstream neurons if these are endowed with 

mechanisms that selectively extract coincident synaptic inputs. I therefore 

examined whether Dp neurons differentiate between rhythmically 

synchronized and randomly timed inputs. In summary, I found no evidence for 

a selective filtering or amplification of rhythmically synchronized inputs by 

passive or active membrane properties. During odor stimulation, a signature of 

oscillatory MC activity may be preserved in the subthreshold membrane 

potential of Dp neurons, but action potential firing appears to depend primarily 
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on a slow depolarization that is independent of the fast oscillatory 

synchronization. These results indicate that Dp does not selectively extract 

information from the synchronization of MCs. Instead, Dp neurons integrate 

action potentials over tens of milliseconds or even longer time scales. An 

oscillatory temporal patterning in the inputs may, however, be partially 

preserved in action potential responses of Dp neurons. 

Biophysical properties of Dp neurons favor temporal integration 

Membrane time constants of Dp neurons are relatively long compared to the 

oscillation period (~50 ms) and to the precision of action potential 

synchronization of MCs (~5 ms) (Friedrich et al, 2004). In addition, 

impedance measurements revealed no selective amplification of frequencies 

around the oscillation frequency. 

 A potential limitation of the experimental approach is that whole-cell 

patch-clamp offers poor control over the voltage in distal parts of the dendritic 

tree. However, this is unlikely to mask coincidence detection mechanisms 

because the input resistance of the cells is relatively high, suggesting that cells 

are electrotonically compact. Furthermore, injection of sinusoidal currents did 

readily reveal frequency-specific amplification of input currents in other cell 

types (Haas & White, 2002; Hutcheon et al, 1996; Leung & Yu, 1998; Pike et 

al, 2000; Puil et al, 1986). My results therefore predict that responses of Dp 

neurons should not strongly depend on the synchronization of input currents 

on the millisecond time scale. 

 Consistent with this prediction, preliminary results indicate that the 

spike output produced by simulated trains of excitatory postsynaptic currents 

does not vary much with the synchronization of input currents. Individual Dp 

neurons are therefore unlikely to perform coincidence detection operations on 

a millisecond time scale. Rather, Dp neurons appear to act as a passive 

lowpass-filters with relatively long time constants. These results do not 
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exclude the possibility that a subpopulation of Dp neurons exhibits different 

active and passive membrane properties (Suzuki & Bekkers, 2006). However, 

if such neurons exist, they are likely to be the minority. 

 Dp neurons have a low spontaneous firing rate and high input 

resistances, similar to Kenyon cells in the insect mushroom body. Unlike 

Kenyon cells (Laurent & Naraghi, 1994), however, Dp neurons do not appear 

to amplify synchronous inputs. It will be interesting to compare the properties 

of Dp neurons to neurons in the mammalian olfactory cortex, in particular 

piriform cortex. To my knowledge, however, no published study has directly 

investigated active frequency-dependent membrane properties of neurons in 

the vertebrate olfactory cortex. 

Odor responses are dominated by slow membrane depolarizations 

Synchronized activity may also be detected by neuronal circuits, rather than by 

individual neurons. Studies in brain slices for example indicate that a sharply 

defined time window for the integration of excitatory inputs may be created by 

the time delay between monosynaptic excitatory input and polysynaptic 

feedforward inhibition. This has been demonstrated for pyramidal cells in the 

piriform cortex (Franks & Isaacson, 2006; Luna & Schoppa, 2008) and 

hippocampus (Pouille & Scanziani, 2001), and for Purkinje cells in the 

cerebellum (Mittmann et al, 2005). It remains, however, unclear whether this 

mechanism results in the selective detection of synchronized MC activity 

during an odor response in the intact brain. I therefore took advantage of the 

intact zebrafish olfactory system to investigate this question. 

 During an odor response, a subset of Dp neurons shows subthreshold 

oscillatory membrane potential activity that is phase-locked to the LFP 

oscillation in the OB. The amplitude of these membrane potential fluctuations 

is, however, small compared to a slow membrane depolarization. Moreover, 

the amplitude of the slow depolarization varies greatly between sub- and 
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suprathreshold responses, while the amplitude of the small fluctuations varies 

much less. I therefore conclude that the slow component of the response, 

which most likely reflects the gradual summation of synaptic inputs, is the 

most important determinant of action potential firing in Dp neurons. This slow 

summation is controlled by the balance of odor-evoked excitation and 

inhibition, as discussed above. Together, my results therefore indicate that the 

synchronization of inputs has little effect on the tuning of Dp neurons to 

odorants. 

 Although oscillations in the input appear to have little influence on 

the responsiveness of Dp neurons, it is nevertheless possible or even likely 

that the oscillatory temporal structure in the input influences the timing of 

action potentials by determining the exact time points when spike threshold is 

crossed. Some weak oscillatory spike timing may therefore be present in Dp. 

Investigating this would require further recordings of odor-evoked spikes and 

LFP oscillations, which is difficult because the spiking probability of Dp 

neurons is low. 

 Additional insights into the network mechanisms shaping odor 

responses in Dp may be obtained by investigating the relative timing of 

excitatory and inhibitory inputs. Electrophysiological recordings of odor-

evoked voltage responses indicate that the time course of excitatory and 

inhibitory inputs is different but does not show prominent oscillatory rhythms 

(Fig. 7A). This is supported by the observation that recordings at different 

voltages after injection of a holding current are distinct and not mirror 

symmetric (Fig. 7C). It will thus be interesting to examine the relative timing 

of excitation and inhibition with more precision in voltage-clamp experiments. 

 Insect Kenyon cells detect coincident inputs not only by membrane 

intrinsic mechanisms, but also because feedforward-inhibition restrains the 

integration time window within each oscillation cycle. Consequently, 

membrane potential fluctuations and action potentials of Kenyon cells are 
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tightly phase-locked to the LFP oscillation. A feedforward inhibitory synaptic 

pathway is likely to exist also for the afferent input to Dp neurons (Y.-P. 

Zhang and R. W. Friedrich, unpublished observations). However, unlike in 

Kenyon cells, oscillatory membrane potential fluctuations are small and do not 

appear to contribute much to the overall spiking probability. 

 The piriform cortical circuitry also contains feed-forward inhibitory 

motifs that may narrow the integration time window(s) for excitatory inputs 

(Franks & Isaacson, 2006; Luna & Schoppa, 2008). These have been 

suggested to tune pyramidal cell responses to synchronous inputs from MCs. 

Nevertheless, the potential of this feedforward inhibition to shape oscillatory 

activity over several cycles remains to be addressed. Hence, further studies are 

required to examine whether the circuitry in the piriform cortex ensures a 

selective readout of synchronous MC spikes. 

Readout of mitral cell activity patterns in Dp 

My results indicate that responses of Dp neurons are not exquisitely sensitive 

to synchronized inputs but are primarily controlled by the balance between 

relatively slow excitatory and inhibitory inputs. In the temporal domain, Dp 

therefore appears to integrate afferent inputs over time. Since the majority of 

action potentials in the OB is not phase-locked to the LFP, at least for amino 

acid stimuli (Friedrich et al, 2004), Dp is likely to extract information 

contained in non-synchronized as well as synchronized MC activity patterns. 

These activity patterns contain information about the identity of odorants 

whereas an isolation of synchronized MC spikes would be informative about 

odor category (Friedrich et al, 2004). 

 Population response patterns of synchronized MC spikes tend to be 

highly correlated in response to odorants of the same category (Friedrich et al, 

2004). Response patterns comprising the residual, non-synchronized spikes 

(Friedrich et al, 2004) or the entire ensemble of MC spikes (Friedrich & 
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Laurent, 2001; Friedrich & Laurent, 2004) in contrast, are initially correlated 

for similar odorants but then undergo a decorrelation, resulting in distinct 

activity patterns after a few hundred milliseconds. Because Dp neurons are not 

exquisitely sensitive to synchronized input, we predict that population activity 

patterns in Dp evoked by different stimuli should be distinct and convey 

information about the precise identity of an odor. Low correlations in odor-

evoked population activity patterns in Dp have indeed been found (Yaksi et al, 

2009 and unpublished results) and underscore the idea that Dp extracts 

complex information from synchronized and non-synchronized MC spikes and 

thus, has the potential to establish synthetic representations of odor objects.  

Functional relevance of the temporal structure in the OB output 

The slow temporal integration in Dp neurons raises the question about the 

relevance of the temporal structure in the OB output. As indicated by the 

analysis of mixture responses (Yaksi et al, 2009), different areas in the 

zebrafish telencephalon extract distinct information from MC spikes by 

distinct integration strategies. Thus, neurons in other brain areas may 

selectively read information from synchronized MC spikes and thereby extract 

information about odor category. Complementary information could then be 

synthesized at a later stage in olfactory processing. It will be interesting to 

study the temporal response properties of neurons in other brain regions such 

as Vv. 

 My data indicate that while the temporal structure in the MC output 

pattern does not appear to play a major role in tuning odor responses in Dp it 

is nevertheless maintained to some extent in the subthreshold membrane 

potential fluctuations. Information conveyed by the oscillatory temporal 

structure in the MC activity is thus not necessarily lost in Dp. Oscillatory 

synchrony may therefore be involved in yet unexplored processes such as 

sensory processing downstream of Dp or in mediating plastic changes required 

for learning and memory within Dp. 
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 Consistent with earlier findings reporting that the onset of MC 

responses precedes LFP oscillations in the OB (Friedrich et al, 2004; Friedrich 

& Laurent, 2001) I observed that the odor-evoked depolarization of Dp 

neurons often reaches its peak before the LFP oscillation (not shown). Also in 

other vertebrates, particularly in the rabbit OB, it has been observed that spike 

discharges of mitral/tufted cells start before the LFP oscillation (Kashiwadani 

et al, 1999). This raises the possibility that OB output neurons activate higher 

order neurons, which then send feedback to the OB to generate the oscillations 

(Li & Hertz, 2000). However, even though centrifugal projections can 

modulate amplitude and frequency of OB oscillations (Gray & Skinner, 1988) 

it has been shown that they are not required for the oscillations to occur (Gray 

& Skinner, 1988). 

 To further explore a possible role of the odor-evoked rhythmical MC 

synchronization for the representation of odorants in Dp it would be 

interesting to compare odor responses in Dp neurons prior to and after 

selective elimination of oscillatory synchrony in the OB. LFP oscillations have 

been successfully disrupted by pharmacological interventions in the antennal 

lobes of locusts and honeybees. In locusts this disruption changed neither the 

response profiles nor the specificities of projection neurons (MacLeod & 

Laurent, 1996) while in behavioral experiments in honeybees it resulted in an 

impairment of fine sensory discrimination (Stopfer et al, 1997). In zebrafish, 

however, pharmacological disruption of the LFP causes epileptiform activity 

(Tabor et al, 2008) and is therefore not suitable for further investigations on 

the role of oscillatory synchronization. 

 From the data acquired during my PhD I conclude that individual 

neurons in Dp integrate information about diverse molecular features over 

time. Spikes are triggered by the temporal summation of activity from specific 

and distributed input channels while other input channels are silent. The 

neuronal circuitry in Dp is thus suitable to establish synthetic representations 
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of complex odor objects from highly analytical sensory inputs. The 

pronounced mixture interactions may provide a first mechanistic 

understanding for the fact that odorant mixtures are often perceived as distinct 

from the individual components (Jinks & Laing, 2001; Staubli et al, 1987). 
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Outlook 

Genetic tools are emerging to dissect neuronal populations in the zebrafish 

telencephalon. This will allow to further address the functional role of 

excitatory and inhibitory circuits in shaping odor representations in higher 

olfactory brain areas. In addition it will give new insights into the role of 

neuromodulatory transmitter systems on the population dynamics in the intact 

brain. Advanced genetic tools, partially already available for mammalian 

model systems, will even offer control over specific subsets of neurons by 

targeted activation or inactivation. 

Tracing studies of MC axons will be rewarding to quantify anatomical 

projections to individual higher order neurons and to explore the mapping of 

OB outputs onto the network in Dp. Such anatomical data is relevant to further 

advance a theoretical model of the olfactory system which may illuminate key 

principles governing information processing in neuronal networks. 

Importantly, a further development of behavioral paradigms will be necessary 

to validate any systems level conclusions made in the ex-vivo preparation and 

to put the temporal structure of olfactory processing into the context of 

perception. 
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ABBREVIATIONS 

Dp: Posterior part of the dorsal telencephalon 

LFP: Local field potential 

MC(s): Mitral cell(s) 

OB: Olfactory bulb 

PSD: Power spectral density 

SD: Standard deviation 

Vv: Ventral part of the ventral telencephalon 
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