Alexander Nürnberg Dr. sc. hum. The roles of G_q and G_{12} families of G-proteins in the regulation of neurite morphology. Geboren am 05.03.1980 in Beresniki, UdSSR Diplom der Fachrichtung Chemie am 29.06.2002 an der Moskauer Staatlichen Lomonossow- Universität Promotionsfach: Pharmakologie Doktorvater: Prof. Dr. med. S. Offermanns Growth cone collapse and neurite retraction are involved in developmental and regenerative processes in the nervous system. Ligands of G-proteins coupled receptors, such as the bloodborne factors thrombin and lysophosphatidic acid (LPA), have been shown to induce these morphological changes in neural cell lines and primary neurons. However, the specific roles of G-protein mediated signalling cascades leading to the induction of growth cone collapse and neurite retraction remained unclear. We used here primary neurons isolated from $G\alpha_0/G\alpha_{11}$ - and $G\alpha_{12}/G\alpha_{13}$ -deficient mouse brains to test distinct roles of G_0/G_{11} - and G_{12}/G_{13} -mediated signalling pathways in the process of thrombin and LPA-mediated neurite retraction. We showed that G₁₂/G₁₃-mediated signalling was absolutely essential for the effects of thrombin and LPA on neurite morphology. Interestingly, the action of LPA was predominantly mediated by G₁₃, while thrombin appeared to act preferably via G_{12} . Surprisingly, the absence of $G\alpha_q/G\alpha_{11}$ lead to a substantially enhanced response to both stimuli, indicating the novel role of G₀/G₁₁-mediated pathway as an antagonistic regulator of G₁₂/G₁₃-signalling. Provided evidence suggested that G_0/G_{11} -dependent inhibition of G_{12}/G_{13} -RhoA-mediated neurite retraction and growth cone collapse occurs most likely via calcium-dependent activation of Rac. Our data suggest that the G_0/G_{11} -mediated signalling pathway is a potential target for stimulating neuronal outgrowth and repair after nervous system injury.