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Abstract

This thesis belongs to the field of image sequence analysis in computer vi-
sion with the main focus to propose and to explore new motion estimation
approaches. The main contribution is the incorporation of the Burgers regular-
isation term for variational motion estimation approaches exploiting physical
prior knowledge that is new in the field of image sequence processing. Using
one of the motion estimation approaches along with an appropriate transport
process we also propose a new reconstruction approach for missing data in im-
age sequences, also known as video inpainting.

We exploit and extend the existing framework of standard variational opti-
cal flow approaches, which we use to recover optical flow fields from image
sequences by minimising an appropriate energy functional. In general, these
energy functionals consist of two terms: a data term that imposes e.g. for op-
tical flow approaches the brightness constancy assumption and a regularisation
term that enables us to incorporate prior knowledge into the energy functional.
We concentrate on the latter term for the exploration of new priors based on
physical transport processes.

In particular we present a novel partial differential equation based represen-
tation for image motion computation. The Burgers equation is employed in
order to obtain a physical plausible regularisation term for dynamic image mo-
tion modelling. The resulting distributed-parameter approach incorporates a
spatio-temporal regularisation in a recursive online fashion, contrary to previous
variational approaches which are designed to evaluate the entire spatio-temporal
image volumes in a batch processing mode. The inertia behaviour of the Burg-
ers equation leads to a temporal filtering effect that is superior to common
spatio-temporal approaches with respect to missing image measurements. We
also speculate about relations of our approach to visual perceptual phenomena
like the motion aftereffect.
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Furthermore, we design an optimal control approach for image sequence process-
ing using the two-dimensional Burgers equation as a constraint equation. The
flow fields are forced towards vector fields which satisfy the Burgers equation.
In order to estimate the motion of apparent velocities of image measurements
in an image sequence, control variables are included and determined by min-
imising an appropriate objective functional. Control variables and optical flow
adjust to the observed image data.

For computer vision applications these new approaches show an often desired
property that might be exploited to design an attentional mechanism within a
superordinate processing stage: Un-modeled and therefore unexpected motion
events lead to an increased force field that is localised around the unexpected
motion and may therefore help to identify an event of interest.

We exploit some of the above developed ideas to obtain a new algorithm for
video inpainting to reconstruct damaged parts in image sequences. Image in-
formation is transported in a structure preserving way into the inpaint region
using a fluid based advection-diffusion equation. The first results are very
promising and motivate the development of more sophisticated video process-
ing algorithms.

We experimentally explore the properties and the potential benefits of the
presented variational approaches. The most prominent features that our ap-
proaches show are the inertia behaviour along with its temporal filtering effect
and the composition of sharp motion boundaries in motion direction which is
an often desired property in optical flow computations.



Zusammenfassung

Diese Arbeit ist einzureihen in das Wissenschaftsgebiet der Bildverarbeitung,
das sich unter anderem mit der Analyse von Bildfolgen befaßt. Wir sind daran
interessiert neue Ansätze zur Bewegungsschätzung in Bildfolgen vorzustellen
und zu untersuchen. Der grundlegende Beitrag dieser Arbeit ist die Einführung
des Burgers-Regularisierungsterms, der im Rahmen der variationellen Bewe-
gungsschätzung von Bildfolgen physikalisches Vorwissen für die Bewegungsschät-
zung beisteuert, das in dieser Art und Weise neu im Bereich der Bildfolgenver-
arbeitung ist. Unter Verwendung dieser Ansätze und unter Einbindung einer
anderen physikalischen Transportgleichung stellen wir auch einen neuen Ansatz
zur Rekonstruktion von fehlenden Bilddaten in Bildfolgen vor.

Wir benutzen und erweitern das bestehende Rahmenwerk von herkömmlichen
Variationsansätzen um das optische Flussfeld mittels der Minimierung eines
geeigneten Energiefunktionals zu erhalten. Diese Energiefunktionale beste-
hen aus zwei Haupttermen: Dem Datenterm, der für optische Flussansätze
im Allgemeinen auf der Annahme der Grauwerterhaltung basiert, und dem
Regularisierungsterm, der uns die Möglichkeit bietet Vorwissen, basierend auf
physikalischen Transportgleichungen in die Energieminimierung mit einzubin-
den, im speziellen die Burgersgleichung, welche eine grundlegende Gleichung in
der Strömungsmechanik darstellt. Die physikalischen Eigenschaften der Glei-
chung repräsentieren Gleichförmigkeit und Kontinuität der Bewegung, sowie
das Trägkeitsverhalten bewegter Objekte in Bezug auf Bewegungsänderung.

Speziell präsentieren wir eine neue auf einer partiellen Differentialgleichung
basierende Darstellung zur Berechnung von Bewegung in Bildfolgen. Darin
wird die Burgersgleichung als physikalisch plausibler Regularisierungsterm zur
Modellierung dynamischer Bewegung in Bildern eingesetzt. Im Gegensatz zu
herkömmlichen Raum-Zeitlich regulierten Anzätzen, wo das ganze Bildvolu-
men zur Bewegungsschätzung vorliegen muss, werden die Bewegungsfelder in
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dem resultierenden Ansatz rekursiv und online berechnet. Die charakteris-
tische Trägheitseigenschaft der Burgersgleichung führt zu einem zeitlichen Fil-
terungseffekt, welcher dem Ansatz bei fehlenden Bilddaten zu Gute kommt und
Bewegungsschätzungen zuläßt auch wenn Daten fehlen. Im Weiteren weisen wir
auf die Anwendbarkeit unseres Ansatzes im Bereich der visuellen Wahrnehmung
hin, im speziellen der Modellierung des Phänomens der Nachwirkungserschein-
ungen von Bewegungen.

Darüber hinaus, formulieren wir einen Kontrollansatz zur Bewegunsschätzung,
in welchem die Vektorfelder ebenfalls der zweidimensionalen Burgersgleichung
genügen sollen. Dazu führen wir Kontrollvariablen ein, die den optischen Fluss
so kontrollieren, dass er der Bewegung der gemessenen Bilddaten folgt und
möglichst der Burgersgleichung genügt. Um die Bewegung in den Bilddaten
zu schätzen wird eine geeignete Zielfunktion bezüglich der Bewegungsvariablen
und Kontrollvariablen minimiert.

Die neuen Ansätze zeigen eine Eigenschaft die für Anwendungen in der Bild-
verarbeitung ausgenutzt werden kann: Nicht vom Modell vorhergesehene und
daher nicht erwartete Bewegungen können einem übergeordneten Kontrollme-
chanismus mitteilen, dass eine ungewöhnliche Bewegung vorliegt und eine ent-
sprechende Aktion eingeleitet werden kann.

Basierend auf den Grundlagen dieser neuen Ansätze entwickeln wir einen neuar-
tigen Algorithmus zur Rekonstruktion beschädigter Bildregionen in Bildfolgen.
Die fehlende Bildinformation wird strukturerhaltend aus den umliegenden nicht
beschädigten Regionen des Bildes mit Hilfe der Bewegungsschätzung und einem
weiteren physikalischen Transportmechanismus in die Fehlstellen transportiert.
Die ersten Ergebnisse dieses Ansatzes sind vielversprechend und können die
Basis für fortgeschrittene Anwendungen bilden.

Mit unseren experimentellen Untersuchungen der resultierenden Ansätze haben
wir die neuen Eigenschaften und ihre potenziellen Nutzen abgeschätzt. Die wohl
wichtigste Eigenschaft basiert auf der Transport- und Trägheitseigenschaft der
Burgersgleichung und dem damit einhergehenden zeitlichen Filterungseffekt.
Aber ebenso die Herausbildung klarer Bewegungsgrenzen in Bewegungsrichtung
stellt eine oft erwünschte Eigenschaft für optische Flussansätze dar.
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1

Introduction

1.1 Motivation

In this thesis we are concerned with the estimation of motion in image se-
quences, which poses one of the fundamental problems in computer vision. Mo-
tion estimation refers to the technique to compute a motion vector field between
subsequent image frames in a video sequence. We intend to explore new ideas
that incorporate physical prior knowledge about ”motion” into a variational
framework.

Figure 1.1: Motivation: We intend to transfer ideas from fluid flow esti-
mation based techniques to the field of image sequence processing for every
day image scenes. Left: Recovered velocity field for a typical Particle Image
Velocimetry (PIV) image frame (background) using the variational flow esti-
mation approach [117] with physical prior knowledge. Right: Optical flow
estimation for a moving hand using physical prior knowledge (3.4).

Our motivation is based on fluid flow estimation techniques as proposed in [118]
where we were concerned with extracting highly non-rigid velocity fields from
image sequences of fluids (see left image of fig. 1.1).

1



2 Chapter 1. Introduction

Successful approaches that were originally developed in the field of computer
vision within in the last decade to compute such flow fields are standard varia-
tional optical flow approaches. Higher-order regularisation techniques are used
to improve the accuracy of such approaches. However, most of these approaches
do not incorporate physical prior knowledge about the fluid flow itself. A phys-
ically plausible variational approach has to consider the image measurements
- which are retrieved from the image data - along with an appropriate state
equation - which models the physically behaviour of the fluid motion. As a
consequence, we want to find a velocity field that is consistent with the ob-
served image data and which also satisfies the physical model equation.

The main aim of this thesis is to transfer physically motivated fluid flow es-
timation techniques to the field of image sequence processing for every day
image scenes. Therefore, we have to employ a state equation which is suitable
to model also non-fluid motion, like traffic scenes or gestures (moving hand in
fig. 1.1 right). The obvious question is, which model equation is appropriate
for this kind of motion? - Considering fluids, we know from physics that the
governing equations are given by the Navier-Stokes equations. However, it be-
comes clear, that the incompressible Navier-Stokes equations are not the best
choice to model every day image scenes. For example, every day image scenes
seem to be rigid in comparison with liquids like water or honey. Furthermore
such scenes cannot be considered to be divergence free as a divergent optical
flow field occurring in zoom-sequences easily reveals.

However, in this work we consider the scene as a ”fictive fluid” - assuming
that its motion can be described by an appropriate model equation. The basic
knowledge about image motion we intend to incorporate is that ”structures do
not jump!”. Considering a rigid constant moving object one can determine that
structures are transported by a velocity field and along with it the velocity field
is transported by itself. The physical model equation, which exactly describes
this behaviour is known as Burgers equation and allows to model the movement
of more rigid objects. The Burgers equation provides us with a novel PDE-
based representation of image motion exploiting this knowledge and allows us
to present a dynamic viewpoint of image motion processing. The incorporation
of this new prior results in a variational approach for dynamic image motion
with physical prior, where the observed image measurements force the fictive
fluid into the appropriate motion direction. In particular that means that the
approach favours a velocity field that is in accordance with the observed image
data and additionally satisfies the Burgers equation.

The properties of our new physical prior encouraged us to exploit them for
other applications in image sequence processing as well. In computer vision the
aim of inpainting is to ”reconstruct” image information of image parts - where
information is damaged or even completely missing - in a visually undetectable
manner. In this thesis we explore our model equation in combination with video
inpainting.



1.2. Related Work 3

In history, several different media types have been used to record and store
motion pictures. The most prominent example is probably the flexible celluloid
for motion pictures and movies but digital storage solutions are likely to dom-
inate in the future. Watching in particular older films one can often see faults
like flickering black or white patches on the celluloid frames. These patches are
sometimes just markers but originate also from a degeneration of the material.
In extreme cases, even several frames can be lost completely due to a projector
fault which damaged that part of the film material. In connection with this
and in arts - and less pleasantly in censorship - image and video inpainting
has been used to retouch images and videos to remove objects. When the film
data is available in digital form, computer implemented inpainting methods are
desired to repair the damaged image sequence. In this thesis we explore a new
idea to use physically motivated priors within motion estimation techniques
to transport image measurements in regions of missing image data. We make
use of two model equations, the previous mentioned Burgers equation and the
advection-diffusion equation. Due to the properties of the Burgers equation it
is - to a high degree - possible to transport the motion field in regions with
missing image measurements within the sequence. The resulting velocity field
is used in connection with the advection-diffusion equation to transport avail-
able image measurements in a structure preserving way into the inpaint region.
The approach and early evaluation results are presented.

We would like to emphasise, that the present work is an attempt to innovatively
adopt established methods from the field of applied mathematics in a new form
to image sequence analysis and processing in order to evaluate the capability of
the resulting approaches. Therefore, the presented applications to image mo-
tion estimation are novel and explorative.

1.2 Related Work

1.2.1 Particle Image Velocimetry

The root of our research can be found in methods that were originally devel-
oped in the field of computer vision and that were modified for the purpose of
Particle Image Velocimetry (PIV) applications. Although PIV is not directly
within the scope of this thesis one of our contributions lies in this field and we
refer to some work in this research field.

Particle Image Velocimetry is an optical method to measure velocities or related
quantities in fluids. So called tracer particles are added to the fluid and high-
speed cameras are used to capture slow motion fluid image sequences. Velocity
fields are measured by determining the displacement the individual particles
have been made within this time. Several methods were developed to analyse
these kind of particle image pairs and sequences. For a survey on PIV the reader
is refered to [111]. We focus on computer vision methods that are related to
the topics in this thesis. These are in particular methods that are based on
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variational optical flow estimation techniques, where the displacement field of
corresponding particles in subsequent frames of an image sequence are known
as optical flow (cf. sec. 2.1). The flow estimation is based on the assumption
that the image intensities are preserved between consecutive image frames. The
variational framework allows to include physical prior knowledge in a natural
way. The PhD-thesis of Paul Ruhnau [115] is largely concerned with PIV meth-
ods using computer vision techniques and we wish to refer the reader interested
in this field to his work.

1.2.2 Motion Estimation

Our main research interest is concerned with the estimation of motion in image
sequences. This represents a vast research field in computer vision, but we refer
only to [74, 3], which provide nice introductions into this field. An overview of
some methods that are related or relevant for our work is given below.

Local Optical Flow Methods are designed to compute the optical flow at a
certain pixel position by using only the image information in the local neigh-
bourhood of this specific pixel. The first local approach was introduced by
Lucas and Kanade [88] in 1981. They made the assumption that the optical
flow is constant within a small window around the central pixel location at any
time. Due to their locality the computation of such approaches is usually quite
efficient. However, in this work we are mainly interested in variational optical
flow methods which are intended to find a global optimum. Nevertheless, in
section 2.3 we will describe local optical flow approaches. A review of some
different types of local optical flow approaches along with their extensions can
be found in [74].

Variational Optical Flow Methods represent global optimisation problems which
are used to recover the optical flow field from an image sequence as a minimiser
of an appropriate energy functional. In general, these energy functionals consist
of two terms: a data term that imposes, e.g. a brightness constancy assump-
tion and a regularisation term which impose additional constraints like global
or piecewise smoothness to the optical flow field.

One of the first variational methods for motion analysis was introduced by Horn
and Schunck [67] in 1981 and incorporates a homogeneous regularisation term,
where the optical flow is enforced to vary smoothly in space. As the name sug-
gests the smoothing is done in a homogeneous way, which leads to an undesired
blurring across flow discontinuities. Therefore, other smoothness terms were
introduced to regularise the flow in an image-driven [99, 119, 2] or flow-driven
[120, 40, 142] way, where the flow is suppressed to smooth across object bound-
aries or motion boundaries, respectively. Furthermore, the employed diffusion
processes can be divided into isotropic and anisotropic diffusion approaches.
A systematic classification of these approaches can be found in [142], where
the authors also suggest the following classification. According to this, image-
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driven approaches belong to the class of quadratic models [12] and flow-driven
approaches correspond to the class of non-quadratic regularisers [120]. Note
that homogeneous and image-driven regularised methods (which we describe
in chapter 2) are used in this work as foundation to incorporate physical prior
knowledge to regularise image motion in a spatio-temporal way. Further related
work can be found in chapter 3.

Most of the variational approaches enforce a spatial regularisation of the flow.
However, some efforts have been made to incorporate spatio-temporal smooth-
ness [101] by enlarging the integration domain of the variational approach into
the temporal direction. The work of [143] investigates an extension of spatial
flow-driven regularisation terms to spatio-temporal flow-driven regularisers. In
these approaches, time is considered as a third dimension analogue to the two
spatial dimensions. This lead to a three-dimensional elliptic PDE with a static
description of motion, where a flow vector is determined by the solution of a
linear system involving the data of the full 3D image volume. Solving this
variational problem allows the computation of the optical flow only after the
last frame of the image volume has been captured. However, these kind of
approaches improve both the robustness and the accuracy of the motion esti-
mation.

In chapter 4 we present an optimal control based formulation for the optical
flow computation subject to a physical constraint. Optical flow fields are forced
to satisfy a specific model equation. The model equation includes control vari-
ables that allow to adjust the image motion in such a way that it fits to the
apparent velocities of the moving objects in the given image sequence. Our
motivation draws on literature on the control of distributed parameter systems
in connection with fluid dynamics [58] and our intention is to apply these meth-
ods to image motion processing [116, 16]. This represents a new approach in
computer vision and for work related to that area we refer to section 4.1.2.

1.2.3 Inpainting

Inpainting methods try to reconstruct missing data in digital images or se-
quences. The applications range from removing objects in images to recon-
structing damaged parts in images and photographs. In the field of computer
vision many methods were proposed to reconstruct image data in images or
video sequences. Here our focus lies on PDE-based image and video inpainting
methods:

Image Inpainting Methods The term digital inpainting was first introduced
to image processing by Bertalmı́o, Sapiro, Caselles and Ballester [10] and has
its origin in the restoration of artwork from the Renaissance. The idea is to
propagate information from the surrounding area continuously into the region
of missing image data (inpaint region). To achieve this, different strategies can
be found in literature. Total Variation (TV) methods [27, 30] which minimise
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the total variation norm, are used to reconstruct damaged parts in images in
a smooth but edge preserving way. In [10, 89] the authors propose techniques
which are based on the propagation of level curves into the inpaint region. These
methods and the work of [9] is related to our approach (which we will describe
in chapter 6) as both exploit a physically transport equation to transport im-
age information into the inpaint region. However, our approach employs the
transportation not only in a spatial context but also in a temporal. In chapter
5 we are concerned with some particular image inpainting algorithms.

Video Inpainting Methods In video inpainting the aim is to restore missing
data in video or image sequences. Image inpainting is used as a fundamental.
One of the first video inpainting approaches was proposed by Bertalmı́o et al.
[9] but is essentially an image inpainting approach that is applied frame-by-
frame for the entire sequence. Therefore, it belongs to the category of purely
spatial approaches. Temporal extensions were proposed to incorporate infor-
mation that the image sequence provides over time. Different techniques have
been used to extract temporal information of the image sequences. The authors
of [123] proposed a method where the colour or intensity information from pre-
vious frames of the sequences are just copied directly into the inpaint region of
the following frames. In [144] the authors suggested a method where missing
image values are constrained to form coherent structures with respect to refer-
ence samples. Instead of transferring intensity measures directly the approaches
presented in [56, 124] extract the motion information of the image sequence in
order to transfer the motion field into missing areas. The motion field is re-
covered by using local or global optical flow methods. The spatio-temporal
video-inpainting approach, we present in chapter 6 uses a variational optical
flow technique to recover the velocity field of the image sequence, which is then
used within a physically transport equation to transport the surrounding image
information into the region of missing image data in a spatio-temporal manner.
Other methods are discussed in chapter 6.

1.3 Contributions

Our main research interest in this work is to develop new techniques for varia-
tional motion estimation. The idea is to transfer approaches known from fluid
flow computation using physical prior knowledge to image sequence processing.
Besides motion estimation itself these techniques are applied in a video inpaint-
ing approach. Below we describe our contributions to the appropriate fields in
computer vision

Variational Motion Estimation Our starting point are standard variational op-
tical flow approaches as presented in chapter 2 which are mainly spatial regu-
larised. We adapt in chapter 3 the spatial regularised approach of Nagel (cf. sec.
2.2.3), which extends the basic approach of Horn and Schunck (cf. sec. 2.2.2),
to an anisotropic image-driven diffusion process and present a novel PDE-based
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representation of image motion. Our approach performs spatio-temporal regu-
larisation in a recursive online fashion, unlike previous variational approaches
evaluating entire spatio-temporal image volumes in a batch processing mode
(cf. 2.2.4).

Our major contribution in this thesis is to introduce the Burgers equation as
a new regularisation term as physically plausible description for motion within
a variational framework and to explore the capabilities and properties of the
resulting approaches. In chapter 3 we present a variational approach to motion
estimation for image sequence processing with the Burgers equation as new
physical prior [126]. We are able to determine five new and for the field of
computer vision relevant properties: (i) The compressible Burgers equation is
employed in order to obtain a physical plausible regularisation term for dynamic
image motion. This allows to change the static viewpoint of image motion pro-
cessing to a dynamical one. (ii) Spatio-temporal regularisation is performed in
a sliding window manner, which allows recursive online (non-batch) computa-
tion. (iii) The inertia behaviour of the Burgers equation leads to a temporal
filtering effect that is superior to common spatio-temporal approaches. (iv)
Deviations from the expected velocity distribution generate vector fields that
may serve as attentional mechanism for a superordinate processing stage. (v)
We briefly speculate about relations of our approach to perceptual phenomena
like motion aftereffects.

Control based Motion Estimation In chapter 4 we design an optimal con-
trol approach for image sequence processing incorporating the two-dimensional
Burgers equation as a constraint equation to obtain a dynamical motion evo-
lution over time. In order to estimate the motion of apparent velocities of
image measurements in an image sequence, control variables are included and
determined by minimising an appropriate objective functional. The solutions
are obtained by minimising the Lagrangian functional of the optimal control
formulation.

We present this approach as previous mentioned as an attempt to adopt re-
spective methods from the field of applied mathematics in a new form to image
sequence processing to evaluate the capability of these kind of approaches.

Video Inpainting In the last two decades inpainting applications became pop-
ular as they provide new tools for digital imaging software, allowing to edit
images in an easy way. Damaged images or videos can be easily reconstructed
or even objects can be removed with only a few manual interaction.
The spatio-temporal video-inpainting approach, we present in chapter 6 uses
ideas from PDE-based inpainting methods. To minimise the user interaction we
designed a new two-step algorithm, where in the first step an optical flow field
is recovered between subsequent image pairs and in the second step the velocity
field is used within an advection-diffusion equation to transport image measure-
ments into the region of missing image data. The key advantage of our new
video-inpainting approach is the spatio-temporal regularisation where image
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information from previous frames can be transported into the inpaint regions
preserving the structural information. The incorporated physically transport
equations are used to transport the optical flow and the image data into the
inpaint region over time.

Particle Image Velocimetry Our motivation is based on a variational approach
to motion estimation of instationary fluid flows for PIV applications. The
approach employed the full incompressible Navier-Stokes equation as plausi-
ble physical prior knowledge. In connection with this work we presented in
[118, 117] a variational approach for motion estimation of instationary fluid
flows from image sequences. My contribution to that work lies in the incor-
poration of the vorticity transport equation that I implemented to explore an
inpainting approach for a reconstruction of medical images. The vorticity trans-
port equation is used within this framework to approximate two dimensional
vector fields of turbulent curling fluids. The optimisation is done in a receding
horizon manner contrary to previous approaches using spatio-temporal regular-
isation. This results in a recursive on-line implementation.

1.4 Organisation

This thesis is divided into three main parts:

In the first part I we are concerned with variational motion estimation tech-
niques and approaches. Therefore, we present in chapter 2 the fundamental
framework for motion estimation and present standard variational approaches.
Our new distributed parameter approach for dynamic image motion is described
and evaluated in detail in chapter 3. We introduce a new temporal regularisa-
tion framework, based on the Burgers equation as physical prior knowledge. A
control based optical flow approach is introduced in chapter 4 subject to the
same physically constraint equation.

The second part II of this thesis has image and video inpainting as main topics.
In chapter 5 we are concerned with the general challenges of image inpainting
and present some well-known approaches. A classification of image inpaint-
ing approaches which is based on the technique underlying the individual ap-
proaches can be found in chapter 5.1.2. This chapter serves mainly as a founda-
tion for our video inpainting approach proposed in chapter 6. There we present
an inpainting approach which is based on the physical Burgers transport mech-
anism and exploits the distributed parameter approach for image motion which
incorporates dynamical prior knowledge. This results in a spatio-temporal video
inpainting approach that can be implemented by a two step algorithm applied
on a sliding window.

The third part III of this thesis includes the numerical background, solution and
implementation of the approaches that are essential for this thesis. An overview
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of the fundamental model equations we exploit in out research is given in chap-
ter 7 while chapter 8 discusses appropriate discretisation techniques for these
equations. Chapter 9 provides an overview of appropriate numerical solvers
that are used to solve the discretised problems.

We conclude this thesis with chapter 10 by summarising our work and discussing
open problems. Furthermore we propose possible extensions for further work in
our research area. The appendix contains supplementary material for chapter 4.
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Part I

Variational Motion Estimation
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2

Standard Variational Approaches

This chapter is organised as follows: After explaining what is considered as
optical flow in this thesis we define the optical flow constraint equation. We
introduce variational approaches in general and present the standard varia-
tional approach of Horn and Schunck with exemplary numerical solution. Fur-
thermore, we present other approaches, which provides us with regularisation
techniques that are used within this thesis.

2.1 Preliminaries

Motion analysis in computer vision deals with the analysis and estimation of
the visual motion that occurs in image sequences or videos like the one shown
in figure 2.1.

t t+ ∆t t+ 2∆t

Figure 2.1: Real image sequence: The well-known ”Hamburg taxi scene”
consists of image frames showing a taxi coming from the right side which
turns right into a street. Additionally, two other dark coloured cars enter the
scene, one from the left and one from the right. Only three frames of the full
sequence are depicted here.

In this traffic scene we easily observe the displacements of objects between
consecutive images and interpret this as the ”motion” of the objects. But one
has to be aware that this apparent motion can be different from the true motion
field one is usually interested in. The true motion field is the projection of the
exact 3D velocity field of the scene to the image plane and we cannot measure

13
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it directly. An extreme case where the real motion is quite different from the
apparent motion we perceive is depicted in figure 2.2.

Figure 2.2: The real motion can be quite different from the apparent motion.
Left: One frame of a ”spiral” sequence which rotates clockwise. Middle:

Indication of the true rotating 2D motion field. Right: The apparent motion
we perceive is outwards.

If the pattern shown on the left hand side of figure 2.2 rotates clockwise we
perceive an outward movement instead of the real rotational movement. Luck-
ily, in common image sequences the apparent motion is a good approximation
of the motion field. But nevertheless, one should keep in mind that the true
motion field can only be approximated based on the given image data.

In computer vision the measurement of the apparent motion is known as optical
flow or image flow and can be defined as follows:

Image flow is the velocity field in the image plane due to the motion of the
observer, the motion of objects in the scene, or apparent motion which is a
change in the image intensity between frames that mimics object or observer
motion [75].

Several other similar definitions can be found in the literature [52, 68, 127].
Making use of the definition above we consider in this work the optical flow as
a 2D velocity field that describes the intensity changes between images.

In the following we are concerned with techniques which have been used for
the computation of the optical flow field between consecutive image frames of
sequences. We focus on gradient based methods, which use spatio-temporal
partial derivatives to estimate the optical flow at each point in the image and
allow the derivation of variational methods.

2.1.1 Optical Flow Constraint

In this thesis we represent an image sequence by a real valued image intensity
function I(x, t) that is continuous in space and time. The variable x = (x1, x2)
denotes the location within a rectangular image domain Ω and t ∈ [0, T ] labels
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the corresponding frame at time t.

The starting point for most of the motion estimation approaches is the creation
of a link between motion and the corresponding intensity variation. And the
most frequent assumption within these approaches is that the observed intensity
I is conserved over time. This means that the intensity at position (x1, x2)
at time t will be the same as the intensity at time t + ∆t at position (x1 +
∆x1, x2 + ∆x2) for a small ∆t. Using the intensity function I(x1, x2, t) along
with u1(x1, x2) and u2(x1, x2), which are the two components of the optical
flow vector u = (u1, u2)

⊤ this results in the equation

I(x1 + u1∆t, x2 + u2∆t, t+ ∆t) = I(x1, x2, t), (2.1)

where ∆x1 = u1∆t and ∆x2 = u2∆t.

If we assume that the brightness varies smoothly over time the term on the
left hand side of equation (2.1) can be approximated by a first-order Taylor
expansion at the point (x1, x2, t)

I(x1, x2, t) + ∆t u1 ∂x1
I + ∆t u2 ∂x2

I + ∆t ∂tI

+O(∆x2
1,∆x

2
2,∆t

2) = I(x1, x2, t).

Dividing by ∆t and dropping the higher-order terms O(∆x2
1,∆x

2
2,∆t

2) for
∆t→ 0, we obtain the linearised constraint

∂tI + u · ∇I = 0. (2.2)

This differential equation is well-known in the literature as the Brightness
Change Constraint Equation (BCCE) or Optical Flow Constraint Equation
(OFCE) and has been introduced by Horn and Schunck [67]. As the name
suggests (2.2) represents a constraint on the optical flow components u1 and
u2 which requires that the intensity of an object point stays constant along its
motion trajectory. Consequently, this equation is an useful approximation for
image sequences where the displacements are small, the grey value at a certain
position is not influenced by global illumination changes, and where no occlu-
sion occurs in the image sequence.

In order to deal with larger displacements one can use a hierarchical multireso-
lution approach which computes the optical flow – using a coarse to fine strategy
– at each resolution level. We refer for more details to section 9.2 and 9.3.

In this thesis we do not focus explicitly on brightness change issues, but in
order to cope with the violation of the brightness constancy assumption sev-
eral approaches were proposed in the literature. Haussecker and Fleet [62]
introduce a time-dependent physical process to estimate brightness variations
in image sequences. In particular, they choose the heat transport equation
as model equation to simulate the brightness variation as a diffusion process.
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Negahdaripour and Yu [103] relax the brightness consistency assumption in-
corporating a brightness change model within their optical flow computation.
They describe the image brightness at one point as a product of an illumination
component and a surface reflectance term. An additional offset term compen-
sates for irradiance, shading variations as well as for saturation of the sensor in
dark or bright image regions. Black et al. [15] apply a probabilistic approach
to model the changes in image appearance over time. The authors classify
four generative models of appearance changes in connection with illumination
variations, specular reflections and changes which might results from occlusion
events or material properties of objects.

2.1.2 Aperture Problem

Another problem we have to deal with is the non-uniqueness of the optical flow
constraint equation (2.2). This can easily be seen as the optical flow constraint
is represented by a single linear equation with two unknown variables u1 and
u2 at each location (x, t).

Writing the OFCE (2.2) as

u · ∇I = −∂tI, (2.3)

we obtain that we are only able to determine the normal flow un (cf. fig. 2.3),
which is the flow component in the gradient direction ∇I:

un =
∇I

|∇I|
· u = −

∂tI

|∇I|
, |∇I| > 0,∀x.

Note that a direct estimation of the flow component perpendicular to un is not
possible. This fact is known as aperture problem.

∆+

? u

? u

t tt

I
un

Figure 2.3: Only the normal flow un which represents the component of the
optical flow in the direction of ∇I is determined by the optical flow constraint
equation (2.2).

Figure 2.4 illustrates the aperture problem: The original sequence shows a
black bar that moves from the upper-left corner to the lower-right one. Then
the sequence is occluded by an image mask with a small window showing the
original part of the scene. With that we are unable to determine the original
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movement of the bar anymore and only the motion in the direction of the
gradient ∇I is perceived [68].

Figure 2.4: Illustration of the aperture problem. First row: Original move-
ment of a bar. Second row: The same sequence is occluded with an image
mask (black cover). The motion that is perpendicular to the grey value gradi-
ent ∇I cannot be perceived any longer. Only the components that are normal
to the level lines of the image are determined.

According to Hadamard [60] a problem is well-posed if a solution exists, is unique
and stable (the solution depends continuously on the initial data). Problems
that are not well-posed in the sense of Hadamard are called ill-posed. It is
clear that – due to the aperture problem – solving the optical flow constraint
equation (2.2) belongs to the class of ill-posed problems.

Several ways to overcome the aperture problem and to transform the ill-posed
optical flow problem into a well-posed one were proposed in the literature (see
e.g [12, 3]). The authors of [12] state that in order to stabilise or regularise
ill-posed optical flow formulations it is essential to introduce additional con-
straints. Approaches and regularisation techniques that are relevant for our
work are presented in the following sections.

2.2 Variational Motion Estimation Approaches

Variational approaches turned out to be very useful for motion estimation prob-
lems in computer vision as they allow to introduce regularisation terms to the
ill-posed optical flow constraint equation (2.2) in a clear mathematical way. In
the following, we explain how standard variational approaches are usually ap-
plied for motion estimation.
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2.2.1 Variational Formulation

A convenient method to solve problems in computer vision is to state and
minimise an appropriate energy functional. For motion estimation problems
this is done in a variational framework minimising an energy functional E(u)
with respect to u that consists of a data and a regularisation term:

inf
u
E(u) = inf

u
(Edata(u) + Eregu(u)) . (2.4)

For our motion related problems we make use of the following data term

Edata(u) =

∫

Ω

(∂tI + u · ∇I)2 dx, (2.5)

which comprises the optical flow constraint (2.2) and provides the link between
the given image data and the desired velocity field. Note, as discussed previ-
ously, this problem is ill-posed as any vector field u = (u1, u2)

⊤ satisfying (2.3)
is a minimiser. Therefore a regularisation term Eregu(u) is added to introduce
additional constraints for the flow field u to obtain an unique solution.

In order to minimise (2.4), it is necessary that the first variation of the energy
functional (2.4) must vanish

∂E(u+ ǫũ)

∂ǫ

∣

∣

∣

ǫ=0
=

∂

∂ǫ

{

Edata(u+ ǫũ) + Eregu(u+ ǫũ)
}∣

∣

∣

ǫ=0
= 0. (2.6)

If the energy functional E(u) is convex this is a sufficient constraint for a global
optimum.

The discretisation of this partial differential equation results typically in a sparse
and positive definite system that can be solved using iterative solvers like the
conjugate gradient method (see sec. 9.1), which belongs to the class of Krylov
subspace methods.

The prototype (2.4) of a variational approach allows the use of various regular-
isation terms. In order to illustrate the numerical realisation of this approach –
using a homogeneous smoothness term – we present below the pioneering work
of Horn and Schunck. Details about variational methods for computer vision
problems and regularisation techniques can be found in [121, 142, 3]. For par-
ticular variational approaches for image motion estimation we refer to [122] and
references therein.

2.2.2 Global Approach from Horn and Schunck

Horn and Schunck [67] proposed their approach using the optical flow data term
(2.5) and the regularisation term

Esmooth(u) =

∫

Ω

α(|∇u1|
2 + |∇u2|

2) dx, (2.7)
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in order to regularise the optical flow constraint (2.2). This term incorporates
prior knowledge about the optical flow field and enforces its smoothness ho-
mogeneous, therefore preferring neighbouring optical flow vectors to be similar.
With this term – which was first introduced by Tikhonov and Arsenin in [132]
– the full energy minimisation problem becomes:

E(u) =
1

2

∫

Ω

{

(∂tI + u · ∇I)2 + α(|∇u1|
2 + |∇u2|

2)
}

dx. (2.8)

The regularisation parameter α > 0, α ∈ R adjusts the relative importance
of the smoothness term to the data term. With an increasing value of α the
vector field is forced to become smoother. Note that functional (2.8) is strictly
convex under weak assumptions and has an unique minimising vector field u
[119]. The first variation of (2.8) yields

∂E(u+ ǫũ)

∂ǫ

∣

∣

∣

ǫ=0
=

∫

Ω

{

(∂tI + u · ∇I)ũ · ∇I

(2.9)

+α(∇u1 · ∇ũ1 + ∇u2 · ∇ũ2)
}

dx = 0,

which results in a constraint equation for the optimal optical flow field. Exploit-
ing the Finite Element Method (FEM) the numerical solution can be obtained
as summarised below. For more details we refer to section 8.5 and [34, 121].

Numerical Solution

We use piecewise linear finite elements to discretise the variational equation
(2.9) and compute the global minimiser u by solving the associated system of
linear elliptic equations.

The unique minimising flow field u is determined by the variational equation

a
(

(u1, u2)
⊤, (ũ1, ũ2)

⊤
)

= b
(

(ũ1, ũ2)
⊤
)

, ∀ũ1, ũ2 , (2.10)

where

a
(

(u1, u2)
⊤, (ũ1, ũ2)

⊤
)

=

∫

Ω

{

(

u1

u2

)

· ∇I∇I ·

(

ũ1

ũ2

)

(2.11)

+ α
(

∇u1 · ∇ũ1 + ∇u2 · ∇ũ2

)}

dx1dx2 ,

and

b
(

(ũ1, ũ2)
⊤
)

= −

∫

Ω

∂tI∇I ·

(

ũ1

ũ2

)

dx1dx2 . (2.12)
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One of the simplest discretisation is obtained by choosing a regular triangula-
tion of the image domain Ω and attaching to each pixel position a piecewise
linear basis function φ(x1, x2) for each function u1, u2, ũ1, ũ2, as illustrated in
figure 2.5.

Figure 2.5: Left: Uniform triangulation of the image domain Ω. Right:

Basis function φi(x1, x2) that belongs to a pixel position i.

Indexing each pixel position (k, l) by 1, 2, . . . , N we thus have

u1(x1, x2) =

N
∑

i=1

uiφi(x1, x2) ,

and similarly for u2, ũ1, ũ2. Hence, each of the functions u1, u2, ũ1, ũ2 is repre-
sented by N real variables. To simplify the notation, we use the same symbols
to denote these vectors: u1, u2, ũ1, ũ2 ∈ R

N . Inserting into (2.10) leads to

(

u1

u2

)

· A

(

ũ1

ũ2

)

= b ·

(

ũ1

ũ2

)

, ∀ũ1, ũ2 ,

and hence we get the linear system

A

(

u1

u2

)

= b. (2.13)

The 2N × 2N–Matrix A factorises into

A =

(

A11 A12

A⊤
12 A22

)

,

where by virtue of (2.11)

(A11)k,l = a
(

(φk, 0)
⊤, (φl, 0)

⊤
)

(A12)k,l = a
(

(φk, 0)
⊤, (0, φl)

⊤
)

(A22)k,l = a
(

(0, φk)⊤, (0, φl)
⊤
)

.

Analogously, the 2N–vector b factorises into b = (b⊤1 , b
⊤
2 )⊤ where by virtue of

(2.12)
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(b1)k = b
(

(φk, 0)
⊤

)

(b2)k = b
(

(0, φk)⊤
)

.

Note that the linear system (2.13) is sparse and positive definite (see also sec.
8.5.2). Thus u1, u2 can be conveniently computed by an appropriate iterative
solver as explained in section 9.1.

Synthetically Example

We illustrate a computational result of the Horn and Schunck approach (2.8)
for a synthetically image sequence. Figure 2.6 shows a “zoom in” office scene.
The computed flow in the texture-less regions (e.g. the non-textured wallpaper)
is reconstructed from the surrounding velocity information.

t t+ ∆t

Figure 2.6: Illustration of the Horn and Schunck approach: Computational
result for an image pair of the synthetic ”Office - Cam Zooms in” sequence [93]
which induces a divergent velocity field. Left: Image frame at time t. Right:
Image frame at time t + ∆t along with the optical flow field u obtained for
the image pair using the approach of Horn and Schunck (2.8), (α = 0.04).
Though a large portion of the image is non-textured, an accurate flow field
can be computed at every location through the Horn and Schunck smoothness
assumptions. Note that the office chair is closer to the camera - therefore its
optical flow vectors are longer.

In regions with no texture information, the image gradient ∇I vanishes and
no reliable motion field can be estimated from the image data. In such sit-
uations the smoothness term (2.7) dominates and leads to a flow field which
obtains its information from neighbouring regions resulting in a dense flow field.
The disadvantage of the Horn and Schunck regularisation term (2.7) is the ho-
mogeneous regularisation at motion boundaries. It leads to a smoothing over
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discontinuities - thus sharp contours are lost.

McCane et al. [93] mentioned in their work, where the performance of eight
different optical flow algorithms are compared, Horn and Schunck as one of the
best performers for motion estimation. However, currently the most accurate
optical flow results are still obtained by variational optical flow approaches, for
example approaches from Bruhn et al. [22], Brox et al. [21] and Papenberg et
al. [107].

The smoothness assumption of Horn and Schunck is clearly violated at oc-
clusion edges across which the optical flow field changes abruptly. As a real
scene usually comprises several sharp motion boundaries the discontinuities of
the flow field at motion boundaries is an important issue. The results can be
improved by using anisotropic regularisation techniques like the one presented
below. Other work on regularisation techniques, which preserve motion bound-
aries are [14, 35, 84, 104].

2.2.3 Image-Driven Regularisation

One example for an image-driven optical flow estimation method is given by the
anisotropic approach of Nagel and Enkelmann [99, 102]. In order to regularise
(2.2) they introduced the following directed smoothness term

Esmooth(u) =

∫

Ω

α
(

∇u⊤1 D(∇I)∇u1 + ∇u⊤2 D(∇I)∇u2

)

dx. (2.14)

Note that the regularisation term (2.7) of Horn and Schunck is a special case
of (2.14), where D(∇I) is just the unit matrix. Usually, D(∇I) is a regularised
projection matrix perpendicular to ∇I and is defined as

D(∇I) =
1

‖∇I‖2 + 2λ2

(

∇I⊥
(

∇I⊥
)⊤

+ λ21
)

, R ∋ α, λ > 0.

Under weak assumptions the following functional

E(u) =
1

2

∫

Ω

{

(∂tI+u·∇I)
2+α

(

∇u⊤1 D(∇I)∇u1+∇u⊤2 D(∇I)∇u2

)}

dx (2.15)

is strictly convex and has an unique minimising vector field u [119]. The
regularising term, introduced by Nagel, extends the basic isotropic approach
of Horn and Schunck (2.8) to an anisotropic image-driven diffusion process
(cf. [100, 122, 142]) which prevents the smoothing of motion boundaries at grey
value edges. Note that the smoothing of the flow is essentially large in tangent
direction of the isophotes when |∇I| >> λ. The smoothing behaviour depends
mainly on the intensity and not on the motion itself.
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We emphasise that the approaches from Nagel (2.15) and Horn and Schunck
(2.8) takes only into account spatial context and determines a vector field for
a fixed point in time t ∈ [0, T ]. While it has been shown in [143] that a
spatio-temporal extension of this class of approaches, using spatio-temporal
gradients and a corresponding domain of integration

∫

Ω×[0,T ] . . . dxdt, improves
both robustness and accuracy of the motion estimation. Below we describe that
extension.

2.2.4 Spatio-Temporal Regularisation

Weickert and Schnörr [143] propose a modification of the two-dimensional Horn
and Schunck approach (2.8) to three dimensions:

E(u) =
1

2

∫

Ω×[0,T ]

{

(∂tI + (u · ∇)I)2 + α(|∇θu1|
2 + |∇θu2|

2)
}

dxdt, (2.16)

where ∇θ is the spatio-temporal gradient (∂x1
, ∂x2

, ∂t)
⊤ of the velocity compo-

nents.

The complete flow field is determined by the solution of a linear system that
involves the entire image volume. That means that the numerical realisation
leads to a batch processing mode 1 where all variables of the entire spatio-
temporal volume are determined by a large linear system of equations.

Figure 2.7 shows computational results for the well-known ”Hamburg taxi
scene” using approach (2.16).

Beside the global approaches, where the optical flow problem is solved over the
whole image domain, local approaches determine the flow at a specific pixel
position x = (x1, x2)

⊤ by using only the image information in the local neigh-
bourhood. In order not to neglect these approaches the well-known approach
from Lucas and Kanade is presented below.

2.3 Local Approach from Lucas and Kanade

The idea of a local approach is to compute the optical flow field at a certain
pixel position x0 using only a small defined neighbourhood N (x0) of x0. The
local optical flow approach from Lucas and Kanade [88] exploits the assumption
that the flow field u(x) = u(x0) is constant within a certain window and is
formulated as minimisation of the following functional:

1The optical flow estimation depends at each processing step on the entire image sequence.
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t t+ ∆t

Figure 2.7: Three-dimensional extension of the Horn and Schunck approach
from Weickert and Schnörr (2.16). The image sequence consists of a subset
with 14 frames (1, 4, 7,...,40) out of the original ”Hamburg taxi scene”. Left:
Image frame 4. Right: Image frame 7 along with the computed optical flow
field u using a coarse-to-fine approach (see sec. 9.2) to cope with the large
motion. (α = 0.005).

J(u) =
∑

x∈N (x0)

Gρ(x− x0) (∂tI(x) + u · ∇I(x))2

=
∑

x∈N (x0)

Gρ(x− x0)
(

∂tI
2(x) + 2∂tI(x)∇I(x)

⊤u+ u⊤∇I(x)∇I(x)⊤u
)

,

where Gρ denotes a Gaussian distribution with variance ρ. Computing the
derivatives with respect to u and setting them to zero, in order to minimise
J(u), leads to

Gρ ⋆

(

(∂x1
I)2 ∂x1

I∂x2
I

∂x2
I∂x1

I (∂x2
I)2

)

u = −Gρ ⋆

(

∂tI∂x1
I

∂tI∂x2
I

)

. (2.17)

System (2.17) is not necessarily uniquely determined. There is no solution in
image regions with homogeneous image information or at image edges. Note
that the assumption u(x) = u(x0) for x ∈ N (x0) is often violated due to rota-
tions and/or motion along motion boundaries and discontinuities.

To exchange the brightness change constraint equation (2.2) enhanced bright-
ness change models are introduced in the literature, we refer to [62] and the
references therein. A lot of research on local optical flow methods are pro-
posed, which lies, however, beyond the scope of this thesis. We refer therefore
to [74, 125] for a survey of local optical flow approaches.

2.4 Summary

This chapter provides us with the basis for our approaches we will discuss in
the following chapters. We started in this chapter with fundamental prop-
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erties of the optical flow constraint equation and presented how variational
approaches are used for the computation of optical flows. Necessary additional
constraints are introduced by appropriate regularisation terms. For example,
Horn and Schunck (2.8) regularise the brightness constancy assumption with
a spatial smoothness term. The approach of Weickert and Schnörr (2.16) pe-
nalised the spatio-temporal variation, leading to a static approach as the entire
spatio-temporal image volume is used to determine the optical flow of an image
sequence. We consider all the presented optical flow approaches in this chapter
as ”static”: The time-dependent optical flow is computed for a fixed point in
time. In contrast to the ”dynamic” viewpoint of the motion, which describes
the fact that the flow is moving and that the positions of flow particles change
with time.

In the following chapters we propose two new approaches which incorporate
physically motivated regularisation terms for the optical flow computation. In
chapter 3 we introduce a regularisation term that is based on a transport equa-
tion (the Burgers equation) which models dynamic image motion. In chapter
4 we follow that idea and obtain an optimal control formulation for motion
estimation. Both approaches allow the detection of unexpected movements in
image sequences in terms of a corresponding force field. Our main intention is to
investigate the properties and the potential of the optical flow approaches that
results from the idea to model dynamic image motion by a transport equation
rather than to contribute to the accurateness of state-of-the-art optical flow
approaches.
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3

Dynamic Optical Flow Approach

In this chapter we propose a new variational optical flow approach with a novel
PDE-based representation of image motion. The approaches in the previous
chapter represent a static viewpoint to image motion processing. In this chapter
we extend this viewpoint to a dynamic one, incorporating the Burgers equation
as a physical prior to dynamic image motion modelling. Deviations from the
expected velocity distribution generate vector fields that may serve as atten-
tional mechanism for a superordinate processing stage. Our approach performs
a spatio-temporal regularisation in a recursive online fashion, unlike previous
approaches evaluating the entire spatio-temporal image volume in a batch pro-
cessing mode.

3.1 Introduction and Motivation

Previously, most authors concentrated on spatial smoothness constraints within
the optical flow computation (cf. sec. 2.2.2, 2.2.3, 2.3). In real-world applica-
tions however, we are often concerned with long image sequences which allows
the utilisation of the temporal coherency as well as physical assumptions of the
of motion. Some efforts have been made to include temporal smoothness as
introduced in section 2.2.4 and in [101]. In these approaches, time is considered
as a third dimension analogue to the two spatial dimensions. This lead to a
three-dimensional elliptic PDE with a static description of motion, where a flow
vector is determined by the solution of a linear system involving the data of the
full 3D image volume. Solving this variational problem allows the computation
of the optical flow only after the last frame of the image volume has been cap-
tured.

Our approach is based on modelling a fictive compressible fluid, using the Burg-
ers equation [23], in combination with a convex regularisation approach to im-
age motion computation [100, 122, 142]. We employed the non-linear hyperbolic
Burgers equation, as physical prior knowledge for image motion, which acts as
temporal regularisation. The Burgers equation belongs to the governing equa-
tions in fluid dynamics and embodies the convection term of the Navier-Stokes

27
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equation. This non-linear convective term reads (u · ∇)u and is also known as
inertia term. The physical interpretation of this term is that the velocity u is
transported by itself. We emphasise that the inertia behaviour of the Burgers
term results in a temporal smooth change of the velocities.

In terms of computer vision, the Burgers equation exploits the most elementary
knowledge available in connection with image motion, which can be informally
expressed as “structures do not jump”. The physics underlying any motion phe-
nomenon embodies some inertia leading to smooth changes of velocities. Maybe
starting with the work of Heel [63, 64], this knowledge has been exploited in
countless applications in computer vision during the last two decades, mainly
in terms of the Kalman filter, and more recently through its modern extensions
[41].

A key property of the Kalman filter is that it applies to systems, where the
system dynamics is summarised by a set of variables which are a function of
the time alone. Such systems are known as lumped systems. When applied
to raw pixel intensities for image motion computation [63], for example, or to
depth estimates from image sequences [92], this leads to the well-known re-
cursive update equations for computing corresponding estimates at each pixel
location, without any spatial context, however. To achieve the latter, paramet-
ric models, e.g. models of surface patches in the scene, have to be assumed,
which not only requires far more specific knowledge about the scene, but also
necessitates transferring the Kalman formalism into a corresponding parameter
space, typically through non-linear equations relating the directly observable
visual measurements to the parameters as new system variables.

Our ansatz, which we explain in detail in the following sections has the following
main properties:

(i) We take into account spatial context by using the image-driven regular-
isation term introduced in chapter 2, leading to a distributed-parameter
approach 1 which states are governed by partial differential equations
(PDEs), rather than ordinary differential equations as for lumped sys-
tems.

(ii) The approach exploits the aforementioned elementary knowledge in con-
nection with motion computation that moving structures usually exhibit
some inertia in its most rudimentary form. That means that velocities are
not expected to change. This is incorporated by the Burgers equation.

(iii) The computational structure enables an online motion computation 2.

The approach also admits a control based interpretation: if image measurements
indicate changes of the current velocity distribution, fictive forces modify the

1Distributed-parameter system theory is concerned with the dynamic behaviour of pro-
cesses distributed in space as well as evolving in time [51]

2The motion computation can be started as soon as the respective images has been cap-
tured.
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system state accordingly. The presence of such forces may serve as an atten-
tional mechanism notifying a higher-level processing stage about unexpected
motion events.

Our main motivation is to introduce the Burgers equation as a new regulari-
sation term as physically plausible description for motion within a variational
framework and to explore the capabilities and properties of the resulting ap-
proach. To do so we designed experiments to extract the main properties of our
approach. Furthermore, we compare our approach with the well-known Horn
and Schunck approach - using standard optical flow image sequences - rather
than with sophisticated algorithms that are much more difficult to implement.
This allows to detect the fundamental differences of our approach and still al-
lows the reader familiar with optical flow approaches a grading of the accuracy
for the resulting flow fields.

3.1.1 Overview

The remaining part of this chapter is organised as follows: First, we present
in section 3.1.2 some work that - related to ours - make use of ideas from the
field of fluid dynamics for computer vision tasks. Then we present in section
3.2 our variational approach and discuss the impact of the Burgers term which
we introduce as regularisation term. Another interpretation of our approach
is provided in section 3.2.3 where we shortly speculate about connections to
the field of visual perception and attention mechanisms. The most important
elements of our implementation are presented in section 3.3. This is followed
by experiments in section 3.4, where we investigate the fundamental properties
of our approach. Finally, we conclude with section 3.5.

3.1.2 Further Related Work

Concerning property (i) stated above, it is well-known that non-local varia-
tional approaches, particularly those exploiting spatio-temporal context [143],
lead to robust estimates of coherent motion patterns. On the other hand, such
approaches are static in that an entire spatio-temporal image volume has to be
processed at once in batch mode. In contrast, our approach is dynamic and
leads to recursive computations in online mode, while still performing temporal
regularisation.

A prominent example for other work exploiting models from fluid mechanics
is the work of Christensen on image registration [33] which subsequently insti-
gated a lot of related research (cf. [8] and references therein). The authors also
use the momentum equation as prior knowledge. However, while we merely
use the material derivative of the velocity (in order to mimic inertia), they
consider the opposite special case of very low Reynolds numbers and drop the
inertial terms. Furthermore, as we consider relatively small displacements be-
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tween video frames, we do not distinguish between velocity and displacements.

Other related work concerns the vorticity transport formulation of the incom-
pressible Navier-Stokes equation used for image inpainting [9] (as presented in
sec. 5.2.1). There are two conceptual differences to our approach: First, their
inpainting approach transports a function of the grey value field while we trans-
port the velocity field itself. Second, we utilise a compressible model of fluids,
because incompressibility almost never holds true for two-dimensional deforma-
tions induced by relative motions to a three-dimensional scene.

Further related work is given by Ruhnau, Stahl and Schnörr [118, 117]. They
present a variational approach for motion estimation of instationary fluid flows
from image sequences. Their regularisation term also incorporate physically
plausible prior knowledge: the vorticity transport equation. The optimisation
is done in a receding horizon manner contrary to previous approaches to spatio-
temporal regularisation.

Finally we point out that while our approach performs spatio-temporal filter-
ing and may be regarded as a rudimentary version of a distributed-parameter
Kalman filter, it falls short of an exact corresponding mathematical extension
(cf., e.g. [17]). The advantage, however, is a deterministic and easy-to-parallelise
computational architecture.

3.2 Approach

In the following we explain our variational model where we make use of the
notation provided in section 2.1.1. We first introduce the Burgers equation
which is used as regularisation term within our variational model.

3.2.1 Regularisation Term: The 2D Burgers Equation

The problems discussed in chapter 2 belong to the class of elliptic problems,
which appear through the derivation of the gradient of the flow field (smooth-
ness regularisation term) as second-order derivative terms which express the
diffusion phenomenon with a tendency to smooth out gradients (in a homoge-
neous, isotropic or anisotropic way). In contrast, the inviscid Burgers equation
belongs to systems of hyperbolic conservation laws, as convective flux, which
appears as first-order derivative term and expresses the transport properties of
flow systems. It is represented by the following non-linear partial differential
equation

∂u

∂t
+ (u · ∇)u = 0, (3.1)

with initial data

u(x, t)t=0 = u0, (3.2)
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where u = (u1, u2)
⊤, u = u(x, t), x = (x1(t), x2(t)) represents a two-dimensional

velocity field.

Note, that the Burgers equation appears as convection term not only in the fun-
damental equations of fluid mechanics, the Navier-Stokes equations, but also
in many other time-dependent dynamic equations in physics. The dynamic be-
haviour of the Burgers equation is described in detail in section 7.5.

The first part of the Burgers equation (3.1), namely the time derivative of u,
is the local derivative. It describes the change of the velocity with respect to
time at a fixed point in space. In [143], Weickert and Schnörr assume that
the velocity at a certain point in space changes only smoothly and therefore
penalise deviations from ∂tu = 0. While this assumption is often valid it might
fail in two scenarios:

• When fluid flows are analysed, the assumption is admissible as long as the
flow stays stationary. However, in scenarios with high Reynold’s numbers
(for fluid experimentalists, these scenarios are usually the ones of interest),
turbulent flow phenomena evolve - and these flows are usually highly non-
stationary.

• Also in everyday scenes, penalising deviations from ∂tu = 0 might fail.
While in some scenarios (e.g. moving camera in front of static scene),
penalising high temporal velocity gradients is admissible, it is a bad idea
in other scenarios: If we consider, e.g., moving objects in front of a sta-
tionary background, the temporal velocity gradient at the spatial position
of the moving objects’ boundaries will be extremely large (even-though
the objects do not change their speed over time!). Even when using an
edge-preserving spatial regulariser, the temporal regularisation will result
in blurred object edges.

We want to improve optical flow computation in above scenarios where the sim-
ple temporal regularisation of [143] fails. Therefore, we do not merely take into
account the local derivative but include the second part of the Burgers equation
- the convective derivative of the velocity - for regularisation. Physically, this is
the rate of change due to the movement of a fluid element from one location to
another in the flow field. It is therefore taken into account, that a fluid element
changes its position over time - while maintaining it’s velocity, which leads to
more accurate motion boundaries.

Here we introduce the Burgers equation (3.1) as a new regularisation term into
a variational model. We combine the Burgers term with the approach of Nagel
[100] to a dynamical time regularised approach.

3.2.2 Variational Model

The standard variational approaches of Horn and Schunck (2.8) and Nagel
(2.15), minimise an objective function over the entire image domain Ω that in-
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cludes the squared form of the optical flow constraint equation (2.2) along with
a regularisation term that enforces smoothness of the image flow in a homoge-
neous or anisotropic way, respectively.

The idea behind our work presented in this chapter is an attempt to change
the static viewpoint of these approaches to a dynamic one by exploiting the
transport properties of the Burgers equation. Therefore, we solve the Burgers
equation (3.1) with initial condition (3.2) for the time interval [0, T ] between a
subsequent pair of image frames, where u0 denotes our current motion estimate.
We obtain a velocity field uT := u(x, T ) that has been transported by itself.
It can be regarded as a predicted vector field, based on the constant velocity
assumption of the Burgers equation 3. The matching term that serves as our
new regulariser penalises the deviation from the predicted velocity values uT :

J(u) =
1

2

∫

Ω

{

(u · ∇I + ∂tI)
2 + β‖u− uT ‖

2
}

dx. (3.3)

While this regularisation term penalises deviations between the current velocity
u and the propagated velocity of the preceding frame uT , it does not enforce
spatial smoothness of the velocity, which leads in practise to increasingly noisy
velocity estimates. Therefore, we also incorporate the spatial regularisation
term of Nagel (cf. 2.2.3) and obtain the following objective function:

J(u) =
1

2

∫

Ω

{(

(u · ∇)I + ∂tI
)2

+ α
(

∇u⊤1 D(∇I)∇u1 + ∇u⊤2 D(∇I)∇u2

)

+ β‖u− uT ‖
2
}

dx. (3.4)

By minimising (3.4), we combine the predicted state in terms of the vector
field uT with current measurements, given by the optical flow constraint equa-
tion (2.2), along with a spatial regularisation. The resulting global minimiser
ū defines the initial data u0 of the Burgers equation (3.1) for the next image pair.

The third term of the energy functional (3.4) incorporates the Burgers equation
and yields temporal regularisation. This term relates the velocity information
inferred from the corresponding image pair with the assumed temporal prior
knowledge induced by the Burgers equation. Our approach adds a temporal
correction term to the spatial regularisation approaches described in the previ-
ous section. This correction term acts as a fictive force and corrects the optical
flow whenever an object in the image sequence changes its moving direction.

The two regularisation parameters α > 0 and β > 0 specify the importance of
the second and the third term in (3.4), respectively. Higher values of α lead to

3In this context, ”constant velocity” means that a fictive fluid particle’s velocity does not
change over time. This, however, does not necessarily imply, that the velocity at a certain
location does not change with time. For deeper insights into Eulerian versus Lagrangian
motion, we refer to [128, 32].
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smoother flow fields ifD(∇I) = 1 or to more direction-dependent smoother flow
fields if D(∇I) 6= 1. Higher values of β result in a stronger inertia behaviour
of the flow field as the compliance with the Burgers equation is enforced more
strictly - the velocity field therefore adapts much slower to the present motion.
In this case the flow field which satisfies the Burgers equation leads to a flow
field which adapts slower to the measured motion (cf. sec. 3.4.1).

Following the calculations described in 2.2.1, the minimisation of the convex
functional (3.4) leads to the following Euler-Lagrange equations

0 = (It + (u · ∇)I)Ix1
− α(∇(D(∇I)∇u1) + β(u1 − u1T

)

0 = (It + (u · ∇)I)Ix2
− α(∇(D(∇I)∇u2) + β(u2 − u2T

),

with homogeneous von Neumann boundary conditions (∂nu = 0). The minimi-
sation of (3.4) is solved in a standard way (cf. sec. 2.2 and 3.3.2 for details).

3.2.3 Further Interpretation

An important property of our approach that incorporates the Burgers equation
(3.1) in a variational model (3.4) is that temporal context is taken into account
without too much additional computational costs. Rather, the solutions to (3.1)
and (3.4) can be recursively computed in an online processing mode. Note that,
regarding to the temporal regularisation, we do not claim strict mathematical
equivalence to the approach [143].

The unique global minimiser ū of the quadratic functional (2.15) of Nagel is
determined by the variational equation

a(ū, v) = b(v) , ∀v, (3.5)

where the bilinear form a(·, ·) and the linear form b(·) comprise all quadratic and
linear terms in u of the functional (2.15), respectively. A physical interpretation
regards (3.5) as stationary (deformation) state of the “elastic” image domain
Ω, defined as equilibrium between the internal deformation energy a(u, u) and
external forces b(u), according to the principal of virtual work. Adopting this
viewpoint, the additional penalty term in (3.4) adds an additional internal en-
ergy term ‖u‖L2(Ω) regularising the degenerate data term, and an additional
external force term 〈uT , u〉L2(Ω) related to the temporal prediction.

Another interesting property arises if we interpret our approach from the view-
point of visual perception. Our approach (3.1) and (3.4) allows to match com-
puted motions against expectations without making specific assumptions about
the underlying scene (geometry, rigid/non-rigid, etc.). As a consequence, sig-
nificant deviations from expected motions may be used to focus the attention
of a superordinate processing stage. In section 3.4, we will inspect this aspect
in terms of the vector fields

f(x) :=
(

u− uT

)

(x), (3.6)
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which explicitly expresses the deviation from the expected motion field.

3.3 Implementation Overview

In this section we summarise how we implemented our approach described
above. Here we mainly provide an overview of our implementation and re-
fer for details to the appropriate sections in the numeric chapter.

The implementation of our approach involves the solution of the two-dimensional
Burgers equation (3.1) and the minimisation of (3.4). Both steps are decoupled
and can be computed separately leading to an efficient computation. From
these two computations, the numerical implementation of the non-linear Burg-
ers equation is the more intricate task. In the following we explain the solution
of our variational approach (where we refer to particular numerical sections).

3.3.1 Discretisation of the Burgers Equation

Basically, to solve the time-dependent Burgers equation (3.1), where we con-
sider von Neumann boundary conditions, we use a second-order conservative
finite difference method. Due to the discretisation, fluxes are numerically com-
puted by solving the appropriate equations at pixel edges where all fluxes are
evaluated and differenced at the same time. The physical reasonable behaviour
at discontinuities (like shocks) is obtained by using solutions of the appropriate
Riemann problem and by applying Van Leer limiters to second-order terms.
For details, we refer to section 8.3 as we have to cope with over- and under-
shoots, with different types of shock formations, with the compliance of con-
ditions (entropy-, monotony-, CFL-condition, etc.) and different discretisation
schemes.

3.3.2 Variational Approach

We use piecewise linear finite elements to discretise the variational equation
(3.5), and compute the global minimiser ū by solving the resulting linear system
of equations. We can specify the variational equation explicitly as:

a
(

(ū1, ū2)
⊤, (v1, v2)

⊤
)

= b
(

(v1, v2)
⊤
)

, ∀v1, v2 , (3.7)

where
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a(ū, v) =

∫

Ω

{

(

u1

u2

)⊤

∇I∇I⊤
(

v1
v2

)

+ α
(

∇u⊤1 D(∇I)∇v1 + ∇u⊤2 D(∇I)∇v2
)

+ βu⊤v
}

dx (3.8)

b(v) =

∫

Ω

{

− ∂tI∇I
⊤v + β u⊤T v

}

dx. (3.9)

The simplest discretisation is obtained by choosing a regular triangulation of
the image domain Ω and attaching to each pixel position a piecewise linear
basis function φ(x1, x2) for each function u1, u2, v1, v2, as we already illustrated
in section 2.2.

The resulting linear system is sparse and positive definite. Thus the vector
components u1, u2 can be conveniently computed by some corresponding iter-
ative solver as described in section 9.1. Note, that the natural occurring von
Neumann boundary conditions are automatically encoded by the finite element
discretisation.

3.3.3 Coarse-to-Fine Approach and Iterative Registration

In order to handle large motions in image sequences we incorporate a coarse-
to-fine technique in combination with an iterative registration approach as de-
scribed in section 9.2 within the numerical part of this thesis.

3.4 Experiments

With the experiments of this section, we intend to examine and illustrate the key
properties of our approach and explore the potential benefit of it. We evaluate
sequences that contain uniform and non-uniform motion patterns and compare
our results obtained for ground-truth image sequences with homogeneous (Horn
and Schunck (2.7)) and image-driven (Nagel and Enkelmann (2.14)) regulari-
sation techniques. Furthermore, we present some results for a real-world image
sequence.

Before we actual show and discuss our experiments we first list where the focus
of our approach lies. Then we define which error measure we use for comparison
and provide the value ranges for a reasonable parameter selection.

Properties and Aspects

Within our investigation we focus on experiments that are designed to show cer-
tain key properties and aspects of our approach. In particular we are interested
in
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• the inertia behaviour and

• the temporal regularisation

of our approach. Therefore, we investigate the behaviour for image sequences
that show the following motion patterns:

• Expected motion, like linear continuous motion

• Unexpected motion events, like abrupt starting or stopping movements,
or a sudden change of the motion direction

• Corrupted motion, i.e. image sequences with temporarily missing image
data in connection with expected and unexpected motion events

Furthermore, we present how the approach copes with the following situations:

• Uniform and non-uniform motions involving translation, rotation and
scaling (zooming)

• Occlusion

• Noisy image data

We discuss these aspects in the following sections.

Error Measures

For a quantitative comparison of our computational results we use the average
angular error (AAE) [7]

AAE(uo, ue) =
1

|Ω|

∫

Ω

arccos

(

uo · ue

|uo||ue|

)

dx, (3.10)

where | · | denotes the Euclidean norm, uo = (uo1
, uo2

, 1)⊤ the original optical
flow vectors, and ue = (ue1

, ue2
, 1)⊤ the estimated optic flow vectors. Note that

the time dimension is set to 1 corresponding to the distance of one frame. This
measure is currently used as a kind of standard to provide accuracy measures
for optical flow results. A comparison with the root mean square error (RMSE)

RMSE(uo, ue) =
1

|Ω|

∫

Ω

√

(uo − ue)2dx (3.11)

shows (cf. fig. 3.16 and fig. 3.17), that essentially the same problematic areas
are revealed when both error images are plotted. Note that we employ both
measures.

For a qualitative evaluation of the obtained flow fields we use the intensity and
colour code depicted in figure 3.1. The colour of a pixel indicates the direction of
the appropriate vector while the brightness represents its magnitude, as shown
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for example in figure 3.15 later in this section. The last image in the top row
depicts the ground truth velocity field and the first image in the bottom row
shows the corresponding colour representation. The colour code reveals much
more motion details compared to the raw vector field. The colour code images
are scaled with respect to the largest vector that occurs in the vector fields we
intend to compare. The coloured border around these images just indicates the
colour code for the motion direction.

Figure 3.1: Colour code for the vector field representation. The direction is
colour coded and the magnitude is represented by the brightness.

Even if our main aim in this thesis is to provide insight into the characteristic
behaviour of our approach we compare our results using standard optical flow
sequences by the means of the AAE and the RMSE with the results obtained
by the Horn and Schunck approach (2.8).

Parameter selection

Our approach comprises the two parameters α and β that have to be deter-
mined. The parameter α is a regularisation parameter (0 < α ∈ R) that
controls the degree of spatial smoothness. A larger value leads to a smoother
flow field, whereas the smoothness decreases with decreasing α. The parameter
β weights the influence of the Burgers equation. Therefore, higher β values re-
sults in an optical flow field which amplifies properties comprised in the Burgers
term. For example, velocity fields are forced to follow previous motion direc-
tions.

Our experiments show that the best choice for these parameters depend on the
particular problem (e.g. noise), but are constraint to certain ranges. In our
experiments the range of the α-values is between 0.05 and 0.005 (higher values
for noisy sequences), while the β-values lie between 0.01 and 0.00002 (higher
values for larger inertia effect). For an unknown image sequence a reasonable
start setting would be α = 0.01 and β = 0.001. For an illustration we refer to
section 3.10 and table 3.1.
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3.4.1 Inertia and Motion

In this section we concentrate on the inertia behaviour of our approach by inves-
tigating how the approach deals with a sudden change of the motion direction.
We show and interpret the results of two experiments. In both the main linear
motion changes its direction abruptly from a horizontal to a vertical motion.
The difference is that in the first experiment the moving object has a fixed
orientation (uniform motion) while in the second experiment the object itself
rotates in addition to the main motion (non-uniform motion). We have chosen
the Burgers regularisation parameter to be β = 0.005 which clearly shows the
inertia effect on the computed motion field.

Figure 3.2: Uniform motion and inertia effect: A moving object which
abruptly changes the motion direction, as indicated by the large arrows. The
figure illustrates the influence of the inertia term of a fictive fluid. Shortly,
after the abrupt motion change (top right) the flow tends to keeps its motion
direction before adapting to the new direction. See text for further discussion
(parameters: α = 0.01, β = 0.005).

The first experiment we conduct is a simple image sequence, where an object
(stone) is moving with 7 pixels/frame in front of a structured background and
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then changes abruptly its motion direction. Figure 3.2 illustrates this sequence
along with the effect of the Burgers equation (3.1) on motion computation. The
obtained optical flow fields are shown at different times along with the appropri-
ate image frames. The motion of the object is indicated by a large arrow. The
upper-right panel depicts the frame directly after the abrupt change of the ob-
ject’s moving direction. Due to the inertia effect, the moving ”vector particles”
tend to keep their current motion. After a couple of frames (lower-left panel), a
new moving front has established which drags the remaining field towards the
novel direction. We would like to point out that this effect may be conceived as
that of a fictive material, provided with some inertia, which is trying to follow
the apparent motion in an image sequence.

This inertia behaviour is not constraint purely to uniform motion. To show that,
we perform an analogous experiment for a non-uniform motion pattern. The
appropriate ”rolling disc” image sequence is depicted in figure 3.3. The motion
in this sequence consists of two superimposed motion patterns, a clockwise
rotation (5◦ per frame) and a translation of 3 pixel per frame. The horizontal
motion chances abruptly to a vertical one.

Figure 3.3: ”Rolling disc” image sequence. The sequence consists of two
superimposed motion patterns, a clockwise rotation (5◦ per frame) and a
translation of 3 pixel per frame. The horizontal motion changes abruptly
to a vertical motion. For a better discrimination of the moving object and
the background we depicted (left) a colour version of the first frame of the
sequence. Right: First frame of the grey value image sequence, which was
used in our computations. The arrows indicate the movement of the disc.

Again, we observe (now for a non-uniform motion pattern) a ”temporal filtering
effect” due to the inertia term of the Burgers equation (3.1) as depicted in the
upper-right panel of figure 3.4. As in the previous experiment directly after
an abrupt change of the object’s moving direction the moving particles tend to
keep their current motion as a consequence of inertia. During the next frames
as shown in the lower-left panel, a new moving front has established and the
vector field adapts to the novel direction.
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Figure 3.4: Inertia effect for a non-uniform motion: An abrupt change in
the main motion direction of a rotating disc, as indicated by the large arrows
illustrates the influence of the inertia of a fictive fluid which is trying to adapt
to the apparent image motion. The vector field tends to keep its direction
before adapting to the new one. See text for further discussion (parameters:
α = 0.01, β = 0.005).

Note, that we do not regard this temporal period of “confusion” in these exper-
iments (uniform and non-uniform motion patterns) as a drawback. Rather, in
cases where the observed motion is conform with the expectation, the inertia
enables the fictive fluid to exert a temporal filtering effect, as experimentally
demonstrated above and the message “nothing interesting happens” can be sig-
nalled to a superordinate processing stage. On the other hand, in situations
with a sudden change of motion the discrepancy between observed and expected
motion may be used to generate a message so as to focus the attention of su-
perordinate visual processing stage. This aspect is further investigated in the
next section.
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3.4.2 Focus of Attention and Motion Compression

In this section we show that our optical flow approach can be used as an atten-
tion mechanism to detect unexpected motions. In order to do so we designed
a simple image sequence that contains a stopping and starting event of an oth-
erwise constant moving object. The results we obtain for these two events are
shown in figure 3.5. But note, in this case the depicted vector fields are not the
optical flows but the vector fields f defined in (3.6) which quantify deviations
from the system’s expectation.

Figure 3.5: Left: Vector field f when the object suddenly stops. Right:

Vector field f (3.6) when the object starts moving again. See text for further
discussion (parameters: α = 0.01, β = 0.001).
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Figure 3.6: Mean of the vector field f (y-axis) over 37 frames (x-axis) cor-
responding to the image sequence shown in figure 3.5. The dashed lines mark
when the object stopped and started, respectively. Signal peaks could be used
to focus attention of a superordinate processing level to these events (param-
eters: β = 0.001, α = 0.01).
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For the stopping event (left panel) the vector field points into the opposite di-
rection of the object movement. This is due to the “negative acceleration” of
the object. For the starting event (right panel) the acceleration and the object
movement point into the same direction.

In order to illustrate how f enables us to detect ”interesting” events we plot
in figure 3.6 the mean value of f (computed for the horizontal direction over
the object region) as a function of time (frame number). The two vertical
dashed lines indicate when the object stopped and started, respectively. For
both events, the curve shows a strong signal peak with a delay of one frame.
In principle, using for example a simple threshold, this peaks could be used to
focus the attention of a superordinate processing stage to these events.

Figure 3.7: Top: A waving hand and its estimated optical flow (right)
computed by (3.4). Bottom: At a turning point, the estimated velocity field
is nearly zero (left) while the deviation from the expected motion is maximal,
causing a “negative” vector field f (right) (parameters: α = 0.005, β = 0.001).

We illustrate this aspect in figure 3.7 for a real image sequence showing a waving
hand. The turning points of the hand lead to periodic peaks of the vector field
f . In between, when the hand moves continuously the motion can be predicted
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well (f is nearly zero), rendering any communication to an external module
unnecessary.

The shown experiments indicate that our optical flow approach naturally in-
cludes the easily extractable knowledge of interesting motion events.

3.4.3 Missing Image Measurements and Occlusion

Missing Image Measurements

Let us consider the behaviour of our approach when entire subsequent image
frames are missing within an image sequence. These experiments are designed
in order to explicitly demonstrate the transport behaviour to the Burgers term.
As soon as no further image information is available the vector field is mainly
transported by itself. These behaviour can also be exploited to follow moving
objects that disappear behind other objects. We investigate this again for uni-
form and non-uniform motion patterns.

Figure 3.8 shows a sequence of an uniformly moving object where after some
time three frames are missing. As the motion coincides nearly with the expecta-
tion implicitly made by the Burgers term the motion prediction is exact as well,
and the losses of image data is immaterial and can be compensated. We obtain
reasonable flow fields even for the missing frames. Note, that purely spatial
approaches considering only two frames - as described in chapter 2 - can not
deal with such a situation. However, the spatio-temporal approach of Weickert
and Schnörr (2.16) provides - due to the three-dimensional smoothness regular-
isation term ∇θ - an average flow field for the missing image. We compare the
results obtained for both approaches below and explore the features of our new
regularisation term along with a qualitative evaluation.

Therefore, we will describe the appropriate experiment in more detail: The top
row of figure 3.9 depicts 5 consecutive image frames of the image sequence that
is indicated in figure 3.8. The first frame is the last image where a measure-
ment is still available. The following three frames contain no image information,
while the last frame provides image data again. The qualitative evaluation of
the flow results for both approaches are shown in the rows below. The second
row in 3.9 shows the colour code representation for the best optical flow fields
for the five image frames obtained by the approach of Weickert and Schnörr
(2.16). The remnant flow field are clearly the result of the temporal smoothing
leading to the fading flow in the middle frame. The parameter α is set to 0.01.

The third row contains the velocity estimates computed by our approach (3.4)
with α = 0.01 and β = 0.01. We observe clearly that without image information
the velocity field is still transported by itself mimicking the motion of the moving
object.



44 Chapter 3. Dynamic Optical Flow Approach

Figure 3.8: Estimated motion of an uniformly moving object while no image
measurements are available. The second and third image show the flow field
estimates for missing image frames. The inertia of the fictive material allows
a reasonable motion prediction, loss of data is compensated (parameters: α =
0.01, β = 0.001).

The motion boundaries are much better preserved than by the spatio-temporal
approach (2.16). The fourth row is essentially the same experiment but effec-
tively switching off the spatial regularisation during the period of data loss.
The shock front in the moving direction is sharper but more-vulnerable against
perturbations of the velocity estimates leading to a non-smooth motion bound-
ary.

However, this experiment shades light how the Burgers term predicts uniform
motion by the transport process leading to a temporal filtering effect that is
superior to the spatio-temporal modelling of (2.16).
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Figure 3.9: Comparison of the temporal regularisation between our approach
(3.4) and the spatio-temporal approach (2.16) of Weickert and Schörr during
loss of image measurements. First Row: Part of an image sequence with
an uniformly moving object where the image information for three frames is
completely missing. Second Row: Colour code representation for the optical
flow estimates of the Weickert and Schnörr approach (2.16), which results in
averaged flow fields for the missing image frames (RMSE = 0.0902). Third

Row: Flow field results for our approach (RMSE = 0.0521), (parameters:
α = 0.01, β = 0.01). Last Row: The spatial regularisation parameter α is
switched off. These experiments demonstrate the capability of the transport
process to mimic the object motion during the time of missing data (RMSE
= 0.0425).

In our next experiments we explore the explicit influence of the β parameter for
the same experimental setup as in figure 3.9 (top row). In figure 3.10 the spatial
regularisation parameter is fixed to α = 0.03. Each row represents the results we
obtained for a different β parameter that deceases from 0.01 to 0.0001. One can
observe that with decreasing β parameter the transport capability is reduced
until nearly no flow field is obtained for frames with missing image data. This
is clear as β = 0 in our approach means that it is reduced to the approach of
Nagel (2.15).
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Figure 3.10: Influence of the Burgers equation as physical prior. Each row
represents the results for a different β parameter. The spatial regularisation
parameter α is fixed to 0.03. The results are shown for the same experimental
setup as in figure 3.9 (first row). The parameter is set to β = 0.01, 0.005,
0.001, 0.0005, and 0.0001, respectively. During the period of data loss we
observe that with the decreasing influence of the Burgers term the velocity
field gets smoother and loose its silhouette until it nearly fades out completely
(last row of fig. 3.10).

The Burgers equation is known to represent a model for shock formations in
physics (cf. sec. 7.5). Exploiting this property for computer vision tasks allows
to model sharper motion boundaries. The shock front plays the role of the
motion boundary (in flow direction) of the moving object. Therefore, we obtain
at the motion boundary (fig 3.9) a more accurate flow field as at the motion
boundary against the flow direction. Such a scenario is realistic in connection
with occlusions or technical limitations in the recording process that lead to
data loss.
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Figure 3.11: The rigid object changes its motion direction during a time of
missing image frame data. The flow vectors below the actual object position
in the lower-left panel illustrate how the process persists in looking for the
moving object in the originally expected direction (parameters: α = 0.01,
β = 0.001).

We changed the experimental setup in order to follow the question how our ap-
proach can cope with the situation when the object changes its motion direction
during the absence of image data. The upper-right panel of figure 3.11 shows
that - like in the previous experiment - the algorithm assumes a continuation
of the uniform motion of the object. But when the image data is available
again (lower-left panel), the velocity direction is updated accordingly. Notice,
however, that there are erroneous velocity estimates (below the object) show-
ing that the algorithm is still “searching” the moving object in the originally
expected direction.
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In the following we perform a similar experiment but now involving a non-
uniform motion pattern. The ”rolling disc” image sequence we use for this
experiment is indicated in figure 3.12 with three missing image frames. Again,
our approach has to deal with missing image frame data during which the ro-
tating object changes its direction. Due to the previously observed temporal
filtering effect the velocity estimates still mimics the original motion to some
degree for the period of missing information. And again when the image mea-
surements of the object are available again the velocity estimates adapt under
the influence of inertia to the new motion direction. Nevertheless, we observe
that the inertia behaviour of non-uniform vector fields allows only - compared
with an uniform vector field - a less accurate interpolation of the real motion.

Figure 3.12: Missing image measurements and non-uniform motion: The
”rolling disc” changes its motion direction during the time when image data
is unavailable. (parameters: α = 0.01, β = 0.001).

From the experiments above we conclude that the transport property of the
Burgers equation is in particular suitable for uniform motion patterns to made
reasonable predictions of the movement. We exploit this behaviour within our
next experiment where we try to predict the motion of an object that vanishes
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behind a foreground object.

Occlusion

In order to investigate how our approach can cope with occlusion we generated a
simple image sequence where a rigid disc (a coin) is moving in vertical direction
(uniform motion) and is then occluded by a bar. Note that the coin disappears
completely behind this bar and appears again.

Figure 3.13: Occlusion and the inertia behaviour of the Burgers equation. A
coin moves uniformly vertical and disappears behind a bar and appears again.
Top left: Computed flow field for the second image frame. Top right: The
coin is half occluded and the shape is still recognisable. Bottom left: The
coin is entirely occluded by the bar and the velocities are transported by
itself without any correcting image measurements. Bottom right: When the
coin reappears the measurements drag the flow field in the expected direction
(parameters: α = 0.008, β = 0.01).

Our result for this sequence is shown in figure 3.13. We observe that for several
frames after the coin starts to disappear the shape of the coin is well preserved.
But with progressing time the round shape of the vector field dissolves (bottom
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left). This is a consequence of the inertia behaviour of the Burgers equation
(which is also known as the convection term) which transports velocities with
itself. This shows that our approach is capable - up to a certain degree - to deal
with occlusions. It is limited in the way, that the velocity field - in absence of
the moving object (coin) - is not shape preserving. The transportation process
of the Burgers equation leads to the effect that the motion field of an object is
smoothed out in the rarefaction area of the flow. Without image information
of the moving object the motion boundaries are no longer corrected by the
data term of the variational approach (3.4) and are purely determined by the
transportation of the velocities.
This experiment illustrates to which degree our approach is capable to cope
with occlusions.

3.4.4 Translation, Rotation and Zooming

In this section we provide an evaluation of our approach on the basis of some
well known synthetic image sequences for which the ground truth motion data
is available. To allow for a quantitative comparison we provide the results we
obtain for the Horn and Schunck as well. The image sequences we use show
global motion patterns such as rotation, translation and divergence. Note, that
we selected for this experiments a homogeneous spatial regularisation within
our approach in order to point out properties of the Burgers regularisation at
motion boundaries.

In particular we evaluate our approach on the grey value versions of the follow-
ing three image sequences: the ”office”, the ”sphere”, and the ”street” sequence
[93]. Usually we present our results in the following way: After an indication of
the concerned image sequence the true motion field is shown as vector field and
in colour code representation. For a qualitative comparison the colour code rep-
resentation of our dynamic optical flow approach and of the Horn and Schunck
approach are presented. After that we provide quantitative error results and
finally, we present a graph that shows how the error develops over the entire
image sequence.

Zooming - Divergent Motion: ”Office” Sequence

The input data for our first experiment is the ”office” sequence. This sequence
depicts an office scene and consists of 60 frames of size 200x200 pixels. The
global divergent motion pattern is induced by a camera zooming into the scene.
The optical flow field that we obtain with our approach is shown in figure 3.14.

The results we obtain for our dynamical optical flow approach and the Horn
and Schunck approach are presented in figure 3.15. The middle image of the
bottom row shows the colour representation of the vector field obtained by
our approach and right from it the Horn and Schunck result. Note that the
parameters for both approaches have been optimised. Our main observation is
that both approaches result in comparable vector fields.
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Figure 3.14: Synthetic ”office” sequence. The motion is induced by a camera
zooming into the scene. Computational results of the dynamic optical flow
approach. Left: Single frame of the office sequence. Right: Subsequent
frame of the sequence along with the estimated optical flow field between the
shown frames (parameters: α = 0.01, β = 0.001).

Figure 3.15: Evaluation of the computed flow fields for a divergent motion
pattern. Top left: Frame 5 of the ”office” sequence. Top centre: Gray value
version of the same frame. Top right: Ground truth vector field. Bottom

left: Corresponding colour code representation of the ground truth vector
field. Bottom centre: Optical flow field obtained by the optical flow ap-
proach (3.4) for dynamic image motion (parameters: α = 0.05, β = 0.0006).
Bottom right: Optical flow field computed with the Horn and Schunck ap-
proach (2.8) with homogeneous regularisation (parameter: α = 0.04).
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However, the homogeneous regularisation term of the Horn and Schunck ap-
proach tends to smooth out motion boundaries more than our approach. This
effect is visual near the image boundary where the window can be seen and at
the contour of the lamp.

Figure 3.16: Average angular error plots for the ”office” sequence. Left:

AAE-plot for our result for frame 5 (AAE = 3.180◦). Right: AAE-plot for
the Horn and Schunck result (AAE = 3.323◦).

In order to detect which regions turn out to be difficult for the optical flow ap-
proaches we provide error plots that show the difference between the estimated
and the correct vector field. In figure 3.16 and 3.17 the average angular error
and the root mean square error for the velocity estimate between frame 5 and
6 of the ”office” sequence are shown. Both error measurements show essential
the same and we restrict our self to present only the AAE plot in similar plots
but we still use the RMS error for other comparisons.

Figure 3.17: Root mean square error for the ”office” sequence. Left: RMSE-
plot for our result for frame 5 (RMSE = 0.068). Right: RMSE-plot for the
Horn and Schunck result for the same frame (RMSE = 0.071).
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In these plots we observe that motion boundaries are more difficult to extract
compared to (slightly textured) homogeneous regions of the objects. However,
although we showed that the small influence of the Burgers term for the best pa-
rameters results in no significant difference for this sequence (HS-AAE =3.32◦,
Dyn-AAE = 3.18◦). In untextured regions - like the sky within the window -
the smoothness term in both approaches lead to dense outward directed flow
fields.

The region with the highest error in both error plots is the PC screen. This
region is difficult as it consists of fine structured image patterns which appear
like noise within the image sequence.

The development of the RMS error over the entire sequence is shown in figure
3.18. With increasing zoom factor and along with an increasing apparent mo-
tion the absolute errors increase for both approaches. Furthermore, we note
that the divergent motion violates the OFC equation (2.2) (this can be seen
at boundary pixels which no longer have corresponding pixel in the following
frame). Allover we observe a comparable performance of both approaches. The
divergent motion field shows an acceleration from the centre to the boundary
while the Burgers equation models a transport process without acceleration.
This experiment shows that our approach can handle divergent motion pat-
terns satisfactory well and shows an overall performance equivalent to the Horn
and Schunck approach.
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Figure 3.18: RMS error over the entire ”office” sequence for the Horn and
Schunck approach (2.8) and for our dynamic image motion approach (3.4).
The first and last frame of the sequence are indicated in the corner of the
figure.
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Rotation: ”Sphere” Sequence

The second motion pattern we intend to investigate is rotation. We constructed
a simple image sequence containing a structured disk which rotates in front of
a structured background. The results for the ”rotating disc” sequence is shown
on the left hand side of figure 3.19. We observe that our approach - due to the
small motion - results in a rotational velocity field.

Figure 3.19: Synthetic image sequence: The ”rotating disc” sequence. A
structure disc rotates in front of a stationary background. Left: Frame 5
of the sequence. Right: Estimated optical flow field of the disc sequence
computed with our approach (parameters: α = 0.01, β = 0.001).

The ”rotating sphere” sequence on which we intend to investigate our approach
contains a curling vector field as well and is shown in figure 3.20. This sequence
consists of 45 frames, where a sphere rotates (with a static motion field) in front
of a stationary background.

The vector field we obtained by our approach (3.4) for this sequence is shown
on the right side of figure 3.20. The shown vector field include an area within
the white stripe near the boundary of the sphere that shows an interesting
effect. The stripes in the background can easily confuse a motion estimation
algorithm that is based on the optical flow assumption (2.2) as a motion field
parallel to the stripes is grey value preserving (cf. aperture problem sec. 2.1.2).
A small area of the background texture adopts to the motion that is present at
the boundary of the sphere (perpendicular to the gradient of the image mea-
surements I). As the chosen spatial regularisation parameter is relatively small
for our approach (α = 0.008) this area is not to large. With α = 0.01 this
area is more difficult for the Horn and Schunck approach (both parameters are
optimised).

Inspecting the computed flow fields in figure 3.21 using the colour code shows
this difference between our approach (3.21 bottom centre) and the Horn and
Schunck approach (3.21 bottom right). While the latter one results in a smoother
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Figure 3.20: The synthetic ”rotating sphere” sequence. The sphere rotates
in front of a stationary background. Left: We depict frame 6 of the sequence.
Right: Frame 7 along with the optical flow field obtained with approach (3.4)
(parameters: α = 0.008, β = 0.0005).

Figure 3.21: Qualitative results for a rotational motion pattern. Top left:

Frame 6 of the ”sphere” sequence. Top centre: Gray value version of frame 6
that is used in our computations. Top right: Vector plot of the ground truth
data. Bottom left: Corresponding colour code representation of the ground
truth vector data. Bottom centre: Optical flow field computed with our
optical flow approach (3.4) for dynamic image motion (parameters: α = 0.008,
β = 0.0005). Bottom right: Optical flow field obtained by the Horn and
Schunck approach (2.8) with homogeneous regularisation (parameter: α =
0.01).
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velocity field in the region of the sphere the motion estimation for the back-
ground is less accurate than for the Burgers approach.

Figure 3.22: Error measure for the flow field obtained for the ”sphere”
sequence. Left: AAE-plot for our result for frame 6 (AAE = 9.128◦), (RMSE
= 0.203). Right: AAE-plot for the Horn and Schunck result for frame 6 (AAE
= 17.471◦), (RMSE = 0.395). See text for further discussion.

For this sequence as shown in figure 3.23 the error measurements over the entire
sequence reveals that our approach results steadily in a more accurate veloc-
ity field compared to the homogeneous regularised Horn and Schunck approach.

As discussed above the main error source for the Horn and Schunck approach
is the smooth vector field that extends over the motion boundary into the
background region. Our Burgers approach results in a more accurate flow field
than the Horn and Schunck approach.

0 5 10 15 20 25 30 35 40 45
0.1

0.15

0.2

0.25

0.3

0.35

0.4

Image Frame

R
M

S
 e

rr
o

r 
p

e
r 

F
ra

m
e

Horn and Schunck Regul. Term

Burgers Regul. Term 

Frame 1 Frame 45

Figure 3.23: RMS error for the entire ”sphere” sequence. The comparison
shows that the Horn and Schunck approach (2.8) results in a higher error than
the approach for dynamic image motion (3.4). The top left corner shows the
first and last frame of the zoom in sequence.
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Combined Motion: ”Street” Sequence

The next sequence we are concerned with is the ”street” sequence [93] which
covers a range of motion activity within 150 frames. That sequence shows two
moving cars near a crossing while the camera slowly follows on of the cars. Fig-
ure 3.24 depicts the flow field we obtain with our approach for one of the later
frames of the sequence. A camera slowly turns in the same direction the car is
moving. This results in a more complex motion field with the background and
the foreground moving into opposite directions.

Figure 3.24: The ”street” sequence, object and background are moving in
opposite directions. Left: Frame 114 of the sequence. Middle: Frame 115
along with the estimated optical flow field obtained with our approach (pa-
rameters: α = 0.008, β = 0.0009). Right: Details of the computed flow
field.

The main difficulty of this image sequence lies in the fact that two motion
fronts are moving against each other. The results for this interesting region
which comprises the motion boundaries of the car is shown in detail in the
right image of figure 3.24. This experiment provides us with some insight how
motion boundaries are conserved by our approach and we evaluate this point
in more detail below.

Figure 3.25 shows the results obtained by the Burgers approach (bottom row
centre image of fig. 3.25) and the Horn and Schunck approach (bottom row
right). Using also the error plots in figure 3.26 one can see that our approach
leads to a more accurate motion boundary for the car. This is due to the fact
that the regularisation term in our approach is a simplified mathematical model
for shock flows enabling the Burgers approach to preserve the discontinuities in
flow direction. Therefore we observe that the Burgers regularisation has an im-
proving effect in the front area of the car leading to a more accurate motion field
while the homogeneous smoothness regulariser from Horn and Schunck tends
to have a smoother motion boundary there. Motion boundaries in computer
vision represent discontinuities where a shock formation might help to model
and preserve it.
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Figure 3.25: Qualitative results for the ”street” sequence. Top left: Frame
114 of the ”street” sequence. Top centre: Gray value version, respectively.
Top right: Ground truth vector field for this frame. Bottom left: Colour
code representation of the ground truth vector data. Bottom centre: Optical
flow field computed with our dynamic image motion approach (3.4) (param-
eters: α = 0.008, β = 0.0009). Bottom right: Optical flow field computed
with the Horn and Schunck approach (2.8) with homogeneous regularisation
(parameter: α = 0.008).

The development of the RMS errors for the ”street” sequence obtained by the
Horn and Schunck approach (2.8) and the dynamic image motion approach
(3.4) is provided in figure 3.27. We observe a similar performance for both
approaches up to frame 80 after which the overall divergent motion increases
and the second car comes nearer to the camera making a correct computation
of the motion boundary more important. As the Burgers approach results in a
sharper motion boundary in front of the car the total error for our approach is
then smaller than the error for the Horn and Schunck approach.

From this image sequence we learned that the Burgers approach helps to im-
prove the modelling of sharp motion boundaries for such kind of non-uniform
motion pattern leading to an improved flow field in motion direction of the car.
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Figure 3.26: Comparison of the average angular error for the ”street” se-
quence. Left: AAE-plot for frame 114 obtained with our approach (AAE =
7.746◦, RMSE = 0.251). Due to the handling of shock formations the Burgers
approach results in a better motion boundary in front of the car. Left: AAE-
plot of the Horn and Schunck result for frame 114 (AAE = 9.878◦, RMSE
=0.290).
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Figure 3.27: Comparison of the RMS error between the Horn and Schunck
approach (2.8) and our dynamic image motion approach (3.4) for the entire
”street” sequence (first and last frame are shown as thumbnails). The error
plot shows a similar performance for the first half of the sequence while the
Burgers approach outperforms within the latter part.

3.4.5 Noisy Image Data

The experiments in this section are intend to investigate the robustness of our
approach under noise. We added random Gaussian noise with zero mean and in-
creasing levels of the standard deviation σ = 0, 5, 10, 20, 40 to the ”Yosemite”
image sequence with clouds (available at ftp://ftp.csd.uwo.ca/pub/vision).
The sequence exhibits divergent and translational motion combined with illu-
mination changes.
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The flow field obtained with our approach is shown exemplary in figure 3.28 for
an added Gaussian noise with σ = 40. Note that we optimised the parameters
according to the different noise levels. Generally, one can observe that with
increasing noise level the smoothness parameter α has to be chosen higher to
cope with the increasing perturbations (cf. table 3.1 for the parameters).

Figure 3.28: Robustness of our approach in presence of Gaussian noise.
Top Left: Original image frame of the Yosemite sequence (with clouds).
Top Right: We added Gaussian noise with standard deviation σ = 40. Bot-

tom Left: Ground truth colour plot. Bottom Right: Computed flow field
obtained by our dynamic image motion approach, (noise level: σ = 40, pa-
rameter: α = 0.05, β = 0.005).

The particular results obtained by the approaches we compare at the different
noise levels are summarised in table 3.1. In this table ”DynMot” is the short cut
for our dynamic image motion approach (3.4) and ”HS” represents the approach
of Horn and Schunck. We provide the RMS and the AA errors for different noise
levels starting with no noise (σ = 0) and ending with a significant high noise
level (σ = 40). Note that these are the mean values over the entire sequence.
For a lower noise level we observe a similar performance for both approaches
while at high noise levels our DynMot approach outperforms the HS approach.
This behaviour can be understand as an effect that arises due to the temporal
regularisation of the Burgers term. The smoothness parameter for the best
results are quite similar for both approaches but β increased disproportionate
for raising noise in our approach. This shows that with an increase of noise the
perturbations can be better compensated by the temporal regularisation term
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namely the Burgers equation.

noise approach α β RMS AAE

σ = 0 HS 0.005 - 0.1767 3.04◦

DynMot 0.006 0.00002 0.1784 3.09◦

σ = 5 HS 0.005 - 0.2109 4.25◦

DynMot 0.006 0.00005 0.2090 4.22◦

σ = 10 HS 0.008 - 0.2832 5.74◦

DynMot 0.01 0.0003 0.2750 5.68◦

σ = 20 HS 0.02 - 0.4285 8.61◦

DynMot 0.025 0.001 0.3951 7.54◦

σ = 40 HS 0.05 - 0.6402 13.27◦

DynMot 0.05 0.005 0.5226 9.89◦

Table 3.1: Performance of our approach (DynMot) in comparison with the
Horn Schunck approach (HS) in presence of noise: We added random Gaus-
sian noise with zero mean and standard deviation σ to the ”Yosemite” image
sequence (with clouds). The parameters α and β are optimised for both ap-
proaches.

The results we obtained for our noise experiments reveal the following: The
temporal regularisation of the new physical prior, the Burgers equation im-
proves the capability of the variational approach to deal with significant noise
levels.

3.4.6 A Computational Model of Motion Aftereffects?

Another interesting observation we would like to speculate about can be ob-
served with the plot in figure 3.6. It shows the behaviour of the Burgers term for
an abrupt stopping and starting event. The curve shows a fading characteristic
which means that it decays after an event with a much lower rate indicating
that it take some time to adapt to a new situation. In a rudimentary way,
this is reminiscent of perceptual phenomena like motion aftereffects [91]. After
adaption of the visual apparatus to some ongoing stimulus, a “negative” fading
visual impression arises when the stimulus disappears. Of course, we are well
aware that such an interpretation is highly speculative.

3.4.7 Temporal Regularisation

In figure 3.30 we compare the RMS error of the flow obtained for three different
approaches. In particular these are the Horn and Schunck approach (2.8), the
image-driven variational approach (2.15), and our approach (3.4). Note that
(2.15) omits the influence of the Burgers equation (3.1) in (3.4). The image
sequence we are concerned with is depicted in figure 3.29.
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Figure 3.29: Synthetic image sequence: The image sequence consists of 21
frames and shows the movement of a 40x40 pixel patch, which moves diagonal
in front of a textured background 5

√
2 pixels per frame from the upper left

corner to the down right corner.

The sequence consists of 20 frames showing a textured patch (40x40 pixels),
which moves diagonal in front of a textured background from the upper left
corner to the lower right corner with a speed of 5∗

√
2 per frame. The parameters

have been optimised.
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Figure 3.30: Comparison of the RMS error between the purely spatial ho-
mogeneous regularisation approach from Horn-Schunck (2.8), the image-driven
variational approach (2.15), and the dynamic approach (3.4). The latter com-
bination allows for temporal regularisation with a recursive computational
architecture, leading to consistently lower estimation errors in particular if
the actual and expected motions agree (parameters: α = 0.01, β = 0.001).

The homogeneous regularised Horn and Schunck approach [67] results in the
highest RMS error. This approach is improved by the image-driven approach
of Nagel (2.15) which attains a better optical flow estimation. The dynamic
approach using physical prior knowledge shows the lowest RMS error as the
physical prior knowledge resulting in an additional temporal coherency, which
makes the approach less independent from the actual image data. Recall that
the temporal coherency results from the transport mechanism of the Burgers
equation. The consistently lower error indicates that the ability of motion
prediction is an advantage for the estimation of the motion and exerts temporal
regularisation.
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3.5 Conclusion

We presented a variational approach to image motion estimation incorporat-
ing the Burgers equation as physical prior knowledge. In order to regularise
the optical flow constraint equation, we added a matching term that penalises
the deviation from predicted velocity values. While this regularisation term
penalises deviations between the current velocity and the propagated velocity
of the preceding frame, it does not enforce spatial smoothness of the velocity,
therefore, we added the spatial image-driven regularisation term of Nagel.

The resulting distributed-parameter approach performs spatio-temporal regu-
larisation in a recursive online fashion in the sense that as soon as the next
image is obtained the results for the previous image frame is used to compute
the current motion estimation. This recursively involves the flow field that is
computed using previous results and means that the computation can be done
in a sliding window manner where velocities can be computed as soon as their
respective frames have been recorded.

We experimentally explored the properties and potential benefits of the pre-
sented variational approach. The most prominent features that our approach
shows is its inertia behaviour along with its temporal regularisation. We found
that our approach - due to the constant velocity assumptions of the Burgers
equation - predicts the motion of uniform motion patterns quite well and less
accurate for non-uniform motion patterns. However to a certain degree it is
also useful for non-uniform motion and we observed in both cases that the
estimated motion field adapts - after recognising a sudden change of motion
- nicely to the new image measurements. We demonstrated that deviations
from the expected velocity distribution generate vector fields that may serve
as attentional mechanism for a superordinate processing stage and it is tempt-
ing to point out a potential relevance of our approach for related models of
visual perception. However, as we are not experts in this field, we confined our-
selves to a few speculative remarks. Our occlusion experiments showed, that
the resulting model exhibits, properties analogous to a dynamic filter for the
most elementary polynomial kinetically model of a point feature (cf. [6]): in
the absence of image measurements, and if spatial context does not indicate
otherwise, velocities do not change. In this way, according to the underlying
constant-velocity assumption of the Burgers equation, the formulation may be
regarded as an elementary distributed-parameter version of a low-order poly-
nomial filter commonly used for the kinematics of point features. The effect of
temporal regularisation is well observable on image sequences with a very high
noise level where compared to the Horn and Schunck approach the temporal
smoothness lead to improved motion estimations. Another interesting feature
is that the shock front of a transported motion field resembles a sharp motion
boundary which is often desired in optical flow computations. However, this
effect occurs only in motion direction. Beside these interesting new properties
that are inherent in our approach we experimentally observed a similar perfor-
mance as the Horn and Schunck approach. Here we focused on the exploration
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of the newly shown properties.

To summarise, our dynamic image motion approach combines variational mo-
tion estimation with motion prediction through a transport process based on the
Burgers equation as new physical prior exploiting the knowledge that moving
structures should exhibit some inertia, meaning that velocities are not expected
to change.



4

Control Based Optical Flow

Estimation

In the previous chapter we presented a variational approach to dynamic image
motion computation using a physical motivated regularisation term. This new
matching term represents the difference of the expected and apparent motion
field with respect to the solution of the Burgers equation. This difference field
can be interpreted as a force that adapts the expected motion towards a mo-
tion field consistent with the image measurements. In this chapter we follow
the idea of the control based interpretation and propose directly an optimal
control approach for optical flow estimation. It is an attempt to adopt control
methods from the field of applied mathematics in a new form to image sequence
processing and to provide a first evaluation of the capability of this approach.
The application of optimal control techniques to image motion estimation, as
presented in this work is novel and explorative.

4.1 Optimal Control Formulation

In this chapter we study a novel optical flow-based approach to image motion
analysis, that incorporates physical prior knowledge in a control framework.
Our motivation draws on literature on the control of distributed parameter
systems in connection with fluid dynamics [58]. We are aware of the works
of [116, 16], where the authors present a control approach for optical flow es-
timation. We interpret the grey values of the images as a ”fictive fluid” and
incorporate the Burgers equation, in order to model the physical fluid motion
behaviour of the image sequences. As a consequence, flow fields are forced to
vector fields which should satisfy the Burgers equation. In order to estimate
the motion of apparent velocities of image measurements in an image sequence,
control variables are included and determined by minimising an appropriate
objective functional. Control variables and optical flow adjust to the observed
image data.

65
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We adopt the variational optical flow approach of Horn and Schunck (2.8) and
add a distributed control resulting in a constrained minimisation problem. The
obtained objective functional has to be minimised with respect to the optical
flow and control variables subject to the Burgers equation over the entire flow
domain in space and time. Therefore, our approach estimates not only the
optical flow data from an image sequence, but it also estimates a force driven
by the Burgers equation. The force field indicates the violation of the Burgers
equation and acts in motion situations where the Burgers equation is not the
right model to describe the motion - for example accelerated motions as start-
ing or stopping events - or even the change of the motion direction. This is
similar to the previous chapter where we proposed to use the difference field
between the ”seen” and the ”expected” motion as an attentional mechanisms
for unexpected motion events. However, in the approach we propose here the
force/control - indicating the deviation of the velocity field from the Burgers
behaviour - is penalised directly in the objective functional.

For the solution of the control based optical flow estimation problem we em-
ploy the Lagrange multiplier method providing us with a tool to find extrema of
functionals subject to specific constraints. The initially constrained optimisa-
tion problem is reformulated into an unconstrained problem allowing to obtain
the associated first-order optimality system [58]. This results in a forward-
backward system with appropriate initial and boundary conditions, meaning
that the optimality system consists of a backward-in-time equation where a
terminal condition at t = T is given and a forward-in-time equation with an
initial condition at t = 0. The optimality system is a coupled system and can
be solved in one shot, i.e., without decoupling the system. However, this results
in a very large system, where the solutions at all time levels are coupled to each
other leading to an expensive computation. Another way - which we follow -
to obtain the solution is to uncouple the forward and backward computation as
described in [58] leading to an iterative solution scheme.

While our previous approach results in a recursive online computation, here we
have to solve the system - like the approach of Weickert and Schnörr (2.16) -
in a batch processing mode as a spatial-temporal regularisation over the entire
integration domain. In order to obtain a sliding window scheme we have to
employ an appropriate receding horizon control approach. There the current
control and state are determined by minimising the energy functional over a
subtime interval [t, t + T ]. This architecture allows to obtain - like within the
previous approach - a velocity estimate that can be regarded as a predicted

vector field for the next time interval. The computation can be done in a semi
non-batch processing mode. However, we address this extension to a further
work project.

4.1.1 Overview

The remaining parts of this chapter are organised as follows. First we sum-
marise two approaches that can be found in the literature which illustrate the



4.1. Optimal Control Formulation 67

feasible combination of optical flow approaches and fluid control methods. In
section 4.2 we present our control approach for motion estimation which incor-
porates the Burgers equation as physical prior. The derivation and solution
of the optimality system is subject of section 4.2.1 and 4.2.2. An overview of
our implementation is given in section 4.2.3. In order to test our algorithm,
we perform numerical experiments in section 4.4 on synthetic and real image
sequences. The results demonstrate that the optimal control formulation has
a similar performance as our previous approach. However, due to the global
regularisation architecture of the approach, the temporal regularisation tends
to be better for highly noisy image sequences.

4.1.2 Relevant Control Approaches for Optical Flow

In this section we present the ideas of two existing control approaches that are
related to motion computation of image sequences.

Ruhnau and Schnörr presented in [116] an optical flow estimation approach
for particle image velocimetry that is based on a control formulation subject
to physical constraints. Their aim is to estimate the velocities of particles in
image sequences of fluids. They stated the following energy function

E(u, p, f, g) =

∫

Ω

1

2
(∂tI + u · ∇I)2 dx+

∫

Ω\Ω0

α
1

2
|f |2dx+

∫

Γ

γ
1

2
|∇Γg|2dΓ,

which has to be minimised subject to the time-independent Stokes system

−µ∆u+ ∇p = f in Ω,

∇ · u = 0 in Ω,

u = g on Γ,

where u represents the velocity field, µ the viscosity, p the pressure and f the
body force acting on the fluid. The authors denote regions where large forces
are expected by Ω0 and exclude the body force penalisation at these locations.
The authors exploit also the optical flow constraint equation (2.2) in their ob-
jective functional but rather than to penalise the estimated flow directly they
regularise the body force f and derivatives of the values g on the boundary and
minimise the functional subject to the Stokes system on the spatial image do-
main Ω. The appropriate optimality system is then solved resulting in optimal
states and controls. This control approach forces the velocity field to hold the
time-independent Stokes system as good as possible and relies on the measure-
ment of two consecutive image frames. Our approach which has to satisfy the
time-dependent Burgers equation leads to a forward-backward computation of
time-dependent equations.
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Another control approach to image motion estimation has been proposed by
Borzi, Ito and Kunisch in [16]. The basic idea of their approach is to estimate
both an optical flow field u and a rectified image function I satisfying the flow
constraint equation (2.2). Note that in their approach Yk (and not I) denotes
the sampled images of the image sequence and their optimal control formulation
consists in minimising the following objective function:

J(I, u) =
1

2

∫

Ω

N
∑

k=1

|I(x1, x2, tk) − Yk|2dx (4.1)

+
1

2

∫

Ω×(0,T ]

{

αΦ
(

|∂tu|2
)

+ βΨ
(

|∇u1|2 + |∇u2|2
)

+ γ|∇ · u|2
}

dxdt

with respect to

∂tI + u · ∇I = 0 in Ω × (0, T ], (4.2)

I(·, 0) = Y1.

The most significant difference to our optical flow approach is that they do not
only estimate the optical flow u, but also Ik which is an approximation of the
captured grey value distributions Yk, where k specifies the frame number within
the image sequence. As part of the first-order necessary optimality conditions
of the Lagrangian functional their optimal control formulation does not require
a differentiation of the image data. The control problem (4.1-4.2) results in the
problem of finding the solution of two forward-backward hyperbolic equations
and two elliptic equations.

4.2 Estimation Approach

In this section we explain our optical flow control approach in more detail. Our
control approach draws on the literature of optimal control approaches in con-
nection with fluid dynamics. Several methods which we exploit in our approach
can be found in the book of Gunzburger [58].

In order to regularise the optical flow constraint (2.2) standard variational
approaches like (2.8) or (2.16) add a constraint to enforce spatial or spatio-
temporal smoothness of the optical flow field, respectively. In this chapter we
investigate a control based formulation of our optical flow estimation approach.
We obtain this spatial-temporal approach in a control based framework as fol-
lows: We introduce a control f , that is distributed in space and time, which
means that it acts over the entire optical flow domain Ω× [0, T ]. The amount of
the control is regulated through the penalisation within the objective functional
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J(u, f) =
1

2

∫

Ω×[0,T ]

{

(∂tI + (u · ∇)I)2

+α(|∇u1|2 + |∇u2|2) + β|f |2
}

dxdt, (4.3)

subject to the following physical constraint equation

{

∂tu+ (u · ∇)u = f in [0, T ] × Ω,
∂nu = 0 on [0, T ] × Γ.

(4.4)

The left hand side of the first equation of (4.4) is the material derivative of the
velocity field u and is known as the Burgers equation (cf. sec. 7.5). It describes
a moving fluid where the positions of fluid particles change with time while a
(fictive) body force f = (f1, f2) which represents the control is acting on the
fluid. In (4.3) the spatial smoothness of the vector field u is incorporated by
the α-term and the parameter β penalises the occurrence of the force f . As the
β-term in (4.3) should be as small as possible, the flow field u is forced to hold
the Burgers equation as good as possible. Therefore, for higher β values one
expects smaller control values f .

The main objective of our control formulation is to determine a body force f
(the control !) along with the velocity field u which should match the apparent
motion measured - by the means of the optical flow constraint equation - as well
as possible. The magnitude of the control is limited through the penalisation
within the objective functional.

In terms of control theory (e.g.,[58]) the approach can be described as follows:
We want to find an optimal state u = (u1, u2)

⊤ along with an optimal control
f = (f1, f2)

⊤, such that the functional J(u, f) is minimised and u and f satisfy
the Burgers state system (4.4).

In contrast to the approach (3.4), where we introduced a matching term penal-
ising the derivation between the current velocity and the propagated velocity of
the preceding frame, we employ the body force directly satisfying the Burgers
equation over the entire image domain [0, T ]×Ω. However, we expect a similar
behaviour of both approaches. The minimisation of (4.3) should result in a ve-
locity field which matches the apparent motion as well as possible, while being
pushed towards a Burgers transport by as little force as possible (cf. experiment
sec. and fig. 4.14).

4.2.1 Optimality System

To derive the optimality system for the constrained optimisation problem (4.3
- 4.4) we recast it into an unconstrained optimisation problem. Introducing the
Lagrange multiplier w = w(x, t) we obtain the Lagrangian functional
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L(u, f,w) = J(u, f) −
∫

Ω×[0,T ]

w · (∂tu+ (u · ∇)u− f) dxdt, (4.5)

where the multiplier w = (w1, w2)
⊤ is also known as the corresponding adjoint

variable to the state variable u in (4.3 - 4.4).

The first-order necessary conditions [58] for an optimum of (4.5) result in the
following optimality system from which the optimal state u and the optimal
control f can be determined:

state eq.







∂tu+ (u · ∇)u = f in Ω × [0, T ],
∂nu = 0 on Γ × [0, T ],
u|t=0 = u0 in Ω,

(4.7a)

adjoint eq.















−∂tw − (u · ∇)w − w∇ · u+ (∇U)⊤w
= ∇I(∂tI + u · ∇I) − α∆u in Ω × [0, T ],

w = 0 on Γ × [0, T ],
w|t=T = 0 in Ω,

(4.7b)

optimality cond.







βf +w = 0 in Ω × [0, T ],
f = 0 on Γ × [0, T ],

f |t=T = 0 in Ω,
(4.7c)

where

(∇U) =

(

∂x1
u1 ∂x2

u1

∂x1
u2 ∂x2

u2

)

denotes the Jacobian matrix of u [32]. The state equation (4.7a) is obtained
by derivating the Lagrangian functional (4.5) in the direction of the Lagrange
multiplier, and turned out to be identical to the Burgers system equation (4.4)
itself. The adjoint equation (4.7b) specifies the first-order necessary conditions
with respect to the state variables u. The optimality condition (4.7c) is the
necessary condition that the gradient of the objective function – with respect
to the control f – vanishes at the optimum. The detailed derivation of the
optimality system (4.7a - 4.7c) is provided in appendix A.1. In the next section
we describe how the optimisation problem can be solved.

4.2.2 Solution of the Optimality System

The optimality system (4.7a - 4.7c) is a coupled system which turns out to be
- due to the large number of unknowns - prohibitively expensive to be solved
directly. To solve this system we introduce an iterative method which decouples
the state and adjoint computation. This results in a gradient descent method
which consists of the iterative solution of the state and adjoint equation in such
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a way that the state equation is computed forward in time with appropriate
initial condition u0 and the adjoint equation is computed backward in time with
terminal condition wt=T = 0. The optimality condition is used to update the
control f with the adjoint variable w. The control f is then used to compute
the actual state u. Then the step length is adjusted ensuring that the actual
energy of the objective functional (4.3) is smaller than in the previous iteration.
Note that we choose the start value for f to be zero in the very first iteration.

Gradient of the Objective Functional

To determine the optimal state and control we use - as mentioned above - a
gradient descent method. Therefore, we have to determine the gradient of our
objective functional (4.3) with respect to the control f . The state equation
(4.7a) is solved to determine the state u as a function of the control f so that
the functional J(u, f) = J(u(f), f) is a function of only the control f . Applying
the chain rule to J(u(f), f) we obtain the total derivative of the functional (4.3):

∂fJ =
∂J

∂u

du

df
+
∂J

∂f
. (4.8)

However, the full derivation of the gradient of the objective functional (4.3) is
presented in detail in appendix A.2. In the following we will only provide the
main points of the deviation. We specify the gradient du

df
. This term defines the

so-called sensitivities and describes the change of the state when the control
variable changed. To obtain this dependency we can use a variation of the
distributed control f +εf̃ which is assumed to correspond to the changes of the
state u to u+ εuf . The change uf is determined by the state system:

{

∂t(u+ εuf ) + ((u+ εuf ) · ∇)(u+ εuf ) = f + εf̃ in Ω × [0, T ],
∂n(u+ εuf ) = 0 on Γ × [0, T ].

As derived in A.2 one obtains for ε→ 0 the sensitivity equation

{

∂tuf + (uf · ∇)u+ (u · ∇)uf = f̃ in Ω × [0, T ],
∂nuf = 0 on Γ × [0, T ],

(4.9)

which describes the fact that an infinitesimal variation of the control in the
direction of the control induces an infinitesimal variation in the direction of the
local velocity uf .

The change in the functional J(u, f) of (4.3), effected by an infinitesimal change
in the direction f̃ in the control f leads us to the gradient of the objective
functional (we refer for details to sec. A.2):

∂fJ = w + βf. (4.10)

This gradient of our objective functional is used within our iterative gradient
descent algorithm to update the search direction. Below we sketch the imple-
mentation of the gradient method.
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4.2.3 Algorithm

In this section we describe the algorithm for the gradient descent method which
includes an automatic step-length selection to find a minimum of the optimal
control system (4.7a - 4.7c).

At the beginning of the algorithm the initial flow fields for all image frames are
set to zero (u = 0). Starting with a terminal condition of the adjoint variable for
the last frame wt=T = 0 the adjoint equation is solved backward in time result-
ing in adjoint variables w for all image frames. The optimality condition is then
used to update the control f for all frames. With this the state equation is used
to compute u, i.e. the values for all flow fields forward in time. Depending on
the objective value of J the step length is adapted. If the convergence criteria is
not yet reached the next iteration starts with solving the adjoint equation again.

In the following pseudo code description of the algorithm, s denotes the step-
size parameter that is adapted by the algorithm. The parameter ǫ denotes the
threshold which is used to decide whether the relative difference of the energy
is small enough to be seen as converged.

Algorithm 1 Gradient algorithm with automatic step-length selection

1: set all flow fields initially to u = 0
2: set all control fields initially to f = 0
3: choose tolerance ǫ
4: s := s0 (initial step size)
5: repeat

6: solve the adjoint equation (4.7b) for w
7: update f : fm = fm−1 − s(βfm−1 +w) with (4.7c)
8: solve the state equation (4.7a) for u
9: if J(u, fm) ≥ J(u, fm−1) then

10: s := 0.5s
11: GOTO 7
12: else

13: s := 1.5s
14: end if

15: until |J(u, fm) − J(u, fm−1)|/|J(u, fm)| < ǫ

As one has to solve the optimality system (4.7a - 4.7c) within the algorithm we
describe our implementation of the equations in the next section.

4.3 Numerical Solution

As (4.7c) can be used directly to update the actual control f we are here con-
cerned how the non-linear state equation (4.7a) and the linear adjoint equation
(4.7b) can be discretised and numerically solved. Generally, the state equation
is solved forward in time over the entire image sequence with a given start value
u0 at time t = 0. The adjoint equation is solved backward in time with a given
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terminal value wT at time t = T . In our implementation we approximate the
initial optical flow field of the image sequence by u0 = 0 and wT = 0.

In the next subsections we are concerned with the discretisation of the state
and adjoint equation respectively. However, we refer in each section to the
appropriate numerical part of this thesis for a more detailed description.

4.3.1 Discretisation of the State Equation

The numerical implementation of the non-linear state system equation (4.7a) is
quite difficult and we employed a second-order conservative Godunov Method
as described in section 8.3.2. We have to cope with over- and undershoots, with
several types of shock formations, with the compliance of conditions (entropy-,
monotony-, CFL-condition, etc.) and some different discretisation schemes (cf.
sec. 8.3). The fluxes are numerically computed by solving the equations at
pixel edges. The reasonable behaviour at discontinuities is obtained by using
the solutions of the appropriate Riemann problem (8.47) incorporating Van
Leer limiters (cf. sec. 8.2.1) to prevent over and undershoots. For the full
discretisation procedure of the state equation (4.7a) we refer to section 8.3.

4.3.2 Discretisation of the Adjoint Equation

In order to solve the time-dependent adjoint equation (4.7b) we employed a
conservative finite difference method, more specifically Fromm’s second-order
upwind method (see sec. 8.2.2). The numerical fluxes are obtained by solving
the characteristic form at the cell edges, while the fluxes are evaluated and dif-
ferenced at the same time. The basic idea is to satisfy Godunov’s theorem in a
naturally way. Roughly speaking, Godunov’s theorem says that all methods of
accuracy higher than order one will produce spurious oscillations in the vicinity
of large gradients, while being second-order accurate in regions where the solu-
tion is smooth. Therefore the slopes of Fromm’s second-order method (8.2.2)
are in regions with a large gradient replaced by slops of Van Leers scheme (cf.
sec. 8.2.1), which detects discontinuities and modifies its behaviour accord-
ingly. The implication of this hybridisation is that the resulting method retains
the high-order accuracy of Fromm’s method in smooth regions, but where dis-
continuities are detected, the discetised evolution equation drops to first-order
accuracy. The discretisation of the adjoint equation is described in more detail
in section 8.3.3.

4.4 Experiments

In this section we assess our control approach by applying it exemplarily to
synthetical and real image sequences (as depicted in fig. 4.1) and we provide
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a comparison with results obtained by our previously developed optical flow
approach.

Figure 4.1: ”Waving hand” image sequence: Five consecutive images of our
real image sequence.

In particular, this section is divided into the following parts:

• First, we show exemplarily the numerical behaviour of the energy min-
imisation process.

• Secondly, we discuss the parameter selection for the control approach
along with discussing the influence of the Burgers equation as control.

• As third task, we illustrate the behaviour of our optical flow control ap-
proach on a real-world 2D image sequence with respect to unexpected
motion events.

• Then we present the results for noisy image data showing the influence of
the temporal regularisation in the control approach and provide a compar-
ison with error measures obtained by the dynamic optical flow approach.

• Finally, we show results for a real-world 2D image sequence in comparison
with the results obtained by a spatio-temporal approach.
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4.4.1 Numerical Convergence

In this section we provide a typical example of the numerical convergence of the
energy minimisation process over 5000 iterations (fig. 4.2). We demonstrate
the effect of the energy minimisation at some intermediary computational re-
sults at iteration 10, 100, 1000 and 4000 (fig. 4.3). The energy plot is shown
in figure 4.2. Note that the plot has a logarithmic scale in order to provide a
better impression of the evolution.
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Figure 4.2: Energy evolution for the ”waving hand” sequence over 5000 it-
erations (the logarithm of the measured energy values is shown). With initial
approximation u0 = 0 and wT = 0. The arrows indicate the iterations for
which the appropriate vector fields are shown in figure 4.3. After approxi-
mately 500 iterations it is reasonable to stop the minimisation process.

In our numerical implementation we use an initial optical flow field u0 = 0 and
for the terminal adjoint variable wT = 0. One can observe that the energy mea-
sure is converged after about 500 iterations. This indicates that it is reasonable
to terminate similar computations after about 500 iterations.

However, to illustrate the evolution of the flow field during the minimisation
we choose four investigation points at iteration 10, 100, 1000 and 4000. For
these points we depict the appropriate results of the optical flow computation
in figure 4.3. The Euclidean distances between the flow fields of two consec-
utive investigation points are shown as well. As expected from the evolution
of the energy minimisation we observe the largest changes at the beginning of
the iteration process. A more detailed investigation of the Euclidean distance
measure reveals that after iteration 1000 only very small corrections occur that
led to a slightly smoother flow field estimation (cf. fig. 4.4).
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Figure 4.3: Computed optical flow fields at iteration 10, 100, 1000 and 4000
(left column). The right column shows the Euclidean distance between the
optical flow field of iteration 10 and 100, 100 and 1000, and 1000 and 4000
and indicates the changes over the iterations. In accordance with the energy
minimisation process we observe that the largest change occur at the beginning
of the iteration process. In order to reveal what happens after iteration 1000
we illustrate the Euclidean distance measure for the last flow field pair with a
different scaling in figure 4.4.
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Figure 4.4: The Euclidean distance measure between the optical flow field of
iteration 1000 and 4000 with a new scaling shows the difference of the flow field
more clearly. The changes after iteration 1000 have only a small contribution
resulting in a slightly smoother optical flow field.

4.4.2 Parameter Selection

To provide an idea of the influence of the control parameter we depict in fig-
ure 4.5 two optical flow field results obtained with different β parameters. We
choose as smoothness parameter α = 0.01 along with a relative high param-
eter β = 0.01. This is shown in the first image of figure 4.5. The second
image shows the flow estimates for the smoothness parameter α = 0.01 and
smaller control parameter β = 0.00001. A smaller control parameter leads to
larger control values in the minimisation process. As a consequence, smaller
control parameters lead to velocity fields which are forced stronger to satisfy
the constant-velocity assumption of the Burgers equation. This leads to shock
formations of the velocity field at motion boundaries in motion direction and
these motion boundaries seem to be well preserved as can be observed in figure
4.5 in the right image.

Figure 4.5: Parameter selection. Left: Optical flow field with parameters
α = 0.01 and β = 0.01. Right: Flow field estimate for the parameters
α = 0.01 and β = 0.00001. A smaller control-parameter leads to larger control
values and therefore, the quality (e.g. sharper motion boundaries) of the flow
field improves, due to more control.
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However, we observe that the smoothness parameter α = 0.01 results in an
already homogeneous velocity field but tends to smooth slightly over the motion
boundaries.

4.4.3 Experiment with a real image sequences: Control - Force

In this section we illustrate the control behaviour of the optical flow approach
for a real-world 2D image sequence with an unexpected motion. The image se-
quence consists of 10 image frames (200x200) and shows a moving hand which
starts to move and then stops again. Figure 4.6 depicts the starting (left col-
umn) and stopping (right column) event of the sequence. In the first row the
velocity estimates and in the second row the appropriate control/force field is
shown. The force field f illustrates the derivation of the expected motion from
the observed motion. For the shown example the force field reacts into the
opposite direction of the flow field and forces the flow field into the measured
state of no motion.

Figure 4.6: ”Waving hand” sequence: Unexpected events. Top: A waving
hand stops. The estimated optical flow field u for a starting (left) and stopping
(right) event is depicted in blue. Bottom: The corresponding control field f
is shown in red. The force acts when the hand starts to move (left) and reacts
into the opposite direction of the flow field (right) when it stops and forces
the flow field into the observed state of no motion (parameters: α = 0.01,
β = 0.0001).
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Contrary to the previous approach, which employed a control based interpreta-
tion due to the regularisation matching term, this method incorporates a body
force directly which corrects the optical flow field in a way, that the flow field is
in accordance with the observed image measurements. Here not the deviation
between expected and observed image data is penalised rather the force field
acts as control quantity in this approach.

4.4.4 Gaussian Noise and Temporal Regularisation

In order to illustrate how our approach copes with noise we used the ”waving
hand” sequence and added Gaussian noise with standard derivation σ = 20,
as depicted in figure 4.7. The left image shows a single frame of the sequence
without noise and the right image with added noise.

Figure 4.7: The ”waving hand” sequence with noise. We added Gaussian
noise to the sequence with standard derivation σ = 20. Left: Original grey
value image. Right: Gray value image with added Gaussian noise σ = 20.

The optical flow estimate we obtain with our control approach is shown in figure
4.8 (top right). The colour code representation of this velocity field (bottom
right) indicates a reasonable estimate for that noise level. However, we ob-
serve that the motion boundaries of the velocity field are smoothed out which
is a consequence of the higher values for the smoothness parameter that are
required to handle the perturbations and to obtain the visually ”best” results
for this noise level. This is conform to the results we obtained from the noise
experiments performed on the ”Yosemite” sequence below.

The high noise level leads to the fact that parts of the thumb within the single
frames are even for a human undetectable and the computed flow estimate in
this region is notably difficult. This is shown in figure (fig. 4.8 left). However,
a (more) quantitative evaluation of the control approach for the ”Yosemite”
sequence with artificially added noise is provided below.
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Figure 4.8: Gaussian noise and temporal regularisation. We added noise to
the ”waving hand” sequence. Top left: Gray value image with Gaussian noise
σ = 20. Top right: Optical flow field obtained by our approach (4.3)-(4.4),
(parameters: α = 0.03 and β = 0.000001). Bottom left: Clipping of the
thumb region. The image measurement is highly disturbed and even for a
human the original shape of the thumb is undetectable and our obtained flow
estimate in this region is inaccurate but due to the temporal regularisation a
movement in still computed. Bottom right: Colour code representation of
our estimate.

”Yosemite” Sequence

In this experiment we investigate the impact of temporal regularisation in our
control approach. We chose the ”Yosemite” sequence again as in section 3.4.5
with different Gaussian noise levels σ = 0, 10, 20 and 40. Based on the results
for this we analyse the impact of temporal regularisation. As explained in the
previous chapter the computation of (3.4) is done in a sliding window manner
and a motion prediction is made for the next frame in the image sequence using
the previous results.

Compared to this the control based optical flow approach (4.3)-(4.4) incorpo-
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rates knowledge about the entire considered image sequence by the means of
a forward-backward computation. A visual comparison of the results obtained
by the approach (3.4) and the approach (4.3)-(4.4) with a Gaussian noise of
σ = 40 is shown in figure 4.10.

Figure 4.9: Temporal regularisation. We added Gaussian noise with standard
derivation σ = 40 to the ”Yosemite” sequence. The shown optical flow field is
obtained by the control based optical flow approach (4.3 - 4.4) (parameters:
α = 0.05 and β = 0.000003).

The control approach results in a slightly improved vector field. A reason for
this can be found in the forward-backward computation, which incorporates
additional knowledge of the future frames leading to an improved temporal
regularisation. However, we computed the average angular errors for both ap-
proaches with increasing noise level. The results are shown in table 4.1.

noise approach α β RMS AAE

σ = 0 Control 0.007 0.0005 0.169 2.88◦

DynMot 0.006 0.00002 0.1784 3.09◦

σ = 10 Control 0.009 0.0001 0.243 4.92◦

DynMot 0.01 0.0003 0.2750 5.68◦

σ = 20 Control 0.02 0.00001 0.3502 6.67◦

DynMot 0.025 0.001 0.3951 7.54◦

σ = 40 Control 0.05 0.000003 0.4968 9.16◦

DynMot 0.05 0.005 0.5226 9.89◦

Table 4.1: Performance of our approach (DynMot) in comparison with the
Control approach (Control) in presence of noise: We added random Gaussian
noise with zero mean and standard deviation σ = 0, 10, 20, and 40 to the
Yosemite image sequence (with clouds). The parameters α and β are optimised
for both approaches.

In contrast to the approach discussed in the previous chapter, a higher noise
level results in the selection of smaller beta regularisation parameters for the



82 Chapter 4. Control Based Optical Flow Estimation

control part of the objective functional. The consistently lower error indicates
the ability of an improved global motion prediction in our control approach
(4.3)-(4.4) exerting a slightly better temporal regularisation. Our explanation
for this observation is that the control approach incorporates also future knowl-
edge of the image sequence instead of using only the past information with a
prediction in approach (3.4).

Figure 4.10: Temporal regularisation. Optical flow results for the
”Yosemite” sequence with Gaussian noise with standard derivation σ = 40.
Left: Colour code representation for the optical flow result obtained by the
dynamic optical flow approach (3.4) (parameters: α = 0.05 and β = 0.005).
Right: Optical flow obtained by the control based optical flow approach (4.3
- 4.4) (parameters: α = 0.05 and β = 0.000003). The error measure (table
4.1) reveals a similar performance slightly in favour of the control approach.

4.4.5 Experiments with real image sequences: Comparison

In this section we intend to compare the results of the spatio-temporal ap-
proach of Weickert and Schnörr (batch processing) (2.16) with those of our
control approach (4.3)-(4.4). For this we used an image sequence showing a
continuous movement with no unexpected motion events. Figure 4.11 depicts
a single frame of the sequence showing a slowly downwards moving hand along
with the estimated optical flow field. The upper row shows the estimated flow
fields using Weickert and Schnörr’s batch processing approach and the lower
row shows the results of the control approach. We observe, that the control
approach computes in regions - that can be considered as more difficult - a
smoother flow estimation compared to the spatio-temporal method.

A more detailed zoom in is shown in figure 4.12 and there the hand reveals a
”difficult region”, which is mainly the gap between the thumb and the hand
meaning the gap between the motion boundary of the hand and the motion
boundary of the thumb. The spatio-temporal regularisation approach has some
difficulties to estimate the optical flow between the thumb and fore finger. In
contrast the control approach results in a more reasonable flow estimate in this
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region. A reason for this behaviour might again lie in the fact that motion
boundaries in motion direction of the thumb are better modeled by the Burgers
term in combination with the distributed control.

Figure 4.11: Real-world 2D image sequence: ”Waving hand” sequence (frame
4 and 5). Top: Flow estimation result for the spatio-temporal regularisation
approach. Bottom: Computational results of our control approach. The con-
trol approach computes (in difficult regions) a more reasonable flow estimation
compared to the Weickert and Schnörr’s method. This is probably due to the
better modeling of motion boundaries in motion direction of the thumb and
the introduced control.
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Figure 4.12: Detail of the flow field shown in figure 4.11. Top left: Flow
field obtained by our approach (4.3)-(4.4). Top right: Flow field obtained by
the spatio-temporal approach (2.16). Bottom left: Colour code presentation
for the flow field obtained by approach (4.3)-(4.4) (parameters: α = 0.01,
β = 0.0001). Bottom right: Colour presentation for the flow field obtained
by approach (2.16) (parameter: α = 0.01).

Control - Burgers Equation

Our optimal control approach introduces a force (4.4) that acts as a control
and has to satisfy the Burgers equation. This force field (depicted in fig. 4.14
and a cutout in fig. 4.13) corrects the optical flow estimate such that it is also
in accordance with the observed image data.

Figure 4.13: Detailed plot of the force field that controls the typical flow
estimation near the region which shows the thumb of the hand (parameters:
α = 0.01, β = 0.0001).

As depicted in the colour code representation of the control field in figure 4.14
we observe that also at the motion boundary in moving direction the force is
acting to correct the flow field and leads to a better motion boundary.
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Figure 4.14: Control field (force) obtained by the minimisation of (4.3)-(4.4)
(parameters: α = 0.01, β = 0.0001).

4.5 Conclusion

Inspired by our optical flow approach of the previous chapter we explored here
the idea to trim the approach to an optimal control approach to dynamic image
motion. The resulting approach represents a control formulation for variational
motion estimation. We minimise - similar to the previous approach - the ob-
jective functional subject to a physical constraint. However, instead of having
a matching term within the objective function the control approach introduces
a force which pushes the vector field directly towards a vector field that is in
accordance with the image data and also satisfies the Burgers equation with
the smallest amount of force.

We solve the variational optical flow approach within a control framework us-
ing physical prior knowledge with a forward-backward iterative computation
scheme. The optical flow field should satisfy the Burgers equation, which de-
scribes the acceleration of moving particles. In order to estimate the specific
flow field of apparent velocities of moving objects in an image sequence, control
variables are included and determined by minimising an appropriate objective
function which relates the flow field and the control variables to the given image
sequence data.

In our experiments we exemplarily showed that our implementation presents
a reasonable convergence characteristics and an acceptable number (about 500
for this shown example) of iterations are sufficient for the computation of the
flow. However, our straight forward implementation leaves room for improve-
ments. The main features we observed within our control approach are already
present in the approach proposed in the previous section. The motion bound-
ary is modeled due to a shock forming sharply in motion direction but smooth
in the rarefaction area. The introduced control can be used as indicator for
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unexpected motion events. Compared with the previous approach we observed
an improved capability of the motion estimation for image sequences that are
disturbed with a high noise level. However the overall performance is - as far
as our experiment allow to conclude - similar.

An interesting question for further work is if the reverse of the image sequence
could be exploited to improve the computation of the motion boundary in the
rarefaction area as the reversal should lead to shocks in this part then. Another
idea for further work is to investigate whether the approach can be stated in a
receding horizon control formulation.
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Image and Video Inpainting
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5

Image Inpainting

In the previous chapters we were concerned with variational approaches for
motion estimation using physical prior knowledge. We found that the Burgers
equation represents a beneficial regularisation term for a dynamic description of
motion due to its modelling of transport processes. In this part of the thesis we
investigate if this prior has advantages for other applications of computer vision
as well. In particular for inpainting applications, where motion estimation and
transportation processes of image information can be used to recover missing
parts in images or image sequences. Therefore, we first present some well-known
inpainting approaches for still images which provides us also with some basics
used in our video inpainting approach proposed in chapter 6 where we make
use of a fluid dynamic based information transport process.

5.1 Introduction

The idea of inpainting has its origin in methods that were used for the restora-
tion of artwork from the Renaissance. The restoration of damaged paintings
was done manually by professional artists [44, 139]. The main idea is to use
the information around the damaged area of an image to restore the damaged
part. That often means that the image colour in the part that has to be re-
paired should be a smooth continuation of the boundary colour with preserving
incoming edges. The mechanism of ”inpainting” is also used by photographers
and film restaurateurs. Inpainting techniques regained interest particular in the
field of computer vision and the media industry as it turned out to be useful for
digital images and image sequences too and has led to several applications. For
example it plays a role in film industry to obtain ”special effects” by removing
auxiliary devices from the scenes. Other applications includes scratch removal,
the reconstruction of occluded image parts, or the removal of undesired objects.

A famous inpainting approach was introduced to image processing by Bertalmı́o,
Sapiro, Caselles and Ballester [10], where they proposed a fundamental math-
ematical formulation of the inpainting problem with a third-order PDE. Since
then several different approaches have been developed: This includes fluid dy-
namic based approaches [9, 57], variational [27], Bayesian [96], and curvature

89
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based approaches [26, 135].

In computer vision the aim of inpainting is to find a reasonable and undetectable
reconstruction of image parts where the image information is damaged or even
completely missing. An example is shown in figure 5.1 where the black bars
should be reconstructed by using the information that is still available to obtain
an image that should be as close as possible to the original image.

Figure 5.1: Inpainting problem: The task is to recover the missing infor-
mation (black bars) in the image by using the image information that is still
available.

5.1.1 Problem

In our following discussions we use the following notation: Let I0 = I0(x) be
an ideal image which is defined in the whole image region x = (x1, x2) ∈ Ω0.

I0 ∈ Ω0

∂Ω

Ω

Figure 5.2: Topology of the inpainting model. The inpaint region Ω ⊂ Ω0 is
to be reconstructed using the image information I0 ∈ Ω0 that is still present
outside of the boundary ∂Ω of the inpaint region.

Damaged or missing regions which may result from scratches, acquisition errors,
occlusion or other mechanisms define the so-called inpaint region Ω ⊂ Ω0 (cf.
fig. 5.2) in which the image information should be restored. We assume that
such subregions are without any image information itself. The image intensity
I0 is assumed to be smooth outside of Ω and it is assumed that the image data
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is known on the boundary ∂Ω. The goal is to recover the image in the inpaint
region using the surrounding information in an undetectable manner.

5.1.2 Classification

In the literature one can find several different inpainting methods. A classifica-
tion of these methods could be made based on the application or on the kind
of inpainting techniques that are used. In this thesis we favour a classification
which is based on the technique underlying the individual approaches (fig. 5.3).

Inpainting

Textured Inp. Non−Textured Inp.

Transport

Axiomatic

Transportation

Diffusion ElasticaTotal Variation

Transp. & Diffusion

Variational Models

Joint Interpolation Active Contours

Figure 5.3: Inpainting classification based on the technique underlying the
individual approaches.

We distinguish between texture based and non-texture based inpainting ap-
proaches. In this thesis we do not consider texture based inpainting methods
which synthesise stochastically the reproduction of a texture from a sample
within the inpaint region. Usually, a statistic model is proposed first, followed
by pixel and patch-based sampling techniques for the actual texture inpaint-
ing. For texture based inpainting approaches which are, however, beyond the
scope of this thesis, the interested reader may be referred to [71, 140, 11, 39, 55].

The non-texture based inpainting approaches we are interested in are based
on PDEs and are intended mainly for images of man-made objects as natural
images inevitably involves their statistical modelling. We distinguish further
between transport mechanisms and variational based methods.

The first category includes the approaches which explicitly transport informa-
tion into the inpaint region using the surrounding data. This transport pro-
cesses can be modelled - for example - by transport equations that occur in fluid
mechanics: convection or diffusion processes [10, 29] or their combination [9, 28].
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The second category include approaches that made use of variational models,
approaches which utilise the total variation measure [30, 27, 113, 114], elastica
models [26, 90], joint interpolation methods [5] and Mumford-Shah image mod-
els [98, 46, 24].

In the following we present some established inpainting approaches mainly with
the aim to provide ideas for our video based inpainting approach in chapter 6.

5.2 Established Techniques

The inpainting approaches we describe in the following come from both the
transport based and the variational based categories. Our focus lies on the
modelling of physical based fluid transport mechanisms and variational for-
mulations in anticipation of the development and description of a new video
inpainting approach in chapter 6.

We start in the next section with a combined transport and diffusion process
based image inpainting approach, which describes fundamental inpainting tech-
niques used in our video inpainting approach. The following approaches utilise
physical equations and the total variation measure known from approaches to
image denoising and decomposition [113, 114, 4, 25, 138].

5.2.1 Fluid Mechanic Based Approach

In the following we are concerned with the inpainting approach of the authors
Bertalmı́o, Bertozzi and Sapiro [9]. They make use of ideas from classical fluid
dynamics in order to propagate image information along isophote lines by a
transport equation from the exterior into the inpaint region Ω.

An important point of this fluid dynamic based image inpainting approach is
that it links the image intensity function I with the velocity field v(x, t) =
(v1(x, t), v2(x, t))

⊤, x = (x1, x2) which is supposed to be divergence-free and
therefore satisfies the condition ∇ · v = 0.

Such a vector field can be obtained from the scalar image intensity function
I = I(x, t) by using the following equations

v1 = −∂x2
I,

v2 = ∂x1
I

or shorter v = ∇⊥I where v1 and v2 are the two components of the vector
field v = (v1, v2)

⊤. The iso-intensity lines of the image intensity function I are
also known as isophote-lines of the image - in fluid dynamics they are called
streamlines. In this approach the image intensity function plays the role of a
stream function whose isophote-lines define the stream lines of the flow. In
figure 5.4 these lines together with the appropriate vector field v are illustrated
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Figure 5.4: Isophote lines Left: Smoothed ”Lena” image. Right: Isophote
lines within a part of the image overlaid with the transport velocity field
v = ∇⊥I which is parallel to the isophote lines.

for an image. The vector field along the isophote lines is then used to transport
image information into the inpaint region. But instead of transporting the grey
values directly the Laplacian ∆I of the image is transported. The vorticity
transport equation which can be derived from the Navier-Stokes equation is
used by the authors for the propagation process as there is a connection between
the vorticity s and the Laplacian of an image. This can be seen if we recall
that the vorticity for an incompressible flow is defined as the rotation of the
corresponding velocity field. For the two-dimensional flow we obtain

s := ∇× v = ∂x1
v2 − ∂x2

v1 = ∂2
x1
I + ∂2

x2
I = ∆I, (5.1)

which means that the Laplacian of I itself represents the vorticity. The trans-
port process is illustrated in figure 5.5. The Laplacian of the image ∆I is

Figure 5.5: Vorticity. Left: Laplacian of the Lena image ∆I as vorticity s,
which is transported with the velocity field v in isophote direction. Right: A
section of the left Laplacian image overlaid with the transport velocity field
v = ∇⊥I in isophote direction.

transported using the velocity field v = ∇⊥I along the level-lines into the in-
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paint region. Note that this process transports only the information of the
Laplacian into the inpaint region and the actual intensity has to be recovered
by integrating the appropriate Poisson equation with respect to the intensity
information of the boundary of the inpaint region.

After this short description of the approach we provide details of our imple-
mentation below.

Approach

The principle of the inpainting approach discussed here is based on fluid dy-
namical transport mechanisms. This transport mechanism satisfies a particular
partial differential equation which describes incompressible flows that are used
to transport image information into the inpaint region. Incompressible flows
are governed by the Navier-Stokes equations. Note that a flow is incompressible
if the velocity field u is divergence-free ∇ · u = 0 and the mass is conserved.
The Navier-Stokes equation for incompressible flows reads as follows

∂tu+ (u · ∇) u = −
1

ρ
∇p+ ν∆u in Ω, (5.2)

along with the constraint for incompressible fluids

∇ · u = 0, (5.3)

and the boundary condition

u = 0 on ∂Ω.

In these equations ν denotes the coefficient of kinematic viscosity, ρ represents
the density and p the scalar valued pressure of the fluid.

In the following the aim is to apply the Navier-Stokes equation to digital images
which consist of scalar pixel values. In order to do so we make use of a refor-
mulation of the incompressible Navier-Stokes equation (5.2) that is explained
in section 7.4 in detail. The resulting equation depends only on the velocity u
and no longer on the pressure p. This special case of the incompressible Navier-
Stokes equation is known as the vorticity transport equation which represents
also a form of an advection-diffusion equation (cf. also sec. 7.3 and 7.2):

∂tω + (u · ∇)ω = ν∆ω in Ω,
(5.4)

ω = 0 on ∂Ω.

Here the vorticity ω in two dimensions is defined as the following scalar valued
measure

ω = ∇× u = ∂x1
u2 − ∂x2

u1 = ∂2
x1
φ+ ∂2

x2
φ = ∆φ
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and provides the connection between the incompressible velocity field u and a
scalar stream function φ, which represents the image intensity in this approach.
In the following we list the variables used in the inpainting approach and their
analogous counterpart in fluid dynamics:

Inpainting Quantities Fluid Dynamic Quantities

image intensity I stream function φ
isophote direction v = ∇⊥I fluid velocity u
smoothness s = ∆I vorticity ω = ∆φ

The authors of [9] introduced the following modified version of the vorticity
transport equation:

∂ts+ (v · ∇)s = ν∇(g(|∇s|)∇s) in Ω,
(5.5)

s = ∆I0 on ∂Ω.

this means we use s = ∆I outside of the boundary to construct a continuity
solution on the boundary, to transport the information continuously into the
inpaint region. The function g allows for anisotropic diffusion [141] within the
smoothness term. For g = 1 equation (5.5) is equivalent to equation (5.4). See
also section 7.2.1.

Using the modified vorticity transport equation (5.5) the image information
is – as desired – transported into the inpaint region. The vorticity transport
equation is solved for a two-dimensional velocity field v = (v1, v2) with a given
vorticity s = ∆I on the boundary ∂Ω of the inpainting domain Ω. This trans-
ports the vorticity information into the inpaint region Ω using the surrounding
data.

Finally, the image intensity I, which defines the transport velocity field v =
(−∂x2

I, ∂x1
I)⊤, is recovered by solving the Poisson equation

∆I = s in Ω,
(5.6)

I = I0 on ∂Ω,

with fixed Dirichlet boundary conditions (using the original image data I0 at
the boundary). We refer to section 7.1 for a detailed description of the Poisson
equation.

To summarise, the vorticity transport equation (5.4) is derived from the Navier-
Stokes equation and an analogous form of the equation is given by (5.5), where
the isotropic diffusion term is modified to allow anisotropic filtering. By using
equations (5.5) the vorticity s (5.1) is transported into the inpaint region which
is then used to update the image intensity by integrating the Poisson equation
(5.6).
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Algorithm

In the following, we illustrate our implementation of the fluid mechanical based
inpainting algorithm described above. We first apply it to a simple example
problem which is shown in figure 5.6 in order to show its principle behaviour.
There, the aim is to reconstruct the missing information in the (black) inpaint
region. The user interaction that is required within the algorithm is to mark
the inpaint regions.

Figure 5.6: Left: Image with missing information (black rectangle in the
middle). Middle: The inpaint region is indicated by a binary mask. In this
case the value 1 (white) represents the inpaint region. Right: Inpaint result.

The vorticity transport equation (5.5) is solved within the inpaint region Ω using
appropriate boundary values. The inpaint algorithm is sketched in (Algorithm
2) and further explained below. For details of the numerical implementation of
the partial differential equations we refer to the appropriate sections in part III
of this thesis.

Algorithm 2 Navier-Stokes Inpainting Algorithm

Require: choose tolerance ǫ, viscosity ν,
1: compute initial vorticity s0 (5.7)
2: compute initial velocity v0 (5.8)
3: repeat

4: solve (5.5) for vorticity s using 8.2.3 in Ω
5: solve (5.6) using 8.1.5 to obtain updated Im in Ω using (Algorithm 3)
6: compute vorticity s from Im in Ω
7: compute velocity v from Im in Ω
8: until |Im − Im−1|/|Im| < ǫ

Initialisation: The inpaint region Ω in the input image I0 = It=0 has to be
marked by an appropriate binary inpaint mask as indicated in figure 5.6. In
our implementation the inpaint region Ω is represented by ones and the other
regions by zeros. A tolerance value ǫ has to be defined which defines when
the solution is considered to have reached a steady state solution. A value for
the viscosity coefficient ν must be chosen, which weights the strength of the
smoothness term. Higher values of ν result in a higher diffusion rate (as in sec.
7.2). For our test values ν = 0.02 and ǫ = 10−6 turned out to be reasonable



5.2. Established Techniques 97

choices.

To generate the initial vorticity s0 the Laplacian ∆I0 of the image I0 is used.
It is computed over the full image region Ω0 Ω with continuously boundary
conditions on ∂Ω

s0 = ∆I0 in Ω0

s0 = ∆I0 on ∂Ω. (5.7)

The initial velocity field v0 := v, v = (v1, v2)
⊤ is obtained using

v = (−∂x2
I0, ∂x1

I0)
⊤ in Ω0

v = v0 on ∂Ω. (5.8)

The numerical realisation of the Poisson equation is explained in section 8.1.5.
An example for such an initial vorticity s0 along with the velocity field v0 is
depicted in figure 5.7.

Figure 5.7: Left: Laplacian image ∆I0 of the image in figure 5.6 as initial
vorticity. Right: Part of the Laplacian image along with its initial velocity
field.

This initialisation is used to enter the main loop of the algorithm:

The vorticity transport equation (5.5) is solved within the inpaint region Ω
(line 4 of algorithm 2). Numerical details of our implementation can be found
in 8.2.3.

The transported vorticity information within the inpaint region is used to ob-
tain the updated image intensity Im by solving the Poisson equation (5.6) with
Dirichlet boundary conditions (line 5) for which we used the preconditioned
conjugate gradient method explained in section 9.1.

From image Im, velocity values v and vorticity values s for the next iteration
m+ 1 are computed. Figure 5.8 depicts the computed vorticity and the corre-
sponding velocity after 50 iterations.

The algorithm stops when the relative change of the image intensity is below
the threshold ǫ indicating that the image I changes not appreciably (cf. line 8).
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For our small example a steady state solution is obtained after 150 iterations
which is shown in figure 5.6.

Note, that we perform 10 iterations without and 5 iterations with anisotropic
diffusion on the intensity image Im leading to sharper edges. (See also sec. 7.2.1
for anisotropic diffusion.)

Figure 5.8: Left: The result of the vorticity transport after 50 iterations.
Right: Velocity field after 50 iterations.

In figure 5.9 and 5.10 the results for a more interesting inpaint example is
shown. They illustrate the inpaint process for a small region which contains
edges and a junction within the ”Lena” image. In figure 5.9 the transport of
the Laplacian is indicated while figure 5.10 shows the recovered inpaint region.
(Another result is shown in figure 5.15 later in this chapter.)

Figure 5.9: Left: Laplacian of the ”Lena” image 5.10. Middle: Cutout of
the inpaint region along with the initial velocity field v0. Right: Computa-
tional result of the vorticity transport after 50 iterations.

5.2.2 Total Variation Image Inpainting

In this section we present a variational inpainting approach introduced by Chan
and Shen [27] that is known as total variation (TV) image inpainting. This ap-
proach can be seen as a generalisation of the total variation model for denoising
of Rudin, Osher and Fatemi [114] as for an empty inpainting region they turn
out to be the same.



5.2. Established Techniques 99

Figure 5.10: Left: ”Lena” image. Middle: Cutout of the inpaint region.
Right: Recovered image region.

The following topology which is sketched in figure 5.11 is used for the inpainting
model. The area ΩB surrounds the inpaint region Ω. The boundary ∂Ω of the

I0 ∈ Ω0

Ω
ΩB

∂Ω

Figure 5.11: Topology used within most variational inpainting models. The
inpaint region Ω is to be reconstructed using the image information I0 that is
present in the band ΩB around the inpaint region Ω.

inpaint region lies in the interior of Ω∪ΩB, which we also call extended inpaint
region.

The TV-inpainting problem is formulated as the minimisation of the following
energy functional with respect to I:

J(I) =

∫

Ω∪ΩB

|∇I| dx+
1

2
λB

∫

ΩB

|I − I0|
2 dx, (5.9)

where

λB =

{

λ, x ∈ ΩB

0, x ∈ Ω
(5.10)

plays the role of a Lagrange multiplier which incorporates the denoising on the
surrounding image region on ΩB. Thus the aim of the approach is to find an
image I on the extended inpaint region that minimises (5.9) thereby using the
total variation (TV) image prior

TV (I) =

∫

Ω∪ΩB

|∇I|dx (5.11)
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within the energy functional (5.9). The TV-norm is essentially a L1-norm of
the image derivative and therefore a measurement of the amount of occurring
oscillations of the image function I. Compared to a prior using the L2-norm,
this prior tends to penalise discontinuities in I less severely and therefore helps
to preserve the edges of the original image.

The Euler-Lagrange equation for the energy functional (5.9) results in

−∇ ·

(

∇I

|∇I|a

)

+ λB(I − I0) = 0, (5.12)

for the extended inpaint region along with von Neumann boundary condi-
tions on ∂(Ω ∪ ΩB). Here for numerical reasons the authors used |∇I|a :=
√

|∇I|2 + a2 to replace |∇I| introducing the ”lifting” parameter a. According
to the authors the parameter leads to an improved conditioning of the model
and represents a threshold determining where the model tries to imitate the
harmonic inpainting |∇I| << a and where the model resumes the TV inpaint-
ing |∇I| >> a.

A steepest-decent algorithm for the objective functional (5.9) could be imple-
mented stepping iteratively in the direction:

∂tI = ∇ ·

(

∇I

|∇I|

)

+ λB(I0 − I). (5.13)

However, in [27] the authors describe in detail the preferable implementation
resulting in an iterative algorithm solving the Euler-Lagrange equation (5.12)
directly.

An advantage of this inpainting model is that it can deal with noisy images but
the same authors formulated the curvature-driven diffusion inpainting model
[29] to overcome some drawbacks they observed in the TV-inpainting model.
Their main point is that it violates the connectivity principle 1 of visual per-
ception (cf. fig. 5.12).

5.2.3 Curvature-Driven Diffusion Inpainting

The Curvature-Driven Diffusion (CDD) inpainting model [29] is based – as the
name implies – on a diffusion mechanism. It is a modification of the Euler-
Lagrange equation used in the TV-inpainting model of Chan and Shen [27] and
incorporates an anisotropic diffusion mechanism which is driven by the curva-
ture information of incoming isophote lines.

As already mentioned, the TV-inpainting model described in the previous sec-
tion cannot successfully connect isophote lines that are far separated. In partic-
ular the connectivity principle cannot be fulfilled when the length of the inpaint

1The Connectivity Principle refers to the fact that our visual system is able to connect
parts of objects which are separated from each other by some occlusion or foreground regions
[77, 105].
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region Ω is larger than the width of the object of interest as indicated in figure
5.12. The CDD model is able to overcome this drawback.

length

width

Figure 5.12: Connectivity principle of visual perception: The CDD inpaint-
ing model can connect an object that is occluded (by the inpaint region) even
if the width of the object is smaller than the width of the inpaint region (red
area).

This model is driven by the following equation:

∂tI = ∇ ·

(

g(|κ|)

|∇I|
∇I

)

+ λB(I − I0), (5.14)

with λB as extended Lagrange multiplier as defined in (5.10). For the initiali-
sation, the information of the original image is used in ΩB and arbitrary values
can be utilised in the inpaint region Ω (an initialisation with the TV-inpainting
results are recommended in [27]):

I(x, 0) = I0(x), x ∈ ΩB ∪ Ω.

In the TV model, the diffusion coefficient DTV depends reciprocally on the
gradient of the image I:

DTV =
1

|∇I|
. (5.15)

This means that the diffusion in smooth regions is much higher than in regions
with edge structures. Chan and Shen modified the inpainting model in such
a way that the diffusion coefficient DCDD depends on the curvature of the
isophotes of the image I:

DCDD =
g(|κ|)

|∇I|
. (5.16)

The curvature κ along any isophote line of an image I is given by

κ = ∇ ·

(

∇I

|∇I|

)

, (5.17)

An example of this curvature measure is illustrated in figure 5.13. For |∇I| = 1
this results in the curvature κ = ∆I which is just the Laplacian of the image.

The function g is assumed to be continuous. In order to suppress large curva-
tures and support small curvatures the authors identified the following require-
ments for g:
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Figure 5.13: Illustration of the curvature measure (5.17) for the ”Lena”
image.

g(s) =







0, s = 0
∞, s = ∞
between, 0 < s <∞.

The introduction of g(κ) penalise large curvatures and encourage small ones.
That means, that the diffusion gets stronger where the isophotes have larger
curvatures, while the diffusion decreases in regions with straight lines. Replac-
ing g with 1 results in the classical TV inpainting model.

The CDD inpainting model is a third-order PDE model and is able to continue
isophote lines and allows to connect long distances by straight lines satisfying
the connectivity principle. Figure 5.14 presents the computational result for the
variational model approach (5.14). The fourth-order elastic model described in
the next section is designed to allow the continuation of isophote lines with a
curvature.

Comparison

Figure 5.15 presents the result for the fluid dynamic based approach (5.5)-(5.6)
and the variational model approach (5.14). For this example it seems that the
Navier-Stokes inpainting results in a visually better inpainting.

For our purposes we implemented the CDD and the Navier-Stokes inpainting
approaches and we will compare in chapter 6 some results of our video inpainting
with the frame-by-frame extension of the Navier-Stokes inpainting approach
[9]. However, in the following we sketch the ideas of some other inpainting
approaches.
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Figure 5.14: Inpainting example ”Stonehenge”: Top left: Image with in-
paint regions with zero as initialisation (black regions). Top right: Inpaint
result for iteration 90 with the CDD approach (5.14). Bottom left: In-
paint result for iteration 240. Bottom right: Final result after convergence.
Smooth regions like the sky are well recovered, while regions with edges and
junctions (edges of the stones) tend to be smoothed out.

Figure 5.15: Left: ”Lena” image with marked inpaint regions (black bars).
Middle: Inpainting result using the Navier-Stokes inpainting approach (5.5)-
(5.6). Right: Inpainting result using the Curvature Driven inpainting ap-
proach (5.14). The Navier-Stokes inpainting results in a visually better in-
painting.

5.2.4 Elastica based Inpainting Model

In 1744 Euler studied a particular class of smooth curves and their application
to shape modelling under external forces [106]. These kind of curves are nowa-
days known as Euler elastics. Birkhoff and de Boor used them in a non-linear
spline model [13]. The first author who introduced this mathematical knowledge
as a prior curve model to the computer vision community was Mumford [97].
Masnou and Morel [90] enhanced this model in their elastica based variational
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inpainting approach to interpolate isophotes using dynamic programming. In
the following we are concerned with an approach of Chan, Kang and Shen
[26] who modified the model of Masnou and Morel in a variational and PDE
based context resulting in the elastica and curvature inpainting approach. It is
designed to overcome the drawback of Chan and Shen’s model which approxi-
mates the isophotes only as straight lines. The elastica model interpolates the
two boundary end points of an isophote line by an Euler elastica, therefore as
a curve.

Recall that the model of Bertalmı́o et al. transports information along isophotes,
while the CDD (and TV) inpainting model of Chan and Shen diffuses informa-
tion across the inpainting domain.

Chan, Kang and Shen [26] applied the elastica image model

∫

Ω

(a+ bκ2) dx

in order to improve their TV inpainting model resulting in the Euler elastica
inpainting approach where the following energy functional

J(I) =

∫

Ω∪ΩB

(a+ bκ2) |∇I| dx+
1

2
λ

∫

ΩB

|I − I0|
2 dx (5.18)

has to be minimised. Here a and b are two positive weights.

The elsastica based model results in the TV-inpainting model of Chan and Shen
[27] for the extreme case when a

b
= ∞. The Euler-Lagrange equation of the

energy functional (5.18) is denoted by the evolution equation

∂tI = ∇ ·

(

(a+ bκ2)n−
2b

|∇I|
∂τ (κ|∇I|) τ

)

− λB(I − I0), (5.19)

where n = ∇I
|∇I| the normal vector and τ = n⊥ the tangential vector.

In [26] the authors describe the implementation of the evolution equation (5.19)
resulting in a central and upwind differencing scheme with min-mod discretisa-
tion.

The elastica inpainting approach combines the transportation mechanism of
Bertalmı́o’s model [9] and the curvature-driven diffusion mechanism of Chan
and Shen’s model [29].

5.2.5 Ginzburg-Landau Equation

Grossauer and Scherzer presented in [57] an inpainting approach that is based
on the complex Ginzburg-Landau equation. This equation was originally devel-
oped by Ginzburg and Landau [53] in order to describe physical phase transition
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phenomena near their critical temperature. The equation also turned out to
be useful to describe chemical reactions, pattern and shock developments, and
boundary layer problems. Grossauer and Scherzer described an analogy be-
tween physics and image analysis where they interpret the homogeneous areas
as domains with nearly constant grey value intensity and the phase transition
regions as edges in the image.

The equation is able to produce homogeneous regions which are separated by
phase transition regions. These transition regions are usually represented by
minimal surfaces, that is surfaces with vanishing mean curvature.

The authors minimise the following energy functional

J(u) =
1

2

∫

Ω

{

| − i∇u|2 + α|u|2 +
1

2
β|u|4

}

dx (5.20)

and note that the −i in the first term is for their approach a non-essential left
over from quantum mechanics. Here u ∈ C is a complex valued function on
the image domain Ω. The authors link the real valued part of u with the grey
value intensity I of an image. With the choice −α = β = 1

ǫ2
they discretised

the differential equation

∂tu = ∆u+
1

ǫ2
(

1 − |u|2
)

u in Ω (5.21)

in order to find a minimum of the functional (5.20) using Dirichlet boundary
conditions . The equation (5.21) is known as an instance of a reaction-diffusion
equation and the parameter ǫ is interpreted in physics [42] as the coherence
length and corresponds to the width of the transition region (for images this is
the width of the edges).

In [57] the numerical solution is obtained by an explicit forward finite differ-
ence scheme. According to the authors this inpainting approach provides very
good results for locally small inpaint regions and is suitable for the removal of
cracks or text in images. The authors provided also an example for the restora-
tion of high-dimensional data using a generalised form of the Ginzburg-Landau
equation which is useful for frame interpolation and the reconstruction of frag-
mentary given surfaces.

5.2.6 TV-Stokes Equation

The inpainting approach of Tai, Osher and Holm [129] is related to the trans-
port based approaches of Bertalmı́o et al. [9, 5] and the minimisation of the
divergence of an vector field like in [48]. In the following we describe the ap-
proach of Tai, Osher and Holm in more detail. Their inpainting method is
divided into two steps. The first step consists in the computation of a vector
field within the inpaint region that is related to the isophote directions.
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In order to propagate the normal vectors n = ∇I0 of the isophote lines or
equivalently the tangential vectors v = ∇⊥I0 of the isophote lines into the
inpaint region the authors propose to minimise the following energy functional:

J(v) =

∫

Ω

|∇v|dx+
1

2
λ

∫

ΩB

|v − v0|
2dx (5.22)

subject to
∇ · v = 0,

as they need a divergent free vector field for the second step. They discretised
the corresponding Euler-Lagrange equation

−∇ ·

(

∇v

|∇v|

)

+ λB(v − v0) −∇µ = 0 in Ω ∪ ΩB,

∇ · v = 0 in Ω ∪ ΩB,

∇v · nout = 0 on ∂(Ω ∪ ΩB)

and used them in a gradient descent algorithm to obtain the optimal v. Here
nout denotes the outward unit normal vector of the extended inpaint region
Ω∪ΩB . In [129] they sketched their implementation of this step for a simplified
situation assuming that ΩB is just one pixel wide.

The second step of their algorithm consists of the reconstruction of the image
I from the vector field in the inpaint region by minimising the following energy
functional

J(I) =

∫

Ω

{

|∇I| − ∇I ·
n

|n|

}

dx+
1

2
λ

∫

ΩB

|I − I0|
2dx.

where the vectors n are perpendicular to the vectors v obtained in the previous
step, i.e. n = v⊥ = (−v2, v1)

⊤. The Euler-Lagrange equations are

−∇ ·

(

∇I

|∇I|
−

n

|n|

)

+ λ(I − I0) = 0 in Ω,

(

∇v

|∇v|
−

n

|n|

)

· nout = 0 in ΩB.

Again, the implementation of this step for a simplified situation can be found in
[129]. The results presented in that of this paper indicate that the approach can
deal with rather large inpaint regions. Using different boundary conditions for
the inpaint region Ω the authors were able to influence the information which
is propagated into the inpaint region.

However, this approach is related to our video inpainting approach in the next
chapter by using a two step algorithm. In the first step a transportation field
is recovered by an variational approach. In the second step the image infor-
mation is reconstructed within the inpaint region. While the authors minimise
an appropriate energy functional with respect to the image function, we trans-
port the image information by using a physically transport equation into the
inpainting region.
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5.3 Discussion

In this chapter we presented some established inpainting approaches which make
use of fluid dynamically inspired transport mechanisms and approaches that
use the variational framework in order to model the inpaint process. All the
approaches have in common that they are implemented by solving the cor-
responding partial differential equations incorporating some prior knowledge
about the desired outcome of the inpainting. We were mainly interested in the
approaches which use physical mechanisms like (anisotropic) diffusion and the
vorticity transport equation.

Inspired by these approaches we develop in the next chapter a new inpainting
approach for image sequences using the Burgers equation and an advection-
diffusion equation. There these transport and diffusion mechanisms are used as
prior knowledge to complete missing parts in video sequence.

The main difference between video inpainting and inpainting of still images
is that for video inpainting the information of the entire image sequence can
be used. However, a simple way to apply the image inpainting approaches
presented in this section to video inpainting is to use them frame-by-frame,
which means that each frame of the sequence is treated as an independent
image, dropping any information from the other frames.
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6

Video Inpainting

In part I of this thesis we presented variational based optical flow algorithms for
motion estimation in image sequences. In chapter 5 we were concerned with im-
age inpainting algorithms using fluid dynamical processes to reconstruct missing
parts in images. In this chapter we want to combine this knowledge in order
to design a new algorithm for the reconstruction of missing data in image se-
quences. Our focus is on exploring the potential and the limitations of this
PDE-constrained approach to inpainting rather than on working out applica-
tion software based on existing related work.

6.1 Introduction and Motivation

Video inpainting has the aim to recover video information in damaged (or with
logos or text occluded) parts of image sequences. Figure 6.1 depicts an example

t

x

y

t

x

y

Figure 6.1: Video inpainting scenario. Left: Lost image information is rep-
resented by the black bar in the shown image frame. We intend to recover the
missing parts in the image sequence using the surrounding image information
of the image frames. Right: Computational result obtained by our video in-
painting approach described in this section. This result will be discussed in
detail below.
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where an area of video information is artificially removed. The regions of miss-
ing image data should be reconstructed in a visually undetectable manner.

Image inpainting as described in the previous chapter is used as a foundation
for video inpainting. One of the first video inpainting approaches was intro-
duced in [9] as a frame-by-frame based method, where the image inpainting
method described in section 5.2.1 is used to recover the missing information
frame-by-frame. In this way every image inpainting algorithm can be used for
video inpainting. Partial differential equations in these methods are applied
only spatially and do not take into account the temporal information that a
video provides. It is therefore often restricted to applications which only needs
to recover image information for small missing image parts.

Therefore, it is desired to design video inpainting approaches, which also ex-
ploit the knowledge that the data is temporally continuous. There are several
options to incorporate temporal information into inpainting approaches. For
example, temporal filtering applied only to each pixel along the temporal axis
of image sequences [31] or spatio-temporal filtering in combination with motion
estimation techniques [81, 83], where the filtering effects pixels and neighbour
pixels, which belong to the same object in every image. The video inpainting
approach presented in this chapter takes into account spatio-temporal filtering
based on physical model equations. We will utilise PDE based techniques that
restores degraded image sequences with large spatial and temporal missing data
areas. Our video inpainting approach consists of two steps. In the first step we
recover the motion vector field for a subsequent pair of image frames using the
dynamical flow estimation approach described in chapter 3. The obtained flow
field is then used in the second step to transport the image information into
the missing image parts using an advection-diffusion equation.

The novelty of this approach is the combination of two PDE-based transport
mechanisms to reconstruct the video information in a spatio-temporally man-
ner leading - to a certain degree - to a structure preserving inpainting. The
approach exploits the constant velocity assumption of the Burgers equation
and the assumption that a grey value of an object doesn’t change along its
motion trajectory.

Within our experimental section we show the advantages of our video inpainting
approach along with its limitations.

6.1.1 Overview

In subsection 6.1.2 we first present some work related to our approach. We
introduce our two step video inpainting approach in section 6.2 where we explain
the interaction of the two employed partial differential equations. In section
6.3 we provide details of our implementation. In section 6.4 we illustrate our
results for several synthetic image sequences and for real image data. We used
an extension of the Navier-Stokes image inpainting approach 5.2.1 to video
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inpainting to compare the results with our new approach. Within the conclusion
in section 6.5 we provide some innovative ideas for further work.

6.1.2 Related and Further Work

Like our approach one of the first video inpainting approaches presented by
Bertalmı́o et al. [10, 9] belongs to the class of PDE based approaches. They
extended their Navier-Stokes image inpainting, which we presented in section
5.2.1 to a frame-by-frame video inpainting method and applied the partial dif-
ferential equations only in a spatially context. That means the PDEs are solved
separately for each frame to complete the image sequence frame-by-frame. Con-
trary to this approach, we incorporate spatio-temporal information of the video
sequence. Ideas from classical fluid dynamics are also used to transport exterior
image information into the region of missing data. The authors use also a two
steps process. Note that our spatial temporal regularised approach recovers
in the first step the velocity estimate between subsequent image frames using
the optical flow approach presented in chapter 3. Then in a second step the
estimated motion field is used to transport the image intensities surrounding
the marked region of missing data into the inpaint region. In Bertalmı́os et al.
inpainting approach, the image information is first transported and then the
image measurements are recovered. However, this process is only done frame-
by-frame and is therefore a spatial regularised approach.

Grossauer [56], who is also concerned with an optical flow and PDE based video
inpainting approach used the estimated optical flow fields to detect degraded re-
gions in the image sequence and rebuild the detected regions. Grossauer makes
use of a variational formulation for the optical flow problem as well, but instead
to minimise the quadratic form of the optical flow constrain equation (2.2) he
minimises the displacement field between pairs of consecutive image frames.
Spatial smoothness is achieved by a homogeneous regularisation. Corrupted re-
gions/pixels are determined by a threshold parameter. The difference between
the image intensity in the actual frame and the corrected image intensities of
the previous image frame, using the backward and the forward flow field, are
computed. While Grossauer uses the displacement vector fields to copy the im-
age information into the detected regions, we use a physically model equation
to transport the available image information into the inpaint regions.

Another optical flow based approach was presented by Kokaram [82] using
spatio-temporal information which allows to restore small missing parts in noisy
image sequences.

Another related problem where it is useful to exploit spatio-temporal continua-
tion is the task of automatically filling in missing spatio-temporal parts in video
sequences which might be caused by the removal of undesired objects. In [144]
Wexler modifies the model [10, 9] to a global optimisation problem to obtain
global consistency. The resulting is designed to satisfy the local spatio-temporal
constraint that similar areas in the video sequence should be similar to related
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parts of the image sequence. The global component of the algorithm results in
the fact that all the local patches are consistent in a global space-time man-
ner. Wexler applied the approach to texture synthesis in three dimensions as
well, but this is according to the author computationally quite intensive. One
of the latest work is from Patwardhan [109], which extends an earlier optical
flow based video inpainting approach [108] that is based on the idea to separate
foreground and background objects.

In the following we introduce our inpainting approach based on a global opti-
misation problem to recover the optical flow of the sequence. This is then used
to transport the image information to reconstruct the sequence.

6.2 Video Inpainting Approach

We present in this chapter a video inpainting approach exploiting two physical
motivated transport equations. Our two-step approach recovers the optical flow
field of the image sequence in the first step and transports the image informa-
tion along with the flow field into the inpaint region in the second step. The
flow field is computed using the dynamic image motion approach of chapter 3.
The image information is transported using an advection-diffusion equation as
described below.

Similar to the previous chapter we assume that the regions of missing informa-
tion (inpaint region) in the video are known and indicated by a binary mask. As
we focus on the reconstruction of missing parts in the video we further simplify
the problem by using the same mask for each frame in the image sequence, that
means that the region of missing information is always at the same location for
each image frame of the sequence. To obtain the inpaint region automatically,
Grossauer [56] as mentioned before used the estimated optical flow fields itself
to detect the degraded regions in the image sequences. However, we just assume
that the inpaint region is known and given by the appropriate mask.

In the following Ω represents the inpaint region of the image frame and Ω0

represents the entire image domain, including the inpaint region with respect
to time t. A particular pixel grey value is defined by its location and time and
denoted as I0(x1, x2, t). As the image frames are usually recorded at discrete
times within the time interval [0, T ] the time is sometimes given by its frame
number 1, ..., N .

In the following we describe the two successive steps of our inpaint algorithm.

6.2.1 First Step: Optical Flow Computation

The first step of our algorithm has the aim to compute the motion field between
a subsequent pair of image frames of the image sequence. The resulting vector
field is then used in the second step as the transportation field which trans-
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ports the video information into the inpaint regions. The motion estimation is
obtained by minimising the following energy functional

J(u) =
1

2

∫

Ω0

{(

∂tI0 + u · ∇I0

)2

+α
(

∇u⊤1 D(∇I0)∇u1 + ∇u⊤2 D(∇I0)∇u2

)

+β‖u− uT ‖
2
}

dx, (6.1)

which is essentially the same as in (3.4) with the matching term - including the
solution (uT := u(x, T )) of the Burgers equation

∂tu+ (u · ∇)u = 0,

u(x, t)t=0 = u0, (6.2)

as regularisation term. We minimise the energy functional (6.1) in the time
interval [tn, tn+1] which represents here the time interval between a subsequent
pair of image frames. Note, the difference between the energy functional (3.4)
and (6.1) consists in the definition of the image intensity function I respectively
I0. Here the function I0 refers to the image measurements including the inpaint
region. We solve the objective function over the entire image domain including
the region of missing image measurements. As already shown in section 3.4.3
the dynamic optical flow approach recovers due to the smoothness constraint
velocity estimates in regions of missing image measurements as well. As a result
we obtain a velocity field which is further used as a transport field to transport
the image information into the inpaint region.

The author of [56] uses a variational formulation for the optical flow prob-
lem, but instead to minimise the quadratic form of the optical flow constraint
equation (2.2) he minimises the displacement field between two consecutive im-
age frames. Spatial smoothness is achieved by a homogeneous regularisation.
Grossauer uses the displacement vector fields just to copy the image information
into the inpaint regions, while we use a physically based transport mechanism
to transport image information from the surrounding area into inpaint regions
as described below.

6.2.2 Second Step: Image Information Transport

Recall, Bertalmı́o et al. [10, 9] interpreted the image intensity as a stream func-
tion of an incompressible flow, the Laplacian of the image intensity as vorticity
of the fluid and the vector field of transportation by the stream function itself.
The vorticity transport equation, a special case of the Navier-Stokes equation is
used in a modified way to transport the Laplacian of the image intensity (which
equates to the vorticity) into the inpaint region. Then in a following step the
Poisson equation is solved to recover the image intensity of the image.
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In contrast to the transport of the Laplacian along the level lines, we transport
the image measurements itself from the exterior into the region of missing image
data. For this purpose we employ the standard advection-diffusion equation
along with the optical flow estimates of the image sequence. The optical flow
field u which is obtained by the minimisation of (6.1) is used to transport the
appropriate image information of the surrounding areas into the inpaint region.
For this task we have to solve the following advection-diffusion equation

∂tI0 + u · ∇I0 = ν∆I0,

u(x, 0) = u0 in Ω, t = 1, ..., N, (6.3)

I0 = g on ∂Ω, t = 1, ..., N

within the inpaint region. The coefficient ν represents the kinematic viscosity
of the fluid function which has some influence on the smoothness of the image
intensities in the inpaint region. Structures which are transported into the
inpaint region tend to appear smoother with higher values of ν. Note that
we are using Dirichlet boundary conditions to solve (6.3). In the following we
describe our numerical implementation of the approach.

6.2.3 Algorithm

In this section we describe how we implemented the full video inpainting ap-
proach. However, for particular details of the implementation we refer to the
appropriate sections in the numerical part of this thesis. First we are con-
cerned with the initialisation therefore gathering the appropriate start data for
the computation in the first frame:

a) Initialisation

i) Mark the inpaint region Ω within the given video sequence Ik, k =
0, ...N .

ii) Solve the energy functional (6.1) to obtain the minimiser û0 between
the first two image frames I0 and I1 in Ω0. Note the û0 provides a
vector field also within the inpaint region.

iii) Within equation (6.3) the minimiser û0 is used to transport the im-
age information into the inpaint region Ω. This can be performed
with (6.3). Therefore the inpainted version Iinp

0 of the image can be
computed from the image I0. We denote with Iinp the images within
the inpaint process.

iv) Set I1 = Iinp
0 .

In the following we discuss how the next frames are processed. The iterative
computations are quite similar to the computations needed for the first frame.

b) Main loop

i) Set k = k + 1.
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ii) Solve the energy functional (6.1) to compute the velocity field uk

between Ik and Ik+1 in Ω0.

iii) Use the resulting minimiser ûk to transport the image information
from the surrounding area into the inpaint region Ω. Use the advection-
diffusion equation (6.3) to obtain the inpainted image Iinp

k from the
image Ik.

iv) Set Ik+1 = Iinp
k and repeat the main loop until k = N .

6.3 Numerical Solution

As our video inpainting approach is a two step approach we have to solve the
flow estimation part (6.1)-(6.2) and the image data transportation part (6.3)
successively. For the solution of the optical flow estimation part we refer to
section 3.3 and 8.3, of the numerical part of this thesis.
In section 8.4 we describe the numerical implementation of the advection-
diffusion equation (6.3) - which is used to transport the image measurements
from the surrounding area into the inpaint region - using a finite difference
method.

6.4 Experiments

In this section we test and evaluate our algorithm using synthetic and real im-
age sequences. First, we explain the process of information transport into the
region of missing image data (inpaint region). We investigate advantages, dis-
advantages and limitations of our approach. We do this by applying the video
inpainting approach to different motion patterns and to a real image sequence.
After that, we compare the results with a frame-by-frame modification of the
Navier-Stokes image inpainting approach from section 5.2.1. In our experiments
we simply used a fixed inpaint region which is unchanged for each image frame
of the entire sequence.

The parameters for the solution of (6.1) - (6.2) are selected due to the expe-
rience from chapter 3. The viscosity term of equation (6.3) is set to ν = 0.02
within all experiments. Higher values lead to an over smoothing of the image
structures.

6.4.1 Information Transport

Experiment: ”Street” Sequence

Our first experiment demonstrates how image information is transported into
the inpaint region. First, we investigate the synthetic ”street” image sequence
[93], known from section 3.4.4. The inpaint region is illustrated by a black bar
(with size 180x10 pixels as depicted in the top left image of figure 6.2).
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Figure 6.2: Inpaint example using the ”street” sequence. Top left: One
frame within the street sequence along with the inpaint region marked by a
black bar. Bottom left: Velocity estimates obtained by (6.1) - (6.2) (param-
eters: α = 0.01, β = 0.001). Second: Cutout of the inpaint region along with
the velocity estimate. Third: Colour representation of the velocity field for
the cutout. Fourth: RMS error plot of this region with respect to true and
estimated velocity field.

In the first step of our inpainting algorithm we solve (6.1) - (6.2) for the first
two subsequent image pairs. Due to the spatial smoothness regularisation the
estimated flow field extends into the homogeneous inpaint region. In fact we
exploit the undesired effect of the blurring over motion boundaries. Neighbour-
ing movements around the inpaint region determine the flow field in this region.
As a result we can ”reconstruct” a dense flow field between the first two image
frames in the region of missing image measurements. The inertia modelled by
the Burgers equation results in a velocity field that is transported by itself over
time and the surrounding velocity is transported into the inpaint region as il-
lustrated in figure 6.3.

In regions with uniform flow (upper half area of the right image in fig. 6.2)
the velocity field is well estimated (cf. RMS error plot comparing the original
motion with the estimated motion in right image of fig. 6.2). Using this im-
age flow along with the advection-diffusion equation (6.3), image information
is transported into the inpaint region resulting in a desired reconstruction.

From chapter 3 we know, that due to the motion of the camera – which follows
the car – the background moves in the opposite direction of the car. This
motion pattern represents the main difficulty of this sequence: The two motion
areas are moving against each other and result in a shock formation within the
solution of the Burgers equation. Therefore, the most interesting region is the
motion boundary of the car.

The inpainting results for that region are shown in figure 6.3 for different image
frames. Note, that the shock formation can be observed at the front of the car.
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Figure 6.3: Inpaint results at different times (frames). Influenced by the
Burgers equation the velocity field is transported by itself within (6.1) - (6.2)
and with the velocity field the image information is transported into the inpaint
region using the advection-diffusion equation (6.3).

Starting with the first image in figure 6.3 we observe that the dense flow field in
the upper part of the image within the inpaint region moves to the left, while in
the middle part two motion fronts (one from the left and the other coming from
the right) are moving against each other. The velocity field is used to transport
it by itself due to the Burgers equation and can be observed in the second image.

In particular, the velocity field - resulting from the minimisation of (6.1) - (6.2)
- transports the image data into the inpaint region by using the advection-
diffusion equation (6.3). Investigating the fourth image and the last image of
the figure shows, that our transportation strategy allows an image structure
preservation (wheel of the car) over the transportation process. Image infor-
mation is transported from the right (upper and lower part of the image) and
from the left (middle part of the image) into the inpaint region and leads after
a few time steps to the reasonable reconstruction of the video data.

Experiment: ”Sphere” Sequence

For the ”sphere” sequence we know from section 3.4.4 that the motion field is
a static velocity field. Like before the inpaint region is given in each frame (top
left of fig. 6.4) and the computed flow field in the inpaint region leads to a
dense flow field. The image information is transported by the counter clockwise
rotational velocity field into the inpaint region. We depict the progress of image
information transportation in figure 6.4. The inpainting results after solving
(6.3) using the velocity result obtained by solving (6.1)-(6.2) are shown.

Using the recovered velocity field the image measurements are transported into
the inpaint region. The transportation process can be best recognised in the
second and third image frame of the sequence (top centre and top right). The
velocity near the top of the sphere is lower and therefore the amount of image
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Figure 6.4: Inpainting example: A sphere rotates in front of a stationary
background. Image transportation process. The image information is trans-
ported with the velocity field obtained by solving (6.1)-(6.2) in time. The
image measurements around the inpaint region (marked with a black bar) in
the first frame (top left) are transported using this velocity field in time. This
means the result of this transportation can be recognised in the second frame
(top centre). The velocity near the top of the sphere is lower and therefore the
amount of image information that can be transported into the inpaint region
is reduced. With an increasing time (and so in frame number) the last gap
can closed as shown in the last image.

information that can be transported into the inpaint region is limited. With
increasing time (and frame-number) the gap is completely closed as shown in
the last image. However, some small artifacts in the structure remain visible.

6.4.2 Breakdown Points: Illustrative Experiment

The following experiment enables us to determine the benefits and drawbacks
of our approach. We choose the ”office” sequence [93] as known from section
3.4.4. The inpaint region is represented by a black spiral as depicted in figure
6.5 (left), and is for each frame the same. We would like to point out that
we choose an image sequence with divergent motion pattern on purpose as it
reveals the limitations of our approach more easily.

The ”office” sequence can be considered to be challenging due to the violation
of the grey value consistency equation (2.2) induced by the divergent motion
pattern (cf. sec. 3.4.4). Due to the chosen inpaint region, additional boundary
areas are included and previous seen image measurements vanish and unseen
parts appear. The flow estimate that is used to transport the image information
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Figure 6.5: Challenging experiment. Left: Image frame with (inpaint) re-
gion of missing image data marked by a black spiral. Due to the inpaint region,
additional boundary areas are included and image measurements vanish into
or appear from the inpaint region. The ”office” sequence is challenging due to
the violation of the grey value consistency equation and the divergent motion
pattern. Right: The underlying optical flow field – which results from the
first step of the computation algorithm – is a divergent velocity field. The ve-
locity field within the black homogeneous inpaint region is reconstructed due
to spatial regularisation (dense flow, cf. also experiment 3.4.3).

into the inpaint region is shown in figure 6.5 (centre and right). The inertia
behaviour of the Burgers equation lead to the transport of the velocity by itself
into the inpaint region (cf. also experiment 3.4.3).

Figure 6.6: Image reconstruction with a divergent transport vector field.
Left: ”Office” frame with inpaint region (black spiral). Right: Inpainting
result. If the image information is transported with a divergence velocity field,
the image intensity decreases within the inpaint region due to the deformation
of the image structure.



120 Chapter 6. Video Inpainting

Bound of the Inpaint region

Figure 6.7: Inpaint region at the centre (projection of the optical axis of
the camera) of a divergent motion field. Left: Inpaint result for this ”office”
frame. Right: Velocity estimates for the inpaint region. We obtain for this
region very small velocity estimates. The transportation of image information
into this region is very slow and the reconstruction of the image at this point
is therefore challenging.

Bound of the Inpaint region

Figure 6.8: Inpainting results for the reversed image sequence. Starting the
computation again for this image sequence allows the transportation of image
information from the other direction into the inpaint region. Left: Inpaint
result for the reversed ”office” sequence. Right: Cutout from the centre of
the inpaint result. The reversed sequence lead to the opposite situation in the
centre of the image. The white areas indicate a compression of the grey values.
Image information is transported from the surrounding region into the inpaint
region and is compressed, resulting in higher image value measurements.
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If the image information is transported with an outwards directed divergence
velocity field, one can observe that the image intensity decreases towards the
outward inpaint region. This is due to the divergent vector field which spreads
the image information outwards, as shown in figure 6.6 (right). Therefore, this
image parts have a lower image intensity (darker) or are even without any im-
age information as shown in the detailed figure 6.7 of this scene.

As the optical centre (projection of the optical axis of the camera to the image)
of this sequence is fixed, we obtain only very small velocity estimates for this
region. As a consequence, the transportation of image information is very small
near to this point and nearly no inpainting is performed.

The inpaint boundary region in the opposite direction of the flow does not get
the reasonable image information from the surrounding area. However, using
the reversed image sequence (now a ”zooming out” scenario) the transport pro-
cess is reversed as well and the image information is transported in the opposite
direction. Results for this can be seen in figure 6.8.

The reversed version of the sequence leads to the opposite situation in the cen-
tre of the image (cf. fig. 6.8) and in other parts of the inpaint region as well.
Image information is transported from the outward regions into the inpaint re-
gion leading to a compression of grey values resulting in brighter image value
measurements.

Nevertheless, this challenging example indicates also that our approach is able
to preserve image structures. In figure 6.9 we show some details of the inpaint
result that shows the advantage of the transport processes used in the approach.
The information from previous image frames is transported into the inpaint area
over time preserving the structure of the objects.

We note that it is possible to preserve the structures in inpaint regions, due to
the fact that the velocity field is locally relative homogeneous (with nearly the
same direction and velocity).

6.4.3 Real Image Sequence Inpainting

In this section we show the results of our approach for a real video sequence
recorded in our Mannheimer office. The camera rotates around a centre that
is approximately the middle window bar which therefore appears nearly at the
same position in each frame of the sequence. The sequence consists of 20 frames
and three frames are shown in figure 6.10.

The inpaint region consists of seven separated black bars (each of size 200x10)
in each frame of the sequence as depicted in the left image of figure 6.11. Over
time the inpaint regions are fixed.

For this image sequence the apparent motion field is recovered using (6.1) and
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Figure 6.9: Structure preserving. Top: Image frame with missing image
information (black spiral). Cutout: The image measurements for the desk
light in this frame are nearly complete missing. Bottom: Result of our video
inpainting approach. Due to the temporal image information transport, based
on the Burgers term and advection-diffusion equation the information from
previous images is transported over time. The structure of the object is well
preserved.

(6.2) in the regions of missing image data. The inertia behaviour of the Burgers
equation transports the vector field by itself into the region of missing image
data (cf. experiment 3.4.3). The resulting velocity estimate is then used to
transport image information into the inpaint region. The result is shown in the
right image of figure 6.11 where we can observe that the structures of clouds,
trees and the building are well reconstructed.

To show inpaint results for a larger inpaint region, we chose the same sequence
now with an inpaint region that is large enough to cover the the middle window
bar. It reaches a size of 30x150 pixels. In figure 6.12 we depict the inpaint
results at three different times (frames).
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Figure 6.10: The ”Mannheim office” sequences. The camera rotates around
the middle window bar which therefore stays nearly at the same position in
each frame of the sequence. We depicted three image frames of this sequence.

Figure 6.11: The ”Mannheim office” sequence consists of 20 frames. Left:

Single frame of the ”Mannheim office” sequence along with the inpaint region
marked by black bars. Right: Video inpainting result for this frame of the
sequence.

If the image sequence with respect to the motion field is long enough to inpaint
the missing image data, we obtain good results for uniform motion patterns.
This is no constraint for real applications as in general, local uniform motion
fields are more common than non-uniform motions. This makes our approach
applicable for other applications, like logo removal, or removal of disturbing
objects in images, like the window bar in our experiment.

Figure 6.12: The ”Mannheim office” sequence with a large inpaint region
(size: 30x150 pixels). Left: Single frame of the ”Mannheim office” sequence
along with the inpaint region in the middle of the image. Middle: Video
inpainting result for frame 4 of the sequence. Right: Inpaint result for the
last frame.
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6.4.4 Comparison

For a quantitative comparison we implemented the Navier-Stokes frame-by-
frame inpainting approach from [10]. The inpainting is done using the method
outlined in section 5.2.1 separately for each frame of the ”street” sequence (fig.
6.2). Using the ground truth image data the resulting root mean square (RMS)
error plot for both approaches is shown in figure 6.13.

The conceptual difference between these two approaches lies in the way of reg-
ularisation. No information from previously or following image frames is used
within the purely spatial approach from Bertalmı́o et al., as the inpainting
is done individually frame-by-frame using the vorticity transport equation to
transport image information from the surrounding area into the inpaint region.
As a consequence, for each frame the entire inpainting process starts indepen-
dently. In contrast our approach transports the velocity and image information
over time. Therefore, knowledge from previous frames is used to progressively
complete the inpaint area in the following frames. As observed in our previous
experiments the transportation process over time is a more structure preserving
technique (cf. fig. 6.14). The reconstructed image data in damaged regions is
closer to the original image measurements. The spatial approach reconstructs
the inpaint regions without exploiting knowledge about the scene structure
from the previous frames: A smoother reconstruction (cf. fig. 6.14) is obtained
as the isophote lines which reaches the inpaint region are smoothly continued
from the exterior . Information is transported along these lines and the image
measurements are updated by solving the Poisson equation, which leads to a
continuous propagation of the inpaint region boundary and smoother image
data in the inpaint regions.
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Figure 6.13: Comparison of our spatio-temporal video inpainting approach
with the Navier-Stokes frame-by-frame video inpainting approach [10] using
the ”street” sequence (fig. 6.2). The RMS-error is computed and plotted for
each of the 19 frames of the sequence. Our two step dynamic video inpainting
approach, which is based on spatio-temporal regularisation indicates a con-
sistently lower error measurement as the purely spatial approach. Exploiting
also the reverse inpainting our approach shows consistently a lower error.
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Figure 6.14: Video inpainting result obtained by two different approaches:
Left: Navier Stokes frame-by-frame approach. This approach has no knowl-
edge about the scene structure from the previous frames. A smoother structure
results from isophote lines which reaches the inpaint region from the exterior.
Information is transported along these lines and the image measurements are
updated by solving the Poisson equation. Right: Spatio-temporal video in-
painting approach. The transportation process over time is a more structure
preserving technique. Although not perfect reconstructed image data in dam-
aged regions are closer to the original image measurements.

By comparing the two error plots, we clearly recognise this difference and ob-
serve that the error of the spatial approach shows a much higher variation than
the temporal approach, which shows nearly a convergent evolution over time.
Exploiting also the reverse inpainting our approach shows consistently a lower
error. This indicates that our dynamic video inpainting approach which is based
on spatio-temporal regularisation performs a reasonable video reconstruction.

6.5 Conclusion

The video inpainting algorithm we proposed in this chapter combines a physi-
cal transport mechanism with a distributed parameter approach for image mo-
tion estimation which incorporates dynamical prior knowledge. It results in a
spatio-temporal sliding-window approach and is implemented using a two step
algorithm and exploits approaches proposed in earlier chapters. The first in-
gredient – namely the distributed parameter approach – was subject of chapter
3 while the basic transportation process of the image data is based on the idea
published in [9, 10].

Within our experiments we investigated uniform and non-uniform motion. The
image information is transported from the flow field direction into the inpaint
region. We like to point out that the inpainting process results in a structure
preserving and reasonable result for uniform motion patterns. In the case of
non-uniform motions it turned out that a good strategy is to exploit the re-
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versed image sequence too, therefore transporting the image information from
both flow directions into the inpaint region.

In contrast to spatial (frame-by-frame) inpaint approaches we incorporate tem-
poral knowledge of the video sequence in the inpaint process using the motion
information of the sequence. Due to the resulting velocity fields, which pro-
vides us with the transportation field for the image data our approach is able
to transport the image information over time during the sequence. Structure
information can - up to a certain degree - be preserved within the transporta-
tion process.

Recall that nowadays the number of frames per second (fps) that can be recorded
by a camera, ranges from six frames per second for older cameras to 120 or more
for professional high speed cameras. Therefore common image sequences have
much more image frames than we used in our example sequences. This makes
it very likely that enough information is provided in such sequences to result in
good inpaint results even if the sequence is not reversed.

One aim that should be addressed in the future – and belongs to video editing
– is the automatic removal of moving objects within an image sequence. This
requires a reliable segmentation of the moving inpaint area and would mean
that one has to be able to detect the motion boundaries quite accurately. This
would help to increase the accurately of the computed motion vector fields.
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7

Model Equations

In this chapter we are concerned in more detail with the particular partial differ-
ential equations which were used in connection with the approaches described
in the previous chapters. Preferences and general notations will be introduced.
We start with linear partial differential equations like the diffusion and advec-
tion equations. Then we move to non-linear equations where we are particularly
interested in transport equations like the Burgers equation.

Propaedeutic literature to the field of partial differential equations can found
in [47, 76, 136]. The books of Chorin and Marsden [32], Lax and Wendroff [86],
Landau and Lifschitz [85], LeVeque [87], Toro [134], Thomas [130, 131] and
Hundsdorfer [70] discuss partial differential equations in fluid dynamics.

7.1 Poisson Equation

The Poisson equation is one of the fundamental partial differential equations in
physics and particularly one of the governing equations in fluid dynamics. The
Poisson equation belongs to the class of second-order elliptic partial differential
equations and yields in two dimensions with Dirichlet boundary conditions

∆s(x) = ∂2
x1
s(x) + ∂2

x2
s(x) = ̺(x) , x ∈ Ω,

s(x) = g(x) , x ∈ ∂Ω, (7.1)

where s = s(x), x = (x1, x2), and ∆ the Laplacian operator. In physics, s rep-
resents the density of a quantity and the second-order term ∆s is responsible
for the diffusion of s within the space region Ω. In physics the equation (7.1) is
used to model steady incompressible inviscid flows, equilibrium temperature in
a square slab or the static deformation of a membrane under distributed loads.
Often one is interested in the steady state solution of these problems. The best
known scenario is the steady state temperature distribution which is caused by
a diffusion process with an appropriate heat source.
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Another viewpoint is to think of the scalar quantity s = s(x) as a potential field
and of ̺(x) as its associated charge density, which induces the potential field.
The boundary condition is given by g(x). An example for a fixed boundary in
a digital image is depicted in figure 7.1.

Figure 7.1: Computational result for the Poisson equation with fixed Dirich-
let boundary conditions. Left: Input image ̺ with interior zero domain and
fixed boundary values. Right: Result of the numerical solution by using the
PCG method (sec. 9.1).

The Poisson equation serves as model problem in many textbooks on numer-
ical analysis, see also section 8.1.5. We used the Poisson equation within our
implementation of the Navier-Stokes inpainting approach of [9] (cf. sec. 5.2.1).

7.2 Diffusion Equation

The diffusion equation belongs – like the Poisson equation – to the class of
second-order partial differential equations. But the diffusion equation is time-
dependent and describes the diffusion process of a scalar quantity s = s(x, t),
x = (x1, x2) over time t ∈ [0, T ] with respect to the kinematic viscosity coeffi-
cient ν > 0:

∂ts(x, t) = ν ∆s(x, t) , (x, t) ∈ Ω × [0, T ],

s(x, t) = 0 , (x, t) ∈ ∂Ω. (7.2)

Viscosity is one of the central mechanical properties of fluids. It is a measure
of the resistance of a fluid to deform under shear stress (i.e., a measure of fluid
friction) and is perceived as the thickness of a fluid. Honey, for example –
which is perceived quite thick – has a higher viscosity coefficient than water.
Normally, fluids are resistant towards shear stress and thus are called viscous
fluids. Fluids which has no resistance to shear stress are known as ideal fluids
or inviscid fluids. We can distinguish between dynamic viscosity and kinematic
viscosity. The dynamic viscosity term µ arises from the shear stress between
two layers of a fluid. The shear stress τ between two layers is proportional to
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original ν = 0 .5 ν = 1

ν = 2 ν = 10 ν = 100

Figure 7.2: Diffusion process demonstrated at the well-known ”Lena” im-
age. The first image in the first row shows the original ”Lena” image. The
second image shows the computational result for the diffusion equation with
a kinematic viscosity coefficient ν = 0.5. The following images are computed
with viscosity values ν = 1, ν = 2, ν = 10 and ν = 100. For further increasing
values of ν all pixel intensity values of the image converge to the mean grey
value of the image.

the velocity gradient ∂x2v in the direction perpendicular to the relative motion
of the layers. Formally this is expressed by the following relation:

τ = µ∂x2v.

The kinematic viscosity ν is described by the ratio between the dynamic vis-
cosity µ and the density ρ = ρ(x, t) of the fluid. It is defined by

ν =
µ

ρ
.

Higher values of kinematic viscosity ν in equation (7.2) indicate a higher dif-
fusion rate. The influence of ν on the diffusion process in images is depicted
in figure 7.2. Equation (7.2) is also known as the general heat equation. The
equation describes the time evolution of the density s of a quantity (in physics,
e.g. heat, in computer vision applications often the grey values of the individual
pixels). The numerical solution of the viscous diffusion equation is described in
detail in section 8.1.6.
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Figure 7.3: A anisotropic diffusion process applied to the ”Lena” im-
age. Left: The original image. Right: The computational result for the
anisotropic diffusion equation (7.3) with the parameter λ = 2.

7.2.1 Anisotropic Diffusion

A non-linear diffusion approach applied to images was first introduced by Per-
ona and Malik [110] 1987. Weickert [141] applied the basic model of Perona
and Malik amongst others to introduce regularisation techniques of this type of
equations. They used a non-uniform process - known as anisotropic diffusion -
that reduces diffusivity at edges and considered the scalar-valued case of a grey
value image I = I(x1, x2) as follows

∂tI = ∇(g(|∇I|2)∇I) (7.3)

with the anisotropic diffusion term

g(|∇I|2) =
1

1 + |∇I|2/λ2
, λ > 0,

where ∇ = (∂x1 , ∂x2)
⊤ represents the nabla operator. Anisotropic diffusion

allows for a directed diffusion process and has the aim in computer vision to
prevent the diffusion over edges within an image while still allowing a diffusion
along such edges. The effect of anisotropic edge enhanced diffusion is shown in
figure 7.3.

7.3 Linear Advection Equation

The term advection refers to a transport of a conserved property like heat in
a fluid. The linear advection equation is a first-order hyperbolic partial differ-
ential equation. Physically, this equation governs the motion of a conserved
scalar quantity s which is advected or transported by a known velocity u. It
can also be interpreted as the description of a wave with an amplitude s which
propagates with a wave speed equal to u. In this thesis we consider the scalar
advection equation
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Figure 7.4: Numerical solution of the advection equation (7.4) for a small
example transport problem. Left column: The white square is transported
by a constant vector field u along the diagonal line from the upper-left edge
to the down-right one. We show the transportation results at the times ∆t,
∆t + 20,and ∆t + 40. Right column: Corresponding grey value evolution
along the diagonal line indicated in the images on the left side.

∂ts+ ∇ · (su) = 0, (7.4)

where u = (u1, u2)
⊤, u = u(x, t). We assume that we are concerned with

incompressible fluids (or solenoidal velocity fields) which means that the fluid
is divergence-free ∇ · u = 0. Using these assumption we reformulate equation
(7.4) as

∂ts+ (u · ∇)s = 0. (7.5)

For steady flows where ∂ts = 0 is satisfied we obtain (u · ∇)s = 0 which means
that the scalar quantity s is constant along a streamline.

In figure 7.5 we show a numerical solution of the advection equation (7.4) for
a transportation problem. The first image in the left column of the figure
shows a white patch which is transported by a constant vector field u along the
diagonal from the upper-left corner to the lower-right one. The right column
shows the evolution of the grey value along with the diagonal line indicated
in the images of the left column. The white square is transported by our
numerical implementation. Note, that the numerical schemes for the solution
of hyperbolic systems have to cope with the formation of shocks. The details
of our implementation for that is described in section 8.2.2.
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Figure 7.5: Numerical solution for a non-constant advection process. The
”Lena” intensity image I is used to create a synthetically non-constant ve-
locity field u = (−∂yI, ∂xI)

⊤. The initial image I(x, 0) for this example was
arbitrarily set homogeneously non-zero for each grey value. Then we used the
synthetically velocity field u to transport this start image over 100 time steps.
The resulting image I(x, 100) is depicted on the left side of this figure. The
right image shows a magnified part of the image along with the vector field u
used for the transport.

To provide some details of the transportation process we show in figure 7.5 the
numerical results for a non-constant advection process. For this example we ar-
tificially created a non-constant incompressible velocity field u = (−∂yI, ∂xI)

⊤

where I is a grey value image, in this case the ”Lena” image. This field was
then used to transport the grey values of a homogeneous coloured start image
for 100 time steps. This process reveals some structural features of the image
used to create the transportation field, but here we intended to show that the
underlying transportation field can be of any shape.

7.4 Vorticity Transport Equation: Motion with Rotation

Incompressible flows are physically described by the Navier-Stokes equation.
Recall that a flow is incompressible if and only if the velocity field u is divergence-
free (i.e., ∇ · u = 0) which means that there is no source or sink. The Navier-
Stokes equation for incompressible flows reads

∂tu+ (u · ∇) u = −
1

ρ
∇p+ ν∆u, (7.6)

with von Neumann boundary conditions

∂nu = 0 on ∂Ω (7.7)

along with the explicit constraint for incompressible fluids

∇ · u = 0. (7.8)
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Within these equations, n represents the unit vector in the direction outwards
to the boundary ∂Ω. The coefficient ν determines the kinematic viscosity, while
ρ represents the density and p = p(x, t) the scalar pressure of the fluid.

In the following we explain a reformulation of the Navier-Stokes equation (7.6)
– for incompressible fluids – to an equation which depends only on the velocity
u and no longer on the pressure p. To archive this we consider an important
special case of the incompressible Navier-Stokes equation, the so-called vorticity

transport equation (7.13). Note that this equation represents also a form of an
advection-diffusion equation as shown in figure 7.6.

Figure 7.6: The vorticity transport equation, an advection-diffusion equa-
tion: We used as scalar vorticity initial value ω(x, 0) a sinus image and trans-
ported this scalar quantity over time with a non-constant incompressible ve-
locity field. Left: Scalar velocity quantity at time t = 100. Middle: Corre-
sponding velocity field at time t = 100. Right: Scalar velocity quantity at
time t = 101.

The vorticity ω = ω(x, t) also known as a measure for the rotation of a velocity
field is expressed in two dimensions [32] as:

ω = ∇× u = ∂x1u2 − ∂x2u1. (7.9)

It can be seen as the cross product between the gradient operator and the ve-
locity field as it describes the rotation of the velocity field u.

The vorticity transport equation is obtained by applying the rotation operation
∇× to equation (7.6) and by exploiting some vector identities. We start with
a replacement of the term (u · ∇)u in equation (7.6) by using the equation:

(u · ∇)u =
1

2
∇(u · u) − u× (∇× u).

With that we obtain the following expression

∂tu+
1

2
∇(u · u) − u× (∇× u) = −

1

ρ
∇p+ ν∆u.

By applying the rotation operator to this equation we get

∇×∂tu+
1

2
∇×∇(u ·u)−∇× (u× (∇×u)) = −

1

ρ
∇×∇p+ν∇× (∆u). (7.10)



136 Chapter 7. Model Equations

 

 

−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 7.7: A synthetically example for the solution of the vorticity transport
equation. Left: The scalar valued vorticity ω along with the corresponding
velocity field u is shown. The vorticity values are in the range from −1 to +1.
A positive vorticity value represent a clockwise rotation and negative values
represent counter-clockwise rotations. The intensity of the colour indicates
the strength of the rotation. Right: Surface plot of the scalar vorticity ω.

Note that in this expression the pressure and the second term of (7.10) vanishes
due to the fact that for any scalar quantity ψ

∇×∇ψ = 0

is valid. Therefore equation (7.10) is reduced to

∂t(∇× u) −∇× (u× (∇× u)) = ν∇× (∆u). (7.11)

Using the fact that
∇× (∆u) = ∆(∇× u)

and that the equality

∇× (u× ω) = (ω · ∇)u− (u · ∇)ω + u(∇ · ω) − ω(∇ · u)

holds true we reformulate equation (7.11) as

∂t(∇× u) −∇× (u× (∇× u)) = ν∇× (∆u). (7.12)

Finally, we obtain the desired vorticity transport equation

∂tω + (u · ∇)ω = ν∆ω, (7.13)

by using ∇ · ω = 0, (ω · ∇)u = 0, and again exploiting the incompressibility
condition (7.8).

Figure 7.7 illustrates an example for the solution of the vorticity transport equa-
tion. Figure 7.8 shows the vorticity transport equation applied to a particle flow
image sequence. The resulting vorticity along with the corresponding velocity
field u is depicted. For details of the implementation of the vorticity transport
equation we refer to section 8.2.3.
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Figure 7.8: Particle flow example for the vorticity transport equation. The
resulting vorticity along with the corresponding velocity field u is shown. Pos-
itive values stand for a clockwise rotation and negative vorticity values for a
counter-clockwise rotation. The intensity of the pixel value correlates with the
strength of the rotation.

7.5 Burgers Equation

In the following we are concerned with the Burgers equation which belongs to
the class of hyperbolic systems of conservation laws. In physics the equation
is used as a simplified model for turbulence, boundary layer behaviour, shock
wave formation and mass transport. The Burgers equation has been studied
for many decades and has been successfully applied to aero- and fluid dynamics
[23, 145, 87, 49, 66].

The 2D Burgers equation is a non-linear partial differential of first-order

∂tu+ (u · ∇)u = 0, (7.14)

with initial data
u(x, t)t=0 = u0. (7.15)

The Burgers equation describes a transport process and is known as the advec-
tion term in many physical time-dependent dynamic equations. Therefore it is
part of the most fundamental equation in fluid dynamics, e.g. the Navier-Stokes
equation.

To get an idea of the dynamic behaviour of the Burgers equation, it is helpful
to introduce first the material derivative which is a well-known quantity in
fluid dynamics. The material derivative of u is the total derivative of the fluid
velocity u(x, t), u = (u1, u2, u3)

⊤ with respect to time t:

Du

Dt
= ∂x1u ẋ1 + ∂x2u ẋ2 + ∂x3u ẋ3 + ∂tu

= ∂tu+ u1 ∂x1u+ u2 ∂x2u+ u3 ∂x3u

= ∂tu+ (u · ∇)u, (7.16)

where x(t) is the path followed by a fluid particle so that the velocity field
is given by the components ẋ1 = u1, ẋ2 = u2, and ẋ3 = u3, which leads to
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u(x(t), t) = dx
dt

(t).

The first part of equation (7.16), namely the time derivative, is known as the
local derivative, which describes the physical change of the velocity at a fixed
point with respect to time. The second part is known as the convective term of
the equation. This non-linear term is also known as the inertia of the fluid that
is involved in the transportation process. Physically, this is the rate of change
due to the movement of a fluid element from one location to another in the flow
field.

The material derivative D
Dt

describes the fact that the fluid is moving and that
the positions of fluid particles change with time. The material derivative of
u with respect to time is an expression for the acceleration which is observed
within a fluid. In equation (7.14) the material derivative of u with respect to
time is zero. This means that the acceleration of a fluid particle is zero over
time and so the velocity of a fluid particle is constant over time.

Figure 7.9 illustrates the transportation process that is driven by the Burgers
equation (7.14).
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Figure 7.9: Solution of the Burgers equation (7.14): A velocity field trans-
ported by itself. The vector field is shown at times t = 0, 20, 40 and the
vector magnitudes are represented by grey values. A shock front moves along
the diagonal towards the lower-right corner in the images. In the absence of
any further external information, a region of rarefaction arises due to mass
conservation, acting like a short-time memory.

The quantity u is a 2D vector field which is – due to the Burgers equation
– transported by itself. In the left column, the vector magnitudes are repre-
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sented by grey values. The right column shows the time development of the
field along the shown diagonal cut line in the image. We observe that a shock
front is created which is transported towards the lower-right corner of the image.

The Burgers equation studied by Burgers himself [23] includes an additional
viscous term ν∆u:

∂tu+ (u · ∇)u = ν∆u. (7.17)

This equation is a 2D model that includes the non-linear and viscous effects of
fluid dynamics. The important point is that the viscosity term keeps the solu-
tion smooth for all time, preventing the breakdown of solutions that occur for
the pure hyperbolic problem. Note in connection to this that equation (7.17)
is no longer hyperbolic, as the additional viscous term makes it parabolic. The
increasing relative weight of the viscous term prevents that the wave breaks
and that discontinuities (shocks) emerge.

For small ν and smooth u the viscous term ν∆u is negligible and the solutions
of equation (7.14) and (7.17) are nearly identical. If the solution of the PDEs in
areas with smooth initial data along with a very small ν becomes discontinuous
one speaks of shock formation or of a wave beginning to break. One can try to
cope with such a situation by computing the weak solution of the PDE which
becomes sharper and approaches the discontinuous solution for ν → 0. In order
to deal with shock formations we use in our implementation an approximate
solution of the Riemann problem. For details to the implementation of the
Burgers equation (7.14) we refer to section 8.3.
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8

Discretisation Techniques

The selection of a discretisation scheme for a mathematical formulation repre-
senting a specific problem is an inherent part of the solution process. The prop-
erties of the numerical computation are influenced for example by the space-time

discretisation but also by the chosen order of the numerical discretisation.

The spacial discretisation refers to the choice of the mesh grid within the do-
main of interest Ω. The continuous space is thereby approximated by a finite
number of grid points. Usually only for these points the numerical quantities
are computed. The accuracy of the numerical approximation depends on the
mesh size in relation to the actual continuous signal. Generally, the finer the
space discretisation – therefore having narrower mesh points – the better is the
numerical approximation scheme. The discretisation error tends to zero, when
the mesh distance tends also to zero. The time discretisation plays an impor-
tant role as well as this discretisation influences the stability of the numerical
solution process. The stability conditions depend on the particular chosen nu-
merical scheme (i.e. explicit or implicit schemes). The convergence properties
of a numerical scheme is furthermore influenced by the order of the discretisa-
tion method.

After choosing an appropriate mesh grid the model equations can be discretised.
Therefore, differential equations or integral formulations must be transformed
to discrete algebraic structures, where the quantities of the unknown variables
are defined on the mesh points.

In this thesis we are mainly concerned with time dependent formulations of
problems. Naturally these partial differential equations involve the time deriva-
tive. The discretisation of time derivatives generate a system of equations for
the unknowns, which are given by functions at the actually time step and the
previous time steps. One distinguish between explicit and implicit numerical
schemes. In explicit approaches the computation of the current value of an un-
known variable depend only on the values already computed for previous time
steps. In implicit schemes the new value at the actual time step depends also

141
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on values of the actual time step. To compute such systems of equations there
exists several types of numerical solvers, some of them are discussed in chapter 9.

In the following we present the two most common techniques for a space-time
discretisation of differential operators: finite difference and finite element meth-
ods. Fundamental literature in this sphere of action include the works of Colella
and Puckett [36], Hirsch [66], Lax and Wendroff [86], LeVeque [87], Toro [134]
and Thomas [130]. These techniques provide the fundamentals to obtain a dis-
cretisation for a partial differential problem formulation.

8.1 Finite Differences

The foundations for finite difference methods can be found in the definition of

derivatives and the approximation framework given by Taylor expansions. First
of all, we define the underlying mesh grid design.

8.1.1 Fundamentals

The computation domain Ω is divided into cells. We discretise the space-time
(x1, x2, t)=(x, t) volume using a mesh with width ∆x and a time discretisation
step ∆t. In this thesis we consider only regular or uniform discretisation meshes.
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2
,j
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∆x1

∆x2

si− 1
2
,j

t
∆t

x1
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Figure 8.1: Space-time discretisation of the domain Ω. Left: The domain is
divided into same sized cells. The spacial centre of the cells along with their
boundaries is indicated as well. Right: Magnification of a single cell from
the grid on the left side. The quantity s is defined on the cell centre (i, j).
Boundaries belonging to the cell are indicated by appropriate half-indices.

Here the mesh is chosen to be uniform which means that ∆x and ∆t are con-
stant. Such a discretisation scheme is depicted in figure 8.1.
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The variable sn
i,j refers the quantity at the position x = (x1, x2) = (i∆x1, j∆x2) =:

(i, j) at time t = n∆t =: tn and is assigned to the centre of the cell. Numerical
quantities with half-indices refer to the cell boundaries. For example sn

i+ 1
2
,j

refers to the boundary between the cell (i, j) and the cell (i + 1, j) at time
t = n∆t (cf. fig. 8.1 right).

The discretised quantities sn
i,j on the grid should approximate the exact values

s(x, t) of the continuum. A particular grid value sn
i,j can be seen as an approx-

imation for the average value of the real function s(x, t) within the appropriate
cell boundary

sn
i,j =

1

∆x1

1

∆x2

(j+ 1
2
)∆x2
∫

(j− 1
2
)∆x2

(i+ 1
2
)∆x1
∫

(i− 1
2
)∆x1

s(x1, x2, t
n)dx1dx2. (8.1)

The integral form of conservation laws describes in fact the time evolution of
such integrals. (Note, in the following we denote partial derivatives ∂x by ∂

∂x
).

The idea of finite differences has its origin in the definition of the derivative of
a function s(x) at a point x:

∂s

∂x
= lim

∆x→0

s(x+ ∆x) − s(x)

∆x
. (8.2)

The right hand side of equation (8.2) is an approximation for the derivative ∂s
∂x

for an infinitesimal ∆x. If ∆x is a finite value the derivative is approximated
up to an error which is known as the local truncation error of the discretisation
scheme. The approximation becomes more accurate with decreasing mesh size,
with ∆x→ 0.

Furthermore, the accuracy of a particular approximation scheme depends on
the order to which the Taylor expansion is computed. The highest power of ∆x
that occurs in the scheme defines the order of the difference approximation and
also measures how fast the error tends to zero. The Taylor expansion

s(x+ ∆x) = s(x) + ∆x
∂s

∂x
+ O(∆x2) (8.3)

includes only a first-order term. The higher-order terms are denoted as error
term O(∆x2). The reformulation of equation (8.3) results in a finite difference
approximation with an error of first-order:

s(x+ ∆x) − s(x)

∆x
=
∂s

∂x
+ O(∆x). (8.4)

Comparing equation (8.4) with equation (8.2) we observe that it represents a
first-order finite difference approximation for the derivative ∂s

∂x
. Other finite
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difference approximations for the derivative (8.2) are shortly summarised in
section 8.1.4.

In the following we are concerned with convergence conditions for finite differ-
ence schemes.

8.1.2 Consistency, Stability and Convergence

In this section we shortly repeat necessary and sufficient conditions for con-
vergence of linear finite difference methods. As already mentioned the local
truncation error represents a measure for the accuracy of a numerical discreti-
sation scheme. Here, we denote this error as ǫ (with appropriate subscripts)
and it can be obtained by comparing the exact solution of a partial differen-
tial equation with the finite difference approximation of the partial differential
equation.

To introduce the local truncation error [36], we make use of the following nota-
tions: First we denote with L a linear discrete evolution operator that evolves
the states according to the discretised partial differential equation. The term
sn
e refers to the exact solution of the PDE at the discrete points at the time n.

With that one defines the local truncation error of a finite difference scheme as
follows:

ǫ = sn+1
e − Lsn

e .

This represents a measures how much the discrete evolution differs from the
exact solution after one time step. A numerical scheme is said to be consistent

when the local truncation error tends to zero when the step size ∆x and ∆t
tends to zero:

‖ǫni,j‖ → 0 as ∆x→ 0,∆t→ 0. (8.5)

The global error of the numerical scheme is of order l if

‖ǫni,j‖ = O(∆t
∑

p+q=l

∆xp∆tq)

for all sufficiently smooth initial data with compact support, where p, q ≥ 0 and
p+ q = l.

A finite difference method is known to be stable if the equation

‖Lsn
e − Lsn‖ ≤ C‖sn

e − sn‖ (8.6)

can be fulfilled, where the constant C is independent of the exact solution sn
e

and the approximated solution sn of the PDE [36].
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The definitions of stability and consistency lead to the following theorem:

Lax Equivalence Theorem:

The conditions of a consistent discretisation scheme (8.5) and the stability
of a linear finite difference method (8.6) is the necessary and sufficient
condition for convergence.

This is known as the fundamental convergence theorem for linear finite difference
methods [86, 36] and indicates that for a consistent, linear method, stability is
necessary and sufficient for convergence.

8.1.3 The CFL-Condition

Some concepts of convergence and stability of finite difference schemes were pub-
lished by Courant, Friedrich and Lewy [37] in 1928. Among other things they
presented their well-known Courant-Friedrich-Lewy (CFL) condition. It repre-
sents a fundamental stability condition for explicit finite difference schemes:

0 < σCFL = a
∆t

∆x
≤ 1. (8.7)

The so called Courant number σCFL is a dimensionless quantity, which depends
on the speed a, the grid space ∆x and the time space ∆t. This condition play
a fundamental role in the computation of wave and convection equations. It
indicates that the distance between two mesh points must be larger than the
distance that can be reached by a disturbance that propagates with the speed
a during the time interval ∆t.

Disturbances which propagate with the velocity a are known to have the char-
acteristic speed a = dx

dt
. The characteristics define the domains in which states

of the differential equation can have a mutually influence on each other. There-
fore the CFL-condition (8.7) means that the domain of mutually influence in
time direction should be contained in the spacial domain of mutually influence
of the discretised equations, which are defined on the grid space ∆x.

The Courant number σCFL can also be understand as the ratio of two speeds,
namely the wave speed a and the grid speed ∆x

∆t
. The wave speed a is defined

by the initial conditions, the grid speed depends on the desired accuracy of the
numerical discretisation scheme. Apparently the only term that can be chosen
is the time step ∆t. But this choice is restricted as one has to take into con-
sideration the stability conditions and the particular discretisation schemes of
interest.

8.1.4 Standard Finite Difference Formulas

In this section we provide three finite difference formulas that can be used to
numerically approximate a derivation. Let us consider a two-dimensional space
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as shown in figure 8.1. Again, si,j denotes the value of the function s(x) at
the discretised position (i, j). The finite difference approximation for the first
derivative of the quantity si,j(x) can be defined by one of the following three
finite difference formulas.

Forward Difference

The first-order forward difference is given by

( ∂s

∂x1

)

i,j
=
si+1,j − si,j

∆x1
+ O(∆x1). (8.8)

Backward Difference

The first-order backward difference is given by

( ∂s

∂x1

)

i,j
=
si,j − si−1,j

∆x1
+ O(∆x1).

Central Difference

The second-order central difference is given by

( ∂s

∂x1

)

i,j
=
si+1,j − si−1,j

2∆x1
+ O(∆x2

1).

In our implementations we are mainly concerned with these difference schemes.

8.1.5 Stationary Problems

Discretisation of the 2D Poisson equation

In this section we are concerned with the discretisation of the two-dimensional
Poisson equation (7.1) that we used in our implementations (cf. sec. 7.1):

∆s = φ inΩ

s = g on∂Ω. (8.9)

The aim is to compute the approximation of the quantities s = s(x) and
φ = φ(x), x = (x1, x2) at the discretised cell centres on a two-dimensional
squared grid within the domain Ω using an equal mesh spacing ∆x as depicted
in figure 8.2.

This problem is stated with Dirichlet boundary conditions as s = g on the
boundary ∂Ω. The pixel position (i, j), i = 1, ...,M , j = 1, ..., N refers to
spacial x1 and x2 position i∆x1 and j∆x2, respectively. In order to discretise
the left hand side of equation (8.9)
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∂Ω

x1

x2

∆x1

i, j
∆x2

Ω

Figure 8.2: Discretisation domain Ω of the 2D Poisson equation with bound-
ary region ∂Ω.

∆s =
∂2s

∂x2
1

+
∂2s

∂x2
2

we use a combined forward-backward discretisation

(∆s)i,j =
si+1,j − 2si,j + si−1,j

∆x2
1

+
si,j+1 − 2si,j + si,j−1

∆x2
2

.

This corresponds - using the grid size ∆x1 = ∆x2 = 1 - to the standard five-
point Laplacian:

(∆s)i,j = si+1,j + si−1,j − 4si,j + si,j+1 + si,j−1. (8.10)

Using equation (8.10) we express the discretisation within the interior domain
Ω as:

(∆s)i,j = φi,j.

For the Dirichlet boundary conditions s = gon∂Ω we have to enforce original
(image) values g on the boundary ∂Ω as for example depicted in figure 7.1.
Putting the pixel values into a vector s and keeping track of the actual boundary
pixels the problem transforms into a linear equation system [36]. With the
matrix

Aij = −4δ(i, j) + δ(i, j + 1) + δ(i, j − 1) + δ(i, j + (n+ 1)) + δ(i, j − (n+ 1)),

where

δ(i, j) =

{

1 i = j
0 i 6= j

the problem is stated as the following equation system
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As = φ

s = A−1φ.

Such a system can be solved using iterative or direct solvers and multigrid
methods. Some of these methods are described in section 9.1 and 9.3. In figure
7.1 we presented an example for a computational result of the Poisson equation
where we used fixed Dirichlet boundary conditions.

8.1.6 Crank-Nicholson Scheme

The Crank-Nicholson scheme is an implicit finite differencing scheme. The
scheme is unconditionally stable and second-order accurate in space x and time
t. Compared to a first-order scheme, one can accomplish a given level of accu-
racy with a coarser grid and hence with less costs for the computation.

We study the Crank-Nicholson scheme at the scalar diffusion equation (7.2) in
section 7.2 for two space dimensions x = (x1, x2)

∂s

∂t
= ν∆s, (8.11)

where ν represents the kinematic viscosity coefficient and s = s(x) represents
a scalar quantity. Using the standard five-point Laplacian the discretisation of
equation (8.11) results in

sn+1 − sn

∆t
= ν ∆i,j

(sn + sn+1

2

)

(

I −
1

2
∆tν ∆i,j

)

sn+1 =

(

I +
1

2
∆tν ∆i,j

)

sn.

This results in a linear system

L s̃ = ̺, (8.12)

where s̃ represents the quantity at time level n+1 as depicted in figure 8.3 and
̺ on the right-hand side is given by

̺ =

(

I +
1

2
∆tν ∆i,j

)

sn. (8.13)

The linear operator L is defined as

L =

(

I −
1

2
∆tν ∆i,j

)

. (8.14)

We write the linear operator in a matrix form on s as
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(L s̃)i,j =

(

I +
4∆t ν

2h2

)

s̃i,j −
∆t ν

2h2
(s̃i+1,j + s̃i−1,j + s̃i,j+1 + s̃i,j−1). (8.15)

The resulting linear system with Dirichlet boundary conditions can be solved
with an appropriate solver, like PCG or multigrid solver (cf. chap. 9).
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y

x

t

i, j+1/2

Figure 8.3: Illustration of the time-space discretisation

8.2 Conservative Finite Difference Method

A particular important class of partial differential equations are equations,
which model conservation laws in physics. There is a high desire for algorithms
that are able to imitate the correct behaviour for solutions to conservation laws
when discontinuities such as shock waves are formed. The work of Hou and Le
Floch [69] has shown that non-conservative schemes are not able to converge
to the correct solution if a shock wave is present in the solution. But for con-
servative numerical methods Lax and Wendroff [86] found that this methods, if
convergent, do converge to a weak solution of the conservation law. As we are
working with equations that can generate shocks we decided to use conserva-
tive methods. Alternative schemes that are also shock fitting can be found in
[95, 94] and adaptive conservative schemes are the topic of [133, 78].

Conservative Method:

A conservative scheme for the two-dimensional conservation law reads

∂s

∂t
+ ∇ · F (s) = 0, (8.16)

where s represents the conserved quantity and F (s) denotes the physical flux.
It can be discretised in the following form
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sn+1
i,j = sn

i,j +
∆t

∆x1

(

Fi− 1
2
,j − Fi+ 1

2
,j

)

+
∆t

∆x2

(

Fi,j− 1
2
− Fi,j+ 1

2

)

, (8.17)

where s = s(x, t), s = (s1, s2)
⊤ ∈ R

2, x = (x1, x2) ∈ R
2, t ∈ R and F ∈ R

2.

Fi+ 1
2
,j = Fi+ 1

2
,j(s

n
i−1,j, ..., s

n
i+1,j),

represents the numerical flux through the cell edge (i + 1
2 , j) as indicated in

figure 8.4. Note that it depends on sn
i−1,j, s

n
i,j and sn

i+1,j, si,j in the cell and
neighbouring cells. The values F are the discrete approximations of the contin-
uous physical flux F (s) in the conservation law (8.16).

F
i+1/2, j

i, j+1/2
F

F
i−1/2, j

F
i, j−1/2

s
i,j

Figure 8.4: Numerical fluxes in and out of the cell (i,j).

In the following we summarise some numerical details for linear and non-linear
conservation laws, which we used in this thesis. In particular we describe the
discretisation schemes for the advection, vorticity transport and Burgers equa-
tion.

8.2.1 Geometric Limiters - Flux Corrected Transport

Flux limiters are used in high-resolution schemes to avoid the spurious oscilla-
tions that would otherwise occur with high-order spatial discretisation schemes
due to sharp changes like shocks or discontinuities in the solution domain.

The basic idea of a geometric limiter for finite difference methods is, to apply a
limiter to an interpolation function uI(x), and then use an upwind method to
calculate the fluxes and advance the solution. This implies that no overshoot
or undershoot can occur in the solution and oscillations at discontinuities are
avoided.

In the following we describe the limiter construction in Van Leer’s scheme. Van
Leer’s scheme combines Fromm’s upwind method [50], which is described in the
following section with the geometric limiter of Van Leer [137]. The interpolation
function uI(x) to the exact solution u(x) in Fromm’s Method is defined by
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uI(x) = uj +
x− j∆x

∆x
∆uj.

Van Leer’s scheme adjusts the slopes ∆uj

∆uj =
∂u

∂x

∣

∣

∣

j∆x
=
un

j+1 − un
j−1

2

in Fromm’s method. These slopes are adjustments such that the interpolation
function uI((j + 1

2)∆x) lies in the range between un
j+1 and un

j−1 as depicted in
figure 8.5.

j j+1 j−1j−1 j j+1

Figure 8.5: Left: The state un
j−1 is the maximum value at time n in the

neighbourhood {j− 1, j, j+1}. Right: The state un
j+1 is the maximum value

at time n in the neighbourhood {j − 1, j, j + 1}.

In the following we are concerned with the question, when the interpolation
function uI((j+ 1

2)∆x) stays in the desired range and when a geometric limiter
should be applied to force it to stay in the range.

We want to avoid over- or undershoots. That means, that new extreme values
should not occur. The problem is that it is possible for two fluxes to cause
a value to exceed the maximum and minimum limits, although each flux –
acting separately – might remain in the bounds. Such a situation occur if ϕ the
quantity, which defines the slope direction is positive:

ϕ = (un
j+1 − un

j )(un
j − un

j−1) > 0. (8.18)

Two cases lead to a positive value for ϕ. Firstly, if both differences of (8.18)
are negative:

This situation is depicted in the left image of figure 8.5 where the value un
j−1 is

the maximum and un
j+1 the minimum value with respect to the centred value

j. In the shown case the interpolation function should clearly stay within the
range between these two values.

Secondly, if both differences are positive:
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In the right image of figure 8.5 the value un
j+1 is the maximum and un

j−1 the
minimum value. Again, the interpolation function should stay in the range
between these two values. The Fromm interpolation function

uI

((

j +
1

2

)

∆x
)

= uj +
((j + 1

2 )∆x) − j∆x

∆x
∆uj

= uj +
1

2
∆uj

can attain the maximum and minimum value un
j+1 and un

j−1, respectively. The
value un

j+1 is reached

uI

((

j +
1

2

)

∆x
)

= un
j+1

when the slope ∆uj = 2(un
j+1 − un

j ) is used:

uI

((

j +
1

2

)

∆x
)

= uj +
1

2
2(un

j+1 − un
j ).

The value un
j−1 is obtained

uI((j +
1

2
)∆x) = un

j−1

when the slope ∆uj = 2(un
j − un

j−1):

uI

((

j +
1

2

)

∆x
)

= uj −
1

2
2(un

j − un
j−1).

If ϕ > 0 we ensure that the interpolation function stays within the defined
range by introducing the Van Leer slope ∆V Luj :

∆V Luj =

{

Sj · min{2|un
j+1 − un

j |,
1
2 |u

n
j+1 − un

j−1|, 2|u
n
j − un

j−1|} if ϕ > 0,

0 if ϕ < 0.

Here Sj is defined by

Sj = sign(un
j+1 − un

j−1).

This slope prevents the construction of new minima or maxima within the solu-
tion and prevents therefore undesired instabilities in form of oscillations. In the
following section we show how to combine Fromm’s Method with the geometric
limiter of Van Leer.
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8.2.2 Fromm’s Second-Order Upwind Method

In the following we use Fromm’s upwind method to compute the incompress-
ible advection equation in two dimensions. It represents a second-order finite-
difference method. In two dimensions, the model advection equation is defined
as

∂s

∂t
+ (u · ∇)s = 0, (8.19)

with the advective quantity s = s(x, t), x = (x1, x2) and the velocity field
u = (u1, u2)

⊤. Using the divergence-free condition ∇ · u = 0 we obtain the
following identity:

∇ · (u s) = (∇ · u)s+ u · (∇ s)

= (u · ∇)s. (8.20)

Using (8.20) we reformulate equation (8.19) into

∂s

∂t
+ ∇ · (u s) = 0. (8.21)

To discretise this equation we employ Fromm’s finite difference upwind scheme
in combination with Van Leer’s limiter. This results in an explicit scheme for
the computation of the quantity sn+1

i,j at the next time step tn+1. It is assumed
that sn

i,j is known which is supposed to be the average value of the function
s(x, t) over the cell (i, j) at time tn. The conservation form (such as in (8.17))
in the Fromm formulation turns out to be

sn+1
i,j = sn

i,j + u1
∆t

∆x1

(

si− 1
2
,j − si+ 1

2
,j

)

+ u2
∆t

∆x2

(

si,j− 1
2
− si,j+ 1

2

)

, (8.22)

where exemplarily the flux over the left cell boundary is given by

Fi+ 1
2
,j = u1

i+ 1
2 ,j

∆t s
n+ 1

2

i+ 1
2
,j
.

The flux over the other boundaries obtained by the analogous computation.
We implemented a predictor-corrector scheme with second-order accuracy. The
computation of the quantities si− 1

2
,j, si+ 1

2
,j, si,j− 1

2
and si,j+ 1

2
at half steps rep-

resent the predictor step in that scheme. The conservative differencing (8.22)
is then the corrector step. The second-order accuracy is archived by using an
approximation with local truncation error O(∆t2). The scheme turns out to be
second-order accurate in smooth regions of the solution and first-order accurate
near to discontinuities.

In the following we describe the predictor step of the method to compute the
half-step values at the cell boundaries. We describe the computation only for
the single value si+ 1

2
,j. But the other quantities are obtained analogously.
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Predictor Step

In order to find an approximation for the half-step value si+ 1
2
,j (that lies at

the right cell boundary) we use the Taylor expansion and get the following
expression:

s
n+ 1

2

i+ 1
2
,j

= sn
i,j +

1

2
∆x1

∂s

∂x1

∣

∣

∣

i∆x1,j∆x2

+
1

2
∆t

∂s

∂t

∣

∣

∣

n∆t
+ O(∆x2

1,∆t
2). (8.23)

Using then the advection equation (8.21) – which exploits the incompressible
flow constraint – to substitute the temporal derivative one obtains:

s
n+ 1

2

i+ 1
2
,j

= sn
i,j +

1

2
∆x1

∂s

∂x1

∣

∣

∣

(i,j)
+

1

2
∆t

(

−u1
∂s

∂x1
− s

∂u1

∂x1
−
∂(u2s)

∂x2

)

∣

∣

∣

(i,j)

= sn
i,j +

1

2

(

1 − u1
∆t

∆x1

)

∆x1
∂s

∂x1

∣

∣

∣

(i,j)
−

1

2
∆t s

∂u1

∂x2

∣

∣

∣

(i,j)

−
1

2
∆t

∂(u2s)

∂x2

∣

∣

∣

(i,j)
. (8.24)

Note that the error terms of equation (8.23) were just dropped. To discretise the
last term of (8.24) we use the second term of the finite-difference approximation

∇ (u s)
n+ 1

2
i,j =

u1
i+ 1

2 ,j
s
n+ 1

2

i+ 1
2
,j
− u1

i− 1
2 ,j
s
n+ 1

2

i− 1
2
,j

∆x1
+
u2

i,j+ 1
2

s
n+ 1

2

i,j+ 1
2

− u2
i,j− 1

2

s
n+ 1

2

i,j− 1
2

∆x2
.

As the slope of Fromm’s method ∆x1
∂s
∂x1

leads to oscillations and therefore
instabilities ([66]) we describe in the following section how these slopes substi-
tuted in equation (8.24) using the Van Leer’s limiter.

Van Leer’s limiter

In order to avoid oscillations in equation (8.24) Fromm slopes are replaced by
Van Leer slops. As a consequence, the scheme retains the high-order accuracy of
Fromm’s scheme in smooth regions, but where discontinuities are detected, the
discretisised evolution equation drops to first-order accuracy. The Van Leer’s
limiters are able to detect discontinuities and then modifies the behaviour of
the scheme accordingly.

First, one has to detect which sign the slops in the two directions have. As
the computation for both directions (x1 and x2) are quite similar we show the
explicit computation only for the x1 direction. We computes the sign of the
following expression

ϕx1,i,j = (si+1,j − si,j)(si,j − si−1,j)

to detect whether to switch on or off the Van Leer slope:
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∆V L
x1
si,j =

{

Sx1,i,j min{slopex1
} if ϕx1,i,j > 0

0 if ϕx1,i,j < 0
,

where we used the short cut

{slopex1
} = {2|si,j − si−1,j|,

1

2
|si+1,j − si−1,j|, 2|si,j − si+1,j|}.

The variable Sx1,i,j represents the sign of the gradient:

Sx1,i,j = sign(si+1,j − si−1,j).

Using the analogous computation the slope ∆x1
∂s
∂x1

in equation (8.24) is refor-
mulated into

s
n+ 1

2

i+ 1
2
,j

= sn
i,j +

1

2

(

1 − ui+ 1
2
,j

∆t

∆x1

)

∆V L
x1
si,j −

1

2
∆t sn

i,j

(ui+ 1
2
,j − ui− 1

2
,j

∆x1

)

−
1

2
∆t





u2
i,j+ 1

2

supwind

i,j+ 1
2

− u2
i,j− 1

2

supwind

i,j− 1
2

∆x2



 , (8.25)

where supwind denotes the upwind value of s that is defined in the following
and depicted in figure 8.6. It is a term that, depending on the direction of the
velocity u, selects the appropriate neighbour s for the computation in such a
way that the CFL-condition 1 holds. The computation of the two upwind terms
is given by:

supwind

i,j+ 1
2

=

{

sn
i,j if u2

i,j+ 1
2

> 0

sn
i,j+1 if u2

i,j+ 1
2

< 0

and

supwind

i,j− 1
2

=

{

sn
i,j−1 if u2

i,j− 1
2

> 0

sn
i,j if u2

i,j− 1
2

< 0
.

Corrector Step

The corrector step within this scheme is implemented by the conservative dif-
ferencing for the new value sn+1

i,j at the time (n + 1)∆t. It is computed with
equation (8.22) using the previously calculated half-step values si− 1

2
,j, si+ 1

2
,j,

si,j− 1
2

and si,j+ 1
2

of the predictor step.

The above presented predictor-corrector scheme is used in the following to dis-
cretise space-time dependent evolution equations.

1The Fromm scheme [50] is a second-order scheme and is stable for 0 ≤ σCF L ≤ 1.
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s
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Figure 8.6: Upwind. Left: Upwind scheme for the positive velocity u2

Right: Upwind scheme for the negative velocity u2

8.2.3 Discretised Vorticity Transport Equation

In this section we discuss our implementation of the incompressible vorticity
transport equation, which we used in [118, 117]. The vorticity transport equa-
tion is given by

∂ω

∂t
+ (u · ∇)ω = ν∆ω, (8.26)

where u = (u1, u2)
⊤, u = u(x, t), x = (x1, x2)

⊤ and ν represents the kinematic
viscosity (diffusion) coefficient. For our purposes, we think of the vorticity
ω = ω(x, t) as a scalar quantity which is transported or advected by an incom-
pressible velocity field u. The velocity field is divergence-free so that

∇ · u = 0.

The vorticity transport equation represents a parabolic equation and consist of
two parts. The hyperbolic advection part

∂ω

∂t
+ (u · ∇)ω = 0

and the elliptic diffusion part

∂ω

∂t
= ν∆ω.

As we know how to handle the advection and diffusion part separately we have
to combine these skills to a hybrid approach which solves the full equation. This
results in a second-order accurate explicit-implicit method. The explicit second-
order Fromm-Van-Leer scheme is used for the advection part of the vorticity
transport equation and the implicit Crank-Nicholson second-order temporal dif-
ferencing scheme for the diffusion part of the equation.

The main task we pursue in the following is to combine the explicit Fromm-Van
Leer scheme (cf. sec. 8.2.2) with the implicit unconditionally stable Crank-
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Nicholson scheme (cf. sec. 8.1.6) to achieve spatial and temporal stability.

Crank-Nicholson Scheme

In order to obtain an explicit formulation for the advection part we try to define
the advection part independently of time step t = n + 1 of the implicit Crank
Nicholson. Therefore we introduce a half-time step t = n+ 1

2 . For the diffusion
part, on the contrary, we use an implicit scheme - therefore, we are allowed to
define ω at the time step t = n+ 1.

ωn+1
i,j − ωn

i,j

∆t
= −(u · ∇)ω

n+ 1
2

i,j + ν∆h(ωn + ωn+1)i,j

ωn+1
i,j = ωn

i,j − ∆t(u · ∇)ω
n+ 1

2
i,j + ∆tν∆h(ωn + ωn+1)i,j

(

I −
∆t

2
ν∆h

)

ωn+1
i,j = ωn

i,j − ∆t(u · ∇)ω
n+ 1

2
i,j +

∆t

2
ν∆hωn

i,j, (8.27)

where ∆hωij =
ωi+1,j+ωi−1,j−4ωi,j+ωi,j+1+ωi,j−1

h2 represents the discretised form of
the standard five-point Laplacian.

Note that equation (8.27) is written in operator form where a linear operator
L acts on ω̃ and is equal to b which is defined by the right-hand side of the
equation:

Lω̃ = b.

The linear operator is

L =

(

I −
∆t

2
ν∆h

)

.

Using the standard five-point Laplacian we write Lω̃ at any point (i, j) as

(Lω̃)i,j =

(

1 +
4∆tν

2h2

)

ω̃i,j −
∆tν

2h2
(ω̃i+1,j + ω̃i−1,j + ω̃i,j+1 + ω̃i,j−1) .

The right-hand-side of equation (8.27) is therefore

b = ωn
i,j − ∆t(u · ∇)ω

n+ 1
2

i,j +
∆t

2
ν∆hωn

i,j. (8.28)

In the following we are mainly interested in the discretisation of the explicit

part (u · ∇)ω
n+ 1

2
i,j of equation (8.28) to the time step n + 1

2 . Therefore we use
the second-order Fromm Van Leer scheme as follows:
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Fromm Van Leer Scheme

When one tries to discretise the equation (8.28), the main difficulties occur

within the discretisation of the term ∇ (u ω)
n+ 1

2
i,j . Note that for the discrete

formulation, we assume that the scalar ω is located at the cell centre and that
velocities u enclosing the cell are defined on the cell edges (compare fig. 8.7).

u1
i+1

2 ,j

u2
i,j−1

2

u2
i,j+1

2

u1
i−1

2 ,j

ωi,j ωi+1
2
,j

ωi,j−1
2

ωi,jωi−1
2
,j

ωi,j+1
2

Figure 8.7: Finite differences using Fromm scheme. Left: Velocity compo-
nents u1 and u2 on the cell edges. Right: Vorticity ω on the cell edges.

As we are considering the incompressible vorticity transport equation, the fol-
lowing identity holds true:

(u · ∇)ω = ∇ · (uω).

The standard finite-difference approximation for this term is given by

∇ (u ω)
n+ 1

2
i,j =

u1
i+ 1

2 ,j
ω

n+ 1
2

i+ 1
2
,j
− u1

i− 1
2 ,j
ω

n+ 1
2

i− 1
2
,j

∆x1
+
u2

i,j+ 1
2

ω
n+ 1

2

i,j+ 1
2

− u2
i,j− 1

2

ω
n+ 1

2

i,j− 1
2

∆x2
,

(cf. [36]). For this the computation of the vorticities at the four cell boundaries
is needed. We will only derive the formula for the approximation of the vorticity

ω
n+ 1

2

i+ 1
2
,j

at the right edge. But note that the derivation of the other vorticities

is analogous. A Taylor expansion for the right edge leads to the following
approximation:

ω
n+ 1

2

i+ 1
2
,j

≈ ωn
i,j +

1

2
∆x1

∂ω

∂x1
+

1

2
∆t

∂ω

∂t
. (8.29)

Using the vorticity transport equation (8.26) within this approximation one
gets:

ω
n+ 1

2

i+ 1
2
,j

= ωn
i,j +

1

2
∆x1

∂ω

∂x1
+

1

2
∆t

(

−u1
∂ω

∂x1
− ω

∂u1

∂x1
−
∂(u2ω)

∂x2
+

1

2
∆tν∆ω

)

= ωn
i,j +

1

2

(

1 − u1
∆t

∆x1

)

∆x1
∂ω

∂x1
−

1

2
∆t ω

∂u1

∂x1

−
1

2
∆t

∂(u2ω)

∂x2
+

1

2
∆tν∆ω.
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The discretisation of this equation results in:

ω
n+ 1

2

i+ 1
2
,j

= ωn
i,j +

1

2

(

1 − u1
i+ 1

2 ,j

∆t

∆x1

)

∆V L
x1
ωi,j −

1

2
∆t ωn

i,j

(

u1
i+ 1

2 ,j
− u1

i− 1
2 ,j

∆x1

)

−
1

2
∆t





u2
i,j+ 1

2

ωupwind

i,j+ 1
2

− u2
i,j− 1

2

ωupwind

i,j− 1
2

∆x2



−
1

2
∆tν(∆ωn)i,j ,

where ∆V L
x1
ωi,j represents the Van Leer slope (see also sec. 8.2.1 and 8.2.2).

The upwind value of ω is denoted by

ωupwind

i,j+ 1
2

=

{

ωn
i,j if u2

i,j+ 1
2

> 0

ωn
i,j+1 if u2

i,j+ 1
2

< 0.

Again, the upwind variable selects – depending on the direction of the velocity u
– the appropriate neighbour ω in the computation such that the CFL-condition
holds in the numerical scheme.

8.3 Numerical Methods for Non-Linear Conservation Laws

8.3.1 Godunov Schemes

Godunov [54] extended 1959 the first-order conservative upwind scheme of
Courant, Isaacson and Rees [38] for linear systems to a scheme for non-linear
systems of hyperbolic conservation laws

∂u

∂t
+
∂F (u)

∂x
= 0. (8.30)

The solution in Godunov’s Method is assumed to be a piecewise constant func-
tion over each mesh cell at a fixed time t = n∆t. At a particular time level a
pair of constant states (un

i , u
n
i+1) is considered, which are separated by a dis-

continuity at the cell boundary or interface xi+ 1
2
. The flow evolution in each

cell for the next time step t = (n+ 1)∆t results from the interactions between
the cells at the cell interfaces. At the cell interface two different fluid states ul

for the left side and ur for the right side are defined. A Riemann problem 2 can

2 The Riemann problem for a m×m non-linear hyperbolic system (8.30) is an initial-value
problem with the initial data given in the following special form

u(x, 0) =



ul x < 0
ur x > 0.

Here ul and ur represent two real initial values for the left and the right part of the initial
state, respectively. For this problem the solution is known to consists of m+1 constant states,
which are separated by m waves. These waves can be considered as isolines of the function
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be stated which defines the interaction between the left and right side of the
cell interface. The solution of this problem leads to the values ul and ur. That
means that the initial conditions at the time t = n∆t at the cell boundaries
corresponds to the exact solution of the respectively local Riemann problem.
The solution of the Riemann problem resolved the local interaction between ul

and ur.

Numerically, each wave propagates information – complying the upwind scheme
– over the time interval ∆t. The solution of the Riemann problem provides val-
ues at the contact discontinuities formed by shock waves or expansion fans. Note
that this could result in different values for a single cell at its cell boundaries,
violating the constraint of a piecewise constant state in the cell. Furthermore,
to confine this interaction only between adjacent cells the time interval must be
limited by the CFL-conditon thereby preventing the interference with adjacent
Riemann problems.

To obtain the new piecewise constant approximation at the new time interval
t = (n + 1)∆t the fluid states obtained at the all boundaries for each cell are
just averaged. By the averaging details of the exact Riemann solutions get lost.
Therefore, one do not need exact solutions of the Riemann problems that are
computationally expensive to obtain. As a consequence we use approximate
Riemann solutions at the cell interfaces.

In the following we describe the general, explicit first-order conservative Go-
dunov method in order to lay the foundations for the second-order Godunov
method which we used in our numerical implementation of the Burgers equa-
tion (3.1), (4.4), and (6.2).

The General Godunov Method

We want to solve the general initial value problem

∂u

∂t
+
∂F (u)

∂u
= 0

u(x, 0) = u0, (8.31)

with respect to the conserved quantities u and fluxes F (u) using the first-order
Godunov’s method [43]. The conserved quantities u are evaluated in each cell
of size ∆x at each time step tn. To compute the solution of (8.31) at the next
time step tn+1 three main steps are relevant:

First, one defines a piecewise linear interpolation function û, such that

which also describe the discontinuities which build a shock. They are known as contact waves,
or transition waves such as rarefaction waves.
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un
i ∆x =

(i+ 1
2
)∆x

∫

(i− 1
2
)∆x

û(x, tn)dx.

The piecewise approximation is then an average of the solution over each ap-
propriate cell (i− 1

2 , i+
1
2) and the integral form of the conservation law (8.31)

is used to derive an explicit conservative formula

un+1
i = un

i +
∆t

∆x

(

Fi− 1
2
− Fi+ 1

2

)

, (8.32)

as described in section 8.2.

In the second step, the numerical flux over the cell boundaries

Fi+ 1
2

= F (uRP
i+ 1

2
),

where uRP
i+ 1

2

denotes the solution of the Riemann problem at the cell interface,

are obtained by solving the appropriate Riemann problem

∂u

∂t
+
∂F (u)

∂x
= 0

u(x, 0) =

{

ul if x < 0
ur if x > 0

. (8.33)

The Riemann problem (8.33) is evaluated at x
t

= 0 at each cell interface xi+ 1
2
.

That means that the flux functions F incorporate the solutions of the Riemann
problem.

The third step consists of averaging the state variables at the new time

un+1
i =

1

∆x

(i+ 1
2
)∆x

∫

(i− 1
2
)∆x

û(x, tn+1)dx.

These values define the piecewise constant solution at the time t + 1 and the
computation process is repeated to obtain the solution for the next time step.
In the following we are concerned with the question how to choose the length
of the time step.

The choice of the time step ∆t: We applied the conservative formula (8.32)
to compute the intercell fluxes. The spacial mesh length ∆x is given by the
image grid size, usually ∆x = 1. The choice of the time step length ∆t in
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the conservative formula depends on the stability condition of the particular
scheme. The choice of ∆t in the Godunov method depends on the restriction
defined by the CFL number σCFL. The choice for non-linear schemes is difficult
as for each time level multiple wave speeds exist and therefore multiple CFL
numbers. To overcome this problem we compute

amax =
∂F

∂u

∣

∣

∣

max

the maximum wave speed within the region of interest at time level n and the
maximum CFL number is then

σCFLmax = amax
∆t

∆x
, (8.34)

with

0 < σCFLmax ≤ 1. (8.35)

A reasonable choice of the time step ∆t, holding the CFL condition, is

∆t =
σCFLmax

amax
∆x. (8.36)

That means that no wave present in the region of interest at time n travels more
than a distance ∆x within the time ∆t. The information transport within one
time step is not greater than ∆x. Note that the closer the CFL number σCFLmax

is to 1, the more efficient is the computation.

8.3.2 Second-Order Unsplit Godunov Method

Colella and Puckett [36] developed a so called unsplit Godunov method for
general systems of conservation laws using a predictor-corrector approach of
second-order to obtain higher-order accuracy of the numerical solution. The
higher-order approximation is based on a second-order approximation to the
solution at the cell boundaries at time tn+ 1

2 of the left and right states. These
states are used to compute the numerical flux F at the cell interfaces. The
resulting conservative finite difference scheme (8.50) is then a second-order ap-
proximation.

In the following we are concerned with the initial value problem

∂u

∂t
+ ∇ · F (u) = 0

u(x, 0) = u0, (8.37)

where x = (x1, x2), u = u(x, t), and u = (u1, u2) a function u ∈ R
2 × [0, T ]

and F the flux function. This system of equations is written as a single vector
equation

∂u

∂t
+
∂F1(u)

∂x1
+
∂F2(u)

∂x2
= 0. (8.38)
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We assume, that we know or can compute the cell average value un
i,j of the

solution over each cell (i∆x1, j∆x2)

un
i,j =

1

∆x1∆x2

(i+ 1
2
,j)∆x1
∫

(i− 1
2
,j)∆x1

(i,j+ 1
2
)∆x2

∫

(i,j− 1
2
)∆x2

u(x1, x2, t
n) dx1dx2. (8.39)

Below we describe Godunov’s second-order predictor-corrector method. It al-
lows to compute the solutions un+1

i,j at the time tn+1 = (n+ 1)∆t.

1. Computation of the second-order approximations
a) Construction of a linear monotonised approximation
b) Predictor step: Extrapolation to the cell interfaces

2. Solution of the Riemann problem at the cell interfaces

3. Corrector step: Using conservative finite differencing to update the solu-
tion

These steps are described in more detail below:

Linear Monotonised Approximation

Harten [61] expanded the central difference approximation of the spatial deriva-
tive resulting in the following approximation:

∆x1ui,j ≈ ∆x1
∂u

∂x1

∣

∣

∣

(i∆x1,j∆x2)
=
∑

k

αkj
rx1
k . (8.40)

For this the author used the right eigenvectors of the Jacobian matrix ∂F
∂u

3

of the linearised equation (8.41). Then the cell amplitude αkj
is computed as

follows

αkj
=







sign(αC
kj

)min{2|αL
kj
|, |αC

kj
|, 2|αR

kj
|} if

(

αL
kj
αR

kj
> 0
)

0 if
(

αL
kj
αR

kj
≤ 0
)

,
(8.42)

where the amplitudes are defined by

αL
kj
lx1
k =

1

2
(ui,j − ui−1,j),

αC
kj
lx1
k =

1

2
(ui+1,j − ui−1,j),

αR
kj
lx1
k =

1

2
(ui+1,j − ui,j),

3 By applying the chain rule to the second term of (8.30) we rewrite this equation in the
following (quasi-linearised) form:

∂u

∂t
+

∂F

∂u

∂u

∂x
= 0. (8.41)

The term ∂F
∂u

denotes the Jacobian matrix of the flux function F (u).
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and lx1
k denotes the left eigenvectors of the Jacobian matrix ∂F

∂u
. This technique

is related to Van Leer’s limiter construction described in section 8.2.1.

These computations serve as an approximation for a spatial derivative that is
used within the following step.

Extrapolation to the cell interfaces

In this section we are concerned with the predictor step. That means that the
occurring fluxes are extrapolated to the cell boundaries. A Riemann problem
for each edge of a cell has to be solved for the calculation of the edge fluxes. We
demonstrate only the computation for the left state. The right, top and down
states are computed analogous. Using a Taylor expansion one obtains

u
n+ 1

2

i+ 1
2
,j

∣

∣

∣

L
= un

i,j +
∆x1

2

∂u

∂x1

∣

∣

∣

n

(i,j)
+

∆t

2

∂u

∂t

∣

∣

∣

n

(i,j)
(8.43)

= un
i,j +

∆x1

2

∂u

∂x1

∣

∣

∣

n

(i,j)
−

∆t

2

(∂F1(u)

∂x1
+
∂F2(u)

∂x2

)∣

∣

∣

n

(i,j)

= un
i,j +

1

2

(

1−
∂F1(u)

∂u

∆t

∆x1

)

∆x1
∂u

∂x1

∣

∣

∣

n

(i,j)
−

∆t

2

∂F2(u)

∂x2

∣

∣

∣

n

(i,j)
.

Here the term ∆x1
∂u
∂x1

∣

∣

∣

n

(i,j)
is approximated by the monotonised differences

(8.40). It is known that for non-linear problems, components which corre-
sponds to characteristics which do not propagate towards the zone edges must
vanish. For the upwind computation Colella and Puckett [36] defined the fol-
lowing characteristic projection operators

PL(S) =
∑

k
λx1

k (ui,j) > 0

(

lx1
k (ui,j) · S

)

rx1
k (ui,j)

PR(S) =
∑

k
λx1

k (ui,j) < 0

(

lx1
k (ui,j) · S

)

rx1
k (ui,j), (8.44)

where λx1
k (ui,j) represents the k-th real eigenvalue of the Jacobian matrix ∂F

∂u
.

The last term ∆t
2

∂F2(u)
∂x2

∣

∣

∣

n

(i,j)
that occurs in the equation (8.43) is known in the

literature as transverse derivative. Here it is approximated by the differences
of Godunov fluxes in an upwind manner as also defined in (8.2.2). Finally the
expression for the computation of the right and left states becomes
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u
n+ 1

2

i+ 1
2
,j

∣

∣

∣

L
= un

i,j +
1

2
PL

(

1−
∂F1(u)

∂u

∆t

∆x1

)

∆x1ui,j

∣

∣

∣

n

(i,j)
(8.45)

−
∆t

2

(

F2(ûi,j+ 1
2
,L − F2(ûi,j− 1

2
,L

)∣

∣

∣

n

(i,j)

u
n+ 1

2

i+ 1
2
,j

∣

∣

∣

R
= un

i+1,j −
1

2
PR

(

1 +
∂F1(u)

∂u

∆t

∆x1

)

∆x1ui+1,j

∣

∣

∣

n

(i+1,j)
(8.46)

−
∆t

2

(

F2(ûi,j+ 1
2
,R − F2(ûi,j− 1

2
,R

)∣

∣

∣

n

(i+1,j)
,

where the fluxes F2(ûi,j− 1
2
,L) and F2(ûi,j− 1

2
,R) are computed using the conser-

vation formula (8.51) and the projection operator (8.44) as in (8.43).

Solution for the Riemann Problem

In this part we are concerned with the computation of the quantities u at the
cell boundaries. Note that these are used to compute the fluxes. In the previous

step the left and right states u
n+ 1

2

i+ 1
2
,j

∣

∣

∣

L
and u

n+ 1
2

i+ 1
2
,j

∣

∣

∣

R
were computed. These are

used as initial data for the left and right states within the Riemann Problem

u(x, 0) =

{

uL if x < 0
uR if x > 0

. (8.47)

A solution of the Riemann problem has to satisfy the following conditions:

i) The solution u(x, t) of the Riemann problem is a function of the similarity
variable x

t
only and is known as similarity solution u(x

t
) (c.f. (8.33)).

ii) The similarity solution u(x
t
) has to satisfy the entropy condition

λ(ul) > S =
F (ur) − F (ul)

(ur − ul)
> λ(ur),

where λ represents the eigenvalues of the Jacobian matrix ∂F
∂u

and S the
wave speed.

iii) Each wave family k in a characteristic field λk is either linearly degenerate

∇λ(u) · ν(u) = 0 (8.48)

or genuinely non-linear

∇λ(u) · ν(u) 6= 0, (8.49)

where ν(u) is the corresponding eigenvector to λ(u).
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We consider the k-th wave and define the following solutions:

u(x, t) =











uL if x
t
< λkL

, k = 1, ...,m

uk−1 +
x
t
−λkL

λkR
−λkL

(uk−1 − uk) if λkL
≤ x

t
< λkR

, k = 1, ...,m

uR if x
t
> λkR

, k = 1, ...,m

,

where for each wave the left and right states of the k-th eigenvalue λk, k =
1, ...,m has to be determined. If the k-th wave is linear degenerated (c.f. (8.48))
then

λkL
= λkR

=
1

2
(λk(uk−1) + λk(uk)).

If the k-th wave is genuinely non-linear (c.f. (8.49)) and λk(uk−1) < λk(uk)
then

λkL
= λk(uk−1)

λkR
= λk(uk).

However, a full discussion of shocks and shock formations is beyond the scope
of this thesis and therefore, we refer to the books of Chorin and Marsden [32],
Lax and Wendroff [86], LeVeque [87], Toro [134] and Thomas [130] for further
studies of this topic.

Conservative Finite Differencing

The conservative formula is discretised by the following expression

un+1
i,j = un

i,j −
∆t

∆x1

(

F1(û
n
i+ 1

2
,j
) − F1(û

n
i− 1

2
,j
)
)

−
∆t

∆x2

(

F2(û
n
i,j+ 1

2
) − F2(û

n
i,j− 1

2
)
)

,

(8.50)

where F (ûn
i+ 1

2
,j
) represents the flux function which is determined by

F1(û
n
i+ 1

2
,j
) = λx1

i,jû
n
i+ 1

2
,j
.

Note that this equation depends on ûn
i+ 1

2
,j

which is the Riemann solution and

can be calculated using the approximation with the knowledge of the previous
section. To guaranty the stability of this computation scheme one can specify
the CFL-condition (c.f. sec. 8.1.3) in the following form:

max
(i,j)

(∣

∣

∣
λx1

i,j

∆t

∆x1

∣

∣

∣
,
∣

∣

∣
λx2

i,j

∆t

∆x2

∣

∣

∣

)

≤ 1.
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8.3.3 Discretisation of the Adjoint Equation

In this section we are concerned with the implementation of the time-dependent
adjoint system (8.51) (cf. (4.7b) of chapter 4) on the domain Ω× [0, T ] by using
a second-order predictor-corrector finite difference scheme.

{

∂w1
∂t

+ u1
∂w1
∂x1

+ u2
∂w1
∂x2

+ w1
∂u2
∂x2

− w2
∂u2
∂x1

= D1(I, u)

∂w2
∂t

+ u1
∂w2
∂x1

+ u2
∂w2
∂x2

+ w2
∂u1
∂x1

− w1
∂u1
∂x2

= D2(I, u)
(8.51)

The data term D = (D1,D2)
⊤ is independent from the adjoint variable and is

in our case defined as

D(I, u) := (∇I⊤u+ It)∇I − α∆u, (8.52)

and is precomputed for the entire image sequence.

As before the discretisation domain Ω× [0, T ] is divided into cells like depicted
in figure 8.1 in section 8.1. The adjoint quantities w = (w1, w2)

⊤ are defined
at the centres of the individual cells: For example wn

1i,j
represents the adjoint

variable at the position (x1, x2) = (i, j) within the grid at time t = n. The
quantities at the cell boundaries which lie between the cells (i, j) and (i, j + 1)
are denoted by wn

1
i+ 1

2 ,j
as depicted in figure 8.8.

w1i,j

u1
i+1

2 ,j

u2
i,j−1

2

u2
i,j+1

2

u1
i−1

2 ,j

w1i,j

w1
i,j−1

2

w1
i+1

2 ,j
w1

i−1
2 ,j

w1
i,j+1

2

Figure 8.8: One cell of the domain Ω with respect to the velocity components
and the adjoint quantities. Left: Velocity components u1 and u2 on the cell
edges. Right: Notation of the adjoint quantities of the cell. Quantities on
the boundary are subscripted by half indices.

The conservation form4 for this problem can be written as follows:

wn+1
1i,j

= wn
1i,j

+
∆t

∆x
(Fin − Fout)

= wn
1i,j

+
u1∆t

∆x1
(w

n+ 1
2

1
i− 1

2 ,j
− w

n+ 1
2

1
i+ 1

2 ,j
) +

u2∆t

∆x2
(w

n+ 1
2

1
i,j− 1

2

− w
n+ 1

2
1

i,j+ 1
2

).

4As the quantity w is physically conserved over time.
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The numerical fluxes Fin and Fout are obtained by solving the predictor step,
which consists of the computation of the adjoint quantities at the cell edges (cf.
fig. 8.8).

Note that all fluxes are evaluated and differenced at the same time. We employ
the upwind finite difference method – also known as Fromm Van Leer scheme
– that is described in section 8.2.2.

The quantities w
n+ 1

2
1

i− 1
2 ,j

, w
n+ 1

2
1

i+ 1
2 ,j

, w
n+ 1

2
1

i,j− 1
2

and w
n+ 1

2
1

i,j+ 1
2

at the cell boundaries are

approximated using the Taylor series expansion. We will derive this estimation

only for one component of the adjoint quantity, namely w
n+ 1

2
1

i+ 1
2 ,j

which is located

at the right edge (i+ 1
2 , j). The derivation of the other seven quantities (three

for w1 and four for w2) is analogous. The linearised Taylor series for this edge
yields the following approximation:

w
n+ 1

2
1

i+ 1
2 ,j

≈ wn
1i,j

+
1

2
∆x1

∂w1

∂x1
+

1

2
∆t

∂w1

∂t
. (8.53)

In this equation we substitute ∂w1
∂t

by using the first equation of the adjoint
system (8.51) and we obtain:

w
n+ 1

2
1

i+ 1
2 ,j

= wn
1i,j

+
∆x1

2

∂w1

∂x1
+

∆t

2

(

−u1
∂w1

∂x1
− u2

∂w1

∂x2
− w1

∂u2

∂x2
+ w2

∂u2

∂x1

)

= wn
1i,j

+
1

2

(

1 − u1
∆t

∆x1

)

∆V L
x1
w1i,j

−
∆t

2
w1
∂u2

∂x2

+
∆t

2
w2
∂u2

∂x1
−

∆t

2
u2
∂wupwind

1

∂x2
. (8.54)

Then the final discretisation leads to the following equation:

w
n+ 1

2
1

i+ 1
2 ,j

= wn
1i,j

+
1

2

(

1 − u1
i+ 1

2 ,j

∆t

∆x1

)

∆V L
x1
w1i,j

−
∆t

2∆x2
wn

1i,j

(

u2i,j+ 1
2
− u2i,j− 1

2

)

+
∆t

2∆x1
wn

2i,j

(

u2i+ 1
2
,j − u2i− 1

2
,j

)

−
∆t

2∆x2
u2i,j

(

wupwind
1

i,j+ 1
2

− wupwind
1

i,j− 1
2

)

.

Here ∆V L
x1

is the Van Leer slope and wupwind
1

i,j+ 1
2

the upwind difference, as defined

in section 8.2.2. Upwind schemes only use one direction of information transfer.
They consider the flow from upstream to downstream locations. This means
that in upwind schemes the data from upstream locations – as perceived from
a point (i, j) – are used:

wupwind
1

i,j+ 1
2

=

{

wn
1i,j if u2

i,j+ 1
2

> 0

wn
1i,j+1

if u2
i,j+ 1

2

< 0
. (8.55)
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The basic idea behind this is that all methods with an accuracy larger than the
order one will produce spurious oscillations in the vicinity of large gradients,
while being second-order accurate in regions where the solution is smooth [36].
To prevent such oscillations the slopes of Fromm’s method are replaced by the
slopes of the Van Leers scheme. The Van Leer scheme detects discontinuities
and modifies its behaviour in such locations accordingly. The implication of
this is that this method retains the high-order accuracy of Fromm’s scheme
in smooth regions, but near discontinuities the discretised evolution equation
drops to first-order accuracy. For further details, we refer to [36].

8.4 Discretisation of the Advection-Diffusion Equation

Our goal is to solve the advection-diffusion equation (6.3) in order to obtain
the image intensity function I(x, t). The advection-diffusion equation (6.3)
represents a parabolic equation. It can divided into a hyperbolic part

∂I

∂t
+ (u · ∇)I = 0,

which is the advection equation and an elliptic part

∂I

∂t
= ν∆I,

which represents the diffusion equation. We already know how to handle the
advection and diffusion equation separately. Therefore what remains is to com-
bine these two terms into a hybrid approach which solves equation (6.3). The
hybrid approach we employ makes use of a semi-implicit method. We use the
implicit Crank Nicholson scheme (see also sec. 8.1.6) of second-order tempo-
ral differencing for the diffusion part and the explicit second-order Fromm Van
Leer scheme for the advection part. Note that the numerical implementation
of the diffusion part of equation (6.3) is likely to create oscillations for high
viscosity values. The Crank Nicholson scheme, however, is known to be uncon-
ditionally stable [36] and provides the desired stability properties. Using it, one
can largely avoid spatial and temporal discretisation errors.

Below we describe the numerical implementation of both parts, namely the
Crank Nicholson scheme and the Fromm Van Leer scheme. We label a particu-
lar mesh cell with ij, while the time level is given as superscript n. A grey value
is represented by In

ij and the boundary between the (i, j)th and (i, j + 1)th cell

is again denoted by (i, j + 1
2). Furthermore, we define ∆x1 = x1

i+ 1
2 ,j

− x1
i− 1

2 ,j

and assume that the mesh spacing ∆x1, ∆x2 and the time step ∆t are constant.

Implicit Part: Crank Nicholson Scheme

The diffusive part is discretised using the Crank Nicholson scheme. We linearise
the advective part of the flow equation and extrapolate it to the next half time
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step. The advection part is discretised using an explicit scheme (avoiding its
dependency on the (n + 1)-time step). The finite difference approximation for
the advection-diffusion equation results in:

In+1
i,j − In

i,j

∆t
= −(u · ∇)I

n+ 1
2

i,j + ν
1

2
∆(In + In+1)i,j

In+1
i,j = In

i,j − ∆t(u · ∇)I
n+ 1

2
i,j +

∆t

2
ν∆(In + In+1)i,j

(

I −
∆t

2
ν∆

)

In+1
i,j = In

i,j − ∆t(u · ∇)I
n+ 1

2
i,j +

∆t

2
ν∆In

i,j. (8.56)

Here ∆Iij = Ii+1,j + Ii−1,j − 4Ii,j + Ii,j+1 + Ii,j−1 represents the standard form
of a discretised Laplacian operator.

Note that equation (8.56) is written as an equation where a linear operator is
applied to Ĩ which equals a vector b on the right hand side:

LĨ = b. (8.57)

The introduced linear operator is

L =

(

I −
∆t

2
ν∆

)

.

Using the standard (five-point) Laplacian operator we obtain the elements of
the vector LĨ at any point (i, j)

(

LĨ
)

i,j
=

(

1 +
4∆tν

2

)

Ĩi,j −
∆tν

2

(

Ĩi+1,j + Ĩi−1,j + Ĩi,j+1 + Ĩi,j−1

)

.

The solution of (8.57) represents the part which is implicit solved in the algo-
rithm.

Explicit Part: Fromm Van Leer Scheme

The right hand side of equation (8.56) represents the vector b introduced in
(8.57) and is therefore:

b = In
i,j − ∆t(u · ∇)I

n+ 1
2

i,j +
∆t

2
ν∆In

i,j.

The discretisation of the advection term (u·∇)I
n+ 1

2
i,j at the half time step (n+ 1

2)
is realised with the conservative second-order Fromm Van Leer scheme similar
to section 8.2.2.

Finally we obtain a hybridised scheme, which replaced the slope of Fromm’s
method with Van Leer’s slope. The Van Leer function is able to detect discon-
tinuities and it modifies its behaviour accordingly. Recall that the implication
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of this is that the resulting method retains the high-order accuracy of Fromm’s
scheme in smooth regions, but where discontinuities occur, the discretised evo-
lution equation falls back to first-order accuracy.

The finite difference approximation for the advection term is expressed as

u · ∇ I
n+ 1

2
i,j = u1i,j

I
n+ 1

2

i+ 1
2
,j
− I

n+ 1
2

i− 1
2
,j

∆x1
+ u2i,j

I
n+ 1

2

i,j+ 1
2

− I
n+ 1

2

i,j− 1
2

∆x2
.

To derive the formulas for the image quantities I
n+ 1

2

i+ 1
2
,j

at the cell edges (see fig.

8.9) we use a Taylor expansion. The Taylor expansion for the image quantity
I at the right edge omitting higher-order terms leads to the following approx-
imation (again, we demonstrate here only the derivation of the discretisation
formula for one edge, the others are derived analogously):

I
n+ 1

2

i+ 1
2
,j

= In
i,j +

1

2
∆x1

∂I

∂x1
+

1

2
∆t

∂I

∂t
. (8.58)

Ii,j+1
2

Ii+1
2 ,j

Ii,j−1
2

Ii,jIi−1
2 ,j

Figure 8.9: One cell of the discretisation domain Ω. Adjoint quantities on
the cell edges.

Using equation (6.3) we obtain from (8.58):

I
n+ 1

2

i+ 1
2
,j

= In
i,j +

∆x1

2

∂I

∂x1
+

∆t

2

(

−u1
∂I

∂x1
− u2

∂I

∂x2
+ ν∆I

)

.

Introducing an upwind scheme one finally obtains the following discretised ver-
sion for the computations of the right edge

I
n+ 1

2

i+ 1
2
,j

= In
i,j +

1

2

(

1 − u1
i+ 1

2 ,j

∆t

∆x1

)

∆V L
x1
Ii,j

−
1

2

∆t

∆x2
u2i,j

(

Iupwind

i,j+ 1
2

− Iupwind

i,j− 1
2

)

+
∆t

2
ν(∆I)ij ,

where ∆V L
x1

represents the Van Leer slope as described in section 8.2.1 and 8.2.2.
The upwind value of I is denoted by Iupwind:
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Iupwind

i,j+ 1
2

=

{

In
i,j if u2

i,j+ 1
2

> 0

In
i,j+1 if u2

i,j+ 1
2

< 0
.

As before the upwind scheme means that depending on the direction of the
velocity u and therefore of the information transport, the appropriate left or
right neighbour cell is used for the computation such that the CFL-condition
(sec. 8.1.3) holds. The upwind scheme is explained in more detail in section
8.2.2.

8.5 Finite Element Methods

In this section we will provide a very short overview on finite element methods
which represent a suitable discretisation method for the elliptic PDEs that we
implemented. Literature to this field: [18, 34, 20].

8.5.1 Variational Formulation for Elliptic Problems

To characterise the problem functions and spaces we define V as a closed subset
of a Hilbert space H and

a : H×H −→ R

as a symmetric bilinear form. Further

l : H −→ R

defines a linear functional. The space H′ defines the space of continuous and
linear functionals of a normalised set H.

To solve the following minimisation problem

inf
v∈H

J(v), (8.59)

we assume that the energy J can be stated as

J(v) =
1

2
a(v, v) − 〈l, v〉. (8.60)

To guarantee the solvability of this variational formulation, existence and unique-
ness of the solution are essential. The problem (8.60) has one and only one
solution if H is complete, this means closed and restricted, if V is a closed
convex subset in H and if the bilinear form a is symmetric and continuous over
the space H and H-elliptic. This constraints are the basis for the formulation
of the Lax-Milgram theorem for convex sets, which guarantees the uniqueness
of the solution. Before stating that theorem we need the following definitions:
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The bilinear form a is continuous if

|a(u, v)| ≤ C‖u‖ · ‖v‖, ∀u, v ∈ H,

with C > 0.

The symmetric and continuous bilinear form a is called H-elliptic, if

a(v, v) ≥ α‖v‖2, ∀v ∈ H,

with α > 0. With that we formulate the

Lax-Milgram Theorem

Let V be a closed and convex subset of a Hilbert space H and a : H×H −→ R

be a H-elliptic bilinear form. For every l ∈ H′, the variational problem

J(v) :=
1

2
a(v, v) − 〈l, v〉 −→ min,

has an unique solution in H.

To summarise: It is sufficient, that a given symmetric bilinear form is continuous
and H-elliptic to obtain an unique solution for the problem (8.59). For the
approach of Horn and Schunck (2.8), this was performed in [119].

8.5.2 Ritz-Galerkin Method

For the numerical solution of elliptic problems we use the Ritz-Galerkin method.
The problem is formalised as follows: For the energy functional J of a variational
formulation one can determine the minimum within some finite-dimensional
subspace Sh [112]. The subscript h denotes the discretisation parameter and
for h −→ 0 one would expect convergence to the solution of the continuous
problem.

The variational problem

J(v) :=
1

2
a(v, v) − 〈l, v〉 −→ min

Sh

,

has its minimum in uh ∈ Sh, if the bilinear form

a(uh, v) − 〈l, v〉∀v ∈ Sh. (8.61)

Let {φ1, φ2, ...., φN} be a basis of Sh. Then equation (8.61) is equivalent to

a(uh, φi) − 〈l, φi〉 i = 1, 2, .....N.

With the formulation

uh =

N
∑

k=1

xkφk
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we can define a linear system of equations

N
∑

k=1

a(φk, φi)xk = 〈l, φi〉 i = 1, 2, .....N,

that can be written in matrix form

Ax = b. (8.62)

Here Ai,k := a(φk, φi) and bi := 〈l, φi〉. The matrix A is positive definite

x⊤Ax =
∑

i,k

xiAikxk = a
(

∑

k

xkφk,
∑

i

xiφi

)

= a(uh, uh)

≥ α‖uh‖
2
m,

where 0 < α ≤ C and the bilinear form a is Hm-elliptic

a(u, u) ≥ α‖u‖2
m |a(u, v)| ≤ C‖u‖m‖v‖m ∀u, v ∈ H.

The norm ‖ · ‖ is defined as ‖v‖ =
√

a(v, v).

For the solution uh of (8.61) the following stability condition is valid:

‖uh‖m ≤
1

α
‖l‖.

The error estimation of a finite element approximation based on Céa-Lemma:
Let the bilinear form a H-elliptic and u respectively uh the solution of the
variational problem in H respectively Sh, then

‖u− uh‖m ≤
C

α
inf

vh∈Sh

‖l‖m.

Céa-Lemma states that the error of any Galerkin approximation is only a con-
stant factor (independent of h) higher than that of the best approximation of
u ∈ H.

8.5.3 Numerical Discretisation

The simplest discretisation is obtained by choosing a regular triangulation of
the image domain Ω and attaching to each pixel position a piecewise linear
basis function φ(x1, x2), as illustrated in figure 8.10.
Indexing each pixel position (k, l) by 1, 2, . . . , N we thus have

u1(x1, x2) =

N
∑

i=1

uiφi(x1, x2) .

Hence, each of the functions u1, u2 is represented by N real variables. Hence:
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Figure 8.10: Left: Uniform triangulation of the image domain Ω. Right:

Basis function φi(x1, x2) attached to a single pixel position i.

A

(

u1

u2

)

= b. (8.63)

The 2N × 2N–Matrix A factorises into

A =

(

A11 A12

A⊤
12 A22

)

,

where:

(A11)k,l = a
(

(φk, 0)
⊤, (φl, 0)

⊤
)

(A12)k,l = a
(

(φk, 0)
⊤, (0, φl)

⊤
)

(A22)k,l = a
(

(0, φk)⊤, (0, φl)
⊤
)

.

Analogously, the 2N–vector b factorises into b = (b⊤1 , b
⊤
2 )⊤ where:

(b1)k = b
(

(φk, 0)
⊤
)

(b2)k = b
(

(0, φk)⊤
)

.

The linear system (8.63) is sparse and positive definite. Thus u1, u2 can be
conveniently computed by some corresponding iterative solver [59]. For the
numerical solution of the linear system (8.62) we refer to the next chapter 9.
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9

Numerical Solvers

9.1 Conjugate Gradient Method

In this section we consider an efficient iterative method for the numerical solu-
tion of large systems of linear equations. Hestenes and Stiefel [65] published in
1952 the conjugate gradient (CG) method that is suitable for a class of prob-
lems which have a symmetric positive definite structure. The solution x̃ of the
linear system

Ax = b (9.1)

with the symmetric and positive definite matrix A is known to be the unique
minimum of the convex quadratic function

f(x) =
1

2
x⊤Ax− b⊤x. (9.2)

The CG method starts from the initial x0 ∈ R
n and subsequently provides a

sequence of vectors x(k) which correspond to objective values f(x(k)) that de-
crease monotonically.

The sequence x(k) converges thereby to the desired solution. The iterative
update x(k+1) is obtained by using the estimate x(k) and going into the search
direction given by the vector p(k):

x(k+1) = x(k) + α(k)p(k), (9.3)

The residual vector is computed by

r(k) = b−Ax(k) (9.4)

which is used in the step length computation determined by the expression:

α(k) =
r(k)⊤ p(k)

p(k)⊤ Ap(k)
. (9.5)

Then
r(k+1) = r(k) − α(k)Ap(k) (9.6)

177
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is used in the update of the search direction:

p(k+1) = r(k+1) + β(k)p(k), (9.7)

where the scalar step length β(k) is computed as

β(k) =
r(k+1)⊤ r(k+1)

r(k)⊤ r(k)
. (9.8)

The new vector x(k+1) represents the minimum of the function f(x) in the
subspace spanned by the search directions p(i), i = 0, 1, .., k. This non-zero
vectors satisfies the equations

p(i)⊤Ap(j) = 0, ∀i 6= j. (9.9)

and is known as conjugacy property.

In accordance with our experience the convergence rate of the conjugate gradi-
ent method for our problems can be improved using the preconditioned conju-
gate gradient method that is summarised in the following section.

9.1.1 Preconditioned Conjugate Gradient Method

The basic idea of the Preconditioned Conjugate Gradient method (PCG) is that
the solution of (9.1) is the same as the solution of

P Ax = P b (9.10)

for a non-singular matrix P . Using a linear transformation x̂ = P
1
2x the objec-

tive function (9.2) becomes

f(x̂) =
1

2
x̂⊤(P− 1

2AP− 1
2 )x̂− (P− 1

2 x̂)⊤b. (9.11)

Like in the CG method the function f(x̂) is minimised to obtain the solution of
the linear equation. The number of conjugate steps can be reduced by choosing
a non-singular matrix P such that the eigenvalues of P− 1

2AP− 1
2 are clustered

more closely. A simple and often used standard preconditioner is the matrix
diag(A). This is the diagonal matrix that is formed if all off-diagonal elements
in A are set to zero. Other preconditioners can be found in [18]. Our im-
plementation which makes use of the preconditioner diag(A) is summarised in
Algorithm 3.
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Algorithm 3 Preconditioned CG Algorithm

Require: x0 ∈ R
n, A ∈ R

n×n symmetric positive definit, b ∈ R
n.

Set k = 0, r0 = b−Ax0, q0 = diag(A)−1r0, p0 = q0.
For a given tolerance ǫ,

while
‖r(k)‖
‖b‖ > ǫ do

α(k) = r(k)⊤ q(k)

p(k)⊤ Ap(k)

x(k+1) = x(k) + α(k)p(k)

r(k+1) = r(k) − α(k)A p(k)

q(k+1) = diag(A)−1r(k+1)

β(k) = r(k+1)⊤ q(k+1)

r(k)⊤ q(k)

p(k+1) = q(k+1) + β(k) p(k)

k = k + 1

end while

x(k) ≈ A−1b.

9.2 Coarse-to-Fine Approach and Iterative Registration

The accuracy of motion estimation critically depends on the magnitude of im-
age motion. It is known that, depending on the spatial image frequency, very
large motions even may cause aliasing along the time frequency axis. As a rem-
edy, we first compute a coarse velocity field by using only low spatial frequency
components. Then “undoing” the motion roughly stabilised the position of the
image over time. Next, the higher frequency subbands are used to estimate the
motion on the warped sequence. Combining the resulting correction term with
the previously computed estimate results in a refined velocity estimate.

We exemplarily formulate the coarse to fine approach for the following energy
functional

J(u) =
1

2

∫

Ω

(

∇I⊤u+ ∂tI
)2
dx (9.12)

which is an essential part of some of the equations we were concerned with in
this thesis, like (3.4) and (4.5).

Here u denotes the velocity field we are interested in, uold represents the current
estimate of the velocity field. The term ∂tIwarp is the temporal derivative which
is computed as the difference between the second image - the one warped with
uold - and the first image. Then energy functional 9.12 can be reformulated as

J(u) =
1

2

∫

Ω

(

∇I⊤(u− uold) + ∂tIwarp

)2
dx. (9.13)
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Note that the motion over the image boundary Γ prevents the computation
of the spatial and temporal gradients of the warped image Iwarp at a specific
location. In order to avoid error-prone filling-in heuristics we have chosen to
omit the evaluation of the data term at these particular locations. The compu-
tation is repeated for every resolution level. We choose a zero velocity field as
an initialisation.

9.3 Multigrid Methods

Multigrid methods [19, 59, 18, 45] have led to the implementation of very fast
solvers for linear systems of equations and can cope with a large number of
unknown variables. We exploit such multigrid methods to implement a solver
that was appropriate to solve our linear systems that arise from the elliptic
finite element discretisation of our problems.

In the following we sketch the algorithm we used to implement the solver (some
details are denoted below):

Algorithm 4 Two-Grid Iteration

Pre-Smoothing: perform n Gauss-Seidel sweeps (9.15). Start with an ini-
tial estimate of x̃h and compute

dh = Ahx̃h − fh, (9.14)

where h denotes the mesh size on an uniform grid.
Coarse-Grid Correction: solve equation (9.16)-(9.18) to obtain the new
value x̃new

h

Post-Smoothing: performmGauss-Seidel sweeps (9.15) starting with x̃new
h .

Gauss-Seidel Method

To obtain the n Gauss-Seidel sweeps for the mesh points 1,....,N we compute
the following update

xi =

(

∑N
j=1,j 6=iAijxj − fi)

Lii

, i, ..., N. (9.15)

Note that in this computation the updated elements of x are used as soon as
they available.

Coarse-Grid Correction

In this part of the algorithm x̃h represents an estimate for the solution of the
linear system. With that the deviation dh from the desired solution is computed:

dh = Ahx̃h − fh. (9.16)
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Here h denotes the mesh size of the underlying uniform grid. Since Ah is linear,
the value dh satisfies

Aheh = −dh, (9.17)

where eh determines the difference between the estimated x̃h and the true xh.
To obtain the deviation at a coarser resolution d2h is computed on the grid with
the doubled mesh size 2h:

d2h = Rdh,

The matrix R is known as restriction operator and depends on the structure of
the finite elements that are used for the discretisation [18].
Then the error e is computed on the coarse grid (compare (9.17)):

A2he2h = −d2h.

One can interpolate the error e2h onto the finer grid eh by the following projec-
tion

eh = Pe2h,

where P represents the projection operator, which depend again on the se-
lected finite element discretisation. With that an updated approximation of
the solution (x̃new

h ) is computed:

x̃new
h = x̃h + eh. (9.18)

We remark that this procedure usually reduce the occurrence of low-frequency
errors.
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10

Conclusion

10.1 Summary

In this chapter we summarise the essential points of this thesis. Based on our
motivation - to transfer fluid flow estimation techniques into the field of image
sequence processing - the main aim of this thesis was to incorporate physical
prior knowledge in a variational framework for the motion analysis of image
sequences. We introduced two new variational approaches for motion estima-
tion of image sequences using physically motivated prior knowledge and control
based interpretations. Furthermore we proposed a new optical flow based in-
painting approach for video sequences.

One can determine the below listed limitations in current motion estimation
and video inpainting methods. The incorporation of prior knowledge based on
physical equations allowed to overcome these issues and represent a motivation
for our approaches:

• Regularisation in spatio-temporal context is performed by evaluating the
entire spatio-temporal image volume in a batch processing mode.

• Static view of image motion processing: The time-dependent optical flow
is computed for a fixed point in time. In contrast to the ”dynamic”
viewpoint of the motion, which describes the fact that the image scene is
in motion and that the positions of image intensities change with time.

• Spatio-temporal filtering: Motion estimation and video reconstruction is
done regardless of the fact that moving structures usually exhibit some
inertia in its most rudimentary form.

To develop a new method which is able to cope with these limitations we
choose a framework based on variational methods. In chapter 2 we started
with standard variational optical flow approaches, where the optical flow fields
were globally estimated over the entire image domain. We adapted in chapter
3 the image-driven approach of Nagel (2.15) to incorporate a matching term
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that serves as a new regulariser which penalises the deviation from the pre-
dicted velocity values, obtained by the solution of the Burgers equation. The
key features of the resulting method are provided below:

• Physically Plausible Prior Knowledge: We presented a novel PDE-based
representation of image motion exploiting the most elementary prior knowl-
edge available in connection with image motion computation which can
be informally expressed as “structures do not jump”. The physics un-
derlying any motion phenomena embody some inertia leading to smooth
changes of velocities. Therefore, we exploited the aforementioned ele-
mentary knowledge by incorporating the Burgers equation providing the
inertia behaviour in connection with motion computation.

• Dynamic Image Motion: We transferred the physically description of
dynamic fluid motion 1 into the field of image motion computation. In
particular, the dynamical behaviour is expressed by a physical partial dif-
ferential equation - the nonlinear Burgers equation. We incorporate this
physical equation within our variational formulation in order to mimic the
dynamical behaviour of the fluid motion, by considering the scene as a
rigid ”fictive fluid”, where its motion is described by the material deriva-
tive of the velocity with respect to time. Observed image measurements
force the velocity into the appropriate motion direction.

• Spatio-Temporally Filtering: We pointed out in chapter 3 that our model
exhibit, in a distributed-parameter fashion 2, properties analogous to the
dynamic filter for the most elementary polynomial kinematical model of a
point feature (cf. [6]). This means that velocities of an estimated flow field
do not change in the absence of image measurements and if the spatial
context does not indicate otherwise.

• Online Processing: Our approach performs a spatio-temporal regularisa-
tion in a recursive online fashion, meaning that it can already start before
the full sequence has been recorded. The solutions of our approach are
recursively computed based on the fact that velocities are transported by
itself over time.

• Control based Interpretation: If image measurements indicate changes
of the current velocity distribution, fictive forces modify the system state
accordingly. The presence of such forces may serve as an attentional
mechanism notifying a higher-level processing stage about unexpected
motion events. In this context, we were tempted to point out a potential
relevance of our approach for related models of visual perception [91].

1Also known as Lagrangian description of motion, where we consider changes, which occur
as you follow a fluid particle over time. We observe the ”trajectory” view of the fluid expressed
as total derivative of the velocity with respect to time, the so called material derivative.

2Distributed parameter system theory is concerned with the dynamic behaviour of pro-
cesses distributed in space as well as evolving in time [51]. The states of these systems are
described and governed by partial differential equations (PDEs), rather than ordinary differ-
ential equations as for lumped systems.
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However, as we are not experts in this field, we presented only a few
speculative remarks.

Control based Optical Flow Approach

In real-world applications however, we are often concerned with long image
sequences which allows the utilisation of the temporal coherency as well as
physical assumptions of the motion. In chapter 4 we presented a control based
optical flow approach for image motion estimation, which results in a global
temporal regularisation of the flow field. The advantage of a variational for-
mulation of a control problem is a clear and similar mathematical formalism
for all model assumptions. The solutions, obtained by minimising the energy
functional, are optimal with respect to the specified assumptions. Optical flow
fields are forced to vector fields which satisfy the Burgers equation. Control
variables are included that allow to adjust the image motion in such a way that
it fits to the apparent velocities of the moving objects in a given image sequence.
Our presented approach is an attempt to adopt respective methods from the
field of applied mathematics in a new form to image sequence processing and
to evaluate the capability of this approach. The application of optimal control
techniques to image motion estimation, as presented in this work, is however,
novel and explorative.

Dynamic Image Motion based Video Inpainting Approach

In chapter 6 we adapted our optical flow approach from chapter 3 to incorporate
spatial temporal coherency within a new PDE based video inpainting approach.
Image information is transported in a dynamical way and preserves structural
information originating from previous image frames.

10.2 Open Problems and Further Work

In this section we summarise several ideas, which are worth to be investigated
in the future and might improve and expand the techniques and approaches
used in this thesis.

• Regularisation Term: The regularisation term in the variational frame-
work is responsible for the incorporation of priors like the smoothness
constraint. In our approaches it is also used to incorporate physical prior
knowledge suitable in particular for rigid and non-rigid motion. To im-
prove the robustness of our approach with respect to noise the use of
Total-Variation regularisation techniques could result in more accurate
motion fields. TV-regularisation represents a denoising technique permit-
ting discontinuous solutions [114].

• Occlusions and Motion Boundaries: Some methods incorporate occlu-
sion handling either as a post processing step or by a direct modelling
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within the motion estimation framework. The results published in [72, 1]
show that further improvements in this problem field are desired. How-
ever, the direct handling of occlusions and motion boundaries was ex-
cluded from our modelling framework. We think that methods that in-
clude several motion layers for separated motion estimations might be
able to cope with this problem. Therefore, in further work one should
address the problem to estimate different motion layers and how motion
layers can be exploit to model the presence of objects and occlusions.

• Receding Horizon Control Formulation: In the current implementation
our control approach needs the full image sequence information before the
sequence can be processed. Innovative approaches to overcome this draw-
back are receding horizon control formulations [73]. These techniques use
a ”moving window” implementation to solve approximately the optimal
control problem in an online computation over the entire sequence. This
means that the current control at a specific state x and time t is obtained
by determining online the optimal control f over the interval [t, t + T ],
which is repeated until a new state update has been obtained. Therefore
one should explore the possibilities to reformulate the current approach
into a receding horizon control formulation.

• Video Editing: An application that could arise from our research - be-
longing to video editing - is the automatic removal of moving objects
within an image sequence. However, this requires a reliable segmentation
of the moving inpaint area [56] and would mean that one has to be able
to detect the motion boundaries quite accurately.

• Numerical Aspects: We used in our discretisation the assumption of uni-
form mesh grids. Therefore, one should investigate the potential of the
application of non-uniform grids, which could adapt to more complex ge-
ometries. In regions where discontinuities or shock formations occur, the
mesh form and size should automatically adapt to model these regions
more accurately. In contrast the size of the specific mesh should increase
with an increase of the dominant spatial and temporal dimensions.
In order to further optimise the computation speed, the usability of par-
allelisation techniques and problem specific solvers should be investigated
(cf. [79, 80, 146]).
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Appendix

In this appendix we collected the definitions, derivations and computational
expensive formulas from chapter 4.

A.1 Derivation of the Optimality System

In this section we derive the first-order necessary conditions for the Lagrangian
functional (4.5) from section 4.2.1, which leads us to the optimality system
(4.7a - 4.7c) for the determination of the optimal states u and control f (cf.
[58]).

Setting the first variation of the Lagrangian functional (4.5) with respect to the
Lagrangian multiplier w equal to zero yields

∂L(w + εw̃)

∂ε
|ε=0 =

∂

∂ε

∫

Ω×[0,T ]

{1

2
(∂tI + u · ∇I)2 +

1

2
α(|∇u1|

2 + |∇u2|
2)

+
1

2
β|f |2 − (w + εw̃) · (∂tu+ (u · ∇)u− f)

}

dxdt |ε=0

= −

∫

Ω×[0,T ]

w̃ · (∂tu+ (u · ∇)u− f) dxdt = 0.

Since the variation w̃ in the Lagrangian multiplier w is arbitrary, we recover
the constraint or state equation:

∂tu+ (u · ∇)u− f = 0 in Ω × [0, T ], (A.1)

with von Neumann boundary conditions ∂nu = 0 on Γ× [0, T ]. Setting the first
variation of the Lagrangian functional (4.5) with respect to the velocity state
u equal to zero yields
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∂L(u+ εũ)

∂ε
|ε=0 =

∫

Ω×[0,T ]

{

ũ · ∇I(∂tI + u · ∇I) + α(∇u1 · ∇ũ1 + ∇u2 · ∇ũ2)

−w · (∂tũ+ (u · ∇)ũ+ (ũ · ∇)u)
}

dxdt.

Using integration by parts we obtain the following expression

∂L(u+ εũ)

∂ε
|ε=0 =

∫

Ω×[0,T ]

(∂tI + u · ∇I)ũ · ∇I dxdt

−

∫

Ω×[0,T ]

α(∆u1ũ1 + ∆u2ũ2) dxdt+

∫

Γ×[0,T ]

(∂nu1ũ1 + ∂nu2ũ2) dΓdt

+

∫

Ω×[0,T ]

∂tw · ũ dxdt −

∫

Γ×[0,T ]

w · ũnt dΓdt

−
{

−

∫

Ω×[0,T ]

∂x1(w1u1)ũ1 dxdt +

∫

Γ×[0,T ]

w1u1ũ1nx1 dΓdt

−

∫

Ω×[0,T ]

∂x2(w1u2)ũ1 dxdt+

∫

Γ×[0,T ]

w1u2ũ1nx2 dΓdt

−

∫

Ω×[0,T ]

∂x1(w2u1)ũ2 dxdt+

∫

Γ×[0,T ]

w2u1ũ2nx1 dΓdt

−

∫

Ω×[0,T ]

∂x2(w2u2)ũ2 dxdt+

∫

Γ×[0,T ]

w2u2ũ2nx2 dΓdt

+

∫

Ω×[0,T ]

(w1ũ1∂x1u1 + w1ũ2∂x2u1 + w2ũ1∂x1u2 + w2ũ2∂x2u2) dxdt
}

.

The component-wise notation leads us to the vector notation:

∂L(u+ εũ)

∂ε
|ε=0 =

∫

Ω×[0,T ]

{

∇I(∂tI + u · ∇I) − α∆u

+∂tw + (u · ∇)w +w∇ · u− (∇U)⊤w
}

· ũ dxdt

+

∫

Γ×[0,T ]

{

∂nu− w(u · n) − wnt

}

· ũ dΓdt,

where

(∇U) =

(

∂x1u1 ∂x2u1

∂x1u2 ∂x2u2

)
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denotes the Jacobian matrix of u [32]. Since the variation ũ in the Lagrangian
multiplier u is arbitrary, we recover the adjoint equation:

=











∇I(∂tI + u · ∇I) − α∆u
+∂tw + (u · ∇)w + w∇ · u− (∇U)⊤w = 0 , in Ω × [0, T ],

∂nu− w(u · n) −wnt = 0 , on Γ × [0, T ],

(A.2)

with ∂nu = 0 this is satisfied with w = 0 on the boundary Γ × [0, T ].

With this derivation, the adjoint system is posed as a backward in time problem
and the adjoint velocity satisfies the terminal condition at

w|t=T = 0. (A.3)

And finally, setting the first variation of the Lagrangian functional (4.5) with
respect to the control f equal to zero yields

∂L(f + εf̃)

∂ε
|ε=0 =

∫

Ω×[0,T ]

β(f + εf̃) · f̃ + w · f̃ dxdt |ε=0.

Since the variation f̃ in the Lagrangian multiplier f is arbitrary, we recover the
optimality condition:

βf +w = 0 , in Ω × [0, T ], (A.4)

with Dirichlet boundary conditions f = 0 on Γ× [0, T ]. With the terminal con-
dition w|t=T = 0 results for the the control function of the optimality condition
(A.4) the terminal condition

f |t=T = 0 (A.5)

(cf. [58]).

A.2 The Gradient of the Functional Through Sensitivi-

ties

To determined the gradient of the functional (4.3) we need to determine the total
derivative of the functional with respect to the control (cf. [58]). Therefore,
we define, that the state equation (4.7a) is solved to determine the state u as
a function of the control f so that the functional J(u, f) = J(u(f), f) is a
function of only the control f . As a consequence, we apply the chain rule to
J(u(f), f) and obtain

∂fJ =
∂J

∂u

du

df
+
∂J

∂f
(A.6)



190 Appendix A. Appendix

the formula for the total derivative of the functional (4.3). Nevertheless, we need
to specify the term du

df
for the determination of the gradient of the functional.

This term defines the so-called sensitivities and describes what changes are
effected in the state when the control variables are changed. If we change the
distributed control f to f + εf̃ , with f̃ arbitrary this induces the variation of
the state from u to u+ εuf . Then from the state equation (4.7a) we have that
the corresponding change uf in the state must satisfy

∂t(u+ εuf ) + ((u+ εuf ) · ∇)(u+ εuf ) = f + εf̃ in Ω × [0, T ], (A.8a)

∂n(u+ εuf ) = 0 on Γ × [0, T ]. (A.8b)

We reformulate equation (A.8a) into a component-wise notation:















∂tu1 + ε∂tu1f
+ u1∂x1u1 + u1ε∂x1u1f

+ εu1f
∂x1u1 + εu1f

ε∂x1u1f

+u2∂x2u1 + u2ε∂x2u1f
+ εu2f

∂x2u1 + εu2f
ε∂x2u1f

= f1 + εf̃1,

∂tu2 + ε∂tu2f
+ u1∂x1u2 + u1ε∂x1u2f

+ εu1f
∂x1u2 + εu1f

ε∂x1u2f

+u2∂x2u2 + u2ε∂x2u2f
+ εu2f

∂x2u2 + εu2f
ε∂x2u2f

= f2 + εf̃2.

If we let ε→ 0 we have

{

∂tu1f
+ u1∂x1u1f

+ u1f
∂x1u1 + u2∂x2u1f

+ u2f
∂x2u1 = f̃1,

∂tu2f
+ u1∂x1u2f

+ u1f
∂x1u2 + u2∂x2u2f

+ u2f
∂x2u2 = f̃2.

Finally, by using the analogous procedure for the boundary conditions we get
the sensitivity equation by

{

∂tuf + (uf · ∇)u+ (u · ∇)uf = f̃ in Ω × [0, T ],
∂nuf = 0 on Γ × [0, T ].

(A.9)

From the sensitivity equation (A.9) one can see that an infinitesimal change of
the control in the direction of the control induces an corresponding infinitesimal
change in the direction of the state.

In a next step we have to determine the infinitesimal change of the objective
functional J(u, f) (4.3) (infinitesimal change of the objective functional J is
denoted by ∂fJ) effected by an infinitesimal change in the direction f̃ in the
control f . We will keep both the explicit dependence of J on f and the implicit
dependence through the state u:

〈∂fJ, f̃〉 =
∂J(u+ εuf , f + εf̃)

∂ε
|ε=0

=

∫

Ω×[0,T ]

{

(∂tI + u · ∇I)∇I · uf − α∆u · uf + βf · f̃
}

dxdt.
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The substitution of the adjoint equation (4.7b) yields

〈∂fJ, f̃〉 =

∫

Ω×[0,T ]

{

−(∂tw + (u · ∇)w +w∇ · u− (∇U)⊤w) · uf + βf · f̃
}

dxdt.

Using integration by parts we obtain the following expression

〈∂fJ, f̃〉 =

∫

Ω×[0,T ]

(

∂tu1f
w1 + ∂tu2f

w2

)

dxdt−

∫

Γ×[0,T ]

(

u1f
w1nt + u2f

w2nt

)

dΓdt

+

∫

Ω×[0,T ]

(

∂x1(u1u1f
)w1 + ∂x2(u2u1f

)w1 + ∂x1(u1u2f
)w2 + ∂x2(u2u2f

)w2

)

dxdt

−

∫

Γ×[0,T ]

(

u1u1f
w1nx1 + u2u1f

w1nx2 + u1u2f
w2nx1 + u2u2f

w2nx2

)

dΓdt

−

∫

Ω×[0,T ]

(

w1∂x1u1u1f
+ w1∂x2u2u1f

+ w2∂x1u1u2f
+ w2∂x2u2u2f

)

dxdt

+

∫

Ω×[0,T ]

(

∂x1u1w1u1f
+ ∂x1u2w2u1f

+ ∂x2u1w1u2f
+ ∂x2u2w2u2f

)

dxdt

+

∫

Ω×[0,T ]

βf · f̃ dxdt.

By simplification

〈∂fJ, f̃〉 =

∫

Ω×[0,T ]

(

∂tu1f
w1 + ∂tu2f

w2

)

dxdt−

∫

Γ×[0,T ]

(

u1f
w1nt + u2f

w2nt

)

dΓdt

+

∫

Ω×[0,T ]

(

u1f
∂x1u1w1 + u2f

∂x2u1w1 + u1f
∂x1u2w2 + u2f

∂x2u2w2

)

dxdt

+

∫

Ω×[0,T ]

(

u1∂x1u1f
w1 + u2∂x2u1f

w1 + u1∂x1u2f
w2 + u2∂x2u2f

w2

)

dxdt

+

∫

Ω×[0,T ]

βf · f̃ dxdt.

−

∫

Γ×[0,T ]

(

u1u1f
w1nx1 + u2u1f

w1nx2 + u1u2f
w2nx1 + u2u2f

w2nx2

)

dΓdt
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the component-wise notation leads us to the vector notation:

〈∂fJ, f̃〉 =

∫

Ω×[0,T ]

{(

∂tuf + (uf · ∇)u+ (u · ∇)uf ) · w + βf · f̃
}

dxdt

−

∫

Γ×[0,T ]

(

uf (u · n+ nt)
)

· w dΓ.

(A.10)

In this expression, the boundary integral (
∫

Γ×[0,T ]

...dΓ × [0, T ]) is always equal

to zero as w = 0 is valid on the boundary (cf. (A.2) with ∂nu = 0 on Γ× [0, T ]
leads to w = 0). Then the substitution of the sensitivity equation (A.9) into
the equation (A.10) yields

〈∂fJ, f̃〉 =

∫

Ω×[0,T ]

(

f̃ · w + βf · f̃
)

dxdt

=

∫

Ω×[0,T ]

(w + βf) · f̃ dxdt.

This results in an equation for the gradient of our objective functional (4.3)

∂fJ = w + βf. (A.11)

The full previous computation shows that we can apply a gradient algorithm in
order to solve the adjoint equation (4.7b) with an initial condition u = 0 with a
following update of the control variables by using the gradient of the objective
functional (A.11). With the updated controls we solve the state equation (4.7a)
and proceed to the next iteration. Consequently, after the convergence of the
algorithm the optimality condition (4.7c) is satisfied, too.
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[117] P. Ruhnau, A. Stahl, and C. Schnörr. On-line variational estimation of
dynamical fluid flows with physics-based spatio-temporal regularization.
Springer, Proc. 28th German Pattern Recognition Symposium (DAGM
’06). LNCS 4174, 2006.

[118] P. Ruhnau, A. Stahl, and C. Schnörr. Variational estimation of ex-
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