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Kontrolle der Tunneldynamik einzelner Atome

Das Ziel Quantensysteme in ihren internen und externen Freiheitsgraden zu kontrol-
lieren ist für viele Bereiche der Physik und Chemie von großer Bedeutung. Starke,
zeitlich veränderliche, externe Felder eröffnen die Möglichkeit eine solche kohärente
Kontrolle zu realisieren.

In dieser Arbeit wird die experimentelle Realisierung eines Modell-Systems vorge-
stellt. Es wird demonstriert, wie mit Hilfe eines zeitlich periodischen, externen Feldes
die Tunneldynamik einzelner Atome kontrolliert werden kann. In Abhängigkeit der
Parameter des Treibens kann die Höhe der Tunnelrate gesteuert werden, im Extrem-
fall bis hin zur kompletten Unterdrückung des Tunnelprozesses. Diese Art dynamis-
cher Lokalisierung ist als “coherent destruction of tunneling” bekannt.

Der experimentelle Aufbau ermöglicht einen sehr direkten Zugang zur Tunneldy-
namik einzelner Atome in einem Doppeltopfsystem und lässt große Freiheit bei der
Wahl der Parameter. So können nicht nur Doppeltopfpotential, Treibefrequenz und
-amplitude, sondern auch die zeitliche und räumliche Symmetrie des Treibens vari-
iert werden. Als Teilchenquelle dient ein kohärenter Strahl langsamer metastabiler
Argonatome, die räumlich aufgelöst detektiert werden, was die direkte Beobachtung
ihrer Tunneldynamik im Impulsraum ermöglicht.

AC-Control of Single Particle Tunneling

The aim to control the internal and external degrees of freedom of quantum systems
is of great interest for many fields of physics and chemistry. One opportunity to
realize such a coherent control is provided by strong, time depended, external fields.

In this work the experimental realization of a model-system is presented. The
coherent control of the tunneling dynamics of single atoms by means of a time-
periodic, external field is demonstrated. Depending on the parameters of the driving
force the tunneling rate can be varied up to a total suppression of the tunneling
process in the extreme. This type of dynamical localization is known as “coherent
destruction of tunneling”.

The experimental setup allows a direct access to the tunneling dynamics of single
atoms in a double well structure and enables great freedom concerning the parame-
ters. Not only the double well potential, the driving frequency and the driving
amplitude can be varied, but also the temporal and spatial symmetry of the driving.
A coherent beam of slow, metastable argon atoms serves as source of particles, which
can be detected spatially resolved enabling the direct observation of the tunneling
dynamics in momentum space.
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Chapter 1

Introduction

For quantum physics it was a long way from the first theoretical ideas developed
in the beginning of the twentieth century until today’s sophisticated techniques to
manipulate light and matter. Still it remains a vital field of research especially as
new techniques enable fundamental studies of quantum effects as well as initiate new
technologies. For example the union of quantum mechanics and information science
does not only try to make use of quantum mechanical phenomena for computation,
but also has allowed great advances in the understanding of the quantum world and
in the ability to control coherently individual quantum systems [1, 2]. Furthermore
many topics of quantum mechanics as quantum chaos, coherence, transport etc.
connect disparate branches of physics like quantum optics and solid state physics or
even chemistry or biology making it an even more attractive field to work on.

It took only a few years from de Broglie’s pioneering hypothesis stating that any
moving particle had an associated wave - an idea he worked out in his thesis [3]
and for which he won the Nobel Prize in Physics in 1929 - until its experimental
verification. However this was only a starting point to a new field in physics that
was especially pushed by the development of laser systems, which enable a rather
direct experimental access to the quantum mechanics of atoms. Many schemes for
cooling atoms were and still are developed [4] and with the experimental realization
of a Bose-Einstein condensate [5, 6] and another Nobel prize for its creators even
macroscopic matter-waves, sometimes called a “super atom”, can now be studied.

Crucial about atom optics is that the roles of matter and light as they are
classically known from optics are reversed. On the one hand interference effects,
dispersion, diffraction etc. are also properties of matter due to its wave character,
on the other hand the possibility to exert a force on particles with light enables the
realization of lenses, mirrors, or beam splitters like crystals of light. An overview of
this can be found among others in [7].

One of the most fundamental and astonishing effects of quantum theory is the
tunneling of material particles through a classically impenetrable barrier. It was
originally proposed by Hund [8] to explain the ammonium spectrum and employed
in many modern technologies like Josephson junctions [9, 10] and SQUIDs [11],
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Zener diodes or the scanning tunneling microscopes [12] as well as in nature, where
many processes would not work without it, i.e., one of the most important biochem-
ical processes, namely the photosynthesis [13, 14]. Neither would there be α-decay
nor could the nitrogen atom in ammonia molecules flip-flop through the triangle of
hydrogen atoms. But even though quantum tunneling has found its way into tech-
nology, is well understood and can be calculated exactly, there is no direct way to
control or manipulate the tunneling dynamics of a particles.

Control is a widespread topic in the context of quantum states. The aim to con-
trol the internal and external degrees of freedom of atoms and molecules is addressed
in many different fields [15]. The first move to coherently control the quantum states
of atoms and molecules was done by I.I. Rabi, who introduced radio-frequency reso-
nance techniques to molecular beams in 1938 [16]. In chemistry there exists the field
of “femtochemistry” trying to control chemical reactions via ultrashort laser pulses.
This technique, in which one tries to find the appropriate sequence of laser pulses
needed to break a specific chemical bond, is also known as coherent control.

Coherent control of qubits is an important topic in quantum information as one
of the major problems of realizing a quantum computer is keeping all components
in a coherent state. There exist many different proposals for the stabilization of the
coherence. For example Weihnacht et al. [17] report on the active manipulation of
the shape of an atomic electron’s radial wave. Using a computer-controlled laser the
quantum state is reshaped until it matches the target by reconstructing the wave
function employing a variation of quantum holography and feeding this information
back into the laser control system. Among others a theoretical approach by Fonseca-
Romero et al. [18] points out a possible coherence stabilization scheme for a two-
qubit gate employing an ac-field. Strong, time-periodic, external fields as in the
latter example certainly represent an important method for controlling quantum
systems [19].

The work at hand focusses on the role of time-dependent driving on the coherent
tunneling process of a massive particle between two locally stable potential wells.
Such a symmetric double well structure is the ideal candidate to study quantum
tunneling and the effects of strong driving. Atom optics offers the straightforward
experimental realization of such a model system utilizing light-shift potentials. That
way the tunneling of single atoms can directly be observed in momentum space.

The Floquet formalism allows the solution of the time-dependent Schrödinger
equation for such time periodic quantum systems. Analogues to the Bloch theorem
for systems periodic in space the solutions, so-called Floquet-states, are a product
of a time-periodic state-vector and a time-dependent phase factor. Quasienergies
then substitute to some extend the eigenenergies of an autonomous systems. But
they do only carry phase information and do not have the meaning of an absolute
energy as they are only defined except for multiples of the driving field quantum
and therefore can be mapped into a zone analogous to the first Brillouin zone known
from solid sate physics. This formalism bears the great advantage that it does not
restrict the driving parameters and gives a descriptive access, allowing a full analysis
of the experiments described in this work.



7

A very intriguing result of the Floquet analysis of such a double well system was
pointed out by Hänggi and coworkers in 1991 [20], namely the so called effect of
coherent destruction of tunneling (CDT). They found that for appropriately chosen
parameters the driving would prevent any dynamics in the system, i.e., localizing
the wavepacket in one well, which is astonishing, as the tunneling-effect is an intrin-
sic characteristic of the quantum world. A visualization of dynamical localization
and CDT in curved waveguides was reported by Longhi et al. [21] and Della Valle
et al. [22] respectively. A closely related effect in a periodic potential has been ob-
served in the nonlinear dynamics of a Bose-Einstein condensate by Arimondo and
coworkers [23].

Apart from slowing it is also possible to achieve an acceleration of the tunneling
dynamics via ac-driving. In this context there exists work done by Steck et al. [24],
who found that the tunneling rate between two stable islands in phase space can be
enhanced by the presence of chaos in the corresponding classical dynamics, which
is not only interesting in the context of control, but also gives fundamental insides
into the relation between classical chaos and quantum mechanics.

In conclusion the ac-field should enable a full control of the tunneling dynamics
of atoms in a double well potential.

Outline

This thesis consists of two parts, the first one giving the theoretical background
for the experiments and a second one, in which the realization is described and
the results are presented. In the theoretical part the time-independent double well
structure is characterized before the consequences of the time dependence introduced
by the added driving field are discussed. Especially the effect of coherent destruction
of tunneling is explained and particular attention is payed to the differences between
the model system to study this effect proposed by Grossmann et al. [20] and the
experimentally realized one. Furthermore this chapter deals with different methods,
that were employed to simulate the experimental reality.

In the second part the setup is discussed and all steps of the experiment are
described in detail. The first topic is the implementation of a double well struc-
ture enabling adiabatic preparation of the ground state of the potential. Then the
preparation process of a localized wave packet on one side of a double well is il-
lustrated, before presenting the first measurements of single particle tunneling in
the static potential. This is basis and starting point to study the influence of an
external driving field on the dynamics of an atom in such a potential. Systematic
measurements demonstrating coherent control of the quantum tunneling of massive
particles are presented. Furthermore the results of measurements concerning the
symmetry a discussion of the observation of the effect of CDT.

Thereafter a summary of an experiment realizing a non-spreading wavepacket
is added. It is another experiment in the context of controlling quantum systems.
Here it is the shape and the dispersion of a wave-packet that is actively controlled
via an imaginary potential. The experiment is discussed in detail in the work of
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Ralf Stützle [25] and Martin Göbel [26] and was performed during the first year of
my PhD period.

At last a rough overview of the assembly to produce a coherent beam of slow
argon atoms, which is the basis of the experiments is given in the appendix. This is
only for completeness as there are many other works describing the setup in all its
details.
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Chapter 2

Theoretical description of a
strongly driven quantum system

The development of laser systems opened new possibilities to interact with particles
like atoms or molecules. A whole new branch of physics was created, namely the
atom optics, that allowed new insight into the nature of such quantum systems.
Especially the detailed dynamics of quantum systems exposed to time-dependent
external fields is actively discussed by theorists as well as experimentalists. Such
explicitly time-dependent quantum systems are rarely solvable exactly, but a variety
of new phenomena can be observed.

This work deals with the intention to utilize a strong time-periodic external
driving field to fully control the dynamics of a quantum mechanical system. The
explicit time-dependence of the Hamiltonian makes it unaccessible within ordinary
stationary quantum mechanics. Nevertheless a time-periodic driving field enables
an ansatz using the Floquet-theorem to solve the time-dependent Schrödinger equa-
tion. This ansatz has the great advantage compared to commonly used perturbation
theory that it does not make any restrictions concerning amplitude or frequency of
the periodic or even only quasi periodic driving field.

Concerning the driving frequency different regimes can be distinguished. For
very fast and very slow driving, when the inner timescales of the inherent dynamics
of the unperturbed system and the external periodic driving are clearly separated,
the two processes effectively uncouple. This yields a dynamics resembling that of the
undriven case, whilst in the regime of intermediate driving frequencies the dynamics
may deviate strongly.

Following the Floquet ansatz an intriguing result was found for the tunneling
dynamics of an atom in a double well potential, namely, that an appropriately de-
signed coherent cw-drive can not only manipulate the tunneling time but completely
prevent the tunneling dynamics. This effect predicted by Hänggi et al. is known as
coherent destruction of tunneling (CDT) [20].

As the effect of CDT and the paper mentioned above were the kick-off for the
experiments described in this work the theoretical part follows their considerations,
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Figure 2.1: A double well potential is plotted with its lowest eigenstate doublet
consisting of the symmetric state |ϕ1〉 and the antisymmetric state |ϕ2〉. The cor-
responding eigenenergies are indicated by horizontal lines and the localized state
〈l|l〉 = | 1√

2
(|ϕ1〉 + |ϕ2〉)|2 is added. The units for the potential and the position

x correspond to a realization via a light shift potential as will be described in the
following. For the light with wavelength λ, the energy Er is the one-photon recoil
energy an atom experiences (cf. eq. 2.21).

whereat the aim is to draw the direct connection to the experimental realization.
The chapter is roughly split into two parts. The time evolution of an atom in an
undriven double well potential is discussed in the first part. Then a time dependent
driving field is introduced and analytical as well as numerical methods are described
to solve the corresponding Schrödinger equation.

2.1 Double well system

The archetype system to study the fundamental and rather not intuitive effect of
massive particle tunneling is a double well potential as depicted in fig. 2.1. A particle
localized in one of the two wells of such a potential will be found in the other
after some reasonable time, even though it does not carry the energy to classically
overcome the barrier in the middle. This time it takes a particle to tunnel through
the barrier can be calculated very straightforward by looking at the eigenstates of
the double well potential. Those eigenstates form doublets each consisting of one
symmetric and one antisymmetric state. The lowest doublet is depicted in red and
orange in fig. 2.1. Hence it is obvious that a particle localized on one side of such
a double well potential can be described utilizing only the ground state doublet,
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namely as the sum or difference of the two lowest states |ϕ1〉 and |ϕ2〉:

|l〉 =
1√
2
(|ϕ1〉+ |ϕ2〉)

|r〉 =
1√
2
(|ϕ1〉 − |ϕ2〉),

(2.1)

so that the time evolution of the ground state doublet yields the time evolution, i.e.,
the dynamics, of the particle:

|ψ〉±(t) =
1√
2

(
exp(−i

E1

~
t)|ϕ1〉 ± exp(−i

E2

~
t)|ϕ2〉

)
. (2.2)

Thus for a particle localized in the left well at time t = 0 the probability to find
it in the right well is given by the projection of its wave function |ψ+(t)〉 onto the
state |r〉:

|〈ψ+(t)|r〉|2 =
∣∣∣∣

1√
2

exp
(

i
E1

~
t

)(
〈ϕ1|r〉+ exp

(
i
E2 − E1

~
t

)
〈ϕ2|r〉

)∣∣∣∣
2

=
∣∣∣∣

1√
2

exp
(

i
E1

~
t

)(
1√
2
− exp(i

E2 − E1

~
t)

1√
2

)∣∣∣∣
2

=
1
4

∣∣∣∣1 + exp
(

i
E2 − E1

~
t

)∣∣∣∣
2

=
1
2

+
1
2

cos
(

∆
~

t

)
.

(2.3)

This ∆ = E2 − E1 introduced in the last line is called the tunneling splitting as it
defines the tunneling time:

Tt =
2π~
∆

. (2.4)

The experiments and the theoretical considerations described in the following are
aimed at the control of this tunneling rate by means of an external field, i.e., without
changing the basic characteristics of the double well potential like the barrier height
and thus the energies E1 or E2. A full control should maintain the possibility to
either accelerate the tunneling dynamics or even to totally inhibit it, thus to realize
CDT, which implies the realization of a dynamically localized quantum state.

2.1.1 Light shift potentials

In the theoretical prediction of the effect of coherent destruction of tunneling [20]
the model system is a quartic double well potential, namely H(x, t) = p2

2 − x2

4 + x4

64D ,
with the characteristic quantities barrier height D = EB

~ω0
in units of ~ω0 and the

angular frequency ω0 of harmonic oscillations on the bottom of each well. In the
experiment described here it was plausible to choose a slightly different realization,
namely a periodic arrangement of double well potentials generated by adding two
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Figure 2.2: The upper plot shows an inverse continuous double well structure (black
line) as result of adding two standing light waves with wavelengths λ1 (light gray,
dashed) and λ2 = 2 · λ1 (dark gray, dot and dash). In the lower plot the wavelength
λ2 is not exactly twice λ1 resulting in an asymmetry of the reversed double wells
that depends on their position.

red detuned standing light waves with wavelength λ1 and λ2 = 2λ1 and amplitudes
E1 and E2 as depicted for the corresponding intensities in the upper plot of fig. 2.2.
The electro-magnetic field for the region all light waves overlap reads:

E(x, t) = E1 sin(k1x− ω1t) + E1 sin(−k1x− ω1t + π)
+ E2 sin(k2x− ω2t) + E2 sin(−k2x− ω2t + π)
= 2E1 sin(k1x) cos(ω1t) + 2E2 sin(k2x) cos(ω2t)

(2.5)

in which π is the phase shift the reflected light wave experiences at a perfect con-
ductive mirror. In the case of the chosen gold mirror, as for any real mirror, this is
not completely true, yielding a constant phase shift between the two standing waves
and therewith introducing some problems addressed in the experimental part of this
work (cf. sec. 3.2 and sec. 3.3.5). For now it is enough to consider an ideal mirror.

The intensity of the light wave results in:

I(x, t) = cε0|A(x, t)|2

= cε0

(
4E2

1 sin2(k1x) cos2(ω1t) + 4E2
2 sin2(k2x) cos2(ω2t)

+ 8E1E2 sin(k1x) sin(k2x) cos(ω1t) cos(ω2t)
)

= cε0

(
4E2

1 sin2(k1x) cos2(ω1t) + 4E2
2 sin2(k2x) cos2(ω2t)

+ 4E1E2 sin(k1x) sin(k2x)[cos((ω1 + ω2)t) + cos((ω1 − ω2)t)]
)

.

(2.6)
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In the experiment the wavelength λ1 is chosen to be 811nm, and the frequency ω2 is
shifted by ωAOD ≈ 2π·40MHz in respect to ω1. Therewith the time dependence of the
first two terms of the last result oscillate with a period in the range of femtoseconds,
so does the term containing the sum of the two frequencies ω1+ω2. For the very last
term containing the difference of the two frequencies the chosen parameters yield
an oscillation with a period of some nanoseconds. All these oscillations are fast
compared to the experimental time scales, where an atom needs about a millisecond
to tunnel through the middle barrier of a double well and the driving frequencies
are in the same range of some kHz, i.e., milliseconds. Hence averaging over typical
timescales t > 2π

ωAOD
yields an intensity profile for the electro-magnetic field (with

k = k1 and hence k2 = k
2 ):

I(x) = cε0(4E2
1 sin2(kx) + 4E2

2 sin2(
k

2
x)), (2.7)

which resembles a continuous row of reversed double wells as shown in the upper
picture of fig. 2.2.

If the wavelength λ2 of the second standing light wave is not exactly twice λ1

they add up forming a row of asymmetric reversed double wells, whose asymmetry
depends on their distance from the mirror surface as depicted in the lower plot of
fig. 2.2. The intensity profile than reads:

I(x) = cε0(4E2
1 sin2(kx) + 4E2

2 sin2(k · (0.5 + δ) · x)). (2.8)

2.1.2 Atom-light coupling

In this section a general concepts to describe the coupling between atoms and light
is introduced enabling the detailed analysis of the tunneling system in the following.
The whole system will be treated in a semiclassical picture, as the radiation field
may be assumed a classical c-number field, whilst the atom has to be considered
quantum mechanically.

Starting from the classical picture, the Hamiltonian describing the whole system
of an atom in a radiation field can be written as the sum of the kinetic energy of
all electrons, the electrostatic energy of the whole atom, i.e., electrons plus nucleus,
and the potential energy of the electromagnetic fields E(r, t) and B(r, t):

H =
∑
α

1
2mα

(pα −
qα

c
A(rα, t))2 +

1
2

∫
d3rρ(r)φ(r, t)

︸ ︷︷ ︸
HA

+
ε0
2

∫
d3r{E(r, t) + c2B(r, t)2}

︸ ︷︷ ︸
HR

,

(2.9)

where rα denotes the relative coordinates of the electrons with respect to the position
R of the nucleus. The kinetic energy of the nucleus is neglected as it is small
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compared to the electrons. Furthermore the term HR may also be dropped as for
classical fields E and B it represents only a constant energy offset.

As the wavelength of the light is large compared to the dimensions of an atom, the
light potential is assumed to be constant in the range of the atom, which combined
with a unitary transformation into a rotating frame yields an extra term, called the
electric dipole coupling term:

HED = −d ·E(R, t) (2.10)

Thus the Schrödinger equation of the coupled system becomes:

i~
∂

∂t
|ψ〉 = (HA + HED)|ψ〉. (2.11)

Now changing to the semiclassical description, the radiation field is still treated
classically, i.e., considering a single-mode laser field, it can be written as:

E = eE0 cos(ωt + φ), (2.12)

but the atom is described quantum mechanically. Thus the term HA denoting
the time independent Hamiltonian of the atomic structure is determined by the
eigenstates and eigenvectors of the atom: HA|φn〉 = ~ωn|φn〉 and the state vector
can be expanded in those base states:

|ψ〉 =
∑

n

cn(t)e−iωnt|φn〉. (2.13)

For a two-level atom with ground state |g〉 and excited state |e〉 with an energy
difference of ~ω0 between them, and introducing the Rabi frequency ΩR:

ΩR(x) = −〈e|d|g〉 · eE0(x)
~

eiφ, (2.14)

the Schrödinger equation yields the two differential equations:

i~ċg = ~ΩRe−iφ cos(ωt + φ)e−iω0t · ce

i~ċe = ~Ω∗Reiφ cos(ωt + φ)eiω0t · cg.
(2.15)

Again the reference frame is changed, as the best insight into the dynamics of the
coupled system is provided by the dressed-state picture. The name indicates that
the “bare” states |g〉 and |e〉 are transformed into states “dressed” with the light
field. Therefore the system is transferred by a unitary transformation to a frame
rotating with the laser frequency ω, whereat δ = ω−ω0 denotes the detuning of the
laser light in respect to the inner atomic transition frequency ω0:

c′g(t) = cg(t)

c′e(t) = ce(t)eiδt,
(2.16)
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so that the differential equations 2.15 become:

i~
∂

∂t

(
c′g
c′e

)
=

(
0 ~Ω

2~Ω∗
2 −~δ

)(
c′g
c′e

)
. (2.17)

For this equations the following eigenenergies can be found:

E±(x) = −~
2
(δ ±

√
Ω2

R(x) + δ2)

= −~
2
(δ ± Ωeff),

(2.18)

with the corresponding eigenstates, the dressed states:

|+〉 = e−i φ
2 sin(θ)|g〉 + ei φ

2 cos(θ)|e〉
|−〉 = e−i φ

2 cos(θ)|g〉 − ei φ
2 sin(θ)|e〉

(2.19)

whereat θ is defined by cos 2θ = − δ
Ωeff

and sin 2θ = |ΩR|
Ωeff

.
Considering the dependence of the dressed states onto the laser detuning δ,

illustrated in fig. 2.3, it appears that for resonant laser light, i.e., δ = 0, the dressed
states become an equal superposition of the “bare” states |g〉 and |e〉. If an atom
enters adiabatically a far detuned light field with |δ| À |ΩR| its ground state |g〉
will be transferred into one single dressed state. For a red detuning, i.e., δ < 0, as
chosen in the experimental realization this will be the |+〉-state and thus only the
corresponding eigenenergy E+ has to be accounted for:

E+(x) = −~δ
2

+
~δ
2

√
1 +

Ω2
R

δ2

≈ −~δ
2

+
~δ
2

(
1 +

Ω2
R

2δ2

)

=
~Ω2

R

4δ
= V (x).

(2.20)

It is common to quantify such a light shift potential in units of the recoil energy Er

Er =
~2k2

2m
, (2.21)

being the energy a particle with mass m gains absorbing a photon of the standing
light wave forming the potential.

Thus the double well potential realized by the superposition of two standing light
beams as explained in the previous chapter can be formulated as dipole potential:

V (x) = V1 cos2(kx) + V2 cos2(
k

2
x) (2.22)

with V1,2 being the corresponding potentials according to eq. 2.20 for the two stand-
ing waves with amplitudes E1 and E2. As for red detuned light the atoms are
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Figure 2.3: Dressed states for ΩR = 1 and ~ = 1 to illustrate their dependence on
the laser detuning. The dotted lines indicate the asymptotic behavior for |δ| À 1.

attracted to the maxima of the intensity the sines of eq. 2.7 were replaced by co-
sine here and the potential reversed resulting in the double well shape as plotted in
fig. 2.4.

Therewith the total Hamiltonian describing the experimental situation of an
atom propagating in a continuous double well light shift potential is:

H0(x) = − p2

2m
+ V1 cos2(kx) + V2 cos2(

k

2
x). (2.23)

Spontaneous emission, i.e., the coupling of the atom with the vacuum modes, is
neglected here, because it does not play a role for far detuned light fields as realized
in the experiments.

The characteristic parameters used in [20] now depend on the amplitudes of the
two standing light waves as follows:

xmin =
1
k

arccos
(
− V2

4V1

)

ω0 =

√
k2

m

(
2V1 − V 2

2

8V1

)

EB = V1 − V2

2
+

V 2
2

16V1

ẼB = V1 +
V2

2
+

V 2
2

16V1
.

(2.24)

As depicted in fig. 2.4 xmin denotes the very first potential minimum of the con-
tinuous double well potential, ω0 the angular frequency of harmonic oscillations on
the bottom of each well, EB is the height of the barrier in the middle of a double
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Figure 2.4: Continuous double well potential resulting from the combination of two
far red detuned standing light waves plotted in units of the recoil energy Er. EB

denotes the barrier height of the barrier in the middle of each double well, ẼB is the
height of the barrier separating two double wells and ω0 corresponds to the harmonic
oscillation at the bottom of each well.

well and ẼB correspondingly refers to the barrier hight separating two neighboring
double wells.

In contrast to the quartic potential in this realization the atoms will not only
tunnel between the two wells of one double well unit cell, i.e., through barrier EB,
but also between different double wells, because of the finite hight of ẼB. However
for appropriately chosen amplitudes V1,2 the latter tunneling time is larger than
the duration of the experiment, so that it can be neglected. The experimental
parameters are always set the way that only on very long time scales not even in
the scope of the experimentally measurable time a localized wave packet will spread
out over many wells.

Asymmetry

As mentioned before particular attention has to be payed to the symmetry of the
double wells. For λ2 = 2λ1 the resulting potential is a row of perfectly symmetric
double wells, but already a slight deviation causes an asymmetry depending on the
distance from the mirror, leading to significant changes of the tunneling dynam-
ics. Among others this sensitivity of the tunneling dynamics onto the symmetry is
adopted to verify the realization of a perfectly symmetric double well potential in
the experiment as this is a crucial precondition to observe CDT.

In the experiment the wavelength λ2 is achieved by impinging
light with the wavelength λ1 onto the mirror under an angle α =
π/3. The wavelength of the standing wave that is formed by this
in x-direction is exactly twice as large as λ1. Hence an asymmetry
of the double well results from a deviation of this angle α from
π/3.
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Figure 2.5: The tunneling time is plotted versus the deviation from the π/3 yielding
perfectly symmetric double wells. The upper dashed vertical line corresponds to the
tunneling time for the symmetric potential, while the lower line indicates half of this
value. Already a deviation of 87µrad results in half the tunneling period.

For a typical distance of the atoms from the mirror the resulting tunneling time
is plotted as a function of ∆α = α− π/3 in fig. 2.5. Already a deviation of 87µrad
results in a tunneling dynamics twice as fast as in the corresponding symmetric
double well, showing the sensitivity, that makes the tunneling time perfectly suited
to check the symmetry of the realized potential.

2.2 Time evolution of an atom in an unperturbed dou-
ble well potential

To learn about the dynamics of the atom in the double well light-shift potential as
eq. 2.22 the time-dependent Schrödinger equation for the Hamiltonian H = H0(x)
(eq. 2.23) has to be solved:

i~
∂

∂t
|Ψ(x, t)〉 = H(x, t)|Ψ(x, t)〉. (2.25)

Due to the spatial periodicity of the potential this can be done by adopting Bloch’s
theorem [27]. Hence the ansatz for the wavefunction, a Bloch wave, consists of the
product of plane waves, that have accumulated multiples of the lattice momentum
~k and their corresponding probability amplitude an:

Ψ(x, t) =
∞∑

n=−∞
aneinkx. (2.26)
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Fitting this to the Schrödinger equation, utilizing the Euler expansion cos2(kx) =
1
2 + 1

4(ei2kx + e−i2kx) and shifting indices, yields:

i~
∞∑

n=−∞
ȧneinkx =

∞∑
n=−∞

einkx

[
~2n2k2

2m
an

+
V1

2
an +

V1

4
(an−2 + an+2)

+
V2

2
an +

V2

4
(an−1 + an+1)

]
.

(2.27)

As this has to be valid for all n, a differential equation for each probability amplitude
an is given by:

i~ȧn =
(
~2n2k2

2m
+

V1

2
+

V2

2

)
an +

V1

4
(an−2 + an+2) +

V2

4
(an−1 + an+1). (2.28)

For this methods only multiples of the wave vector k can be devolved, which is
correct for a row of perfectly symmetric double wells. A slight asymmetry, as could
be the case in the experiment, if λ2 is not exactly two times λ1, has to be accounted
for approximately as an added phase. The Potential in this approximation looks
like: V = V1 cos2(kx) + V2 cos2(k

2x + φ), yielding an equation for the probability
amplitude an:

i~ȧn =
(
~2n2k2

2m
+

V1

2
+

V2

2

)
an+

V1

4
(an−2+an+2)+

V2

4
(an−1e

2iφ+an+1e
−2iφ), (2.29)

or as vector equation

i~




ȧ−N
...

ȧ−1

ȧ0

ȧ1
...

ȧN




= M ·




a−N
...

a−1

a0

a1
...

aN




, (2.30)

with

M = (2.31)


~2(−N)2k2

2m + V1
2 + V2

2
V2
4 e−2iφ V1

4 0 · · · · · · 0
V2
4 e+2iφ . . . . . . . . .

...
V1
4

. . . . . . . . . . . .
...

0
. . . . . . V1

2 + V2
2

. . . . . . 0
...

. . . V1
4

...
. . . . . . V2

4 e−2iφ

0 · · · · · · 0 V1
4

V2
4 e+2iφ ~2N2k2

2m + V1
2 + V2

2




,
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Figure 2.6: The initial state |Ψ0〉 for a continuous double well potential is a super-
position of the two lowest eigenstates of the potential |ϕ1〉 and |ϕ2〉, which can be
found by diagonalizing the matrix M in 2.31.

which can be calculated utilizing a standard Runge-Kutta method (ode45) provided
by the software package MATLAB. This method is referred to as diffraction method
in the following and for all calculations presented N was restricted to a finite number
of 21.

2.2.1 Initial state

For a continuous double well potential the initial condition to observe the tunneling
dynamics is that the atoms at time t = t0 are localized in every second well only,
i.e., in the left (or right) well of each double well in the row. For a single double well
this localized state could be described as sum or difference of the lowest eigenstate
doublet. This is also true for a continuous double well potential. Its eigenstates
Ψn follow from eq. 2.26 with the probability amplitudes given by the eigenvectors
of the matrix M (eq. 2.31). Therewith the initial state of a wave packet localized
in every second well of a continuous double well potential constant in time reads
|Ψ0〉 = |+〉 = 1√

2
(|ϕ1〉+ |ϕ2〉) or |Ψ0〉 = |−〉 = 1√

2
(|ϕ1〉− |ϕ2〉) and yields oscillations

between the two minima of each double well with a periodicity of the tunneling
splitting ∆ as anticipated. Such an initial state is plotted in fig. 2.6

Of course feeding in a perfectly localized initial state does not comply with
the experimental reality. To reproduce the experimental preparation process the
incoming atoms are represented by a plane wave Ψ(t = 0) = a0 = 1. They are
loaded into the symmetric ground state of the potential by slowly switching on the
light shift potential, so that the atoms follow adiabatically. Then atoms are removed
from every second well by absorbing them, which is described theoretically by an
imaginary potential [28]. Practically such a complex potential emerges from the
interaction of near resonant light with an open two-level system [29, 30, 31], or in
other words, atoms are pumped from a metastable state via open transition to the
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absolute ground state using suitable light. Which means, that the ground state |g〉 in
the considerations before is a metastable state of the atom, whose lifetime is longer
than the duration of the experiment and the absolute ground state of the atom is
not detected and therefore those atoms in the absolute ground state are “deleted”
from the setup. Accounting for this new standing light wave with amplitude Vabs

the complete light shift potential has to be written as:

V (x, t) = V1(t) cos2(kx) + V2(t) cos2(
k

2
x) + i~ · Vabs(t) cos2(

k

2
x + φabs), (2.32)
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Figure 2.7: Double well potential (black)
and shifted imaginary potential (gray,
dashed).

at which the absorptive potential is
shifted by φabs against the double well
potential, so that its minima coincide
with one well of each double well and
the maxima are close to the other well
as indicated in fig. 2.7. Thus atoms are
predominantly removed from every sec-
ond well only. The constant phase shift
is only an approximation of the exper-
imental situation, a topic addressed in
context of the experimental realization
(sec. 3.3).

The time dependence of the potentials V1,2, i.e., the adiabatic increase, is experi-
mentally realized using a specially designed optical gray filter. To be able to include
it to the numerics as accurate as possible it is measured employing a ccd-camera
image (cf. fig. 3.6) and then the profiles are fitted with an error function. The time
dependence and position of the imaginary potential Vabs is also determined by a
gauss fit of the ccd-camera image. The amplitude of the imaginary potential is ad-
justed such that the decrease of the absolute number of atoms after the absorption
process matches the experimentally adjusted one of typically 70%.

Therewith the probability amplitudes (eq. 2.29) for the Bloch-wave ansatz now
read:

i~ȧn =
(
~2n2k2

2m
+

V1(t)
2

+
V2(t)

2
+ i

Vabs(t)
2

)
an +

V1(t)
4

(an−2 + an+2)

+
(

V2(t)
4

e2iφ + i
Vabs(t)

2
e2iφabs

)
an−1 +

(
V2(t)

4
e−2iφ + i

Vabs(t)
2

e−2iφabs

)
an+1.

(2.33)

In the following discussions the preparation process, i.e., the imaginary part of
the potential i~ ·Vabs(t) cos2(k

2x+φabs) is left out for clarity, where it is not relevant.
It can always be added to reproduce the experimental occurrences ab initio.

2.2.2 Near field measurements

The combination of two periodic structures under an angle or with slightly different
periods creates so called Moiré patterns [32]. In this interference patterns new struc-
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Figure 2.8: A sketch of the setup measuring the near field distribution of the atoms.
Due to the varying phase shift between the double well potential (black) and the
absorptive potential (gray, dashed) moving the mirror, i.e., scanning the atoms along
the potentials is like moving a grating over the atom distribution in one double well
yielding an image of distribution of the atoms in the potential.

tures appear with periodicities proportional to the angle or the sum and difference
of the two periods respectively.

In the experiment the combination of the periodic double well structure with
cos2(k1x)+cos2(k1

2 x) and the imaginary potential with a spatial frequency of cos2(k2
2 x)

yields due to their different periodicities the following Moir’e pattern:

Iinterfered = Idw + Iabs

∝ cos(
k1 + k2

2
x) · cos(

k1 − k2

2
x) +

1
2

cos(2k1x)
(2.34)

where new spatial frequencies appear. A slow oscillation with k1 − k2 forms an
envelope of a faster one with k1 + k2 and is combined with an oscillation with two
times k1.

This intensity profile can be tested utilizing the atoms by varying their distance
from the mirror and measuring their total transmission as depicted in fig. 2.8 (see
also sec. 3.3.3). As the imaginary potential removes atoms it is comparable to a
grid letting the atoms pass only at the position of its minima and the double well
structure localizes the atoms at its potential minima. The profile resulting from the
combination of those two structures resembles a double well only upside down and
with a period of k1 − k2. Furthermore it reveals the position at which the atoms
are perfectly prepared, i.e., a minimum of the imaginary potential coincides exactly
with one well of the double well structure and the atoms are completely removed
from the other. This is given for the position of the maxima of this upside down
double well structure.

For a row of perfectly equivalent double wells the near field measurement results
in a transmission shaped symmetrically, i.e., with two maxima of same height, as
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Figure 2.9: Testing the Moiré pattern of the double well structure combined with the
absorptive potential. The diffraction efficiencies (left) and total transmission (right)
is simulated as a function of the phase φabs, corresponding to the distance from the
mirror in the experimental realization for a double well potential combined with an
imaginary potential. The vertical line in the right picture indicates the x-position
corresponding to the phase shift φabs that yield a preparation of a localized state.

sketched in the upper part of fig. 2.8. Due to a constant phase shift between the
two standing waves forming the double wells and for α = π/3, all wells will have
the same asymmetry and so will the transmission spectrum. For an angle α, that is
not exactly π/3 the double wells scanned in the experiment are all different, so that
the resulting shape of the transmission is a mixture of all kinds of double wells and
can not be utilized as indicator for the symmetry of the potential at a particular
position x. But it still gives a good impression of the localization of the initial
wave-packet. In the simulations this is accounted for by changing the shape of the
double well, i.e., the phase φ in eq. 2.33, while φabs is scanned. The expected shape
of the transmission as a function of the distance from the mirror is depicted on the
right hand side of fig. 2.9. It still reveals two maxima but they will never be of
the same height. Still at the mirror position for which the transmission is maximal
the phase shift between double well potential and imaginary potential is just such
that the minima of the latter coincide with the first and second well respectively,
resulting in a localized wave packet either in the right or left well, which can be used
as initial state for the experiment. For this calculation the beat period of double well
and imaginary potential was assumed 210µm suggesting that an atom passing the
mirror at a distance of 135µm will be localized in the right well after the preparation,
i.e., absorption process. The left hand side of fig. 2.9 shows the corresponding
diffraction efficiencies in the different orders underlying the transmission spectrum.
The weight of the zeroth order depends on the absorption rate, i.e., the amplitude
of the imaginary potential Vabs.
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2.2.3 Bragg Diffraction

Bragg diffraction [33] is a well understood effect that is employed for adjusting the
incidence angle of the atoms onto the standing light waves. It is crucial for the
measurements to guarantee a perpendicular incidence of the atomic beam onto the
potential. The sensitivity of the effect of Bragg diffraction to this angle and its simple
feasibility makes it a perfect tool for this adjustment. For matter waves interacting
with light shift potentials Bragg diffraction was realized for the first time in 1988 by
David Pritchard [34]. It appears for weak potentials in the so called Bragg regime,
which is given if the potential maximum is smaller than its recoil energy Er. In this
case significant scattering only occurs if the incident wave impinges under the Bragg
angle ±θB with

sin(θB) =
nλdB

λL
, (2.35)

and only exactly one diffraction order is observed. This regime can be described by
the dynamical diffraction theory, which was derived for the first time for x-rays by
Ewald [35]. As carried out in [29] the diffracted intensity can be calculated as:

I(bs, Vs, θs) =
sin2(2πVsbs

√
ξ2 + 1)

ξ2 + 1
with ξ =

1
2

θs

Vs
(2.36)

for the scaled magnitudes

bs =
b

LTalbot

Vs =
V

Er

θs =
θB − θ

θB
,

(2.37)

with b being the width of the light-shift potential and LTalbot = λ2

2λdB
the Talbot

length [36]. The sensitive dependence onto the angle of incidence and the symmetric
appearance for ±θB allows to determine the perpendicular incidence of the atoms
onto the standing wave.

2.3 Introducing time-dependent driving-field

The simplest way of driving a double well potential is adding a linear potential
rocking around the symmetry point of the double well with some time-dependence
f(t) as assumed by Grossmann et al. [20] and plotted in fig. 2.10(a). For a continuous
double well potential this reads:

Hth(x, t) =
p2

2m
+ V1 cos2(kx) + V2 cos2(

k

2
x)

︸ ︷︷ ︸
+ Sx̃ · f(t)︸ ︷︷ ︸

H0(x) Hd,th(x, t)
(2.38)
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Figure 2.10: (a) Illustration of a double well potential driven with a linear rocker.
(b) A double well with a sinusoidally shaped driving. (c) Comparing the potentials
resulting from a linear rocking driving field (open circles) and one, where the driving
is sinusoidally shape (dots).

where x̃ denotes the distance to the symmetry point of each double well. This
might be simple from a theoretical point of view. In the experiment however it is
straightforward to realize the driving by changing the angle α which yields a phase
shift between the two light shift potentials creating the double wells. Instead of a
linear potential this is approximately equivalent to adding a sinus rocking around the
symmetry point. The time-dependent Hamiltonian describing the experimentally
realized system reads as follows:

H(x, t) =
p2

2m
+ V1 cos2(kx) + V2 cos2(kx · cos{α + εf(t)}), (2.39)

where ε is the deviation from the incidence angle α = π/3 corresponding to the
amplitude of the driving and f(t) is its time dependence with the characteristic
driving frequency ωd = 2π/Td. Even for strong driving ε will be small compared to
α, so that close to the mirror surface (for small x) the approximation (sin(εx) ≈ εx)



26 Chapter 2. Theoretical description of a strongly driven quantum system

0 1 2 3 4 5 6 7

4

8

12

x [l]

p
o

te
n

ti
al

 [
E

] r

Figure 2.11: The picture depicts the dependence of the driving amplitude onto the
distance from the mirror, the unperturbed potential is added as reference (black
dots).

yields a Hamiltonian of the same form as eq. 2.38:

H(x, t) =
p2

2m
+ V1 cos2(kx) + V2 cos2(

k

2
x)

︸ ︷︷ ︸
+ Sx sin(kx̃) · f(t)︸ ︷︷ ︸,

H0(x) Hd(x, t)
(2.40)

with S being the amplitude of the driving that now reads:

S = sin(α) · V2kε. (2.41)

In fig. 2.10(b) this sine shaped rocking around the symmetry point is depicted and
in (c) it is compared to the theoretically assumed linear rocker. An important
point is that the x-dependence (not x̃) of the sine shaped rocking yields different
driving amplitudes depending on the distance of a double well from the mirror and
of course a very slight asymmetry of the driving of each double well as well as a small
movement of the barrier in the middle of each double well as illustrated in fig. 2.11.
Still simulations show (cf. sec. 2.3.4) that all these deviations from the ideal liner
rocker do only marginally change the effects of the driving. In particular the effect
of CDT can be realized employing this form of driving as the generalized symmetry
of the system is conserved. The symmetry dependence of CDT comes from the
fact, that it appears due to an exact crossing of those eigenenergies dominating the
tunneling dynamics, which may only happen, if the system obeys the generalized
parity symmetry and the two states belong to different parity classes. Otherwise
only avoided crossing appear.

2.3.1 Floquet approach

In the majority of the cases solving the Schrödinger equation for time-dependent
Hamiltonians is not possible analytically. Separation of variables as is done con-
ventionally for time independent hamiltonian operators can not be applied as the
hamiltonian operator of a time-dependent quantum system is not invariant up to an
arbitrary time translation and therefore the energy of the system is not conserved.
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The periodicity of the time dependence introduced by the driving however enables a
solution of the dynamics. Analogues to the Bloch-theorem [27] helping to find solu-
tions for spatially periodic quantum systems the solutions for time periodic quantum
systems can be found by means of the Floquet-theorem [37]. The nice thing about
this method is that it does not constrain the parameters of the driving in contrast
to the often used perturbation theory.

As the Hamiltonian operator (eq. 2.40) is periodic in time, H(t + Td) = H(t), it
is invariant up to the translation t → t + Td, where Td is the period of the driving.
According to the theorem for such time periodic Hamiltonians there exist Floquet-
state solutions |Ψα(x, t)〉 to the Schrödinger equation (eq. 2.25) that have the form

|Ψα(x, t)〉 = e−iεαt/~ |Φα(x, t)〉, (2.42)

where |Φα(x, t)〉, a so-called Floquet mode, is again periodic in time (|Φα(x, t)〉 =
|Φα(x, t + Td)〉). Due to the periodicity the time evolution of the system can be
separated into a long-term behavior and a short-time evolution.

Introducing the Hermitian operator H(x, t) ≡ H(x, t) − i~ ∂
∂t the problem is

reduced to solving the eigenvalue equation for the quasi energies εα and eigen-
states |Φα〉

H|Φα(x, t)〉 = εα|Φα(x, t)〉 (2.43)

in the composite Hilbert spaceR⊗T consisting of the Hilbert space of time integrable
functions and the space of functions periodic in t with period Td. This displays the
great benefit of this method: it reduces the problem to solving the time-independent
Schrödinger equation.

Another nice thing about this method is that it respects the periodicity at all
levels of approximation and avoids the occurrence of so-called secular terms, i.e.,
linear or not periodic in the time variable, unlike conventional time-dependent per-
turbation theory.

It has to be noted that the Floquet modes Φα and Φα′ = Φαeinωdt with n being
an integer yield identical physical solutions, so that the quasi energies εα are defined
except for multiples of ~ωd, where ωd = 2π

Td
is the driving frequency. This reveals

that those quasi energies do not denote absolute energies and allows to project them
to a zone (−~ωd

2 ≤ ε ≤ ~ωd
2 ) comparable with the first Brillouin-zone known for

spatially periodic systems. This is also where the name comes from: The “quasi”
reflects the formal analogy with the quasi momentum ~k in a Bloch wave function.
Following from the Bloch wave description this Bloch wave vector k is unique only
up to multiples of the reciprocal lattice vector G, so that the problem can be reduced
to the first Brillouin zone, i.e, a primitive cell of the reciprocal lattice. In contrast to
the quasi momentum that is a continuous variable, the quasi energies in the Floquet
theory are quantized.

To learn about the long-time dynamics of the system a time propagator U(nT, t0)
can be introduced:

|Ψ(x, nT )〉 = U(nT, t0)|Ψ(x, t0)〉, U(t0, t0) = 1, (2.44)
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generating a discrete quantum map for any initial state |Ψ(x, t0)〉 =
∑

α cα|Ψα(x, t0)〉.
Setting t0 = 0 the temporal autocorrelation function is defined by:

Pn = |〈Ψn|Ψ0〉|2
= |〈Ψ(x, nT )|Ψ(x, t0)〉|2

=
∑
α

c∗αeinεαT/~〈φα(x, t0)|Ψ0〉 ·
∑

β

cβe−inεβT/~〈Ψ0|φβ(x, t0)〉

=
∑

α=β

|〈φα(x, t0)|Ψ0〉|4 +
∑

α6=β

ein(εα−εβ)T/~ · |〈φα(x, t0)|Ψ0〉|2 · |〈φβ(x, t0)|Ψ0〉|2.

(2.45)

Comparing this to the findings for the tunneling dynamics in a time constant double
well potential it is obvious that the second term in the last row containing all quasi
energy differences εα− εβ is alike eq. 2.3, where the dynamics is ruled by the energy
difference ∆ = E2 − E1. Thus due to driving many quasi energy differences mix up
yielding a more complex dynamics of beats of more than one tunneling frequency.
At least this may happen, but as these frequencies add up proportional to their
overlap with the initial state |ψ0〉, one finds, at least for the experimental situation
described in this work, that the time evolution of the system is dominated by only
one or two differences, i.e., frequencies for most driving parameters. The first term
of eq. 2.45 represents a long-time average of the autocorrelation function Pn.

Due to the Floquet theorem the dynamics of a particle in a time periodically
driven double well can be derived by solving eq. 2.43 numerically. Therefore the
time periodic function Φα is expanded in Fourier coefficients choosing the eigenstates
ϕk(x) of the unperturbed double well potential as an orthogonal basis:

|Φα(x, t)〉 =
∞∑

n=−∞

∞∑

k=1

cn
α,k(x) |ϕk(x)〉 einωdt, cn

α,k(x) ∈ R. (2.46)

As the energy is no longer conserved for the time-dependent function H(t) the
averaged energy over one period of driving is considered instead. With the inner
product for the composite Hilbert space

〈〈Φα′ |Φβ′〉〉 :=
1
T

∫ T

0
dt

∫ ∞

−∞
dx Φ?

α′(x, t)Φβ′(x, t) = δα′,β′ = δα,β δn,m (2.47)

and multiplying with 〈ϕj |eimωdt ≡ 〈ϕjm| equation 2.43 becomes:

∞∑
n=−∞

∞∑

k=1

〈〈ϕjm|H|ϕkn〉〉cn
α,k(x) = εα

∞∑
n=−∞

∞∑

k=1

〈〈ϕjm|ϕkn〉〉cn
α,k(x)

∞∑
n=−∞

∞∑

k=1

〈〈ϕjm|
(

H0(x) + Sx sin(kx̃)· sin(ωdt)− i~
∂

∂t

)
|ϕkn〉〉cn

α,k(x) . . .

= εαcm
α,j(x)

(2.48)
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with sin(ωdt) = 1
2(eiωdt − e−iωdt) this yields:

∞∑
n=−∞

∞∑

k=1

{
(Ek + n~ωd)δj,kδm,n +

S

2
〈ϕj |x̃ sin(kx)|ϕk〉 · . . .

(δm,n+1 − δm,n−1)
}

cn
α,k(x) = εαcm

α,j(x).

(2.49)

Introducing the following basis



(ϕ1,−N)
(ϕ1,−N + 1)

...
(ϕ1, +N)
(ϕ2,−N)

...
(ϕ2, +N)




(2.50)

and restricting to a finite number of eigenstates as well as fourier coefficients eq. 2.48
can be written as a vector equation:

Mcα = εαcα, (2.51)

with the Matrix M consisting of the diagonal elements

Mii =




Ei −N~ωd 0
Ei − (N − 1)~ωd

. . .
0 Ei + N~ωd


 , (2.52)

and the off-diagonal elements

Mij =




0 −S
2 x̃ij 0

S
2 x̃ij 0 −S

2 x̃ij

. . . . . .
0 0


 for (i < j), (2.53)

and Mij = M∗
ji for i > j, whereat xij denotes the transition matrix element xij =

〈ϕi|x̃ sin(kx)|ϕj〉 at which all even-even or odd-odd transitions are zero. For all
results shown in the following the 15 lowest energy eigenstates are taken into account.
Solving this eigenvalue problems yields a bunch of quasi energies εα as shown in
fig. 2.12 (left) as a function of the driving frequency and for a set of parameters
typical for the experimental realization.

Of course not all those eigenstates are relevant for the dynamics of an atom in
the potential. As for describing the initial state of localized particle in the double
well only the two lowest of all eigenstates where needed, only those quasi energies
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Figure 2.12: (left) With help of the Floquet theorem solutions to the driven double
well can be found in form of quasi energies, here plotted as a function of driving
frequency. (right) The dynamics of the system is reflected by those quasi energies
having the biggest overlap with the ground state. The parameters are V1 = 6.25Er,
V2 = 5.40Er and S = 7353Er, which corresponds to a lift of 0.93Er of the wells out of
equilibrium.

having an overlap with this ground state doublet do contribute. This overlap is
calculated by projecting |Ψ0〉 = 1√

2
(|ϕ1〉 + |ϕ2〉) (cf. sec. 2.2.1) onto the Floquet

states:
|〈〈Ψ0|Φα(x, t)〉〉|2 =

1
2
(|c0

α,1|2 + |c0
α,2|2 + c0

α,1c
0∗
α,2 + c0

α,2c
0∗
α,1). (2.54)

In fig. 2.12 (right) the local Floquet spectrum is shown, zoomed into the picture de-
picted on the left. Furthermore those quasi energies having the biggest overlap with
the ground state doublet (ϕ1, 0) and (ϕ2, 0) are highlighted, i.e., those dominating
the dynamics of the system. However this is a simplification as the spectrum can not
always be reduced to only two energy levels. In the parameter range where there are
more than two eigenstates with relevant overlap with the initial state complicated
beats of various tunneling frequencies may appear. Generally it can be noted that
for very high and very low driving frequencies, where this frequency is not of the
order of the system’s inherent timescales and therefor the processes uncouple, the
spectrum will resemble that of the unperturbed system, i.e., will be dominated by
only two states. If this is the case it is appropriate to use the two-state approxima-
tion, which will be introduced in sec. 2.3.3, instead of the full Floquet analysis to
describe the systems dynamic.

As a reference the eigenenergies of the undriven double well potential are in-
dicated by the horizontal lines in the left picture of fig. 2.12. If two eigenenergies
dominating the dynamics approach each other, this implies a slowing of the tunnel-
ing. If they literally cross, as can be observed in this picture for a driving frequency
of ωd = 5kHz, this yield an absence of any dynamics. This means switching on an
external field with appropriate parameters enables to totally suppress the tunnel-
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Figure 2.13: Tunneling splitting as function of the driving frequency for typical
experimental parameters calculated using the Floquet matrix method. Plotted are
all quasi energy differences, whereat the gray shading corresponds to the overlap of
the corresponding Floquet states with the initial state, i.e., the ground state doublet.

ing of a particle and therewith to localize it without changing the properties of the
double well. This is what is called CDT.

As is pointed out in [38] such crossings of the two relevant quasi energies depend
on special combinations of the parameters S and ωd forming a one-dimensional
manifold in the (S, ωd) parameter-space of an approximately linear shape. Hence
finding suitable parameter values on this manifold is the precondition to dynamically
localize atoms, i.e., to realize CDT.

To compare the theoretical predictions to the experimental findings the tunneling
splitting is calculated, i.e., the energy gaps between the different quasi energies,
shown in fig. 2.13, at which the gray shading represents the overlap of the particular
eigenstates with the ground state doublet. The dashed line indicates the tunneling
rate for the unperturbed double well. Everything above implies a faster dynamics,
everything below is slower. One can see, that in the range between 10 − 20 kHz
only one tunneling frequency dominates the tunneling, which is only a bit below
the unperturbed rate. For decreasing driving frequency approaching ωd = 5kHz the
dynamics slows continuously till the splitting reaches a complete zero, indicating
CDT. For the frequency range between 20 and 25kHz a resonance appears, namely
the fundamental resonance Ω = E3 − E2, implying that it should also be possible
to observe a significant increase of the tunneling rate due to coupling to the next
excited eigenstate.
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Figure 2.14: The sawtooth shape driving as function of time (black) compared to the
fourier series (eq. 2.56) with 15 coefficients that is implemented in the simulations.

2.3.2 Symmetry dependence of CDT

Such a crossing of quasi energies as mentioned in the previous section, being the
key to suppress the tunneling dynamics, can only occur for eigenstates belonging to
different parity classes. Would the states belong to the same parity class they would
form an avoided crossing, i.e., approach each other and then separate again without
crossing.

Due to the generalized parity symmetry P of the Hamiltonian in eq. 2.40

P : x → −x, t → t +
Td

2
. (2.55)

the Floquet states and corresponding quasi energies can be separated into two
classes. Only quasi energies belonging to different parity classes can form exact
crossings, and only if the parity symmetry is fulfilled for the system. This implies
that the effect of CDT depends not only on the combination of driving frequency and
driving amplitude but also on the parity symmetry of the driving, i.e., the function
f(t). If this function does not obey the generalized parity symmetry only avoided
crossings may appear.

Hence this symmetry dependence may be used to verify the realization of CDT.
Experimentally it is straightforward to break the generalized parity symmetry P by
changing the time dependence of the driving. Instead of sinusoidally driving with
f(t) = sin(ωdt) a sawtooth is applied, which is still periodic in time with period
Td, but is not invariant under the translation t → t + Td

2 . In the calculations the
sawtooth dependence is implemented with a Fourier series

f(t) =
∞∑

k=1

(−1)k−1 sin(kωdt)
k

, (2.56)

whereat up to 15 coefficients were taken into account, which is illustrated in fig. 2.14.
The resulting quasi energy spectrum is shown on the left hand side of fig. 2.15,
where the same parameters are used as for the sinusoidally driven case, which was
presented in fig. 2.12. Clearly the exact crossing does not exist anymore. The
tunneling dynamics still slows down a bit around a driving frequency of ωd = 5kHz,
but not at all to the same amount as in the symmetric case.
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Figure 2.15: Breaking the generalized parity symmetry destroys the effect of CDT.
The pictures show the quasi energy spectrum (left) and the corresponding tunneling
splitting (right) for the same parameters as in the former fig. 2.12, but with a
sawtooth time dependence of the driving field. As this does not comply with the
generalized parity symmetry the exact crossing of the dominant quasi energies, i.e.,
the effect of CDT, does not occur anymore. Only a slight slowing of the tunneling
dynamics around a driving frequency of 5kHz can be observed, which is not all like
the immense effect of a symmetric driving force.

The corresponding tunneling splitting as function of the driving frequency is
presented on the right hand side of fig. 2.15. The structure still is comparable to
the symmetrically driven case in fig. 2.13, but no longer tunneling rate slower than
about half of the unperturbed tunneling frequency occurs.

Another variant of breaking the generalized symmetry of the driving is to add a
constant linear field to the sinusoidally oscillating driving field, so that f(t) reads:

f(t) = sin(ωdt) + doffset · x̃, (2.57)

where x̃ again is the distance to the symmetry point of each double well. This
as well does not satisfy the generalized parity P and is experimentally realizable
(cf. sec. 3.4.2).

2.3.3 Two-mode approximation

For not too strong driving forces and in the deep quantum regime the system can
be simplified by assuming that only the lowest eigenstate doublet contributes to the
dynamics. Following the considerations in [39] the Hamiltonian and state vector in
the localized basis |l〉 and |r〉 (cf. eq. 2.1) denote as follows:

|Ψ(t)〉 =


 c1 e

−i
Sx12
~ωd

sin(ωdt)

c2 e
+i

Sx12
~ωd

sin(ωdt)


 (2.58)
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Figure 2.16: The theoretical prediction of the tunneling splitting in the two-state
approximation according to eq. 2.61 plotted for typical experimental parameters.
The inset shows the corresponding results of the Floquet state analysis with the
two-state approximation included as solid gray line.

H =
(
~Sx12 · sin(ωdt + φ) −∆

2

−∆
2 −~Sx12 · sin(ωdt + φ)

)
(2.59)

with x12 denoting the matrix element x12 = 〈ϕ1|x|ϕ2〉.
Setting φ = π/2 one obtains from the Schrödinger equation:

i
d
dt

c1,2(t) = −∆
2

e
±i

2Sx12
~ωd

sin(ωdt)
c2,1(t). (2.60)

For large frequencies (ωd À ∆) and averaged over a full period Td making a
high-frequency approximation yields an effective tunneling splitting

∆eff = J0(
2Sx12

~ωd
) ·∆, (2.61)

whereat

J0(x) =
ω

2π

∫ T

0
exp[ix · sin(ωs)]ds (2.62)

is the zeroth-order Bessel function of the first kind. The subsequent dependence of
the tunneling splitting onto the driving frequency is plotted in fig. 2.16 for the same
parameters as before. In the inset the approximation is compared to the results
of the full Floquet analysis, revealing that it holds for the intermediate frequency
range of 5kHz to about 17kHz and can even be used to describe CDT. The resonances
occurring for driving frequencies higher than 17kHz can of course not be described
with this approximation. Also not in the scope of this approximation is the low
frequency range for driving frequencies lower than 5kHz.
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Figure 2.17: The results of the two-state approximation for sawtooth time depen-
dence of the driving (solid gray line) is compared to the results of the full Floquet
analysis (gray shading). It is obvious that for this set of parameters the approxima-
tion cannot display the dynamics as more than two states contribute in the region
of the slowing of the tunneling, i.e., for driving frequencies lower than 10kHz.

For a driving force that is not sinusoidal, but sawtooth shaped, the differential
equation 2.60 becomes:

i
d
dt

c1,2(t) = −∆
2

e
±i

2Sx12
~ωd

P
k(−1)k sin(kωdt)

c2,1(t)

= −∆
2

∏

k

e
±i

2Sx12
~ωd

(−1)k sin(kωdt)
c2,1(t).

(2.63)

In figure 2.17 the results are compared to the findings of the full Floquet theory. It
is obvious that two-state approximations does deviate massively due to the fact that
there are more than two states involved in the dynamics, which is not in the scope of
this approximation. Therefore only the results from the full Floquet state analysis
and the findings of the split-step Fourier method described in the following section
will be plotted and compared to the experimental results in the case of sawtooth
driving.

2.3.4 Split-step Fourier method

Another possibility to find a solution of the time-dependent Schrödinger equation
numerically is to utilize a “spectral method” called split-step Fourier [40], that is
well known in quantum optics as it is the most commonly used numerical scheme
for solving the nonlinear Schrödinger equation.
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As stated before the dynamics of a quantum mechanical wave function can be
found applying the time-evolution operator U(t1, t0) [41], with Ψ(x, t1) = U(t1, t0)
Ψ(x, t0), which for a time-dependent Hamilton operator is given by:

U(t, t0) = e−
i
~H(t−t0). (2.64)

The split-step Fourier scheme works splitting the interval (t1 − t0) into many small
time steps dt and accomplishing them alternately in real and momentum space.
Therefor the Hamiltonian is decomposed into a kinetic term K(k) = −~2k2

2m and a
time and space dependent term V (x, t), which in this case is the sum of all light-shift
potentials (cf. eq. 2.32). Following the Baker-Campbell-Hausdorff formula for two
not commuting operators [40, 42] the time evolution operator can be written as:

U(dt) = e−
i
~ (K(k)+V (x,t))dt

= e−
i
~K(k)dt · e− i

~V (x,t)dt · e( 1
2

1
~2 [K(k),V (x,t)]dt2+... )

≈ e−
i
~K(k)dt · e− i

~V (x,t)dt.

(2.65)

Due to the approximation in the last step the time propagation can now be done
separately for the two operators. The only condition is that the time steps have to
be small enough as the dominant error is of the order of O(dt2). The advantage is
that the kinetic part can now be easily calculated in momentum space via fourier
transformation F as there it is diagonal and therefor reduced to a multiplication:

Ψ(x, t + dt) = F−1

(
e−

i
~
~2k2

2m
dt · F(Ψ(x, t))

)
= P̂Ψ(x, t), (2.66)

followed by a time step in real space:

Ψ(x, t + dt) = e−
i
~V (x,t)dt ·Ψ(x, t) = R̂Ψ(x, t). (2.67)

The error made can even be reduced by symmetrizing the scheme, i.e. symmet-
rically splitting the operators. This is done by simply starting with a dt/2 step in
momentum space, denoted by the operator P̂1/2, and completing the other half in
the end, so that the full split-step scheme looks as follows:

Ψ(x, t1) = P̂1/2R̂

[
P̂ R̂

]N−1

P̂1/2Ψ(x, t0). (2.68)

This is the approximation after applying twice the Baker-Campbell-Hausdorff for-
mula, so that the leading error term becomes of the order of O(dt3).

One advantage of this numerical method, for example compared to finite differ-
ence schemes, is that it is very fast, as the Fourier transformations can be performed
using the fast Fourier transform algorithm (FFT) [43].

The potential distribution achieved by analyzing the ccd-camera image as shown
in fig. 3.6 is included to reproduce the preparation process in the calculations.
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Figure 2.18: Tunneling dynamics of a particle in real space (left) and in momentum
space (right) calculated utilizing the split-step Fourier method. The upper left
picture shows the probability density over a complete double well, underneath the
profiles are plotted for the upper (open circles) and lower (dots) well. The upper right
picture displays the diffraction efficiencies for all diffraction orders and the profiles
for +1 (dots) and −1 (open circles) diffraction order beneath (for the profiles only
one row is evaluated). The periodicity of the oscillation is the same in real and
momentum space as well as its starting position. The only difference is the phase.
The oscillation of the diffraction efficiencies lags the oscillation between the wells in
real space by a quarter of the oscillation period.

In fig. 2.18 the findings for the tunneling in an unperturbed potential, as it will be
realized in the following, with V1 = 3.53Er and V2 = 3.98Er are plotted in real space as
well as momentum space, revealing the equivalence of the tunneling frequency and
the oscillations of the diffraction efficiencies in momentum space. The upper left
picture shows the probability density for an atom in one double well as a function of
interaction length, the figure beneath displays the probability density at the center of
the lower (open circles) and in the upper (dots) well. The upper right picture shows
the corresponding diffraction efficiencies in the different diffraction orders, whereas
the lower pictures displays only the first (dots) and minus first (open circles) one.
The red curves are sinusoidal fits to the data yielding a periodicity of 4.911±0.014mm
according a tunneling frequency of 5.498±0.015Hz for the tunneling in real space and
a periodicity of 4.942± 0.035mm corresponding a frequency of 5.4634± 0.039Hz for
the oscillations of the diffraction efficiencies in momentum space, which is the same
periodicity within the error margin. Also the starting position is the same, merely
the phase is different. The oscillations in momentum space are shifted by exactly one
quarter of a period, comprehensible as the atoms are prepared, i.e., localized first
(first maximum of the probability density), then as the atom moves to the other well
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Figure 2.19: Diffraction efficiencies of the first and minus first diffraction order
for an atom in a driven double well potential. In black and gray the diffraction
efficiencies for one fixed initial phase of the driving at the moment the atoms enter
the potential are displayed. The higher frequency that can be seen equates the
driving frequency of 9kHz, which corresponds with an interaction length of 3.28mm.
In red and orange the corresponding averages over all possible initial phases are
depicted, which complies with the experimental reality. The fast oscillation is almost
averaged out and the left over slow oscillation corresponds the tunneling dynamics.

its momentum becomes maximal and so on. Due to this the experimental setup to
observe the momentum distribution of atoms in a double well potential is perfectly
suited to visualize the tunneling dynamics of atoms.

Also to be seen in fig. 2.18 is the preparation phase. An imaginary potential
is included into the calculations at a position of 17mm and with a waist of 350µm
generating a wave packet localized in the “lower” well. Before this the wave packet
is distributed equally over both wells and the resulting diffraction is symmetric and
with a clear maximum in the zeroth order.

For an atom in a driven double well with V1 = 8Er and V2 = 2Er the resulting
diffraction efficiencies for the first and minus first order are plotted in black and
gray in fig. 2.19. The dynamics starts at 23cm of interaction length, which is the
position of the absorptive potential for this calculation. The driving frequency is
chosen to be 9kHz resulting in a slowing of the tunneling dynamics of about 10%.
It is the envelope of the fast oscillations of the gray and black line, i.e., the slower
frequency that can be observed, that accords to the tunneling frequency expected for
the assumed potential heights and driving frequency. The fast oscillation matches
exactly the driving frequency. A nice thing about the experimental realization is,
that the initial phase of the driving at the point of time atoms enter the potential
is arbitrary, so that in the experiment it is averaged over all possible phases. This
corresponds to summing over all phases from 0 to 2π in the calculations yielding
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the red and orange line added in fig. 2.19. Now the diffraction efficiencies do only
display the tunneling frequency and do not include other information anymore.

Using the split-step Fourier method all stages of the experiment are simulated
and compared to the experimental data giving good agreements. Furthermore it
could be checked beforehand if the discrepancies of the experimentally realized from
the theoretically studied system in [20] were supposed to yield different results.

The consequences of the continuous potential, that shall be implemented instead
of one single double well, were tested this way. It can be shown that on longer time
scales the localized wave packed spreads out over many wells, though nothing like
this happens during the short duration of the experiments described in this work.

Moreover it was checked beforehand that the changes of the symmetry of the
double wells and the differences in the preparation does not have measurable effects
onto the results. In particular it could be shown that CDT should be observable
with the chosen setup.

2.3.5 Comparing different methods

To compare the different methods described to simulate the tunneling dynamics the
results calculated for the set of parameters used before are plotted in the same figure,
namely fig. 2.20. The gray shading corresponds to the Floquet matrix method, the
orange solid line represents the two-state approximation and the red dots are the
fits to the results of the split-step Fourier method. As one can see the two-state
approximation only holds for driving frequency bigger than the tunneling splitting
∆ and smaller than the fundamental resonance E3−E2. Around the latter resonance
higher energy levels begin to contribute to the dynamics that are not considered in
the approximation. The slight deviation of the two-state approximation compared
to the Floquet matrix method in the upper picture is due to the fact, that the
parameter set does not represent the deep quantum regime, as can be seen looking
at the double well and its eigenstates depicted in the inset. The barrier in the middle
is not very high, so that the ground state doublet is just underneath the barrier and
the next eigenstate is way above this barrier.

In fig. 2.21 the numerical findings for another set of parameters matching the
experiment is shown (V1 = 8.27Er, V2 = 2.68Er and S = 0.85Er). Here the two-mode
approximation (orange solid line) fits perfectly the tunneling splitting predicted by
the Floquet matrix method (gray shading), at least for the driving frequency range
smaller than the fundamental resonance E3 − E2 as expected. It can be seen in the
view of this double well potential, that its barrier is much higher, so that the ground
state doublet is much lower than the barrier and even the next eigenstate is just
below.
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Figure 2.20: Comparing different numerical methods to solve the time dependent
Schrödinger equation for a particle in a driven double well potential. The gray
shading corresponds to the findings of the Floquet matrix method. The orange
line represents the results of the two-state-approximation. Its deviation from the
Floquet theory in is a result of the fact that the parameters do not correspond to
the deep quantum regime. The red dots are achieved by fitting the findings of the
full integration of the time-dependent Schrödinger equation via split-step-Fourier
method.
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Figure 2.21: Another set of parameters being deeper in the quantum regime yield a
perfect agreement of the two-mode approximation with the Floquet-state prediction
for driving frequencies smaller than the fundamental resonance. This illustrates that
the two-mode approximation can be employed to predict the dynamics of systems
in the deep quantum regime, at least for driving frequencies in the range ∆ < ωd <
E3 − E2.
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Chapter 3

Experimental realization of
ac-control of single atoms

3.1 Experimental setup

Since the physics described in this work is one dimensional a traditional well colli-
mated atomic beam is perfectly suited as a particle source. It allows the examina-
tions of quantum phenomena in an interaction free, i.e., linear regime. It is chosen
argon 40Ar, which as a noble gas is not reactive. Besides it exhibits a simple level
scheme, since it owns no hyperfine structure due to its even-even nucleus. Further-
more a metastable state is chosen to function as ground state in the experiment,
which is possible as its lifetime is significantly longer than the duration of the ex-
periments. The specific state is selected due to the fact, that there are hardly no
commercial laser systems available with a wavelength of about 100nm, which would
match appropriate cooling transitions from the ground state of the argon atom.
Up to now free-electron-lasers, e.g., at the linear accelerator TESLA [44], are the
only source providing at least a viable wavelength, even though only in a pulsed
form. Moreover the excitation energy of about 12eV of this metastable state allows
a spatially resolved single particle detection using a micro-channel plate (MCP).
Certainly the most relevant reason to choose argon for the experiments described
in this work is the possibility to realize an open two-level system using the selected
state 1s5. This state provides a feasible closed transition (1s5 → 2p9) for laser cool-
ing at λL = 811nm, where a whole lot of laser systems is available. Additionally
imaginary optical potentials [28, 29] (cf. sec. 2.2.1) can be realized using resonant
light at λabs = 801nm. This transition (1s5 → 2p8 → 1s2 → 1s1) transfers the
metastable state via some other states to the absolute ground state, which does not
own the energy to be detected by the MCP and thus this transition is employed to
“absorb” atoms from the experiment. The light-shift potential with 801nm light is
therefor called absorptive potential Vabs in the following. A reduced level scheme
showing the transitions that are relevant for the experiment is depicted in fig. 3.1.

For the atomic states the Paschen notation [45] is chosen. It does not reflect
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Figure 3.1: Reduced level scheme of 40Ar in Paschen notation. The states 1s5 and
1s3 are metastable. Aik denote the Einstein coefficients. The relevant transitions
are indicated in red, at which 1s5 → 2p9 is a closed transition used for cooling and
1s5 → 2p8 is open and used for absorbing atoms.

the exact electronic configuration of the states but is a simplification often used as
it only displays the essential information like energy and selection rules, i.e., the
quantum number ruling the selection rules for dipole transitions. The sublevels are
numbered serially following decreasing energy. The selection rules are reflected in
the nomenclature as transitions between s and p are allowed, those between s and
s or p and p are forbidden.

Since Argon is a heavy nobel gas and therefor the distance of the excited electron
to the core is very large, the LS-coupling scheme provides no good approximation.
The energy levels depicted result from the more appropriate Racah- or jl-coupling.
Like a quasi-one-electron-atom the angular momentum l of the valence electron
couples to the total angular momentum j of the ion given by the coupling of its
angular momentum L and its spin S. As the total angular momentum of the ion can
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either be j = 1
2 or j = 3

2 the level scheme splits into two branches between which
weaker transitions are possible.

The aperture to create a beam of slow and coherent metastable argon atoms is
described in detail in [46], for completeness a summary is added in the appendix A.

To increase the time the atoms propagate through the light-shift potential their
velocity is reduced to maximally 30m

s by increasing the magnetic field of the Zeeman
slower (see appendix A). This causes a serious decrease of the atomic flux primarily
as a result of the fact that the diameter of the atomic beam as well as its divergence,
i.e., the transversal velocity of the atoms leaving the zeeman slower is significantly
increased as well as the number of atoms that turn around. Hence not all atoms
leaving the Zeeman slower enter the funnel unit due to the finite size of the entrance
opening. This could be partly compensated by increasing the flux density of the
atomic beam due to a higher laser power in the cooling process, i.e., in the collimation
stage and the zeeman slower and by widening the differential pumping stage between
the collimation stage and the high vacuum part of the machine.

3.1.1 Coherence of the atomic beam

The coherence of the atoms is crucial to see any diffraction effects of the atoms.
The smallest angle to be resolved in the experiment is half the Bragg angle θB =
λdB/λL. For atoms with a velocity of v = 30m

s , which corresponds to a de Broglie
wavelength of λdB = 333pm, and a standing light wave with λL = 811nm this results
in θB = 410µrad, so that the transverse divergence must be smaller than 205µrad.
This is achieved utilizing two slits strongly confining the beam horizontally. As
this goes along with a great loss of atoms the beam intensity beforehand has to be
appropriately high. At the first slit with a fixed width of d1 = 25µm the atoms are
diffracted yielding a cone of phase coherent atoms in the zeroth diffraction order.
The second slit with a variable width d2 = 0 − 40µm follows after a distance of
l = 25cm to further decreases the width of the atomic beam. The final divergence
angle of the atomic beam therefore results in β = (d1+d2)/l. To be smaller than the
required 205µrad the experiments where realized with d2 = 20µm giving a divergence
angle of 180µrad (FWHM) and yielding an atomic beam that illuminates about 27
double wells of the continuous double well structure.

The beam divergence cannot be decreased arbitrarily reducing the width of the
second slit d2 due to diffraction effects appearing. For a width that is smaller than
d2 < 5µm the width of the atomic beam begins to magnify again [26]. Furthermore
for a better resolution of the diffraction orders on the MCP the distance the atoms
propagate freely after leaving the light-shift potential and before hitting the detector
was increased to 1m compared to earlier works with this atomic beam machine.

To preclude influences of magnetic stray fields, e.g. appearing in the vicinity
of stepper motors used to adjust the mirror positions of the double well setup two
strong permanent magnets are added outside the vacuum. Their magnetic field
gradient is strong enough to deflect all atoms not in the substate mj = 0, so that
they do not reach the detector. Of course a great disadvantage is that 4/5 of the
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atoms get lost that way, but the atomic beam reaching the detector is not blurred
out anymore.

Another important influence on the coherence of the beam has the velocity dis-
tribution of the atoms. It has two effects onto the resolution of the diffraction orders.
One is that the different velocities yield different distances of the orders, which means
that the diffraction orders are broadened and this broadening increases linearly with
the order. The coherence length, i.e., the number of diffraction orders that can be
resolved, can be evaluated due to the width δv of the velocity distribution of the
atoms in the beam:

l =
〈λdB〉2
δλdB

= λdB
v

δv
(3.1)

As the interaction time of the atoms with the potential is adjusted by changing
the width of the potential, the velocity distribution of the atoms has another crucial
influence onto the measurements. Due to different velocities the atoms passing a
standing wave of a certain length experience different interaction times, so that
diffraction patterns for those different interaction times interfere with each other.
For the tunneling dynamics to be observed here this means, that the oscillations
between + and − first diffraction order smear out with increasing interaction time,
i.e., increasing length of the potential.

3.1.2 Detection

To increase the resolution of the MCP-detector it is installed under an angle of 10◦

in respect to the axis along the beam propagation as depicted in fig. A.3 in the
appendix. This yields an effective resolution of 17.2µm the total width being 256
pixel on a 1in diameter. As the detector is not perfectly orientated (angle in respect
to axis) and the readout of the spatial position via a resistive anode is not at all
aligned along this axis the resulting distortion of the data has to be corrected by
first rotating the image to get a perpendicularly oriented image of the slit and than
shearing it, so that the diffraction orders are at the same height as the slit, i.e., the
zeroth order (see fig. 3.2). Then the diffraction efficiencies of the different orders are
deduced by summing up the detected number of atoms in the corresponding angular
windows.

3.2 Double well structure

The periodic arrangement of double wells is achieved employing standard light shift
potentials (cf. sec. 2.1.1 et seq.). The incoming far red-detuned light beam is
split into two beams utilizing an acousto optical deflector (AOD, IntraAction corp.,
ADM.4024) and then those beams are retro reflected by two gold mirrors as depicted
in fig. 3.3. The first one is shone in onto mirror 1 at right angle forming the potential
V1 with periodicity λL/2 in x-direction. The second one is added impinging onto
mirror 1 under an angle of α = π/3 in respect to the first one, yielding a periodicity
of λL/(2 cos(α)) = λL for the potential V2. The symmetry of the resulting double
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Figure 3.2: Illustration of the data processing. The pictures measured with MCP
are divided pixel-wise by a reference to correct inhomogeneities. Then they are
rotated such that the image of the slit, i.e., the zeroth diffraction order, is oriented
perpendicular. At last the pictures are sheared so that the all diffraction orders are
at the same height as the zeroth order.

well is critically depending on the angle α. A minimal deviation from those π/3
yields an asymmetry of the wells depending on the distance from the mirror surface
(cf. fig. 2.2). To have a sensitive and direct control of this important parameter a
realization employing the AOD and a fixed second mirror is chosen. Moreover this
enables the possibility to implement the driving by simply changing the AOD fre-
quency periodically. The relation between the change of this angle and the resulting
driving amplitude is given by eq. 2.41.

The two light beams are strongly expanded in horizontal direction and only
the central part of the Gaussian beam profile is used in the experiment, so that
the intensity varies not more than 10%. The first idea to realize the adiabatic
preparation was to directly use the slow increase of the intensity of such an expanded
beam, which was not compatible with the installed gold mirror, as the increase of
the intensity is not only much slower than needed for adiabaticity, but it is far too
long for the dimensions of the mirror. Therefor all but the center of the beam was
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Figure 3.3: Creating the double well potential. The beam of 811nm light is split by
an acousto optical deflector and reunited under an angle of nearly α = π/3 forming
a continuous series of double well potentials. Due to the different phase shifts, the
two parts gain at the mirror surface, the angle is adjusted the way, that in a distance
of 120µm from the mirror, where the atoms enter the potential, the double wells are
symmetric as depicted in the inset.

blocked and a specially designed filter was integrated to realize the adiabatic slope,
that will be discussed in sec. 3.3.2.

To observe the dynamics of the atoms in the potential the interaction time is
changed by varying the width of the standing light waves along the propagation
direction of the atoms utilizing a razor blade mounted on a stepper motor.

The AOD is designed for maximal diffraction efficiency at 40MHz resulting in
an angle of β = 8.125mrad between the undisturbed and the diffracted beam for
811nm light and a bandwidth of about 20MHz. A change of ±1MHz at the AOD
modifies the angle α by ±203µrad. To be able to run the AOD as close as possible
to those 40MHz the angle between the two mirrors had to be adjusted to an angle
of ξ = 2

3π − β
2 = 2.0903rad. This was adjusted beforehand outside the vacuum

utilizing a goniometer (Newport, M-BGM50) and with an accuracy of 70µrad (for
details see [47]).

For a perfectly symmetric double well the ratio of the two periods of the poten-
tials V1 and V2 should be exactly 2 to 1. This means for an angle of exactly π/3 the
beat period P between the potentials becomes infinitely large, a deviation however
yields a finite beat period. Analytically the correlation between the beat period and
the angle α is given by

P =
λL

2

(
1

1− 2 cos α

)
. (3.2)

Hence this should be a way to perfectly adjust this angle α. Therefor an interfero-
metric setup is used by positioning the two potentials one right after the other in the
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Figure 3.4: Beat period of the two standing waves forming the continuous double
well potential plotted against the rf-frequency at the AOD defining the angel α
between them. The solid line corresponds to the analytical expression in eq. 3.2.

atomic beam direction. That way atoms are diffracted by either of the two poten-
tials and the first diffraction order of potential V1 interferes with the second order
of V2. Now the diffraction efficiency of this order depends on the phase between the
standing light waves and can be measured against the mirror position (distance of
the atomic beam from the mirror), i.e., the beat period can be sampled “moving”
the atomic beam along the standing waves. In fig. 3.4 The measured periods are
plotted against the rf-frequency driving the AOD. The theory (solid line) can be
fitted to the data points, so that the resulting frequency giving an angle of α = π/3
is hereafter about 40.6MHz.

3.2.1 Working with a real mirror

Unfortunately this counts only for a perfect node at the mirror surface for both
standing light waves. As the gold surface is no perfectly ideal conductor (neither
is its SiO coating) the standing light waves do not have a node (φ = 0) exactly
at the mirror surface but will experience a phase shift. This phase shift depends
on the angle of incidence and the polarization of the impinging light and because
of the former it is not equal for the two potentials V1,2. To minimize the resulting
phase shift between the two potentials the polarization is chosen perpendicular to
the plane of incidence. Still the resultant double wells are not perfectly symmetric.
Their asymmetry does not depend on the position, because it is due to a constant
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Figure 3.5: Adjusting the perpendicular incidence of the atoms onto the standing
light wave via Bragg diffraction. The upper plots show the rotated and sheared
picture, measured with the MCP/RAE Detector. The lower plots show the profiles,
achieved by summing over some rows of the upper pictures.

phase shift. To compensate for this asymmetry the angle α is adjusted the way
that in the distance from the mirror surface where the atoms pass the potential the
double wells are symmetric, which is indicated in the inset of fig. 3.3. The procedure
aligning the double wells and the atomic beam will be described in the following.

A theoretical estimation of the diffraction at the gold mirror surface can be
done following Fresnel’s equations [33] and yields a relative phase shift between
the two standing waves of ∆ϕ = 0.1844 for a polarization perpendicular to the
plane of incidence and ∆ϕ = −0.3762 for parallel polarized light waves [48, 49].
Experimentally the phase shift for perpendicularly polarized light was determined
to be approximately ∆ϕexp = 0.1153.

3.3 Single particle tunneling

Before introducing the driving field the accuracy of the initial state preparation is
analyzed, i.e., it is tested if stationary Floquet states are prepared and the tunneling
dynamics of the atoms in an unperturbed double well is investigated.
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3.3.1 Bragg Scattering

The perpendicular incidence of the atoms onto the standing light wave, i.e., the
parallel alignment of mirror 1 and the atomic beam is achieved utilizing standard
Bragg scattering. This effect critically depends on the angle of incidence of the
atoms onto the light wave as explained in sec. 2.2.3. The retro reflected 811nm
light forms a light crystal, that can be tilted in respect to the atomic beam via a
piezo crystal on which the gold mirrors are mounted. The mirror position (angle) is
monitored using a resistive strain gauge, so that no effects due to hysteresis falsify
the results. The mirror is positioned that way that Bragg diffraction into the +1.
and then into the -1. diffraction order is observed as shown in fig. 3.5. Then it is
repositioned to the mean value of those two settings, which corresponds to a parallel
alignment of atomic beam and mirror with an accuracy of about 5% of the Bragg
angle (θBragg = 410µrad for a velocity of vatom = 30m

s ) [47]. The selectivity of the
Bragg acceptance angle arising from the dynamical diffraction theory [29] allows this
accuracy.

As the optics setup outside the vacuum was not as stable as the gold mirror po-
sition inside, the perpendicular incidence of the standing wave forming the potential
V1 was regularly tested and if necessary readjusted throughout the measurements
by coupling the retro reflected light back into the fiber that originally transfers the
light to the experiment and optimizing the intensity at the other end.

3.3.2 Adiabaticity

The light intensity profile along the atomic beam is shaped with a specially designed
optical gray filter such that the motion of the atoms follows adiabatically the light
shift potential. Employing a ccd-camera the intensity distribution of the light is
measured. Therefor the light beams are deflected by a temporarily inserted mirror
the way that they impinge on a scaled screen after covering the same distance as
if impinging on mirror 1. Hence the position in the y-direction of the absorptive
potential (dark spot) can be controlled that way as well as the slope of the two
potentials forming the double well structure. Such a ccd-camera image is shown
in the upper left part of fig. 3.6(a). The lower graph of the same figure shows the
intensity profile of the three standing waves in y-direction revealing the slow increase
of the potentials V1,2.

The preparation of the ground state was tested by monitoring the propagation
of the atoms in a double well potential with the absorptive potential switched off.
As the ground state is a stationary state no dynamics at all is expected after the
preparation process, i.e., after the potential reached its constant maximum. For the
experimental setup this means that there is some diffraction efficiency to be observed
into the first diffraction orders, but leveling at a constant value. The results showing
the adiabaticity of a realized double well potential are presented in fig. 3.6(b).
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Figure 3.6: (a) Adiabatic beam profiles. The upper left picture shows the ccd-camera
image of the three light beams. The lower beam corresponds to V1, the upper beam
to V2. The imaginary potential, i.e., the 801nm light, is indicated with an arrow.
The upper right picture displays a perpendicular cut of the ccd-camera image. In
the lower picture the profiles, i.e., horizontal cuts, reveal the slow increase of the
intensities, the position of the imaginary potential right after the slope and the
following constant plateau. (b) Testing the adiabaticity of the double well potential.
The absence of any dynamics in the diffraction orders after leveling demonstrates
the preparation of the stationary ground state.

3.3.3 Imaginary potential

The initial state of atoms localized on one side of each double well only is achieved by
absorbing the atoms in every second well via an imaginary potential (cf. sec. 2.2.1).
Therefor a short standing light wave of 801nm light is positioned right after the
adiabatic slope of the double well potential as can be seen in the lower graph of
fig. 3.6(a). The periodicity of this potential has to be aligned the way that its
minima coincide with every second well of the double well potential. This is attained
by shining the light in under an angle, like it is done for the potential V2 and shown in
fig. 3.7. The right adjustment of this angle is achieved by measuring the dependency
of the near field distribution of the atoms onto the mirror position, i.e., the distance
of the atoms to the mirror surface. The principle idea is sketched in fig. 2.8. As
the mirror is moved the atoms scan along the two potentials, so that the total atom
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Figure 3.7: Introducing the imaginary potential. (a) Right after the adiabatic slop
of the double well potential the atoms pass the imaginary potential of about 600µm
width (FWHM). (b) To achieve the right periodicity the 801nm potential is fed in
under an angle alike the potential V2.

number only depends on the relative phase between the double well structure and
the absorptive potential. Again because of the phase shift at the gold mirror surface
this is not totally true. As to cope for this the angle α is not perfectly π/3, so
that the shape of the double wells also depends on their distance to the mirror
surface. For the experiments the angle is adjusted such that only at a distance
of x = 120µm the double wells are perfectly symmetric. Still two maxima in the
total atom number can be observed as they are indicated in the sketch, but their
heights will never be the same for this experimental realization. Nevertheless this
technique can be used to find the mirror position for the optimal preparation of
the initial state, i.e., the best alinement of double wells and absorptive potential,
which corresponds to the position of the maxima. In fig. 3.8 the measured data
are compared to the calculations done following the diffraction method showing a
perfect compliance of the transmission profiles. The fact that in the measurement
the zeroth order is hardly not present is due to a very strong absorptive potential.

3.3.4 Potential heights

The potential heights are calibrated separately. For the potential with periodicity
λ/2 the oscillations inside the potential are measured by projecting the atoms onto
many eigenstates, i.e., by switching on the standing light wave abruptly. The result-
ing oscillation of the width of the wave packet yielding oscillations between the first
diffraction orders and the zeroth order can be seen on the left hand side of fig. 3.9(a).
They are compared to the numerical solutions found utilizing the Bloch-wave ansatz
to determine the height. The damping of the measured diffraction efficiencies is due
to the longitudinal velocity distribution of the atoms.

As the diffraction efficiencies for the potential with periodicity λ are signifi-
cantly smaller for perpendicular incidence, another method is chosen to measure its
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Figure 3.8: Comparing experimental findings of the near-field measurements (upper
pictures) with theoretical predictions (lower pictures). On the right hand side the
total transmission against the distance from the mirror is plotted. The corresponding
diffraction efficiencies of the different diffraction orders are depicted on the left.

potential height. Therefor the atoms are primarily loaded into the ground state by
switching on slowly. Then a wave packed is prepared, that is localized on one side
of a potential well by absorbing everything on the other side using the absorptive
potential phase shifted against the light shift potential. The swashing of the wave
packet around the potential minimum results in oscillations between the +1. and
−1. diffraction order as for a tunneling particle, only the time scale is much faster.
Measurements are presented on the right hand side of fig. 3.9(a).

The potential heights are adjusted such that the lowest eigenstate doublet is
well below the barrier and the next eigenstates are slightly below or even above
the barrier as shown in fig. 3.9(b). This guarantees that the dynamics observed
is tunneling, but the tunneling time is feasible, though this does not guarantee to
be in the deep quantum regime, i.e., the two-state-approximation is not necessarily
applicable.

3.3.5 Symmetry of the double well potential

Since the method of measuring the beating of the two light shift potentials forming
the double well fails, as explained in sec. 3.2, the best way to test the symmetry is
via the tunneling dynamics of the atoms. After measuring the potential heights the
tunneling periodicity expected for a symmetric potential is easily calculated due to
its eigenenergies (cf. sec. 2.1). The actually measured tunneling periodicity can now
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Figure 3.9: (a) Measuring the potential height. The upper pictures show the mea-
sured diffraction efficiencies for an atom prepared in an exited state in the potential
V1 (left) and swapping around the potential minimum of V2 (right). In the lower
row the fits to the profiles of the −1. diffraction order is shown as solid gray line.
(b) The resultant potential heights are V1 = 6.25Er and V2 = 5.40Er, corresponding
to a double well with the first doublet below the barrier and the next one above.

be compared to this prediction and only if they are consistent a symmetric double
well is realized. For an asymmetry the tunneling periodicity will always be faster
compared to the symmetric case and already for small aberrations this decrease of
the tunneling time is significant as shown in fig. 2.5.

As this is a quite time consuming method, it is used for the fine-tuning. A first
guess for the angle realizing symmetric double wells in the appropriate distance from
the mirror can be made by analyzing the diffraction of an atom by a double well
potential with abrupt rise and fall. If the double well structure is symmetric, minus
and plus first diffraction orders should have the same efficiency. For an asymmetric
double well there will always be an imbalance between the two sides.

There are more characteristics giving information about the symmetry of the
double wells, e.g. the phase shift between the oscillations of +1. and −1. diffraction
order. For a perfectly symmetric potential this should be exactly π. For asymmetric
double wells it differs depending on the asymmetry as plotted in fig. 3.10.

Influence of the AOD frequency onto the tunneling time

A difficulty using the tunneling frequency as indicator for the symmetry of the double
well is that changing the AOD frequency, i.e., changing the angle α to adjust the
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Figure 3.10: The dependence of the phase shift between the two potentials V1 and V2

on the angle they enclose can be used as indicator for the symmetry of the emerging
double well potential. Plotted is ∆φ = φ− π against ∆α = α− π/3.

symmetry also means changing the position in z-direction of the potential V2. This
means that changing the AOD frequency also changes the potential height of V2

that is seen by the atoms. Hence it is not possible to directly compare the tunneling
period for a new AOD-frequency with the old predictions, but the potential height V2

has always to be determined anew. A systematic analysis of this effect is presented
in [50].

3.3.6 First visualization of single particle tunneling

The first observation of the tunneling of single particles is presented in fig. 3.11.
It shows the tunneling dynamics in momentum space, i.e., the diffraction orders
(upper row) and efficiencies (lower row) as a function of the length of the double
well potential since for the measurements it is this length that is changed to scan
the time of the atoms in the potential. The shown pictures start before the particle
is prepared on one side of the potential, which is why the diffraction efficiencies
on both sides of the zeroth order are quite the same in the beginning. Not until
the position of about 17mm the preparation process is completed and the tunneling
dynamics starts indicated by the out of phase oscillation of the efficiencies of plus
and minus first diffraction order. The measured data is depicted on the right hand
side, a numerical simulation via split-step-fourier method without free parameters
on the left. One can see a very good agreement of the experimental findings with
the theoretical prediction.

3.3.7 First systematic measurements

As a first test of the setup a systematic analysis of the tunneling period is done
showing the good control of the symmetry and shape of the potential. Therefor
the tunneling period is measured as a function of the ration V1/(V1 + V2), i.e., as
a function of the amplitude of the voltage supplied to the AOD. That way pretty
different double well structures are created from very small barrier heights to large
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Figure 3.11: First signal of an atom tunneling in a double well light shift potential.
The upper left picture shows the measured diffraction orders as function of the width
of the double well potential in a gray shading corresponding the efficiencies. At a
position of about 17mm the preparation process is completed and the tunneling
dynamics begins, which can be discerned as the efficiencies of plus and minus first
diffraction order (plotted in the lower picture) start oscillating π out of phase. On
the right hand side the results of the simulations with the split-step Fourier method
without free parameters are depicted.

barriers. This is done for three different total light intensities Vtotal = V1 + V2 and
compared to the theoretical prediction as shown in fig. 3.12. From the left to the
right the barrier is increased, so that the first data points on the left of the plot are
strictly speaking no tunneling signal, but the frequency of an atom swapping over a
small hump in the middle of a potential well, because the lowest eigenstate doublet
of the corresponding double well potential is not below the barrier. Only increasing
the ratio of V1 this devolves into “real” tunneling.

Remarkably it turns out that in the case of symmetrically realized double wells
all the curves for different total intensities intersect in a small region close to a ratio
of 0.4 V1

Vtotal
. As for a higher total potential Vtotal the oscillations at the bottom of the

“barrier free” potential (V1/Vtotal small) are faster, i.e., the tunneling period smaller,
but for a high ratios V1/Vtotal the barrier becomes larger, so that the tunneling period
is longer compared to a smaller total potential, those curves have to intersect. That
this happens for almost the same ratio is fortunate, as this is not the case for
asymmetric double wells, where the crossing points of different curves occur for
higher ratios and are spread over a greater range, so that this crossing points can
act as an indicator for the symmetry of the double well. This is illustrated by the
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Figure 3.12: The tunneling period is measured as a function of the ratio between
V1 and V2 for different absolute values of Vtotal = V1 + V2. The curves represent the
theoretical predictions and show that for a symmetric realization of the double wells
all curves intersect in one point. The inset shows the theoretically found curves for
the same potential heights but with a slight asymmetry of double wells, where no
mutual point of intersection appears anymore. anymore.

inset of fig. 3.12 where the theoretical predictions for the same total light intensities
as before but with an asymmetry are shown. The asymmetry is implemented by
increasing the angle of incidence α of the potential V2 by a value that accords to an
increase of the frequency driving the AOD by 0.6MHz compared to the symmetric
case. The theoretical curves are obtained by the diffraction method (cf. sec. 2.2),
whereat it is accounted for the fact that only 95% of the intensity deflected by the
AOD contributes to the potential as arises from other measurements.

3.4 AC-driving

In the following the experimental findings for the frequency dependence of the tun-
neling splitting as well as the amplitude dependence are compared with the full
Floquet analysis, the two-mode approximation and the full numerical solution of
the time-dependent Schrödinger equation via split-step Fourier method.
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Figure 3.13: Dependence of the tunneling dynamics on the driving frequency. The
measured data (red dots) show a good agreement with the theoretical prediction of
the Floquet theory (gray shading).

3.4.1 Frequency dependence

The driving frequency can be changed easily over a wide range in the experiment. For
a symmetrically realized double well with the potentials V1 = 6.25Er and V2 = 5.40Er

and for a driving amplitude S = 7353Er, which complies to a lift of 0.93Er of each
well out of equilibrium the results are compared with the theoretical prediction of
the Floquet state analysis in fig. 3.13. The red dots represent the sinusoidal fits to
the measured data and the Floquet-state solution is depicted by the gray shading,
which is proportional to the overlap of the Floquet state with the ground state
doublet, i.e., the initially prepared state.

The data points where obtained by sinusoidally fitting the measured diffraction
efficiencies, at which the limited observation time made it difficult to obtain frequen-
cies for very slow tunneling, where not even one full cycle could be tracked. This was
compensated for by identifying the starting point of the tunneling dynamics, i.e.,
the end of the preparation face, as accurate as possible. Moreover the amplitude can
be estimated and an upper limit was included to the fits. For faster tunneling peri-
odicities it was also possible to verify the results of the sinusoidal fits by comparing
them to the findings of a Fourier analysis of the data.

Not only a very good agreement of the measured data with the theoretical pre-
diction can be observed in fig. 3.13, there is also an evidence for the realization of
CDT for a driving frequency of ωd = 6kHz, where no tunneling at all was observed
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during the duration of the experiment, as it is predicted theoretically.

3.4.2 Breaking symmetry of the driving

The symmetry dependence of the effect of CDT discussed in sec. 2.3.2 is as stunning
as the effect itself. The art is to find the right values for amplitude and frequency,
then a sinusoidal driving added to a quantum system is capable of stopping its
inherent dynamics. On the other hand, if the shape of the driving does not match the
generalized parity symmetry the driving force has hardly any effect on the systems
dynamics.

This sensitivity to the symmetry of the driving shall be utilized to verify that it is
the effect of CDT that was observed and presented in the section before. Hence the
generalized parity symmetry P of the driving was broken and it could be observed
that the driving with broken symmetry does not at all yield a suppression of the
atoms tunneling.

One variation of breaking the generalized parity P is breaking the symmetry in
time. Therefore instead of the sinusoidal time dependence of the driving a sawtooth
like time dependence was realized, which is still periodic in time with period Td, but
not invariant under the translation x → −x, t → t + Td

2 . This is the easiest way to
break the parity symmetry experimentally, as it is a knob at the function generator
realizing the frequency variation of the AOD frequency.

The experimental results are presented in fig. 3.14, in which the diffraction ef-
ficiencies are plotted over time and the gray shaded area indicates the preparation
process. In (a) the unperturbed tunneling (open circles) is compared to the real-
ization of CDT (black dots). The black lines correspond to the sinusoidal fits to
the data. Fig. 3.14(b) shows the result for the same driving frequency where CDT
occurred only with a sawtooth shaped driving, i.e., with a generalized symmetry
broken in time. Clearly the dynamics of the atoms is not suppressed but they are
tunneling between the wells. As expected the periodicity of the tunneling is slightly
slower than for the unperturbed potential.

Another possibility to break the generalized symmetry is to break the spatial
symmetry. Experimentally this can be done by driving symmetrically, i.e., sinu-
soidally, an asymmetric double well potential. This is equivalent to driving a sym-
metric double well with f(t) = sin(ωdt) + doffset · x̃ with x̃ being the distance to
the symmetry point of each double well. With this the system’s Hamiltonian is not
invariant under the translation x → −x, t → t + Td

2 . The experimental results for
this, i.e., an asymmetric double well driven symmetrically with the frequency where
CDT occurred, are shown in fig. 3.14(c). Again the tunneling dynamics is not at all
suppressed, but only slightly slowed compared to the undriven tunneling rate.

3.4.3 Amplitude dependence

In contrast to the freedom in choosing the frequency of the driving the experimental
setup allows only small driving amplitudes. Nevertheless it is also possible to vary
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Figure 3.14: Breaking the symmetry of the driving in time and space. (a) The real-
ization of CDT (black dots) is compared to the tunneling dynamics of an atom in a
static double well potential (circles). The gray shaded area indicates the preparation
phase and the black lines are sinusoidal fits to the data. (b) Breaking the gener-
alized parity symmetry P in time by sawtooth shaped driving destroys the effect
of CDT. (c) Breaking the spatial symmetry, here done by symmetrically driving an
asymmetric double well, has the same effect of destroying CDT. In both cases the
tunneling dynamics is slightly slower than in the undriven double well, as predicted
by theory.

the driving amplitude at least to some extend for fixed driving frequency and to
compare this to the predictions from the theory as an additional proof of the good
controllability of atomic dynamics in the realized setup. Since the amplitude is
realized by changing the angle of incidence of the potential V2 the amount the two
wells of one unit cell are shifted against each other depends on their distance from
the mirror. For small deviations from the initial angle α = π/3, the difference
between the driving amplitudes of neighbored double wells is not considerable. The
experimental results comply with the numerical simulations that verify that for small
amplitudes the effect of the driving as realized here does not deviate from a driving
force without an amplitude that depends on the position. For bigger variations of
the angle of incidence those amplitude differences between neighboring wells become
relevant. The atoms see significantly different driving amplitudes as they are spread
over some 20 distinct double wells.
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Figure 3.15: Dependence of the tunneling dynamics onto the driving amplitude
for fixed driving frequency. The gray shading corresponds to the Floquet state
prediction, the red dots represent the sinusoidal fits to the measured data and the
dashed line indicates the tunneling splitting for the unperturbed double well.

For a reasonable range of amplitudes the dependence of the tunneling time on
the driving amplitudes is shown in fig. 3.15. Again the data points (red dots)
represent the sinusoidal fits to the measured data and the gray shading depicts the
theoretical prediction of the Floquet-state method for potentials V1 = 8.27Er and
V2 = 2.68Er, as measured beforehand. Thereto the double wells were not perfectly
symmetric, the asymmetry could be determined to δα = 44.6µrad, corresponding
to an increase/decrease of 0.11Er of the minimum of the well right and left well
respectively and is included to the Floquet analysis. The driving frequency was
chosen to be ωd = 6kHz.

The two-mode approximation is not included to the figure, as it does not show
any deviations from the full Floquet analysis in this range of small amplitudes that
can be realized with the experimental setup.
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Chapter 4

Non-spreading wave packets in
imaginary potentials

A quantum mechanical phenomenon as fundamental as tunneling is the dispersion of
a wavepacket. In contrast to light, matter wave packets do even spread in vacuum
due to the form of the linear Schrödinger equation. But it was also Schrödinger
himself, who pointed out, that it should be possible to create a non-spreading wave
packet out of the eigenstates of a harmonic oscillator [51]. Those wave packets
periodically recapture their original form, which was experimentally realized for
Rydberg atoms be J. Yeazell et al. [52]. At that time it was the attempt to explain
the transition from the microscopic world to the macroscopic one, namely to show
that point-like particles could be described by wave packets. Today the context
changed from the pure effort to understand the quantum mechanical theory and to
proof it to the attempt to use it or control it. This ability to control the shape,
as well as the motion of quantum states may lead to methods for bond-selective
chemistry and novel quantum technologies, such as quantum computing [53, 17].

A theoretical work of Fedorov et al.[54] suggests the use of an imaginary potential
to sculpture a wave packet, namely to create a non-spreading wave packet of gaussian
shape, a quite amazing occurrence as the imaginary potential [28] does not actually
exert a classical force. The effect relies on the absorption due to the imaginary
potential compensating for the dispersion, i.e., the broadening due to dispersion of
the wave packet competes against the diminishment of the wave packet width as
a result of absorption. After a characteristic time t0 those two processes balance
resulting in a stationary, i.e., non-spreading, wave packet. Symptomatic features of
this stationary solution are a complex Gaussian shape and a quadratic phase.

Such a non-spreading wave packet could be realized for the first time as presented
in [55] added on the following pages. A detailed description of the setup and of the
experiment can also be found in the works of Martin Göbel [26] and Ralf Stützle[25].
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0031-9007=
We propose and experimentally demonstrate a method to prepare a nonspreading atomic wave packet.
Our technique relies on a spatially modulated absorption constantly chiseling away from an initially broad
de Broglie wave. The resulting contraction is balanced by dispersion due to Heisenberg’s uncertainty
principle. This quantum evolution results in the formation of a nonspreading wave packet of Gaussian
form with a spatially quadratic phase. Experimentally, we confirm these predictions by observing the
evolution of the momentum distribution. Moreover, by employing interferometric techniques, we measure
the predicted quadratic phase across the wave packet. Nonspreading wave packets of this kind also exist in
two space dimensions and we can control their amplitude and phase using optical elements.

DOI: 10.1103/PhysRevLett.95.110405 PACS numbers: 03.75.Be, 03.75.Dg, 42.50.Vk
FIG. 1. Formation of a nonspreading Michelangelo wave
packet for the center-of-mass motion of an open two-level
atom (a). The resonant interaction with a standing light wave
(b) leads to an array of harmonic imaginary potentials. The
normalized diffraction efficiencies derived from the momentum
distributions (inset) approach a steady state as a function of the
interaction length �z demonstrating the successful realization of
stationary wave packets. The solid curves result from a numeri-
cal integration of the Schrödinger equation [17] with the Rabi
frequency �0 � 0:4�. The dashed lines correspond to the
Raman-Nath approximation, revealing that the interplay between
absorption and quantum spreading is essential for obtaining a
steady state.
Nonspreading wave packets have attracted interest since
the early days of quantum mechanics. Already in 1926
Schrödinger [1] found that the displaced Gaussian ground
state of a harmonic oscillator experiences conformal evo-
lution because a classical force prevents the wave packet
from spreading. Even in free space the correlations be-
tween position and momentum stored in an initially Airy-
function-shaped wave packet can prevent spreading [2].
Here we propose and experimentally observe the formation
and propagation of nondispersive atomic wave packets in
an imaginary (absorptive) potential accessible in atom
optics [3–5]. Although there is no classical force, there
are correlations continuously imposed by Heisenberg’s
uncertainty relation resulting in the stabilization of the
wave packet.

Localized wave packets due to stabilization are well
known in the context of periodically driven quantum sys-
tems [6] and studied with increasing interest for electronic
wave packets in Rydberg atoms [7–10]. Our approach to
create nondispersive atomic wave packets relies on three
ingredients: (i) an absorption process [11] cuts away the
unwanted parts of a broad wave creating a packet that is
continuously contracting in position space, (ii) this process
leads due to Heisenberg’s uncertainty relation to a broad-
ening in momentum space and consequently to a faster
spreading in real space, and (iii) the absorptive narrowing
and the quantum spreading are balanced, leading to a
nonspreading wave packet. In the following we will refer
to such a wave packet as a Michelangelo packet [12].

Complex potentials for matter waves [13] emerge from
the interaction of near resonant light with an open two-
level system shown in Fig. 1(a). For a standing light wave
tuned exactly on resonance an array of purely imaginary
harmonic potentials arises. When the Rabi frequency �0 is
05=95(11)=110405(4)$23.00 11040
of the order of the excited state linewidth � the local
saturation parameter j�0 sin�kx�=�j, and thus the upper
level population, is of the order of unity except in a small
vicinity of the field nodes. Consequently, our system de-
5-1 © 2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.95.110405


FIG. 2. Experimental verification of the scaling law t0 � 1=�0

connecting the characteristic time t0 � z0=vwhen Michelangelo
wave packets form and the Rabi frequency �0. The line is a
guide to the eye. We measure the zeroth order diffraction
efficiency as a function of �z (inset) for different Rabi frequen-
cies. The crossing point between the linear extrapolation of the
short and long-time limits yields z0.
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cays approximately with the rate �. Therefore, in the time
domain t� 1=� the atomic wave function vanishes almost
everywhere, except in the small vicinity �x of the field
nodes. Here the saturation is small and our open system
decays with the rate ��0k�x�

2=�� �. We estimate the
time dependent size �x from the relation ��0k�x�2t=�� 1
and find �x�t� � ��=t�1=2=�k�0�.

The decrease of �x�t� is accompanied by an increase of
the width �p�t� � 1=�x�t� in momentum space [14] lead-
ing to spatial spreading of the wave packet. Because of
competition of the two processes—absorptive contraction
and quantum spreading—the width �x�t� reaches its mini-
mal stationary value �x0. In this asymptotic regime the rate
�x�t�=t of absorptive contraction is obviously balanced by
the rate �p�t�=M of quantum spreading which yields the
characteristic time t0 � 1=!0 ���1

0 ��=!r�
1=2 and the

stationary width �x0 � �M!0�
�1=2 with the recoil fre-

quency !r � k2=�2M� � �.
The experiments are performed with a slow atomic beam

of metastable argon (v � 50 m=s) produced with a stan-
dard Zeeman slower. The brilliance of the beam is signifi-
cantly enhanced with a 2D-MOT setup [15]. The final
collimation necessary for coherent illumination is obtained
by two slits (25 �m and 10 �m) within a distance of
25 cm. Applying a Stern-Gerlach magnetic field we select
the atoms in the internal state 1s5 (J � 2, mj � 0). The
imaginary potential is realized with a circularly polarized
standing light wave by retroreflecting a laser beam reso-
nant with the 1s5-2p8 transition (801 nm). This setup
realizes to a very good approximation an open two-level
system since only 16% of the excited atoms fall back to the
initial state (in contrast to 32% without magnetic state
selection). In order to control the interaction length �z,
the laser beam passes an adjustable slit. By imaging the slit
onto the retroreflecting mirror we avoid the spoiling effect
of light diffraction. The detection of the metastable argon
atoms is achieved by a microchannel plate detector allow-
ing for spatially resolved single atom detection utilizing
their internal energy (12 eV). Since the transverse coher-
ence length of the incoming atomic beam is much larger
than the optical wave length, the outgoing wave function is
a coherent array of single Michelangelo wave packets,
resulting in constructive interference in certain directions.
The spatial resolution�50 �m of our atomic detector and
the free flight distance �0:5 m guarantee clearly resolving
the resulting atomic diffraction pattern in the far field.

The diffraction efficiency is deduced by summing up the
detected number of atoms in angular windows as indicated
in the right inset of Fig. 1. After their initial dynamics the
wave packets, i.e., the diffraction efficiencies do not
change giving evidence to the formation of Michelangelo
wave packets [16]. Our numerical simulations (solid line)
of the open two-level Schrödinger equation take into ac-
count the longitudinal as well as the transverse velocity
distributions �vl � 10 m=s and �vt � 7 mm=s of the
11040
experiment. For �0 � 0:4� we have a very good agree-
ment with our experimental findings. Since this agreement
depends critically on the Rabi frequency we can determine
its absolute value. It is consistent within a factor of 2 both
with a rough estimate, using the power measurement of the
incoming light beam, and with the overall absorption of the
atomic beam.

In order to stress that the interplay between absorptive
narrowing and the quantum spreading is crucial for the
formation of the Michelangelo packet, we have included
the result of the Raman-Nath approximation (dashed
lines). Since this approach is only valid as long as quantum
spreading is negligible, it fails to predict the resulting
dynamics after the characteristic time t0.

According to the arguments given above, Michelangelo
wave packets emerge after a characteristic time t0 � 1=�0.
Our experimental results shown in Fig. 2 confirm the
expected scaling with �min � 0:23�.

We now show that a Michelangelo wave packet is a
complex Gaussian wave packet with a quadratic phase.
For this purpose we recall [17] that the solution of the
Schrödinger equation

i
@
@t
’�x; t� �

�
�

1

2M
@2

@x2 � iU2�x�
�
’�x; t� (1)

for the metastable state wave function’�x; t� in the vicinity
of x � 0, where U2�x� � M!2

0x
2=2 with !0 �

�0

��������������
2!r=�

p
reads [5]

’�x; t� �

���������������
k=�

cosh�t

s
exp

�
�

1

2
�x2 tanh�t

�
; (2)

with � � M!0 exp��i�=4� and � � !0 exp�i�=4�.
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Hence, the probability density j’�x; t�j2 is a Gaussian with
the time dependent width �x�t� � 	Ref� tanh��t�g
�1=2,
which for !0t > 1 reaches its minimal stationary value
k�x0 � �!r�=�2

0�
1=4.

In this asymptotic regime Eq. (2) factorizes into a prod-
uct of the time dependent function cosh�1=2��t�, showing
that the Michelangelo probability density decays exponen-
tially in time with the rate �0 � !0=

���
2
p
� �, and the

position dependent complex Gaussian exp���x2=2�which
contains the quadratic phase ��x� � M!0x

2=
���
8
p

. A
Fourier transformation of this wave packet with the sta-
tionary width �x0, yields the asymptotic behavior of the
diffraction efficiencies shown in Fig. 1 by the dashed-
dotted lines and is in perfect agreement with our experi-
mental findings.

The predicted phase ��x� of the Michelangelo packet
can be deduced from the phases of the observed diffraction
orders where the phase of the nth order with respect to the
zeroth order is ��n� � �2�!r�=�2

0�
1=2n2 � �2n

2. To
measure the relative phases we realize a compact interfer-
ometer setup shown in Fig. 3(a). A thin near-resonant
probing standing light wave (waist 30 �m) is placed di-
FIG. 3 (color online). Measurement of the phase of a
Michelangelo wave packet using an interferometric setup
(a) consisting of the absorptive and probing standing waves.
The inset in (b) shows typical interference patterns for different
output directions obtained by scanning the relative position of
the second (thin) standing light wave for a given interaction
length �z. For large values of �z the phase shifts (b) of the
different interferometer outputs relative to the zeroth order level
off, indicating stationary phases of the wave packet.

11040
rectly behind the array of harmonic imaginary potentials.
The wave function amplitude in each output direction is
given as a superposition of different diffraction orders of
the Michelangelo packet. By changing the relative phase
between the two standing light waves we can measure an
interference pattern and thus deduce the phase evolution as
a function of the interaction length �z.

The interferometric setup employs a probing standing
wave at 801 nm realized by beams impinging on the mirror
under an angle of 10�. Thus, moving the mirror allows us to
scan the relative phase �s between the probing and the
absorptive light wave (beating period 25 �m). The pres-
ence of a magnetic field in the interaction region enables us
to realize a detuned (8 MHz) probing wave using the same
laser for both standing light waves but different circular
polarizations. By detuning the probing light wave the total
flux through the interferometric setup is significantly in-
creased in comparison to an exactly resonant probing field.

In order to deduce the absolute value of �2 we evaluate
the interferometer output in the direction of the third
diffraction order. For our experimental parameters this
beam is always a two-beam interference of the first and
second diffraction order of the array of Michelangelo
packets. In contrast, the output in lower diffraction order
directions is the result of multiple-beam interference and
does not allow us easily to deduce the involved phases.

In order to find the phase difference ��2� ���1� we
have to eliminate the offset phase arising mainly from the
fact that the probing light field is not infinitely thin. For this
purpose we take the difference between the measured
phase in the long-time limit of the absorptive wave (�z >
400 �m) and the phase for the experimentally achievable
shortest interaction length (50 �m). For the Rabi fre-
quency �0 � �0:23� 0:02�� we find the experimental
value j��2� ���1�j � 1:70� 0:17, which is in agreement
with the prediction of the numerical integration ��2��
��1��3�2, that is j�2j � 0:57� 0:1. Moreover, the char-
acteristic length z0 � 400 �m for leveling off the phases
coincides with the one for leveling off the diffraction effi-
ciencies. Furthermore, by increasing the Rabi frequency to
�0��0:4�0:05�� we experimentally deduce j�2j�
0:32�0:08, which is in very good agreement with the pre-
diction of the numerical integration j�2j � 0:27� 0:04.

So far we have concentrated on wave packets in D � 1
spatial dimensions. A straightforward generalization to
D � 2 relies on two orthogonal linear polarized standing
waves interacting with the appropriate atomic transitions
and leads to the potential �iM�!2

xx2 
!2
yy2�=2 near the

nodes. The frequencies !x and !y depend on the field
intensities. A nonorthorgonal configuration provides even
additional parameters to control the form of the emerging
two-dimensional Michelangelo wave packet.

We emphasize that Michelangelo wave packets are not
restricted to the Gaussian form, Eq. (2), originating from
the quadratic potential U2 in Eq. (1). Indeed, with an
5-3
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FIG. 4. Probability density j’�x�j2 (solid line) and absolute
value of phase j��x�j (dotted line) of Michelangelo wave packets
in the potential U2n.
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appropriate mask [18] we can create almost any behavior
of the mode function close to the node, leading, for ex-
ample, to a power law potential U2n�x� � ��2

0=���qx�2n.
Here q� k determines the characteristic width of U2n.

The Michelangelo wave packets shown in Fig. 4 for
n � 1; 3, and 5 are the ‘‘ground’’ state eigenfunctions of
the corresponding stationary non-Hermitian Hamiltonians
and can be obtained numerically. In the asymptotic regime
only these functions survive because their complex energy
‘‘eigenvalues’’ have the smallest imaginary parts. More-
over, applying the general arguments above to the case of
U2n yields the following characteristic time and width:

t0�
1

�2=�n
1�
0

�
�

~!n
r

�
1=�n
1�

and q�x0�

�
�

�2
0t0

�
1=2n

; (3)

where ~!r � q2=�2M�. These scaling behaviors have been
confirmed by numerical integration of the correspond-
ing Schrödinger equation. We note that for n � 1 these
expressions reduce to the ones of the previous case. For
n! 1 the potential U2n takes on the shape of a box, t0 is
independent of �0, and �x0 is solely given by q.

In conclusion we present a new class of nonspreading
wave packets resulting from the interplay between absorp-
tive narrowing and quantum spreading. The developed
theoretical description explains the experimental observa-
tion of both the phase and the amplitude of the wave packet
quantitatively. The experimental realization of imaginary
potentials strongly relies on spontaneous decay processes.
Nevertheless, we show that coherence is maintained and
can even be employed for deducing the phase of the
Michelangelo packets. Since the wave packet arising in
the long-time limit is weakly dependent on the initial wave
function, this process is a robust tool for generating wave
packets with well-defined amplitude and phase for further
experiments.
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Chapter 5

Conclusion

The present work gives a summary of experiments concerning the control of quantum
states. After concluding the study of the interaction of matter waves with imaginary
potentials and the first experimental realization of non-spreading wave packets, i.e.,
the active control of the shape of a wave packet, an experimental setup was created
to coherently control the tunneling dynamics of particles in a conservative double-
well potential. A direct visualization of the tunneling of massive particles could
be presented, as well as the realization of a control of this dynamics via an ac-
driving field. Furthermore the effect of coherent destruction of tunneling (CDT)
was observed and its critical dependence on the generalized parity symmetry of the
driving field demonstrated.

Together with Ralf Sützle, Martin Göbel and Thomas Hörner the final measure-
ments of a non-spreading wave packet could be realized, which was summarized in
chapter 4. Those wave packets arise in the long-time limit of the interaction of
an atom with an imaginary potential. The stationary solution appears due to two
competing processes, the absorptive narrowing and the spreading due to dispersion,
balancing after a certain time t0. For not only measuring the width of the wave
packet and its leveling, but the whole wave function, the corresponding phase was
determined in addition. These results also published in [55] do not only present the
first experimentally realized non-spreading wave packet of Gaussian shape due to
an imaginary potential, but also point out that the wave form depends primarily
onto the chosen complex potential, making the method a viable instrument to gen-
erate wave packets with well-defined shape and phase, which can be chosen almost
arbitrarily.

The starting point for the study of strong driving was a paper by Grossmann et
al. [20] where they study the influence of a sinusoidal driving force onto the tunneling
dynamics of a particle in a quartic double well potential. They predict an effect,
naming it coherent destruction of tunneling, which implies that there exist parameter
combinations of driving frequency and amplitude leading to a complete standstill
of the tunneling dynamics. This is a quite astonishing result as the occurrence of
tunneling is an intrinsic property of the quantum nature of the particles.
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The experiments were done utilizing a slow and coherent beam of metastable
argon atoms. For creating the double well potential a unit of two mirrors with an
angle of ξ = (2.0903± 7 · 10−7)rad was installed that reunites two beams under an
angle of exactly π/3, which were diffracted by an acousto optical deflector before-
hand. Close to the mirror, where all beams overlap the resulting light shift potential
has the form of a continuous row of double wells, if red detuned light is used. The
driving field then is realized by varying this angle between the two standing light
waves. The atoms are diffracted by this periodic arrangement of equally formed dou-
ble wells enabling the direct observation of the dynamic of the atoms in momentum
space. Potential and driving field are not exactly what was proposed by Grossmann
et al., but it could be proven by calculations beforehand that the deviations from the
model system would not destroy the effect of CDT. Therefor a detailed theoretical
analysis of the experimentally realized system was made using the Floquet theory
as elaborated by Hänggi [19] as well as the split-step Fourier method enabling a full
numerical solutions.

One of the main issues of this work was the realization of a stable double well
potential, which was achieved allowing the direct observation of single particle tun-
neling. With this it was possible to demonstrate an experimental realization of
ac-control of this tunneling dynamics and to study the symmetry dependence of the
system.

The measured data are in excellent quantitative agreement with the predictions
from the Floquet analysis as well as the finding of the split-step Fourier method.
Both the dependence of the tunneling on the driving amplitude and the driving fre-
quency was studied, whereat the chosen experimental implementation of the driving
field enables a wide range of realizable driving frequencies, but limits the choice of
the driving amplitudes. Only small amplitudes lead to reasonable results. For bigger
amplitudes not all those double wells coherently illuminated by the atomic beam do
experience the same lift of their wells as the amplitude depends on the distance from
the mirror.

Varying the driving frequency the full control of the tunneling dynamics of the
atoms could be demonstrated and even the complete suppression, i.e., CDT, was
observed. The appearance of this effect was verified by studying its critical depen-
dence on the generalized parity symmetry. As predicted only if the driving field
suffices this symmetry condition the effect occurs, otherwise only a slight slowing
of the tunneling process can be observed. Altogether the experiments illustrate the
capacity of an external driving force for controlling quantum systems. These results
are also published in [56].

The realization of a periodic double well potential, as reported here, with per-
fectly controllable parameters such as the symmetry of the unit cell as well as the
driving makes it a general model system for studying strongly driven systems in the
quantum regime. It clearly has the potency to prepare complex quantum states in
many particle systems. For example it exists theoretical work proposing the usage
of such an ac-driving to induce the transition from a superfluid to a Mott insulator
[57], which would be an altogether different manner to drive this transition aiming
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at obtaining genuinely new, nontrivial information on condensate dynamics.
The presented system should also be extendable to the regime of chaotic motion

present in hamiltonian ratchets [58, 59], which could provide interesting insides into
the relation between classical chaos and quantum mechanics.

Furthermore there exist a variety of suggestions towards coherence stabilization
of qubits relying on the influence of external fields. This addresses one of the main
challenges on the way to a working quantum computer, namely the unavoidable
coupling to the environment. As proposed by Fonseca-Romero et al.[18] it should
be possible to prevent the decoherence of a gate utilizing an ac-field. This is due to
the effect of CDT, which is capable of shifting the coherent long-time dynamics the
qubit towards lower frequencies where the spectral density of the considered ohmic
bath is lower and, thus, the effective coupling is weaker.

During the last years quantum control has attracted enormous theoretical and
experimental interest. Altogether one can expect further exciting results presenting
tools to handle the quantum world, which reveal new insights or bring us even closer
to a working quantum computer.
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Appendix A

Creating a coherent beam of
slow atoms

Figure A.1: Photo of the beam machine. On the left the nitrogen cooling of the
atomic source can be seen, followed by a chamber containing the first collimation
stage and the long arm with the Zeeman slower coils. The big vacuum chamber
on the right contains the funnel and the first slit, followed by the chamber for the
experimental setup and the long arm at which’s end the detector is installed.

The experiments were realized with a coherent beam of slow argon atoms. Be-
sides the coherence it was of great interest to slow the atoms down as far as possible
while maximizing the flux.

Vacuum

To realize an experiment with single atoms the residual gas has to be minimized to
avoid collisions, i.e., influences other than those experimentally studied. The vacuum
aperture used here is split into two parts concerning the quality of the vacuum. In
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the first two chambers of the apparatus the vacuum is with about 10−5mbar and
10−6mbar respectively a high vacuum (HV) produced by oil diffusion pumps each
combined with one rotary vane pump as booster pump. This enable to evacuate big
volumes in short time, so that the vacuum can be restored in a reasonable time (less
than a day), which is necessary as this part has to be opened frequently to renew
the wires functioning as cathode for the gas discharge (described in the following
section). By a gate valve this part can be separated from the following, so that the
vacuum in the rest of the apparatus is not affected. After a differential pumping stage
the ultra high vacuum part of the apparatus follows. A pressure of about 10−8mbar
is achieved by two turbo-molecular pumps in combination with a turbodrag pump
and two rotary vane pumps as booster pumps. (Later on the turbodrag pump was
removed as it had no essential effect.)

Source of metastable argon atoms

A photo of the argon beam apparatus is shown in fig. A.1. On the left hand side one
can see the nitrogen cooling of the atom source. It is a high voltage gas discharge
producing slightly cooled metastable argon atoms (about 300m/s). The design of
source follows a concept originally proposed for neon by Kawanaka et al.[60]. Four
welding wires inside a glass tube function as cathode, a metal dist at the end of the
source body as an anode. In the gas discharge primarily argon ions and free electrons
are produced. The electrons then are accelerated to a second anode following in a
distance, kept variable for optimization. The metastable argon atoms are generated
from collisions of those electrons with the residual gas, which transfers the atoms
into an excited state from which they relax into the metastable states 1s3 and 1s5.
The cooling only works for the wanted 1s5 state, however also atoms in the 1s3 state
will move into the direction of the beam. The selection of the state 1s5 happens
later on in the funnel unit. The second anode also functions as differential pumping
stage towards the next vacuum chamber.

Collimation

Metastable atoms that pass this pumping stage all have a preferential direction,
the direction of propagation of the atomic beam, but this beam still is very diver-
gent. Hence a first 2D-collimation stage is integrated increasing the flux of atoms
through the next differential pumping stage by a factor of about 100. It is cooled
by spontaneous emission sweeping the share of the wave vector of the cooling light,
that is perpendicular to the atomic beam, synchronously with the decrease of the
perpendicular velocity of the atoms. This is implemented as proposed by Shimizu
et al.[61] by reflecting a blue detuned light beam repeatedly by two facing mirrors,
that are slightly tilted towards each other as sketched in fig. A.2. Because of the
tilde the direction of the wave vector is changed with each reflection realizing the
sweep.
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Figure A.2: Sketch of the beam machine. The argon atoms, exited to the metastable
state by a gas discharge, pass a first collimation stage, are slowed by a Zeeman slower,
collimated by a funnel and two following slits before they enter the experimental
setup. The detector follows after a distance of 1m to increase the resolution of the
diffraction orders. The inset shows the layout of the funnel.

Zeeman slower

The first unit of the high vacuum part is a σ±Zeeman slower build by Andreas
Schnetz [62] reducing the velocity of propagation of the atoms to 42m/s. The mag-
netic field is generated by two coils, poled contrarily, producing a zero-crossing of the
magnetic field. This way huger values of the magnetic field are avoided, that could
disturb other parts of the experiment. The final velocity is defined by the maximal
value of the magnetic field of the second coil. However with the setup described
here the velocity of the atoms can not be reduced further (beyond about 40m/s) by
increasing this magnetic field as was verified experimentally. Probably due to the
fact that the resonance has a finite width and the magnetic field does not fall to zero
abruptly, atoms start turning around and moving back into the Zeeman slower for
higher magnetic fields. As the velocity was not measured directly after the Zeeman
slower but with the detector at the end of the complete setup, it may also be that
the divergence for such a slow beam prevents too many atom to enter the following
funnel, so that no atoms are detected in the end.

Funnel

After this main slowing unit the atoms enter a funnel constructed by Martin Störzer
and Ralf Stützle [46, 25], whereat the mechanical design follows the design realized
by Scholz et al. [63]. This is a 2D-MOT [64] installed under an angle of 42◦ in
respect to the axis atom source - zeeman slower, further reducing the velocity of
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the atoms by a factor of cos(42◦) ≈ 0.74. The angle has the great advantage that
atoms not in the state 1s5 or UV-photons from the gas discharge will not reach the
detector while flying straight on. The funnel is build using four permanent magnets,
four mirrors and λ/4-plates feeding in only one light beam. A scheme is depicted
in the inset of fig. A.2. The cooling mechanism relies on the combination of an
optical molasses and an inhomogeneous magnetic field. For the molasses two times
two counter propagating laser beams of same polarization and intensity produce a
force onto the atoms depending on their velocity, due to the varying Doppler shift.
For red detuned light the atomic velocity is damped. For compressing the atomic
distribution in real space the magnetic field is added introducing a dependence of
the force strength onto the position due to Zeeman-splitting.

Final collimation

The final collimation of the atomic beam is achieved by two slits following the funnel
after a few millimeters and some 25cm respectively. They are responsible for the
coherence of the atoms necessary for the experiments (cf. sec. 3.1.1).

Directly after the chamber with the experimental setup two permanent magnets
outside the vacuum apparatus are installed to remove all atoms not in the substate
mj = 0. As a result of the Stern-Gerlach effect they are deflected so that they do
not reach the detector. This is to preclude any influences of stray fields.

Detector

The detector composed of two micro-channel plates (MCP), installed at the end of an
arm of 1m length following the vacuum chamber with the experimental setup, enables
the single atom detection utilizing their inner energy of 12eV. This is combined with a
resistive anode following the MCPs, which allows the spatial resolution of the counts
in two dimensions. With the distance of the detector from the experimental chamber
the separation between the diffraction orders, i.e., their resolution, increases, however
the arm has to be slightly lowered as the atoms drop in the terrestrial magnetic field.
To increase the resolution the detector unit is installed under an angle of 10◦ in
respect to the axis along the beam propagation. This yields a resolution of 17.2µm
the total width being 256 pixel on 1in diameter.

atomic beam

Figure A.3: Atomic beam hitting the detection unit under an angle to increase the
resolution.
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Laser system

All the light used for the preparation of the atomic beam is provided by a Tapered
Amplifier (TA 100, Toptica) emitting light with a wave length of 811.757nm and a
power of 400mW. A small part of the intensity is shifted by 18MHz via an acousto
optical modulator (AOM) before doing Doppler-free saturation spectroscopy to ob-
tain frequency stabilized light that is red detuned by −18MHz. This is the detuning
needed for the funnel. Employing further AOMs the frequency is adapted to the
different parts of the preparation process. The light used for the Zeeman slowing is
−160MHz red detuned, for the Zeeman slowing and +6MHz blue detuned for the
collimation.

For the double well potential the light is delivered by a titan-sapphire laser (MBR
110, Coherent) pumped by a frequency doubled diode laser (Verdi V10, Coherent).
The maximal Power at 811.757nm is 1.5W. As for the light shift potentials it must
be far detuned from the intra atomic transition it suffices to stabilize the frequency
via the internal reference resonator.

The complex potential is realized with the light of diode laser as stabilized to
the resonance frequency of 801.702nm by Doppler-free saturation spectroscopy.
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